PT AU BA BE GP AF BF CA TI SO SE BS LA DT CT CY CL SP HO DE ID AB C1 RP EM RI OI FU FX CR NR TC Z9 U1 U2 PU PI PA SN EI BN J9 JI PD PY VL IS PN SU SI MA BP EP AR DI D2 EA EY PG WC SC GA UT PM OA HC HP DA J Wiklund, C; Gotthard, K; Nylin, S Wiklund, C; Gotthard, K; Nylin, S Mating system and the evolution of sex-specific mortality rates in two nymphalid butterflies PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article life history; ageing; polygamy; monandry; polyandry; senescence AGLAIS-URTICAE; MALES EMERGE; REPRODUCTION; SENESCENCE; DROSOPHILA; HYPOTHESIS; POLYANDRY; PROTANDRY; FEMALES Life-history theory predicts that organisms should invest resources into intrinsic components of lifespan only to the degree that it pays off in terms of reproductive success. The benefit of a long life may differ between the sexes and different mating systems may therefore select for different sex-specific mortality rates. In insects with polyandrous mating systems, females mate throughout their lives and male reproductive success is likely to increase monotonously with lifespan. In monandrous systems, where the mating season is less protracted because receptive females are available only at the beginning of the flight season, male mating success should be less dependent on a long lifespan. Here, we show, in a laboratory experiment without predation, that the duration of the mating season is longer in the polyandrous comma butterfly, Polygonia c-album, than in the monandrous peacock butterfly, Inachis io, and that, in line with predictions, male lifespan is shorter than female lifespan in I. io, whereas male and female lifespans are similar in P. c-album. Stockholm Univ, Dept Zool, SE-10691 Stockholm, Sweden Wiklund, C (reprint author), Stockholm Univ, Dept Zool, SE-10691 Stockholm, Sweden. christer.wiklund@zoologi.su.se Nylin, Soren/B-7375-2008; Gotthard, Karl/F-1163-2011 Nylin, Soren/0000-0003-4195-8920; BAKER RR, 1972, J ANIM ECOL, V41, P453, DOI 10.2307/3480; Baker RR, 1984, BIOL BUTTERFLIES, P279; Charlesworth B., 1994, EVOLUTION AGE STRUCT; DENLINGER DL, 1988, OECOLOGIA, V77, P350, DOI 10.1007/BF00378041; FAGERSTROM T, 1982, OECOLOGIA, V52, P164, DOI 10.1007/BF00363830; Fox GA, 2001, DESIGN ANAL ECOLOGIC, P253; Gotthard K, 2000, OECOLOGIA, V122, P36, DOI 10.1007/PL00008833; IWASA Y, 1983, THEOR POPUL BIOL, V23, P363, DOI 10.1016/0040-5809(83)90024-2; Kirkwood T B, 1987, Basic Life Sci, V42, P209; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; NYLIN S, 1988, OIKOS, V53, P381, DOI 10.2307/3565539; Partridge L, 1996, P ROY SOC B-BIOL SCI, V263, P1365, DOI 10.1098/rspb.1996.0200; PULLIN AS, 1987, J ZOOL, V211, P631, DOI 10.1111/j.1469-7998.1987.tb04476.x; Roff D. A., 2002, LIFE HIST EVOLUTION; Rose MR, 2002, EVOLUTION, V56, P1982; SEVENSTER JG, 1993, J ANIM ECOL, V62, P720, DOI 10.2307/5392; Sgro CM, 1999, SCIENCE, V286, P2521, DOI 10.1126/science.286.5449.2521; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stearns S. C., 2000, EVOLUTION INTRO; SVARD L, 1989, BEHAV ECOL SOCIOBIOL, V24, P395, DOI 10.1007/BF00293267; Tatar M, 1997, OECOLOGIA, V111, P357, DOI 10.1007/s004420050246; Wiklund C, 1996, OIKOS, V75, P227, DOI 10.2307/3546246; WIKLUND C, 1993, BEHAV ECOL SOCIOBIOL, V33, P25, DOI 10.1007/BF00164343; WIKLUND C, 1977, OECOLOGIA, V31, P153, DOI 10.1007/BF00346917; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 27 29 33 0 19 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. SEP 7 2003 270 1526 1823 1828 10.1098/rspb.2003.2437 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 719MH WOS:000185206500010 12964985 Green Published 2018-11-12 J Dorken, ME; Barrett, SCH Dorken, ME; Barrett, SCH Life-history differentiation and the maintenance of monoecy and dioecy in Sagittaria latifolia (Alismataceae) EVOLUTION English Article ecological selection; gender dimorphism; life-history strategies; local adaptation; sexual systems SELF-FERTILIZATION; REPRODUCTIVE ASSURANCE; FITNESS-CONSEQUENCES; FLOWERING PLANTS; EVOLUTION; STRATEGIES; SIZE; METAPOPULATION; DISPERSAL; GENDER The existence of monoecious and dioecious populations within plant species is rare. This limits opportunities to investigate the ecological mechanisms responsible for the evolution and maintenance of these contrasting sexual systems. In Sagittaria latifolia, an aquatic flowering plant, monoecious and dioecious populations exist in close geographic proximity but occupy distinct wetland habitats differing in the relative importance of disturbance and competition, respectively. Life-history theory predicts contrasting evolutionary responses to these environmental conditions. We propose that the maintenance of monoecy and dioecy in S. latifolia is governed by ecological selection of divergent life-history strategies in contrasting habitats. Here we evaluate this hypothesis by comparing components of growth and reproduction between monoecious and dioecious populations under four conditions: natural populations, a uniform glasshouse environment, a common garden in which monoecious and dioecious populations and their F-1 progeny were compared, and a transplant experiment using shaded and unshaded plots in a freshwater marsh. Plants from dioecious populations were larger in size and produced heavier corms in comparison with monoecious populations. Monoecious populations flowered earlier and produced more flowers, clonal ramets, and corms than dioecious populations. The life-history differences between the sexual systems were shown to have a quantitative genetic basis, with F-1 progeny generally exhibiting intermediate trait values. Survival was highest for each sexual system in field plots that most closely resembled the habitats in which monoecious (unshaded) and dioecious (shaded) populations grow. These results demonstrate that monoecious and dioecious populations exhibit contrasting patterns of investment in traits involved with growth and reproduction. Selection for divergent life histories between monoecious and dioecious populations of S. latifolia appears to be the principal mechanism maintaining the integrity of the two sexual systems in areas of geographic overlap. Univ Toronto, Dept Bot, Toronto, ON M5S 3B2, Canada Dorken, ME (reprint author), Univ Toronto, Dept Bot, 25 Willcocks St, Toronto, ON M5S 3B2, Canada. barrett@botany.utoronto.ca Barrett, Spencer/M-3751-2013 Allan GJ, 1997, PLANT SYST EVOL, V205, P205, DOI 10.1007/BF01464406; ANDERSON E, 1948, EVOLUTION, V2, P1, DOI 10.2307/2405610; BAKER HG, 1955, EVOLUTION, V9, P347, DOI 10.2307/2405656; Barrett SCH, 1996, PHILOS T ROY SOC B, V351, P1271, DOI 10.1098/rstb.1996.0110; BARRETT SCH, 1984, ANN MO BOT GARD, V71, P278, DOI 10.2307/2399071; Bolker BM, 1999, AM NAT, V153, P575, DOI 10.1086/303199; Case AL, 2001, ECOLOGY, V82, P2601, DOI 10.2307/2679939; CHARLESWORTH B, 1978, AM NAT, V112, P975, DOI 10.1086/283342; Charlesworth D., 1999, GENDER SEXUAL DIMORP, P33, DOI 10. 1007/978-3-662-03908-3; COSTICH DE, 1995, ECOLOGY, V76, P1036, DOI 10.2307/1940914; Crowley PH, 2002, AM NAT, V159, P190, DOI 10.1086/324790; de Jong Tom J., 2000, Plant Species Biology, V15, P31, DOI 10.1046/j.1442-1984.2000.00028.x; Dorken ME, 2002, EVOLUTION, V56, P31; DORN LA, 1991, EVOLUTION, V45, P371, DOI 10.1111/j.1558-5646.1991.tb04411.x; Eckert CG, 2000, ECOLOGY, V81, P532, DOI 10.1890/0012-9658(2000)081[0532:COAAGT]2.0.CO;2; Epperson BK, 2001, AM J BOT, V88, P1052, DOI 10.2307/2657087; Fausto JA, 2001, AM J BOT, V88, P1794, DOI 10.2307/3558355; GADGIL M, 1972, AM NAT, V106, P14, DOI 10.1086/282748; Garbisch E, 1994, WETLAND J, V6, P19; GAUDET CL, 1995, ECOLOGY, V76, P280, DOI 10.2307/1940649; Grime J. P., 1979, PLANT STRATEGIES VEG; HARDER LD, 1995, NATURE, V373, P512, DOI 10.1038/373512a0; HARPER J. L., 1970, Annual review of ecology and systematics., V1, P327, DOI 10.1146/annurev.es.01.110170.001551; Harper J. L., 1977, POPULATION BIOL PLAN; Jakobsson A, 2000, OIKOS, V88, P494, DOI 10.1034/j.1600-0706.2000.880304.x; KEDDY PA, 1994, J ECOL, V82, P635, DOI 10.2307/2261270; Kittelson PM, 2001, EVOLUTION, V55, P2429, DOI 10.1111/j.0014-3820.2001.tb00758.x; LAW R, 1977, EVOLUTION, V31, P233, DOI 10.1111/j.1558-5646.1977.tb01004.x; LEE H, 1998, ECOLOGICAL LAND CLAS; Levins R., 1968, EVOLUTION CHANGING E; Lewontin R. C., 1965, P77; LLOYD DG, 1980, NEW ZEAL J BOT, V18, P103, DOI 10.1080/0028825X.1980.10427235; MAC ARTHUR ROBERT H., 1967; Mazer S. J., 1999, LIFE HIST EVOLUTION, P85; MCCOMB JA, 1969, AUST J BOT, V17, P515, DOI 10.1071/BT9690515; Morgan MT, 1997, AM NAT, V150, P618, DOI 10.1086/286085; MUENCHOW G, 1994, AM J BOT, V81, P568, DOI 10.2307/2445731; Neter J., 1996, APPL LINEAR STAT MOD; O'Connell LM, 2001, EVOL ECOL RES, V3, P311; Pannell J, 1997, BIOL J LINN SOC, V61, P95, DOI 10.1006/bijl.1996.0117; Pannell J, 1997, EVOLUTION, V51, P10, DOI 10.1111/j.1558-5646.1997.tb02383.x; Pannell JR, 1998, EVOLUTION, V52, P657, DOI 10.1111/j.1558-5646.1998.tb03691.x; Rees M, 1997, OIKOS, V78, P116, DOI 10.2307/3545807; RENNER SS, 1995, AM J BOT, V82, P596, DOI 10.2307/2445418; Reusch TBH, 2001, J EVOLUTION BIOL, V14, P129, DOI 10.1046/j.1420-9101.2001.00257.x; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; Roff Derek A., 1992; Ronce O, 2000, EVOL ECOL, V14, P233, DOI 10.1023/A:1011068005057; Sakai A. K., 1999, GENDER SEXUAL DIMORP, P1, DOI 10.1007/978-3-662-03908-3_1; Salisbury EJ, 1942, REPROD CAPACITY PLAN; Sarkissian TS, 2001, ECOLOGY, V82, P360, DOI 10.2307/2679865; SAS Institute, 2000, JMP STAT GRAPH GUID; Schluter D, 2001, TRENDS ECOL EVOL, V16, P372, DOI 10.1016/S0169-5347(01)02198-X; Schluter D, 2000, ECOLOGY ADAPTIVE RAD; Sculthorpe C. D., 1967, BIOL AQUATIC VASCULA; Silvertown J, 2001, EVOL ECOL RES, V3, P393; Simons AM, 2000, AM J BOT, V87, P124, DOI 10.2307/2656690; SMITH JM, 1978, EVOLUTION SEX; Sokal R.R., 1995, BIOMETRY; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEBBINS GL, 1957, AM NAT, V91, P337, DOI 10.1086/281999; Stuefer JF, 2002, J EVOLUTION BIOL, V15, P880, DOI 10.1046/j.1420-9101.2002.00435.x; Turelli M, 2001, TRENDS ECOL EVOL, V16, P330, DOI 10.1016/S0169-5347(01)02177-2; Via S, 2001, TRENDS ECOL EVOL, V16, P381, DOI 10.1016/S0169-5347(01)02188-7; Webb C. J., 1999, GENDER SEXUAL DIMORP, P61; WEIS AE, 1987, AM J BOT, V74, P1476, DOI 10.2307/2444042; Wetzel PR, 1998, PLANT ECOL, V138, P179, DOI 10.1023/A:1009751703827; WOOTEN JW, 1971, EVOLUTION, V25, P549, DOI 10.1111/j.1558-5646.1971.tb01915.x; ZHANG DY, 1994, AM NAT, V144, P65, DOI 10.1086/285661 69 31 34 2 30 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution SEP 2003 57 9 1973 1988 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 727TB WOS:000185674500002 14575320 2018-11-12 J Brown, CA Brown, CA Offspring size-number trade-offs in scorpions: An empirical test of the van Noordwijk and de Jong model EVOLUTION English Article arachnids; body size; Centruroides vittatus; life-history theory; reproductive allocation; reproductive investment LIFE-HISTORY EVOLUTION; EGG SIZE; REPRODUCTIVE INVESTMENT; CENTRUROIDES-VITTATUS; CLUTCH SIZE; COSTS; POPULATIONS Life-history traits are expected to exhibit negative phenotypic trade-offs, but often do not. In a seminal paper, van Noordwijk and de Jong (1986) provided an answer to this seeming paradox. According to their model, trade-offs will be more difficult to detect if variation in resource acquisition (or investment) is high relative to variation in resource allocation to the traits under consideration. Despite its influence on subsequent life-history studies, this model has rarely been tested. I use data from 10 species of scorpion (a total of 30 datasets, including multiple populations or years for some species) to test the van Noordwijk-de Jong model as modified to examine the relationship between offspring size and number. For both the overall data and a subset, including only the species Centruroides vittatus, I found that the correlation between offspring size and number within a population was significantly negatively correlated with the ratio of allocation variance to investment variance. That is, strong trade-offs were found when the investment variance was low relative to the allocation variance. These results were robust to the particular measure of offspring size and to whether offspring data were adjusted for female size variation. My results therefore provide strong evidence in support of the van Noordwijk and de Jong model. Tennessee Technol Univ, Dept Biol, Cookeville, TN 38505 USA Brown, CA (reprint author), Tennessee Technol Univ, Dept Biol, Box 5063, Cookeville, TN 38505 USA. cabrown@tntech.edu BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; Bernardo J, 1996, AM ZOOL, V36, P216; BROWN CA, 1995, OECOLOGIA, V103, P140, DOI 10.1007/BF00329073; BROWN CA, 1998, THESIS U TEXAS AUSTI; Brown Christopher A., 2001, P307; Christians JK, 2000, FUNCT ECOL, V14, P497, DOI 10.1046/j.1365-2435.2000.00444.x; FORMANOWICZ DR, 1993, OECOLOGIA, V94, P368, DOI 10.1007/BF00317111; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Glazier DS, 1999, EVOL ECOL, V13, P539, DOI 10.1023/A:1006793600600; Lourenco WR, 1996, J BIOGEOGR, V23, P681, DOI 10.1111/j.1365-2699.1996.tb00028.x; Mittelbach GG, 2001, ECOLOGY, V82, P2381; Myers C, 2001, SCORPION BIOLOGY AND RESEARCH, P317; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; *STATS, 1993, STAT WIND VERS 4 5; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TUOMI J, 1983, AM ZOOL, V23, P25; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547 24 31 31 0 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution SEP 2003 57 9 2184 2190 10.1111/j.0014-3820.2003.tb00397.x 7 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 727TB WOS:000185674500021 14575339 Bronze 2018-11-12 J Kotiaho, JS; Simmons, LW Kotiaho, JS; Simmons, LW Longevity cost of reproduction for males but no longevity cost of mating or courtship for females in the male-dimorphic dung beetle Onthophagus binodis JOURNAL OF INSECT PHYSIOLOGY English Article alternative reproductive tactics; cost of courtship; cost of mating; cost of reproduction; Onthophagus drug beetles MALE DROSOPHILA-MELANOGASTER; FLYCATCHER FICEDULA-ALBICOLLIS; SPERM COMPETITION GAMES; SEXUAL SELECTION; EGG-PRODUCTION; FRUIT-FLY; CONDITION DEPENDENCE; CERATITIS-CAPITATA; SCARABAEIDAE; COLEOPTERA Life history theory predicts a trade-off between current and future reproduction. Despite a wealth of research on the cost of reproduction for females, there have been very few studies that have looked at the cost of reproduction for males. Longevity is closely related to the opportunity for future reproduction, and thus decreased longevity in response to current reproductive effort has been used as a measure of the cost of reproduction. Here we examine the cost of reproduction for males and females in the dung beetle Onthophagus binodis. Like many onthophagines, O. binodis exhibit dimorphic male morphology; major males develop a large pronotal horn while minor males remain hornless. Alternative morphologies are associated with alternative reproductive tactics. Thus, we ask whether major and minor males pay different costs of reproduction. We found that in contrast to previous work on Diptera, mating is not costly in terms of reduced longevity for female dung beetles. Despite a longevity cost of reproduction for males, we found no evidence for differential longevity costs associated with alternative reproductive tactics. (C) 2003 Elsevier Ltd. All rights reserved. Univ Western Australia, Sch Anim Biol M092, Evolutionary Biol Res Grp, Nedlands, WA 6009, Australia Kotiaho, JS (reprint author), Univ Jyvaskyla, Dept Biol & Environm Sci, POB 35, FIN-40014 Jyvaskyla, Finland. jkotiaho@cc.jyu.fi Simmons, Leigh/B-1815-2011 Simmons, Leigh/0000-0003-0562-1474; Kotiaho, Janne/0000-0002-4732-784X ANDERSSONM M, 1994, SEXUAL SELECTION; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; Chapman T, 1998, P ROY SOC B-BIOL SCI, V265, P1879, DOI 10.1098/rspb.1998.0516; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; Civetta A, 2000, P NATL ACAD SCI USA, V97, P13162, DOI 10.1073/pnas.230305397; CluttonBrock T, 1997, BEHAV ECOL, V8, P392, DOI 10.1093/beheco/8.4.392; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL; COOK D, 1987, AUST J ZOOL, V35, P123, DOI 10.1071/ZO9870123; COOK D, 1988, AUST J ZOOL, V36, P521, DOI 10.1071/ZO9880521; COOK D, 1988, THESIS U W AUSTR; COOK DF, 1990, ANIM BEHAV, V40, P428, DOI 10.1016/S0003-3472(05)80522-6; Cordts R, 1996, ANIM BEHAV, V52, P269, DOI 10.1006/anbe.1996.0172; Crudgington HS, 2000, NATURE, V407, P855, DOI 10.1038/35038154; Emlen DJ, 1997, BEHAV ECOL SOCIOBIOL, V41, P335, DOI 10.1007/s002650050393; FOWLER K, 1989, NATURE, V338, P760, DOI 10.1038/338760a0; Gaskin T, 2002, ANIM BEHAV, V63, P121, DOI 10.1006/anbe.2001.1896; Gems D, 1996, NATURE, V379, P723, DOI 10.1038/379723a0; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; Hunt J, 2002, J EVOLUTION BIOL, V15, P57, DOI 10.1046/j.1420-9101.2002.00374.x; Hunt J, 1998, BEHAV ECOL SOCIOBIOL, V42, P447, DOI 10.1007/s002650050459; JOHNSTONE RA, 1995, BIOL REV, V70, P1, DOI 10.1111/j.1469-185X.1995.tb01439.x; Kotiaho JS, 2001, NATURE, V410, P684, DOI 10.1038/35070557; Kotiaho JS, 2000, BEHAV ECOL SOCIOBIOL, V48, P188, DOI 10.1007/s002650000221; Kotiaho JS, 2002, BEHAV ECOL, V13, P791, DOI 10.1093/beheco/13.6.791; Kotiaho JS, 2001, BIOL REV, V76, P365, DOI 10.1017/S1464793101005711; Kotiaho JS, 1998, P ROY SOC B-BIOL SCI, V265, P2203, DOI 10.1098/rspb.1998.0560; LEE JM, 1981, ENVIRON ENTOMOL, V10, P626, DOI 10.1093/ee/10.5.626; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Mangan RL, 1997, J ECON ENTOMOL, V90, P945, DOI 10.1093/jee/90.4.945; MAYNARDSMITH J, 1958, J EXP BIOL, V35, P832; Moczek AP, 2000, ANIM BEHAV, V59, P459, DOI 10.1006/anbe.1999.1342; PARKER GA, 1990, P ROY SOC B-BIOL SCI, V242, P127, DOI 10.1098/rspb.1990.0115; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1986, J INSECT PHYSIOL, V32, P925, DOI 10.1016/0022-1910(86)90140-X; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PARTRIDGE L, 1990, J INSECT PHYSIOL, V36, P419, DOI 10.1016/0022-1910(90)90059-O; PARTRIDGE L, 1985, J INSECT PHYSIOL, V31, P393, DOI 10.1016/0022-1910(85)90084-8; PARTRIDGE L, 1987, J INSECT PHYSIOL, V33, P745, DOI 10.1016/0022-1910(87)90060-6; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; Price CSC, 1999, NATURE, V400, P449; Prowse N, 1997, J INSECT PHYSIOL, V43, P501, DOI 10.1016/S0022-1910(97)00014-0; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Ridsdill Smith T.J., 1982, Entomologia Experimentalis et Applicata, V32, P80; Roff Derek A., 1992; Santos PD, 1987, FUNCT ECOL, V1, P215, DOI 10.2307/2389423; Simmons LW, 1999, P ROY SOC B-BIOL SCI, V266, P145, DOI 10.1098/rspb.1999.0614; Simmons LW., 2001, SPERM COMPETITION IT; SIVINSKI JM, 1993, FLA ENTOMOL, V76, P635, DOI 10.2307/3495798; SMITH JM, 1956, J GENET, V261, P261; SMITH TJR, 1988, B ENTOMOL RES, V78, P633; SMITH TJR, 1984, BEETLES MITES ATTRAC, V34, P1; Sowig P, 1996, ECOL ENTOMOL, V21, P81, DOI 10.1111/j.1365-2311.1996.tb00269.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stutt AD, 2001, P NATL ACAD SCI USA, V98, P5683, DOI 10.1073/pnas.101440698; Tomkins JL, 2002, ANIM BEHAV, V63, P1009, DOI 10.1006/anbe.2001.1994; VANVOORHIES WA, 1992, NATURE, V360, P456, DOI 10.1038/360456a0; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; Westendorp RGJ, 1998, NATURE, V396, P743, DOI 10.1038/25519; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wolfner MF, 1997, INSECT BIOCHEM MOLEC, V27, P825, DOI 10.1016/S0965-1748(97)00056-8 61 80 87 4 21 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0022-1910 1879-1611 J INSECT PHYSIOL J. Insect Physiol. SEP 2003 49 9 817 822 10.1016/S0022-1910(03)00117-3 6 Entomology; Physiology; Zoology Entomology; Physiology; Zoology 718AF WOS:000185122400002 16256683 2018-11-12 J Kennedy, GE Kennedy, GE Palaeolithic grandmothers? Life history theory and early Homo JOURNAL OF THE ROYAL ANTHROPOLOGICAL INSTITUTE English Review EVOLUTIONARY PERSPECTIVE; FEMALE CHIMPANZEES; DENTAL DEVELOPMENT; CLASSICAL GREECE; LIBBEN SITE; BODY-SIZE; MENOPAUSE; PALEODEMOGRAPHY; HOMINIDS; PRIMATES The acknowledged success of early Homo has generally been thought to reflect male-dominated provisioning and associated patterns of co-operative social organization; recently, however, such conclusions have been challenged with the argument that postmenopausal females, instead, played a significant role in early human subsistence activities males, it has been proposed, had a very minor role in food acquisition in early Homo. The fossil record, however, indicates minimal old-age survivorship of either sex and heavy young adult mortality, a pattern which is also seen in larger prehistoric and ethnographic samples. Heavy young adult mortality, when combined with characteristically slow maturation, represents a paradox which humans have solved through new reproductive strategies (early weaning and alloparenting) and new life history stages (childhood and adolescence). Stone tools, when used to acquire marrow and brain tissue to feed needful youngsters, may also have been among the strategies developed in response to frequent early parental death. Univ Calif Los Angeles, Dept Anthropol, Los Angeles, CA 90024 USA Kennedy, GE (reprint author), Univ Calif Los Angeles, Dept Anthropol, Los Angeles, CA 90024 USA. kennedy@anthro.ucla.edu ACSCADI G, 1970, HIST HUMAN LIFE SPAN; AMUNDSEN DW, 1970, HUM BIOL, V42, P79; AMUNDSEN DW, 1969, HUM BIOL, V41, P125; AMUNDSEN DW, 1973, HUM BIOL, V45, P605; ANGEL J L, 1969, American Journal of Physical Anthropology, V30, P427, DOI 10.1002/ajpa.1330300314; ANGEL JL, 1953, KHIROKITIA, P416; Arsuaga JL, 1999, NATURE, V399, P255, DOI 10.1038/20430; Arsuaga JL, 1997, J HUM EVOL, V33, P219, DOI 10.1006/jhev.1997.0133; BAILEY SM, 1984, HUM BIOL, V56, P539; BERGER TD, 1995, J ARCHAEOL SCI, V22, P841, DOI 10.1016/0305-4403(95)90013-6; Bermudez de Castro Jose M., 1995, Revista Espanola de Paleontologia, V10, P259; BLUMENSCHINE RJ, 1992, SCI AM, V267, P90, DOI 10.1038/scientificamerican1092-90; Blurton Jones N., 1996, CULTURAL DIVERSITY 2, P159; BOCQUETAPPEL JP, 1982, J HUM EVOL, V11, P321, DOI 10.1016/S0047-2484(82)80023-7; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; Bogin B, 1996, AM J HUM BIOL, V8, P703, DOI 10.1002/(SICI)1520-6300(1996)8:6<703::AID-AJHB2>3.0.CO;2-U; Bogin B, 1999, ANNU REV ANTHROPOL, V28, P109, DOI 10.1146/annurev.anthro.28.1.109; BOGIN B, 1990, BIOSCIENCE, V40, P16, DOI 10.2307/1311235; Bogin B, 1988, PATTERNS HUMAN GROWT; BUNN HT, 1993, J ARCHAEOL SCI, V20, P365, DOI 10.1006/jasc.1993.1023; CABANA T, 1993, AM J HUM BIOL, V5, P93, DOI 10.1002/ajhb.1310050113; CARO TM, 1995, INT J PRIMATOL, V16, P205, DOI 10.1007/BF02735478; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Coale AJ, 1966, REGIONAL MODEL LIFE; Cohen M. N., 1984, PALEOPATHOLOGY ORIGI; CUTLER RG, 1975, P NATL ACAD SCI USA, V72, P4664, DOI 10.1073/pnas.72.11.4664; de Castro JMB, 1999, P NATL ACAD SCI USA, V96, P4210, DOI 10.1073/pnas.96.7.4210; de Heinzelin J, 1999, SCIENCE, V284, P625; de Waal Frans, 1982, CHIMPANZEE POLITICS; deCastro JMB, 1997, J HUM EVOL, V33, P333, DOI 10.1006/jhev.1997.0110; DETTWYLER K, 1995, AM J PHYSICAL ANTH S, V18, P80; Dominguez-Rodrigo M., 1997, Human Evolution, V12, P169, DOI 10.1007/BF02438066; EMLEN ST, 1991, AM NAT, V138, P259, DOI 10.1086/285216; ESTRADA A, 1980, Primates, V21, P128, DOI 10.1007/BF02383830; ESTRADA A, 1982, PRIMATES, V21, P135; FESTING M F W, 1971, Laboratory Animals (London), V5, P179, DOI 10.1258/002367771781006564; FLINT M, 1976, American Journal of Physical Anthropology, V44, P178; FLINT M, 1976, CONSENSUS MENOPAUSE, P73; FOSSEY D, 1979, GREAT APES, P139; FRIEDENTHAL H, 1910, ZENTRALBL PHYSIOL, V24, P321; Gage TB, 1998, ANNU REV ANTHROPOL, V27, P197, DOI 10.1146/annurev.anthro.27.1.197; GAGE TB, 1993, HUM BIOL, V65, P445; Gargett RH, 1999, J HUM EVOL, V37, P27, DOI 10.1006/jhev.1999.0301; GARGETT RH, 1989, CURR ANTHROPOL, V30, P157, DOI 10.1086/203725; Goodall J, 1986, CHIMPANZEES GOMBE; GOULD KG, 1981, MATURITAS, V3, P157, DOI 10.1016/0378-5122(81)90007-4; GRAHAM CE, 1979, AM J PHYS ANTHROPOL, V50, P291, DOI 10.1002/ajpa.1330500302; Hammer M.L.A., 1996, Human Evolution, V11, P61, DOI 10.1007/BF02456989; HAMMER MF, 1995, NATURE, V378, P376, DOI 10.1038/378376a0; HANSEN EW, 1966, BEHAVIOUR, V27, P107, DOI 10.1163/156853966X00128; HARLOW HF, 1963, MATERNAL BEHAVIOR MA, P254; Harris EE, 1999, P NATL ACAD SCI USA, V96, P3320, DOI 10.1073/pnas.96.6.3320; Harvey P.H., 1987, P181; HAWKES K, 1995, CURR ANTHROPOL, V36, P688, DOI 10.1086/204420; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; HAWKES K, 1991, PHILOS T ROY SOC B, V334, P243, DOI 10.1098/rstb.1991.0113; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; HAWKES K, 1989, COMP SOCIOECOLOGY BE, P341; HAWKES K, 2000, ADAPTATION HUMAN BEH, P237; HAWKES K, 1998, EVOLUTIONARY BIOL HU; HOPPA R, 2002, CAMBRIDGE STUDIES BI, V31; HOWELL N, 1982, AM J PHYS ANTHROPOL, V59, P263, DOI 10.1002/ajpa.1330590305; Howell N., 1979, DEMOGRAPHY DOBE KUNG; HOWELLS WW, 1966, SCI AM, V215, P46, DOI 10.1038/scientificamerican1166-46; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Hutchinson GE, 1978, INTRO POPULATION ECO; ISAAC G, 1982, WORLD ARCHAEOL, V3, P1; JOLLY A, 1985, EVOLUTION PRIMATE BE; JONES NGB, 1992, AM J PHYS ANTHROPOL, V89, P159, DOI 10.1002/ajpa.1330890204; Kaessmann H, 1999, SCIENCE, V286, P1159, DOI 10.1126/science.286.5442.1159; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; KENNEDY G, 1981, MAN NS, V19, P94; KENNEDY G, 1973, THESIS U LONDON; KENNEDY GE, 1983, J HUM EVOL, V12, P587, DOI 10.1016/S0047-2484(83)80001-3; KENNEDY GE, 1985, J HUM EVOL, V14, P699, DOI 10.1016/S0047-2484(85)80052-X; KENNEDY GE, 1991, J HUM EVOL, V20, P375, DOI 10.1016/0047-2484(91)90006-H; KING JL, 1969, SCIENCE, V164, P788, DOI 10.1126/science.164.3881.788; KOBAYASHI K, 1967, J FACULTY SCIENCE 2, V3, P109; Konigsberg LW, 2002, AM J PHYS ANTHROPOL, V117, P297, DOI 10.1002/ajpa.10039; KONIGSBERG LW, 1992, AM J PHYS ANTHROPOL, V89, P235, DOI 10.1002/ajpa.1330890208; Lancaster JB, 1983, HUMANS ADAPT BIOCULT, P33; Layrisse M, 1980, DEMOGRAPHIC BIOL STU, P60; LEE PC, 1991, J ZOOL, V225, P99, DOI 10.1111/j.1469-7998.1991.tb03804.x; Loudon Irvine, 1992, DEATH CHILDBIRTH; LOVEJOY CO, 1977, SCIENCE, V198, P291, DOI 10.1126/science.198.4314.291; LOVEJOY CO, 1981, SCIENCE, V211, P341, DOI 10.1126/science.211.4480.341; LUDER HU, 1993, AM J PRIMATOL, V39, P40; LUPO KD, 1994, J ARCHAEOL SCI, V21, P827, DOI 10.1006/jasc.1994.1080; Mann AE, 1975, SOME PALEODEMOGRAPHI; Marsh H, 1984, REP INT WHAL COMMN, V6, P311; MARTIN RD, 1983, 52 J ARTHUR LECT EVO, P1; MAYER PJ, 1982, HUM ECOL, V10, P477, DOI 10.1007/BF01531168; McGrew WC, 1992, CHIMPANZEE MAT CULTU; MCHENRY HM, 1994, J HUM EVOL, V27, P77, DOI 10.1006/jhev.1994.1036; MCKINLAY S, 1972, J BIOSOC SCI, V4, P161; MENSFORTH RP, 1990, AM J PHYS ANTHROPOL, V82, P81, DOI 10.1002/ajpa.1330820110; Miles AEW, 1963, DENT ANTHR, P191; MILNER GR, 1989, AM J PHYS ANTHROPOL, V80, P49, DOI 10.1002/ajpa.1330800107; MOUNTAIN JL, 1994, P NATL ACAD SCI USA, V91, P6515, DOI 10.1073/pnas.91.14.6515; Nishida T., 1990, P63; O'Connell JF, 1999, J HUM EVOL, V36, P461, DOI 10.1006/jhev.1998.0285; OWSLEY DW, 1979, AM J PHYS ANTHROPOL, V51, P145, DOI 10.1002/ajpa.1330510202; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; PAINE R, 1997, 24 CTR ARCH INV; PAVELKA MSM, 1991, YEARB PHYS ANTHROPOL, V34, P13; PEACOCK NR, 1990, MG PRIMATOL, V14, P195; PECCEI JS, 1995, MATURITAS, V21, P83, DOI 10.1016/0378-5122(94)00884-A; Peccei JS, 2001, EVOL ANTHROPOL, V10, P43, DOI 10.1002/evan.1013; Peccei JS, 2001, AM J HUM BIOL, V13, P434, DOI 10.1002/ajhb.1076; Peccei JS, 1995, ETHOL SOCIOBIOL, V16, P425, DOI 10.1016/0162-3095(95)00069-0; PENNINGTON R, 1991, ETHOL SOCIOBIOL, V12, P83, DOI 10.1016/0162-3095(91)90015-I; PENNINGTON R, 1933, STRUCTURE AFRICAN PA; Pusey A, 1997, SCIENCE, V277, P828, DOI 10.1126/science.277.5327.828; QUIATT D, 1979, AM ANTHROPOL, V81, P310, DOI 10.1525/aa.1979.81.2.02a00040; QUIATT D, 1982, J ETHOLOGY SOCIOBIOL, V3, P135; REICHMAN M, 1982, Q REV BIOL, V57, P405; RINK WJ, 1995, NATURE, V378, P24, DOI 10.1038/378024a0; ROBERTS DF, 1971, ANTHROPOLOGICAL C DE, P115; ROGERS AR, 1993, EVOL ECOL, V7, P406, DOI 10.1007/BF01237872; ROSA L, 1996, CURR ANTHROPOL, V37, P307; ROWELL TE, 1964, ANIM BEHAV, V12, P219, DOI 10.1016/0003-3472(64)90004-1; RUBNER M, 1908, MITT GES INN MED WIE, V7, P58; Sacher G.A., 1975, P417; Sacher G.A., 1959, CIBA F COLLOQ AGEING, V5, P115; SACHER GA, 1978, GERONTOLOGIST, V18, P112, DOI 10.1093/geront/18.2.112; SAVAGE ES, 1973, FOLIA PRIMATOL, V20, P453, DOI 10.1159/000155591; Seielstad M, 1999, GENOME RES, V9, P558; SHIPMAN P, 1986, AM ANTHROPOL, V88, P27, DOI 10.1525/aa.1986.88.1.02a00020; SMITH BH, 1991, AM J PHYS ANTHROPOL, V86, P157, DOI 10.1002/ajpa.1330860206; Smith DWE, 1993, HUMAN LONGEVITY; SMITH JM, 1966, TOPICS BIOL AGING, P1; SMITH RJ, 1995, J HUM EVOL, V29, P155, DOI 10.1006/jhev.1995.1051; Smith RJ, 1996, CURR ANTHROPOL, V37, P451, DOI 10.1086/204505; Snieder H, 1998, J CLIN ENDOCR METAB, V83, P1875, DOI 10.1210/jc.83.6.1875; SPETH JD, 1989, J HUM EVOL, V18, P329, DOI 10.1016/0047-2484(89)90035-3; Stanford C. B., 2001, MEAT EATING HUMAN EV; Tattersall I, 2000, SCI AM, V282, P56, DOI 10.1038/scientificamerican0100-56; TAUB D, 1984, PRIMATE PATERNALISM; THIERRY B, 1986, INT J PRIMATOL, V7, P191, DOI 10.1007/BF02692318; TRINKAUS E, 1990, MG PRIMATOL, V14, P153; TRINKAUS E, 1995, J ARCHAEOL SCI, V22, P121, DOI 10.1016/S0305-4403(95)80170-7; UBELAKER R, 1974, SMITHSONIAN CONTRIBU, V18; Utian W. H., 1980, MENOPAUSE MODERN PER; Washburn SL, 1981, AGING BIOL BEHAV, P11; WASSER SK, 1981, ETHOL SOCIOBIOL, V2, P91, DOI 10.1016/0162-3095(81)90038-8; Weidenreich F., 1939, Chinese Medical Journal, V55, P34; WEIDENREICH F, 1943, WHOLE SERIES, V127; Weidenreich F., 1951, ANTHROPOL PAP AM MUS, V43, P205; Weisner T.S., 1987, PARENTING LIFE SPAN, P237; WEISNER TS, 1977, CURR ANTHROPOL, V18, P169, DOI 10.1086/201883; Weiss K., 1981, OTHER WAYS GROWING O, P25; WEISS KM, 1973, AM ANTIQUITY, V38, P1; Whiten A, 1999, NATURE, V399, P682, DOI 10.1038/21415; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams GC, 1966, ADAPTATION NATURAL S; WILSON AC, 1992, SCI AM, V266, P68; WOLPOFF M, 1989, AM J PHYS ANTHROPOL, V50, P67; WRIGHT PC, 1990, INT J PRIMATOL, V11, P89, DOI 10.1007/BF02192783 158 31 31 0 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1359-0987 1467-9655 J ROY ANTHROPOL INST J. R. Anthropol. Inst. SEP 2003 9 3 549 572 10.1111/1467-9655.00163 24 Anthropology Anthropology 719LC WOS:000185203700008 2018-11-12 J Barnes, AI; Partridge, L Barnes, AI; Partridge, L Costing reproduction ANIMAL BEHAVIOUR English Article LIFE-SPAN; CAENORHABDITIS-ELEGANS; NATURAL-SELECTION; DROSOPHILA-MELANOGASTER; C-ELEGANS; EVOLUTIONARY BIOLOGY; MOLECULAR SIGNALS; HISTORIES; AGE; CONSTRAINTS The placing of animal behaviour in an evolutionary context is one of the great achievements of biologists in the last century. Life history theory has been a powerful tool in explaining both adaptation and constraint in phenotypic evolution, but rarely addresses the mechanistic bases of the traits it discusses. Recent advances in molecular biology have begun to uncover these mechanisms, and provide a challenge to the traditional view that life history trade-offs are the result of the differential allocation of limiting resources. In particular, costs of reproduction in Caenorhabditis elegans appear to arise from molecular signals, which have been claimed to be arbitrary with respect to fitness. We review the evidence that costs of reproduction in C. elegans are not resource based, and find that this is not necessarily the case. However, we welcome the challenge to traditional thinking, and suggest that integrating an understanding of mechanisms into life history theory will be one of the most exciting tasks facing evolutionary biologists in the 21st century. (C) 2003 Published by Elsevier Ltd on behalf of The Association for the Study or Animal Behaviour. UCL, Dept Biol, London WC1E 6BT, England Barnes, AI (reprint author), UCL, Dept Biol, Darwin Bldg,Gower St, London WC1E 6BT, England. a.barnes@ucl.ac.ok Partridge, Linda/E-7342-2015; Partridge, Linda/A-5501-2010 Biotechnology and Biological Sciences Research Council [SF19106] Alcock J., 1989, ANIMAL BEHAV; Apfeld J, 1999, NATURE, V402, P804, DOI 10.1038/45544; Apfeld J, 1998, CELL, V95, P199, DOI 10.1016/S0092-8674(00)81751-1; Arantes-Oliveira N, 2002, SCIENCE, V295, P502, DOI 10.1126/science.1065768; ARNOLD SJ, 1992, AM NAT, V140, pS85, DOI 10.1086/285398; Bartke A, 2002, SCIENCE, V296, P2141, DOI 10.1126/science.296.5576.2141; Barton N, 2000, BIOESSAYS, V22, P1075, DOI 10.1002/1521-1878(200012)22:12<1075::AID-BIES5>3.0.CO;2-M; BELL PD, 1985, OXFORD SURVEYS EVOLU, P83; Braeckman BP, 2001, MECH AGEING DEV, V122, P673, DOI 10.1016/S0047-6374(01)00222-6; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; CHARLESWORTH B, 1973, AM NAT, V107, P303, DOI 10.1086/282832; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Clancy DJ, 2002, SCIENCE, V296, P2141; Clancy DJ, 2001, SCIENCE, V292, P104, DOI 10.1126/science.1057991; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CROW J F, 1970, P591; DARWIN C, 1859, ORIGIN SPECIES; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DEJONG G, 1993, FUNCT ECOL, V7, P75, DOI 10.2307/2389869; FISHER R. A., 1930, GENETICAL THEORY NAT; Gems D, 1996, NATURE, V379, P723, DOI 10.1038/379723a0; Gems D, 2001, CURR OPIN GENET DEV, V11, P287, DOI 10.1016/S0959-437X(00)00192-1; Gems D, 1998, GENETICS, V150, P129; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; GUSTAFSSON L, 1986, AM NAT, V128, P761, DOI 10.1086/284601; HALDANE JBS, 1932, CAUSES EVOLUTION; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hsin H, 1999, NATURE, V399, P362, DOI 10.1038/20694; KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0; Kenyon C, 1996, CELL, V84, P501, DOI 10.1016/S0092-8674(00)81024-7; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KLASS MR, 1977, MECH AGEING DEV, V6, P413, DOI 10.1016/0047-6374(77)90043-4; LAW R, 1979, AM NAT, V113, P3, DOI 10.1086/283361; Leroi AM, 2001, TRENDS ECOL EVOL, V16, P24, DOI 10.1016/S0169-5347(00)02032-2; Lessells K, 2001, TRENDS ECOL EVOL, V16, P284, DOI 10.1016/S0169-5347(01)02162-0; Levins R., 1968, EVOLUTION CHANGING E; LEWONTIN RC, 1986, AM ZOOL, V26, P811; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; Partridge L, 1999, P ROY SOC B-BIOL SCI, V266, P255, DOI 10.1098/rspb.1999.0630; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; Patel MN, 2002, P NATL ACAD SCI USA, V99, P769, DOI 10.1073/pnas.012511099; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; Schmidt-Nielsen K., 1984, SCALING WHY IS ANIMA; Sgro CM, 1999, SCIENCE, V286, P2521, DOI 10.1126/science.286.5449.2521; Simmons FH, 1997, J INSECT PHYSIOL, V43, P779, DOI 10.1016/S0022-1910(97)00037-1; Stearns S. C., 1992, EVOLUTION LIFE HIST; Sze JY, 2000, NATURE, V403, P560, DOI 10.1038/35000609; Walker DW, 2000, NATURE, V405, P296, DOI 10.1038/35012693; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zera AJ, 2000, J INSECT PHYSIOL, V46, P1207, DOI 10.1016/S0022-1910(00)00041-X; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 58 96 98 1 35 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. AUG 2003 66 2 199 204 10.1006/anbe.2003.2122 6 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 714EP WOS:000184899600001 2018-11-12 J Sakai, A; Matsui, K; Kabeya, D; Sakai, S Sakai, A; Matsui, K; Kabeya, D; Sakai, S Altitudinal variation in lifetime growth trajectory and reproductive schedule of a sub-alpine conifer, Abies mariesii EVOLUTIONARY ECOLOGY RESEARCH English Article elevational cline; life-history theory; maturation timing; reduction in tree size; reproductive effort CONE PRODUCTION; RAIN-FOREST; THRESHOLD SIZE; GRADIENT; TREE; HISTORY; PLANTS; CONSTRAINTS; POPULATION; ALLOCATION To determine whether forest trees are differentiated in terms of reproductive schedules among populations under different environmental conditions within a species, we studied three populations of Japanese subalpine snow-fir, Abies mariesii, located at different altitudes (1000, 1250 and 1400 in) on Mt. Hakkoda in northern Japan. We examined life-history schedules, including lifetime growth trajectories, reproductive maturation timing and size-dependent resource allocation to reproduction. With increasing altitude, the asymptotic maximum size of trees decreased and trees approached their maximum size at younger ages: a substantial reduction in tree growth occurred earlier and life span tended to become shorter with increasing altitude. We found that trees advance their reproductive schedules at higher sites in relation to both maturation timing (size, age and whole-tree growth rate at typical reproductive onset) and resource allocation (reproductive biomass and reproductive effort), coinciding with a general prediction of life-history theory. The rate of growth in height, which was increasing, tended to decrease at around the height at which most trees produced cones, and this height was much less with increased altitude. We propose a new hypothesis that life historical adaptation - that is, earlier resource allocation to reproduction at higher sites - is one of the reasons why trees are smaller at higher altitudes. Tohoku Univ, Dept Ecol & Evolutionary Biol, Aoba Ku, Sendai, Miyagi 980, Japan; Tohoku Univ, Grad Sch Sci, Mt Kakkoda Bot Lab, Aoba Ku, Sendai, Miyagi 980, Japan Sakai, A (reprint author), Yokohama Natl Univ, Grad Sch Environm & Informat Sci, Yokohama, Kanagawa 2408501, Japan. Aiba SI, 1996, J ECOL, V84, P207, DOI 10.2307/2261356; BOKURA T, 1994, J JAP SOC SNOW ICE, V56, P57; Buot IE, 1998, VEG SCI, V15, P19; Charnov Eric L., 1993, P1; DEJONG TJ, 1987, VEGETATIO, V70, P149; EIS S, 1965, CAN J BOTANY, V43, P1553, DOI 10.1139/b65-165; Franco M, 1996, PHILOS T R SOC B, V351, P1341, DOI 10.1098/rstb.1996.0117; FUSHO Y, 1981, ECOLOGICAL STUDIES A, P66; GREENE DF, 1994, ECOLOGY, V75, P642, DOI 10.2307/1941722; GRUBB PJ, 1971, NATURE, V229, P44, DOI 10.1038/229044a0; Harper J. L., 1974, Annual Review of Ecology and Systematics, V5, P419, DOI 10.1146/annurev.es.05.110174.002223; ISHIZUKA K, 1981, ECOLOGICAL STUDIES A, P39; JONSSON KI, 1994, TRENDS ECOL EVOL, V9, P304, DOI 10.1016/0169-5347(94)90042-6; KACHI N, 1985, J ECOL, V73, P887, DOI 10.2307/2260155; KIMURA MAKOTO, 1963, JAPAN J BOT, V18, P255; KOHYAMA T, 1982, BOT MAG TOKYO, V95, P167, DOI 10.1007/BF02488583; KOIKE F, 1990, VEGETATIO, V86, P101, DOI 10.1007/BF00031726; Korner C, 1998, OECOLOGIA, V115, P445, DOI 10.1007/s004420050540; Kozlowski J, 1999, EVOL ECOL RES, V1, P423; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; KOZLOWSKI TT, 1992, BOT REV, V58, P197; Lieberman D, 1996, J ECOL, V84, P137, DOI 10.2307/2261350; LINHART YB, 1985, AM J BOT, V72, P181, DOI 10.2307/2443545; MAKITA A, 1997, LINNEAN SOC S SERIES, V19, P135; MARQUIS RJ, 1992, ECOLOGY, V73, P143, DOI 10.2307/1938727; Nakashizuka T., 1992, Journal of Tropical Forest Science, V4, P233; Nakashizuka T, 1997, J PLANT RES, V110, P7, DOI 10.1007/BF02506837; Obeso JR, 1997, J ECOL, V85, P159, DOI 10.2307/2960648; Ohsawa M., 1985, J TROP ECOL, V1, P193; Pendry CA, 1997, J TROP ECOL, V13, P221, DOI 10.1017/S0266467400010427; PYRKE AF, 1994, J VEG SCI, V5, P13, DOI 10.2307/3235633; Raich JW, 1997, ECOLOGY, V78, P707; RYAN MG, 1997, ADV ECOL RES, V27, P214; SEKI T, 1994, CAN J BOT, V72, P1713, DOI 10.1139/b94-211; SEKI T, 1997, ANN REP TOHOKU RES C, V38, P55; Shibata Mitsue, 2002, VVolume 158, P95; SHIBATA O, 1993, STUDIA FORESTALIA SU, V191, P21; Silvertown J, 1999, P ROY SOC B-BIOL SCI, V266, P729, DOI 10.1098/rspb.1999.0697; Silvertown J, 1999, AM NAT, V154, P321, DOI 10.1086/303238; SRUTEK M, 1994, ARCTIC ALPINE RES, V26, P166, DOI 10.2307/1551780; STEARNS SC, 1992, EVOLUTION LIFE HSIT; TADAKI Y, 1970, B GOV FOR EXP STN TO, V229, P1; Takahashi K., 1978, Journal of the Japanese Forestry Society, V60, P100; Tang CQ, 1997, PLANT ECOL, V133, P63, DOI 10.1023/A:1009729027521; Thomas SC, 1996, OIKOS, V76, P145, DOI 10.2307/3545756; Vitousek PM, 1998, ECOLOGY, V79, P1, DOI 10.1890/0012-9658(1998)079[0001:TSAFOM]2.0.CO;2; WATKINSON AR, 1985, PHILOS T R SOC B, V313, P31; WATSON MA, 1984, ANNU REV ECOL SYST, V15, P233, DOI 10.1146/annurev.es.15.110184.001313; Wesselingh RA, 1997, ECOLOGY, V78, P2118, DOI 10.1890/0012-9658(1997)078[2118:TSFFID]2.0.CO;2; Wesselingh RA, 1996, FUNCT ECOL, V10, P281, DOI 10.2307/2389854; WOODWARD A, 1994, CAN J FOREST RES, V24, P1133, DOI 10.1139/x94-150 51 19 19 0 17 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 EVOL ECOL RES Evol. Ecol. Res. JUL 2003 5 5 671 689 19 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 706GL WOS:000184445800003 2018-11-12 J Festa-Bianchet, M; Gaillard, JM; Cote, SD Festa-Bianchet, M; Gaillard, JM; Cote, SD Variable age structure and apparent density dependence in survival of adult ungulates JOURNAL OF ANIMAL ECOLOGY English Article age structure; Capreolus capreolus; individual differences; life-history theory; longevity; mark-recapture; Oreamnos americanus; Ovis canadensis; senescence; survival POPULATION-DYNAMICS; BIGHORN SHEEP; RED DEER; LARGE HERBIVORES; ROE DEER; REPRODUCTIVE SUCCESS; MOUNTAIN GOATS; LIFE-HISTORY; SOAY SHEEP; SEX-RATIO 1. Large herbivores have strongly age-structured populations. Because recruitment often decreases as population density increases, in unexploited populations the proportion of older adults may increase with density. Because survival senescence is typical of ungulates, ignoring density-dependent changes in age structure could lead to apparent density-dependence in adult survival. 2. To test for density dependence in adult survival, we used data from three populations that underwent considerable changes in density. Bighorn sheep (Ovis canadensis ) on Ram Mountain, Alberta, ranged from 94 to 232, mountain goats (Oreamnos americanus ) on Caw Ridge, Alberta, varied from 81 to 147, and estimates of roe deer (Capreolus capreolus ) older than 1 year at Chize, France, ranged from 157 to 569. 3. We used recent developments of capture-mark-recapture modelling to assess the response of adult survival to changes in density when age structure was and was not taken into account. 4. Survival rates were 10-15% higher during the prime-age stage than during the senescent stage for all sex-species combinations. When adults were pooled into a single age class there was an apparent negative effect of density on female survival in bighorns and roe deer, and negative trends for female mountain goats, male roe deer and male bighorn sheep. When age class was taken into account, there were no significant effects of density on adult survival. Except for male mountain goats, the strength of density dependence was lower when age was taken into account. 5. In ungulate populations, age structure is an important determinant of adult survival. Most reports of density dependence in adult survival may have been confounded by changes in age structure. Univ Sherbrooke, Dept Biol, Grp Rech Ecol Nutr & Energet, Sherbrooke, PQ J1K 2R1, Canada; UMR 5558, F-69622 Villeurbanne, France; Univ Laval, Dept Biol, St Foy, PQ G1K 7P4, Canada; Univ Laval, Ctr Etud Nord, St Foy, PQ G1K 7P4, Canada Festa-Bianchet, M (reprint author), Univ Sherbrooke, Dept Biol, Grp Rech Ecol Nutr & Energet, Sherbrooke, PQ J1K 2R1, Canada. Festa-Bianchet, Marco/0000-0002-2352-3379 ALBON SD, 1983, J ANIM ECOL, V52, P969, DOI 10.2307/4467; Andersen R, 2000, J ANIM ECOL, V69, P672, DOI 10.1046/j.1365-2656.2000.00425.x; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.2307/177240; Burnham K. P., 1998, MODEL SELECTION INFE; BURNHAM KP, 1992, WILDLIFE 2001 : POPULATIONS, P16; Carnes BA, 2001, EXP GERONTOL, V36, P419, DOI 10.1016/S0531-5565(00)00254-0; CAUGHLEY G, 1993, OIKOS, V67, P47, DOI 10.2307/3545094; CAUGHLEY G, 1970, ECOLOGY, V51, P53, DOI 10.2307/1933599; CHOQUET R, 2001, UCARE UTILITIES CAPT; CLINTON WL, 1993, ECOLOGY, V74, P1884, DOI 10.2307/1939945; CLOBERT J, 1985, BIOMETRICS, V41, P1031, DOI 10.2307/2530974; Clutton-Brock T. H, 1982, RED DEER BEHAV ECOLO; CluttonBrock TH, 1996, J ANIM ECOL, V65, P675, DOI 10.2307/5667; CLUTTONBROCK TH, 1987, J ANIM ECOL, V56, P53, DOI 10.2307/4799; CluttonBrock TH, 1997, AM NAT, V149, P195, DOI 10.1086/285987; CLUTTONBROCK TH, 1994, J APPL ECOL, V31, P521, DOI 10.2307/2404447; CluttonBrock TH, 1997, P ROY SOC B-BIOL SCI, V264, P1509, DOI 10.1098/rspb.1997.0209; Cote SD, 2001, ANIM BEHAV, V62, P173, DOI 10.1006/anbe.2001.1719; Cote SD, 1998, J MAMMAL, V79, P406, DOI 10.2307/1382971; COTE SD, 2003, WILD MAMMALS N AM BI; Coulson T, 2000, P ROY SOC B-BIOL SCI, V267, P1771, DOI 10.1098/rspb.2000.1209; Coulson T, 2001, SCIENCE, V292, P1528, DOI 10.1126/science.292.5521.1528; EBERHARDT LL, 1985, J WILDLIFE MANAGE, V49, P997, DOI 10.2307/3801386; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; Festa-Bianchet M, 1998, BEHAV ECOL, V9, P144, DOI 10.1093/beheco/9.2.144; FestaBianchet M, 1996, CAN J ZOOL, V74, P330, DOI 10.1139/z96-041; FESTABIANCHET M, 1994, CAN J ZOOL, V72, P22, DOI 10.1139/z94-004; Fowler C.W., 1987, Current Mammalogy, V1, P401; FOWLER CW, 1979, P C SCI RES NATL PAR, V1, P427; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Gaillard JM, 1997, OECOLOGIA, V112, P502, DOI 10.1007/s004420050338; Gaillard JM, 1998, EUROPEAN ROE DEER: THE BIOLOGY OF SUCCESS, P309; Gaillard JM, 2000, P ROY SOC B-BIOL SCI, V267, P471, DOI 10.1098/rspb.2000.1024; GAILLARD JM, 1993, J ANIM ECOL, V62, P778; GEIST V, 1966, J WILDLIFE MANAGE, V30, P634, DOI 10.2307/3798763; GEIST V, 1971, MOUNTAIN SHEEP; Grubb P., 1974, ISLAND SURVIVORS ECO, P242; Hansen C.G., 1980, P217; Hogg JT, 1997, BEHAV ECOL SOCIOBIOL, V41, P33, DOI 10.1007/s002650050361; JORGENSON JT, 1993, J WILDLIFE MANAGE, V57, P429, DOI 10.2307/3809267; JORGENSON JT, 1993, CAN J ZOOL, V71, P2509, DOI 10.1139/z93-344; Jorgenson JT, 1998, J WILDLIFE MANAGE, V62, P1011, DOI 10.2307/3802554; Jorgenson JT, 1997, ECOLOGY, V78, P1019, DOI 10.2307/2265855; KLEIN DAVID R., 1960, JOUR WILDLIFE MANAGEMENT, V24, P80, DOI 10.2307/3797359; Langvatn R, 1996, J ANIM ECOL, V65, P653, DOI 10.2307/5744; Langvatn R, 1999, WILDLIFE BIOL, V5, P213; LEADERWILLIAMS N, 1982, J ANIM ECOL, V51, P235, DOI 10.2307/4322; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Loison A, 1999, ECOLOGY, V80, P2539, DOI 10.2307/177239; McElligott AG, 2002, P ROY SOC B-BIOL SCI, V269, P1129, DOI 10.1098/rspb.2002.1993; Peterson RO, 1999, ECOL APPL, V9, P10, DOI 10.1890/1051-0761(1999)009[0010:WMIOIR]2.0.CO;2; Portier C, 1998, J ZOOL, V245, P271, DOI 10.1111/j.1469-7998.1998.tb00101.x; Ross PI, 1997, CAN J ZOOL, V75, P771, DOI 10.1139/z97-098; Ruckstuhl KE, 1998, ETHOLOGY, V104, P941, DOI 10.1111/j.1439-0310.1998.tb00043.x; Schaefer JA, 1999, J WILDLIFE MANAGE, V63, P580, DOI 10.2307/3802646; SINCLAIR ARE, 1977, AFRICAN BUFFALO; Singer FJ, 1997, J WILDLIFE MANAGE, V61, P12, DOI 10.2307/3802410; VAUPEL JW, 1985, AM STAT, V39, P176, DOI 10.2307/2683925; Yoccoz NG, 2002, P ROY SOC B-BIOL SCI, V269, P1523, DOI 10.1098/rspb.2002.2047 60 124 127 0 62 BLACKWELL PUBLISHING LTD OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DG, OXON, ENGLAND 0021-8790 J ANIM ECOL J. Anim. Ecol. JUL 2003 72 4 640 649 10.1046/j.1365-2656.2003.00735.x 10 Ecology; Zoology Environmental Sciences & Ecology; Zoology 697XY WOS:000183969600012 Bronze 2018-11-12 J Wilson, AJ; Hutchings, JA; Ferguson, MM Wilson, AJ; Hutchings, JA; Ferguson, MM Selective and genetic constraints on the evolution of body size in a stream-dwelling salmonid fish JOURNAL OF EVOLUTIONARY BIOLOGY English Article constraint; growth; heritability; Salvelinus fontinalis; selection; size-selective mortality NATURAL-POPULATIONS; ATLANTIC SALMON; BROOK TROUT; YELLOW PERCH; QUANTITATIVE INHERITANCE; SALVELINUS-FONTINALIS; SEXUAL SELECTION; LIFE-HISTORIES; GROWTH; MORTALITY To examine constraints on evolution of larger body size in two stunted populations of brook charr (Salvelinus fontinalis) from a single river in Cape Race, Newfoundland, Canada, we measured viability selection acting on length-at-age traits, and estimated quantitative genetic parameters in situ (following reconstruction of pedigree information from microsatellite data). Furthermore we tested for phenotypic differentiation between the populations, and for association of high juvenile growth with early maturity that is predicted by life history theory. Within each population, selection differentials and estimates of heritabilities for length-at-age traits suggested that evolution of larger size is prevented by both selective and genetic constraints. Between the populations, phenotypic differentiation was found in length-at-age and age of maturation traits, whereas early maturation was associated with increased juvenile growth (relative to adult growth) both within and between populations. The results suggest an adaptive plastic response in age of maturation to juvenile growth rates that have a largely environmental basis of determination. Univ Guelph, Dept Zool, Guelph, ON N1G 2W1, Canada; Dalhousie Univ, Dept Biol, Halifax, NS B3H 4J1, Canada Wilson, AJ (reprint author), Univ Guelph, Dept Zool, Guelph, ON N1G 2W1, Canada. Wilson, Alastair/F-3118-2010 Wilson, Alastair/0000-0002-5045-2051 ARNOLD SJ, 1984, EVOLUTION, V38, P720, DOI 10.1111/j.1558-5646.1984.tb00345.x; ARNOLD SJ, 1992, AM NAT, V140, pS85, DOI 10.1086/285398; Balon E. K., 1980, CHARRS SALMONID FISH; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; BRODIE ED, 1995, TRENDS ECOL EVOL, V10, P313, DOI 10.1016/S0169-5347(00)89117-X; Brown D, 1993, MODELS BIOL MATH STA; CARLANDER KD, 1987, AGE GROWTH FISH; Endler JA, 1986, NATURAL SELECTION WI; FALCONE DS, 1996, INTRO QUANTITATIVE G; FLEMING IA, 1994, EVOLUTION, V48, P637, DOI 10.1111/j.1558-5646.1994.tb01350.x; Gjedrem T, 2000, AQUAC RES, V31, P25, DOI 10.1046/j.1365-2109.2000.00389.x; Good SP, 2001, CAN J FISH AQUAT SCI, V58, P1187, DOI 10.1139/cjfas-58-6-1187; GROENEVELD E, 1994, P EC S APPL MIX LIN; HEATH D, 1987, T AM FISH SOC, V116, P98, DOI 10.1577/1548-8659(1987)116<98:TOGDIG>2.0.CO;2; Heath DD, 1996, ENVIRON BIOL FISH, V45, P53, DOI 10.1007/BF00000627; HENDERSON PA, 1988, J FISH BIOL, V33, P221, DOI 10.1111/j.1095-8649.1988.tb05465.x; HILE R, 1970, T AM FISH SOC, V99, P468, DOI 10.1577/1548-8659(1970)99<468:BRACOG>2.0.CO;2; HUNT RL, 1969, J FISH RES BOARD CAN, V26, P1473, DOI 10.1139/f69-138; HUTCHINGS JA, 1994, OIKOS, V70, P12, DOI 10.2307/3545693; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Hutchings JA, 1996, ECOSCIENCE, V3, P25, DOI 10.1080/11956860.1996.11682311; Kaeriyama Masahide, 1995, Scientific Reports of the Hokkaido Salmon Hatchery, V49, P1; Kitano S., 1996, Ecology of Freshwater Fish, V5, P59, DOI 10.1111/j.1600-0633.1996.tb00037.x; KONOVALOV SM, 1978, ZH OBSHCH BIOL, V39, P194; LEGGETT WC, 1969, J FISH RES BOARD CAN, V26, P1585, DOI 10.1139/f69-142; Linlokken A, 1996, ANN ZOOL FENN, V33, P427; Marshall TC, 1998, MOL ECOL, V7, P639, DOI 10.1046/j.1365-294x.1998.00374.x; Miller PJ, 1979, S ZOOLOGICAL SOC LON, V44, P263; Mittelbach GG, 1998, CAN J FISH AQUAT SCI, V55, P1454, DOI 10.1139/f98-041; Morita K, 1998, J FISH BIOL, V53, P1140, DOI 10.1111/j.1095-8649.1998.tb00471.x; Mousseau TA, 1998, HEREDITY, V80, P218, DOI 10.1038/sj.hdy.6882690; NILSSON J, 1992, AQUACULTURE, V106, P9, DOI 10.1016/0044-8486(92)90245-G; POST JR, 1989, CAN J FISH AQUAT SCI, V46, P1958, DOI 10.1139/f89-246; POWER G, 1980, CHARRS SALMONID FISH; POWER ME, 1989, ENVIRON BIOL FISH, V26, P285, DOI 10.1007/BF00002465; Reed DH, 2001, EVOLUTION, V55, P1095; REIMERS N, 1979, CALIF FISH GAME, V65, P196; Ritland K, 1996, EVOLUTION, V50, P1074, DOI 10.1111/j.1558-5646.1996.tb02348.x; Ritland K, 2000, MOL ECOL, V9, P1195, DOI 10.1046/j.1365-294x.2000.00971.x; Ritland K, 1996, EVOLUTION, V50, P1062, DOI 10.1111/j.1558-5646.1996.tb02347.x; Roff D. A., 2002, LIFE HIST EVOLUTION; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Schlichting C. D., 1998, PHENOTYPIC EVOLUTION; Sinclair AF, 2002, CAN J FISH AQUAT SCI, V59, P361, DOI 10.1139/F02-015; Smith BR, 2001, GENETICS, V158, P1329; Sogard SM, 1997, B MAR SCI, V60, P1129; Taggart JB, 2001, MOL ECOL, V10, P1047, DOI 10.1046/j.1365-294X.2001.01254.x; Thomas SC, 2000, HEREDITY, V84, P427, DOI 10.1046/j.1365-2540.2000.00681.x; Thomas SC, 2000, GENETICS, V155, P1961; Thomas SC, 2002, J EVOLUTION BIOL, V15, P92, DOI 10.1046/j.1420-9101.2002.00372.x; Thomas SC, 2002, GENET RES, V79, P227, DOI [10.1017/S0016672302005669, 10.1017/S016672302005669]; THORPE JE, 1983, AQUACULTURE, V33, P119, DOI 10.1016/0044-8486(83)90392-7; THORPE JE, 1986, SALMONID AGE MATURIT, P89; TREXLER JC, 1994, OIKOS, V69, P250, DOI 10.2307/3546145; Visman V, 1996, ECOSCIENCE, V3, P173, DOI 10.1080/11956860.1996.11682328; Wilson AJ, 2003, GENET RES, V81, P145, DOI 10.1017/S0016672302006055; Wilson AJ, 2002, CAN J FISH AQUAT SCI, V59, P1696, DOI 10.1139/F02-127; WILSON AJ, 2002, THESIS U GUELPH GUEL; Ylikarjula J, 1999, EVOL ECOL, V13, P433, DOI 10.1023/A:1006755702230 59 31 32 1 18 BLACKWELL PUBLISHING LTD OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DG, OXON, ENGLAND 1010-061X J EVOLUTION BIOL J. Evol. Biol. JUL 2003 16 4 584 594 10.1046/j.1420-9101.2003.00563.x 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 692BZ WOS:000183641600005 14632222 Bronze 2018-11-12 J Lozano, GA; Lank, DB Lozano, GA; Lank, DB Seasonal trade-offs in cell-mediated immunosenescence in ruffs (Philomachus pugnax) PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article immunoecology; life history; immunosenescence; age; ruff; Philomachus pugnax SWALLOWS TACHYCINETA-BICOLOR; REPRODUCTIVE EFFORT; IMMUNE FUNCTION; GREAT TITS; AGE; IMMUNOCOMPETENCE; ENVIRONMENT; STRATEGIES; CHALLENGE; BEHAVIOR The immune system is an energetically expensive self-maintenance complex that, given the risks of parasitism, cannot be carelessly compromised. Life-history theory posits that trade-offs between fitness components, such as self-maintenance and reproduction, vary between genders and age classes depending on their expected residual lifetime reproductive success, and seasonally as energetic requirements change. Using ruff (Philomachus pugnax), a bird with two genetically distinct male morphs, we demonstrate here a decrease in male immunocompetence during the breeding season, greater variance in immune response among males than females, immunosenescence in both sexes and male morphs, and a seasonal shift in the age range required to detect senescence. Using a phytohaemagglutinin delayed hypersensitivity assay, we assessed cell-mediated immunity (CMI) of males of typical breeding age during the breeding and nonbreeding seasons, and of a larger sample that included females and birds of a greater age range during the non-breeding period. CMI was higher for breeding-aged males in May than in November, but the increase was not related to age or male morph. In November, mean CMI did not differ between the sexes, but the variance was higher for males than for females, and there were no differences in mean or variance between the two male morphs. For both sexes and male morphs, CMI was lower for young birds than for birds of typical breeding ages, and it declined again for older birds. In males, senescence was detected in the non-breeding season only when very old birds were included. These results, generally consistent with expectations from life-history theory, indicate that the immune system can be involved in multifarious trade-offs within a yearly cycle and along an individual's lifetime, and that specific predictions about means and variances in immune response should be considered in future immunoecological research. Simon Fraser Univ, Dept Biosci, Behav Ecol Res Grp, Burnaby, BC V5A 1S6, Canada Lank, DB (reprint author), Simon Fraser Univ, Dept Biosci, Behav Ecol Res Grp, Burnaby, BC V5A 1S6, Canada. dlank@sfu.ca Lozano, George A/0000-0002-1369-1408 Alonso-Alvarez C, 2001, CAN J ZOOL, V79, P101, DOI 10.1139/cjz-79-1-101; APANIUS V, 1998, AVIAN GROWTH DEV EVO, P203; Candolin U, 1998, P ROY SOC B-BIOL SCI, V265, P1171, DOI 10.1098/rspb.1998.0415; CARROLL SB, 1983, J BIOL CHEM, V258, P24; Cichon M, 2001, ACTA OECOL, V22, P71, DOI 10.1016/S1146-609X(00)01094-8; COLLIAS NE, 1986, AUK, V103, P408; Corner D E, 1990, POULTRY SCI, V69, P403, DOI DOI 10.3382/PS.0690403; DASILVA J, 1992, P ROY SOC B-BIOL SCI, V249, P227; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; DHONDT AA, 1989, IBIS, V131, P268, DOI 10.1111/j.1474-919X.1989.tb02770.x; DRENT RH, 1980, ARDEA, V68, P225; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Galbraith H, 1999, J AVIAN BIOL, V30, P85, DOI 10.2307/3677247; Godfrey-Faussett P., 1993, Immunology and molecular biology of parasitic infections., P100; Heeb P, 1998, P ROY SOC B-BIOL SCI, V265, P51, DOI 10.1098/rspb.1998.0263; HOGANWAR.AJ, 1966, ARDEA, V54, P109; Hoi-Leitner M, 2001, BEHAV ECOL SOCIOBIOL, V49, P333, DOI 10.1007/s002650000310; Hugie DM, 1997, BEHAV ECOL, V8, P218, DOI 10.1093/beheco/8.2.218; JOHN JL, 1994, Q REV BIOL, V69, P327, DOI 10.1086/418649; Kilpelainen M, 2000, CLIN EXP ALLERGY, V30, P201; Klein SL, 2000, NEUROSCI BIOBEHAV R, V24, P627, DOI 10.1016/S0149-7634(00)00027-0; Lank DB, 1999, P ROY SOC B-BIOL SCI, V266, P2323, DOI 10.1098/rspb.1999.0926; LANK DB, 1995, NATURE, V378, P59, DOI 10.1038/378059a0; Lank DB, 2002, BEHAV ECOL, V13, P209, DOI 10.1093/beheco/13.2.209; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Lozano GA, 1999, WILSON BULL, V111, P381; Lozano GA, 2002, CAN J ZOOL, V80, P918, DOI 10.1139/Z02-063; LOZANO GA, 2003, UNPUB ECOL LETT; Moreno J, 1999, P ROY SOC B-BIOL SCI, V266, P1105, DOI 10.1098/rspb.1999.0750; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; Nafstad P, 2001, ALLERGY, V56, P307, DOI 10.1034/j.1398-9995.2001.00881.x; Nelson RJ, 1996, Q REV BIOL, V71, P511, DOI 10.1086/419555; Ots I, 2001, P ROY SOC B-BIOL SCI, V268, P1175, DOI 10.1098/rspb.2001.1636; PATTERSON R, 1962, J GEN PHYSIOL, V45, P501, DOI 10.1085/jgp.45.3.501; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Prendergast BJ, 2001, P ROY SOC B-BIOL SCI, V268, P2221, DOI 10.1098/rspb.2001.1784; Roff Derek A., 1992; Roitt I, 1996, IMMUNOLOGY; Saether B.-E., 1990, Current Ornithology, V7, P251; SCHULZ H, 1990, CATAL LETT, V7, P157; SHELDON BC, 1993, PHILOS T ROY SOC B, V339, P491, DOI 10.1098/rstb.1993.0044; Smits JE, 1999, FUNCT ECOL, V13, P567, DOI 10.1046/j.1365-2435.1999.00338.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Svanes C, 1999, J ALLERGY CLIN IMMUN, V103, P415, DOI 10.1016/S0091-6749(99)70465-3; Svensson E, 1998, FUNCT ECOL, V12, P912, DOI 10.1046/j.1365-2435.1998.00271.x; van Rhijn JG, 1991, RUFF; WHEELWRIGHT NT, 1991, CAN J ZOOL, V69, P2540, DOI 10.1139/z91-358; Widemo F, 1998, ANIM BEHAV, V56, P329, DOI 10.1006/anbe.1998.0792; Williams GC, 1966, ADAPTATION NATURAL S; WILLIAMS J, 1962, BIOCHEM J, V83, P346, DOI 10.1042/bj0830346; Zuk M, 1998, P ROY SOC B-BIOL SCI, V265, P1631, DOI 10.1098/rspb.1998.0481 53 44 44 0 12 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUN 7 2003 270 1520 1203 1208 10.1098/rspb.2002.2309 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 687WX WOS:000183400900014 12816660 Green Published 2018-11-12 J Alonzo, SH; Switzer, PV; Mangel, M Alonzo, SH; Switzer, PV; Mangel, M Ecological games in space and time: The distribution and abundance of Antarctic krill and penguins ECOLOGY English Article Antarctic krill; dynamic game model; Euphausia superba; life-history theory; penguin foraging; predator-prey interactions EUPHAUSIA-SUPERBA; HABITAT SELECTION; CHINSTRAP PENGUINS; EVOLUTIONARY GAME; SOUTH-GEORGIA; PREDATORS; PREY; ZOOPLANKTON; TEMPERATURE; SEGREGATION The distribution and abundance of organisms are affected by behaviors, such as habitat selection, foraging, and reproduction. These behaviors are driven by interactions within and between species, environmental conditions, and the biology of the species involved. Although extensive theoretical work has explored predator-prey dynamics, these models have not considered the impact of behavioral plasticity and life-history trade-offs on predicted patterns. We apply a modeling method that allows the consideration of a spatial, dynamic ecological game between predators and prey using a life-history perspective. As an illustrative example, we model the habitat selection of Antarctic krill- and penguins during the time when penguins are land-based for reproduction. Although environmental conditions and the life-history constraints of each species have both direct and indirect effects on both species, the penguin's foraging rule (whether food-maximizing or time-minimizing) has the greatest effect on the qualitative distribution pattern of both species. Size-dependent-diel vertical migration of krill also strongly affects penguin foraging patterns. This model generates suggestions for future research and qualitative predictions that can be tested in the field. The application of this method to a specific problem also demonstrates its ability to increase our understanding of important ecological interactions in general. Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA; Eastern Illinois Univ, Dept Sci Biol, Charleston, IL 61920 USA; Univ Calif Santa Cruz, Jack Baskin Sch Engn, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA Alonzo, SH (reprint author), Univ Calif Santa Cruz, Inst Marine Sci, 1156 High St, Santa Cruz, CA 95064 USA. ABRAMSKY Z, 1991, ECOLOGY, V72, P329, DOI 10.2307/1938926; Alonzo SH, 2002, EVOL ECOL RES, V4, P759; Alonzo SH, 2001, MAR ECOL PROG SER, V209, P203, DOI 10.3354/meps209203; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Boyd IL, 2001, J ANIM ECOL, V70, P747, DOI 10.1046/j.0021-8790.2001.00534.x; BROWN JS, 1992, EVOLUTION, V46, P1269, DOI 10.1111/j.1558-5646.1992.tb01123.x; BROWN JS, 1990, EVOLUTION, V44, P732, DOI 10.1111/j.1558-5646.1990.tb05951.x; CLARK CW, 2000, DYNAMIC STATE VARIAB; CROXALL JP, 1980, BIOL J LINN SOC, V14, P103, DOI 10.1111/j.1095-8312.1980.tb00101.x; Folt CL, 1999, TRENDS ECOL EVOL, V14, P300, DOI 10.1016/S0169-5347(99)01616-X; FRETWELL SD, 1972, POPULATIONS SEASONAL; Fryxell J, 1998, INDIVIDUAL BEHAV COM; Hernandez-Leon S, 2001, MAR ECOL PROG SER, V223, P235, DOI 10.3354/meps223235; Hill HJ, 1996, MAR ECOL PROG SER, V140, P1, DOI 10.3354/meps140001; HOLMHANSEN O, 1984, J CRUSTACEAN BIOL, V4, P156; Houston AI, 1999, MODELS ADAPTIVE BEHA; HUGIE DM, 1994, J FISH BIOL, V45, P151, DOI 10.1006/jfbi.1994.1220; IKEDA T, 1985, MAR BIOL, V85, P1, DOI 10.1007/BF00396409; KERFOOT WC, 1980, EVOLUTION ECOLOGY ZO; Kingsland Sharon, 1985, MODELING NATURE EPIS; Lima SL, 2002, TRENDS ECOL EVOL, V17, P70, DOI 10.1016/S0169-5347(01)02393-X; MACKINTOSH N A, 1972, Discovery Reports, V36, P1; Mangel M, 1998, ECOL MODEL, V105, P235, DOI 10.1016/S0304-3800(97)00167-1; Mangel M., 1988, DYNAMIC MODELING BEH; Mauchline J., 1980, Advances in Marine Biology, V18, P1; May RM, 1973, STABILITY COMPLEXITY; MCNAMARA JM, 1990, EVOL ECOL, V4, P298, DOI 10.1007/BF02270929; McNamara JM, 1997, J THEOR BIOL, V189, P211, DOI 10.1006/jtbi.1997.0511; MORRIS DJ, 1984, MAR ECOL PROG SER, V20, P203, DOI 10.3354/meps020203; MORRIS DJ, 1983, POLAR BIOL, V2, P21, DOI 10.1007/BF00258281; PAKHOMOV EA, 1995, MAR ECOL PROG SER, V119, P45, DOI 10.3354/meps119045; Reid K, 1996, MAR ECOL PROG SER, V140, P13, DOI 10.3354/meps140013; Rosenzweig M.L., 1991, American Naturalist, V137, P5; SIEGEL V, 1987, MAR BIOL, V96, P483, DOI 10.1007/BF00397966; SIEGEL V, 1985, ARCH FISCHEREIWISS, V36, P185; Sih Andrew, 1998, P221; TRIVELPIECE WZ, 1987, ECOLOGY, V68, P351, DOI 10.2307/1939266; TRIVELPIECE WZ, 1986, AUK, V103, P777 38 40 42 1 17 ECOLOGICAL SOC AMER WASHINGTON 1707 H ST NW, STE 400, WASHINGTON, DC 20006-3915 USA 0012-9658 ECOLOGY Ecology JUN 2003 84 6 1598 1607 10.1890/0012-9658(2003)084[1598:EGISAT]2.0.CO;2 10 Ecology Environmental Sciences & Ecology 706KB WOS:000184451900028 2018-11-12 J Ali, M; Nicieza, A; Wootton, RJ Ali, M; Nicieza, A; Wootton, RJ Compensatory growth in fishes: a response to growth depression FISH AND FISHERIES English Review growth efficiency; growth regulation; hyperphagia; storage levels; trade-offs SALMO-SALAR L; TROUT ONCORHYNCHUS-MYKISS; JUVENILE ATLANTIC SALMON; CATFISH ICTALURUS-PUNCTATUS; SIZE-SELECTIVE MORTALITY; HERRING CLUPEA-HARENGUS; CARP CYPRINUS-CARPIO; COD GADUS-MORHUA; HEPATIC 5'-MONODEIODINASE ACTIVITY; PHOXINUS-PHOXINUS CYPRINIDAE Compensatory growth (CG) is a phase of accelerated growth when favourable conditions are restored after,a period of growth depression. CG reduces variance in size by causing growth trajectories to converge and is important to fisheries management, aquaculture and life history analysis because it can offset the effects of growth arrests. Compensatory growth has been demonstrated in both individually housed and grouped fish, typically after growth depression has been induced by complete or partial food deprivation. Partial, full and over-compensation have all been evoked in fish, although over-compensation has only been demonstrated when cycles of deprivation and satiation feeding have been imposed. Individually housed fish have shown that CG is partly a response to hyperphagia when rates of food consumption are significantly higher than those in fish that have not experienced growth depression. The severity of the growth depression increases the duration of the hyperphagic phase rather than maximum daily feeding rate. In many studies, growth efficiencies were higher during CG. Changes in metabolic rate and swimming activity have not been demonstrated yet to play a role. Periods of food deprivation induce changes in the storage reserves, particularly lipids, of fish. Apart from the strong evidence for the restoration of somatic growth trajectories, CG is a response to restore lipid levels. Although several neuro-peptides, including neuropeptide-Y, are probably involved in the control of appetite, their role and the such as growth hormone (GH) and insulin-like growth factor (IGF), role of hormones, in the hyperphagia associated with CG are still unclear. The advantages of CG probably relate to size dependencies of mortality, fecundity and diet that are characteristic of teleosts. These size dependencies favour a recovery from the effects of growth depression if environmental factors allow. High growth rates may also impose costs, including adverse effects on future development, growth. reproduction and swimming performance. Hyperphagia may lead to riskier behaviour in the presence of predators. CGs evolutionary consequences are largely unexplored. An understanding of why animals grow at rates below their physiological capacity, an evaluation of the costs of rapid growth and the identification of the constraints on growth trajectories represent major challenges for life-history theory. Aberystwyth Univ, Inst Biol Sci, Aberystwyth SY23 3DA, Dyfed, Wales; Univ Oviedo, Dept Biol Organism & Sistemas, E-33071 Oviedo, Spain Wootton, RJ (reprint author), Aberystwyth Univ, Inst Biol Sci, Aberystwyth SY23 3DA, Dyfed, Wales. rjw@abor.ac.uk Ali, Muhammad/B-6434-2009 Ali, Muhammad/0000-0002-6852-3903; Gonzalez-Nicieza, Alfredo Cesar/0000-0003-4062-569X Abrahams MV, 1999, ANIM BEHAV, V58, P933, DOI 10.1006/anbe.1999.1229; Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; ADAMS SM, 1982, CAN J FISH AQUAT SCI, V39, P1175, DOI 10.1139/f82-155; Ali M, 1998, J FISH BIOL, V52, P223, DOI 10.1006/jfbi.1997.0574; Ali M, 2001, AQUAC RES, V32, P443, DOI 10.1046/j.1365-2109.2001.00594.x; Ali M, 2001, J FISH BIOL, V58, P1531, DOI 10.1006/jfbi.2001.1555; Ali M, 1999, J FISH BIOL, V55, P211, DOI 10.1006/jfbi.1999.0991; Ali M, 1998, J FISH BIOL, V53, P1006, DOI 10.1006/jfbi.1998.0766; ALVAREZ D, 2002, THESIS U OVIEDO SPAI; Aranda A, 2001, PHYSIOL BEHAV, V73, P105, DOI 10.1016/S0031-9384(01)00464-4; Aranyakananda P., 1996, ARRI NEWSL, V3, P11; Arendt J, 2001, OIKOS, V93, P95, DOI 10.1034/j.1600-0706.2001.930110.x; Arendt JD, 1997, EVOLUTION, V51, P1946, DOI 10.1111/j.1558-5646.1997.tb05116.x; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Arendt JD, 2000, CAN J FISH AQUAT SCI, V57, P351, DOI 10.1139/cjfas-57-2-351; Arndt SKA, 1996, J FISH BIOL, V49, P257; ATCHLEY WR, 1984, AM NAT, V123, P519, DOI 10.1086/284220; Basiao ZU, 1996, J FISH BIOL, V49, P277; BASTROP R, 1991, COMP BIOCHEM PHYS A, V98, P143, DOI 10.1016/0300-9629(91)90592-Z; BEACHAM TD, 1981, CAN J ZOOL, V59, P614, DOI 10.1139/z81-090; BEAMISH FWH, 1964, T AM FISH SOC, V50, P153; BELL G, 1974, J ANIM ECOL, V43, P115, DOI 10.2307/3161; BELLAMY D, 1968, COMP BIOCHEM PHYSIOL, V25, P343, DOI 10.1016/0010-406X(68)90942-0; BERTRAM DF, 1993, MAR ECOL PROG SER, V96, P209, DOI 10.3354/meps096209; Billerbeck JM, 2001, EVOLUTION, V55, P1863; BILTON HT, 1982, CAN J FISH AQUAT SCI, V39, P426, DOI 10.1139/f82-060; BILTON HT, 1973, J FISH RES BOARD CAN, V30, P1, DOI 10.1139/f73-001; Bjornsson B., 1992, Fiskeridirektoratets Skrifter. Serie Ernaring, V5, P25; BLASCO J, 1992, COMP BIOCHEM PHYS A, V103, P357, DOI 10.1016/0300-9629(92)90594-G; BLASCO J, 1992, J COMP PHYSIOL B, V162, P539; Blaxter J.H.S., 1974, P575; BLAXTER J. H. S., 1963, JOUR CONS CONS PERM INTERNATL EXPLOR MER, V28, P211; Boujard T, 2000, AQUAT LIVING RESOUR, V13, P129, DOI 10.1016/S0990-7440(00)00149-2; BRETT JR, 1971, J FISH RES BOARD CAN, V28, P409, DOI 10.1139/f71-053; BROEKHUIZEN N, 1994, FUNCT ECOL, V8, P770, DOI 10.2307/2390237; BROWN CR, 1991, PHYSIOL ZOOL, V64, P298, DOI 10.1086/physzool.64.1.30158525; Brown M. E., 1957, PHYSIOL FISHES, P361, DOI [10.1016/B978-1-4832-2817-4.50015-9, DOI 10.1016/B978-1-4832-2817-4.50015-9]; BROWN ME, 1946, J EXP BIOL, V22, P130; Buckel JA, 1998, T AM FISH SOC, V127, P576, DOI 10.1577/1548-8659(1998)127<0576:EOADOO>2.0.CO;2; BUCKLEY LJ, 1979, J FISH RES BOARD CAN, V36, P1497, DOI 10.1139/f79-217; Bull CD, 1997, J FISH BIOL, V50, P498, DOI 10.1006/jfbi.1996.0314; Bull CD, 1996, P ROY SOC B-BIOL SCI, V263, P13, DOI 10.1098/rspb.1996.0003; Carter Chris, 2001, P297, DOI 10.1002/9780470999516.ch13; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; CHAMBERS RC, 1988, MAR ECOL PROG SER, V47, P1, DOI 10.3354/meps047001; Chatakondi NG, 2001, J WORLD AQUACULT SOC, V32, P278, DOI 10.1111/j.1749-7345.2001.tb00451.x; CHAVIN W, 1970, COMP BIOCHEM PHYSIOL, V33, P629, DOI 10.1016/0010-406X(70)90376-2; Chmilevskii D. A., 1994, Voprosy Ikhtiologii, V34, P675; CHMILEVSKII DA, 1998, J ICHTHYOLOGY, V38, P86; CHMILEVSKIY DA, 1996, J ICHTHYOL, V36, P615; CHO CY, 1976, J NUTR, V106, P1547; CHRISTENSEN SM, 1998, RIBARSTVO, V56, P3; Christiansen J. S., 1992, BAM, V2, P235; Collins AL, 1995, J FISH BIOL, V47, P1004, DOI 10.1111/j.1095-8649.1995.tb06024.x; CONOVER DO, 1982, ESTUARIES, V5, P275, DOI 10.2307/1351750; CONOVER DO, 1992, J FISH BIOL, V41, P161, DOI 10.1111/j.1095-8649.1992.tb03876.x; CUI Y, 1989, J FISH BIOL, V34, P47, DOI 10.1111/j.1095-8649.1989.tb02957.x; CUTTS CJ, 2002, FUNCTIONAL ECOLOGY, V16, P74; DABROWSKI K, 1986, B JPN SOC SCI FISH, V52, P1869; Damsgard B, 1998, AQUACULTURE, V168, P7, DOI 10.1016/S0044-8486(98)00335-4; Damsgard B, 1998, BEHAV ECOL, V9, P26, DOI 10.1093/beheco/9.1.26; De Pedro N., 2001, FEED INTAKE FISH, P297; DOBSON SH, 1984, J FISH BIOL, V25, P649, DOI 10.1111/j.1095-8649.1984.tb04911.x; DUNBRACK RL, 1988, CAN J FISH AQUAT SCI, V45, P1191, DOI 10.1139/f88-141; DUNBRACK RL, 1983, ENVIRON BIOL FISH, V8, P203, DOI 10.1007/BF00001086; DUPREEZ HH, 1986, COMP BIOCHEM PHYS A, V84, P61, DOI 10.1016/0300-9629(86)90043-5; DUPREEZ HH, 1986, COMP BIOCHEM PHYS A, V85, P313, DOI 10.1016/0300-9629(86)90257-4; DUPREEZ HH, 1987, COMP BIOCHEM PHYS A, V88, P523; EGGLISHAW HJ, 1977, J FISH BIOL, V11, P647, DOI 10.1111/j.1095-8649.1977.tb05722.x; Elliott J.M, 1972, FRESHWATER BIOL, V2, P1, DOI DOI 10.1111/J.1365-2427.1972.TB01575.X; ELLIOTT JM, 1976, J ANIM ECOL, V45, P561, DOI 10.2307/3891; ELLIOTT JM, 1975, FRESHWATER BIOL, V5, P287, DOI 10.1111/j.1365-2427.1975.tb00142.x; ELLIOTT JM, 1975, FRESHWATER BIOL, V5, P51, DOI 10.1111/j.1365-2427.1975.tb00120.x; Emerson S.B., 1986, AM NAT, V127, P163; FARBRIDGE KJ, 1992, AQUACULTURE, V104, P157, DOI 10.1016/0044-8486(92)90146-C; FARBRIDGE KJ, 1992, FISH PHYSIOL BIOCHEM, V10, P245, DOI 10.1007/BF00004518; FARBRIDGE KJ, 1992, FISH PHYSIOL BIOCHEM, V10, P67, DOI 10.1007/BF00004655; Farrell AP, 1997, CAN J ZOOL, V75, P335, DOI 10.1139/z97-043; Ferreri CP, 1996, J FISH BIOL, V49, P763, DOI 10.1006/jfbi.1996.0209; FLETCHER DJ, 1984, COMP BIOCHEM PHYS A, V78, P617, DOI 10.1016/0300-9629(84)90608-X; Foss A, 2002, AQUAC RES, V33, P1097, DOI 10.1046/j.1365-2109.2002.00768.x; From J., 1984, DANA, V3, P61; GARDINER WR, 1980, HYDROBIOLOGIA, V69, P67, DOI 10.1007/BF00016537; Gaylord TG, 2001, FISH PHYSIOL BIOCHEM, V24, P73, DOI 10.1023/A:1011199518135; Gaylord TG, 2001, AQUACULTURE, V194, P337, DOI 10.1016/S0044-8486(00)00523-8; Gerking SD, 1994, FEEDING ECOLOGY FISH; GERKING SD, 1979, ERGEBNIS LIMNOLOGIE, P181; Goddard J.S., 1974, Ichthyologia, V6, P49; GODIN JGJ, 1981, J FISH BIOL, V19, P63, DOI 10.1111/j.1095-8649.1981.tb05811.x; GORMAN GC, 1982, CANADIAN J FISHERIES, V39, P862; Gross M.R., 1987, AM FISH SOC S, V1, P14; GROSS MR, 1988, SCIENCE, V239, P1291, DOI 10.1126/science.239.4845.1291; GROVE DJ, 1985, J FISH BIOL, V26, P339, DOI 10.1111/j.1095-8649.1985.tb04272.x; GROVE DJ, 1978, J FISH BIOL, V12, P507, DOI 10.1111/j.1095-8649.1978.tb04195.x; HAWEET A, 1996, FISHERIES SCI, V62, P529; Hawkins DK, 1996, CAN J FISH AQUAT SCI, V53, P1487, DOI 10.1139/cjfas-53-7-1487; Hayward RS, 1997, T AM FISH SOC, V126, P316, DOI 10.1577/1548-8659(1997)126<0316:NUOCGT>2.3.CO;2; Hayward RS, 2000, AQUACULTURE, V183, P299, DOI 10.1016/S0044-8486(99)00301-4; Hayward RS, 2001, J FISH BIOL, V59, P126, DOI 10.1006/jfbi.2001.1634; HEALEY MC, 1982, CAN J FISH AQUAT SCI, V39, P952, DOI 10.1139/f82-130; HENDERSON MA, 1991, CAN J FISH AQUAT SCI, V48, P988, DOI 10.1139/f91-115; HENDERSON PA, 1988, J FISH BIOL, V33, P221, DOI 10.1111/j.1095-8649.1988.tb05465.x; HEPHER B, 1983, AQUACULTURE, V32, P255, DOI 10.1016/0044-8486(83)90223-5; Hoebel BG, 1997, APPETITE, V29, P119, DOI 10.1006/appe.1997.0126; HOULIHAN DF, 1993, FISH ECOPHYSIOLOGY, P45; HOUSTON AI, 1993, PHILOS T ROY SOC B, V341, P375, DOI 10.1098/rstb.1993.0123; Houston AI, 1999, MODELS ADAPTIVE BEHA; HUBBELL SP, 1971, SYSTEMS ANAL SIMULAT, P269; HUNT RL, 1969, J FISH RES BOARD CAN, V26, P1473, DOI 10.1139/f69-138; HUTCHINGS JA, 1994, OIKOS, V70, P12, DOI 10.2307/3545693; INCE BW, 1976, J FISH BIOL, V8, P79, DOI 10.1111/j.1095-8649.1976.tb03909.x; JEZIERSKA B, 1982, J FISH BIOL, V21, P681, DOI 10.1111/j.1095-8649.1982.tb02872.x; JOBLING M, 1993, J FISH BIOL, V43, P409, DOI 10.1006/jfbi.1993.1143; JOBLING M, 1980, J FISH BIOL, V17, P325, DOI 10.1111/j.1095-8649.1980.tb02766.x; Jobling M, 1996, J FISH BIOL, V49, P658; JOBLING M, 1982, J FISH BIOL, V20, P431, DOI 10.1111/j.1095-8649.1982.tb03936.x; Jobling M, 1999, AQUAC RES, V30, P473, DOI 10.1046/j.1365-2109.1999.00358.x; Jobling M, 1994, FISH BIOENERGETICS; Jobling M, 1994, AQUACULT INT, V2, P75, DOI DOI 10.1007/BF00128802; Jobling M, 1993, FISH ECOPHYSIOLOGY, P1; JOHAL M S, 1986, Indian Journal of Ecology, V13, P350; Johansen SJS, 2002, AQUAC RES, V33, P515, DOI 10.1046/j.1365-2109.2002.00736.x; Johansen SJS, 2001, AQUAC RES, V32, P963, DOI 10.1046/j.1365-2109.2001.00632.x; Johnson RW, 2001, J ANTIMICROB CHEMOTH, V47, P1, DOI 10.1093/jac/47.suppl_1.1; JOHNSON TB, 1990, T AM FISH SOC, V119, P301, DOI 10.1577/1548-8659(1990)119<0301:SWMOYW>2.3.CO;2; JOHNSON TB, 1991, CAN J FISH AQUAT SCI, V48, P672, DOI 10.1139/f91-084; Johnsson JI, 1996, CAN J FISH AQUAT SCI, V53, P1546, DOI 10.1139/cjfas-53-7-1546; Johnsson JI, 1999, FUNCT ECOL, V13, P514, DOI 10.1046/j.1365-2435.1999.00341.x; JOHNSSON JI, 1993, ANIM BEHAV, V45, P1219, DOI 10.1006/anbe.1993.1143; JOHNSTON IA, 1981, CELL TISSUE RES, V214, P369; Jonsson E, 1996, P ROY SOC B-BIOL SCI, V263, P647, DOI 10.1098/rspb.1996.0097; KARLSEN O, 1995, AQUACULTURE, V133, P159, DOI 10.1016/0044-8486(94)00399-9; Kim MK, 1995, AQUACULTURE, V135, P285, DOI 10.1016/0044-8486(95)01027-0; KINDSCHI G A, 1988, Aquaculture and Fisheries Management, V19, P213, DOI 10.1111/j.1365-2109.1988.tb00424.x; Kinne O., 1960, Physiological Zoology, V33, P288; KITCHELL JF, 1977, J FISH RES BOARD CAN, V34, P1922, DOI 10.1139/f77-258; Koppe Wolfgang, 1993, P263; LAGARDERE F, 1989, RAP PROCES, V191, P390; Lankford TE, 2001, EVOLUTION, V55, P1873, DOI 10.1111/j.0014-3820.2001.tb00836.x; LARSSON A, 1973, COMP BIOCHEM PHYSIOL, V44, P367, DOI 10.1016/0300-9629(73)90489-1; Le Bail PY, 1997, AQUAT LIVING RESOUR, V10, P371, DOI 10.1051/alr:1997041; LEAMY L, 1985, GROWTH, V49, P8; LEATHERLAND JF, 1992, GEN COMP ENDOCR, V87, P342, DOI 10.1016/0016-6480(92)90040-Q; LEBAIL PY, 1993, AQUACULTURE FUNDAMEN, P137; LEE DJ, 1973, J NUTR, V103, P916; Letcher BH, 1996, T AM FISH SOC, V125, P14, DOI 10.1577/1548-8659(1996)125<0014:SDEOCA>2.3.CO;2; Letcher BH, 2001, N AM J FISH MANAGE, V21, P102, DOI 10.1577/1548-8675(2001)021<0102:EODSAS>2.0.CO;2; LITVAK MK, 1992, MAR ECOL PROG SER, V81, P13, DOI 10.3354/meps081013; LOVE RM, 1980, CHEM BIOL FISHES, V2; LOVE RM, 1970, CHEM BIOL FISHES; Lovell R.T., 1979, Proceedings of the Annual Conference Southeastern Association of Fish and Wildlife Agencies, V33, P563; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; LUNDQVIST H, 1994, AQUACULTURE, V121, P245, DOI 10.1016/0044-8486(94)90024-8; Luquet P, 1995, AQUAT LIVING RESOUR, V8, P389, DOI 10.1051/alr:1995045; MACCHIUSI F, 1991, FRESHWATER BIOL, V25, P533, DOI 10.1111/j.1365-2427.1991.tb01396.x; MACHIELS MAM, 1987, AQUACULTURE, V60, P55, DOI 10.1016/0044-8486(87)90357-7; MACKAS DL, 1985, B MAR SCI, V37, P652; Maclean A, 2001, J FISH BIOL, V58, P1331, DOI 10.1006/jfbi.2000.1545; MAGNUSON JJ, 1969, T AM FISH SOC, V98, P379, DOI 10.1577/1548-8659(1969)98[379:DAFCBS]2.0.CO;2; MARAIS JFK, 1979, AQUACULTURE, V17, P203, DOI 10.1016/0044-8486(79)90124-8; McDowall RM, 2001, FISH FISH, V2, P78, DOI 10.1046/j.1467-2979.2001.00036.x; MCGURK MD, 1986, MAR ECOL PROG SER, V34, P227, DOI 10.3354/meps034227; MCLEAN E, 1992, AQUACULTURE, V103, P377, DOI 10.1016/0044-8486(92)90180-S; MCMILLAN DN, 1992, FISH PHYSIOL BIOCHEM, V10, P23, DOI 10.1007/BF00004651; MENDEZ G, 1993, ENVIRON BIOL FISH, V36, P73, DOI 10.1007/BF00005981; METCALFE NB, 1992, J ANIM ECOL, V61, P175, DOI 10.2307/5520; Metcalfe NB, 2002, EVOL ECOL RES, V4, P871; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; MIGLAVS I, 1989, J FISH BIOL, V34, P947; MIGLAVS I, 1989, J FISH BIOL, V35, P1, DOI 10.1111/j.1095-8649.1989.tb03387.x; MILLER TJ, 1988, CAN J FISH AQUAT SCI, V45, P1657, DOI 10.1139/f88-197; Mommsen Thomas P., 1998, P65; MONTEIRO LS, 1966, ANIM PROD, V8, P179, DOI 10.1017/S0003356100034565; MOORES JA, 1982, CAN J FISH AQUAT SCI, V39, P454, DOI 10.1139/f82-062; Morgan IJ, 2001, P ROY SOC B-BIOL SCI, V268, P295, DOI 10.1098/rspb.2000.1365; MORTENSEN A, 1993, AQUACULTURE, V114, P261, DOI 10.1016/0044-8486(93)90301-E; Nagai M, 1971, NIPPON SUISAN GAKK, V37, P404; Nicieza A.G., 1993, Canadian Special Publication of Fisheries and Aquatic Sciences, V118, P225; NICIEZA AG, 1994, CAN J ZOOL, V72, P1603, DOI 10.1139/z94-213; NICIEZA AG, 1994, OECOLOGIA, V99, P243, DOI 10.1007/BF00627736; Nicieza AG, 1997, ECOLOGY, V78, P2385; NICIEZA AG, 1993, CAN J FISH AQUAT SCI, V50, P1632, DOI 10.1139/f93-184; Nicieza AG, 1999, FUNCT ECOL, V13, P793, DOI 10.1046/j.1365-2435.1999.00371.x; NICIEZA AG, 1993, THESIS U OVIEDO; NORTON SF, 1991, ECOLOGY, V72, P1807, DOI 10.2307/1940980; OLIVER JD, 1979, T AM FISH SOC, V108, P130, DOI 10.1577/1548-8659(1979)108<130:OMOFSB>2.0.CO;2; OWEN RW, 1989, J MAR RES, V47, P197, DOI 10.1357/002224089785076415; PAGE JW, 1973, J NUTR, V103, P1339; PANDIAN TJ, 1967, MAR BIOL, V1, P107, DOI 10.1007/BF00386513; PARKER GA, 1992, J FISH BIOL, V41, P1, DOI 10.1111/j.1095-8649.1992.tb03864.x; PARKER RR, 1971, J FISH RES BOARD CAN, V28, P1503, DOI 10.1139/f71-231; PAUL AJ, 1995, J FISH BIOL, V46, P442, DOI 10.1111/j.1095-8649.1995.tb05984.x; PEDERSEN BH, 1993, MAR BIOL, V117, P547, DOI 10.1007/BF00349764; PEDERSEN BH, 1990, MAR BIOL, V107, P61, DOI 10.1007/BF01313242; Perez-Sanchez J, 1999, AQUACULTURE, V177, P117, DOI 10.1016/S0044-8486(99)00073-3; PETER RE, 1979, FISH PHYSIOL, V8, P121; Pirhonen J, 1998, AQUACULTURE, V162, P203, DOI 10.1016/S0044-8486(98)00215-4; PLANK J, 1985, Z TIERPHYSIOL TIERER, V53, P138; POST JR, 1989, CAN J FISH AQUAT SCI, V46, P1958, DOI 10.1139/f89-246; PRIEDE LG, 1985, FISH ENERGETICS, P33; Purchase CF, 2001, J FISH BIOL, V58, P36, DOI 10.1006/jfbi.2000.1424; Qian X, 2000, J FISH BIOL, V56, P228, DOI 10.1006/jfbi.1999.1154; QUINTON JC, 1990, J FISH BIOL, V37, P33, DOI 10.1111/j.1095-8649.1990.tb05924.x; Raikova-Petrova GN, 1998, INT REV HYDROBIOL, V83, P599; REIMERS E, 1993, J FISH BIOL, V43, P805; REINHARDT UG, 1998, N PACIFIC ANADROMOUS, V1, P403; Ricker W. E., 1975, B FISH RES BOARD CAN, V191, P1; RICKER WE, 1969, J FISH RES BOARD CAN, V26, P479, DOI 10.1139/f69-051; RISKA B, 1986, EVOLUTION, V40, P1303, DOI 10.1111/j.1558-5646.1986.tb05753.x; RISKA B, 1984, GENETICS, V107, P79; Robinson BW, 2002, ENVIRON BIOL FISH, V63, P67, DOI 10.1023/A:1013820101348; Roff Derek A., 1992; ROWE DK, 1991, CAN J FISH AQUAT SCI, V48, P405, DOI 10.1139/f91-052; ROWE DK, 1990, AQUACULTURE, V86, P291, DOI 10.1016/0044-8486(90)90121-3; ROZIN P, 1961, AM J PHYSIOL, V201, P968; Rueda FM, 1998, AQUAC RES, V29, P447, DOI 10.1046/j.1365-2109.1998.00228.x; RUOHONEN K, 1992, AQUACULTURE, V105, P353, DOI 10.1016/0044-8486(92)90099-7; Ruohonen Kari, 2001, P88, DOI 10.1002/9780470999516.ch4; RUSSELL NR, 1993, ENVIRON BIOL FISH, V38, P385, DOI 10.1007/BF00007533; RUSSELL NR, 1992, ENVIRON BIOL FISH, V34, P277, DOI 10.1007/BF00004774; RUSSELL NR, 1991, THESIS U WALES; Ryan W. J., 1990, Nutrition Abstracts and Reviews. Series B, Livestock Feeds and Feeding, V60, P653; Saether BS, 1999, AQUAC RES, V30, P647, DOI 10.1046/j.1365-2109.1999.00368.x; Sanchez-Vazquez FJ, 1999, PHYSIOL BEHAV, V66, P45, DOI 10.1016/S0031-9384(98)00313-8; Sanchez-Vazquez FJ, 1998, PHYSIOL BEHAV, V65, P211, DOI 10.1016/S0031-9384(98)00047-X; SATOH S, 1984, B JPN SOC SCI FISH, V50, P79; SAUNDERS RL, 1992, CAN J FISH AQUAT SCI, V49, P878, DOI 10.1139/f92-098; Schultz ET, 2002, OECOLOGIA, V133, P501, DOI 10.1007/s00442-002-1076-4; Schultz ET, 1999, OECOLOGIA, V119, P474, DOI 10.1007/s004420050810; SCHWARZ FJ, 1985, AQUACULTURE, V48, P23, DOI 10.1016/0044-8486(85)90049-3; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; Siems DP, 1998, ENVIRON BIOL FISH, V53, P319, DOI 10.1023/A:1007407925835; Silverstein JT, 2000, AM ZOOL, V40, P296, DOI 10.1668/0003-1569(2000)040[0296:TEONAI]2.0.CO;2; SINGH RP, 1985, AQUACULTURE, V49, P307, DOI 10.1016/0044-8486(85)90087-0; SKILBREI OT, 1990, J FISH BIOL, V37, P425, DOI 10.1111/j.1095-8649.1990.tb05873.x; SMITH RR, 1987, PROG FISH CULT, V49, P248, DOI 10.1577/1548-8640(1987)49<248:MOCGOS>2.0.CO;2; Sogard SM, 1997, B MAR SCI, V60, P1129; Sogard SM, 2002, MAR ECOL PROG SER, V243, P165, DOI 10.3354/meps243165; SOLOMON DJ, 1972, J ANIM ECOL, V41, P699, DOI 10.2307/3204; Speare DJ, 1997, CAN J FISH AQUAT SCI, V54, P2653, DOI 10.1139/cjfas-54-11-2653; STIRLING HP, 1976, MAR BIOL, V34, P85, DOI 10.1007/BF00390791; SWAIN DP, 1992, EVOLUTION, V46, P998, DOI 10.1111/j.1558-5646.1992.tb00615.x; Takagi Y, 2001, ZOOL SCI, V18, P623, DOI 10.2108/zsj.18.623; TALBOT C, 1984, J FISH BIOL, V25, P551, DOI 10.1111/j.1095-8649.1984.tb04901.x; Talbot C., 1985, P125; TANDON K K, 1983, Indian Journal of Fisheries, V30, P180; TANDON K K, 1983, Indian Journal of Fisheries, V30, P171; TANNER JM, 1963, NATURE, V199, P845, DOI 10.1038/199845a0; TASHIMA L, 1968, GEN COMP ENDOCR, V11, P262, DOI 10.1016/0016-6480(68)90081-6; TAYLOR EB, 1985, T AM FISH SOC, V114, P546, DOI 10.1577/1548-8659(1985)114<546:BSASPO>2.0.CO;2; TESKEREDZIC Z, 1995, WATER SCI TECHNOL, V31, P219; Thorpe J.E., 1986, Canadian Special Publication of Fisheries and Aquatic Sciences, V89, P7; THORPE JE, 1990, AQUACULTURE, V86, P315, DOI 10.1016/0044-8486(90)90122-4; THORPE JE, 1984, AQUACULTURE, V43, P289, DOI 10.1016/0044-8486(84)90030-9; TOLEDO MM, 1996, THESIS U OVIEDO; TONEYS ML, 1979, T AM FISH SOC, V108, P415, DOI 10.1577/1548-8659(1979)108<415:SFWMOF>2.0.CO;2; TRAVIS J, 1989, ANNU REV ECOL SYST, V20, P279; TYLER AV, 1976, J FISH RES BOARD CAN, V33, P63, DOI 10.1139/f76-008; Underwood A, 1997, EXPT ECOLOGY THEIR L; van Dijk PLM, 2002, OECOLOGIA, V130, P496, DOI 10.1007/s00442-001-0830-3; Vera Cruz Emmanuel M., 1994, Aquaculture, V122, P237, DOI 10.1016/0044-8486(94)90513-4; VONBERTALANFFY L, 1960, FUNDAMENTAL ASPECTS, P137; WAINWRIGHT PC, 1987, J ZOOL, V213, P283, DOI 10.1111/j.1469-7998.1987.tb03704.x; WAINWRIGHT PC, 1995, ENVIRON BIOL FISH, V44, P97, DOI 10.1007/BF00005909; Wang Y, 2000, AQUACULTURE, V189, P101, DOI 10.1016/S0044-8486(00)00353-7; Weatherley A. H., 1987, BIOL FISH GROWTH; WEATHERLEY AH, 1981, J FISH BIOL, V18, P195, DOI 10.1111/j.1095-8649.1981.tb02814.x; Webb PW, 1996, ENVIRON BIOL FISH, V46, P7, DOI 10.1007/BF00001692; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WESTERMAN M E, 1988, Contributions in Marine Science, V30, P117; Whitledge GW, 1998, T AM FISH SOC, V127, P740, DOI 10.1577/1548-8659(1998)127<0740:TBMUFR>2.0.CO;2; WIESER W, 1991, FUNCT ECOL, V5, P234, DOI 10.2307/2389261; WIESER W, 1992, ENVIRON BIOL FISH, V33, P63, DOI 10.1007/BF00002554; WILSON PN, 1960, BIOL REV, V35, P324, DOI 10.1111/j.1469-185X.1960.tb01466.x; Wootton R.J., 1998, ECOLOGY TELEOST FISH; WOOTTON RJ, 1980, J FISH BIOL, V17, P695, DOI 10.1111/j.1095-8649.1980.tb02803.x; WOOTTON RJ, 1982, REPROD PHYSL FISH, P201; Wu L, 2003, J FISH BIOL, V62, P184, DOI [10.1046/j.1095-8649.2003.00018.x, 10.1046/j.0022-1112.2003.00018.x]; Wu L, 2002, AQUAC RES, V33, P481, DOI 10.1046/j.1365-2109.2002.00733.x; Xie S, 2001, J FISH BIOL, V58, P999, DOI 10.1006/jfbi.2000.1505; ZAMAL H, 1995, J FISH BIOL, V46, P404, DOI 10.1111/j.1095-8649.1995.tb05980.x; Zhu X, 2003, J FISH BIOL, V62, P195, DOI 10.1046/j.0022-1112.2003.00019.x; Zhu X, 2001, J FISH BIOL, V58, P1149, DOI 10.1006/jfbi.2000.1521; Zivkov M, 1996, ENVIRON BIOL FISH, V46, P309, DOI 10.1007/BF00005008; ZIVKOV M., 1982, VET CESK SPOL ZOOL, V46, P142; ZIVKOV MT, 1991, DOKL BOLG AKAD NAUK, V44, P45; Zivkov MT, 1999, ENVIRON BIOL FISH, V54, P67, DOI 10.1023/A:1007425005491 287 433 456 5 161 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1467-2960 1467-2979 FISH FISH Fish. Fish. JUN 2003 4 2 147 190 10.1046/j.1467-2979.2003.00120.x 44 Fisheries Fisheries 755CL WOS:000187386100004 2018-11-12 J Sozou, PD; Seymour, RM Sozou, PD; Seymour, RM Augmented discounting: interaction between ageing and time-preference behaviour PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article discounting; time preference; reproduction; ageing NATURAL-SELECTION; EVOLUTION; SENESCENCE; REPRODUCTION; MORTALITY Discounting occurs when an immediate benefit is systematically valued more highly than a delayed benefit of the same magnitude. It is manifested in physiological and behavioural strategies of organisms. This study brings together life-history theory and time-preference theory within a single modelling framework. We consider an animal encountering reproductive opportunities as a random process. Under an external hazard, optimal life-history strategy typically prioritizes immediate reproduction at the cost of declining fertility and increasing mortality with age. Given such ageing, an immediate reproductive reward should be preferred to a delayed reward because of both the risk of death and declining fertility. By this analysis, ageing is both a consequence of discounting by the body and a cause of behavioural discounting. A series of models is developed, making different assumptions about external hazards and biological ageing. With realistic ageing assumptions (increasing mortality and an accelerating rate of fertility decline) the time-preference rate increases in old age. Under an uncertain external hazard rate, young adults should also have relatively high time-preference rates because their (Bayesian) estimate of the external hazard is high. Middle-aged animals may therefore be the most long term in their outlook. Univ London London Sch Econ & Polit Sci, Dept Operat Res, London WC2A 2AE, England; UCL, Dept Math, London WC1E 6BT, England Sozou, PD (reprint author), Univ London London Sch Econ & Polit Sci, Dept Operat Res, Houghton St, London WC2A 2AE, England. p.sozou@lse.ac.uk; rms@math.ucl.ac.uk Azfar O, 1999, J ECON BEHAV ORGAN, V38, P245, DOI 10.1016/S0167-2681(99)00009-8; DASGUPTA P, 2002, UNCERTAINTY WAITING; FINCH C, 1990, LONGEVITY SENESCENCE; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HOUSTON AI, 1986, OIKOS, V47, P267, DOI 10.2307/3565436; IWASA Y, 1984, THEOR POPUL BIOL, V26, P205, DOI 10.1016/0040-5809(84)90030-3; Kacelnik A, 1997, Ciba Found Symp, V208, P51; Kacelnik A, 2003, TIME DECISION EC PSY, P115; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kodric-Brown A, 2001, AM NAT, V157, P316, DOI 10.1086/319191; Kowald A, 1996, MUTAT RES-DNAGING G, V316, P209, DOI 10.1016/S0921-8734(96)90005-3; LOGAN FA, 1965, J COMP PHYSIOL PSYCH, V59, P1, DOI 10.1037/h0021633; Mazur JE, 1987, QUANTITATIVE ANAL BE, V5, P55; Moore PJ, 2001, P NATL ACAD SCI USA, V98, P9171, DOI 10.1073/pnas.161154598; Partridge L, 2002, NAT REV GENET, V3, P165, DOI 10.1038/nrg753; ROGERS AR, 1994, AM ECON REV, V84, P460; ROGERS AR, 1990, ETHOL SOCIOBIOL, V11, P479, DOI 10.1016/0162-3095(90)90022-X; Shanley DP, 2000, EVOLUTION, V54, P740, DOI 10.1111/j.0014-3820.2000.tb00076.x; Sozou PD, 1998, P ROY SOC B-BIOL SCI, V265, P2015, DOI 10.1098/rspb.1998.0534; Trostel PA, 2001, ECON INQ, V39, P379, DOI 10.1093/ei/39.3.379; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 22 47 49 0 8 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. MAY 22 2003 270 1519 1047 1053 10.1098/rspb.2003.2344 7 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 680GZ WOS:000182969100007 12803894 Green Published 2018-11-12 J Hawkes, K Hawkes, K Grandmothers and the evolution of human longevity AMERICAN JOURNAL OF HUMAN BIOLOGY English Article; Proceedings Paper Annual Meeting of the Human-Biology-Association APR, 2002 BUFFALO, NY Human Biol Assoc LIFE-HISTORY PERSPECTIVE; DENTAL DEVELOPMENT; NATURAL-SELECTION; EARLY HOMINIDS; BODY-SIZE; WILD CHIMPANZEES; HOMO-ERECTUS; GENUS HOMO; POSTREPRODUCTIVE LIFE; REPRODUCTIVE SUCCESS Great apes, our closest living relatives, live longer and mature later than most other mammals and modern humans are even later-maturing and potentially longer-lived. Evolutionary life-history theory seeks to explain cross-species differences in these variables and the covariation between them. That provides the foundation for a hypothesis that a novel role for grandmothers underlies the shift from an ape-like ancestral pattern to one more like our own in the first widely successful members of genus Homo. This hypothesis links four distinctive features of human life histories: 1) our potential longevity, 2) our late maturity, 3) our midlife menopause, and 4) our early weaning with next offspring produced before the previous infant can feed itself. I discuss the problem, then, using modern humans and chimpanzees to represent, respectively, genus Homo and australopithecines, I focus on two corollaries of this grandmother hypothesis: 1) that ancestral age-specific fertility declines persisted in our genus, while 2) senescence in other aspects of physiological performance slowed down. The data are scanty but they illustrate similarities in age-specific fertility decline and differences in somatic durability that are consistent with the hypothesis that increased longevity in our genus is a legacy of the "reproductive" role of ancestral grandmothers. (C) 2003 Wiley-Liss, Inc. Univ Utah, Dept Anthropol, Salt Lake City, UT 84112 USA Hawkes, K (reprint author), Univ Utah, Dept Anthropol, 270 E 1400 S Stewart 102, Salt Lake City, UT 84112 USA. hawkes@anthro.utah.edu Henrich, Joseph/A-2403-2009 Aiello LC, 2002, ANNU REV ANTHROPOL, V31, P323, DOI 10.1146/annurev.anthro.31.040402.085403; AIELLO LC, 1995, CURR ANTHROPOL, V36, P199, DOI 10.1086/204350; Alvarez HP, 2000, AM J PHYS ANTHROPOL, V113, P435, DOI 10.1002/1096-8644(200011)113:3<435::AID-AJPA11>3.0.CO;2-O; AMES BN, 1981, P NATL ACAD SCI-BIOL, V78, P6858, DOI 10.1073/pnas.78.11.6858; Anton SC, 2001, AM J PHYS ANTHROPOL, P32; Austad SN, 1997, BETWEEN ZEUS AND THE SALMON, P161; BAILEY WG, 1987, HUMAN LONGEVITY ANTI; BARJA G, 1994, FREE RADICAL RES, V21, P317, DOI 10.3109/10715769409056584; Beckman KB, 1998, PHYSIOL REV, V78, P547; Binford L. R., 1981, BONES ANCIENT MEN MO; Bird R, 1999, EVOL ANTHROPOL, V8, P65, DOI 10.1002/(SICI)1520-6505(1999)8:2<65::AID-EVAN5>3.0.CO;2-3; BLOCK E, 1953, ACTA ANAT, V17, P201; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; BLUMENSCHINE RJ, 1987, CURR ANTHROPOL, V28, P383, DOI 10.1086/203544; Blurton Jones N., 1996, CULTURAL DIVERSITY 2, P159; Blurton Jones N.H., 1989, COMP SOCIOECOLOGY MA, P365; BOCQUETAPPEL JP, 1982, J HUM EVOL, V11, P321, DOI 10.1016/S0047-2484(82)80023-7; BOESCH C, 1989, AM J PHYS ANTHROPOL, V78, P547, DOI 10.1002/ajpa.1330780410; Bogin B., 1999, PATTERNS HUMAN GROWT; Bogin B, 2001, GROWTH HUMANITY; Bonner J.T., 1965, SIZE CYCLE ESSAY STR; BROMAGE TG, 1985, NATURE, V317, P525, DOI 10.1038/317525a0; BROMAGE TG, 1987, J HUM EVOL, V16, P257, DOI 10.1016/0047-2484(87)90002-9; CAREY JR, 2001, ENGLISH SELECTION, V13, P9; CARO TM, 1995, INT J PRIMATOL, V16, P205, DOI 10.1007/BF02735478; CARTMILL M, 1993, VIEW DEATH MORNING H; CHARNOV EL, 1991, PHILOS T ROY SOC B, V332, P41, DOI 10.1098/rstb.1991.0031; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov EL, 1997, NATURE, V387, P393, DOI 10.1038/387393a0; Charnov EL, 2001, EVOL ECOL RES, V3, P521; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; Clegg M, 1999, AM J PHYS ANTHROPOL, V110, P81, DOI 10.1002/(SICI)1096-8644(199909)110:1<81::AID-AJPA7>3.3.CO;2-K; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Collard M, 1999, HUMAN EVOLUT SER, P316; Dart R.A., 1953, INT ANTHR LINGUISTIC, V1, P201; Dart RA, 1949, AM J PHYS ANTHROP-NE, V7, P1, DOI 10.1002/ajpa.1330070103; De Waal F., 2001, TREE ORIGIN PRIMATE; Dean C, 2001, NATURE, V414, P628, DOI 10.1038/414628a; deCastro JMB, 1997, J HUM EVOL, V33, P333, DOI 10.1006/jhev.1997.0110; Dominguez-Rodrigo M, 2002, J WORLD PREHIST, V16, P1, DOI 10.1023/A:1014507129795; Dunson DB, 2002, HUM REPROD, V17, P1399, DOI 10.1093/humrep/17.5.1399; EISENBERG JF, 1981, MAMMALIAN RAD AT; Enard W, 2002, NATURE, V418, P869, DOI 10.1038/nature01025; ERWIN JM, 2002, AGING NONHUMAN PRIMA, V31, P1; Finch C, 2000, CHANCE DEV AGING; FINCH C, 1990, LONGEVITY SENESCENCE; FINCH CE, 1990, SCIENCE, V249, P902, DOI 10.1126/science.2392680; Finch CE, 1997, BETWEEN ZEUS AND THE SALMON, P245; Finch CE, 1999, NEUROBIOL AGING, V20, P407, DOI 10.1016/S0197-4580(99)00053-6; Finch CE, 1997, SCIENCE, V278, P407, DOI 10.1126/science.278.5337.407; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; FRETTS RC, 1995, NEW ENGL J MED, V333, P953, DOI 10.1056/NEJM199510123331501; Gabunia L, 2000, SCIENCE, V288, P1019, DOI 10.1126/science.288.5468.1019; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gage TB, 1998, ANNU REV ANTHROPOL, V27, P197, DOI 10.1146/annurev.anthro.27.1.197; Gagneux P, 2001, MOL PHYLOGENET EVOL, V18, P2, DOI 10.1006/mpev.2000.0799; GAVRILOV LA, 1991, BIOL LIFESPAN QUANTI; GEARING M, 1994, P NATL ACAD SCI USA, V91, P9382, DOI 10.1073/pnas.91.20.9382; George JC, 1999, CAN J ZOOL, V77, P571, DOI 10.1139/cjz-77-4-571; Goodall J, 1986, CHIMPANZEES GOMBE; Gosden R, 1996, CHEATING TIME SCI SE; GOSDEN RG, 1987, J ZOOL, V211, P169, DOI 10.1111/j.1469-7998.1987.tb07460.x; GOSDEN RG, 1985, BIOL MENOPAUSE CAUSE; GOULD KG, 1981, MATURITAS, V3, P157, DOI 10.1016/0378-5122(81)90007-4; Gould S.J., 1977, ONTOGENY PHYLOGENY; Gowaty P. A., 1996, PARTNERSHIPS BIRDS S, P21; Graham CE, 1986, COMP PRIMATE BIOL, V3, P93; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; HAILESELASSIE Y, 2001, NATURE, V412, P176; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; HART RW, 1974, P NATL ACAD SCI USA, V71, P2169, DOI 10.1073/pnas.71.6.2169; HARVEY P. H., 1988, EVOLUTION LIFE HIST, P213; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; HARVEY PH, 1989, COMP SOCIOECOLOGY, P305; HARVEY PH, 1999, ADV ECOLOGICAL THEOR, P232; HAWKES K, 1995, CURR ANTHROPOL, V36, P688, DOI 10.1086/204420; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Hawkes K, 2002, EVOL ANTHROPOL, V11, P58, DOI 10.1002/evan.20005; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hawkes K, 2001, CURR ANTHROPOL, V42, P681, DOI 10.1086/322559; HAWKES K, 1989, COMP SOCIOECOLOGY BE, P341; Hawkes Kristen, 2003, P204; Herskind AM, 1996, HUM GENET, V97, P319, DOI 10.1007/s004390050042; Hill K, 1991, Hum Nat, V2, P313, DOI 10.1007/BF02692196; Hill K, 2001, J HUM EVOL, V40, P437, DOI 10.1006/jhev.2001.0469; HILL K, 1982, J HUM EVOL, V11, P521, DOI 10.1016/S0047-2484(82)80107-3; Hill K, 1999, HUM NATURE-INT BIOS, V10, P199, DOI 10.1007/s12110-999-1015-8; HOLLIDAY R, 1989, BIOESSAYS, V10, P125, DOI 10.1002/bies.950100408; HOLLIDAY R, 1995, UNDERSTANDING AGEING; HOWELL N, 1982, AM J PHYS ANTHROPOL, V59, P263, DOI 10.1002/ajpa.1330590305; Howell N., 1979, DEMOGRAPHY DOBE KUNG; Hrdy S. B., 1999, MOTHER NATURE HIST M; Hrdy SB, 2001, NAT HIST, V110, P50; HRDY SB, WOMAN NEVER EVOLVED; Hulbert AJ, 2000, ANNU REV PHYSIOL, V62, P207, DOI 10.1146/annurev.physiol.62.1.207; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; HURTADO AM, 1992, FATHER CHILD RELATIO; ISAAC G, 1978, SCI AM, V238, P90, DOI 10.1038/scientificamerican0478-90; Isaac GL, 1984, ADV WORLD ARCHAEOLOG, P1; Jamison CS, 2002, AM J PHYS ANTHROPOL, V119, P67, DOI 10.1002/ajpa.10070; Janson C. H., 2000, INFANTICIDE MALES IT; JOHANSON DC, 1979, SCIENCE, V203, P321, DOI 10.1126/science.104384; Jones NGB, 2002, AM J HUM BIOL, V14, P184, DOI 10.1002/ajhb.10038; JONES NGB, 1992, AM J PHYS ANTHROPOL, V89, P159, DOI 10.1002/ajpa.1330890204; JONES NGB, 2000, ADAPTATION HUMAN BEH, P61; Judge DS, 2000, J GERONTOL A-BIOL, V55, pB201, DOI 10.1093/gerona/55.4.B201; Kapahi P, 1999, FREE RADICAL BIO MED, V26, P495, DOI 10.1016/S0891-5849(98)00323-2; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H, 1997, BETWEEN ZEUS AND THE SALMON, P175; Key CA, 1994, INT J OSTEOARCHAEOL, V4, P193, DOI DOI 10.1002/0A.1390040304; Keyfitz N., 1990, WORLD POPULATION GRO; Kirkwood T.B.L., 1981, P165; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KIRKWOOD TBL, 1979, P ROY SOC LOND B BIO, V205, P532; Klein RG, 2000, EVOL ANTHROPOL, V9, P17, DOI 10.1002/(SICI)1520-6505(2000)9:1<17::AID-EVAN3>3.0.CO;2-A; KLEIN RG, 1999, HUMAN CAREER HUMAN B; Kozlowski J, 1997, AM NAT, V149, P352; KU HH, 1993, FREE RADICAL BIO MED, V15, P621, DOI 10.1016/0891-5849(93)90165-Q; Lancaster JB, 1983, HUMANS ADAPT BIOCULT, P33; LANCASTER JB, 1987, PARENTING LIFE SPAN, P187; Larick R, 2001, P NATL ACAD SCI USA, V98, P4866, DOI 10.1073/pnas.081077298; LEE RB, 1968, HUNTERS DO LIVING MA, P30; LEE RD, 1997, ZEUS SALMON BIODEMOG, P212; Lee-Thorp J, 2000, J HUM EVOL, V39, P565, DOI 10.1006/jhev.2000.0436; Lee-Thorp Julia, 2002, P123; LEIDY LE, 1994, ANNU REV ANTHROPOL, V23, P231, DOI 10.1146/annurev.an.23.100194.001311; Leigh SR, 2001, EVOL ANTHROPOL, V10, P223, DOI 10.1002/evan.20002; Lieberman DE, 2002, EVOL ANTHROPOL, V11, P246, DOI 10.1002/evan.10037; Lin SJ, 2000, SCIENCE, V289, P2126, DOI 10.1126/science.289.5487.2126; MCARTHUR RH, 1967, THEORY ISLAND BIOGEO; MCHENRY HM, 1992, AM J PHYS ANTHROPOL, V87, P407, DOI 10.1002/ajpa.1330870404; MCHENRY HM, 1994, J HUM EVOL, V27, P77, DOI 10.1006/jhev.1994.1036; Mesnick S., 1997, FEMINISM EVOLUTIONAR, P207; Milton K, 1999, EVOL ANTHROPOL, V8, P11, DOI 10.1002/(SICI)1520-6505(1999)8:1<11::AID-EVAN6>3.3.CO;2-D; Mitani JC, 2002, EVOL ANTHROPOL, V11, P9, DOI 10.1002/evan.10008; MIZROCH SA, 1981, REP INT WHAL COMM, V312, P425; Morris JC, 1996, NEUROLOGY, V46, P707, DOI 10.1212/WNL.46.3.707; Moss CJ, 2001, J ZOOL, V255, P145, DOI 10.1017/S0952836901001212; O'Connell James, 2002, P49; O'Connell JF, 2002, J HUM EVOL, V43, P831, DOI 10.1006/jhev.2002.0604; O'Connell JF, 1999, J HUM EVOL, V36, P461, DOI 10.1006/jhev.1998.0285; Oeppen J, 2002, SCIENCE, V296, P1029, DOI 10.1126/science.1069675; Olshansky SJ, 1998, AM SCI, V86, P52, DOI 10.1511/1998.1.52; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; PAINE RR, 1997, 24 S ILL U CTR ARCH; Palombit RA, 1999, EVOL ANTHROPOL, V7, P117, DOI 10.1002/(SICI)1520-6505(1999)7:4<117::AID-EVAN2>3.0.CO;2-O; Partridge L, 2002, NAT REV GENET, V3, P165, DOI 10.1038/nrg753; Pavelka MSM, 1999, AM J PHYS ANTHROPOL, V109, P455, DOI 10.1002/(SICI)1096-8644(199908)109:4<455::AID-AJPA3>3.0.CO;2-Z; PAVELKA MSM, 1991, YEARB PHYS ANTHROPOL, V34, P13; Peccei JS, 2001, EVOL ANTHROPOL, V10, P43, DOI 10.1002/evan.1013; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Preston SH, 1972, CAUSES DEATH LIFE TA; PROMISLOW DEL, 1989, OXFORD SURVEYS EVOLU, V6, P13; PURVIS A, 1995, J ZOOL, V237, P259, DOI 10.1111/j.1469-7998.1995.tb02762.x; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; RICHARDSON SJ, 1987, J CLIN ENDOCR METAB, V65, P1231, DOI 10.1210/jcem-65-6-1231; Ricklefs RE, 1998, AM NAT, V152, P24, DOI 10.1086/286147; RIGHTMIRE CP, 1990, EVOLUTION HOMO ERECU; ROGERS AR, 1993, EVOL ECOL, V7, P406, DOI 10.1007/BF01237872; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Ruff CB, 1997, NATURE, V387, P173, DOI 10.1038/387173a0; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; SCHRIRE V, 1984, PRESENT HUNTER GATHE; Sear R, 2000, P ROY SOC B-BIOL SCI, V267, P1641, DOI 10.1098/rspb.2000.1190; Senut B, 2001, CR ACAD SCI II A, V332, P137, DOI 10.1016/S1251-8050(01)01529-4; SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013; Shanley DP, 2001, BIOESSAYS, V23, P282, DOI 10.1002/1521-1878(200103)23:3<282::AID-BIES1038>3.3.CO;2-0; SHIPMAN P, 1989, J HUM EVOL, V18, P373, DOI 10.1016/0047-2484(89)90037-7; SHIPMAN P, 1986, AM ANTHROPOL, V88, P27, DOI 10.1525/aa.1986.88.1.02a00020; Smith B. Holly, 1993, P195; SMITH BH, 1991, AM J PHYS ANTHROPOL, V86, P157, DOI 10.1002/ajpa.1330860206; SMITH BH, 1987, AM J PHYS ANTHROPOL, V72, P255; SMITH BH, 1995, ANNU REV ANTHROPOL, V24, P257, DOI 10.1146/annurev.an.24.100195.001353; SMITH BH, 1994, AM J HUM BIOL, V6, P61, DOI 10.1002/ajhb.1310060110; SMITH BH, 1989, EVOLUTION, V43, P683, DOI 10.1111/j.1558-5646.1989.tb04266.x; SMITH BH, 1986, NATURE, V323, P327, DOI 10.1038/323327a0; Smith DWE, 1993, HUMAN LONGEVITY; Smuts B, 1992, Hum Nat, V3, P1, DOI 10.1007/BF02692265; Smuts B.B., 1987, P385; Smuts B. B., 1985, SEX FRIENDSHIP BABOO; Smuts B. B., 1992, FATHER CHILD RELATIO, P1; Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59; Stanford C. B., 2001, MEAT EATING HUMAN EV; Stanford CB, 1996, AM ANTHROPOL, V98, P96, DOI 10.1525/aa.1996.98.1.02a00090; STANFORD CG, 1999, HUNTING APES MEAT EA; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Stiner MC, 2002, J ARCHAEOL RES, V10, P1, DOI 10.1023/A:1014588307174; SUGIYAMA Y, 1994, AM J PRIMATOL, V32, P311, DOI 10.1002/ajp.1350320408; Sukumar R, 1997, ZOO BIOL, V16, P263, DOI 10.1002/(SICI)1098-2361(1997)16:3<263::AID-ZOO6>3.0.CO;2-8; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0; SWISHER CC, 1994, SCIENCE, V263, P1118, DOI 10.1126/science.8108729; Tardieu C, 1998, AM J PHYS ANTHROPOL, V107, P163; TICE RR, 1985, HDB BIOL AGING, P173; TOLMASOFF JM, 1980, P NATL ACAD SCI-BIOL, V77, P2777, DOI 10.1073/pnas.77.5.2777; Tooby J., 1987, P183; TRELOAR AE, 1981, MATURITAS, V3, P249, DOI 10.1016/0378-5122(81)90032-3; TRINKAUS E, 1986, ANNU REV ANTHROPOL, V15, P193, DOI 10.1146/annurev.an.15.100186.001205; TRINKAUS E, 1995, J ARCHAEOL SCI, V22, P121, DOI 10.1016/S0305-4403(95)80170-7; TRIVERS RL, 1972, SEXUAL SELECTION DES, P139; Tuljapurkar S, 2000, NATURE, V405, P789, DOI 10.1038/35015561; van Schaik Carel, 1996, Evolutionary Anthropology, V5, P152, DOI 10.1002/(SICI)1520-6505(1996)5:5<152::AID-EVAN3>3.0.CO;2-H; Varki A, 2000, GENOME RES, V10, P1065, DOI 10.1101/gr.10.8.1065; Vaupel JW, 1998, SCIENCE, V280, P855, DOI 10.1126/science.280.5365.855; Voland E, 2002, BEHAV ECOL SOCIOBIOL, V52, P435, DOI 10.1007/s00265-002-0539-2; Vom Saal Frederick S., 1994, P1213; VONSCHAIK CP, 1996, P BR ACAD, V88, P9; Walker LC, 1997, BRAIN RES REV, V25, P70, DOI 10.1016/S0165-0173(97)00017-9; WALKER PL, 1988, AM J PHYS ANTHROPOL, V76, P183, DOI 10.1002/ajpa.1330760206; Washburn S. L., 1961, SOCIAL LIFE EARLY MA, P91; WASHBURN SL, 1960, SCI AM, V203, P63; Washburn SL, 1958, BEHAV EVOLUTION, P421; WASHBURN SL, 1968, MAN HUNTER, P293; WEISS KM, 1973, SOC AM ARCHAEOLOGY M, V27, P1; Westendorp RGJ, 1998, NATURE, V396, P743, DOI 10.1038/25519; WESTERN D, 1979, AFR J ECOL, V17, P185, DOI 10.1111/j.1365-2028.1979.tb00256.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; Wolf Eric R., 1982, EUROPE PEOPLE HIST; Wood B, 1999, SCIENCE, V284, P65, DOI 10.1126/science.284.5411.65; WOOD B, 1992, NATURE, V355, P783, DOI 10.1038/355783a0; WOOD JW, 1994, DYNAMICS HUMAN REPRO; Woodburn J, 1968, MAN HUNTER, P49; Wrangham RW, 1999, CURR ANTHROPOL, V40, P567, DOI 10.1086/300083; Yu BP, 1996, FREE RADICAL BIO MED, V21, P651, DOI 10.1016/0891-5849(96)00162-1; Zhu RX, 2001, NATURE, V413, P413, DOI 10.1038/35096551 232 232 239 1 87 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 1520-6300 AM J HUM BIOL Am. J. Hum. Biol. MAY-JUN 2003 15 3 380 400 10.1002/ajhb.10156 21 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 669AD WOS:000182329000009 12704714 2018-11-12 J Shefferson, RP; Proper, J; Beissinger, SR; Simms, EL Shefferson, RP; Proper, J; Beissinger, SR; Simms, EL Life history trade-offs in a rare orchid: The costs of flowering, dormancy, and sprouting ECOLOGY English Article adult plant dormancy; bud dormancy; cost of reproduction; cost of sprouting; Cypripedium calceolus; demography; lady's slipper orchids; life history trade-offs; matrix modeling; multistrata mark-recapture; survivorship; trade-offs OPHRYS-SPHEGODES MILL; MARK-RECAPTURE MODELS; EARLY SPIDER ORCHID; CAPTURE-RECAPTURE; POPULATION BIOLOGY; FRUIT PRODUCTION; PLANTS; REPRODUCTION; SURVIVAL; EVOLUTION We tested for life history trade-offs among dormancy, sprouting, and flowering in a seven-year study of a threatened, perennial plant, the small yellow lady's slipper orchid (Cypripedium calceolus ssp. parviflorum (Salisb.) Fernald). The aboveground states of 629 genets were monitored over seven years in a wet meadow in northeastern Illinois, USA. With mark-recapture statistics, survival, resighting, and stage transitions were calculated among three stage classes of individuals: dormant, vegetative, and flowering. The best-fit and most parsimonious models suggested that (1) survival was constant among years, but varied by stage; (2) dormant individuals suffered significantly higher mortality and were more likely to become dormant in future years than sprouting or flowering individuals;, (3) flowering individuals had significantly higher survival and were more likely to flower in the future than sprouting and dormant individuals; and (4) sprouting individuals had a significantly higher stage transition to dormancy from the vegetative state than to any other state. Thus, our results identified costs of dormancy and sprouting to survival and future reproduction, but no costs of reproduction either to survival or future flowering effort. Dormancy seems unlikely to be adaptive except perhaps as a bet-hedging strategy under catastrophic conditions. Applying mark-recapture models to test predictions from life history theory provided a robust means to explore hypothetical trade-offs that may not have been observed in a conventional analysis and allowed dormancy to be estimated robustly without biasing survival estimation. Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA; Lake Cty Forest Preserve Dist, Lake Villa, IL 60046 USA; Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA Shefferson, RP (reprint author), Univ Calif Berkeley, Dept Integrat Biol, 3060 Valley Life Sci Bldg 3140, Berkeley, CA 94720 USA. dormancy@socrates.berkeley.edu Beissinger, Steven/F-3809-2012 ACKERMAN JD, 1990, ECOLOGY, V71, P263, DOI 10.2307/1940265; Alexander HM, 1997, ECOLOGY, V78, P1230, DOI 10.2307/2265872; BIERE A, 1995, J ECOL, V83, P629, DOI 10.2307/2261631; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; Buckland ST, 1997, BIOMETRICS, V53, P603, DOI 10.2307/2533961; Burnham K. P., 1998, MODEL SELECTION INFE; CALLAGHAN TV, 1992, OIKOS, V63, P341, DOI 10.2307/3544959; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; CASE FW, 1987, ORCHIDS W GREAT LAKE; CURTIS JOHN T., 1954, BULL TORREY BOT CLUB, V81, P340, DOI 10.2307/2997149; Curtis JT, 1943, AM J BOT, V30, P199, DOI 10.2307/2437240; Curtis JT., 1959, VEGETATION WISCONSIN; DAHMS HU, 1995, HYDROBIOLOGIA, V306, P199, DOI 10.1007/BF00017691; DEKROON H, 1992, OIKOS, V63, P410, DOI 10.2307/3544967; Dixon K.W., 1990, ORCHID BIOL REV PERS, P37; FISHER R. A., 1930, GENETICAL THEORY NAT; FULLER ALBERT M., 1933, BULL PUBLIC MUS CITY MILWAUKEE, V14, P1; Gill D. E, 1989, SPECIATION ITS CONSE, P458; Harper J. L., 1974, Annual Review of Ecology and Systematics, V5, P419, DOI 10.1146/annurev.es.05.110174.002223; HINES JE, 1994, MS SURVIV USERS MANU; HINES JE, 1989, US FISH WILDLIFE SER, V24, P1; HUTCHINGS MJ, 1987, J ECOL, V75, P711, DOI 10.2307/2260201; HUTCHINGS MJ, 1987, J ECOL, V75, P729, DOI 10.2307/2260202; KULL T, 1991, POPULATION ECOLOGY OF TERRESTRIAL ORCHIDS, P69; Kull T., 1995, ABSTR BOT, V19, P95; KULL T, 1987, PLANT COVER ESTONIAN, P77; LEAKE JR, 1994, NEW PHYTOL, V127, P171, DOI 10.1111/j.1469-8137.1994.tb04272.x; LESICA P, 1994, NAT AREA J, V14, P209; LEVIN SA, 1991, THEORY POPUL BIOL, V39, P63; McPeek MA, 1998, ERGEB LIMNOL, V52, P33; NICHOLS JD, 1994, ECOLOGY, V75, P2052, DOI 10.2307/1941610; Nichols JD, 1995, J APPL STAT, V22, P835, DOI 10.1080/02664769524658; NUZZO V, 1990, GAVIN BOG PRAIRIE NA; OTIS DL, 1978, WILDLIFE MONOGR, P1; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Pitelka L. F., 1985, POPULATION BIOL EVOL, P399; PRIMACK RB, 1990, AM NAT, V136, P638, DOI 10.1086/285120; PRIMACK RB, 1988, B ECOLOGICAL SOC M, V69, P266; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.1890/0012-9658(2000)081[1351:SROANP]2.0.CO;2; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; Shefferson RP, 2001, ECOLOGY, V82, P145, DOI 10.1890/0012-9658(2001)082[0145:EDASOA]2.0.CO;2; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; SNOW AA, 1989, ECOLOGY, V70, P1286, DOI 10.2307/1938188; Stearns S. C., 1992, EVOLUTION LIFE HIST; SUTHERLAND WJ, 1988, OIKOS, V52, P239, DOI 10.2307/3565196; Svedarsky W, 1996, RESTORATION MANAGEME, V14, P179; Swink F, 1994, PLANTS CHICAGO REGIO; TAFT JB, 1990, RHODORA, V92, P142; TAMM CO, 1972, OIKOS, V23, P23, DOI 10.2307/3543923; Taylor J. R., 1997, INTRO ERROR ANAL STU; TUOMI J, 1983, AM ZOOL, V23, P25; WELLS TCE, 1967, J ECOL, V55, P83, DOI 10.2307/2257718; White G. C., 2002, INTEGRATING PEOPLE W, P368; White GC, 1999, BIRD STUDY, V46, P120; WIENER P, 1994, J THEOR BIOL, V166, P75, DOI 10.1006/jtbi.1994.1006; Willems JH, 2000, PLANT BIOLOGY, V2, P344, DOI 10.1055/s-2000-3707 58 58 58 2 34 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 1939-9170 ECOLOGY Ecology MAY 2003 84 5 1199 1206 10.1890/0012-9658(2003)084[1199:LHTIAR]2.0.CO;2 8 Ecology Environmental Sciences & Ecology 700PN WOS:000184120500013 2018-11-12 J Czesak, ME; Fox, CW Czesak, ME; Fox, CW Evolutionary ecology of egg size and number in a seed beetle: Genetic trade-off differs between environments EVOLUTION English Article artificial selection; fecundity; genetic trade-off; offspring size; reproductive effort; Stator limbatus LIFE-HISTORY TRAITS; DROSOPHILA-MELANOGASTER; VARIABLE ENVIRONMENTS; REPRODUCTIVE EFFORT; OFFSPRING SIZE; CLUTCH SIZE; THREESPINE STICKLEBACK; QUANTITATIVE GENETICS; STATOR LIMBATUS; CONSEQUENCES In many organisms, large offspring have improved fitness over small offspring, and thus their size is under strong selection. However, due to a trade-off between offspring size and number, females producing larger offspring necessarily must produce fewer unless the total amount of reproductive effort is unlimited. Because differential gene expression among environments may affect genetic covariances among traits, it is important to consider environmental effects on the genetic relationships among traits. We compared the genetic relationships among egg size, lifetime fecundity, and female adult body mass (a trait linked to reproductive effort) in the seed beetle, Stator limbatus, between two environments (host-plant species Acacia greggii and Cercidium floridum). Genetic correlations among these traits were estimated through half-sib analysis, followed with artificial selection on egg size to observe the correlated responses of lifetime fecundity and female body mass. We found that the magnitude of the genetic trade-off between egg size and lifetime fecundity differed between environments-a strong trade-off was estimated when females laid eggs on C. floridum seeds, yet this trade-off was weak when females laid eggs on A. greggii seeds. Also differing between environments was the genetic correlation between egg size and female body mass-these traits were positively genetically correlated for egg size on A. greggii seeds, yet uncorrelated on C. floridum seeds. On A. greggii seeds, the evolution of egg size and traits linked to reproductive effort (such as female body mass) are not independent from each other as commonly assumed in life-history theory. Univ Kentucky, Dept Entomol, Lexington, KY 40546 USA Czesak, ME (reprint author), Vassar Coll, Dept Biol, Poughkeepsie, NY 12604 USA. maczesak@vassar.edu Fox, Charles/I-5274-2012 Fox, Charles/0000-0002-7545-7967 Azevedo RBR, 1997, AM NAT, V150, P250, DOI 10.1086/286065; Begin M, 2001, J EVOLUTION BIOL, V14, P1, DOI 10.1046/j.1420-9101.2001.00258.x; Caley MJ, 2001, EVOLUTION, V55, P1245; Candolin U, 1998, P ROY SOC B-BIOL SCI, V265, P1171, DOI 10.1098/rspb.1998.0415; CARRIERE Y, 1995, OECOLOGIA, V102, P389, DOI 10.1007/BF00329806; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1985, ENVIRON ENTOMOL, V14, P383, DOI 10.1093/ee/14.4.383; DELAGUERIE P, 1991, EVOL ECOL, V5, P361, DOI 10.1007/BF02214153; EBERT D, 1993, ARCH HYDROBIOL, P453; Falconer DS, 1996, INTRO QUANTITATIVE G; Fox CW, 2000, ECOLOGY, V81, P3029, DOI 10.1890/0012-9658(2000)081[3029:NSOSBE]2.0.CO;2; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Fox CW, 1997, CAN J ZOOL, V75, P1465, DOI 10.1139/z97-769; Fox CW, 1999, EVOLUTION, V53, P552, DOI 10.1111/j.1558-5646.1999.tb03790.x; Fox CW, 1996, OECOLOGIA, V107, P541, DOI 10.1007/BF00333946; Fox CW, 1997, AM NAT, V149, P149, DOI 10.1086/285983; Fox CW, 2001, ECOLOGY, V82, P2790, DOI 10.2307/2679961; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gu HN, 2000, AUSTRAL ECOL, V25, P394, DOI 10.1046/j.1442-9993.2000.01051.x; Guntrip J, 1997, HEREDITY, V78, P158; HEDRICK PW, 1976, ANNU REV ECOL SYST, V7, P1, DOI 10.1146/annurev.es.07.110176.000245; HOLLOWAY GJ, 1990, HEREDITY, V64, P323, DOI 10.1038/hdy.1990.40; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Ilmonen P, 2000, P ROY SOC B-BIOL SCI, V267, P665, DOI 10.1098/rspb.2000.1053; JOHNSON C D, 1976, U S Department of Agriculture Technical Bulletin, V1537, P1; Johnson C.D., 1989, Opera Lilloana, V37, P1; Lazarevic J, 1998, FUNCT ECOL, V12, P141, DOI 10.1046/j.1365-2435.1998.00166.x; Leon JA, 2000, J THEOR BIOL, V205, P563, DOI 10.1006/jtbi.2000.2086; LEROI AM, 1994, EVOLUTION, V48, P1244, DOI 10.1111/j.1558-5646.1994.tb05309.x; LOFSVOLD D, 1986, EVOLUTION, V40, P559, DOI 10.2307/2408577; LYNCH M, 1985, EVOLUTION, V39, P804, DOI 10.1111/j.1558-5646.1985.tb00422.x; LYNCH M, 1984, EVOLUTION, V38, P465, DOI 10.1111/j.1558-5646.1984.tb00312.x; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; NILSSON JA, 1993, SOUTHWEST NAT, V38, P385, DOI 10.2307/3671622; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; PARKER GA, 1984, THEOR POPUL BIOL, V26, P27, DOI 10.1016/0040-5809(84)90022-4; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Roff D. A., 1997, EVOLUTIONARY QUANTIT; ROFF DA, 1994, HEREDITY, V73, P544, DOI 10.1038/hdy.1994.153; Roff Derek A., 1992; *SAS I, 1985, SAS US GUID STAT VER; Savalli UM, 2002, ANN ENTOMOL SOC AM, V95, P724, DOI 10.1603/0013-8746(2002)095[0724:PMIESP]2.0.CO;2; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCHEINER SM, 1989, EVOL ECOL, V3, P51, DOI 10.1007/BF02147931; Schwarzkopf L, 1999, AM NAT, V154, P333, DOI 10.1086/303242; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; Shaw FH, 1995, EVOLUTION, V49, P1260, DOI 10.1111/j.1558-5646.1995.tb04452.x; SINERVO B, 1991, J EXP ZOOL, V257, P252, DOI 10.1002/jez.1402570216; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SNYDER RJ, 1991, COPEIA, P526; Sokal R.R., 1995, BIOMETRY; TULJAPURKAR S, 1990, P NATL ACAD SCI USA, V87, P1139, DOI 10.1073/pnas.87.3.1139; TURELLI M, 1988, EVOLUTION, V42, P1342, DOI 10.1111/j.1558-5646.1988.tb04193.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vaughton G, 1998, J ECOL, V86, P563, DOI 10.1046/j.1365-2745.1998.00279.x; VIA S, 1984, EVOLUTION, V38, P896, DOI 10.1111/j.1558-5646.1984.tb00360.x; Welham CVJ, 1998, CAN J BOT, V76, P166, DOI 10.1139/b97-176; Windig JJ, 1997, J EVOLUTION BIOL, V10, P853, DOI 10.1007/s000360050058; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667 60 95 96 3 43 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution MAY 2003 57 5 1121 1132 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 689NY WOS:000183500900016 12836828 2018-11-12 J Hauber, ME Hauber, ME Interspecific brood parasitism and the evolution of host clutch sizes EVOLUTIONARY ECOLOGY RESEARCH English Article co-evolution; conspecific brood parasitism; cowbirds; optimal clutch sizes BROWN-HEADED COWBIRDS; NEST PREDATION; LIFE-HISTORY; SAYORNIS-PHOEBE; REED WARBLERS; PARENTAL CARE; MODEL SYSTEM; EGG-REMOVAL; BIRDS; CUCKOOS Life-history theory predicts that, over evolutionary time. increased juvenile mortality should decrease parental investment in the number of offspring produced at each breeding attempt. Because interspecific brood parasitism in birds typically reduces the survival of host eggs, nestlings and fledglings, but not that of adult hosts, a specific prediction of the theory is that co-evolution with interspecific brood parasites should lead to smaller avian clutch sizes. Furthermore, the severity of juvenile mortality caused by parasitism in the hosts, due to the parasites' activities and the hosts' rejection behaviours, should correlate negatively with clutch size. In a comparative analysis, both of these predictions were supported among hosts of obligate brood parasitic brown-headed cowbirds (Molothrus ater). Reduced clutch sizes appeared to be part of a trade-off strategy as parasitism was also associated with more annual breeding attempts. These findings suggest that, on an evolutionary time-scale, hosts' prolonged interactions with interspecific brood parasites lead to reduced clutch sizes at the taxon level and, qualitatively, these changes in life-history traits are similar to those associated with other types of parasitism and diseases whose main effects also lead to reduced juvenile survival. Univ Calif Berkeley, Museum Vertebrate Zool, Dept Integrat Biol, Berkeley, CA 94720 USA Hauber, ME (reprint author), Univ Calif Berkeley, Museum Vertebrate Zool, Dept Integrat Biol, Berkeley, CA 94720 USA. hauberm@socrates.berkeley.edu Arcese P, 1996, P NATL ACAD SCI USA, V93, P4608, DOI 10.1073/pnas.93.10.4608; Baicich P. J., 1997, GUIDE NESTS EGGS NES; Both C, 1998, P ROY SOC B-BIOL SCI, V265, P2303, DOI 10.1098/rspb.1998.0575; Brooke MD, 1998, P ROY SOC B-BIOL SCI, V265, P1277, DOI 10.1098/rspb.1998.0430; Davies N. B., 2000, CUCKOOS COWBIRDS OTH; Davies NB, 1996, P ROY SOC B-BIOL SCI, V263, P925, DOI 10.1098/rspb.1996.0137; Davies NB, 1999, OSTRICH, V70, P71, DOI 10.1080/00306525.1999.9639751; Dearborn DC, 1999, AUK, V116, P448, DOI 10.2307/4089378; Forbes LS, 1996, J THEOR BIOL, V180, P247; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Hauber Mark E., 2004, Etologia, V10, P1; Hauber ME, 2000, J FIELD ORNITHOL, V71, P389, DOI 10.1648/0273-8570-71.3.389; Hauber ME, 2003, BEHAV ECOL, V14, P227, DOI 10.1093/beheco/14.2.227; Hauber ME, 2002, BEHAV ECOL SOCIOBIOL, V51, P503, DOI 10.1007/s00265-001-0450-2; Hauber ME, 2001, CAN J ZOOL, V79, P1518, DOI 10.1139/cjz-79-8-1518; Hosoi SA, 2000, ANIM BEHAV, V59, P823, DOI 10.1006/anbe.1999.1370; Kattan GH, 1996, J FIELD ORNITHOL, V67, P434; Kilpatrick AM, 2002, CAN J ZOOL, V80, P145, DOI 10.1139/Z01-217; Klicka J, 2000, AUK, V117, P321, DOI 10.1642/0004-8038(2000)117[0321:NWNPOR]2.0.CO;2; Lack D., 1954, NATURAL REGULATION A; LERKELUND HE, 1993, ORNIS SCAND, V24, P95, DOI 10.2307/3676358; Lorenzana JC, 1999, STUD AVIAN BIOL, P241; Lovette IJ, 1999, P ROY SOC B-BIOL SCI, V266, P1629, DOI 10.1098/rspb.1999.0825; Lowther Peter E., 1993, Birds of North America, V47, P1; Lyon BE, 1998, NATURE, V392, P380, DOI 10.1038/32878; Martin TE, 2001, P NATL ACAD SCI USA, V98, P2071, DOI 10.1073/pnas.98.4.2071; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; McMaster DG, 1997, AUK, V114, P212, DOI 10.2307/4089162; Morrill R, 1999, POLIT GEOGR, V18, P1, DOI 10.1016/S0962-6298(98)00062-6; ORTEGA CP, 1998, COWBIRDS OTHER BROOD; Payne RB, 1998, BEHAV ECOL, V9, P64, DOI 10.1093/beheco/9.1.64; POWER HW, 1989, CONDOR, V91, P753, DOI 10.2307/1368058; REEVE HK, 1989, AM NAT, V133, P407, DOI 10.1086/284926; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; ROSKAFT E, 1990, EVOL ECOL, V4, P35, DOI 10.1007/BF02270713; Roskaft E, 2002, BEHAV ECOL, V13, P163, DOI 10.1093/beheco/13.2.163; Rothstein S. I, 1998, PARASITIC BIRDS THEI; ROTHSTEIN SI, 1990, ANNU REV ECOL SYST, V21, P481, DOI 10.1146/annurev.es.21.110190.002405; ROTHSTEIN SI, 1990, TRENDS ECOL EVOL, V5, P101, DOI 10.1016/0169-5347(90)90161-6; Rothstein SI, 2002, BEHAV ECOL, V13, P1, DOI 10.1093/beheco/13.1.1; Ruxton GD, 2002, P ROY SOC B-BIOL SCI, V269, P1989, DOI 10.1098/rspb.2002.2125; Sedgwick JA, 1999, STUD AVIAN BIOL, P167; SKUTCH AF, 1975, PARENT BIRDS THEIR Y; SMITH JNM, 1981, CONDOR, V83, P152, DOI 10.2307/1367420; SMITH JNM, 2000, ECOLOGY MANAGEMENT C; Soler JJ, 2000, OECOLOGIA, V125, P309, DOI 10.1007/s004420000487; Soler JJ, 2001, ECOLOGY, V82, P1621, DOI 10.2307/2679805; Stokke BG, 2002, EVOLUTION, V56, P199; Tella JL, 2002, P ROY SOC B-BIOL SCI, V269, P1059, DOI 10.1098/rspb.2001.1951; Tewksbury JJ, 2002, P ROY SOC B-BIOL SCI, V269, P423, DOI 10.1098/rspb.2001.1894; WILEY JW, 1991, BIOL CONSERV, V55, P119, DOI 10.1016/0006-3207(91)90052-B 52 33 34 2 115 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. MAY 2003 5 4 559 570 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 685BT WOS:000183241500007 2018-11-12 J Honkoop, PJC Honkoop, PJC Physiological costs of reproduction in the Sydney rock oyster Saccostrea glomerata - How expensive is reproduction? OECOLOGIA English Article bivalves; costs of gametogenesis; costs of growth; diploids; triploids CRASSOSTREA-GIGAS THUNBERG; TRIPLOID PACIFIC OYSTERS; SCALLOP ARGOPECTEN-VENTRICOSUS; DROSOPHILA-MELANOGASTER; COMMERCIALIS IREDALE; OXYGEN-CONSUMPTION; MYTILUS-EDULIS; FASTER GROWTH; ENERGY BUDGET; MEIOSIS-II In this study, triploid Sydney rock oysters Saccostrea glomerata, which do not reproduce and have only limited gonadal development, were used to calculate the cost of producing and maintaining somatic tissues. The consumption of oxygen was measured and converted to units of energy expended. The consumption of oxygen of diploid oysters, in different stages of the reproductive cycle, was also measured. Knowing the costs of producing and maintaining somatic tissues (obtained from the triploid oysters), it was possible to calculate the energy demand of somatic and reproductive tissues of diploid oysters. The focus of this study was to test whether this method would work, to investigate if this method would give results in accordance with modem life-history theory and to test hypotheses about costs of reproduction in oysters. It was found that in diploid oysters, 27% of the consumed oxygen was needed for reproductive processes. It was also found that the costs of production and maintenance of reproductive tissues were on average 84% of those of somatic tissues. Costs for the production and maintenance of somatic tissues decreased over time. Costs for reproduction also decreased, but were dependent on the stage of gonadal development. If the relative mass of gametes in the gonads was large, the costs were relatively small; if the mass was relatively small, the costs were large. Differences between traits of males and females were never significant, suggesting that reproductive effort and costs were similar in males and females. It was estimated that if diploid oysters did not reproduce, they could gain 64% more somatic ash-free dry mass. Thus, in terms of growth, reproduction is an expensive activity. Univ Sydney, Ctr Res Ecol Impacts Coastal Cities, Marine Ecol Labs A 11, Sydney, NSW 2006, Australia Honkoop, PJC (reprint author), Royal Netherlands Inst Sea Res, Dept Marine Ecol, NL-1790 AB Den Burg, Netherlands. Abell AJ, 2000, OIKOS, V88, P630, DOI 10.1034/j.1600-0706.2000.880320.x; ADAMS SM, 1982, T AM FISH SOC, V111, P549, DOI 10.1577/1548-8659(1982)111<549:EPILBU>2.0.CO;2; AKASHIGE S, 1990, 5 INT C INV REPR, P461; ALLAN SK, 1986, J EXP MAR BIOL ECOL, V102, P197; ALLAN SK, 1990, CAN J FISH AQUAT SCI, V47, P1213; Bayne BL, 1999, BIOL BULL, V197, P377, DOI 10.2307/1542792; BAYNE BL, 1983, OECOLOGIA, V59, P18, DOI 10.1007/BF00388067; BAYNE BL, 1983, MOLLUSCA 1, V4, P407; Bricelj V.M., 1991, Developments in Aquaculture and Fisheries Science, V21, P305; BRICELJ VM, 1987, J EXP MAR BIOL ECOL, V112, P73; CALOW P, 1977, J ANIM ECOL, V46, P765, DOI 10.2307/3639; Cox ES, 1996, J EXP MAR BIOL ECOL, V197, P101, DOI 10.1016/0022-0981(95)00147-6; DIANA JS, 1983, CAN J ZOOL, V61, P1968, DOI 10.1139/z83-259; Djawdan M, 1996, PHYSIOL ZOOL, V69, P1176, DOI 10.1086/physzool.69.5.30164252; Gnaiger E., 1983, POLAROGRAPHIC OXYGEN, P337, DOI DOI 10.1007/978-3-642-81863-9_30; Guo XM, 1996, AQUACULTURE, V142, P149, DOI 10.1016/0044-8486(95)01243-5; GUO XM, 1994, BIOL BULL-US, V187, P309, DOI 10.2307/1542288; GUO XM, 1994, GENETICS, V138, P1199; HAWKINS AJS, 1994, J EXP MAR BIOL ECOL, V184, P21, DOI 10.1016/0022-0981(94)90164-3; HIRSHFIELD MF, 1980, ECOLOGY, V61, P282, DOI 10.2307/1935187; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HORSTMANN HJ, 1958, Z VERGL PHYSIOL, V41, P390, DOI 10.1007/BF00344262; HUNTER JR, 1981, FISH B-NOAA, V79, P215; JONSSON KI, 1994, TRENDS ECOL EVOL, V9, P304, DOI 10.1016/0169-5347(94)90042-6; Kesarcodi-Watson A, 2001, AQUACULTURE, V203, P177, DOI 10.1016/S0044-8486(01)00622-6; Kiyomoto M, 1996, ZOOL SCI, V13, P393, DOI 10.2108/zsj.13.393; Kooijman SALM, 1993, DYNAMIC ENERGY BUDGE; LAING I, 1994, J EXP MAR BIOL ECOL, V184, P159, DOI 10.1016/0022-0981(94)90002-7; Madsen T, 2000, AUSTRAL ECOL, V25, P670, DOI 10.1046/j.1442-9993.2000.01067.x; MASON KM, 1988, MAR BIOL, V98, P519, DOI 10.1007/BF00391543; Nell J.A., 1996, AQUAC RES, V27, P101; NELL JA, 1994, AQUACULTURE, V126, P243, DOI 10.1016/0044-8486(94)90040-X; Neuhaus P, 2000, BEHAV ECOL SOCIOBIOL, V48, P75, DOI 10.1007/s002650000209; PARRY GD, 1983, J THEOR BIOL, V101, P453, DOI 10.1016/0022-5193(83)90150-9; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; Ruiz-Verdugo CA, 2001, AQUACULTURE, V201, P19, DOI 10.1016/S0044-8486(01)00567-1; Ruiz-Verdugo CA, 2000, AQUACULTURE, V186, P13, DOI 10.1016/S0044-8486(99)00369-5; Ruusila V, 2000, J ZOOL, V252, P79, DOI 10.1111/j.1469-7998.2000.tb00822.x; Simmons FH, 1997, J INSECT PHYSIOL, V43, P779, DOI 10.1016/S0022-1910(97)00037-1; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stoeckmann AM, 1997, CAN J FISH AQUAT SCI, V54, P2743, DOI 10.1139/cjfas-54-12-2743; Thompson Raymond J., 1996, P335; THOMPSON RJ, 1984, MAR ECOL PROG SER, V16, P249, DOI 10.3354/meps016249; TINKLE DW, 1975, ECOLOGY, V56, P427, DOI 10.2307/1934973; VAHL, 1978, OPHELIA, V17, P143; Vahl O., 1985, P281; Wang ZP, 2002, AQUACULTURE, V204, P337, DOI 10.1016/S0044-8486(01)00845-6; WOOTTON RJ, 1976, J FISH BIOL, V8, P385, DOI 10.1111/j.1095-8649.1976.tb03967.x; WOOTTON RJ, 1979, S ZOOL SOC LOND, V44, P133 50 23 23 1 7 SPRINGER-VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 USA 0029-8549 OECOLOGIA Oecologia APR 2003 135 2 176 183 10.1007/s00442-002-1172-5 8 Ecology Environmental Sciences & Ecology 676LQ WOS:000182753900002 12698338 2018-11-12 J Leslie, PW; Little, MA Leslie, PW; Little, MA Human biology and ecology: Variation in nature and the nature of variation AMERICAN ANTHROPOLOGIST English Article; Proceedings Paper Annual Meeting of the American-Anthropological-Association 2001 WASHINGTON, D.C. Amer Anthropol Assoc biological anthropology; human ecology; adaptation; environmental physiology; reproductive ecology HUMAN OVARIAN-FUNCTION; REPRODUCTIVE ENDOCRINOLOGY; TESTOSTERONE LEVELS; WEIGHT-LOSS; WOMEN; FERTILITY; MALES; ANTHROPOLOGY; DEMOGRAPHERS; SEASONALITY Human biology seeks to understand human variation and the biological, environmental, social, and historical influences on that variation. Views of the nature of both variation and environment have changed during the past 100 years. Typological approaches to nature and human diversity shifted to an evolutionary perspective during the first half of the 20th century. In the second half, widespread human biological variation was documented and interpreted in terms of adaptation to the environment. Environmental physiology and reproductive ecology continue to document environmental influences on human biological functioning, but with (1) an expanded concept of environment that acknowledges more fully the interactions among its physical, biotic, and social aspects and (2) an expanded theoretical basis, drawing on evolutionary ecology and life history theory, acknowledging tradeoffs and changing constraints and opportunities over the lifetime. Human biology gains from greater interaction with other fields, such as political ecology, but also contributes to them. Univ N Carolina, Chapel Hill, NC 27599 USA; SUNY Binghamton, Binghamton, NY 13902 USA Leslie, PW (reprint author), Univ N Carolina, Chapel Hill, NC 27599 USA. ADOLPH EF, 1947, PHYSL MAN DESERT; BAILEY RC, 1992, J BIOSOC SCI, V24, P393; BAKER PAUL T., 1960, HUMAN BIOL, V32, P3; BAKER PT, 1966, EUGEN QUART, V13, P81, DOI 10.1080/19485565.1966.9987651; BAKER PT, 1969, SCIENCE, V163, P1149, DOI 10.1126/science.163.3872.1149; BAKER PT, 1972, ANNU REV ANTHROPOL, V1, P151, DOI 10.1146/annurev.an.01.100172.001055; BAKER PT, 1958, AM NAT, V42, P337; BAKER PT, 1976, MAN ANDES MULTIDISCI; BAKER PT, 1975, PHYSL ANTHR, P3; BEALL CM, 1983, SEMIN RESPIR MED, V5, P195, DOI 10.1055/s-2007-1011452; BEALL CM, 1992, ANN HUM BIOL, V19, P67, DOI 10.1080/03014469200001932; Beall CM, 2000, HUM BIOL, V72, P201; Bentley GR, 1998, EUR J CLIN NUTR, V52, P261, DOI 10.1038/sj.ejcn.1600547; BENTLEY GR, 1996, VARIABILITY HUMAN FE, P46; BENTLEY GR, 2001, REPROD ECOLOGY HUMAN, P203; BIRDSELL JB, 1953, AM NAT, V87, P171, DOI 10.1086/281776; Bogin Barry, 1997, American Journal of Physical Anthropology, V102, P17, DOI 10.1002/(SICI)1096-8644(199701)102:1<17::AID-AJPA3>3.0.CO;2-A; BONGAARTS J, 1978, POPUL DEV REV, V4, P105, DOI 10.2307/1972149; Bribiescas RG, 1996, HUM NATURE-INT BIOS, V7, P163, DOI 10.1007/BF02692109; BRIBIESCAS RG, 2001, YB PHYSICAL ANTHR, V116, P148; BROCKMAN DK, 1995, AM J PRIMATOL, V36, P313, DOI 10.1002/ajp.1350360406; CAMPBELL, 1995, 64 ANN M POP ASS AM; Campbell BC, 1995, YEARB PHYS ANTHROPOL, V38, P1; CAMPBELL BC, 2001, REPROD ECOLOGY HUMAN, P159; Campbell K. L, 1994, HUMAN REPROD ECOLOGY; CAMPBELL KL, 1988, NATURAL HUMAN FERTIL, P39; CAMPBELL KL, 1994, HUMAN REPROD ECOLOGY, P1; CAMPBELL KL, 1994, HUMAN REPROD ECOLOGY; Coon C. S., 1950, RACES STUDY PROBLEMS; DAVIS K, 1956, ECON DEV CULT CHANGE, V4, P211, DOI 10.1086/449714; DELVOYE P, 1977, J BIOSOC SCI, V9, P447; Dill David B., 1964, HDB PHYSL 4; Dufour DL, 1997, AM J PHYS ANTHROPOL, V102, P5, DOI 10.1002/(SICI)1096-8644(199701)102:1<5::AID-AJPA2>3.0.CO;2-0; DUNBAR RIM, 1995, HUMAN REPROD DECISIO; ELLISON PT, 1988, YEARB PHYS ANTHROPOL, V31, P115; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; ELLISON PT, 1993, HUM REPROD, V8, P2248, DOI 10.1093/oxfordjournals.humrep.a138015; Ellison PT, 1996, HUM BIOL, V68, P955; Ellison PT, 2001, REPROD ECOLOGY HUMAN; FRISCH RE, 1974, SCIENCE, V185, P949, DOI 10.1126/science.185.4155.949; FRISCH RE, 1970, SCIENCE, V169, P397, DOI 10.1126/science.169.3943.397; FRISCH RE, 1984, BIOL REV, V59, P161, DOI 10.1111/j.1469-185X.1984.tb00406.x; GAGE TB, 1985, CURR ANTHROPOL, V26, P644, DOI 10.1086/203353; GAGE TB, 1989, YEARB PHYS ANTHROPOL, V32, P185; GOODMAN A, 1998, BUILDING NEW BIOCULT; HAIG D, 1993, Q REV BIOL, V68, P335; Hanna JM, 1976, MAN ANDES MULTIDISCI, P315; HENRY L, 1961, EUGEN QUART, V8, P81, DOI 10.1080/19485565.1961.9987465; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; HOBCRAFT JN, 1994, ANN NY ACAD SCI, V709, P408, DOI 10.1111/j.1749-6632.1994.tb30426.x; JOHNSON PL, 1987, HUM BIOL, V59, P837; KEYS A, 1950, BIOL HUMAN STARVATIO; KNOTT CD, 1999, THESIS HARVARD U; KONNER M, 1980, SCIENCE, V207, P788, DOI 10.1126/science.7352291; LAGER C, 1990, AM J HUM BIOL, V2, P303, DOI 10.1002/ajhb.1310020312; Leatherman TL, 1997, AM J PHYS ANTHROPOL, V102, P1; Leslie P, 2002, AM J HUM BIOL, V14, P168, DOI 10.1002/ajhb.10044; Leslie P, 1989, HUMAN POPULATION BIO, P15; Leslie PW, 1996, HUM BIOL, V68, P95; Little M. A., 1981, Mountain Research and Development, V1, P145, DOI 10.2307/3673120; Little M. A., 1978, BIOL HIGH ALTITUDE P, P251; LITTLE MA, 1977, INT J BIOMETEOROL, V21, P123, DOI 10.1007/BF01553706; Little MA, 1976, MAN ANDES MULTIDISCI, P332; LITTLE MA, 1999, TURKANA HERDES DRY S; MILAN FA, 1967, J APPL PHYSIOL, V22, P565; MOORE LG, 1990, AM J HUM BIOL, V2, P627, DOI 10.1002/ajhb.1310020606; Newburgh L.H, 1949, PHYSL HEAT REGULATIO; Newman MT, 1953, AM ANTHROPOL, V55, P311, DOI 10.1525/aa.1953.55.3.02a00020; OJIKUTU RO, 1972, HUMAN BIOLOGY ENVIRO, P132; PANTERBRICK C, 1993, HUM REPROD, V8, P684, DOI 10.1093/oxfordjournals.humrep.a138120; PEARL R, 1939, NATURAL HIST POPULAT; PIRKE KM, 1985, J CLIN ENDOCR METAB, V60, P1174, DOI 10.1210/jcem-60-6-1174; ROBERTS D. F., 1956, HUMAN BIOL, V28, P323; Roberts D. F., 1960, HUMAN GROWTH, P59; Schell LM, 1997, AM J PHYS ANTHROPOL, V102, P67; SCHELL LM, 1999, HUMAN GROWTH CONTEXT, P221; SHORT RV, 1983, ADV INT MATERNAL CHI, V3, P26; SPENCER F, 1997, HIST PHYSICAL ANTHR, P1; Spuhler James N., 1959, STUDY POPULATION, P728; Steegmann A. T., 1975, PHYSL ANTHR, P130; Strier KB, 1997, AM J PRIMATOL, V42, P299, DOI 10.1002/(SICI)1098-2345(1997)42:4<299::AID-AJP5>3.0.CO;2-S; SWEDLUND AC, 1978, ANNU REV ANTHROPOL, V7, P137, DOI 10.1146/annurev.an.07.100178.001033; SWEDLUND AC, 1975, AM ANTIQUITY 2, V40; THOMAS RB, 1989, HUMAN POPULATION BIO, P296; THOMAS RB, 1979, YEARB PHYS ANTHROPOL, V22, P1; Vitzthum VJ, 2002, HUM REPROD, V17, P1906, DOI 10.1093/humrep/17.7.1906; VITZTHUM VJ, 2001, REPROD ECOLOGY HUMAN, P179; VITZTHUM VJ, 1997, EVOLVING FEMALE LIFE, P242; WARREN KB, 1950, COLD SPRING HARB S Q, V15; WASHBURN SL, 1951, T NEW YORK ACAD SCI, V13, P298, DOI 10.1111/j.2164-0947.1951.tb01033.x; WEISS KM, 1989, J QUANT ANTHR, V1, P79; Winterhalder B, 2002, EVOL HUM BEHAV, V23, P59, DOI 10.1016/S1090-5138(01)00089-7; WOOD JW, 1994, ANN NY ACAD SCI, V709, P101, DOI 10.1111/j.1749-6632.1994.tb30391.x; WOOD JW, 1988, POP STUD-J DEMOG, V42, P85, DOI 10.1080/0032472031000143136; WOOD JW, 1994, DYNAMICS HUMAN REPRO; Worthman CM, 1997, AM J PHYS ANTHROPOL, V104, P1; WULSIN FR, 1948, 139 DEP ARM OFF QUAR 97 13 13 0 10 AMER ANTHROPOLOGICAL ASSOC ARLINGTON 4350 NORTH FAIRFAX DRIVE SUITE 640, ARLINGTON, VA 22203 USA 0002-7294 AM ANTHROPOL Am. Anthropol. MAR 2003 105 1 28 37 10.1525/aa.2003.105.1.28 10 Anthropology Anthropology 653LC WOS:000181435800003 2018-11-12 J Sendor, T; Simon, M Sendor, T; Simon, M Population dynamics of the pipistrelle bat: effects of sex, age and winter weather on seasonal survival JOURNAL OF ANIMAL ECOLOGY English Article capture-recapture; Chiroptera; hibernacula; life-history strategy; population dynamics GREATER HORSESHOE BATS; CAPTURE-RECAPTURE; MATING SYSTEMS; MARKED ANIMALS; RATES; HIBERNATION; MAMMALS; BIRDS; LIFE; TEMPERATURES 1. Life-history theory assumes increased mortality at certain stages such as hibernation. However, seasonal variation of survival rates of hibernating mammals has rarely been estimated. In this study, apparent survival of pipistrelle bats (Pipistrellus pipistrellus) hibernating and performing summer swarming at a large hibernaculum (Marburg Castle, Hesse, Germany), was modelled using seasonal (summer/winter) capture-recapture data for the years 1996-2000. The spring survival interval includes the period of arousal at the end of hibernation and therefore validly measures survival associated with hibernation. 2. In five summers and four winters, 15 839 bats were captured and released (13 082 individuals) and 3403 recaptures recorded. Analysis was complicated by transience and trap-dependence. Recapture rates varied seasonally and by group. The autumnal survival estimates were negatively biased due to transience effects that could not be taken into account. 3. Survival could be modelled using two age-classes, with reduced first-year juvenile survival. The age effect persisted over the first autumn and spring. There was virtually no evidence for sex-specific survival rates; male and female survival were found to be almost equal. In the best-fitting models, survival rates varied over time and differed among sexes and age-classes by a constant amount. Between years, there was only a small variation in spring survival, which could not be explained by winter severity. 4. Adult spring survival was surprisingly high, averaging 0.892 ((SE) over cap = 0.028). No evidence for increased mortality during hibernation could be found. This contradicted the expectation of reduced over-winter survival due to depleted fat reserves at the end of hibernation. Thus, hibernation does apparently not entail a survival cost for the pipistrelle bat. Rough estimates of annual adult survival averaged 0.799 ((SE) over cap = 0.051), which considerably exceeds previous estimates; annual juvenile survival was estimated at 0.527 ((SE) over cap = 0.095). Hence, previous studies have substantially underestimated pipistrelle bat survival. Possible consequences of these findings for various aspects of life histories are discussed. Univ Marburg, Dept Anim Ecol, Fac Biol, D-35032 Marburg, Germany Sendor, T (reprint author), Schaumburgstr 20 B, D-30419 Hannover, Germany. Altringham J. D., 1996, BATS BIOL BEHAV; Anderson DR, 1999, BIRD STUDY, V46, P14; Anderson DR, 1999, BIRD STUDY, V46, P261; ANDERSON DR, 1985, J ANIM ECOL, V54, P89, DOI 10.2307/4622; ARMITAGE KB, 1974, ECOLOGY, V55, P1233, DOI 10.2307/1935452; ARNOLD W, 1990, BEHAV ECOL SOCIOBIOL, V27, P239; Barratt EM, 1997, NATURE, V387, P138, DOI 10.1038/387138b0; BOYD IL, 1989, J APPL ECOL, V26, P101, DOI 10.2307/2403654; Burnham K. P., 1998, MODEL SELECTION INFE; Burnham K. P., 1987, DESIGN ANAL METHODS; BURNHAM KP, 1992, WILDLIFE 2001 : POPULATIONS, P16; CLUTTONBROCK TH, 1989, PROC R SOC SER B-BIO, V236, P339, DOI 10.1098/rspb.1989.0027; Davis W. H., 1965, Journal of Mammalogy, V46, P296, DOI 10.2307/1377850; DAVIS WH, 1966, J MAMMAL, V47, P383, DOI 10.2307/1377679; DUMITRESCO MARGARETA, 1963, ANN SPELEOL, V18, P511; FENTON MB, 1969, CAN J ZOOLOG, V47, P597, DOI 10.1139/z69-103; Fleming T.H., 1979, P1; GAISLER J, 1987, EUROPEAN BAT RES, P117; Gauthier G, 2001, ECOLOGY, V82, P3105, DOI 10.2307/2679838; GEISER F, 1995, PHYSIOL ZOOL, V68, P935, DOI 10.1086/physzool.68.6.30163788; GERELL R, 1985, BEHAV ECOL SOCIOBIOL, V16, P177, DOI 10.1007/BF00295153; GERELL R, 1990, OECOLOGIA, V83, P401, DOI 10.1007/BF00317567; GREENWOOD PJ, 1980, ANIM BEHAV, V28, P1140, DOI 10.1016/S0003-3472(80)80103-5; Guttinger R., 2001, HDB SAUGETIERE EUROP, V4, P123; HESTBECK JB, 1989, J WILDLIFE MANAGE, V53, P91, DOI 10.2307/3801312; HITCHCOCK HB, 1984, J MAMMAL, V65, P126, DOI 10.2307/1381210; Hoyle SD, 2001, AUSTRAL ECOL, V26, P80, DOI 10.1111/j.1442-9993.2001.01092.pp.x; Humphries MM, 2002, NATURE, V418, P313, DOI 10.1038/nature00828; Johnson SA, 1998, AM MIDL NAT, V139, P255, DOI 10.1674/0003-0031(1998)139[0255:OWLOIB]2.0.CO;2; JONES G, 1993, P ROY SOC B-BIOL SCI, V251, P119, DOI 10.1098/rspb.1993.0017; Jones Gareth, 1999, Bulletin of Zoological Nomenclature, V56, P182; Keen R., 1988, P157; KEEN R, 1980, J MAMMAL, V61, P1, DOI 10.2307/1379951; Lebreton JD, 1995, J APPL STAT, V22, P1009, DOI 10.1080/02664769524766; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LOERY G, 1987, ECOLOGY, V68, P1038, DOI 10.2307/1938375; Lustrat P., 1997, Myotis, V35, P109; NAGEL A, 1991, COMP BIOCHEM PHYS A, V99, P323, DOI 10.1016/0300-9629(91)90008-Z; NORTH PM, 1979, BIOMETRICS, V35, P667, DOI 10.2307/2530260; Park KJ, 2000, FUNCT ECOL, V14, P580, DOI 10.1046/j.1365-2435.2000.t01-1-00460.x; Park KJ, 1996, P ROY SOC B-BIOL SCI, V263, P1495, DOI 10.1098/rspb.1996.0218; POLLOCK KH, 1990, WILDLIFE MONOGR, P1; Pradel R, 1997, BIOMETRICS, V53, P60, DOI 10.2307/2533097; Pradel R., 1993, P29; Prevot-Julliard AC, 1998, AUK, V115, P85; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Racey P.A., 1988, P31; RACEY PA, 1974, J ZOOL, V173, P264, DOI 10.1111/j.1469-7998.1974.tb03136.x; Ransome RD, 1995, PHILOS T ROY SOC B, V350, P153, DOI 10.1098/rstb.1995.0149; Schaub M, 2001, J ZOOL, V255, P89, DOI 10.1017/S0952836901001133; Sendor Thomas, 2000, Myotis, V38, P91; SMITH D R, 1987, Acta Ornithologica (Warsaw), V23, P69; SPEAKMAN JR, 1991, MAMMAL REV, V21, P123, DOI 10.1111/j.1365-2907.1991.tb00114.x; SPEAKMAN JR, 1989, J ANIM ECOL, V58, P797, DOI 10.2307/5125; SPEAKMAN JR, 1991, J ZOOL, V225, P327, DOI 10.1111/j.1469-7998.1991.tb03820.x; Speakman JR, 1999, P NUTR SOC, V58, P123, DOI 10.1079/PNS19990017; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEVENSON DE, 1981, J MAMMAL, V62, P244, DOI 10.2307/1380702; Swaddle JP, 1998, J AVIAN BIOL, V29, P172, DOI 10.2307/3677195; THOMAS DW, 1990, J MAMMAL, V71, P475, DOI 10.2307/1381967; THOMPSON MJA, 1987, J ZOOL, V211, P209, DOI 10.1111/j.1469-7998.1987.tb01529.x; Tuttle M.D., 1982, P105; Viallefont A, 1995, AUK, V112, P67, DOI 10.2307/4088767; von Helversen O., 1987, Mitteilungen des Badischen Landesvereins fuer Naturkunde und Naturschutz e.V. Freiburg im Breisgau, V14, P409; WEBB PI, 1992, J ZOOL, V228, P669, DOI 10.1111/j.1469-7998.1992.tb04465.x; Webb PI, 1996, CAN J ZOOL, V74, P761, DOI 10.1139/z96-087; White GC, 1999, BIRD STUDY, V46, P120 68 68 70 2 56 BLACKWELL PUBLISHING LTD OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DG, OXON, ENGLAND 0021-8790 J ANIM ECOL J. Anim. Ecol. MAR 2003 72 2 308 320 10.1046/j.1365-2656.2003.00702.x 13 Ecology; Zoology Environmental Sciences & Ecology; Zoology 662UJ WOS:000181967000011 Bronze 2018-11-12 J Rochette, R; Dunmall, K; Dill, LM Rochette, R; Dunmall, K; Dill, LM The effect of life-history variation on the population size structure of a rocky intertidal snail (Littorina sitkana) JOURNAL OF SEA RESEARCH English Article intertidal ecology; life-history theory; predation pressure; population demography; Littorina sitkana; Bamfield, British Columbia; Northeastern Pacific GUPPIES POECILIA-RETICULATA; 2 SYMPATRIC MORPHS; SAXATILIS OLIVI; MARINE SNAIL; GROWTH-RATE; GENE FLOW; PREDATION; SELECTION; EVOLUTION; SHORE On wave-sheltered shores of the northeastern Pacific, the population size structure of Littorina sitkana varies with intertidal height, as larger snails are mostly found only in the upper intertidal. This pattern has been attributed to high predation rates by crabs (and perhaps fish) on large snails inhabiting low-intertidal areas; i.e., large snails are presumed to be rare there simply because predators kill them. In this study we investigate the hypothesis that predation contributes to the shore-level size gradient displayed by L. sitkana by selecting for (or inducing) earlier sexual maturation and reduced somatic growth in low-shore snails relative to high-shore individuals. In the first part of our study, we carried out laboratory dissections, field experiments (mark-release-recapture and caging), and field surveys on a wave-protected shore in Bamfield Inlet, Barkley Sound (British Columbia, Canada). The principal results were: (1) adult survivorship was greater at higher, than at lower, intertidal level, (2) snails displayed a preference for their shore level of origin, (3) immature adults from the high intertidal displayed greater rates of somatic growth relative to immature adults from the low intertidal, and (4) low-shore snails matured at a smaller size than high-shore individuals. In the second part of the study, a large-scale survey showed intra-specific variation in size at sexual maturity (point 4 above) to be relatively consistent over time (winter of 1999 and 2001 for snails from our main study site) and space (13 different sites in winter 2001), although the magnitude of these differences varied greatly from shore to shore. Our results indicate that L. sitkana individuals inhabiting upper and lower parts of their intertidal range allocate resources differently to somatic and gonadal growth, an intra-specific difference that is best interpreted as a response to spatial and size-dependent variation in predation pressure. Taken together, results of this and other recent studies indicate that phenotypic responses to contrasting selection pressures operating in upper- and lower-intertidal areas contribute to the intertidal size gradient of L. sitkana. We believe that greater consideration of evolutionary processes in ecological studies will lead to a more complete understanding of the mechanisms responsible for structuring marine coastal communities. (C) 2002 Elsevier Science B.V. All rights reserved. Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada; Bamfield Marine Sci Ctr, Bamfield, BC V0R 1B0, Canada; Univ Waterloo, Dept Biol, Waterloo, ON N2L 3G1, Canada; Simon Fraser Univ, Dept Biol Sci, Behav Ecol Res Grp, Burnaby, BC V5A 1S6, Canada Rochette, R (reprint author), Univ New Brunswick, Dept Biol, POB 5050, St John, NB E2L 4L5, Canada. rochette@unbsj.ca Agresti A, 1996, INTRO CATEGORICAL DA; Boulding EG, 1999, J EXP MAR BIOL ECOL, V232, P217, DOI 10.1016/S0022-0981(98)00117-8; BUCKLANDNICKS J, 1973, CAN J ZOOL, V51, P359, DOI 10.1139/z73-050; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; De Wolf H, 1998, MAR ECOL PROG SER, V163, P155, DOI 10.3354/meps163155; Erlandsson J, 1998, HYDROBIOLOGIA, V378, P59, DOI 10.1023/A:1003277202763; Glazier DS, 1999, ARCH HYDROBIOL, V146, P257; HENDRIX LJ, 1982, BIOMETRICS, V38, P641, DOI 10.2307/2530045; Hosmer D. W., 2000, APPL LOGISTIC REGRES; HUGHES RN, 1982, J MOLLUS STUD, V48, P321, DOI 10.1093/oxfordjournals.mollus.a065654; Hull SL, 1998, HYDROBIOLOGIA, V378, P79, DOI 10.1023/A:1003237521419; HUXHAM M, 1993, J EXP MAR BIOL ECOL, V168, P223, DOI 10.1016/0022-0981(93)90262-M; JANSON K, 1982, MAR BIOL, V69, P73, DOI 10.1007/BF00396963; Johannesson K, 1997, BIOL J LINN SOC, V61, P267; JOHANNESSON K, 1993, EVOLUTION, V47, P1770, DOI 10.1111/j.1558-5646.1993.tb01268.x; Johannesson K, 1995, EVOLUTION, V49, P1180, DOI 10.1111/j.1558-5646.1995.tb04445.x; KIRK RE, 1982, EXPT DESIGN PROCEDUR; LAFFERTY KD, 1993, OIKOS, V68, P3, DOI 10.2307/3545303; MCCORMACK SMD, 1982, OECOLOGIA, V54, P117; MCMAHON RF, 1990, HYDROBIOLOGIA, V193, P241, DOI 10.1007/BF00028081; McPeek MA, 1998, ECOLOGY, V79, P867, DOI 10.2307/176586; McPeek MA, 1996, ECOLOGY, V77, P1319, DOI 10.2307/2265528; McQuaid CD, 1996, OCEANOGR MAR BIOL, V34, P233; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Reid D.G, 1996, SYSTEMATICS EVOLUTIO; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Riessen HP, 1999, CAN J FISH AQUAT SCI, V56, P2487, DOI 10.1139/cjfas-56-12-2487; ROBLES C, 1989, J NAT HIST, V23, P1041, DOI 10.1080/00222938900770951; Rochette R, 2000, J EXP MAR BIOL ECOL, V253, P165, DOI 10.1016/S0022-0981(00)00253-7; Rodd FH, 1997, ECOLOGY, V78, P405; RolanAlvarez E, 1996, OPHELIA, V45, P1; SACCHI C F, 1987, Atti della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, V128, P209; Sparkes TC, 1996, OECOLOGIA, V106, P85, DOI 10.1007/BF00334410; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Underwood A, 1997, EXPT ECOLOGY THEIR L; VERMEIJ GJ, 1972, ECOLOGY, V53, P693, DOI 10.2307/1934785; VONDERBRINK RH, 1993, OECOLOGIA, V95, P70, DOI 10.1007/BF00649509; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; YAMADA SB, 1989, MAR BIOL, V103, P403, DOI 10.1007/BF00397275; Yamada SB, 1996, J EXP MAR BIOL ECOL, V204, P59, DOI 10.1016/0022-0981(96)02579-8; Yamada SB, 1998, J EXP MAR BIOL ECOL, V220, P213 44 15 15 0 27 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1385-1101 1873-1414 J SEA RES J. Sea Res. MAR 2003 49 2 119 132 10.1016/S1385-1101(02)00217-4 14 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography 652YT WOS:000181409000004 2018-11-12 J McBride, RS; Thurman, PE McBride, RS; Thurman, PE Reproductive biology of Hemiramphus brasiliensis and H-balao (Hemiramphidae): Maturation, spawning frequency, and fecundity BIOLOGICAL BULLETIN English Article CONNECTIVITY; POPULATIONS; VIVIPARITY; FISHES Analyses of life-history data show that both the size-specific batch fecundities and the age-specific spawning frequencies differ for two halfbeak species, Hemiramphus brasiliensis, the ballyhoo, and H. balao, the balao. Halfbeak ages were determined from sectioned otoliths; histological data was used to describe oocyte development and estimate spawning frequency; and batch fecundity was measured from counts of whole oocytes in final maturation. Hemiramphus brasiliensis lived longer (4 versus 2 years) and had a higher survival rate (14.9% versus 7.5% annually) than H. balao did. Of the two species the larger and longer-lived congener, H. brasiliensis, reached sexual maturity at a larger size (fork length 198 versus 160 mm). The spawning period of age-0 females was strongly related to season, whereas spawning by older females occurred throughout the year. Reproduction by both species peaked during late spring or early summer, and all mature females were spawning daily during April (H. brasiliensis) or June (H. balao). This is the first demonstration of iteroparity for the family Hemiramphidae. H. brasiliensis had a lower batch fecundity (about 1164 versus 3743 hydrated oocytes for a 100-g female) than H. balao did. Such low batch fecundities are typical of the order Beloniformes, but quite different from those of other fishes that live in association with coral reef habitats. H. balao's higher batch fecundity is consistent with the life-history theory that predicts higher numbers of eggs for shorter-lived species; this is possible because H. balao produces smaller hydrated oocytes than H. brasiliensis (modal diameter about 1.6 versus 2.4 mm). The high spawning frequency of Hemiramphus species compensates for their low batch fecundity. The annual fecundity of both species is similar to that of other reef fish species, after adjusting for body size and spawning frequency. The lifetime fecundity of H. balao was very similar to that of H. brasiliensis, after accounting for the differences in survival for each species. This suggests a fine tuning of. different reproductive traits over the entire life cycle that results in roughly equivalent lifetime fecundity for both species. Florida Marine Res Inst, Florida Fish & Wildlife Conservat Commiss, St Petersburg, FL 33701 USA McBride, RS (reprint author), Florida Marine Res Inst, Florida Fish & Wildlife Conservat Commiss, 100 8th Ave SE, St Petersburg, FL 33701 USA. McBride, Richard/C-2818-2012 McBride, Richard/0000-0003-1120-0414 BERKELEY SA, 1978, B MAR SCI, V28, P624; Coates D., 1992, Ichthyological Exploration of Freshwaters, V3, P25; Collette B., 1984, AM SOC ICHTHYOLOGIST, V1, p[335, 1]; COLLETTE BRUCE B., 1965, ATLANTIDE REP SCI RESULTS DANISH EXP COAST TROP WEST AFR, V8, P217; Cowen RK, 2000, SCIENCE, V287, P857, DOI 10.1126/science.287.5454.857; Cuellar N, 1996, FISH B-NOAA, V94, P635; ELGAR MA, 1990, OIKOS, V59, P283, DOI 10.2307/3545546; Grier HJ, 1998, J FISH BIOL, V53, P521, DOI 10.1111/j.1095-8649.1998.tb00999.x; Gross M.R., 1987, AM FISH SOC S, V1, P14; HUNTER JR, 1985, EGG PRODUCTION METHO, P67; HUNTER JR, 1985, EGG PRODUCTION METHO, P79; LING J. K., 1958, AUSTRALIAN JOUR MARINE AND FRESHWATER RES, V9, P60; LOWERREBARBIERI SK, 1994, FISH B-NOAA, V92, P555; McBride RS, 2002, MAR BIOL, V140, P713, DOI 10.1007/s00227-001-0759-4; MCBRIDE RS, 2003, IN PRESS FISH B US, V101; McBRIDE RS., 1996, MAR FISH REV, V58, P29; Meisner AD, 1997, J MORPHOL, V234, P295, DOI 10.1002/(SICI)1097-4687(199712)234:3<295::AID-JMOR7>3.0.CO;2-8; Murphy MD, 1997, FISH B-NOAA, V95, P863; Nybakken JW, 1997, MARINE BIOL ECOLOGIC; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; QUINTEROHUNTER I, 1991, BIOTECH HISTOCHEM, V66, P169, DOI 10.3109/10520299109109964; RASS TS, 1972, T I OCEANOL, V93, P5; Roberts CM, 1997, SCIENCE, V278, P1454, DOI 10.1126/science.278.5342.1454; ROBSON D. S., 1961, TRANS AMER FISH SOC, V90, P181, DOI 10.1577/1548-8659(1961)90[181:CCAMR]2.0.CO;2; *SAS I INC, 1990, SAS STAT US GUID, V1; *SAS I INC, 1990, SAS STAT US GUID, V2; Silva E.I.L., 1988, Tropical Freshwater Biology, V1, P42; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Talwar P. K., 1968, Journal of the Marine Biological Association of India, V9, P61; TALWAR PK, 1962, INDIAN J FISH-SECT A, V9, P168; Thresher R. E., 1984, REPROD REEF FISHES, P343; WALLACE RA, 1978, DEV BIOL, V62, P354, DOI 10.1016/0012-1606(78)90222-1; WOOTTON RJ, 1994, J FISH BIOL, V45, P1067; WOURMS JP, 1981, AM ZOOL, V21, P473 34 36 38 2 6 MARINE BIOLOGICAL LABORATORY WOODS HOLE 7 MBL ST, WOODS HOLE, MA 02543 USA 0006-3185 BIOL BULL-US Biol. Bull. FEB 2003 204 1 57 67 10.2307/1543496 11 Biology; Marine & Freshwater Biology Life Sciences & Biomedicine - Other Topics; Marine & Freshwater Biology 647NJ WOS:000181099300007 12588745 2018-11-12 J Doody, JS; Georges, A; Young, JE Doody, JS; Georges, A; Young, JE Twice every second year: reproduction in the pig-nosed turtle, Carettochelys insculpta, in the wet-dry tropics of Australia JOURNAL OF ZOOLOGY English Article reproductive frequency; clutch size; egg size; wet-dry tropics; biennial reproduction; Carettochelys insculpta RELATIVE CLUTCH MASS; EGG-SIZE; OFFSPRING SIZE; CHELONIA-MYDAS; LIFE-HISTORY; PHENOTYPIC PLASTICITY; SCELOPORUS-VIRGATUS; NORTHERN AUSTRALIA; SEASONAL-VARIATION; VIVIPAROUS SNAKE The reproductive biology of female pig-nosed turtles Carettochelys insculpta was studied for 4 years in the wet-dry tropics of northern Australia. Females matured at around 6 kg body mass (38.0 cm curved carapace length, 30.5 cm plastron length). Turtles produced egg sizes and clutch sizes similar to that of other turtle species similar in size. Turtles reproduced every second year, but produced two clutches within years, about 41 days apart. Thus, it appeared that females were energy limited, possibly due to the low available energy content of the dry season diet (aquatic vegetation). Life-history theory predicts that some costly behaviour associated with reproduction exists, such that by skipping years turtles could reduce that cost and put the savings into future reproduction. Previous work revealed no behaviour associated with reproduction in the population. Within years, clutch mass did not differ between early (first) and late (second) clutches. However, early clutches tended to have more eggs per clutch but smaller eggs than late clutches, a new finding for turtles that has been demonstrated in lizards and other animals. Because the study spanned both years with 'big' and 'small' wet seasons, we were able to examine how the magnitude of the wet season influenced reproductive characteristics. Following big wet seasons, turtles produced larger, heavier, and more eggs per clutch than they did after small wet seasons. Relationships among body size, egg size and clutch size were evident after two big wet seasons but not apparent after two small wet seasons. Collectively, annual variation in reproductive characteristics and current life-history theory suggest that a big wet season is a time of high energy accumulation for the turtles. Univ Canberra, Appl Ecol Res Grp, Canberra, ACT 2601, Australia; Univ Canberra, Cooperat Res Ctr Freshwater Ecol, Canberra, ACT 2601, Australia Doody, JS (reprint author), Univ Canberra, Appl Ecol Res Grp, Canberra, ACT 2601, Australia. Georges, Arthur/D-2153-2009 Georges, Arthur/0000-0003-2428-0361 Abell AJ, 1999, J HERPETOL, V33, P173, DOI 10.2307/1565712; BALLINGER RE, 1977, ECOLOGY, V58, P628, DOI 10.2307/1939012; Bernardo J, 1996, AM ZOOL, V36, P216; Bjorndal K.A., 1982, BIOL CONSERVATION SE, P111; BJORNDAL KA, 1985, COPEIA, P736, DOI 10.2307/1444767; Bonnet X, 2001, OIKOS, V92, P297, DOI 10.1034/j.1600-0706.2001.920212.x; BULL JJ, 1979, AM NAT, V114, P296, DOI 10.1086/283476; BURKE RL, 1983, COPEIA, P854; Christian K, 1999, AUST J ECOL, V24, P171, DOI 10.1046/j.1442-9993.1999.241960.x; CHRISTIAN K, 1994, HERPETOLOGICA, V50, P274; Christian KA, 1999, AUST J ZOOL, V47, P133, DOI 10.1071/ZO98061; CHRISTIAN KA, 1995, OECOLOGIA, V103, P349, DOI 10.1007/BF00328624; Clark PJ, 2001, FUNCT ECOL, V15, P70, DOI 10.1046/j.1365-2435.2001.00494.x; CONGDON JD, 1989, HERPETOLOGICA, V45, P94; CONGDON JD, 1987, HERPETOLOGICA, V43, P39; CREE A, 1992, J ZOOL, V226, P199, DOI 10.1111/j.1469-7998.1992.tb03834.x; DEMARCO VG, 1989, OECOLOGIA, V80, P525, DOI 10.1007/BF00380077; Doody JS, 2002, COPEIA, P93; Doody JS, 2001, CAN J ZOOL, V79, P1062, DOI 10.1139/cjz-79-6-1062; DRENT RH, 1980, ARDEA, V68, P225; Dunham A. E., 1981, MISC PUBL MUS ZOOL, V158, P1; ELGAR MA, 1989, J ZOOL, V219, P137, DOI 10.1111/j.1469-7998.1989.tb02572.x; FERGUSON GW, 1982, HERPETOLOGICA, V38, P178; FERGUSON GW, 1990, HERPETOLOGICA, V46, P227; FITCH HS, 1981, U KANSAS MUS NAT HIS, V70, P1; FORD NB, 1989, ECOLOGY, V70, P1768, DOI 10.2307/1938110; Forsman A, 1995, COPEIA, P727, DOI 10.2307/1446770; GEORGES A, 1992, AUST J ZOOL, V40, P511, DOI 10.1071/ZO9920511; GEORGES A, 2003, CONSERVATION BIOL FR; GEORGES A, 1993, FAUNA AUSTR, V2, P153; Georges Arthur, 1993, Chelonian Conservation and Biology, V1, P3; GIBBONS JW, 1987, BIOSCIENCE, V37, P262, DOI 10.2307/1310589; Gregory P.T., 1982, Biology of Reptilia, V13, P53; Gregory PT, 1998, AM NAT, V151, P477, DOI 10.1086/286134; Griffiths AD, 1996, OECOLOGIA, V106, P39, DOI 10.1007/BF00334405; HEAPHY JL, 1990, THESIS U NEW S WALES; HENEN BJ, 1997, ECOLOGY, V78, P287; IVERSON JB, 1993, CAN J ZOOL, V71, P2448, DOI 10.1139/z93-341; IVERSON JB, 1991, HERPETOLOGICA, V47, P373; IVERSON JB, 1991, CAN J ZOOL, V69, P385, DOI 10.1139/z91-060; JAMES C, 1985, OECOLOGIA, V67, P464, DOI 10.1007/BF00790016; JAMES CD, 1994, OIKOS, V70, P49, DOI 10.2307/3545698; JOHNSON SA, 1994, J HERPETOL, V30, P407; JUDD FW, 1978, J HERPETOL, V12, P203, DOI 10.2307/1563408; KUCHLING G, 1993, J ZOOL, V229, P405, DOI 10.1111/j.1469-7998.1993.tb02645.x; KUCHLING G, 1993, J HERPETOL, V27, P470, DOI 10.2307/1564841; KUCHLING G, 1999, REPROD BIOL CHELONIA; LANDA K, 1992, EVOLUTION, V46, P1553, DOI 10.1111/j.1558-5646.1992.tb01145.x; Limpus C.J., 1985, P47; LIMPUS CJ, 1988, AUST WILDLIFE RES, V15, P157; Madsen T, 1996, ECOLOGY, V77, P149, DOI 10.2307/2265663; Miller RS, 1997, COLEOPTS BULL, V51, P1; Moll E.O., 1979, P305; MORTIMER JA, 1987, COPEIA, P103, DOI 10.2307/1446043; Nieuwolt-Ducanay PM, 1997, COPEIA, P819; NUSSBAUM RA, 1981, OECOLOGIA, V49, P8, DOI 10.1007/BF00376891; Olsson M, 1997, J EVOLUTION BIOL, V10, P369, DOI 10.1046/j.1420-9101.1997.10030369.x; Olsson M, 1997, AM NAT, V149, P179, DOI 10.1086/285985; Rohr DH, 1997, J ANIM ECOL, V66, P567, DOI 10.2307/5950; Roosenburg WM, 1997, COPEIA, P290, DOI 10.2307/1447749; ROWE JW, 1994, OECOLOGIA, V99, P35, DOI 10.1007/BF00317081; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; SHINE R, 1995, OIKOS, V72, P343, DOI 10.2307/3546119; SHINE R, 1988, EVOLUTION, V42, P17, DOI 10.1111/j.1558-5646.1988.tb04104.x; SHINE R, 1992, EVOLUTION, V46, P828, DOI 10.1111/j.1558-5646.1992.tb02088.x; Shine R, 1997, ECOLOGY, V78, P1078, DOI 10.2307/2265859; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH GR, 1995, HERPETOLOGICA, V51, P342; Spencer RJ, 1998, COMP BIOCHEM PHYS A, V121, P341, DOI 10.1016/S1095-6433(98)10132-0; SWINGLAND IR, 1978, J ZOOL, V186, P285; SWINGLAND IR, 1978, J ANIM ECOL, V48, P639; TAYLOR JA, 1985, AUST J ECOL, V10, P281, DOI 10.1111/j.1442-9993.1985.tb00890.x; TRAUTH SE, 1983, AM MIDL NAT, V109, P289, DOI 10.2307/2425409; TUCKER AD, 1994, J HERPETOL, V28, P102, DOI 10.2307/1564689; TUCKER AD, 2000, CUMULUATIVE EFFECTS; Tucker JK, 2000, HERPETOLOGICA, V56, P8; TURNER FB, 1986, HERPETOLOGICA, V42, P93; TURNER FB, 1984, COPEIA, P811; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; VITT LJ, 1978, HERPETOLOGICA, V34, P241; VITT LJ, 1982, CAN J ZOOL, V60, P3113, DOI 10.1139/z82-395; WELSH M, 1999, THESIS U CANBERRA; WOLDA H, 1973, Netherlands Journal of Zoology, V23, P168; WOOD JR, 1980, AM ZOOL, V20, P499 85 23 24 1 12 CAMBRIDGE UNIV PRESS NEW YORK 40 WEST 20TH ST, NEW YORK, NY 10011-4221 USA 0952-8369 J ZOOL J. Zool. FEB 2003 259 2 179 188 10.1017/S0952836902003217 10 Zoology Zoology 673XU WOS:000182606900010 2018-11-12 J Chisholm, JS Chisholm, JS Nurture is natural: Reply to Amin and Thompson and Rushton BEHAVIOR AND PHILOSOPHY English Article reproductive strategies; evolution and development; optimality assumption; Naturalistic Fallacy STRESS; CONTROVERSIES; PERSPECTIVES; DISORDERS; ATROPHY; CULTURE; WOMEN; ABUSE; BRAIN Two reviews of Death, Hope and Sex in Vol. 29 of this journal revealed some limitations in their authors' understanding of basic principles of evolutionary ecology and life history theory. Amin and Thompson's review criticized my model of the contingent development of alternative reproductive strategies as (1) being too strong, (2) being too mentalistic, (3) being too reliant on the flawed optimality assumption, (4) committing the Naturalistic Fallacy, and (5) ignoring group selection arguments. I accept only the latter criticism. Rushton's review criticizes me for not writing a book about genes, intelligence, and "race" and massively misunderstands the optimality assumption and role of individual differences in evolutionary theory. Univ Western Australia, Sch Anat & Human Biol, Crawley, WA 6009, Australia Chisholm, JS (reprint author), Univ Western Australia, Sch Anat & Human Biol, Mail Bag Delivery Point M309,35 Stirling Highway, Crawley, WA 6009, Australia. jchisholm@anhb.uwa.edu.au AMIN T, 2001, BEHAV PHILOS, V29, P73; Boehm Christopher, 2000, HIERARCHY FOREST EVO; Bowlby J., 1969, ATTACHMENT; Carter CS, 1998, PSYCHONEUROENDOCRINO, V23, P779; CHISHOLM J, 2003, MATING MENTALITY EVA; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Coall DA, 2003, SOC SCI MED, V57, P1771, DOI 10.1016/S0277-9536(03)00022-4; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; Gunnar MR, 1998, PREV MED, V27, P208, DOI 10.1006/pmed.1998.0276; Heim C, 2000, JAMA-J AM MED ASSOC, V284, P592, DOI 10.1001/jama.284.5.592; Heim C, 1999, BIOL PSYCHIAT, V46, P1509, DOI 10.1016/S0006-3223(99)00224-3; Hrdy SB, 1999, MOTHER NATURE NATURA; INSEL TR, 2000, REV GEN PSYCHOL, V4, P176, DOI DOI 10.1037/1089-2680.4.2.176); KENDLER KS, 1995, AM J PSYCHIAT, V152, P833; Krieger N, 2003, AM J PUBLIC HEALTH, V93, P194, DOI 10.2105/AJPH.93.2.194; LEE A, 2002, BIPOLAR DISORD, V4, pL117; Parra FC, 2003, P NATL ACAD SCI USA, V100, P177, DOI 10.1073/pnas.0126614100; Plotkin H, 1994, DARWIN MACHINES NATU; Potts R, 1998, EVOL ANTHROPOL, V7, P81, DOI 10.1002/(SICI)1520-6505(1998)7:3<81::AID-EVAN3>3.0.CO;2-A; Potts R., 1996, HUMANITYS DESCENT CO; Rushton JP, 2001, BEHAV PHILOS, V29, P95; Sapolsky R. M., 1999, WELL BEING FDN HEDON, P453; Sapolsky RM, 2000, ARCH GEN PSYCHIAT, V57, P925, DOI 10.1001/archpsyc.57.10.925; Sapolsky RM, 2001, HIPPOCAMPUS, V11, P90, DOI 10.1002/hipo.1026; Sapolsky RM, 2002, BEHAV ENDOCRINOLOGY; Smith EA, 2001, TRENDS ECOL EVOL, V16, P128, DOI 10.1016/S0169-5347(00)02077-2; Sober E., 1998, UNTO OTHERS EVOLUTIO; Tomasello M, 1999, ANNU REV ANTHROPOL, V28, P509, DOI 10.1146/annurev.anthro.28.1.509; Uvnas-Moberg K, 1998, PSYCHONEUROENDOCRINO, V23, P819, DOI 10.1016/S0306-4530(98)00056-0; WILSON DS, 1994, BEHAV BRAIN SCI, V17, P858; Wilson J. Q., 1993, MORAL SENSE; Worthman C., 1999, HORMONES HLTH BEHAV, P47; Worthman CM, 1999, EVOLUTIONARY MEDICI NE, P135 33 0 0 0 1 CAMBRIDGE CENTER BEHAVIORAL STUDIES CONCORD 336 BAKER AVE, CONCORD, MA 01742-2107 USA 1053-8348 BEHAV PHILOS Behav. Philos. 2003 31 127 137 11 Ethics; Psychology, Multidisciplinary Social Sciences - Other Topics; Psychology 816DB WOS:000221089500007 2018-11-12 B Mealey, L Rodgers, JL; Kohler, HP Mealey, L Anorexia: A "dis-ease" of low, low fertility BIODEMOGRAPHY OF HUMAN REPRODUCTION AND FERTILITY English Proceedings Paper 2nd Conference on Biodemography of Fertility AUG, 2000 ROSTOCK, GERMANY Natl Inst Hlth, Off Behav & Social Sci Res, Off Behav & Social Sci Res, Max Planck Inst Demog Res amenorrhea; anorexia; behavior genetics; eating disorders; evolutionary medicine; evolutionary psychiatry; fertility; hormones; personality; pheromones; reproductive suppression; stress LIFE-HISTORY THEORY; TO-HIP RATIO; EATING DISORDERS; SEX-DIFFERENCES; EVOLUTIONARY PERSPECTIVE; BODY-IMAGE; COMPETITION HYPOTHESIS; VOMERONASAL SYSTEM; OVARIAN-FUNCTION; RISK-FACTORS The incidence of anorexia nervosa has increased significantly in the last century, particularly in rich, "Westernized" cultures. Well-documented risk factors include sex, age, social circumstances, and personality. How can a syndrome that reduces fertility-- and sometimes leads to death-- spread so easily? and why is there heritable variance for some of the risk factors? Evolutionary models postulate that anorexia is a set of coordinated responses to stress that, for other mammals and in our own evolutionary past, led to increased survival and reproductive success. According to these models, the "epidemic" of anorexia that we now see is a "modern pathology"-- an adaptation that, due to changes in our environment, has "gone awry" and become maladaptive. Changes in both the nutritional environment and the social environment of Western culture have led to increased triggering of this once-adaptive syndrome, with risk-factors mapping onto social and personality features that would have been relevant in our evolutionary past. In particular, the triggering role of social stressors related to female competition suggests that anorexia may be a symptom of social manipulation, and that the low fertility of anorectics may be the result of an adaptive strategy of more dominant women to decrease the success of their reproductive competitors. Coll St Benedict, Dept Psychol, St Joseph, MN 56374 USA ABBOTT DH, 1993, MARMOSETS TARAINS SY; Abed RT, 1998, BRIT J MED PSYCHOL, V71, P525, DOI 10.1111/j.2044-8341.1998.tb01007.x; Allan S, 1997, BRIT J CLIN PSYCHOL, V36, P467, DOI 10.1111/j.2044-8260.1997.tb01255.x; ALLEN JS, 1988, PERSPECT BIOL MED, V32, P132; Anderson J L, 1992, Hum Nat, V3, P299, DOI 10.1007/BF02734054; ANDERSON JL, 1988, ETHOL SOCIOBIOL, V9, P319, DOI 10.1016/0162-3095(88)90011-8; BAILEY RC, 1992, J BIOSOC SCI, V24, P393; BARINAGA M, 1994, SCIENCE, V264, P1691; BELSKY J, 1993, PSYCHOL BULL, V114, P413, DOI 10.1037/0033-2909.114.3.413; Belsky J, 1997, HUM NATURE-INT BIOS, V8, P361, DOI 10.1007/BF02913039; BELSKY J, 2000, GENETIC INFLUENCES H; Ben Hamida S, 1998, J PERS SOC PSYCHOL, V75, P953, DOI 10.1037//0022-3514.75.4.953; BEUMONT PJV, 1981, PSYCHOL MED, V11, P131, DOI 10.1017/S0033291700053344; Billig JP, 1996, BEHAV GENET, V26, P543, DOI 10.1007/BF02361227; BOWMAN LA, 1978, NATURE, V275, P56, DOI 10.1038/275056a0; BRONSON FH, 2000, REPROD CONTEXT SOCIA; Bulik CM, 2000, INT J EAT DISORDER, V27, P1; BUSS DM, 1991, ANNU REV PSYCHOL, V42, P459, DOI 10.1146/annurev.ps.42.020191.002331; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; CARO TM, 1990, ETHOL SOCIOBIOL, V11, P51, DOI 10.1016/0162-3095(90)90005-Q; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Christensen K, 1998, LANCET, V352, P204, DOI 10.1016/S0140-6736(05)77810-7; Cleveland HH, 2000, CHILD DEV, V71, P733, DOI 10.1111/1467-8624.00182; COHN LD, 1987, J ABNORM PSYCHOL, V96, P276, DOI 10.1037/0021-843X.96.3.276; CONNOLLY J, 2000, PERSPECTIVES HUMAN B, V5, P19; COWLEY JJ, 1991, J STEROID BIOCHEM, V39, P647, DOI 10.1016/0960-0760(91)90264-6; CRAWFORD CH, 1998, HDB EVOLUTIONARY PSY; CRISP AH, 1978, INT J OBESITY, V2, P17; Daly M., 1988, HOMICIDE; Daly M, 1984, INFANTICIDE COMP EVO; DALY M, 1995, COGNITIVE NEUROSCIEN; Dawkins R, 1982, EXTENDED PHENOTYPE; Dawkins R, 1980, SOCIOBIOLOGY NATURE; DiLalla LF, 1996, BEHAV GENET, V26, P535, DOI 10.1007/BF02361226; DOMINEY WJ, 1984, AM ZOOL, V24, P385; DRUKKER B, 1991, ANIM BEHAV, V42, P171, DOI 10.1016/S0003-3472(05)80548-2; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; Fairburn CG, 1999, ARCH GEN PSYCHIAT, V56, P468, DOI 10.1001/archpsyc.56.5.468; Fairburn CG, 1999, INT J EAT DISORDER, V26, P349, DOI 10.1002/(SICI)1098-108X(199912)26:4<349::AID-EAT1>3.0.CO;2-B; FALLON AE, 1985, J ABNORM PSYCHOL, V94, P102, DOI 10.1037/0021-843X.94.1.102; FEDIGAN LM, 1997, EVOLVING FEMALE LIFE; Feingold A, 1998, PSYCHOL SCI, V9, P190, DOI 10.1111/1467-9280.00036; Forbes LS, 1997, TRENDS ECOL EVOL, V12, P446, DOI 10.1016/S0169-5347(97)01179-8; French JA, 1997, COOPERATIVE BREEDING; FRISCH R, 1983, GIRLS PUBERTY BIOL P; FRISCH RE, 1984, BIOL REV, V59, P161, DOI 10.1111/j.1469-185X.1984.tb00406.x; FURNHAM A, 1989, PERS INDIV DIFFER, V10, P653, DOI 10.1016/0191-8869(89)90224-9; GANGESTAD SW, 1990, J PERS, V58, P69, DOI 10.1111/j.1467-6494.1990.tb00908.x; GILBERT P, 1992, DEPRESSION EVOLUTION; GOLDSMITH HH, 1994, CURR DIR PSYCHOL SCI, V3, P53, DOI 10.1111/1467-8721.ep10769948; Gottesman II, 1997, SCIENCE, V276, P1522, DOI 10.1126/science.276.5318.1522; GRAMMER K, 1993, ETHOL SOCIOBIOL, V14, P201, DOI 10.1016/0162-3095(93)90006-4; GRANT PR, 1994, SCIENCE, V266, P746, DOI 10.1126/science.266.5186.746; Guillamon A, 1997, BRAIN RES BULL, V44, P377, DOI 10.1016/S0361-9230(97)00217-7; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; HARRISON V, 1997, FAMILY SYSTEMS, V4, P49; HermanGiddens ME, 1997, PEDIATRICS, V99, P505, DOI 10.1542/peds.99.4.505; HILL AJ, 1992, BRIT J CLIN PSYCHOL, V31, P95, DOI 10.1111/j.2044-8260.1992.tb00973.x; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; HRDY S, 1999, MOTHER NATURE; Hrdy S. B., 1981, WOMAN NEVER EVOLVED; HRDY SB, 1992, ETHOL SOCIOBIOL, V13, P409, DOI 10.1016/0162-3095(92)90011-R; Jasienska G, 1998, P ROY SOC B-BIOL SCI, V265, P1847, DOI 10.1098/rspb.1998.0511; Jones O. D., 1997, NC L REV, V75, P1117; Kaye WH, 2000, BIOL PSYCHIAT, V47, P794, DOI 10.1016/S0006-3223(99)00240-1; Kaye WH, 2000, ANNU REV MED, V51, P299, DOI 10.1146/annurev.med.51.1.299; KENRICK DT, 1995, BEHAV BRAIN SCI, V18, P560, DOI 10.1017/S0140525X00039820; Khibnik AI, 1997, P ROY SOC B-BIOL SCI, V264, P1049, DOI 10.1098/rspb.1997.0145; Kipman A, 1999, EUR PSYCHIAT, V14, P189, DOI 10.1016/S0924-9338(99)80741-X; KLOSS RJ, 1992, ETHOL SOCIOBIOL, V13, P283, DOI 10.1016/0162-3095(92)90027-2; LEON GR, 1987, INT J EAT DISORDER, V6, P477, DOI 10.1002/1098-108X(198707)6:4<477::AID-EAT2260060404>3.0.CO;2-S; LEON GR, 1985, J ABNORM CHILD PSYCH, V13, P245, DOI 10.1007/BF00910645; LOW BS, 1998, HDB EVOLUTIONARY PSY; LUCAS AR, 1983, INT J EAT DISORDER, V2, P85, DOI 10.1002/1098-108X(198322)2:4<85::AID-EAT2260020415>3.0.CO;2-0; Lucas AR, 1999, INT J EAT DISORDER, V26, P397; MacDonald K, 1997, HUM NATURE-INT BIOS, V8, P327, DOI 10.1007/BF02913038; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; MACDONALD K, 1997, PARENTING STRATEGIES; MACKEY WC, 2000, PSYCHOL EVOLUTION GE, V2, P47; MARKS IM, 1994, ETHOL SOCIOBIOL, V15, P247, DOI 10.1016/0162-3095(94)90002-7; Martin JM, 1997, TRIBOL LETT, V3, P87, DOI 10.1023/A:1019183711497; Maynard Smith J., 1973, Nature London, V246, P15; MAYNARDSMITH J, 1974, J THEOR BIOL, V47, P209, DOI DOI 10.1016/0022-5193(74)90110-6; MCCLINTOCK MK, 1981, AM ZOOL, V21, P243; MCFARLAND R, 1997, EVOLVING FEMALE LIFE; McGuire M. T, 1997, MALADAPTED MIND CLAS; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; MEALEY L, 1993, PERS INDIV DIFFER, V14, P783, DOI 10.1016/0191-8869(93)90091-G; Mealey L, 2000, BEHAV BRAIN SCI, V23, P613, DOI 10.1017/S0140525X00523371; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P579, DOI 10.1017/S0140525X00040024; Mealey L, 1999, BEHAV BRAIN SCI, V22, P234, DOI 10.1017/S0140525X99451817; Mealey L, 1997, BEHAV BRAIN SCI, V20, P527; Mealey L, 2000, HUM NATURE-INT BIOS, V11, P105, DOI 10.1007/s12110-000-1005-3; MEALEY L, 2001, CONCEPTUAL CHALLENGE; Mealey L, 1999, J PERS SOC PSYCHOL, V76, P157; Mendlowicz MV, 1998, INT J LAW PSYCHIAT, V21, P209, DOI 10.1016/S0160-2527(98)00003-X; MONTIBLOCH L, 1994, PSYCHONEUROENDOCRINO, V19, P673, DOI 10.1016/0306-4530(94)90049-3; Morgan JF, 1999, PSYCHOSOM MED, V61, P541, DOI 10.1097/00006842-199907000-00019; Nesse R, 1998, BRIT J MED PSYCHOL, V71, P397, DOI 10.1111/j.2044-8341.1998.tb01000.x; NESSE R, 1997, MALADAPTED MIND CLAS; Nesse RM, 2000, ARCH GEN PSYCHIAT, V57, P14, DOI 10.1001/archpsyc.57.1.14; Nicholson B, 2000, MED HYPOTHESES, V54, P438, DOI 10.1054/mehy.1999.0872; OCONNOR TG, 1995, CHILD DEV, V66, P812, DOI 10.1111/j.1467-8624.1995.tb00907.x; PALMER RL, 1990, BRIT J PSYCHIAT, V156, P699, DOI 10.1192/bjp.156.5.699; Phelps JA, 1997, CURR DIR PSYCHOL SCI, V6, P117, DOI 10.1111/1467-8721.ep10772877; Pianka E. R, 1978, EVOLUTIONARY ECOLOGY; Pond C. M., 1997, EVOLVING FEMALE LIFE; POULTON RG, 1992, ACTA PSYCHIAT SCAND, V85, P35, DOI 10.1111/j.1600-0447.1992.tb01439.x; PRETI G, 1998, ADV CHEM SIGNALS VER; PRICE J, 1994, BRIT J PSYCHIAT, V164, P309, DOI 10.1192/bjp.164.3.309; RAPHAEL FJ, 1992, ANN MED, V24, P293, DOI 10.3109/07853899209149957; Rapoport JL, 1998, PERSPECT BIOL MED, V41, P159; Saudino KJ, 1997, J PERS SOC PSYCHOL, V72, P196, DOI 10.1037/0022-3514.72.1.196; SCARR S, 1992, CHILD DEV, V63, P1, DOI 10.2307/1130897; SCHNEIDER JE, 2000, REPROD CONTEXT SOCIA; SEGAL NL, 1993, AM PSYCHOL, V48, P943, DOI 10.1037//0003-066X.48.9.943; SEGAL NL, 1998, HUM BIOL, V70, P157; SIMPSON JA, 1992, J PERS, V60, P31, DOI 10.1111/j.1467-6494.1992.tb00264.x; SINGH D, 1993, J PERS SOC PSYCHOL, V65, P293, DOI 10.1037/0022-3514.65.2.293; SINGH D, 1993, HUM NATURE-INT BIOS, V4, P297, DOI 10.1007/BF02692203; SMITH JM, 1978, SCI AM, V239, P176, DOI 10.1038/scientificamerican0978-176; Smuts BB, 1987, PRIMATE SOC; Stern K, 1998, NATURE, V392, P177, DOI 10.1038/32408; Sulloway F. J., 1996, BORN REBEL BIRTH ORD; SURBEY MK, 1987, ETHOL SOCIOBIOL, V8, pS47; SURBEY MK, 1998, HDB EVOLUTIONARY PSY; TANNER JM, 1981, SCIENCE, V214, P604, DOI 10.1126/science.7292001; Tiggemann M, 1996, INT J EAT DISORDER, V20, P199, DOI 10.1002/(SICI)1098-108X(199609)20:2<199::AID-EAT11>3.0.CO;2-Z; TOOBY J, 1989, ETHOL SOCIOBIOL, V10, P29, DOI 10.1016/0162-3095(89)90012-5; VANDENBERGH JG, 1988, PHYSL REPROD; VERMEIJ GJ, 1994, ANNU REV ECOL SYST, V25, P219, DOI 10.1146/annurev.es.25.110194.001251; VeronGuidry S, 1996, INT J EAT DISORDER, V20, P287, DOI 10.1002/(SICI)1098-108X(199611)20:3<287::AID-EAT8>3.0.CO;2-K; VITZTHUM VJ, 1997, EVOLVING FEMALE LIFE; VOLAND E, 1989, ETHOL SOCIOBIOL, V10, P223, DOI 10.1016/0162-3095(89)90001-0; Wade TD, 2000, AM J PSYCHIAT, V157, P469, DOI 10.1176/appi.ajp.157.3.469; Wade TJ, 1999, PERS INDIV DIFFER, V27, P1047, DOI 10.1016/S0191-8869(99)00043-4; WARREN MP, 1983, GIRLS PUBERTY BIOL P; Wasser S K, 1990, Hum Nat, V1, P3, DOI 10.1007/BF02692144; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; Wasser SK, 1983, SOCIAL BEHAV FEMALE; Wilcox K, 2000, J RES PERS, V34, P278, DOI 10.1006/jrpe.1999.2281; WILSON DS, 1994, TRENDS ECOL EVOL, V9, P442, DOI 10.1016/0169-5347(94)90134-1; Young EA, 2000, ARCH GEN PSYCHIAT, V57, P1157, DOI 10.1001/archpsyc.57.12.1157 145 0 0 0 11 KLUWER ACADEMIC PUBLISHERS NORWELL 101 PHILIP DRIVE, ASSINIPPI PARK, NORWELL, MA 02061 USA 1-40207-242-2 2003 1 21 21 Demography; Genetics & Heredity; Reproductive Biology Demography; Genetics & Heredity; Reproductive Biology BV92J WOS:000180400600001 2018-11-12 B Anderson, KG; Low, BS Rodgers, JL; Kohler, HP Anderson, KG; Low, BS Nonmarital first births and women's life histories BIODEMOGRAPHY OF HUMAN REPRODUCTION AND FERTILITY English Proceedings Paper 2nd Conference on Biodemography of Fertility AUG, 2000 ROSTOCK, GERMANY Natl Inst Hlth, Off Behav & Social Sci Res, Off Behav & Social Sci Res, Max Planck Inst Demog Res fatherhood; marriage; parental investment; life history theory; Panel Study of Income Dynamics; parental investment; reproductive histories EVOLUTIONARY PERSPECTIVE; TEENAGE CHILDBEARING; 19TH-CENTURY SWEDEN; GENETIC FATHERS; PATERNAL CARE; FAMILY; MARRIAGE; STEPFATHERS; FERTILITY; PATTERNS This paper draws on evolutionary life history theory to examine nonmarital births in the context of women's ability to secure male parental investment for their offspring. While nonmarital births are usually defined with respect to marital status the day of parturition, we adopt a more nuanced approach that corresponds to men's willingness to commit to family obligations. Our approach distinguishes between marriages preceding pregnancy, marriages occurring between pregnancy and birth, marriages immediately following birth, and births that are not followed by marriage to the child's father. Using retrospective marital and reproductive histories from the Panel Study of Income Dynamics (PSID), we observe a range in women's life history outcomes (fertility and marital measure) corresponding to this range in male commitment around the time of first birth. Self-selection biases are not examined in this analysis, although their implications are discussed. Univ Michigan, Ctr Populat Studies, Ann Arbor, MI 48106 USA kganders@umich.edu; bobbilow@umich.edu Alexander R.D., 1974, Annual Rev Ecol Syst, V5, P325, DOI 10.1146/annurev.es.05.110174.001545; AMATO PR, 1987, J MARRIAGE FAM, V49, P327, DOI 10.2307/352303; Anderson KG, 2000, HUM NATURE-INT BIOS, V11, P307, DOI 10.1007/s12110-000-1006-2; Anderson KG, 1999, EVOL HUM BEHAV, V20, P433, DOI 10.1016/S1090-5138(99)00022-7; Anderson KG, 1999, EVOL HUM BEHAV, V20, P405, DOI 10.1016/S1090-5138(99)00023-9; ANDERSON KG, 2002, UNPUB CONFIDENCE PAT; ANDERSON KG, 2001, 01484 POP STUD CTR; BENNETT NG, 1995, DEMOGRAPHY, V32, P47, DOI 10.2307/2061896; Bergstrom TC, 1996, J ECON LIT, V34, P1903; BLOOM DE, 1990, J AM STAT ASSOC, V85, P1009, DOI 10.2307/2289597; Brien MJ, 1997, J HUM RESOUR, V32, P741, DOI 10.2307/146427; Brown SL, 2000, J FAM ISSUES, V21, P501, DOI 10.1177/019251300021004005; Case A, 2000, ECON J, V110, P781, DOI 10.1111/1468-0297.00565; Case A, 1999, AM ECON REV, V89, P234, DOI 10.1257/aer.89.2.234; CHASE ID, 1980, AM NAT, V115, P827, DOI 10.1086/283603; Cooksey EC, 1996, J MARRIAGE FAM, V58, P693, DOI 10.2307/353729; Daly M., 1988, HOMICIDE; Daly M., 1998, TRUTH CINDERELLA DAR; Driscoll AK, 1999, J MARRIAGE FAM, V61, P178, DOI 10.2307/353892; Fitzgerald J, 1998, J HUM RESOUR, V33, P251, DOI 10.2307/146433; FOSTER DW, 1996, CHASQUI, V25, P117; Foster EM, 1998, J MARRIAGE FAM, V60, P163, DOI 10.2307/353449; GERONIMUS AT, 1992, Q J ECON, V107, P1187, DOI 10.2307/2118385; Geronimus AT, 1996, SOC SCI MED, V42, P589, DOI 10.1016/0277-9536(95)00159-X; Geronimus AT, 1996, NEW ENGL J MED, V335, P1552, DOI 10.1056/NEJM199611213352102; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; GILL D, 1977, ILLEGITIMACY SEXUALI; Harvey P. H., 1986, PRIMATE SOC, P181; HAWKES K, 1995, EVOL ECOL, V9, P662, DOI 10.1007/BF01237661; Hawkes K., 1992, EVOLUTIONARY ECOLOGY, P269; HENDRIX L, 1996, ILLEGITIMACY SOCIAL; Hewlett Barry S., 1992, FATHER CHILD RELATIO; HILL EM, 1992, ETHOL SOCIOBIOL, V13, P35, DOI 10.1016/0162-3095(92)90005-O; HOFFERTH SC, 2001, 01471 U MICH POP STU; HOFFERTH SL, 1984, DEMOGRAPHY, V21, P141, DOI 10.2307/2061035; HOFFMAN SD, 1993, DEMOGRAPHY, V30, P291, DOI 10.2307/2061843; HOFFMAN SD, 1993, DEMOGRAPHY, V30, P1, DOI 10.2307/2061859; Hrdy S. B., 1999, MOTHER NATURE HIST M; Hurtado A M, 1992, Hum Nat, V3, P185, DOI 10.1007/BF02692239; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H., 1997, ZEUS SALMON BIODEMOG, P175; LANCASTER JB, 1991, YEARB PHYS ANTHROPOL, V34, P1; LANCASTER JB, 1997, FEMINISM EVOLUTIONAR, P466; Lichter DT, 2001, OUT OF WEDLOCK: CAUSES AND CONSEQUENCES OF NONMARITAL FERTILITY, P317; LOW BS, 1991, J FAM HIST, V16, P117, DOI 10.1177/036319909101600202; LOW BS, 1991, ETHOL SOCIOBIOL, V12, P411, DOI 10.1016/0162-3095(91)90024-K; Low BS, 2002, AM J HUM BIOL, V14, P149, DOI 10.1002/ajhb.10043; Low BS, 1998, HANDBOOK OF EVOLUTIONARY PSYCHOLOGY, P131; LUKER K, 1996, DUBIOUS CONCEPTIONS; MARSIGLIO W, 1991, J MARRIAGE FAM, V53, P973, DOI 10.2307/353001; MARTIN SP, 1999, 9911 U WISC MAD CTR; MAYNARDSMITH J, 1977, ANIM BEHAV, V25, P1, DOI DOI 10.1016/0003-3472(77)90062-8); Morgan SP, 1999, DEMOGRAPHY, V36, P59, DOI 10.2307/2648134; Mulder M Borgerhoff, 1992, EVOLUTIONARY ECOLOGY, P339; OSTROM E, 1990, MANAGING COMMONS; RAINS P, 1971, BECOMING UNWED MOTHE; RANK MR, 1989, AM SOCIOL REV, V54, P296, DOI 10.2307/2095797; Roff Derek A., 1992; SCHOEN R, 1993, J MARRIAGE FAM, V55, P408, DOI 10.2307/352811; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; SOLINGER R, 1992, WAKE LITTLE SUZIE; South SJ, 1999, J MARRIAGE FAM, V61, P752, DOI 10.2307/353575; Spain D, 1996, BALANCING ACT MOTHER; Stearns S. C., 1992, EVOLUTION LIFE HIST; TAYLOR M, 1982, POLIT STUD-LONDON, V30, P350, DOI 10.1111/j.1467-9248.1982.tb00545.x; Trivers R.L., 1972, SEXUAL SELECTION DES, P13; *US BUR CENS, 1995, CURR POP REP SER P60, V187; Ventura S J, 2001, Natl Vital Stat Rep, V49, P1; WEISS Y, 1993, J LABOR ECON, V11, P629, DOI 10.1086/298310; Zavodny M, 1999, J MARRIAGE FAM, V61, P764, DOI 10.2307/353576 70 4 4 0 5 KLUWER ACADEMIC PUBLISHERS NORWELL 101 PHILIP DRIVE, ASSINIPPI PARK, NORWELL, MA 02061 USA 1-40207-242-2 2003 57 86 30 Demography; Genetics & Heredity; Reproductive Biology Demography; Genetics & Heredity; Reproductive Biology BV92J WOS:000180400600004 2018-11-12 B Valeggia, C; Ellison, PT Rodgers, JL; Kohler, HP Valeggia, C; Ellison, PT Energetics, fecundity, and human life history BIODEMOGRAPHY OF HUMAN REPRODUCTION AND FERTILITY English Proceedings Paper 2nd Conference on Biodemography of Fertility AUG, 2000 ROSTOCK, GERMANY Natl Inst Hlth, Off Behav & Social Sci Res, Off Behav & Social Sci Res, Max Planck Inst Demog Res breastfeeding; energetics; female fecundity; lactational amenorrhea; life-history trade-offs; metabolic load; postpartum fertility; ovarian function; reproductive cancers; South American Indians PAPUA-NEW-GUINEA; ECOLOGICAL CONTEXT; OVARIAN-FUNCTION; WOMEN; FERTILITY; RISK; STEROIDS; GROWTH; WEIGHT Life history theory provides a rich framework within which demographic models can be developed and tested. This chapter provides a bridge between the study of the biology of life history and that of human demography by highlighting the importance of energetics as a major contributor in the regulation of female fecundity. Here, we illustrate the importance of incorporating energetic issues in human demography with our study of a population in transition, a community of Toba Amerindians in Northern Argentina. Peabody Museum, Dept Anthropol, Cambridge, MA 02138 USA ADAIR L, 1993, EUR J CLIN NUTR, V47, P42; ADAIR LS, 1992, AM J HUM BIOL, V4, P635, DOI 10.1002/ajhb.1310040510; Butte NF, 2001, J NUTR, V131, P53; CALDWELL JC, 1992, POPUL DEV REV, V18, P211, DOI 10.2307/1973678; CUMMING DC, 1994, HUMAN REPROD ECOLOGY, P55; DASGUPTA P, 1995, SCI AM FEB, P40; EATON SB, 1994, Q REV BIOL, V69, P354; Ellison P. T., 1994, ANNU REV ANTHROPOL, V23, P225; ELLISON PT, 1986, AM J OBSTET GYNECOL, V154, P1000, DOI 10.1016/0002-9378(86)90737-4; ELLISON PT, 1988, YEARB PHYS ANTHROPOL, V31, P115; ELLISON PT, 1993, HUM REPROD, V8, P2248, DOI 10.1093/oxfordjournals.humrep.a138015; ELLISON PT, 1989, AM J PHYS ANTHROPOL, V78, P519, DOI 10.1002/ajpa.1330780407; ELLISON PT, 2000, HUMAN BIOL EVOLUTION; ELLISON PT, 1999, HORMONES HLTH BEHAV; ELLISON PT, 2001, FERTILE GROUND NATUR; Friedman Herbert L., 1994, World Health Statistics Quarterly, V47, P31; GRAY SJ, 1994, J BIOSOC SCI, V26, P69; GREEN BB, 1988, FERTIL STERIL, V50, P721; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; HOBCRAFT JN, 1994, ANN NY ACAD SCI, V709, P408, DOI 10.1111/j.1749-6632.1994.tb30426.x; Huang ZP, 1997, JAMA-J AM MED ASSOC, V278, P1407, DOI 10.1001/jama.278.17.1407; HUBINONT CJ, 1988, GYNECOL OBSTET INVES, V25, P89, DOI 10.1159/000293752; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Jasienska G, 2000, EUR J CANCER PREV, V9, P231, DOI 10.1097/00008469-200008000-00003; JASIENSKA G, 1996, THESIS HARVARD U CAM; JELLIFFE DB, 1964, CLIN PEDIATR, V3, P432, DOI 10.1177/000992286400300710; KERTZER DI, 1997, ANTHR DEMOGRAPHY; KJOS SL, 1993, OBSTET GYNECOL, V82, P451; KONNER M, 1980, SCIENCE, V207, P788, DOI 10.1126/science.7352291; Lesthaeghe R. J., 1994, NUPTIALITY SUBSAHARA, P25; Marin BV, 2000, J ADOLESCENT HEALTH, V27, P409; Miller ES, 1999, PEOPLES GRAN CHACO; MORBECK ME, 1997, EVOLVING FEMALE LIFE; Okasha M, 2001, ANN HUM BIOL, V28, P68; Panter-Brick Catherine, 1999, HORMONES HLTH BEHAV, P139; PANTERBRICK C, 1993, HUM REPROD, V8, P684, DOI 10.1093/oxfordjournals.humrep.a138120; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; RILEY AP, 1994, HUMAN REPROD ECOLOGY; ROBEY B, 1993, SCI AM, V269, P60, DOI 10.1038/scientificamerican1293-60; SCHOLL TO, 1995, JAMA-J AM MED ASSOC, V274, P26, DOI 10.1001/jama.1995.03530010040029; TRACER DP, 1991, AM J PHYS ANTHROPOL, V85, P393, DOI 10.1002/ajpa.1330850404; Ulijaszek S. J, 1994, ANTHROPOMETRY INDIVI; VALEGGIA C, 2001, REPROD ECOLOGY HUMAN; VALEGGIA S, 2001, AM J PHYS ANTHROPOL, P147; WEINSTEIN M, 1994, HUMAN REPROD ECOLOGY; WOOD JW, 1994, DYNAMICS HUMAN REPRO; WORTHMAN CM, 1993, J BIOSOC SCI, V25, P425 47 2 2 0 8 KLUWER ACADEMIC PUBLISHERS NORWELL 101 PHILIP DRIVE, ASSINIPPI PARK, NORWELL, MA 02061 USA 1-40207-242-2 2003 87 103 17 Demography; Genetics & Heredity; Reproductive Biology Demography; Genetics & Heredity; Reproductive Biology BV92J WOS:000180400600005 2018-11-12 B Low, BS; Simon, CP; Anderson, KG Rodgers, JL; Kohler, HP Low, BS; Simon, CP; Anderson, KG The biodemography of modern women: Tradeoffs when resources become limiting BIODEMOGRAPHY OF HUMAN REPRODUCTION AND FERTILITY English Proceedings Paper 2nd Conference on Biodemography of Fertility AUG, 2000 ROSTOCK, GERMANY Natl Inst Hlth, Off Behav & Social Sci Res, Off Behav & Social Sci Res, Max Planck Inst Demog Res age at first birth; age-specific fertility; behavioral ecology; carrying capacity; contemporary United States; life history theory; reproductive histories; resource limitation; social support networks; women's education; women's work EARTHS CARRYING-CAPACITY; REPRODUCTIVE SUCCESS; PARENTAL INVESTMENT; LIFE EXPECTANCY; ECONOMIC-THEORY; FERTILITY; POPULATION; SUSTAINABILITY; HYPOTHESIS; INEQUALITY Life history theory postulates tradeoffs of current versus future reproduction; in both developed and developing nations today, women face evolutionarily novel versions of these tradeoffs. Here we use a nonlinear dynamic model to explore: [1] the general issues of tradeoffs of education, work, and current fertility; [2] some specific examples (e.g., what increase in fertility will compensate for particular delays of age at first birth under given conditions). Finally, we model a largely unrecognized issue. Demographic transitions of the past have been characterized by decreases in fertility accompanied by (sometimes quite large) increases in per capita investment in offspring. The Rio Conference and its follow-up highlighted the conflicts between low-fertility, high-consumption, versus high-fertility, lower consumption strategies -- yet we have few ways to make testable predictions about future conflicts. We explore outcomes when impending resource constraints differentially affect short-generation-time-strategists, versus delayed-reproduction-resource-acquirers. The conditions favoring delayed fertility with resource accumulation are highly constrained; under almost all conditions reproduction in the early 20s leads to the greatest lineage success for women in the models. Univ Michigan, Sch Nat Resources & Environm, Ann Arbor, MI 48109 USA bobbilow@umich.edu; cpsimon@umich.edu; kganders@umich.edu Anderson KG, 2000, HUM NATURE-INT BIOS, V11, P307, DOI 10.1007/s12110-000-1006-2; ANDERSON KG, 2002, BIODEMOGRAPHY HUMAN; BARKOW JH, 1977, ETHOS, V5, P409, DOI 10.1525/eth.1977.5.4.02a00030; Becker G, 1974, EC FAMILY MARRIAGE C, P81; Becker G.S, 1981, TREATISE FAMILY; BECKER GS, 1988, Q J ECON, V103, P1, DOI 10.2307/1882640; Caswell H, 2001, MATRIX POPULATION MO; CHAGNON NA, 1988, SCIENCE, V239, P985, DOI 10.1126/science.239.4843.985; CHAGNON NA, 1979, EVOLUTIONARY BIOL HU; Chagnon NA, 1982, CURRENT PROBLEMS SOC; CHIRAS DD, 1992, LESSONS NATURE LEARN; CHU CYC, 1998, POPULATION DYNAMICS; Cohen J. E., 1995, MANY PEOPLE CAN EART; CORCORAN M, 1997, SOCIAL SERVICE R JUN; Costanza R., 2001, I ECOSYSTEMS SUSTAIN; CRONK L, 1991, AM ANTHROPOL, V93, P345, DOI 10.1525/aa.1991.93.2.02a00040; Cronk L., 2000, ADAPTATION HUMAN BEH; DAILY GC, 1992, BIOSCIENCE, V42, P761, DOI 10.2307/1311995; Daily GC, 1996, ECOL APPL, V6, P991, DOI 10.2307/2269582; Darwin C.R., 1871, DESCENT MAN SELECTIO; EASTERLIN RA, 1985, FERTILITY REVOLUTION; EASTERLIN RA, 1978, HIST STUDIES CHANGIN; EHELICH P, 1971, SCIENCE, V171, P1212; Fadiman J. A., 1982, ORAL HIST TRIBAL WAR; Fisher R. A., 1958, GENETICAL THEORY NAT; FLINN MV, 1986, HUM ECOL, V14, P225, DOI 10.1007/BF00889239; Geronimus AT, 1997, POLIT SCI QUART, V112, P405, DOI 10.2307/2657564; Geronimus AT, 1996, SOC SCI MED, V42, P589, DOI 10.1016/0277-9536(95)00159-X; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; Geronimus AT, 2001, DEMOGRAPHY, V38, P227, DOI 10.1353/dem.2001.0015; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HILL J, 1984, ETHOL SOCIOBIOL, V5, P77, DOI 10.1016/0162-3095(84)90011-6; Hill K, 1988, HUMAN REPROD BEHAV D, P277; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hughes AL., 1988, EVOLUTION HUMAN KINS; Hurtado A M, 1992, Hum Nat, V3, P185, DOI 10.1007/BF02692239; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Irons W., 1979, EVOLUTIONARY BIOL HU; KAPLAN H, 1985, CURR ANTHROPOL, V26, P131, DOI 10.1086/203235; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; Kaplan H., 1997, ZEUS SALMON BIODEMOG, P175; Kaplan HS, 1998, MEN IN FAMILIES, P55; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; KAPLAN HS, 1995, HUMAN REPROD DECISIO, P96; KAPLAN HS, 2000, ADAPTATION HUMAN BEH; KASARDA JD, 1986, STATUS ENHANCEMENT F; KNODEL J, 1990, POPUL DEV REV, V16, P31, DOI 10.2307/1972528; KREBS JR, 1997, BEHAV ECOLOGY EVOLUT; LANCASTER JB, 1997, FEMINISM EVOLUTIONAR, P466; LEE B, 1991, HOUS POLICY DEBATE, V2, P3; LOW B, 1993, EVOLUTIONARY ANTHR, P106; LOW B, 2002, NAVIGATING NATURES D; LOW BL, 2000, WHY SEX MATTERS DARW; Low BS, 2002, AM J HUM BIOL, V14, P149, DOI 10.1002/ajhb.10043; LOW BS, 1992, POPUL DEV REV, V18, P1, DOI 10.2307/1971857; Low BS, 1998, HANDBOOK OF EVOLUTIONARY PSYCHOLOGY, P131; LOW BS, 2000, ADAPTATION HUMAN BEH; LUKER K, 1996, DUBIOUS CONCEPTIONS; MAC ARTHUR ROBERT H., 1967; MACE R, 2000, ADAPTATION HUMAN BEH; Macunovich DJ, 1998, J POPUL ECON, V11, P53, DOI 10.1007/s001480050058; MILLER GT, 2001, LIVING ENV PRINCIPLE; Mulder MB, 1998, TRENDS ECOL EVOL, V13, P266, DOI 10.1016/S0169-5347(98)01357-3; Perusse D, 1994, Hum Nat, V5, P255, DOI 10.1007/BF02692154; POWELL B, 1989, SOCIOL EDUC, V62, P134, DOI 10.2307/2112845; RANK MR, 1989, AM SOCIOL REV, V54, P296, DOI 10.2307/2095797; Roff Derek A., 1992; SELLERS P, 1998, FORTUNE 1012, P76; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tasiran AC., 1995, FERTILITY DYNAMICS S; Tilly C, 1978, HIST STUDIES CHANGIN, P1; TURKE PW, 1985, ETHOL SOCIOBIOL, V6, P79, DOI 10.1016/0162-3095(85)90001-9; *UNEP, 2000, CURR POP SURF MARCH; VINING DR, 1986, BEHAV BRAIN SCI, V9, P167, DOI 10.1017/S0140525X00021968; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; Williams GC, 1966, ADAPTATION NATURAL S; WILLIAMS GC, 1992, NATURAL SELECTION DO; WILLIS RJ, 1973, J POLIT ECON, V81, pS14, DOI 10.1086/260152; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 80 9 9 0 5 KLUWER ACADEMIC PUBLISHERS NORWELL 101 PHILIP DRIVE, ASSINIPPI PARK, NORWELL, MA 02061 USA 1-40207-242-2 2003 105 134 30 Demography; Genetics & Heredity; Reproductive Biology Demography; Genetics & Heredity; Reproductive Biology BV92J WOS:000180400600006 2018-11-12 B Sear, R; Mace, R; McGregor, IA Rodgers, JL; Kohler, HP Sear, R; Mace, R; McGregor, IA A life history approach to fertility rates in rural Gambia: Evidence for trade-offs or phenotypic correlations? BIODEMOGRAPHY OF HUMAN REPRODUCTION AND FERTILITY English Proceedings Paper 2nd Conference on Biodemography of Fertility AUG, 2000 ROSTOCK, GERMANY Natl Inst Hlth, Off Behav & Social Sci Res, Off Behav & Social Sci Res, Max Planck Inst Demog Res anthropometric status; fertility; Gambia; haemoglobin; life history; multi-level event history analysis; parity; phenotypic condition; phenotypic correlations; reproductive rate; trade-offs; unobserved heterogeneity POSTPARTUM AMENORRHEA; BIRTH INTERVALS; PROXIMATE DETERMINANTS; ECOLOGICAL IMMUNOLOGY; REPRODUCTIVE ECOLOGY; MODEL ANALYSIS; BROOD SIZE; WOMEN; AGE; POPULATION Life history theory predicts that a trade-off will occur between investment in current and future reproduction. We test this hypothesis in a rural Gambian population by determining whether women who have invested heavily in reproduction in the past have lower reproductive rates in the present. We find the opposite: women of high parity for a given age have higher reproductive rates than those of lower parity. We also find no differences in fertility rate between women who began reproducing early and those who began reproducing later, nor does the sex of the child at the start of the birth interval affect subsequent fertility rate. These results suggest that phenotypic correlations are prevalent in this population. Women of high quality are able to reproduce at a high rate throughout their reproductive careers, women of low quality are only able to devote relatively little effort to reproduction throughout their lives. We have tried to control for this heterogeneity among women by including variables for phenotypic condition in our model. Condition was measured by adult height, weight and haemoglobin level. Weight (controlling for height) and haemoglobin were positively correlated with fertility rate, which reinforces the view that phenotypic correlations are prevalent. Even controlling for these variables, a positive correlation was still observed between investment in past and present reproduction. This suggests the heterogeneity between women that leads to these phenotypic correlations is not adequately captured by these measures of female body condition. In this population, some of this unexplained heterogeneity may be related to genetic variance in the ability to resist disease. UCL, Dept Anthropol, London WC1E 6BT, England r.sear@ucl.ac.uk; r.mace@ucl.ac.uk Sear, Rebecca/0000-0002-4315-0223 Aguirre GP, 1998, POP STUD-J DEMOG, V52, P231, DOI 10.1080/0032472031000150396; ANDERSON DJ, 1990, EVOLUTION, V44, P438, DOI 10.1111/j.1558-5646.1990.tb05211.x; ANDERSSON G, 1999, 137 STOCKH U DEM UN; BAILEY RC, 1992, J BIOSOC SCI, V24, P393; BANTJE HFW, 1988, J BIOSOC SCI, V20, P195; BEISEL WR, 1982, REV INFECT DIS, V4, P746; Bentley GR, 1999, EVOL ANTHROPOL, V7, P175; BILLEWICZ WZ, 1982, ANN HUM BIOL, V9, P309, DOI 10.1080/03014468200005811; BILLEWICZ WZ, 1981, J BIOSOC SCI, V13, P219; Blanchard R, 1997, J BIOSOC SCI, V29, P111, DOI 10.1017/S0021932097001119; Bledsoe C, 1998, POPUL DEV REV, V24, P15, DOI 10.2307/2808121; BONGAARTS J, 1984, POPUL DEV REV, V10, P511, DOI 10.2307/1973518; Bosker RJ, 1999, MULTILEVEL ANAL INTR; CLARK S, 1995, POP STUD-J DEMOG, V49, P91, DOI 10.1080/0032472031000148266; Cronk L, 2000, ADAPTATION HUMAN BEH, P203; DELGADO HL, 1982, AM J CLIN NUTR, V35, P1468; Dew JE, 1998, J ASSIST REPROD GEN, V15, P210, DOI 10.1023/A:1023004503697; ELLISON PT, 1994, ANNU REV ANTHROPOL, V23, P255, DOI 10.1146/annurev.anthro.23.1.255; FINK AE, 1992, J BIOSOC SCI, V24, P35; Fisher R. A., 1930, GENETIAL THEORY NATU; GOLDSTEIN H, 1995, MULTILEVEL STAT MODE; GROSSMAN CJ, 1985, SCIENCE, V227, P257, DOI 10.1126/science.3871252; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; HILL EM, 1992, ETHOL SOCIOBIOL, V13, P35, DOI 10.1016/0162-3095(92)90005-O; HOFFMANS MDAF, 1988, HUM BIOL, V60, P237; HUFFMAN SL, 1987, POP STUD-J DEMOG, V41, P447, DOI 10.1080/0032472031000142996; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; JAIN AK, 1979, NATURAL FERTILITY, P149; Jasienska G, 1998, P ROY SOC B-BIOL SCI, V265, P1847, DOI 10.1098/rspb.1998.0511; Johnsen TS, 1999, OIKOS, V86, P487, DOI 10.2307/3546653; KENT S, 1992, DIET DEMOGRAPHY DISE, P1; Kirk KM, 2001, EVOLUTION, V55, P423; KOMURA H, 1992, EUR J OBSTET GYN R B, V44, P201, DOI 10.1016/0028-2243(92)90099-K; Korpelainen H, 2000, P ROY SOC B-BIOL SCI, V267, P1765, DOI 10.1098/rspb.2000.1208; LAMB WH, 1984, LANCET, V2, P912; Larsen U, 1998, POP STUD-J DEMOG, V52, P317, DOI 10.1080/0032472031000150496; LARSEN U, 1993, DEMOGRAPHY, V30, P81, DOI 10.2307/2061864; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; LOW BS, 1991, ETHOL SOCIOBIOL, V12, P411, DOI 10.1016/0162-3095(91)90024-K; LUNN PG, 1992, J BIOSOC SCI, V24, P317; Lycett JE, 1999, P ROY SOC B-BIOL SCI, V266, P2355, DOI 10.1098/rspb.1999.0931; Mace R, 1997, J BIOSOC SCI, V29, P499, DOI 10.1017/S0021932097004999; MADRIGAL L, 1993, HUM BIOL, V65, P255; MARGULIS SW, 1993, BEHAV ECOL SOCIOBIOL, V32, P41; MASCIETAYLOR CGN, 1992, J BIOSOC SCI, V24, P355; MCFALLS JA, 1984, DIS FERTILITY; MCGREGOR IA, 1966, T ROY SOC TROP MED H, V60, P650, DOI 10.1016/0035-9203(66)90011-3; McGregor IA, 1991, DIS MORTALITY SUBSAH, P306; MOLLER AP, 1997, HOSTPARASITE EVOLUTI; Moreno J, 1999, P ROY SOC B-BIOL SCI, V266, P1105, DOI 10.1098/rspb.1999.0750; MULDER MB, 1989, BEHAV ECOL SOCIOBIOL, V24, P145, DOI 10.1007/BF00292097; NATH DC, 1993, SOC BIOL, V40, P74; Nath DC, 2000, J BIOSOC SCI, V32, P343, DOI 10.1017/S0021932000003436; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; O'Connor KA, 1998, MATURITAS, V30, P127, DOI 10.1016/S0378-5122(98)00068-1; Otor SCJ, 1998, SOC BIOL, V45, P246; PANTERBRICK C, 1993, HUM REPROD, V8, P684, DOI 10.1093/oxfordjournals.humrep.a138120; PATHAK SK, 1988, PERSPECTIVES IMMUNOR, P22; PENNINGTON R, 1993, STRUCTURE AFRICAN PA; POPKIN BM, 1993, DEMOGRAPHY, V30, P333, DOI 10.2307/2061644; Rodgers JL, 2001, DEMOGRAPHY, V38, P29, DOI 10.1353/dem.2001.0009; Roff Derek A., 1992; Saino N, 1997, J ANIM ECOL, V66, P827, DOI 10.2307/5998; Sear R, 2001, J EVOLUTION BIOL, V14, P433, DOI 10.1046/j.1420-9101.2001.00287.x; SEAR R, IN PRESS EVOLUTION H; SEAR RS, 2001, THESIS U COLL LONDON; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SINGER JD, 1993, J EDUC STAT, V18, P155, DOI 10.2307/1165085; Skarstein F, 2001, CAN J ZOOL, V79, P271, DOI 10.1139/cjz-79-2-271; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stover J, 1998, STUD FAMILY PLANN, V29, P255, DOI 10.2307/172272; Strassmann BI, 1998, AM J PHYS ANTHROPOL, V105, P167, DOI 10.1002/(SICI)1096-8644(199802)105:2<167::AID-AJPA5>3.0.CO;2-S; SWENSON I, 1993, J TROP PEDIATRICS, V39, P163, DOI 10.1093/tropej/39.3.163; THOMPSON EDB, 1965, THESIS U ABERDEEN AB; Tracer DP, 1996, HUM BIOL, V68, P277; Tullberg BS, 2001, EVOL HUM BEHAV, V22, P1, DOI 10.1016/S1090-5138(00)00057-X; UDRY JR, 1979, J BIOSOC SCI, V11, P433; UDRY JR, 1982, DEMOGRAPHY, V19, P53, DOI 10.2307/2061128; WEAVER LT, 1993, LANCET, V341, P1327, DOI 10.1016/0140-6736(93)90827-4; WOOD JW, 1988, POP STUD-J DEMOG, V42, P85, DOI 10.1080/0032472031000143136; WOOD JW, 1994, DYNAMICS HUMAN REPRO; YAMAGUCHI K, 1991, EVENT HIST ANAL; ZALDIVAR ME, 1991, HUM ECOL, V19, P469, DOI 10.1007/BF00889791 83 11 11 0 2 KLUWER ACADEMIC PUBLISHERS NORWELL 101 PHILIP DRIVE, ASSINIPPI PARK, NORWELL, MA 02061 USA 1-40207-242-2 2003 135 160 26 Demography; Genetics & Heredity; Reproductive Biology Demography; Genetics & Heredity; Reproductive Biology BV92J WOS:000180400600007 2018-11-12 J Hsieh, FS Hsieh, FS Patterns of age-specific mortality and molding of senescence by natural selection derived via the life-history regression model EVOLUTIONARY ECOLOGY English Article age-specific baseline mortality rate; Gompertz distribution; life-history regression; time-dependent covariates; senescence REPRODUCTIVE EFFORT; EVOLUTION; OPTIMIZATION; MUTATION; RATES An individual based life-history regression setup is introduced not only as an alternative to the 'reproductive effort model' in life-history theory, but as a new platform on which the nature of reproductive costs can be explicitly determined and tested under different demographic environmental conditions. Distinctively this regression model is composed of two age-specific features: one is an estimable baseline mortality rate describing the life-history of a population hypothetically undertaking no reproduction, but investing all vital resources into somatic maintenance and growth; the other is a time-dependent covariate encoding dynamic impacts incurred from individual's schedule of reproduction. Regression parameters embedded in the time-dependent covariate explicitly stand for various effects of reproductive costs on future survival relative to the standard described by the baseline mortality rate. Consequently the age-specific mortality is in a compositional structure and gives rise to a wide spectrum of well known mortality curves. Also this compositional structure renders molding forces on senescence by natural selection crucially dependent on patterns of the schedule of reproduction. All numerical evaluations of patterns are performed with two distinct reproductive schedules to illustrate the essential differences from classic results in literature of evolution of life-history. Acad Sinica, Inst Stat Sci, Taipei 11529, Taiwan Hsieh, FS (reprint author), Univ Calif Davis, Dept Stat, Kerr Hall, Davis, CA 95616 USA. Abrams PA, 1995, EVOLUTION, V49, P1055, DOI 10.1111/j.1558-5646.1995.tb04433.x; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charlesworth B, 2001, J THEOR BIOL, V210, P47, DOI 10.1006/jtbi.2001.2296; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Cox DR, 1984, ANAL SURVIVAL DATA; FINCH C, 1990, LONGEVITY SENESCENCE; GADGIL M, 1970, AM NAT, V102, P52; GAVRILOV LA, 1991, BIOL LIFE SPAN QUANT; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hsieh F, 1997, ANN STAT, V25, P2665; Hsin H, 1999, NATURE, V399, P362, DOI 10.1038/20694; KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Mueller LD, 1996, P NATL ACAD SCI USA, V93, P15249, DOI 10.1073/pnas.93.26.15249; Partridge L, 1999, TRENDS ECOL EVOL, V14, P438, DOI 10.1016/S0169-5347(99)01646-8; Rose MR, 2000, PHILOS T ROY SOC B, V355, P1657, DOI 10.1098/rstb.2000.0728; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Service PM, 1998, EVOLUTION, V52, P1844, DOI 10.1111/j.1558-5646.1998.tb02262.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; STREHLER BL, 1960, SCIENCE, V132, P14, DOI 10.1126/science.132.3418.14; VAUPEL JW, 1997, ZEUS SALMON BIODEMOG, P17 25 1 1 0 6 KLUWER ACADEMIC PUBL DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 EVOL ECOL Evol. Ecol. 2003 17 5-6 457 475 10.1023/B:EVEC.0000005588.08372.82 19 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 748BB WOS:000186840700002 2018-11-12 J Walker, SE; Rypstra, AL; Marshall, SD Walker, SE; Rypstra, AL; Marshall, SD The relationship between offspring size and performance in the wolf spider Hogna helluo (Araneae : Lycosidae) EVOLUTIONARY ECOLOGY RESEARCH English Article life history; optimality; resource allocation; size-number trade-off FOOD LIMITATION; AGELENA-LIMBATA; LIFE-HISTORY; CLUTCH SIZE; TRADE-OFFS; EGG SIZE; NUMBER; CANNIBALISM; REPRODUCTION; STRATEGIES Life-history theory predicts a trade-off between number of offspring and investment (size) per offspring. An important component of this trade-off is how offspring size influences performance and survival. In this study, we examined the relationships between maternal size, offspring size and clutch size, as well as the relationship between offspring size and performance, in the wolf spider, Hogna helluo. Offspring dispersing from field-collected female Hogna helluo with egg sacs were counted and their carapace width was measured. The relationships between feeding performance (number of prey captured), starvation tolerance and offspring size were examined to determine if offspring size was correlated with offspring performance. Clutch size increased with female size, but there was little evidence for a trade-off between offspring size and number. Starvation tolerance and feeding performance were positively related to offspring size. Our results show that offspring performance increases with offspring size and are consistent with the hypothesis that parental fitness is maximized by producing as many offspring as possible given constraints on a minimum viable offspring size. Miami Univ, Dept Zool, Oxford, OH 45056 USA; Miami Univ, Dept Zool, Hamilton, OH 45011 USA Walker, SE (reprint author), Univ Lethbridge, Dept Biol Sci, Lethbridge, AB T1K 3M4, Canada. sean.walker@uleth.ca Walker, Sean/A-4722-2008 Buddle CM, 2000, J ARACHNOL, V28, P319, DOI 10.1636/0161-8202(2000)028[0319:LHOPMA]2.0.CO;2; CARRIERE Y, 1995, OECOLOGIA, V102, P389, DOI 10.1007/BF00329806; Christians JK, 2000, FUNCT ECOL, V14, P497, DOI 10.1046/j.1365-2435.2000.00444.x; Dondale CD, 1990, INSECTS ARACHNIDS 17; FORBES LS, 1991, J THEOR BIOL, V150, P299, DOI 10.1016/S0022-5193(05)80429-1; FOX CW, 1998, MATERNAL EFFECTS ADA, P157; FRITZ RS, 1985, OECOLOGIA, V65, P194, DOI 10.1007/BF00379217; Glazier DS, 1999, EVOL ECOL, V13, P539, DOI 10.1023/A:1006793600600; Gotelli NJ, 1995, PRIMER ECOLOGY; JAKOB E M, 1990, Psyche (Cambridge), V97, P95, DOI 10.1155/1990/82891; Juliano Steven A., 1993, P159; KASTON B, 1981, B STATE GEOLOGICAL N, V70; KESSLER A, 1971, OECOLOGIA, V8, P93, DOI 10.1007/BF00345629; KILLEBREW DW, 1985, J ARACHNOL, V13, P375; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Littell RC, 1996, SAS SYSTEM MIXED MOD; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; MARSHALL SD, 1994, FUNCT ECOL, V8, P118, DOI 10.2307/2390120; Marshall SD, 1999, ENVIRON ENTOMOL, V28, P1052, DOI 10.1093/ee/28.6.1052; MORSE DH, 1988, ECOLOGY, V69, P1970, DOI 10.2307/1941174; Neter J, 1990, APPL LINEAR STAT MOD; PETERSEN B, 1950, EXPERIENTIA, V6, P96, DOI 10.1007/BF02153369; Roff Derek A., 1992; Samu F, 1999, BEHAV ECOL SOCIOBIOL, V45, P349, DOI 10.1007/s002650050570; SIMPSON MR, 1995, ECOLOGY, V76, P795, DOI 10.2307/1939345; SIMPSON MR, 1993, CAN J ZOOL, V71, P451, DOI 10.1139/z93-065; Sinervo B, 1996, EVOLUTION, V50, P1314, DOI 10.1111/j.1558-5646.1996.tb02371.x; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; Sinervo B, 2000, NATURE, V406, P985, DOI 10.1038/35023149; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SOKAL RR, 1995, BIOMETRY PRINCIPLES; Spence JR, 1996, OIKOS, V75, P373, DOI 10.2307/3545877; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stratton G.E., 1985, Revue Arachnologique, V6, P57; TANAKA K, 1992, OECOLOGIA, V90, P597, DOI 10.1007/BF01875456; Tanaka K, 1995, RES POPUL ECOL, V37, P197, DOI 10.1007/BF02515820; UETZ GW, 1992, TRENDS ECOL EVOL, V7, P155, DOI 10.1016/0169-5347(92)90209-T; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VENABLE DL, 1992, AM NAT, V140, P287, DOI 10.1086/285413; Vollrath F., 1987, P357; Wagner JD, 1996, ECOLOGY, V77, P639, DOI 10.2307/2265637; Walker SE, 2002, CAN J ZOOL, V80, P679, DOI 10.1139/Z02-037; Walker SE, 2001, AM MIDL NAT, V146, P161, DOI 10.1674/0003-0031(2001)146[0161:SDIFRA]2.0.CO;2; Walker SE, 1999, ANIM BEHAV, V58, P515, DOI 10.1006/anbe.1999.1180; Walker SE, 1999, J ARACHNOL, V27, P689; Wise D. H., 1993, SPIDERS ECOLOGICAL W; WISE DH, 1979, OECOLOGIA, V41, P289, DOI 10.1007/BF00377433; WISE DH, 1975, ECOLOGY, V56, P637, DOI 10.2307/1935497 48 28 29 0 14 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. JAN 2003 5 1 19 28 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 632FN WOS:000180213400002 2018-11-12 B Chisholm, JS Sterelyn, K; Fitness, J Chisholm, JS Uncertainty, contingency, and attachment - A life history theory of theory of mind FROM MATING TO MENTALITY: EVALUATING EVOLUTIONARY PSYCHOLOGY Macquarie Monographs in Cognitive Science English Proceedings Paper Workshop on Evolutionary Psychology JUL 09-11, 2001 Canberra, AUSTRALIA Macquarie Ctr Cognit Sci EVOLUTIONARY PSYCHOLOGY; SOCIAL-EXCHANGE; INFANCY; SELF; ORGANIZATION; INFANTICIDE; RECOGNITION; PERCEPTION; SELECTION; SECURITY Univ Western Australia, Nedlands, WA 6009, Australia Baron-Cohen S, 1995, MINDBLINDNESS ESSAY; BARONCOHEN S, 1994, BRIT J PSYCHIAT, V165, P640, DOI 10.1192/bjp.165.5.640; BARONCOHEN S, 1985, COGNITION, V21, P37, DOI 10.1016/0010-0277(85)90022-8; BARONCOHEN S, 1996, THEORIES THEORIES MI; Bateson P., 1982, P133; Bateson P., 1976, GROWING POINTS ETHOL, P401; BEEBE B, 1997, PSYCHOANALYTIC DIALO, V7, P133, DOI DOI 10.1080/10481889709539172; BELSKY J, 1999, HDB ATTACHMENT THEOR; BLAFFERHRDY S, 1977, AM SCI, V65, P40; Bogin B, 1996, AM J HUM BIOL, V8, P703, DOI 10.1002/(SICI)1520-6300(1996)8:6<703::AID-AJHB2>3.0.CO;2-U; Bogin B, 2001, GROWTH HUMANITY; Bonner J. T, 1988, EVOLUTION COMPLEXITY; Bowlby J., 1969, ATTACHMENT ATTACHMEN, V1; BRAZELTON TB, 1974, EFFECT INFANT ITS CA, V1, P49; Bretherton I., 1999, HDB ATTACHMENT THEOR, P89, DOI DOI 10.2307/1166187; BROTHERS L, 1989, AM J PSYCHIAT, V146, P10; Byrne R. W., 1988, MACHIAVELLIAN INTELL; Carter CS, 1998, PSYCHONEUROENDOCRINO, V23, P779; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; Chisholm JS, 2001, INT J EPIDEMIOL, V30, P206, DOI 10.1093/ije/30.2.206; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Cockburn A, 1998, ANNU REV ECOL SYST, V29, P141, DOI 10.1146/annurev.ecolsys.29.1.141; COSMIDES L, 1989, ETHOL SOCIOBIOL, V10, P51, DOI 10.1016/0162-3095(89)90013-7; COSMIDES L, 1989, COGNITION, V31, P187, DOI 10.1016/0010-0277(89)90023-1; Cosmides L., 1994, MAPPING MIND DOMAIN; Csibra G, 1999, COGNITION, V72, P237, DOI 10.1016/S0010-0277(99)00039-6; Deacon Terrence, 1997, SYMBOLIC SPECIES COE; Dean C, 2001, NATURE, V414, P628, DOI 10.1038/414628a; DENNETT DC, 1995, DARWINS DANGEROUS ID; ELLISON PT, 1994, HUM NATURE-INT BIOS, V5, P155, DOI 10.1007/BF02692159; Feeney J. A., 1999, HDB ATTACHMENT THEOR, P355; Field T, 1994, Monogr Soc Res Child Dev, V59, P208, DOI 10.2307/1166147; Fodor J., 1983, MODULARITY MIND; Fonagy P, 1997, DEV PSYCHOPATHOL, V9, P679; Fonagy P, 1997, BRIT J DEV PSYCHOL, V15, P51, DOI 10.1111/j.2044-835X.1997.tb00724.x; Frank R.H., 1992, CHOICE TIME, P265; Gergely G, 1997, COGNITION, V63, P227, DOI 10.1016/S0010-0277(97)00004-8; GERGELY G, 1995, COGNITION, V56, P165, DOI 10.1016/0010-0277(95)00661-H; Gergely G, 1999, EARLY SOCIAL COGNITION, P101; Gergely G, 1996, INT J PSYCHOANAL, V77, P1181; Gerrans P, 2002, BIOL PHILOS, V17, P305, DOI 10.1023/A:1020183525825; GOEL V, 1995, NEUROREPORT, V6, P1741, DOI 10.1097/00001756-199509000-00009; Gould S.J., 1977, ONTOGENY PHYLOGENY; GOULD SJ, 1982, PALEOBIOLOGY, V8, P4, DOI 10.1017/S0094837300004310; GRIFFITHS P, 1994, J PHILOS, V12, P471; Gubernick D.J., 1981, P243; Gunnar MR, 1998, PREV MED, V27, P208, DOI 10.1006/pmed.1998.0276; Hamann SB, 1999, NAT NEUROSCI, V2, P289, DOI 10.1038/6404; Hausfater G., 1984, INFANTICIDE COMP EVO; Hawkes K, 2002, EVOL ANTHROPOL, V11, P58, DOI 10.1002/evan.20005; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; HAZAN C, 1999, HDB ATTACHMENT THEOR, P336; Heyes CM, 1998, BEHAV BRAIN SCI, V21, P101, DOI 10.1017/S0140525X98000703; Hofer M. A., 1999, HDB ATTACHMENT THEOR, P162; HOLLAND JH, 1992, DAEDALUS, V121, P17; HRDY S, 1987, PRIMATE SOC; HRDY S, 2001, ANN NY ACAD SCI, V907, P75; Hrdy Sarah Blaffer, 2000, MOTHER NATURE MATERN; HRDY SB, 1992, ETHOL SOCIOBIOL, V13, P409, DOI 10.1016/0162-3095(92)90011-R; HRDY SB, 1979, ETHOL SOCIOBIOL, V1, P13, DOI 10.1016/0162-3095(79)90004-9; INSEL TR, 2000, REV GEN PSYCHOL, V4, P176, DOI DOI 10.1037/1089-2680.4.2.176); KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; Keyfitz N., 1977, INTRO MATH POPULATIO; Klopfer P.H., 1981, P1; LANCASTER JB, 1997, FEMINISM EVOLUTIONAR, P466; Langer J, 2000, SCH AM RES, P215; Le Doux J.E., 1996, EMOTIONAL BRAIN; LESLIE AM, 1994, MAPPING MIND DOMAIN; LICKLITER R, 1990, DEV REV, V10, P348, DOI 10.1016/0273-2297(90)90019-Z; LOVEJOY CO, 1981, SCIENCE, V211, P341, DOI 10.1126/science.211.4480.341; MAHLER MS, 1982, J AM PSYCHOANAL ASS, V30, P827, DOI 10.1177/000306518203000401; Main M., 1991, ATTACHMENT LIFE CYCL, P127; Marr D., 1982, VISION COMPUTATIONAL; MARRIS P, 1991, ATTACHMENT LIFE CYCL, P77; Marvin R. S., 1999, HDB ATTACHMENT THEOR, P44; Meins E, 1998, SOC DEV, V7, P1, DOI 10.1111/1467-9507.00047; OYAMA S, 1985, ONTOGENY INFORMATION; Oyama Susan, 2000, EVOLUTIONS EYE SYSTE; Panksepp J., 1998, AFFECTIVE NEUROSCIEN; PARKER ST, 1999, ORIGINS INTELLIGENCE; Parker Sue Taylor, 1996, P361; Pianka E. R., 1988, EVOLUTIONARY ECOLOGY; Plotkin H, 1994, DARWIN MACHINES NATU; PREUSS TM, 1995, J COGNITIVE NEUROSCI, V7, P1, DOI 10.1162/jocn.1995.7.1.1; SCHNEIDERROSEN K, 1984, CHILD DEV, V55, P648; SEGER J, 1987, OXFORD SURVEYS EVOLU, V4; Shaver P. R., 1999, HDB ATTACHMENT THEOR; Short R.V., 1979, Advances in the Study of Behavior, V9, P131, DOI 10.1016/S0065-3454(08)60035-2; SIMPSON JA, 1999, HDB ATTACHMENT THEOR, P115; SMUTS B, 1995, HUM NATURE-INT BIOS, V6, P1, DOI 10.1007/BF02734133; Smuts B, 1992, Hum Nat, V3, P1, DOI 10.1007/BF02692265; Smuts B. B., 1985, SEX FRIENDSHIP BABOO; Solomon N.G., 1997, COOPERATIVE BREEDING; Sperber D., 1994, MAPPING MIND DOMAIN, P39, DOI DOI 10.1017/CBO9780511752902.003; STAHL BJ, 1985, VERTEBRATE HIST PROB; STEARNS S, 1982, EVOLUTION FEVELOPMEN; STEARNS S, 1992, EVOLTION LIFE HIST; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Steele H, 1999, SOC DEV, V8, P161, DOI 10.1111/1467-9507.00089; Sterelny K., 1999, SEX DEATH INTRO PHIL; STERN DN, 1985, INTERPERSONAL WORLD; Thompson NS, 2000, PERSP ETHOL, V13, P213; Tomasello M, 1999, CULTURAL ORIGINS HUM; Tooby J., 1992, ADAPTED MIND EVOLUTI, V163, P163, DOI DOI 10.1098/RSTB.2006.1991; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; Trevarthen C, 1979, SPEECH BEGINNING INT, P321; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TRIVERS RL, 1974, AM ZOOL, V14, P249; Uvnas-Moberg K, 1998, PSYCHONEUROENDOCRINO, V23, P819, DOI 10.1016/S0306-4530(98)00056-0; Wagner GP, 1996, AM ZOOL, V36, P36; Wagner W, 1995, NANOSTRUCT MATER, V6, P929, DOI 10.1016/0965-9773(95)00212-X; Wall S., 1978, PATTERNS ATTACHMENT; WASHBURN SL, 1960, SCI AM, V203, P63; Watson J. S, 1979, ORIGINS INFANTS SOCI, P33; WATSON JS, 1972, MERRILL-PALMER Q BEH, V18, P323; Watson JS, 2001, B MENNINGER CLIN, V65, P296, DOI 10.1521/bumc.65.3.296.19848; Watson JS, 1985, SOCIAL PERCEPTION IN, P157; Whiten A., 1997, MACHIAVELLIAN INTELL; Williams GC, 1966, ADAPTATION NATURAL S; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; Winnicott D. W., 1965, MATURATIONAL PROCESS; Wrangham R., 1996, DEMONIC MALES APES O; WRANGHAM RW, 1980, BEHAVIOUR, V75, P262, DOI 10.1163/156853980X00447; WRANGHAM RW, 1993, HUM NATURE-INT BIOS, V4, P47, DOI 10.1007/BF02734089; YOUNG JZ, 1950, LIFE VERTEBRATES 128 12 12 0 2 PSYCHOLOGY PRESS HOVE 27 CHURCH ROAD, HOVE BN3 2FA, E SUSSEX, ENGLAND 1-84169-096-1 MACQUARIE MG COG SCI 2003 125 153 29 Psychology, Biological; Sociology Psychology; Sociology BY94J WOS:000189501000006 2018-11-12 J Hendrickx, F; Maelfait, JP; Speelmans, M; Van Straalen, NM Hendrickx, F; Maelfait, JP; Speelmans, M; Van Straalen, NM Adaptive reproductive variation along a pollution gradient in a wolf spider OECOLOGIA English Article metals; Pirata piraticus; egg size; offspring size; stress ISOPOD PORCELLIO SCABER; OFFSPRING SIZE; TERRESTRIAL INVERTEBRATES; EMPIRICAL-EVALUATION; SCHELDT ESTUARY; BODY-SIZE; CADMIUM; CONSEQUENCES; ARTHROPODS; METALS When populations are exposed to environmental pollutants, growth and reproduction might be strongly reduced due to an increased detoxification effort. Sublethal metal pollution is therefore to be expected to cause the same selection pressure as a low resource habitat and might alter the reproductive strategy. Optimality models of life history theory predict that when resource availability is reduced, growth and reproductive output are reduced and that the release of fewer but larger propagules will be favoured. This was tested by applying a life history model to reproductive trait measurements in six populations of the wolf spider Pirata piraticus in which the assumptions of the model are satisfied. Internal Cd, Cu and Zn body burden were strongly correlated with each other, and differed strongly between the populations, indicating consistently differing metal exposure at the different sites. Pb levels were extremely variable within each population and did not differ between the populations. Females from populations with high concentrations of the first three heavy metals showed a strongly reduced reproductive output and fecundity, indicating a high reduction in resource availability due to detoxification processes. Egg size in contrast was negatively correlated with fecundity and reproductive output and as a consequence positively related with internal metal burden. Our results are thus in strong agreement with the predictions of the optimality models and confirm the benefits of a larger propagule size when resource availability is reduced. Univ Ghent, Dept Biol, Lab Anim Ecol, B-9000 Ghent, Belgium; Inst Nat Conservat, B-1040 Brussels, Belgium; Free Univ Amsterdam, Inst Ecol Sci, NL-1081 HV Amsterdam, Netherlands Hendrickx, F (reprint author), Univ Ghent, Dept Biol, Lab Anim Ecol, KL Ledeganckstr 35, B-9000 Ghent, Belgium. frederick.hendrickx@rug.ac.be Hendrickx, Frederik/F-3149-2013 Alderweireldt M, 1988, B SOC SCI BRETAGNE, V59, P7; ALLAN JD, 1984, EVOLUTION, V38, P280, DOI 10.1111/j.1558-5646.1984.tb00287.x; BENGTSSON G, 1985, J APPL ECOL, V22, P967, DOI 10.2307/2403244; Bernardo J, 1996, AM ZOOL, V36, P216; BREYMEYER A, 1969, Proceedings of the National Symposium on Radioecology, P715; Caley MJ, 2001, EVOLUTION, V55, P1245; DALLINGER R, 1993, SETAC SP P, P245; DONKER MH, 1993, OECOLOGIA, V96, P316, DOI 10.1007/BF00317500; DONKER MH, 1993, SETAC SP P, P383; Du Laing G, 2002, SCI TOTAL ENVIRON, V289, P71, DOI 10.1016/S0048-9697(01)01025-7; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; HAGSTRUM DW, 1971, ANN ENTOMOL SOC AM, V64, P757, DOI 10.1093/aesa/64.4.757; HARDMAN JM, 1974, J ANIM ECOL, V43, P155, DOI 10.2307/3164; Heikens A, 2001, ENVIRON POLLUT, V113, P385, DOI 10.1016/S0269-7491(00)00179-2; Hopkin S.P., 1989, ECOPHYSIOLOGY METALS; HOPKIN SP, 1985, B ENVIRON CONTAM TOX, V34, P183, DOI 10.1007/BF01609722; HUNTER BA, 1987, J APPL ECOL, V24, P587, DOI 10.2307/2403895; Jones DT, 1998, ENVIRON POLLUT, V99, P215, DOI 10.1016/S0269-7491(97)00188-7; Klok C, 1996, ECOTOX ENVIRON SAFE, V33, P118, DOI 10.1006/eesa.1996.0015; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; Maelfait Jean-Pierre, 1998, P293; Maelfait JP, 1996, NATO ASI 2, V10, P165; MALTBY L, 1991, OIKOS, V61, P11, DOI 10.2307/3545402; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; Parry D, 2001, ECOL ENTOMOL, V26, P281, DOI 10.1046/j.1365-2311.2001.00319.x; POSTHUMA L, 1993, COMP BIOCHEM PHYS C, V106, P11, DOI 10.1016/0742-8413(93)90251-F; POSTHUMA L, 1993, EVOLUTION, V47, P619, DOI 10.1111/j.1558-5646.1993.tb02116.x; POSTHUMA L, 1993, OIKOS, V67, P235, DOI 10.2307/3545468; RABITSCH WB, 1995, ENVIRON POLLUT, V90, P249, DOI 10.1016/0269-7491(94)00100-R; REIST JD, 1985, CAN J ZOOL, V63, P1429, DOI 10.1139/z85-213; REIST JD, 1986, CAN J ZOOL, V64, P1363, DOI 10.1139/z86-203; RICE WR, 1994, P NATL ACAD SCI USA, V91, P225, DOI 10.1073/pnas.91.1.225; Roff Derek A., 1992; *SAS I, 1988, SAS US GUID STAT; Shirley MDF, 1999, EVOLUTION, V53, P826, DOI 10.1111/j.1558-5646.1999.tb05376.x; SIBLY R, 1988, J THEOR BIOL, V133, P13, DOI 10.1016/S0022-5193(88)80021-3; SIBLY RM, 1989, BIOL J LINN SOC, V37, P101, DOI 10.1111/j.1095-8312.1989.tb02007.x; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tack FMG, 2000, INT J ENVIRON AN CH, V78, P149, DOI 10.1080/03067310008044407; Tamate T, 2000, OIKOS, V90, P209, DOI 10.1034/j.1600-0706.2000.900201.x; TOFT S, 1979, Entomologiske Meddelelser, V47, P22; Tojal Catarina, 2002, ScientificWorldJournal, V2, P978; VANHOOK RI, 1975, ENVIRON RES, V9, P76, DOI 10.1016/0013-9351(75)90051-1; VANSTRAALEN NM, 1989, ECOTOX ENVIRON SAFE, V17, P190, DOI 10.1016/0147-6513(89)90038-9; VANSTRAALEN NM, 1986, ENVIRON POLLUT A, V42, P209, DOI 10.1016/0143-1471(86)90032-2; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667; Zwolsman JJG, 1996, ESTUAR COAST SHELF S, V43, P55, DOI 10.1006/ecss.1996.0057 49 38 39 3 16 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia JAN 2003 134 2 189 194 10.1007/s00442-002-1031-4 6 Ecology Environmental Sciences & Ecology 642UH WOS:000180822900004 12647159 2018-11-12 B Worthman, CM Wachter, KW; Bulatao, RA Worthman, CM Energetics, sociality, and human reproduction: Life history theory in real life OFFSPRING: HUMAN FERTILITY BEHAVIOR IN BIODEMOGRAPHIC PERSPECTIVE English Proceedings Paper Workshop on the Biodemography of Fertility and Family Behavior JUN, 2002 NATL ACAD, WASHINGTON, D.C. NATL ACAD NATURAL-SELECTION; MAJOR DEPRESSION; PAN-TROGLODYTES; LEPTIN; EVOLUTION; ECOLOGY; FERTILITY; HORMONES; BEHAVIOR; GENE Emory Univ, Dept Anthropol, Atlanta, GA 30322 USA Adair LS, 2001, PEDIATRICS, V107, DOI 10.1542/peds.107.4.e59; ANDERSON LA, 2001, J CLIN ENDOCRINOLOGY, V86, P4951; Anisman H, 1999, MOL PSYCHIATR, V4, P182, DOI 10.1038/sj.mp.4000436; Avitsur R, 1999, PHARMACOL BIOCHEM BE, V64, P787, DOI 10.1016/S0091-3057(99)00165-3; Baile CA, 2000, ANNU REV NUTR, V20, P105, DOI 10.1146/annurev.nutr.20.1.105; BALDWIN JM, 1895, AM NAT, V30, P536; BALDWIN JM, 1895, AM NAT, V30, P441; Barker DJP, 1997, CURR OPIN NEPHROL HY, V6, P106, DOI 10.1097/00041552-199701000-00017; BARKER DJP, 1991, FETAL INFANT ORIGINS; Baskin DG, 1999, HORM METAB RES, V31, P345, DOI 10.1055/s-2007-978751; Beran MJ, 1999, DEV PSYCHOBIOL, V34, P119, DOI 10.1002/(SICI)1098-2302(199903)34:2<119::AID-DEV5>3.0.CO;2-P; Blurton Jones N.H., 1989, COMP SOCIOECOLOGY MA, P365; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; BONGAARTS J, 1983, FERTILITY BIOL BEHAV; BONNR JT, 1974, DEV BIOL FORM; BOYSEN ST, 1995, J COMP PSYCHOL, V109, P47, DOI 10.1037/0735-7036.109.1.47; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; BRONFENBRENNER U., 1979, ECOLOGY HUMAN DEV EX; Bruunsgaard H, 2000, LIFE SCI, V67, P2721, DOI 10.1016/S0024-3205(00)00851-1; Caprio M, 2001, TRENDS ENDOCRIN MET, V12, P65, DOI 10.1016/S1043-2760(00)00352-0; Caro JF, 1996, DIABETES, V45, P1455, DOI 10.2337/diab.45.11.1455; CHANGEUX JP, 1985, NEURONAL MAN; Charnov Eric L., 1993, P1; Chen L. C., 2001, CHALLENGING INEQUITI; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Clark PM, 1996, CLIN ENDOCRINOL, V45, P721, DOI 10.1046/j.1365-2265.1996.8560864.x; CRAWFORD CH, 1998, HDB EVOLUTIONARY PSY; Dantzer R, 2001, BRAIN BEHAV IMMUN, V15, P7, DOI 10.1006/brbi.2000.0613; Darwin C.R., 1871, DESCENT MAN SELECTIO; Dasgupta P, 1993, INQUIRY WELL BEING D; Deacon Terrence, 1997, SYMBOLIC SPECIES COE; Deaton A., 2001, HLTH INEQUALITY EC D; DESJARLAIS R, 1995, WORLD MENTAL HLTH PR; Dollar D., 2001, GLOBALIZATION GROWTH; Edelman G. M., 1987, NEURAL DARWINISM THE; ELLISON PT, 1994, ANNU REV ANTHROPOL, V23, P255, DOI 10.1146/annurev.anthro.23.1.255; Eveleth P. B., 1990, WORLDWIDE VARIATION; FAIL CHD, 1995, ARCH DIS CHILD, V73, P287; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Geary DC, 2001, PARENT-SCI PRACT, V1, P5, DOI 10.1207/S15327922PAR011&2_2; Godfrey KM, 1998, EUR J OBSTET GYN R B, V78, P141, DOI 10.1016/S0301-2115(98)00060-8; Gosling L.M., 1981, P315; Gottlieb G, 1998, PSYCHOL REV, V105, P792, DOI 10.1037/0033-295X.105.4.792-802; GOTTLIEB G, 1991, DEV PSYCHOL, V27, P4, DOI 10.1037/0012-1649.27.1.4; Gould S.J., 1977, ONTOGENY PHYLOGENY; Gwatkin DR, 2000, B WORLD HEALTH ORGAN, V78, P3; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Harris RBS, 2000, ANNU REV NUTR, V20, P45, DOI 10.1146/annurev.nutr.20.1.45; HART BL, 1988, NEUROSCI BIOBEHAV R, V12, P123, DOI 10.1016/S0149-7634(88)80004-6; Havel PJ, 2001, EXP BIOL MED, V226, P963; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Henrich J, 2001, AM ANTHROPOL, V103, P992, DOI 10.1525/aa.2001.103.4.992; Henrich J, 2001, AM ECON REV, V91, P73, DOI 10.1257/aer.91.2.73; Hill K, 1995, ACHE LIFE HIST ECOLO; HOLLIDAY R, 1995, UNDERSTANDING AGING; Hurtado A M, 1992, Hum Nat, V3, P185, DOI 10.1007/BF02692239; HURTADO AM, 1990, J ANTHROPOL RES, V46, P293, DOI 10.1086/jar.46.3.3630428; JONES NB, 1976, KALAHARI HUNTER GATH; JONES NGB, 1992, AM J PHYS ANTHROPOL, V89, P159, DOI 10.1002/ajpa.1330890204; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H, 1997, BETWEEN ZEUS AND THE SALMON, P175; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; Kirkwood T.B.L., 1981, P165; Lander ES, 2001, NATURE, V409, P860, DOI 10.1038/35057062; Maes M, 1999, ADV EXP MED BIOL, V461, P25; Maleszka R, 1998, P NATL ACAD SCI USA, V95, P3731, DOI 10.1073/pnas.95.7.3731; Mantzoros CS, 2001, J CLIN ENDOCR METAB, V86, P3284, DOI 10.1210/jc.86.7.3284; Mantzoros CS, 1999, ANN INTERN MED, V130, P671, DOI 10.7326/0003-4819-130-8-199904200-00014; Mantzoros CS, 1998, CLIN ENDOCRINOL, V49, P551, DOI 10.1046/j.1365-2265.1998.00571.x; MASSARO DW, 1998, PERCEIVING TALKING F; McDade TW, 1999, AM J HUM BIOL, V11, P705, DOI 10.1002/(SICI)1520-6300(199911/12)11:6<705::AID-AJHB1>3.0.CO;2-G; McDade TW, 2001, AM J CLIN NUTR, V74, P543; McDade TW, 1998, J DEV BEHAV PEDIATR, V19, P286, DOI 10.1097/00004703-199808000-00008; McEwen BS, 2000, NEUROPSYCHOPHARMACOL, V22, P108, DOI 10.1016/S0893-133X(99)00129-3; Miklos GLG, 2000, NAT NEUROSCI, V3, P424, DOI 10.1038/74786; Miklos GLG, 2001, PROTEOMICS, V1, P169, DOI 10.1002/1615-9861(200102)1:2<169::AID-PROT169>3.3.CO;2-3; Mulder M Borgerhoff, 1992, EVOLUTIONARY ECOLOGY, P339; MULDER MB, 1995, CURR ANTHROPOL, V36, P573, DOI 10.1086/204405; Murray C.J.L., 1996, GLOBAL BURDEN DIS; NESSE R, 1994, WHY WE GET SICK NEW; Owen BM, 2001, ACTA PSYCHIAT SCAND, V103, P226, DOI 10.1034/j.1600-0447.2001.00162.x; OYAMA S, 1985, ONTOGENY INFORMATION; PROMISLOW D, 1990, J ZOOLOGICAL SOC LON, V220, P431; PROOS LA, 1991, ACTA PAEDIATR SCAND, V80, P852, DOI 10.1111/j.1651-2227.1991.tb11960.x; Rasmussen AK, 2000, DAN MED BULL, V47, P94; REEVE HK, 1993, Q REV BIOL, V68, P1, DOI 10.1086/417909; Ricklefs RE, 1998, AM NAT, V152, P24, DOI 10.1086/286147; RIVEST S, 1995, ENDOCR REV, V16, P177, DOI 10.1210/er.16.2.177; Rogoff Barbara, 1990, APPRENTICESHIP THINK; Schwartz MW, 1997, DIABETES CARE, V20, P1476, DOI 10.2337/diacare.20.9.1476; Seeman TE, 1996, PSYCHOSOM MED, V58, P459, DOI 10.1097/00006842-199609000-00008; Smith E. A., 1992, EVOLUTIONARY ECOLOGY; SMITH JM, 1978, EVOLUTION SEX; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Straub RH, 2000, J NEUROIMMUNOL, V109, P10, DOI 10.1016/S0165-5728(00)00296-4; SUPER CM, 1986, INT J BEHAV DEV, V9, P545, DOI 10.1177/016502548600900409; Susser M, 1999, BRIT MED J, V318, P885, DOI 10.1136/bmj.318.7188.885; TOMASELLO M, 1993, BEHAV BRAIN SCI, V16, P495, DOI 10.1017/S0140525X0003123X; Tomasello M, 1999, ANNU REV ANTHROPOL, V28, P509, DOI 10.1146/annurev.anthro.28.1.509; Trayhurn P, 1996, BIOCHEM SOC T, V24, P565, DOI 10.1042/bst0240565; Trevathan WR, 1999, EVOLUTIONARY MED; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Venter JC, 2001, SCIENCE, V291, P1304, DOI 10.1126/science.1058040; von Laue S, 2000, GROWTH HORM IGF RES, V10, P9, DOI 10.1016/S1096-6374(00)80003-9; Vygotsky L., 1986, THOUGHT LANGUAGE; Vygotsky LS, 1978, MIND SOC; Wauters M, 2000, EUR J ENDOCRINOL, V143, P293, DOI 10.1530/eje.0.1430293; WHO, 1995, PHYS STAT US INT ANT; WILKINSON R, 1996, UNHEALTHY SOC AFFLIC; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1985, SEX EVOLUTION; Williams S, 1999, BRIT MED J, V318, P897, DOI 10.1136/bmj.318.7188.897; WOOD JW, 1994, DYNAMICS HUMAN REPRO; *WORLD BANK, 2001, FAC GLOB; Worthman C., 1999, HORMONES HLTH BEHAV, P47; Worthman CM, 1999, EVOLUTIONARY MEDICI NE, P135; WORTHMAN CM, 2002, LIFE COURSE APPROACH; Yirmiya R, 2000, ANN NY ACAD SCI, V917, P478 120 14 14 0 1 NATL ACADEMIES PRESS WASHINGTON 2101 CONSTITUTION AVE, WASHINGTON, DC 20418 USA 0-309-08718-X 2003 289 321 33 Behavioral Sciences; Demography Behavioral Sciences; Demography BX76E WOS:000186345000010 2018-11-12 J Schmid-Hempel, P; Ebert, D Schmid-Hempel, P; Ebert, D On the evolutionary ecology of specific immune defence TRENDS IN ECOLOGY & EVOLUTION English Editorial Material TRADE-OFFS; RED QUEEN; HOST; PARASITES; COEVOLUTION; RESISTANCE; IMMUNOCOMPETENCE; IMMUNOLOGY; SELECTION; PATHOGENS Evolutionary ecology has developed along two major conceptual avenues, starting from the observation that hosts vary in their immune defence against parasites The first avenue, rooted in life-history theory, assumes fitness costs of immune defence and tradeoffs in the face of limited resources, rather than specific host-parasite interactions. The second avenue focuses on specific responses, especially those generated by genotype-genotype interaction between and within host and parasite species. Specificity in the interactions between hosts and parasites play a crucial role in the field but analysis is difficult. Here, we classify concepts about host-parasite interactions into these two families and discuss their reconciliation with the help of a defence component model and two-dimensional classification scheme of the individual components. This helps to clarify some of the confusing terminology and might guide further research in the field. ETH Zentrum, ETH Zurich, CH-8092 Zurich, Switzerland; Univ Fribourg, Dept Ecol & Evolut Biol, CH-1700 Fribourg, Switzerland Schmid-Hempel, P (reprint author), ETH Zentrum, ETH Zurich, CH-8092 Zurich, Switzerland. Ebert, Dieter/B-5502-2009 Ebert, Dieter/0000-0003-2653-3772 Andersson M., 1994, SEXUAL SELECTION; BEEGLE CC, 1974, J INVERTEBR PATHOL, V24, P188, DOI 10.1016/0022-2011(74)90010-X; BELL G, 1982, MASTERPIECE NATURE U; Burdon JJ, 1987, DIS PLANT POPULATION; Carius HJ, 2001, EVOLUTION, V55, P1136; CARTON Y, 1991, ACTA OECOL, V12, P89; Christe P, 1996, ANIM BEHAV, V52, P1087, DOI 10.1006/anbe.1996.0256; Clarke BC, 1996, PARASITOLOGY, V112, pS85; Decaestecker E, 2002, P NATL ACAD SCI USA, V99, P5481, DOI 10.1073/pnas.082543099; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; DOBSON A, 1994, TRENDS ECOL EVOL, V9, P393, DOI 10.1016/0169-5347(94)90062-0; Ebert D, 1998, SCIENCE, V282, P1432, DOI 10.1126/science.282.5393.1432; Ebert Dieter, 1996, Trends in Ecology and Evolution, V11, P79, DOI 10.1016/0169-5347(96)81047-0; Gandon S, 2001, NATURE, V414, P751, DOI 10.1038/414751a; Gemmill A. W., 1998, TRENDS ECOL EVOL, V13, P8; Hamilton W.D., 1981, P363; HAMILTON WD, 1993, J HERED, V84, P328, DOI 10.1093/oxfordjournals.jhered.a111353; HAMILTON WD, 1980, OIKOS, V35, P282, DOI 10.2307/3544435; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; HART BL, 1994, PARASITOLOGY, V109, P139; JAENIKE J, 1993, EVOL ECOL, V7, P103, DOI 10.1007/BF01237736; Jokela J, 2000, OIKOS, V89, P267, DOI 10.1034/j.1600-0706.2000.890207.x; KONIG C, 1995, P ROY SOC B-BIOL SCI, V260, P225, DOI 10.1098/rspb.1995.0084; Kraaijeveld AR, 1997, NATURE, V389, P278; Lessard M, 1997, POULTRY SCI, V76, P1368, DOI 10.1093/ps/76.10.1368; Levin BR, 2001, SCIENCE, V292, P1112, DOI 10.1126/science.1058879; LEVIN DA, 1973, Q REV BIOL, V48, P3, DOI 10.1086/407484; Lively CM, 2000, NATURE, V405, P679, DOI 10.1038/35015069; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; LORD GM, 2001, SCIENCE, V252, P856; Moore J, 2002, PARASITES BEHAV ANIM; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; NESSE RM, 1994, EVOLUTION HEALING; NOWAK MA, 1991, SCIENCE, V254, P963, DOI 10.1126/science.1683006; Oldroyd GED, 1998, P NATL ACAD SCI USA, V95, P10300, DOI 10.1073/pnas.95.17.10300; Panda N., 1995, HOST PLANT RESISTANC; Peters AD, 1999, AM NAT, V154, P393, DOI 10.1086/303247; Rolff J, 2002, P NATL ACAD SCI USA, V99, P9916, DOI 10.1073/pnas.152271999; Sasaki A, 1999, P ROY SOC B-BIOL SCI, V266, P455, DOI 10.1098/rspb.1999.0659; Schmid-Hempel P, 1999, EVOLUTION, V53, P426, DOI 10.1111/j.1558-5646.1999.tb03778.x; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Shudo E, 2001, J THEOR BIOL, V209, P233, DOI 10.1006/jtbi.2000.2259; SIVAJOTHY MT, 1995, TRENDS ECOL EVOL, V10, P205, DOI 10.1016/S0169-5347(00)89059-X; STRAND MR, 1995, ANNU REV ENTOMOL, V40, P31, DOI 10.1146/annurev.ento.40.1.31; THOMPSON JN, 1992, NATURE, V360, P121, DOI 10.1038/360121a0; Thompson RCA, 1996, PARASITOLOGY, V112, pS7; Wilson K, 1998, ECOL ENTOMOL, V23, P100, DOI 10.1046/j.1365-2311.1998.00107.x; Zuk M, 1996, PARASITOL TODAY, V12, P46, DOI 10.1016/0169-4758(96)80650-8 48 306 315 3 114 ELSEVIER SCIENCE LONDON LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. JAN 2003 18 1 27 32 PII S0169-5347(02)00013-7 10.1016/S0169-5347(02)00013-7 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 628QG WOS:000180007200008 2018-11-12 S McDade, TW Stinson, S McDade, TW Life history theory and the immune system: Steps toward a human ecological immunology YEARBOOK OF PHYSICAL ANTHROPOLOGY: VOL 46 Yearbook of Physical Anthropology English Article immunology; human biology; growth and development; evolutionary theory; infectious disease PAPUA-NEW-GUINEA; SERUM IMMUNOGLOBULIN LEVELS; PARENT-OFFSPRING CONFLICT; NOMADIC TURKANA CHILDREN; CELL-MEDIATED-IMMUNITY; ACUTE-PHASE PROTEINS; AGE-RELATED-CHANGES; C-REACTIVE PROTEIN; RED JUNGLE FOWL; DEVELOPING-COUNTRIES Within anthropology and human biology, there is growing interest in immune function and its importance to the ecology of human health and development. Biomedical research currently dominates our understanding of immunology, and this paper seeks to highlight the potential contribution of a population-based, ecological approach to the study of human immune function. Concepts from life-history theory are applied to highlight the major challenges and demands that are likely to shape immune function in a range of ecological contexts. Immune function is a major component of maintenance effort, and since resources are limited, trade-offs are expected between investment in maintenance and other critical life-history functions involving growth and reproduction. An adaptationist, life-history perspective helps make sense of the unusual developmental trajectory of immune tissues, and emphasizes that this complex system is designed to incorporate information from the surrounding ecology to guide its development. As a result, there is substantial population variation in immune development and function that is not considered by current biomedical approaches. In an attempt to construct a framework for understanding this variation, immune development is considered in relation to the competing life-history demands that define gestation, infancy, childhood, adolescence, and adulthood. Each life stage poses a unique set of adaptive challenges, and a series of hypotheses is proposed regarding their implications for immune development and function. Research in human ecological immunology is in its earliest stages, but this is a promising area of exploration, and one in which anthropology is well-positioned to make important contributions. (C) 2003 Wiley-Liss, Inc. Northwestern Univ, Dept Anthropol, Evanston, IL 60208 USA McDade, TW (reprint author), Northwestern Univ, Dept Anthropol, Evanston, IL 60208 USA. t-mcdade@northwestern.edu ADAIR LS, 1992, J NUTR, V122, P1643; ADAIR LS, 1993, DEMOGRAPHY, V30, P63, DOI 10.2307/2061863; ADER R, 2001, PSYCHONEUROIMMMUNOLO; ARONSON M, 1991, THYMUS, V18, P7; BALLOU SP, 1992, ADV INTERNAL MED, V37, P313; Barnes KC, 1999, EVOLUTIONARY MEDICI NE, P209; Barrett R, 1998, ANNU REV ANTHROPOL, V27, P247, DOI 10.1146/annurev.anthro.27.1.247; BAUMANN H, 1994, IMMUNOL TODAY, V15, P74, DOI 10.1016/0167-5699(94)90137-6; BEACH RS, 1982, SCIENCE, V218, P469, DOI 10.1126/science.7123244; BEISEL WR, 1984, PROG FOOD NUTR SCI, V8, P43; Besedovsky HO, 1991, PSYCHONEUROIMMUNOLOG, P589; Billington WD, 1992, IMMUNOLOGICAL OBSTET, P290; BJORKSTEN B, 1994, INHALANT ALLERGY HYP, P561; BLACK RE, 1989, PEDIATR INFECT DIS J, V8, P210; BLACK RE, 1991, ACTA PAEDIATR SCAND, P133; Blackburn S.T., 1992, MATERNAL FETAL NEONA; BLOEMENA E, 1989, J IMMUNOL METHODS, V122, P161, DOI 10.1016/0022-1759(89)90260-3; BOCTOR FN, 1989, IMMUNOL INVEST, V18, P775, DOI 10.3109/08820138909030598; Bogin B., 1999, PATTERNS HUMAN GROWT; BRIBIESCAS RG, 2001, REPROD ECOLOGY HUMAN, P107; BRIEND A, 1990, EUR J CLIN NUTR, V44, P611; BROWN KH, 1990, AM J CLIN NUTR, V52, P1005; BUTTE NF, 1989, P NUTR SOC, V48, P303, DOI 10.1079/PNS19890042; Buttgereit F, 2000, IMMUNOL TODAY, V21, P192; CAMPBELL BC, 1994, ANN NY ACAD SCI, V709, P117, DOI 10.1111/j.1749-6632.1994.tb30392.x; CAMPBELL BC, 2001, REPROD ECOLOGY HUMAN, P159; CARDARELLI NF, 1989, THYMUS HLTH SENESCEN; Carson RT, 1999, J IMMUNOL METHODS, V227, P41, DOI 10.1016/S0022-1759(99)00069-1; *CEB STUD TEAM, 1989, CEB LONG HLTH NUTR S; CHANDRA RK, 1975, AM J DIS CHILD, V129, P450, DOI 10.1001/archpedi.1975.02120410038013; CHANDRA RK, 1975, SCIENCE, V190, P289, DOI 10.1126/science.1179211; CHANDRA RK, 1991, INTERACTIONS EARLY N, P77; Chandra RK, 1988, NUTR IMMUNOLOGY; CHANGEUX J, 1985, NEURONAL MAN BIOL MI; Charnov EL, 2001, EVOL ECOL RES, V3, P521; Charnov Eric L., 1993, P1; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; COHEN S, 1962, CLIN SCI, V23, P351; Cookson WOCM, 1997, SCIENCE, V275, P41, DOI 10.1126/science.275.5296.41; COTMAN CW, 1987, NEUROIMMUNEENDOCRINE; Da Silva JAP, 1999, ANN NY ACAD SCI, V876, P102; Demas GE, 1997, AM J PHYSIOL-REG I, V273, pR1631; DENNY T, 1992, JAMA-J AM MED ASSOC, V267, P1484, DOI 10.1001/jama.267.11.1484; Dong C, 2001, CURR OPIN HEMATOL, V8, P47, DOI 10.1097/00062752-200101000-00009; Dressler WW, 1995, YEARB PHYS ANTHROPOL, V38, P27; ELGHOLMY A, 1970, J TROP MED HYG, V73, P196; Elia M., 1992, ENERGY METABOLISM TI; ELLISON PT, 1993, HUM REPROD, V8, P2248, DOI 10.1093/oxfordjournals.humrep.a138015; ELLISON PT, 2001, FERTILE GROUND NATUR, P61; ELSASSERBEILE U, 1991, J IMMUNOL METHODS, V139, P191, DOI 10.1016/0022-1759(91)90188-L; Eveleth P. B., 1990, WORLDWIDE VARIATION; FABRIS N, 1992, ANN NY ACAD SCI, V663, P335, DOI 10.1111/j.1749-6632.1992.tb38677.x; FABRIS N, 1988, ANN NY ACAD SCI, V521, P72, DOI 10.1111/j.1749-6632.1988.tb35266.x; FABRIS N, 1989, HORM RES, V31, P85, DOI 10.1159/000181093; Fergusson DM, 1997, CLIN EXP ALLERGY, V27, P1394, DOI 10.1046/j.1365-2222.1997.1430947.x; FILTEAU SM, 1995, AM J CLIN NUTR, V62, P434; FLECK A, 1989, P NUTR SOC, V48, P347, DOI 10.1079/PNS19890050; Flinn Mark V, 1999, HORMONES HLTH BEHAV, P105; GALA RR, 1991, P SOC EXP BIOL MED, V198, P513; George AJT, 1996, IMMUNOL TODAY, V17, P267, DOI 10.1016/0167-5699(96)80543-3; GERSHWIN ME, 1985, NUTR IMMUNITY, P60; GERSHWIN ME, 2000, NUTR IMMUNOLOGY; GODFREY KM, 1994, CLIN EXP ALLERGY, V24, P641, DOI 10.1111/j.1365-2222.1994.tb00968.x; GOLDMAN AS, 1993, PEDIATR INFECT DIS J, V12, P664, DOI 10.1097/00006454-199308000-00008; GOLDSBY RA, 2000, KUBY IMMUNOLOGY; GOODMAN A, 1998, BUILDING NEW BIOCULT; Goya RG, 1999, GERONTOLOGY, V45, P174, DOI 10.1159/000022082; Grossman CG, 1994, BILATERAL COMMUNICAT; GROSSMAN CJ, 1985, SCIENCE, V227, P257, DOI 10.1126/science.3871252; HADDEN JW, 1992, ANN NY ACAD SCI, V673, P231, DOI 10.1111/j.1749-6632.1992.tb27458.x; HANSON LA, 1989, IMMUNOLOGIC DISORDER, P116; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Hawkes K, 2003, AM J HUM BIOL, V15, P380, DOI 10.1002/ajhb.10156; Hermanussen M, 1998, HORM RES, V49, P53, DOI 10.1159/000023127; HICKS MJ, 1983, AM J CLIN PATHOL, V80, P159; HICKS MJ, 1983, ARCH PATHOL LAB MED, V107, P518; Hoff C, 1999, MED HYPOTHESES, V53, P63, DOI 10.1054/mehy.1997.0713; HOFFMANGOETZ L, 1986, YEARB PHYS ANTHROPOL, V29, P139; HOLLIDAY MA, 1986, HUMAN GROWTH COMPREH, V2, P101; HOSHOWER LM, 1994, AM J PHYS ANTHROPOL, V94, P421, DOI 10.1002/ajpa.1330940310; Howard JK, 1999, J CLIN INVEST, V104, P1051, DOI 10.1172/JCI6762; Hurtado AM, 2003, AM J PHYS ANTHROPOL, V121, P134, DOI 10.1002/ajpa.10228; Hurtado AM, 1997, HUM NATURE-INT BIOS, V8, P51, DOI 10.1007/s12110-997-1004-8; Hurtado AM, 1996, ACHE LIFE HIST; *I MED, 1991, NUTR LACT; Illi S, 2001, BRIT MED J, V322, P390, DOI 10.1136/bmj.322.7283.390; IMURA H, 1991, CLIN ENDOCRINOL, V35, P107, DOI 10.1111/j.1365-2265.1991.tb03506.x; INHORN MC, 1990, ANNU REV ANTHROPOL, V19, P89; Iwatani Y, 1998, CURR OPIN OBSTET GYN, V10, P453, DOI 10.1097/00001703-199812000-00004; JANOFF EN, 1990, WESTERN J MED, V152, P253; Janson Charles H., 1993, P57; JENKINS CL, 1984, ECOL FOOD NUTR, V14, P261, DOI 10.1080/03670244.1984.9990795; JENKINS CL, 1985, BREASTFEEDING CHILD, P11; Jones CA, 2000, ALLERGY, V55, P2, DOI 10.1034/j.1398-9995.2000.00109.x; JONES MC, 1992, IMMUNOLOGICAL OBSTET, P117; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; KELLER MA, 1992, IMMUNOLOGICAL OBSTET, P315; KELLEY KW, 1987, ANN NY ACAD SCI, V496, P97; KENDALL MD, 1980, J ANAT, V131, P483; Kirkwood T.B.L., 1981, P165; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KLEIN JO, 1990, INFECT DIS, P1; KLEIN RB, 1977, PEDIATRICS, V60, P467; KONNER M, 1980, SCIENCE, V207, P788, DOI 10.1126/science.7352291; Kuzawa CW, 1998, YEARB PHYS ANTHROPOL, V41, P177; Kuzawa CW, 2003, AM J CLIN NUTR, V77, P960; LAMPL M, 1992, SCIENCE, V258, P801, DOI 10.1126/science.1439787; LAMPL M, 1996, AM J PHYSICAL ANTH S, V22, P145; LASKER GW, 1969, SCIENCE, V166, P1480, DOI 10.1126/science.166.3912.1480; LAU YL, 1992, J PAEDIATR CHILD H, V28, P240, DOI 10.1111/j.1440-1754.1992.tb02654.x; Lederman MM, 1984, CHEST, V86, P6; Leigh SR, 2001, EVOL ANTHROPOL, V10, P223, DOI 10.1002/evan.20002; Lessells C.M., 1991, P32; LEWIS D, 1995, INFECT DIS FETUS NEW, P108; Libby P, 2002, CIRCULATION, V105, P1135, DOI 10.1161/hc0902.104353; Lisse IM, 1997, SCAND J IMMUNOL, V45, P637, DOI 10.1046/j.1365-3083.1997.d01-440.x; Lisse IM, 1997, J PEDIATR-US, V130, P77, DOI 10.1016/S0022-3476(97)70313-5; LISSE IM, 1990, J IMMUNOL METHODS, V129, P49, DOI 10.1016/0022-1759(90)90419-V; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Lord G, 2002, NUTR REV, V60, pS35, DOI 10.1301/002966402320634913; Lord GM, 1998, NATURE, V394, P897, DOI 10.1038/29795; LUBACH GR, 1995, BRAIN BEHAV IMMUN, V9, P31, DOI 10.1006/brbi.1995.1004; LUNN PG, 1994, ANN NY ACAD SCI, V709, P77, DOI 10.1111/j.1749-6632.1994.tb30389.x; Lunn PG, 2000, P NUTR SOC, V59, P147, DOI 10.1017/S0029665100000173; LUNN PG, 1991, LANCET, V338, P907, DOI 10.1016/0140-6736(91)91772-M; Lunn PG, 1991, DECLINE MORTALITY EU, P131; Lycett JE, 2000, P ROY SOC B-BIOL SCI, V267, P31, DOI 10.1098/rspb.2000.0962; Martin LB, 2003, P ROY SOC B-BIOL SCI, V270, P153, DOI 10.1098/rspb.2002.2185; MARTINEZ FD, 1995, THORAX, V50, P1067, DOI 10.1136/thx.50.10.1067; MARTORELL R, 1975, AM J DIS CHILD, V129, P1296, DOI 10.1001/archpedi.1975.02120480022007; MARTORELL R, 1980, AM J CLIN NUTR, V33, P345; MATA L, 1992, AM J TROP MED HYG, V47, P16, DOI 10.4269/ajtmh.1992.47.16; MATA LJ, 1977, AM J CLIN NUTR, V30, P1215; Matricardi PM, 2000, BRIT MED J, V320, P412, DOI 10.1136/bmj.320.7232.412; McDade TW, 2000, AM J HUM BIOL, V12, P792, DOI 10.1002/1520-6300(200011/12)12:6<792::AID-AJHB7>3.0.CO;2-F; McDade TW, 2000, PSYCHOSOM MED, V62, P560, DOI 10.1097/00006842-200007000-00015; McDade TW, 1999, AM J HUM BIOL, V11, P705, DOI 10.1002/(SICI)1520-6300(199911/12)11:6<705::AID-AJHB1>3.0.CO;2-G; McDade TW, 2003, AM J HUM BIOL, V15, P273; McDade TW, 2001, HUM NATURE-INT BIOS, V12, P9, DOI 10.1007/s12110-001-1011-0; McDade TW, 2001, J NUTR, V131, P1225; McDade TW, 2001, AM J CLIN NUTR, V74, P543; McDade TW, 2001, AM J PHYS ANTHROPOL, P106; McDade TW, 1998, J DEV BEHAV PEDIATR, V19, P286, DOI 10.1097/00004703-199808000-00008; MCDADE TW, IN PRESS FETAL NUTR; MCDADE TW, IN PRESS CLIN EXP AL; McLean AR, 1997, P NATL ACAD SCI USA, V94, P5792, DOI 10.1073/pnas.94.11.5792; MERCHANT K, 1988, PROG FOOD NUTR SCI, V12, P339; MERCHANT K, 1990, AM J CLIN NUTR, V52, P280; MESTECKY J, 1993, ANN NY ACAD SCI, V694, P184, DOI 10.1111/j.1749-6632.1993.tb18352.x; MILLER RA, 1990, HDB BIOL AGING, P157; MILLINGTON G, 1992, J ENDOCRINOL, V133, P163, DOI 10.1677/joe.0.1330163; MOHAMMED I, 1973, LANCET, V1, P481; Moller AP, 1999, Q REV BIOL, V74, P3, DOI 10.1086/392949; Moore SE, 1997, NATURE, V388, P434, DOI 10.1038/41245; Moore SE, 1998, P NUTR SOC, V57, P241, DOI 10.1079/PNS19980038; Moore SL, 2002, SCIENCE, V297, P2015, DOI 10.1126/science.1074196; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; MULLERHERMELINK HK, 1982, ADV EXP MED BIOL, V149, P303; NAYAK N, 1987, J INFECT DIS, V155, P724, DOI 10.1093/infdis/155.4.724; Nelson RJ, 1996, Q REV BIOL, V71, P511, DOI 10.1086/419555; Nishanian P, 1998, CLIN DIAGN LAB IMMUN, V5, P507; Nunn CL, 2002, EVOL ECOL RES, V4, P91; Nunn CL, 2000, SCIENCE, V290, P1168, DOI 10.1126/science.290.5494.1168; OGRA PL, 1990, INFECT DIS, P68; Ots I, 2001, P ROY SOC B-BIOL SCI, V268, P1175, DOI 10.1098/rspb.2001.1636; OYAMA S, 1985, ONTOGENY INFORMATION; Pagel Mark D., 1993, P28; Panter-Brick C, 1999, HORMONES HLTH BEHAV; Panter-Brick C, 1998, BIOSOCIAL PERSPECTIV, P66; PANTERBRICK C, 2000, BR J NUTR, V85, P1; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PAUL WE, 1998, FUNDAMENTAL IMMUNOLO; PELLETIER DL, 1995, B WORLD HEALTH ORGAN, V73, P443; PICKERING LK, 1986, HUMAN LACTATION, V2, P499; PIERSE PJ, 1991, PROGR FOOD NUTR SCI, V12, P21; PIRENNE H, 1992, PEDIATR RES, V32, P81, DOI 10.1203/00006450-199207000-00016; POPKIN BM, 1990, PEDIATRICS, V86, P874; PRENTICE A, 1994, AM J CLIN NUTR, V59, p477S, DOI 10.1093/ajcn/59.2.477S; Prentice AM, 2002, NUTR REV, V60, pS56, DOI 10.1301/002966402320634940; PRENTICE AM, 1988, ANNU REV NUTR, V8, P63; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; QUIE PG, 1990, SEMIN PERINATOL, V14, P2; Read AF, 2000, SCIENCE, V290, P1104, DOI 10.1126/science.290.5494.1104; ROITT I, 2001, IMMUNOLOGY; Rook GAW, 1998, IMMUNOL TODAY, V19, P113, DOI 10.1016/S0167-5699(97)01204-8; Ross R, 1999, NEW ENGL J MED, V340, P115, DOI 10.1056/NEJM199901143400207; ROWE DS, 1972, LANCET, V2, P1232; ROWLAND MGM, 1988, AM J CLIN NUTR, V47, P134; Sattenspiel L, 2000, YEARB PHYS ANTHROPOL, V43, P3; Scammon R. E., 1930, MEASUREMENT MAN, P171; SCHUURS AHWM, 1990, J STEROID BIOCHEM, V35, P157, DOI 10.1016/0022-4731(90)90270-3; Scrimshaw NS, 1981, TXB PEDIAT NUTR, P229; SHADRIN AS, 1977, J HYG EPID MICROB IM, V21, P155; Shaheen SO, 1996, LANCET, V347, P1792, DOI 10.1016/S0140-6736(96)91617-7; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SHELLDUNCAN B, 1995, AM J HUM BIOL, V7, P339, DOI 10.1002/ajhb.1310070310; SHELLDUNCAN B, 1993, AM J HUM BIOL, V5, P225, DOI 10.1002/ajhb.1310050212; ShellDuncan B, 1997, J TROP PEDIATRICS, V43, P25, DOI 10.1093/tropej/43.1.25; Shirakawa T, 1997, SCIENCE, V275, P77, DOI 10.1126/science.275.5296.77; SHKHINEK EK, 1985, NEUROHUMORAL MAINTEN, P98; SOLOMONS NW, 1993, PARASITOLOGY, V107, pS19, DOI 10.1017/S003118200007548X; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEINMANN GG, 1985, SCAND J IMMUNOL, V22, P563, DOI 10.1111/j.1365-3083.1985.tb01916.x; STIEHM ER, 1966, PEDIATRICS, V37, P715; STINSON S, 1985, YEARB PHYS ANTHROPOL, V28, P123; STOOP JW, 1969, CLIN EXP IMMUNOL, V4, P101; STRACHAN DP, 1989, BRIT MED J, V299, P1259, DOI 10.1136/bmj.299.6710.1259; SUSKIND RA, 2001, NUTR IMMUNITY INFECT; TANNER JM, 1990, FOETUS MAN PHYS GROW; Thellin O, 2003, TOXICOLOGY, V185, P179, DOI 10.1016/S0300-483X(02)00607-8; Tishkoff SA, 2002, NAT REV GENET, V3, P611, DOI 10.1038/nrg865; TONEGAWA S, 1983, NATURE, V302, P575, DOI 10.1038/302575a0; TOSI P, 1982, CLIN EXP IMMUNOL, V47, P497; TRIVERS RL, 1974, AM ZOOL, V14, P249; Ulijaszek SJ, 1998, AM J PHYS ANTHROPOL, V106, P515, DOI 10.1002/(SICI)1096-8644(199808)106:4<515::AID-AJPA6>3.0.CO;2-H; Vitzthum Virginia J., 1994, Yearbook of Physical Anthropology, V37, P307; WALKER SP, 1992, AM J CLIN NUTR, V56, P504; WATERLOW JC, 1984, Q J EXP PHYSIOL CMS, V69, P409, DOI 10.1113/expphysiol.1984.sp002829; WATERLOW JC, 1981, J HUM NUTR, V35, P85; Weetman AP, 1999, THYROID, V9, P643, DOI 10.1089/thy.1999.9.643; WEISS KM, 1993, GENETIC VARIATION HU; WILLIAMS GC, 1991, Q REV BIOL, V66, P1, DOI 10.1086/417048; Williams-Blangero S, 1999, AM J TROP MED HYG, V60, P921, DOI 10.4269/ajtmh.1999.60.921; WILSON CB, 1990, INFECT DIS, P17; WINDMILL KF, 1993, REPROD FERT DEVELOP, V5, P73, DOI 10.1071/RD9930073; WITT CS, 1991, PAPUA NEW GUINEA MED, V34, P98; WOOD JW, 1994, DYNAMICS HUMAN REPRO; WORMALD PJ, 1977, J HYG-CAMBRIDGE, V79, P39, DOI 10.1017/S0022172400052827; Worthman C., 1999, HORMONES HLTH BEHAV, P47; Worthman C., 1993, JUVENILE PRIMATES LI, P339; WORTHMAN CM, 1987, CULTURAL ANTHR, V2, P29; Yazdanbakhsh M, 2002, SCIENCE, V296, P490, DOI 10.1126/science.296.5567.490; ZEGERS BJM, 1973, VOX SANG, V24, P457, DOI 10.1111/j.1423-0410.1973.tb03486.x; ZOHOORI N, 1993, J BIOSOC SCI, V25, P127; ZUK M, 1995, P ROY SOC B-BIOL SCI, V260, P205, DOI 10.1098/rspb.1995.0081; Zuk M, 2000, BEHAV ECOL, V11, P146, DOI 10.1093/beheco/11.2.146; ZUMRAWI FY, 1987, HUM NUTR-CLIN NUTR, V41C, P453 238 130 139 0 36 WILEY-LISS, INC NEW YORK 605 THIRD AVE, NEW YORK, NY 10158-0012 USA 0096-848X YEARB PHYS ANTHROPOL Yearb. Phys. Anthropol. 2003 46 100 125 10.1002/ajpa.10398 26 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology BAQ14 WOS:000223197900005 14666535 Bronze 2018-11-12 J Proulx, SR; Day, T; Rowe, L Proulx, SR; Day, T; Rowe, L Older males signal more reliably PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article sexual selection; handicap signalling; life-history theory MALE AGE; DROSOPHILA-MELANOGASTER; COLLARED FLYCATCHERS; MATE CHOICE; TRADE-OFFS; GOOD GENES; HANDICAP; HONEST; TRAITS; EVOLUTION The hypothesis that females prefer older males because they have higher mean fitness than younger males has been the centre of recent controversy. These discussions have focused on the success of a female who prefers males of a particular age class when age cues, but not quality cues, are available. Thus, if the distribution of male quality changes with age, such that older males have on average genotypes with higher fitness than younger males, then a female who mates with older males has fitter offspring, which allows the female preference to spread through a genetic correlation. We develop a general model for male display in a species with multiple reproductive bouts that allows us to identify the conditions that promote reliable signalling within an age class. Because males have opportunities for future reproduction, they will reduce their levels of advertising compared with a semelparous species. In addition, because higher-quality males have more future reproduction, they will reduce their advertising more than low-quality males. Thus, the conditions for reliable signalling in a semelparous organism are generally not sufficient to produce reliable signalling in species with multiple reproductive bouts. This result is due to the possibility of future reproduction so that, as individuals age and the opportunities for future reproduction fade, signalling becomes more reliable. This provides a novel rationale for female preference for older mates; older males reveal more information in their sexual displays. Univ Toronto, Dept Zool, Toronto, ON M5S 3G5, Canada Proulx, SR (reprint author), Univ Oregon, Dept Ecol & Evolutionary Biol, Eugene, OR 97403 USA. proulx@proulxresearch.org Proulx, Stephen/A-8160-2008; Proulx, Stephen/C-9213-2009 Proulx, Stephen/0000-0003-0307-1907; Day, Troy/0000-0002-1052-6140 Abrams PA, 1995, EVOLUTION, V49, P1055, DOI 10.1111/j.1558-5646.1995.tb04433.x; Beck CW, 2000, EVOL ECOL RES, V2, P107; Brooks R, 2001, TRENDS ECOL EVOL, V16, P308, DOI 10.1016/S0169-5347(01)02147-4; Candolin U, 2000, P ROY SOC B-BIOL SCI, V267, P2425, DOI 10.1098/rspb.2000.1301; Candolin U, 1999, ANIM BEHAV, V58, P1261, DOI 10.1006/anbe.1999.1259; Dunn PO, 1999, EVOLUTION, V53, P938, DOI 10.1111/j.1558-5646.1999.tb05387.x; Fisher R. A., 1958, GENETICAL THEORY NAT; Getty T, 2002, AM NAT, V159, P363, DOI 10.1086/338992; Getty T, 1998, ANIM BEHAV, V56, P127, DOI 10.1006/anbe.1998.0744; Gil D, 2001, ANIM BEHAV, V62, P689, DOI 10.1006/anbe.2001.1812; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; GUSTAFSSON L, 1995, NATURE, V375, P311, DOI 10.1038/375311a0; Jennions MD, 2001, Q REV BIOL, V76, P3, DOI 10.1086/393743; JOHNSTONE RA, 1992, P ROY SOC B-BIOL SCI, V248, P229, DOI 10.1098/rspb.1992.0066; Jones TM, 2000, P ROY SOC B-BIOL SCI, V267, P681, DOI 10.1098/rspb.2000.1056; Kokko H, 1998, EVOL ECOL, V12, P739, DOI 10.1023/A:1006541701002; Kokko H, 1998, P ROY SOC B-BIOL SCI, V265, P1871, DOI 10.1098/rspb.1998.0515; Kokko H, 1997, BEHAV ECOL SOCIOBIOL, V41, P99, DOI 10.1007/s002650050369; Kokko H, 1996, P ROY SOC B-BIOL SCI, V263, P1533, DOI 10.1098/rspb.1996.0224; Mack PD, 2000, GENETICA, V110, P31, DOI 10.1023/A:1017538505627; MANNING JT, 1985, J THEOR BIOL, V116, P349, DOI 10.1016/S0022-5193(85)80273-3; Mappes J, 1996, P ROY SOC B-BIOL SCI, V263, P785, DOI 10.1098/rspb.1996.0117; Nisbet ICT, 2002, J APPL STAT, V29, P65, DOI 10.1080/02664760120108467; ODONALD P, 1962, HEREDITY, V17, P541, DOI 10.1038/hdy.1962.56; Part T, 1997, ANIM BEHAV, V54, P893, DOI 10.1006/anbe.1997.0514; Price DK, 1998, BEHAV GENET, V28, P395, DOI 10.1023/A:1021677804038; Proulx SR, 2001, EVOLUTION, V55, P2401; Proulx SR, 2001, P ROY SOC B-BIOL SCI, V268, P2307, DOI 10.1098/rspb.2001.1804; PROULX SR, 2002, UNPUB TIMING COSTS R; Richardson DS, 1999, MOL ECOL, V8, P2115, DOI 10.1046/j.1365-294x.1999.00832.x; Roff Derek A., 1992; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Stearns S. C., 1992, EVOLUTION LIFE HIST; Sundberg J, 1996, ANIM BEHAV, V52, P113, DOI 10.1006/anbe.1996.0157; Viljugrein H, 1997, P ROY SOC B-BIOL SCI, V264, P815, DOI 10.1098/rspb.1997.0114; Williams GC, 1966, ADAPTATION NATURAL S; Yezerinac SM, 1997, P ROY SOC B-BIOL SCI, V264, P527, DOI 10.1098/rspb.1997.0075; ZAHAVI A, 1977, J THEOR BIOL, V67, P603, DOI 10.1016/0022-5193(77)90061-3; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3 39 78 78 1 19 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. NOV 22 2002 269 1507 2291 2299 10.1098/rspb.2002.2129 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 621GN WOS:000179580300002 12495495 Green Published 2018-11-12 J Voland, E; Beise, J Voland, E; Beise, J Opposite effects of maternal and paternal grandmothers on infant survival in historical Krummhorn BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article grandmother hypothesis; Krummhorn; human evolutionary reproductive ecology; infant mortality; life history theory; in-law conflict DISCRIMINATIVE GRANDPARENTAL SOLICITUDE; LIFE-HISTORIES; EVOLUTION; MENOPAUSE; POPULATION; HYPOTHESIS On the basis of church register entries from the Krummhorn region (Ostfriesland, Germany, 1720-1874) we looked at whether the existence of grandmothers had an impact on the reproductive success of a family. We found that fertility measured by parity progression ratios was influenced by grandmothers, though only in exceptionally large families, while fertility measured by intervals between births was not influenced by grandmothers. However, maternal grandmothers reduced infant mortality when the children were between 6 and 12 months of age. During these 6 months, the relative risk of dying was approximately 1.8 times higher if the maternal grandmother was dead at the time of the child's birth compared to if she was alive. Interestingly, the existence of paternal grandmothers approximately doubled the relative risk of infant mortality during the 1st month of life. We interpret this as being the result of a tense relationship between mother- and daughter-in-laws. We found that Krummhorn grandmothers could be both helpful and a hindrance at the same time. Geographic proximity increased the effects found. If this ambivalent impact of grandmothers on familial reproduction could be generalized beyond the Krummhorn population, the hypothesis that the evolution of the postgenerative life span could be explained by grandmotherly kin-effects would have to be stated more precisely: the costs of social stress in the male descendency would have to be subtracted from the benefits of aid and assistance in the female descendency. Univ Giessen, Zentrum Philosophie & Grundlagen Wissensc, D-35394 Giessen, Germany; Max Planck Inst Demog Res, D-18057 Rostock, Germany Voland, E (reprint author), Univ Giessen, Zentrum Philosophie & Grundlagen Wissensc, Otto Behaghel Str 10C, D-35394 Giessen, Germany. eckart.voland@phil.uni-giessen.de Alvarez HP, 2000, AM J PHYS ANTHROPOL, V113, P435, DOI 10.1002/1096-8644(200011)113:3<435::AID-AJPA11>3.0.CO;2-O; BEISE J, 2001, THESIS U GIESSEN; Bereczkei T, 1998, EVOL HUM BEHAV, V19, P283, DOI 10.1016/S1090-5138(98)00027-0; Blossfeld H.P., 1995, TECHNIQUES EVENT HIS; Euler HA, 1996, HUM NATURE-INT BIOS, V7, P39, DOI 10.1007/BF02733489; Euler HA, 2001, J CROSS CULT PSYCHOL, V32, P147, DOI 10.1177/0022022101032002003; Foley R. A., 1996, EVOLUTION SOCIAL BEH, P95; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; HAWKES K, 1989, COMP SOCIOECOLOGY BE, P341; HILL K, 1997, HUMAN NATURE CRITICA, P140; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Jones Nicholas Blurton, 1999, P140, DOI 10.1017/CBO9780511542466.009; KAISER I, 1998, THESIS U GIESSEN; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H., 1997, ZEUS SALMON BIODEMOG, P175; Leidy LE, 1998, FERTIL STERIL, V70, P851, DOI 10.1016/S0015-0282(98)00316-1; Leidy LE, 1999, EVOLUTIONARY MEDICI NE, P407; MACE R, 2000, SEX LONGEVITY SEXUAL, P59; Marlowe FW, 2000, HUM NATURE-INT BIOS, V11, P27, DOI 10.1007/s12110-000-1001-7; MEITZEN A, 1894, BODEN LANDWIRTSCHAFT; Nath DC, 2000, J BIOSOC SCI, V32, P343, DOI 10.1017/S0021932000003436; O'Connell JF, 1999, J HUM EVOL, V36, P461, DOI 10.1006/jhev.1998.0285; Pashos A, 2000, EVOL HUM BEHAV, V21, P97, DOI 10.1016/S1090-5138(99)00030-6; Peccei JS, 2001, EVOL ANTHROPOL, V10, P43, DOI 10.1002/evan.1013; Peccei JS, 2001, AM J HUM BIOL, V13, P434, DOI 10.1002/ajhb.1076; Sear R, 2000, P ROY SOC B-BIOL SCI, V267, P1641, DOI 10.1098/rspb.2000.1190; SEAR R, 2002, IN PRESS DEMOGRAPHY; Voland E, 2000, EVOL ANTHROPOL, V9, P134; VOLAND E, 1995, HUMAN REPRODUCTIVE DECISIONS, P137; VOLAND E, 1995, HUM NATURE-INT BIOS, V6, P33, DOI 10.1007/BF02734134; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 32 86 88 2 27 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. NOV 2002 52 6 435 443 10.1007/s00265-002-0539-2 9 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology 621DZ WOS:000179574400001 2018-11-12 J Torres-Vila, LM; Rodriguez-Molina, MC Torres-Vila, LM; Rodriguez-Molina, MC Egg size variation and its relationship with larval performance in the Lepidoptera: the case of the European grapevine moth Lobesia botrana OIKOS English Article SPRUCE BUDWORM LEPIDOPTERA; FEMALE REPRODUCTIVE OUTPUT; LIFE-HISTORY TRAITS; WEIGHT VARIATION; BODY-SIZE; POPULATION-DYNAMICS; SATYRID BUTTERFLIES; OFFSPRING FITNESS; LYMANTRIA-DISPAR; OVIPOSITION RATE Life history theory attempts to define the pattern of resource distribution among offspring and predicts that egg size should be positively correlated with offspring fitness. In this paper we investigated the effect of an array of ecological and reproductive factors on the size of eggs laid by Lobesia botrana, and the ecological significance of egg size by experimentally testing whether or not egg size increased larval performance in this moth. Egg size was significantly affected by female age at mating, water availability, pupal weight loss, the phenological stage of the vine in which larvae developed, female body weight, and oviposition day, but was unaffected by the size of the spermatophore received. The greater the size of the first eggs produced, the smaller the size of the last eggs laid, as predicted by the resource depletion hypothesis. As expected, the larger the size of eggs the larger the size of larvae emerging from them. Large larvae displayed a better ability to endure starvation than small ones. When small and large, larvae, were allowed to develop on grape clusters, an adverse environment, large larvae performed better, settling and survival being significantly enhanced, almost tripled. Instead, when the same experiment was carried out on an artificial diet in the laboratory, a much more favourable milieu, survival in both sized-larval groups was not significantly different. We discuss our results in the context of current ideas relating egg size, larval performance and fitness in the Lepidoptera. SIA, Dept Fitopatol, Serv Invest & Desarrollo Tecnol, E-06080 Badajoz, Spain Torres-Vila, LM (reprint author), SIA, Dept Fitopatol, Serv Invest & Desarrollo Tecnol, apdo 22, E-06080 Badajoz, Spain. ltorresv@aym.juntaex.es BAGGIOLINI M., 1952, REV ROMANDE AGRIC VITICULT ET ARBORICULT, V8, P4; Baillod M., 1993, Revue Suisse de Viticulture, d'Arboriculture et d'Horticulture, V25, P7; BARBOSA P, 1981, CAN J ZOOL, V59, P293, DOI 10.1139/z81-044; BARBOSA P, 1978, OECOLOGIA, V36, P203, DOI 10.1007/BF00349809; BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; BELL WJ, 1975, BIOL REV, V50, P373, DOI 10.1111/j.1469-185X.1975.tb01058.x; BERGER A, 1989, ENTOMOL EXP APPL, V50, P199, DOI 10.1111/j.1570-7458.1989.tb01193.x; BERGER A, 1989, ENTOMOL EXP APPL, V50, P125, DOI 10.1111/j.1570-7458.1989.tb02381.x; Bovey P, 1966, ENTOMOLOGIE APPL AGR, P859; BRABY MF, 1994, OIKOS, V71, P119, DOI 10.2307/3546179; BRAKEFIELD PM, 1994, PROCEEDINGS OF THE SECTION EXPERIMENTAL AND APPLIED ENTOMOLOGY OF THE NETHERLANDS ENTOMOLOGICAL SOCIETY (N.E.V.), VOL 5, 1994, P53; CAMPBELL IM, 1962, CAN J GENET CYTOL, V4, P272, DOI 10.1139/g62-036; Capinera J. L., 1978, Canadian Entomologist, V109, P1313; CHAUVIN R, 1956, PHYSL INSECTE; Diss AL, 1996, OECOLOGIA, V106, P470, DOI 10.1007/BF00329704; DOBZHANSKY T, 1970, GENETICS EVOLUTIONAR; DUNLAPPIANKA HL, 1979, J INSECT PHYSIOL, V25, P741, DOI 10.1016/0022-1910(79)90126-4; EICHHORN K W, 1977, Nachrichtenblatt des Deutschen Pflanzenschutzdienstes (Stuttgart), V29, P119; Englemann F., 1970, PHYSL INSECT REPROD; Fermaud M, 1998, J ECON ENTOMOL, V91, P974, DOI 10.1093/jee/91.4.974; Fischer K, 2001, POPUL ECOL, V43, P105, DOI 10.1007/PL00012009; FORBES LS, 1991, J THEOR BIOL, V150, P299, DOI 10.1016/S0022-5193(05)80429-1; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; GABEL B, 1995, J APPL ENTOMOL, V119, P127, DOI 10.1111/j.1439-0418.1995.tb01257.x; Garcia-Barros E., 1992, Graellsia, V48, P45; Garcia-Barros E, 2000, BIOL J LINN SOC, V70, P251, DOI 10.1006/bijl.1999.0374; GARCIABARROS E, 1994, BIOL J LINN SOC, V51, P309, DOI 10.1111/j.1095-8312.1994.tb00964.x; HARVEY GT, 1985, CAN ENTOMOL, V117, P1451, DOI 10.4039/Ent1171451-12; HARVEY GT, 1983, CAN ENTOMOL, V115, P1103, DOI 10.4039/Ent1151103-9; HARVEY GT, 1977, CAN ENTOMOL, V109, P487, DOI 10.4039/Ent109487-4; HARVEY GT, 1983, CAN ENTOMOL, V115, P1109, DOI 10.4039/Ent1151109-9; HILL CJ, 1989, OECOLOGIA, V81, P249, DOI 10.1007/BF00379812; KARLSSON B, 1984, OIKOS, V43, P376, DOI 10.2307/3544156; KARLSSON B, 1987, ECOL ENTOMOL, V12, P473, DOI 10.1111/j.1365-2311.1987.tb01029.x; KARLSSON B, 1985, ECOL ENTOMOL, V10, P205, DOI 10.1111/j.1365-2311.1985.tb00549.x; Karlsson B, 1989, THESIS U STOCKHOLM; LABINE PA, 1968, EVOLUTION, V22, P799, DOI 10.1111/j.1558-5646.1968.tb03478.x; LEAHY TC, 1994, ANN ENTOMOL SOC AM, V87, P342, DOI 10.1093/aesa/87.3.342; LYAMTSEV NI, 1985, LESN KHOZ, V4, P60; Marchal P., 1912, RAPPORT TRAVAUX ACCO; MARSHALL LD, 1990, CAN J ZOOL, V68, P44, DOI 10.1139/z90-008; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; MURPHY DD, 1983, OECOLOGIA, V56, P257, DOI 10.1007/BF00379699; NAKASUJI F, 1984, Kontyu, V52, P253; NAKASUJI F, 1987, Ecological Research, V2, P175, DOI 10.1007/BF02346925; NIJHOUT MM, 1979, INT J INVER REP DEV, V1, P209; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; PIANKA ER, 1976, AM NAT, V109, P775; RICHARDS LJ, 1980, CAN J ZOOL, V58, P1452, DOI 10.1139/z80-199; Roehrich R., 1991, TORTRICID PESTS THEI, P507; RUOHOMAKI K, 1993, OIKOS, V68, P61, DOI 10.2307/3545309; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCHERRER B, 1984, BIOSTATISTIQUE; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Sokal R.R., 1995, BIOMETRY; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STOCKEL J, 1973, ANN SOC ENTOMOL FR, V9, P627; Stockel J., 1989, PHYTOMA, V412, P45; SVARD L, 1988, BEHAV ECOL SOCIOBIOL, V23, P39, DOI 10.1007/BF00303056; SVARD L, 1991, J INSECT BEHAV, V4, P33, DOI 10.1007/BF01092549; *SYST INC, 1990, SYST SYST STAT; Torres-Vila L.M., 1996, Boletin de Sanidad Vegetal Plagas, V22, P443; Torres-Vila L.M., 1992, Boletin de Sanidad Vegetal Plagas, V18, P755; Torres-Vila L.M., 1993, Boletin de Sanidad Vegetal Plagas, V19, P79; Torres-Vila L. M., 1996, B SAN VEG PLAGAS, V22, P27; Torres-Vila LM, 1999, B ENTOMOL RES, V89, P549; TORRESVILA LM, 1995, ENTOMOL EXP APPL, V77, P105, DOI 10.1111/j.1570-7458.1995.tb01991.x; TorresVila LM, 1997, ENTOMOL EXP APPL, V84, P109, DOI 10.1046/j.1570-7458.1997.00205.x; TORRESVILA LM, 1996, REVTA LEPID, V24, P197; TORRESVILA LM, 2000, CROP PROTECTION COMP; WATANABE M, 1986, ZOOL SCI, V3, P509; WELLINGT.WG, 1965, CAN ENTOMOL, V97, P1; WICKMAN PO, 1987, ECOL ENTOMOL, V12, P109, DOI 10.1111/j.1365-2311.1987.tb00989.x; WIKLUND C, 1993, BEHAV ECOL SOCIOBIOL, V33, P25, DOI 10.1007/BF00164343; WIKLUND C, 1987, AM NAT, V130, P828, DOI 10.1086/284750; WIKLUND C, 1983, OIKOS, V40, P53, DOI 10.2307/3544198; WIKLUND C, 1984, OIKOS, V43, P391, DOI 10.2307/3544158; Williams GC, 1966, ADAPTATION NATURAL S; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667; 1991, ENTOMOL OBOZR, V70, P61 82 44 45 0 17 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos NOV 2002 99 2 272 283 10.1034/j.1600-0706.2002.990207.x 12 Ecology Environmental Sciences & Ecology 623QW WOS:000179715200007 2018-11-12 J Hilton, C; Walde, SJ; Leonard, ML Hilton, C; Walde, SJ; Leonard, ML Intense episodic predation by shorebirds may influence life history strategy of an intertidal amphipod OIKOS English Article COROPHIUM-VOLUTATOR PALLAS; CALIDRIS-PUSILLA; SEMIPALMATED SANDPIPERS; REPRODUCTIVE-BIOLOGY; POPULATION-STRUCTURE; CERASTODERMA-EDULE; TIME CONSTRAINTS; GROWTH-RATE; SIZE; BAY Life history theory suggests that selective predation on older or larger individuals in prey populations or a disturbance such as intense and episodic predation should lead to smaller size at maturity, and a tendency toward semelparity. Many populations of the intertidal amphipod, Corophium volutator, in the western Atlantic are subjected to an intense period of size-selective predation for about one month in summer, during the southward migration of shorebirds. We compared size at maturity and fecundity of populations of C. volutator from mudflats that are intensively used by shorebirds with populations that are visited by very few birds. We found that mature females were of similar size in May, but those from bird mudflats produced more offspring during the first reproductive episode. In July, females of the summer generation began to reproduce at a smaller size on bird mudflats, and as a consequence, produced fewer offspring that grew more slowly. The results of this correlative study suggest that shorebird predation has shaped C. volutator life history in two ways. First, females on bird mudflats concentrate their reproductive effort into a larger early brood, probably because later broods would come to maturity during the period of intense predation. Second, in summer, amphipods begin to reproduce at a smaller size so as to produce a brood before the arrival of the birds in mid-July. Predators are not present at the time that these responses occur, and thus they are probably not a plastic response to perceived predation risk. Thus the patterns we observed agree with the predictions of recent theories: individuals faced with a predictable disturbance alter their life cycles so as to minimize the effect of that disturbance. Dalhousie Univ, Dept Biol, Halifax, NS B3H 4J1, Canada Hilton, C (reprint author), Dalhousie Univ, Dept Biol, Halifax, NS B3H 4J1, Canada. walde@is.dal.ca Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Bertschy KA, 1999, ECOLOGY, V80, P2299, DOI 10.2307/176911; BOATES J S, 1979, Proceedings of the Nova Scotian Institute of Science, V29, P489; BOATES JS, 1995, ECOSCIENCE, V2, P123, DOI 10.1080/11956860.1995.11682276; BOATES JS, 1989, CAN J ZOOL, V67, P457, DOI 10.1139/z89-066; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; FISH JD, 1979, J MAR BIOL ASSOC UK, V59, P355, DOI 10.1017/S002531540004265X; FLACH EC, 1993, SARSIA, V78, P105, DOI 10.1080/00364827.1993.10413527; FLACH EC, 1992, NETH J SEA RES, V29, P379, DOI 10.1016/0077-7579(92)90077-R; Forbes MR, 1996, CAN J ZOOL, V74, P1479, DOI 10.1139/z96-162; GRATTO GW, 1983, P NS I SCI, V33, P47; Hechtel LJ, 1997, ECOLOGY, V78, P838; HICKLIN PW, 1984, CAN J ZOOL, V62, P2201, DOI 10.1139/z84-321; HICKLIN PW, 1987, WILSON BULL, V99, P540; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; JENSEN KT, 1985, MAR ECOL PROG SER, V25, P269, DOI 10.3354/meps025269; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; MATTHEWS SL, 1992, ECOGRAPHY, V15, P393, DOI 10.1111/j.1600-0587.1992.tb00049.x; McCurdy DG, 1999, BEHAV ECOL, V10, P351, DOI 10.1093/beheco/10.4.351; McCurdy DG, 2000, OIKOS, V88, P301, DOI 10.1034/j.1600-0706.2000.880208.x; MEADOWS PS, 1981, MAR ECOL PROG SER, V6, P183, DOI 10.3354/meps006183; MEADOWS PS, 1964, J ANIM ECOL, V33, P387, DOI 10.2307/2560; Meissner K, 1997, DIS AQUAT ORGAN, V29, P169, DOI 10.3354/dao029169; Mouritsen KN, 1997, MAR ECOL PROG SER, V151, P123, DOI 10.3354/meps151123; MURDOCH MH, 1986, J EXP MAR BIOL ECOL, V103, P235, DOI 10.1016/0022-0981(86)90143-7; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; Peckarsky BL, 2001, ECOLOGY, V82, P740, DOI 10.2307/2680193; PEER DL, 1986, NETH J SEA RES, V20, P359, DOI 10.1016/0077-7579(86)90003-7; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Roff Derek A., 1992; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Sparkes TC, 1996, BEHAV ECOL SOCIOBIOL, V39, P411, DOI 10.1007/s002650050308; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; *SPSS INC, 1997, SYSTAT VERS 8 0 WIND; Stearns SC., 1992, EVOLUTION LIFE HISTO; STIBOR H, 1992, OECOLOGIA, V92, P162, DOI 10.1007/BF00317358; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; Wilson AB, 1997, MOL ECOL, V6, P917, DOI 10.1046/j.1365-294X.1997.00270.x; WILSON WH, 1984, J EXP MAR BIOL ECOL, V75, P119, DOI 10.1016/0022-0981(84)90176-X; Wilson WH, 1996, J EXP MAR BIOL ECOL, V196, P239, DOI 10.1016/0022-0981(95)00133-6 45 11 11 0 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos NOV 2002 99 2 368 376 10.1034/j.1600-0706.2002.990219.x 9 Ecology Environmental Sciences & Ecology 623QW WOS:000179715200019 2018-11-12 J Dall, SRX; Boyd, IL Dall, SRX; Boyd, IL Provisioning under the risk of starvation EVOLUTIONARY ECOLOGY RESEARCH English Article central place foraging; dynamic programming; life-history theory; provisioning; starvation risk; stochasticity REPRODUCTIVE EFFORT; PREDATION RISK; PARENTAL CARE; FUR SEALS; ENVIRONMENTS; BEHAVIOR; ENERGY; GROWTH; MODELS; BIRDS Providing for altricial young can be risky. Fundamental to understanding the risks involved, along with their management, is the trade-off between current and future reproductive effort. Here we present a dynamic model of provisioning under an important source of risk: starvation. Given the choice of foraging or provisioning at each point in the provisioning period, we show that, when parents have a higher risk of running an energy deficit while foraging, offspring have a poorer chance of surviving to independence. Unexpectedly, our results also predict that, for low to moderate levels of such risk, surviving offspring are likely to show improved condition than if energy intake was more certain; by buffering themselves from the risk of starvation, parents put offspring at risk while ending up with more resources to invest in survivors. As the value of ensuring parental survival decreases, this effect becomes less pronounced and provisioning declines. Thus, a component of reproductive effort can decline with age or increase with longevity in response to a common source of biological risk. These results show that environmental variability can have effects on the evolution of provisioning for altricial young that do not follow from traditional life-history reasoning. Univ Cambridge, Dept Zool, Cambridge CB2 3EJ, England; Univ St Andrews, Sea Mammal Res Unit, Gatty Marine Lab, St Andrews KY16 8LB, Fife, Scotland Dall, SRX (reprint author), Univ Cambridge, Dept Zool, Downing St, Cambridge CB2 3EJ, England. sashadall@iname.com Dall, Sasha/B-2642-2010 Dall, Sasha/0000-0001-9873-6507 Beauchamp G, 1991, BEHAV ECOL, V2, P21, DOI 10.1093/beheco/2.1.21; Benton TG, 1999, EVOLUTION, V53, P677, DOI 10.1111/j.1558-5646.1999.tb05363.x; Boyd IL, 1999, BEHAV ECOL, V10, P198, DOI 10.1093/beheco/10.2.198; Brodin A, 1997, BEHAV ECOL, V8, P178, DOI 10.1093/beheco/8.2.178; Brommer J, 2000, AM NAT, V155, P454, DOI 10.1086/303335; CAIRNS D K, 1987, Biological Oceanography, V5, P261; CLARK CW, 1990, EVOL ECOL, V4, P21, DOI 10.1007/BF02270712; CLARK CW, 1995, OIKOS, V72, P205, DOI 10.2307/3546222; CLARK CW, 2000, DYNAMIC STATE VARIAB; COLEMAN RM, 1991, TRENDS ECOL EVOL, V6, P404, DOI 10.1016/0169-5347(91)90163-R; Galeotti P, 2000, J AVIAN BIOL, V31, P431, DOI 10.1034/j.1600-048X.2000.310401.x; Hall AJ, 2001, J ANIM ECOL, V70, P138; HARFENIST A, 1995, BEHAV ECOL, V6, P82, DOI 10.1093/beheco/6.1.82; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; HOUSTON AI, 1993, PHILOS T ROY SOC B, V341, P375, DOI 10.1098/rstb.1993.0123; HOUSTON AI, 1987, J THEOR BIOL, V124, P251, DOI 10.1016/S0022-5193(87)80115-7; Houston AI, 1999, MODELS ADAPTIVE BEHA; LAVERY RJ, 1995, BEHAV ECOL SOCIOBIOL, V36, P193, DOI 10.1007/BF00177796; Lima SL, 1998, ADV STUD BEHAV, V27, P215; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; MAGNHAGEN C, 1992, ANN ZOOL FENN, V29, P227; Mangel M., 1988, DYNAMIC MODELING BEH; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Monaghan P, 1996, OIKOS, V77, P227, DOI 10.2307/3546061; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Roff Derek A., 1992; Sih A., 1987, P203; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stephens DW, 1986, FORAGING THEORY; Tenhumberg B, 2000, J THEOR BIOL, V202, P257, DOI 10.1006/jtbi.1999.1049; Trillmich F, 2001, COMP BIOCHEM PHYS A, V129, P741, DOI 10.1016/S1095-6433(01)00343-9; Welham CVJ, 1997, EVOL ECOL, V11, P399, DOI 10.1023/A:1018480723094; Winkler DW, 1996, J AVIAN BIOL, V27, P343, DOI 10.2307/3677266 34 13 13 0 4 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. OCT 2002 4 6 883 896 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 592BU WOS:000177917500006 2018-11-12 J Tracer, DP Tracer, DP Somatic versus reproductive energy allocation in Papua New Guinea: Life history theory and public health policy AMERICAN JOURNAL OF HUMAN BIOLOGY English Article LACTATION; WOMEN; DEPLETION; NUTRITION A fundamental evolutionary problem faced by organisms is how to allocate energy to somatic and reproductive functions in ways that optimize fitness. Given that energy is limited in all environments, energy allocation necessarily involves physiological tradeoffs between such factors as growth and reproduction, reproduction and condition, and current reproduction and future survival. Ultimately, the "decisions" that are made about energy allocation among growth, survival, and reproduction determine life history patterns and trajectories of organisms. For humans, knowing how energy allocation to reproduction will likely impact other aspects of the somatic well-being of individuals may also have practical implications for public health policy. This article reviews the evidence for energy tradeoffs between somatic and reproductive functioning in a range of human societies. It also seeks to corroborate the results of earlier work in Papua New Guinea on lactation-related maternal energy depletion using an independent measure of maternal energy reserves, tetrapolar bioelectrical impedance analysis. The current analysis shows that maternal energy reserves decline over the course of lactation and that a cumulative parity-specific decline in maternal energy reserves also exists. A longitudinal follow-up of five women over 11 years shows the decline to amount to about 3 mm of subcutaneous fat per round of pregnancy and lactation. The results corroborate predictions from life history theory and have applied public health implications. In particular, It is suggested that policies such as lactation advocacy that encourage enhanced energy allocation to reproduction in order to promote child health may have the unintended result of compromising maternal well-being, particularly in nations of the developing world. Consequently, it is recommended that nutritional support of mothers be implemented in concert with lactation promotion. (C) 2002 Wiley-Liss, Inc. Univ Colorado, Program Hlth & Behav Sci, Denver, CO 80217 USA; Univ Colorado, Dept Anthropol, Denver, CO 80217 USA Tracer, DP (reprint author), Univ Colorado, Program Hlth & Behav Sci, Denver, CO 80217 USA. ADAIR LS, 1984, ENERGY INTAKE ACTIVI, P33; Charnov Eric L., 1993, P1; DEWEY KG, 1993, AM J CLIN NUTR, V58, P162; GARNER P, 1994, TROP GEOGR MED, V46, P169; GLORE SR, 1985, J NUTR, V115, P233; HARRISON GA, 1975, ANN HUM BIOL, V2, P395, DOI 10.1080/03014467500001021; HELSING E, 1982, BREASTFEEDING PRACTI; LESLIE J, 1991, HEALTH POLICY PLANN, V6, P1, DOI 10.1093/heapol/6.1.1; Levins R., 1968, EVOLUTION CHANGING E; LISSNER L, 1991, CALCIFIED TISSUE INT, V48, P319, DOI 10.1007/BF02556151; LITTLE MA, 1992, AM J HUM BIOL, V4, P729, DOI 10.1002/ajhb.1310040604; MILLER J E, 1989, American Journal of Human Biology, V1, P409, DOI 10.1002/ajhb.1310010403; OMRAN AR, 1981, FURTHER STUDIES FAMI; OMRAN AR, 1976, FAMILY FORMATION PAT; Prentice A. M., 1987, REPROD ENERGETICS MA, P275; PRENTICE AM, 1981, AM J CLIN NUTR, V34, P2790; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stuart-Macadam P., 1995, BREASTFEEDING BIOCUL; TRACER DP, 1991, AM J PHYS ANTHROPOL, V85, P393, DOI 10.1002/ajpa.1330850404; Tracer DP, 1996, HUM BIOL, V68, P277; TRACER DP, 1991, THESIS U MICR INT AN; VENKATACHALAM PS, 1962, MONOGRAPH DEP PUBL H, V4; WARDLAW GM, 1986, AM J CLIN NUTR, V44, P283; WINKVIST A, 1992, AM J PUBLIC HEALTH, V82, P691, DOI 10.2105/AJPH.82.5.691 24 18 19 0 5 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 1520-6300 AM J HUM BIOL Am. J. Hum. Biol. SEP-OCT 2002 14 5 621 626 10.1002/ajhb.10073 6 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 587TN WOS:000177659200007 12203816 2018-11-12 J Pexton, JJ; Mayhew, PJ Pexton, JJ; Mayhew, PJ Siblicide and life-history evolution in parasitoids BEHAVIORAL ECOLOGY English Article Alysiinae; Callosobruchus; fecundity; optimal investment; parasitoids; resource allocation; trade-offs PARENT-OFFSPRING CONFLICT; CLUTCH SIZE; EGG LOAD; REPRODUCTION; SURVIVAL; EXPECTANCY; WASPS; FAT Parasitoid wasps exhibit a stark dichotomy in larval behavior and developmental mode. In gregarious species, siblings developing together tolerate each other; hence more than one individual can successfully complete development. In contrast, solitary species have intolerant larvae that will engage in siblicide, leading to only one individual successfully completing development. Previous theoretical and empirical work has suggested that females from species with intolerant larvae should reduce their relative investment in reproduction. We tested this prediction by measuring investment in survival and reproduction in a pair of sister species from the genus Aphaereta (Hymenoptera: Braconidae). With increasing body size, divergent patterns of investment exist in the two species. Females of the solitary A. genevensis allocate additional resources almost exclusively toward greater fat reserves, resulting in enhanced longevity. Females of the gregarious A. pallipes invest relatively more in reproduction and hence have lower fat reserves, reduced longevity, and greater egg loads than A. genevensis. These differences reflect a trend toward greater investment in survival relative to reproduction in the solitary species, as predicted. We discuss the implications of these findings for the development of sibling rivalry and life-history theory. Univ York, Dept Biol, York YO10 5YW, N Yorkshire, England Pexton, JJ (reprint author), Univ York, Dept Biol, POB 373, York YO10 5YW, N Yorkshire, England. jjp100@york.ac.uk Mayhew, Peter/I-6363-2012; Mayhew, Peter/B-1370-2008 Mayhew, Peter/0000-0002-7346-6560; CHEPLICK GP, 1992, J ECOL, V80, P567, DOI 10.2307/2260699; Crawley MJ, 1993, GLIM ECOLOGISTS; Elgar MA, 1992, CANNIBALISM ECOLOGY; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; Ellers J, 1996, NETH J ZOOL, V46, P227; FLETCHER JP, 1994, P ROY SOC B-BIOL SCI, V258, P163, DOI 10.1098/rspb.1994.0157; GIGA DP, 1983, J STORED PROD RES, V19, P189, DOI 10.1016/0022-474X(83)90007-3; GODFRAY HCJ, 1995, NATURE, V376, P133, DOI 10.1038/376133a0; Godfray HCJ., 1994, PARASITOIDS BEHAV EV; Harvey P. H., 1991, COMP METHOD EVOLUTIO; Mangel M., 1988, DYNAMIC MODELING BEH; Mayhew PJ, 1999, ANIM BEHAV, V58, P131, DOI 10.1006/anbe.1999.1106; Mayhew PJ, 1998, ECOL LETT, V1, P139; Mayhew PJ, 1998, P ROY SOC B-BIOL SCI, V265, P383, DOI 10.1098/rspb.1998.0306; Mayhew PJ, 2001, OIKOS, V92, P372, DOI 10.1034/j.1600-0706.2001.920221.x; Mock D. W., 1997, EVOLUTION SIBLING RI; Ode PJ, 1998, AM NAT, V152, P757, DOI 10.1086/286206; PRICE PW, 1974, EVOLUTION, V28, P76, DOI 10.1111/j.1558-5646.1974.tb00728.x; Quicke D.L.J., 1997, PARASITIC WASPS; Roff Derek A., 1992; ROITBERG BD, 1993, NATURE, V364, P108, DOI 10.1038/364108a0; ROITBERG BD, 1992, BEHAV ECOL, V3, P156, DOI 10.1093/beheco/3.2.156; SALT G, 1961, S SOC EXP BIOL, V15, P93; Shaw MR, 1991, HDB IDENTIFICATION B; Sirot E, 1997, BEHAV ECOL, V8, P226, DOI 10.1093/beheco/8.2.226; SKINNER SW, 1985, BEHAV ECOL SOCIOBIOL, V17, P231, DOI 10.1007/BF00300141; SMITH RH, 1991, ADV ECOL RES, V21, P63, DOI 10.1016/S0065-2504(08)60097-5; Stearns S. C., 1992, EVOLUTION LIFE HIST; STREAMS FA, 1971, ENTOMOL EXP APPL, V14, P484, DOI 10.1111/j.1570-7458.1971.tb00188.x; THANTHIANGA C, 1990, ENTOMOL EXP APPL, V57, P133, DOI 10.1111/j.1570-7458.1990.tb01424.x; TRIVERS RL, 1974, AM ZOOL, V14, P249; Waage J.K., 1985, P449; Wharton R.A., 1984, TEXAS AGR EXPT STATI, V11, P1; WHISTLECRAFT JW, 1984, J ECON ENTOMOL, V77, P814, DOI 10.1093/jee/77.3.814; YOUNG TP, 1990, EVOL ECOL, V4, P157, DOI 10.1007/BF02270913 36 38 39 0 9 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. SEP 2002 13 5 690 695 10.1093/beheco/13.5.690 6 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 593PN WOS:000178001500016 Bronze 2018-11-12 J Oro, D; Furness, RW Oro, D; Furness, RW Influences of food availability and predation on survival of kittiwakes ECOLOGY English Article Ammodytes marmus, body condition, Black-legged Kittiwake; Catharacta skua; cost of reproduction, food availability, Great Skua; life history; predation; Rissa tridactyla; sandeel; SURGE BLACK-LEGGED KITTIWAKES; CAPTURE-RECAPTURE MODELS; SKUAS CATHARACTA-SKUA; LIFE-HISTORY TRAITS; RISSA-TRIDACTYLA; GREAT SKUAS; REPRODUCTIVE SUCCESS; BREEDING ECOLOGY; PARENTAL EFFORT; NORTH-SEA Life history theory predicts a trade-off between current reproduction and survival to maximize fitness. In long-lived seabirds. one might expect adults not to jeopardize survival by excessive reproductive investment when environmental conditions for breeding are adverse. Some environmental factors have reduced the fecundity of Black-legged Kittiwakes (Rissa tridactyla) breeding in Shetland, UK, a metapopulation that has declined substantially during the last two decades. Two hypotheses are proposed to explain this decrease: (1) reduced availability of sandeels (the main prey for kittiwakes), which has occurred since the late 1980s; and (2) increased predation by Great Skuas (Catharacta skua), the main predator of kittiwakes. Detailed data on food supply (sandeel stock size, by age groups), kittiwake body condition and breeding success, and diet and productivity of Great Skuas allowed us to assess the influence of each of these factors on adult kittiwake survival from 1986 through 1997. Capture-recapture models were constructed to examine correlations between local adult survival rate and environmental parameters. Body condition at the end of the breeding season and availability of 0-group (juveniles less than or equal to I yr old) sandeels positively influenced adult survival, whereas survival was lower when Great Skua productivity was high. Adult survival varied greatly during the study, from 0.53 +/- 0.04 to 0.98 +/- 0.01 (mean +/- I SD), and was independent of sex. Both hypotheses were supported. Contrary to predictions of life history theory, kittiwakes did not refrain from breeding in years of poor food supply or high predator activity to buffer their survival at the cost of not rearing chicks. Although 0-group sandeel availability affected breeding success of kittiwakes, its influence on adult survival was also significant. The discovery that food supply affects adult survival rate has important implications for fisheries management to minimize impacts on seabirds. UIB, IMEDEA, CSIC, Inst Mediterrani Estudis Avancats, Esporles 07190, Mallorca, Spain; Univ Barcelona, Dept Biol Anim, Barcelona 08028, Spain; Univ Glasgow, Ornithol Grp, Inst Biomed & Life Sci, Glasgow G12 8QQ, Lanark, Scotland Oro, D (reprint author), UIB, IMEDEA, CSIC, Inst Mediterrani Estudis Avancats, Esporles 07190, Mallorca, Spain. d.oro@uib.es Oro, Daniel/H-4208-2012 Oro, Daniel/0000-0003-4782-3007 AEBISCHER NJ, 1990, J ANIM ECOL, V59, P1063, DOI 10.2307/5031; ANDERSON DR, 1994, ECOLOGY, V75, P1780, DOI 10.2307/1939637; BAILEY RS, 1991, ICES MAR SC, V193, P209; BARRETT R T, 1985, Ringing and Migration, V6, P102; Boulinier T, 1997, ECOLOGY, V78, P1284, DOI 10.2307/2265880; BURNHAM KP, 1994, BIOMETRICAL J, V36, P299, DOI 10.1002/bimj.4710360308; Burnham KP, 1995, J APPL STAT, V22, P611, DOI 10.1080/02664769524496; BURNHAM KP, 1987, AM FISHERIES SOC MON, V5; CAIRNS D K, 1987, Biological Oceanography, V5, P261; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; Catry P, 1998, CONDOR, V100, P448, DOI 10.2307/1369710; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHASTEL O, 1993, OECOLOGIA, V94, P278, DOI 10.1007/BF00341328; Clobert J, 1995, J APPL STAT, V22, P989, DOI 10.1080/02664769524757; COOCH EG, 1996, PRACTICAL GUIDE MARK; CORMACK RM, 1964, BIOMETRIKA, V51, P429, DOI 10.1093/biomet/51.3-4.429; COULSON JC, 1983, ARDEA, V71, P235; Coulson JC, 1999, WATERBIRDS, V22, P3, DOI 10.2307/1521988; COULSON JC, 1976, J ANIM ECOL, V45, P205, DOI 10.2307/3775; DANCHIN E, 1992, ARDEA, V80, P92; DANCHIN E, 1992, ARDEA, V80, P170; Erikstad KE, 1995, ECOLOGY OF FJORDS AND COASTAL WATERS, P471; FAIRWEATHER JA, 1995, COLON WATERBIRD, V18, P30, DOI 10.2307/1521396; Frederiksen M, 1999, CONDOR, V101, P589, DOI 10.2307/1370188; Furness R. W., 1987, SEABIRD ECOLOGY; Furness RW, 2000, MAR ECOL PROG SER, V202, P253, DOI 10.3354/meps202253; FURNESS RW, 1990, IBIS, V132, P205, DOI 10.1111/j.1474-919X.1990.tb01039.x; Furness RW, 1997, LOW WAKE FI, V97, P147; Furness RW, 1999, LOW WAKE FI, V16, P407; FURNESS RW, 1987, ECOSYSTEM APPROACHES; FURNESS RW, 1984, ICBP TECHNICAL PUBLI, V2, P701; Furness RW, 1987, THE SKUAS; GALBRAITH H, 1983, BIRD STUDY, V30, P109, DOI 10.1080/00063658309476785; Golet GH, 1999, OECOLOGIA, V120, P530, DOI 10.1007/s004420050887; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; GOODMAN D, 1974, AM NAT, V131, P247; HAMER KC, 1991, J ZOOL, V223, P175, DOI 10.1111/j.1469-7998.1991.tb04758.x; HAMER KC, 1993, IBIS, V135, P255, DOI 10.1111/j.1474-919X.1993.tb02842.x; Harris M. P., 1993, Ringing and Migration, V14, P113; Harris MP, 1997, ICES J MAR SCI, V54, P615, DOI 10.1006/jmsc.1997.0241; HARRIS MP, 1990, J APPL ECOL, V27, P172, DOI 10.2307/2403576; Harris MP, 1997, J AVIAN BIOL, V28, P287, DOI 10.2307/3676941; HATCH SA, 1993, IBIS, V135, P247, DOI 10.1111/j.1474-919X.1993.tb02841.x; Heubeck M., 1997, Seabird, V19, P12; Heubeck M, 1999, BIRD STUDY, V46, P48, DOI 10.1080/00063659909461114; *ICES, 1998, ICESCM1998ASSESS7; *ICES, 1997, ICESCM1997ASSESS6; JACOBSEN KO, 1995, ECOLOGY, V76, P1636, DOI 10.2307/1938164; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; McCullagh P, 1989, GEN LINEAR MODELS; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MONAGHAN P, 1989, J ANIM ECOL, V58, P261, DOI 10.2307/4999; MONAGHAN P, 1992, ARDEA, V80, P70; Montevecchi W.A., 1993, P217; MONTEVECCHI WA, 1992, ECOLOGY, V73, P823, DOI 10.2307/1940160; Oro D, 1996, J AVIAN BIOL, V27, P245, DOI 10.2307/3677229; Oro D, 1999, OECOLOGIA, V118, P438, DOI 10.1007/s004420050746; Oro D., 2000, J ANIM ECOL, V69, P1; Phillips RA, 1996, IBIS, V138, P410, DOI 10.1111/j.1474-919X.1996.tb08059.x; Phillips RA, 1999, J APPL ECOL, V36, P218, DOI 10.1046/j.1365-2664.1999.00391.x; PONS JM, 1995, J ANIM ECOL, V64, P592, DOI 10.2307/5802; Pradel R, 1997, BIOMETRICS, V53, P60, DOI 10.2307/2533097; Pugesek BH, 1995, J APPL STAT, V22, P625, DOI 10.1080/02664769524504; PUGESEK BH, 1987, BEHAV ECOL SOCIOBIOL, V21, P217, DOI 10.1007/BF00292502; PUGESEK BH, 1990, BEHAV ECOL SOCIOBIOL, V27, P211; PUGESEK BH, 1990, ECOLOGY, V71, P811, DOI 10.2307/1940332; Pyle P, 1997, BEHAV ECOL, V8, P140, DOI 10.1093/beheco/8.2.140; Ratcliffe N, 1998, J ANIM ECOL, V67, P853, DOI 10.1046/j.1365-2656.1998.6760853.x; Ratcliffe N, 1999, J ZOOL, V249, P195, DOI 10.1017/S0952836999010092; Rattiste K, 1995, J APPL STAT, V22, P1057, DOI 10.1080/02664769524801; REID WV, 1987, OECOLOGIA, V74, P458, DOI 10.1007/BF00378945; Roff Derek A., 1992; SAETHER BE, 1993, BEHAV ECOL SOCIOBIOL, V33, P147, DOI 10.1007/BF00216594; Seber GAF, 1982, ESTIMATION ANIMAL AB; SLUYS R, 1982, Gerfaut, V72, P221; SPENDELOW JA, 1995, ECOLOGY, V76, P2415, DOI 10.2307/2265817; Stearns S. C., 1992, EVOLUTION LIFE HIST; Thomas C.S., 1988, P251; THOMPSON KR, 1997, SEABIRD NUMBERS BREE; THOMPSON KR, 1998, SEABIRD NUMBERS BREE; THOMPSON KR, 1996, SEABIRD NUMBER BREED; Walsh P.M, 1995, SEABIRD MONITORING H; WALSH PM, 1991, SEABIRD NUMBERS BREE; WALSH PM, 1995, SEABIRD NUMBERS BREE; WALSH PM, 1994, SEABIRD NUMBERS BREE; WALSH PM, 1993, SEABIRD NUMBERS BREE; WEIMERSKIRCH H, 1987, J ANIM ECOL, V56, P1043, DOI 10.2307/4965; Wernham CV, 1998, J ANIM ECOL, V67, P25, DOI 10.1046/j.1365-2656.1998.00166.x; Wright PJ, 1996, MAR BIOL, V126, P143, DOI 10.1007/BF00571386 90 88 92 1 39 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology SEP 2002 83 9 2516 2528 13 Ecology Environmental Sciences & Ecology 596FQ WOS:000178153900016 2018-11-12 J Shertzer, KW; Ellner, SP Shertzer, KW; Ellner, SP State-dependent energy allocation in variable environments: Life history evolution of a rotifer ECOLOGY English Article Brachionus calyciflorous; dynamic energy budget model; genetic algorithm; indeterminate growth; life history theory; norm of reaction; rotifers; state-dependent; storage; variable environments BRACHIONUS-CALYCIFLORUS PALLAS; OPTIMAL RESOURCE-ALLOCATION; PLANKTONIC ROTIFERS; INDETERMINATE GROWTH; POPULATION-DYNAMICS; REPRODUCTION; SIZE; LIMITATION; STARVATION; RESPONSES We present a framework for studying the evolution of state-dependent life history strategies in unpredictable environments. A dynamic energy budget model tracks the flow of energy through individuals and is parameterized using the rotifer species Brachionus calyciflorous. Ingested energy is allocated between new growth, energy reserves, and reproductive effort, in proportions determined by the organism's physiological state, leading to a three-way trade-off when food supplies are unpredictable. The model generates testable predictions regarding how variability in food affects optimal allocation strategies. There is selection for indeterminate growth and for norms of reaction in body size, storage, and age at maturity. Harsher environments select for smaller sizes and increased storage and, consequently, greater ability to withstand starvation. The model's predictions about body size, age at maturity, and effects of food deprivation are consistent with experimental results for B. calyciflorous, indicating that these life history traits have all been shaped by evolution of energy allocation and storage strategies in response to environmental variability. Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14853 USA; N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA Shertzer, KW (reprint author), NOAA, Ctr Coastal Fisheries & Habitat Res, 101 Pivers Isl Rd, Beaufort, NC 28516 USA. Kyle.Shertzer@noaa.gov Shertzer, Kyle/0000-0001-7196-5959 Axelrod R, 1987, GENETIC ALGORITHMS S, P32; Back T, 1996, EVOLUTIONARY ALGORIT; Benton TG, 1999, EVOLUTION, V53, P677, DOI 10.1111/j.1558-5646.1999.tb05363.x; Boraas ME, 1980, EVOLUTION ECOLOGY ZO, P173; BROEKHUIZEN N, 1994, FUNCT ECOL, V8, P770, DOI 10.2307/2390237; BULMER M, 1994, THEORETICAL EVOLUTIO; Cichon M, 1997, P ROY SOC B-BIOL SCI, V264, P1383, DOI 10.1098/rspb.1997.0192; De Boor C., 1978, PRACTICAL GUIDE SPLI; DeAngelis D.L., 1992, INDIVIDUAL BASED MOD; GONZALEZ MJ, 1992, OECOLOGIA, V89, P560, DOI 10.1007/BF00317164; GUISANDE C, 1991, J PLANKTON RES, V13, P279, DOI 10.1093/plankt/13.2.279; GUISANDE C, 1993, INT REV GES HYDROBIO, V78, P493, DOI 10.1002/iroh.19930780405; Gurney WSC, 1996, THEOR POPUL BIOL, V49, P344, DOI 10.1006/tpbi.1996.0017; Gurney WSC, 1996, FUNCT ECOL, V10, P602, DOI 10.2307/2390170; HAEFNER JW, 1996, MODELING BIOL SYSTEM; HALBACH U, 1970, OECOLOGIA, V4, P176, DOI 10.1007/BF00377100; HALBACH U, 1974, ARCH HYDROBIOL, V73, P273; HALBACH U, 1970, OECOLOGIA, V4, P262, DOI 10.1007/BF00377250; HALLAM TG, 1990, ECOLOGY, V71, P938, DOI 10.2307/1937364; Heino M, 1996, FUNCT ECOL, V10, P245, DOI 10.2307/2389849; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Holland J., 1975, ADAPTATION NATURAL A; Holling C. S., 1959, Canadian Entomologist, V91, P385; Iwasa Y, 1997, EVOL ECOL, V11, P41, DOI 10.1023/A:1018483429029; Kirk KL, 1997, FRESHWATER BIOL, V37, P515, DOI 10.1046/j.1365-2427.1997.00177.x; Kirk KL, 1997, ECOLOGY, V78, P434, DOI 10.1890/0012-9658(1997)078[0434:LHRTVE]2.0.CO;2; Kirk KL, 1999, FRESHWATER BIOL, V42, P637, DOI 10.1046/j.1365-2427.1999.00502.x; Kooijman S. A. L. M, 2000, DYNAMIC ENERGY MASS; Kozlowski J, 1999, OIKOS, V86, P185, DOI 10.2307/3546437; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kozlowski J, 1999, EVOL ECOL RES, V1, P423; LEIMEROTH N, 1980, HYDROBIOLOGIA, V73, P195, DOI 10.1007/BF00019446; Lika K, 2000, J MATH BIOL, V41, P361, DOI 10.1007/s002850000049; MAGNIEN RE, 1983, LIMNOL OCEANOGR, V28, P957, DOI 10.4319/lo.1983.28.5.0957; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Merriman JL, 2000, ECOLOGY, V81, P141, DOI 10.1890/0012-9658(2000)081[0141:TPORLI]2.0.CO;2; Muller EB, 2000, B MATH BIOL, V62, P1163, DOI 10.1006/bulm.2000.0203; Nogrady T., 1993, ROTIFERA; Noonburg EG, 1998, FUNCT ECOL, V12, P211, DOI 10.1046/j.1365-2435.1998.00174.x; Olsson O, 1997, J AVIAN BIOL, V28, P264, DOI 10.2307/3676979; PERRIN N, 1993, EVOL ECOL, V7, P576, DOI 10.1007/BF01237822; Roff Derek A., 1992; ROSS AH, 1990, FUNCT ECOL, V4, P777, DOI 10.2307/2389444; SIBLY R, 1985, J THEOR BIOL, V112, P553, DOI 10.1016/S0022-5193(85)80022-9; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; STARKWEATHER PL, 1980, HYDROBIOLOGIA, V73, P63, DOI 10.1007/BF00019427; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEMBERGER RS, 1985, ECOLOGY, V66, P1151, DOI 10.2307/1939167; SUMIDA BH, 1990, J THEOR BIOL, V147, P59, DOI 10.1016/S0022-5193(05)80252-8; TESSIER AJ, 1983, LIMNOL OCEANOGR, V28, P667, DOI 10.4319/lo.1983.28.4.0667; Wilson W, 2000, SIMULATING ECOLOGICA; 1990, INT MATH STAT LIB FO 53 21 21 1 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology AUG 2002 83 8 2181 2193 10.2307/3072050 13 Ecology Environmental Sciences & Ecology 583WP WOS:000177434200013 Bronze 2018-11-12 J Kappeler, PM; van Schaik, CP Kappeler, PM; van Schaik, CP Evolution of primate social systems INTERNATIONAL JOURNAL OF PRIMATOLOGY English Review social organization; mating system; social structure; social relationships; sexual selection; life history; socio-ecology MALE-FEMALE RELATIONSHIPS; MARMOSETS CALLITHRIX-JACCHUS; MANDRILLS MANDRILLUS-SPHINX; LEMURS VARECIA-VARIEGATA; TAILED MACAQUES MACACA; EXTRA-PAIR COPULATIONS; GROUP-LIVING PRIMATES; MALE SAVANNA BABOONS; SEXUAL SELECTION; GROUP-SIZE We review evolutionary processes and mechanisms that gave rise to the diversity of primate social systems. We define social organization, social structure and mating system as distinct components of a social system. For each component, we summarize levels and patterns of variation among primates and discuss evolutionary determinants of this variation. We conclude that conclusive explanations for a solitary life and pair-living are still lacking. We then focus on interactions among the 3 components in order to identify main targets of selection and potential constraints for social evolution. Social organization and mating system are more closely linked to each other than either one is to social structure. Further, we conclude that it is important to seek a priori measures for the effects of presumed selective factors and that the genetic contribution to social systems is still poorly examined. Finally, we examine the role of primate socio-ecology in current evolutionary biology and conclude that primates are not prominently represented because the main questions asked in behavioral ecology are often irrelevant for primate behavior. For the future, we see a rapprochement of these areas as the role of disease and life-history theory are integrated more fully into primate socio-ecology. Deutsch Primatenzentrum GmbH, Abt Verhaltensforsch Okol, D-37077 Gottingen, Germany; Duke Univ, Dept Biol Anthropol & Anat, Durham, NC 27708 USA Kappeler, PM (reprint author), Deutsch Primatenzentrum GmbH, Abt Verhaltensforsch Okol, Kellnerweg 4, D-37077 Gottingen, Germany. pkappel@gwdg.de Kappeler, Peter/B-6825-2012 ALBERTS SC, 1995, AM NAT, V145, P279, DOI 10.1086/285740; ALBERTS SC, 1995, BEHAV ECOL SOCIOBIOL, V36, P397, DOI 10.1007/BF00177335; ALTMANN J, 1990, ANIM BEHAV, V39, P193, DOI 10.1016/S0003-3472(05)80740-7; Altmann J, 1996, P NATL ACAD SCI USA, V93, P5797, DOI 10.1073/pnas.93.12.5797; ALTMANN SA, 1998, FORAGING SUCCESS; Andelman S.J, 1986, P201; ANDERSON CM, 1986, PRIMATES, V27, P15, DOI 10.1007/BF02382520; BARTLETT TQ, 1993, AM ANTHROPOL, V95, P958, DOI 10.1525/aa.1993.95.4.02a00090; Barton RA, 2000, PRIMATE MALES, P97; Barton RA, 1996, BEHAV ECOL SOCIOBIOL, V38, P321, DOI 10.1007/s002650050248; Bearder S.K., 1987, P11; Bearder SK, 1999, PRIMATES, V40, P267, DOI 10.1007/BF02557715; BERCOVITCH FB, 1989, EVOLUTION, V43, P1507, DOI 10.1111/j.1558-5646.1989.tb02600.x; BERCOVITCH FB, 1991, ETHOL SOCIOBIOL, V12, P315, DOI 10.1016/0162-3095(91)90023-J; Berger J, 1996, OIKOS, V77, P207, DOI 10.2307/3546059; Boinski S, 2000, MOVE; Boinski Sue, 1995, Evolutionary Anthropology, V4, P1, DOI 10.1002/evan.1360040102; Borries C, 2000, PRIMATE MALES, P146; Brockman DK, 1996, AM J PHYS ANTHROPOL, V100, P57; Brotherton PNM, 1997, P ROY SOC B-BIOL SCI, V264, P675, DOI 10.1098/rspb.1997.0096; Castles DL, 1996, ANIM BEHAV, V52, P389, DOI 10.1006/anbe.1996.0183; Chapais B, 1997, ANIM BEHAV, V53, P1089, DOI 10.1006/anbe.1996.0365; Charles-Dominique P., 1978, P139; Charles-Dominique P., 1980, P75; Charles-Dominique P., 1977, ECOLOGY BEHAV NOCTUR; CharlesDominique P, 1995, CREATURES OF THE DARK, P425; Cheney D.L., 1987, P227; CLARK AB, 1985, INT J PRIMATOL, V6, P581, DOI 10.1007/BF02692290; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CLUTTONB.TH, 1974, NATURE, V250, P539, DOI 10.1038/250539a0; CLUTTONBROCK TH, 1977, NATURE, V269, P797, DOI 10.1038/269797a0; CLUTTONBROCK TH, 1989, NATURE, V337, P70, DOI 10.1038/337070a0; CLUTTONBROCK TH, 1992, Q REV BIOL, V67, P437, DOI 10.1086/417793; CLUTTONBROCK TH, 1989, PROC R SOC SER B-BIO, V236, P339, DOI 10.1098/rspb.1989.0027; CLUTTONBROCK TH, 1995, ANIM BEHAV, V49, P1345, DOI 10.1006/anbe.1995.0166; CLUTTONBROCK TH, 1977, J ZOOL, V183, P1, DOI 10.1111/j.1469-7998.1977.tb04171.x; COLMENARES F, 1992, BEHAVIOUR, V121, P61, DOI 10.1163/156853992X00444; Cords M., 1988, P323; Cords M, 2000, PRIMATE MALES, P84; COWLISHAW G, 1991, ANIM BEHAV, V41, P1045, DOI 10.1016/S0003-3472(05)80642-6; Crockett Carolyn M., 2000, P75, DOI 10.1017/CBO9780511542312.006; Crook J.H., 1970, SOCIAL BEHAVIOUR BIR, P103; CROOK JH, 1966, NATURE, V210, P1200, DOI 10.1038/2101200a0; DAGG A, 1999, AM ANTHROPOL, V100, P940; DAVIES CR, 1991, FUNCT ECOL, V5, P655, DOI 10.2307/2389485; Davies N.B., 1991, P263; de Ruiter JR, 1998, P ROY SOC B-BIOL SCI, V265, P79; DERUITER JR, 1986, BEHAVIOUR, V98, P240, DOI 10.1163/156853986X00982; DEWAAL FBM, 1993, CHILD DEV, V64, P897, DOI 10.2307/1131225; DEWAAL FBM, 1989, AM J PRIMATOL, V19, P83, DOI 10.1002/ajp.1350190203; DEWAAL FBM, 1986, Q REV BIOL, V61, P459, DOI 10.1086/415144; DEWAAL FBM, 1989, COMP SOCIOECOLOGY, P243; DIFIORE A, 1994, P NATL ACAD SCI USA, V91, P9941, DOI 10.1073/pnas.91.21.9941; Digby LJ, 1999, FOLIA PRIMATOL, V70, P136, DOI 10.1159/000021686; Dixson A. F., 1998, PRIMATE SEXUALITY; DOBSON AP, 1989, CONSERV BIOL, V3, P362, DOI 10.1111/j.1523-1739.1989.tb00242.x; Dunbar R. I. M., 1988, PRIMATE SOCIAL SYSTE; DUNBAR RIM, 1995, J HUM EVOL, V28, P287, DOI 10.1006/jhev.1995.1021; Dunbar RIM, 2000, PRIMATE MALES, P259; Dunbar RIM, 1998, EVOL ANTHROPOL, V6, P178, DOI 10.1002/(SICI)1520-6505(1998)6:5<178::AID-EVAN5>3.0.CO;2-8; DUNBAR RIM, 1995, ANIM BEHAV, V50, P1057, DOI 10.1016/0003-3472(95)80106-5; DUNBAR RIM, 1992, J HUM EVOL, V22, P469, DOI 10.1016/0047-2484(92)90081-J; EISENBER.JF, 1972, SCIENCE, V176, P863, DOI 10.1126/science.176.4037.863; ELGAR MA, 1986, ANIM BEHAV, V34, P169, DOI 10.1016/0003-3472(86)90020-5; EMLEN ST, 1994, TRENDS ECOL EVOL, V9, P282, DOI 10.1016/0169-5347(94)90030-2; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; Fietz J, 1999, ETHOLOGY, V105, P259; Fietz J, 2000, BEHAV ECOL SOCIOBIOL, V49, P8, DOI 10.1007/s002650000269; FREELAND W J, 1976, Biotropica, V8, P12, DOI 10.2307/2387816; FRENCH JA, 1995, ETHOLOGY, V99, P24; Fuentes A, 2000, YEARB PHYS ANTHROPOL, V43, P33; Fuentes A, 1998, AM ANTHROPOL, V100, P890, DOI 10.1525/aa.1998.100.4.890; GANZHORN JU, 1987, AM J PRIMATOL, V12, P205, DOI 10.1002/ajp.1350120208; Garber Paul A., 1997, Evolutionary Anthropology, V5, P187, DOI 10.1002/(SICI)1520-6505(1997)5:6<187::AID-EVAN1>3.0.CO;2-A; Gerald MS, 2001, ANIM BEHAV, V61, P559, DOI 10.1006/anbe.2000.1648; Gerloff U, 1999, P ROY SOC B-BIOL SCI, V266, P1189, DOI 10.1098/rspb.1999.0762; Gibson RM, 1996, TRENDS ECOL EVOL, V11, P468, DOI 10.1016/0169-5347(96)10050-1; GITTLEMAN JL, 1992, ANNU REV ECOL SYST, V23, P383; Goldizen A.W., 1987, P34; GOLDIZEN AW, 1987, BEHAV ECOL SOCIOBIOL, V20, P99, DOI 10.1007/BF00572631; GOLDIZEN AW, 1989, AM NAT, V134, P208, DOI 10.1086/284976; GOODMAN SM, 1993, LEMUR SOCIAL SYSTEMS AND THEIR ECOLOGICAL BASIS, P51; GORE MA, 1993, ANIM BEHAV, V45, P773, DOI 10.1006/anbe.1993.1091; GOSSCWST.JD, 1972, FOLIA PRIMATOL, V17, P1, DOI 10.1159/000155414; Groves CP, 2000, INT J PRIMATOL, V21, P943, DOI 10.1023/A:1005559012637; Gursky S, 2000, AM J PRIMATOL, V51, P89, DOI 10.1002/(SICI)1098-2345(200005)51:1<89::AID-AJP7>3.3.CO;2-Z; Gursky S, 1998, FOLIA PRIMATOL, V69, P191, DOI 10.1159/000052713; Gursky S, 2000, INT J PRIMATOL, V21, P477, DOI 10.1023/A:1005444020059; HAMILTON WJ, 1992, AM J PRIMATOL, V28, P61, DOI 10.1002/ajp.1350280106; Harcourt AH, 1998, EVOL ANTHROPOL, V7, P3, DOI 10.1002/(SICI)1520-6505(1998)7:1<3::AID-EVAN2>3.0.CO;2-H; Harcourt AH, 1997, AM NAT, V149, P189, DOI 10.1086/285986; HARCOURT CS, 1986, AM J PRIMATOL, V10, P339, DOI 10.1002/ajp.1350100406; HARRISON ML, 1989, INT J PRIMATOL, V10, P343, DOI 10.1007/BF02737421; Harvey P. H., 1991, COMP METHOD EVOLUTIO; HARVEY PH, 1978, J ZOOL, V186, P475; HAUSER M, 1993, EVOL ANTHROPOL, V2, P182; HEMELRIJK CK, 1991, ANIM BEHAV, V41, P923, DOI 10.1016/S0003-3472(05)80630-X; Henzi SP, 1997, ANIM BEHAV, V53, P525, DOI 10.1006/anbe.1996.0302; Heymann E.W., 1999, Primate Report, V55, P53; Heymann EW, 2000, PRIMATE MALES, P64; Hill RA, 1998, BEHAVIOUR, V135, P411; Hill RA, 1998, J ZOOL, V245, P447, DOI 10.1111/j.1469-7998.1998.tb00119.x; HINDE RA, 1976, MAN, V11, P1, DOI 10.2307/2800384; HRDY SB, 1979, ETHOL SOCIOBIOL, V1, P13, DOI 10.1016/0162-3095(79)90004-9; Isbell LA, 1996, BEHAVIOUR, V133, P1, DOI 10.1163/156853996X00017; Janson C.H., 1986, P169; JANSON CH, 1995, BEHAV ECOL, V6, P326, DOI 10.1093/beheco/6.3.326; JANSON CH, 1988, BEHAVIOUR, V105, P1, DOI 10.1163/156853988X00412; Janson CH, 1998, BEHAVIOUR, V135, P389, DOI 10.1163/156853998793066177; Janson CH, 2000, EVOL ANTHROPOL, V9, P73, DOI 10.1002/(SICI)1520-6505(2000)9:2<73::AID-EVAN2>3.0.CO;2-X; Janson CH, 2003, PRIMATE LIFE HIST SO; Janson Charles H., 1993, P57; Jernvall J, 1998, P NATL ACAD SCI USA, V95, P11279, DOI 10.1073/pnas.95.19.11279; Johnstone RA, 1999, AM NAT, V153, P315, DOI 10.1086/303169; JOHNSTONE RA, 1995, BIOL REV, V70, P1, DOI 10.1111/j.1469-185X.1995.tb01439.x; Johnstone RA, 2000, ETHOLOGY, V106, P5, DOI 10.1046/j.1439-0310.2000.00529.x; Jolly A, 1998, FOLIA PRIMATOL, V69, P1, DOI 10.1159/000052693; JOLLY A, 1966, LEMUR BEHAV; Kappeler Peter M., 1993, Perspectives in Ethology, V10, P143; Kappeler Peter M., 1999, Cambridge Studies in Biological Anthropology, V22, P273; Kappeler Peter M., 1999, P158, DOI 10.1017/CBO9780511542381.010; Kappeler PM, 1996, BIOL J LINN SOC, V59, P297; KAPPELER PM, 1993, ETHOLOGY, V93, P125; KAPPELER PM, 1993, LEMUR SOCIAL SYSTEMS AND THEIR ECOLOGICAL BASIS, P223; Kappeler PM, 2000, PRIMATE MALES, P3; Kappeler PM, 1997, BEHAV ECOL SOCIOBIOL, V41, P115, DOI 10.1007/s002650050371; Kappeler PM, 1999, NATURWISSENSCHAFTEN, V86, P18, DOI 10.1007/s001140050563; Kappeler PM, 1997, BIOL REV, V72, P111, DOI 10.1017/S0006323196004999; KAPPELER PM, UNPUB HIDDEN MATRILI; KAPPELER PM, 2000, PRIMATE SOCIOECOLOGY; KAY RF, 1988, AM J PHYS ANTHROPOL, V77, P385, DOI 10.1002/ajpa.1330770311; KINZEY WG, 1994, AM J PRIMATOL, V34, P185, DOI 10.1002/ajp.1350340209; Koenig A, 1998, BEHAV ECOL SOCIOBIOL, V42, P225, DOI 10.1007/s002650050434; Koenig A, 2002, INT J PRIMATOL, V23, P759, DOI 10.1023/A:1015524931226; Koenig A, 1998, PRIMATES, V39, P85, DOI 10.1007/BF02557746; Komers PE, 1996, ANIM BEHAV, V51, P131, DOI 10.1006/anbe.1996.0011; KREBS JR, 1992, BEHAV ECOLOGY; KUMMER H, 1968, SOCIAL ORG HAMADRYAS; Kvarnemo C, 1996, TRENDS ECOL EVOL, V11, P404, DOI 10.1016/0169-5347(96)10056-2; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Launhardt K, 2001, ANIM BEHAV, V61, P53, DOI 10.1006/anbe.2000.1590; LOTT DF, 1991, INTRASPECIFIC VARIAT; MacKinnon J., 1980, International Journal of Primatology, V1, P361, DOI 10.1007/BF02692280; MANGEL M, 1990, ANIM BEHAV, V39, P1163, DOI 10.1016/S0003-3472(05)80788-2; MANNING JT, 1993, P ROY SOC B-BIOL SCI, V251, P83, DOI 10.1098/rspb.1993.0012; MANNING JT, 1995, ETHOL SOCIOBIOL, V16, P145, DOI 10.1016/0162-3095(94)00074-H; MANSON J, 1995, EVOL ANTHROPOL, V3, P192; MANSON JH, 1994, ANIM BEHAV, V48, P473, DOI 10.1006/anbe.1994.1262; MARTIN RD, 1972, Z TIERPSYCHOL, V9, P43; McGrew W. C., 1996, GREAT APE SOC; MELNICK DJ, 1992, INT J PRIMATOL, V13, P379, DOI 10.1007/BF02547824; MELNICK DJ, 1984, AM J PRIMATOL, V7, P229, DOI 10.1002/ajp.1350070303; MENDOZA SP, 1986, PHYSIOL BEHAV, V38, P795, DOI 10.1016/0031-9384(86)90045-4; Mitani JC, 1996, AM J PRIMATOL, V38, P315, DOI 10.1002/(SICI)1098-2345(1996)38:4<315::AID-AJP3>3.0.CO;2-1; Mitani JC, 1996, AM NAT, V147, P966, DOI 10.1086/285888; MITCHELL CL, 1991, BEHAV ECOL SOCIOBIOL, V28, P55, DOI 10.1007/BF00172139; Moller AP, 1997, P ROY SOC B-BIOL SCI, V264, P561, DOI 10.1098/rspb.1997.0080; MOORE J, 1992, INT J PRIMATOL, V13, P361, DOI 10.1007/BF02547823; MOORE J, 1984, ANIM BEHAV, V32, P94, DOI 10.1016/S0003-3472(84)80328-0; MOORE J, 1984, INT J PRIMATOL, V5, P537, DOI 10.1007/BF02692285; MORLAND HS, 1990, AM J PRIMATOL, V20, P253, DOI 10.1002/ajp.1350200402; Muller AE, 2000, BIOL REV, V75, P405, DOI 10.1017/S0006323100005533; Muller AE, 1998, FOLIA PRIMATOL, V69, P160; Myers N, 2000, NATURE, V403, P853, DOI 10.1038/35002501; NAGEL U, 1973, FOLIA PRIMATOL, V19, P104, DOI 10.1159/000155536; Nishida T., 1987, P165; NOE R, 1994, BEHAV ECOL SOCIOBIOL, V35, P1; NOE R, 1995, TRENDS ECOL EVOL, V10, P336, DOI 10.1016/S0169-5347(00)89123-5; NOE R, 1990, BEHAVIOUR, V113, P117, DOI 10.1163/156853990X00455; Nunn C.L., 2001, RECONSTRUCTING BEHAV; Nunn CL, 1999, BEHAV ECOL SOCIOBIOL, V46, P1, DOI 10.1007/s002650050586; Nunn CL, 1999, ANIM BEHAV, V58, P229, DOI 10.1006/anbe.1999.1159; Nunn CL, 2000, AM NAT, V156, P519, DOI 10.1086/303405; Nunn CL, 2000, SCIENCE, V290, P1168, DOI 10.1126/science.290.5494.1168; Nunn CL, 2001, EVOL ANTHROPOL, V10, P81, DOI 10.1002/evan.1019; PACKER C, 1985, ANIM BEHAV, V33, P676, DOI 10.1016/S0003-3472(85)80096-8; PALOMBIT RA, 1994, ANIM BEHAV, V47, P721, DOI 10.1006/anbe.1994.1097; Palombit RA, 1997, ANIM BEHAV, V54, P599, DOI 10.1006/anbe.1996.0457; Palombit RA, 1999, EVOL ANTHROPOL, V7, P117, DOI 10.1002/(SICI)1520-6505(1999)7:4<117::AID-EVAN2>3.0.CO;2-O; Palombit Ryne A., 2000, P239, DOI 10.1017/CBO9780511542312.013; Paul A, 2002, INT J PRIMATOL, V23, P877, DOI 10.1023/A:1015533100275; PAUL A, 1993, PRIMATES, V34, P491, DOI 10.1007/BF02382660; Paul A, 1997, FOLIA PRIMATOL, V68, P344, DOI 10.1159/000157263; Paul Andreas, 2000, P269, DOI 10.1017/CBO9780511542312.014; PEREIRA ME, 1987, AM J PRIMATOL, V13, P129, DOI 10.1002/ajp.1350130204; PEREIRA ME, 1995, AM J PRIMATOL, V37, P143, DOI 10.1002/ajp.1350370207; Pereira ME, 1997, BEHAVIOUR, V134, P225, DOI 10.1163/156853997X00467; Pereira ME, 1997, AM J PRIMATOL, V43, P239, DOI 10.1002/(SICI)1098-2345(1997)43:3<239::AID-AJP4>3.3.CO;2-#; PEREIRA ME, 1991, BEHAV ECOL SOCIOBIOL, V28, P141; Pereira ME, 2003, PRIMATE LIFE HIST SO; PEREIRA ME, 1993, JUVENILE PRIMATES LI; PLAVCAN JM, 1992, AM J PHYS ANTHROPOL, V87, P461, DOI 10.1002/ajpa.1330870407; Pope TR, 2000, PRIMATE MALES, P219; Pope TR, 2000, BEHAV ECOL SOCIOBIOL, V48, P253, DOI 10.1007/s002650000236; Pope TR, 1998, J MAMMAL, V79, P692, DOI 10.2307/1383081; POPE TR, 1992, EVOLUTION, V46, P1112, DOI 10.1111/j.1558-5646.1992.tb00623.x; Preuschoft S, 2000, PRIMATE MALES, P205; PREUSCHOFT S, 2001, 18 C IPS AD JAN; PURVIS A, 1995, PHILOS T ROY SOC B, V348, P405, DOI 10.1098/rstb.1995.0078; Pusey A.E., 1987, P250; Radespiel U, 2000, AM J PRIMATOL, V51, P21, DOI 10.1002/(SICI)1098-2345(200005)51:1<21::AID-AJP3>3.0.CO;2-C; Rasoloarison RM, 2000, INT J PRIMATOL, V21, P963, DOI 10.1023/A:1005511129475; Rasoloarison Rodin M., 1995, Ecotropica, V1, P59; Rasoloharijaona S, 2000, INT J PRIMATOL, V21, P41, DOI 10.1023/A:1005419528718; REICHARD U, 1995, ETHOLOGY, V100, P99; Richard A., 1978, BEHAV VARIATION CASE; Richard A.F., 1987, P25; RICHARD AF, 1985, INT J PRIMATOL, V6, P553, DOI 10.1007/BF02692288; RIDLEY M, 1986, ANIM BEHAV, V34, P1848, DOI 10.1016/S0003-3472(86)80271-8; RIGAMONTI MM, 1993, LEMUR SOCIAL SYSTEMS AND THEIR ECOLOGICAL BASIS, P25; ROBBINS MM, 1995, BEHAVIOUR, V132, P21, DOI 10.1163/156853995X00261; Robinson J.G., 1987, P44; RODMAN PS, 1993, EVOL ANTHROPOL, V2, P215; Rowell T, 1979, PRIMATE ECOLOGY HUMA, P1; ROWELL TE, 1988, PRIMATE RAD EVOLUTIO, P439; Rowell Thelma E., 1993, Evolutionary Anthropology, V2, P135, DOI 10.1002/evan.1360020408; RUTBERG AT, 1983, J THEOR BIOL, V104, P93, DOI 10.1016/0022-5193(83)90403-4; SAUTHER ML, 1991, AM J PHYS ANTHROPOL, V84, P463, DOI 10.1002/ajpa.1330840409; Schmid J, 1998, INT J PRIMATOL, V19, P797, DOI 10.1023/A:1020389228665; Schulke O., 2003, NATURAL HIST MADAGAS; Setchell JM, 2001, AM J PRIMATOL, V53, P109, DOI 10.1002/1098-2345(200103)53:3<109::AID-AJP2>3.0.CO;2-I; SICOTTE P, 1994, ETHOLOGY, V97, P47; Silk JB, 2002, INT J PRIMATOL, V23, P849, DOI 10.1023/A:1015581016205; SMALL MF, 1989, YEARB PHYS ANTHROPOL, V32, P103; Smuts B.B., 1987, P400; Smuts B. B., 1985, SEX FRIENDSHIP BABOO; SMUTS BB, 1993, ADV STUD BEHAV, V22, P1, DOI 10.1016/S0065-3454(08)60404-0; Sommer V, 2000, PRIMATE MALES, P159; Sotchell JM, 2001, HORM BEHAV, V39, P177, DOI 10.1006/bheh.2000.1628; Srivastava A, 1996, BEHAV ECOL SOCIOBIOL, V39, P219, DOI 10.1007/s002650050284; Stammbach E., 1987, P112; Stanford CB, 2002, INT J PRIMATOL, V23, P741, DOI 10.1023/A:1015572814388; Steenbeek R, 2000, PRIMATE MALES, P130; Steenbeek R, 2001, BEHAV ECOL SOCIOBIOL, V49, P100, DOI 10.1007/s002650000286; Sterck EHM, 1997, BEHAV ECOL SOCIOBIOL, V41, P291, DOI 10.1007/s002650050390; Sterck EHM, 1998, AM J PRIMATOL, V44, P235, DOI 10.1002/(SICI)1098-2345(1998)44:4<235::AID-AJP1>3.0.CO;2-X; Sterck EHM, 1999, PRIMATES, V40, P199, DOI 10.1007/BF02557711; Sterling EJ, 2000, AM J PRIMATOL, V51, P3, DOI 10.1002/(SICI)1098-2345(200005)51:1<3::AID-AJP2>3.0.CO;2-D; Sterling EJ, 1995, CREATURES OF THE DARK, P439; Strier Karen B., 1994, Yearbook of Physical Anthropology, V37, P233; Strier KB, 2000, ANIM BEHAV, V59, P849, DOI 10.1006/anbe.1999.1387; Strier KB, 2000, PRIMATE MALES, P72; Strier KB, 1996, HUM NATURE-INT BIOS, V7, P105, DOI 10.1007/BF02692107; STRIER KB, 1992, AM J PHYS ANTHROPOL, V88, P515, DOI 10.1002/ajpa.1330880407; Strier KB, 2000, PRIMATE BEHAV ECOLOG; Struhsaker TT, 2000, PRIMATE MALES, P108; STRUHSAKER TT, 1969, FOLIA PRIMATOL, V11, P80, DOI 10.1159/000155259; SUGAWARA K, 1988, PRIMATES, V29, P429, DOI 10.1007/BF02381132; Sussman R. W., 1995, EVOL ANTHROPOL, V3, P149; Sussman RW, 1999, PRIMATE ECOLOGY SOCI, V1; TAKAHATA Y, 1982, Primates, V23, P1, DOI 10.1007/BF02381434; TARDIF SD, 1994, AM J PRIMATOL, V34, P111, DOI 10.1002/ajp.1350340203; TERBORGH J, 1986, ANNU REV ECOL SYST, V17, P111; Thalmann U, 2001, INT J PRIMATOL, V22, P287, DOI 10.1023/A:1005627732561; Thornhill R, 1995, ANIM BEHAV, V50, P1601, DOI 10.1016/0003-3472(95)80014-X; Tilson R.L., 1986, P361; van Hooff J.A.R.A.M., 1992, P357; van Noordwijk Maria A., 2000, P322, DOI 10.1017/CBO9780511542312.016; van Schaik Carel, 1996, Evolutionary Anthropology, V5, P152, DOI 10.1002/(SICI)1520-6505(1996)5:5<152::AID-EVAN3>3.0.CO;2-H; van Schaik Carel P., 1999, P204, DOI 10.1017/CBO9780511542466.011; van Schaik Carel P., 1996, Proceedings of the British Academy, V88, P9; van Schaik Carel P., 2000, P27, DOI 10.1017/CBO9780511542312.004; van Schaik CP, 1999, PRIMATES, V40, P69, DOI 10.1007/BF02557703; VANHOOFF JAR, 2000, PRIMATE MALES, P193; VANHOOFF JARAM, 1994, BEHAVIOUR, V130, P309, DOI 10.1163/156853994X00587; VANNOORDWIJK MA, 1988, BEHAVIOUR, V107, P24, DOI 10.1163/156853988X00179; VANSCHAIK CP, 1983, BEHAVIOUR, V85, P91, DOI 10.1163/156853983X00057; VANSCHAIK CP, 1983, BEHAVIOUR, V87, P120, DOI 10.1163/156853983X00147; VANSCHAIK CP, 1994, BEHAV ECOL SOCIOBIOL, V35, P261, DOI 10.1007/s002650050097; VanSchaik CP, 1997, P ROY SOC B-BIOL SCI, V264, P1687, DOI 10.1098/rspb.1997.0234; vanSchaik CP, 1996, ETHOLOGY, V102, P915; VANSCHAIK CP, 1993, LEMUR SOCIAL SYSTEMS AND THEIR ECOLOGICAL BASIS, P241; VANSCHAIK CP, 1990, BEHAVIOUR, V115, P30, DOI 10.1163/156853990X00284; VANSCHAIK CP, 1989, COMP SOCIOECOLOGY BE, P195; VEHRENCAMP SL, 1983, ANIM BEHAV, V31, P667, DOI 10.1016/S0003-3472(83)80222-X; VICK LG, 1989, BEHAV ECOL SOCIOBIOL, V25, P3, DOI 10.1007/BF00299705; WASER PM, 1983, Q REV BIOL, V58, P355, DOI 10.1086/413385; WATSON PJ, 1994, TRENDS ECOL EVOL, V9, P21, DOI 10.1016/0169-5347(94)90227-5; Watts DP, 1998, BEHAV ECOL SOCIOBIOL, V44, P43, DOI 10.1007/s002650050513; WATTS DP, 1992, AM J PRIMATOL, V28, P159, DOI 10.1002/ajp.1350280302; Watts DP, 2000, PRIMATE MALES, P169; Weingrill T, 2000, BEHAVIOUR, V137, P337, DOI 10.1163/156853900502114; Whitehead H, 1997, ANIM BEHAV, V53, P1053, DOI 10.1006/anbe.1996.0358; WICKINGS EJ, 1992, PHYSIOL BEHAV, V52, P909, DOI 10.1016/0031-9384(92)90370-H; Widemo F, 1999, TRENDS ECOL EVOL, V14, P26, DOI 10.1016/S0169-5347(98)01531-6; WILLSON MF, 1963, AM NAT, V97, P405, DOI 10.1086/282292; Wilson E.O., 1975, P1; WIMMER B, UNPUB GENETIC POPULA; Wrangham R.W., 1987, P282; WRANGHAM RW, 1980, BEHAVIOUR, V75, P262, DOI 10.1163/156853980X00447; Wright P.C., 1986, P159; Wright Patricia C., 1997, P127; Wright PC, 1999, YEARB PHYS ANTHROPOL, V42, P31; WRIGHT PC, 1990, INT J PRIMATOL, V11, P89, DOI 10.1007/BF02192783; WRIGHT PC, 1989, J HUM EVOL, V18, P635, DOI 10.1016/0047-2484(89)90098-5; Zinner D, 2000, AM J PRIMATOL, V52, P157, DOI 10.1002/1098-2345(200012)52:4<157::AID-AJP1>3.0.CO;2-L; ZINNER D, 1994, BEHAV ECOL SOCIOBIOL, V35, P175, DOI 10.1007/s002650050085; Zuckerman S., 1932, SOCIAL LIFE MONKEYS 298 295 315 11 245 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0164-0291 1573-8604 INT J PRIMATOL Int. J. Primatol. AUG 2002 23 4 707 740 UNSP 0164-0291/02/0800-0707/0 10.1023/A:1015520830318 34 Zoology Zoology 554YJ WOS:000175764500002 2018-11-12 J Olsson, O; van der Jeugd, HP Olsson, O; van der Jeugd, HP Survival in king penguins Aptenodytes patagonicus: temporal and sex-specific effects of environmental variability OECOLOGIA English Article breeding experience; cost of reproduction; life history; sex ratio; survival BREEDING CYCLE; FOOD AVAILABILITY; CROZET-ISLANDS; SOUTH GEORGIA; REPRODUCTION; DIET; POPULATION; BIRDS; COSTS We investigated annual adult survival rates of king penguins Aptenodytes patagonicus breeding at South Georgia during 6 years in relation to age/breeding experience, sex, and food availability. During the first 3 years of the study, when food availability was good, survival was 97.7% for experienced breeders, which confirmed the very high survival rates observed in penguins in general. In these years survival did not differ between the sexes, presumably because parental investment is shared equally between the sexes, and the sexual dimorphism is small in king penguins. Survival was lower for young, first-time breeders (83.0%). In experienced birds the annual survival rate decreased to 68-82% following a catastrophic year when food availability was extremely low. We address the question how parents balance their current investment in offspring against their chances to reproduce in the future. We argue that the high mortality rate among breeding individuals after the year of food stress provides support for previous suggestions that the response to increased costs in seabirds might be complex to predict and does not always follow intuitive expectations according to general life-history theory. We also found that females survived significantly less well than males following the bad year. We explain this result as follows: the male-biased sex ratio (56:44) that we observed in our study colony clearly does not result from lower female survival during normal conditions. An already existing skewed sex ratio forces males to delay the onset of breeding because of a lack of breeding partners. This in turn causes breeding females to be, on average, younger and less experienced than males and to have lower survival following a year of food shortage. In this study survival was linked with food availability and we suggest that this was connected to climatic/oceanographic features, such as the position of the Antarctic Polar Front Zone. We could, however, not verify this by anomalies in sea surface temperature data. British Antarctic Survey, NERC, Cambridge CB3 0ET, England; Univ Oxford, Dept Zool, Edward Grey Inst Field Ornithol, Oxford OX1 3PS, England; Evolutionary Biol Ctr, Dept Anim Ecol, S-75236 Uppsala, Sweden Olsson, O (reprint author), Minist Environm, Environm Advisory Council, S-10333 Stockholm, Sweden. van der Jeugd, Henk/F-4891-2010 van der Jeugd, Henk/0000-0002-5332-9526; Olsson, Olof/0000-0002-9479-7609 Natural Environment Research Council [bas010011] Akaike H, 1973, INT S INF THEOR, P267, DOI DOI 10.2307/2334537; Anderson DR, 2000, J WILDLIFE MANAGE, V64, P912, DOI 10.2307/3803199; ARMSTRONG T, 1988, ANIM BEHAV, V36, P941, DOI 10.1016/S0003-3472(88)80180-5; Barbraud C, 2001, NATURE, V411, P183, DOI 10.1038/35075554; Barrat A., 1976, COM NAT FR RECH ANTA, V40, P9, DOI DOI 10.1016/J.ATHEROSCLEROSIS.2014.12.010; Breitwisch R., 1989, Current Ornithology, V6, P1; BURNHAM KP, 1987, AM FISHERIES SOC MON, V5; CHEREL Y, 1993, POLAR BIOL, V13, P355; CLARK CW, 1990, EVOL ECOL, V4, P21, DOI 10.1007/BF02270712; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Croxall JP, 1999, MAR ECOL PROG SER, V177, P115, DOI 10.3354/meps177115; Erikstad KE, 1998, ECOLOGY, V79, P1781; Froget G, 1998, POLAR BIOL, V20, P409, DOI 10.1007/s003000050322; Guinet C, 1998, P ROY SOC B-BIOL SCI, V265, P1001, DOI 10.1098/rspb.1998.0390; JACOBSEN KO, 1995, ECOLOGY, V76, P1636, DOI 10.2307/1938164; JOUVENTIN P, 1994, MAR ECOL PROG SER, V106, P11, DOI 10.3354/meps106011; KOOYMAN G, 1999, P INT ORNITHOL C, V22, P2021; Lack D., 1968, ECOLOGICAL ADAPTATIO; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; MARTIN K, 1995, AM ZOOL, V35, P340; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; Olsson O, 1996, J AVIAN BIOL, V27, P7, DOI 10.2307/3676955; Olsson O, 1997, POLAR BIOL, V18, P161, DOI 10.1007/s003000050172; Olsson O, 1997, CONDOR, V99, P994, DOI 10.2307/1370154; Olsson O, 1997, IBIS, V139, P504, DOI 10.1111/j.1474-919X.1997.tb04666.x; Olsson O, 1997, J AVIAN BIOL, V28, P264, DOI 10.2307/3676979; OLSSON O, 1995, THESIS UPPSALA U SWE; PROMISLOW DEL, 1992, P ROY SOC B-BIOL SCI, V250, P143, DOI 10.1098/rspb.1992.0142; RICHDALE LE, 1957, POPULATION STUDY PEN; Rodhouse PG, 1998, MAR ECOL PROG SER, V168, P13, DOI 10.3354/meps168013; *SAS I, 1990, SAS STAT US GUID VER, V1; Sokal R.R., 1995, BIOMETRY; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stonehouse B., 1960, SCI REPT FALKLAND IS, V23, P1; VANDERJEUGD HP, 1998, J ANIM ECOL, V67, P653; VANHEEZIK YM, 1994, IBIS, V136, P279; WEIMERSKIRCH H, 1992, IBIS, V134, P107, DOI 10.1111/j.1474-919X.1992.tb08387.x; WEIMERSKIRCH H, 1999, P INT ORNITHOL C, V22, P2021; Williams T.D., 1995, PENGUINS; WOOLLER RD, 1992, TRENDS ECOL EVOL, V7, P111, DOI 10.1016/0169-5347(92)90143-Y 41 26 28 0 19 SPRINGER-VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 USA 0029-8549 OECOLOGIA Oecologia AUG 2002 132 4 509 516 10.1007/s00442-002-0985-6 8 Ecology Environmental Sciences & Ecology 591EE WOS:000177866100004 28547636 2018-11-12 J Johnston, TA; Leggett, WC Johnston, TA; Leggett, WC Maternal and environmental gradients in the egg size of an iteroparous fish ECOLOGY English Article environmental gradients; fish egg size; growth; latitude; life history; maternal effects; productivity; Stizostedion vitreum; temperature; walleye WALLEYE STIZOSTEDION-VITREUM; CRUSTACEAN ZOOPLANKTON BIOMASS; SALMON ONCORHYNCHUS-NERKA; LIFE-HISTORY; REPRODUCTIVE CHARACTERISTICS; INTERPOPULATION VARIATION; EMPIRICAL PREDICTION; CLUTCH SIZE; FECUNDITY; POPULATIONS Life history theory predicts that organisms inhabiting environments with relatively poor conditions for the growth and survival of their offspring should produce fewer and larger offspring. We examined egg size (an index of offspring size) of all iteroparous, broadcast-spawning, freshwater fish-the walleye (Stizostedion vitreum)-from 34 populations across 26degrees of latitude in order to determine whether egg size varied with respect to environinental indices of juvenile habitat quality. Variation among populations (among environments) was compared to variation within populations (among females). Within Populations, egg size generally increased with maternal size and age. Slopes of these relationships were much more variable among populations (cv > 100%) than interannually within populations (cv < 50%). Egg size vs. female size/age correlations were stronger in populations closer to the northern and southern limits of the walleye range. Egg size was also related to maternal growth history, but the effects of recent growth (previous year) were inconsistent. Egg size varied much less than fecundity among females of the same Population. For a standard size/age of female, predicted egg size was more variable among populations (cv > 10%) than interannually within Populations (cv < 5%), but only slightly more variable than among females within populations (mean cv = 8.5%). Nevertheless, among-population variability in egg size was related to environmental conditions. Mean egg size decreased with increasing latitude/decreasing mean annual temperature, contrary to our predictions. However, as predicted, egg size decreased with increasing lake productivity following adjustment for the latitudinal/temperature effect. These results suggest that egg size in fishes may be influenced by multiple environmental factors across populations, as well as by maternal effects within populations. Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada Johnston, TA (reprint author), Fisheries & Oceans Canada, Great Lakes Lab Fisheries & Aquat Sci, 867 Lakeshore Rd,POB 5050, Burlington, ON L7R 4A6, Canada. Leggett, William/F-6009-2011; Johnston, Thomas/G-1809-2012 Azevedo RBR, 1996, EVOLUTION, V50, P2338, DOI 10.1111/j.1558-5646.1996.tb03621.x; BABALUK JA, 1993, 2183 CAN MAN REP FIS; Baccante D.A., 1988, North American Journal of Fisheries Management, V8, P199, DOI 10.1577/1548-8675(1988)008<0199:FCITEW>2.3.CO;2; Baccante DA, 1996, ANN ZOOL FENN, V33, P601; BAGENAL TB, 1971, J FISH BIOL, V3, P207, DOI 10.1111/j.1095-8649.1971.tb03665.x; BAKER HG, 1972, ECOLOGY, V53, P997, DOI 10.2307/1935413; Bernardo J, 1996, AM ZOOL, V36, P216; BRANDON RN, 1990, ADAPTATION NATURAL S; BROMAGE N, 1990, Aquaculture and Fisheries Management, V21, P269, DOI 10.1111/j.1365-2109.1990.tb00465.x; Brooks S, 1997, REV FISH BIOL FISHER, V7, P387, DOI 10.1023/A:1018400130692; Campbell J.S., 1979, 849 CAN FISH MAR SER; CANFIELD DE, 1981, CAN J FISH AQUAT SCI, V38, P414, DOI 10.1139/f81-058; Chambers RC, 1996, AM ZOOL, V36, P180; CHAMBERS RC, 1997, EARLY LIFE HIST RECR, P63; Chilton D. E., 1982, CANADIAN SPECIAL PUB, V60; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; COLBY PJ, 1981, CAN J FISH AQUAT SCI, V38, P1814, DOI 10.1139/f81-228; COLBY PJ, 1979, FAO UN NATIONS FISHE, V119; CRAIG JF, 1995, CAN J ZOOL, V73, P367, DOI 10.1139/z95-040; De Ciechomski J.D., 1973, Journal Fish Biol, V5, P393; DOCKER MF, 1991, ENVIRON BIOL FISH, V31, P219, DOI 10.1007/BF00000688; ELGAR MA, 1990, OIKOS, V59, P283, DOI 10.2307/3545546; FABER DJ, 1967, J FISH RES BOARD CAN, V24, P927, DOI 10.1139/f67-083; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; FORNEY JOHN L., 1965, NY FISH GAME J, V12, P217; Forsman A, 1995, FUNCT ECOL, V9, P818, DOI 10.2307/2389979; Glazier DS, 1999, ARCH HYDROBIOL, V146, P257; Guill JM, 1996, ENVIRON BIOL FISH, V46, P409, DOI 10.1007/BF00005021; HANSON JM, 1984, CAN J FISH AQUAT SCI, V41, P439, DOI 10.1139/f84-052; HARPER J. L., 1970, Annual review of ecology and systematics., V1, P327, DOI 10.1146/annurev.es.01.110170.001551; Heath DD, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P178; Henderson BA, 1996, CAN J FISH AQUAT SCI, V53, P127, DOI 10.1139/f95-162; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; HUTCHINGS JA, 1997, EARLY LIFE HIST RECR, P139; Johnston TA, 1997, CAN J FISH AQUAT SCI, V54, P1006, DOI 10.1139/cjfas-54-5-1006; Kamler E., 1992, EARLY LIFE HIST FISH; Kinnison MT, 1998, CAN J FISH AQUAT SCI, V55, P1946, DOI 10.1139/cjfas-55-8-1946; KJORSVIK E, 1990, ADV MAR BIOL, V26, P71, DOI 10.1016/S0065-2881(08)60199-6; LABEELUND JH, 1990, J FISH BIOL, V37, P755, DOI 10.1111/j.1095-8649.1990.tb02539.x; LACK D, 1954, NATURAL REGULATION A; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; LESLIE JK, 1992, J APPL ICHTHYOL, V8, P214, DOI 10.1111/j.1439-0426.1992.tb00685.x; MALISON JA, 1994, FISH PHYSIOL BIOCHEM, V13, P473, DOI 10.1007/BF00004330; Mann R.H.K., 1984, P171; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; McGurk MD, 2000, CAN J ZOOL, V78, P1791, DOI 10.1139/cjz-78-10-1791; MILLER TJ, 1988, CAN J FISH AQUAT SCI, V45, P1657, DOI 10.1139/f88-197; MILLS CA, 1985, OIKOS, V44, P341, DOI 10.2307/3544709; MIZERA J J, 1981, Journal of Great Lakes Research, V7, P62; MOODIE GEE, 1989, CAN J FISH AQUAT SCI, V46, P516, DOI 10.1139/f89-069; Morita K, 1998, J FISH BIOL, V53, P1140, DOI 10.1111/j.1095-8649.1998.tb00471.x; Morita K, 1999, CAN J FISH AQUAT SCI, V56, P1585, DOI 10.1139/cjfas-56-9-1585; Mousseau TA, 1998, MATERNAL EFFECTS ADA; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PAULSON AC, 1975, T AM FISH SOC, V106, P244; Quinn TP, 1995, OIKOS, V74, P425, DOI 10.2307/3545987; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; Ricker W. E., 1975, B FISHERIES RES BOAR, V191; Roff A., 1992, EVOLUTION LIFE HIST; ROWE JW, 1994, OECOLOGIA, V99, P35, DOI 10.1007/BF00317081; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; SAS Institute, 1990, SAS STAT US GUID VER; Scott WB, 1973, B FISHERIES RES BOAR, V184; SERNS SL, 1982, N AM J FISH MANAGE, V4, P388; SHRODE JB, 1977, PHYSIOL ZOOL, V50, P1; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; SILVERTOWN J, 1989, TRENDS ECOL EVOL, V4, P24, DOI 10.1016/0169-5347(89)90013-X; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, EVOLUTION, V37, P601, DOI 10.1111/j.1558-5646.1983.tb05577.x; SVARDSON GUNNAR, 1949, REPT INST FRESHWATER RES DROTTNINGHOLM, V29, P115; Tamate T, 2000, OIKOS, V90, P209, DOI 10.1034/j.1600-0706.2000.900201.x; TANASICHUK RW, 1987, CAN J FISH AQUAT SCI, V44, P1485, DOI 10.1139/f87-178; THORPE JE, 1984, AQUACULTURE, V43, P289, DOI 10.1016/0044-8486(84)90030-9; Wetzel R.G, 1983, LIMNOLOGY; Wilhelm FM, 2000, FUNCT ECOL, V14, P413; WOLFERT DR, 1969, J FISH RES BOARD CAN, V26, P1877, DOI 10.1139/f69-171; YAN ND, 1986, CAN J FISH AQUAT SCI, V43, P788, DOI 10.1139/f86-097 78 119 123 2 43 ECOLOGICAL SOC AMER WASHINGTON 1707 H ST NW, STE 400, WASHINGTON, DC 20006-3915 USA 0012-9658 ECOLOGY Ecology JUL 2002 83 7 1777 1791 10.1890/0012-9658(2002)083[1777:MAEGIT]2.0.CO;2 15 Ecology Environmental Sciences & Ecology 571LD WOS:000176718100001 2018-11-12 J Arntz, AM; Vozar, EM; Delph, LF Arntz, AM; Vozar, EM; Delph, LF Serial adjustments in allocation to reproduction: Effects of photosynthetic genotype INTERNATIONAL JOURNAL OF PLANT SCIENCES English Article Amaranthus hybridus; atrazine resistance; reproductive allocation; resource availability; seed abortion; seed size; sex allocation TRIAZINE-RESISTANT; AMARANTHUS-HYBRIDUS; TRADE-OFFS; SENECIO-VULGARIS; HERBICIDE RESISTANCE; SUSCEPTIBLE BIOTYPES; BRASSICA-NAPUS; SIZE; GROWTH; PLANTS Life history theory predicts that trade-offs between size and reproductive traits should increase when resources are more limited. This prediction is commonly tested by using plant size as a surrogate for resource status or by comparing trade-offs across treatments that experimentally manipulate size or environmental resources. In this study, we take a novel and potentially effective approach and compare two well-characterized genotypes of Amaranthus hybridus that differ in photosynthate availability. We consider these genotypes a valuable proxy for inherent genetic variation in resource status because photosynthate is a resource base that will most likely underlie many allocation-based trade-offs. We examine a series of hierarchical stages in which adjustments in allocation are predicted to affect seed production, and we test whether these adjustments are more dramatic in the genotype with less available photosynthate. We find that the response to resource limitation was not to decrease allocation to reproduction, alter floral sex ratio, or abort more seed. Rather, the resource limitation increased the trade-off between seed number and size. By delaying resource-based adjustments in allocation until the seed maturation stage, this species has a strategy that places priority on maximizing the quantity rather than the quality of offspring. Genetically based differences in photosynthate availability can affect the relationships between size and reproduction and therefore affect fitness. Indiana Univ, Dept Biol, Bloomington, IN 47405 USA Arntz, AM (reprint author), Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. Arntz AM, 2000, J EVOLUTION BIOL, V13, P792, DOI 10.1046/j.1420-9101.2000.00223.x; Arntz AM, 1998, OECOLOGIA, V117, P323, DOI 10.1007/s004420050665; Arntz AM, 2000, ECOLOGY, V81, P2567, DOI 10.2307/177475; BIERE A, 1995, J ECOL, V83, P629, DOI 10.2307/2261631; BLOOM AJ, 1985, ANNU REV ECOL SYST, V16, P363, DOI 10.1146/annurev.es.16.110185.002051; BURD M, 1988, EVOLUTION, V42, P403, DOI 10.1111/j.1558-5646.1988.tb04145.x; CHEPLICK GP, 1995, AM J BOT, V82, P621, DOI 10.2307/2445420; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DELESALLE VA, 1989, AM J BOT, V76, P30, DOI 10.2307/2444770; DELPH LF, 1990, ECOLOGY, V71, P1342, DOI 10.2307/1938271; Elle E, 1999, AM J BOT, V86, P278, DOI 10.2307/2656944; GALEN C, 1986, AM J BOT, V73, P346, DOI 10.2307/2444077; HART JJ, 1992, WEED RES, V32, P349, DOI 10.1111/j.1365-3180.1992.tb01895.x; HAVENS K, 1995, AM J BOT, V82, P726, DOI 10.2307/2445611; HIRSCHBERG J, 1983, SCIENCE, V222, P1346, DOI 10.1126/science.222.4630.1346; Jordan N, 1996, J APPL ECOL, V33, P141, DOI 10.2307/2405023; Klinkhamer Peter G. L., 1997, P211, DOI 10.1016/B978-012083490-7/50010-4; LLOYD DG, 1980, NEW PHYTOL, V86, P69, DOI 10.1111/j.1469-8137.1980.tb00780.x; MCCLOSKEY WB, 1990, PLANT PHYSIOL, V92, P954, DOI 10.1104/pp.92.4.954; MCCLOSKEY WB, 1991, PLANT CELL ENVIRON, V14, P699, DOI 10.1111/j.1365-3040.1991.tb01543.x; Mendez M, 1998, AM J BOT, V85, P225, DOI 10.2307/2446310; MOLE S, 1994, OIKOS, V71, P3, DOI 10.2307/3546166; ORT DR, 1983, PLANT PHYSIOL, V72, P925, DOI 10.1104/pp.72.4.925; Reekie EG, 1998, CAN J BOT, V76, P43, DOI 10.1139/b97-160; SAMPSON DA, 1986, AM NAT, V127, P667; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STOWE AE, 1988, PLANT PHYSIOL, V87, P183, DOI 10.1104/pp.87.1.183; Sugiyama S, 1998, FUNCT ECOL, V12, P280, DOI 10.1046/j.1365-2435.1998.00187.x; SUNDBY C, 1993, PLANT PHYSIOL, V103, P105, DOI 10.1104/pp.103.1.105; VENABLE DL, 1992, AM NAT, V140, P287, DOI 10.1086/285413; WARWICK SI, 1991, ANNU REV ECOL SYST, V22, P95 31 2 3 0 4 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1058-5893 INT J PLANT SCI Int. J. Plant Sci. JUL 2002 163 4 591 597 10.1086/340445 7 Plant Sciences Plant Sciences 560UA WOS:000176098700011 2018-11-12 J Clark, MM; Moghaddas, M; Galef, BG Clark, MM; Moghaddas, M; Galef, BG Age at first mating affects parental effort and fecundity of female Mongolian gerbils ANIMAL BEHAVIOUR English Article CALIFORNIA GULL; REPRODUCTIVE EFFORT; MERIONES-UNGUICULATUS; EXPERIENCE; BEHAVIOR; TACTICS; PUPS We examined effects of age at first mating on both parental effort and fecundity of female Mongolian gerbils, Meriones unguiculatus. We found that, with increasing age at first mating and resulting age at first parturition, female gerbils: (1) were more likely to retrieve young removed from the nest, (2) spent more time both in contact with and nursing young, and (3) provided an environment in which pups grew more rapidly. Older mothers were also less likely to become pregnant than were younger mothers and, if successful in delivering a second litter, showed longer interlitter intervals and delivered smaller second litters. Between delivery and weaning of first litters, older mothers lost more weight than did younger mothers. We discuss these findings as consistent with the prediction from life-history theory that parental effort should increase with age-related decreases in residual reproductive value. Furthermore, and as predicted by parental investment theory, older mothers delivered reliably more male-biased second litters than did younger mothers. Because of the different sex ratios of litters born to older and younger dams, we anticipate discovery of differences in reproductive and parental behaviours of offspring of dams of varying ages as a result of differences in the intrauterine exposure of their young to testosterone. (C) 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved. McMaster Univ, Dept Psychol, Hamilton, ON L8S 4K1, Canada Clark, MM (reprint author), McMaster Univ, Dept Psychol, Hamilton, ON L8S 4K1, Canada. CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Clark M.M., 1992, DEV PSYCHOBIOL, V24, P539; CLARK MM, 1993, DEV PSYCHOBIOL, V26, P25, DOI 10.1002/dev.420260103; CLARK MM, 1986, ANIM BEHAV, V34, P551, DOI 10.1016/S0003-3472(86)80124-5; Clark MM, 1999, J COMP PSYCHOL, V113, P388, DOI 10.1037//0735-7036.113.4.388; CLARK MM, 1995, TRENDS ECOL EVOL, V10, P151, DOI 10.1016/S0169-5347(00)89025-4; CLARK MM, 1993, NATURE, V364, P712, DOI 10.1038/364712a0; Clark MM, 2000, DEV PSYCHOBIOL, V36, P177, DOI 10.1002/(SICI)1098-2302(200004)36:3<177::AID-DEV1>3.0.CO;2-W; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; ELWOOD RW, 1978, ANIM BEHAV, V26, P438, DOI 10.1016/0003-3472(78)90061-1; Galef B.G. Jr, 1983, P249; KRYLOVA TV, 1978, ZOOLOGITSHESKIY ZH, V52, P1842; LEONT'EV A. N., 1962, IZVEST IRKUTSK NAUCHN ISSLED PROTIVOCHUMNOGO INST SIBIRI DALNOGO VOST, V24, P296; MATT DW, 1986, BIOL REPROD, V34, P478, DOI 10.1095/biolreprod34.3.478; NUR N, 1984, OIKOS, V43, P407, DOI 10.2307/3544163; ORLENEV DP, 1981, EKOLOGIYA, V2, P58; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PUGESEK BH, 1990, BEHAV ECOL SOCIOBIOL, V27, P211; PUGESEK BH, 1995, ANIM BEHAV, V49, P641; PUGESEK BH, 1990, ECOLOGY, V71, P811, DOI 10.2307/1940332; PUGESEK BH, 1984, OIKOS, V43, P409, DOI 10.2307/3544164; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Trivers R. L., 1985, SOCIAL EVOLUTION; VOLAND E, 1994, NATURWISSENSCHAFTEN, V81, P224, DOI 10.1007/s001140050060; VOMSAAL FS, 1999, ENCY REPROD, V2, P893; Wang MH, 2000, NATURE, V407, P469, DOI 10.1038/35035156; WARING A, 1980, ANIM BEHAV, V28, P331, DOI 10.1016/S0003-3472(80)80041-8; Williams GC, 1966, ADAPTATION NATURAL S 29 7 7 0 5 ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 ANIM BEHAV Anim. Behav. JUN 2002 63 6 1129 1134 10.1006/anbe.2002.3019 6 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 588TA WOS:000177715700011 2018-11-12 J Reznick, D; Bryant, MJ; Bashey, F Reznick, D; Bryant, MJ; Bashey, F r- and K-selection revisited: The role of population regulation in life-history evolution ECOLOGY English Article adaptation; demography; density dependence; environmental variability; life-history evolution; Poecilia reticulata; r- and K-selection; resource availability DEPENDENT NATURAL-SELECTION; GUPPIES POECILIA-RETICULATA; OPTIMAL REPRODUCTIVE EFFORT; RESOURCE AVAILABILITY; VARIABLE ENVIRONMENTS; DENSITY-DEPENDENCE; GENETIC-BASIS; PREDATION; DROSOPHILA; PATTERNS The theory of r- and K-selection was one of the first predictive models for life-history evolution. It helped to galvanize the empirical field of comparative life-history and dominated thinking on the subject from the late 1960s through the 1970s. Large quantities of field data were collected that claimed to test predictions of the theory. By the early 1980s, sentiment about the theory had changed so completely that a proposal to test it or the use of it to interpret empirical results would likely be viewed as archaic and naive. The theory was displaced,by demographic models that concentrated on mortality patterns as the cause of life-history evolution. Although demographic models are known for their density-independent approach and focus on extrinsic mortality, these models can incorporate many ecological features captured by r- and K-selection, such as density-dependent population regulation, resource availability, and environmental fluctuations. We highlight the incorporation of these factors in recent theory, then show how they are manifest in our research on life-history evolution in Trinidadian guppies (Poecilia reticulata). Explanations of the repeatable suites of life-history differences across populations of guppies originate from demographic models of predator-driven age-specific mortality. Recently, careful examination of guppy demography and habitat has revealed that density-dependent regulation and resource availability may have influenced the evolution of guppy life histories. In the field, these factors covary with predation risk; however, they can be uncoupled experimentally, providing insight into how they may have synergistically driven guppy life-history evolution. Although life-history theory has shifted away from a focus on r- and K-selection, the themes of density-dependent regulation, resource availability, and environmental fluctuations are integral to current demographic theory and are potentially important in any natural system. Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Reznick, D (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. Bashey-Visser, Farrah/0000-0002-7992-4577 Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Benton TG, 1999, EVOLUTION, V53, P677, DOI 10.1111/j.1558-5646.1999.tb05363.x; Benton TG, 1996, AM NAT, V147, P115, DOI 10.1086/285843; BOYCE MS, 1979, AM NAT, V114, P569, DOI 10.1086/283503; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; BRADSHAW WE, 1989, AM NAT, V133, P869, DOI 10.1086/284957; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; BRONIKOWSKI A, 2002, IN PRESS ECOLOGY, V83; Brown J. H., 1991, FDN ECOLOGY, P445; Chambers G.K., 1988, Advances in Genetics, V25, P39, DOI 10.1016/S0065-2660(08)60458-7; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; DERICKSON WK, 1976, ECOLOGY, V57, P445, DOI 10.2307/1936430; Dobzhansky T., 1950, American Scientist, V38, P209; DUNHAM AE, 1988, BIOL REPTILIA, P659; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Grant A, 2000, ECOLOGY, V81, P680, DOI 10.1890/0012-9658(2000)081[0680:EAFDDP]2.0.CO;2; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; Hixon MA, 2002, ECOLOGY, V83, P1490, DOI 10.1890/0012-9658(2002)083[1490:PRHCAC]2.0.CO;2; *ISI, 2001, SCI CIT IND; JONES JS, 1977, ANNU REV ECOL SYST, V8, P109, DOI 10.1146/annurev.es.08.110177.000545; JOSHI A, 1988, EVOLUTION, V42, P1090, DOI 10.1111/j.1558-5646.1988.tb02527.x; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; Kettlewell B, 1973, EVOLUTION MELANISM S; Kingsland Sharon, 1985, MODELING NATURE EPIS; KORFIATIS KJ, 1994, HIST PHIL LIFE SCI, V16, P97; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; Krebs C. J., 1972, ECOLOGY EXPT ANAL DI; Krebs C. J., 2001, ECOLOGY EXPT ANAL DI; Kuhn Thomas S, 1970, STRUCTURE SCI REVOLU; Lack D., 1954, NATURAL REGULATION A; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LESLIE PH, 1945, BIOMETRIKA, V33, P183, DOI DOI 10.1093/BI0MET/33.3.183; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; LOTKA AJ, 1925, ELEMENTS PHYSICAL BI; MAC ARTHUR ROBERT H., 1967; MacArthur R. H., 1972, GEOGRAPHICAL ECOLOGY; MACARTHUR RH, 1962, P NATL ACAD SCI USA, V48, P1893, DOI 10.1073/pnas.48.11.1893; MAJERNS MEN, 1998, MELANISM EVOLUTION A; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Mueller LD, 1997, ANNU REV ECOL SYST, V28, P269, DOI 10.1146/annurev.ecolsys.28.1.269; MUELLER LD, 1988, P NATL ACAD SCI USA, V85, P4383, DOI 10.1073/pnas.85.12.4383; MUELLER LD, 1991, SCIENCE, V253, P433, DOI 10.1126/science.1907401; MUELLER LD, 1981, P NATL ACAD SCI-BIOL, V78, P1303, DOI 10.1073/pnas.78.2.1303; MUELLER LD, 1986, EVOLUTION, V40, P1354, DOI 10.1111/j.1558-5646.1986.tb05761.x; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; ORZACK SH, 1985, AM NAT, V125, P550, DOI 10.1086/284362; PARRY GD, 1981, OECOLOGIA, V48, P260, DOI 10.1007/BF00347974; Pasztor L, 1996, J EVOLUTION BIOL, V9, P511, DOI 10.1046/j.1420-9101.1996.9040511.x; Pearl R., 1925, BIOL POPULATION GROW; Pianka E. R., 2000, EVOLUTIONARY ECOLOGY; Pianka E R., 1974, EVOLUTIONARY ECOLOGY; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIANKA ER, 1979, CC/AGR BIOL ENVIRON, P10; Prout T., 1980, Evolutionary Biology (New York), V13, P1; Real L. A, 1991, FDN ECOLOGY CLASSIC, P177; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; REZNICK DN, IN PRESS EVOLUTIONAR; Ricklefs R. E., 2000, ECOLOGY; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; RICKLEFS RE, 1973, ECOLOGY; Rodd FH, 1997, ECOLOGY, V78, P405; Roff Derek A., 1992; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Seghers B. H., 1973, ANAL GEOGRAPHIC VARI; SMITH JM, 1972, EVOLUTION; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STRAUSS RE, 1990, ENVIRON BIOL FISH, V27, P121, DOI 10.1007/BF00001941; TINKLE DW, 1970, EVOLUTION, V24, P55, DOI 10.1111/j.1558-5646.1970.tb01740.x; TULJAPURKAR S, 1990, POPULATION DYNAMICS; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; WOOTTON JT, 1994, ANNU REV ECOL SYST, V25, P443, DOI 10.1146/annurev.es.25.110194.002303 97 232 242 6 192 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology JUN 2002 83 6 1509 1520 10.2307/3071970 12 Ecology Environmental Sciences & Ecology 565ZQ WOS:000176400800004 2018-11-12 J Vorndran, IC; Reichwaldt, E; Nurnberger, B Vorndran, IC; Reichwaldt, E; Nurnberger, B Does differential susceptibility to predation in tadpoles stabilize the Bombina hybrid zone? ECOLOGY English Article Bombina; European toads; genotype X environment interaction; hybrid zone; local adaptation; morphology; phenotypic plasticity; predation; tadpole; Transylvania; Romania FIRE-BELLIED TOADS; PHENOTYPIC PLASTICITY; BEHAVIORAL-RESPONSES; INDUCIBLE DEFENSE; PREY INTERACTIONS; RANA-SYLVATICA; LARVAL ANURANS; B-VARIEGATA; TRADE-OFF; SELECTION Despite substantial divergence, the European toads Bombina bombilla and Bombina variegata (Anura: Discoglossidae) interbreed freely wherever their parapatric distributions adjoin. Natural selection that stabilizes the resulting hybrid zones should rest in part on the adaptation to different breeding habitat of the pure taxa. While B. bombilla lays its eggs in semipermanent ponds, B. variegata is a typical puddle breeder. Here, we investigate whether selection for rapid larval development in B. variegata has resulted in the loss of effective antipredator defenses, thus excluding this species from predator-rich ponds. We collected adults from four populations in Romania (two for each taxon) and reared the offspring from four crosses per population in the laboratory either in the presence or in the absence of caged odonate predators (Aeshna cyanea). In predation trials, we found no taxon difference in mortality rate among tadpoles that had been reared with predators. The resilience of B. variegata tadpoles may have been due to their remarkable phenotypic plasticity. In both taxa, predator presence led to the development of a higher tail fin, which has been shown to reduce predation rates in other amphibians. This response was much stronger in B. variegata than in B. bombina. Moreover, differences between the two B. variegata populations in terms of laboratory predation rates and levels of plasticity correlated with predator abundance at the collection sites so as to suggest local adaptation in predator defenses. Finally, delayed metamorphosis in the predator-induced morphs of both taxa implies a cost to the defense. Given the heterogeneity of temporary habitat in terms of desiccation rate and predator occurrence, the greater amount of phenotypic plasticity in B. variegata fits predictions of life history theory. At the same time, our results leave the question unresolved as to why this species avoids ponds. Univ Munich, Inst Zool, D-80333 Munich, Germany Nurnberger, B (reprint author), Univ Munich, Inst Zool, Karlstr 23, D-80333 Munich, Germany. Reichwaldt, Elke/A-4046-2012 ADLER FR, 1990, TRENDS ECOL EVOL, V5, P407, DOI 10.1016/0169-5347(90)90025-9; AZEVEDORAMOS C, 1992, J HERPETOL, V26, P335, DOI 10.2307/1564891; BARTON NH, 1983, EVOLUTION, V37, P454, DOI 10.1111/j.1558-5646.1983.tb05563.x; BARTON NH, 1993, HYBRID ZONES AND THE EVOLUTIONARY PROCESS, P13; BERVEN KA, 1990, ECOLOGY, V71, P1599, DOI 10.2307/1938295; BERVEN KA, 1983, AM ZOOL, V23, P85; Chovanec Andreas, 1992, Amphibia-Reptilia, V13, P341, DOI 10.1163/156853892X00049; Gosner K. L., 1960, Herpetologica, V16, P183; HEWS DK, 1988, ANIM BEHAV, V36, P125, DOI 10.1016/S0003-3472(88)80255-0; JEFFRIES M, 1994, FRESHWATER BIOL, V32, P603, DOI 10.1111/j.1365-2427.1994.tb01151.x; Jorgensen C. Barker, 1992, P439; KATS LB, 1988, ECOLOGY, V69, P1865, DOI 10.2307/1941163; Kruuk LEB, 1999, EVOLUTION, V53, P1611, DOI 10.1111/j.1558-5646.1999.tb05425.x; Kruuk LEB, 1997, P ROY SOC B-BIOL SCI, V264, P105, DOI 10.1098/rspb.1997.0016; KRUUK LEB, 1997, THESIS U EDINBURGH E; KUHN K, 1998, LIBELLEN BAYERN BAYE; Lardner B, 2000, OIKOS, V88, P169, DOI 10.1034/j.1600-0706.2000.880119.x; Laurila A, 1999, J ANIM ECOL, V68, P1123, DOI 10.1046/j.1365-2656.1999.00354.x; LAWLER SP, 1989, ANIM BEHAV, V38, P1039, DOI 10.1016/S0003-3472(89)80142-3; LIMA SC, 1991, CAN J ZOOL, V268, P619; MacCallum CJ, 1998, EVOLUTION, V52, P227, DOI 10.1111/j.1558-5646.1998.tb05156.x; McCollum SA, 1997, OECOLOGIA, V109, P615, DOI 10.1007/s004420050124; MCPEEK MA, 1990, ECOLOGY, V71, P1714, DOI 10.2307/1937580; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; MORIN PJ, 1983, ECOL MONOGR, V53, P119, DOI 10.2307/1942491; MORIN PJ, 1986, ECOLOGY, V67, P713, DOI 10.2307/1937694; Nurnberger B, 1995, EVOLUTION, V49, P1224, DOI 10.1111/j.1558-5646.1995.tb04449.x; PETRANKA JW, 1987, ANIM BEHAV, V35, P420, DOI 10.1016/S0003-3472(87)80266-X; PFENNIG DW, 1993, ANIM BEHAV, V46, P87, DOI 10.1006/anbe.1993.1164; RAFINSKA A, 1991, BIOL J LINN SOC, V43, P197, DOI 10.1111/j.1095-8312.1991.tb00593.x; REICHWALDT E, 1999, THESIS U MUNICH MUNI; Relyea RA, 2001, ECOLOGY, V82, P523, DOI 10.1890/0012-9658(2001)082[0523:MABPOL]2.0.CO;2; Relyea RA, 1999, ECOLOGY, V80, P2117, DOI 10.1890/0012-9658(1999)080[2117:QTRBPI]2.0.CO;2; Rodel MO, 1997, ETHOLOGY, V103, P902; SEMLITSCH RD, 1988, ECOLOGY, V69, P184, DOI 10.2307/1943173; Sih A., 1987, P203; Skelly DK, 1996, COPEIA, P599; SKELLY DK, 1995, ECOLOGY, V76, P150, DOI 10.2307/1940638; SMITH DC, 1987, ECOLOGY, V68, P344, DOI 10.2307/1939265; SMITH DC, 1983, ECOLOGY, V64, P501, DOI 10.2307/1939970; SMITH DC, 1995, AM NAT, V145, P211, DOI 10.1086/285737; STAUFFER HP, 1993, ANIM BEHAV, V46, P355, DOI 10.1006/anbe.1993.1197; SZYMURA JM, 1993, HYBRID ZONES AND THE EVOLUTIONARY PROCESS, P261; SZYMURA JM, 1991, EVOLUTION, V45, P237, DOI 10.1111/j.1558-5646.1991.tb04400.x; THIEL M, 2001, THESIS U MUNICH MUNI; Tollrian Ralph, 1999, P306; Van Buskirk J, 2000, J EXP BIOL, V203, P2149; Van Buskirk J, 1999, OIKOS, V85, P31; Van Buskirk J, 2000, ECOLOGY, V81, P2813, DOI 10.1890/0012-9658(2000)081[2813:TCOAID]2.0.CO;2; Van Buskirk J, 2000, J EVOLUTION BIOL, V13, P336; Van Buskirk J, 1998, BIOL J LINN SOC, V65, P301, DOI 10.1006/bijl.1998.0249; VANBUSKIRK J, 1997, EVOLUTION, V51, P1981; VANBUSKIRK J, 2001, ECOLOGY, V14, P482; Wellborn GA, 1996, ANNU REV ECOL SYST, V27, P337, DOI 10.1146/annurev.ecolsys.27.1.337; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WERNER EE, 1994, ECOLOGY, V75, P1368, DOI 10.2307/1937461; WOODWARD BD, 1983, ECOLOGY, V64, P1549, DOI 10.2307/1937509 57 16 21 1 11 ECOLOGICAL SOC AMER WASHINGTON 1707 H ST NW, STE 400, WASHINGTON, DC 20006-3915 USA 0012-9658 ECOLOGY Ecology JUN 2002 83 6 1648 1659 10.1890/0012-9658(2002)083[1648:DDSTPI]2.0.CO;2 12 Ecology Environmental Sciences & Ecology 565ZQ WOS:000176400800019 2018-11-12 J Tallman, RF; Abrahams, MV; Chudobiak, DH Tallman, RF; Abrahams, MV; Chudobiak, DH Migration and life history alternatives in a high latitude species, the broad whitefish, Coregonus nasus Pallas ECOLOGY OF FRESHWATER FISH English Article Arctic; broad whitefish; Coregonid; life history; migration VONBERTALANFFY; PARAMETERS; LAKE We examined the expected changes in the life history trajectory of an Arctic species, broad whitefish, in the lower Mackenzie River between an anadromous population with spawning migrations of 350-450 km and a potamodromous population with spawning migrations of 5-12 km. Based on life history theory we predicted that the anadromous population would have faster growth, later age-at-maturity, and greater reproductive investment than the potamodromous population. Early in its life the anadromous population had faster growth than the potamodromous but later growth was slower. Age-at-maturity was greater in the anadromous population than the potamodromous. Reproductive investment was higher in the anadromous population. We conclude that the broad whitefish did not conclusively follow the pattern of variation observed between migratory and relatively sedentary populations in temperate zones. Fecundity was greater in the migratory population but not conclusively linked to age-at-maturity or growth-rate differences. Fisheries & Oceans Canada, Winnipeg, MB R3T 2N6, Canada; Univ Manitoba, Dept Zool, Winnipeg, MB R3T 2N2, Canada Tallman, RF (reprint author), Fisheries & Oceans Canada, Cent & Artic Reg,501 Univ Crescent, Winnipeg, MB R3T 2N6, Canada. tallmanr@dfo-mpo.gc.ca Abrahams, Mark/0000-0002-9969-2988 BERG LS, 1965, FRESHWATER FISHES US, P374; BLAIR GR, 1993, T AM FISH SOC, V122, P550, DOI 10.1577/1548-8659(1993)122<0550:VILHCA>2.3.CO;2; BOND WA, 1993, 2204 CAN FISH AQ SCI; BOND WA, 1982, 1119 CAN FISH AQ SCI; BOND WA, 1985, 1336 CAN FISH AQ SCI; CAMPANA SE, 1990, CAN J FISH AQUAT SCI, V47, P2219, DOI 10.1139/f90-246; CERRATO RM, 1990, CAN J FISH AQUAT SCI, V47, P1416, DOI 10.1139/f90-160; CHANGKUE KTJ, 1993, CANADIAN J FISH AQUA, V2193, P117; CHEN Y, 1992, CAN J FISH AQUAT SCI, V49, P1228, DOI 10.1139/f92-138; Chilton D.E., 1982, Canadian Special Publication of Fisheries and Aquatic Sciences, V60, P1; Chudobiak D. H., 1995, THESIS U MANITOBA WI; CHUDOBIAK DH, 2002, IN PRESS ADV LIMNOL; DEGRAAF D, 1977, STUDIES DETERMINE IM, V39; DEMASTER DP, 1978, J FISH RES BOARD CAN, V35, P912, DOI 10.1139/f78-148; ENVIRONMENT CANADA, 1993, SURF WAT DAT YUK NW; GLEBE BD, 1981, CAN J FISH AQUAT SCI, V38, P806, DOI 10.1139/f81-109; GRESSWELL R.E., 1988, AM FISHERIES SOC S, V4, P45; GRESSWELL RE, 1994, CAN J FISH AQUAT SCI, V51, P298, DOI 10.1139/f94-317; Gross M.R., 1987, AM FISH SOC S, V1, P14; HEALEY MC, 1978, J FISH RES BOARD CAN, V35, P945, DOI 10.1139/f78-155; HUTCHINGS JA, 1985, OIKOS, V45, P118, DOI 10.2307/3565229; JOHNSON L, 1980, CHARRS SALMONID FISH, P15; KOGL DR, 1972, ALASKA DEP FISH GAME, V12, P23; LobonCervia J, 1997, FRESHWATER BIOL, V38, P277, DOI 10.1046/j.1365-2427.1997.00217.x; MCPHAIL JD, 1970, FISHERIES RES BOARD, V173; Moreau J., 1987, P81; MORIN R, 1982, CAN J FISH AQUAT SCI, V39, P958, DOI 10.1139/f82-131; MYERS GS, 1949, COPEIA, P89; Neter J., 1983, APPL LINEAR REGRESSI; Northcote T.G., 1978, P326; Pauly D., 1979, GILL SIZE TEMPERATUR, P63; Pielou E. C., 1992, ICE AGE RETURN LIFE; POPOV PA, 1975, J ICHTHYOLOGY, V17, P414; Powell Allyn B., 1994, North American Journal of Fisheries Management, V14, P53, DOI 10.1577/1548-8675(1994)014<0053:LHTOTA>2.3.CO;2; Power G., 1997, American Fisheries Society Symposium, V19, P13; PRASALOV PP, 1989, VOPROSY IKHTIOLOGII, V3, P423; RAO CR, 1958, BIOMETRICS, V14, P1, DOI 10.2307/2527726; Reist J. D., 1988, CANADA FINNISH FISHE, V9, P133; RICKER WE, 1975, B FISH RES BOARD CAN, V191; ROFF DA, 1988, ENVIRON BIOL FISH, V22, P133, DOI 10.1007/BF00001543; Roff Derek A., 1992; SECOR DH, 1992, CAN J FISH AQUAT SCI, V49, P1439, DOI 10.1139/f92-159; SNYDER RJ, 1990, OECOLOGIA, V84, P386, DOI 10.1007/BF00329764; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tallman RF, 1996, ECOSCIENCE, V3, P33, DOI 10.1080/11956860.1996.11682312; TALLMAN RF, 2002, BIOL MANAGEMENT CORE; TALLMAN RF, 1997, P WORKSH BIOL TRAD K; TAYLOR EB, 1990, J FISH BIOL, V37, P1, DOI 10.1111/j.1095-8649.1990.tb05922.x; THERA TM, 1998, THESIS U MANITOBA WP; TREBLE M, 1997, CANADIAN J FISH AQUA, P2180; Videler J., 1993, FISH SWIMMING; Williams GC, 1966, ADAPTATION NATURAL S; WOOTON RJ, 1990, REPROD ECOLOGY TELEO, P158 53 14 15 0 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-6691 1600-0633 ECOL FRESHW FISH Ecol. Freshw. Fish JUN 2002 11 2 101 111 10.1034/j.1600-0633.2002.00001.x 11 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 559KA WOS:000176024300005 2018-11-12 J Ferguson, SH Ferguson, SH Using survivorship curves to estimate age of first reproduction in moose Alces alces WILDLIFE BIOLOGY English Article age at maturity; cohort analysis; demography; juvenile mortality; life history; recruitment; survivorship ANTARCTIC FUR SEALS; LIFE-HISTORY; POPULATION-DYNAMICS; LARGE HERBIVORES; ROE DEER; NATURAL-POPULATIONS; BREEDING EXPERIENCE; NEWFOUNDLAND MOOSE; COHORT ANALYSIS; SURVIVAL Age-specific mortality of large mammals follows a general pattern of high juvenile mortality followed by low adult mortality. I outline a method which models this change in mortality rate to estimate age of maturity in hunted moose Alces alces populations. Kill data indicate that first time reproducers suffer the highest mortality during the hunting season. Cohort analysis of hunter kill data was used to estimate age-specific female moose numbers and annual survival of cohorts over 18-26 years. Age at maturity was defined as age at the inflection point (highest mortality rate) of a third-order log-polynomial of annual survivorship curves. The inflection point demarcates the change in mortality rate between juvenile and adult life stages. Thus, the inflection point represents the greatest moose mortality rate during the hunting season and is likely associated with hunting mortality of inexperienced females accompanied by 6-month-old calves. I tested this method by estimating age of first reproduction (inflection point-0.5 years) and juvenile mortality for 15 Canadian moose populations. Results indicate a wide range of age at maturity (1.7-3.0 years) and percent of juveniles that survive to this age (29-70%). Estimating age at maturity from survivorship curves provides the opportunity to test life-history theory. Lakehead Univ, Fac Forestry & Forest Environm, Thunder Bay, ON P7B 5E1, Canada Ferguson, SH (reprint author), Lakehead Univ, Fac Forestry & Forest Environm, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada. Steven.Ferguson@lakeheadu.ca Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; AINLEY DG, 1980, ECOLOGY, V61, P522, DOI 10.2307/1937418; ALBON SD, 1987, J ANIM ECOL, V56, P69, DOI 10.2307/4800; ALBRIGHT CA, 1987, CAN FIELD NAT, V101, P373; BERGERUD AT, 1968, J WILDLIFE MANAGE, V32, P729, DOI 10.2307/3799547; BERGERUD AT, 1983, J WILDLIFE MANAGE, V47, P977, DOI 10.2307/3808156; BOYD IL, 1995, J ANIM ECOL, V64, P505, DOI 10.2307/5653; Cam E, 2000, J ANIM ECOL, V69, P380, DOI 10.1046/j.1365-2656.2000.00400.x; CAUGHLEY G, 1966, ECOLOGY, V47, P906, DOI 10.2307/1935638; CAUGHLEY G, 1977, ANAL VERTEBRATE POPU, P584; CEDERWALL KE, 1982, ANAL DEER MOOSE OVAR, P31; Cezilly F, 1996, ECOLOGY, V77, P1143, DOI 10.2307/2265583; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Charnov Eric L., 1993, P1; Chastel O, 1995, AUK, V112, P964, DOI 10.2307/4089027; Clutton-Brock T. H, 1982, RED DEER BEHAV ECOLO; CluttonBrock TH, 1996, J ANIM ECOL, V65, P675, DOI 10.2307/5667; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; DERISO RB, 1985, CAN J FISH AQUAT SCI, V42, P815, DOI 10.1139/f85-104; EBERHARDT LL, 1985, J WILDLIFE MANAGE, V49, P997, DOI 10.2307/3801386; ELOWE KD, 1989, J WILDLIFE MANAGE, V53, P962, DOI 10.2307/3809596; Ferguson SH, 1996, ALCES-N AM MOOSE CON, V32, P149; FERGUSON SH, 1993, ALCES N AM, V29, P99; Ferguson SH, 2000, WILDLIFE BIOL, V6, P31; FERGUSON SH, 1992, UNPUB NEWFOUNDLAND M, V1; FESTABIANCHET M, 1995, ECOLOGY, V76, P871, DOI 10.2307/1939352; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; FRYXELL JM, 1988, J WILDLIFE MANAGE, V52, P14, DOI 10.2307/3801050; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; GAILLARD JM, 1992, CAN J ZOOL, V70, P1541, DOI 10.1139/z92-212; GAILLARD JM, 1993, J ANIM ECOL, V62, P778; GAILLARD JM, 1994, EVOLUTION, V48, P509, DOI 10.1111/j.1558-5646.1994.tb01329.x; GEIST V, 1974, Naturaliste Canadien (Quebec), V101, P527; Geist V., 1987, Swedish Wildlife Research Supplement, V1, P11; Gulland J., 1983, FISH STOCK ASSESSMEN; Heard D, 1997, ALCES N AM, V33, P165; Hewison AJM, 1997, FUNCT ECOL, V11, P508, DOI 10.1046/j.1365-2435.1997.00120.x; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Jorgenson JT, 1997, ECOLOGY, V78, P1019, DOI 10.2307/2265855; KEITH LB, 1974, P INT C GAME BIOL ST, V11, P17; KEITH LB, 1983, CAN WILDL SERV REP S, V45, P66; KREFTING LW, 1975, NAT CAN, V101, P81; Kunkele J, 2000, CAN J ZOOL, V78, P300, DOI 10.1139/cjz-78-2-300; LARIVIERE S, 1993, J MAMMAL, V74, P1072, DOI 10.2307/1382446; LARSON RE, 1990, CALCULUS SINGLE VARI; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Linnell JDC, 1995, WILDLIFE BIOL, V1, P209; LUNN NJ, 1994, J ANIM ECOL, V63, P827, DOI 10.2307/5260; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; MESSIER F, 1994, ECOLOGY, V75, P478, DOI 10.2307/1939551; MESSIER F, 1995, WILDLIFE RES, V22, P131, DOI 10.1071/WR9950131; MESSIER F, 1988, ARCTIC, V41, P279; NELSON JB, 1988, P INT ORNITHOL C, V19, P1081; NEWTON I, 1985, J ANIM ECOL, V54, P241, DOI 10.2307/4634; PERRIN N, 1990, FUNCT ECOL, V4, P53, DOI 10.2307/2389652; PIMLOTT DH, 1967, AM ZOOL, V7, P267; PIMLOTT DOUGLAS H., 1959, JOUR WILDLIFE MANAGEMENT, V23, P381, DOI 10.2307/3796486; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Roff Derek A., 1992; ROWE JS, 1972, CANADIAN FORESTRY SE, V1300; Sadleir R. M. F. S., 1969, ECOLOGY REPROD WILD; SAETHER BE, 1985, HOLARCTIC ECOL, V8, P100; Saether BE, 1997, TRENDS ECOL EVOL, V12, P143, DOI 10.1016/S0169-5347(96)10068-9; SAETHER BE, 1993, J ANIM ECOL, V62, P482, DOI 10.2307/5197; Sand H, 1996, CAN J ZOOL, V74, P954, DOI 10.1139/z96-108; SERGEANT DAVID E., 1959, JOUR WILDLIFE MANAGEMENT, V23, P315, DOI 10.2307/3796891; Sibly RM, 1997, J ZOOL, V243, P1, DOI 10.1111/j.1469-7998.1997.tb05751.x; SILER W, 1979, ECOLOGY, V60, P750, DOI 10.2307/1936612; Sokal R. R., 1981, BIOMETRY; Solberg EJ, 2000, WILDLIFE BIOL, V6, P41; Solberg EJ, 1999, J ANIM ECOL, V68, P186, DOI 10.1046/j.1365-2656.1999.00275.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; TIMMERMANN HR, 1992, ALCES, V28, P1; WEIMERSKIRCH H, 1992, OIKOS, V64, P464, DOI 10.2307/3545162; WOOLLER RD, 1990, J ANIM ECOL, V59, P161, DOI 10.2307/5165; WOOLLER RD, 1977, IBIS, V119, P339, DOI 10.1111/j.1474-919X.1977.tb08252.x 81 4 5 4 22 WILDLIFE BIOLOGY RONDE C/O JAN BERTELSEN, GRENAAVEJ 14, KALO, DK-8410 RONDE, DENMARK 0909-6396 1903-220X WILDLIFE BIOL Wildlife Biol. JUN 2002 8 2 129 136 8 Ecology; Zoology Environmental Sciences & Ecology; Zoology 566MU WOS:000176432800006 2018-11-12 J Tella, JL; Scheuerlein, A; Ricklefs, RE Tella, JL; Scheuerlein, A; Ricklefs, RE Is cell-mediated immunity related to the evolution of life-history strategies in birds? PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article birds; cell-mediated immunocompetence; comparative analysis; life-history traits; reproductive investment; phytohaemagglutinin assay EMBRYONIC-DEVELOPMENT; AVIAN HEMATOZOA; CLUTCH SIZE; TRADE-OFFS; IMMUNOCOMPETENCE; STRESS; PHYTOHEMAGGLUTININ; GROWTH; NESTLINGS; CHICKENS According to life-history theory, the development of immune function should be balanced through evolutionary optimization of the allocation of resources to reproduction and through mechanisms that promote survival. We investigated interspecific variability in cell-mediated immune response (CMI), as measured by the phytohaemagglutinin (PHA) assay, in relation to clutch size, longevity and other life-history traits in 50 species of birds. CMI exhibited significant repeatability within species, and PHA responses in chicks were consistently stronger than in adults. Univariate tests showed a variety of significant relationships between the CMI of both chicks and adults with respect to size, development period and lifespan, but not clutch size or prevalence of blood parasites in adults. Multivariate analyses confirmed these patterns but independent variables were too highly correlated to isolate unique influences on CMI. The positive relationship of chick CMI to nestling period is further complicated by a parallel relationship of chick CMI to the age at testing. However, multivariate analysis showed that chick CMI varies uniquely with length of the nestling period. Adult CMI was associated with a strong life-history axis of body size, development rate and longevity. Therefore, adult CMI may be associated with prevention and repair mechanisms related to long lifespan, but it also may be allometrically related to body size through other pathways. Neither chick CMI nor adult CMI was related to clutch size, contradicting previous results linking parasite-related mortality to CMI and the evolution of clutch size (reproductive investment) in birds. CSIC, Dept Appl Biol, Estac Biol Donana, Seville 41013, Spain; Univ Missouri, Dept Biol, St Louis, MO 63121 USA Tella, JL (reprint author), CSIC, Dept Appl Biol, Estac Biol Donana, Avenida M Luisa S-N, Seville 41013, Spain. tella@ebd.csic.es Tella, Jose/I-3707-2015; CSIC, EBD Donana/C-4157-2011 Tella, Jose/0000-0002-3038-7424; CSIC, EBD Donana/0000-0003-4318-6602 Alonso-Alvarez C, 2001, CAN J ZOOL, V79, P101, DOI 10.1139/cjz-79-1-101; Braude S, 1999, BEHAV ECOL, V10, P345, DOI 10.1093/beheco/10.3.345; Brinkhof MWG, 1999, P ROY SOC B-BIOL SCI, V266, P2315, DOI 10.1098/rspb.1999.0925; Calder W. A., 1984, SIZE FUNCTION LIFE H; CAREY JR, 2000, LONGEVITY RECORS LIF; CHARLESWORTH C, 1994, EVOLUTION AGE STRUCT; CHENG S, 1991, POULTRY SCI, V70, P2023, DOI 10.3382/ps.0702023; Christe P, 2000, HEREDITY, V85, P75, DOI 10.1046/j.1365-2540.2000.00732.x; COHN M, 1990, IMMUNOL REV, V115, P7, DOI 10.1111/j.1600-065X.1990.tb00783.x; DHABHAR FS, 1994, BRAIN BEHAV IMMUN, V8, P66, DOI 10.1006/brbi.1994.1006; Dhabhar FS, 1997, BRAIN BEHAV IMMUN, V11, P286, DOI 10.1006/brbi.1997.0508; ELGERT KD, 1996, IMMUNOLOGY; Fair JM, 1999, P ROY SOC B-BIOL SCI, V266, P1735, DOI 10.1098/rspb.1999.0840; Fargallo JA, 2002, ECOL LETT, V5, P95, DOI 10.1046/j.1461-0248.2002.00290.x; Gonzalez G, 1999, J ANIM ECOL, V68, P1225, DOI 10.1046/j.1365-2656.1999.00364.x; GOTO N, 1978, POULTRY SCI, V57, P246, DOI 10.3382/ps.0570246; GREINER EC, 1975, CAN J ZOOL, V53, P1762, DOI 10.1139/z75-211; Gwinner H, 2000, ANIM BEHAV, V59, P301, DOI 10.1006/anbe.1999.1306; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Horak P, 1999, OECOLOGIA, V121, P316, DOI 10.1007/s004420050934; Johnsen A, 2000, NATURE, V406, P296; Klasing KC, 1998, POULTRY SCI, V77, P1119, DOI 10.1093/ps/77.8.1119; KLASING KC, 1987, J NUTR, V117, P1629; Klein J., 1993, IMMUNOLOGY; Lillehoj H. S., 1991, Avian cellular immunology., P155; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; Martin TE, 2001, P NATL ACAD SCI USA, V98, P2071, DOI 10.1073/pnas.98.4.2071; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; MCCORKLE F, 1980, POULTRY SCI, V59, P616, DOI 10.3382/ps.0590616; Moller AP, 1996, EVOLUTION, V50, P2066, DOI 10.1111/j.1558-5646.1996.tb03592.x; Moreno J, 2001, ANN ZOOL FENN, V38, P111; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; PEIRCE MA, 1981, J NAT HIST, V15, P419, DOI 10.1080/00222938100770321; Raberg L, 1998, P ROY SOC B-BIOL SCI, V265, P1637, DOI 10.1098/rspb.1998.0482; Raberg L, 2000, ECOL LETT, V3, P382, DOI 10.1046/j.1461-0248.2000.00154.x; Ricklefs R.E., 1983, Current Ornithology, V1, P1; RICKLEFS RE, 1992, P NATL ACAD SCI USA, V89, P4722, DOI 10.1073/pnas.89.10.4722; Ricklefs RE, 1996, OIKOS, V77, P167, DOI 10.2307/3545598; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; Ricklefs Robert E., 1993, Current Ornithology, V11, P199; Saino N, 1998, OIKOS, V81, P217, DOI 10.2307/3547043; *SAS I, 1996, SAS STAT SOFTW CHANG; Smits JE, 1999, FUNCT ECOL, V13, P567, DOI 10.1046/j.1365-2435.1999.00338.x; Smits JE, 2001, FUNCT ECOL, V15, P814, DOI 10.1046/j.0269-8463.2001.00579.x; STADECKER MJ, 1977, J IMMUNOL, V118, P1564; STARCK JM, 1998, AVIAN GROWTH DEV EVO, P381; Stearns S. C., 1992, EVOLUTION LIFE HIST; Svensson E, 1998, FUNCT ECOL, V12, P912, DOI 10.1046/j.1365-2435.1998.00271.x; Tella JL, 2000, P ROY SOC B-BIOL SCI, V267, P891, DOI 10.1098/rspb.2000.1086; Tella JL, 1999, P NATL ACAD SCI USA, V96, P1785, DOI 10.1073/pnas.96.4.1785; Tella JL, 2001, P ROY SOC B-BIOL SCI, V268, P1455, DOI 10.1098/rspb.2001.1688; Velando A, 2001, J AVIAN BIOL, V32, P311, DOI 10.1111/j.0908-8857.2001.320404.x 53 135 136 3 28 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. MAY 22 2002 269 1495 1059 1066 10.1098/rspb.2001.1951 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 556AW WOS:000175826100012 12028764 Green Published 2018-11-12 J Niklas, KJ; Enquist, BJ Niklas, KJ; Enquist, BJ On the vegetative biomass partitioning of seed plant leaves, stems, and roots AMERICAN NATURALIST English Article allometry; biomass allocation; organ growth; plant size; seed plants NET PRIMARY PRODUCTION; REPRODUCTIVE EFFORT; INTERSPECIFIC VARIATION; GENERAL-MODEL; WHOLE-PLANT; GROWTH-RATE; ALLOCATION; SIZE; ECOSYSTEMS; NUTRIENT A central goal of comparative life-history theory is to derive the general rules governing growth, metabolic allocation, and biomass partitioning. Here, we use allometric theory to predict the relationships among annual leaf, stem, and root growth rates (G(L), G(S), and G(R), respectively) across a broad spectrum of seed plant species. Our model predicts isometric scaling relationships among all three organ growth rates: G(L) proportional to G(S) proportional to G(R). It also provides a conceptual basis for understanding the differences in the absolute amounts of biomass allocated to construct the three organ types. Analyses of a large compendium of biomass production rates across diverse seed plant species provide strong statistical support for the predictions of the theory and indicate that reproductive investments may scale isometrically with respect to vegetative organ growth rates. The general rules governing biomass allocation as indexed by the scaling exponents for organ growth rates are remarkably indifferent to plant size and taxonomic affiliation. However, the allometric "constants" for these relationships differ numerically as a function of phenotypic features and local environmental conditions. Nonetheless, at the level of both inter- and intraspecific comparisons, the same proportional biomass allocation pattern holds across extant seed plant species. Cornell Univ, Dept Plant Biol, Ithaca, NY 14853 USA; Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA Niklas, KJ (reprint author), Cornell Univ, Dept Plant Biol, Ithaca, NY 14853 USA. kjn2@cornell.edu Enquist, Brian/0000-0002-6124-7096 Ackerly DD, 1999, AM J BOT, V86, P1272, DOI 10.2307/2656775; Andersson T, 1997, FLORA, V192, P185; BAZZAZ FA, 1979, NATURE, V279, P554, DOI 10.1038/279554a0; Bazzaz FA, 1997, PLANT RESOURCE ALLOC; BIERZYCHUDEK P, 1981, AM NAT, V117, P838, DOI 10.1086/283773; Brown J. H., 1995, MACROECOLOGY; Bultynck L, 1999, PLANT BIOLOGY, V1, P13, DOI 10.1055/s-2007-978483; Cannell M. G. R., 1982, WORLD FOREST BIOMASS; Carlquist S, 1975, ECOLOGICAL STRATEGIE; Charnov Eric L., 1993, P1; Cornelissen JHC, 1999, OECOLOGIA, V118, P248, DOI 10.1007/s004420050725; DAY FP, 1987, AM J BOT, V74, P1541, DOI 10.2307/2444048; Enquist BJ, 2001, NATURE, V410, P655, DOI 10.1038/35070500; Enquist BJ, 1999, NATURE, V401, P907, DOI 10.1038/44819; Enquist BJ, 2002, SCIENCE, V295, P1517, DOI 10.1126/science.1066360; Gardner SN, 1999, ECOLOGY, V80, P1202, DOI 10.2307/177068; Gary C, 1998, J EXP BOT, V49, P59, DOI 10.1093/jexbot/49.318.59; Genard M, 2001, PLANT PHYSIOL, V126, P188, DOI 10.1104/pp.126.1.188; GOULD SJ, 1966, BIOL REV, V41, P587, DOI 10.1111/j.1469-185X.1966.tb01624.x; GRIER CC, 1981, CAN J FOREST RES, V11, P155, DOI 10.1139/x81-021; Gross KL, 2000, OIKOS, V89, P417, DOI 10.1034/j.1600-0706.2000.890301.x; HARPER JL, 1970, J ECOL, V58, P681, DOI 10.2307/2258529; Harvey P.H., 1982, P343; Hemborg AM, 1998, ECOSCIENCE, V5, P517, DOI 10.1080/11956860.1998.11682495; Hogberg P, 2001, NATURE, V411, P789, DOI 10.1038/35081058; HOWARTH SE, 1972, J ECOL, V60, P573, DOI 10.2307/2258362; HUNT R, 1987, NEW PHYTOL, V106, P235; IWASA Y, 1984, THEOR POPUL BIOL, V25, P78, DOI 10.1016/0040-5809(84)90007-8; Iwasa Y, 2000, EVOL ECOL RES, V2, P437; JURADO E, 1992, J ECOL, V80, P407, DOI 10.2307/2260686; Kramer P., 1983, WATER RELATIONS PLAN; LABARBERA M, 1986, PATTERNS PROCESSES H, P69; Leigh E. G., 1999, TROPICAL FOREST ECOL; LLOYD DG, 1992, THEOR POPUL BIOL, V41, P90, DOI 10.1016/0040-5809(92)90051-T; Makkonen K, 2001, TREE PHYSIOL, V21, P193, DOI 10.1093/treephys/21.2-3.193; Marcelis LFM, 1996, J EXP BOT, V47, P1281, DOI 10.1093/jxb/47.Special_Issue.1281; Marquis RJ, 2001, J TROP ECOL, V17, P127, DOI 10.1017/S0266467401001080; MCARDLE BH, 1988, CAN J ZOOL, V66, P2329, DOI 10.1139/z88-348; MCMAHON T, 1973, SCIENCE, V179, P1201, DOI 10.1126/science.179.4079.1201; Murray CD, 1927, J GEN PHYSIOL, V10, P725, DOI 10.1085/jgp.10.5.725; Niklas KJ, 2002, AM J BOT, V89, P12, DOI 10.3732/ajb.89.1.12; Niklas KJ, 2001, P NATL ACAD SCI USA, V98, P2922, DOI 10.1073/pnas.041590298; Niklas KJ, 2000, ANN BOT-LONDON, V85, P411, DOI 10.1006/anbo.1999.1100; NIKLAS KJ, 1992, PLANT BIOMECHANICS; NIKLAS KJ, 1997, EVOLUTIONARY BIOL PL; NIKLAS KJ, 2000, PLANT BIOMECHANICS, P21; Niklas KJ, 1994, PLANT ALLOMETRY; Nobel PS, 1997, AUST J PLANT PHYSIOL, V24, P787, DOI 10.1071/PP96127; NYE PH, 1969, J APPL ECOL, V6, P293, DOI 10.2307/2401543; Peters R.H., 1983, P1; POORTER H, 1989, PHYSIOL PLANTARUM, V75, P237, DOI 10.1111/j.1399-3054.1989.tb06175.x; Poorter H, 2000, AUST J PLANT PHYSIOL, V27, P595, DOI 10.1071/PP99173; POORTER H, 1991, AM NAT, V138, P1264, DOI 10.1086/285282; RAICH JW, 1989, ECOLOGY, V70, P1346, DOI 10.2307/1938194; RAYNER JMV, 1985, J ZOOL, V206, P415; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; Reich PB, 1997, P NATL ACAD SCI USA, V94, P13730, DOI 10.1073/pnas.94.25.13730; Reynolds JF, 1996, PLANT SOIL, V185, P65, DOI 10.1007/BF02257565; Ronce O, 2000, EVOL ECOL, V14, P233, DOI 10.1023/A:1011068005057; SCHIEVING F, 1988, PLATOS PLANT MATH ST; Schultz PA, 2001, AM J BOT, V88, P1650, DOI 10.2307/3558410; Sokal R. R., 1981, BIOMETRY; TENDELENBURG R, 1955, HOLZ ALS PFLANZLICHE; Tilman D, 1988, PLANT STRATEGIES DYN; Venable DL, 1996, PHILOS T ROY SOC B, V351, P1319, DOI 10.1098/rstb.1996.0115; VOGELLEHNER D, 1981, BAUPLANE PFLANZEN FU; VOGT KA, 1982, ECOLOGY, V63, P370, DOI 10.2307/1938955; Waring RH, 1998, TREE PHYSIOL, V18, P129; West GB, 1999, NATURE, V400, P664, DOI 10.1038/23251; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122; Zimmerman MH, 1983, XYLEM STRUCTURE ASCE; Zobel B, 1989, WOOD VARIATION ITS C 72 117 135 3 90 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. MAY 2002 159 5 482 497 10.1086/339459 16 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 546XZ WOS:000175302800005 18707431 2018-11-12 J Verboven, N; Tinbergen, JM Verboven, N; Tinbergen, JM Nest desertion: a trade-off between current and future reproduction ANIMAL BEHAVIOUR English Article CLUTCH SIZE VARIATION; PARENTAL CARE; GREAT TITS; BROOD SUCCESS; PARUS-MAJOR; PREDATION; INCUBATION; QUALITY; SHIFT; BIRDS Life history theory predicts that parents should desert a reproductive attempt if the costs of rearing this brood exceed the expected benefits. Thus, if the value of the current breeding attempt is reduced, for example through an unexpected reduction in size, parents are expected to reconsider whether it is worth continuing investing in their brood. With regard to nest desertion behaviour two predictions can be made: individuals are (1) more likely to desert if the reduction in clutch size is large and (2) less likely to desert if the reduction is at a late stage of breeding. We investigated the threshold at which nest desertion takes place by experimentally reducing great tit, Parus major, clutches to different sizes and at different stages of the incubation period. The results were in accordance with the predictions: clutch desertion rates were negatively related to the number of eggs that remained in the nest, and nest desertion was less likely nearer the end of the incubation period. In addition, we estimated the fitness consequences of nest desertion behaviour. For this purpose we made one group of birds desert in favour of a replacement clutch and another group rear a reduced brood. The latter were more likely to produce a second clutch after the first-brood fledglings had left the nest. As a consequence, the number of fledglings produced over the entire breeding season did not differ between the two experimental groups. We also counted the number of recruits and breeding adults in the following breeding season and found that the experimental groups did not differ in local recruitment and adult survival. Therefore, the results did not indicate that parents improved their fitness by deserting a reduced clutch. (C) 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved. Univ Groningen, Dept Anim Ecol, NL-9750 AA Haren, Netherlands; Netherlands Inst Ecol, Heteren, Netherlands Verboven, N (reprint author), Univ Glasgow, Div Environm & Evolutionary Biol, Ornithol Grp, Graham Kerr Bldg, Glasgow G12 8QQ, Lanark, Scotland. Alliston W.G., 1979, Wildfowl, V30, P40; ARMSTRONG T, 1988, ANIM BEHAV, V36, P941, DOI 10.1016/S0003-3472(88)80180-5; ARNOLD TW, 1993, CONDOR, V95, P273, DOI 10.2307/1369349; BAUCHAU V, 1997, ANIM BEHAV, V54, P53; BEISSINGER SR, 1990, AM NAT, V136, P20, DOI 10.1086/285080; CARLISLE TR, 1982, ANIM BEHAV, V30, P824, DOI 10.1016/S0003-3472(82)80156-5; Crawley MJ, 1993, GLIM ECOLOGISTS; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; DELEHANTY DJ, 1993, AUK, V110, P521, DOI 10.2307/4088416; DOW H, 1983, J ANIM ECOL, V52, P681, DOI 10.2307/4447; Fernandez GJ, 2000, IBIS, V142, P29, DOI 10.1111/j.1474-919X.2000.tb07680.x; FUCHS S, 1981, Z TIERPSYCHOL, V55, P19; HALL MR, 1983, GEN COMP ENDOCR, V49, P270, DOI 10.1016/0016-6480(83)90144-2; HARVEY PH, 1979, J ANIM ECOL, V48, P305, DOI 10.2307/4115; Kluijver HN, 1951, ARDEA, V39, P1; KLUYVER H N, 1971, P507; Lessells C.M., 1993, Etologia, V3, P95; Marjakangas A, 1997, J ORNITHOL, V138, P111, DOI 10.1007/BF01651657; MOCK DW, 1986, EVOLUTION, V40, P459, DOI 10.1111/j.1558-5646.1986.tb00499.x; *NUM ALG GROUP, 1993, GLIM STAT PACK VERS; PARKER H, 1981, J WILDLIFE MANAGE, V45, P858, DOI 10.2307/3808094; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; Poysa H, 1997, BEHAV ECOL SOCIOBIOL, V40, P101, DOI 10.1007/s002650050321; RICE WR, 1994, P NATL ACAD SCI USA, V91, P225, DOI 10.1073/pnas.91.1.225; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; SLAGSVOLD T, 1990, ECOLOGY, V71, P1258, DOI 10.2307/1938263; Sokal R.R., 1995, BIOMETRY; SONERUD GA, 1985, J ANIM ECOL, V54, P179, DOI 10.2307/4629; SWANSON G A, 1986, Journal of Wildlife Management, V50, P32, DOI 10.2307/3801484; TABORSKY M, 1985, Z TIERPSYCHOL, V70, P331; TENCATE C, 1992, AUK, V109, P594; TINBERGEN JM, 1990, BEHAVIOUR, V114, P161, DOI 10.1163/156853990X00103; TOWNSEND DS, 1986, BEHAV ECOL SOCIOBIOL, V19, P187; VANNOORDWIJK AJ, 1981, GENETICA, V55, P221, DOI 10.1007/BF00127206; VERHULST S, 1995, ECOLOGY, V76, P2392, DOI 10.2307/2265815; Verhulst S, 1996, J EVOLUTION BIOL, V9, P771, DOI 10.1046/j.1420-9101.1996.9060771.x; VERHULST S, 1995, THESIS U GRONINGEN; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Winkel W., 1970, Vogelwelt, V91, P243; Winkler DW, 1991, BEHAV ECOL, V2, P133, DOI 10.1093/beheco/2.2.133; WOOLLER RD, 1980, IBIS, V122, P226, DOI 10.1111/j.1474-919X.1980.tb02661.x 42 27 27 1 20 ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 ANIM BEHAV Anim. Behav. MAY 2002 63 5 951 958 10.1006/anbe.2001.1971 8 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 570XA WOS:000176684700013 Green Published 2018-11-12 J Day, T; Abrams, PA; Chase, JM Day, T; Abrams, PA; Chase, JM The role of size-specific predation in the evolution and diversification of prey life histories EVOLUTION English Article food web; life-history theory; predator; reproductive effort; resource gradient FREQUENCY-DEPENDENT SELECTION; GUPPIES POECILIA-RETICULATA; STRUCTURED POPULATIONS; NATURAL-SELECTION; AGE; STABILITY; STRATEGIES; DYNAMICS; FITNESS; ENVIRONMENT Some of the best empirical examples of life-history evolution involve responses to predation. Nevertheless, most life-history theory dealing with responses to predation has not been formulated within an explicit dynamic food-web context. In particular, most previous theory does not explicitly consider the coupled population dynamics of the focal species and its predators and resources. Here we present a model of life-history evolution that explores the evolutionary consequences of size-specific predation on small individuals when there is a trade-off between growth and reproduction. The model explicitly describes the population dynamics of a predator, the prey of interest, and its resource. The selective forces that cause life-history evolution in the prey species emerge from the ecological interactions embodied by this model and can involve important elements of frequency dependence. Our results demonstrate that the strength of the coupling between predator and prey in the community determines many aspects of life-history evolution. If the coupling is weak (as is implicitly assumed in many previous models), differences in resource productivity have no effect on the nature of life-history evolution. A single life-history strategy is favored that minimizes the equilibrium resource density (if possible). If the coupling is strong, then higher resource productivities select for faster growth into the predation size refuge. Moreover, under strong coupling it is also possible for natural selection to favor an evolutionary diversification of life histories, possibly resulting in two coexisting species with divergent life-history strategies. Univ Toronto, Dept Zool, Toronto, ON M5S 3G5, Canada; Univ Pittsburgh, Dept Biol Sci, Pittsburgh, PA 15260 USA Day, T (reprint author), Univ Toronto, Dept Zool, 25 Harbord St, Toronto, ON M5S 3G5, Canada. dayt@zoo.utoronto.ca Abrams, Peter/A-5240-2008 Abrams, Peter/0000-0002-1828-326X; Day, Troy/0000-0002-1052-6140 ABRAMS P, 1983, THEOR POPUL BIOL, V24, P22, DOI 10.1016/0040-5809(83)90044-8; Abrams PA, 2001, ECOL LETT, V4, P166, DOI 10.1046/j.1461-0248.2001.00199.x; Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; ABRAMS PA, 1989, EVOL ECOL, V3, P215, DOI 10.1007/BF02270722; ABRAMS PA, 1993, EVOL ECOL, V7, P465, DOI 10.1007/BF01237642; ARMSTRONG RA, 1979, ECOLOGY, V60, P76, DOI 10.2307/1936470; Belk MC, 1998, OECOLOGIA, V113, P203, DOI 10.1007/s004420050369; BRONMARK C, 1992, SCIENCE, V258, P1348, DOI 10.1126/science.258.5086.1348; CHARLESWORTH B, 1993, P ROY SOC B-BIOL SCI, V251, P47, DOI 10.1098/rspb.1993.0007; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Chase JM, 1999, AM NAT, V154, P559, DOI 10.1086/303260; Chase JM, 1999, AM NAT, V154, P571, DOI 10.1086/303261; CHRISTIANSEN FB, 1991, AM NAT, V138, P37, DOI 10.1086/285203; Cohen J. E., 1990, COMMUNITY FOOD WEBS; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; Day T, 2000, THEOR POPUL BIOL, V57, P339, DOI 10.1006/tpbi.2000.1459; Day T, 1996, P ROY SOC B-BIOL SCI, V263, P333, DOI 10.1098/rspb.1996.0051; Diekmann O, 1999, EVOL ECOL RES, V1, P261; Doebeli M, 2000, AM NAT, V156, pS77, DOI 10.1086/303417; Endler J.A., 1986, P109; ESHEL I, 1983, J THEOR BIOL, V103, P99, DOI 10.1016/0022-5193(83)90201-1; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; Heino M, 1997, PHILOS T R SOC B, V352, P1647, DOI 10.1098/rstb.1997.0146; HOLT RD, 1994, AM NAT, V144, P741, DOI 10.1086/285705; IWASA Y, 1991, EVOLUTION, V45, P1431, DOI 10.1111/j.1558-5646.1991.tb02646.x; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Johnson JB, 1999, COPEIA, P948, DOI 10.2307/1447970; KAWECKI TJ, 1993, OIKOS, V66, P309, DOI 10.2307/3544819; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MIRMIRANI M, 1978, THEOR POPUL BIOL, V13, P304, DOI 10.1016/0040-5809(78)90049-7; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Persson L, 1999, OIKOS, V87, P139, DOI 10.2307/3547005; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick David, 1996, P243; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Roff Derek A., 1992; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Svensson E, 1998, OIKOS, V83, P466, DOI 10.2307/3546674; Taylor P, 1997, EVOL ECOL, V11, P579, DOI 10.1007/s10682-997-1513-2; Taylor PD, 1996, EVOLUTION, V50, P2106, DOI 10.1111/j.1558-5646.1996.tb03598.x; TAYLOR PD, 1989, THEOR POPUL BIOL, V36, P125, DOI 10.1016/0040-5809(89)90025-7; Van Dooren TJM, 1998, J EVOLUTION BIOL, V11, P41, DOI 10.1046/j.1420-9101.1998.11010041.x; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141 51 55 57 1 34 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution MAY 2002 56 5 877 887 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 560JH WOS:000176078600002 12093024 2018-11-12 J Oli, MK; Hepp, GR; Kennamer, RA Oli, MK; Hepp, GR; Kennamer, RA Fitness consequences of delayed maturity in female wood ducks EVOLUTIONARY ECOLOGY RESEARCH English Article age at maturity; Aix sponsa; cost of reproduction; demography; fitness; individual fitness; life-history evolution; life-history trade-offs; lifetime reproductive success; wood duck LIFETIME REPRODUCTIVE SUCCESS; GROUND-SQUIRRELS; AGE; POPULATION; EVOLUTION; COSTS; PREDICTIONS; PHILOPATRY; HISTORIES; DYNAMICS Age at maturity has been suggested to be an important life-history trait with substantial potential for influencing the evolution of life histories. Using known reproductive histories of 90 female wood ducks (Aix sponsa) from a long-term study (1982-96), we investigated the fitness consequences of changes in age at maturity. Female wood ducks that attained sexual maturity as yearlings had a significantly shorter hfespan than those that delayed reproduction until 2 years of age or later. However, females that delayed reproduction neither produced a larger number of ducklings during their first reproductive event, nor did they have a greater number of successful lifetime breeding attempts than those maturing as yearlings. Females that attained sexual maturity as yearlings had the greatest individual fitness; the results indicated a directional selection for early maturity. These results are consistent with life-history theory predictions and suggest that reduced lifespan in female wood ducks is the primary cost associated with early maturity; however, costs of early maturity are outweighed by the associated benefits in fitness currency. Regression of individual fitness on age at maturity indicated strong directional selection for early maturity. These results suggest that attaining sexual maturity as yearlings may be an evolutionarily stable strategy in our study population, and that females delaying reproduction do so because they are genetically or environmentally constrained, not because of the potential fitness benefits of delayed maturity. Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL 32611 USA; Auburn Univ, Sch Forest & Wildlife Sci, Auburn, AL 36849 USA; Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA Oli, MK (reprint author), Univ Florida, Dept Wildlife Ecol & Conservat, 303 Newins Ziegler Hall, Gainesville, FL 32611 USA. olim@wec.ufl.edu BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Bellrose F. C., 1994, ECOLOGY MANAGEMENT W; BELLROSE FRANK C., 1964, J WILDLIFE MANAGE, V28, P661, DOI 10.2307/3798781; Brommer JE, 1998, J ANIM ECOL, V67, P359, DOI 10.1046/j.1365-2656.1998.00201.x; CASWELL H, 1980, THEOR POPUL BIOL, V17, P71, DOI 10.1016/0040-5809(80)90015-5; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; CLAWSON RL, 1979, J WILDLIFE MANAGE, V43, P347, DOI 10.2307/3800343; CLUTTONBROCK TH, 1988, REPROD SUCCESS; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Davis JB, 1998, WILDLIFE SOC B, V26, P299; Dhondt A.A., 1989, P15; Dobson FS, 2001, AM NAT, V158, P236, DOI 10.1086/321322; DROBNEY RD, 1980, AUK, V97, P480; Fitzpatrick J.W., 1988, P305; Fredrickson L.H., 1990, P 1988 N AM WOOD DUC, P35; HANSON H. C., 1954, AUK, V71, P267; HARAMIS GM, 1980, J WILDLIFE MANAGE, V44, P898, DOI 10.2307/3808320; HARVEY WF, 1989, WILDLIFE SOC B, V17, P254; Hepp Gary R., 1995, Birds of North America, V169, P1; HEPP GR, 1991, CONDOR, V93, P884, DOI 10.2307/3247723; HEPP GR, 1992, AUK, V109, P812, DOI 10.2307/4088155; HEPP GR, 1989, ECOLOGY, V70, P897, DOI 10.2307/1941357; HEPP GR, 1987, J WILDLIFE MANAGE, V51, P401, DOI 10.2307/3801026; HEPP GR, 1990, AUK, V107, P756, DOI 10.2307/4088008; HEUSMANN HW, 1975, J WILDLIFE MANAGE, V39, P503, DOI 10.2307/3800391; HEUSMANN HW, 1980, J WILDLIFE MANAGE, V44, P908, DOI 10.2307/3808323; JOLLY GM, 1965, BIOMETRIKA, V52, P225, DOI 10.2307/2333826; Kennamer RA, 2001, WILDLIFE SOC B, V29, P1193; Kennamer Robert A., 2000, Studies in Avian Biology, V21, P39; Kokko H, 1996, OIKOS, V77, P173, DOI 10.2307/3545599; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Lewontin R.C., 1965, GENETICS COLONIZING, P79; Manlove CA, 2000, CONDOR, V102, P286, DOI 10.1650/0010-5422(2000)102[0286:PONAIF]2.0.CO;2; MANLY BFJ, 1991, RANDOMIZATION MONTE; McGraw JB, 1996, AM NAT, V147, P47, DOI 10.1086/285839; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MORSE TE, 1969, J WILDLIFE MANAGE, V33, P284, DOI 10.2307/3799828; NEWTON I, 1988, REPROD SUCCESS, P201; NEWTON I, 1989, LIFETIME REPROD BIRD; Oli MK, 1999, OIKOS, V86, P557, DOI 10.2307/3546660; Oli MK, 2001, ECOLOGY, V82, P1921, DOI 10.2307/2680057; OLI MK, 1999, THESIS AUBURN U AUBU; Part T., 1996, P ROY SOC LOND B BIO, V360, P113, DOI [DOI 10.1098/RSPB.1995.0067, 10.1098/rspb.1995.0067]; Partridge L., 1989, P421; Pyle P, 1997, BEHAV ECOL, V8, P140, DOI 10.1093/beheco/8.2.140; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RIBBLE DO, 1992, J ANIM ECOL, V61, P457, DOI 10.2307/5336; Roff Derek A., 1992; SAITOH T, 1981, J ANIM ECOL, V50, P79, DOI 10.2307/4032; SEBER GAF, 1965, BIOMETRIKA, V52, P249; SEMEL B, 1986, AUK, V103, P813; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; Sternberg H., 1989, P55; Tkadlec E, 1998, J ANIM ECOL, V67, P863, DOI 10.1046/j.1365-2656.1998.6760863.x; VANDENBERGH JG, 1987, AM ZOOL, V27, P891; Viallefont A, 1995, AUK, V112, P67, DOI 10.2307/4088767; Wallin K, 1988, THESIS U GOTHENBURG; WELLER MILTON W., 1956, JOUR WILDLIFE MANAGEMENT, V20, P111, DOI 10.2307/3797414; White David L., 2000, Studies in Avian Biology, V21, P8; WOOTTON JT, 1987, EVOLUTION, V41, P732, DOI 10.1111/j.1558-5646.1987.tb05849.x 63 46 47 0 14 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. MAY 2002 4 4 563 576 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 552FN WOS:000175608900006 2018-11-12 J Mysterud, A; Steinheim, G; Yoccoz, NG; Holand, O; Stenseth, NC Mysterud, A; Steinheim, G; Yoccoz, NG; Holand, O; Stenseth, NC Early onset of reproductive senescence in domestic sheep, Ovis aries OIKOS English Article AGE-SPECIFIC REPRODUCTION; NORWEGIAN RED DEER; POPULATION-DYNAMICS; BODY-WEIGHT; SOAY SHEEP; NATURAL-POPULATIONS; PLANT PHENOLOGY; BIGHORN EWES; SURVIVAL; DENSITY A central theme in life history theory is to determine how reproduction varies with age in iteroparous organisms. Evidence of ageing and senescence, defined as the progressive loss of function accompanied by decreased performance with age, remains poorly documented for large herbivores, in particular as it relates to reproduction. Analyses of body weight of 87 532 domestic sheep lambs demonstrates that onset of reproductive senescence in ewes occurs already at 5 and 6 years of age when measured, respectively, as lamb weight and litter size produced. This provides convincing evidence of early onset of reproductive senescence in this highly domesticated sheep breed. As this is earlier than indicated for other Ovis species as well as for the Soay sheep, an ancient and lightly domesticated sheep, we hypothesize that there may be a cost of selection for large litter size in mammalian herbivores. Univ Oslo, Dept Biol, Div Zool, N-0316 Oslo, Norway; Agr Univ Norway, Dept Anim Sci, N-1432 As, Norway; Norwegian Inst Nat Res NINA, Polar Environm Ctr, Dept Arctic Ecol, N-9296 Tromso, Norway Mysterud, A (reprint author), Univ Oslo, Dept Biol, Div Zool, POB 1050, N-0316 Oslo, Norway. atle.mysterud@bio.uio.no Yoccoz, Nigel/A-1493-2008; Stenseth, Nils Chr./G-5212-2016; Yoccoz, Nigel/C-8561-2014 Stenseth, Nils Chr./0000-0002-1591-5399; Yoccoz, Nigel/0000-0003-2192-1039 Abrahamsen J, 1977, NORD UTREDN B, V34, P1; Abrams PA, 1995, EVOLUTION, V49, P1055, DOI 10.1111/j.1558-5646.1995.tb04433.x; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.2307/177240; Bjornstad ON, 1999, ECOLOGY, V80, P1278; Catchpole EA, 2000, J R STAT SOC C-APPL, V49, P453, DOI 10.1111/1467-9876.00205; CAUGHLEY G, 1966, ECOLOGY, V47, P906, DOI 10.2307/1935638; Cichon M, 1997, P ROY SOC B-BIOL SCI, V264, P1383, DOI 10.1098/rspb.1997.0192; Clutton-Brock J., 1981, DOMESTIC ANIMALS EAR; Clutton-Brock T.H., 1988, P325; Clutton-Brock T. H, 1982, RED DEER BEHAV ECOLO; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CluttonBrock TH, 1997, AM NAT, V149, P195, DOI 10.1086/285987; CLUTTONBROCK TH, 1992, J ANIM ECOL, V61, P381, DOI 10.2307/5330; CLUTTONBROCK TH, 1991, J ANIM ECOL, V60, P593, DOI 10.2307/5300; Coulson T, 2000, P ROY SOC B-BIOL SCI, V267, P1771, DOI 10.1098/rspb.2000.1209; COUTURIER AJ, 1962, BOUQUETIN ALPES; DICKERSON GE, 1975, J ANIM SCI, V40, P397; Doney JM, 1974, ISLAND SURVIVORS ECO, P88; DRABLOS D, 1997, STORY NORWEGIAN SHEE; EBERHARDT LL, 1985, J WILDLIFE MANAGE, V49, P997, DOI 10.2307/3801386; EDNEY EB, 1968, NATURE, V220, P281, DOI 10.1038/220281a0; Ericsson G, 2001, ECOLOGY, V82, P1613, DOI 10.1890/0012-9658(2001)082[1613:ARREAS]2.0.CO;2; FESTABIANCHET M, 1988, J MAMMAL, V69, P157, DOI 10.2307/1381764; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gaillard JM, 1998, EUROPEAN ROE DEER: THE BIOLOGY OF SUCCESS, P309; Gaillard JM, 2000, P ROY SOC B-BIOL SCI, V267, P471, DOI 10.1098/rspb.2000.1024; GAILLARD JM, 1994, EVOLUTION, V48, P509, DOI 10.1111/j.1558-5646.1994.tb01329.x; GARROTT RA, 1991, CAN J ZOOL, V69, P738, DOI 10.1139/z91-106; GATES PJ, 1993, ACTA AGR SCAND A-AN, V43, P144, DOI 10.1080/09064709309410158; Green WCH, 1990, BEHAV ECOL, V1, P148, DOI 10.1093/beheco/1.2.148; Grenfell BT, 1998, NATURE, V394, P674, DOI 10.1038/29291; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hastie TJ, 1990, GEN ADDITIVE MODELS; Hewison AJM, 2001, J ANIM ECOL, V70, P600, DOI 10.1046/j.1365-2656.2001.00528.x; Kirkwood T.B.L., 1981, P165; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Kirkwood TBL, 1990, GENETIC EFFECTS AGIN, P9; LANGVATN R, 1986, HOLARCTIC ECOL, V9, P285; Langvatn R, 1996, J ANIM ECOL, V65, P653, DOI 10.2307/5744; Loison A, 1999, ECOLOGY, V80, P2539, DOI 10.2307/177239; MEDAWAR PB, 1946, MODERN Q, V1, P30; Milner C., 1974, ISLAND SURVIVORS ECO; Mysterud A, 2000, J ANIM ECOL, V69, P959, DOI 10.1046/j.1365-2656.2000.00454.x; Mysterud A, 2000, OECOLOGIA, V124, P130, DOI 10.1007/s004420050032; Mysterud A, 2001, NATURE, V410, P1096, DOI 10.1038/35074099; Mysterud A, 2001, P ROY SOC B-BIOL SCI, V268, P911, DOI 10.1098/rspb.2001.1585; Mysterud A, 2001, J ANIM ECOL, V70, P915, DOI 10.1046/j.0021-8790.2001.00559.x; Peters R.H., 1983, P1; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; ROBBINS CT, 1979, AM NAT, V114, P101, DOI 10.1086/283456; Rose M. R, 1991, EVOLUTIONARY BIOL AG; SAETHER BE, 1994, P ROY SOC B-BIOL SCI, V256, P263, DOI 10.1098/rspb.1994.0079; Sibly RM, 1997, J ZOOL, V243, P1, DOI 10.1111/j.1469-7998.1997.tb05751.x; Simpson IA, 1998, J ENVIRON MANAGE, V54, P215, DOI 10.1006/jema.1998.0211; SLADE NA, 1995, ECOLOGY, V76, P863, DOI 10.2307/1939351; Stearns S. C., 1992, EVOLUTION LIFE HIST; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Turner H. N., 1969, Animal Breeding Abstracts, V37, P545; VAUPEL JW, 1985, AM STAT, V39, P176, DOI 10.2307/2683925; Venables WN, 1994, MODERN APPL STAT S P; Weladji RB, 2002, OECOLOGIA, V131, P79, DOI 10.1007/s00442-001-0864-6; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 65 32 32 0 9 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos MAY 2002 97 2 177 183 10.1034/j.1600-0706.2002.970203.x 7 Ecology Environmental Sciences & Ecology 570VF WOS:000176678800003 2018-11-12 J Hill, EM; Chow, K Hill, EM; Chow, K Life-history theory and risky drinking ADDICTION English Article hazardous drinking; life-course; evolutionary theory; life-history theory; risk-taking ALCOHOL-CONSUMPTION; YOUNG ADULTHOOD; PROBLEM-BEHAVIOR; TIME PREFERENCE; BINGE DRINKING; DEPENDENCE; MORTALITY; UNPREDICTABILITY; PREVALENCE; ADOLESCENTS Aims Life-history theory, a major theory related to evolutionary biology and behavioral ecology, is applied to analyze patterns in alcohol abuse and dependence. The life-history approach examines how intensity of reproductive competition affects the benefits and costs of risk-taking, which are typically greater for young men than for women or older men. We used this framework to predict demographic variation in hazardous patterns of alcohol use, assuming that they reflect risk-taking in general. Design This paper is a review of literature on demographic patterns in risky drinking and alcohol dependence. Predictions are generated using evolutionary analysis of risk-taking. Existing surveys of drinking behavior are reviewed, and findings are compared to predictions. Findings Results were generally consistent with predictions. The frequency of risky drinking and dependence is higher for men, and people of younger age, single marital status, childless parental status or unstable environmental resources. An exception is the effect of educational attainment, which is inconsistent. Conclusions Risky drinking behavior, as with other forms of physical risk-taking, is more frequently observed in young men, and it increases where environmental instability is higher. The utility of life-history theory is compared to alternate conceptions of risky drinking and dependence. Implications of this perspective for research and clinical efforts are explored. Univ Detroit Mercy, Dept Psychol, Detroit, MI 48219 USA Hill, EM (reprint author), Univ Detroit Mercy, Dept Psychol, 8200 W Outer Dr, Detroit, MI 48219 USA. hillelm@udmercy.edu *AM PSYCH ASS APA, 1994, DIAGN STAT MAN MENT; *AM PSYCH ASS APA, 1987, DIAGN STAT MAN MENT; ANDERSON P, 1995, ALCOHOL PUBLIC POLIC, P82; ARGAWAL A, 1983, INT J PSYCHOL, V18, P389; Bachman J. G., 1997, SMOKING DRINKING DRU; BAKER SP, 1992, INJURY FACT BOOK; Bowlby J., 1969, ATTACHMENT ATTACHMEN, V1; BUCHOLZ KK, 1995, ALCOHOL AGING, P19; Caetano R., 1991, ALCOHOL AM DRINKING, P293; Campbell A, 1999, BEHAV BRAIN SCI, V22, P203; Campman KL, 1999, PHYSICA E, V5, P16, DOI 10.1016/S1386-9477(99)00035-1; Caspi A, 1997, J PERS SOC PSYCHOL, V73, P1052, DOI 10.1037/0022-3514.73.5.1052; Chen WJ, 1996, BRIT J PSYCHIAT, V168, P762, DOI 10.1192/bjp.168.6.762; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Clements R, 1999, J AM COLL HEALTH, V48, P111, DOI 10.1080/07448489909595682; Daly M., 1983, SEX EVOLUTION BEHAV; Daly M., 1988, HOMICIDE; Dawson DA, 2000, ALCOHOL CLIN EXP RES, V24, P72, DOI 10.1097/00000374-200001000-00012; DeWit DJ, 1997, HEALTH EDUC BEHAV, V24, P746, DOI 10.1177/109019819702400609; DONOVAN JE, 1985, J CONSULT CLIN PSYCH, V53, P890, DOI 10.1037/0022-006X.53.6.890; DURANT RH, 1994, AM J PUBLIC HEALTH, V84, P612, DOI 10.2105/AJPH.84.4.612; Eisenberg L, 1998, ACAD PSYCHIATR, V22, P213, DOI 10.1007/BF03340021; Fillmore K M, 1995, Recent Dev Alcohol, V12, P409; Fillmore KM, 1998, ADDICTION, V93, P219, DOI 10.1046/j.1360-0443.1998.9322196.x; FILLMORE KM, 1987, BRIT J ADDICT, V82, P801; Fitzgerald HE, 1995, REF BOOKS FAM ISS, V23, P125; Grant BF, 1997, J STUD ALCOHOL, V58, P464, DOI 10.15288/jsa.1997.58.464; Grube JW, 1996, ADDICTION, V91, P1843, DOI 10.1111/j.1360-0443.1996.tb03813.x; Heath D. B., 1995, INT HDB ALCOHOL CULT; HELZER JE, 1991, PSYCHIAT DISORDERS A, P81; HERD D, 1991, ALCOHOL AM DRINKING, P308; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hill EM, 2002, ADDICTION, V97, P375, DOI 10.1046/j.1360-0443.2002.t01-1-00057.x; HILL EM, 1994, ALCOHOL CLIN EXP RES, V18, P1083, DOI 10.1111/j.1530-0277.1994.tb00085.x; Hilton M. E., 1991, ALCOHOL AM DRINKING, P87; HILTON ME, 1991, ALCOHOL AM DRINKING, P73; HUNT DK, 1992, J GEN INTERN MED, V7, P573, DOI 10.1007/BF02599194; JESSOR R, 1987, BRIT J ADDICT, V82, P331; Jessor R, 1977, PROBLEM BEHAV PSYCHO; Johnstone BM, 1996, J STUD ALCOHOL, V57, P494, DOI 10.15288/jsa.1996.57.494; Leigh BC, 1999, ADDICTION, V94, P371, DOI 10.1046/j.1360-0443.1999.9433717.x; Leino EV, 1998, ADDICTION, V93, P205, DOI 10.1046/j.1360-0443.1998.9322055.x; LEONARD KE, 1999, J STUDIES ALCOHOL S, V13, P130; LOMRANZ J, 1983, INT J PSYCHOL, V18, P407, DOI 10.1080/00207598308247490; Long JC, 1998, AM J MED GENET, V81, P216, DOI 10.1002/(SICI)1096-8628(19980508)81:3<216::AID-AJMG2>3.0.CO;2-U; LOW B, 2000, WHY SEX MATTERS DARV; LOW BS, 1994, HUM NATURE-INT BIOS, V5, P223, DOI 10.1007/BF02692153; LOW BS, 1993, EVOL ANTHROPOL, V1, P106; MAXIM PS, 1992, CAN REV SOC ANTHROP, V29, P329, DOI 10.1111/j.1755-618X.1992.tb02442.x; MCGUE M, 1994, NATIONAL I ALCOHOL A, V26, P1; Midanik L., 1992, ALCOHOL HEALTH RES W, V16, P183; MILLERTUTZAUER C, 1991, J STUD ALCOHOL, V52, P434, DOI 10.15288/jsa.1991.52.434; Peach HG, 1998, DRUG ALCOHOL REV, V17, P117, DOI 10.1080/09595239800187661; Petridou E, 1997, PREV MED, V26, P215, DOI 10.1006/pmed.1996.0130; Pittman D. J., 1991, SOC CULTURE DRINKING; Quigley LA, 1996, ALCOHOL HEALTH RES W, V20, P185; REICH T, 1988, ALCOHOL CLIN EXP RES, V12, P458, DOI 10.1111/j.1530-0277.1988.tb00227.x; Reich T, 1998, AM J MED GENET, V81, P207, DOI 10.1002/(SICI)1096-8628(19980508)81:3<207::AID-AJMG1>3.0.CO;2-T; Roff Derek A., 1992; ROGERS AR, 1994, AM ECON REV, V84, P460; Romelsjo A, 1995, ALCOHOL PUBLIC POLIC, P114; Ross LT, 2001, SUBST USE MISUSE, V36, P609, DOI 10.1081/JA-100103563; Ross LT, 2000, J MARRIAGE FAM, V62, P549, DOI 10.1111/j.1741-3737.2000.00549.x; Schlichting C. D., 1998, PHENOTYPIC EVOLUTION; Schulenberg J, 1996, J STUD ALCOHOL, V57, P289, DOI 10.15288/jsa.1996.57.289; Skog OJ, 2000, ADDICTION, V95, P1309, DOI 10.1046/j.1360-0443.2000.95913091.x; Skog OJ, 2001, ADDICTION, V96, pS35; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stoltenberg SF, 1999, ALCOHOL CLIN EXP RES, V23, P1884, DOI 10.1111/j.1530-0277.1999.tb04087.x; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; Wechsler H, 1998, J AM COLL HEALTH, V47, P57, DOI 10.1080/07448489809595621; WILLIAMS DR, 1992, J HEALTH SOC BEHAV, V33, P140, DOI 10.2307/2137252; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X 76 51 52 0 10 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0965-2140 1360-0443 ADDICTION Addiction APR 2002 97 4 401 413 10.1046/j.1360-0443.2002.00020.x 13 Substance Abuse; Psychiatry Substance Abuse; Psychiatry 539BY WOS:000174850900005 11964057 2018-11-12 J Day, T; Rowe, L Day, T; Rowe, L Developmental thresholds and the evolution of reaction norms for age and size at life-history transitions AMERICAN NATURALIST English Article maturity; metamorphosis; plasticity; developmental thresholds; Wilbur-Collins model LARVAL GROWTH HISTORY; PHENOTYPIC PLASTICITY; AMPHIBIAN METAMORPHOSIS; TIME CONSTRAINTS; MATURITY; TEMPERATURE; PREDATION; SHIFTS; MODELS; ENVIRONMENT It is quite common in studies of life-history plasticity to find a negative relationship between the age at which various life-history transitions occur and the growth conditions under which individuals develop. In particular, high growth typically results in earlier transitions, often at a larger size. Here, we use a relatively general optimization model for age and size at life-history transitions to argue that current life-history theory cannot adequately explain these results. Specifically, most such theory requires key assumptions that are unlikely to be generally met. This suggests that some important component of the biology of many organisms must be missing from many of the models in life-history theory. We suggest that this missing component might be the phenomenon of developmental thresholds. There are at least two different types of developmental thresholds possible, and we incorporate these into our general optimality model to demonstrate how they can cause a negative relationship between growth conditions and age at a transition. If developmental thresholds are common throughout taxa, then this might explain the empirical results. Our model formulation and analysis also formalizes the popular Wilbur-Collins hypothesis for age and size at metamorphosis in amphibians. The results demonstrate that optimal combinations of age and size, and the slope of the reaction norm connecting them, depend on the existence and type of threshold assumed. Our results also provide an evolutionary framework that can be used to view the data and many of the proximate submodels derived from the Wilbur-Collins hypothesis. Univ Toronto, Dept Zool, Toronto, ON M5S 3G5, Canada Day, T (reprint author), Univ Toronto, Dept Zool, 25 Harbord St, Toronto, ON M5S 3G5, Canada. dayt@zoo.utoronto.ca; lrowe@zoo.utoronto.ca Day, Troy/0000-0002-1052-6140 Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; ALFORD RA, 1988, AM NAT, V131, P91, DOI 10.1086/284775; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; AUDO MC, 1995, OECOLOGIA, V103, P518, DOI 10.1007/BF00328691; BAKKER K., 1959, Entomologia Experimentalis et Applicata, V2, P171; Ball SL, 1996, ECOLOGY, V77, P1116, DOI 10.2307/2265580; Beck CW, 1997, OECOLOGIA, V112, P187, DOI 10.1007/s004420050299; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; BERRIGAN D, 1994, OIKOS, V70, P474, DOI 10.2307/3545787; Blanckenhorn WU, 1998, EVOLUTION, V52, P1394, DOI 10.1111/j.1558-5646.1998.tb02021.x; BRADSHAW WE, 1995, ECOLOGY, V76, P2055, DOI 10.2307/1941680; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; Czarnoleski M, 1998, ECOL LETT, V1, P5, DOI 10.1046/j.1461-0248.1998.0007b.x; Day T, 1997, AM NAT, V149, P381, DOI 10.1086/285995; De Moed GH, 1999, J EVOLUTION BIOL, V12, P852, DOI 10.1046/j.1420-9101.1999.00103.x; Denver RJ, 1997, AM ZOOL, V37, P172; EBERT D, 1994, OIKOS, V69, P309, DOI 10.2307/3546152; GEBHARDT MD, 1988, J EVOLUTION BIOL, V1, P335, DOI 10.1046/j.1420-9101.1988.1040335.x; GOTTHARD K, 1995, OIKOS, V74, P3, DOI 10.2307/3545669; HENSLEY FR, 1993, ECOLOGY, V74, P2405, DOI 10.2307/1939591; Hentschel BT, 2000, ECOLOGY, V81, P3495, DOI 10.1890/0012-9658(2000)081[3495:MOBNEO]2.0.CO;2; Hentschel BT, 1999, AM NAT, V154, P549, DOI 10.1086/303263; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.1890/0012-9658(1999)080[1242:LHABRT]2.0.CO;2; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Kozlowski J, 1996, P ROY SOC B-BIOL SCI, V263, P559, DOI 10.1098/rspb.1996.0084; LEIPS J, 1994, ECOLOGY, V75, P1345, DOI 10.2307/1937459; Lima SL, 1998, ADV STUD BEHAV, V27, P215; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Morey S, 2000, ECOLOGY, V81, P1736, DOI 10.1890/0012-9658(2000)081[1736:ACAOPI]2.0.CO;2; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; Pasztor L, 1996, J EVOLUTION BIOL, V9, P511, DOI 10.1046/j.1420-9101.1996.9040511.x; PECKARSKY BL, 1993, ECOLOGY, V74, P1836, DOI 10.2307/1939941; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; Roff Derek A., 1992; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SIBLY RM, 1994, FUNCT ECOL, V8, P486, DOI 10.2307/2390073; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; TEJEDO M, 1994, HERPETOLOGICA, V50, P113; TRAVIS J, 1984, ECOLOGY, V65, P1155, DOI 10.2307/1938323; Twombly S, 1996, ECOLOGY, V77, P1855, DOI 10.2307/2265789; VONBERTALANFFY L, 1957, Q REV BIOL, V32, P217, DOI 10.1086/401873; WERNER EE, 1989, SIZE STRUCTURED POPU, P60; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305 51 215 222 4 72 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. APR 2002 159 4 338 350 10.1086/338989 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 528PK WOS:000174252000002 18707419 2018-11-12 J Sedinger, JS; Chelgren, ND; Lindberg, MS; Obritchkewitch, T; Kirk, MT; Martin, P; Anderson, BA; Ward, DH Sedinger, JS; Chelgren, ND; Lindberg, MS; Obritchkewitch, T; Kirk, MT; Martin, P; Anderson, BA; Ward, DH Life-history implications of large-scale spatial variation in adult survival of black brant (Branta bernicla nigricans) AUK English Article CAPTURE-RECAPTURE; MARKED ANIMALS; RECOVERY DATA; GEESE; GROWTH; AVAILABILITY; FECUNDITY; SIZE We used capture-recapture methods to estimate adult survival rates for adult female Black Brant (Branta bernicla nigricans; hereafter "brant") from three colonies in Alaska, two on the Yukon-Kuskokwim Delta, and one on Alaska's Arctic coast. Costs of migration and reproductive effort varied among those colonies, enabling Lis to examine variation in survival in relation to variation in these other variables. We used the Barker model in program MARK to estimate true annual survival for brant from the three colonies. Models allowing for spatial variation in survival were among the most parsimonious models but were indistinguishable from a model with no spatial variation. Point estimates of annual survival were slightly higher for brant from the Arctic (0.90 +/- 0.036) than for brant from either Tutakoke River (0.85 +/- 0.004) or Kokechik Bay (0.86 +/- 0.011). Thus, our survival estimates do not support a hypothesis that the cost of longer migrations or harvest experienced by brant from the Arctic reduced their annual survival relative to brant from the Yukon-Kuskokwim Delta. Spatial variation in survival provides weak support for life-history theory because brant from the region with lower reproductive investment had slightly higher survival. Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK 99775 USA; Univ Alaska Fairbanks, Dept Biol & Wildlife, Fairbanks, AK 99775 USA; US Interior Fish & Wildlife Serv, No Alaska Ecol Serv, Fairbanks, AK 99701 USA; ABR Inc, Fairbanks, AK 99709 USA; US Geol Survey, Alaska Sci Ctr, Biol Resources Div, Anchorage, AK 99503 USA Sedinger, JS (reprint author), Univ Nevada, Reno, NV 89512 USA. jsedinger@cabnr.unr.edu Anthenelli RM, 1995, ALCOHOL HEALTH RES W, V19, P176; Barker RJ, 1997, BIOMETRICS, V53, P666, DOI 10.2307/2533966; Barry T.W., 1967, THESIS U ALBERTA EDM; BARRY THOMAS W., 1962, JOUR WILDLIFE MANAGEMENT, V26, P19, DOI 10.2307/3798163; BARRYS J, 1982, THESIS U ALBERTA EDM; BLONDEL J, 1992, J ANIM ECOL, V61, P205, DOI 10.2307/5523; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CLUTTONBROCK TH, 1988, REPROD SUCCESS; FLINT PL, 1992, AUK, V109, P896, DOI 10.2307/4088164; FRANCIS CM, 1992, ECOLOGY, V73, P1346, DOI 10.2307/1940681; KIRBY RE, 1986, J WILDLIFE MANAGE, V50, P29, DOI 10.2307/3801483; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lindberg MS, 1998, ECOLOGY, V79, P1893, DOI 10.1890/0012-9658(1998)079[1893:NABPIA]2.0.CO;2; Lindberg MS, 2001, BIOMETRICS, V57, P273, DOI 10.1111/j.0006-341X.2001.00273.x; NICHOLS JD, 1992, BIOSCIENCE, V42, P94, DOI 10.2307/1311650; OWEN M, 1989, J ANIM ECOL, V58, P603, DOI 10.2307/4851; Pollock K. H., 1990, WILDLIFE MONOGRAPHS, V107; Schmutz JA, 1997, J WILDLIFE MANAGE, V61, P191, DOI 10.2307/3802428; Sedinger James S., 2000, P221, DOI 10.1016/B978-012701235-3/50013-1; SEDINGER JS, 1986, J ANIM ECOL, V55, P1083, DOI 10.2307/4435; Sedinger JS, 1998, AUK, V115, P613, DOI 10.2307/4089410; Sedinger JS, 1997, J WILDLIFE MANAGE, V61, P782, DOI 10.2307/3802185; SEDINGER JS, 1995, ECOLOGY, V76, P2404, DOI 10.2307/2265816; Sedinger JS, 2001, AUK, V118, P1088, DOI 10.1642/0004-8038(2001)118[1088:LSVIGO]2.0.CO;2; SEDINGER JS, 1996, P 7 INT WAT S, P93; SMITH GW, 1992, J WILDLIFE MANAGE, V56, P306, DOI 10.2307/3808827; Stickney AA, 1996, ARCTIC, V49, P44; Ward DH, 1997, J WILDLIFE MANAGE, V61, P773, DOI 10.2307/3802184; White GC, 1999, BIRD STUDY, V46, P120 31 14 14 0 11 AMER ORNITHOLOGISTS UNION LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0004-8038 1938-4254 AUK AUK APR 2002 119 2 510 515 10.1642/0004-8038(2002)119[0510:LHIOLS]2.0.CO;2 6 Ornithology Zoology 553ZZ WOS:000175709400019 2018-11-12 J Brown, WP; Roth, RR Brown, WP; Roth, RR Temporal patterns of fitness and survival in the Wood Thrush ECOLOGY English Article avian reproductive success; fitness; Hylocichla mustelina; life history theory; neo-tropical migrant songbirds; reproductive effort; seasonality; survival; Wood Thrush NEOTROPICAL MIGRATORY BIRDS; REPRODUCTIVE SUCCESS; OVERWINTER SURVIVAL; SOUTHERN VERACRUZ; TEMPERATE FOREST; HABITAT QUALITY; CLUTCH SIZE; POPULATION; DYNAMICS; MIGRANT Data from a 22-yr study of individually marked Wood Thrushes (Hylocichla mustelina) in a Delaware forest fragment were analyzed to determine temporal and demographic patterns of nesting success, recruitment of local young into the population (fitness), and adult return rates (survival). Clutch size, number of eggs incubated, and number of eggs hatched Were greater in early nests than in late nests, Although no difference existed in the average number of fledglings produced from early and late nests, fledglings from early nests were more likely to be recruited as breeders in the local population. Pairs of yearling (SY) birds produced equal numbers of recruits per nest from early and late nests, whereas pairs of older (greater than or equal to2-yr-old, ASY) birds produced more recruits from early nests. The probability of fledging at least one young tended to be greater for late nests, and the percentage of eggs that eventually fledged was also greater for late nests. All nests were most likely to fail in the laying stage than during any other nest stage, Early nests failed in the laying stage at a greater rate than late nests. The number of Wood Thrushes that hatched was the most important demographic, reproductive, or date variable measured that positively influenced seasonal fledging success. Year of breeding also positively influenced success. ASY birds returned to breed at higher rates than did SY birds. SY males returned at a higher rate than did SY females. There was no difference in return rates between ASY in ales and ASY females. Producing at least one Wood Thrush fledgling positively influenced the likelihood of return for SY females. Neither annual success nor any other demographic, reproductive, or date variable that we measured influenced the return probabilities of other age or sex classes of adult birds. Based on these temporal patterns of fitness and survival, We propose that life history strategies among Wood Thrushes vary as a function of late-season reproductive effort and winter-related factors that affect survival. Univ Delaware, Dept Entomol & Appl Ecol, Newark, DE 19717 USA Brown, WP (reprint author), Cornell Univ, New York Cooperat Fish & Wildife Res Unit, Ithaca, NY 14853 USA. Black J. M., 1996, PARTNERSHIPS BIRDS S; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; Brown CR, 1999, CONDOR, V101, P230, DOI 10.2307/1369986; BROWN WP, 1999, THESIS U DELAWARE NE; Clutton-Brock T.H., 1988, REPROD SUCCESS STUDI; CONWAY CJ, 1995, CONSERV BIOL, V9, P855, DOI 10.1046/j.1523-1739.1995.09040855.x; HOLMES RT, 1989, CONDOR, V91, P545, DOI 10.2307/1368105; HOLMES RT, 1992, AUK, V109, P321, DOI 10.2307/4088201; HUSSELL DJT, 1972, ECOL MONOGR, V42, P317, DOI 10.2307/1942213; Johnson MS, 1997, WILSON BULL, V109, P68; JOHNSON MS, 1994, THESIS U DELAWARE NE; KARR JR, 1990, CONSERV BIOL, V4, P391, DOI 10.1111/j.1523-1739.1990.tb00313.x; KREMENTZ DG, 1989, ECOLOGY, V70, P646, DOI 10.2307/1940216; Lack D., 1966, POPULATION STUDIES B; LONGCORE JR, 1969, WILSON BULL, V81, P396; MACKENZIE J, 1999, DELAWARE LAND USE LA; Mackenzie J., 1989, AGR EXPT STATION B, V483; Marra PP, 1998, SCIENCE, V282, P1884, DOI 10.1126/science.282.5395.1884; MARTIN K, 1995, AM ZOOL, V35, P340; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MCGILLIVRAY WB, 1981, THESIS U KANSAS LAWR; MOORE FR, 1991, BEHAV ECOL SOCIOBIOL, V28, P85; MURPHY MT, 1986, ECOLOGY, V67, P1483, DOI 10.2307/1939079; MURPHY MT, 1985, ECOLOGY, V66, P162, DOI 10.2307/1941316; NEWTON I, 1989, LIFETIME REPROD BIRD; NILSSON JA, 1994, J ANIM ECOL, V63, P200, DOI 10.2307/5595; NILSSON JA, 1989, J ANIM ECOL, V58, P619, DOI 10.2307/4852; NOLAN V, 1978, ORNITHOLOGICAL MONOG, V26; Ogden LJE, 1996, CONDOR, V98, P736, DOI 10.2307/1369855; OGDEN LJE, 1994, BIRDS N AM; Payne RB, 1998, BEHAV ECOL, V9, P64, DOI 10.1093/beheco/9.1.64; PETIT LJ, 1989, WILSON BULL, V101, P51; Porneluzi PA, 1999, CONSERV BIOL, V13, P1151, DOI 10.1046/j.1523-1739.1999.98455.x; RAPPOLE JH, 1989, AUK, V106, P402; Rivera JHV, 1998, WILSON BULL, V110, P384; ROBBINS CS, 1989, P NATL ACAD SCI USA, V86, P7658, DOI 10.1073/pnas.86.19.7658; ROBBINS CS, 1989, WILDLIFE MONOGR, P1; ROTH RR, 1993, AUK, V110, P37; ROTH RR, 1996, BIRDS N AM; Saether B.-E., 1990, Current Ornithology, V7, P251; *SAS I, 1998, SAS VERS 7 1; Sherry Thomas W., 1995, P85; SHERRY TW, 1992, ECOLOGY AND CONSERVATION OF NEOTROPICAL MIGRANT LANDBIRDS, P431; Sherry TW, 1996, ECOLOGY, V77, P36, DOI 10.2307/2265652; SMITH SM, 1994, ECOLOGY, V75, P2043, DOI 10.2307/1941609; Svensson E, 1997, BEHAV ECOL, V8, P92, DOI 10.1093/beheco/8.1.92; VILLARD MA, 1995, ECOLOGY, V76, P27, DOI 10.2307/1940629; Weinberg HJ, 1998, AUK, V115, P879; WEINBERG HJ, 1994, J FIELD ORNITHOL, V65, P115; WESTMORELAND D, 1987, CONDOR, V89, P486, DOI 10.2307/1368638; Williams GC, 1966, ADAPTATION NATURAL S; WINKER K, 1990, CONDOR, V92, P444, DOI 10.2307/1368241; Yong W, 1998, AUK, V115, P829, DOI 10.2307/4089502 53 34 34 0 15 ECOLOGICAL SOC AMER WASHINGTON 1707 H ST NW, STE 400, WASHINGTON, DC 20006-3915 USA 0012-9658 ECOLOGY Ecology APR 2002 83 4 958 969 10.2307/3071905 12 Ecology Environmental Sciences & Ecology 533HP WOS:000174523800009 2018-11-12 J Strassmann, BI; Gillespie, B Strassmann, BI; Gillespie, B Life-history theory, fertility and reproductive success in humans PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article life-history trade-offs; fertility; reproductive success FORAGER DEMOGRAPHY; HOMO-SAPIENS; BROOD SIZE; DOGON; INFERTILITY; FITNESS According to life-history theory, any organism that maximizes fitness will face a trade-off between female fertility and offspring survivorship. This trade-off has been demonstrated in a variety of species, but explicit tests in humans have found a positive linear relationship between fitness and fertility. The failure to demonstrate a maximum beyond which additional births cease to enhance fitness is potentially at odds with the view that human fertility behaviour is currently adaptive. Here we report, to our knowledge, the first clear evidence for the predicted nonlinear relationship between female fertility and reproductive success in a human population, the Dogon of Mali, West Africa. The predicted maximum reproductive success of 4.1 +/- 0.3 surviving offspring was attained at a fertility of 10.5 births. Eighty-three per cent of the women achieved a lifetime fertility level (7-13 births) for which the predicted mean reproductive success was within the confidence limits (3.4 to 4.8) for reproductive success at the optimal fertility level. Child mortality, rather than fertility, was the primary determinant of fitness. Since the Dogon people are farmers, our results do not support the assumptions that: (i) contemporary foragers behave more adaptively than agriculturalists, and (ii) that adaptive fertility behaviour ceased with the Neolithic revolution some 9000 years ago. We also present a new method that avoids common biases in measures of reproductive success. Univ Michigan, Dept Anthropol, Ann Arbor, MI 48109 USA; Univ Michigan, Mammal Div, Museum Zool, Ann Arbor, MI 48109 USA; Univ Michigan, Dept Biostat, Sch Publ Hlth, Ann Arbor, MI 48109 USA; Univ Michigan, Ctr Stat Consultat & Res, Ann Arbor, MI 48109 USA Strassmann, BI (reprint author), Univ Michigan, Dept Anthropol, Ann Arbor, MI 48109 USA. bis@umich.edu ANDERSON DJ, 1990, EVOLUTION, V44, P438, DOI 10.1111/j.1558-5646.1990.tb05211.x; Barkow Jerome H., 1992, ADAPTED MIND EVOLUTI; Blurton Jones N. B., 1997, HUMAN NATURE CRITICA, P83; Blurton-Jones N., 1986, ETHOL SOCIOBIOL, V7, P91, DOI DOI 10.1016/0162-3095(86)90002-6); BOYD R, 1997, HOW HUMANS EVOLVED; BUSS DM, 1995, PSYCHOL INQ, V6, P1, DOI 10.1207/s15327965pli0601_1; Caldwell J C, 1983, World Health Stat Q, V36, P2; Cazes M. L., 1993, DOGON BONI APPROCHE; Cleveland W.S., 1993, VISUALIZING DATA; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; GRIAULE GC, 1965, ETHNOLOGIE LANGAGE P; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; HARPENDING H, 1994, AM J PHYS ANTHROPOL, V93, P385, DOI 10.1002/ajpa.1330930310; HAUKIOJA E, 1989, AM NAT, V133, P572, DOI 10.1086/284936; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; JONES NB, 1987, ETHOL SOCIOBIOL, V8, P183; JONES NGB, 1994, AM J PHYS ANTHROPOL, V93, P391, DOI 10.1002/ajpa.1330930311; JONES NGB, 1978, SOC STUDY HUMAN BIOL, V18, P135; KAPLAN EL, 1958, J AM STAT ASSOC, V53, P457, DOI 10.2307/2281868; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lessells C.M., 1991, P32; MENOZZI P, 1978, SCIENCE, V201, P786, DOI 10.1126/science.356262; Mulder M Borgerhoff, 1992, EVOLUTIONARY ECOLOGY, P339; MULDER MB, 2000, EVOL HUM BEHAV, V12, P391; PAULME D, 1940, ORG SOCIALE DOGON; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; PEREZ A, 1972, AM J OBSTET GYNECOL, V114, P1041, DOI 10.1016/0002-9378(72)90866-6; PERN S, 1982, MASKED DANCERS W AFR; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; Smith E. A., 2000, ADAPTATION HUMAN BEH, P27; SOKAL RR, 1991, NATURE, V351, P143, DOI 10.1038/351143a0; *SPSS INC, 1999, SPSS ADV MOD 10 0; Stearns S. C., 1992, EVOLUTION LIFE HIST; Strassmann B., 2000, ADAPTATION HUMAN BEH, P49; Strassmann B I, 1992, Hum Nat, V3, P89, DOI 10.1007/BF02692249; Strassmann BI, 1997, CURR ANTHROPOL, V38, P123, DOI 10.1086/204592; Strassmann BI, 1998, EVOL HUM BEHAV, V19, P33, DOI 10.1016/S1090-5138(97)00103-7; Strassmann BI, 1996, BEHAV ECOL, V7, P304, DOI 10.1093/beheco/7.3.304; Strassmann BI, 1997, CURR ANTHROPOL, V38, P688, DOI 10.1086/204657; Strassmann BI, 1998, AM J PHYS ANTHROPOL, V105, P167, DOI 10.1002/(SICI)1096-8644(199802)105:2<167::AID-AJPA5>3.0.CO;2-S; Strassmann BI, 1999, EVOLUTION IN HEALTH AND DISEASE, P91; STRASSMANN BI, 2002, UNPUB PATERNAL CONTR; SYMONS D, 1989, ETHOL SOCIOBIOL, V10, P131, DOI 10.1016/0162-3095(89)90016-2; van Noordwijk A. J., 1986, AM NAT, V128, P127 46 80 84 2 33 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. MAR 22 2002 269 1491 553 562 10.1098/rspb.2001.1912 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 538WC WOS:000174837200002 11916470 Green Published 2018-11-12 J Low, BS; Simon, CP; Anderson, KG Low, BS; Simon, CP; Anderson, KG An evolutionary ecological perspective on demographic transitions: Modeling multiple currencies AMERICAN JOURNAL OF HUMAN BIOLOGY English Review REPRODUCTIVE SUCCESS; 19TH-CENTURY SWEDEN; OCCUPATIONAL-STATUS; FERTILITY; POPULATION; STRATEGIES; CHILDREN; WEALTH; FAMILY; PARISH Life history theory postulates tradeoffs of current versus future reproduction; today women face evolutionarily novel versions of these tradeoffs. Optimal age at first birth is the result of tradeoffs in fertility and mortality; ceteris paribus, early reproduction is advantageous. Yet modern women in developed nations experience relatively late first births; they appear to be trading off socioeconomic status and the paths to raised SES, education and work, against early fertility. Here, [1] using delineating parameter values drawn from data in the literature, we model these tradeoffs to determine how much socioeconomic advantage will compensate for delayed first births and lower lifetime fertility; and [2] we examine the effects of work, and education on women's lifetime and age specific fertility using data from seven cohorts in the Panel Study of Income Dynamics (PSID). (C) 2002 Wiley-Liss, Inc. Univ Michigan, Sch Nat Resources, Ann Arbor, MI 48109 USA; Univ Michigan, Environm Populat Studies Ctr, Ann Arbor, MI 48109 USA; Univ Michigan, Sch Publ Policy, Dept Math, Ann Arbor, MI 48109 USA; Univ Michigan, Ctr Study Complex Syst, Ann Arbor, MI 48109 USA; Univ Michigan, Inst Social Res, Ctr Populat Studies, Ann Arbor, MI 48109 USA Low, BS (reprint author), Univ Michigan, Sch Nat Resources, Ann Arbor, MI 48109 USA. Alexander R. D., 1979, DARWINISM HUMAN AFFA; ALEXANDER RD, 1988, HUMAN REPROD BEHAV D, P317; ALEXANDER RD, 1997, BIOL MORAL SYSTEMS; Becker G, 1974, EC FAMILY MARRIAGE C, P81; BECKER G., 1991, TREATISE FAMILY; Becker G.S, 1981, TREATISE FAMILY; Bock J, 1999, POPUL ENVIRON, V21, P193, DOI 10.1023/A:1023310618521; Boone JL, 1999, EVOL HUM BEHAV, V20, P257, DOI 10.1016/S1090-5138(99)00011-2; BORGERHOFF MM, 1987, AM ANTHROPOL, V89, P617, DOI DOI 10.1525/AA.1987.89.3.02A00050); Bound J., 1997, 1997 ANN M POP ASS A; BURTON LM, 1990, HUM NATURE, V1, P122; Caldwell J. C., 1982, THEORY FERTILITY DEC; Caldwell J. C., 1983, DETERMINANTS FERTILI, V1, P458; Caldwell JC, 1996, POP STUD-J DEMOG, V50, P305, DOI 10.1080/0032472031000149516; CALDWELL JC, 1982, DETERMINANTS FERTILI, P169; CHAGNON NA, 1988, SCIENCE, V239, P985, DOI 10.1126/science.239.4843.985; CHARNOV E L, 1982; Charnov Eric L., 1993, P1; CLARKE AL, 1992, ANIM BEHAV, V44, P677, DOI 10.1016/S0003-3472(05)80295-7; COALE AJ, 1974, POPUL INDEX, V40, P185, DOI 10.2307/2733910; COALE AJ, 1978, POPUL INDEX, V44, P203, DOI 10.2307/2735537; COALE AJ, 1974, SCI AM SEP, P17; Cohen J. E., 1995, MANY PEOPLE CAN EART; COHEN JE, 1998, 628 HARV I INT INT D; CORCORAN M, 1997, SOCIAL SERVICE R JUN; CRONK L, 1991, ANNU REV ANTHROPOL, V20, P25, DOI 10.1146/annurev.an.20.100191.000325; CRONK L, 1991, AM ANTHROPOL, V93, P345, DOI 10.1525/aa.1991.93.2.02a00040; Darwin C.R., 1871, DESCENT MAN SELECTIO; Davis JN, 1999, P ROY SOC B-BIOL SCI, V266, P1791, DOI 10.1098/rspb.1999.0848; DAVIS JN, 1999, 1999 EV HUM BEH M SA; EMLEN ST, 1997, BEHAV ECOLOGY, pCH10; Essock-Vitale S., 1988, HUMAN REPROD BEHAV D, P221; Fisher R. A., 1958, GENETICAL THEORY NAT; FREEDMAN DS, 1982, DEMOGRAPHY, V19, P65, DOI 10.2307/2061129; Friedlander D, 1999, J FAM HIST, V24, P493, DOI 10.1177/036319909902400406; Geronimus AT, 1997, POLIT SCI QUART, V112, P405, DOI 10.2307/2657564; Geronimus AT, 1996, SOC SCI MED, V42, P589, DOI 10.1016/0277-9536(95)00159-X; Geronimus AT, 1996, NEW ENGL J MED, V335, P1552, DOI 10.1056/NEJM199611213352102; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; HARDIN G, 1968, SCIENCE, V162, P1243; HASS N, 1999, NY TIMES 1024; Heilig GK, 1996, FUTURE POPULATION WO, P196; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; HUGHES AL, 1986, SOC BIOL, V33, P109; Hughes AL., 1988, EVOLUTION HUMAN KINS; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; IRONS W, 1983, SOCIAL BEHAVIOR FEMA, P169; Irons W., 1979, EVOLUTIONARY BIOL HU; Irons W, 1996, RELIG SCI HIST METHO, P375; JOHNSON NE, 1985, POP STUD-J DEMOG, V39, P99, DOI 10.1080/0032472031000141306; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; Kaplan HS, 1998, MEN IN FAMILIES, P55; KAPLAN HS, 1995, HUMAN REPROD DECISIO, P96; KAPLAN HS, 2000, ADAPTATION HUMAN BEH; Kirk D, 1996, POP STUD-J DEMOG, V50, P361, DOI 10.1080/0032472031000149536; KNODEL J, 1990, POPUL DEV REV, V16, P31, DOI 10.2307/1972528; Lancaster J. B, 1986, SCH AGE PREGNANCY PA, P17; Lessells C.M., 1991, P32; LOW BS, 1990, AM ANTHROPOL, V92, P457, DOI 10.1525/aa.1990.92.2.02a00130; LOW BS, 1989, SOC BIOL, V36, P82; LOW BS, 1992, ETHOL SOCIOBIOL, V13, P463, DOI 10.1016/0162-3095(92)90013-T; LOW BS, 1991, J FAM HIST, V16, P117, DOI 10.1177/036319909101600202; LOW BS, 1991, ETHOL SOCIOBIOL, V12, P411, DOI 10.1016/0162-3095(91)90024-K; LOW BS, 1992, POPUL DEV REV, V18, P1, DOI 10.2307/1971857; Low BS, 1998, HANDBOOK OF EVOLUTIONARY PSYCHOLOGY, P131; Low BS, 2000, WHY SEX MATTERS; LOW BS, 1993, EVOL ANTHROPOL, V1, P106; LOW BS, IN PRESS BIODEMOGRAP; LOW BS, 2000, ADAPTATION HUMAN BEH; LOW BS, 1993, POPULATION ENV DYNAM; LUKER K, 1996, DUBIOUS CONCEPTIONS; MAC ARTHUR ROBERT H., 1967; Mace R, 1998, PHILOS T R SOC B, V353, P389, DOI 10.1098/rstb.1998.0217; MACE R, 1993, BEHAV ECOL SOCIOBIOL, V33, P329; Mace R, 1996, ETHOL SOCIOBIOL, V17, P263, DOI 10.1016/0162-3095(96)00044-1; MacKellar FL, 1996, POPUL DEV REV, V22, P145, DOI 10.2307/2137692; MacKellar FL, 1997, POPUL DEV REV, V23, P359, DOI 10.2307/2137549; MULDER MB, 1995, CURR ANTHROPOL, V36, P573, DOI 10.1086/204405; Mulder MB, 1998, TRENDS ECOL EVOL, V13, P266, DOI 10.1016/S0169-5347(98)01357-3; MULDER MB, 1988, REPROD SUCCESS, P419; MULDER MB, 1988, HUMAN REPRODUCTIVE B, P65; PERUSSE D, 1993, HUM NATURE, V5, P255; POWELL B, 1989, SOCIOL EDUC, V62, P134, DOI 10.2307/2112845; RANK MR, 1989, AM SOCIOL REV, V54, P296, DOI 10.2307/2095797; Roff Derek A., 1992; Rogers A R, 1991, Hum Nat, V2, P73, DOI 10.1007/BF02692182; ROGERS AR, 1995, HUMAN REPRODUCTIVE DECISIONS, P76; ROGERS AR, 1990, ETHOL SOCIOBIOL, V11, P479, DOI 10.1016/0162-3095(90)90022-X; ROSKAFT E, 1992, ETHOL SOCIOBIOL, V13, P443, DOI 10.1016/0162-3095(92)90012-S; Schofield R. S., 1986, STATE POPULATION THE, P1; SELLERS P, 1998, FORTUNE 1012, P76; Sibley R. M., 1986, PHYSL ECOLOGY ANIMAL; Simon J., 1974, CAROLINA POPULATION, V19; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stack Carol B., 1974, ALL OUR KIN; STCK CB, 1996, CALL HOME; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tasiran AC., 1995, FERTILITY DYNAMICS S; TURKE PW, 1989, POPUL DEV REV, V15, P61, DOI 10.2307/1973405; TURKE PW, 1992, POPUL DEV, V17, P689; VINING DR, 1986, BEHAV BRAIN SCI, V9, P167, DOI 10.1017/S0140525X00021968; VOLAND E, 1990, BEHAV ECOL SOCIOBIOL, V26, P65; VOLAND E, 1995, HUM NATURE-INT BIOS, V6, P33, DOI 10.1007/BF02734134; VOLAND E, 1991, ETHOL SOCIOBIOL, V12, P105, DOI 10.1016/0162-3095(91)90016-J; Williams GC, 1966, ADAPTATION NATURAL S; WILLIS RJ, 1973, J POLIT ECON, V81, pS14, DOI 10.1086/260152; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 108 46 46 0 13 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 1520-6300 AM J HUM BIOL Am. J. Hum. Biol. MAR-APR 2002 14 2 149 167 10.1002/ajhb.10043 19 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 527FE WOS:000174175400002 11891931 2018-11-12 J Paugy, D Paugy, D Reproductive strategies of fishes in a tropical temporary stream of the Upper Senegal basin: Baoule River in Mali AQUATIC LIVING RESOURCES English Article freshwater fishes; environment; reproductive strategies; Senegal basin; western Africa LIFE-HISTORY; AMERICAN FISHES; PATTERNS In the tropics, there is very little information on fish reproduction in intermittent streams and most of the studies are from the neotropic regions. In temporary rivers, environmental conditions are sharply contrasted and the variation amplitude of hydrological and physicochemical characteristics is high. In the Baoule River (Mali), during the peak of the dry season, the remaining pools comprise only 10% of the total length of the river. During the wet season, there is a short (three months) but intense period of flooding. In this study, the reproductive strategies of 18 species of fishes were investigated in the upper reach of the Baoule drainage. They belong to eight families, show variation in feeding guilds, and vary in size and habitat preferences. Fishes were collected from February 1985 to November 1988 using gillnets. Two main types of spawning strategies may be distinguished among these species. The first, the 'total spawners', have generally a short annual spawning period just before the flood. The second, the 'small-brood spawners', produce small batches of eggs at frequent intervals for most of the year. Most of the species inhabiting the Baoule River exhibit a breeding strategy in relation to the flood seasonality. This type of strategy, common in harsh but predictable environments, favours a synchronous reproduction in phase with the optimal environmental conditions and the production of large number of juveniles that require no parental care. Concerning the Baoule River, 12 variables related to life-history theory were measured for 18 species. Clustering of these species based on Euclidean distances resulted in two groups. The first corresponds to developed parental care, large oocytes and low fecundity (about a hundred eggs). Two species, Chrysichthys auratus and Sarotherodon galilaeus, belong to this 'equilibrium strategy'. Others species have a 'seasonal strategy', which is adapted to the harsh local conditions. In the Nilo-Sudanian area, most fishes appeared to be associated with a seasonal life history strategy that exploits an annual expansion of aquatic production. In the Baoule River, the 'seasonal strategy' is characterised by high fecundity, absence of parental care, limited breeding season and for some species large adult size and upstream spawning migrations to floodplains. (C) 2002 Ifremer/CNRS/Inra/Cemagref/Editions scientifiques et medicales Elsevier SAS. All rights reserved. Museum Natl Hist Nat, Antenne IRD, Lab Ichtyol, F-75231 Paris 5, France Paugy, D (reprint author), Museum Natl Hist Nat, Antenne IRD, Lab Ichtyol, 43 Rue Cuvier, F-75231 Paris 5, France. paugy@mnhn.fr Albaret J.-J., 1982, Revue d'Hydrobiologie Tropicale, V15, P347; Alkins-Koo M, 2000, ENVIRON BIOL FISH, V57, P49, DOI 10.1023/A:1007566609881; Balon E.K., 1990, GUELPH ICHTHYOL REV, V1, P1; BALON EK, 1977, ENVIRON BIOL FISH, V3, P159; BENECH V, 1985, Revue d'Hydrobiologie Tropicale, V18, P227; BENECH V, 1994, PECHE DELTA CENTRAL, V1, P213; BENZECRI J.-P, 1973, ANAL DONNEES, V2; Billard R., 1996, Fish and Fisheries Series, V19, P13; CHESSEL D, 1995, URA CNRS, V1451; Daget J., 1957, Hydrobiologia, V9, P321, DOI 10.1007/BF00150382; DAGET J, 1961, B MUS NATN HIST NAT, V2, P506; DAGET J, 1954, MEM IFAN, V36; ELOUARD JM, 1977, CAH ORSTOM HYDROBIOL, V11, P179; HUGUENY B, 1994, ENVIRON BIOL FISH, V39, P365, DOI 10.1007/BF00004806; Jackson P. B. N., 1961, Proceedings of the Zoological Society of London, V136, P603; LAUZANNE L, 1975, CAH ORSTOM HYDROBIOL, V9, P105; LEGERON JP, 1984, HDB OZONE TECHNOLOGY, V2, P1; Leveque C, 1997, BIODIVERSITY DYNAMIC, P438; LEVEQUE C, 1999, POISSONS EAUX CONTIN; MAC ARTHUR ROBERT H., 1967; McConnell R., 1987, ECOLOGICAL STUDIES T; MICHEL P, 1973, ORSTOM MEMOIRES, V63; MUNRO AD, 1990, REPROD SEASONALITY T, P254; Paugy D, 1999, POISSONS EAUX CONTIN, P130; PAUGY D, 1994, ANN MUS R AFR CTR, V177, P35; Paugy Didier, 1994, Revue d'Hydrobiologie Tropicale, V27, P157; RODIER J, 1964, ORSTOM MEMOIRES, V6, P137; SRINN KY, 1976, THESIS U TOULOUSE; Welcomme R., 1979, FISHERIES ECOLOGY FL; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WINEMILLER KO, 1994, J FISH BIOL, V45, P211; WOOTTON R.J., 1991, FISH FISHERIES SERIE, V1 34 31 33 0 13 EDP SCIENCES S A LES ULIS CEDEX A 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE 0990-7440 1765-2952 AQUAT LIVING RESOUR Aquat. Living Resour. MAR 2002 15 1 25 35 PII S0990-7440(01)01144-5 10.1016/S0990-7440(01)01144-5 11 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 538WA WOS:000174837000003 2018-11-12 J Saino, N; Incagli, M; Martinelli, R; Moller, AP Saino, N; Incagli, M; Martinelli, R; Moller, AP Immune response of male barn swallows in relation to parental effort, corticosterone plasma levels, and sexual ornamentation BEHAVIORAL ECOLOGY English Article barn swallows; corticosterone; Hirundo rustica; immunity; parental effort; secondary sexual characters; stress COSTLY MATE PREFERENCES; MALE HOUSE SPARROWS; REPRODUCTIVE EFFORT; HIRUNDO-RUSTICA; IMMUNOCOMPETENCE; IMMUNOSUPPRESSION; PARASITES; SELECTION; EVOLUTION; CHICKS Life-history theory posits trade-offs between fitness components. Reproduction negatively affects physiology and immune system functioning, and the effect of this form of stress tray be mediated by glucocordcosteroids. We manipulated brood size of barn swallows (Hirundo rustica) to study the effect of stress arising from reproductive effort on corticosterone levels of males. We also measured T-cell-mediated immunocompetence by intradermally injecting birds with phytohemagglutinin, which is mitogenic to T-lymphocytes. The results confirmed the prediction of a negative effect of parental effort on lymphoproliferative response. We found no covariation between immune response and corticosterone levels. Males with long tails, an ornament currently under directional sexual selection, had a relatively large T-cell response to the mitogen, consistent with models of parasite-mediated sexual selection predicting higher levels of immune defense in highly ornamented males. In addition, males with large sexual ornaments had relatively low corticosterone levels at the end of the parental period. These results can be reconciled with the hypothesis proposing a trade-off between parental activities and adaptive immunity and suggest that highly ornamented males are less exposed or less susceptible to stress arising from parental effort. Univ Milan, Dipartimento Biol, I-20133 Milan, Italy; Univ Milano Bicocca, Dipartimento Sci Ambiente & Terr, I-20126 Milan, Italy; Univ Pisa, Dipartimento Etol Ecol & Evoluz, I-56126 Pisa, Italy; Univ Paris 06, Ecol Lab, CNRS, UMR 7625, F-75252 Paris 05, France Saino, N (reprint author), Univ Milan, Dipartimento Biol, Via Celoria 26, I-20133 Milan, Italy. n.saino@mailserver.unimi.it Saino, Nicola/0000-0002-0230-3967 Andersson M., 1994, SEXUAL SELECTION; Apanius V, 1998, ADV STUD BEHAV, V27, P133; BIJLSMA R, 1997, STRESS ADAPTATION EV; CHANDRA RK, 1977, NUTR IMMUNITY INFECT; Clayton D. H., 1997, HOST PARASITE EVOLUT; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; DIETERT RR, 1994, POULTRY SCI, V73, P1062, DOI 10.3382/ps.0731062; FRIEDMAN H, 1996, PSYCHONEUROIMMUNOLOG; Gershwin ME, 1985, NUTR IMMUNITY; Gonzalez G, 1999, BEHAV ECOL SOCIOBIOL, V46, P117, DOI 10.1007/s002650050600; Griffith SC, 1999, P ROY SOC B-BIOL SCI, V266, P765; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; HEYWOOD JS, 1989, EVOLUTION, V43, P1387, DOI 10.1111/j.1558-5646.1989.tb02590.x; HOFFMANN AA, 1989, EVOLUTION GENETICS E; IWASA Y, 1991, EVOLUTION, V45, P1431, DOI 10.1111/j.1558-5646.1991.tb02646.x; LOCHMILLER RL, 1993, AUK, V110, P503, DOI 10.2307/4088414; LOYE JE, 1991, BIRD PARASITE INTERA; MOLLER A. P., 1997, ASYMMETRY DEV STABIL; Moller Anders Pape, 1997, P105; MOLLER AP, 1988, NATURE, V332, P640, DOI 10.1038/332640a0; Moller AP, 1998, P ROY SOC B-BIOL SCI, V265, P409, DOI 10.1098/rspb.1998.0309; MOLLER AP, 1991, P ROY SOC B-BIOL SCI, V243, P145, DOI 10.1098/rspb.1991.0023; Moller AP, 1999, Q REV BIOL, V74, P3, DOI 10.1086/392949; MOLLER AP, 1991, BIRD PARASITE INTERA, P328; MOLLER AP, 1994, SEXUAL SELECTION BAR; MOLLER AP, 1998, STRESS BEHAV; Moreno J, 1999, P ROY SOC B-BIOL SCI, V266, P1105, DOI 10.1098/rspb.1999.0750; NEWTON I, 1989, LIFETIME REPROD BIRD; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; Ottaviani E, 1996, PROG NEUROBIOL, V48, P421, DOI 10.1016/0301-0082(95)00049-6; Partridge L., 1989, P421; PASTORET P, 1998, HDB VERTEBRATE IMMUN; POMIANKOWSKI A, 1991, EVOLUTION, V45, P1422, DOI 10.1111/j.1558-5646.1991.tb02645.x; Price P. W., 1980, EVOLUTIONARY BIOL PA; Raberg L, 1998, P ROY SOC B-BIOL SCI, V265, P1637, DOI 10.1098/rspb.1998.0482; RICHNER H, 1995, P NATL ACAD SCI USA, V92, P1192, DOI 10.1073/pnas.92.4.1192; Roff Derek A., 1992; Roitt I, 1996, IMMUNOLOGY; Saino N, 1997, J ANIM ECOL, V66, P827, DOI 10.2307/5998; Saino N, 1999, J ANIM ECOL, V68, P999, DOI 10.1046/j.1365-2656.1999.00350.x; Saino N, 1997, EVOLUTION, V51, P562, DOI 10.1111/j.1558-5646.1997.tb02443.x; Saino N, 1996, BEHAV ECOL, V7, P227, DOI 10.1093/beheco/7.2.227; SAINO N, 1994, ANIM BEHAV, V48, P1325, DOI 10.1006/anbe.1994.1369; SAPOLSKY R M, 1992, P287; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Sorci G, 1997, P ROY SOC B-BIOL SCI, V264, P1593, DOI 10.1098/rspb.1997.0222; Stearns S. C., 1992, EVOLUTION LIFE HIST; TSIAGBE VK, 1987, POULTRY SCI, V66, P1147, DOI 10.3382/ps.0661147; von Holst D, 1998, ADV STUD BEHAV, V27, P1; WAKELIN D, 1996, IMMUNOLOGY PRASITES; WEDEKIND C, 1994, AM NAT, V143, P936, DOI 10.1086/285641; Wiehn J, 1999, OIKOS, V84, P87, DOI 10.2307/3546869; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WINGFIELD JC, 1994, PERSPECTIVES IN COMPARATIVE ENDOCRINOLOGY, P520; WINGFIELD JC, 1998, BEHAV APPROACHES CON, P95; Zuk M, 1998, P ROY SOC B-BIOL SCI, V265, P1631, DOI 10.1098/rspb.1998.0481 56 64 65 0 8 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. MAR-APR 2002 13 2 169 174 10.1093/beheco/13.2.169 6 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 535MF WOS:000174647700005 Bronze 2018-11-12 J Spencer, KA; Bryant, DM Spencer, KA; Bryant, DM State-dependent behaviour in breeding barn swallows (Hirundo rustica): consequences for reproductive effort PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article body state; energy; trade-offs; reproduction; life-history theory DOUBLY-LABELED WATER; MARTINS DELICHON-URBICA; ENERGY-EXPENDITURE; CLUTCH SIZE; BROOD SIZE; BIRDS; COSTS; PARENT; MASS; HIRUNDINIDAE Life-history theory offers an explanation for the intraspecific variation in reproductive effort; increased levels of current reproductive success, for example, may trade off against residual reproductive value. Even where such trade-offs have been demonstrated, however, much variation in effort remains unexplained and the underlying causes are usually obscure. We examined body state, i.e. energy reserves, as a factor, which could moderate reproductive effort. Specifically, overnight heating and cooling treatments were used to adjust dawn energy reserves in female swallows attending their nests without impinging on the opportunities for foraging. Changes in reproductive effort were measured as 'daytime energy expenditure' (doubly labelled water technique) and the 'number of feeding visits' during brood rearing, which both relate positively to current reproductive success. Our experimental treatments and responses were then compared using the common currency of energy. In response to positive and negative state manipulations, female swallows increased and decreased, respectively, their daytime energy expenditure (and number of feeding visits). These responses to experimental manipulation of state provided evidence of a direct link between the energy expenditure, life history and behaviour, which has hitherto proved elusive. They allow that energy supply and expenditure play a regulatory role in reproductive effort, and indicate that units of energy expenditure probably carry fitness costs and benefits, which are context dependent. Univ Stirling, Inst Biol Sci, Stirling FK9 4LA, Scotland Spencer, KA (reprint author), Univ Bristol, Sch Biol Sci, Woodland Rd, Bristol BS8 1UG, Avon, England. karen.spencer@bristol.ac.uk Spencer, Karen/B-3177-2015 Spencer, Karen/0000-0002-2851-9379 Aschoff J, 1970, J. Orn., Berl., V111, P38, DOI 10.1007/BF01668180; BOUCHON D, 1991, J EXP MAR BIOL ECOL, V146, P12; BRYAN SM, 1996, THESIS U STIRLING; Bryant DM, 1988, FUNCT ECOL, V2, P23, DOI 10.2307/2389456; BRYANT DM, 1982, ANIM BEHAV, V30, P845, DOI 10.1016/S0003-3472(82)80158-9; Bryant DM, 1997, P NUTR SOC, V56, P1025, DOI 10.1079/PNS19970107; BRYANT DM, 1995, IBIS, V137, P219, DOI 10.1111/j.1474-919X.1995.tb03242.x; BRYANT DM, 1983, J ANIM ECOL, V52, P905, DOI 10.2307/4463; BRYANT DM, 1982, IBIS, V124, P187, DOI 10.1111/j.1474-919X.1982.tb03760.x; Cavitt JF, 1997, ECOLOGY, V78, P2512; COOCH EG, 1994, OIKOS, V69, P447, DOI 10.2307/3545857; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; Damsgard B, 1997, J FISH BIOL, V50, P859, DOI 10.1006/jfbi.1996.0356; DRENT RH, 1980, ARDEA, V68, P225; FREED LA, 1981, ECOLOGY, V62, P1179, DOI 10.2307/1937282; Galbraith H, 1999, J AVIAN BIOL, V30, P85, DOI 10.2307/3677247; *GENST 5 COMM, 1992, GENST REF MAN REL 3; GESSAMAN JA, 1987, RAPTOR MANAGEMENT TE, P289; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.ecolsys.22.1.409; Godfrey JD, 2000, J ANIM ECOL, V69, P301, DOI 10.1046/j.1365-2656.2000.00393.x; Hammond KA, 1997, NATURE, V386, P457, DOI 10.1038/386457a0; HENDERSON IG, 1993, ORNIS SCAND, V24, P142, DOI 10.2307/3676364; HOUSTON AI, 2000, MODELS ADAPTIVE BEHA; JACOBSEN KO, 1995, ECOLOGY, V76, P1636, DOI 10.2307/1938164; JONES G, 1987, ARDEA, V75, P145; KACELNIK A, 1990, J ANIM ECOL, V59, P653; KENDEIGH SC, 1977, GRANIVOROUS BIRDS EC, P129; KREMENTZ DG, 1990, CONDOR, V92, P500, DOI 10.2307/1368248; Kruuk LEB, 1999, NATURE, V399, P459, DOI 10.1038/20917; LIFSON N, 1966, J THEOR BIOL, V12, P46, DOI 10.1016/0022-5193(66)90185-8; MACAULAY EDM, 1988, B ENTOMOL RES, V78, P121, DOI 10.1017/S0007485300016126; MARTINS TLF, 1993, BEHAV ECOL, V4, P213, DOI 10.1093/beheco/4.3.213; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; *MIN INC, 1997, MIN WIND REL 11 2 US; NORBERG RA, 1981, AM NAT, V118, P838, DOI 10.1086/283874; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; NUR N, 1986, J ANIM ECOL, V55, P983, DOI 10.2307/4428; Olsson O, 1997, J AVIAN BIOL, V28, P264, DOI 10.2307/3676979; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PARTRIDGE L, 1992, TRENDS ECOL EVOL, V7, P99, DOI 10.1016/0169-5347(92)90250-F; PATTERSON HD, 1971, BIOMETRIKA, V58, P545, DOI 10.2307/2334389; Scott IA, 1995, ARDEA, V83, P359; Siegel RB, 1999, ANIM BEHAV, V57, P73, DOI 10.1006/anbe.1998.0949; Sinervo B, 1996, EVOLUTION, V50, P1299, DOI 10.1111/j.1558-5646.1996.tb02370.x; Speakman J, 1997, P NUTR SOC, V56, P1119, DOI 10.1079/PNS19970115; SPEAKMAN JR, 1997, DOUBLY LABELLED WATE; Stearns S. C., 1992, EVOLUTION LIFE HIST; TATNER P, 1989, SOC EXP BIOL SEM SER, V37, P77; VANNOORDWIJK AJ, 1981, NETH J ZOOL, V31, P342; WESTERTERP KR, 1984, OECOLOGIA, V62, P376, DOI 10.1007/BF00384270; Williams GC, 1966, ADAPTATION NATURAL S 52 21 21 0 3 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. FEB 22 2002 269 1489 403 410 10.1098/rspb.2001.1871 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 529XR WOS:000174327000011 11886629 Green Published 2018-11-12 J Fischer, K; Fiedler, K Fischer, K; Fiedler, K Life-history plasticity in the butterfly Lycaena hippothoe: local adaptations and trade-offs BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article age and size at maturity; development; growth rate; Lepidoptera; life-history theory; phenotypic plasticity; temperature REACTION NORMS; PHENOTYPIC PLASTICITY; SEASONAL PLASTICITY; DEVELOPMENT TIME; PARARGE-AEGERIA; GROWTH-RATES; SIZE; EVOLUTION; LEPIDOPTERA; TEMPERATURE Life-history theory predicts some cost to be associated with short development time, the most frequently assumed being small adult size. Alternatively, insects may increase developmental rates and grow fast to a larger size. Seasonal environments should select for phenotypic plasticity in growth and development, based on the need to complete development up to the diapausing stage before the onset of unfavourable season. Nevertheless, there must be some limit beyond which a compensation for a shorter development cannot be achieved. By comparing three geographically isolated populations of Lycaena hippothoe in common environments we show that in the Hungarian population development time seems to be traded off against size at maturity. This population is the only bivoltine one within this principally monovoltine species. Thus, realization of an additional generation per year, achieved through largely reduced development times, appears to carry the cost of substantially lower adult weights compared with other populations. In contrast, differences in development time in two monovoltine populations were not accompanied by a trade-off between development time and size. These results suggest that clear trade-offs are restricted to stressful situations, when compensation by an increase in growth rates is no longer feasible. We suggest the particularly short development time in the Hungarian population (facilitating a second generation), as well as the shorter development in an alpine (short vegetation period) compared with a western German population, to be adaptations to local climatic conditions. (C) 2002 The Linnean Society of London. Univ Bayreuth, Dept Anim Ecol 1, D-95440 Bayreuth, Germany Fischer, K (reprint author), Leiden Univ, Sect Evolut Biol, Inst Evolut & Ecol Sci, POB 9502, NL-2300 RA Leiden, Netherlands. fischer@rulsfb.leidenuniv.nl Fiedler, Konrad/0000-0002-4789-3753 Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; ATKINSON D, 1996, PHENOTYPIC EVOLUTION, P183; BINK F.A., 1992, ECOLOGISCHE ATLAS DA; BULMER MG, 1983, THEOR POPUL BIOL, V23, P314, DOI 10.1016/0040-5809(83)90021-7; Calder W. A., 1984, SIZE FUNCTION LIFE H; Chown SL, 1999, BIOL REV, V74, P87, DOI 10.1017/S000632319800526X; DANKS HV, 1994, SERIES ENTOM, V52, P5; Ebert G, 1991, SCHMETTERLINGE BADEN, V2; FAGERSTROM T, 1982, OECOLOGIA, V52, P164, DOI 10.1007/BF00363830; Fazekas I., 1979, Entomologische Zeitschrift, V89, P230; Fischer K, 2001, J EVOLUTION BIOL, V14, P210, DOI 10.1046/j.1420-9101.2001.00280.x; Fischer K, 2001, POPUL ECOL, V43, P105, DOI 10.1007/PL00012009; Fischer K, 2000, OIKOS, V90, P372, DOI 10.1034/j.1600-0706.2000.900218.x; FISCHER K, 2000, THESIS U BAYREUTH; FISCHER K, 2001, NOTA LEPIDOPTEROLOGI, V25, P73; Fischer Klaus, 1998, Nota Lepidopterologica, V21, P14; Gotthard K, 1998, J EVOLUTION BIOL, V11, P21; Gotthard K, 1999, OIKOS, V84, P453, DOI 10.2307/3546424; Gotthard K, 2000, OECOLOGIA, V122, P36, DOI 10.1007/PL00008833; GOTTHARD K, 1995, OIKOS, V74, P3, DOI 10.2307/3545669; Gotthard K, 1999, BEHAV ECOL SOCIOBIOL, V45, P424, DOI 10.1007/s002650050580; Gotthard K, 2000, P ROY SOC B-BIOL SCI, V267, P589, DOI 10.1098/rspb.2000.1042; GOTTHARD K, 1994, OECOLOGIA, V99, P281, DOI 10.1007/BF00627740; GYULA D, 1978, VESZPREUM MEGYEI MUZ, V13, P33; HENRIKSEN HJ, 1982, BUTTERFLIES SCANDINA; Higgins L, 2000, OECOLOGIA, V122, P51, DOI 10.1007/PL00008835; Higgins LG, 1978, TAGFALTER EUROPAS NO; HOCHBERG Y, 1988, BIOMETRIKA, V75, P800, DOI 10.2307/2336325; Leimar O, 1996, OIKOS, V76, P228, DOI 10.2307/3546194; Lessells C.M., 1991, P32; MULLER HJ, 1992, DORMANZ ARHTR; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; NYLIN S, 1992, BIOL J LINN SOC, V47, P301, DOI 10.1111/j.1095-8312.1992.tb00672.x; Nylin S, 1996, EVOLUTION, V50, P1351, DOI 10.1111/j.1558-5646.1996.tb02377.x; NYLIN S, 1995, BIOL J LINN SOC, V55, P143, DOI 10.1006/bijl.1995.0033; NYLIN S, 1993, ECOLOGY, V74, P1414, DOI 10.2307/1940071; NYLIN S, 1994, P ROY SOC B-BIOL SCI, V257, P215, DOI 10.1098/rspb.1994.0182; NYLIN S, 1994, SERIES ENTOM, V52, P41; Partridge L, 1996, PHENOTYPIC EVOLUTION, P265; Peters R.H., 1983, P1; Reavey D., 1991, P293; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff D, 1983, DIAPAUSE LIFE CYCLE, P253; Roff Derek A., 1992; SIBLY RM, 1994, FUNCT ECOL, V8, P486, DOI 10.2307/2390073; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; *STATS, 1999, STAT 5 5 WIND; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STOCKHOFF BA, 1991, OECOLOGIA, V88, P422, DOI 10.1007/BF00317588; Tauber M.J., 1986, SEASONAL ADAPTATIONS; Tolman T, 1998, TAGFALTER EUROPAS NO; Tuzov V. K., 2000, GUIDE BUTTERFLIES RU, V2; VIA S, 1995, TRENDS ECOL EVOL, V10, P212, DOI 10.1016/S0169-5347(00)89061-8; WIPKING W, 1994, SERIES ENTOM, V52, P313; ZONNEVELD C, 1991, THEOR POPUL BIOL, V40, P308, DOI 10.1016/0040-5809(91)90058-N 62 27 31 1 20 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. FEB 2002 75 2 173 185 10.1046/j.1095-8312.2002.00014.x 13 Evolutionary Biology Evolutionary Biology 527DZ WOS:000174172500004 Bronze 2018-11-12 J Macho, GA; Williamson, DK Macho, GA; Williamson, DK The effects of ecology on life history strategies and metabolic disturbances during development: an example from the African bovids BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article Bovidae; dental development; ecology; gestation length; life history; metabolic disturbances MATERNAL INVESTMENT; NATURAL INCREASE; INTRINSIC RATE; FOOD-HABITS; MAMMALS; PRIMATES; SIZE; ENERGETICS; GROWTH Life history theory predicts environmental factors to affect changes in life history strategies. However, owing to the interrelationships between body mass and life history variables, it is difficult to discern causal relationships, especially in large-bodied mammals and using a comparative approach. The situation is exacerbated in palaeobiological studies, where many of the variables cannot be observed directly. Specifically, mortality risk has been identified as one of the most important factors determining life history strategies, but its assessment is difficult. This hampers analyses of life history evolution, This study thus explored the possibility to extract previously untapped information from hard tissue, i.e. teeth, which may be useful for life history reconstruction. Histological sections of 25 molars of bovids, representing all subfamilies and spanning a wide range of body masses, were analysed with regard to: (i) molar crown formation times in relation to female body mass and gestation length, and (ii) metabolic disturbances from early to late forming teeth in relation to habitat type occupied, diet consumed and habitual walking style employed. It was found that molar crown formation times in bovids are highly correlated with gestation length once the effects of body mass have been removed. This differs from primates and indicates similarities in pre- and postnatal growth rates in these mammals. Closed-habitat species exhibit relatively fewer disturbances during development than open-country species, but the reverse holds for adult specimens. This accords with what is known about the ecological and behavioural adaptations of the species and is predicted by life history theory. It could thus be confirmed that teeth may provide vital information about life history variables. Exploitation of this information will allow hypotheses to be tested regarding the evolutionary changes in life history strategies of extinct species. (C) 2002 The Linnean Society of London, Biological Journal of the Linnean Society. Univ Liverpool, Dept Human Anat & Cell Biol, Hominid Palaeontol Res Grp, Liverpool L69 3GE, Merseyside, England Macho, GA (reprint author), Univ Liverpool, Dept Human Anat & Cell Biol, Hominid Palaeontol Res Grp, Liverpool L69 3GE, Merseyside, England. macho, gabriele/A-8364-2014 BOWMAN JE, 1995, AM J PHYS ANTHROPOL, V96, P159, DOI 10.1002/ajpa.1330960205; BOWMAN JE, 1991, THESIS U CAMBRIDGE; BROMAGE TG, 1985, NATURE, V317, P525, DOI 10.1038/317525a0; BUTLER PM, 1956, BIOL REV, V31, P30, DOI 10.1111/j.1469-185X.1956.tb01551.x; CARL GR, 1988, CAN J ZOOL, V66, P239, DOI 10.1139/z88-034; Charnov Eric L., 1993, P1; DAINTON M, 1999, HUMAN GROWTH STUDIES, P32; Estes R, 1991, BEHAV GUIDE AFRICAN; GENTRY AW, 1992, MAMMAL REV, V22, P1, DOI 10.1111/j.1365-2907.1992.tb00116.x; Hall LS, 1997, WILDLIFE SOC B, V25, P173; Harvey P.H., 1989, Oxford Surveys in Evolutionary Biology, V6, P13; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; Janson Charles H., 1993, P57; Kie JG, 1999, J MAMMAL, V80, P1114, DOI 10.2307/1383163; KING JR, 1985, AM ZOOL, V25, P955; Kozlowski J, 1997, AM NAT, V149, P352; LEE PC, 1995, MOTHERHOOD IN HUMAN AND NONHUMAN PRIMATES, P47; LEE PC, 1991, J ZOOL, V225, P99, DOI 10.1111/j.1469-7998.1991.tb03804.x; Macho G, 1995, ASPECTS DENT BIOL PA, P51; Macho GA, 2001, AM J PRIMATOL, V55, P189, DOI 10.1002/ajp.1054; Macho GA, 1996, J HUM EVOL, V30, P57, DOI 10.1006/jhev.1996.0004; MARTIN RD, 1985, NATURE, V313, P220, DOI 10.1038/313220a0; MCNAB BK, 1980, AM NAT, V116, P106, DOI 10.1086/283614; MCNAB BK, 1986, ECOL MONOGR, V56, P1, DOI 10.2307/2937268; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; RAMIREZROZZI FV, 1993, J HUM EVOL, V24, P429, DOI 10.1006/jhev.1993.1030; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; ROSS C, 1988, J ZOOL, V214, P199, DOI 10.1111/j.1469-7998.1988.tb04717.x; ROSS C, 1992, OECOLOGIA, V90, P383, DOI 10.1007/BF00317695; Ross Caroline, 1999, P73, DOI 10.1017/CBO9780511542466.007; SAETHER BE, 1994, P ROY SOC B-BIOL SCI, V256, P263, DOI 10.1098/rspb.1994.0079; SCOTT KM, 1983, ZOOL J LINN SOC-LOND, V77, P199, DOI 10.1111/j.1096-3642.1983.tb00098.x; Smith B. Holly, 2000, P212, DOI 10.1017/CBO9780511542626.015; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; Stearns S. C., 1992, EVOLUTION LIFE HIST; WESTERN D, 1979, AFR J ECOL, V17, P185, DOI 10.1111/j.1365-2028.1979.tb00256.x; ZAMMUTO RM, 1985, ECOLOGY, V66, P1784, DOI 10.2307/2937374 38 12 12 0 5 ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0024-4066 BIOL J LINN SOC Biol. J. Linnean Soc. FEB 2002 75 2 271 279 10.1111/j.1095-8312.2002.tb01427.x 9 Evolutionary Biology Evolutionary Biology 527DZ WOS:000174172500010 2018-11-12 J Reekie, EG; Budge, S; Baltzer, JL Reekie, EG; Budge, S; Baltzer, JL The shape of the trade-off function between reproduction and future performance in Plantago major and Plantago rugelii CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE English Article reproductive cost; resource allocation; life-history theory; nitrogen uptake; reproductive photosynthesis; Plantago major; Plantago rugelii FRUIT PRODUCTION; COST; ALLOCATION; GROWTH; LIMITATION; EVOLUTION; FLOWERS There is a paucity of data describing the nature of the trade-off function between reproduction and future performance. Most studies implicitly assume it is a linear function such that allocation of resources to reproduction results in a proportional decline in future survival and reproduction. We reanalyse data from a field experiment with half-sib families of Plantago major L. that suggests this relationship is in fact curvilinear. Low levels of reproductive investment had relatively little impact on future performance and higher levels of investment had a larger impact. To explain this curvilinear pattern, we conducted an experiment to examine the effect of incremental increases in reproductive investment on rates of resource uptake in R major and Plantago rugelii Decne. Results suggest that, because of differences in the resource requirements of vegetative versus reproductive tissues, reproduction will have little effect on growth, providing that the limiting resources are required in greater quantities for vegetative as compared with reproductive tissues. These results are in accord with a curvilinear trade-off function between reproduction and future performance and provide an explanation for the maintenance of sexual reproduction in species where seed production may contribute minimally to Fitness in the short term. Acadia Univ, Dept Biol, Wolfville, NS B0P 1X0, Canada; Univ Toronto, Fac Forestry, Toronto, ON M5S 3B3, Canada Reekie, EG (reprint author), Acadia Univ, Dept Biol, Wolfville, NS B0P 1X0, Canada. ed.reekie@acadiau.ca ABRAHAMSON WG, 1982, ECOLOGY, V63, P982, DOI 10.2307/1937238; AGREN J, 1994, OIKOS, V70, P35, DOI 10.2307/3545696; BAILEY RC, 1992, OIKOS, V65, P349, DOI 10.2307/3545031; Bazzaz F. A., 2000, Seeds: the ecology of regeneration in plant communities, P1, DOI 10.1079/9780851994321.0001; BAZZAZ FA, 1979, NATURE, V279, P554, DOI 10.1038/279554a0; BLOOM AJ, 1985, ANNU REV ECOL SYST, V16, P363, DOI 10.1146/annurev.es.16.110185.002051; CALVO RN, 1990, AM NAT, V136, P499, DOI 10.1086/285110; CASWELL H, 1986, LECTURES MATH LIFE S, V18, P171; CHAPIN FS, 1987, BIOSCIENCE, V37, P49, DOI 10.2307/1310177; COOMBS J, 1985, TECHNIQUES BIOPRODUC, P219; DELIEU TJ, 1983, PLANT PHYSIOL, V73, P534, DOI 10.1104/pp.73.3.534; DOUST JL, 1989, TRENDS ECOL EVOL, V4, P230, DOI 10.1016/0169-5347(89)90166-3; FARRIS MA, 1990, ECOLOGY, V71, P548, DOI 10.2307/1940308; Galen C, 1999, OECOLOGIA, V118, P461, DOI 10.1007/s004420050749; GALEN C, 1993, OECOLOGIA, V95, P187, DOI 10.1007/BF00323489; GEBER MA, 1990, EVOLUTION, V44, P799, DOI 10.1111/j.1558-5646.1990.tb03806.x; GOLDMAN DA, 1986, BOT REV, V52, P157, DOI 10.1007/BF02861000; HAWTHORN WR, 1976, J ECOL, V64, P511, DOI 10.2307/2258771; HAWTHORN WR, 1974, CAN J PLANT SCI, V54, P383, DOI 10.4141/cjps74-059; KARLSSON PS, 1990, OIKOS, V59, P393, DOI 10.2307/3545151; Laporte MM, 1996, OECOLOGIA, V106, P63, DOI 10.1007/BF00334408; MITCHELLOLDS T, 1990, GENETICS, V124, P417; PRIMACK RB, 1994, AM J BOT, V81, P1083, DOI 10.2307/2445469; REEKIE EG, 1991, J ECOL, V79, P1061, DOI 10.2307/2261098; REEKIE EG, 1992, OECOLOGIA, V90, P21, DOI 10.1007/BF00317804; REEKIE EG, 1987, AM NAT, V129, P876, DOI 10.1086/284681; Reekie EG, 1998, CAN J BOT, V76, P43, DOI 10.1139/b97-160; Reekie EG, 1998, ECOSCIENCE, V5, P200, DOI 10.1080/11956860.1998.11682458; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; *SAS I INC, 1987, SAS STAT US GUID VER; SCHMID B, 1990, EVOL TREND PLANT, V4, P25; SCHWAEGERLE KE, 1990, J ECOL, V78, P15, DOI 10.2307/2261033; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; SYRJANEN K, 1993, OIKOS, V67, P465, DOI 10.2307/3545358; THOMAS SC, 1993, ECOL MONOGR, V63, P231, DOI 10.2307/2937099; Thoren LM, 1996, OIKOS, V76, P427, DOI 10.2307/3546336; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Willson M. F., 1983, PLANT REPROD ECOLOGY 38 5 8 2 7 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0008-4026 CAN J BOT Can. J. Bot.-Rev. Can. Bot. FEB 2002 80 2 140 150 10.1139/B01-146 11 Plant Sciences Plant Sciences 536RL WOS:000174715600006 Green Published 2018-11-12 J Lytle, DA Lytle, DA Flash floods and aquatic insect life-history evolution: Evaluation of multiple models ECOLOGY English Article akaike's information criterion; body size; Chihuahuan Desert (USA) stream insects; disturbance; flash flooding; life-history evolution; maximum likelihood; model evaluation; phenotypic plasticity; Phylloicus aeneus; state-dependent strategy BET-HEDGING GERMINATION; SONORAN DESERT STREAM; TIME CONSTRAINTS; BODY-SIZE; DIAPAUSE STRATEGIES; DISTURBANCE; GROWTH; COMMUNITY; ENVIRONMENT; STABILITY In disturbance ecology there is a tension between ecological and evolutionary viewpoints, because while disturbances often cause mortality in populations (an ecological effect), populations may also evolve mechanisms that ameliorate mortality risk (an evolutionary effect). Flash floods cause high mortality in the juvenile aquatic stage of desert stream insects, but these ecological effects may be mitigated by the evolution of life-history strategies that allow the terrestrial adult stage to avoid floods. Life-history theory predicts that, to balance trade-offs between juvenile growth and mortality risk from floods, (1) most individuals should emerge before the peak of the flood season, (2) optimal body size at emergence should decline as flood probability increases, and (3) a second decline in body size at emergence should occur as the reproductive season ends. These predictions were tested with data on body mass at and timing of emergence of the caddisfly Phylloicus aeneus measured in three montane Chihuahuan Desert (Arizona, USA) streams over two years. P. aeneus that had not reached the adult stage were eliminated from site-years that experienced flash floods, suggesting that timing of emergence is an important fitness component. On average 86% of emergence occurred before the long-term (similar to100 yr) mean arrival date of the first seasonal flood, supporting prediction 1. The presence of two consecutive declines in body mass at emergence in most site-years was congruent with predictions 2 and 3. To test whether the two declines were associated with increasing flood probability and end of the reproductive season, respectively, maximum-likelihood methods were used to compare five body-size models: a null model that contains no parameters related to flood regime or reproductive season, a seasonal model that incorporates a reproductive time constraint, and three disturbance models that incorporate both reproductive time constraints and flood dynamics. The disturbance models outperformed the other models, suggesting that at least some of the body-mass pattern was influenced by flood dynamics. The timing of the first flood of the season was the most important determinant of observed emergence patterns. Overall, this study demonstrates that aquatic insects can compensate for flash floods by using state-dependent emergence strategies that are synchronized with long-term flood dynamics. Cornell Univ, Dept Entomol & Field Ecol & Evolutionary Biol, Ithaca, NY 14853 USA Lytle, DA (reprint author), Univ Arizona, Dept Entomol, Tucson, AZ 85721 USA. dalytle@ag.arizona.edu Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Airoldi L, 2000, ECOLOGY, V81, P798, DOI 10.1890/0012-9658(2000)081[0798:EODLHA]2.0.CO;2; BOULTON AJ, 1992, ECOLOGY, V73, P2192, DOI 10.2307/1941467; BOWLES DE, 1997, 8 INT S TRICH W JUNK; BRADFORD MJ, 1993, ECOLOGY, V74, P1129, DOI 10.2307/1940482; Bradford MJ, 1997, ECOLOGY, V78, P442; BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; Burnham K. P., 1998, MODEL SELECTION INFE; Christensen N. L., 1985, ECOLOGY NATURAL DIST, P86; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; COHEN D, 1971, J THEOR BIOL, V33, P299, DOI 10.1016/0022-5193(71)90068-3; COHEN D, 1970, AM NAT, V104, P389, DOI 10.1086/282672; Collins SL, 2000, AM NAT, V155, P311, DOI 10.1086/303326; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; DANILEVSKII AS, 1965, PHOTOPERIODISM SEASO; DANKS HV, 1994, SERIES ENTOM, V52, P5; Denslow J.S., 1985, P307; Diamond J.M., 1975, P342; DRAKE JA, 1991, AM NAT, V137, P1, DOI 10.1086/285143; Edwards AWF, 1992, LIKELIHOOD; FISHER SG, 1982, ECOL MONOGR, V52, P93, DOI 10.2307/2937346; Gill A. M., 1981, FIRE REGIMES ECOSYST, P208; GRAY LJ, 1981, AM MIDL NAT, V106, P229, DOI 10.2307/2425159; GRAY LJ, 1981, AM MIDL NAT, V106, P249, DOI 10.2307/2425161; GRIMM NB, 1989, J N AM BENTHOL SOC, V8, P293, DOI 10.2307/1467493; HAIRSTON NG, 1984, AM NAT, V123, P733, DOI 10.1086/284236; HAMILTON TH, 1961, EVOLUTION, V15, P180, DOI 10.2307/2406079; HEMPHILL N, 1983, OECOLOGIA, V58, P378, DOI 10.1007/BF00385239; Hilborn R., 1997, ECOLOGICAL DETECTIVE; HUTCHINSON GE, 1959, AM NAT, V93, P117, DOI 10.1086/282063; IWASA Y, 1995, J THEOR BIOL, V172, P33, DOI 10.1006/jtbi.1995.0003; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.1890/0012-9658(1999)080[1242:LHABRT]2.0.CO;2; JOHN KR, 1964, ECOLOGY, V45, P112, DOI 10.2307/1937112; KING D, 1982, THEOR POPUL BIOL, V22, P1, DOI 10.1016/0040-5809(82)90032-6; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; Lytle DA, 1999, J INSECT BEHAV, V12, P1, DOI 10.1023/A:1020940012775; Lytle DA, 2000, ARCH HYDROBIOL, V150, P85; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; LYTLE DA, 2000, THESIS CORNELL U ITH; MACARTHUR R, 1967, AM NAT, V101, P377, DOI 10.1086/282505; McPeek MA, 2000, ECOLOGY, V81, P904; McPeek MA, 1998, ECOLOGY, V79, P867, DOI 10.2307/176586; MEFFE GK, 1984, ECOLOGY, V65, P1525, DOI 10.2307/1939132; MOLLES MC, 1985, SOUTHWEST NAT, V30, P279, DOI 10.2307/3670741; MOREIRA GRP, 1994, J N AM BENTHOL SOC, V13, P19, DOI 10.2307/1467262; MOUSSEAU TA, 1989, EVOLUTION, V43, P1483, DOI 10.1111/j.1558-5646.1989.tb02598.x; Nijhout H. F., 1994, INSECT HORMONES; NIJHOUT HF, 1981, AM ZOOL, V21, P631; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; NYLIN S, 1994, P ROY SOC B-BIOL SCI, V257, P215, DOI 10.1098/rspb.1994.0182; PECKARSKY BL, 1993, ECOLOGY, V74, P1836, DOI 10.2307/1939941; Peckarsky BL, 2001, ECOLOGY, V82, P740, DOI 10.2307/2680193; PHILIPPI T, 1993, AM NAT, V142, P474, DOI 10.1086/285550; PHILIPPI T, 1993, AM NAT, V142, P488, DOI 10.1086/285551; Pickett S. T., 1985, ECOLOGY NATURAL DIST; POFF NL, 1992, J N AM BENTHOL SOC, V11, P86, DOI 10.2307/1467885; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SASAKI A, 1995, EVOLUTION, V49, P337, DOI 10.1111/j.1558-5646.1995.tb02246.x; Saunders DS, 1981, HDB BEHAV NEUROBIOLO; Tammaru T, 1999, ECOLOGY, V80, P1666, DOI 10.1890/0012-9658(1999)080[1666:WSVOPP]2.0.CO;2; Tauber M.J., 1986, SEASONAL ADAPTATIONS; Turner MG, 1998, ECOSYSTEMS, V1, P511, DOI 10.1007/s100219900047; Turner MG, 1997, BIOSCIENCE, V47, P758, DOI 10.2307/1313098; VANNOTE RL, 1980, AM NAT, V115, P667, DOI 10.1086/283591; VENABLE DL, 1980, OECOLOGIA, V46, P272, DOI 10.1007/BF00540137; Vrijenhoek R.C., 1985, P265; VRIJENHOEK RC, 1985, SCIENCE, V229, P400, DOI 10.1126/science.229.4711.400; Wiggins G. B., 1996, LARVAE N AM CADDISFL; WILLIAMS DD, 1976, OIKOS, V27, P265, DOI 10.2307/3543905; Wootton JT, 1998, AM NAT, V152, P803, DOI 10.1086/286210; Wootton JT, 1996, SCIENCE, V273, P1558, DOI 10.1126/science.273.5281.1558 73 72 73 4 40 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 ECOLOGY Ecology FEB 2002 83 2 370 385 16 Ecology Environmental Sciences & Ecology 516EJ WOS:000173538800008 2018-11-12 J Brinkhof, MWG; Cave, AJ; Daan, S; Perdeck, AC Brinkhof, MWG; Cave, AJ; Daan, S; Perdeck, AC Timing of current reproduction directly affects future reproductive output in European coots EVOLUTION English Article adult survival; Fulica atra; future reproduction; life-history evolution; multiple breeding; timing of reproduction KESTREL FALCO-TINNUNCULUS; GREAT TIT; SEASONAL-VARIATION; CLUTCH-SIZE; BREEDING SUCCESS; FULICA-ATRA; BROOD SIZE; INTRASEASONAL COSTS; LAYING DATE; SURVIVAL Life-history theory suggests that the variation in the seasonal timing of reproduction within populations may be explained on the basis of individual optimization. Optimal breeding times would vary between individuals as a result of trade-offs between fitness components. The existence of such trade-offs has seldom been tested empirically. We experimentally investigated the consequences of altered timing of current reproduction for future reproductive output in the European coot (Fulica atra). First clutches of different laying date were cross-fostered between nests, and parents thereby experienced a delay or an advance in the hatching date. The probability and success of a second brood. adult survival until and reproduction in the next season were then compared to the natural variation among control pairs. Among control pairs the probability of a second brood declined with the progress of season. Delayed pairs were less likely and advanced pairs were more likely to produce a second brood. These changes were quantitatively as predicted from the natural seasonal decline. The number of eggs in the second clutch was positively related to egg number in the first clutch and negatively related to laying date. Compared to the natural variation, delayed females had more and advanced females had fewer eggs in their second clutch. The size of the second brood declined with the progress of season, but there was no significant effect of delay or advance. Local adult survival was higher following a delay and reduced following an advance. The effect of the experiment on adult survival was independent of sex. Laying date and clutch size of females breeding in the next year were not affected by treatment. The study demonstrates the existence of a trade-off between increased probability of a second brood and decreased parental survival for early breeding. Timing-dependent effects of current reproduction on future reproductive output may thus play an important role in the evolution of the seasonal timing of reproduction. Netherlands Inst Ecol, Ctr Terr Ecol, NL-6666 ZG Heteren, Netherlands; Univ Groningen, Zool Lab, NL-9750 AA Haren, Netherlands Brinkhof, MWG (reprint author), Univ Bern, Inst Zool, Div Evolutionary Ecol, Wohlenstr 50 A, CH-3032 Hinterkappelen, Switzerland. martin.brinkhof@esh.unibe.ch Brinkhof, Martin/0000-0002-9319-665X ALATALO RV, 1986, NATURE, V323, P152, DOI 10.1038/323152a0; ALISAUSKAS RT, 1985, AUK, V102, P133, DOI 10.2307/4086829; *AN SOFTW, 1992, STAT US MAN VER 4 0; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BRINKHOF MWG, 1993, J ANIM ECOL, V62, P577, DOI 10.2307/5206; Brinkhof MWG, 1997, P ROY SOC B-BIOL SCI, V264, P291, DOI 10.1098/rspb.1997.0041; Brinkhof MWG, 1997, J ANIM ECOL, V66, P73, DOI 10.2307/5966; Brinkhof MWG, 1997, ARDEA, V85, P51; BROUWER A, 1995, IBIS, V137, P272, DOI 10.1111/j.1474-919X.1995.tb03249.x; BURNHAM KP, 1987, AM FISH SOC MONOGR, V5, P1; CAVE A J, 1968, Netherlands Journal of Zoology, V18, P313; CAVE AJ, 1985, ARDEA, V73, P129; CAVE AJ, 1989, ARDEA, V77, P87; CLUTTONBROCK TH, 1988, REPROD SUCCESS; COOCH E, 1998, MARK INTRO GUIDE; Crawley MJ, 1993, GLIM ECOLOGISTS; CUSHMAN JH, 1994, OECOLOGIA, V99, P194, DOI 10.1007/BF00317101; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; Daan S., 1989, P 19 INT ORN C, P392; Daan Serge, 1997, P311; DeForest LN, 1996, ECOLOGY, V77, P1501, DOI 10.2307/2265547; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; FESTABIANCHET M, 1988, J ZOOL, V214, P653, DOI 10.1111/j.1469-7998.1988.tb03764.x; FINDLAY CS, 1983, EVOLUTION, V37, P724, DOI 10.1111/j.1558-5646.1983.tb05594.x; FRANCIS B, 1993, GLIM SYSTEM REL 4 MA; GASTON AJ, 1993, IBIS, V135, P472, DOI 10.1111/j.1474-919X.1993.tb02125.x; GEUPEL GR, 1990, CONDOR, V92, P67, DOI 10.2307/1368384; HATCHWELL BJ, 1991, J ANIM ECOL, V60, P721, DOI 10.2307/5410; HEPP GR, 1993, ECOLOGY, V74, P2027, DOI 10.2307/1940848; HOCHACHKA WM, 1993, AUK, V110, P603, DOI 10.2307/4088424; HORSFALL JA, 1984, BEHAV ECOL SOCIOBIOL, V15, P69, DOI 10.1007/BF00310218; KLOMP H, 1970, ARDEA, V58, P1; Kluyver H.N., 1977, P153; LANDA K, 1992, EVOLUTION, V46, P121, DOI 10.1111/j.1558-5646.1992.tb01989.x; LEAFLOOR JO, 1990, CAN J ZOOL, V68, P2620, DOI 10.1139/z90-365; Lessells C.M., 1991, P32; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LINDEN M, 1988, OIKOS, V51, P285, DOI 10.2307/3565309; LOMAN J, 1984, ORNIS SCAND, V15, P183, DOI 10.2307/3675961; NEWTON I, 1984, J ANIM ECOL, V53, P809, DOI 10.2307/4661; Nilsson J.-A., 1999, P 22 INT ORN C DURB, P234; NILSSON JA, 1994, J ANIM ECOL, V63, P200, DOI 10.2307/5595; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; Nilsson JA, 2000, OIKOS, V88, P351, DOI 10.1034/j.1600-0706.2000.880214.x; NORRIS K, 1993, J ANIM ECOL, V62, P287, DOI 10.2307/5360; OHGUSHI T, 1991, ECOLOGY, V72, P2110, DOI 10.2307/1941563; Olsson M, 1997, J EVOLUTION BIOL, V10, P369, DOI 10.1046/j.1420-9101.1997.10030369.x; PERDECK AC, 1992, J ANIM ECOL, V61, P13, DOI 10.2307/5504; PERRINS CM, 1970, IBIS, V112, P242, DOI 10.1111/j.1474-919X.1970.tb00096.x; PRICE T, 1988, SCIENCE, V240, P798, DOI 10.1126/science.3363360; Roff Derek A., 1992; Rohwer Frank C., 1992, P486; RYAN MR, 1979, AUK, V96, P704; Saether B.-E., 1990, Current Ornithology, V7, P251; SCHULTZ ET, 1993, EVOLUTION, V47, P520, DOI 10.1111/j.1558-5646.1993.tb02111.x; SMITH HG, 1987, AUK, V104, P700; Stearns S. C., 1992, EVOLUTION LIFE HIST; STOUFFER PC, 1991, CONDOR, V93, P683, DOI 10.2307/1368200; TINBERGEN JM, 1987, ARDEA, V75, P111; TINBERGEN JM, 1988, P 19 INT ORN C, P380; Verboven N, 1996, J ANIM ECOL, V65, P264, DOI 10.2307/5873; VERHULST S, 1995, ECOLOGY, V76, P2392, DOI 10.2307/2265815; Verhulst S, 1998, FUNCT ECOL, V12, P132, DOI 10.1046/j.1365-2435.1998.00165.x; White GC, 1999, BIRD STUDY, V46, P120; WHITE GC, 1998, PROGRAM MARK; WIGGINS DA, 1994, OIKOS, V70, P359, DOI 10.2307/3545773; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Winkler DW, 1996, ECOLOGY, V77, P922, DOI 10.2307/2265512 69 37 40 0 19 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution FEB 2002 56 2 400 411 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 532QH WOS:000174486200018 11930892 2018-11-12 S Howland, KL; Tonn, WM; Tallman, RF Todd, T; Fleischer, G Howland, KL; Tonn, WM; Tallman, RF The influence of genetic and environmental factors on egg development and juvenile growth in two life history forms of inconnu (Stenodus leucichthys) ADVANCES IN LIMNOLOGY 57: BIOLOGY AND MANAGEMENT OF COREGONID FISHES - 1999 ERGEBNISSE DER LIMNOLOGIE English Proceedings Paper 7th International Symposium on Biology and Management of Coregonid Fishes (ISBMCF) AUG 09-12, 1999 ANN ARBOR, MI TROUT SALVELINUS-FONTINALIS; MACKENZIE RIVER SYSTEM; FRESH-WATER; ANADROMOUS INCONNU; CONSEQUENCES; TEMPERATURE; MIGRATION; PATTERNS; STOCKS; FISHES Freshwater and anadromous populations of a species often differ in life history traits that are associated with their dichotomous migratory pattern. Although regularly used to support life history theory, the relative contributions of environmental and genetic influences to Such intraspecific heterogeneity are not commonly known. We used a "common garden experiment" to examine the influence of these factors on life history differences of freshwater and anadromous inconnu (Stenodus leucichthys) from the Mackenzie River system, northwestern Canada. In the common environment, rate of egg development differed among life history types whereas juvenile growth rates did not, indicating that the former is under a substantial degree of genetic control, but the latter is more strongly influenced by environmental differences in nature. Differences in rates of egg development may have evolved to match different temperature regimes within spawning rivers. In contrast, observed differences in growth rate of freshwater and anadromous inconnu in the wild are probably a result of phenotypic plasticity to different local environments. Fisheries & Oceans Canada, Inst Freshwater, Dept Fisheries & Oceans, Winnipeg, MB R3T 2N6, Canada Howland, KL (reprint author), Fisheries & Oceans Canada, Inst Freshwater, Dept Fisheries & Oceans, 501 Univ Crescent, Winnipeg, MB R3T 2N6, Canada. ALT K T, 1988, Finnish Fisheries Research, V9, P127; BAILEY JK, 1986, AQUACULTURE, V57, P125, DOI 10.1016/0044-8486(86)90189-4; Behnke R. J., 1980, CHARRS SALMONID FISH, P441; BEHNKE RJ, 1972, J FISH RES BOARD CAN, V29, P636; Berg K., 1948, Folia Limnologica Scandinavica Kobenhavn, VNo. 4, P1; BERNATCHEZ L, 1990, EVOLUTION, V44, P1263, DOI 10.1111/j.1558-5646.1990.tb05230.x; Brown JJ, 1998, T AM FISH SOC, V127, P598, DOI 10.1577/1548-8659(1998)127<0598:VILGRA>2.0.CO;2; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; CUSHING DA, 1990, ADV MAR BIOL, V46, P249; Den Boer P. J., 1968, Acta Biotheoretica, V18, P165; Diana J.S, 1995, BIOL ECOLOGY FISHES; FALCONER DS, 1989, INTRO QUANTITATIVE G; FENDERSON OC, 1964, T AM FISH SOC, V94, P393; FERGUSON MM, 1995, CAN J FISH AQUAT SCI, V52, P307, DOI 10.1139/f95-031; Gordon M., 1987, FARMED SALMON BROODS; HINDAR K, 1993, BIOL J LINN SOC, V48, P63, DOI 10.1006/bijl.1993.1006; HOKANSON KEF, 1977, J FISH RES BOARD CAN, V34, P1524, DOI 10.1139/f77-217; Howland KL, 2001, T AM FISH SOC, V130, P725, DOI 10.1577/1548-8659(2001)130<0725:IOFAAI>2.0.CO;2; Howland KL, 2000, T AM FISH SOC, V129, P41, DOI 10.1577/1548-8659(2000)129<0041:MPOFAA>2.0.CO;2; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; JONSSON B, 1985, T AM FISH SOC, V114, P182, DOI 10.1577/1548-8659(1985)114<182:LHPOFR>2.0.CO;2; LAMBERT TC, 1984, CAN J FISH AQUAT SCI, V41, P1565, DOI 10.1139/f84-194; Lindsey C.C., 1986, P639; LINDSEY CC, 1981, CAN J FISH AQUAT SCI, V38, P1497, DOI 10.1139/f81-202; MASUETI AJ, 1967, DEV FISHES CHESAPE 1; MCCART PJ, 1980, CAN TECH REP FISH AQ, V935; NIKOLSKII GV, 1954, SPECIAL ICHTHYOLOGY; NILSSON J, 1994, T AM FISH SOC, V123, P430, DOI 10.1577/1548-8659(1994)123<0430:GOGOJA>2.3.CO;2; PAULY D, 1988, ENVIRON BIOL FISH, V22, P261, DOI 10.1007/BF00004892; PROWSE TD, 1993, ENV ASPECTS RIVER IC, P60; REIST J D, 1988, Finnish Fisheries Research, V9, P133; ROFF DA, 1991, AM ZOOL, V31, P205; Scott W.B., 1973, FISHERIES RES BOARD, V184, P966; SHUTER BJ, 1990, T AM FISH SOC, V119, P314, DOI 10.1577/1548-8659(1990)119<0314:CPVATZ>2.3.CO;2; SNYDER RJ, 1989, CAN J ZOOL, V67, P2448, DOI 10.1139/z89-345 35 1 1 0 0 E SCHWEIZERBART'SCHE VERLAGSBUCHHANDLUNG STUTTGART JOHANNESTRASSE 3, W-7000 STUTTGART, GERMANY 0071-1128 3-510-47059-1 ERGEB LIMNOL 2002 57 253 264 12 Biology; Fisheries; Limnology Life Sciences & Biomedicine - Other Topics; Fisheries; Marine & Freshwater Biology BV90M WOS:000180355400022 2018-11-12 J Hodgson, DJ Hodgson, DJ An experimental manipulation of the growth and dispersal strategy of a parasitic infection using monoclonal aphid colonies EVOLUTIONARY ECOLOGY RESEARCH English Article aphid; Aphis fabae; clonal parasite; density dependence; dispersal; life history POPULATIONS; VIRULENCE; EVOLUTION; AGGREGATION; HOMOPTERA; HOST; RISK Parasite life-history theory predicts the potential for prudent host resource use by monoclonal infections. Deterministic models show that prudence will be favoured if an infection suffers density-dependent limits to population growth on or in a host individual. This implies that the release of transmission stages throughout the infection cycle should maximize the reproductive output (and hence fitness) of a monoclonal parasite infection. This hypothesis was tested by experimentally imposing a maximum sustainable yield harvesting strategy on monoclonal aphid colonies grown in the laboratory. Harvesting increased colony longevity, but its effect on total dispersal and colony fitness (a measure that accounted for the timing of dispersal) was subtle. Harvesting increased dispersal and fitness due to adult unwinged dispersers, at the expense of nymphal dispersers. This effect is predicted to increase clonal fitness, since adult unwinged dispersers will have more chance of surviving dispersal costs and represent a unit of colony investment similar to the more specialized winged disperser morph. Despite this, unmanipulated aphid colonies showed a bang-bang dispersal strategy, suggesting that factors promoting late dispersal outweigh the influence of density-dependent colony growth on dispersal strategies in natural aphid populations. Candidate selection pressures include genotypic diversity within aphid colonies and interactions with natural enemies. Univ London Imperial Coll Sci Technol & Med, Ascot SL5 7PY, Berks, England Hodgson, DJ (reprint author), CEH Oxford, Mansfield Rd, Oxford OX1 3SR, England. djhod@ceh.ac.uk BEDDINGTON JR, 1979, POPULATION DYNAMICS, P307; Crawley MJ, 1993, GLIM ECOLOGISTS; DeBarro PJ, 1995, P ROY SOC B-BIOL SCI, V262, P321, DOI 10.1098/rspb.1995.0212; Dixon A., 1998, APHID ECOLOGY; Dixon A. F. G, 1971, Bull Ent Res, V61, P97; Dixon AFG, 1997, ENTOMOPHAGA, V42, P71, DOI 10.1007/BF02769882; Frank SA, 1996, Q REV BIOL, V71, P37, DOI 10.1086/419267; Heie O. E., 1986, APHIDOIDEA HEMIPTERA; Heinz KM, 1998, ENVIRON ENTOMOL, V27, P1029, DOI 10.1093/ee/27.4.1029; Hodgson DJ, 2001, ECOL ENTOMOL, V26, P444, DOI 10.1046/j.1365-2311.2001.00327.x; Hodgson DJ, 1999, OECOLOGIA, V118, P446, DOI 10.1007/s004420050747; Ives AR, 1996, OIKOS, V75, P269, DOI 10.2307/3546250; JANZEN DH, 1977, AM NAT, V111, P586, DOI 10.1086/283186; KAY RH, 1976, PHYSIOL ENTOMOL, V1, P249; KIDD NAC, 1982, J ANIM ECOL, V51, P397, DOI 10.2307/3973; KLEINJAN JE, 1975, ENTOMOL EXP APPL, V18, P384, DOI 10.1111/j.1570-7458.1975.tb00411.x; LAMB RJ, 1979, OECOLOGIA, V39, P289, DOI 10.1007/BF00345440; Lande R, 1997, ECOLOGY, V78, P1341; LANDE R, 1995, AM NAT, V145, P728, DOI 10.1086/285765; Levin Bruce R., 1994, Trends in Microbiology, V2, P76, DOI 10.1016/0966-842X(94)90538-X; LOXDALE HD, 1990, J ANIM ECOL, V59, P497, DOI 10.2307/4877; McGraw JB, 1996, AM NAT, V147, P47, DOI 10.1086/285839; NOWAK MA, 1994, P ROY SOC B-BIOL SCI, V255, P81, DOI 10.1098/rspb.1994.0012; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PICKETT JA, 1992, ANNU REV ENTOMOL, V37, P67, DOI 10.1146/annurev.en.37.010192.000435; RAYMOND BD, 1998, THESIS U YORK; Schaefer M., 1954, B INT AM TROP TUNA C, V1, P27, DOI DOI 10.1007/BF02464432; SHAW MJP, 1970, ANN APPL BIOL, V65, P191, DOI 10.1111/j.1744-7348.1970.tb04578.x; SHAW MJP, 1970, ANN APPL BIOL, V69, P197; SHUFRAN KA, 1991, B ENTOMOL RES, V81, P303, DOI 10.1017/S0007485300033587; Stadler B, 1998, J ANIM ECOL, V67, P454, DOI 10.1046/j.1365-2656.1998.00209.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; TURCHIN P, 1989, ECOLOGY, V70, P1008, DOI 10.2307/1941369; Ward SA, 1998, J ANIM ECOL, V67, P763, DOI 10.1046/j.1365-2656.1998.00238.x; WAY MJ, 1963, ANNU REV ENTOMOL, V8, P307, DOI 10.1146/annurev.en.08.010163.001515; Wohrmann K., 1990, P51 36 4 4 1 5 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 EVOL ECOL RES Evol. Ecol. Res. JAN 2002 4 1 133 145 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 525KJ WOS:000174068800008 2018-11-12 J Bock, J Bock, J Learning, life history, and productivity - Children's lives in the Okavango Delta, Botswana HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article Botswana; child development; foragers; learning; life history theory; productivity; subsistence ecology; time allocation FORAGING INFORMATION; PARENTAL INVESTMENT; CINCLUS-CINCLUS; EVOLUTION; FERTILITY; LABOR; PRIMATES; BEHAVIOR; YOUNG; MODEL This article introduces a new model of the relationship between growth and learning and tests a set of hypotheses related to the development of adult competency using time allocation, anthropometric, and experimental task performance data collected between 1992 and 1997 in a multi-ethnic community in the Okavango Delta, Botswana. Building on seminal work in life history theory by Hawkes, Blurton Jones and associates, and Kaplan and associates, the punctuated development model presented here incorporates the effects of both growth and learning constraints on age-specific task performance. In addition, the payoff to investment in two forms of embodied capital, growth-based and learning-based, are examined in relation to features of the socioecology, including subsistence economy and family composition. The three main findings are: 1. The development of adult competency in specific tasks entails a steplike relationship between growth- and experience-based forms of embodied capital in the ontogeny of ability acquisition. 2. There is a trade-off between the acquisition of experience-based embodied capital in the form of skills and knowledge and immediate productivity among children. Time allocation to these alternatives is primarily determined by the short- and long-term costs and benefits to parents of investment in children's embodied capital. 3. The availability of laborers and the overall labor requirements of the household are major determinants of investment in alternate forms of embodied capital and resulting variation in children's time allocation. The value of children's labor to their parents is dependent upon the opportunity costs to engaging in other activities not only for the child in question but also for potential substitute laborers. These results have important implications for our understanding of the role of growth and learning in the evolution of the human juvenile period, as well as for our understanding of cross-cultural variation in child growth and development and patterns of work and play. Calif State Univ Fullerton, Dept Anthropol, Fullerton, CA 92834 USA Bock, J (reprint author), Calif State Univ Fullerton, Dept Anthropol, Fullerton, CA 92834 USA. Bekoff M., 1981, BEHAV DEV BIELEFELD, P296; Blurton Jones N. G., 1993, JUVENILE PRIMATES LI, P309; Bock J, 1999, POPUL ENVIRON, V21, P193, DOI 10.1023/A:1023310618521; Bock J, 2002, AM J HUM BIOL, V14, P206, DOI 10.1002/ajhb.10040; BOCK J, 1995, THESIS U NEW MEXICO; Bock J., 1998, BOTSWANA NOTES RECOR, V30, P27; BOCK J, UNPUB SUBSISTENCE EC; BOCK J, 2002, IN PRESS ENDANGERED; BONNET M, 1993, INT LABOUR REV, V132, P371; CALDWELL JC, 1980, POPUL DEV REV, V6, P225, DOI 10.2307/1972729; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; Cleveland W.S., 1993, VISUALIZING DATA; Daly M., 1988, HOMICIDE; DAVIES NB, 1976, BEHAVIOUR, V59, P280, DOI 10.1163/156853976X00415; Dolhinow Phyllis, 1999, P231; EiblEibesfeldt Irenaus, 1989, HUMAN ETHOLOGY; ELKONIN DB, 1972, SOV PSYCHOL-USSR, V10, P225, DOI 10.2753/RPO1061-04051003225; ERICSSON KA, 1993, PSYCHOL REV, V100, P363, DOI 10.1037//0033-295X.100.3.363; Fairbanks Lynn A., 1993, P211; GALEF BG, 1995, ANIM BEHAV, V50, P705, DOI 10.1016/0003-3472(95)80131-6; Garber PA, 1997, FOLIA PRIMATOL, V68, P1, DOI 10.1159/000157226; GEARY DC, 1995, AM PSYCHOL, V50, P1; GELMAN R, 1993, PSYCHOL LEARN MOTIV, P61; GROOTAERT C, 1995, INT LABOUR REV, V134, P187; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; HEINSOHN RG, 1991, AM NAT, V128, P99; Hill K, 1997, CONSERV BIOL, V11, P1339, DOI 10.1046/j.1523-1739.1997.96048.x; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Janson Charles H., 1993, P57; JOHNSON SE, 2001, THESIS U NEW MEXICO; JOHNSON SE, 2002, IN PRESS AM J PHYSIC; Jones Nicholas Blurton, 1999, P140, DOI 10.1017/CBO9780511542466.009; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; Kaplan Hillard S., 2001, INT ENCY SOCIAL BEHA, P5561; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; LALAND KN, 1990, ANIM LEARN BEHAV, V18, P246, DOI 10.3758/BF03205282; Laland KN, 1997, ANIM BEHAV, V53, P1161, DOI 10.1006/anbe.1996.0318; Lancy D, 1996, PLAYING MOTHER GROUN; LEIGH SR, 1995, AM J PRIMATOL, V36, P37, DOI 10.1002/ajp.1350360104; LEIGH SR, 1994, AM J PHYS ANTHROPOL, V94, P499, DOI 10.1002/ajpa.1330940406; Leont'ev A.N, 1978, ACTIVITY CONSCIOUSNE; LIEBENBERG L, 1990, ART TRACKING ORIGIN; LIU AYC, 1999, SEA992 AUSTR NAT U N; LIU AYC, 1999, SEA991 AUSTR NAT U N; LIU AYC, 2000, SEA002 AUSTR NAT U N; MARCHETTI K, 1989, BIOL REV, V64, P57; MUNROE RH, 1984, AM ANTHROPOL, V86, P339; Nieuwenhuys O, 1996, ANNU REV ANTHROPOL, V25, P237, DOI 10.1146/annurev.anthro.25.1.237; OHTSUKA R, 1989, AM J PHYS ANTHROPOL, V80, P31, DOI 10.1002/ajpa.1330800105; PARSONS DO, 1989, ECON INQ, V27, P637, DOI 10.1111/j.1465-7295.1989.tb00794.x; PINKER S, 1990, BEHAV BRAIN SCI, V13, P707, DOI 10.1017/S0140525X00081061; PITCHER TJ, 1987, ETHOLOGY, V76, P161; REIGELUTH CM, 1996, ED TECHNOLOGY MAY, P13; REYNOLDS P, 1988, DANCE CIVET CAT CHIL; RUBIN KH, 1983, HDB CHILD PSYCHOL, V4, P693; Siegler R. S, 1996, EMERGING MINDS PROCE; SIEGLER RS, 1994, COGNITIVE PSYCHOL, V27, P194, DOI 10.1006/cogp.1994.1016; Stander PE, 1997, J ZOOL, V242, P329; TRIVERS R, 1972, NATURE, V112, P164; Tudge JRH, 1996, CHILD DEV, V67, P2892; Vygotskii L. S., 1978, MIND SOC DEV HIGHER; WALKER R, UNPUB AGE DEPENDENCY; WEATHERS WW, 1991, CONDOR, V93, P346, DOI 10.2307/1368950; WHITING JWM, 1975, BEHAV CHILDREN 6 CUL; Wilmsen Edwin, 1989, LAND FILLED FLIES PO; WUNDERLE JM, 1991, CURR ORNITHOL, V8, P273; YOERG SI, 1994, ANIM BEHAV, V47, P577, DOI 10.1006/anbe.1994.1081; Yoerg SI, 1998, BEHAV ECOL, V9, P471, DOI 10.1093/beheco/9.5.471 71 63 63 0 7 ALDINE DE GRUYTER DIVISION WALTER DE GRUYTER INC HAWTHORNE 200 SAW MILL RIVER, HAWTHORNE, NY 10532 USA 1045-6767 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 2002 13 2 161 197 10.1007/s12110-002-1007-4 37 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 597HB WOS:000178215200002 26192757 2018-11-12 J Bird, DW; Bird, RB Bird, DW; Bird, RB Children on the reef - Slow learning or strategic foraging? HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article children's foraging; life history theory; Meriam; shell-fishing BEHAVIORAL ECOLOGY; EVOLUTION; MERIAM; MODEL Meriam children are active reef-flat collectors. We demonstrate that while foraging on the reef, children are significantly less selective than adults. This difference and the precise nature of children's selectivity while reef-flat collecting are consistent with a hypothesis that both children and adults attempt to maximize their rate of return while foraging, but in so doing they face different constraints relative to differences in walking speeds while searching. Implications of these results for general arguments about factors that shape differences between child and adult behavior and human life-histories are explored. Univ Maine, Dept Anthropol, Orono, ME 04469 USA Bird, DW (reprint author), Univ Maine, Dept Anthropol, 5773 S Stevens Hall, Orono, ME 04469 USA. Allen J., 1977, SUNDA SAHUL PREHISTO, P493; BECKETT J, 1987, TORRES STRAIT ISLAND; Bell FLS, 1947, OCEANIA, V17, P310, DOI 10.1002/j.1834-4461.1947.tb00156.x; Bird D. W., 1997, REDISCOVERING DARWIN, P291; Bird DW, 1997, J ARCHAEOL SCI, V24, P39, DOI 10.1006/jasc.1995.0095; Bird DW, 2000, J ANTHROPOL ARCHAEOL, V19, P461, DOI 10.1006/jaar.2000.0367; BIRD DW, 2002, IN PRESS J ARCHAEOLO, V29; BIRD DW, 1996, THESIS U CALIFORNIA; Bird RB, 2001, BEHAV ECOL SOCIOBIOL, V50, P9; Bird RB, 2002, HUM NATURE-INT BIOS, V13, P239, DOI 10.1007/s12110-002-1009-2; BIRD RB, 1995, AUSTR ABORIGINAL STU, P2; BIRD RB, 1996, THESIS U CALIFORNIA; Bird RLB, 1997, CURR ANTHROPOL, V38, P49, DOI 10.1086/204581; Bjorklund DF, 1997, PSYCHOL BULL, V122, P153, DOI 10.1037/0033-2909.122.2.153; Blurton Jones N. G., 1993, JUVENILE PRIMATES LI, P309; Blurton Jones N. G., 1994, KEY ISSUES HUNTER GA, P189; BOGIN B, 1996, LONG TERM CONSEQUENC, P7; CANE S, 1987, HUM ECOL, V15, P391, DOI 10.1007/BF00887998; Charnov Eric L., 1993, P1; de Boer W. F., 2000, TIDES IMPACT HUMAN E, P63; FIRTH R, 1957, TIKOPIA; Fuary M. M., 1991, TRADITIONAL FISHING, P144; HADDON AC, 1908, SOCIOLOGY MAGIC RELI, V6; HAWKES K, 1995, CURR ANTHROPOL, V36, P688, DOI 10.1086/204420; HILL HB, 1978, 1 U HAW; HOCKEY PAR, 1988, J APPL ECOL, V25, P353, DOI 10.2307/2403631; ISAAC GL, 1978, J ANTHROPOL RES, V34, P311; JANSON CH, 1992, JUVENILE PRIMATES LI, P57; JOHANNES RE, 1984, TRADITIONAL SEA RIGH, V17; Jones NB, 2002, HUM NATURE-INT BIOS, V13, P199, DOI 10.1007/s12110-002-1008-3; JONES NB, 1994, J ANTHROPOL RES, V50, P217, DOI 10.1086/jar.50.3.3630178; JONES NGB, 1997, GENETIC ETHOLOGICAL, P279; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; KING B, 1993, INFORMATION CONTINUU; KITAOJI H, 1977, MIN ZOKU GAKA KENKU, V42, P209; Lee R. B., 1979, KUNG SAN MEN WOMEN F; LOVEJOY CO, 1981, SCIENCE, V211, P341, DOI 10.1126/science.211.4480.341; MEAD M, 1942, GROWING UP NEW GUINE; Meehan B., 1983, ANIMALS ARCHAEOLOGY, V2, P3; Meehan B., 1982, SHELL BED SHELL MIDD; METCALFE D, 1992, AM ANTHROPOL, V94, P340, DOI 10.1525/aa.1992.94.2.02a00040; Schutz Y, 2000, MED SCI SPORT EXER, V32, P642, DOI 10.1097/00005768-200003000-00014; SHAPR N, 1993, STARS TAGAI TORES ST; Sharp Noni, 1996, ORDINARY JUDGEMENT M; Smith EA, 2000, EVOL HUM BEHAV, V21, P245, DOI 10.1016/S1090-5138(00)00031-3; Stephens DW, 1986, FORAGING THEORY; SWADLING P, 1981, SOC OCEANISTES, V37, P157; THOMAS FR, 1994, AM CONCHOLOGIST, V22, P21; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; Waselkov GA, 1987, ADV ARCHAEOLOGICAL M, V10, P93, DOI DOI 10.1016/B978-0-12-003110-8.50006-2; WASHBURN SL, 1968, MAN HUNTER, P293; Whiten A., 1997, MACHIAVELLIAN INTELL; Winterhalder B, 2000, EVOL ANTHROPOL, V9, P51 53 46 48 0 6 ALDINE DE GRUYTER DIVISION WALTER DE GRUYTER INC HAWTHORNE 200 SAW MILL RIVER, HAWTHORNE, NY 10532 USA 1045-6767 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 2002 13 2 269 297 10.1007/s12110-002-1010-9 29 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 597HB WOS:000178215200005 26192760 2018-11-12 J McNamara, P; Dowdall, J; Auerbach, S McNamara, P; Dowdall, J; Auerbach, S REM sleep, early experience, and the development of reproductive strategies HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Review amygdala; attachment; genomic imprinting; life history theory; oxytocin; REM sleep; reproductive strategies EYE-MOVEMENT SLEEP; INFANT-DEATH-SYNDROME; CEREBRAL-BLOOD-FLOW; SLOW-WAVE SLEEP; MATERNAL SEPARATION; PARADOXICAL SLEEP; EVOLUTIONARY PERSPECTIVE; FUNCTIONAL NEUROANATOMY; ALTERED ATTACHMENT; SEXUAL-BEHAVIOR We hypothesize that rapid eye movement or REM sleep evolved, in part, to mediate sexual/reproductive behaviors and strategies. Because development of sexual and mating strategies depends crucially on early attachment experiences, we further hypothesize that REM functions to mediate attachment processes early in life. Evidence for these hypotheses comes from (1) the correlation of REM variables with both attachment and sexual/reproductive variables; (2) attachment-related and sex-related hormonal release during REM; (3) selective activation during REM of brain sites implicated in attachment and sexual processes, (4) effects of maternal deprivation on REM; (5) effects of REM deprivation on sexual behaviors, and (6) the REM-associated sexual excitation. To explain why we find associations among REM sleep, attachment, and adult reproductive strategies, we rely on recent extensions of parent-offspring conflict theory. Using data from recent findings on genomic imprinting, Haig (2000) and others suggest that paternally expressed genes are selected to promote growth of the developing fetus/child at the expense of the mother, while maternally expressed genes counter these effects. Because developmental REM facilitates attachment-related outcomes in the child, developmental REM may be regulated by paternally expressed genes. In that case, REM may have evolved to support the "aims" of paternal genes at the expense of maternal genes. Boston Univ, Sch Med, Dept Neurol 127, Boston, MA 02130 USA; Boston Med Ctr, Sleep Disorders Ctr, Boston, MA USA McNamara, P (reprint author), Boston Univ, Sch Med, Dept Neurol 127, 150 S Huntington Ave, Boston, MA 02130 USA. mcnamar@bu.edu ANDERS TF, 1994, PSYCHIATRY, V57, P11; ARGIOLAS A, 1991, NEUROSCI BIOBEHAV R, V15, P217, DOI 10.1016/S0149-7634(05)80002-8; Bechara A, 1999, J NEUROSCI, V19, P5473; BEEBE BL, 1982, INTERACTION RHYTHMS, P113; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BELSKY J, 1988, CLIN IMPLICATIONS AT; BENOIT D, 1992, J AM ACAD CHILD PSY, V31, P86, DOI 10.1097/00004583-199201000-00013; Bischof HJ, 1997, BIOMED RES-TOKYO, V18, P133; BOLEFEYSOT C, 1908, ENDOCR REV, V19, P225; BORBELY AA, 1989, PHYSIOL REV, V69, P605; Braun AR, 1997, BRAIN, V120, P1173, DOI 10.1093/brain/120.7.1173; Braun AR, 1998, SCIENCE, V279, P91, DOI 10.1126/science.279.5347.91; BRONFENBRENNER U, 1982, FAMILIES WORK CHILDR, P39; BURGESS RL, 1989, FAMILY VIOLENCE, P59; CARSKADON MA, 2000, PRINCIPLES PRACTICE, P15; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CURZIDASCALOVA L, 2000, SLEEP BREATHING CHIL, P3; Daenen EWPM, 2002, BEHAV BRAIN RES, V131, P67, DOI 10.1016/S0166-4328(01)00350-3; Davidson RJ, 1999, TRENDS COGN SCI, V3, P11, DOI 10.1016/S1364-6613(98)01265-0; DAVIS FC, 1999, REGULATION SLEEP CIR, P19; Davis M, 2001, MOL PSYCHIATR, V6, P13, DOI 10.1038/sj.mp.4000812; Deboer T, 1998, BRAIN RES, V793, P305, DOI 10.1016/S0006-8993(98)00178-4; DEMENT WC, 1978, SOME MUST WATCH SOME; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; ELGAR MA, 1988, ANIM BEHAV, V36, P1407, DOI 10.1016/S0003-3472(88)80211-2; Emery RE, 1988, MARRIAGE DIVORCE CHI; Fava M, 2002, J CLIN PSYCHIAT, V63, P13; Field T., 1985, PSYCHOBIOLOGY ATTACH, P415, DOI [10.1016/B978-0-12-586780-1.50019-7, DOI 10.1016/B978-0-12-586780-1.50019-7]; FORSLING ML, 1993, ANN NY ACAD SCI, V689, P382, DOI 10.1111/j.1749-6632.1993.tb55562.x; Frank MG, 1998, AM J PHYSIOL-REG I, V275, pR148, DOI 10.1152/ajpregu.1998.275.1.R148; GILLIN JC, 1993, ENCY SLEEP DREAMING, P96; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.2307/1131582; Gubernick D., 1981, PARENTAL CARE MAMMAL; Haig D, 2000, ANN NY ACAD SCI, V907, P149, DOI 10.1111/j.1749-6632.2000.tb06621.x; Hartmann E. L, 1973, FUNCTIONS SLEEP; Harvey P.H., 1987, P181; HERTZ G, 1992, SLEEP, V15, P246, DOI 10.1093/sleep/15.3.246; HINDE RA, 1974, ETHOLOGY PSYCHIAT, P29; Hobson JA, 1998, CURR OPIN NEUROBIOL, V8, P239, DOI 10.1016/S0959-4388(98)80146-3; Hobson JA, 1998, NEUROREPORT, V9, pR1, DOI 10.1097/00001756-199802160-00033; Hofer M.A, 1987, PERINATAL DEV PSYCHO, P251; HOFER MA, 1987, CHILD DEV, V58, P633, DOI 10.2307/1130203; HOFER MA, 1982, DEV PSYCHOBIOL, V15, P229, DOI 10.1002/dev.420150307; HOFER MA, 1984, PSYCHOSOM MED, V46, P183, DOI 10.1097/00006842-198405000-00001; HOFER MA, 1975, PSYCHOSOM MED, V37, P245, DOI 10.1097/00006842-197505000-00003; HOFER MA, 1975, DEV PSYCHOBIOL, V9, P198; Hofle N, 1997, J NEUROSCI, V17, P4800; HRDY S, 1999, MOTHER NATURE; INSEL TR, 1992, BEHAV BRAIN SCI, V15, P515, DOI 10.1017/S0140525X00069818; Keverne EB, 1996, P ROY SOC B-BIOL SCI, V263, P689, DOI 10.1098/rspb.1996.0103; KRAEMER GW, 1992, BEHAV BRAIN SCI, V15, P493, DOI 10.1017/S0140525X00069752; KUSHIDA CA, 1989, SLEEP, V12, P22, DOI 10.1093/sleep/12.1.22; Le Doux J.E., 1996, EMOTIONAL BRAIN; LeDoux J., 2002, SCI AM, V12, P62; LEDOUX JE, 1995, ANNU REV PSYCHOL, V46, P209, DOI 10.1146/annurev.psych.46.1.209; LINCOLN DW, 1980, EXP BRAIN RES, V38, P151, DOI 10.1007/BF00236736; LORENZ DN, 1986, PHYSIOL BEHAV, V38, P557, DOI 10.1016/0031-9384(86)90425-7; Lorenz DN, 1998, DEV PSYCHOBIOL, V32, P1, DOI 10.1002/(SICI)1098-2302(199801)32:1<1::AID-DEV1>3.0.CO;2-V; Maquet P, 1996, NATURE, V383, P163, DOI 10.1038/383163a0; Maquet P, 1997, MOL PSYCHIATR, V2, P195, DOI 10.1038/sj.mp.4000239; Maunder RG, 2001, PSYCHOSOM MED, V63, P556, DOI 10.1097/00006842-200107000-00006; MCCARLEY RW, 1989, ENCY SLEEP DREAMING, P173; MCKENNA JJ, 1993, SLEEP, V16, P263, DOI 10.1093/sleep/16.3.263; MCKENNA JJ, 1990, AM J PHYS ANTHROPOL, V83, P331, DOI 10.1002/ajpa.1330830307; MCKENNA JJ, 1994, ACTA PAEDIATR, V83, P94, DOI 10.1111/j.1651-2227.1994.tb13271.x; MCKENNA JJ, 1993, ENCY SLEEP DREAMING, P143; MCLOYD VC, 1990, CHILD DEV, V61, P311, DOI 10.1111/j.1467-8624.1990.tb02781.x; MEDDIS R, 1983, SLEEP MECHANISMS FUN, P57; MIRMIRAN M, 1995, BEHAV BRAIN RES, V69, P13, DOI 10.1016/0166-4328(95)00019-P; MIRMIRAN M, 1983, DEV BRAIN RES, V7, P277, DOI 10.1016/0165-3806(83)90184-0; MUKHAMETOV LM, 1977, BRAIN RES, V134, P581, DOI 10.1016/0006-8993(77)90835-6; Nofzinger EA, 1997, BRAIN RES, V770, P192, DOI 10.1016/S0006-8993(97)00807-X; Oftedal O. T., 1984, S ZOOL SOC LOND, V51, P33; Pavel S, 1979, Waking Sleeping, V3, P347; Pearleman CA, 1982, BIOL RHYTHMS SLEEP P, P143; Pedersen C.A., 1992, ANN NEW YORK ACAD SC, V652; Popoviciu L, 1979, Waking Sleeping, V3, P341; RECHTSCHAFFEN A, 1995, BEHAV BRAIN RES, V69, P55, DOI 10.1016/0166-4328(95)00020-T; REITE M, 1978, ARCH GEN PSYCHIAT, V35, P1247; REITE M, 1978, DEV PSYCHOBIOL, V11, P427, DOI 10.1002/dev.420110507; REITE M, 1978, AM J PSYCHIAT, V135, P370; REITE M, 1974, PSYCHOSOM MED, V36, P363, DOI 10.1097/00006842-197407000-00010; REITE M, 1989, CHILD DEV, V60, P473, DOI 10.1111/j.1467-8624.1989.tb02728.x; REITE M, 1981, J CHILD PSYCHOL PSYC, V22, P141, DOI 10.1111/j.1469-7610.1981.tb00539.x; REITE M, 1985, PSYCHOBIOLOGY ATTACH, P223; REPPERT SM, 1987, PERINATAL DEV PSYCHO, P343; ROFFWARG HP, 1966, SCIENCE, V152, P604, DOI 10.1126/science.152.3722.604; ROSENBLUM LA, 1983, SYMBIOSIS PARENT OFF; Scher A, 2001, DEV PSYCHOBIOL, V38, P274, DOI 10.1002/dev.1020; Schmidt MH, 2000, PRINCIPLES PRACTICE, P305; Siegal M, 2002, NAT REV NEUROSCI, V3, P463, DOI 10.1038/nrn844; SIEGEL J, 1993, ENCY SLEEP DREAMING, P507; SIMPSON JA, 2000, HDB ATTACHMENT THEOR, P115; SMITH EA, 1985, J HEALTH SOC BEHAV, V26, P183, DOI 10.2307/2136751; Solms M., 1997, NEUROPSYCHOLOGY DREA; SOLODKIN M, 1985, PHYSIOL BEHAV, V35, P343, DOI 10.1016/0031-9384(85)90306-3; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEINBERG L, 1988, DEV PSYCHOL, V24, P122, DOI 10.1037/0012-1649.24.1.122; Steklis H.D., 1985, PSYCHOBIOLOGY ATTACH, P93; STERN DN, 1985, INTERPERSONAL WORLD; SURBEY M, 1990, SOCIOENDOCRINOLOGY P, P71; TRIVERS RL, 1974, AM ZOOL, V14, P249; VANCAUTER E, 1999, REGULATION SLEEP CIR, P397; VelazquezMoctezuma J, 1996, PHYSIOL BEHAV, V59, P277, DOI 10.1016/0031-9384(95)02127-2; Vogel G, 1996, PHARMACOL BIOCHEM BE, V55, P157, DOI 10.1016/0091-3057(95)02286-4; VOLOSCHIN LM, 1979, ENDOCRINOLOGY, V105, P1202, DOI 10.1210/endo-105-5-1202; Wagner U, 2001, LEARN MEMORY, V8, P112, DOI 10.1101/lm.36801; WEBB WB, 1979, WAKING SLEEPING, V4, P319; WILSON MA, 1994, SCIENCE, V265, P676, DOI 10.1126/science.8036517; Zepelin H., 2000, PRINCIPLES PRACTICE, P82 113 12 13 0 5 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 2002 13 4 405 435 10.1007/s12110-002-1001-x 31 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 638UV WOS:000180590900001 26193088 2018-11-12 J Orell, M; Belda, EJ Orell, M; Belda, EJ Delayed cost of reproduction and senescence in the willow tit Parus montanus JOURNAL OF ANIMAL ECOLOGY English Article age-specific survival; breeding status; capture-recapture models; disposable soma theory; life-history theory CAPTURE-RECAPTURE DATA; POPULATION-DYNAMICS; SURVIVAL RATES; GREAT TIT; TESTING HYPOTHESES; WINTER SURVIVAL; AGE; EVOLUTION 1. We studied age-specific survival rates in the willow tit Parus montanus in northern Finland using 15 years of capture-recapture data obtained from birds during the breeding seasons 1986-2000. In addition, short- and long-term costs of reproduction were investigated by comparing survival probabilities of breeding and non-breeding individuals. 2. We did not find evidence supporting age-specific survival probabilities in males. However, in females there was a significant decline in survival after the age of 5 years. 3. Reproduction did not impair individuals' chances of being alive in the subsequent year (short-term cost) because breeding males and females had similar survival rates as non-breeders. 4. Demographic costs of breeding appeared later in life. Females skipping breeding earlier in life showed a higher probability of survival after the age of 5 years than females that bred every year until that age. This effect was non-significant in males. 5. The observed decline in survival probability late in life is likely to result from an increased cost of reproduction due to higher allocation of resources to breeding earlier in life, i.e. increased effort early in life is traded with survival late in life. The results also suggest that income breeders, such as small passerines, may pay long-term costs of reproduction. This is in agreement with the disposable soma theory of ageing. Univ Oulu, Dept Biol, FIN-90014 Oulu, Finland Orell, M (reprint author), Univ Oulu, Dept Biol, POB 3000, FIN-90014 Oulu, Finland. Belda, Eduardo/A-6684-2013 Belda, Eduardo/0000-0003-1995-1271 Bauchau V, 1995, J APPL STAT, V22, P1031, DOI 10.1080/02664769524775; Begon M, 1996, ECOLOGY INDIVIDUALS; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; BURNHAM KPD, 1987, MONOGRAPH AM FISHERI, V5; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; CAREY JR, 1992, SCIENCE, V258, P457; Clobert J, 1995, J APPL STAT, V22, P989, DOI 10.1080/02664769524757; COULSON JC, 1984, IBIS, V126, P525, DOI 10.1111/j.1474-919X.1984.tb02078.x; EKMAN J, 1986, EVOLUTION, V40, P159, DOI 10.1111/j.1558-5646.1986.tb05727.x; EKMAN J, 1979, ORNIS SCAND, V10, P56, DOI 10.2307/3676345; FISHER R. A., 1930, GENETICAL THEORY NAT; FRANCIS CM, 1992, AUK, V109, P731, DOI 10.2307/4088149; HILDEN O, 1978, OIKOS, V30, P17, DOI 10.2307/3543520; Hines J. E., 1989, 24 US FISH WILDL SER; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KOIVULA K, 1988, ORNIS FENNICA, V65, P114; LAAKSONEN M, 1976, Ornis Fennica, V53, P9; LACK D, 1954, NATURAL REGULATION A; Lahti K, 1998, ECOLOGY, V79, P2904, DOI 10.2307/176525; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LOERY G, 1987, ECOLOGY, V68, P1038, DOI 10.2307/1938375; McCleery R.H., 1989, P35; McCleery RH, 1996, J ANIM ECOL, V65, P96, DOI 10.2307/5703; MCCLEERY RH, 1988, STUDIES INDIVIDUAL V, P136; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; Moller AP, 1999, J ANIM ECOL, V68, P163, DOI 10.1046/j.1365-2656.1999.00274.x; Newton I, 1997, ECOLOGY, V78, P1000, DOI 10.1890/0012-9658(1997)078[1000:SARVIS]2.0.CO;2; NEWTON I, 1989, LIFETIME REPROD BIRD; Nichols James D., 1993, P265; NICHOLS JD, 1994, ECOLOGY, V75, P2052, DOI 10.2307/1941610; Nichols JD, 1997, ECOLOGY, V78, P1009, DOI 10.2307/2265854; OLLASON JC, 1988, STUDIES INDIVIDUAL V, P263; ORELL M, 1983, ANN ZOOL FENN, V20, P99; Orell M, 1996, IBIS, V138, P630, DOI 10.1111/j.1474-919X.1996.tb04764.x; ORELL M, 1994, ANIM BEHAV, V48, P1143, DOI 10.1006/anbe.1994.1347; ORELL M, 1994, OECOLOGIA, V100, P339, DOI 10.1007/BF00316963; Orell M, 1999, J EVOLUTION BIOL, V12, P283; ORELL M, 1988, OECOLOGIA, V77, P423, DOI 10.1007/BF00378054; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; Perrins C. M., 1979, BRIT TITS; Pianka E. R., 2000, EVOLUTIONARY ECOLOGY; RYTKONEN S, 1995, OECOLOGIA, V104, P386, DOI 10.1007/BF00328375; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.1890/0012-9658(2000)081[1351:SROANP]2.0.CO;2; Sanz JJ, 2000, ECOSCIENCE, V7, P25, DOI 10.1080/11956860.2000.11682567; SAUER JR, 1989, J WILDLIFE MANAGE, V53, P137, DOI 10.2307/3801320; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCOTT DK, 1988, STUDIES INDIVIDUAL V, P220; Shanley DP, 2000, EVOLUTION, V54, P740, DOI 10.1111/j.0014-3820.2000.tb00076.x; Skalski J.R., 1993, P9; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Sternberg H., 1989, P55; THOMAS CS, 1988, STUDIES INDIVIDUAL V, P251; Tinbergen JM, 2000, J ANIM ECOL, V69, P323, DOI 10.1046/j.1365-2656.2000.00395.x; White Gary C., 1999, Bird Study, V46, pS120; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wooller R.D., 1989, P405 58 54 54 3 21 BLACKWELL PUBLISHING LTD OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DG, OXON, ENGLAND 0021-8790 J ANIM ECOL J. Anim. Ecol. JAN 2002 71 1 55 64 10.1046/j.0021-8790.2001.00575.x 10 Ecology; Zoology Environmental Sciences & Ecology; Zoology 527ZC WOS:000174217100007 Bronze 2018-11-12 J Nisbet, ICT; Cam, E Nisbet, ICT; Cam, E Test for age-specificity in survival of the common tern JOURNAL OF APPLIED STATISTICS English Article CAPTURE-RECAPTURE MODELS; EVOLUTIONARY ECOLOGY; SENESCENT DECLINE; STERNA-HIRUNDO; ROSEATE TERNS; HETEROGENEITY; POPULATION; MORTALITY; PATTERNS; RATES Much e ort in life-history theory has been addressed to the dependence of life-history traits on age, especially the phenomenon of senescence and its evolution. Although senescent declines in survival are well documented in humans and in domestic and laboratory animals, evidence for their occurrence and importance in wild animal species remains limited and equivocal. Several recent papers have suggested that methodological issues may contribute to this problem, and have encouraged investigators to improve sampling designs and to analyse their data using recently developed approaches to modelling of capture-mark-recapture data. Here we report on a three-year, two-site, mark-recapture study of known-aged common terns (Sterna hirundo) in the north-eastern USA. The study was nested within a long-term ecological study in which large numbers of chicks had been banded in each year for > 25 years. We used a range of models to test the hypothesis of an influence of age on survival probability. We also tested for a possible influence of sex on survival. The cross-sectional design of the study (one year's parameter estimates) avoided the possible confounding of e ects of age and time. The study was conducted at a time when one of the study sites was being colonized and numbers were increasing rapidly. We detected two-way movements between the sites and estimated movement probabilities in the year for which they could be modelled. We also obtained limited data on emigration from our study area to more distant sites. We found no evidence that survival depended on either sex or age, except that survival was lower among the youngest birds (ages 2-3 years). Despite the large number of birds included in the study (1599 known-aged birds, 2367 total), confidence limits on estimates of survival probability were wide, especially for the oldest age-classes, so that a slight decline in survival late in life could not have been detected. In addition, the cross-sectional design of this study meant that a decline in survival probability within individuals (actuarial senescence) could have been masked by heterogeneity in survival probability among individuals (mortality selection). This emphasizes the need for the development of modelling tools permitting separation of these two phenomena, valid under field conditions in which the recapture probabilities are less than one. Univ Bretagne Occidentale, Brest, France Nisbet, ICT (reprint author), 150 Alder Lane, N Falmouth, MA 02556 USA. AEBISCHER NJ, 1990, J ANIM ECOL, V59, P1063, DOI 10.2307/5031; Anderson C, 1999, MOVEMENT DISORD, V14, P21, DOI 10.1002/1531-8257(199901)14:1<21::AID-MDS1006>3.3.CO;2-P; Becker Peter H., 1996, Ringing and Migration, V17, P31; Becker PH, 1997, CONDOR, V99, P534, DOI 10.2307/1369963; Blarer A, 1995, P ROY SOC B-BIOL SCI, V262, P305, DOI 10.1098/rspb.1995.0210; BRADLEY JS, 1989, J ANIM ECOL, V58, P175, DOI 10.2307/4993; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; BUCKLAND ST, 1982, J ANIM ECOL, V51, P831; Burnham K. P., 1998, MODEL SELECTION INFE; BURNHAM KP, 1993, BIOMETRICS, V49, P1194, DOI 10.2307/2532261; Cam E, 2000, OIKOS, V90, P560, DOI 10.1034/j.1600-0706.2000.900314.x; CAREY JR, 1992, SCIENCE, V258, P457; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Clobert J, 1995, J APPL STAT, V22, P989, DOI 10.1080/02664769524757; Cooch EG, 1999, BIRD STUDY, V46, P112; COULTER MC, 1986, WILSON BULL, V98, P93; DANN P, 1990, PENGUIN BIOL, P76; DICOSTANZO J, 1980, J FIELD ORNITHOL, V51, P229; Endler JA, 1986, NATURAL SELECTION WI; FINCH C, 1990, LONGEVITY SENESCENCE; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; GAILLARD JM, 1994, EVOLUTION, V48, P509, DOI 10.1111/j.1558-5646.1994.tb01329.x; Galbraith H, 1999, J AVIAN BIOL, V30, P85, DOI 10.2307/3677247; Harlow Richard A. Jr, 1995, Bird Observer (Arlington), V23, P333; HARRIS MP, 1994, CONDOR, V96, P600, DOI 10.2307/1369462; Hays H, 1999, J FIELD ORNITHOL, V70, P455; HESTBECK JB, 1991, ECOLOGY, V72, P525; HOLMES DJ, 1995, AM ZOOL, V35, P307; HOLMES DJ, 1995, J GERONTOL A-BIOL, V50, pB59, DOI 10.1093/gerona/50A.2.B59; Lebreton JD, 1995, J APPL STAT, V22, P1009, DOI 10.1080/02664769524766; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Littell RC, 1996, SAS SYSTEM MIXED MOD; Loison A, 1999, ECOLOGY, V80, P2539, DOI 10.2307/177239; McDonald DB, 1996, ECOLOGY, V77, P2373, DOI 10.2307/2265739; MERTZ DB, 1975, PHYSIOL ZOOL, V48, P1; Mills J.A., 1989, P387; Nichols JD, 1997, ECOLOGY, V78, P1009, DOI 10.2307/2265854; NICHOLS JD, 1992, BIOSCIENCE, V42, P94, DOI 10.2307/1311650; Nichols JD, 1995, J APPL STAT, V22, P835, DOI 10.1080/02664769524658; Nisbet I.C.T., 1984, Colonial Waterbirds, V7, P117, DOI 10.2307/1521090; Nisbet ICT, 1996, COLON WATERBIRD, V19, P253, DOI 10.2307/1521864; NISBET ICT, 1990, COLON WATERBIRD, V13, P85, DOI 10.2307/1521572; NISBET ICT, 1988, COLON WATERBIRD, V11, P113, DOI 10.2307/1521178; NISBET ICT, 1973, BIRD BANDING, V44, P27, DOI 10.2307/4511926; Nisbet ICT, 2001, EXP GERONTOL, V36, P833, DOI 10.1016/S0531-5565(00)00244-8; NISBET ICT, 1978, BIRD BANDING, V49, P50, DOI 10.2307/4512318; NISBET ICT, IN PRESS J FIELD ORN; NISBET ICT, IN PRESS BIRDS N AM; Partridge L, 2001, EXP GERONTOL, V36, P641, DOI 10.1016/S0531-5565(00)00232-1; Pradel Roger, 1999, Bird Study, V46, pS74; PREVOTJULLIARD AC, 1996, THESIS U MONTPELLIER; Pugesek BH, 1995, J APPL STAT, V22, P625, DOI 10.1080/02664769524504; RATTISTE K, 1987, ORNIS FENNICA, V64, P25; Rattiste K, 1995, J APPL STAT, V22, P1057, DOI 10.1080/02664769524801; Ricklefs RE, 1996, AM NAT, V147, P1047, DOI 10.1086/285892; Ricklefs RE, 2000, J AVIAN BIOL, V31, P103, DOI 10.1034/j.1600-048X.2000.210201.x; Service PM, 2000, AM NAT, V156, P1, DOI 10.1086/303371; SOMMERS LA, 1998, 1997 LONG ISLAND COL; SPENDELOW JA, 1995, ECOLOGY, V76, P2415, DOI 10.2307/2265817; TATAR M, 1993, EVOLUTION, V47, P1302, DOI 10.1111/j.1558-5646.1993.tb02156.x; VAUPEL JW, 1985, AM STAT, V39, P176, DOI 10.2307/2683925; VAUPEL JW, 1985, SOCIOL METHODOL, P180; Viallefont A, 1995, AUK, V112, P67, DOI 10.2307/4088767; WEIMERSKIRCH H, 1992, OIKOS, V64, P464, DOI 10.2307/3545162; Wendeln H, 1996, BIRD STUDY, V43, P85, DOI 10.1080/00063659609460998; White Gary C., 1999, Bird Study, V46, pS120 66 49 51 0 7 CARFAX PUBLISHING BASINGSTOKE RANKINE RD, BASINGSTOKE RG24 8PR, HANTS, ENGLAND 0266-4763 J APPL STAT J. Appl. Stat. JAN-MAR 2002 29 1-4 65 83 10.1080/02664760120108467 19 Statistics & Probability Mathematics 511CT WOS:000173247600006 2018-11-12 J Hirst, AG; Kiorboe, T Hirst, AG; Kiorboe, T Mortality of marine planktonic copepods: global rates and patterns MARINE ECOLOGY PROGRESS SERIES English Article copepod; mortality; fecundity; evelopment time; sex ratio t; emperature; body mass; scaling; predation WEIGHT-SPECIFIC GROWTH; EGG-PRODUCTION RATES; LONG-ISLAND SOUND; ACARTIA-TONSA; CALANUS-FINMARCHICUS; POPULATION-DYNAMICS; FOOD AVAILABILITY; TEMPORAL VARIABILITY; SECONDARY PRODUCTION; NATURAL MORTALITY Using life history theory we make predictions of mortality rates in marine epi-pelagic copepods from field estimates of adult fecundity, development times and adult sex ratios. Predicted mortality increases with temperature in both broadcast and sac spawning copepods, and declines with body weight in broadcast spawners, while mortality in sac spawners is invariant with body size. Although the magnitude of copepod mortality does lie close to the overall general pattern for pelagic animals, copepod mortality scaling is much weaker, implying that small copepods are avoiding some mortality agent/s that other pelagic animals of a similar size do not, We compile direct in situ estimates of copepod mortality and compare these with our indirect predictions; we find the predictions generally match the field measurements well with respect to average rates and patterns. Finally, by comparing in situ adult copepod longevity with predation-free laboratory longevity, we are able to make the first global approximations of the natural rates of predation mortality. Predation and total mortality both increase with increasing temperature; however, the proportion that predation makes of total adult mortality is independent of ambient temperature, on average accounting for around 2/3 to 3/4 of the total. Heriot Watt Univ, Dept Biol Sci, Edinburgh EH14 4AS, Midlothian, Scotland; Danish Inst Fisheries Res, DK-2920 Charlottenlund, Denmark Hirst, AG (reprint author), British Antarctic Survey, High Cross,Madingley Rd, Cambridge CB3 0ET, England. aghi@bas.ac.uk Hirst, Andrew/A-6296-2013; Kiorboe, Thomas/G-3190-2011 Kiorboe, Thomas/0000-0002-3265-336X Aksnes DL, 1996, OPHELIA, V44, P7, DOI 10.1080/00785326.1995.10429836; Aksnes DL, 1996, MAR ECOL PROG SER, V131, P315, DOI 10.3354/meps131315; Bamstedt U., 1986, P1; BAUTISTA B, 1994, J PLANKTON RES, V16, P1367, DOI 10.1093/plankt/16.10.1367; BECKMAN BR, 1986, J PLANKTON RES, V8, P917, DOI 10.1093/plankt/8.5.917; BERGGREEN U, 1988, MAR BIOL, V99, P341, DOI 10.1007/BF02112126; BORCHERS P, 1986, J PLANKTON RES, V8, P855, DOI 10.1093/plankt/8.5.855; Calbet A, 1996, J PLANKTON RES, V18, P2329, DOI 10.1093/plankt/18.12.2329; Calbet A, 1999, MAR ECOL PROG SER, V181, P155, DOI 10.3354/meps181155; Conover R.J., 1991, Journal of Marine Systems, V2, P1, DOI 10.1016/0924-7963(91)90011-I; CORKETT C J, 1975, Bulletin of Plankton Society of Japan, V21, P77; CORKETT CJ, 1968, J MAR BIOL ASSOC UK, V48, P97, DOI 10.1017/S0025315400032458; Dam HG, 2001, J PLANKTON RES, V23, P633, DOI 10.1093/plankt/23.6.633; DURBIN EG, 1995, CONT SHELF RES, V15, P571, DOI 10.1016/0278-4343(94)00060-Z; EIANE K, 1999, THESIS U BERGEN; Frost B.W., 1985, Advances in Limnology, V21, P1; Gomez-Gutierrez J, 1999, J PLANKTON RES, V21, P637, DOI 10.1093/plankt/21.4.637; HEINLE DR, 1969, THESIS U MARYLAND; Hirst AG, 1998, MAR BIOL, V132, P247, DOI 10.1007/s002270050390; Hirst AG, 1997, MAR ECOL PROG SER, V154, P155, DOI 10.3354/meps154155; HUNTLEY ME, 1992, AM NAT, V140, P201, DOI 10.1086/285410; IANORA A, 1993, LIMNOL OCEANOGR, V38, P1615, DOI 10.4319/lo.1993.38.8.1615; JACOBY CA, 1983, MAR BIOL, V76, P77, DOI 10.1007/BF00393058; KATONA SK, 1970, HELGOLAND WISS MEER, V20, P373, DOI 10.1007/BF01609914; KIMMERER WJ, 1987, LIMNOL OCEANOGR, V32, P14, DOI 10.4319/lo.1987.32.1.0014; KIORBOE T, 1995, MAR ECOL PROG SER, V120, P285, DOI 10.3354/meps120285; KIORBOE T, 1994, LIMNOL OCEANOGR, V39, P493, DOI 10.4319/lo.1994.39.3.0493; KIORBOE T, 1985, MAR ECOL PROG SER, V26, P85, DOI 10.3354/meps026085; Kiorboe T, 1998, HYDROBIOLOGIA, V363, P13, DOI 10.1023/A:1003173721751; KIORBOE T, 1994, J PLANKTON RES, V16, P1353, DOI 10.1093/plankt/16.10.1353; LANDRY MR, 1978, INT REV GES HYDROBIO, V63, P77, DOI 10.1002/iroh.19780630106; Liang D, 1997, MAR BIOL, V128, P415, DOI 10.1007/s002270050107; Liang Dong, 1994, Bulletin of Plankton Society of Japan, V41, P131; MATTHEWS JBL, 1978, OCEANOL ACTA, V1, P277; MCGURK MD, 1986, MAR ECOL PROG SER, V34, P227, DOI 10.3354/meps034227; McKinnon AD, 1996, LIMNOL OCEANOGR, V41, P1438, DOI 10.4319/lo.1996.41.7.1438; NIVAL S, 1990, J PLANKTON RES, V12, P535, DOI 10.1093/plankt/12.3.535; OHMAN MD, 1995, ICES J MAR SCI, V52, P517, DOI 10.1016/1054-3139(95)80065-4; Ohman MD, 2001, NATURE, V412, P638, DOI 10.1038/35088068; OHMAN MD, 1986, J PLANKTON RES, V8, P673, DOI 10.1093/plankt/8.4.673; Ohman MD, 1996, LIMNOL OCEANOGR, V41, P126, DOI 10.4319/lo.1996.41.1.0126; Omori M, 1984, METHODS MARINE ZOOPL; PARRISH KK, 1978, MAR BIOL, V46, P65, DOI 10.1007/BF00393822; PETERSON I, 1984, CAN J FISH AQUAT SCI, V41, P1117, DOI 10.1139/f84-131; PETERSON WT, 1994, LIMNOL OCEANOGR, V39, P1594, DOI 10.4319/lo.1994.39.7.1594; PETERSON WT, 1991, J PLANKTON RES, V13, P131, DOI 10.1093/plankt/13.1.131; SABATINI M, 1994, J PLANKTON RES, V16, P1329, DOI 10.1093/plankt/16.10.1329; Saiz E, 1997, J PLANKTON RES, V19, P1; Saiz E, 1999, MAR ECOL PROG SER, V187, P179, DOI 10.3354/meps187179; SEKIGUCHI H, 1980, MAR BIOL, V58, P133, DOI 10.1007/BF00396124; SMITH SL, 1990, MAR BIOL, V106, P59, DOI 10.1007/BF02114675; Takahashi Takashi, 1996, Journal of Oceanography, V52, P125, DOI 10.1007/BF02236536; UYE S, 1995, MAR ECOL PROG SER, V118, P121, DOI 10.3354/meps118121; UYE S, 1981, J EXP MAR BIOL ECOL, V50, P255, DOI 10.1016/0022-0981(81)90053-8; Uye S.-I., 1992, Fisheries Oceanography, V1, P216, DOI 10.1111/j.1365-2419.1992.tb00040.x; UYE SI, 1982, J EXP MAR BIOL ECOL, V57, P55, DOI 10.1016/0022-0981(82)90144-7 56 188 193 4 49 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2002 230 195 209 10.3354/meps230195 15 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 551XE WOS:000175588600017 Bronze 2018-11-12 J Jordan, MA; Snell, HL Jordan, MA; Snell, HL Life history trade-offs and phenotypic plasticity in the reproduction of Galapagos lava lizards (Microlophus delanonis) OECOLOGIA English Article energy acquisition; energy allocation; egg; clutch; tropiduridae RELATIVE CLUTCH MASS; EGG-SIZE; OFFSPRING SIZE; UTA-STANSBURIANA; BODY SIZE; SCELOPORUS-VIRGATUS; FOOD AVAILABILITY; LACERTA-AGILIS; ENERGY STORES; EVOLUTION Trade-offs between traits are a fundamental component of life history theory. However, because individuals may differ in the amount of energy available for allocation between traits, expected negative relationships are often difficult to detect or may become positive. The latter can occur when both traits are phenotypically plastic in response to variation in environmental productivity. We tested this hypothesis by analyzing expected trade-offs between egg mass and clutch size, and total clutch mass and post-nesting condition, in a population of Galapagos lava lizards (Microlophus delanonis) that experienced marked annual and seasonal variation in rainfall. Due to its close relationship with overall mass (reproductive plus post-nesting mass), we considered rainfall to be a suitable indicator of environmental productivity. Females that reproduced during periods of low rainfall produced smaller and fewer eggs, and had lower post-nesting body mass independent of body size (snout-vent length). This pattern was found in comparisons both between and within individuals that nested in dry and wet periods, respectively. The relationships between egg mass and clutch size, and total clutch mass and post-nesting mass, were positive when data were combined across years and seasons. Restriction of the analysis to comparisons within time periods (in effect, holding productivity constant), resulted in negative correlations between egg mass and clutch size, and weakened relationships between total clutch mass and post-nesting mass. We conclude that phenotypic plasticity in reproduction obscures life history trade-offs and that plasticity may be more important to the fitness of females than a particular value for an individual reproductive trait. Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA; Charles Darwin Res Stn, Galapagos Islands, Ecuador Jordan, MA (reprint author), Zool Soc London, Inst Zool, Regents Pk, London NW1 4RY, England. mark.jordan@ioz.ac.uk Snell, Howard/N-2455-2015 Snell, Howard/0000-0001-8770-7540 Abell AJ, 1999, J HERPETOL, V33, P173, DOI 10.2307/1565712; BALLINGER RE, 1977, ECOLOGY, V58, P628, DOI 10.2307/1939012; Bernardo J, 1996, AM ZOOL, V36, P216; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; BURGER J, 1993, COPEIA, P748; CARPENTER C C, 1970, Herpetologica, V26, P377; CONGDON JD, 1987, P NATL ACAD SCI USA, V84, P4145, DOI 10.1073/pnas.84.12.4145; DEMARCO VG, 1989, OECOLOGIA, V80, P525, DOI 10.1007/BF00380077; DERICKSON WK, 1976, ECOLOGY, V57, P445, DOI 10.2307/1936430; Doughty P, 1998, ECOLOGY, V79, P1073, DOI 10.1890/0012-9658(1998)079[1073:REAALT]2.0.CO;2; Doughty P, 1997, OECOLOGIA, V110, P508, DOI 10.1007/s004420050187; Dunham A.E., 1988, Biology of Reptilia, V16, P441; Dunham A. E., 1981, MISC PUBL MUS ZOOL, V158, P1; DUNHAM AE, 1978, ECOLOGY, V59, P770, DOI 10.2307/1938781; FERGUSON GW, 1986, HERPETOLOGICA, V42, P185; FERGUSON GW, 1982, HERPETOLOGICA, V38, P178; FERGUSON GW, 1990, HERPETOLOGICA, V46, P227; FORD NB, 1989, HERPETOLOGICA, V45, P75; FORD NB, 1989, ECOLOGY, V70, P1768, DOI 10.2307/1938110; Grant BR, 1989, EVOLUTIONARY DYNAMIC; Grant P.R., 1986, ECOLOGY EVOLUTION DA; GRANT PR, 1979, AUK, V96, P723; Gregory PT, 1998, AM NAT, V151, P477, DOI 10.1086/286134; Guill JM, 2000, COPEIA, P230; HOGSTEDT G, 1980, SCIENCE, V210, P1148, DOI 10.1126/science.210.4474.1148; Jackson M, 1993, GALAPAGOS NATURAL HI; JAMES CD, 1994, OIKOS, V70, P49, DOI 10.2307/3545698; JONES SM, 1987, OIKOS, V48, P325, DOI 10.2307/3565521; Lack D., 1954, NATURAL REGULATION A; LAURIE WA, 1990, J ANIM ECOL, V59, P515, DOI 10.2307/4878; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; Marco A, 1998, COPEIA, P145; NUSSBAUM RA, 1981, OECOLOGIA, V49, P8, DOI 10.1007/BF00376891; Olsson M, 1997, J EVOLUTION BIOL, V10, P369, DOI 10.1046/j.1420-9101.1997.10030369.x; Olsson M, 1997, AM NAT, V149, P179, DOI 10.1086/285985; Olsson M, 1998, EVOLUTION, V52, P1861, DOI 10.1111/j.1558-5646.1998.tb02265.x; PARKER WS, 1975, COPEIA, P615; Pianka ER, 1983, LIZARD ECOLOGY STUDI, P169; Roff Derek A., 1992; Roosenburg WM, 1997, COPEIA, P290, DOI 10.2307/1447749; SCHLUTER D, 1984, OIKOS, V43, P291, DOI 10.2307/3544146; SCHWARZKOPF L, 1992, HERPETOLOGICA, V48, P390; SHINE R, 1992, EVOLUTION, V46, P828, DOI 10.1111/j.1558-5646.1992.tb02088.x; Sinervo B, 1996, EVOLUTION, V50, P1299, DOI 10.1111/j.1558-5646.1996.tb02370.x; SINERVO B, 1991, J EXP ZOOL, V257, P252, DOI 10.1002/jez.1402570216; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH GR, 1995, HERPETOLOGICA, V51, P342; Sokal R.R., 1995, BIOMETRY; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Svensson E, 2000, EVOLUTION, V54, P1396; TRACY CR, 1982, BIOL REPTILIA, V12, P274; TRILLMICH F, 1991, ECOSYSTEM EXPT, P3; TUOMI J, 1983, AM ZOOL, V23, P25; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; VITT LJ, 1978, HERPETOLOGICA, V34, P241; Weatherhead PJ, 1999, J HERPETOL, V33, P577, DOI 10.2307/1565574; WERNER DI, 1978, Z TIERPSYCHOL, V47, P337; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 62 48 48 1 16 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia JAN 2002 130 1 44 52 10.1007/s004420100776 9 Ecology Environmental Sciences & Ecology 507MP WOS:000173032500005 28547024 2018-11-12 J Ilmonen, P; Taarna, T; Hasselquist, D Ilmonen, P; Taarna, T; Hasselquist, D Are incubation costs in female pied flycatchers expressed in humoral immune responsiveness or breeding success? OECOLOGIA English Article clutch size; cost of reproduction; Ficedula hypoleuca; immunocompetence; life history trade-offs CLUTCH-SIZE; REPRODUCTIVE EFFORT; PARENTAL CARE; HAEMATOZOAN INFECTIONS; COLLARED FLYCATCHER; POSTBREEDING COSTS; FICEDULA-HYPOLEUCA; REARING CAPACITY; SEX-DIFFERENCES; MANIPULATION Although clutch size variation has been a key target for studies of avian life history theory, most empirical work has only focused on the ability of parents to raise their altricial young. In this study, we test the hypothesis that costs incurred during incubation may be an additional factor constraining clutch size in altricial birds. In the pied flycatcher (Ficedula hypoleuca), we manipulated the incubation effort of the female by enlarging and reducing clutch sizes. To manipulate incubation effort only, the original clutch sizes were restored shortly after hatching. We found that fledging success was lower among broods whose clutches were enlarged during incubation. There was, however, no effect of manipulation on female body condition or on their ability to mount a humoral immune response to diphtheria or tetanus toxoid during the incubation or nestling provisioning pxeriod. Instead, we found that the original clutch size was related to the immune response so that females with seven eggs had significantly lower primary antibody responses against tetanus compared to those with six eggs. Our results suggest that incubating females are not willing to jeopardise their own condition and immune function, but instead pay the costs of incubating a larger clutch by lower offspring production. The results support the view that costs of producing and incubating eggs may be substantial and hence that these costs are likely to contribute to shaping the optimal clutch size in altricial birds. Univ Turku, Dept Biol, Sect Ecol, Turku 20014, Finland; Lund Univ, Dept Anim Ecol, S-22362 Lund, Sweden Ilmonen, P (reprint author), Univ Turku, Dept Biol, Sect Ecol, Turku 20014, Finland. peilmo@utu.fi Hasselquist, Dennis/M-5223-2014 Hasselquist, Dennis/0000-0002-0056-6616 ALISAUSKAS RT, 1985, AUK, V102, P133, DOI 10.2307/4086829; ANKNEY CD, 1980, J WILDLIFE MANAGE, V44, P174, DOI 10.2307/3808363; ASTHEIMER LB, 1985, CONDOR, V87, P256, DOI 10.2307/1366891; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; CHERNIN E, 1952, AM J HYG, V56, P101, DOI 10.1093/oxfordjournals.aje.a119545; Cichon M, 2000, OECOLOGIA, V125, P453, DOI 10.1007/s004420000461; CRAMP S, 1993, BIRDS W PALEARCTIC, V7; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; Doblhammer G, 2001, P NATL ACAD SCI USA, V98, P2934, DOI 10.1073/pnas.041431898; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.ecolsys.22.1.409; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Hasselquist D, 1999, BEHAV ECOL SOCIOBIOL, V45, P167, DOI 10.1007/s002650050550; Heaney V, 1996, P ROY SOC B-BIOL SCI, V263, P1719, DOI 10.1098/rspb.1996.0251; Ilmonen P, 2000, P ROY SOC B-BIOL SCI, V267, P665, DOI 10.1098/rspb.2000.1053; Ilmonen P, 1999, OIKOS, V86, P79, DOI 10.2307/3546571; JONES G, 1987, J ANIM ECOL, V56, P229, DOI 10.2307/4812; Jonsson KI, 1998, OIKOS, V83, P424, DOI 10.2307/3546670; JONSSON KI, 1995, OIKOS, V74, P35, DOI 10.2307/3545672; King J.R., 1973, P78; Lessells C.M., 1991, P32; LIFJELD JT, 1988, ANIM BEHAV, V36, P134, DOI 10.1016/S0003-3472(88)80256-2; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Moller Anders Pape, 1997, P105; Monaghan P, 1998, P ROY SOC B-BIOL SCI, V265, P1731, DOI 10.1098/rspb.1998.0495; MONAGHAN P, 1997, TRENDS ECOL EVOL, V4, P367; MORENO J, 1992, BEHAVIOUR, V120, P11, DOI 10.1163/156853992X00183; MORENO J, 1989, ORNIS SCAND, V20, P123, DOI 10.2307/3676879; Moreno J, 1999, P ROY SOC B-BIOL SCI, V266, P1105, DOI 10.1098/rspb.1999.0750; MORENO J, 1989, AUK, V106, P18, DOI 10.2307/4087752; MORENO J, 1991, IBIS, V133, P186, DOI 10.1111/j.1474-919X.1991.tb04830.x; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; Nowicki S, 2000, P ROY SOC B-BIOL SCI, V267, P2419, DOI 10.1098/rspb.2000.1300; Oppliger A, 1996, NATURE, V381, P565, DOI 10.1038/381565a0; Oppliger A, 1997, BEHAV ECOL, V8, P148, DOI 10.1093/beheco/8.2.148; Raberg L, 2000, ECOL LETT, V3, P382, DOI 10.1046/j.1461-0248.2000.00154.x; Reid JM, 2000, P ROY SOC B-BIOL SCI, V267, P37, DOI 10.1098/rspb.2000.0963; RICHNER H, 1995, P NATL ACAD SCI USA, V92, P1192, DOI 10.1073/pnas.92.4.1192; Roff Derek A., 1992; Sanz JJ, 1997, J AVIAN BIOL, V28, P157, DOI 10.2307/3677309; *SAS, 1995, SAS STAT US GUID VER; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SIBLY R, 1984, J THEOR BIOL, V111, P463, DOI 10.1016/S0022-5193(84)80234-9; SIIKAMAKI P, 1995, J AVIAN BIOL, V26, P76, DOI 10.2307/3677215; Statistical Analysis Systems (SAS), 1997, SAS STAT SOFTW CHANG; Svensson L., 1992, IDENTIFICATION GUIDE; Thomson DL, 1998, BIOL REV, V73, P293, DOI 10.1017/S0006323198005180; TUOMI J, 1983, AM ZOOL, V23, P25; WALSBERG GE, 1978, PHYSIOL ZOOL, V51, P92, DOI 10.1086/physzool.51.1.30158668; WEBB DR, 1987, CONDOR, V89, P874, DOI 10.2307/1368537; Wiehn J, 1999, OIKOS, V84, P87, DOI 10.2307/3546869; Wiehn J, 1998, P ROY SOC B-BIOL SCI, V265, P1197, DOI 10.1098/rspb.1998.0419; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WRIGHT J, 1989, BEHAV ECOL SOCIOBIOL, V25, P171, DOI 10.1007/BF00302916; WRIGHT J, 1990, ANIM BEHAV, V40, P462, DOI 10.1016/S0003-3472(05)80526-3 55 40 40 0 15 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia JAN 2002 130 2 199 204 10.1007/s004420100804 6 Ecology Environmental Sciences & Ecology 522TB WOS:000173912100005 28547142 2018-11-12 J Rose, KA; Cowan, JH; Winemiller, KO; Myers, RA; Hilborn, R Rose, Kenneth A.; Cowan, James H., Jr.; Winemiller, Kirk O.; Myers, Ransom A.; Hilborn, Ray Compensatory density dependence in fish populations: importance, controversy, understanding and prognosis FISH AND FISHERIES English Article compensation; density dependence; fish populations; fisheries management; life-history theory; sustainable harvest Density-dependent processes such as growth, survival, reproduction and movement are compensatory if their rates change in response to variation in population density (or numbers) such that they result in a slowed population growth rate at high densities and promote a numerical increase of the population at low densities. Compensatory density dependence is important to fisheries management because it operates to offset the losses of individuals. While the concept of compensation is straightforward, it remains one of the most controversial issues in population dynamics. The difficulties arise when going from general concepts to specific populations. Compensation is usually quantified using some combination of spawner-recruit analysis, long-term field monitoring or manipulative studies, and computer modelling. Problems arise because there are limitations to each of these approaches, and these limitations generally originate from the high uncertainty associated with field measurements. We offer a hierarchical approach to predicting and understanding compensation that ranges from the very general, using basic life-history theory, to the highly site-specific, using detailed population models. We analyse a spawner-recruit database to test the predictions about compensation and compensatory reserve that derive from a three-endpoint life-history framework designed for fish. We then summarise field examples of density dependence in specific processes. Selected long-term field monitoring studies, manipulative studies and computer modelling examples are then highlighted that illustrate how density-dependent processes led to compensatory responses at the population level. Some theoretical and empirical advances that offer hope for progress in the future on the compensation issue are discussed. We advocate an approach to compensation that involves process-level understanding of the underlying mechanisms, life-history theory, careful analysis of field data, and matrix and individual-based modelling. There will always be debate if the quantification of compensation does not include some degree of understanding of the underlying mechanisms. [Rose, Kenneth A.; Cowan, James H., Jr.] Louisiana State Univ, Coastal Fisheries Inst, Baton Rouge, LA 70803 USA; [Rose, Kenneth A.; Cowan, James H., Jr.] Louisiana State Univ, Dept Oceanog & Coastal Sci, Baton Rouge, LA 70803 USA; [Winemiller, Kirk O.] Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA; [Myers, Ransom A.] Dalhousie Univ, Dept Biol, Halifax, NS B3H 4J1, Canada; [Hilborn, Ray] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA Rose, KA (reprint author), Louisiana State Univ, Coastal Fisheries Inst, Wetland Resources Bldg, Baton Rouge, LA 70803 USA. karose@lsu.edu Winemiller, Kirk/0000-0003-0236-5129 Electric Power Research Institute Financial support for the preparation of this paper was provided by the Electric Power Research Institute. Some of the ideas in this paper originated during discussions among the authors during their involvement with permit preparation activities for a Public Service Enterprise Group (PSEG) facility. The comments of Jamie Gibson on an earlier draft greatly improved the paper. Achord Stephen, 1996, North American Journal of Fisheries Management, V16, P302, DOI 10.1577/1548-8675(1996)016<0302:UOPITP>2.3.CO;2; Adams S.M., 1990, American Fisheries Society Symposium, P1; ADLARD RD, 1994, PARASITOLOGY, V109, P311, DOI 10.1017/S0031182000078343; ALHEIT J, 1987, S AFR J MARINE SCI, V5, P467, DOI 10.2989/025776187784522694; ALMATAR SM, 1989, J CONSEIL, V45, P113; ANDERSON J T, 1988, Journal of Northwest Atlantic Fishery Science, V8, P55; Anderson TW, 2001, ECOLOGY, V82, P245; ARMSTRONG MJ, 1990, ENVIRON BIOL FISH, V28, P77, DOI 10.1007/BF00751028; BAGENAL T B, 1973, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V164, P186; BAILEY KM, 1989, ADV MAR BIOL, V25, P1; BAILEY KM, 1994, NETH J SEA RES, V32, P175, DOI 10.1016/0077-7579(94)90039-6; Bailey KM, 1996, FISH OCEANOGR, V5, P179, DOI 10.1111/j.1365-2419.1996.tb00091.x; BAIRD D, 1989, ECOL MONOGR, V59, P329, DOI 10.2307/1943071; BANNEHEKA SG, 1995, CAN J FISH AQUAT SCI, V52, P335, DOI 10.1139/f95-034; Bannister R. C. A., 1978, RAPPORTS PROCES VERB, V172, P86; Barnett CW, 1996, ENVIRON BIOL FISH, V46, P343, DOI 10.1007/BF00005011; Barnthouse L.W., 1988, AM FISH SOC MONOGR, V4, P1; BARNTHOUSE LW, 1984, BIOSCIENCE, V34, P14, DOI 10.2307/1309420; Beall E., 1987, RESTAURATION RIVIERE, P231; BELK MC, 1995, J FISH BIOL, V47, P237, DOI 10.1111/j.1095-8649.1995.tb01891.x; BERTRAM DF, 1993, MAR ECOL PROG SER, V96, P209, DOI 10.3354/meps096209; Beverton R.J.H., 1957, UK MINISTRY AGR FOOD, V2; BEVERTON RJH, 1992, NETH J SEA RES, V29, P61, DOI 10.1016/0077-7579(92)90008-3; Bjornstad ON, 1999, ECOLOGY, V80, P1278; Botsford LW, 1997, SCIENCE, V277, P509, DOI 10.1126/science.277.5325.509; BOWEN SH, 1991, CAN J FISH AQUAT SCI, V48, P569, DOI 10.1139/f91-072; BRADFORD MJ, 1992, FISH B-NOAA, V90, P439; BRADFORD RG, 1992, CAN J FISH AQUAT SCI, V49, P2045, DOI 10.1139/f92-227; Brandt Stephen B., 1994, Belle W. Baruch Library in Marine Science, V18, P211; Bromage NR, 1995, BROODSTOCK MANAGEMEN, P1; BROMLEY PJ, 1989, J FISH BIOL, V35, P117; Bryan Roger D., 1994, North American Journal of Fisheries Management, V14, P216, DOI 10.1577/1548-8675(1994)014<0216:VITRBA>2.3.CO;2; BUCKLEY LJ, 1991, MAR ECOL PROG SER, V74, P125, DOI 10.3354/meps074125; BUCKLEY LJ, 1991, MAR ECOL PROG SER, V74, P117, DOI 10.3354/meps074117; Buckley R.V., 1967, J FISH RES BOARD CAN, V24, P917; Bult TP, 1999, CAN J FISH AQUAT SCI, V56, P1298, DOI 10.1139/cjfas-56-7-1298; Bystrom P, 1999, OIKOS, V86, P217, DOI 10.2307/3546440; Campana SE, 1999, MAR ECOL PROG SER, V188, P263, DOI 10.3354/meps188263; CAMPANA SE, 1994, CAN J FISH AQUAT SCI, V51, P1942, DOI 10.1139/f94-196; CARON J, 1988, BEHAV PROCESS, V16, P173, DOI 10.1016/0376-6357(88)90038-1; CARVALHO GR, 1994, REV FISH BIOL FISHER, V4, P326, DOI 10.1007/BF00042908; Caswell H., 2000, MATRIX POPULATION MO; Chambers R.C., 1989, FISHERY B, V87, P515; Chapman RW, 1999, MAR BIOTECHNOL, V1, P137, DOI 10.1007/PL00011761; Christensen S.W., 1988, AM FISH SOC S, V4, P219; Clark ME, 2001, ECOL APPL, V11, P161, DOI 10.1890/1051-0761(2001)011[0161:PCCEOA]2.0.CO;2; Cole J, 1998, REV FISH BIOL FISHER, V8, P445, DOI 10.1023/A:1008861224731; Coleman FC, 1996, ENVIRON BIOL FISH, V47, P129, DOI 10.1007/BF00005035; Collins LA, 1998, FISH B-NOAA, V96, P415; © 2001 Blackwell Science Ltd, 2001, FISH FISH, V2, P293; Coutant C.C., 1990, American Fisheries Society Symposium, P574; Cowan JH, 1999, MAR ECOL PROG SER, V185, P133, DOI 10.3354/meps185133; Cowan JH, 2000, REV FISH BIOL FISHER, V10, P61, DOI 10.1023/A:1008932401381; CRAIG JF, 1983, J FISH BIOL, V22, P713, DOI 10.1111/j.1095-8649.1983.tb04231.x; Crecco V., 1987, American Fisheries Society Symposium, P69; CRECCO V, 1983, CAN J FISH AQUAT SCI, V40, P1719, DOI 10.1139/f83-199; Crozier WW, 1995, J FISH BIOL, V47, P1055, DOI 10.1111/j.1095-8649.1995.tb06029.x; Cushing D.H, 1975, MARINE ECOLOGY FISHE; Dahlberg M.D., 1979, U S National Marine Fisheries Service Marine Fisheries Review, V41, P1; Daskalov G, 1999, FISH RES, V41, P1, DOI 10.1016/S0165-7836(99)00006-5; de Lafontaine, 1987, CANADIAN J FISHERIES, V44, P54; DeAngelis D.L., 1994, Lecture Notes in Biomathematics, V100, P390; DEANGELIS DL, 1992, INDIVIDUAL-BASED MODELS AND APPROACHES IN ECOLOGY, P67; DEANGELIS DL, 1993, AM NAT, V142, P604, DOI 10.1086/285560; DELAFONTAINE Y, 1987, CAN J FISH AQUAT SCI, V44, P1534; DELAHUNTY G, 1980, J FISH BIOL, V16, P5, DOI 10.1111/j.1095-8649.1980.tb03683.x; DeLeo GA, 1996, ECOL APPL, V6, P1281; DENBOER PJ, 1989, OECOLOGIA, V79, P143, DOI 10.1007/BF00388470; Dennis B, 1998, ECOLOGY, V79, P426, DOI 10.2307/176943; DENNIS B, 1994, ECOL MONOGR, V64, P205, DOI 10.2307/2937041; Dixon PA, 1999, SCIENCE, V283, P1528, DOI 10.1126/science.283.5407.1528; DUNNING JB, 1995, ECOL APPL, V5, P3, DOI 10.2307/1942045; Elliott J.M., 1994, QUANTITATIVE ECOLOGY; ENNEVOR BC, 1994, FISH B-NOAA, V92, P471; ERICKSON DL, 1985, COMP BIOCHEM PHYS A, V81, P117, DOI 10.1016/0300-9629(85)90276-2; FAUSCH KD, 1988, CAN J FISH AQUAT SCI, V45, P2238, DOI 10.1139/f88-260; FAUSCH KD, 1984, CAN J ZOOL, V62, P441, DOI 10.1139/z84-067; Fenton R, 1996, FISHERIES, V21, P6, DOI 10.1577/1548-8446(1996)021<0006:RAFDFW>2.0.CO;2; Ferguson A, 1995, J FISH BIOL, V47, P103, DOI 10.1111/j.1095-8649.1995.tb06048.x; Fletcher R.I., 1988, AM FISH SOC MONOGR, V4, P232; Fletcher WJ, 1999, CAN J FISH AQUAT SCI, V56, P907, DOI 10.1139/cjfas-56-6-907; FOGARTY MJ, 1991, TRENDS ECOL EVOL, V6, P241, DOI 10.1016/0169-5347(91)90069-A; FOGARTY MJ, 1992, ENVIRON SCI TECHNOL, V26, P440, DOI 10.1021/es00027a600; FORNEY JL, 1977, J FISH RES BOARD CAN, V34, P1812, DOI 10.1139/f77-247; Forrester G.E., 1995, OECOLOGIA, V103, P275; Forrester GE, 2000, ECOLOGY, V81, P2416; Francis RICC, 1997, CAN J FISH AQUAT SCI, V54, P1699, DOI 10.1139/f97-100; Froese R., 2000, FISHBASE 2000 CONCEP; FUIMAN LA, 1994, J FISH BIOL, V44, P23, DOI 10.1006/jfbi.1994.1003; FUIMAN LA, 1994, REV FISH BIOL FISHER, V4, P145, DOI 10.1007/BF00044127; FUNAKOSHI S, 1992, MAR BEHAV PHYSIOL, V21, P1, DOI 10.1080/10236249209378818; Garcia SM, 1997, AM FISH S S, V20, P3; Gargett AE, 1997, FISH OCEANOGR, V6, P109, DOI 10.1046/j.1365-2419.1997.00033.x; Garrod D.J., 1979, Symposia of the Zoological Society of London, P361; GETZ WM, 1981, CAN J FISH AQUAT SCI, V38, P847, DOI 10.1139/f81-112; Getz WM, 1998, BIOSCIENCE, V48, P540, DOI 10.2307/1313316; GINZBURG LR, 1990, CONSERV BIOL, V4, P63, DOI 10.1111/j.1523-1739.1990.tb00268.x; Goodyear C.P., 1980, P253; Goodyear C.P., 1984, North American Journal of Fisheries Management, V4, P186, DOI 10.1577/1548-8659(1984)4<186:OTATDT>2.0.CO;2; Goodyear C. Philip, 1993, Canadian Special Publication of Fisheries and Aquatic Sciences, V120, P67; GRANT JWA, 1990, CAN J FISH AQUAT SCI, V47, P1724, DOI 10.1139/f90-197; GRANT JWA, 1989, J ANIM ECOL, V58, P773, DOI 10.2307/5123; Greene CH, 1998, DEEP-SEA RES PT II, V45, P1219, DOI 10.1016/S0967-0645(98)00033-2; Grimm V, 1999, ECOL MODEL, V115, P129, DOI 10.1016/S0304-3800(98)00188-4; Gulland J.A., 1977, MANAGEMENT MARINE FI; HAMRIN SF, 1986, OIKOS, V47, P223, DOI 10.2307/3566049; HARTMAN KJ, 1995, CAN J FISH AQUAT SCI, V52, P1667, DOI 10.1139/f95-760; HASSELL MP, 1978, ARTHROPOD PREDATOR P; HEALEY MC, 1980, CAN J FISH AQUAT SCI, V37, P255, DOI 10.1139/f80-033; HEALEY MC, 1978, J FISH RES BOARD CAN, V35, P945, DOI 10.1139/f78-155; Heath M, 1997, J FISH BIOL, V51, P1, DOI 10.1111/j.1095-8649.1997.tb06090.x; HEATH MR, 1992, ADV MAR BIOL, V28, P1, DOI 10.1016/S0065-2881(08)60039-5; HELMINEN H, 1990, HYDROBIOLOGIA, V200, P511, DOI 10.1007/BF02530368; HELMINEN H, 1993, CAN J FISH AQUAT SCI, V50, P925, DOI 10.1139/f93-106; HELMINEN H, 1994, J FISH BIOL, V45, P387; Helser TE, 1998, CAN J FISH AQUAT SCI, V55, P882, DOI 10.1139/cjfas-55-4-882; Henderson BA, 1996, CAN J FISH AQUAT SCI, V53, P127, DOI 10.1139/f95-162; Higgins K, 1997, SCIENCE, V276, P1431, DOI 10.1126/science.276.5317.1431; HILBORN R, 1994, FISH RES, V19, P17, DOI 10.1016/0165-7836(94)90012-4; Hilborn R, 1998, REV FISH BIOL FISHER, V8, P273, DOI 10.1023/A:1008877912528; Hilborn R., 1992, QUANTITATIVE FISHERI; Hinckley S, 1996, MAR ECOL PROG SER, V139, P47, DOI 10.3354/meps139047; HISLOP JRG, 1988, J FISH BIOL, V32, P923, DOI 10.1111/j.1095-8649.1988.tb05435.x; Hixon MA, 1998, AUST J ECOL, V23, P192, DOI 10.1111/j.1442-9993.1998.tb00720.x; Hixon MA, 1997, SCIENCE, V277, P946, DOI 10.1126/science.277.5328.946; Hofmann EE, 1998, ECOL APPL, V8, pS23, DOI 10.1890/1051-0761(1998)8[S23:EVEOMF]2.0.CO;2; HOLDWAY DA, 1995, AUST J ECOL, V20, P34, DOI 10.1111/j.1442-9993.1995.tb00520.x; Houde E.D., 1987, American Fisheries Society Symposium, P17; Houde E. D., 1991, HABITAT REQUIREMENTS, P81; HOUDE ED, 1989, FISH B-NOAA, V87, P471; HOVENKAMP F, 1992, MAR ECOL PROG SER, V82, P95, DOI 10.3354/meps082095; Hughes N.F., 1992, CANADIAN J FISHERIES, V47, P2039; Hughes NF, 1998, ECOLOGY, V79, P281, DOI 10.2307/176882; HUNTER JR, 1980, FISH B-NOAA, V78, P811; Huse G, 1998, FISH RES, V37, P163, DOI 10.1016/S0165-7836(98)00134-9; HUSTON M, 1988, BIOSCIENCE, V38, P682, DOI 10.2307/1310870; Ivlev VS, 1961, EXPT ECOLOGY FEEDING; JENSEN AL, 1993, ECOL MODEL, V68, P249, DOI 10.1016/0304-3800(93)90020-S; Johnson LB, 1997, FRESHWATER BIOL, V37, P113, DOI 10.1046/j.1365-2427.1997.00156.x; JOHNSON TB, 1990, T AM FISH SOC, V119, P301, DOI 10.1577/1548-8659(1990)119<0301:SWMOYW>2.3.CO;2; Jude D.J., 1987, EA5200 EL POW RES I, V2; JUDSON OP, 1994, TRENDS ECOL EVOL, V9, P9, DOI 10.1016/0169-5347(94)90225-9; KAREIVA P, 1994, ECOLOGY, V75, P1, DOI 10.2307/1939376; KAREIVA P, 1990, PHILOS T ROY SOC B, V330, P175, DOI 10.1098/rstb.1990.0191; Keleher CJ, 1996, T AM FISH SOC, V125, P1, DOI 10.1577/1548-8659(1996)125<0001:TLTSDI>2.3.CO;2; KJESBU OS, 1989, J FISH BIOL, V34, P195, DOI 10.1111/j.1095-8649.1989.tb03302.x; KJESBU OS, 1992, J FISH BIOL, V41, P581, DOI 10.1111/j.1095-8649.1992.tb02685.x; KJORSVIK E, 1990, ADV MAR BIOL, V26, P71, DOI 10.1016/S0065-2881(08)60199-6; Koenig C.C., 1996, ICLARM C P, V48, P307; KOSLOW JA, 1992, CAN J FISH AQUAT SCI, V49, P210, DOI 10.1139/f92-025; Koslow JA, 1995, J FISH BIOL, V47, P1063, DOI 10.1111/j.1095-8649.1995.tb06030.x; Laevastu T., 1993, MARINE CLIMATE WEATH; LASKER R, 1985, CAN J FISH AQUAT SCI, V42, P31, DOI 10.1139/f85-260; LASKER R, 1962, J LIPID RES, V3, P60; Lek S, 1996, ECOL MODEL, V90, P39, DOI 10.1016/0304-3800(95)00142-5; LENARZ WH, 1995, REPORTS CALIFORNIA C, V36, P106; Li Jingyin, 1996, North American Journal of Fisheries Management, V16, P840, DOI 10.1577/1548-8675(1996)016<0840:EOWSOY>2.3.CO;2; Liermann M, 1997, CAN J FISH AQUAT SCI, V54, P1976, DOI 10.1139/f97-105; Liermann M, 2001, FISH FISH, V2, P33, DOI 10.1046/j.1467-2979.2001.00029.x; Limburg KE, 1999, FISH B-NOAA, V97, P80; LINCOLN R, 1994, REV FISH BIOL FISHER, V4, P389, DOI 10.1007/BF00042913; Lindenmayer DB, 2000, ECOL APPL, V10, P580, DOI 10.1890/1051-0761(2000)010[0580:TASMFP]2.0.CO;2; Lluch-Belda D., 1992, Fisheries Oceanography, V1, P339, DOI 10.1111/j.1365-2419.1992.tb00006.x; LLUCHBELDA D, 1989, S AFR J MARINE SCI, V8, P195, DOI 10.2989/02577618909504561; LOBONCERVIA J, 1986, HYDROBIOLOGIA, V135, P81, DOI 10.1007/BF00006461; LOCKWOOD SJ, 1980, J CONSEIL, V39, P148; LUDWIG D, 1993, SCIENCE, V260, P17, DOI 10.1126/science.260.5104.17; Lundvall D, 1999, CAN J FISH AQUAT SCI, V56, P1285, DOI 10.1139/cjfas-56-7-1285; LUO JG, 1993, MAR ECOL PROG SER, V98, P223, DOI 10.3354/meps098223; LUTNESKY MMF, 1994, BEHAV ECOL, V5, P375, DOI 10.1093/beheco/5.4.375; Macaluso J., 1999, ADVOCATE; MacCall A.D., 1981, IOC WORKSHOP REP, V28, P201; MacCall A. D., 1990, DYNAMIC GEOGRAPHY MA; Mace Pamela M., 1993, Canadian Special Publication of Fisheries and Aquatic Sciences, V120, P101; MACE PM, 1994, CAN J FISH AQUAT SCI, V51, P110, DOI 10.1139/f94-013; MACKINNON JC, 1972, J FISH RES BOARD CAN, V29, P1749, DOI 10.1139/f72-276; Mackinson S, 1999, CAN J FISH AQUAT SCI, V56, P686, DOI 10.1139/cjfas-56-4-686; Marschall EA, 1996, ECOL APPL, V6, P152, DOI 10.2307/2269561; Marshall CT, 1999, CAN J FISH AQUAT SCI, V56, P347, DOI 10.1139/cjfas-56-3-347; Marshall CT, 1999, CAN J FISH AQUAT SCI, V56, P356, DOI 10.1139/cjfas-56-3-356; MATHUR D, 1985, CAN J FISH AQUAT SCI, V42, P825, DOI 10.1139/f85-105; Maunder MN, 1997, ECOL MODEL, V104, P189, DOI 10.1016/S0304-3800(97)00126-9; Maurer BA, 1998, SCIENCE, V279, P502, DOI 10.1126/science.279.5350.502; McAllister MK, 1998, CAN J FISH AQUAT SCI, V55, P2642, DOI 10.1139/cjfas-55-12-2642; McCann K, 1997, CAN J FISH AQUAT SCI, V54, P1289, DOI 10.1139/cjfas-54-6-1289; McConnaughey Robert A., 1995, Alaska Sea Grant Report, V95-04, P385; McDermot D, 2000, ECOL MODEL, V125, P67, DOI 10.1016/S0304-3800(99)00172-6; McDermot D., 1998, THESIS U TENNESSEE T; MERTZ G, 1995, FISH B-NOAA, V93, P657; Michaletz PH, 1997, T AM FISH SOC, V126, P84, DOI 10.1577/1548-8659(1997)126<0084:FAAGAS>2.3.CO;2; MILLER TJ, 1988, CAN J FISH AQUAT SCI, V45, P1657, DOI 10.1139/f88-197; MILLS EL, 1983, T AM FISH SOC, V112, P154, DOI 10.1577/1548-8659(1983)112<154:IODPOP>2.0.CO;2; MOLLER H, 1990, J CONSEIL, V46, P187; MONTELEONE DM, 1990, J EXP MAR BIOL ECOL, V140, P1, DOI 10.1016/0022-0981(90)90076-O; Morimoto H, 1996, SURVIVAL STRATEGIES IN EARLY LIFE STAGES OF MARINE RESOURCES, P3; MURDOCH WW, 1969, ECOL MONOGR, V39, P335, DOI 10.2307/1942352; Murdoch WW, 1975, ADV ECOL RES, V9, P1, DOI DOI 10.1016/S0065-2504(08)60288-3; MURRAY BG, 1994, OIKOS, V69, P520, DOI 10.2307/3545865; MUTH K M, 1986, North American Journal of Fisheries Management, V6, P168, DOI 10.1577/1548-8659(1986)6<168:CIGAMO>2.0.CO;2; Myers R.A., 1995, CANADIAN TECHNICAL R; Myers RA, 1999, CAN J FISH AQUAT SCI, V56, P2404, DOI 10.1139/cjfas-56-12-2404; Myers RA, 1995, MAR ECOL PROG SER, V128, P308; MYERS RA, 1995, SCIENCE, V269, P1106, DOI 10.1126/science.269.5227.1106; Myers RA, 1998, FISH RES, V37, P51; Myers RA, 1996, FISH B-NOAA, V94, P707; MYERS RA, 1993, CAN J FISH AQUAT SCI, V50, P1576, DOI 10.1139/f93-179; NIKOLSKY G, 1973, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V164, P174; Nikolsky G. V., 1969, THEORY FISH POPULATI; Nisbet Roger M., 1996, P257, DOI 10.1016/B978-012627255-0/50015-X; NMFS (National Marine Fisheries Service), 1998, REP C STAT FISH US; NRC (National Research Council), 1999, SUST MAR FISH; PACE ML, 1993, CAN J FISH AQUAT SCI, V50, P1976, DOI 10.1139/f93-220; Parker R.O., 1994, FISHERY B, V92, P787; Pauly D, 1998, SCIENCE, V279, P860, DOI 10.1126/science.279.5352.860; Peebles EB, 1996, MAR ECOL PROG SER, V131, P61, DOI 10.3354/meps131061; PEPIN P, 1991, CAN J FISH AQUAT SCI, V48, P1820, DOI 10.1139/f91-215; PERROW MR, 1990, HYDROBIOLOGIA, V191, P67, DOI 10.1007/BF00026040; PETERMAN RM, 1987, CAN J FISH AQUAT SCI, V44, P48, DOI 10.1139/f87-006; PETERMAN RM, 1978, J FISH RES BOARD CAN, V35, P797, DOI 10.1139/f78-129; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Planes S, 1998, OIKOS, V83, P293, DOI 10.2307/3546840; Policansky D, 1998, ECOL APPL, V8, pS119, DOI 10.2307/2641369; Polovina JJ, 1999, FISH B-NOAA, V97, P132; POST JR, 1989, CAN J FISH AQUAT SCI, V46, P1958, DOI 10.1139/f89-246; POULIN R, 1995, ECOL MONOGR, V65, P283, DOI 10.2307/2937061; Railsback SF, 2001, ECOL MODEL, V139, P47, DOI 10.1016/S0304-3800(01)00228-9; Rauck G., 1978, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V172, P266; Reinhardt UG, 1999, CAN J FISH AQUAT SCI, V56, P1206, DOI 10.1139/cjfas-56-7-1206; RICE JA, 1987, T AM FISH SOC, V116, P703, DOI 10.1577/1548-8659(1987)116<703:EOMRLS>2.0.CO;2; Ricker W. E., 1975, B FISHERIES RES BOAR, V191; Rickman SJ, 2000, CAN J FISH AQUAT SCI, V57, P116, DOI 10.1139/cjfas-57-1-116; RIEMAN BE, 1992, T AM FISH SOC, V121, P178, DOI 10.1577/1548-8659(1992)121<0178:IOFDAR>2.3.CO;2; RIJNSDORP AD, 1994, NETH J SEA RES, V32, P255, DOI 10.1016/0077-7579(94)90003-5; RIJNSDORP AD, 1992, MAR ECOL PROG SER, V88, P19, DOI 10.3354/meps088019; RIJNSDORP AD, 1994, NETH J SEA RES, V32, P207, DOI 10.1016/0077-7579(94)90041-8; RIJNSDORP AD, 1990, NETH J SEA RES, V25, P279, DOI 10.1016/0077-7579(90)90027-E; Rodd FH, 1997, ECOLOGY, V78, P405; ROFF DA, 1982, CAN J FISH AQUAT SCI, V39, P1686, DOI 10.1139/f82-225; ROGERS BA, 1981, T AM FISH SOC, V110, P100, DOI 10.1577/1548-8659(1981)110<100:LSOEOT>2.0.CO;2; Rose K.A., 1992, Fisheries Oceanography, V1, P281, DOI 10.1111/j.1365-2419.1992.tb00001.x; Rose K.A., 2000, ENVIRON SCI POLICY, V3, ps433; Rose KA, 1999, ECOL MONOGR, V69, P127, DOI 10.1890/0012-9615(1999)069[0127:IBMOYP]2.0.CO;2; Rose KA, 1996, CAN J FISH AQUAT SCI, V53, P1071, DOI 10.1139/cjfas-53-5-1071; ROSENBERG AA, 1982, MAR BIOL, V72, P73, DOI 10.1007/BF00393950; ROSENBERG AA, 1994, CAN J FISH AQUAT SCI, V51, P2715, DOI 10.1139/f94-271; Rothschild B. J., 1986, DYNAMICS MARINE FISH; ROTHSCHILD BJ, 1989, J CONSEIL, V45, P131; ROTHSCHILD BJ, 1989, J CONSEIL, V45, P136; ROYAMA T, 1977, ECOL MONOGR, V47, P1, DOI 10.2307/1942222; Rykiel EJ, 1996, ECOL MODEL, V90, P229, DOI 10.1016/0304-3800(95)00152-2; Saila S., 1991, EN7178 EL POW RES I; Saila S.B., 1987, EA5200 EL POW RES I, V1; SAILA SB, 1992, T AM FISH SOC, V121, P211, DOI 10.1577/1548-8659(1992)121<0211:AOFGTT>2.3.CO;2; Sanderson BL, 1999, CAN J FISH AQUAT SCI, V56, P1534, DOI 10.1139/cjfas-56-9-1534; SCHAAF WE, 1987, ESTUARIES, V10, P267, DOI 10.2307/1351854; SCHAEFER MB, 1991, B MATH BIOL, V53, P253, DOI 10.1007/BF02464432; Schirripa M.J., 1999, SUSTAINABLE FISHERIE; SCHNEIDER DC, 1989, J FISH BIOL, V35, P109; Schramm Harold L. Jr., 1995, North American Journal of Fisheries Management, V15, P671; SECOR DH, 1995, ICES J MAR SCI, V52, P87, DOI 10.1016/1054-3139(95)80018-2; Shelton PA, 1999, CAN J FISH AQUAT SCI, V56, P1521, DOI 10.1139/cjfas-56-9-1521; Shepherd J.G., 1984, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V185, P255; Shima JS, 1999, ECOL LETT, V2, P304, DOI 10.1046/j.1461-0248.1999.00089.x; Shima JS, 2001, OECOLOGIA, V126, P58, DOI 10.1007/s004420000486; Shuter BJ, 1998, CAN J FISH AQUAT SCI, V55, P2161, DOI 10.1139/cjfas-55-9-2161; SIBLY R, 1986, J THEOR BIOL, V123, P311, DOI 10.1016/S0022-5193(86)80246-6; SINCLAIR M, 1985, CAN J FISH AQUAT SCI, V42, P602, DOI 10.1139/f85-078; Sissenwine M.P., 1984, Life Sciences Research Report, P59; Smith C., 1991, Reviews in Fish Biology and Fisheries, V1, P41, DOI 10.1007/BF00042661; SMITH PE, 1989, FISH B-NOAA, V87, P497; Sogard SM, 1997, B MAR SCI, V60, P1129; Stearns SC, 1993, EVOLUTION LIFE HIST; Steele MA, 1997, OECOLOGIA, V112, P64, DOI 10.1007/s004420050284; Stepien CA, 1995, AM FISH S S, V17, P263; STEWARTOATEN A, 1990, J ANIM ECOL, V59, P1027, DOI 10.2307/5029; STRONG DR, 1986, TRENDS ECOL EVOL, V1, P39, DOI 10.1016/0169-5347(86)90071-6; SWAIN DP, 1994, CAN J FISH AQUAT SCI, V51, P1046, DOI 10.1139/f94-104; SWARTZMAN G, 1995, CAN J FISH AQUAT SCI, V52, P369, DOI 10.1139/f95-039; Swartzman G, 1996, ECOL MODEL, V92, P277, DOI 10.1016/0304-3800(95)00179-4; Szedlmayer ST, 1997, COPEIA, P846, DOI 10.2307/1447304; Takeuchi M., 1981, B TOKAI REGIONAL FIS, V104, P111; Thorrold SR, 1998, MAR ECOL PROG SER, V173, P253, DOI 10.3354/meps173253; Townsend C.R., 1981, P86; TOWNSHEND TJ, 1984, J FISH BIOL, V24, P91, DOI 10.1111/j.1095-8649.1984.tb04779.x; TREASURER JW, 1992, ENVIRON BIOL FISH, V34, P65, DOI 10.1007/BF00004785; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Tsuruta Y., 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V108, P111; Turchin Peter, 1995, P19, DOI 10.1016/B978-012159270-7/50003-8; TYLER JA, 1994, REV FISH BIOL FISHER, V4, P91, DOI 10.1007/BF00043262; Uchmanski J, 1996, TRENDS ECOL EVOL, V11, P437, DOI 10.1016/0169-5347(96)20091-6; Van Winkle W., 1997, EARLY LIFE HIST RECR, P126; VANDERVEER HW, 1987, MAR ECOL PROG SER, V35, P203, DOI 10.3354/meps035203; VANDERVEER HW, 1986, MAR ECOL PROG SER, V29, P223, DOI 10.3354/meps029223; Walters C, 1999, REV FISH BIOL FISHER, V9, P187, DOI 10.1023/A:1008991021305; Walters C, 2000, MAR ECOL PROG SER, V208, P309; Walters C.J., 1992, Fisheries Oceanography, V1, P11, DOI 10.1111/j.1365-2419.1992.tb00021.x; WALTERS CJ, 1981, CAN J FISH AQUAT SCI, V38, P704, DOI 10.1139/f81-093; WARREN ML, 1994, FISHERIES, V19, P6, DOI 10.1577/1548-8446(1994)019<0006:SOFFOT>2.0.CO;2; WATANABE T, 1984, B JPN SOC SCI FISH, V50, P1207; WATANABE T, 1984, B JPN SOC SCI FISH, V50, P1023; WATANABE T, 1984, B JPN SOC SCI FISH, V50, P503; WERNER EE, 1981, AM ZOOL, V21, P813; WERNER EE, 1974, ECOLOGY, V55, P1042, DOI 10.2307/1940354; Werner FE, 1996, DEEP-SEA RES PT II, V43, P1793, DOI 10.1016/S0967-0645(96)00042-2; Wiley MJ, 1997, FRESHWATER BIOL, V37, P133, DOI 10.1046/j.1365-2427.1997.00152.x; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WOLDA H, 1994, OECOLOGIA, V98, P229, DOI 10.1007/BF00341476; WOOTTON RJ, 1977, J ANIM ECOL, V46, P823, DOI 10.2307/3643; ZASTROW CE, 1991, MAR ECOL PROG SER, V73, P161, DOI 10.3354/meps073161; ZASTROW CE, 1989, RAP PROCES, V191, P34 310 318 329 5 94 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1467-2960 1467-2979 FISH FISH Fish. Fish. DEC 2001 2 4 293 327 10.1046/j.1467-2960.2001.00056.x 35 Fisheries Fisheries V33BE WOS:000208993500001 2018-11-12 J Sadovy, Y Sadovy, Y The threat of fishing to highly fecund fishes JOURNAL OF FISH BIOLOGY English Article; Proceedings Paper Annual Symposium of the Fisheries-Society-of-the-British-Isles JUL 09-13, 2001 LEICESTER, ENGLAND Fisheries Soc British Isles fisher; extinction; overexploitation; conservation; endangerment; management; life history; strategy CORAL-REEF FISH; SOUTHEASTERN UNITED-STATES; PROTOGYNOUS SEX-CHANGE; LIFE-HISTORY; MARINE FISHES; EXTINCTION RISK; GADUS-MORHUA; RECRUITMENT VARIATION; POPULATION-DYNAMICS; REPRODUCTIVE STYLES The last decade has witnessed a growing awareness that fishes can not only be severely overfished but could also be threatened with extinction through over-exploitation. Among commercially important species, those particularly at risk are large and slow to mature, iteroparous and may have sporadic recruitment. The threat of extirpation or extinction may be greater if species are particularly valuable, have a limited geographical range, are part of mixed-species fisheries, or are distributed solely within areas of intense fishing activity. Significantly, there is little empirical or theoretical basis for hypothesizing that highly fecund species are any less at risk than those of low fecundity as is often assumed. Indeed, the use of fecundity in estimating reproductive output in long-lived, highly fecund, pelagic egg-producing species may be deeply flawed. A general resistance to accepting that fecund marine fishes could become endangered through exploitation stems from poor understanding of population dynamics, especially in the early post-settlement phase, coupled with assumptions of fishers models that ignore critical components of life history theory. Moreover, faith in the ability to manage exploited species effectively leads to the perception that severe declines are management. rather than conservation. issues. The growing list of threatened marine species and a realization of the many factors that place them at risk indicate the need to be precautionary about the possibility of extinction. and about the criteria used to assess such risk. with important implications for research. monitoring and Management. (C) 2001 The Fisheries Society of the British Isles. Univ Hong Kong, Dept Ecol & Biodivers, Hong Kong, Hong Kong, Peoples R China Sadovy, Y (reprint author), Univ Hong Kong, Dept Ecol & Biodivers, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China. yjsadovy@hkusua.hku.hk Sadovy, Yvonne/D-3121-2009 ADAMS PB, 1980, FISH B-NOAA, V78, P1; Archibald C.P., 1983, North American Journal of Fisheries Management, V3, P283, DOI 10.1577/1548-8659(1983)3<283:ROSHAD>2.0.CO;2; Baillie J., 1996, 1996 IUCN RED LIST T; Barrera-Guevara J. C., 1990, J FISH BIOL S, V37, P201; BEVERTON RJH, 1990, J FISH BIOL, V37, P5, DOI 10.1111/j.1095-8649.1990.tb05015.x; BEVERTON RJH, 1992, NETH J ZOOL, V42, P139; BEVERTON RJH, 1986, BASIC LIFE SCI, V42, P161; Boehlert G. W., 1996, REEF FISHERIES, P61; BRANDER K, 1981, NATURE, V290, P48, DOI 10.1038/290048a0; BRUTON MN, 1995, ENVIRON BIOL FISH, V43, P1, DOI 10.1007/BF00001812; Cambray JA, 2000, ENVIRON BIOL FISH, V59, P353, DOI 10.1023/A:1026577132124; Carlton JT, 1999, ANNU REV ECOL SYST, V30, P515, DOI 10.1146/annurev.ecolsys.30.1.515; Casey JM, 1998, SCIENCE, V281, P690, DOI 10.1126/science.281.5377.690; CISNEROSMATA MA, 1995, CONSERV BIOL, V9, P806, DOI 10.1046/j.1523-1739.1995.09040806.x; Coleman FC, 1996, ENVIRON BIOL FISH, V47, P129, DOI 10.1007/BF00005035; Coleman FC, 1999, AM FISH S S, V23, P233; COLIN PL, 1992, ENVIRON BIOL FISH, V34, P357, DOI 10.1007/BF00004740; Courchamp F, 1999, TRENDS ECOL EVOL, V14, P405, DOI 10.1016/S0169-5347(99)01683-3; Crouse DT, 1999, AM FISH S S, V23, P195; CULOTTA E, 1994, SCIENCE, V263, P918, DOI 10.1126/science.263.5149.918; DODSON JJ, 1988, ENVIRON BIOL FISH, V23, P161, DOI 10.1007/BF00004908; DONALDSON TJ, 2002, IN PRESS ENV BIOL FI; Dulvy NK, 2000, CONSERV BIOL, V14, P283, DOI 10.1046/j.1523-1739.2000.98540.x; ELGAR MA, 1990, OIKOS, V59, P283, DOI 10.2307/3545546; FERREIRA BP, 1995, FISH B-NOAA, V93, P629; FISHER R. A., 1930, GENETICAL THEORY NAT; Frank KT, 2000, CAN J FISH AQUAT SCI, V57, P513, DOI 10.1139/cjfas-57-3-513; GOODMAN D, 1982, AM NAT, V119, P803, DOI 10.1086/283956; GOODYEAR CP, 1989, SCRS8982 ICCAT, P1; Grimes CB, 1999, AM FISH S S, V23, P17; Harvey P. H., 1991, COMP METHOD EVOLUTIO; Hawkins JP, 2000, ANIM CONSERV, V3, P81, DOI 10.1111/j.1469-1795.2000.tb00089.x; Hayes E, 1997, REV SO BLUEFIN TUNA; HELFMAN GS, 1984, ANIM BEHAV, V32, P379, DOI 10.1016/S0003-3472(84)80272-9; HENDRICKSON JR, 1979, OCEANS SEP, P14; Hilborn R., 1992, QUANTITATIVE FISHERI; Huntsman GR, 1999, AM FISH S S, V23, P217; HUNTSMAN GR, 1994, FISHERIES, V19, P8, DOI 10.1577/1548-8446(1994)019<0008:EMFNRO>2.0.CO;2; HUNTSMAN GR, 1994, P GULF CARIBBEAN FIS, P193; HUNTSMAN GR, 1995, TRENDS POPULATION ST; Hutchings JA, 2000, MAR ECOL PROG SER, V208, P299; Hutchings JA, 2001, CAN J FISH AQUAT SCI, V58, P108, DOI 10.1139/cjfas-58-1-108; Hutchings JA, 2000, NATURE, V406, P882, DOI 10.1038/35022565; Hutchings JA, 1999, CAN J FISH AQUAT SCI, V56, P97, DOI 10.1139/cjfas-56-1-97; Jennings S, 1999, J ANIM ECOL, V68, P617, DOI 10.1046/j.1365-2656.1999.00312.x; Jennings S, 1999, CONSERV BIOL, V13, P1466, DOI 10.1046/j.1523-1739.1999.98324.x; Jennings S, 1998, P ROY SOC B-BIOL SCI, V265, P333, DOI 10.1098/rspb.1998.0300; JENNINGS S, 1996, REEF FISHERIES, P193; Johannes RE, 1998, TRENDS ECOL EVOL, V13, P243, DOI 10.1016/S0169-5347(98)01384-6; Johannes RE, 1999, MARINE CONSERVATION, V1; Jones GP, 1999, NATURE, V402, P802, DOI 10.1038/45538; Katsukawa T, 1997, REV FISH BIOL FISHER, V7, P285, DOI 10.1023/A:1018435711128; KOENIG CC, 1996, BIOL FISHERIES CULTU, P307; Koslow JA, 1995, J FISH BIOL, V47, P1063, DOI 10.1111/j.1095-8649.1995.tb06030.x; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; LEAMAN BM, 1991, ENVIRON BIOL FISH, V30, P253, DOI 10.1007/BF02296893; LEAMAN BM, 1984, INT N PAC FISH COMM, V42, P85; LEAMAN BM, 1987, P INT ROCKFISH S, P355; Liermann M, 1997, CAN J FISH AQUAT SCI, V54, P1976, DOI 10.1139/f97-105; LUTNESKY MMF, 1994, BEHAV ECOL, V5, P375, DOI 10.1093/beheco/5.4.375; Lutnesky MMF, 1996, COPEIA, P209; Mace GM, 1999, CONSERV BIOL, V13, P242, DOI 10.1046/j.1523-1739.1999.013002242.x; Mace Pamela M., 1993, Canadian Special Publication of Fisheries and Aquatic Sciences, V120, P101; MACKENZIE D, 1995, NEW SCI 0916, P24; Matsuda H, 1997, ECOL RES, V12, P345, DOI 10.1007/BF02529464; McGovern JC, 1998, FISH B-NOAA, V96, P797; MCSHANE PE, 1995, MAR FRESHWATER RES, V46, P555, DOI 10.1071/MF9950555; Moller AP, 2001, OIKOS, V92, P27, DOI 10.1034/j.1600-0706.2001.920104.x; Morris AV, 2000, BIODIVERS CONSERV, V9, P919, DOI 10.1023/A:1008996002822; Moyle Peter B., 1992, P127; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; Musick JA, 1999, FISHERIES, V24, P6, DOI 10.1577/1548-8446(1999)024<0006:CTDERI>2.0.CO;2; Musick JA, 2000, FISHERIES, V25, P6, DOI 10.1577/1548-8446(2000)025<0006:MEADFS>2.0.CO;2; Myers RA, 1999, CAN J FISH AQUAT SCI, V56, P2404, DOI 10.1139/cjfas-56-12-2404; Myers RA, 1997, ECOL APPL, V7, P91, DOI 10.1890/1051-0761(1997)007[0091:WDFSCT]2.0.CO;2; MYERS RA, 1995, SCIENCE, V269, P1106, DOI 10.1126/science.269.5227.1106; Myers RA, 1997, FISH B-NOAA, V95, P762; Myers RA, 1996, FISH B-NOAA, V94, P707; NEAVE FERRIS, 1953, JOUR FISH RES BD CANADA, V9, P450; PANKHURST NW, 1993, GEN COMP ENDOCR, V90, P168, DOI 10.1006/gcen.1993.1071; PARKER SJ, 2000, AM FISHERIES SOC POL, P1; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Pauly D, 1998, SCIENCE, V279, P860, DOI 10.1126/science.279.5352.860; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Pitcher T.J., 1998, FISHERIES CTR RES RE, V6, P1; *PLAN DEV TEAM, 1990, NMFSSEFC261 NOAA; Planes S, 1998, MAR BIOL, V130, P361, DOI 10.1007/s002270050256; PLANES S, 1993, MAR ECOL PROG SER, V98, P237, DOI 10.3354/meps098237; POLLOCK BR, 1984, MAR ECOL PROG SER, V19, P17, DOI 10.3354/meps019017; Reynolds J. D., 2001, CONSERVATION EXPLOIT; Ricker W. E., 1975, B FISH RES BOARD CAN, V191, P1; Rickman SJ, 2000, CAN J FISH AQUAT SCI, V57, P116, DOI 10.1139/cjfas-57-1-116; RIJNSDORP AD, 1991, J CONSEIL, V47, P352; Roberts CM, 1999, TRENDS ECOL EVOL, V14, P241, DOI 10.1016/S0169-5347(98)01584-5; ROBERTS CM, 1996, REEF FISHERIES, P85; ROBERTSON DR, 1993, MAR ECOL PROG SER, V94, P105, DOI 10.3354/meps094105; Rochet MJ, 1998, ICES J MAR SCI, V55, P371, DOI 10.1006/jmsc.1997.0324; ROFF DA, 1981, CAN J FISH AQUAT SCI, V38, P968, DOI 10.1139/f81-130; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; ROFF DA, 1982, CAN J FISH AQUAT SCI, V39, P1686, DOI 10.1139/f82-225; Rogers SI, 2000, ICES J MAR SCI, V57, P866, DOI 10.1006/jmsc.2000.0574; Sadovy Y., 1999, FAO FISHERIES SYNOPS, V146; Sadovy Y, 1993, REEF ENCOUNTER, V13, P10; Sadovy Y., 2000, REEF FISHES HONG KON; Sadovy Y., 1996, REEF FISHERIES, P15, DOI DOI 10.1007/978-94-015-8779-2_2; Sadovy YJ, 2002, CORAL REEF FISHES DY; SAFINA C, 1995, SCI AM, V273, P46, DOI 10.1038/scientificamerican1195-46; Sale PF, 2000, OECOLOGIA, V124, P166, DOI 10.1007/s004420050003; SHAPIRO DY, 1989, PERSP VERT, V6, P177; Shelton PA, 1999, CAN J FISH AQUAT SCI, V56, P1521, DOI 10.1139/cjfas-56-9-1521; SHEPHERD SA, 1993, CAN J FISH AQUAT SCI, V50, P2001, DOI 10.1139/f93-224; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stephens PA, 1999, TRENDS ECOL EVOL, V14, P401, DOI 10.1016/S0169-5347(99)01684-5; Stevens JD, 2000, ICES J MAR SCI, V57, P476, DOI 10.1006/jmsc.2000.0724; Swearer SE, 1999, NATURE, V402, P799, DOI 10.1038/45533; TYLER WA, 1995, ANIM BEHAV, V49, P949; Vincent A, 1998, BEHAVIORAL ECOLOGY AND CONSERVATION BIOLOGY, P209; Walker PA, 1998, ICES J MAR SCI, V55, P392, DOI 10.1006/jmsc.1997.0325; Walters C, 2001, CAN J FISH AQUAT SCI, V58, P39, DOI 10.1139/cjfas-58-1-39; WARNER RR, 1995, P ROY SOC B-BIOL SCI, V262, P135, DOI 10.1098/rspb.1995.0187; WARNER RR, 1984, AM SCI, V72, P128; Wielebnowski N, 1998, BEHAVIORAL ECOLOGY AND CONSERVATION BIOLOGY, P130 123 64 67 1 18 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-1112 J FISH BIOL J. Fish Biol. DEC 2001 59 A 90 108 10.1006/jfbi.2001.1760 19 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 516FG WOS:000173541100006 2018-11-12 J Gauthier, G; Pradel, R; Menu, S; Lebreton, JD Gauthier, G; Pradel, R; Menu, S; Lebreton, JD Seasonal survival of Greater Snow Geese and effect of hunting under dependence in sighting probability ECOLOGY English Article additive mortality; capture recapture; Chen caerulescens atlantica; Greater Snow Geese; hunting immortality; seasonal survival rate; sighting dependence CAPTURE-RECAPTURE DATA; BARNACLE GEESE; CANADA GEESE; MARKED INDIVIDUALS; BRANTA-LEUCOPSIS; MODEL SELECTION; ADULT SURVIVAL; RECOVERY RATES; EMPEROR GEESE; MIGRATION Although much of life-history theory assumes increased mortality at certain stages (e.g., migration), survival rates are rarely estimated on a seasonal basis within the annual cycle of migratory species. We estimated variations in seasonal survival rates in a long-lived, hunted species in the presence of short-term (between consecutive seasons) and long-term (between years in the same season) dependence in sighting probabilities. We also tested the two contrasting hypotheses that hunting mortality is either compensatory or additive to natural mortality. This study was conducted on adult female Greater Snow Geese (Chen caeruldescens atlantica) from 1990 to 1998, and is based on 3890 neck-banded birds and 13 657 resightings on the northern breeding grounds in summer, and southern staging areas in spring and autumn. Birds were 10-20% more likely to be seen in autumn and spring if they were seen on the previous occasion (summer and autumn, respectively). Birds were 30-40% more likely to be seen in autumn and spring if they were last seen in the same season in the previous year. Differences in behavior according to family status (presence or absence of young) and heterogeneity in site fidelity may explain the dependence in sighting probabilities; failure to account for this may lead to biased survival estimates. Monthly survival rates from spring to summer (3-mo period) and summer to autumn (2.5-mo period) were equal (0.989 +/- 0.003, mean +/- SE) and showed little variation over the years., even though the two lengthy migratory flights (3000 krn each) and breeding occurred during these periods. In contrast, monthly winter survival (from autumn to spring, 6.5 mo) was lower than during the other seasons and varied significantly over the years (range 0.936 +/- 0.021 to 0.993 +/- 0.008). Mean survival of adult females (corrected for neck band loss) was 0.96 from spring to autumn, 0.86 during winter, and 0.83 +/- 0.05 for the whole year. Natural mortality (i.e., excluding hunting) was equal among seasons and did not vary over the years, which suggests that mortality risk is not increased during migration or reproduction. There was a significant inverse relationship between winter survival and the kill rate (b = - 1.21 +/- 0.56), which suggests that hunting mortality was additive to natural mortality. This is probably a general feature of long-lived species because their low and relatively constant natural mortality rate does not allow them to compensate for an additional source of mortality such as hunting. Contrary to life-history theory, we did not find evidence that migration or reproduction entailed a survival cost in this long-distance migrant bird. Univ Laval, Dept Biol, Ste Foy, PQ G1K 7P4, Canada; Univ Laval, Ctr Etud Nord, Ste Foy, PQ G1K 7P4, Canada; CNRS, Ctr Ecol Fonct & Evolut, F-34293 Montpellier 5, France Gauthier, G (reprint author), Univ Laval, Dept Biol, Ste Foy, PQ G1K 7P4, Canada. gilles.gauthier@bio.ulaval.ca Pradel, Roger/A-8666-2008 Pradel, Roger/0000-0002-2684-9251 AGRESTI A, 1990, CATEGORICAL DATA ANA; Alerstam T., 1990, BIRD MIGRATION; ANDERSON DR, 1994, ECOLOGY, V75, P1780, DOI 10.2307/1939637; ANDERSON R, 1976, POPULATION ECOLOGY M, V128; BLACK JM, 1989, ANIM BEHAV, V37, P199, DOI 10.1016/0003-3472(89)90110-3; BLACK JM, 1989, ANIM BEHAV, V37, P187, DOI 10.1016/0003-3472(89)90109-7; BLOHM RJ, 1987, T N AM WILDL NAT RES, V52, P246; Boyce MS, 1999, OIKOS, V87, P419, DOI 10.2307/3546808; BOYD H, 1978, 43 CAN WILDL SERV; BURNHAM KP, 1995, BIOMETRICS, V51, P888, DOI 10.2307/2532990; BURNHAM KP, 1984, ECOLOGY, V65, P105; BURNHAM KP, 1987, AM FISHERIES SOC MON, V5; CAROTHERS AD, 1973, BIOMETRICS, V29, P79, DOI 10.2307/2529678; Cezilly F, 1996, ECOLOGY, V77, P1143, DOI 10.2307/2265583; COOCH EG, 1991, BIRD POPULATION STUD, P168; COOKE FC, 1995, SNOW GEESE PEROUSE B; Cooke Fred, 2000, Canadian Wildlife Service Occasional Paper, V102, P17; CORMACK RM, 1964, BIOMETRIKA, V51, P429, DOI 10.1093/biomet/51.3-4.429; CROXALL JP, 1990, J ANIM ECOL, V59, P775, DOI 10.2307/4895; EBBINGE BS, 1991, ARDEA, V79, P197; EBBINGE BS, 1991, ARDEA, V79, P73; ERRINGTON PL, 1945, ECOL MONOGR, V15, P1, DOI 10.2307/1943293; FRANCIS CM, 1992, ECOLOGY, V73, P1346, DOI 10.2307/1940681; Francis CM, 1998, J WILDLIFE MANAGE, V62, P1544, DOI 10.2307/3802021; FRANCIS CM, 1992, AUK, V109, P731, DOI 10.2307/4088149; FRANCIS CM, 1992, J WILDLIFE MANAGE, V56, P287, DOI 10.2307/3808825; Gauthier G, 1996, GEOSCI CAN, V23, P253; GAUTHIER G, 1997, P SURV METH SECT STA, P151; Greenberg R., 1980, P493; HARGROVE JW, 1994, BIOMETRICS, V50, P1129, DOI 10.2307/2533449; Hestbeck J. B., 1990, T N AM WILDL NAT RES, V55, P350; HESTBECK JB, 1994, J WILDLIFE MANAGE, V58, P748, DOI 10.2307/3809690; HESTBECK JB, 1992, CAN J ZOOL, V70, P2021, DOI 10.1139/z92-273; HINES JE, 1999, 98 CAN WILDL SERV, P89; JOHNSON SR, 1995, J WILDLIFE MANAGE, V59, P747, DOI 10.2307/3801951; JOLLY GM, 1965, BIOMETRIKA, V52, P225, DOI 10.2307/2333826; Lebreton JD, 1995, J APPL STAT, V22, P1009, DOI 10.1080/02664769524766; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lebreton JD, 1991, BIRD POPULATION STUD, P105; Link WA, 1999, J WILDLIFE MANAGE, V63, P1017, DOI 10.2307/3802817; MAISONNEUVE C, 1993, CAN FIELD NAT, V107, P305; MAISONNEUVE C, 1992, J WILDLIFE MANAGE, V56, P55, DOI 10.2307/3808790; Menu S, 2000, J WILDLIFE MANAGE, V64, P544, DOI 10.2307/3803252; Nichols J. D., 1990, P 1988 N AM WOOD DUC, P83; Nichols J.D., 1991, BIRD POPULATION STUD, P498; Nichols James D., 1996, P147; NICHOLS JD, 1984, T N AM WILDL NAT RES, V49, P535; O'Connor R.J., 1985, P105; OTIS DL, 1978, WILDLIFE MONOGR, P1; OWEN M, 1989, J ANIM ECOL, V58, P603, DOI 10.2307/4851; Owen M., 1982, Aquila, V89, P229; Owen M, 1991, BIRD POPULATION STUD, P360; Pienkowski M.W., 1985, P331; Pradel R, 1995, J APPL STAT, V22, P695, DOI 10.1080/02664769524559; Pradel R, 1997, BIOMETRICS, V53, P60, DOI 10.2307/2533097; Pradel R., 1993, P29; Prevett JP, 1980, WILDLIFE MONOGRAPHS, V71; Prevot-Julliard AC, 1998, AUK, V115, P85; RAVELING DG, 1979, J WILDLIFE MANAGE, V43, P229, DOI 10.2307/3800660; REED A, 1989, J WILDLIFE MANAGE, V53, P720, DOI 10.2307/3809203; Reed A., 1998, ARCTIC GOOSE JOINT V, P5; Reed ET, 1998, CONDOR, V100, P426, DOI 10.2307/1369708; REXSTAD EA, 1992, J WILDLIFE MANAGE, V56, P297, DOI 10.2307/3808826; SANDLAND RL, 1981, BIOMETRIKA, V68, P531, DOI 10.2307/2335602; SARGEANT AB, 1984, WILDLIFE MONOGRAPHS, V89; Schmutz JA, 1999, J WILDLIFE MANAGE, V63, P1239, DOI 10.2307/3802841; SCHMUTZ JA, 1994, J WILDLIFE MANAGE, V58, P525, DOI 10.2307/3809325; Schmutz JA, 2000, J WILDLIFE MANAGE, V64, P231, DOI 10.2307/3802995; SEBER GAF, 1965, BIOMETRIKA, V52, P249; SMITH GW, 1992, J WILDLIFE MANAGE, V56, P306, DOI 10.2307/3808827; TEUNISSEN W, 1985, ARDEA, V73, P109; Van der Jeugd HP, 1998, J ANIM ECOL, V67, P953, DOI 10.1046/j.1365-2656.1998.6760953.x; Ward DH, 1997, J WILDLIFE MANAGE, V61, P773, DOI 10.2307/3802184; WHITE GC, 1983, J WILDLIFE MANAGE, V47, P716, DOI 10.2307/3808607 74 82 84 1 35 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 1939-9170 ECOLOGY Ecology NOV 2001 82 11 3105 3119 10.2307/2679838 15 Ecology Environmental Sciences & Ecology 491ZB WOS:000172139500011 2018-11-12 J Warkentin, KM; Currie, CR; Rehner, SA Warkentin, KM; Currie, CR; Rehner, SA Egg-killing fungus induces early hatching of red-eyed treefrog eggs ECOLOGY English Article Agalychnis callidryas; anuran; Dothideales; fungal infection; ontogenetic niche shift; Panama; pathogen; Phaeosphaeriaceae; phenotypic plasticity; red-eyed treefrog; tadpole; timing of hatching PREDATION RISK; ANTIMICROBIAL PEPTIDE; FUNDULUS-HETEROCLITUS; SALAMANDER EGGS; SITE SELECTION; XENOPUS-LAEVIS; FLY LARVAE; FROG; AMPHIBIANS; EMBRYOS Pathogens can cause substantial mortality of amphibian eggs. If the timing of hatching is phenotypically plastic, embryos could escape from otherwise lethal infections by hatching early. We tested this with the arboreal eggs of red-eyed treefrogs, Agalychnis callidryas. A filamentous ascomycete (Dothideales: Phaeosphaeriaceae) was present on similar to7% of egg clutches collected from a pond in the rain forest in Panama and, when present, killed 40% of the eggs, on average. Inoculation experiments confirmed that the fungus attacked and killed healthy embryos, establishing that this fungus is a pathogen of A. callidryas eggs. As predicted from life history theory, embryos hatched earlier from both naturally infected and inoculated clutches than from fungus-free control clutches. Within infected clutches, live embryos in contact with fungal hyphae hatched before those embryos not in contact with the fungus. Accelerated hatching allowed embryos to survive that otherwise would have been killed, and tadpoles hatched from infected clutches were themselves uninfected. Red-eyed treefrog embryos also hatch early if attacked by predators, apparently in response to vibratory cues. Because fungal infection provides no vibratory stimuli, embryos must respond to different cues in fungus-induced hatching than in predator-induced hatching. The behavioral decision of when to hatch is complex and merits further investigation. Our study indicates that pathogens can influence the timing of life history transitions, as do other stage-specific risks. Smithsonian Trop Res Inst, Balboa, Panama; Univ Toronto, Dept Bot, Toronto, ON M5S 3B2, Canada; Univ Puerto Rico, Dept Biol, Rio Piedras, PR 00931 USA Warkentin, KM (reprint author), Boston Univ, Dept Biol, 5 Cummington St, Boston, MA 02215 USA. Warkentin, Karen/0000-0002-7804-800X AGRIOS GN, 1988, PLANT PATHOLOGY; Atlas R. M., 1998, MICROBIAL ECOLOGY FU; BANKS B, 1988, J ANIM ECOL, V57, P475, DOI 10.2307/4919; BELLEMAKERS MJS, 1992, ENVIRON POLLUT, V78, P165, DOI 10.1016/0269-7491(92)90025-6; BLAUSTEIN AR, 1994, BIOL CONSERV, V67, P251, DOI 10.1016/0006-3207(94)90616-5; Blaustein L, 1997, OECOLOGIA, V110, P212, DOI 10.1007/s004420050152; BRADFORD DF, 1988, PHYSIOL ZOOL, V61, P475, DOI 10.1086/physzool.61.6.30156155; Brown RM, 2000, J HERPETOL, V34, P404, DOI 10.2307/1565364; CARROLL EJ, 1974, DEV BIOL, V38, P1, DOI 10.1016/0012-1606(74)90254-1; Chivers DP, 2001, OIKOS, V92, P135, DOI 10.1034/j.1600-0706.2001.920116.x; CLARK DP, 1994, J BIOL CHEM, V269, P10849; Courtney S.P., 1990, Advances in Ecological Research, V20, P225, DOI 10.1016/S0065-2504(08)60056-2; Czeczuga B, 1998, AMPHIBIA-REPTILIA, V19, P239, DOI 10.1163/156853898X00151; DIMICHELE L, 1980, J EXP ZOOL, V214, P181, DOI 10.1002/jez.1402140209; DIMICHELE L, 1981, J EXP ZOOL, V216, P133, DOI 10.1002/jez.1402160114; DOBSON A, 1994, TRENDS ECOL EVOL, V9, P393, DOI 10.1016/0169-5347(94)90062-0; DOBSON AP, 1986, TRENDS ECOL EVOL, V1, P11, DOI 10.1016/0169-5347(86)90060-1; Du Pasquier L, 1996, BIOL XENOPUS, P301; Ewald PW, 1994, EVOLUTION INFECT DIS; FORESTER DC, 1979, COPEIA, P332; Goraya J, 2000, EUR J BIOCHEM, V267, P894, DOI 10.1046/j.1432-1327.2000.01074.x; Green AJ, 1999, FUNCT ECOL, V13, P573; Griem JN, 2000, MAR BIOL, V137, P177, DOI 10.1007/s002270000329; GRIMALDI D, 1994, ENTOMOL SCAND, V25, P129; Harris M, 1941, J EXP ZOOL, V88, P373, DOI 10.1002/jez.1400880304; HARVELL CD, 1990, Q REV BIOL, V65, P323, DOI 10.1086/416841; Havel J.E., 1987, P263; HILDEMANN WH, 1966, PHYLOGENY IMMUNITY, P236; Kam YC, 1996, J HERPETOL, V30, P52, DOI 10.2307/1564706; Kiesecker JM, 1997, CONSERV BIOL, V11, P214, DOI 10.1046/j.1523-1739.1997.95509.x; Kiesecker JM, 1999, ECOLOGY, V80, P2442, DOI 10.2307/176924; KIESECKER JM, 1995, P NATL ACAD SCI USA, V92, P11049, DOI 10.1073/pnas.92.24.11049; Kiesecker JM, 1999, P NATL ACAD SCI USA, V96, P9165, DOI 10.1073/pnas.96.16.9165; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Marcogliese DJ, 1997, TRENDS ECOL EVOL, V12, P320, DOI 10.1016/S0169-5347(97)01080-X; Martin KLM, 1999, AM ZOOL, V39, P279; MINCHELLA DJ, 1991, TRENDS ECOL EVOL, V6, P250, DOI 10.1016/0169-5347(91)90071-5; Moore RD, 1996, OIKOS, V77, P331, DOI 10.2307/3546073; MOR A, 1994, J BIOL CHEM, V269, P31635; ORIANS GH, 1974, AM NAT, V108, P581, DOI 10.1086/282937; PETRANKA JW, 1982, SCIENCE, V217, P257, DOI 10.1126/science.7089563; POULIN R, 1994, ANIM BEHAV, V48, P137, DOI 10.1006/anbe.1994.1220; Poulin R, 1995, INT J PARASITOL, V25, P1371, DOI 10.1016/0020-7519(95)00100-X; PRICE PW, 1986, ANNU REV ECOL SYST, V17, P487, DOI 10.1146/annurev.es.17.110186.002415; REHNER SA, 1994, MYCOL RES, V98, P625, DOI 10.1016/S0953-7562(09)80409-7; REILLY DS, 1994, DEV BIOL, V162, P123, DOI 10.1006/dbio.1994.1072; SCHOOTS AFM, 1982, J ULTRA MOL STRUCT R, V80, P185, DOI 10.1016/S0022-5320(82)90017-X; SIH A, 1993, AM NAT, V142, P947, DOI 10.1086/285583; SIMON MP, 1983, BEHAV ECOL SOCIOBIOL, V14, P61, DOI 10.1007/BF00366657; SKELLY DK, 1990, ECOLOGY, V71, P2313, DOI 10.2307/1938642; VILLA J, 1979, COPEIA, P650; VILLA J, 1977, Journal of Herpetology, V11, P317, DOI 10.2307/1563244; VILLA J, 1983, J HERPETOL, V17, P278, DOI 10.2307/1563832; Villa J., 1980, BRENESIA, V17, P49; Volpe E P, 1980, Monogr Dev Biol, V14, P1; Vonesh JR, 2000, COPEIA, P560, DOI 10.1643/0045-8511(2000)000[0560:DPOTAE]2.0.CO;2; Wabnitz PA, 1998, J PEPT RES, V52, P477; Warkentin KM, 1999, BEHAV ECOL, V10, P251, DOI 10.1093/beheco/10.3.251; Warkentin KM, 1999, BIOL J LINN SOC, V68, P443, DOI 10.1111/j.1095-8312.1999.tb01180.x; Warkentin KM, 2000, ANIM BEHAV, V60, P503, DOI 10.1006/anbe.2000.1508; WARKENTIN KM, 1995, P NATL ACAD SCI USA, V92, P3507, DOI 10.1073/pnas.92.8.3507; Werner E.E., 1988, P60; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; White T.J., 1990, PCR PROTOCOLS GUIDE, P315, DOI DOI 10.1016/B978-0-12-372180-8.50042-1; WILLIAMSON I, 1994, WILDLIFE RES, V21, P621, DOI 10.1071/WR9940621; YAMASAKI H, 1990, GROWTH DIFFERENTIATI, V32, P65; YOSHIZAKI N, 1991, ZOOL SCI, V8, P303; YOSHIZAKI N, 1978, J EXP ZOOL, V203, P127, DOI 10.1002/jez.1402030112 69 64 68 1 12 ECOLOGICAL SOC AMER WASHINGTON 1707 H ST NW, STE 400, WASHINGTON, DC 20006-3915 USA 0012-9658 ECOLOGY Ecology OCT 2001 82 10 2860 2869 10.1890/0012-9658(2001)082[2860:EKFIEH]2.0.CO;2 10 Ecology Environmental Sciences & Ecology 487FN WOS:000171863100015 2018-11-12 J Denoel, M; Joly, P Denoel, M; Joly, P Adaptive significance of facultative paedomorphosis in Triturus alpestris (Amphibia, Caudata): resource partitioning in an alpine lake FRESHWATER BIOLOGY English Article facultative paedomorphosis; feeding; polymorphism; resource partitioning; space use SALAMANDER AMBYSTOMA-TALPOIDEUM; PHENOTYPIC PLASTICITY; TROPHIC POLYMORPHISM; NEWTS TRITURUS; GENETIC-BASIS; ARCTIC CHARR; PEDOMORPHOSIS; EVOLUTION; HETEROCHRONY; METAMORPHOSIS 1. Facultative paedomorphosis is a polymorphism that has important evolutionary implications in promoting morphological differentiation and variation in habitat use. It occurs in several urodele species throughout the world. Several hypotheses based on life-history theory have been proposed to explain the wide range of habitats in which facultative paedomorphosis occurs, suggesting multifactorial causes. 2. In harsh habitats, such as mountain lakes, paedomorphosis might promote niche partitioning between morphs. This hypothesis was tested by comparing micro-habitat use and diet of two coexisting morphs in an alpine lake. 3. Paedomorphs occupied all microhabitats in the lake while metamorphs occurred only along the shoreline or at the water surface. Paedomorphic newts were frequent in deep water, where they foraged mainly on plankton. Plankton was poorly exploited by metamorphic newts, which fed mainly on terrestrial insects. Difference between morphs in microhabitat use, and consequently in the diet, were consistent in both sexes and in juveniles. 4. In adults, the mass and energy value of stomach contents did not differ between morphs, suggesting a similar food availability in the habitats occupied. 5. This study indicates habitat partitioning between morphs involving dietary differences. Specific benefits and costs of each ontogenetic pathway may allow their coexistence in this deep and fishless lake. Paedomorphosis benefits individual newts by making new food resources available and presumably reducing competition at the shore of the lake. However, the proximate causes of such an ontogenetic switch remain unclear. Univ Liege, Dept Ethol & Anim Psychol, Lab Fish & Amphibian Ethol, B-4020 Liege, Belgium; Univ Lyon 1, F-69622 Villeurbanne, France Denoel, M (reprint author), Univ Liege, Dept Ethol & Anim Psychol, Lab Fish & Amphibian Ethol, Quai Beneden 22, B-4020 Liege, Belgium. Denoel, Mathieu/0000-0002-3586-8323 ANSTEY RL, 1987, PALEOBIOLOGY, V13, P20; Breuil M, 1986, THESIS PARIS SUD U P; CHACORNAC JM, 1985, ACTA OECOL-OEC GEN, V6, P93; Cummins K. W, 1971, Mitt int Verein theor angew Limnol, VNo. 18, P1; DAY RW, 1989, ECOL MONOGR, V59, P433, DOI 10.2307/1943075; Denoel M, 2000, P ROY SOC B-BIOL SCI, V267, P1481, DOI 10.1098/rspb.2000.1168; Denver RJ, 1998, ECOLOGY, V79, P1859, DOI 10.1890/0012-9658(1998)079[1859:APIAMR]2.0.CO;2; FASOLA M, 1993, ECOGRAPHY, V16, P73, DOI 10.1111/j.1600-0587.1993.tb00060.x; FASOLA M, 1992, B ZOOL, V59, P273, DOI 10.1080/11250009209386682; Gould S.J., 1977, ONTOGENY PHYLOGENY; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; HAFNER MS, 1984, EVOLUTION, V38, P1088, DOI 10.1111/j.1558-5646.1984.tb00378.x; HARRIS RN, 1990, EVOLUTION, V44, P1588, DOI 10.1111/j.1558-5646.1990.tb03848.x; HARRIS RN, 1987, ECOLOGY, V68, P705, DOI 10.2307/1938476; HARVELL CD, 1994, Q REV BIOL, V69, P155, DOI 10.1086/418538; HINDAR K, 1982, CAN J FISH AQUAT SCI, V39, P1030, DOI 10.1139/f82-138; JACKSON ME, 1993, ECOLOGY, V74, P342, DOI 10.2307/1939297; JOLY P, 1992, ECOGRAPHY, V15, P401, DOI 10.1111/j.1600-0587.1992.tb00050.x; Joly P., 1987, Alytes (Paris), V6, P11; JOLY P, 1996, BIODIVERSITY LAND IN, P161; Jorgensen S., 1979, HDB ENV ECOLOGICAL P; KAPLAN RH, 1992, ECOLOGY, V73, P280, DOI 10.2307/1938739; Krenz JD, 1995, HERPETOLOGICA, V51, P387; LAURENTI JN, 1967, SPECIMEN MED EXHIBEN; LIVELY CM, 1986, ECOLOGY, V67, P858, DOI 10.2307/1939808; LIVEZEY BC, 1992, ZOOL J LINN SOC-LOND, V105, P155, DOI 10.1111/j.1096-3642.1992.tb01229.x; MALMQUIST HJ, 1992, J ANIM ECOL, V61, P21, DOI 10.2307/5505; MARET TJ, 1994, OECOLOGIA, V100, P279, DOI 10.1007/BF00316955; Maret TJ, 1997, EVOLUTION, V51, P898, DOI 10.1111/j.1558-5646.1997.tb03671.x; McKinney ML, 1991, HETEROCHRONY EVOLUTI; MCNAMARA KJ, 1997, SHAPES TIMES EVOLUTI; MENU F, 1995, J APPL ENTOMOL, V119, P279, DOI 10.1111/j.1439-0418.1995.tb01286.x; MEYER A, 1987, EVOLUTION, V41, P1357, DOI 10.1111/j.1558-5646.1987.tb02473.x; MEYER A, 1990, BIOL J LINN SOC, V39, P279, DOI 10.1111/j.1095-8312.1990.tb00517.x; Morand A, 1997, CR ACAD SCI III-VIE, V320, P645, DOI 10.1016/S0764-4469(97)85698-3; NEWMAN RA, 1989, ECOLOGY, V70, P1775, DOI 10.2307/1938111; PFENNIG DW, 1992, EVOLUTION, V46, P1408, DOI 10.1111/j.1558-5646.1992.tb01133.x; REILLY SM, 1988, COPEIA, P87; ROFF DA, 1986, EVOLUTION, V40, P1009, DOI 10.1111/j.1558-5646.1986.tb00568.x; Ruzzante DE, 1998, BIOL J LINN SOC, V65, P191, DOI 10.1111/j.1095-8312.1998.tb00355.x; Ryan TJ, 1998, P NATL ACAD SCI USA, V95, P5643, DOI 10.1073/pnas.95.10.5643; SCHABETSBERGER R, 1994, FRESHWATER BIOL, V31, P143, DOI 10.1111/j.1365-2427.1994.tb00848.x; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; SCHLICHTING CD, 1995, EVOL ECOL, V9, P154, DOI 10.1007/BF01237754; SCHOENER TW, 1974, SCIENCE, V185, P27, DOI 10.1126/science.185.4145.27; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; SEMLITSCH RD, 1987, ECOLOGY, V68, P994, DOI 10.2307/1938370; SEMLITSCH RD, 1990, EVOLUTION, V44, P1604, DOI 10.1111/j.1558-5646.1990.tb03849.x; SEMLITSCH RD, 1989, EVOLUTION, V43, P105, DOI 10.1111/j.1558-5646.1989.tb04210.x; Siegel S, 1988, NONPARAMETRIC STAT B; SKULASON S, 1995, TRENDS ECOL EVOL, V10, P366, DOI 10.1016/S0169-5347(00)89135-1; Smith TB, 1996, ANNU REV ECOL SYST, V27, P111, DOI 10.1146/annurev.ecolsys.27.1.111; SMITH TB, 1990, ECOLOGY, V71, P1246, DOI 10.2307/1938261; *STATS FRANC, 2000, STAT WIND; SVOB M, 1965, B SCI ACAD R S F Y A, V10, P379; TOMPKINS R, 1978, AM ZOOL, V18, P313; Van Buskirk J, 1998, BIOL J LINN SOC, V65, P301, DOI 10.1006/bijl.1998.0249; Voss SR, 1995, J HERED, V86, P441, DOI 10.1093/oxfordjournals.jhered.a111618; Voss SR, 1997, P NATL ACAD SCI USA, V94, P14185, DOI 10.1073/pnas.94.25.14185; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; WHITEMAN HH, 1994, Q REV BIOL, V69, P205, DOI 10.1086/418540; Whiteman HH, 1997, EVOLUTION, V51, P2039, DOI 10.1111/j.1558-5646.1997.tb05127.x; Whiteman HH, 1996, EVOL ECOL, V10, P433, DOI 10.1007/BF01237728; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305 64 47 50 2 19 BLACKWELL SCIENCE LTD OXFORD P O BOX 88, OSNEY MEAD, OXFORD OX2 0NE, OXON, ENGLAND 0046-5070 FRESHWATER BIOL Freshw. Biol. OCT 2001 46 10 1387 1396 10.1046/j.1365-2427.2001.00762.x 10 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 490BR WOS:000172030800009 2018-11-12 J Eckstein, RL; Karlsson, PS Eckstein, RL; Karlsson, PS The effect of reproduction on nitrogen use-efficiency of three species of the carnivorous genus Pinguicula JOURNAL OF ECOLOGY English Article carnivorous plants; costs of reproduction; life-history; mean residence time; nitrogen productivity; nitrogen use-efficiency; Pinguicula; plant strategies; reproductive allocation; subarctic SUB-ARCTIC ENVIRONMENT; MINERAL-NUTRITION; NUTRIENT RESORPTION; PREY CAPTURE; WILD PLANTS; GROWTH; COST; SOIL; SUCCESSION; ECOSYSTEMS 1 Life history theory predicts that reproduction incurs costs in terms of future growth and survival. In infertile environments reproductive events may accelerate nutrient turnover such that losses of limiting nutrients cannot be replenished by uptake from the soil. 2 We compared the effect of reproduction on nitrogen (N) turnover and N use-efficiency, i.e. the annual dry matter produced per unit N lost, of three carnivorous species of the genus Pinguicula on an infertile subarctic heath. We hypothesized that reproduction should increase N turnover, unless a larger N pool or improved N resorption can compensate for the losses associated with reproduction. 3 These carnivorous herbs showed a nitrogen use strategy similar to that of non-carnivorous plants (herbs and grasses) with a relatively low mean residence time (MRT) of N and a large dry matter productivity per unit N in the plant (annual N productivity). N pool size and the efficiency of N resorption from senescent leaves were similar in reproductive and non-reproductive individuals. Reproductive individuals had significantly larger annual N losses and thus a lower average MRT (0.8 vs. 1.8 years), with values < 1 indicating that the annual N losses are greater than the annual average N pool. Unless plants can enhance their nutrient acquisition, flowering may therefore impact on future growth and survival. 4 This study presents evidence for a direct link between reproduction, reflected in a higher relative allocation to inflorescences, turnover and N use-efficiency; the latter being reduced because of increased N turnover. The ranking of species in terms of reproductive allocation was the reverse of their ranking in terms of their N use-efficiency. Uppsala Univ, Evolutionary Biol Ctr, Dept Plant Ecol, SE-75236 Uppsala, Sweden; Royal Swedish Acad Sci, Abisko Sci Res Stn, SE-98107 Abisko, Sweden Eckstein, RL (reprint author), Univ Giessen, Dept Landscape Ecol, Heinrich Buff Ring 26-32, DE-35392 Giessen, Germany. Eckstein, Lutz/A-9241-2012; Karlsson, Staffan/J-3082-2012 Karlsson, Staffan/0000-0002-5739-5213 Adamec L, 1997, BOT REV, V63, P273, DOI 10.1007/BF02857953; Aerts R, 1999, J EXP BOT, V50, P29, DOI 10.1093/jexbot/50.330.29; AERTS R, 1992, J ECOL, V80, P131, DOI 10.2307/2261070; AERTS R, 1995, TRENDS ECOL EVOL, V10, P402, DOI 10.1016/S0169-5347(00)89156-9; AERTS R, 1990, OECOLOGIA, V84, P391, DOI 10.1007/BF00329765; Aerts R, 1996, J ECOL, V84, P597, DOI 10.2307/2261481; Aerts R, 2000, ADV ECOL RES, V30, P1; ALDENIUS J, 1983, NEW PHYTOL, V93, P53, DOI 10.1111/j.1469-8137.1983.tb02691.x; BENZING DH, 1987, TRENDS ECOL EVOL, V2, P364, DOI 10.1016/0169-5347(87)90137-6; Berendse F, 1987, FUNCT ECOL, V1, P293; Berendse F, 1998, BIOGEOCHEMISTRY, V42, P73, DOI 10.1023/A:1005935823525; CHAPIN FS, 1985, ECOLOGY, V66, P564, DOI 10.2307/1940405; CHAPIN FS, 1980, ANNU REV ECOL SYST, V11, P233, DOI 10.1146/annurev.es.11.110180.001313; CHAPIN FS, 1993, AM NAT, V142, P78; Eckstein RL, 1999, NEW PHYTOL, V143, P177, DOI 10.1046/j.1469-8137.1999.00429.x; Eckstein RL, 1997, OIKOS, V79, P311, DOI 10.2307/3546015; EDGINGTON ES, 1987, RANDOMIZATION TESTS; ERNST, 1983, BERICHTE DTSCH BOT G, V96, P49; Garnier E, 1998, INHERENT VARIATION IN PLANT GROWTH, P515; GARNIER E, 1995, ANN BOT-LONDON, V76, P667, DOI 10.1006/anbo.1995.1145; Givnish T.J., 1989, P243; GIVNISH TJ, 1984, AM NAT, V124, P479, DOI 10.1086/284289; Hanslin HM, 1996, OECOLOGIA, V106, P370, DOI 10.1007/BF00334564; Hemborg AM, 1998, OIKOS, V82, P149, DOI 10.2307/3546925; Holmgren B, 1996, ECOLOGICAL B, V45, P159; HORVITZ CC, 1988, ECOLOGY, V69, P1741, DOI 10.2307/1941152; JONASSON S, 1993, OECOLOGIA, V95, P179, DOI 10.1007/BF00323488; Karlsson PS, 1988, FUNCT ECOL, V2, P203, DOI 10.2307/2389696; Karlsson P. S., 1996, ECOLOGICAL B, V45, P115; KARLSSON PS, 1991, OECOLOGIA, V86, P1, DOI 10.1007/BF00317381; KARLSSON PS, 1986, CAN J BOT, V64, P2872, DOI 10.1139/b86-379; KARLSSON PS, 1994, OECOLOGIA, V99, P188, DOI 10.1007/BF00317100; KARLSSON PS, 1990, OIKOS, V59, P393, DOI 10.2307/3545151; Killingbeck KT, 1996, ECOLOGY, V77, P1716, DOI 10.2307/2265777; MANLY BFJ, 1991, RANDOMIZATION MONTE; Mendez M, 1999, OIKOS, V86, P105, DOI 10.2307/3546574; MOLAU U, 1993, NORD J BOT, V13, P149, DOI 10.1111/j.1756-1051.1993.tb00025.x; Noreen EW, 1989, COMPUTER INTENSIVE M; NYE PH, 1977, SOIL SCI, V123, P292, DOI 10.1097/00010694-197705000-00004; OBESO JR, 1993, ECOGRAPHY, V16, P365, DOI 10.1111/j.1600-0587.1993.tb00226.x; PATE JS, 1994, PLANT SOIL, V159, P1; POTVIN C, 1993, ECOLOGY, V74, P1617, DOI 10.2307/1939920; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; Ronce O, 1997, AM NAT, V150, P220, DOI 10.1086/286064; Silvertown JW, 1993, INTRO PLANT POPULATI; Stearns S. C., 1992, EVOLUTION LIFE HIST; SVENSSON BM, 1993, J ECOL, V81, P635, DOI 10.2307/2261662; SYRJANEN K, 1993, OIKOS, V67, P465, DOI 10.2307/3545358; Thoren LM, 1998, J ECOL, V86, P501, DOI 10.1046/j.1365-2745.1998.00276.x; Thoren LM, 1996, OIKOS, V76, P427, DOI 10.2307/3546336; THOREN LM, 1998, THESIS LUND U LUND S; THUM M, 1988, OECOLOGIA, V75, P472, DOI 10.1007/BF00376954; Weih M, 1997, ECOSCIENCE, V4, P365, DOI 10.1080/11956860.1997.11682415; Weih M, 1998, ARCTIC ALPINE RES, V30, P19, DOI 10.2307/1551741; Willson M. F., 1983, PLANT REPROD ECOLOGY; Zamora R, 1997, OECOLOGIA, V111, P443, DOI 10.1007/s004420050257 56 16 19 0 27 BLACKWELL SCIENCE LTD OXFORD P O BOX 88, OSNEY MEAD, OXFORD OX2 0NE, OXON, ENGLAND 0022-0477 J ECOL J. Ecol. OCT 2001 89 5 798 806 10.1046/j.0022-0477.2001.00595.x 9 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology 485ZV WOS:000171794100008 Bronze 2018-11-12 J Obura, DO Obura, DO Can differential bleaching and mortality among coral species offer useful indicators for assessment and management of reefs under stress? BULLETIN OF MARINE SCIENCE English Article; Proceedings Paper International Conference on Scientific Aspects of Coral Reef Assessment Monitoring and Restoration APR 14-16, 1999 FT LAUDERDALE, FLORIDA HERMATYPIC CORALS; COMMUNITIES; STRATEGIES; ABUNDANCE; SELECTION Coral reefs are increasingly subject to a variety of threats from local to global scales. The development of monitoring and assessment tools to diagnose coral reef community responses to threats would assist greatly in management of their impacts. This paper examines interspecific patterns of bleaching, mortality, and recovery of corals on reefs in Kenya, Tanzania, Mozambique. and Madagascar for one year after the 1997-98 El Nino. On average, 50-80% bleaching and mortality of corals occurred throughout the region. Coral tissue condition (normal, pale, bleached, and dead) was recorded for up to I yr after the onset of bleaching, Thirteen coral species were used for analysis. Cluster Analysis and Principal Components Analysis with factor rotation were applied to the dataset, giving two major groups of species, characterized by (a) severe bleaching followed by 100% mortality (e.g., Acropora spp., Pocillopora spp., Galaxea astreata), (b) graduated bleaching with pale tissue and low-to-moderate mortality (e.g., Porites lutea, Echinopora gemmacea, Hydnophora exesa), and one outlier with long-term persistence of bleaching (Montipora tuberculosa). These species groups based on the bleaching response are consistent with life history strategies proposed by other workers. It is proposed that observations of coral condition and bleaching in the field, interpreted in the light of life history theory, can provide a coral bioassay technique for reef monitoring and management. Coral Reef Degradat Indian Ocean, Bamburi, Mombasa, Kenya Obura, DO (reprint author), Coral Reef Degradat Indian Ocean, POB 10135, Bamburi, Mombasa, Kenya. Obura, David/0000-0003-2256-6649 BAK RPM, 1979, MAR BIOL, V54, P341, DOI 10.1007/BF00395440; BOURA D, 1995, ENV STRESS LIFE HIST; Brown BE, 1997, CORAL REEFS, V16, P129; BUDDEMEIER RW, 1993, BIOSCIENCE, V43, P320, DOI 10.2307/1312064; CAMERON A, 1990, P 5 INT COR REEF S, V6, P211; GINSBURG RN, 1994, P C GLOB ASP COR REE; Glynn PW, 1996, GLOBAL CHANGE BIOL, V2, P495, DOI 10.1111/j.1365-2486.1996.tb00063.x; GLYNN PW, 1993, CORAL REEFS, V12, P1, DOI 10.1007/BF00303779; GREENSLADE PJM, 1983, AM NAT, V122, P352, DOI 10.1086/284140; GRIME J, 1977, AM NAT, V111, P1168; HAMILTON HGH, 1984, B MAR SCI, V34, P248; JACKSON JBC, 1985, AM SCI, V73, P265; JOKIEL PL, 1974, PAC SCI, V28, P1; KOJIS BL, 1984, CORAL REEFS, V3, P165, DOI 10.1007/BF00301961; Linden O., 1999, CORAL REEF DEGRADATI; MACARTHUR R, 1960, AM NAT, V94, P25, DOI 10.1086/282106; Marriott F. H. C., 1974, INTERPRETATION MULTI; McClanahan T., 1998, MONITORING TRAINING; MCCLANAHAN TR, 1994, J EXP MAR BIOL ECOL, V184, P237, DOI 10.1016/0022-0981(94)90007-8; McClanahan TR, 1997, J EXP MAR BIOL ECOL, V209, P103, DOI 10.1016/S0022-0981(96)02663-9; MCCLANAHAN TR, 2000, CORAL REEF DEGRADATI; McPhaden MJ, 1999, SCIENCE, V283, P950, DOI 10.1126/science.283.5404.950; MUHANDO CM, 1999, CORAL REEF DEGRADATI; OBURA D, 1999, CORAL REEF DEGRADATI; OBURA D, 2000, CORAL REEF DEGRADATI; OBURA D, 1998, EUR M INT SOC REEF S; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Sall J., 1996, JMP START STAT; SCHLEYER M, 1999, CORAL REEF DEGRADATI; SELYE H, 1950, STRESS; Souter D., 2000, CORAL REEF DEGRADATI; STEBBING ARD, 1981, MAR POLLUT BULL, V12, P326, DOI 10.1016/0025-326X(81)90104-1; Strong A.E., 1998, REEF ENCOUNTERS, V24, P20; *UNEP IUCN, 1988, UNEP REGIONAL SEAS D; WARWICK RM, 1987, MAR BIOL, V95, P193, DOI 10.1007/BF00409005; WARWICK RM, 1986, MAR BIOL, V92, P557, DOI 10.1007/BF00392515; Whittaker RH, 1975, UNIFYING CONCEPTS EC; Wilkinson C, 1999, AMBIO, V28, P188; WILKINSON CR, 1994, GLOBAL CLIMATE CHANG; WILKINSON CRE, 1998, GLOBAL CORAL REEF MO; WILLIAMS EH, 1990, ATOLL RES B, V335, P1, DOI DOI 10.5479/SI.00775630.335.1 41 27 29 0 13 ROSENSTIEL SCH MAR ATMOS SCI MIAMI 4600 RICKENBACKER CAUSEWAY, MIAMI, FL 33149 USA 0007-4977 B MAR SCI Bull. Mar. Sci. SEP 2001 69 2 421 442 22 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography 500CU WOS:000172609000016 2018-11-12 J Knight, CG; Azevedo, RBR; Leroi, AM Knight, CG; Azevedo, RBR; Leroi, AM Testing life-history pleiotropy in Caenorhabditis elegans EVOLUTION English Article body size; fertility; introgression; life-history traits; pleiotropy; QTL mapping; Tc1 elements QUANTITATIVE TRAIT LOCI; DROSOPHILA INSULIN-RECEPTOR; SEQUENCE-TAGGED SITES; GENETIC-ANALYSIS; SELECTION RESPONSE; NATURAL-SELECTION; FLANKING MARKERS; SEXUAL TRAITS; EVOLUTION; REPRODUCTION Much life-history theory assumes that alleles segregating in natural populations pleiotropically affect life-history traits. This assumption, while plausible, has rarely been tested directly. Here we investigate the genetic relationship between two traits often suggested to be connected by pleiotropy: maternal body size and fertility. We carry out a quantitative trait locus (QTL) analysis on two isolates of the free-living nematode Caenorhabditis elegans, and identify two body size and three fertility QTLs. We find that one of the fertility QTLs colocalizes with the two body size QTLs on Chromosome IV. Further analysis, however, shows that these QTLs are genetically separable. Thus, none of the five body size or fertility QTLs identified here shows detectable pleiotropy for the assayed traits. The evolutionary origin of these QTLs, possible candidate loci, and the significance for life-history evolution are discussed. Univ London Imperial Coll Sci Technol & Med, Dept Biol, Ascot SL5 7PY, Berks, England Leroi, AM (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Biol, Silwood Pk, Ascot SL5 7PY, Berks, England. a.leroi@ic.ac.uk Knight, Chris/0000-0001-9815-4267; Azevedo, Ricardo/0000-0001-5402-7071 AVERY L, 1993, GENETICS, V133, P897; BASTEN CJ, 1994, P 5 WORLD C GEN APPL, V22, P65; Bohni R, 1999, CELL, V97, P865, DOI 10.1016/S0092-8674(00)80799-0; BRENNER S, 1974, GENETICS, V77, P71; C elegans Sequencing Consortium, 1998, SCIENCE, V282, P2012, DOI 10.1126/science.282.5396.2012; Chen C, 1996, ENDOCRINOLOGY, V137, P846, DOI 10.1210/en.137.3.846; CHURCHILL GA, 1994, GENETICS, V138, P963; COX GN, 1980, GENETICS, V95, P317; Darwin C., 1859, ORIGIN SPECIES MEANS; EBERT RH, 1993, GENETICS, V135, P1003; EGILMEZ NK, 1995, J MOL EVOL, V40, P372, DOI 10.1007/BF00164023; EMMONS SW, 1988, NEMATODE CAENORHABDI, P47; ESTEVEZ M, 1993, NATURE, V365, P644, DOI 10.1038/365644a0; FERNANDEZ R, 1995, EMBO J, V14, P3373, DOI 10.1002/j.1460-2075.1995.tb07343.x; Frary A, 2000, SCIENCE, V289, P85, DOI 10.1126/science.289.5476.85; Gems D, 1998, GENETICS, V150, P129; HALEY CS, 1992, HEREDITY, V69, P315, DOI 10.1038/hdy.1992.131; Hodgkin J, 1997, GENETICS, V146, P149; Jakubowski J, 1999, GENETICS, V153, P743; JOHNSON TE, 1982, P NATL ACAD SCI-BIOL, V79, P6603, DOI 10.1073/pnas.79.21.6603; Kader NA, 1996, FUND APPL NEMATOL, V19, P381; Keightley PD, 1996, GENETICS, V142, P227; Kimura KD, 1997, SCIENCE, V277, P942, DOI 10.1126/science.277.5328.942; Koch R, 2000, GENOME RES, V10, P1690, DOI 10.1101/gr.GR-1471R; Korswagen HC, 1996, P NATL ACAD SCI USA, V93, P14680, DOI 10.1073/pnas.93.25.14680; KRAMER JM, 1990, MOL CELL BIOL, V10, P2081, DOI 10.1128/MCB.10.5.2081; Krishna S, 1999, DEVELOPMENT, V126, P251; LANDER ES, 1989, GENETICS, V121, P185; Lebreton CH, 1998, GENETICS, V150, P931; Lebreton CM, 1998, GENETICS, V148, P525; Lee RYN, 1997, EMBO J, V16, P6066, DOI 10.1093/emboj/16.20.6066; Leroi AM, 2000, EVOL DEV, V2, P67, DOI 10.1046/j.1525-142x.2000.00044.x; Leroi AM, 2001, TRENDS ECOL EVOL, V16, P24, DOI 10.1016/S0169-5347(00)02032-2; Li ZK, 1998, MOL BREEDING, V4, P419, DOI 10.1023/A:1009608128785; LIU BH, 1998, STAT GENOMICS; Macdonald SJ, 1999, GENETICS, V153, P1683; MARTINEZ O, 1992, THEOR APPL GENET, V85, P480, DOI 10.1007/BF00222330; Morand S, 1996, FUNCT ECOL, V10, P210, DOI 10.2307/2389845; Nuzhdin SV, 1999, GENETICS, V153, P1317; PARK EC, 1986, GENETICS, V113, P853; Rahman MA, 1999, AQUACULTURE, V173, P333, DOI 10.1016/S0044-8486(98)00456-6; REINER DJ, 1995, GENETICS, V141, P961; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; RISKA B, 1989, EVOLUTION, V43, P1172, DOI 10.1111/j.1558-5646.1989.tb02567.x; Roff DA, 1996, EVOLUTION, V50, P1392, DOI 10.1111/j.1558-5646.1996.tb03913.x; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; Roff Derek A., 1992; Rollo CD, 1997, CAN J ZOOL, V75, P1336, DOI 10.1139/z97-758; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; Savage C, 1996, P NATL ACAD SCI USA, V93, P790, DOI 10.1073/pnas.93.2.790; Shook DR, 1996, GENETICS, V142, P801; Shook DR, 1999, GENETICS, V153, P1233; SKORPING A, 1991, OIKOS, V60, P365, DOI 10.2307/3545079; Snedecor G, 1989, STAT METHODS; Stearns S. C., 1992, EVOLUTION LIFE HIST; SULSTON J, 1908, NEMATODE CAENORHABDI, P587; Suzuki Y, 1999, DEVELOPMENT, V126, P241; TANKSLEY SD, 1993, ANNU REV GENET, V27, P205, DOI 10.1146/annurev.ge.27.120193.001225; True JR, 1997, EVOLUTION, V51, P816, DOI 10.1111/j.1558-5646.1997.tb03664.x; True JR, 1996, GENETICS, V142, P819; VISCHER NOE, 1994, BINARY-COMPUT MICROB, V6, P160; Visscher PM, 1996, GENETICS, V144, P1923; VONMENDE N, 1988, CELL, V55, P567, DOI 10.1016/0092-8674(88)90215-2; Whittaker JC, 1996, HEREDITY, V77, P23, DOI 10.1038/sj.hdy.6880110; WILLIAMS BD, 1992, GENETICS, V131, P609; WILLIAMS BD, 1995, CAENORHABDITIS ELEGA, P81; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 69 33 33 0 2 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution SEP 2001 55 9 1795 1804 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 484WD WOS:000171711800007 11681734 2018-11-12 J Angilletta, MJ; Sears, MW; Winters, RS Angilletta, MJ; Sears, MW; Winters, RS Seasonal variation in reproductive effort and its effect on offspring size in the lizard Sceloporus undulatus HERPETOLOGICA English Article clutch size; egg mass; reproductive effort; Sceloporus undulatus COMPARATIVE LIFE HISTORIES; EGG-SIZE; TRADE-OFFS; NATURAL-SELECTION; UROSAURUS-ORNATUS; CLUTCH-SIZE; TREE LIZARD; FOOD-INTAKE; BODY-SIZE; EVOLUTION Fence lizards, Sccloporus undulatus, reproduce multiple times per year. Survival of reproducing females drops dramatically between clutches from first tu final clutch of the year. Also, offspring from later clutches emerge with less time available for growth and storage prior to hibernation. Considering these two facts, life history theory predicts that (1) females should exhibit greater reproductive effort (RE) in the second clutch of the active season than in the first, and (2) that the increase in RE should be mediated by a greater allocation of energy per offspring. To test these hypotheses, we compared reproductive traits (RE, clutch size, and egg mass) of lizards from a New Jersey population laying their first and second clutches. Two different estimates of RE (relative clutch mass, and clutch mass adjusted for condition) were significantly lower for the second clutch than for the first clutch. The difference in RE was manifested primarily as a decrease in clutch size. Clutch size was correlated with female body size and condition, but average egg mass was not correlated vith either variable. Egg mass varied twice as much among clutches as it did within clutches, In fact, the variation in average egg mass observed among clutches was almost as great as that which exists among populations of S. undulatus. Variation in eg mass within and among clutches has consequences for offspring quality because egg mass was positively correlated with snout-vent length, body mass, and condition of hatchlings. Our data do not support the predictions of existing theories regarding the optimal allocation of RE among offspring. Univ Penn, Dept Biol, Philadelphia, PA 19104 USA Angilletta, MJ (reprint author), Indiana State Univ, Dept Life Sci, Terre Haute, IN 47809 USA. Angilletta MJ, 2000, ECOLOGY, V81, P2957, DOI 10.1890/0012-9658(2000)081[2957:TEOTEO]2.0.CO;2; Angilletta MJ, 1999, COPEIA, P587, DOI 10.2307/1447592; BALLINGER R E, 1973, Journal of Herpetology, V7, P129, DOI 10.2307/1563210; BALLINGER RE, 1977, ECOLOGY, V58, P628, DOI 10.2307/1939012; Brown GP, 1997, CAN J ZOOL, V75, P424, DOI 10.1139/z97-052; Congdon J.D., 1982, Biology of Reptilia, V13, P233; Congdon JD, 1999, OECOLOGIA, V121, P224, DOI 10.1007/s004420050924; CONGDON JD, 1987, P NATL ACAD SCI USA, V84, P4143; CRUMP ML, 1984, COPEIA, P302, DOI 10.2307/1445185; DEMARCO VG, 1989, OECOLOGIA, V80, P525, DOI 10.1007/BF00380077; DROGE DL, 1982, COPEIA, P356, DOI 10.2307/1444615; Dunham A.E., 1988, Biology of Reptilia, V16, P331; FERGUSON GW, 1980, ECOLOGY, V61, P313, DOI 10.2307/1935190; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gregory PT, 1998, AM NAT, V151, P477, DOI 10.1086/286134; HEULETT ST, 1995, COPEIA, P97; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; JONES SM, 1987, ECOLOGY, V68, P1828, DOI 10.2307/1939874; LANDWER AJ, 1994, OECOLOGIA, V100, P243, DOI 10.1007/BF00316951; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Madsen T, 1996, HERPETOLOGICA, V52, P146; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; MICHAUD EJ, 1995, J HERPETOL, V29, P86, DOI 10.2307/1565090; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Niewiarowski PH, 1998, EVOLUTION, V52, P1236, DOI 10.1111/j.1558-5646.1998.tb01852.x; NIEWIAROWSKI PH, 1994, EVOLUTION, V48, P137, DOI 10.1111/j.1558-5646.1994.tb01300.x; NIEWIAROWSKI PH, 1993, ECOLOGY, V74, P1992, DOI 10.2307/1940842; NIEWIAROWSKI PH, 1992, THESIS U PENNSYLVANI; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; Packard G.C., 1987, P216; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; Roosenburg WM, 1997, COPEIA, P290, DOI 10.2307/1447749; ROWE JW, 1994, COPEIA, P1034; SCHWARZKOPF L, 1993, ECOLOGY, V74, P1970, DOI 10.2307/1940840; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; Shine R, 1996, EVOLUTION, V50, P2111, DOI 10.1111/j.1558-5646.1996.tb03599.x; SINERVO B, 1993, BIOSCIENCE, V43, P210, DOI 10.2307/1312121; Sinervo Barry, 1996, P149; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; *STATS INC, 1996, STAT WIND; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TAYLOR HM, 1974, THEOR POPUL BIOL, V5, P104, DOI 10.1016/0040-5809(74)90053-7; TEMME DH, 1986, EVOLUTION, V40, P414, DOI 10.1111/j.1558-5646.1986.tb00481.x; TINKLE DW, 1983, COPEIA, P585; TINKLE DW, 1993, ECOLOGY, V74, P2413, DOI 10.2307/1939592; TINKLE DW, 1986, COPEIA, P1; TINKLE DW, 1972, ECOLOGY, V53, P570, DOI 10.2307/1934772; TINKLE DW, 1975, ECOLOGY, V56, P427, DOI 10.2307/1934973; VITT LJ, 1978, J HERPETOL, V12, P65, DOI 10.2307/1563505; Weeks SC, 1996, OIKOS, V75, P345, DOI 10.2307/3546263; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667 55 15 17 2 8 HERPETOLOGISTS LEAGUE EMPORIA EMPORIA STATE UNIV, DIVISION BIOLOGICAL SCIENCES, 1200 COMMERCIAL ST, EMPORIA, KS 66801-5087 USA 0018-0831 HERPETOLOGICA Herpetologica SEP 2001 57 3 365 375 11 Zoology Zoology 470PZ WOS:000170881500010 2018-11-12 J McCurdy, DG McCurdy, DG Asexual reproduction in Pygospio elegans Claparede (Annelida, Polychaeta) in relation to parasitism by Lepocreadium setiferoides (Miller and Northup) (Platyhelminthes, Trematoda) BIOLOGICAL BULLETIN English Article AMPHIPOD COROPHIUM-VOLUTATOR; LIFE-HISTORY; ILYANASSA-OBSOLETA; SPIONID POLYCHAETE; HOST; BEHAVIOR; FOOD; MANIPULATION; POECILOGONY; DROSOPHILA Life-history theory predicts that parasitized hosts should alter their investment in reproduction in ways that maximize host reproductive success. I examined the timing of asexual reproduction (fragmentation and regeneration) in the polychaete annelid Pygospio elegans experimentally exposed to cercariae of the trematode Lepocreadium setiferoides. Consistent with adaptive host response, polychaetes that became infected by metacercariae of trematodes fragmented sooner than unexposed controls. Parasites were not directly associated with fission in that exposed polychaetes that did not become infected also fragmented earlier than controls. For specimens of P. elegans that were not exposed to trematodes, new fragments that contained original heads were larger than those that contained original tails, whereas original head and tail fragments did not differ in size for infected polychaetes. In infected specimens, metacercariae were equally represented in original head and tail fragments and were more likely to be found in whichever fragment was larger. Despite early reproduction, parasitism was still costly because populations of P. elegans exposed to parasites were smaller than controls when measured 8 weeks later and because exposure to cercariae reduced survivorship of newly divided polychaetes. Taken together, my results suggest that early fragmentation is a host response to minimize costs associated with parasitism. Bowdoin Coll, Ctr Coastal Studies, Brunswick, ME 04011 USA McCurdy, DG (reprint author), Albion Coll, Dept Biol, Albion, MI 49224 USA. ANGER K, 1986, HELGOLANDER MEERESUN, V40, P377, DOI 10.1007/BF01983819; ANGER V, 1984, FORTS ZOOL, V29, P45; BOATES JS, 1989, CAN J ZOOL, V67, P457, DOI 10.1139/z89-066; BORN MA, 1999, TIDELOG NO NEW ENGLA; BREY T, 1991, HELGOLANDER MEERESUN, V45, P301, DOI 10.1007/BF02365522; Brown RJ, 1999, SCI TOTAL ENVIRON, V233, P77, DOI 10.1016/S0048-9697(99)00181-3; Chia FS, 1996, OCEANOL ACTA, V19, P203; CURTIS LA, 1990, J EXP MAR BIOL ECOL, V143, P131, DOI 10.1016/0022-0981(90)90115-S; CURTIS LA, 1987, SCIENCE, V235, P1509, DOI 10.1126/science.3823901; Curtis LA, 1997, J PARASITOL, V83, P793, DOI 10.2307/3284270; FOLSTAD I, 1991, CAN J ZOOL, V69, P2423, DOI 10.1139/z91-340; FORBES MRL, 1993, OIKOS, V67, P444, DOI 10.2307/3545356; Gibson GD, 2000, BIOL BULL-US, V199, P41, DOI 10.2307/1542705; GUDMUNDSSON H, 1985, J MAR BIOL ASSOC UK, V65, P93, DOI 10.1017/S0025315400060835; HOBSON KD, 1968, BIOL BULL, V135, P410; Hurst Laurence D., 1996, Trends in Ecology and Evolution, V11, P46, DOI 10.1016/0169-5347(96)81041-X; KEATS DW, 1990, MAR ECOL PROG SER, V60, P13, DOI 10.3354/meps060013; Kraaijeveld AR, 1997, NATURE, V389, P278; Kube Jan, 1997, Aquatic Ecology, V31, P187, DOI 10.1023/A:1009955505252; Leonard NJ, 1999, CAN J ZOOL, V77, P1615, DOI 10.1139/cjz-77-10-1615; Lively CM, 1996, BIOSCIENCE, V46, P107, DOI 10.2307/1312813; MACDONALD JS, 1986, CAN J FISH AQUAT SCI, V43, P1534, DOI 10.1139/f86-191; Martin WE, 1938, BIOL BULL-US, V75, P463, DOI 10.2307/1537574; McCurdy DG, 1999, INT J PARASITOL, V29, P1001, DOI 10.1016/S0020-7519(99)00067-3; McCurdy DG, 2001, J PARASITOL, V87, P24, DOI 10.2307/3285170; McCurdy DG, 2000, OIKOS, V88, P301, DOI 10.1034/j.1600-0706.2000.880208.x; McCurdy DG, 2000, CAN J ZOOL, V78, P606, DOI 10.1139/cjz-78-4-606; McCurdy DG, 2000, CAN J ZOOL, V78, P1137, DOI 10.1139/cjz-78-7-1137; McDermott Jr J, 1951, THESIS RUTGERS U NEW; MINCHELLA DJ, 1985, PARASITOLOGY, V90, P205, DOI 10.1017/S0031182000049143; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; Morgan TS, 1999, MAR ECOL PROG SER, V178, P121, DOI 10.3354/meps178121; Perrin N, 1996, OIKOS, V75, P317, DOI 10.2307/3546256; Polak M, 1998, P ROY SOC B-BIOL SCI, V265, P2197, DOI 10.1098/rspb.1998.0559; POULIN R, 1994, OIKOS, V70, P479, DOI 10.2307/3545788; Poulin R, 1995, INT J PARASITOL, V25, P1371, DOI 10.1016/0020-7519(95)00100-X; RASMUSSEN E, 1953, NATURE, V171, P1161, DOI 10.1038/1711161a0; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; STUNKARD HW, 1972, BIOL BULL, V142, P326, DOI 10.2307/1540235; Suwanchaichinda C, 1998, J MED ENTOMOL, V35, P157, DOI 10.1093/jmedent/35.2.157; Thomas F, 1999, OIKOS, V84, P167, DOI 10.2307/3546879; WILSON WH, 1983, ECOLOGY, V64, P295, DOI 10.2307/1937077; WILSON WH, 1985, INT J INVER REP DEV, V8, P61, DOI 10.1080/01688170.1985.10510125; WOODIN SA, 1982, J EXP MAR BIOL ECOL, V60, P35, DOI 10.1016/0022-0981(81)90178-7; ZAJAC RN, 1995, MAR BIOL, V123, P531, DOI 10.1007/BF00349232; ZAR JH, 1996, BIOSTATISTICAL ANAL; ZUK M, 1990, PARASITOL TODAY, V6, P231, DOI 10.1016/0169-4758(90)90202-F 47 13 13 1 8 MARINE BIOLOGICAL LABORATORY WOODS HOLE 7 MBL ST, WOODS HOLE, MA 02543 USA 0006-3185 BIOL BULL Biol. Bull. AUG 2001 201 1 45 51 10.2307/1543524 7 Biology; Marine & Freshwater Biology Life Sciences & Biomedicine - Other Topics; Marine & Freshwater Biology 468FZ WOS:000170748600006 11526062 2018-11-12 J Olsson, M; Madsen, T Olsson, M; Madsen, T Between-year variation in determinants of offspring survival in the Sand Lizard, Lacerta agilis FUNCTIONAL ECOLOGY English Article female reproductive success; fluctuating selection; size-number trade-off REPRODUCTIVE SUCCESS; CLUTCH SIZE; NATURAL-SELECTION; SEXUAL SELECTION; EGG SIZE; NUMBER; ENVIRONMENT; PERFORMANCE; INVESTMENT; EVOLUTION 1. Life-history theory predicts that clutch size and offspring size should evolve to an optimal offspring size vs number (OSN) equilibrium. 2. Offspring size in Swedish Sand Lizards (Lacerta agilis) decreases up to 60% during a female's life with a concomitant increase in clutch size; why do female Sand Lizards not produce an offspring of approximately equal size through life, while adjusting clutch size in accordance with available resources? 3. Our results show that there is year-to-year variation in what factors determine female reproductive success, estimated by the number or proportion of recruits into the second year cohort. 4. In a year with relatively poor female growth rate, poor female condition and probably relatively low potential for resource acquisition, females mating with many partners did relatively better than females mating with fewer partners. 5. In the poor year, relatively larger offspring survived better than smaller ones. 6. In a year with relatively high resource levels, females producing both relatively large young and large clutches were favoured by selection. 7. Depending on environmental conditions, female 'optimal tactics' may differ between episodes of selection. Univ Gothenburg, Dept Zool, SE-40530 Gothenburg, Sweden; Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia Olsson, M (reprint author), Univ Gothenburg, Dept Zool, POB 463, SE-40530 Gothenburg, Sweden. mats.olsson@zool.gu.se Madsen, Thomas/0000-0002-0998-8372 ANDERSSON M, 1978, AM NAT, V112, P762, DOI 10.1086/283317; ARNOLD SJ, 1984, EVOLUTION, V38, P720, DOI 10.1111/j.1558-5646.1984.tb00345.x; ARNOLD SJ, 1984, EVOLUTION, V38, P709, DOI 10.1111/j.1558-5646.1984.tb00344.x; Bischoff W., 1984, HDB REPTILIEN AMPHIB, V2/I, P23; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; CHARNOV EL, 1995, EVOL ECOL, V9, P57, DOI 10.1007/BF01237697; Dawkins R, 1982, EXTENDED PHENOTYPE; DHONDT AA, 1990, NATURE, V348, P723, DOI 10.1038/348723a0; FERGUSON GW, 1984, EVOLUTION, V38, P342, DOI 10.1111/j.1558-5646.1984.tb00292.x; FORBES LS, 1991, J THEOR BIOL, V150, P299, DOI 10.1016/S0022-5193(05)80429-1; Gullberg A, 1997, MOL ECOL, V6, P105, DOI 10.1046/j.1365-294X.1997.t01-1-00156.x; Gullberg A, 1998, BIOL J LINN SOC, V65, P257, DOI 10.1006/bijl.1998.0221; LACK D, 1947, IBIS, V89, P193; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Lessells C.M., 1991, P32; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; Madsen T, 1998, P ROY SOC B-BIOL SCI, V265, P1521, DOI 10.1098/rspb.1998.0467; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; McGinley MA, 1988, EVOL ECOL, V2, P77, DOI 10.1007/BF02071590; Mousseau TA, 1998, MATERNAL EFFECTS ADA; Olsson M, 1997, J EVOLUTION BIOL, V10, P369, DOI 10.1046/j.1420-9101.1997.10030369.x; OLSSON M, 1994, ANIM BEHAV, V48, P607, DOI 10.1006/anbe.1994.1280; Olsson M, 1996, NATURE, V383, P585, DOI 10.1038/383585a0; OLSSON M, 1994, NATURE, V369, P528, DOI 10.1038/369528b0; Olsson M, 1997, AM NAT, V149, P179, DOI 10.1086/285985; OLSSON M, 1994, NATURE, V372, P230, DOI 10.1038/372230a0; Olsson M, 1996, OECOLOGIA, V105, P175, DOI 10.1007/BF00328543; OLSSON M, 1993, BEHAV ECOL SOCIOBIOL, V32, P32; OLSSON M, 1992, THESIS U GOTHENBURG; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; Petraitis PS, 1996, FUNCT ECOL, V10, P421, DOI 10.2307/2389934; Roff Derek A., 1992; *SAS, 1990, SAS STAT US GUID, V1; SINERVO B, 1990, SCIENCE, V248, P1106, DOI 10.1126/science.248.4959.1106; Sinervo B, 1996, EVOLUTION, V50, P1314, DOI 10.1111/j.1558-5646.1996.tb02371.x; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; Sinervo B, 2000, NATURE, V406, P985, DOI 10.1038/35023149; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STRIJBOSCH H, 1988, OECOLOGIA, V76, P20, DOI 10.1007/BF00379595; Ward S, 1996, PHYSIOL ZOOL, V69, P930, DOI 10.1086/physzool.69.4.30164236; Williams GC, 1966, ADAPTATION NATURAL S; WILSON K, 1994, J EVOLUTION BIOL, V7, P339, DOI 10.1046/j.1420-9101.1994.7030339.x; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667 43 16 17 0 12 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. AUG 2001 15 4 443 450 10.1046/j.0269-8463.2001.00544.x 8 Ecology Environmental Sciences & Ecology 462AZ WOS:000170398500004 Bronze 2018-11-12 J Charnov, EL; Turner, TF; Winemiller, KO Charnov, EL; Turner, TF; Winemiller, KO Reproductive constraints and the evolution of life histories with indeterminate growth PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article dimensional analysis; ESS; fish; ontogeny; reptiles TRADE-OFF; ALLOCATION; SURVIVAL; PATTERNS; MODEL; DIVERSIFICATION; OPTIMIZATION; STRATEGIES; ANIMALS; LIZARDS A prominent feature of comparative life histories in fish (and other indeterminate growers) is the approximate invariance across species of certain dimensionless numbers made up from reproductive and timing variables. The two best known are the age at maturity (a) divided by the average adult lifespan (E), and the proportion of a body mass given to reproduction per year (c) multiplied by E. This article uses evolutionary life-history theory for nongrowing populations to predict the numeric value of these numbers for fish and lizards, with several new implications for the dynamics of ontogenetic development. Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA; Oregon State Univ, Dept Zool, Corvallis, OR 97333 USA; Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA Charnov, EL (reprint author), Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. Winemiller, Kirk/0000-0003-0236-5129 BAGENAL TB, 1966, BIOL BASIS FRESHWATE; Bart H.L. Jr, 1993, P553; Beverton R. J. H., 1963, Rapport Conseil Exploration Mer, V154, P44; BULMER M, 1994, THEORETICAL EVOLUTIO; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov EL, 2000, EVOL ECOL RES, V2, P365; CHARNOV EL, 1991, EVOL ECOL, V5, P63, DOI 10.1007/BF02285246; Charnov EL, 2001, EVOL ECOL RES, V3, P521; Charnov Eric L., 1993, P1; CUSHING DH, 1975, J CONSEIL, V36, P150; Day T, 1997, AM NAT, V149, P381, DOI 10.1086/285995; Gemmill AW, 1999, J EVOLUTION BIOL, V12, P1148, DOI 10.1046/j.1420-9101.1999.00117.x; Gunderson DR, 1997, CAN J FISH AQUAT SCI, V54, P990, DOI 10.1139/cjfas-54-5-990; GUNDERSON DR, 1988, J CONSEIL, V44, P200; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; Kozlowski J, 1996, P ROY SOC B-BIOL SCI, V263, P559, DOI 10.1098/rspb.1996.0084; Kozlowski J, 1997, AM NAT, V149, P352; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; Reiss M. J., 1989, ALLOMETRY GROWTH REP; Ricker W. E., 1975, B FISH RES BOARD CAN, V191, P1; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; ROFF DA, 1982, CAN J FISH AQUAT SCI, V39, P1686, DOI 10.1139/f82-225; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; SHINE R, 1992, AM NAT, V139, P1257, DOI 10.1086/285385; Stearns S. C., 1992, EVOLUTION LIFE HIST; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122; WEST GB, 2001, IN PRESS NATURE LOND; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WOOTTON RJ, 1979, S ZOOL SOC LOND, V44, P133 32 101 106 1 41 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. JUL 31 2001 98 16 9460 9464 10.1073/pnas.161294498 5 Multidisciplinary Sciences Science & Technology - Other Topics 458VV WOS:000170216900098 11481502 Bronze, Green Published 2018-11-12 J Wapstra, E; Swain, R Wapstra, E; Swain, R Geographic and annual variation in life-history traits in a temperate zone Australian skink JOURNAL OF HERPETOLOGY English Article NIVEOSCINCUS-OCELLATUS SQUAMATA; LIZARD SCELOPORUS-UNDULATUS; RELATIVE CLUTCH MASS; VIVIPAROUS LIZARD; EGG SIZE; OFFSPRING SIZE; ALTITUDINAL GRADIENT; SOUTHEASTERN ARIZONA; ALPINE LIZARD; GROWTH-RATES Life-history theory seeks to explain patterns of variation between species or populations of the same species. Studies of squamates in general, and lizards in particular, have assumed a prominent place in the understanding of such variation. However, to date, there have been surprisingly few studies of the Scincidae, a major squamate taxon. We investigated geographic and interannual variation in life-history traits in two populations of the Tasmanian spotted snow skink, Niveoscincus ocellatus, living at the climatic extremes of the species' distribution. Within each population, there were no interannual or intersexual differences in adult body size. However, mature individuals from a cold subalpine/alpine site were significantly larger at maturity, and had a larger maximum body size than mature individuals from a warmer coastal site. These findings am consistent with current predictions of the proximate effect of the thermal environment on lizard growth and size and age at maturity. In both populations, female fecundity was size-related. Litter size did not vary between years at either site, but, contrary to expectations, females from the cold site had the same or higher size-adjusted reproductive output as those from the warm coastal site. We suggest that resource availability is high at both sites and that a high reproductive output by females from the cold site does not confer a significantly higher survival risk than a lower reproductive commitment. Offspring were largest at the cold site, which is consistent with variation in offspring size of other widespread species and may occur because of strong selective pressures on early survival and growth at the cold site. Univ Tasmania, Sch Zool, Hobart, Tas 7001, Australia Wapstra, E (reprint author), Univ Tasmania, Sch Zool, Box 252C-05, Hobart, Tas 7001, Australia. erikwapstra@hotmail.com Wapstra, Erik/J-7482-2014 Wapstra, Erik/0000-0002-2050-8026 Adolph SC, 1996, OIKOS, V77, P267, DOI 10.2307/3546065; ADOLPH SC, 1993, AM NAT, V142, P273, DOI 10.1086/285538; Andrews R.M., 1982, Biology of Reptilia, V13, P273; BALLARD KP, 1981, REG STUD, V15, P213, DOI 10.1080/09595238100185221; Ballinger R.E., 1983, P241; BALLINGER RE, 1979, ECOLOGY, V60, P901, DOI 10.2307/1936858; BALLINGER RE, 1973, ECOLOGY, V54, P269, DOI 10.2307/1934336; Bauwens D, 1997, AM NAT, V149, P91, DOI 10.1086/285980; BERVEN KA, 1983, AM ZOOL, V23, P85; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; BRUCE RC, 1990, J HERPETOL, V24, P126, DOI 10.2307/1564219; Cogger H. G., 1992, REPTILES AMPHIBIANS; DEMARCO VG, 1989, OECOLOGIA, V80, P525, DOI 10.1007/BF00380077; Doughty P, 1998, ECOLOGY, V79, P1073, DOI 10.1890/0012-9658(1998)079[1073:REAALT]2.0.CO;2; DUNHAM AE, 1982, HERPETOLOGICA, V38, P208; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; DUNHAM AE, 1988, BIOL REPTILIA, V16, P443; DUNHAM AE, 1985, AM NAT, V125, P480; FARR DR, 1991, J HERPETOL, V25, P261, DOI 10.2307/1564582; FERGUSON GW, 1993, OECOLOGIA, V93, P88, DOI 10.1007/BF00321196; FERGUSON GW, 1980, ECOLOGY, V61, P313, DOI 10.2307/1935190; FERGUSON GW, 1990, HERPETOLOGICA, V46, P227; Forsman A, 1995, FUNCT ECOL, V9, P818, DOI 10.2307/2389979; Galan P, 1996, HERPETOL J, V6, P87; GRANT BW, 1990, ECOLOGY, V71, P1765, DOI 10.2307/1937584; Greer AE, 1989, BIOL EVOLUTION AUSTR; HOWLAND JM, 1992, COPEIA, P82, DOI 10.2307/1446538; Hutchinson Mark N., 1993, P261; HUTCHINSON MN, 1991, J HERPETOL, V25, P49, DOI 10.2307/1564794; Jones R. W., 1987, ADV PETROLEUM GEOCHE, V2, P1; JONES SM, 1987, OIKOS, V48, P325, DOI 10.2307/3565521; Jones SM, 1997, GEN COMP ENDOCR, V108, P271, DOI 10.1006/gcen.1997.6971; MATHIES T, 1995, OECOLOGIA, V104, P101, DOI 10.1007/BF00365568; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; Melville J, 2000, HERPETOLOGICA, V56, P196; Melville Jane, 1998, Australian Biologist, V11, P22; MILES DB, 1992, AM NAT, V139, P848, DOI 10.1086/285361; NIEWIAROWSKI PH, 1993, ECOLOGY, V74, P1992, DOI 10.2307/1940842; Niewiarowski PH, 1995, HERPETOLOGICA, V51, P487; Olsson M, 1997, AM NAT, V149, P179, DOI 10.1086/285985; Olsson M, 1998, EVOLUTION, V52, P1861, DOI 10.1111/j.1558-5646.1998.tb02265.x; Olsson M, 1999, COPEIA, P794; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PARKER WS, 1975, COPEIA, P615; Rawlinson P. A., 1974, BIOGEOGRAPHY ECOLOGY, P291, DOI 10. 1007/978-94-010-2337-5; Roff Derek A., 1992; Rohr DH, 1997, J ANIM ECOL, V66, P567, DOI 10.2307/5950; ROWE JW, 1994, OECOLOGIA, V99, P35, DOI 10.1007/BF00317081; SCHWARZKOPF L, 1992, HERPETOLOGICA, V48, P390; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SHINE R, 1993, OECOLOGIA, V96, P122, DOI 10.1007/BF00318039; SHINE R, 1995, AM NAT, V145, P809, DOI 10.1086/285769; SHINE R, 1992, AM NAT, V139, P1257, DOI 10.1086/285385; SINERVO B, 1989, OECOLOGIA, V78, P411, DOI 10.1007/BF00379118; SINERVO B, 1990, OECOLOGIA, V83, P228, DOI 10.1007/BF00317757; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH GR, 1995, HERPETOLOGICA, V51, P342; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; STEARNS SC, 1984, AM NAT, V123, P56, DOI 10.1086/284186; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Swain R, 1997, J EXP ZOOL, V277, P139, DOI 10.1002/(SICI)1097-010X(19970201)277:2<139::AID-JEZ5>3.0.CO;2-Q; SWAIN R, 1994, HERPETOLOGICA, V50, P502; TINKLE DW, 1970, EVOLUTION, V24, P55, DOI 10.1111/j.1558-5646.1970.tb01740.x; TINKLE DW, 1993, ECOLOGY, V74, P2413, DOI 10.2307/1939592; TINKLE DW, 1986, COPEIA, P1; VITT LJ, 1982, HERPETOLOGICA, V38, P237; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; VITT LJ, 1994, LIZARD ECOLOGY HIST, pR9; Wapstra E, 1996, AUST J ZOOL, V44, P205, DOI 10.1071/ZO9960205; Wapstra E, 1999, AUST J ZOOL, V47, P539, DOI 10.1071/ZO99038; Wapstra E, 2000, FUNCT ECOL, V14, P345, DOI 10.1046/j.1365-2435.2000.00428.x; WAPSTRA E, 2001, IN PRESS AUST ECOL; WAPSTRA E, 2001, IN PRESS COPEIA; WAPSTRA E, 1998, THESIS U TASMANIA HO 78 46 47 3 14 SOC STUDY AMPHIBIANS REPTILES ST LOUIS C/O ROBERT D ALDRIDGE, ST LOUIS UNIV, DEPT BIOLOGY, 3507 LACLEDE, ST LOUIS, MO 63103 USA 0022-1511 1937-2418 J HERPETOL J. Herpetol. JUN 2001 35 2 194 203 10.2307/1566108 10 Zoology Zoology 440XU WOS:000169202600003 2018-11-12 J Oli, MK; Zinner, B Oli, MK; Zinner, B Partial life cycle analysis: a model for pre-breeding census data OIKOS English Article TABLE RESPONSE EXPERIMENTS; POPULATION-GROWTH RATE; ELASTICITIES; MAMMALS Matrix population models have become popular tools in research areas as diverse as population dynamics, life history theory, wildlife management, and conservation biology. Two classes of matrix models are commonly used for demographic analysis of age-structured populations: age-structured (Leslie) matrix models, which require age-specific demographic data, and partial life cycle models, which can be parameterized with partial demographic data. Partial life cycle models are easier to parameterize because data needed to estimate parameters for these models are collected much more easily than those needed to estimate age-specific demographic parameters. Partial life cycle models also allow evaluation of the sensitivity of population growth rate to changes in ages at first and last reproduction, which cannot be done with age-structured models. Timing of censuses relative to the birth-pulse is an important consideration in discrete-time population models but most existing partial life cycle models do not address this issue, nor do they allow fractional values of variables such as ages at first and last reproduction. Here, we fully develop a partial life cycle model appropriate for situations in which demographic data are collected immediately before the birth-pulse (pre-breeding census). Our pre-breeding census partial life cycle model can be fully parameterized with five variables (agc at maturity, age at last reproduction. juvenile survival rate. adult survival rate, and fertility), and it has some important applications even when age-specific demographic data are available (e.g., perturbation analysis involving ages at first and last reproduction). Wr have extended the model to allow non-integer values of ages at first and last reproduction, derived formulae for sensitivity analyses, and presented methods for estimating parameters for our pre-breeding census partial life cycle model. We applied the age-structured Leslie matrix model and our pre-breeding census partial life cycle model to demographic data for several species of mammals. Our results suggest that dynamical properties of the age-structured model are generally retained in our partial life cycle model, and that our pre-breeding census partial life cycle model is an excellent proxy for the age-structured Leslie matrix model. Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL 32611 USA; Auburn Univ, Dept Discrete & Stat Sci, Auburn, AL 36849 USA Oli, MK (reprint author), Univ Florida, Dept Wildlife Ecol & Conservat, 303 Newins Ziegler Hall, Gainesville, FL 32611 USA. olim@wec.ufl.edu CALKINS DG, 1982, 243 RU AL DEP FISH G; CASWELL H, 1989, ECOL MODEL, V46, P221, DOI 10.1016/0304-3800(89)90019-7; Caswell H., 1989, MATRIX POPULATION MO; CAUGHLEY G, 1977, ANAL VERTEBRATE POPU; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; Fleming T. H., 1971, Miscellaneous Publs Mus Zool Univ Mich, VNo. 143, P1; GARROTT RA, 1990, J WILDLIFE MANAGE, V54, P603, DOI 10.2307/3809357; Heppell S, 2000, ECOLOGY, V81, P605, DOI 10.1890/0012-9658(2000)081[0605:EAIPBM]2.0.CO;2; Horvitz C., 1997, STRUCTURED POPULATIO, P247, DOI [10. 1007/978-1-4615-5973-3, DOI 10.1007/978-1-4615-5973-3]; LANDE R, 1988, OECOLOGIA, V75, P601, DOI 10.1007/BF00776426; LESLIE PH, 1948, BIOMETRIKA, V35, P213, DOI 10.1093/biomet/35.3-4.213; LESLIE PH, 1945, BIOMETRIKA, V33, P183, DOI DOI 10.1093/BI0MET/33.3.183; Levin L, 1996, ECOL APPL, V6, P1295, DOI 10.2307/2269608; Lewontin R.C., 1965, GENETICS COLONIZING, P79; Li Jinhua, 1995, Acta Theriologica Sinica, V15, P31; MESSIER F, 1988, ARCTIC, V41, P279; MESTERTONGIBBONS M, 1993, ECOLOGY, V74, P2467, DOI 10.2307/1939599; Oli MK, 1999, OIKOS, V86, P557, DOI 10.2307/3546660; Oli MK, 2001, ECOLOGY, V82, P1180, DOI 10.1890/0012-9658(2001)082[1180:PLCAAM]2.0.CO;2; OLI MK, 2001, IN PRESS ECOLOGY; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; RODGERS WA, 1984, MAMMALIA, V48, P327, DOI 10.1515/mamm.1984.48.3.327; Roff Derek A., 1992; Sinclair A. R. E., 1977, AFRICAN BUFFALO STUD; Slade NA, 1998, CONSERV BIOL, V12, P148, DOI 10.1046/j.1523-1739.1998.96273.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tuljapurkar S., 1997, STRUCTURED POPULATIO; VANGROENENDAEL J, 1988, TRENDS ECOL EVOL, V3, P264, DOI 10.1016/0169-5347(88)90060-2; Wegge P., 1979, Journal of Asian Ecology, V1, P10; WEI F, 1989, Acta Theriologica Sinica, V9, P81; YOZDIS P, 1986, J WILDLIFE MANAGE, V50, P602 33 15 15 0 10 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos JUN 2001 93 3 376 387 10.1034/j.1600-0706.2001.930303.x 12 Ecology Environmental Sciences & Ecology 452YK WOS:000169887100003 2018-11-12 J Troisi, A Troisi, A Gender differences in vulnerability to social stress - A Darwinian perspective PHYSIOLOGY & BEHAVIOR English Article; Proceedings Paper International Workshop on Social Stress: Acute and Long-Term Effects on Physiology and Behavior AUG 31-SEP 02, 2000 UNIV PARMA, PARMA, ITALY UNIV PARMA stress; Darwinian psychiatry; gender differences; vulnerability; depression; sexual selection; life history LIFE-EVENTS; MAJOR DEPRESSION; SEX-DIFFERENCES; MODEL; PERSONALITY; INFERTILITY; DISORDERS; DISTRESS; SUPPORT; ONSET This article offers a theoretical framework based on evolutionary thinking designed to clarify relationships between social stress and mental illness, including the origin of gender differences in vulnerability to stress. From a Darwinian perspective, stress is an interference with evolved behavioral strategies. Human behavior is organized around the pursuit of biological goals, and any social event that interferes with these evolved strategic goals may constitute a stressor. The response to such interference - the stress response - is made up of physiological, psychological and behavioral components. These components determine how individuals deal with those social events that were likely to reduce inclusive fitness in the ancestral environment. Evolved gender differences in commitment to goals play a role in determining individual differences in response to stressors. When a social stressor interferes with achieving a biological goal, its harmful impact will depend primarily on the importance of the goal to an individual, and the importance assigned to different goals by an individual does not depend exclusively on personal variables and cultural values. Two evolutionary theories are relevant to gender differences in vulnerability to social stress: sexual selection theory and life history theory. Clinical data from patients suffering from depression triggered by social stress are reviewed to test predictions derived from these theories. (C) 2001 Elsevier Science Inc. All rights reserved. Univ Roma Tor Vergata, Cattedra Psichiat, I-00161 Rome, Italy Troisi, A (reprint author), Univ Roma Tor Vergata, Cattedra Psichiat, Via Guattani 14, I-00161 Rome, Italy. alfonso.troisi@uniroma2.it TROISI, ALFONSO/0000-0002-3483-1318 American Psychiatric Association, 1980, DIAGN STAT MAN MENT; APPLEBY L, 1991, BRIT MED J, V302, P137, DOI 10.1136/bmj.302.6769.137; Bebbington P, 1996, INT REV PSYCHIATR, V8, P295, DOI 10.3109/09540269609051547; Bowman ML, 1999, CAN J PSYCHIAT, V44, P21, DOI 10.1177/070674379904400103; BROWN GW, 1973, PSYCHOL MED, V3, P74, DOI 10.1017/S0033291700046365; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; CHROUSOS GP, 1992, JAMA-J AM MED ASSOC, V267, P1244, DOI 10.1001/jama.267.9.1244; Cronin Helena, 1992, P286; Cyranowski JM, 2000, ARCH GEN PSYCHIAT, V57, P21, DOI 10.1001/archpsyc.57.1.21; DAVIS DR, 1970, BRIT J MED PSYCHOL, V43, P109, DOI 10.1111/j.2044-8341.1970.tb02109.x; DIMSDALE JE, 2000, KAPLAN SADOCKS COMPR, V2, P1835; FEINGOLD A, 1994, PSYCHOL BULL, V116, P429, DOI 10.1037/0033-2909.116.3.429; HOBFOLL SE, 1994, AM J COMMUN PSYCHOL, V22, P49, DOI 10.1007/BF02506817; HOLMES TH, 1967, J PSYCHOSOM RES, V11, P213, DOI 10.1016/0022-3999(67)90010-4; HOPKINS J, 1984, PSYCHOL BULL, V95, P498, DOI 10.1037//0033-2909.95.3.498; HRDY SB, 1994, INFANTICIDE PARENTAL, P3; Jaspers K, 1913, ALLGEMEINE PSYCHOPAT; KENDLER KS, 1995, AM J PSYCHIAT, V152, P833; Kessler RC, 1997, ANNU REV PSYCHOL, V48, P191, DOI 10.1146/annurev.psych.48.1.191; KESSLER RC, 1984, AM SOCIOL REV, V49, P620, DOI 10.2307/2095420; KESSLER RC, 1985, ANNU REV PSYCHOL, V36, P531, DOI 10.1146/annurev.ps.36.020185.002531; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; Mayr Ernst, 1982, GROWTH BIOL THOUGHT; Mazure CM, 2000, AM J PSYCHIAT, V157, P896, DOI 10.1176/appi.ajp.157.6.896; MCEWAN KL, 1987, J ABNORM PSYCHOL, V96, P108, DOI 10.1037//0021-843X.96.2.108; McGuire Michael, 1998, DARWINIAN PSYCHIAT; McGuire MT, 1998, BRIT J MED PSYCHOL, V71, P479, DOI 10.1111/j.2044-8341.1998.tb01004.x; MCGUIRE MT, 2000, KAPLAN SADOCKS COMPR, V1, P484; McGuire MT, 1997, MALADAPTED MIND CLAS, P255; Nesse RM, 2000, ARCH GEN PSYCHIAT, V57, P14, DOI 10.1001/archpsyc.57.1.14; NONACS R, 2000, KAPLAN SADOCKS COMPR, V1, P1276; PAYKEL ES, 1978, PSYCHOL MED, V8, P245, DOI 10.1017/S003329170001429X; PAYKEL ES, 1983, J PSYCHOSOM RES, V27, P341, DOI 10.1016/0022-3999(83)90065-X; PAYKEL ES, 1992, HDB AFFECTIVE DISORD, P149; Rasgon NL, 2000, MOOD DISORDERS IN WOMEN, P35; RUST J, 1988, BRIT J PSYCHIAT, V152, P629, DOI 10.1192/bjp.152.5.629; Stearns S. C., 1992, EVOLUTION LIFE HIST; Thornhill R, 1997, Ciba Found Symp, V208, P4; Troisi A, 1999, J PSYCHIAT RES, V33, P243, DOI 10.1016/S0022-3956(98)00064-8; TROISI A, 1992, ARCH GEN PSYCHIAT, V49, P501; Troisi A, 1998, ENCY MENTAL HLTH, V2, P173; TURNER RJ, 1989, J NERV MENT DIS, V177, P443, DOI 10.1097/00005053-198908000-00001; VANCE JC, 1991, MED J AUSTRALIA, V155, P292; VEIEL HOF, 1993, J ABNORM PSYCHOL, V102, P419, DOI 10.1037//0021-843X.102.3.419; WRIGHT J, 1991, FERTIL STERIL, V55, P100 45 67 70 0 19 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0031-9384 PHYSIOL BEHAV Physiol. Behav. JUN 2001 73 3 443 449 10.1016/S0031-9384(01)00459-0 7 Psychology, Biological; Behavioral Sciences Psychology; Behavioral Sciences 452JX WOS:000169855500025 11438373 2018-11-12 J Lytle, DA Lytle, DA Disturbance regimes and life-history evolution AMERICAN NATURALIST English Article body size; timing of metamorphosis; patch dynamics; state-dependent strategy; geometric mean fitness; arithmetic mean fitness RANDOMLY VARYING ENVIRONMENTS; ESS GERMINATION STRATEGIES; TIME CONSTRAINTS; VARIABLE ENVIRONMENTS; DIAPAUSE STRATEGIES; REPRODUCTIVE GROWTH; SPECIES-DIVERSITY; DESERT ANNUALS; ANNUAL PLANTS; TRADE-OFF Disturbance regimes are ecologically important, but many of their evolutionary consequences are poorly understood. A model is developed here that combines the within- and among-season dynamics of disturbances with evolutionary life-history theory. "Disturbance regime" is defined in terms of disturbance timing, frequency, predictability, and severity. The model predicts the optimal body size and time at which organisms should abandon a disturbance-prone growth habitat by maturing and moving to a disturbance-free, nongrowth habitat. The effects of both coarse-grained (those affecting the entire population synchronously) and fine-grained disturbances (those occurring in a patch dynamics setting) are explored. Several predictions are congruent with previous theory. Infrequent or temporally unpredictable disturbances should have little effect on the evolution of life-history strategies, even though they may cause high mortality. Similar to seasonal time constraints on reproduction, disturbance regimes can synchronize metamorphosis within a population, resulting in a seasonal decline in body size at maturity. Other model predictions are novel. When disturbances cause high mortality, coarse-grained disturbances have a much stronger effect on life-history strategies than fine-grained disturbances, suggesting that population structure (relative to the scale of disturbance) plays a critical evolutionary role when disturbances are severe. When within- population variance in juvenile body size is high, two consecutive seasonal declines in body size at maturity can occur, the first associated with disturbance regime and the second associated with seasonal time constraints. Cornell Univ, Dept Entomol & Field Ecol & Evolutionary Biol, Ithaca, NY 14853 USA Lytle, DA (reprint author), Univ Arizona, Dept Entomol, Tucson, AZ 85721 USA. Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Airoldi L, 2000, ECOLOGY, V81, P798, DOI 10.1890/0012-9658(2000)081[0798:EODLHA]2.0.CO;2; BRADFORD MJ, 1993, ECOLOGY, V74, P1129, DOI 10.2307/1940482; Bradford MJ, 1997, ECOLOGY, V78, P442; CHESSON P, 1994, THEOR POPUL BIOL, V45, P227, DOI 10.1006/tpbi.1994.1013; Christensen N. L., 1985, ECOLOGY NATURAL DIST, P86; Closs GP, 1996, ENVIRON BIOL FISH, V47, P17, DOI 10.1007/BF00002376; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; COHEN D, 1971, J THEOR BIOL, V33, P299, DOI 10.1016/0022-5193(71)90068-3; COHEN D, 1970, AM NAT, V104, P389, DOI 10.1086/282672; Czarnoleski M, 1998, ECOL LETT, V1, P5, DOI 10.1046/j.1461-0248.1998.0007b.x; Danforth BN, 1999, P ROY SOC B-BIOL SCI, V266, P1985, DOI 10.1098/rspb.1999.0876; Day T, 1997, AM NAT, V149, P381, DOI 10.1086/285995; ELLNER S, 1985, THEOR POPUL BIOL, V28, P50, DOI 10.1016/0040-5809(85)90022-X; ELLNER S, 1985, THEOR POPUL BIOL, V28, P80, DOI 10.1016/0040-5809(85)90023-1; FOGEL MM, 1969, WATER RESOUR RES, V5, P1229, DOI 10.1029/WR005i006p01229; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; Gotthard K, 1999, OIKOS, V84, P453, DOI 10.2307/3546424; GRIMM NB, 1989, J N AM BENTHOL SOC, V8, P293, DOI 10.2307/1467493; HAIRSTON NG, 1984, AM NAT, V123, P733, DOI 10.1086/284236; Harper J. L., 1977, POPULATION BIOL PLAN; HOUSTON AI, 1993, PHILOS T ROY SOC B, V341, P375, DOI 10.1098/rstb.1993.0123; HUSTON M, 1979, AM NAT, V113, P81, DOI 10.1086/283366; HUTCHINSON GE, 1961, AM NAT, V95, P137, DOI 10.1086/282171; IWASA Y, 1995, J THEOR BIOL, V172, P33, DOI 10.1006/jtbi.1995.0003; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.1890/0012-9658(1999)080[1242:LHABRT]2.0.CO;2; JOHN KR, 1964, ECOLOGY, V45, P112, DOI 10.2307/1937112; KING D, 1982, THEOR POPUL BIOL, V21, P194, DOI 10.1016/0040-5809(82)90013-2; KING D, 1982, THEOR POPUL BIOL, V22, P1, DOI 10.1016/0040-5809(82)90032-6; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; LACEY EP, 1983, AM NAT, V122, P114, DOI 10.1086/284122; LAVOREL S, 1995, OIKOS, V74, P103, DOI 10.2307/3545679; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; Lytle DA, 2000, ARCH HYDROBIOL, V150, P85; LYTLE DA, 2000, THESIS CORNELL U ITH; MACARTHUR R, 1967, AM NAT, V101, P377, DOI 10.1086/282505; MCEVOY PB, 1993, ECOL MONOGR, V63, P55, DOI 10.2307/2937123; MEFFE GK, 1984, ECOLOGY, V65, P1525, DOI 10.2307/1939132; Minckley W.L., 1987, P93; MOREIRA GRP, 1994, J N AM BENTHOL SOC, V13, P19, DOI 10.2307/1467262; NEWMAN RA, 1989, ECOLOGY, V70, P1775, DOI 10.2307/1938111; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; PECKARSKY BL, 1993, ECOLOGY, V74, P1836, DOI 10.2307/1939941; Peckarsky BL, 2001, ECOLOGY, V82, P740, DOI 10.2307/2680193; PHILIPPI T, 1993, AM NAT, V142, P474, DOI 10.1086/285550; Pickett S. T., 1985, ECOLOGY NATURAL DIST; Richter BD, 1996, CONSERV BIOL, V10, P1163, DOI 10.1046/j.1523-1739.1996.10041163.x; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Runkle JR, 2000, ECOLOGY, V81, P554, DOI 10.1890/0012-9658(2000)081[0554:CTTIOG]2.0.CO;2; SASAKI A, 1995, EVOLUTION, V49, P337, DOI 10.1111/j.1558-5646.1995.tb02246.x; SEMLITSCH RD, 1988, COPEIA, P978; Taylor BW, 1998, OECOLOGIA, V114, P494, DOI 10.1007/s004420050473; Turner MG, 1998, ECOSYSTEMS, V1, P511, DOI 10.1007/s100219900047; VANNOTE RL, 1980, AM NAT, V115, P667, DOI 10.1086/283591; VENABLE DL, 1988, AM NAT, V131, P360, DOI 10.1086/284795; VENABLE DL, 1980, OECOLOGIA, V46, P272, DOI 10.1007/BF00540137; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WILBUR HM, 1987, ECOLOGY, V68, P1437, DOI 10.2307/1939227; Wootton JT, 1998, AM NAT, V152, P803, DOI 10.1086/286210 63 108 111 3 38 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 AM NAT Am. Nat. MAY 2001 157 5 525 536 10.1086/319930 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 420UK WOS:000168023500005 18707260 2018-11-12 J Ghalambor, CK; Martin, TE Ghalambor, CK; Martin, TE Fecundity-survival trade-offs and parental risk-taking in birds SCIENCE English Article LIFE-HISTORY EVOLUTION; NEST PREDATION; RATES; POPULATIONS; DEMOGRAPHY; NORTH Life history theory predicts that parents should value their own survival over that of their offspring in species with a higher probability of adult survival and fewer offspring. We report that Southern Hemisphere birds have higher adult survival and smaller clutch sizes than Northern Hemisphere birds. We subsequently manipulated predation risk to adults versus offspring in 10 species that were paired between North and South America on the basis of phylogeny and ecology. As predicted, southern parents responded more strongly to reduce mortality risk to themselves oven at a cost to their offspring, whereas northern parents responded more strongly to reduce risk to their offspring even at greater risk to themselves. Univ Montana, Montana Cooperat Wildlife Res Unit, Avian Studies Program, US Geol Survey,Biol Resources Div, Missoula, MT 59812 USA Ghalambor, CK (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. camerong@citrus.ucr.edu Martin, Thomas/F-6016-2011 Martin, Thomas/0000-0002-4028-4867 Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Ghalambor CK, 2000, ANIM BEHAV, V60, P263, DOI 10.1006/anbe.2000.1472; GHALAMBOR CK, IN PRESS BEHAV ECOL; Johnston JP, 1997, AM NAT, V150, P771, DOI 10.1086/286093; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; KING JR, 1987, CONDOR, V89, P549, DOI 10.2307/1368644; Lack D., 1968, ECOLOGICAL ADAPTATIO; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Martin TE, 1995, J APPL STAT, V22, P863, DOI 10.1080/02664769524676; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; Ricklefs RE, 1997, ECOL MONOGR, V67, P23, DOI 10.1890/0012-9615(1997)067[0023:CDONWP]2.0.CO;2; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; Roff Derek A., 1992; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.1890/0012-9658(2000)081[1351:SROANP]2.0.CO;2; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; White GC, 1999, BIRD STUDY, V46, P120; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 22 297 306 6 144 AMER ASSOC ADVANCEMENT SCIENCE WASHINGTON 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA 0036-8075 1095-9203 SCIENCE Science APR 20 2001 292 5516 494 497 10.1126/science.1059379 4 Multidisciplinary Sciences Science & Technology - Other Topics 423QB WOS:000168187300044 11313493 2018-11-12 J Casto, JM; Nolan, V; Ketterson, ED Casto, JM; Nolan, V; Ketterson, ED Steroid hormones and immune function: Experimental studies in wild and captive dark-eyed juncos (Junco hyemalis) AMERICAN NATURALIST English Article birds; corticosterone; endocrine-immune interactions; immunity; mating systems; testosterone EXPERIMENTALLY ELEVATED TESTOSTERONE; AVIAN LIFE HISTORIES; MALE HOUSE SPARROWS; RED JUNGLE FOWL; STRESS-INDUCED ENHANCEMENT; CELL-MEDIATED-IMMUNITY; MALE BARN SWALLOWS; HIRUNDO-RUSTICA; REPRODUCTIVE EFFORT; PASSER-DOMESTICUS Monogamous and polygynous male songbirds generally differ in their breeding season profiles of circulating testosterone. Testosterone level spikes early in the breeding season of monogamists and then declines, but it remains high in polygynists. Male dark-eyed juncos (Junco hyemalis) are socially monogamous and exhibit the usual pattern, but experimental maintenance of high testosterone throughout the breeding season alters normal behavior and physiology and affects various components of annual reproductive success but not overall annual success. Because stabilizing selection predicts that alteration of naturally existing phenotypes should reduce lifetime reproductive success, we asked whether prolonged testosterone exposure might impair immune function and perhaps thereby reduce life span. We assessed immune function in captive and wild male juncos that we treated with either testosterone-filled or empty Silastic implants. Results indicate that prolonged elevation of testosterone suppresses antibody production in captive males and cell-mediated immunity in wild males. Together these results suggest that testosterone-treated males maybe more susceptible to disease or parasitic infection. As earlier studies have shown, levels of corticosterone as well as testosterone are higher in testosterone-treated males, so it is unclear whether the immune suppression we observed is due to testosterone's direct effects on immunity or testosterone's influence on glucocorticoid production. We discuss results in the context of recent hypotheses regarding life-history theory and potential endocrine-immune interactions. Indiana Univ, Dept Biol, Bloomington, IN 47405 USA; Indiana Univ, Ctr Integrat Study Anim Behav, Bloomington, IN 47405 USA Casto, JM (reprint author), Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. Allander K, 1997, FUNCT ECOL, V11, P358, DOI 10.1046/j.1365-2435.1997.00095.x; Apanius V, 1998, ADV STUD BEHAV, V27, P133; BALL GF, 1987, PHYSIOL ZOOL, V60, P191, DOI 10.1086/physzool.60.2.30158643; BELETSKY LD, 1990, AUK, V107, P60; BELETSKY LD, 1989, AUK, V106, P107, DOI 10.2307/4087763; Bentley GE, 1998, P ROY SOC B-BIOL SCI, V265, P1191, DOI 10.1098/rspb.1998.0418; Besedovsky HO, 1996, ENDOCR REV, V17, P64, DOI 10.1210/edrv-17-1-64; Braude S, 1999, BEHAV ECOL, V10, P345, DOI 10.1093/beheco/10.3.345; Buchanan KL, 2000, TRENDS ECOL EVOL, V15, P156, DOI 10.1016/S0169-5347(99)01812-1; Cawthorn JM, 1998, ANIM BEHAV, V56, P617, DOI 10.1006/anbe.1998.0849; CHANDLER CR, 1994, ANIM BEHAV, V47, P1445, DOI 10.1006/anbe.1994.1191; CHANDLER CR, 1995, CONDOR, V97, P279, DOI 10.2307/1369007; CUPPS TR, 1982, IMMUNOL REV, V65, P133, DOI 10.1111/j.1600-065X.1982.tb00431.x; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; Deviche P, 2000, GEN COMP ENDOCR, V118, P425, DOI 10.1006/gcen.2000.7478; Dhabhar FS, 1999, P NATL ACAD SCI USA, V96, P1059, DOI 10.1073/pnas.96.3.1059; Dhabhar FS, 1998, ANN NY ACAD SCI, V840, P359, DOI 10.1111/j.1749-6632.1998.tb09575.x; Dhabhar FS, 1996, J IMMUNOL, V156, P2608; Duffy DL, 2000, BEHAV ECOL, V11, P654, DOI 10.1093/beheco/11.6.654; Enstrom DA, 1997, ANIM BEHAV, V54, P1135, DOI 10.1006/anbe.1997.0555; Evans MR, 2000, BEHAV ECOL SOCIOBIOL, V47, P156, DOI 10.1007/s002650050006; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; FOWLES JR, 1993, DEV COMP IMMUNOL, V17, P165, DOI 10.1016/0145-305X(93)90026-M; Gonzalez G, 1999, J ANIM ECOL, V68, P1225, DOI 10.1046/j.1365-2656.1999.00364.x; GOSLER AG, 1991, BIRD STUDY, V38, P1, DOI 10.1080/00063659109477061; GROSS WG, 1980, POULTRY SCI, V59, P205, DOI 10.3382/ps.0590205; Hasselquist D, 1999, BEHAV ECOL SOCIOBIOL, V45, P167, DOI 10.1007/s002650050550; HAY L, 1989, PRACTICAL IMMUNOLOGY; HEGNER RE, 1987, AUK, V104, P462, DOI 10.2307/4087545; HEGNER RE, 1986, HORM BEHAV, V20, P294, DOI 10.1016/0018-506X(86)90039-5; HELMS CW, 1960, BIRDBANDING, V31, P1, DOI DOI 10.2307/4510793; Hill JA, 1999, BEHAV ECOL, V10, P91, DOI 10.1093/beheco/10.1.91; Hillgarth Nigella, 1997, P78; HUDMAN SP, 2000, AUK, V117, P1056; Ketterson ED, 1996, IBIS, V138, P70; Ketterson ED, 1999, AM NAT, V154, pS4, DOI 10.1086/303280; KETTERSON ED, 1991, HORM BEHAV, V25, P489, DOI 10.1016/0018-506X(91)90016-B; KETTERSON ED, 1992, AM NAT, V140, P980, DOI 10.1086/285451; KETTERSON ED, 1992, AM NAT S, V140, P33; Klein SL, 1998, AM NAT, V151, P59, DOI 10.1086/286102; Klukowski LA, 1997, GEN COMP ENDOCR, V108, P141, DOI 10.1006/gcen.1997.6956; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; LOCHMILLER RL, 1993, AUK, V110, P503, DOI 10.2307/4088414; MARLER CA, 1995, BEHAV ECOL SOCIOBIOL, V37, P225, DOI 10.1007/s002650050185; MOLLER AP, 1995, TRENDS ECOL EVOL, V10, P121, DOI 10.1016/S0169-5347(00)89008-4; Moreno J, 1999, P ROY SOC B-BIOL SCI, V266, P1105, DOI 10.1098/rspb.1999.0750; MUNCK A, 1984, ENDOCR REV, V5, P25, DOI 10.1210/edrv-5-1-25; Nelson RJ, 1996, Q REV BIOL, V71, P511, DOI 10.1086/419555; NOLAN V, 1992, CONDOR, V94, P364, DOI 10.2307/1369209; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; Peters A, 2000, P ROY SOC B-BIOL SCI, V267, P883, DOI 10.1098/rspb.2000.1085; Raouf SA, 1997, P ROY SOC B-BIOL SCI, V264, P1599, DOI 10.1098/rspb.1997.0223; Ros AFH, 1997, AM NAT, V150, P201, DOI 10.1086/286063; SAINO N, 1995, ANIM BEHAV, V49, P465, DOI 10.1006/anbe.1995.0060; Saino N, 1997, P NATL ACAD SCI USA, V94, P549, DOI 10.1073/pnas.94.2.549; Saino N, 1995, BEHAV ECOL, V6, P397, DOI 10.1093/beheco/6.4.397; SAINO N, 1994, ANIM BEHAV, V48, P1325, DOI 10.1006/anbe.1994.1369; Sapolsky R.M, 1993, BEHAV ENDOCRINOLOGY, P287; SCHLEIMER RP, 1989, J PHARMACOL EXP THER, V250, P598; Schoech SJ, 1999, AUK, V116, P64, DOI 10.2307/4089454; Schoech SJ, 1998, HORM BEHAV, V34, P1, DOI 10.1006/hbeh.1998.1455; Sinervo Barry, 1996, P149; SLATER CH, 1993, GEN COMP ENDOCR, V89, P291, DOI 10.1006/gcen.1993.1035; Smulders TV, 2000, J NEUROBIOL, V43, P244, DOI 10.1002/(SICI)1097-4695(20000605)43:3<244::AID-NEU3>3.0.CO;2-#; Sokal R.R., 1995, BIOMETRY; Sorci G, 1997, P ROY SOC B-BIOL SCI, V264, P1593, DOI 10.1098/rspb.1997.0222; Taymans SE, 1997, GEN COMP ENDOCR, V106, P48, DOI 10.1006/gcen.1996.6849; Tuttle EM, 1996, P ROY SOC B-BIOL SCI, V263, P1359, DOI 10.1098/rspb.1996.0199; Verhulst S, 1999, P NATL ACAD SCI USA, V96, P4478, DOI 10.1073/pnas.96.8.4478; Wada M, 1999, GEN COMP ENDOCR, V116, P422, DOI 10.1006/gcen.1999.7381; Weatherhead P. J., 1993, BEHAV ECOL SOCIOBIOL, V33, P12; WEDEKIND C, 1994, AM NAT, V143, P936, DOI 10.1086/285641; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; WINGFIELD JC, 1975, STEROIDS, V26, P311, DOI 10.1016/0039-128X(75)90077-X; Zuk M, 1998, P ROY SOC B-BIOL SCI, V265, P1631, DOI 10.1098/rspb.1998.0481; ZUK M, 1995, P ROY SOC B-BIOL SCI, V260, P205, DOI 10.1098/rspb.1995.0081; Zuk M, 2000, BEHAV ECOL, V11, P146, DOI 10.1093/beheco/11.2.146 77 179 181 1 45 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 AM NAT Am. Nat. APR 2001 157 4 408 420 10.1086/319318 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 417HY WOS:000167830600004 18707250 2018-11-12 J Wapstra, E; O'Reilly, JM Wapstra, E; O'Reilly, JM Potential 'costs of reproduction' in a skink: Inter- and intrapopulational variation AUSTRAL ECOLOGY English Article costs of reproduction; geographical variation; life history evolution; Niveoscincus ocellatus; relative clutch mass; reproductive effort; sprint speed RELATIVE CLUTCH MASS; NIVEOSCINCUS-OCELLATUS SQUAMATA; LIZARD LACERTA-VIVIPARA; CNEMIDOPHORUS-SEXLINEATUS; LOCOMOTOR PERFORMANCE; SCELOPORUS-JARROVI; LIFE-HISTORIES; ESCAPE TACTICS; FORAGING MODE; SPRINT SPEED Reproductive costs are important determinants of reproductive effort in squamate reptiles. Consequently, differences in costs of reproduction between populations of geographically or climatically widespread species are likely to result in different patterns of reproductive effort. In the present study, the effect of pregnancy on sprint speed was examined in a small viviparous skink, Niveoscincus ocellatus (Gray 1845), from two populations at the climatic extremes of its distribution. Decreased sprint speed has the potential to be an important cost of reproduction in this species, through a reduced ability to avoid predation and/or decreased foraging efficiency. Lizards inhabiting the colder site were larger than those from the warmer site and, contrary to predictions from life history theory, had a higher reproductive effort. In both populations, sprint speed was lower in pregnant lizards than in either the same individuals after birth or non-pregnant control lizards. Within each population, sprint speed was unrelated to the level of reproductive effort of the female in terms of either absolute mass of the reproductive burden or the burden relative to her post-partum body mass. However, within each population, the mass of the clutch that an individual female was carrying relative to snout-vent length was an important determinant of her sprint speed while pregnant. Thus, within each population, a relatively high reproductive burden may potentially increase costs of reproduction in this species. Despite this relationship and predictions from life history theory suggesting that annual reproductive effort will be lower in populations with a large body size and delayed maturity, it is suggested that a higher reproductive effort at the cold site is possible because they have a higher absolute sprint speed because of their larger size and a relatively higher abundance of cover at the cold site, and differences in predation pressure may alter selective pressures on reproductive investment. Univ Tasmania, Sch Zool, Hobart, Tas, Australia Wapstra, E (reprint author), Macquarie Univ, Sch Biol Sci, Sydney, NSW 2109, Australia. Wapstra, Erik/J-7482-2014 Wapstra, Erik/0000-0002-2050-8026 Adolph SC, 1996, OIKOS, V77, P267, DOI 10.2307/3546065; ADOLPH SC, 1993, AM NAT, V142, P273, DOI 10.1086/285538; BAILEY RC, 1992, OIKOS, V65, P349, DOI 10.2307/3545031; Ballinger R.E., 1983, P241; BALLINGER RE, 1979, HERPETOLOGICA, V35, P114; BAUWENS D, 1981, J ANIM ECOL, V50, P733, DOI 10.2307/4133; BEUCHAT CA, 1990, PHYSIOL ZOOL, V63, P555, DOI 10.1086/physzool.63.3.30156228; BRODIE ED, 1989, AM NAT, V134, P225, DOI 10.1086/284977; BROWN RM, 1995, J HERPETOL, V29, P98, DOI 10.2307/1565091; COOPER WE, 1990, BEHAV ECOL SOCIOBIOL, V27, P153; Curio E, 1976, ETHOLOGY PREDATION; DEMARCO V, 1992, J EXP ZOOL, V262, P383, DOI 10.1002/jez.1402620404; DODD CK, 1993, J HERPETOL, V27, P209, DOI 10.2307/1564938; HUEY RB, 1981, ECOLOGY, V62, P991, DOI 10.2307/1936998; HUEY RB, 1990, PHYSIOL ZOOL, V63, P845, DOI 10.1086/physzool.63.5.30152617; Jones SM, 1997, GEN COMP ENDOCR, V108, P271, DOI 10.1006/gcen.1997.6971; KOUFOPANOU V, 1984, OECOLOGIA, V64, P81, DOI 10.1007/BF00377548; MADSEN T, 1987, OIKOS, V49, P129, DOI 10.2307/3566017; MAGNUSSON WE, 1985, HERPETOLOGICA, V41, P324; MELVILLE J, 1998, THESIS U TASMANIA AU; OLSSON M, 1993, ANIM BEHAV, V46, P410, DOI 10.1006/anbe.1993.1207; Qualls FJ, 1997, FUNCT ECOL, V11, P757, DOI 10.1046/j.1365-2435.1997.00150.x; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Rohr DH, 1997, J ANIM ECOL, V66, P567, DOI 10.2307/5950; Schneider CJ, 1999, P NATL ACAD SCI USA, V96, P13869, DOI 10.1073/pnas.96.24.13869; SCHWARZKOPF L, 1993, ECOLOGY, V74, P1970, DOI 10.2307/1940840; SCHWARZKOPF L, 1994, LIZARD ECOLOGY, P7; SCHWARZKOPF L, 1992, BEHAV ECOL SOCIOBIOL, V31, P17, DOI 10.1007/BF00167812; Schwarzkopf L, 1996, AUST J ECOL, V21, P355, DOI 10.1111/j.1442-9993.1996.tb00622.x; SEIGEL RA, 1984, OECOLOGIA, V61, P293, DOI 10.1007/BF00379625; SEIGEL RA, 1987, OECOLOGIA, V73, P481, DOI 10.1007/BF00379404; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SHINE R, 1993, OECOLOGIA, V96, P122, DOI 10.1007/BF00318039; Sinervo B, 1996, EVOLUTION, V50, P1299, DOI 10.1111/j.1558-5646.1996.tb02370.x; SINERVO B, 1991, J EXP BIOL, V155, P323; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TINKLE DW, 1970, EVOLUTION, V24, P55, DOI 10.1111/j.1558-5646.1970.tb01740.x; VANDAMME R, 1989, J HERPETOL, V23, P459; VITT LJ, 1982, HERPETOLOGICA, V38, P237; VITT LJ, 1981, AM NAT, V117, P506, DOI 10.1086/283731; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; Wapstra E, 1996, AUST J ZOOL, V44, P205, DOI 10.1071/ZO9960205; Wapstra E, 1999, AUST J ZOOL, V47, P539, DOI 10.1071/ZO99038; Wapstra E, 2000, FUNCT ECOL, V14, P345, DOI 10.1046/j.1365-2435.2000.00428.x; WAPSTRA E, IN PRESS COPEIA; WAPSTRA E, 1998, THESIS U TASMANIA AU; WAPSTRA E, IN PRESS J HERPETOL; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 51 31 33 3 13 BLACKWELL SCIENCE ASIA CARLTON 54 UNIVERSITY ST, P O BOX 378, CARLTON, VICTORIA 3053, AUSTRALIA 1442-9985 AUSTRAL ECOL Austral Ecol. APR 2001 26 2 179 186 10.1046/j.1442-9993.2001.01104.x 8 Ecology Environmental Sciences & Ecology 418KF WOS:000167888900008 2018-11-12 J Ehrlen, J; Van Groenendael, J Ehrlen, J; Van Groenendael, J Storage and the delayed costs of reproduction in the understorey perennial Lathyrus vernus JOURNAL OF ECOLOGY English Article delayed response; flower removal; fruit production; long-term flowering pattern; organ preformation LADYS-SLIPPER ORCHID; FRUIT PRODUCTION; SEED PRODUCTION; PRIMULA-VERIS; DEMOGRAPHY; SIZE; CONSEQUENCES; POLLINATION; LIMITATION; HERBIVORY 1 A trade-off between current and future reproduction, often referred to as the cost of reproduction, is a fundamental assumption in life history theory. In long-lived plants, large absolute differences in size between individuals, storage of resources between reproductive events and organ preformation may make such costs difficult to demonstrate, especially when only natural variation is considered. 2 The long-lived legume Lathyrus vernus shows large size differences compared with variation in carbon resource allocation, and is known to store resources in below-ground rhizomes. We therefore followed individual plants over a period of 4 consecutive years. We examined the cost of reproductive investment by comparing the performance of untreated plants that differed in size and herbivore damage. We also compared controls with plants where we experimentally reduced flowering in terms of fitness measured as: survival, growth, flower number, fruit:flower ratio and storage. 3 Natural patterns of flowering and fruiting provided no evidence of a negative relationship between current and future reproduction. Individuals that produced fruits did not experience a fewer probability of surviving and producing fruits the following season compared with flowering individuals that failed to produce any fruits, even when differences in above-ground size and herbivore damage were taken into account. 4 Flower removal in a single season increased the allocation to the rhizome but the size of shoot buds for the next season was not increased. Experimental manipulation of reproductive effort by repeated removal of flowers during 3 consecutive years, however, resulted in a significant increase in vegetative size and the probability of flowering and setting fruit compared with control plants. 5 While long-term data on natural variation in fruit production and short-term experimental data provided no evidence of a cost of reproduction, such a cost is still present, although detectable only after repeated flower removal. Catholic Univ Nijmegen, Dept Aquat Ecol & Environm Biol, NL-6500 GL Nijmegen, Netherlands Ehrlen, J (reprint author), Univ Stockholm, Dept Bot, S-10691 Stockholm, Sweden. Ehrlen, Johan/H-6286-2013 Ehrlen, Johan/0000-0001-8539-8967 ACKERMAN JD, 1990, ECOLOGY, V71, P263, DOI 10.2307/1940265; AGREN J, 1994, OIKOS, V70, P35, DOI 10.2307/3545696; AGREN J, 1988, ECOLOGY, V71, P263; AUTLFINGER AE, 1997, AM J BOT, V84, P769; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; CALVO RN, 1993, ECOLOGY, V74, P1033, DOI 10.2307/1940473; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; CIPOLLINI ML, 1994, AM J BOT, V81, P65, DOI 10.2307/2445564; Cunningham SA, 1997, OECOLOGIA, V111, P36, DOI 10.1007/s004420050205; Ehrlen J, 1997, OIKOS, V80, P428, DOI 10.2307/3546615; EHRLEN J, 1995, J ECOL, V83, P287, DOI 10.2307/2261567; EHRLEN J, 1992, ECOLOGY, V73, P1820, DOI 10.2307/1940033; EHRLEN J, 1995, J ECOL, V83, P297, DOI 10.2307/2261568; EHRLEN J, 1993, OIKOS, V68, P45, DOI 10.2307/3545307; EHRLEN J, 1991, AM NAT, V138, P918, DOI 10.1086/285260; Geber MA, 1997, J ECOL, V85, P211, DOI 10.2307/2960652; Harper J. L., 1977, POPULATION BIOL PLAN; HURLBERT SH, 1984, ECOL MONOGR, V54, P187, DOI 10.2307/1942661; INGHE O, 1989, THESIS U STOCKHOLM S; JACKSON LL, 1994, ECOLOGY, V75, P627, DOI 10.2307/1941721; JENNERSTEN O, 1991, OIKOS, V61, P197, DOI 10.2307/3545337; KARLSSON PS, 1990, OIKOS, V59, P393, DOI 10.2307/3545151; LEHTILA K, 1995, ECOLOGY, V76, P1084, DOI 10.2307/1940917; NEWELL EA, 1991, J ECOL, V79, P365, DOI 10.2307/2260719; Parker IM, 1997, ECOLOGY, V78, P1457; PRIMACK RB, 1990, AM NAT, V136, P638, DOI 10.1086/285120; PRIMACK RB, 1994, AM J BOT, V81, P1083, DOI 10.2307/2445469; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; SAMSON DA, 1986, AM NAT, V127, P667, DOI 10.1086/284512; SNOW AA, 1989, ECOLOGY, V70, P1286, DOI 10.2307/1938188; Sokal R.R., 1995, BIOMETRY; *SPSS INC, 1996, SYST WIND STAT VERS; SYRJANEN K, 1993, OIKOS, V67, P465, DOI 10.2307/3545358; Thoren LM, 1996, OIKOS, V76, P427, DOI 10.2307/3546336; TUOMI J, 1983, AM ZOOL, V23, P25; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WEAVER SE, 1980, J APPL ECOL, V17, P505, DOI 10.2307/2402345; Williams GC, 1966, ADAPTATION NATURAL S; ZIMMERMAN JK, 1989, AM J BOT, V76, P67, DOI 10.2307/2444775; ZIMMERMAN M, 1988, AM NAT, V131, P723, DOI 10.1086/284815 40 54 58 0 25 BLACKWELL SCIENCE LTD OXFORD P O BOX 88, OSNEY MEAD, OXFORD OX2 0NE, OXON, ENGLAND 0022-0477 J ECOL J. Ecol. APR 2001 89 2 237 246 10.1046/j.1365-2745.2001.00546.x 10 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology 432LC WOS:000168692200009 2018-11-12 J Olsson, M; Shine, R; Wapstra, E Olsson, M; Shine, R; Wapstra, E Costs of reproduction in a lizard species: a comparison of observational and experimental data OIKOS English Article LOCOMOTOR IMPAIRMENT; ESCAPE TACTICS; GRAVID LIZARDS; CONSTRAINTS; PREDATION Life history theory predicts that increasing investments into reproduction compromises survival and future reproduction. However, demonstrating such costs is confounded by positive correlations between life history traits. For example, individuals in good condition may be good at both surviving and reproducing. We studied such processes in a viviparous snow skink lizard (Niveoscincus microlepidotus) from high elevation sites in Tasmania, Australia. Our results show a stark difference in costs of reproduction between unmanipulated females from the natural population versus experimentally manipulated females (using follicle stimulating hormones). In the unmanipulated females, females with relatively larger reproductive investments survived better than females with smaller reproductive investments. In the experimental group, however, females forced to 'over-invest' into a larger clutch survived less well than controls. Thus, our study confirms the potential dangers of non-experimental estimation of costs of reproduction. Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia; Univ Gothenburg, Dept Zool, Div Anim Ecol, SE-41390 Gothenburg, Sweden; Univ Tasmania, Sch Zool, Hobart, Tas 7004, Australia Olsson, M (reprint author), Univ Sydney, Sch Biol Sci, Zool Bldg AO8, Sydney, NSW 2006, Australia. mats.olssosn@zool.gu.se Wapstra, Erik/J-7482-2014; Shine, Richard/B-8711-2008 Wapstra, Erik/0000-0002-2050-8026; BAUWENS D, 1981, J ANIM ECOL, V50, P733, DOI 10.2307/4133; BELL G, 1986, OXFORD SURVEYS EVOLU, V3, P48; BRODIE ED, 1989, AM NAT, V134, P225, DOI 10.1086/284977; COOPER WE, 1990, BEHAV ECOL SOCIOBIOL, V27, P153; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; HUTCHINSON M N, 1989, Papers and Proceedings of the Royal Society of Tasmania, V123, P257; Lack D., 1967, NATURAL REGULATION A; NORDWIJK AJ, 1986, AM NAT, V128, P127; Olsson M, 2000, J EVOLUTION BIOL, V13, P263; Olsson M, 1998, EVOLUTION, V52, P1861, DOI 10.1111/j.1558-5646.1998.tb02265.x; Olsson M, 1999, BIOL J LINN SOC, V66, P159, DOI 10.1111/j.1095-8312.1999.tb01881.x; Olsson M, 1999, COPEIA, P794; PARTRIDGE L, 1988, MORE EXACT ECOLOGY, P231; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff D. A., 1997, EVOLUTIONARY QUANTIT; Roff Derek A., 1992; SCHWARZKOPF L, 1994, LIZARD ECOLOGY, P7; SCHWARZKOPF L, 1992, BEHAV ECOL SOCIOBIOL, V31, P17, DOI 10.1007/BF00167812; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SINERVO B, 1990, SCIENCE, V248, P1106, DOI 10.1126/science.248.4959.1106; Sinervo B, 1996, EVOLUTION, V50, P1299, DOI 10.1111/j.1558-5646.1996.tb02370.x; SINERVO B, 1991, J EXP ZOOL, V257, P252, DOI 10.1002/jez.1402570216; SINERVO B, 1991, J EXP BIOL, V155, P323; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052 25 17 17 0 9 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos APR 2001 93 1 121 125 10.1034/j.1600-0706.2001.930113.x 5 Ecology Environmental Sciences & Ecology 435UZ WOS:000168901700013 2018-11-12 J Kodric-Brown, A; Nicoletto, PF Kodric-Brown, A; Nicoletto, PF Age and experience affect female choice in the guppy (Poecilia reticulata) AMERICAN NATURALIST English Article sexual selection; mate choice; age; experience; guppy POECILIA-RETICULATA; MATE CHOICE; MATING PREFERENCES; SEXUAL SELECTION; NATURAL-SELECTION; VIDEO PLAYBACK; BODY-SIZE; REPEATABILITY; EVOLUTION; TRAITS Female choices of males, and how these choices are influenced by ecological and social factors, have been studied extensively. However, little is known about the effects of age and breeding experience on female mating decisions. We used video techniques to examine female mate choice in guppies based on the area of carotenoid (orange) pigmentation on the body. Females were presented with paired images of males, one ornamented and the other plain. Visual preference for each male was measured. Age- related changes in the criteria of choice were examined by comparing the responses of the same mature but sexually inexperienced 6- mo- old and 12-mo- old females. Effects of breeding experience on female choice were examined by comparing mate preferences of 12- mo- old female virgins with their preferences after they had mated and produced a brood. Female preferences for ornamented males with large areas of carotenoid pigment changed with age but not with mating experience. Six- month- old virgin females preferred ornamented males, whereas 12- mo- old virgin and postpartum females did not differentiate between males based on orange coloration. The results are discussed in light of life- history theory and have important implications for studies of sexual selection as well as for the design of mate- choice studies. Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA; Lamar Univ, Dept Biol, Beaumont, TX 77710 USA Kodric-Brown, A (reprint author), Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. kodric@unm.edu; nicolettpf@hal.lamar.edu Andersson M., 1994, SEXUAL SELECTION; BABURINA E A, 1968, Zoologicheskii Zhurnal, V47, P1364; BAERENDS GP, 1955, BEHAVIOUR, V8, P49; BREDEN F, 1995, ENVIRON BIOL FISH, V42, P323, DOI 10.1007/BF00004926; BROOKS R, 1995, ANIM BEHAV, V50, P301, DOI 10.1006/anbe.1995.0246; Brooks R, 1999, AM NAT, V154, P37, DOI 10.1086/303219; BURLEY N, 1977, P NATL ACAD SCI USA, V74, P3476, DOI 10.1073/pnas.74.8.3476; BURLEY N, 1979, ANIM BEHAV, V27, P686, DOI 10.1016/0003-3472(79)90005-8; Clark DL, 1999, ENVIRON BIOL FISH, V56, P317, DOI 10.1023/A:1007549721631; Clutton-Brock TH, 1988, REPROD SUCCESS, P472; COLLINS SA, 1995, ANIM BEHAV, V49, P479, DOI 10.1006/anbe.1995.0062; COTE IM, 1989, ANIM BEHAV, V38, P78, DOI 10.1016/S0003-3472(89)80067-3; DOUGLAS RH, 1989, VISION RES, V29, P861, DOI 10.1016/0042-6989(89)90097-7; DOWNHOWER JF, 1980, ANIM BEHAV, V28, P728, DOI 10.1016/S0003-3472(80)80132-1; DUGATKIN LA, 1993, BEHAV ECOL, V4, P289, DOI 10.1093/beheco/4.4.289; ENDLER JA, 1995, EVOLUTION, V49, P456, DOI 10.1111/j.1558-5646.1995.tb02278.x; FARR JA, 1980, BEHAVIOUR, V74, P38, DOI 10.1163/156853980X00311; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; GIBSON RM, 1992, TRENDS ECOL EVOL, V7, P229, DOI 10.1016/0169-5347(92)90050-L; GODIN JGJ, 1995, ANIM BEHAV, V49, P1427, DOI 10.1016/0003-3472(95)90063-2; Gray DA, 1999, J INSECT BEHAV, V12, P691, DOI 10.1023/A:1020983821436; Hawryshyn Craig W., 1998, P345; HENLEY J, 1992, J COMP PHYSIOL A, V170, P373; HODOS W, 1991, NATO ADV SCI I A-LIF, V222, P137; Houde A. E., 1997, SEX COLOR MATE CHOIC; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; Howard RD, 1998, ANIM BEHAV, V55, P1165, DOI 10.1006/anbe.1997.0683; Johnsen TS, 1996, BEHAV ECOL, V7, P243, DOI 10.1093/beheco/7.3.243; KODRICBROWN A, 1993, BEHAV ECOL SOCIOBIOL, V32, P415, DOI 10.1007/BF00168825; KodricBrown A, 1997, ANIM BEHAV, V54, P369, DOI 10.1006/anbe.1996.0420; KODRICBROWN A, 1985, BEHAV ECOL SOCIOBIOL, V17, P199, DOI 10.1007/BF00300137; LIGON JD, 1995, ANIM BEHAV, V49, P127, DOI 10.1016/0003-3472(95)80160-X; Lopez S, 1999, ANIM BEHAV, V57, P1129, DOI 10.1006/anbe.1998.1064; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; Marchetti K, 1998, ANIM BEHAV, V55, P361, DOI 10.1006/anbe.1997.0586; Marler CA, 1997, ANIM BEHAV, V53, P1035, DOI 10.1006/anbe.1996.0356; Meffe GK, 1989, ECOLOGY EVOLUTION LI; Moller AP, 1999, P ROY SOC B-BIOL SCI, V266, P85, DOI 10.1098/rspb.1999.0607; MULLER H., 1952, ZOOL JAHRB ABT ALLG ZOOL U PHYSIOL TIERE, V63, P275; NICOLETTO PF, 1993, ANIM BEHAV, V46, P441, DOI 10.1006/anbe.1993.1213; NICOLETTO PF, 1995, ANIM BEHAV, V49, P377, DOI 10.1006/anbe.1995.0050; Prosser MR, 1997, J INSECT BEHAV, V10, P437, DOI 10.1007/BF02765609; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; RODD FH, 1995, ANIM BEHAV, V49, P1139; Roff Derek A., 1992; Rosenqvist G, 1997, BEHAV ECOL, V8, P194, DOI 10.1093/beheco/8.2.194; Rosenthal GG, 1996, ANIM BEHAV, V51, P811, DOI 10.1006/anbe.1996.0085; Rosenthal GG, 1999, ENVIRON BIOL FISH, V56, P307, DOI 10.1023/A:1007597604793; ROWLAND WJ, 1995, ANIM BEHAV, V49, P1559, DOI 10.1016/0003-3472(95)90077-2; Stearns S. C., 1992, EVOLUTION LIFE HIST; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 51 103 103 0 54 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. MAR 2001 157 3 316 323 10.1086/319191 8 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 407ZH WOS:000167301000005 18707292 2018-11-12 J Fox, MG; Crivelli, AJ Fox, MG; Crivelli, AJ Life history traits of pumpkinseed (Lepomis gibbosus) populations introduced into warm thermal environments ARCHIV FUR HYDROBIOLOGIE English Article juvenile growth rate; maturity; thermal regime SUCKER CATOSTOMUS-COMMERSONI; LATITUDINAL VARIATION; CONTRASTING ENVIRONMENTS; GASTEROSTEUS-ACULEATUS; BODY-SIZE; AGE; FISH; TEMPERATURE; MATURITY; SUNFISH Life history theory predicts that ectotherms living in warm thermal environments should mature early because of fast juvenile growth, but it is unclear whether such early maturity will occur in the absence of conditions that promote fast juvenile growth. To assess this possibility and to determine the effect of warm thermal regimes on body size at maturity, we compared the growth and life history patterns of three populations of pumpkinseed (Lepomis gibbosus) introduced into warm, Mediterranean waterbodies in southern France with native populations living in cool thermal regimes in Ontario, Canada. Growth and life history traits of the French populations were determined from monthly samples collected from May to September. Mean age at maturity in the French populations ranged from 1.3-2.3 years, and was significantly earlier than that of populations inhabiting Ontario lakes. Length at age 2, an indicator of the juvenile growth rate, was not significantly different between the French and Ontario populations, and the French populations matured significantly earlier than Ontario lake populations even when juvenile growth was taken into account. Length at maturity in the French populations was also significantly smaller. and although there was no significant difference between the French and Ontario populations in mean GSI, the results of a previous reproductive allocation experiment suggest that French populations have a longer breeding season, and greater reproductive effort than Ontario pumpkinseeds. The earlier maturity of French pumpkinseeds could be a direct physiological effect of the warm thermal environment, but factors other than thermal regime may be contributing to the difference in life history traits between the French and Ontario populations. Trent Univ, Environm & Resource Studies Program, Peterborough, ON K9J 7B8, Canada; Trent Univ, Dept Biol, Peterborough, ON K9J 7B8, Canada; Stn Biol Tour Valat, F-13200 Le Sambuc, France Fox, MG (reprint author), Trent Univ, Environm & Resource Studies Program, Peterborough, ON K9J 7B8, Canada. Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; ALM G, 1959, DROTTNINGHOLM, V40, P5; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Atkinson D, 1996, OIKOS, V77, P359, DOI 10.2307/3546078; Atkinson D, 1997, TRENDS ECOL EVOL, V12, P235, DOI 10.1016/S0169-5347(97)01058-6; BAGENAL TB, 1978, INT BIOL PROGRAMME H, V3, P101; BALTZ DM, 1982, ENVIRON BIOL FISH, V7, P229, DOI 10.1007/BF00002498; BERRIGAN D, 1994, OIKOS, V70, P474, DOI 10.2307/3545787; Bertschy KA, 1999, ECOLOGY, V80, P2299, DOI 10.2307/176911; BURNS JR, 1976, COPEIA, P449; CARLANDER KD, 1982, T AM FISH SOC, V111, P332, DOI 10.1577/1548-8659(1982)111<332:SIFCLF>2.0.CO;2; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHAUVELON P, 1996, P 2 INT S HAB HYDR Q, P167; CINCOTTA DA, 1984, HYDROBIOLOGIA, V109, P173, DOI 10.1007/BF00011576; CONSTANTZ GD, 1979, OECOLOGIA, V40, P189, DOI 10.1007/BF00347936; CRIVELLI AJ, 1988, ARCH HYDROBIOL, V111, P449; CRIVELLI AJ, 1987, ENVIRON BIOL FISH, V18, P109, DOI 10.1007/BF00002599; Danylchuk AJ, 1996, CAN J ZOOL, V74, P1834, DOI 10.1139/z96-206; DANYLCHUK AJ, 1994, ENVIRON BIOL FISH, V39, P119, DOI 10.1007/BF00004929; DEACON LI, 1987, ENVIRON BIOL FISH, V19, P281, DOI 10.1007/BF00003229; DEMASTER DP, 1978, J FISH RES BOARD CAN, V35, P912, DOI 10.1139/f78-148; ERNSTING G, 1995, OIKOS, V72, P444, DOI 10.2307/3546131; FOX MG, 1990, CAN J ZOOL, V68, P2489, DOI 10.1139/z90-348; Fox MG, 1998, CAN J FISH AQUAT SCI, V55, P737, DOI 10.1139/cjfas-55-3-737; FOX MG, 1994, ECOLOGY, V75, P1157, DOI 10.2307/1939439; FOX MG, 1991, CAN J FISH AQUAT SCI, V48, P1792, DOI 10.1139/f91-211; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GROSS MR, 1979, CAN J ZOOL, V57, P1507, DOI 10.1139/z79-197; KAYA CM, 1973, COPEIA, P369; LABEELUND JH, 1989, J ANIM ECOL, V58, P525, DOI 10.2307/4846; LECREN ED, 1958, J ANIM ECOL, V27, P287; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; LUKSIENE D, 1994, J FISH BIOL, V45, P613, DOI 10.1111/j.1095-8649.1994.tb00928.x; Mann R.H.K., 1984, P171; MCKELVIE DS, 1989, MAR BIOL, V102, P413, DOI 10.1007/BF00428494; MILLS CA, 1988, J FISH BIOL, V33, P545, DOI 10.1111/j.1095-8649.1988.tb05498.x; MORIN R, 1982, CAN J FISH AQUAT SCI, V39, P958, DOI 10.1139/f82-131; PERRIN N, 1995, OIKOS, V73, P137, DOI 10.2307/3545737; PETIT G, 1953, VIE MILIEU, V4, P576; REGIER HENRY A., 1962, TRANS AMER FISH SOC, V91, P362, DOI 10.1577/1548-8659(1962)91[362:VOTSMF]2.0.CO;2; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RICKER WE, 1992, CAN J FISH AQUAT SCI, V49, P1018, DOI 10.1139/f92-114; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Roff Derek A., 1992; SANDSTROM O, 1995, J FISH BIOL, V47, P652, DOI 10.1006/jfbi.1995.0169; SCARNECCHIA DL, 1983, CAN J FISH AQUAT SCI, V40, P1456, DOI 10.1139/f83-168; Scott WB, 1973, B FISHERIES RES BOAR, V184; SEVENSTER JG, 1995, OIKOS, V73, P405, DOI 10.2307/3545966; Stamps JA, 1998, AM NAT, V152, P470, DOI 10.1086/286183; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SUTHERS IM, 1986, CAN J FISH AQUAT SCI, V43, P1562, DOI 10.1139/f86-194; TRIPPEL EA, 1989, CAN J ZOOL, V67, P2180, DOI 10.1139/z89-308; TRIPPEL EA, 1987, CAN J FISH AQUAT SCI, V44, P1018, DOI 10.1139/f87-119; vanderHave TM, 1996, J THEOR BIOL, V183, P329, DOI 10.1006/jtbi.1996.0224; Venne H, 1989, PHYSL ECOLOGY JAPAN, V1, P239; VOLLESTAD LA, 1990, J FISH BIOL, V37, P853, DOI 10.1111/j.1095-8649.1990.tb03589.x; VOOREN CM, 1972, J FISH BIOL, V4, P565, DOI 10.1111/j.1095-8649.1972.tb05702.x; WOOTTON RJ, 1977, J ANIM ECOL, V46, P823, DOI 10.2307/3643 60 45 49 4 22 E SCHWEIZERBARTSCHE VERLAGSBUCHHANDLUNG STUTTGART NAEGELE U OBERMILLER, SCIENCE PUBLISHERS, JOHANNESSTRASSE 3A, D 70176 STUTTGART, GERMANY 0003-9136 ARCH HYDROBIOL Arch. Hydrobiol. MAR 2001 150 4 561 580 20 Limnology; Marine & Freshwater Biology Marine & Freshwater Biology 422DH WOS:000168102900003 2018-11-12 J Dudycha, JL Dudycha, JL The senescence of Daphnia from risky and safe habitats ECOLOGY LETTERS English Article ageing; zooplankton; life history; mortality rate; pond-lake gradient GENETIC-VARIATION; PULEX; EVOLUTION; MITOCHONDRIAL; REPRODUCTION; POPULATIONS; COMPLEX Evaluating life history in an ecological contest is critical for understanding the diversity of life histories found in nature. Lifespan and senescence differ greatly among taxa, but their ecological contest is not well known. Life history theory proposes that senescence is ultimately caused by a reduction of the effectiveness of natural selection as organisms age. A key prediction is that different levels of extrinsic mortality risk lead to the evolution of different senescence patterns. 1 quantified both mortality risk and investment in late-life fitness of Daphnia pulex-pulicaria, a common freshwater zooplankter. I found that Daphnia from high-risk pc,nd habitats invest relatively little in late-life fitness, whereas those from low-risk lake habitats invest relatively more in late-life fitness. This suggests that ecological approaches can be useful for understanding senescence variation. Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA Dudycha, JL (reprint author), Univ Virginia, Dept Biol, Charlottesville, VA 22904 USA. Abrams PA, 1995, EVOLUTION, V49, P1055, DOI 10.1111/j.1558-5646.1995.tb04433.x; Colbourne JK, 1998, BIOL J LINN SOC, V65, P347, DOI 10.1006/bijl.1998.0251; Comfort A, 1979, BIOL SENESCENCE; CREASE TJ, 1990, MOL BIOL EVOL, V7, P444; Crease TJ, 1997, HEREDITY, V79, P242; CREASE TJ, 1989, EVOLUTION, V43, P1016, DOI 10.1111/j.1558-5646.1989.tb02547.x; Deng HW, 1997, LIMNOL OCEANOGR, V42, P609, DOI 10.4319/lo.1997.42.3.0609; Dudycha JL, 1999, EVOLUTION, V53, P1744, DOI 10.1111/j.1558-5646.1999.tb04559.x; DUDYCHA JL, 1999, EVOLUTIONARY ECOLOGY; Finch CE, 1997, SCIENCE, V278, P407, DOI 10.1126/science.278.5337.407; Geedey CK, 1996, FUNCT ECOL, V10, P613, DOI 10.2307/2390171; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HEBERT PDN, 1995, DAPHNIA N AM ILLUSTR, V1; HEBERT PDN, 1993, HEREDITY, V70, P149; HU SXS, 1995, ECOLOGY, V76, P2278, DOI 10.2307/1941702; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; Lehman N, 1995, MOL PHYLOGENET EVOL, V4, P395, DOI 10.1006/mpev.1995.1037; LEIBOLD MA, 1998, EXPT ECOLOGY; LYNCH M, 1984, EVOLUTION, V38, P465, DOI 10.1111/j.1558-5646.1984.tb00312.x; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; Partridge L, 1996, P ROY SOC B-BIOL SCI, V263, P1365, DOI 10.1098/rspb.1996.0200; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Tatar M, 1997, OECOLOGIA, V111, P357, DOI 10.1007/s004420050246; THRELKELD ST, 1979, LIMNOL OCEANOGR, V24, P601, DOI 10.4319/lo.1979.24.4.0601; Wellborn GA, 1996, ANNU REV ECOL SYST, V27, P337, DOI 10.1146/annurev.ecolsys.27.1.337; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 27 42 43 0 19 BLACKWELL SCIENCE LTD OXFORD P O BOX 88, OSNEY MEAD, OXFORD OX2 0NE, OXON, ENGLAND 1461-023X ECOL LETT Ecol. Lett. MAR 2001 4 2 102 105 4 Ecology Environmental Sciences & Ecology 415PH WOS:000167731300002 2018-11-12 J Williams, TD Williams, TD Experimental manipulation of female reproduction reveals an intraspecific egg size-clutch size trade-off PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article egg size; clutch size; trade-off; physiological manipulation FINCHES TAENIOPYGIA-GUTTATA; ZEBRA FINCHES; HYPOTHALAMIC OBESE; TAMOXIFEN; METABOLISM; QUALITY; BIRDS; COSTS; HENS; LAY A negative relationship, or trade-off, between egg size and clutch size is a central and long-standing component of life-history theory, yet there is little empirical evidence for such a trade-off, especially at the intraspecific level. Here, I show that female zebra finches (Taeniopygia guttata) treated chronically during egg formation with the anti-oestrogen tamoxifen lay smaller eggs (by 8%) but produce larger clutches (on average two eggs more) than controls. Decreased egg mass in tamoxifen-treated females was associated with a 50% decrease in plasma levels of the two yolk precursors, vitellogenin and very-low-density lipoprotein. Although tamoxifen-treated females laid more; smaller eggs (and had a higher total expenditure in their clutch), they did not differ from controls in the number of chicks fledged: the mass or size of these chicks at fledging, or the chicks' egg-production performance at three months of age. However, tamoxifen-treated females had lower relative hatching success: they laid more eggs but hatched the same number of chicks. Among individual tamoxifen-treated females, birds that laid the smallest eggs early in their laying sequence laid the largest number of additional eggs, that is, there was a negative correlation, or trade-off between egg size and clutch size. Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada Williams, TD (reprint author), Simon Fraser Univ, Dept Biol Sci, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada. tdwillia@sfu.ca Bernardo J, 1996, AM ZOOL, V36, P216; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; DELVILLE Y, 1987, HORM BEHAV, V21, P288, DOI 10.1016/0018-506X(87)90016-X; Finkler MS, 1998, J COMP PHYSIOL B, V168, P17, DOI 10.1007/s003600050116; FLINT PL, 1992, AUK, V109, P896, DOI 10.2307/4088164; Flint PL, 1996, CONDOR, V98, P162, DOI 10.2307/1369519; HARDMAN JG, 1996, GOODMAN GILMANS PHAR; HAYWOOD S, 1993, AUK, V110, P778, DOI 10.2307/4088633; HEANEY V, 1995, P ROY SOC B-BIOL SCI, V261, P361, DOI 10.1098/rspb.1995.0160; HILL WL, 1993, DEV PSYCHOBIOL, V26, P237, DOI 10.1002/dev.420260502; Jaccoby S, 1996, PHYSIOL BEHAV, V60, P913; JACCOBY S, 1995, PHARMACOL BIOCHEM BE, V50, P55, DOI 10.1016/0091-3057(94)00251-D; JORDAN VC, 1987, FASEB J, V46, P1870; JORDAN VC, 1995, PRINCIPLES PHARM BAS, P827; Lessells C.M., 1991, P32; LESSELLS CM, 1989, J EVOLUTION BIOL, V2, P457, DOI 10.1046/j.1420-9101.1989.2060457.x; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; Monaghan P, 1998, P ROY SOC B-BIOL SCI, V265, P1731, DOI 10.1098/rspb.1998.0495; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; *SAS I INC, 1990, SAS STAT US GUID V 6; Selman RG, 1996, P ROY SOC B-BIOL SCI, V263, P1585, DOI 10.1098/rspb.1996.0232; SHANAWANY MM, 1993, BRIT POULTRY SCI, V34, P873, DOI 10.1080/00071669308417647; Sinervo B, 1999, AM NAT, V154, pS26, DOI 10.1086/303281; SINERVO B, 1991, J EXP ZOOL, V257, P252, DOI 10.1002/jez.1402570216; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANDERWERF E, 1992, ECOLOGY, V73, P1699, DOI 10.2307/1940021; Williams TD, 1999, HORM BEHAV, V35, P135, DOI 10.1006/hbeh.1998.1506; Williams TD, 1996, CAN J ZOOL, V74, P85, DOI 10.1139/z96-011; Williams TD, 2000, PHYSIOL BIOCHEM ZOOL, V73, P566, DOI 10.1086/317748; Williams TD, 1996, PHYSIOL ZOOL, V69, P1255, DOI 10.1086/physzool.69.5.30164256; WILLIAMS TD, 1999, ENCY REPROD, P325; WILLIAMS TD, 1997, P 13 INT C COMP END, P1669; WILSON SC, 1981, J ENDOCRINOL, V88, P309, DOI 10.1677/joe.0.0880309 37 52 52 3 34 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. FEB 22 2001 268 1465 423 428 10.1098/rspb.2000.1374 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 406KC WOS:000167214000013 11270440 Green Published 2018-11-12 J Martin, TE; Moller, AP; Merino, S; Clobert, J Martin, TE; Moller, AP; Merino, S; Clobert, J Does clutch size evolve in response to parasites and immunocompetence? PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article life history; evolution; age-specific mortality LIFE-HISTORY EVOLUTION; HOST IMMUNE DEFENSE; NEST PREDATION; BARN SWALLOWS; GREAT TITS; PIED FLYCATCHERS; SEXUAL SELECTION; HIRUNDO-RUSTICA; BROOD SIZE; BIRDS Parasites have been argued to influence clutch size evolution, but past work and theory has largely focused on within-species optimization solutions rather than clearly addressing among-species variation. The effects of parasites on clutch size variation among species can be complex, however, because different parasites can induce age-specific differences in mortality that can cause clutch size to evolve in different directions. We provide a conceptual argument that differences in immunocompetence among species should integrate differences in overall levels of parasite-induced mortality to which a species is exposed, We test this assumption and show that mortality caused by parasites is positively correlated with immunocompetence measured by cell-mediated measures. Under life history theory, clutch size should increase with increased adult mortality and decrease with increased juvenile mortality. Using immunocompetence as a general assay of parasite-induced mortality, we tested these predictions by using data for 25 species. We found that clutch size increased strongly with adult immunocompetence, In contrast, clutch size decreased weakly with increased juvenile immunocompetence. But, immunocompetence of juveniles may be constrained by selection on adults, and, when we controlled for adult immunocompetence, clutch size decreased with juvenile immunocompetence. Thus, immunocompetence seems to reflect evolutionary differences in parasite virulence experienced by species, and differences in age-specific parasite virulence appears to exert opposite selection on clutch size evolution. Univ Montana, US Geol Survey, Biol Resources Div,Avian Studies Program, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA; Univ Paris 06, CNRS, Ecol Lab, UMR 7625, F-75252 Paris 5, France; CSIC, Museo Nacl Ciencias Nat, Dept Ecol Evolut, E-28006 Madrid, Spain Martin, TE (reprint author), Univ Montana, US Geol Survey, Biol Resources Div,Avian Studies Program, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA. tmartin@selway.umt.edu Merino, Santiago/A-6183-2008; Evolutionary Ecology, Ecologia Evolutiva/M-3553-2014; Martin, Thomas/F-6016-2011 Martin, Thomas/0000-0002-4028-4867 Anderson RM, 1991, INFECT DIS HUMANS DY; Atkinson CT, 2000, J WILDLIFE DIS, V36, P197, DOI 10.7589/0090-3558-36.2.197; Brinkhof MWG, 1999, P ROY SOC B-BIOL SCI, V266, P2315, DOI 10.1098/rspb.1999.0925; BROWN CR, 1986, ECOLOGY, V67, P1206, DOI 10.2307/1938676; BROWN CR, 1996, COLONIALITY CLIFF SW; BURGERJON JJ, 1964, OSTRICH, V33, P77; Christe P, 1998, OIKOS, V83, P175, DOI 10.2307/3546559; Christe P, 1996, BEHAV ECOL, V7, P127, DOI 10.1093/beheco/7.2.127; CRAMP S, 1988, BIRDS W PALEARACTIC, V5; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; DELOPE F, 1993, OECOLOGIA, V95, P234, DOI 10.1007/BF00323495; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Frank SA, 1996, Q REV BIOL, V71, P37, DOI 10.1086/419267; Gonzalez G, 1999, J ANIM ECOL, V68, P1225, DOI 10.1046/j.1365-2656.1999.00364.x; Gwinner H, 2000, ANIM BEHAV, V59, P301, DOI 10.1006/anbe.1999.1306; Harvey P. H., 1991, COMP METHOD EVOLUTIO; HOILEITNER M, 2001, IN PRESS BEHAV ECOL; Horak P, 1999, OECOLOGIA, V121, P316, DOI 10.1007/s004420050934; Johnsen A, 2000, NATURE, V406, P296; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; Lack D., 1968, ECOLOGICAL ADAPTATIO; Lack D., 1954, NATURAL REGULATION A; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MERINO S, 1995, OIKOS, V73, P95, DOI 10.2307/3545730; Merino S, 1999, ANIM BEHAV, V58, P219, DOI 10.1006/anbe.1999.1127; MERINO S, 2001, IN PRESS BEHAV ECOL; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Moller AP, 1997, P ROY SOC B-BIOL SCI, V264, P561, DOI 10.1098/rspb.1997.0080; Moller AP, 1996, EVOLUTION, V50, P2066, DOI 10.1111/j.1558-5646.1996.tb03592.x; MOLLER AP, 1990, ECOLOGY, V71, P2345, DOI 10.2307/1938645; MOLLER AP, 1991, FUNCT ECOL, V5, P351, DOI 10.2307/2389806; Moller AP, 1998, OIKOS, V82, P265, DOI 10.2307/3546966; Moller AP, 1998, EVOL ECOL, V12, P945, DOI 10.1023/A:1006516222343; Moller AP, 1999, Q REV BIOL, V74, P3, DOI 10.1086/392949; MOLLER AP, 2001, IN PRESS AM NAT; MOLLER AP, 1990, POPULATION BIOL PASS, P269; Moreno J, 1999, P ROY SOC B-BIOL SCI, V266, P1105, DOI 10.1098/rspb.1999.0750; MOSS WW, 1970, SCIENCE, V168, P1000, DOI 10.1126/science.168.3934.1000; Oppliger A, 1996, NATURE, V381, P565, DOI 10.1038/381565a0; Oppliger A, 1997, BEHAV ECOL, V8, P148, DOI 10.1093/beheco/8.2.148; Perrin N, 1996, OIKOS, V75, P317, DOI 10.2307/3546256; PINOWSKI B, 1977, INT STUD SPARROWS, V15, P1; POIANI A, 1993, OIKOS, V68, P455, DOI 10.2307/3544913; PREAULT M, 1999, THESIS U P M CURIE P; Read Andrew F., 1994, Trends in Microbiology, V2, P73, DOI 10.1016/0966-842X(94)90537-1; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RICHNER H, 1995, P NATL ACAD SCI USA, V92, P1192, DOI 10.1073/pnas.92.4.1192; RICHNER H, 1993, J ANIM ECOL, V62, P703, DOI 10.2307/5390; Richner H, 1999, OIKOS, V86, P535, DOI 10.2307/3546657; RICHNER H, 1995, OIKOS, V73, P435, DOI 10.2307/3545973; Richner H, 1998, ZOOL-ANAL COMPLEX SY, V101, P333; RICKLEFS RE, 1992, P NATL ACAD SCI USA, V89, P4722, DOI 10.1073/pnas.89.10.4722; Roff Derek A., 1992; Saino N, 1997, J ANIM ECOL, V66, P827, DOI 10.2307/5998; Saino N, 1999, J ANIM ECOL, V68, P999, DOI 10.1046/j.1365-2656.1999.00350.x; Saino N, 1997, P NATL ACAD SCI USA, V94, P549, DOI 10.1073/pnas.94.2.549; Saino N, 1998, OIKOS, V81, P217, DOI 10.2307/3547043; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; Soler JJ, 1999, EVOL ECOL RES, V1, P189; Soler M, 1999, BEHAV ECOL, V10, P281, DOI 10.1093/beheco/10.3.281; Szep T, 1999, OECOLOGIA, V119, P9, DOI 10.1007/s004420050755; VANRIPER C, 1986, ECOL MONOGR, V56, P327, DOI 10.2307/1942550; WAKELIN D, 1988, GENETICS RESISTANCE; Wakelin Derek, 1997, P30; WEATHERHEAD PJ, 1993, BEHAV ECOL SOCIOBIOL, V33, P13, DOI 10.1007/BF00164342 70 107 110 1 19 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. FEB 13 2001 98 4 2071 2076 10.1073/pnas.98.4.2071 6 Multidisciplinary Sciences Science & Technology - Other Topics 401VL WOS:000166949200134 11172077 Green Published, Bronze 2018-11-12 J Krist, AC Krist, AC Variation in fecundity among populations of snails is predicted by prevalence of castrating parasites EVOLUTIONARY ECOLOGY RESEARCH English Article castrating parasites; fecundity compensation; life-history theory; reproduction; snails; trematodes BIOMPHALARIA-GLABRATA; REPRODUCTIVE EFFORT; HOST; ECOLOGY; COST Life-history theory predicts that high mortality should cause selection for high reproductive effort. Because parasitic castration has an equivalent role to mortality, from a fitness perspective, populations with high prevalence of castrating parasites are predicted to exhibit high reproductive effort relative to populations with low prevalence. I examined this prediction by studying populations of the freshwater snail. Elimia livescens, that vary in prevalence of castrating trematodes. Specifically, I determined whether there was a positive relationship between reproductive output and prevalence of castrating trematodes among populations. Consistent with predictions, females from populations with a high prevalence of castrating trematodes produced more eggs than females from populations with a low prevalence. Either genetic canalization or phenotypic plasticity may have caused the relationship between reproductive output and parasitism. By either mechanism, the results suggest that castrating parasites shape the life histories of their hosts. Indiana Univ, Dept Biol, Bloomington, IN 47405 USA Krist, AC (reprint author), Univ Wisconsin, Dept Biol, Phillips Hall 330, Eau Claire, WI 54701 USA. BAUDOIN M, 1975, EVOLUTION, V29, P335, DOI 10.1111/j.1558-5646.1975.tb00213.x; Bush AO, 1997, J PARASITOL, V83, P575, DOI 10.2307/3284227; DAZO BONIFACIO CAPILI, 1965, MALACOL INT J MALACOL, V3, P1; DILLON RT, 1984, SYST ZOOL, V33, P69, DOI 10.2307/2413133; FORBES MRL, 1993, OIKOS, V67, P444, DOI 10.2307/3545356; HARVELL CD, 1990, Q REV BIOL, V65, P323, DOI 10.1086/416841; JEWELL DOROTHEA DOWD, 1931, NAUTILUS, V44, P115; Jokela J, 1995, EVOLUTION, V49, P1268, DOI 10.1111/j.1558-5646.1995.tb04453.x; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; KRIST AC, 1998, THESIS INDIANA U BLO; LAFFERTY KD, 1993, OIKOS, V67, P1; LIVELY CM, 1986, AM NAT, V128, P561, DOI 10.1086/284588; MICHALAKIS Y, 1994, PARASITE, V1, P291, DOI 10.1051/parasite/1994014291; MINCHELLA DJ, 1985, PARASITOLOGY, V90, P205, DOI 10.1017/S0031182000049143; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; NORUSIS MJ, 1994, SPSS ADV STAT 6 1; SCHALLIG HDFH, 1991, PARASITOLOGY, V102, P85, DOI 10.1017/S0031182000060376; SCHRAG SJ, 1994, PARASITOLOGY, V108, P27, DOI 10.1017/S0031182000078483; Sorci G, 1996, OIKOS, V76, P121, DOI 10.2307/3545754; THORNHILL JA, 1986, PARASITOLOGY, V93, P443, DOI 10.1017/S0031182000081166 20 24 24 0 13 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 EVOL ECOL RES Evol. Ecol. Res. FEB 2001 3 2 191 197 7 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 396TU WOS:000166653300004 2018-11-12 J McCurdy, DG; Boates, JS; Forbes, MR McCurdy, DG; Boates, JS; Forbes, MR An empirical model of the optimal timing of reproduction for female amphipods infected by trematodes JOURNAL OF PARASITOLOGY English Article COROPHIUM-VOLUTATOR; CALIDRIS-PUSILLA; LIFE-HISTORY; SEMIPALMATED SANDPIPERS; SHOREBIRD PREDATION; BEHAVIOR; PARASITISM; PREY; CRUSTACEA; FUNDY Life-history theory predicts that hosts should reproduce when first infected by parasites if hosts are capable and if parasites have a lower cost on current than on future reproduction of hosts. We constructed an empirical model to explore fitness of females of the intertidal amphipod Corophium volutator that reproduced soon versus long after infection by the trematode Gynaecotyla adunca. For uninfected females, the optimal time to reproduce war at their maximum body length. However, for females infected by low or high intensities of trematode metacercariae, reproductive potential (realized fecundity) was highest for females that mated immediately after becoming infected. Even after removing a high cost of delaying reproduction for infected amphipods (high likelihood of depredation by sandpipers, which are final hosts of G. adunca), realized fecundity remained highest if reproduction occurred immediately following infection by trematodes. Results from our model support the view that early reproduction of female amphipods following infection by G. adunca is an adaptive life-history response to parasitism. Carleton Univ, Dept Biol, Ottawa, ON K1S 5B6, Canada McCurdy, DG (reprint author), Bowdoin Coll, Ctr Coastal Studies, 6775 Coll Stn, Brunswick, ME 04011 USA. Forbes, Mark/B-3575-2013 BOATES JS, 1995, ECOSCIENCE, V2, P123, DOI 10.1080/11956860.1995.11682276; BOATES JS, 1989, CAN J ZOOL, V67, P457, DOI 10.1139/z89-066; Boates JS, 1980, THESIS ACADIA U WOLF; *CAN HYDR SERV, 1998, CAN TID CURR TABL, V11; DICK JTA, 1995, J ZOOL, V236, P697, DOI 10.1111/j.1469-7998.1995.tb02740.x; FISH JD, 1979, J MAR BIOL ASSOC UK, V59, P355, DOI 10.1017/S002531540004265X; FORBES MRL, 1993, OIKOS, V67, P444, DOI 10.2307/3545356; HICKLIN PW, 1984, CAN J ZOOL, V62, P2201, DOI 10.1139/z84-321; IMRIE D M G, 1981, Proceedings of the Nova Scotian Institute of Science, V31, P149; LAFFERTY KD, 1993, OIKOS, V68, P3, DOI 10.2307/3545303; MATTHEWS SL, 1992, ECOGRAPHY, V15, P393, DOI 10.1111/j.1600-0587.1992.tb00049.x; McCurdy DG, 1999, INT J PARASITOL, V29, P1001, DOI 10.1016/S0020-7519(99)00067-3; McCurdy DG, 1999, BEHAV ECOL, V10, P351, DOI 10.1093/beheco/10.4.351; McCurdy DG, 1997, J AVIAN BIOL, V28, P353, DOI 10.2307/3676950; McCurdy DG, 2000, OIKOS, V88, P301, DOI 10.1034/j.1600-0706.2000.880208.x; McCurdy DG, 2000, CAN J ZOOL, V78, P606, DOI 10.1139/cjz-78-4-606; McCurdy DG, 2000, CAN J ZOOL, V78, P1137, DOI 10.1139/cjz-78-7-1137; METCALFE NB, 1985, Z TIERPSYCHOL, V67, P45; MINCHELLA DJ, 1985, PARASITOLOGY, V90, P205, DOI 10.1017/S0031182000049143; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; MOURITSEN KN, 1994, J AVIAN BIOL, V25, P55, DOI 10.2307/3677294; PEER DL, 1986, NETH J SEA RES, V20, P359, DOI 10.1016/0077-7579(86)90003-7; Pianka ER, 1983, EVOLUTIONARY ECOLOGY; Polak M, 1998, P ROY SOC B-BIOL SCI, V265, P2197, DOI 10.1098/rspb.1998.0559; Poulin R, 1995, INT J PARASITOL, V25, P1371, DOI 10.1016/0020-7519(95)00100-X; ROBERT M, 1989, IBIS, V131, P69, DOI 10.1111/j.1474-919X.1989.tb02745.x; Roff Derek A., 1992; Stearns S. C., 1992, EVOLUTION LIFE HIST; Watkin EE, 1941, J ANIM ECOL, V10, P77, DOI 10.2307/1343; WILSON WH, 1989, J EXP MAR BIOL ECOL, V132, P221, DOI 10.1016/0022-0981(89)90129-9; ZAR JH, 1996, BIOSTATISTICAL ANAL 31 12 13 0 4 AMER SOC PARASITOLOGISTS LAWRENCE 810 EAST 10TH STREET, LAWRENCE, KS 66044 USA 0022-3395 1937-2345 J PARASITOL J. Parasitol. FEB 2001 87 1 24 30 10.2307/3285170 7 Parasitology Parasitology 402ZB WOS:000167017100005 11227900 2018-11-12 S Ericsson, G Ballard, WB; Rogers, AR Ericsson, G Reduced cost of reproduction in moose Alces Alces through human harvest ALCES 37(1) ALCES : NORTH AMERICAN MOOSE CONFERENCE AND WORKSHOP PROCEEDINGS English Proceedings Paper 36th North American Moose Conference and Workshop JUN 04-09, 2000 WHITEHORSE, CANADA Yukon Dept Renewable Resources, Yukon Fish & Wildlife Management Board hunting; life history; moose; predation; reproduction; selection; survival RED DEER; POPULATION; SENESCENCE; AVOIDANCE; SHIFTS In life history theory there is a cost related with all resource allocation. For female moose (Alces alces), the cost of reproduction in terms of survival may be reduced for females if calves, or cows without calves, are selectively hunted during the fall. Cows with calves might experience higher hunting survival and therefore face a reduced trade-off between survival and reproduction. This hypothesis was tested during a 7-year study in northern Sweden. Female age and whether she had given birth or not best explained female moose survival during the hunting period, not the number of calves born or alive at the hunt. Still, the analysis suggests that the cost of reproduction was reduced for middle-aged females. Females not giving birth experienced a 3.2-fold greater risk of being harvested compared to those giving birth. This suggests that the application of life-history theory is crucial to fully understand the evolutionary consequences of management decisions on heavily harvested populations of ungulates. Swedish Univ Agr Sci, Dept Anim Ecol, SE-90183 Umea, Sweden Ericsson, G (reprint author), Swedish Univ Agr Sci, Dept Anim Ecol, SE-90183 Umea, Sweden. Ball John P., 1999, Ecological Bulletins, V47, P178; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BERGSTROM R, 1992, SWEDISH GAME BIOL MA; Bieber C, 1998, J ZOOL, V244, P223, DOI 10.1111/j.1469-7998.1998.tb00027.x; Cederlund G., 1995, RADJURET VILTET EKOL; Cederlund Goran N., 1991, Alces, V27, P31; Clutton-Brock T. H, 1982, RED DEER BEHAV ECOLO; CLUTTONBROCK TH, 1994, J APPL ECOL, V31, P521, DOI 10.2307/2404447; CLUTTONBROCK TH, 1983, J ANIM ECOL, V52, P67; Collet D, 1994, MODELLING SURVIVAL D; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; EDWARDS J, 1983, OECOLOGIA, V60, P185, DOI 10.1007/BF00379520; Ericsson G, 1996, ALCES N AM, V32, P31; Ericsson G, 2001, ECOLOGY, V82, P1613, DOI 10.1890/0012-9658(2001)082[1613:ARREAS]2.0.CO;2; Ericsson G, 2001, ECOSCIENCE, V8, P157, DOI 10.1080/11956860.2001.11682641; Ericsson G, 2000, J BIOECONOMICS, V2, P1; FALCONER DS, 1989, INTRO QUANTITATIVE G; Fancy S.G., 1980, Wildlife Society Bulletin, V8, P242; FRYXELL JM, 1991, J WILDLIFE MANAGE, V55, P377, DOI 10.2307/3808963; GARROD DJ, 1988, FISH POPULATION DYNA, P216; GINSBERG JR, 1994, CONSERV BIOL, V8, P157, DOI 10.1046/j.1523-1739.1994.08010157.x; HARTL DL, 1989, PRINCIPLES POPULATIO; HARTL GB, 1991, HEREDITY, V66, P343, DOI 10.1038/hdy.1991.43; HUTCHINGS JA, 1994, CAN J FISH AQUAT SCI, V51, P2126, DOI 10.1139/f94-214; Lack D., 1968, ECOLOGICAL ADAPTATIO; Landa Arild, 1997, Fauna Norvegica Series A, V18, P43; Lee SJ, 1996, P ROY SOC B-BIOL SCI, V263, P619, DOI 10.1098/rspb.1996.0093; LINDSEY J, 1989, INT J GERIATR PSYCH, V4, P3, DOI 10.1002/gps.930040104; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; MURPHY GI, 1967, ECOLOGY, V48, P731, DOI 10.2307/1933730; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RIDLEY M, 1993, EVOLUTION; Roff Derek A., 1992; Sandegren F., 1987, Swedish Wildlife Research Supplement, V1, P785; *SAS I, 1989, SAS STAT US GUID VER, V2; *SAS I, 1989, SAS STAT US GUID, V1; Schaberg T, 1996, THORAX, V51, P1017, DOI 10.1136/thx.51.10.1017; SKOGLAND T, 1989, OIKOS, V55, P101, DOI 10.2307/3565879; SKUNCKE F, 1949, ALGEN STUDIER JAKT V; Sokal R.R., 1995, BIOMETRY; SOLBERG EJ, 1998, THESIS U TRONDHEIM T; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEPHENS PW, 1984, HOLARCTIC ECOL, V7, P239; *SWED EPA, 2000, STAT 1999 2000 ALG N; *SWED EPA, 1994, 19943 SNFS SWED EPA; Swenson JE, 1999, J WILDLIFE MANAGE, V63, P354, DOI 10.2307/3802519; THELANDER B, 1992, SWEDISH GAME BIOL MA, P50; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 49 10 11 1 12 LAKEHEAD UNIVERSITY BOOKSTORE THUNDER BAY THUNDER BAY, ON P7B 5EI, CANADA 0835-5851 ALCES-N AM MOOSE CON 2001 37 1 61 69 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology BU64L WOS:000176591300007 2018-11-12 J Nylin, S Nylin, S Life history perspectives on pest insects: What's the use? AUSTRAL ECOLOGY English Article; Proceedings Paper Symposium on Insect-Eucalypt Interactions FEB 07-08, 2000 CANBERRA, AUSTRALIA demography; IPM; life history theory; optimality; outbreak forecasting; pest insects; phenotypic plasticity POLYGONIA-C-ALBUM; POPULATION-DYNAMICS; OVIPOSITION PREFERENCE; SEASONAL PLASTICITY; CYCLE REGULATION; PARARGE-AEGERIA; REACTION NORMS; K-SELECTION; R-SELECTION; GROWTH-RATE In his seminal 1954 paper on the 'population consequences of life history phenomena', Cole noted that 'these computations may have practical value in dealing with valuable or noxious species'. In the present paper, the question is asked: 'is research based on evolutionary perspectives in general, and life history theory specifically, really useful for dealing with insect pests?' Perhaps such theory-based research is rather a luxury: time and resources would be better spent on entirely applied aspects of the problem. The conclusion of the present discussion is that having an evolutionary perspective guiding research is actually a very cost-effective way of dealing with applied problems, as it provides a clear basis for interpretations, generalizations and predictions. Life history theory is a very central and necessary part of both population ecology and general evolutionary theory, and its specific usefulness in pest forecasting and management are discussed. Nevertheless, our ability to predict insect population dynamics is still limited, and so is our ability to make use of an insect's life history traits to predict its propensity to become a pest. I suggest that the former shortcoming is largely due to poor understanding of insect life history plasticity. This, in turn, may partly be due to a paucity of studies where reaction norms are investigated as putative adaptations. I suggest that the latter shortcoming is due to problems inherent with studying life history traits as adaptations, for example the lack of an independent fitness model and the fact that life histories tend to form syndromes of coadapted traits. These points are illustrated with examples from my own work on non-pest butterflies and from insect-Eucalyptus systems. Stockholm Univ, Dept Zool, SE-10691 Stockholm, Sweden Nylin, S (reprint author), Stockholm Univ, Dept Zool, SE-10691 Stockholm, Sweden. soren.nylin@zoologi.su.se Nylin, Soren/B-7375-2008 Nylin, Soren/0000-0003-4195-8920 Begon M., 1996, POPULATION ECOLOGY U; Bernays E. A., 1994, HOST PLANT SELECTION; Berryman AA, 1996, TRENDS ECOL EVOL, V11, P28, DOI 10.1016/0169-5347(96)81066-4; BLANCKENHORN WU, 1994, OECOLOGIA, V97, P354, DOI 10.1007/BF00317325; Boake CRB, 1996, ANNU REV ENTOMOL, V41, P211, DOI 10.1146/annurev.en.41.010196.001235; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; CAMPBELL K G, 1974, Journal of the Entomological Society of Australia (N. S. W.), V8, P3; CARNE PB, 1978, DUCALYPTUS WOOD PROD, P155; CATE JR, 1994, INTEGRATED PEST MANA; CLARK L. R., 1964, AUSTRALIAN J ZOOL, V12, P362, DOI 10.1071/ZO9640362; CLARK LR, 1975, AUST J ZOOL, V23, P523, DOI 10.1071/ZO9750523; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; DANILEVSKII AS, 1965, PHOTOPERIODISM SEASO; FUTUYMA DJ, 1993, EVOLUTION, V47, P888, DOI 10.1111/j.1558-5646.1993.tb01242.x; Gotthard K, 1999, OIKOS, V84, P453, DOI 10.2307/3546424; Gotthard K, 2000, OECOLOGIA, V122, P36, DOI 10.1007/PL00008833; GOTTHARD K, 1995, OIKOS, V74, P3, DOI 10.2307/3545669; Gotthard K, 2000, P ROY SOC B-BIOL SCI, V267, P589, DOI 10.1098/rspb.2000.1042; GOTTHARD K, 1994, OECOLOGIA, V99, P281, DOI 10.1007/BF00627740; Grafen A., 1988, REPROD SUCCESS, P454; Horn HS, 1978, BEHAVIOURAL ECOLOGY, P411; HUGHES L, 1992, FUNCT ECOL, V6, P642; Kennedy GG, 2000, ANNU REV ENTOMOL, V45, P467, DOI 10.1146/annurev.ento.45.1.467; KOZLOWSKI J, 1994, ECOL MODEL, V73, P81, DOI 10.1016/0304-3800(94)90099-X; LARSSON S, 1995, OIKOS, V72, P155, DOI 10.2307/3546051; Larsson S, 2000, OIKOS, V89, P440, DOI 10.1034/j.1600-0706.2000.890303.x; LUCK RF, 1990, TRENDS ECOL EVOL, V5, P196, DOI 10.1016/0169-5347(90)90210-5; MAC ARTHUR ROBERT H., 1967; MALLET J, 1989, TRENDS ECOL EVOL, V4, P336, DOI 10.1016/0169-5347(89)90088-8; Masaki S., 1978, P72; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; Nylin S, 1996, ENTOMOL EXP APPL, V80, P141, DOI 10.1111/j.1570-7458.1996.tb00904.x; Nylin S, 1996, ECOSCIENCE, V3, P285, DOI 10.1080/11956860.1996.11682344; NYLIN S, 1989, ECOL ENTOMOL, V14, P209, DOI 10.1111/j.1365-2311.1989.tb00771.x; Nylin S, 1996, EVOLUTION, V50, P1351, DOI 10.1111/j.1558-5646.1996.tb02377.x; NYLIN S, 1995, BIOL J LINN SOC, V55, P143, DOI 10.1006/bijl.1995.0033; NYLIN S, 1993, ECOLOGY, V74, P1414, DOI 10.2307/1940071; NYLIN S, 1995, ANIM BEHAV, V49, P511, DOI 10.1006/anbe.1995.9997; NYLIN S, 1994, SERIES ENTOM, V52, P41; OHMART CP, 1991, ANNU REV ENTOMOL, V36, P637, DOI 10.1146/annurev.en.36.010191.003225; OHMART CP, 1991, FOREST ECOL MANAG, V39, P35, DOI 10.1016/0378-1127(91)90160-W; OHMART CP, 1987, J AUST ENTOMOL SOC, V26, P203; ORZACK SH, 1994, AM NAT, V143, P361, DOI 10.1086/285608; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PRICE PW, 1994, RES POPUL ECOL, V36, P3, DOI 10.1007/BF02515079; Prokopy Ronald J., 1993, P308; RABB RL, 1970, CONCEPTS PEST MANAGE; RAUSHER MD, 1985, J INSECT PHYSIOL, V31, P873, DOI 10.1016/0022-1910(85)90105-2; READSHAW J. L., 1965, AUSTRALIAN J ZOOL, V13, P475, DOI 10.1071/ZO9650475; READSHAW J L, 1971, Australian Journal of Zoology, V19, P141, DOI 10.1071/ZO9710141; Roff Derek A., 1992; Rose M. R, 1991, EVOLUTIONARY BIOL AG; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1976, J ANIM ECOL, V45, P949, DOI 10.2307/3591; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEARNS SC, 1982, ENV ADAPTATION EVOLU, P3; Steinbauer MJ, 1998, ECOL ENTOMOL, V23, P201; Steinbauer MJ, 1999, ENTOMOL EXP APPL, V91, P175, DOI 10.1046/j.1570-7458.1999.00481.x; Tammaru T, 1995, OIKOS, V74, P296, DOI 10.2307/3545659; Tammaru T, 1996, OIKOS, V77, P561, DOI 10.2307/3545946; TATAR M, 1993, EVOLUTION, V47, P1302, DOI 10.1111/j.1558-5646.1993.tb02156.x; Tauber M.J., 1986, SEASONAL ADAPTATIONS; THOMPSON JN, 1988, ENTOMOL EXP APPL, V47, P3, DOI 10.1111/j.1570-7458.1988.tb02275.x; WALLNER WE, 1987, ANNU REV ENTOMOL, V32, P317, DOI 10.1146/annurev.en.32.010187.001533; WANNTORP HE, 1983, OIKOS, V41, P157, DOI 10.2307/3544367; Wedell N, 1997, OIKOS, V78, P569, DOI 10.2307/3545619; WIKLUND C, 1991, OIKOS, V60, P241, DOI 10.2307/3544871; WIKLUND C, 1977, OECOLOGIA, V31, P153, DOI 10.1007/BF00346917; WIKLUND C, 1992, EVOLUTION, V46, P519, DOI 10.1111/j.1558-5646.1992.tb02055.x 71 26 28 0 12 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1442-9985 1442-9993 AUSTRAL ECOL Austral Ecol. 2001 26 5 507 517 10.1046/j.1442-9993.2001.01134.x 11 Ecology Environmental Sciences & Ecology 479MR WOS:000171408600009 2018-11-12 J Aarssen, LW; Jordan, CY Aarssen, LW; Jordan, CY Between-species patterns of covariation in plant size, seed size and fecundity in monocarpic herbs ECOSCIENCE English Article allometry; annuals; biennials; fitness; isometry; life history; trade-off ARABIDOPSIS-THALIANA; REPRODUCTIVE EFFORT; NUMBER; COMPETITION; ALLOCATION; SELECTION Covariation in plant mass, seed mass and fecundity was investigated for 15 species of monocarpic herbs (annuals and biennials) harvested at Final developmental stage from recently disturbed habitats. Above-ground vegetative mass and fecundity varied by over three orders of magnitude and seed mass varied by over two orders of magnitude across species. Eighty-eight percent of the variation in fecundity across species was explained by covariation in the other two characters as predictor variables in a least squares regression models fecundity increased significantly and proportionately with increasing above-ground vegetative mass but decreased significantly and proportionately with increasing individual seed mass. Individual seed mass and above-ground vegetative mass were positively correlated across species when fecundity was held constant under partial correlation. The results indicated that none of the relationships between these characters are size-dependent, i.e., the traditional trade-off, predicted by life history theory, between seed size and fecundity is isometric across species, as is the increase in both fecundity and total seed mass with increasing vegetative mass. Allometric (size-dependent) relationships for these characters have been reported in previous studies, where developmental stage was not controlled across species; the detection of isometric relationships in the present study may therefore be a consequence of measuring whole-genet, lifetime fecundity and above-ground vegetative mass for all study species. A general hypothesis is presented for the interpretation of covariation in plant size, seed size and fecundity across species, in which the principal selection mechanism involves 'time limitation' The amount of time available for growth (before density-independent mortality, e.g., from disturbance) selects for the level of precocity necessary to reproduce before death. This affects the level of constraint on maximum attainable plant size, i.e., smaller when shorter-lived. This, in turn, affects reproductive output, which can be greater when longer-lived, expressed as greater fecundity and/or larger seed size. However, both cannot be maximized because of the inherent trade-off between seed size and fecundity for plants of a given size. Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada Aarssen, LW (reprint author), Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada. Aarssen, Lonnie/K-5778-2012 AARSSEN LW, 1989, OIKOS, V56, P386, DOI 10.2307/3565625; AARSSEN LW, 1992, J ECOL, V80, P109, DOI 10.2307/2261067; AARSSEN LW, 1992, OIKOS, V65, P225, DOI 10.2307/3545013; Aarssen LW, 2000, OIKOS, V89, P606, DOI 10.1034/j.1600-0706.2000.890321.x; CHARNOV E L, 1982; Clauss MJ, 1994, ECOSCIENCE, V1, P153, DOI 10.1080/11956860.1994.11682239; CLAUSS MJ, 1994, J ECOL, V82, P447, DOI 10.2307/2261254; COLEMAN JS, 1994, TRENDS ECOL EVOL, V9, P187, DOI 10.1016/0169-5347(94)90087-6; Evenson W.E., 1983, P249; GADGIL M, 1972, AM NAT, V106, P14, DOI 10.1086/282748; Gleason HA, 1991, MANUAL VASCULAR PLAN; GREENE DF, 1994, ECOLOGY, V75, P642, DOI 10.2307/1941722; Grime J. P., 1979, PLANT STRATEGIES VEG; HANCOCK JF, 1987, B TORREY BOT CLUB, V114, P53, DOI 10.2307/2996389; HARPER J. L., 1970, Annual review of ecology and systematics., V1, P327, DOI 10.1146/annurev.es.01.110170.001551; Harper J. L., 1977, POPULATION BIOL PLAN; Jakobsson A, 2000, OIKOS, V88, P494, DOI 10.1034/j.1600-0706.2000.880304.x; KRANNITZ PG, 1991, AM J BOT, V78, P446, DOI 10.2307/2444967; LEISHMAN MR, 1995, J ECOL, V83, P517, DOI 10.2307/2261604; Pianka E. R., 1988, EVOLUTIONARY ECOLOGY; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; SHIPLEY B, 1992, AM NAT, V139, P467, DOI 10.1086/285339; SILVERTOWN J, 1989, TRENDS ECOL EVOL, V4, P24, DOI 10.1016/0169-5347(89)90013-X; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; TAYLOR DR, 1990, OIKOS, V58, P239, DOI 10.2307/3545432; TILMAN D, 1994, ECOLOGY, V75, P2, DOI 10.2307/1939377; Turnbull LA, 1999, J ECOL, V87, P899, DOI 10.1046/j.1365-2745.1999.00405.x; Vasseur L, 1995, ANN BOT FENN, V32, P169; VENABLE DL, 1992, AM NAT, V140, P287, DOI 10.1086/285413 29 72 76 4 41 UNIVERSITE LAVAL ST FOY PAVILLON ALEXANDRE-VACHON, UNIV LAVAL, ST FOY, QUEBEC G1K 7P4, CANADA 1195-6860 ECOSCIENCE Ecoscience 2001 8 4 471 477 10.1080/11956860.2001.11682677 7 Ecology Environmental Sciences & Ecology 505RQ WOS:000172929700009 2018-11-12 J Veasey, JS; Houston, DC; Metcalfe, NB Veasey, JS; Houston, DC; Metcalfe, NB A hidden cost of reproduction: the trade-off between clutch size and escape take-off speed in female zebra finches JOURNAL OF ANIMAL ECOLOGY English Article egg production; flight performance; predation risk; reproductive costs; zebra finch PREDATION RISK; TAENIOPYGIA-GUTTATA; FLIGHT PERFORMANCE; DIURNAL-VARIATION; SMALL BIRDS; BODY-MASS; MUSCLE; STRATEGY; ABILITY; TITS 1. The concept of reproductive costs is a central tenet of life-history theory, but the proximate mechanisms whereby such costs are mediated remain poorly understood. In this paper we demonstrate a link between clutch size and escape take-off speed in small birds, mediated through changes in flight muscle volume during laying. 2. In a series of experiments the same adult female zebra finches (Taeniopygia guttata) were made to lay both large and small clutches. When producing the larger clutches, females lost more flight muscle condition and became significantly slower to take off during escape flights. 3. This reduction in take-off speed with increased egg production was evident after the last egg was laid, and was independent of changes in body mass, so was not simply due to the presence of the eggs inside the female. 4. This indicates that there is a trade-off between fecundity and the maintenance of somatic musculature critical to an animal's escape response. As changes in take-off speed can have disproportionate effects on the chances of ground-feeding birds surviving a predatory attack, the degree of reduction in flight muscle condition during laying could be a constraint on clutch sizes in such birds. Univ Glasgow, Div Environm & Evolutionary Biol, Ornithol Grp, IBLS, Glasgow G12 8QQ, Lanark, Scotland Metcalfe, NB (reprint author), Univ Glasgow, Div Environm & Evolutionary Biol, Ornithol Grp, IBLS, Graham Kerr Bldg, Glasgow G12 8QQ, Lanark, Scotland. n.metcalfe@bio.gla.ac.uk Metcalfe, Neil/C-5997-2009 Metcalfe, Neil/0000-0002-1970-9349 Bednekoff PA, 1996, P ROY SOC B-BIOL SCI, V263, P887, DOI 10.1098/rspb.1996.0131; BERGLUND A, 1986, OIKOS, V46, P349, DOI 10.2307/3565833; Birkhead TR, 1998, BEHAV ECOL SOCIOBIOL, V44, P179, DOI 10.1007/s002650050530; Cresswell W, 1996, IBIS, V138, P684, DOI 10.1111/j.1474-919X.1996.tb04770.x; CRESSWELL W, 1993, ANIM BEHAV, V46, P609, DOI 10.1006/anbe.1993.1231; Dall SRX, 1998, ANIM BEHAV, V55, P715, DOI 10.1006/anbe.1997.0749; HAYWOOD S, 1993, AUK, V110, P778, DOI 10.2307/4088633; HOUSTON DC, 1995, IBIS, V137, P322, DOI 10.1111/j.1474-919X.1995.tb08028.x; Kullberg C, 1998, P ROY SOC B-BIOL SCI, V265, P1659, DOI 10.1098/rspb.1998.0485; Kullberg C, 1998, ANIM BEHAV, V56, P227, DOI 10.1006/anbe.1998.0765; Lee SJ, 1996, P ROY SOC B-BIOL SCI, V263, P619, DOI 10.1098/rspb.1996.0093; Lind J, 1999, BEHAV ECOL SOCIOBIOL, V46, P65, DOI 10.1007/s002650050593; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; MARDEN JH, 1987, J EXP BIOL, V130, P235; METCALFE NB, 1995, P ROY SOC B-BIOL SCI, V261, P395, DOI 10.1098/rspb.1995.0165; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; PAGE G, 1975, CONDOR, V77, P73, DOI 10.2307/1366760; Roff Derek A., 1992; RUDEBECK G, 1950, OIKOS, V2, P65, DOI 10.2307/3564663; SCHWARTZ MF, 1992, NIDCD MONOGRAPH, V2, P17; Selman RG, 1996, P ROY SOC B-BIOL SCI, V263, P1585, DOI 10.1098/rspb.1996.0232; Selman RG, 1996, IBIS, V138, P348, DOI 10.1111/j.1474-919X.1996.tb04353.x; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; Stearns S. C., 1992, EVOLUTION LIFE HIST; SZEKELY T, 1994, IBIS, V136, P341, DOI 10.1111/j.1474-919X.1994.tb01105.x; Veasey JS, 1998, ANIM BEHAV, V56, P883, DOI 10.1006/anbe.1998.0880; Veasey JS, 2000, FUNCT ECOL, V14, P115, DOI 10.1046/j.1365-2435.2000.00391.x; Zann RA, 1996, ZEBRA FINCH SYNTHESI 28 72 72 0 13 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 2001 70 1 20 24 10.1046/j.1365-2656.2001.00476.x 5 Ecology; Zoology Environmental Sciences & Ecology; Zoology 414QJ WOS:000167677400003 2018-11-12 J Bohlin, T; Pettersson, J; Degerman, E Bohlin, T; Pettersson, J; Degerman, E Population density of migratory and resident brown trout (Salmo trutta) in relation to altitude: evidence for a migration cost JOURNAL OF ANIMAL ECOLOGY English Article anadromy; life-history; migration; migration cost; salmonid LIFE-HISTORY CONSEQUENCES; SHAD ALOSA-SAPIDISSIMA; FRESH-WATER MIGRATION; ATLANTIC SALMON; AMERICAN SHAD; EVOLUTION; ADULT; MATURITY; STOCKS; SALAR 1. For anadromous salmonids, the positive relations found in previous studies between adult size/age and stream characteristics suggest that the migration cost increases with stream length, water discharge and the altitude of the spawning site. In this study we hypothesized that the altitude of the spawning site is positively related to the migration effort. 2. Life-history theory predicts (i) that the equlibrium egg density, which is a fitness measure, thereby will decline more rapidly with altitude in migratory than in stream-resident populations, and therefore (ii) that residency will be selected for at large enough altitudes. 3, As the density of juveniles is a function of egg density, we hypothesized that (a) altitude has stronger effect on juvenile density in migratory than in resident populations, and (b) juvenile density is larger in migratory than in resident populations. 4, We tested (a) and (b) using multivariate methods for electrofishing data from 164 sea-migratory and 167 stream-resident populations of brown trout Salmo trutta L. in Sweden. Both predictions were supported; the juvenile density was larger and declined more rapidly with altitude in migratory than in resident populations. 5. The results are further evidence that migration costs reduce fitness in anadromous salmonids. Univ Gothenburg, Dept Zool, SE-40530 Gothenburg, Sweden; Inst Freshwater Res, SE-70215 Orebro, Sweden Bohlin, T (reprint author), Univ Gothenburg, Dept Zool, Box 463, SE-40530 Gothenburg, Sweden. torgny.bohlin@zool.gu.se AHLEN I, 1996, RODLISTADE RYGGRADSD; ALERSTAM T, 1998, J THEOR BIOL, V189, P227; Alexander GR, 1979, PREDATOR PREY SYSTEM, P153; Beverton R. J. H., 1957, FISHERIES INVESTME 2, V19; BOHLIN T, 1989, HYDROBIOLOGIA, V173, P9, DOI 10.1007/BF00008596; BOHLIN T, 1982, RP I FRESHHWATER RES, V60, P15; BRETT JR, 1986, CAN J ZOOL, V64, P555, DOI 10.1139/z86-082; CARSCADDEN JE, 1975, J FISH BIOL, V7, P595, DOI 10.1111/j.1095-8649.1975.tb04633.x; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Cochran WG, 1963, SAMPLING TECHNIQUES; Dodson Julian J., 1997, P10; Elliott J.M., 1993, Canadian Special Publication of Fisheries and Aquatic Sciences, V118, P109; Elliott J.M., 1994, QUANTITATIVE ECOLOGY; Elliott JM, 1998, J ANIM ECOL, V67, P280, DOI 10.1046/j.1365-2656.1998.00185.x; FLEMING IA, 1989, EVOLUTION, V43, P141, DOI 10.1111/j.1558-5646.1989.tb04213.x; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; FRIER JO, 1994, NORDIC J FRESHWATER, V60, P58; GLEBE BD, 1981, CAN J FISH AQUAT SCI, V38, P795, DOI 10.1139/f81-108; GLEBE BD, 1981, CAN J FISH AQUAT SCI, V38, P806, DOI 10.1139/f81-109; Gross M.R., 1987, AM FISH SOC S, V1, P14; GROSS MR, 1988, SCIENCE, V239, P1291, DOI 10.1126/science.239.4845.1291; HAGEN DW, 1967, J FISH RES BOARD CAN, V24, P1637, DOI 10.1139/f67-138; Jepsen N, 1998, HYDROBIOLOGIA, V372, P347, DOI 10.1023/A:1017047527478; JONSSON B, 1982, OIKOS, V38, P297, DOI 10.2307/3544668; JONSSON B, 1993, REV FISH BIOL FISHER, V3, P348, DOI 10.1007/BF00043384; JONSSON B, 1985, ENVIRON BIOL FISH, V14, P281, DOI 10.1007/BF00002633; Jonsson N, 1997, J ANIM ECOL, V66, P425, DOI 10.2307/5987; JONSSON N, 1991, J ANIM ECOL, V60, P937, DOI 10.2307/5423; LABEELUND JH, 1991, CAN J FISH AQUAT SCI, V48, P1015, DOI 10.1139/f91-119; LAMBERT Y, 1990, CAN J FISH AQUAT SCI, V47, P335, DOI 10.1139/f90-034; LAMBERT Y, 1990, CAN J FISH AQUAT SCI, V47, P318, DOI 10.1139/f90-033; Leonard JBK, 1999, CAN J FISH AQUAT SCI, V56, P1159, DOI 10.1139/f99-041; McKenzie R. A., 1964, FISHERIES RES BOARD, V144, P1; McKeown BA, 1984, FISH MIGRATION; Northcote T.G., 1978, P326; NORTHCOTE TG, 1981, J FISH BIOL, V18, P741, DOI 10.1111/j.1095-8649.1981.tb03815.x; RICKER W. E., 1954, JOUR FISH RES BD CANADA, V11, P559; ROFF DA, 1988, ENVIRON BIOL FISH, V22, P133, DOI 10.1007/BF00001543; ROFF DA, 1991, AM ZOOL, V31, P205; Roff Derek A., 1992; Roni Philip, 1995, North American Journal of Fisheries Management, V15, P325, DOI 10.1577/1548-8675(1995)015<0325:GVISAA>2.3.CO;2; SCARNECCHIA DL, 1983, CAN J FISH AQUAT SCI, V40, P1456, DOI 10.1139/f83-168; SCHAFFER WM, 1975, ECOLOGY, V56, P577, DOI 10.2307/1935492; SCOTT WB, 1973, FISH RES BD CAN B, V184, P1; SNYDER RJ, 1989, CAN J ZOOL, V67, P2448, DOI 10.1139/z89-345; SNYDER RJ, 1991, ENVIRON BIOL FISH, V31, P381, DOI 10.1007/BF00002363; SVARDSON G, 1982, ADAPTIVE DIFFERENCES, V60, P51; THORPE JE, 1981, CAN J FISH AQUAT SCI, V38, P1576, DOI 10.1139/f81-208; Werner EE, 1986, COMMUNITY ECOLOGY, P344; Wootton R. J., 1990, ECOLOGY TELEOST FISH 50 65 66 0 36 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 2001 70 1 112 121 10.1046/j.1365-2656.2001.00466.x 10 Ecology; Zoology Environmental Sciences & Ecology; Zoology 414QJ WOS:000167677400011 2018-11-12 J Alonzo, SH; Mangel, M Alonzo, SH; Mangel, M Survival strategies and growth of krill: avoiding predators in space and time MARINE ECOLOGY PROGRESS SERIES English Article habitat distribution; predation risk; life-history theory SOUTH-SHETLAND-ISLANDS; EUPHAUSIA-SUPERBA DANA; ANTARCTIC KRILL; VERTICAL-DISTRIBUTION; FEEDING-ACTIVITY; LIFE-HISTORY; GEORGIA; TEMPERATURE; SHRINKAGE; PENGUINS Although Antarctic krill live in a relatively harsh and variable environment, they are extremely abundant and occur across a wide geographic range. Krill are also the dominant prey item for a variety of predators ranging from fish to whales. Thus, krill Life histories and survival strategies represent an interesting and biologically relevant theoretical question: How do krill survive and what makes them so successful? The factors that influence krill size and spatial distributions and life-history patterns are not generally understood. We present a conceptual framework for studying krill life histories and patterns of distribution. This approach uses what is known about krill physiology and environmental conditions within an evolutionary framework to increase our understanding of hill distributions and abundance. Using a dynamic state-variable model, we determined the factors predicted to affect the distribution of krill among habitats and feeding behavior of krill. Habitats vary in their associated survival, predation risk, food availability, and metabolic costs. Existing data on variation in temperature, phytoplankton abundance, metabolic costs, growth rates and predator behavior are used to parameterize the model. The model predicts that krill will shrink when experiencing extreme temperatures or food deprivation (under negative energy budgets), but we also predict that krill may shrink due to predation risk (under positive energy budgets). Furthermore, predation patterns are predicted to strongly influence krill size and spatial distributions. If predation risk is size-dependent, krill are predicted to shrink between reproductive events which reduces predation. Differences between habitats in predation risk may cause krill, to shift away from risky habitats even if this slows growth. In the presence of predation risk when feeding, krill are predicted to experience a tradeoff between growth and survival and shift their feeding behavior and habitat distribution accordingly. Differences between habitats in water temperature and travel costs are also predicted to cause size-dependent shifts in habitat use and migration behavior. Our results reinforce the importance of predator behavior on krill life histories, growth, and distributions. Patterns of predation risk may be the key to understanding krill distribution in space, time and size. Univ Calif Santa Cruz, Dept Environm Studies, Santa Cruz, CA 95064 USA; Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA Alonzo, SH (reprint author), Univ Calif Santa Cruz, Dept Environm Studies, Santa Cruz, CA 95064 USA. shalonzo@cats.ucsc.edu ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; BOYD CM, 1984, J CRUSTACEAN BIOL, V4, P123, DOI 10.1163/1937240X84X00543; CAPELLA JE, 1992, DEEP-SEA RES, V39, P1221, DOI 10.1016/0198-0149(92)90065-2; CLARK CW, 2000, DYNAMIC STATE VARIAB; CLARKE A, 1983, POLAR BIOL, V2, P69, DOI 10.1007/BF00303172; Croll DA, 1998, POLAR BIOL, V19, P365, DOI 10.1007/s003000050261; Croll DA, 1998, DEEP-SEA RES PT II, V45, P1353, DOI 10.1016/S0967-0645(98)00031-9; Croxall JP, 1999, MAR ECOL PROG SER, V177, P115, DOI 10.3354/meps177115; CROXALL JP, 1985, J ANIM ECOL, V54, P1, DOI 10.2307/4616; DALY KL, 1991, MAR ECOL PROG SER, V79, P37, DOI 10.3354/meps079037; EVERSON I, 1992, PHILOS T ROY SOC B, V338, P311, DOI 10.1098/rstb.1992.0151; Folt CL, 1999, TRENDS ECOL EVOL, V14, P300, DOI 10.1016/S0169-5347(99)01616-X; HEYWOOD RB, 1985, DEEP-SEA RES, V32, P369, DOI 10.1016/0198-0149(85)90085-8; Hill HJ, 1996, MAR ECOL PROG SER, V140, P1, DOI 10.3354/meps140001; HOFMANN EE, 1992, DEEP-SEA RES, V39, P1177, DOI 10.1016/0198-0149(92)90063-Y; HOLMHANSEN O, 1984, J CRUSTACEAN BIOL, V4, P156; Houston AI, 1999, MODELS ADAPTIVE BEHA; HUNTLEY ME, 1994, MAR ECOL PROG SER, V107, P23, DOI 10.3354/meps107023; Ichii T, 1996, POLAR BIOL, V16, P63, DOI 10.1007/BF01876830; IKEDA T, 1985, B MAR SCI, V37, P599; IKEDA T, 1987, POLAR BIOL, V7, P339, DOI 10.1007/BF00293224; IKEDA T, 1982, J EXP MAR BIOL ECOL, V62, P143, DOI 10.1016/0022-0981(82)90088-0; IKEDA T, 1985, POLAR BIOL, V4, P1, DOI 10.1007/BF00286811; IKEDA T, 1985, MAR BIOL, V85, P1, DOI 10.1007/BF00396409; Mackintosh N. A., 1973, DISCOVERY REP, V36, P1; Mangel M., 1988, DYNAMIC MODELING BEH; Marinovic B, 1999, ECOL LETT, V2, P338; Marr J., 1962, DISCOVERY REP, V32, P33; MAUCHLINE J, 1980, ADV MAR BIOL, V18, P373; Miller D. G. M., 1989, BIOMASS SCI SER, V9, P1; MORRIS DJ, 1984, MAR ECOL PROG SER, V20, P203, DOI 10.3354/meps020203; MORRIS DJ, 1984, MAR ECOL PROG SER, V16, P1, DOI 10.3354/meps016001; MORRIS DJ, 1983, POLAR BIOL, V2, P21, DOI 10.1007/BF00258281; NICOL S, 1992, MAR ECOL PROG SER, V89, P175, DOI 10.3354/meps089175; Quetin Langdon B., 1996, Antarctic Research Series, V70, P357; QUETIN LB, 1991, AM ZOOL, V31, P49; Reid K, 1999, MAR ECOL PROG SER, V177, P103, DOI 10.3354/meps177103; Reid K, 1996, MAR ECOL PROG SER, V140, P13, DOI 10.3354/meps140013; Ross Robin M., 1996, Antarctic Research Series, V70, P199; SIEGEL V, 1987, MAR BIOL, V96, P483, DOI 10.1007/BF00397966; SIEGEL V, 1985, ARCH FISCHEREIWISS, V36, P185; SIEGEL V, 2000, KRILL BIOL ECOLOGY F; THOMAS PG, 1987, MAR BIOL, V95, P357, DOI 10.1007/BF00409565 43 34 35 0 20 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2001 209 203 217 10.3354/meps209203 15 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 399VR WOS:000166834500017 Bronze 2018-11-12 J Jullien, M; Clobert, J Jullien, M; Clobert, J The survival value of flocking in neotropical birds: Reality or fiction? ECOLOGY English Review adult survival; facultative flocking; foraging efficiency; life history traits; mixed-species flocks; neotropical forest; obligate flocking behavior, passerine; predator avoidance; tropics MIXED-SPECIES FLOCKS; LIFE-HISTORY EVOLUTION; FORAGING FLOCKS; NEST PREDATION; INTERSPECIFIC COMPETITION; INDEPENDENT CONTRASTS; WILLOW TITS; GREAT TIT; TERRITORIALITY; BEHAVIOR Greater foraging efficiency and/or better predator avoidance have long been assumed and used as explanations for the evolution of flocking behavior in birds. Even if the debate between the validity of these two hypotheses remains open, one prediction is that living in flocks can favor increased survival rates. We gathered published and unpublished data from various tropical forests where bird species forage (1) exclusively alone or in pairs (2) in heterospecific flocks some of the time (facultative flock members), or (3) exclusively in heterospecific year-long associations (obligate flock members). We controlled statistically for effects of body size, nest type, clutch size, and phylogeny, and tested whether survival rates differed among these three groups. The survival rates of the obligate flock members (mean survival rate 68.7%, range 48.0-87.0%) were significantly higher than estimates for the species feeding alone or in pairs (mean survival rate 58.3%, range 33.0-79.0%). However, survival rates of the facultative hock members (mean survival rate 60.4%, range 40.0-79.0%) did not differ from those of the nonflocking species. Nevertheless, causes of such differences in survival can be explained by an alternative hypothesis. Life history theory predicts that higher survival for the obligate flocking species may be a response to low fecundity and productivity. Yet, the pattern "high survivorship, strikingly low fecundity" documented in obligate flocking species has never been observed among their solitary or facultative flocking counterparts. This result suggests that permanent obligate flocking can be an alternative ecological factor that may drive the evolution of life histories in tropical birds. Ecole Normale Super, Ecol Lab, CNRS, URA 258, F-75230 Paris 05, France; Inst Ecol, CNRS, URA 258, F-75252 Paris, France Jullien, M (reprint author), Univ Montana, Montana Cooperat Wildlife Res Unit, Avian Studies Program, Missoula, MT 59812 USA. ALATALO RV, 1987, ECOLOGY, V68, P284, DOI 10.2307/1939259; ALATALO RV, 1981, OIKOS, V37, P335, DOI 10.2307/3544125; ANDERSON DR, 1994, ECOLOGY, V75, P1780, DOI 10.2307/1939637; BARNARD CJ, 1983, ANIMAL BEHAV; BARNARD JD, 1985, GULLS PLOVERS; BENNETT PM, 1988, NATURE, V333, P216, DOI 10.1038/333216b0; BRAWN JD, 1995, ECOLOGY, V76, P41, DOI 10.2307/1940630; BROCKMANN HJ, 1979, ANIM BEHAV, V27, P487, DOI 10.1016/0003-3472(79)90185-4; BUCKLEY FG, 1974, ECOLOGY, V55, P1053, DOI 10.2307/1940355; BURNHAM KP, 1987, AM FISHERIES SOC MON, V5; BUSKIRK WH, 1976, AM NAT, V110, P293, DOI 10.1086/283065; CARACO T, 1979, ECOLOGY, V60, P618, DOI 10.2307/1936082; CARACO T, 1980, ECOLOGY, V61, P119, DOI 10.2307/1937162; CARACO T, 1980, AM NAT, V115, P262, DOI 10.1086/283558; CARACO T, 1989, ANIM BEHAV, V38, P41, DOI 10.1016/S0003-3472(89)80064-8; CARRASCAL LM, 1992, CAN J ZOOL, V70, P1947, DOI 10.1139/z92-264; CIMPRICH DA, 1994, ECOLOGY, V75, P1615, DOI 10.2307/1939622; CLOBERT J, 1987, ARDEA, V75, P133; CLOBERT J, 1985, STATISTICS ORNITHOLO, P197; CORMACK RM, 1964, BIOMETRIKA, V51, P429, DOI 10.1093/biomet/51.3-4.429; Dobson A., 1990, Current Ornithology, V7, P115; DUJARDIN J. L., 1992, OISEAUX GUYANE; Dunning JB, 1993, CRC HDB AVIAN BODY M; EKMAN J, 1990, BEHAV ECOL SOCIOBIOL, V26, P239; Faaborg J, 1995, AUK, V112, P503, DOI 10.2307/4088741; FAABORG J, 1988, ORNITHOLOGY ECOLOGIC; FANSHAWE JH, 1995, THESIS OXFORD U OXFO; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; GIRALDEAU LA, 1986, ANIM BEHAV, V34, P797, DOI 10.1016/S0003-3472(86)80064-1; GIRALDEAU LA, 1984, AM NAT, V124, P72, DOI 10.1086/284252; GRADWOHL J, 1980, AUK, V97, P385; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; GREENBERG R, 1986, OECOLOGIA, V69, P618, DOI 10.1007/BF00410372; Greenberg R, 1997, J AVIAN BIOL, V28, P103, DOI 10.2307/3677303; GREENBERG R, 1985, NEOTROPICAL ORNITHOL, V36, P845; GREIGSMITH PW, 1978, IBIS, V120, P233, DOI 10.1111/j.1474-919X.1978.tb06782.x; GRUBB TC, 1987, ANIM BEHAV, V35, P794, DOI 10.1016/S0003-3472(87)80116-1; HAKE M, 1988, ORNIS SCAND, V19, P275, DOI 10.2307/3676721; HAMILTON WD, 1971, J THEOR BIOL, V31, P295, DOI 10.1016/0022-5193(71)90189-5; Harvey P. H., 1991, COMP METHOD EVOLUTIO; Harvey PH, 1996, J ANIM ECOL, V65, P255, DOI 10.2307/5872; HERRERA CM, 1979, OIKOS, V33, P85, DOI 10.2307/3544516; Hilty S. L., 1986, GUIDE BIRDS COLUMBIA; Hino T, 1998, J AVIAN BIOL, V29, P17, DOI 10.2307/3677336; HOGSTAD O, 1989, IBIS, V131, P128, DOI 10.1111/j.1474-919X.1989.tb02751.x; HOOGLAND JL, 1979, ANIM BEHAV, V27, P394, DOI 10.1016/0003-3472(79)90174-X; Johnston JP, 1997, AM NAT, V150, P771, DOI 10.1086/286093; JOLLY GM, 1965, BIOMETRIKA, V52, P225, DOI 10.2307/2333826; Jullien M, 1998, J ANIM ECOL, V67, P227, DOI 10.1046/j.1365-2656.1998.00171.x; JULLIEN M, 1997, THESIS U P M CURIE P; JULLIEN M, 2000, IN PRESS BIOL MONOGR; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; KILTIE RA, 1980, J THEOR BIOL, V87, P201, DOI 10.1016/0022-5193(80)90228-3; Koivula K, 1996, IBIS, V138, P624, DOI 10.1111/j.1474-919X.1996.tb04763.x; KOIVULA K, 1988, ORNIS FENNICA, V65, P115; KREBS JR, 1974, BEHAVIOUR, V51, P99, DOI 10.1163/156853974X00165; KREBS JR, 1973, CAN J ZOOL, V51, P1275, DOI 10.1139/z73-181; KREBS JR, 1987, INTRO BEHAV ECOLOGY; KREBS JR, 1972, IBIS, V113, P59; LAZARUS J, 1979, ANIM BEHAV, V27, P855, DOI 10.1016/0003-3472(79)90023-X; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lebreton JD, 1993, BIOMETRIE ENV, P151; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; MARTIN TE, 1988, AM NAT, V132, P900, DOI 10.1086/284896; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MARTINS EP, 1991, EVOLUTION, V45, P534, DOI 10.1111/j.1558-5646.1991.tb04328.x; MAURER BA, 1984, WILSON BULL, V96, P380; McCleery RH, 1996, J ANIM ECOL, V65, P96, DOI 10.2307/5703; MORSE DH, 1977, BIOSCIENCE, V27, P332, DOI 10.2307/1297632; MORSE DH, 1978, IBIS, V120, P298, DOI 10.1111/j.1474-919X.1978.tb06790.x; MORSE DH, 1985, DICT BIRDS, P226; MOYNIHAN M., 1962, SMITHSONIAN MIS COLLECTIONS, V143, P1; Munn C.A., 1985, ORNITHOL MONOGR, V36, P683; MUNN CA, 1979, CONDOR, V81, P338, DOI 10.2307/1366956; NEILL SRS, 1974, J ZOOL, V172, P549, DOI 10.1111/j.1469-7998.1974.tb04385.x; Peach Will J., 1993, P107; Piper WH, 1997, CURR ORNITHOL, V14, P125; POPP LW, 1990, SURG ENDOSC-ULTRAS, V5, P10; POWELL GVN, 1989, BEHAV ECOL SOCIOBIOL, V24, P387, DOI 10.1007/BF00293266; POWELL GVN, 1974, ANIM BEHAV, V22, P501, DOI 10.1016/S0003-3472(74)80049-7; POWELL GVN, 1985, ORNITH MONOGR, V36, P713, DOI DOI 10.2307/40168313); Pradel R, 1997, BIOMETRICS, V53, P60, DOI 10.2307/2533097; PRADEL R, 1991, 505134033 CEFE CNRS; Pravosudov VV, 1999, AUK, V116, P241, DOI 10.2307/4089473; PRAVOSUDOV VV, 1986, SOV J ECOL, V4, P60; PULLIAM HR, 1984, BEHAV ECOLOGY EVOLUT, P122; PURVIS A, 1995, COMPUT APPL BIOSCI, V11, P247; RAFFAELE HA, 1989, GUIDE BIRDS PUERTO R; RECHER HF, 1969, ANIM BEHAV, V17, P320, DOI 10.1016/0003-3472(69)90017-7; Ricklefs RE, 1996, OIKOS, V77, P167, DOI 10.2307/3545598; SAETHER BE, 1988, NATURE, V331, P617; SALT GW, 1971, ECOLOGY, V52, P989, DOI 10.2307/1933804; SASVARI L, 1979, ANIM BEHAV, V27, P767, DOI 10.1016/0003-3472(79)90012-5; SCHAIK CP, 1983, BEHAV ECOL SOCIOBIOL, V13, P173; SCHOENER TW, 1983, AM NAT, V122, P240, DOI 10.1086/284133; SEBER GAF, 1965, BIOMETRIKA, V52, P249; Sibley CG, 1990, PHYLOGENY CLASSIFICA; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SKUTCH AF, 1981, PUBLICATION NUTTALL, V19; SNOW DW, 1963, WILSON B, V73, P27; TERBORGH J, 1990, AM J PRIMATOL, V21, P87, DOI 10.1002/ajp.1350210203; Thiollay JM, 1998, IBIS, V140, P382, DOI 10.1111/j.1474-919X.1998.tb04599.x; TOSTAIN O, 1988, CONDOR, V90, P236, DOI 10.2307/1368454; VICKERY JA, 1994, CONDOR, V96, P331, DOI 10.2307/1369318; WAITE TA, 1988, CONDOR, V90, P132, DOI 10.2307/1368442; WARD P, 1973, IBIS, V115, P517, DOI 10.1111/j.1474-919X.1973.tb01990.x; WILEY RH, 1980, J ZOOL, V191, P127; WILLIS EO, 1978, ANNU REV ECOL SYST, V9, P243, DOI 10.1146/annurev.es.09.110178.001331; WILLIS EO, 1974, ECOL MONOGR, V44, P153, DOI 10.2307/1942309; WILLIS EO, 1972, ORNITHOLOGICAL MONOG, V10; ZAHAVI A, 1971, IBIS, V113, P106, DOI 10.1111/j.1474-919X.1971.tb05131.x 113 74 77 4 35 ECOLOGICAL SOC AMER WASHINGTON 1707 H ST NW, STE 400, WASHINGTON, DC 20006-3915 USA 0012-9658 ECOLOGY Ecology DEC 2000 81 12 3416 3430 10.1890/0012-9658(2000)081[3416:TSVOFI]2.0.CO;2 15 Ecology Environmental Sciences & Ecology 387QZ WOS:000166134400014 Bronze 2018-11-12 J Stoks, R; Johansson, F Stoks, R; Johansson, F Trading off mortality risk against foraging effort in damselflies that differ in life cycle length OIKOS English Article TIME CONSTRAINTS; PREDATION RISK; ANTIPREDATOR BEHAVIOR; GROWTH-RATES; PREY DENSITY; LARVAE; RESPONSES; HISTORY; ODONATA; SIZE Life history theory predicts that size and age at emergence depend on the slope and shape of the relationship between mortality rate and foraging effort. Given the high expected foraging effort in obligate univoltine species compared with semivoltine species we expected a low slope and an increase in foraging effort in the presence of a predator for the former and the opposite: pattern for the latter. We tested these predictions in two damselfly species of the univoltine genus Lestes, and the semivoltine genus Coenagrion when confronted with perch. We determined for each of the four study species the relationships between mortality rate and foraging effort at an individual level. As expected by the different growth demands associated with differences in life cycle length, both Lestes species had a higher foraging effort than the two Coenagrion species in the absence as well as in the presence of perch. As a result, lestids also suffered a higher mortality rate. The slope of the regression between mortality rate and foraging effort was, as predicted, lower for lestids than for coenagrionids, for one species pair. Despite this, and opposite to our prediction, the lestids decreased foraging effort even more than coenagrionids in the presence of perch. We discuss these findings in the light of life history responses in species that differ in life cycle length. Univ Antwerp, Evolutionary Biol Grp, B-2020 Antwerp, Belgium; Catholic Univ Louvain, Aquat Ecol Lab, B-3000 Louvain, Belgium; Umea Univ, Anim Ecol Grp, Dept Ecol & Environm Sci, SE-90187 Umea, Sweden Stoks, R (reprint author), Univ Antwerp, Evolutionary Biol Grp, B-2020 Antwerp, Belgium. Abrahams MV, 1999, ANIM BEHAV, V58, P933, DOI 10.1006/anbe.1999.1229; Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; ANHOLT BR, 1995, ECOLOGY, V76, P2235, DOI 10.2307/1941697; Anholt BR, 1998, EVOL ECOL, V12, P729, DOI 10.1023/A:1006589616931; Ball SL, 1996, ECOLOGY, V77, P1116, DOI 10.2307/2265580; BANKS MJ, 1987, FRESHWATER BIOL, V17, P357, DOI 10.1111/j.1365-2427.1987.tb01055.x; Cohen J, 1988, STAT POWER ANAL BEHA; FISCHER Z, 1972, Polskie Archiwum Hydrobiologii, V19, P215; GLANTZ SA, 1990, PRIMER APPL REGRESSI; Harvey PH, 1992, COMP METHOD EVOLUTIO; HOUSTON AI, 1993, PHILOS T ROY SOC B, V341, P375, DOI 10.1098/rstb.1993.0123; JEFFRIES M, 1990, FRESHWATER BIOL, V23, P191, DOI 10.1111/j.1365-2427.1990.tb00264.x; Jodicke R. A., 1997, BINSENJUNGFERN WINTE; Johansson F., 1994, Odonatologica, V23, P355; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.1890/0012-9658(1999)080[1242:LHABRT]2.0.CO;2; JOHANSSON F, 1993, OIKOS, V66, P80, DOI 10.2307/3545198; Johansson L., 1986, P237; KRISHNARAJ R, 1995, CAN J ZOOL, V73, P1672, DOI 10.1139/z95-199; Laurila A, 1999, J ANIM ECOL, V68, P1123, DOI 10.1046/j.1365-2656.1999.00354.x; LAWLER SP, 1989, ANIM BEHAV, V38, P1039, DOI 10.1016/S0003-3472(89)80142-3; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; MACAN TT, 1977, BIOL REV, V52, P45, DOI 10.1111/j.1469-185X.1977.tb01345.x; MACAN TT, 1966, ARCH HYDROBIOL, V61, P432; Maurer EF, 1996, OIKOS, V76, P337, DOI 10.2307/3546206; MCPEEK MA, 1990, ECOLOGY, V71, P1714, DOI 10.2307/1937580; McPeek MA, 1998, ECOL MONOGR, V68, P1, DOI 10.1890/0012-9615(1998)068[0001:TCOCTT]2.0.CO;2; PICKUP J, 1990, ECOL ENTOMOL, V15, P187, DOI 10.1111/j.1365-2311.1990.tb00800.x; RASK M, 1986, ANN ZOOL FENN, V23, P49; Richardson JML, 1995, ETHOLOGY, V101, P308; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; *SAS I, 1990, SAS STAT US GUID VER, V2; SKELLY DK, 1994, ANIM BEHAV, V47, P465, DOI 10.1006/anbe.1994.1063; SKELLY DK, 1992, ECOLOGY, V73, P704, DOI 10.2307/1940779; SKELLY DK, 1990, ECOLOGY, V71, P2313, DOI 10.2307/1938642; *STATS INC, 1997, STATISTICA WIND REL; Stoks R, 2000, ARCH HYDROBIOL, V147, P417; SVARDSON G, 1976, REP I FRESHWATER RES, V55, P144; Thomas L, 1997, CONSERV BIOL, V11, P276, DOI 10.1046/j.1523-1739.1997.96102.x; THOMPSON D J, 1984, Odonatologica, V13, P309; VANDELANNOOTE A, 1998, ATLAS VLAAMSE BEEKEN; Wanzenbock J, 1996, CAN J FISH AQUAT SCI, V53, P1506, DOI 10.1139/cjfas-53-7-1506; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WERNER EE, 1994, ECOLOGY, V75, P1368, DOI 10.2307/1937461; Wissinger SA, 1999, ECOLOGY, V80, P2102 45 45 46 0 13 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos DEC 2000 91 3 559 567 10.1034/j.1600-0706.2000.910318.x 9 Ecology Environmental Sciences & Ecology 398VQ WOS:000166777500018 2018-11-12 J Alvarez, HP Alvarez, HP Grandmother hypothesis and primate life histories AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Review midlife menopause; postcycling longevity; human evolution; life history theory; senescence GUPPIES POECILIA-RETICULATA; MONKEYS CERCOPITHECUS-AETHIOPS; JAPANESE MONKEYS; BODY-MASS; PHYLOGENETIC-RELATIONSHIPS; DIMENSIONLESS NUMBERS; MATERNAL INVESTMENT; CALLITHRIX-JACCHUS; 1ST REPRODUCTION; FEMALE MAMMALS The adaptive significance of midlife menopause in human females has long engaged the attention of evolutionary anthropologists. In spite of extensive debate, the problem has only recently been examined in the context of primate life histories. Here I extend those investigations by comparing life history traits in 16 primate species to test predictions generated from life history theory. In humans, late ages of maturity and higher than expected birth rates are systematically associated with extended postmenopausal longevity. Links among these adjustments on the primate pattern can explain how selection could slow somatic senescence without favoring extension of the fertile span. This conclusion is consistent with the observation that our fertile spans are similar to those of other pongids. The shape of the argument herein demonstrates the utility of life history theory for solving problems of adaptive evolution in female life history traits, with consequences for broader arguments regarding human evolution. (C) 2000 Wiley-Liss, Inc. Univ Utah, Dept Anthropol, Salt Lake City, UT 84112 USA Alvarez, HP (reprint author), Univ Utah, Dept Anthropol, 270 South 1400 East,Rm 102, Salt Lake City, UT 84112 USA. alvarez@anthro.utah.edu Albrecht Gene H., 1993, P123; ALTMANN J, 1987, OECOLOGIA, V72, P15, DOI 10.1007/BF00385038; ALTMANN J, 1978, SCIENCE, V201, P1028, DOI 10.1126/science.98844; Altmann J., 1980, BABOON MOTHERS INFAN; BERCOVITCH FB, 1993, BEHAV ECOL SOCIOBIOL, V33, P313; BERCOVITCH FB, 1987, AM J PRIMATOL, V12, P189; Blurton Jones N. G., 1989, SOCIOBIOLOGY SEXUAL, P265; BOINSKI S, 1995, AM J PRIMATOL, V35, P129, DOI 10.1002/ajp.1350350205; Butynski T.M., 1988, P284; Canavez FC, 1999, AM J PRIMATOL, V48, P225, DOI 10.1002/(SICI)1098-2345(1999)48:3<225::AID-AJP4>3.0.CO;2-4; CARO TM, 1995, INT J PRIMATOL, V16, P205, DOI 10.1007/BF02735478; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1991, PHILOS T ROY SOC B, V332, P41, DOI 10.1098/rstb.1991.0031; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov EL, 1997, NATURE, V387, P393, DOI 10.1038/387393a0; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; Clark C. B., 1977, P235; Cords M., 1988, P323; Cords M., 1987, P98; DIETZ JM, 1994, AM J PRIMATOL, V34, P115, DOI 10.1002/ajp.1350340204; Disotell Todd R., 1996, Evolutionary Anthropology, V5, P18, DOI 10.1002/(SICI)1520-6505(1996)5:1<18::AID-EVAN6>3.0.CO;2-S; DUNBAR RIM, 1984, REPROD DECISIONS; Dutrillaux B., 1988, P150; DYKE B, 1995, AM J PRIMATOL, V37, P25, DOI 10.1002/ajp.1350370104; DYKE B, 1993, AM J PRIMATOL, V29, P269, DOI 10.1002/ajp.1350290404; ECKHARDT RB, 1975, AM J PHYS ANTHROPOL, V42, P439; ELLEFSON JO, 1974, GIBBON SIAMANG, P1; Fedigan L., 1988, P389; Ferrari Stephen F., 1993, P314; FOODEN J, 1983, AM J PRIMATOL, V5, P285, DOI 10.1002/ajp.1350050402; Fossey D, 1983, GORILLAS MIST; Gage TB, 1998, ANNU REV ANTHROPOL, V27, P197, DOI 10.1146/annurev.anthro.27.1.197; Galdikas B.M.F., 1981, P281; GALDIKAS BMF, 1990, AM J PHYS ANTHROPOL, V83, P185, DOI 10.1002/ajpa.1330830207; GARBER PA, 1994, AM J PRIMATOL, V34, P199, DOI 10.1002/ajp.1350340210; GAULIN SJC, 1980, J HUM EVOL, V9, P227, DOI 10.1016/0047-2484(80)90024-X; GAUTIERHION A, 1985, HUMAN SEXUAL DIMORPH, P61; Goldizen A.W., 1987, P34; Goodall J., 1986, CHIMPANZEES GOMBE PA; Gray SJ, 1996, HUM BIOL, V68, P437; Groves Colin P., 1993, P109; GROVES CP, 1989, THEORY HUMAN PRIMATE; HAMADA Y, 1986, PRIMATES, V27, P471, DOI 10.1007/BF02381892; Hamdi H, 1999, J MOL BIOL, V289, P861, DOI 10.1006/jmbi.1999.2797; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Harcourt A H, 1980, J Reprod Fertil Suppl, VSuppl 28, P59; Harcourt A.H., 1981, P265; Harris EE, 1998, MOL BIOL EVOL, V15, P892, DOI 10.1093/oxfordjournals.molbev.a025993; Harvey P.H., 1989, Oxford Surveys in Evolutionary Biology, V6, P13; Harvey P.H., 1987, P181; Harvey P. H., 1991, COMP METHOD EVOLUTIO; HARVEY PH, 1991, NATURE, V350, P23, DOI 10.1038/350023a0; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; HARVEY PH, 1999, ADV ECOLOGICAL THEOR, P232; HAWKES K, 1995, CURR ANTHROPOL, V36, P688, DOI 10.1086/204420; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; HAWKES K, 1989, COMP SOCIOECOLOGY BE, P341; HAWKES K, 1995, EVOL ECOL, V9, P1; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill K, 1991, Hum Nat, V2, P313, DOI 10.1007/BF02692196; HORROCKS JA, 1986, INT J PRIMATOL, V7, P31, DOI 10.1007/BF02692308; Howell N., 1979, DEMOGRAPHY DOBE KUNG; Hrdy S, 1981, WOMEN NEVER EVOLVED; HRDY SB, 1977, LANGURS ABU; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; IWAMOTO M, 1971, Primates, V12, P151, DOI 10.1007/BF01730392; Jungers W.L., 1984, P131; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H., 1997, ZEUS SALMON BIODEMOG, P175; Kasuya T., 1984, Reports of the International Whaling Commission Special Issue, P259; KIRKWOOD JK, 1992, BIOL REARING CARE YO; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KONNER MJ, 1976, KALAHARI HUNTER GATH, P218; Kozlowski J, 1997, AM NAT, V149, P352; Kramer PA, 1998, AM J PHYS ANTHROPOL, V107, P71; Lancaster JB, 1983, HUMANS ADAPT BIOCULT, P33; LEE PC, 1991, J ZOOL, V225, P99, DOI 10.1111/j.1469-7998.1991.tb03804.x; LEIGH SR, 1995, AM J PRIMATOL, V36, P37, DOI 10.1002/ajp.1350360104; Leighton D.R., 1987, P135; Leighton M, 1995, NEGLECTED APE, P97; Long J. O., 1968, P193; LOVEJOY CO, 1981, SCIENCE, V211, P341, DOI 10.1126/science.211.4480.341; LUNN SF, 1982, FOLIA PRIMATOL, V37, P99, DOI 10.1159/000156023; MARINS EP, 1991, EVOLUTION, V45, P534; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; Mitani JC, 1997, BEHAV ECOL SOCIOBIOL, V40, P213, DOI 10.1007/s002650050335; Newton Paul N., 1994, P311; Nishida T., 1990, P63; O'Connell JF, 1999, J HUM EVOL, V36, P461, DOI 10.1006/jhev.1998.0285; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; PARTRIDGE L, 1991, PHILOS T R SOC LOND, V332, P1; Pavelka MSM, 1999, AM J PHYS ANTHROPOL, V109, P455, DOI 10.1002/(SICI)1096-8644(199908)109:4<455::AID-AJPA3>3.0.CO;2-Z; PAVELKA MSM, 1991, YEARB PHYS ANTHROPOL, V34, P13; PECCEI JS, 1995, MATURITAS, V21, P83, DOI 10.1016/0378-5122(94)00884-A; PRICE EC, 1993, AM J PRIMATOL, V31, P211, DOI 10.1002/ajp.1350310306; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Purvis A, 1997, TRENDS ECOL EVOL, V12, P49, DOI 10.1016/S0169-5347(96)30066-9; PURVIS A, 1994, J THEOR BIOL, V167, P293, DOI 10.1006/jtbi.1994.1071; PURVIS A, 1995, PHILOS T ROY SOC B, V348, P405, DOI 10.1098/rstb.1995.0078; PURVIS A, 1995, J ZOOL, V237, P259, DOI 10.1111/j.1469-7998.1995.tb02762.x; RAJPUROHIT LS, 1991, PRIMATES, V32, P213, DOI 10.1007/BF02381178; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Ricklefs RE, 1996, OIKOS, V77, P167, DOI 10.2307/3545598; Ricklefs RE, 1998, AM NAT, V152, P24, DOI 10.1086/286147; Rodd FH, 1997, ECOLOGY, V78, P419; Rodd FH, 1997, ECOLOGY, V78, P405; Rogers AR, 1997, EVOL HUM BEHAV, V18, P353, DOI 10.1016/S1090-5138(97)00048-2; ROGERS AR, 1993, EVOL ECOL, V7, P406, DOI 10.1007/BF01237872; Ruvolo M., 1988, P127; Schultz A. H., 1969, THE LIFE OF PRIMATES; SCOLLAY PA, 1980, AM J PHYS ANTHROPOL, V53, P309, DOI 10.1002/ajpa.1330530216; SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0; *SPSS INC, 1994, SPSS 6 1; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEWART KJ, 1988, J REPROD FERTIL, V83, P627; SUGIYAMA Y, 1982, FOLIA PRIMATOL, V39, P238, DOI 10.1159/000156080; SUGIYAMA Y, 1994, AM J PRIMATOL, V32, P311, DOI 10.1002/ajp.1350320408; Tardif Suzette D., 1993, P220; TURNER TR, 1987, AM J PRIMATOL, V12, P197, DOI 10.1002/ajp.1350120207; TURNER TR, 1994, FOLIA PRIMATOL, V63, P177, DOI 10.1159/000156815; Tutin C E, 1980, J Reprod Fertil Suppl, VSuppl 28, P43; Tutin C.E.G., 1981, P239; UEHARA S, 1987, AM J PHYS ANTHROPOL, V72, P315, DOI 10.1002/ajpa.1330720305; Wallis J, 1997, J REPROD FERTIL, V109, P297; WATANABE K, 1992, PRIMATES, V33, P1, DOI 10.1007/BF02382760; WILLIAMS GC, 1957, EVOLUTION, V11, P389; WOOTTON JT, 1987, EVOLUTION, V41, P732, DOI 10.1111/j.1558-5646.1987.tb05849.x; WORTHMAN CM, 1993, J BIOSOC SCI, V25, P425; Wrangham Richard W., 1996, P45, DOI 10.1017/CBO9780511752414.006; Ximenes MFFM, 1996, PRIMATES, V37, P175, DOI 10.1007/BF02381405 140 81 81 0 52 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 1096-8644 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. NOV 2000 113 3 435 450 10.1002/1096-8644(200011)113:3<435::AID-AJPA11>3.0.CO;2-O 16 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 368JG WOS:000090113400011 11042542 2018-11-12 J Mulder, VB Mulder, VB Optimizing offspring: the quantity-quality tradeoff in agropastoral Kipsigis EVOLUTION AND HUMAN BEHAVIOR English Article life history theory; fertility; parental investment; inheritance; evolved mechanisms BIASED PARENTAL INVESTMENT; REPRODUCTIVE SUCCESS; DEMOGRAPHIC-TRANSITION; HUMAN-FERTILITY; FAMILY-SIZE; DEVELOPING-COUNTRIES; CHILD-MORTALITY; SOCIETIES; ECOLOGY; FITNESS The tradeoff between offspring quantity and offspring quality is at the heart of most evolutionary approaches to the fertility transition, as it is for demographers oriented towards economic explanations for this transition. To date, however, there have been few empirical tests of the key idea that humans trade offspring quantity for quality, and no strictly comparative work designed to identify the specific environmental conditions that favor such a tradeoff. This study suggests that in an East African community where the principal form of intergenerational inheritance is land, intermediate levels of offspring production are favored for women but not men. Women produce approximately the optimal number of surviving children, whereas men produce far fewer than the optimal number. The result highlights the significance of inheritable extrasomatic capital, in conjunction with evolved psychological mechanisms, in shaping fertility strategies that emphasize quality over quantity. (C) 2000 Elsevier Science Inc. All rights reserved. Univ Calif Davis, Dept Anthropol, Davis, CA 95616 USA Mulder, VB (reprint author), Univ Calif Davis, Dept Anthropol, Davis, CA 95616 USA. BARKOW JH, 1980, ETHOL SOCIOBIOL, V1, P163, DOI 10.1016/0162-3095(80)90006-0; BEAUCHAMP G, 1994, ETHOL SOCIOBIOL, V15, P31, DOI 10.1016/0162-3095(94)90026-4; Bentley GR, 1999, EVOL ANTHROPOL, V7, P175; Blake J., 1989, FAMILY SIZE ACHIEVEM; Blurton-Jones N., 1986, ETHOL SOCIOBIOL, V7, P91, DOI DOI 10.1016/0162-3095(86)90002-6); Boone JL, 1999, EVOL HUM BEHAV, V20, P257, DOI 10.1016/S1090-5138(99)00011-2; BOONE JL, 1986, AM ANTHROPOL, V88, P859; Borgerhoff Mulder M., 1988, MATING PATTERNS, P209; Boyd R., 1985, CULTURE EVOLUTIONARY; CAIN M, 1982, POP STUD-J DEMOG, V36, P159, DOI 10.1080/00324728.1982.10409026; Caldwell J. C., 1982, THEORY FERTILITY DEC; Coale A., 1986, DECLINE FERTILITY EU, P1; Cochrane SH, 1979, FERTILITY ED WHAT DO; DICKEMANN M, 1979, SOC SCI INFORM, V18, P163, DOI 10.1177/053901847901800201; DIXON RB, 1978, RURAL WORMEN WORK ST; ELLISON PT, 1994, ANNU REV ANTHROPOL, V23, P255, DOI 10.1146/annurev.anthro.23.1.255; ELLISON PT, 1994, HUM NATURE-INT BIOS, V5, P155, DOI 10.1007/BF02692159; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GLUCKMAN M, 1950, AFRICAN SYSTEMES KIN; GOMES M, 1984, POPUL DEV REV, V10, P647, DOI 10.2307/1973285; Grafen A, 1998, J THEOR BIOL, V194, P429, DOI 10.1006/jtbi.1998.0796; Hajnal J., 1965, POPULATION HIST ESSA, P101; HAKANSSON T, 1989, ETHNOLOGY, V28, P117, DOI 10.2307/3773670; Handwerker W. Penn, 1989, WOMENS POWER SOCIAL; HARPENDING H, 1990, ETHOL SOCIOBIOL, V11, P497, DOI 10.1016/0162-3095(90)90023-Y; HARPENDING H, 1990, HLTH DISEASE TRANSIT, P241; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; HOBCRAFT J, 1983, POPUL INDEX, V49, P585, DOI 10.2307/2737284; HRDY SB, 1993, HUM NATURE-INT BIOS, V4, P1, DOI 10.1007/BF02734088; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; IRONS W, 1983, SOCIAL BEHAVIOR FEMA, P169; JONES NB, 1987, ETHOL SOCIOBIOL, V8, P183; JONSSON KI, 1994, TRENDS ECOL EVOL, V9, P304, DOI 10.1016/0169-5347(94)90042-6; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; KAPLAN H, 1999, NPUB EVOLUTIONARY AP; KAPLAN H, 1999, YB PHYSICAL ANTHR; KAPLAN H, 1999, EVOLUTIONARY ANTHR; KAPLAN HS, 1995, HUMAN REPROD DECISIO, P96; KETTERSON ED, 1994, AM NAT, V154, pS33; KNODEL J, 1990, POPUL DEV REV, V16, P31, DOI 10.2307/1972528; Kohler HP, 1999, POPUL DEV REV, V25, P253, DOI 10.1111/j.1728-4457.1999.00253.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LACK D, 1954, NATURAL REGULATION A; LANCASTER JB, 1997, EVOLUTION FEMINISM, P466; LANCASTER JB, 1987, PARENTING LIFE SPAN, P187; LeGrand TK, 1996, POP STUD-J DEMOG, V50, P51, DOI 10.1080/0032472031000149046; Lessells C.M., 1991, P32; Ligtenberg T, 1999, NATURE, V399, P522, DOI 10.1038/21059; Livi-Bacci M, 1986, DECLINE FERTILITY EU, P182; Low B S, 1993, Evol Anthropol, P177, DOI 10.1002/evan.1360010507; LOW BS, 1990, AM ANTHROPOL, V92, P457, DOI 10.1525/aa.1990.92.2.02a00130; LOW BS, 1994, HUM NATURE-INT BIOS, V5, P223, DOI 10.1007/BF02692153; Lummaa V, 1998, NATURE, V394, P533, DOI 10.1038/28977; LUTTBEG B, 2000, HUMAN BEHAV ADAPTATI; Mace R, 1998, PHILOS T R SOC B, V353, P389, DOI 10.1098/rstb.1998.0217; Mace R, 1996, BEHAV ECOL SOCIOBIOL, V38, P75, DOI 10.1007/s002650050219; MACE R, 2000, HUMAN BEHAV ADAPTATI; MANNERS RA, 1967, CONT CHANGE TRADITIO, V1, P207; MASON K, 1999, POP ASS AM NEW YORK; Mason Karen Oppenheim, 1987, SOCIOLOGICAL FORUM, V2, P718; MASON KO, 1987, POPUL DEV REV, V13, P611, DOI 10.2307/1973025; MUELLER U, THERE STABILIZING SE; Mulder M Borgerhoff, 1992, EVOLUTIONARY ECOLOGY, P339; MULDER MB, 1995, CURR ANTHROPOL, V36, P573, DOI 10.1086/204405; Mulder MB, 1998, TRENDS ECOL EVOL, V13, P266, DOI 10.1016/S0169-5347(98)01357-3; MULDER MB, 1990, BEHAV ECOL SOCIOBIOL, V27, P255; Mulder MB, 1998, HUM NATURE-INT BIOS, V9, P119, DOI 10.1007/s12110-998-1001-6; MULDER MB, 1988, REPROD SUCCESS, P419; MULDER MB, 1989, COMP SOCIOECOLOGY, P405; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; PERISTIANY JG, 1939, SOCIAL I KIPSIGIS; Perls TT, 1997, NATURE, V389, P133, DOI 10.1038/38148; PERUSSE D, 1993, BEHAV BRAIN SCI, V16, P267, DOI 10.1017/S0140525X00029939; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RICHERSON PJ, 1999, UNPUB CULTURE MALADA; Robinson WC, 1997, POP STUD-J DEMOG, V51, P63, DOI 10.1080/0032472031000149736; ROGERS AR, 1995, HUMAN REPRODUCTIVE DECISIONS, P76; ROGERS AR, 1990, ETHOL SOCIOBIOL, V11, P479, DOI 10.1016/0162-3095(90)90022-X; ROSE CM, 1990, YALE JL HUMAN, V2, P38; ROSKAFT E, 1992, ETHOL SOCIOBIOL, V13, P443, DOI 10.1016/0162-3095(92)90012-S; SALTMAN M, 1977, KIPSIGIS CASE STUDY; Shen C, 1999, SOC SCI MED, V49, P197, DOI 10.1016/S0277-9536(99)00112-4; SINERVO AM, 1999, NATURALIST, V154, pS26; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; Strassmann BI, 1998, EVOL HUM BEHAV, V19, P33, DOI 10.1016/S1090-5138(97)00103-7; TRACER DP, 1991, AM J PHYS ANTHROPOL, V85, P393, DOI 10.1002/ajpa.1330850404; TURKE PW, 1989, POPUL DEV REV, V15, P61, DOI 10.2307/1973405; VINING DR, 1986, BEHAV BRAIN SCI, V9, P167, DOI 10.1017/S0140525X00021968; Voland E, 1997, CURR ANTHROPOL, V38, P129, DOI 10.1086/204593; VOLAND E, 1995, HUM NATURE-INT BIOS, V6, P33, DOI 10.1007/BF02734134; Watkins S., 1997, CONTINUING DEMOGRAPH, P213; Westendorp RGJ, 1998, NATURE, V396, P743, DOI 10.1038/25519; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WINTERHALDER B, 2000, AM J HUMAN BIOL 97 21 22 0 16 ELSEVIER SCIENCE INC NEW YORK 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010 USA 1090-5138 EVOL HUM BEHAV Evol. Hum. Behav. NOV 2000 21 6 391 410 20 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences 386PE WOS:000166070100002 2018-11-12 J Stearns, SC Stearns, SC Life history evolution: successes, limitations, and prospects NATURWISSENSCHAFTEN English Review REACTION NORMS; PHENOTYPIC PLASTICITY; POPULATION-DYNAMICS; SIZE; AGE; MATURITY; ENVIRONMENTS; PREDICTIONS; DEMOGRAPHY; MODELS Life history theory tries to explain how evolution designs organisms to achieve reproductive success. The design is a solution to an ecological problem posed by the environment and subject to constraints intrinsic to the organism. Work on life histories has expanded the role of phenotypes in evolutionary theory, extending the range of predictions from genetic patterns to whole-organism traits directly connected to fitness. Among the questions answered are the following: Why are organisms small or large? Why do they mature early or late? Why do they have few or many offspring? Why do they have a short or a long life? Why must they grow old and die? The classical approach to life histories was optimization; it has had some convincing empirical success. Recently non-equilibrium approaches involving frequency-dependence, density-dependence, evolutionary game theory, adaptive dynamics, and explicit population dynamics have supplanted optimization as the preferred approach. They have not yet had as much empirical success, but there are logical reasons to prefer them, and they may soon extend the impact of life history theory into population dynamics and interspecific interactions in coevolving communities. Univ Basel, Inst Zool, CH-4051 Basel, Switzerland Stearns, SC (reprint author), Yale Univ, Dept Ecol & Evolutionary Biol, Osborn Mem Labs, POB 208106, New Haven, CT 06520 USA. stephen.stearns@yale.edu Stearns, Stephen/0000-0002-6621-4373 Bernoulli D, 1738, COMMENTARII ACAD SCI, V5, P175; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; Blarer A, 1996, EVOL ECOL, V10, P81, DOI 10.1007/BF01239349; Charlesworth B., 1980, EVOLUTION AGE STRUCT; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; Dieckmann U, 1997, TRENDS ECOL EVOL, V12, P128, DOI 10.1016/S0169-5347(97)01004-5; Dobzhansky T., 1937, GENETICS ORIGIN SPEC; DOEBELI M, 1995, P ROY SOC B-BIOL SCI, V260, P119, DOI 10.1098/rspb.1995.0068; FERRIERE R, 1992, J THEOR BIOL, V157, P253, DOI 10.1016/S0022-5193(05)80624-1; FISHER R. A., 1930, GENETICAL THEORY NAT; HALDANE JBS, 1932, CAUSES EVOLUTION; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; KAWECKI TJ, 1993, OIKOS, V66, P309, DOI 10.2307/3544819; Kirkwood T B, 1987, Basic Life Sci, V42, P209; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Mangel M., 1988, DYNAMIC MODELING BEH; MAY RM, 1976, NATURE, V261, P459, DOI 10.1038/261459a0; Mayr E., 1942, SYSTEMATICS ORIGIN S; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MIRMIRANI M, 1978, THEOR POPUL BIOL, V13, P304, DOI 10.1016/0040-5809(78)90049-7; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; Ranta E, 2000, AM NAT, V155, P294, DOI 10.1086/303318; REAL LA, 1992, ECOLOGY, V73, P1227, DOI 10.2307/1940671; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; ROBERTSON A, 1955, COLD SPRING HARB SYM, V20, P225, DOI 10.1101/SQB.1955.020.01.021; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; Roff Derek A., 1992; Sinervo B, 2000, NATURE, V406, P985, DOI 10.1038/35023149; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; STEARNS SC, 1983, AM ZOOL, V23, P65; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; STEARNS SC, 2001, IN PRESS HDB AGING; Stephens DW, 1986, FORAGING THEORY; TINKLE DW, 1972, ECOLOGY, V53, P570, DOI 10.2307/1934772; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wright S, 1931, GENETICS, V16, P0097 42 259 268 3 156 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0028-1042 1432-1904 NATURWISSENSCHAFTEN Naturwissenschaften NOV 2000 87 11 476 486 10.1007/s001140050763 11 Multidisciplinary Sciences Science & Technology - Other Topics 383PA WOS:000165890100002 11151666 2018-11-12 J Dawson, A; Hinsley, SA; Ferns, PN; Bonser, RHC; Eccleston, L Dawson, A; Hinsley, SA; Ferns, PN; Bonser, RHC; Eccleston, L Rate of moult affects feather quality: a mechanism linking current reproductive effort to future survival PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article bird; starling; reproductive costs; moult; plumage quality; survival WHITE-CROWNED SPARROWS; STURNUS-VULGARIS; FLIGHT PERFORMANCE; POSTNUPTIAL MOLT; STARLINGS; ABRASION; KERATIN; BIRDS; COST; SIZE Life-history theory proposes that costs must be associated with reproduction, Many direct costs are incurred during breeding There is also evidence for indirect costs, incurred after breeding, which decrease survival and future reproductive success. One possible indirect cost identified in birds is that breeding activity in some way compromises plumage quality in the subsequent moult. Here we propose a mechanism by which this could occur. Breeding activity delays the start of moult. Birds that start to moult later also moult more rapidly an effect of decreasing daylength. Could this result in poorer quality plumage? The kept two groups of male European starlings, Sturnus vulgaris, one on constant long days and the other on decreasing daylengths from the start of moult. Decreasing daylengths reduced the duration of moult from 103 +/- il days to 73 +/- 3 days (P < 0.0001). Newly grown primary feathers of birds that moulted fast were slightly shorter, weighed less (p < 0.05) and were more asymmetrical. They had a thinner rachis (P < 0.005), were less hard (p < 0.01) and less rigid (P < 0.05). They were also less resistant to wear so that differences in mass and asymmetry increased with time. There was no difference in Young's modulus. Poorer quality plumage will lead to decreased survival due to decreased flight performance and increased thermoregulator) costs. Thus, reproduction incurs costs through a mechanism that operates after the end of breeding. Ctr Ecol & Hydrol, Huntingdon PE28 2LS, Cambs, England; Cardiff Univ, Sch Biol Sci, Cardiff CF1 3TL, S Glam, Wales; Silsoe Res Inst, Silsoe MK45 4HS, Beds, England Dawson, A (reprint author), Ctr Ecol & Hydrol, Monks Wood, Huntingdon PE28 2LS, Cambs, England. a.dawson@ceh.ac.uk Dawson, Alistair/B-4221-2012; Ferns, Peter/A-5902-2010; Hinsley, Shelley/E-6790-2012 Dawson, Alistair/0000-0001-6492-872X; Bojarinova JG, 1999, J AVIAN BIOL, V30, P437, DOI 10.2307/3677016; BONSER RHC, 1995, CONDOR, V97, P590, DOI 10.2307/1369048; BONSER RHC, 1995, J EXP BIOL, V198, P1029; Bonser RHC, 1996, J ZOOL, V239, P477, DOI 10.1111/j.1469-7998.1996.tb05937.x; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; DAWSON A, 1985, J ZOOL, V206, P241; Dawson A, 1998, IBIS, V140, P35, DOI 10.1111/j.1474-919X.1998.tb04538.x; DAWSON A, 1994, IBIS, V136, P335, DOI 10.1111/j.1474-919X.1994.tb01104.x; Feare CJ., 1984, STARLING; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; Hemborg C, 1999, IBIS, V141, P226, DOI 10.1111/j.1474-919X.1999.tb07545.x; Jonsson KI, 1998, OIKOS, V83, P424, DOI 10.2307/3546670; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; MEIJER T, 1991, IBIS, V133, P80, DOI 10.1111/j.1474-919X.1991.tb04814.x; METCALFE NB, 1995, P ROY SOC B-BIOL SCI, V261, P395, DOI 10.1098/rspb.1995.0165; MORTON GA, 1990, CONDOR, V92, P813, DOI 10.2307/1368717; MORTON ML, 1992, ORNIS SCAND, V23, P322, DOI 10.2307/3676656; MURPHY ME, 1995, COMP BIOCHEM PHYS A, V111, P385, DOI 10.1016/0300-9629(95)00039-A; MURPHY ME, 1992, ORNIS SCAND, V23, P304, DOI 10.2307/3676654; NEWTON I, 1966, IBIS, V108, P41, DOI 10.1111/j.1474-919X.1966.tb07251.x; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; NOLAN V, 1992, CONDOR, V94, P364, DOI 10.2307/1369209; Partridge L., 1989, P421; PURSLOW PP, 1978, J EXP BIOL, V72, P251; Roff Derek A., 1992; ROSKAFT E, 1985, J ANIM ECOL, V54, P255, DOI 10.2307/4635; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; Stearns SC., 1992, EVOLUTION LIFE HISTO; Swaddle JP, 1997, CAN J ZOOL, V75, P948, DOI 10.1139/z97-114; Swaddle JP, 1996, J AVIAN BIOL, V27, P103, DOI 10.2307/3677139; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 32 214 217 3 49 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. OCT 22 2000 267 1457 2093 2098 10.1098/rspb.2000.1254 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 368DN WOS:000090102600010 11416914 Green Published 2018-11-12 J Lika, K; Nisbet, RM Lika, K; Nisbet, RM A Dynamic Energy Budget model based on partitioning of net production JOURNAL OF MATHEMATICAL BIOLOGY English Article dynamic energy budget model; net production; growth; reproduction; life history theory STRUCTURED POPULATIONS; ACTIVATED-SLUDGE; LIFE-HISTORIES; GROWTH; DAPHNIA; MINERALIZATION; REPRODUCTION We formulate a Dynamic Energy Budget (DEB) model for the growth and reproduction of individual organisms based on partitioning of net production (i.e. energy acquisition rate minus maintenance rate) between growth and energy reserves. Reproduction uses energy from reserves. The model describes both feeding and non-feeding stages, and hence is applicable to embryos (which neither feed nor reproduce), juveniles (which feed but do not reproduce), and adults (which commonly both feed and reproduce). Embryonic growth can have two forms depending on the assumptions for acquisition of energy from yolk. By default, when the energy acquisition rate exceeds the maintenance rate, a fixed proportion of the resulting net production is spent on growth (increase in structural biomass), and the remaining portion is channelled to the reserves. Feeding organisms, however, modulate their allocation of net production energy in response to their total energy content (energy in the reserves plus energy bounded to structural biomass). In variable food environment an organism alternates between periods of growth, no-growth, and balanced-growth. In the latter case the organism adopts an allocation strategy that keeps its total energy constant. Under constant environmental conditions, the growth of a juvenile is always of von Bertalanffy type. Depending on the values of model parameters there are two long-time possibilities for adults: (a) von Bertalanffy growth accompanied by reproduction at a rate that approaches zero as the organism approaches asymptotic size, or (b) abrupt cessation of growth at some finite time, following which, the rate of reproduction is constant. We illustrate the model's applicability in life history theory by studying the optimum values of the energy allocation parameters for constant environment and for each of the dynamic regimes described above. Univ Crete, Dept Biol, GR-71409 Iraklion, Crete, Greece; Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA Lika, K (reprint author), Univ Crete, Dept Biol, GR-71409 Iraklion, Crete, Greece. lika@biology.uch.gr; nisbet@lifesci.lscf.ucsb.edu Nisbet, Roger/B-6951-2014 BROEKHUIZEN N, 1994, FUNCT ECOL, V8, P770, DOI 10.2307/2390237; BULMER M, 1994, THEORETICAL EVOLUTIO; Coddington E.A., 1955, THEORY ORDINARY DIFF; Gurney WSC, 1996, THEOR POPUL BIOL, V49, P344, DOI 10.1006/tpbi.1996.0017; GURNEY WSC, 1990, ECOLOGY, V71, P716, DOI 10.2307/1940325; GURNEY WSC, 1998, ECOLOGICAL DYNAMICS; HALLAM TG, 1990, ECOLOGY, V71, P938, DOI 10.2307/1937364; HALLAM TG, 1989, APPLIED MATH ECOLOGY, V18, P352; KITCHELL JF, 1974, T AM FISH SOC, V103, P786, DOI 10.1577/1548-8659(1974)103<786:MOFBD>2.0.CO;2; KITCHELL JF, 1977, J FISH RES BOARD CAN, V34, P1922, DOI 10.1139/f77-258; KOOIJMAN SAL, 1996, ANAL AQUATIC TOXICIT; KOOIJMAN SALM, 1990, CHEMOSPHERE, V21, P681, DOI 10.1016/0045-6535(90)90035-R; Kooijman SALM, 1993, DYNAMIC ENERGY BUDGE; LASSITER RR, 1988, ECOLOGY, V109, P411; McNamara JM, 1997, THEOR POPUL BIOL, V51, P94, DOI 10.1006/tpbi.1997.1291; Metz J.A.J., 1986, LECT NOTES BIOMATHEM, V68; MULLER EB, 1997, UNPUB SUBLETHAL EFFE; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Nisbet R.M., 1989, APPL MATH ECOLOGY, V18, P428; NISBET RM, 1996, NONLINEAR WORLD, V3, P85; NOONBURG EG, 1998, IN PRESS FUNCTIONAL; PALOHEIMO JE, 1982, CAN J FISH AQUAT SCI, V39, P598, DOI 10.1139/f82-084; Press W. H., 1988, NUMERICAL RECIPES FO; Ratsak CH, 1996, WATER RES, V30, P1, DOI 10.1016/0043-1354(95)00096-4; RATSAK CH, 1994, WATER SCI TECHNOL, V29, P119; RATSAK CH, 1993, WATER RES, V27, P739, DOI 10.1016/0043-1354(93)90136-6; Roff Derek A., 1992; ROSS AH, 1990, FUNCT ECOL, V4, P777, DOI 10.2307/2389444; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tuljapurkar S., 1997, STRUCTURED POPULATIO 30 37 37 0 26 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0303-6812 1432-1416 J MATH BIOL J. Math. Biol. OCT 2000 41 4 361 386 10.1007/s002850000049 26 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology 371NP WOS:000165185300005 11103872 2018-11-12 J Reznick, D; Nunney, L; Tessier, A Reznick, D; Nunney, L; Tessier, A Big houses, big cars, superfleas and the costs of reproduction TRENDS IN ECOLOGY & EVOLUTION English Article LIFE-HISTORY; DROSOPHILA-MELANOGASTER; QUANTITATIVE GENETICS; LABORATORY EVOLUTION; DAPHNIA-PULEX; TRADE-OFF; ENVIRONMENT; POLYMORPHISM; ACQUISITION; ALLOCATION The assumption of costs of reproduction were a logical necessity for much of the early development of life history theory. An unfortunate property of 'logical necessities' is that it is easy to also assume that they must be true. What if this does not turn out to be the case? The existence and universality of costs of reproduction were initially challenged with empirical data of questionable value, but later with increasingly strong theoretical and empirical results. Here. we discuss Ken Spitze's 'superfleas', which represent what we consider to be the strongest empirical challenge to the universality of costs, then offer a possible explanation for their existence. Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA; Michigan State Univ, Dept Zool, Hickory Corners, MI 49060 USA Reznick, D (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. Nunney, Leonard/0000-0002-4315-3694 CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DEJONG G, 1993, FUNCT ECOL, V7, P75, DOI 10.2307/2389869; Desmarais KH, 1999, OECOLOGIA, V120, P137, DOI 10.1007/s004420050842; ELLNER S, 1994, AM NAT, V143, P403, DOI 10.1086/285610; FISHER R. A., 1930, GENETICAL THEORY NAT; GILLESPIE JH, 1989, GENETICS, V121, P321; Hammond KA, 1997, NATURE, V386, P457, DOI 10.1038/386457a0; HEDRICK PW, 1986, ANNU REV ECOL SYST, V17, P535; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Kisdi E, 1999, EVOLUTION, V53, P993, DOI 10.1111/j.1558-5646.1999.tb04515.x; LACK D, 1954, EVOLUTION PROCESS, P367; LEROI AM, 1994, EVOLUTION, V48, P1244, DOI 10.1111/j.1558-5646.1994.tb05309.x; Lynch Michael, 1994, P109; Reynolds C. S., 1984, ECOLOGY FRESHWATER P; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK DN, 1986, EVOLUTION, V40, P1338, DOI 10.1111/j.1558-5646.1986.tb05757.x; ROFF DA, IN PRESS HEREDITY; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; Secor SM, 1998, NATURE, V395, P659, DOI 10.1038/27131; Sgro CM, 1999, SCIENCE, V286, P2521, DOI 10.1126/science.286.5449.2521; SIMMONS AM, 1996, EVOLUTION, V50, P267; Sinervo B, 1996, EVOLUTION, V50, P1299, DOI 10.1111/j.1558-5646.1996.tb02370.x; SPITZE K, 1991, EVOLUTION, V45, P1081, DOI 10.1111/j.1558-5646.1991.tb04376.x; SPITZE K, 1995, EXPERIENTIA, V51, P454, DOI 10.1007/BF02143198; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; Tessier AJ, 2000, ECOLOGY, V81, P826, DOI 10.1890/0012-9658(2000)081[0826:AFTOIR]2.0.CO;2; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 29 447 453 4 155 ELSEVIER SCIENCE LONDON LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. OCT 2000 15 10 421 425 10.1016/S0169-5347(00)01941-8 5 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 356KW WOS:000089443300018 2018-11-12 J Gotthard, K Gotthard, K Increased risk of predation as a cost of high growth rate: an experimental test in a butterfly JOURNAL OF ANIMAL ECOLOGY English Article age and size at maturity; growth strategy; life history theory; predation risk; trade-off LIFE-HISTORY PLASTICITY; DROSOPHILA-MELANOGASTER; SATYRINE BUTTERFLIES; SEASONAL PLASTICITY; PARARGE-AEGERIA; REACTION NORMS; TRADE-OFF; EVOLUTION; MORTALITY; SIZE 1, Life history theoreticians have traditionally assumed that juvenile growth rates are maximized and that variation in this trait is due to the quality of the environment. In contrast to this assumption there is a large body of evidence showing that juvenile growth rates may vary adaptively both within and between populations. This adaptive variation implies that high growth rates may be associated with costs. 2, Here, I explicitly evaluate the often-proposed trade-off between growth rate and predation risk, in a study of the temperate butterfly, Pal dl ge aegeria (L). 3. By rearing larvae with a common genetic background in different photoperiods it was possible to experimentally manipulate larval growth rates, which vary in response to photoperiod. Predation risk was assessed by exposing larvae that were freely moving on their host plants to the predatory heteropteran, Picromerus bidens 4. The rate of predation was significantly higher in the fast-growing larvae. An approximately four times higher relative growth rate was associated with a 30% higher daily predation risk. 5. The main result demonstrates a trade-off between growth rate and predation risk, and there are reasons to believe that this trade-off is of general significance in free-living animals. The results also suggest that juvenile development of P. aegeria is governed by a strategic decision process within individuals. Univ Stockholm, Dept Zool, S-10691 Stockholm, Sweden Gotthard, K (reprint author), Univ Neuchatel, Inst Zool, Rue Emile Argand 11, CH-2007 Neuchatel, Switzerland. Karl.Gotthard@zool.unine.ch Gotthard, Karl/F-1163-2011 Gotthard, Karl/0000-0002-4560-6271 Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Anholt BR, 1998, EVOL ECOL, V12, P729, DOI 10.1023/A:1006589616931; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Bernays EA, 1997, ECOL ENTOMOL, V22, P121, DOI 10.1046/j.1365-2311.1997.00042.x; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; Chippindale AK, 1997, EVOLUTION, V51, P1536, DOI 10.1111/j.1558-5646.1997.tb01477.x; CHIPPINDALE AK, 1994, EVOLUTION, V48, P1880, DOI 10.1111/j.1558-5646.1994.tb02221.x; Gotthard K, 1998, J EVOLUTION BIOL, V11, P21; Gotthard K, 1999, OIKOS, V84, P453, DOI 10.2307/3546424; GOTTHARD K, 1994, OECOLOGIA, V99, P281, DOI 10.1007/BF00627740; GOTTHARD K, 1999, THESIS STOCKHOLM U; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; KRISTENSEN CO, 1994, J APPL ENTOMOL, V117, P92, DOI 10.1111/j.1439-0418.1994.tb00712.x; Leimar O, 1996, OIKOS, V76, P228, DOI 10.2307/3546194; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; Nylin S, 1996, EVOLUTION, V50, P1351, DOI 10.1111/j.1558-5646.1996.tb02377.x; NYLIN S, 1995, BIOL J LINN SOC, V55, P143, DOI 10.1006/bijl.1995.0033; Roff Derek A., 1992; SEVENSTER JG, 1993, J ANIM ECOL, V62, P720, DOI 10.2307/5392; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; SOUTHWOOD T. R. E, 1959, LAND WATER BUGS BRIT; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stehlik J.L., 1987, Acta Musei Moraviae Scientiae Naturales, V72, P183; STOCKHOFF BA, 1991, OECOLOGIA, V88, P422, DOI 10.1007/BF00317588; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WICKMAN PO, 1990, HOLARCTIC ECOL, V13, P238; ZWAAN B, 1995, EVOLUTION, V49, P635, DOI 10.1111/j.1558-5646.1995.tb02300.x; ZWAAN B, 1995, EVOLUTION, V49, P649, DOI 10.1111/j.1558-5646.1995.tb02301.x 32 140 141 0 26 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. SEP 2000 69 5 896 902 10.1046/j.1365-2656.2000.00432.x 7 Ecology; Zoology Environmental Sciences & Ecology; Zoology 361ZV WOS:000089754900014 29313992 2018-11-12 J Schultz, MA; Klomp, NI Schultz, MA; Klomp, NI Does the foraging strategy of adult Short-tailed Shearwaters cause obesity in their chicks? JOURNAL OF AVIAN BIOLOGY English Article PETREL HALOBAENA-CAERULEA; PELAGIC SEABIRD; PUFFINUS-TENUIROSTRIS; CALONECTRIS-DIOMEDEA; STOCHASTIC VARIATION; BODY CONDITION; FOOD DELIVERY; STORM-PETREL; MEAL SIZE; PARENTS The chick provisioning behaviour of Short-tailed Shearwaters Puffinus tenuirostris breeding at the northern edge of their distribution on Montague Island, New South Wales, was examined in February and March 1997. The duration of individual foraging trips of parents, weight changes of adults and chicks, and meal sizes delivered to chicks were determined. It was found that individual parents mixed a long foraging trip to Antarctic waters (14.4 +/- 2.0 days) with one to three short foraging trips (1.36 +/- 0.7 days, mode = 1 day). Adults gained body mass on long trips and lost weight on short trips. The size of meals fed to the chicks was significantly greater after a long trip (161 +/- 21 g) than after a short trip (135 +/- 28 g), although short trips increased the overall chick feeding frequency. The variable number of short trips made by adult Short-tailed Shearwaters and the relationship between short trips and adult body condition were consistent with current life-history theory: adults do not sacrifice their own body condition to increase food delivered to their chicks. Modelling revealed that this dual foraging strategy inevitable leads to chicks enduring long intervals between meals. These long intervals may have led to the evolution of an over-feeding strategy by parents and the nestling obesity reported in this shearwater. The durations of the long trips from Montague Island were significantly greater than those for Short-tailed Shearwaters breeding at the centre of their distribution in Tasmania, although there was no significant difference in the length of short trips. A commitment to feed regularly in Antarctic waters may explain why the breeding distribution of this species does not extend much further north. Charles Sturt Univ, Johnstone Ctr, Albury, NSW 2640, Australia Klomp, NI (reprint author), Charles Sturt Univ, Johnstone Ctr, POB 789, Albury, NSW 2640, Australia. Klomp, Nicholas/0000-0002-2367-0125 ASHMOLE NP, 1971, AVIAN BIOL, V1, P223; BOLTON M, 1995, FUNCT ECOL, V9, P161, DOI 10.2307/2390560; CHASTEL O, 1995, ECOLOGY, V76, P2240, DOI 10.2307/1941698; CHAURAND T, 1994, IBIS, V136, P285, DOI 10.1111/j.1474-919X.1994.tb01097.x; CHAURAND T, 1994, J ANIM ECOL, V63, P275, DOI 10.2307/5546; HAMER KC, 1994, J AVIAN BIOL, V25, P198, DOI 10.2307/3677075; Hamer KC, 1997, OECOLOGIA, V112, P4, DOI 10.1007/s004420050276; Hamer KC, 1997, IBIS, V139, P31, DOI 10.1111/j.1474-919X.1997.tb04501.x; HAMER KC, 1993, J ANIM ECOL, V62, P441, DOI 10.2307/5193; HARPER PC, 1976, NEW ZEAL J ZOOL, V3, P351, DOI 10.1080/03014223.1976.9517925; Klomp NI, 2000, MAR ECOL PROG SER, V194, P307, DOI 10.3354/meps194307; Lack D, 1968, ECOLOGICAL ADAPTIONS; LANE SG, 1979, SUMMARY BREEDING SEA, V3, P7; LILL A, 1983, AUST J ZOOL, V31, P891, DOI 10.1071/ZO9830891; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Lorentsen SH, 1996, J ANIM ECOL, V65, P381, DOI 10.2307/5884; Marchant S, 1990, HDB AUSTR NZ ANTARCT, V1; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; Naarding JA, 1980, STUDY SHORT TAILED S; RICKETTS C, 1981, ORNIS SCAND, V12, P120, DOI 10.2307/3676036; RICKLEFS RE, 1992, ANIM BEHAV, V43, P895, DOI 10.1016/0003-3472(92)90003-R; RICKLEFS RE, 1990, COLON WATERBIRD, V13, P1, DOI 10.2307/1521414; RICKLEFS RE, 1994, FUNCT ECOL, V8, P159, DOI 10.2307/2389899; RICKLEFS RE, 1985, J ANIM ECOL, V54, P883, DOI 10.2307/4385; Serventy D. L., 1967, P 14 INT ORN C, P165; SERVENTY DL, 1984, EMU, V84, P71, DOI 10.1071/MU9840071; SERVENTY DL, 1963, P 13 INT ORN C ITH, P338; WARHAM J, 1977, AUK, V94, P1; Warham J, 1990, PETRELS THEIR ECOLOG; Weimerskirch H, 1998, J ANIM ECOL, V67, P99, DOI 10.1046/j.1365-2656.1998.00180.x; Weimerskirch H, 1998, MAR ECOL PROG SER, V167, P261, DOI 10.3354/meps167261; WEIMERSKIRCH H, 1993, AUK, V110, P325; WEIMERSKIRCH H, 1994, ANIM BEHAV, V47, P472, DOI 10.1006/anbe.1994.1065 33 14 17 0 10 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0908-8857 J AVIAN BIOL J. Avian Biol. SEP 2000 31 3 287 294 10.1034/j.1600-048X.2000.310303.x 8 Ornithology Zoology 362ND WOS:000089783300003 2018-11-12 J Hansson, B; Bensch, S; Hasselquist, D Hansson, B; Bensch, S; Hasselquist, D The quality and the timing hypotheses evaluated using data on great reed warblers OIKOS English Article EGG-VIABILITY HYPOTHESIS; CLUTCH-SIZE VARIATION; REPRODUCTIVE SUCCESS; ACROCEPHALUS-ARUNDINACEUS; SEASONAL-VARIATION; ADAPTIVE SIGNIFICANCE; HATCHING ASYNCHRONY; CAUSAL RELATIONSHIP; SECONDARY FEMALES; FLEDGING SUCCESS The seasonal decline in reproductive success observed in many animal species may be caused by timing per se (timing hypothesis) or by variation in phenotypic quality between early and late breeding females (quality hypothesis). To distinguish between these two hypotheses, several studies of birds have used clutch removal experiments to manipulate breeding date. However; removal experiments also increase the females' previous reproductive effort due to the production of an extra clutch and a longer incubation period. According to life-history theory an increase in reproductive effort lowers future reproduction. Hence, life-history theory predicts lowered success of replacement broods for other reasons than expected from the timing hypothesis. Female great reed warblers, Acrocephalus ni arundinaceus, studied in Sweden are frequently exposed to nest predation, after which many lay replacement clutches. In order to examine possible effects of previous reproductive effort on different fitness components, we analysed the re-laying frequency and the reproductive success of replacement broods in relation to time of the season and previous reproductive effort (measured as the length of the previous breeding attempt, LPB). In clutches of re-laying females both the number of fledglings and the proportion of recruits were negatively correlated with LPB, whereas re-laying frequency and clutch size were not related to LPB. We expect such relationships to be present also among other species. Consequently, the use of replacement clutches, as for example in clutch removal experiments, in evaluations of the cause of the often observed seasonal decline in various fitness components, might exaggerate the importance of the timing hypothesis over the quality hypothesis. Univ Lund, Dept Ecol, SE-22362 Lund, Sweden Hansson, B (reprint author), Univ Lund, Dept Ecol, Ecol Bldg, SE-22362 Lund, Sweden. Hasselquist, Dennis/M-5223-2014; Hansson, Bengt/L-8874-2013 Hasselquist, Dennis/0000-0002-0056-6616; Hansson, Bengt/0000-0001-6694-8169 ARNOLD TW, 1987, AM NAT, V130, P643, DOI 10.1086/284736; Bensch S, 1996, J ANIM ECOL, V65, P283, DOI 10.2307/5875; BENSCH S, 1991, J ANIM ECOL, V60, P857, DOI 10.2307/5418; BENSCH S, 1994, BEHAV ECOL SOCIOBIOL, V35, P309, DOI 10.1007/BF00184420; BRINKHOF MWG, 1993, J ANIM ECOL, V62, P577, DOI 10.2307/5206; Brinkhof MWG, 1997, J ANIM ECOL, V66, P73, DOI 10.2307/5966; CATCHPOLE C, 1985, BEHAV ECOL SOCIOBIOL, V16, P285, DOI 10.1007/BF00310992; Cramp S., 1992, HDB BIRDS EUROPE MID, VVI; Crawley MJ, 1993, GLIM ECOLOGISTS; CRICK HQP, 1993, J ANIM ECOL, V62, P263, DOI 10.2307/5357; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; DEERENBERG C, 1997, P R SOC LOND B, V264, P2021; DYRCZ A, 1981, Acta Ornithologica (Warsaw), V18, P307; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Hansson B, 2000, ECOLOGY, V81, P319, DOI 10.2307/177429; Hansson B, 1997, ANIM BEHAV, V54, P297, DOI 10.1006/anbe.1996.0484; HASSELQUIST D, 1995, OIKOS, V72, P173, DOI 10.2307/3546219; HASSELQUIST D, 1991, BEHAV ECOL SOCIOBIOL, V28, P187; Hasselquist D, 1996, NATURE, V381, P229, DOI 10.1038/381229a0; Hasselquist D, 1998, ECOLOGY, V79, P2376, DOI 10.2307/176829; Heaney V, 1996, P ROY SOC B-BIOL SCI, V263, P1719, DOI 10.1098/rspb.1996.0251; KLOMP H, 1970, ARDEA, V58, P1; Kluyver H. N., 1955, Ardea, V43, P1; Lung NP, 1996, AM J VET RES, V57, P1162; Merila J, 1997, EVOLUTION, V51, P526, DOI 10.1111/j.1558-5646.1997.tb02440.x; Merino S, 1996, P NATL ACAD SCI USA, V93, P5726, DOI 10.1073/pnas.93.12.5726; MOLLER AP, 1993, J ANIM ECOL, V62, P309, DOI 10.2307/5362; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; Monaghan P, 1998, P ROY SOC B-BIOL SCI, V265, P1731, DOI 10.1098/rspb.1998.0495; Nilsson J.-A., 1999, P 22 INT ORN C DURB, P234; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; NORRIS K, 1993, J ANIM ECOL, V62, P287, DOI 10.2307/5360; Oppliger A, 1996, NATURE, V381, P565, DOI 10.1038/381565a0; PARSONS J, 1975, J ANIM ECOL, V44, P553, DOI 10.2307/3611; PRICE T, 1988, SCIENCE, V240, P798, DOI 10.1126/science.3363360; Raberg L, 1998, P ROY SOC B-BIOL SCI, V265, P1637, DOI 10.1098/rspb.1998.0482; RICHNER H, 1995, P NATL ACAD SCI USA, V92, P1192, DOI 10.1073/pnas.92.4.1192; *SAS I INC, 1990, SAS VERS 6 11; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SMITH HG, 1987, AUK, V104, P700; Svensson E, 1997, EVOLUTION, V51, P1276, DOI 10.1111/j.1558-5646.1997.tb03974.x; *SYSTAT, 1997, SYSTAT 7 0 1 WIND; TINBERGEN JM, 1987, ARDEA, V75, P111; URANO E, 1985, RES POPUL ECOL, V27, P393, DOI 10.1007/BF02515475; VEIGA JP, 1992, AM NAT, V139, P669, DOI 10.1086/285351; VEIGA JP, 1993, ORNIS SCAND, V24, P237, DOI 10.2307/3676739; Verboven N, 1996, J ANIM ECOL, V65, P264, DOI 10.2307/5873; VERHULST S, 1995, ECOLOGY, V76, P2392, DOI 10.2307/2265815; VERHULST S, 1991, J ANIM ECOL, V60, P269, DOI 10.2307/5459; YOUNG BE, 1994, AUK, V111, P545 50 41 42 0 11 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos SEP 2000 90 3 575 581 10.1034/j.1600-0706.2000.900315.x 7 Ecology Environmental Sciences & Ecology 363HQ WOS:000089830000015 2018-11-12 J Levitan, DR Levitan, DR Optimal egg size in marine invertebrates: theory and phylogenetic analysis of the critical relationship between egg size and development time in echinoids AMERICAN NATURALIST English Article comparative method; development time; echinoids; egg size; life-history theory; phylogeny SEA-URCHINS; LARVAL DEVELOPMENT; DENDRASTER-EXCENTRICUS; SAND DOLLAR; REPRODUCTIVE STRATEGIES; BENTHIC INVERTEBRATES; MOLECULAR EVOLUTION; NORTHEAST PACIFIC; SPERM LIMITATION; ECHINODERMATA Life-history models for marine invertebrate larvae generally predict a dichotomy in egg size in different species: eggs should be either minimal in size or large enough to support development fully without larval feeding. This prediction is contradicted, however, by the empirical observation of wide, continuous variation in egg size between these extremes. The prediction of dichotomy rests on the assumption of a negative linear relationship between egg size and development time. Here, I present a simple model in which development time is inversely proportional to egg size. Incorporating this relationship into an optimality model produces predictions of intermediate rather than extreme egg size. Modeled variations in mortality, food availability, fertilization rates, and temperature all produce continuous shifts in the value of the intermediate optimal size, in direct contrast to those produced by previous models, which predict shifts between two extreme optima. Empirical data on echinoid egg size and development time strongly support the model's assumption of an inverse proportional relationship between egg size and development time. A composite phylogeny is constructed of the 37 species for which egg size, development time, water temperature, and phylogenetic relatedness are known. Independent contrasts are made of the evolutionary changes in egg size and development time. This analysis indicates that evolutionary shifts in development time are correlated with the inversely proportional shifts in egg size assumed in the model. The assumption of a negative linear relationship used in previous models is rejected. This model provides a potential explanation for intraspecific variation in egg size along environmental gradients, sympatric differences in egg size among species, and biogeographic trends in egg size and development mode across taxa. Florida State Univ, Dept Biol Sci, Tallahassee, FL 32306 USA Levitan, DR (reprint author), Florida State Univ, Dept Biol Sci, Tallahassee, FL 32306 USA. levitan@bio.fsu.edu AIYAR R. GOPALA, 1935, PROC INDIAN ACAD SCI SECT B, V1, P714; Aslan L.M., 1999, BIOL MAGAZINE OKINAW, V37, P67; Biermann CH, 1998, MOL BIOL EVOL, V15, P1761, DOI 10.1093/oxfordjournals.molbev.a025902; Caldwell J.W., 1972, THESIS U FLORIDA GAI; Cameron R, 1985, P 5 INT COR REEF C T, V5, P273; CAMERON RA, 1980, MAR ECOL PROG SER, V2, P243, DOI 10.3354/meps002243; CAMERON RA, 1986, B MAR SCI, V39, P332; CASWELL H, 1981, AM NAT, V117, P529, DOI 10.1086/283733; CELLARIO C, 1990, ECHINODERM RESEARCH, P65; CHRISTIANSEN FB, 1979, THEOR POPUL BIOL, V16, P267, DOI 10.1016/0040-5809(79)90017-0; Clark H. L., 1923, Annals of the South African Museum, V13, P221; DCROZ L, 1997, COR REEF S, V2, P2053; Eckert GL, 1998, B MAR SCI, V63, P443; Emlet R.B., 1987, Echinoderm Studies, V2, P55; EMLET RB, 1995, EVOLUTION, V49, P476, DOI 10.1111/j.1558-5646.1995.tb02280.x; EMLET RB, 1988, BIOL BULL, V174, P4, DOI 10.2307/1541754; EMLET RB, 1986, J EXP MAR BIOL ECOL, V95, P183, DOI 10.1016/0022-0981(86)90202-9; Emlet RB, 1997, EVOLUTION, V51, P141, DOI 10.1111/j.1558-5646.1997.tb02395.x; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FENAUX L, 1994, LIMNOL OCEANOGR, V39, P84, DOI 10.4319/lo.1994.39.1.0084; GEORGE SB, 1990, J EXP MAR BIOL ECOL, V141, P107, DOI 10.1016/0022-0981(90)90217-Z; GLYNN P W, 1972, Bulletin of the Biological Society of Washington, V2, P13; HAGSTROM BERNDT E., 1967, SARSIA, V29, P165; HART MW, 1994, BIOL BULL, V186, P291, DOI 10.2307/1542275; Hart MW, 1996, EVOLUTION, V50, P174, DOI 10.1111/j.1558-5646.1996.tb04484.x; HART MW, 1995, AM NAT, V146, P415, DOI 10.1086/285807; Harvey E. B, 1956, AM ARBACIA OTHER SEA; Harvey P. H., 1991, COMP METHOD EVOLUTIO; Havenhand Jon N., 1995, P79; Herrera JC, 1996, OCEANOL ACTA, V19, P313; HIGHSMITH RC, 1982, ECOLOGY, V63, P329, DOI 10.2307/1938950; HIGHSMITH RC, 1985, MAR ECOL PROG SER, V25, P169, DOI 10.3354/meps025169; HOEGHGULDBERG O, 1995, AM ZOOL, V35, P415; Jaeckle William B., 1995, P49; LESSIOS HA, 1990, AM NAT, V135, P1, DOI 10.1086/285028; Levitan D, 1998, EVOLUTION, V52, P1043, DOI 10.1111/j.1558-5646.1998.tb01832.x; Levitan D. R., 1996, American Zoologist, V36, p12A; Levitan Don R., 1995, P123; LEVITAN DR, 1995, TRENDS ECOL EVOL, V10, P228, DOI 10.1016/S0169-5347(00)89071-0; LEVITAN DR, 1993, AM NAT, V141, P517, DOI 10.1086/285489; Levitan DR, 1996, AM NAT, V148, P174, DOI 10.1086/285917; Levitan DR, 1996, NATURE, V382, P153, DOI 10.1038/382153a0; LITTLEWOOD DTJ, 1995, PHILOS T R SOC B, V347, P213, DOI 10.1098/rstb.1995.0023; MADDISON WP, 1991, SYST ZOOL, V40, P304, DOI 10.2307/2992324; MADDISON WP, 1992, MACCLADE VERSION 3; MAZUR J E, 1971, Ohio Journal of Science, V71, P30; McEdward LR, 1997, AM NAT, V150, P48, DOI 10.1086/286056; MCEDWARD LR, 1985, J EXP MAR BIOL ECOL, V93, P169, DOI 10.1016/0022-0981(85)90157-1; MCEDWARD LR, 1986, J EXP MAR BIOL ECOL, V96, P267, DOI 10.1016/0022-0981(86)90207-8; MCPHERSON BF, 1968, B MAR SCI, V18, P400; MILEIKOVSKY SA, 1971, MAR BIOL, V10, P193, DOI 10.1007/BF00352809; MOOI R, 1990, PALEOBIOLOGY, V16, P25; Mooi R., 1987, THESIS U TORONTO; MORTENSEN T, 1937, KONGELIGE DANSKE VID, V9, P1; Mortensen T., 1938, KONGELIGE DANSKE VID, V9, P1; OLSON RR, 1989, ANNU REV ECOL SYST, V20, P225; ONODA K., 1931, MEM COLL SCI KYOTO IMP UNIV SER B, V7, P103; ONODA KATSUZO, 1936, JAP JOUR ZOOL, V6, P637; PAGEL MD, 1989, FOLIA PRIMATOL, V53, P203, DOI 10.1159/000156417; PATEL B, 1960, J MAR BIOL ASSOC UK, V39, P667, DOI 10.1017/S002531540001362X; PENNINGTON JT, 1986, B MAR SCI, V39, P234; Podolsky RD, 1996, AM NAT, V148, P160, DOI 10.1086/285916; Roff Derek A., 1992; RUMRILL SS, 1985, J EXP MAR BIOL ECOL, V90, P193, DOI 10.1016/0022-0981(85)90166-2; RUMRILL SS, 1990, OPHELIA, V32, P163, DOI 10.1080/00785236.1990.10422030; Shearer C, 1914, PHILOS T R SOC LON B, V204, P255, DOI 10.1098/rstb.1914.0008; SINERVO B, 1988, EVOLUTION, V42, P885, DOI 10.1111/j.1558-5646.1988.tb02509.x; SMITH AB, 1988, MOL BIOL EVOL, V5, P345; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Strathmann MF, 1987, REPRODUCTION DEV MAR; STRATHMANN R, 1978, J EXP MAR BIOL ECOL, V34, P23, DOI 10.1016/0022-0981(78)90054-0; Strathmann R.R., 1987, P465; STRATHMANN R R, 1971, Journal of Experimental Marine Biology and Ecology, V6, P109, DOI 10.1016/0022-0981(71)90054-2; STRATHMANN RR, 1979, CAN J ZOOL, V57, P610, DOI 10.1139/z79-072; STRATHMANN RR, 1977, MAR BIOL, V39, P305, DOI 10.1007/BF00391933; STRATHMANN RR, 1978, EVOLUTION, V32, P894, DOI 10.1111/j.1558-5646.1978.tb04642.x; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; THORSON G, 1946, MEDDELELSER KOMMIS P, V4; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; VANCE RR, 1973, AM NAT, V107, P353, DOI 10.1086/282839; VOGEL H, 1982, MATH BIOSCI, V58, P189, DOI 10.1016/0025-5564(82)90073-6; WRAY GA, 1991, TRENDS ECOL EVOL, V6, P45, DOI 10.1016/0169-5347(91)90121-D 83 132 134 1 31 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. AUG 2000 156 2 175 192 10.1086/303376 18 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 334XU WOS:000088212200006 10856200 2018-11-12 J Ghalambor, CK; Martin, TE Ghalambor, CK; Martin, TE Parental investment strategies in two species of nuthatch vary with stage-specific predation risk and reproductive effort ANIMAL BEHAVIOUR English Article LIFE-HISTORY EVOLUTION; NEST DEFENSE; NATURAL-POPULATIONS; BIRDS; INCUBATION; BEHAVIOR; SURVIVAL; CARE; COST; AGE Life-history theory predicts that differences in reproductive effort and residual reproductive value among species should result in differences in the level of risk that parents are willing to tolerate to themselves versus their offspring. Specifically, highly fecund and shorter-lived species are expected to place greater value in current offspring than themselves, whereas less fecund and longer-lived species are expected to place greater value in their own survival and future breeding opportunities. Here, we test the prediction that parental investment decisions are correlated with life histories by comparing risk-taking behaviour in two species of nuthatch that differ in reproductive effort: the white-breasted nuthatch, Sitta carolinensis (more fecund, lower survival) and the red-breasted nuthatch, S. canadensis (less fecund, higher survival). We experimentally manipulated stage-specific predation risk by presenting models of an adult predator (hawk) and an egg predator (wren) and measured the willingness of males to feed incubating females on the nest. We found that both species of nuthatch responded to predators by increasing the length of time between visits and aborting more visits to the nest. However, as predicted by their life histories, S. carolinensis displayed a significantly stronger response to the egg predator, whereas S. canadensis responded more strongly to the adult predator. Thus, species can differ in their willingness to tolerate risk to themselves and their young, and such differences appear to be related to differences in investment in current reproduction and the probability of future survival. (C) 2000 The Association for the Study of Animal Behaviour. Univ Montana, Montana Cooperat Wildlife Res Unit, US Geol Survey, Biol Resources Div, Missoula, MT 59812 USA Ghalambor, CK (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. camerong@citrus.ucr.edu Martin, Thomas/F-6016-2011 Martin, Thomas/0000-0002-4028-4867 BELLESISLES JC, 1986, CONDOR, V88, P190, DOI 10.2307/1368914; BENNETT PM, 1988, NATURE, V333, P216, DOI 10.1038/333216b0; BRODIE ED, 1989, NATURE, V342, P542, DOI 10.1038/342542a0; Candolin U, 1998, P ROY SOC B-BIOL SCI, V265, P1171, DOI 10.1098/rspb.1998.0415; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; COLEMAN RM, 1985, BEHAV ECOL SOCIOBIOL, V18, P59; CURIO E, 1988, AM NAT, V131, P825, DOI 10.1086/284824; Dale S, 1996, BEHAV ECOL SOCIOBIOL, V39, P31, DOI 10.1007/s002650050264; EKMAN J, 1986, EVOLUTION, V40, P159, DOI 10.1111/j.1558-5646.1986.tb05727.x; FORBES MRL, 1994, BEHAV ECOL SOCIOBIOL, V34, P79, DOI 10.1007/BF00164178; Ghalambor Cameron K., 1999, Birds of North America, V459, P1; GHALAMBOR CK, 1998, THESIS U MONTANA; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; LIMA SL, 1987, ECOLOGY, V68, P1062, DOI 10.2307/1938378; LYON BE, 1985, BEHAV ECOL SOCIOBIOL, V17, P279, DOI 10.1007/BF00300147; LYON BE, 1987, ECOLOGY, V68, P713, DOI 10.2307/1938477; MAGNHAGEN C, 1990, BEHAV ECOL SOCIOBIOL, V26, P331; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; Martin T.E., 1992, Current Ornithology, V9, P163; Martin TE, 1998, ECOLOGY, V79, P656, DOI 10.2307/176961; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 1999, AM NAT, V153, P131, DOI 10.1086/303153; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; Pravosudov V.V., 1993, Birds of North America, V54, P1; PRICE T, 1992, TRENDS ECOL EVOL, V7, P307, DOI 10.1016/0169-5347(92)90229-5; REDONDO T, 1989, BEHAV ECOL SOCIOBIOL, V25, P369, DOI 10.1007/BF00302995; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; RICKLEFS RE, 1977, CONDOR, V79, P376, DOI 10.2307/1368016; Roff Derek A., 1992; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Sibley CG, 1990, PHYLOGENY CLASSIFICA; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Williams GC, 1966, ADAPTATION NATURAL S 38 107 113 3 58 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. AUG 2000 60 2 263 267 10.1006/anbe.2000.1472 5 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 356WX WOS:000089468100014 2018-11-12 J Hill, EM Hill, EM Conditional mating strategies are contingent on return from investment BEHAVIORAL AND BRAIN SCIENCES English Editorial Material ECOLOGY; SEX Gangestad & Simpson present an evolutionary functional analysis of mating strategies. This commentary interprets their argument using a central concept from life history theory, return from investment. Incorporating return from investment allows further specification of costs and benefits from short-term mating in women as well as men and in ecological settings of high environmental variation in mortality and resource availability. Univ Detroit Mercy, Dept Psychol, Detroit, MI 48219 USA Hill, EM (reprint author), Univ Detroit Mercy, Dept Psychol, Detroit, MI 48219 USA. hillelm@udmercy.edu Borgerhoff Mulder Monique, 1992, EVOLUTIONARY ECOLOGY; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; HILL EM, 1992, ETHOL SOCIOBIOL, V13, P35, DOI 10.1016/0162-3095(92)90005-O; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; HILL EM, 1994, ETHOL SOCIOBIOL, V15, P323, DOI 10.1016/0162-3095(94)90006-X; Horn H. S., 1984, BEHAV ECOLOGY EVOLUT; LANCASTER JB, 1987, PARENTING LIFESPAN B; LOW B, 1993, EVOLUTIONARY ANTHR, P106; Roff Derek A., 1992; Stearns S. C., 1992, EVOLUTION LIFE HIST; Trivers RR, 1972, SEXUAL SELECTION DES; WEINRICH JD, 1977, BEHAV ECOL SOCIOBIOL, V2, P91, DOI 10.1007/BF00361896; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 18 0 0 0 1 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0140-525X 1469-1825 BEHAV BRAIN SCI Behav. Brain Sci. AUG 2000 23 4 605 + 10.1017/S0140525X00433376 11 Psychology, Biological; Behavioral Sciences; Neurosciences Psychology; Behavioral Sciences; Neurosciences & Neurology 395YV WOS:000166610300078 2018-11-12 J McElligott, AG; Hayden, TJ McElligott, AG; Hayden, TJ Lifetime mating success, sexual selection and life history of fallow bucks (Dama dama) BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article fellow deer; life history theory; mating success; survival trade-offs ANTARCTIC FUR SEALS; RED DEER; REPRODUCTIVE EFFORT; GROUND-SQUIRRELS; COPULATORY SUCCESS; BIGHORN SHEEP; MATE CHOICE; COSTS; AGE; DOMINANCE We used data from a long-term study (15 years) of fallow deer to report for the first time the lifetime mating success, overall variance in lifetime mating success, and age-specific mortality levels of males. Fallow bucks that gain matings have higher social dominance rank, higher rates of fighting, and invest more in vocal display during the breeding season than unsuccessful males. Therefore, we examined if mating was associated with trade-offs in terms of survival, lifespan, and mating potential. We found that the variance in lifetime mating success was very high: 34 (10.7%) males mated, and of those, the 10 most successful males gained 73% of all matings (n=934). Mortality rates were generally high and only 22.3% (71/318) of males reached social maturity, i.e., 3 years. The oldest male was 13 years old. We found that fallow bucks that mated were not more likely to die during the following year, did not suffer from a reduction in lifespan, and did not incur lower mating success later in lift: au a result of mating during the early years of social maturity. Our results show that mating males at age 5 years (and possibly 9 years) may be more likely to survive than non-mating males. Additionally, the number of matings gained by males during the first years of social maturity was positively correlated with lifespan. We suggest that mating males are of higher quality than non-mating males because they are not more likely to incur tl ade-offs as a result of their increased reproductive efforts. Natl Univ Ireland Univ Coll Dublin, Dept Zool, Mammal Res Grp, Dublin 4, Ireland McElligott, AG (reprint author), Univ Zurich, Inst Zool, Winterthurerstr 190, CH-8057 Zurich, Switzerland. amcellig@zool.unizh.ch ABRAMS PA, 1991, EVOL ECOL, V5, P343, DOI 10.1007/BF02214152; ALATALO RV, 1991, NATURE, V352, P155, DOI 10.1038/352155a0; Alberts SC, 1996, ANIM BEHAV, V51, P1269, DOI 10.1006/anbe.1996.0131; ALVAREZ F, 1993, CAN J ZOOL, V71, P376, DOI 10.1139/z93-052; ANDERSON SS, 1985, ANIM BEHAV, V33, P829, DOI 10.1016/S0003-3472(85)80017-8; Andersson M., 1994, SEXUAL SELECTION; APOLLONIO M, 1989, BEHAV ECOL SOCIOBIOL, V25, P89, DOI 10.1007/BF00302925; Arnould JPY, 1997, J ZOOL, V241, P649, DOI 10.1111/j.1469-7998.1997.tb05739.x; BERCOVITCH FB, 1993, BEHAV ECOL SOCIOBIOL, V32, P103, DOI 10.1007/BF00164042; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.2307/177240; Berube CH, 1996, BEHAV ECOL, V7, P60, DOI 10.1093/beheco/7.1.60; Birgersson B, 1998, BEHAV ECOL SOCIOBIOL, V43, P87, DOI 10.1007/s002650050470; BOBEK B, 1990, J MAMMAL, V71, P230, DOI 10.2307/1382171; BROWN D, 1988, REPROD SUCCESS, P439; Carbone C, 1996, BEHAV ECOL, V7, P370, DOI 10.1093/beheco/7.3.370; CHAPLIN RE, 1972, J REPROD FERTIL, V30, P361; CLINTON WL, 1993, ECOLOGY, V74, P1884, DOI 10.2307/1939945; Clutton-Brock T.H., 1988, REPROD SUCCESS STUDI; CluttonBrock TH, 1996, BEHAV ECOL, V7, P373, DOI 10.1093/beheco/7.3.373; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CLUTTONBROCK TH, 1988, BEHAV ECOL SOCIOBIOL, V23, P281, DOI 10.1007/BF00300575; CLUTTONBROCK TH, 1983, J ANIM ECOL, V52, P367, DOI 10.2307/4560; Coltman DW, 1999, AM NAT, V154, P730, DOI 10.1086/303274; Creel S, 1996, NATURE, V379, P212, DOI 10.1038/379212a0; Dobson FS, 1999, J ANIM ECOL, V68, P73, DOI 10.1046/j.1365-2656.1999.00268.x; ELLIS L, 1995, ETHOL SOCIOBIOL, V16, P257, DOI 10.1016/0162-3095(95)00050-U; FESTABIANCHET M, 1995, ECOLOGY, V76, P871, DOI 10.2307/1939352; HALEY MP, 1994, ANIM BEHAV, V48, P1249, DOI 10.1006/anbe.1994.1361; Hayden T.J., 1992, P27; Horne TJ, 1998, EVOLUTION, V52, P894, DOI 10.1111/j.1558-5646.1998.tb03714.x; Huber S, 1999, OECOLOGIA, V121, P19, DOI 10.1007/s004420050902; Jorgenson JT, 1997, ECOLOGY, V78, P1019, DOI 10.2307/2265855; KELLY PF, 1998, THESIS NATL U IRELAN; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Kokko H, 1998, EVOL ECOL, V12, P739, DOI 10.1023/A:1006541701002; Kokko H, 1997, BEHAV ECOL SOCIOBIOL, V41, P99, DOI 10.1007/s002650050369; Komers PE, 1997, BEHAV ECOL, V8, P456, DOI 10.1093/beheco/8.4.456; Komers PE, 1999, AM NAT, V153, P431, DOI 10.1086/303185; LANGBEIN J, 1989, ETHOLOGY, V83, P195, DOI 10.1111/j.1439-0310.1989.tb00529.x; le Boeuf B.J., 1988, P344; Lessells C.M., 1991, P32; Loison A, 1998, OECOLOGIA, V116, P489, DOI 10.1007/s004420050614; Loison A, 1999, ECOLOGY, V80, P2539, DOI 10.2307/177239; LUNN NJ, 1994, J ANIM ECOL, V63, P827, DOI 10.2307/5260; MAPPES T, 1995, P ROY SOC B-BIOL SCI, V261, P19, DOI 10.1098/rspb.1995.0111; McElligott AG, 1999, ANIM BEHAV, V57, P1159, DOI 10.1006/anbe.1999.1076; McElligott AG, 1998, ETHOLOGY, V104, P789; McElligott AG, 1999, ANIM BEHAV, V58, P1095, DOI 10.1006/anbe.1999.1237; MCELLIGOTT AG, 1997, THESIS NATL U IRELAN; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MICHENER GR, 1990, ECOLOGY, V71, P855, DOI 10.2307/1937357; Moller AP, 1999, P ROY SOC B-BIOL SCI, V266, P85, DOI 10.1098/rspb.1999.0607; MOORE NP, 1995, BEHAV ECOL SOCIOBIOL, V36, P91, DOI 10.1007/BF00170713; MOORE NP, 1995, BIOL ENVIRON, V95B, P27; MOORE NP, 1993, THESIS NATL U IRELAN; NUNNEY L, 1993, EVOLUTION, V47, P1329, DOI 10.1111/j.1558-5646.1993.tb02158.x; OCONNELL JM, 1993, THESIS NATL U IRELAN; OWENSMITH N, 1993, J ANIM ECOL, V62, P428, DOI 10.2307/5192; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PARTRIDGE L, 1992, TRENDS ECOL EVOL, V7, P99, DOI 10.1016/0169-5347(92)90250-F; PEMBERTON JM, 1992, BEHAV ECOL, V3, P66, DOI 10.1093/beheco/3.1.66; PETRIE M, 1992, ANIM BEHAV, V44, P585, DOI 10.1016/0003-3472(92)90072-H; PROMISLOW DEL, 1992, P ROY SOC B-BIOL SCI, V247, P203, DOI 10.1098/rspb.1992.0030; RALLS K, 1980, REP INT WHALING COMM, V2, P233; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; Rose KE, 1998, J ANIM ECOL, V67, P979, DOI 10.1046/j.1365-2656.1998.6760979.x; Siegel S, 1988, NONPARAMETRIC STAT B; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stevenson IR, 1995, P ROY SOC B-BIOL SCI, V262, P267, DOI 10.1098/rspb.1995.0205; Thirgood S, 1999, ADV STUD BEHAV, V28, P333, DOI 10.1016/S0065-3454(08)60220-X; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Wedell N, 1999, EVOLUTION, V53, P620, DOI 10.1111/j.1558-5646.1999.tb03797.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zar J.H, 1999, BIOSTATISTICAL ANAL 76 54 56 1 48 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. AUG 2000 48 3 203 210 10.1007/s002650000234 8 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology 352DK WOS:000089199100005 2018-11-12 J Brommer, JE Brommer, JE The evolution of fitness in life-history theory BIOLOGICAL REVIEWS English Article life-history; fitness optimisation; density dependence; evolutionarily stable strategy (ESS) NATURAL-SELECTION; REPRODUCTIVE EFFORT; CLUTCH SIZE; PHENOTYPIC PLASTICITY; REACTION NORMS; STRATEGIES; AGE; DENSITY; MODELS; GROWTH Theory concerning the evolution of life history (the schedule of reproduction and survival) focuses on describing the life history which maximises fitness. Although there is an intuitive link between life history and fitness, there are in fact several measures of the 'black box' concept of fitness. There has been a debate in the bio-mathematical literature on the predictive difference between the two most commonly used measures; intrinsic rate of increase, and net reproductive ratio R-0. Although both measures aim to describe fitness, models using one of the measures may predict the opposite of similar models using the other measure, which is clearly undesirable. Here, I review the evolution of these fitness measures over the last four decades, the predictive differences between these measures and the resulting shift of the fitness concept. I focus in particular on some recent developments, which have solved the dilemma of predictive differences between these fitness measures by explicitly acknowledging the game-theoretical nature of life-history evolution. Univ Helsinki, Dept Systemat & Ecol, Div Populat Biol, FIN-00014 Helsinki, Finland Brommer, JE (reprint author), Univ Helsinki, Dept Systemat & Ecol, Div Populat Biol, POB 17 Arkadiankatu 7, FIN-00014 Helsinki, Finland. jon.brommer@helsinki.fi Brommer, Jon/C-3613-2008 Brommer, Jon/0000-0002-2435-2612 ABRAMS PA, 1993, EVOLUTION, V47, P982, DOI 10.1111/j.1558-5646.1993.tb01254.x; Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Both C, 1999, P ROY SOC B-BIOL SCI, V266, P465, DOI 10.1098/rspb.1999.0660; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; Brodin A, 1997, BEHAV ECOL, V8, P178, DOI 10.1093/beheco/8.2.178; BRYANT EH, 1971, AM NAT, V105, P75, DOI 10.1086/282703; BULMER M, 1994, THEORETICAL EVOLUTIO; CASWELL H, 1972, SYSTEMS ANAL SIMULAT, P3; Caswell H., 1989, MATRIX POPULATION MO; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; CHARLESWORTH B, 1971, ECOLOGY, V52, P469, DOI 10.2307/1937629; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; CLARK CW, 1993, TRENDS ECOL EVOL, V8, P205, DOI 10.1016/0169-5347(93)90100-4; CLUTTONBROCK TH, 1988, REPROD SUCCESS; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; DIEKMANN O, 1990, J MATH BIOL, V28, P365; Eshel I, 1996, J MATH BIOL, V34, P485; ESHEL I, 1983, J THEOR BIOL, V103, P99, DOI 10.1016/0022-5193(83)90201-1; FISHER R. A., 1930, GENETICAL THEORY NAT; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GERITZ SAH, 1995, AM NAT, V146, P685, DOI 10.1086/285820; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; GLEESON SK, 1987, OIKOS, V48, P116, DOI 10.2307/3565698; GOODMAN D, 1974, AM NAT, V108, P247, DOI 10.1086/282906; Grafen A, 1999, P ROY SOC B-BIOL SCI, V266, P799, DOI 10.1098/rspb.1999.0708; Grafen A., 1988, REPROD SUCCESS, P454; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; Hammerstein P, 1996, J MATH BIOL, V34, P511; HASTINGS A, 1978, J THEOR BIOL, V75, P527, DOI 10.1016/0022-5193(78)90361-2; Heino M, 1997, PHILOS T R SOC B, V352, P1647, DOI 10.1098/rstb.1997.0146; Heino M, 1998, TRENDS ECOL EVOL, V13, P367, DOI 10.1016/S0169-5347(98)01380-9; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; HOUSTON AI, 1993, PHILOS T ROY SOC B, V341, P375, DOI 10.1098/rstb.1993.0123; Houston AI, 1999, MODELS ADAPTIVE BEHA; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.1890/0012-9658(1999)080[1242:LHABRT]2.0.CO;2; Kaitala V, 1997, EVOL ECOL, V11, P105, DOI 10.1023/A:1018491630846; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; Kisdi E, 1998, EVOL ECOL, V12, P211, DOI 10.1023/A:1006535829880; Kisdi E., 1993, LECT NOTES BIOMATH, V98, P26; Kokko H, 1998, AM NAT, V152, P354, DOI 10.1086/286174; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Leimar O, 1996, OIKOS, V76, P228, DOI 10.2307/3546194; Lessells C.M., 1991, P32; LUTZ PE, 1968, ECOLOGY, V49, P637, DOI 10.2307/1935529; McGraw JB, 1996, AM NAT, V147, P47, DOI 10.1086/285839; MCNAMARA JM, 1993, J THEOR BIOL, V161, P23, DOI 10.1006/jtbi.1993.1037; McNamara JM, 1996, AM NAT, V147, P609, DOI 10.1086/285869; MCNAMARA JM, 1991, THEOR POPUL BIOL, V40, P230, DOI 10.1016/0040-5809(91)90054-J; MCNAMARA JM, 1994, J AVIAN BIOL, V25, P287, DOI 10.2307/3677276; McNamara JM, 1997, AM NAT, V150, P603, DOI 10.1086/286084; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MCNAMARA JM, 1995, EVOLUTIONARY ECOLOGY, V2, P185; Metz J. A. J., 1986, DYNAMICS PHYSL STRUC; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MURRAY BG, 1992, AUK, V109, P167, DOI 10.2307/4088276; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; NEWTON I, 1989, LIFETIME REPROD BIRD; PASZTOR E, 1989, OIKOS, V56, P416, DOI 10.2307/3565627; Pasztor L, 1996, J EVOLUTION BIOL, V9, P511, DOI 10.1046/j.1420-9101.1996.9040511.x; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; RAND DA, 1994, PHILOS T ROY SOC B, V343, P261, DOI 10.1098/rstb.1994.0025; Roff Derek A., 1992; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; SCHAFFER WM, 1977, ECOLOGY, V58, P60, DOI 10.2307/1935108; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0; SMITH JM, 1993, Q REV BIOL, V68, P557; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TAYLOR HM, 1974, THEOR POPUL BIOL, V5, P104, DOI 10.1016/0040-5809(74)90053-7; TINBERGEN JM, 1990, BEHAVIOUR, V114, P161, DOI 10.1163/156853990X00103; TULJAPURKAR S, 1989, THEOR POPUL BIOL, V35, P227, DOI 10.1016/0040-5809(89)90001-4; VEERMAN A, 1994, NETH J ZOOL, V44, P139; Weissing FJ, 1996, J MATH BIOL, V34, P533; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Woltereck R., 1909, VERH DTSCH ZOOL GES, V1909, P110; YODZIS P, 1981, ECOLOGY, V62, P1681, DOI 10.2307/1941522 92 92 97 1 61 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1464-7931 1469-185X BIOL REV Biol. Rev. AUG 2000 75 3 377 404 10.1017/S000632310000551X 28 Biology Life Sciences & Biomedicine - Other Topics 361QF WOS:000089733200003 11034016 2018-11-12 J Randall, RG; Minns, CK Randall, RG; Minns, CK Use of fish production per unit biomass ratios for measuring the productive capacity of fish habitats CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article BODY-SIZE; AQUATIC ECOSYSTEMS; POPULATIONS; FISHERIES; SPECTRA; LAKES; MODEL; INDEX Species-specific production rate per unit biomass (P/B, per year) ratios were calculated for 79 freshwater fish species of eastern Canada. P/B (per year) ratios were calculated using two methods, which were based on allometry with fish weight-at-maturity and life expectancy, respectively. P/B (per year) values obtained by the two methods were significantly correlated, as expected from life history theory, since the two predictors (longevity, size-at-maturity) were themselves correlated. Species-specific P/B (per year) ratios were also significantly correlated with field observations of P/B from published sources. The estimation of P/B based on allometry with fish size is recommended because of its utility; the predictive equation is P/B (per year) = 2.64W(mat)(-0.35), where W-mat is weight-at-maturity. Both the coefficient 2.64 and the exponent -0.35 of this equation are provisional and require further validation from field studies of fish production. More accurate estimates of P/B are possible if population-specific information on size-at-maturity or mean size is known. The product of average fish biomass and estimated P/B coefficients (habitat productivity index (HPI) = B x P/B) is a proposed measure of habitat productive capacity. Fisheries & Oceans Canada, Burlington, ON L7R 4A6, Canada Randall, RG (reprint author), Fisheries & Oceans Canada, POB 5050,867 Lakeshore Rd, Burlington, ON L7R 4A6, Canada. randallr@dfo-mpo.gc.ca ALLEN KR, 1971, J FISH RES BOARD CAN, V28, P1573, DOI 10.1139/f71-236; BANSE K, 1980, ECOL MONOGR, V50, P355, DOI 10.2307/2937256; Beverton R. J. H., 1959, CIBA FDN C AGEING, V5, P142, DOI DOI 10.1002/9780470715253.CH10; BOUDREAU PR, 1989, CAN J FISH AQUAT SCI, V46, P614, DOI 10.1139/f89-078; BOUDREAU PR, 1991, J THEOR BIOL, V152, P329, DOI 10.1016/S0022-5193(05)80198-5; BOUDREAU PR, 1992, CAN J FISH AQUAT SCI, V49, P1528, DOI 10.1139/f92-169; Charnov Eric L., 1993, P1; DICKIE LM, 1987, ECOL MONOGR, V57, P233, DOI 10.2307/2937082; DICKIE LM, 1972, INT COMM NW ATL FISH, V8, P201; DOWNING JA, 1990, CAN J FISH AQUAT SCI, V47, P1929, DOI 10.1139/f90-217; DOWNING JA, 1993, CAN J FISH AQUAT SCI, V50, P110, DOI 10.1139/f93-013; FROESE R, 1998, FISHBASE 98 CONCEPTS; HOENIG JM, 1983, FISH B-NOAA, V81, P898; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; Jones ML, 1996, CAN J FISH AQUAT SCI, V53, P446, DOI 10.1139/cjfas-53-S1-446; LAVIGNE DM, 1982, J ANIM ECOL, V51, P195, DOI 10.2307/4319; Mandrak N. E., 1992, CHECKLIST ONTARIO FR; MANN R H K, 1986, Polskie Archiwum Hydrobiologii, V33, P233; Mertz G, 1998, CAN J FISH AQUAT SCI, V55, P478, DOI 10.1139/cjfas-55-2-478; Minns CK, 1996, CAN J FISH AQUAT SCI, V53, P403, DOI 10.1139/cjfas-53-S1-403; MINNS CK, 1993, CAN MANUSCR REP FISH, V2209; MOORE JE, 1998, CAN MANUSCR REP FISH, V2441; Pauly D, 1984, ICLARM STUD REV, V8; Peters R.H., 1983, P1; PORTT CB, 1991, 1991 CAN MANUSCR REP; RANDALL RG, 1995, CAN J FISH AQUAT SCI, V52, P631, DOI 10.1139/f95-063; Randall RG, 1996, CAN J FISH AQUAT SCI, V53, P35, DOI 10.1139/cjfas-53-S1-35; RANDALL RG, 1941, CAN TECH REP FISH AQ; Scott W. B, 1973, B FISH RES BOARD CAN, V184; Shuter BJ, 1998, CAN J FISH AQUAT SCI, V55, P2161, DOI 10.1139/cjfas-55-9-2161; THIEBAUX ML, 1993, CAN J FISH AQUAT SCI, V50, P1308, DOI 10.1139/f93-148; THIEBAUX ML, 1992, J THEOR BIOL, V159, P147, DOI 10.1016/S0022-5193(05)80699-X; VALERE BG, 1996, CAN MANUSCR REP FISH, V2384; VANSTRAALEN NM, 1985, H THEOR BIOL, V113, P331; Waters T.F., 1977, Advances in Ecological Research, V10, P91, DOI 10.1016/S0065-2504(08)60235-4 35 52 57 1 30 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. AUG 2000 57 8 1657 1667 10.1139/cjfas-57-8-1657 11 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 335YA WOS:000088273200013 2018-11-12 J Gasser, M; Kaiser, M; Berrigan, D; Stearns, SC Gasser, M; Kaiser, M; Berrigan, D; Stearns, SC Life-history correlates of evolution under high and low adult mortality EVOLUTION English Article Drosophila melanogaster; life-history trait; reproductive effort model; trade-off TERM LABORATORY EVOLUTION; DROSOPHILA-MELANOGASTER; POSTPONED SENESCENCE; PHENOTYPIC PLASTICITY; ARTIFICIAL SELECTION; PHYSIOLOGICAL-MECHANISMS; ANTAGONISTIC PLEIOTROPY; QUANTITATIVE GENETICS; STARVATION RESISTANCE; DEVELOPMENTAL TIME Life-history theory predicts evolutionary changes in reproductive traits and intrinsic mortality rates in response to differences in extrinsic mortality rates. Trade-offs between life- history traits play a pivotal role in these predictions, and such trade-offs are mediated, at least in part, by physiological allocations. To gain insight into these trade-offs, we have been performing a long-term experiment in which we allow fruitflies, Drosophila melanogaster, to evolve in response to high (HAM) and low (LAM) adult mortality rates. Hen we analyze the physiological correlates of the life-history trade-offs. In addition to changing development time and early fecundity in the direction predicted, high adult mortality affected three traits expressed early in life-body size, growth rate, and ovariole number-but had little or no effect on body composition (relative fat content), viability, metabolic rate, activity, starvation resistance, or desiccation resistance. Correlations among lines revealed trade-offs between early fecundity, late fecundity, and starvation resistance, which appear to be mediated by differential allocation of lipids. Univ Basel, Inst Zool, CH-4051 Basel, Switzerland; Univ Washington, Dept Zool, Seattle, WA 98195 USA Gasser, M (reprint author), Swiss Fed Off Publ Hlth, CH-3003 Bern, Switzerland. stearns@ubaclu.unibas.ch Stearns, Stephen/F-4099-2012 Kaiser, Marcel/0000-0003-1785-7302; Stearns, Stephen/0000-0002-6621-4373 BARCLAY HJ, 1982, AM NAT, V120, P26, DOI 10.1086/283967; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BERRIGAN D, 1991, OIKOS, V60, P313, DOI 10.2307/3545073; BERRIGAN D, 1994, PHYSIOL ZOOL, V67, P1140, DOI 10.1086/physzool.67.5.30163886; BOULETREAUMERLE J, 1982, OECOLOGIA, V53, P323, DOI 10.1007/BF00389008; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1989, HEREDITY, V62, P113, DOI 10.1038/hdy.1989.15; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; CHIPPINDALE AK, 1994, EVOLUTION, V48, P1880, DOI 10.1111/j.1558-5646.1994.tb02221.x; DAVID J, 1970, Archives de Zoologie Experimentale et Generale, V111, P357; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gibbs AG, 1997, J EXP BIOL, V200, P1821; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HILLESHEIM E, 1991, EVOLUTION, V45, P1909, DOI 10.1111/j.1558-5646.1991.tb02696.x; Lemeunier F., 1986, P147; LEROI AM, 1994, EVOLUTION, V48, P1258, DOI 10.1111/j.1558-5646.1994.tb05310.x; LEROI AM, 1994, EVOLUTION, V48, P1244, DOI 10.1111/j.1558-5646.1994.tb05309.x; LEROI AM, 1994, AM NAT, V144, P661, DOI 10.1086/285699; LIGHTON JRB, 1993, CONCISE ENCY BIOL BI, P201; Lints FA, 1972, MECH AGEING DEV, V1, P285, DOI 10.1016/0047-6374(72)90074-7; Luckinbill LS, 1988, EVOL ECOL, V2, P85, DOI 10.1007/BF02071591; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MUELLER LD, 1987, P NATL ACAD SCI USA, V84, P1974, DOI 10.1073/pnas.84.7.1974; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PARTRIDGE L, 1993, EVOLUTION, V47, P213, DOI 10.1111/j.1558-5646.1993.tb01211.x; POSTLETHWAIT JH, 1981, AM ZOOL, V21, P687; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Robertson F. W., 1957, J GENET, V55, P428, DOI DOI 10.1007/BF02984061; ROFF DA, 1986, BIOSCIENCE, V36, P316, DOI 10.2307/1310236; Roff Derek A., 1992; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1992, EXP GERONTOL, V27, P241, DOI 10.1016/0531-5565(92)90048-5; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; SERVICE PM, 1988, EVOLUTION, V42, P708, DOI 10.1111/j.1558-5646.1988.tb02489.x; SERVICE PM, 1987, PHYSIOL ZOOL, V60, P321, DOI 10.1086/physzool.60.3.30162285; SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013; SERVICE PM, 1989, J INSECT PHYSIOL, V35, P447, DOI 10.1016/0022-1910(89)90120-0; SHERIDAN AK, 1974, AUST J BIOL SCI, V27, P75; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; Sparkes TC, 1996, OECOLOGIA, V106, P85, DOI 10.1007/BF00334410; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stearns Stephen C., 1996, Plant Species Biology, V11, P97, DOI 10.1111/j.1442-1984.1996.tb00112.x; STIBOR H, 1992, OECOLOGIA, V92, P162, DOI 10.1007/BF00317358; TAYLOR CE, 1980, EVOLUTION, V34, P1183, DOI 10.1111/j.1558-5646.1980.tb04064.x; THOMASORILLARD M, 1985, GENETICS, V111, P819; THOMASORILLARD M, 1984, GENETICS, V107, P635; TRAVIS J, 1984, ECOLOGY, V65, P1155, DOI 10.2307/1938323; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Wayne ML, 1997, EVOLUTION, V51, P1156, DOI 10.1111/j.1558-5646.1997.tb03963.x; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; ZWAAN B, 1995, EVOLUTION, V49, P635, DOI 10.1111/j.1558-5646.1995.tb02300.x; ZWAAN B, 1995, EVOLUTION, V49, P649, DOI 10.1111/j.1558-5646.1995.tb02301.x; ZWAAN BJ, 1991, HEREDITY, V66, P29, DOI 10.1038/hdy.1991.4 64 56 58 1 42 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution AUG 2000 54 4 1260 1272 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 354EY WOS:000089317900016 11005293 2018-11-12 J Fischer, K; Fiedler, K Fischer, K; Fiedler, K Sex-related differences in reaction norms in the butterfly Lycaena tityrus (Lepidoptera : Lycaenidae) OIKOS English Article LIFE-HISTORY TRAITS; SPECKLED WOOD BUTTERFLIES; PARARGE-AEGERIA; SIZE DIMORPHISM; TERRITORIAL DEFENSE; GROWTH-RATE; RESOURCE-ALLOCATION; SEASONAL PLASTICITY; CYCLE REGULATION; MATING SYSTEMS We investigate sexual differences in reaction norms in directly developing individuals of the copper butterfly Lycaena tityrus predicted From sexual selection theory. As recent studies on butterflies revealed a high degree of adaptive plasticity in growth and development, which may undermine the basic trade-offs assumed in life-history theory, we focus on effects of temperature, trying to drive growth rates to their physiological upper limit and thus disclosing otherwise potentially concealed responses. Development time strongly depended on temperature, leading in accordance with a central assumption in life-history theory to a larger size at low temperatures, and vice versa. At all temperatures larval development time of males was significantly shorter compared to females, as was predicted by protandry theory. This was partially due to an invariably higher growth rate of males. However, sexes responded in different ways to developmental time constraints caused by increasing temperatures. Despite the shorter larval time of males, both sexes achieved similar body sizes at lower temperatures, because males avoided a reduction in weight due to plastic growth. At high temperatures, in contrast, males were forced to make a trade-off in which they favoured early emergence over large size, leading to a dramatic weight loss. Weight of females, however, remained similar throughout showing no trade-off. These different reaction norms reflect divergent selective pressures actine on males and females, which can be explained in relation to the reproductive system. The strong selection for early emergence in males is likely to be due to monandry, discrete non-overlapping generations las was already predicted by theory), and territoriality, because prior ownership of a territory seems to be a major advantage for successful reproduction. On the other hand, the preference of females for large body size was expected due to the close relationship between this trait and fecundity. Thus, our results highlight the extraordinary importance of the specific reproductive system, which can influence central life-history traits in manifold ways. Univ Bayreuth, Lehrstuhl Tierokol 1, D-95440 Bayreuth, Germany Fischer, K (reprint author), Univ Bayreuth, Lehrstuhl Tierokol 1, POB 101251, D-95440 Bayreuth, Germany. klaus.fischer@uni-bayreuth.de Fiedler, Konrad/0000-0002-4789-3753 Alcock J, 1997, ECOL ENTOMOL, V22, P377, DOI 10.1046/j.1365-2311.1997.00066.x; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; AUSTAD SN, 1979, ANIM BEHAV, V27, P960, DOI 10.1016/0003-3472(79)90037-X; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BISSOONDATH CJ, 1995, BEHAV ECOL SOCIOBIOL, V37, P365, DOI 10.1007/BF00170583; BLAU WS, 1981, OECOLOGIA, V48, P116, DOI 10.1007/BF00346997; Brakefield PM, 1997, P ROY SOC B-BIOL SCI, V264, P717, DOI 10.1098/rspb.1997.0102; BRAKEFIELD PM, 1995, J EVOLUTION BIOL, V8, P559, DOI 10.1046/j.1420-9101.1995.8050559.x; BULMER MG, 1983, THEOR POPUL BIOL, V23, P314, DOI 10.1016/0040-5809(83)90021-7; Casey Timothy M., 1993, P5; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; DAVIES NB, 1978, ANIM BEHAV, V26, P138, DOI 10.1016/0003-3472(78)90013-1; EBERT G, 1991, DIE SCHMETTERLINGE B, V2; Elgar M.A., 1988, P59; ENQUIST M, 1983, J THEOR BIOL, V102, P387, DOI 10.1016/0022-5193(83)90376-4; FAGERSTROM T, 1982, OECOLOGIA, V52, P164, DOI 10.1007/BF00363830; Fiedler Konrad, 1994, Nota Lepidopterologica, V17, P5; Gotthard K, 1999, OIKOS, V84, P453, DOI 10.2307/3546424; GOTTHARD K, 1994, OECOLOGIA, V99, P281, DOI 10.1007/BF00627740; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; JONES RE, 1982, AUST J ZOOL, V30, P223, DOI 10.1071/ZO9820223; KARLSSON B, 1995, EVOLUTION, V49, P955, DOI 10.1111/j.1558-5646.1995.tb02330.x; Karlsson B, 1997, P ROY SOC B-BIOL SCI, V264, P475, DOI 10.1098/rspb.1997.0068; KARLSSON B, 1990, FUNCT ECOL, V4, P609, DOI 10.2307/2389728; LACTIN DJ, 1995, ENVIRON ENTOMOL, V24, P68, DOI 10.1093/ee/24.1.68; Leimar O, 1996, OIKOS, V76, P228, DOI 10.2307/3546194; LEIMAR O, 1984, J THEOR BIOL, V111, P475, DOI 10.1016/S0022-5193(84)80235-0; LEIMAR O, 1994, P ROY SOC B-BIOL SCI, V258, P121, DOI 10.1098/rspb.1994.0151; LOGAN JA, 1976, ENVIRON ENTOMOL, V5, P1133, DOI 10.1093/ee/5.6.1133; Muller H.J., 1992, DORMANZ ARTHROPODEN; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; NYLIN S, 1992, BIOL J LINN SOC, V47, P301, DOI 10.1111/j.1095-8312.1992.tb00672.x; NYLIN S, 1989, ECOL ENTOMOL, V14, P209, DOI 10.1111/j.1365-2311.1989.tb00771.x; NYLIN S, 1995, BIOL J LINN SOC, V55, P143, DOI 10.1006/bijl.1995.0033; NYLIN S, 1993, ECOLOGY, V74, P1414, DOI 10.2307/1940071; NYLIN S, 1994, SERIES ENTOM, V52, P41; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff D, 1983, DIAPAUSE LIFE CYCLE, P253; Roff Derek A., 1992; ROSENBERG RH, 1991, ANIM BEHAV, V42, P805, DOI 10.1016/S0003-3472(05)80124-1; SACHS L., 1997, ANGEW STAT; *SCHWEIZ BUND NAT, 1987, TAGF IHR LEB; Spieth H.R., 1985, Zoologische Jahrbuecher Abteilung fuer Systematik Oekologie und Geographie der Tiere, V112, P35; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stutt AD, 1998, ANIM BEHAV, V55, P1341, DOI 10.1006/anbe.1998.0728; THORNHILL R, 1987, AM NAT, V130, P711, DOI 10.1086/284740; THORNHILL R, 1984, EVOLUTION, V38, P204, DOI 10.1111/j.1558-5646.1984.tb00272.x; Thornhill R., 1983, EVOLUTION INSECT MAT; Tolman T, 1998, TAGFALTER EUROPAS NO; VanDyck H, 1997, ECOL ENTOMOL, V22, P116, DOI 10.1046/j.1365-2311.1997.00041.x; VanDyck H, 1997, ANIM BEHAV, V53, P39, DOI 10.1006/anbe.1996.0276; WICKMAN PO, 1992, EVOLUTION, V46, P1525, DOI 10.1111/j.1558-5646.1992.tb01142.x; WICKMAN PO, 1985, ANIM BEHAV, V33, P1162, DOI 10.1016/S0003-3472(85)80176-7; WIKLUND C, 1982, EVOLUTION, V36, P56, DOI 10.1111/j.1558-5646.1982.tb05009.x; WIKLUND C, 1991, OIKOS, V60, P373, DOI 10.2307/3545080; WIKLUND C, 1991, OIKOS, V60, P241, DOI 10.2307/3544871; WIKLUND C, 1977, OECOLOGIA, V31, P153, DOI 10.1007/BF00346917; ZONNEVELD C, 1991, THEOR POPUL BIOL, V40, P308, DOI 10.1016/0040-5809(91)90058-N; Zonneveld C, 1996, AM NAT, V147, P946, DOI 10.1086/285887; ZONNEVELD C, 1992, B MATH BIOL, V54, P957 64 78 80 1 23 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos AUG 2000 90 2 372 380 10.1034/j.1600-0706.2000.900218.x 9 Ecology Environmental Sciences & Ecology 349EX WOS:000089031600018 2018-11-12 J Haugen, TO Haugen, TO Growth and survival effects on maturation pattern in populations of grayling with recent common ancestors OIKOS English Article LIFE-HISTORY EVOLUTION; GUPPIES POECILIA-RETICULATA; PHENOTYPIC PLASTICITY; SALVELINUS-FONTINALIS; GENETIC CHANGES; BROWN TROUT; BROOK TROUT; EGG SIZE; AGE; MATURITY Mortality and growth rates were shown to influence maturation patterns in five populations of grayling (Thymallus thymallus) in central Norway. The populations share recent common ancestors as they derive from introductions performed in 1910, and they inhabit lakes with different environmental conditions (i.e. length of growth season, lake area and fishing pressure). Mortality rate (range of Z-values: 0.36-0.77) and growth pattern varied strongly among the populations. Mortality rates were negatively associated with papulation mean age at maturity (r(sp) = - 0.90), supporting life-history theory which predicts early maturation to be favoured under conditions with high adult mortalities. Maturation reaction norms differed significantly among the populations. Individuals From one population showed no maturation plasticity (all individuals matured at age three), whereas rapid growers were found to mature earlier than slow growers in the remaining four populations. Life-history theory is again supported as it predicts rapid growers to mature early due to high age-specific fecundity and short generation times. Given low mortality risks, slow growers are predicted to delay maturation in order to gain high first-time fecundity. In high-mortality systems all individuals are predicted to mature early. This theory is supported by the present data as populationwise maturation plasticity increased with decreasing mortality rates. In the population with no maturation plasticity the corresponding high mortality rates were probably due to high fishing pressures. Univ Oslo, Dept Biol, Div Zool, N-0316 Oslo, Norway Haugen, TO (reprint author), Univ Oslo, Dept Biol, Div Zool, POB 1050 Blindern, N-0316 Oslo, Norway. throndh@bio.uio.no Alm G., 1959, REP I FRESH RES DROT, V40, P6; Bagenal T.B., 1978, P75; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BELLAMY GC, 1983, THESIS U READING; Carvalho GR, 1996, BIOL J LINN SOC, V57, P219, DOI 10.1111/j.1095-8312.1996.tb00310.x; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CONOVER DO, 1997, EARLY LIFE HIST RECR, P305; FRANCIS RICC, 1990, J FISH BIOL, V36, P883, DOI 10.1111/j.1095-8649.1990.tb05636.x; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GEBHARDT MD, 1988, J EVOLUTION BIOL, V1, P335, DOI 10.1046/j.1420-9101.1988.1040335.x; GEBHARDT MD, 1993, J EVOLUTION BIOL, V6, P1, DOI 10.1046/j.1420-9101.1993.6010001.x; GHARRETT AJ, 1987, CAN J FISH AQUAT SCI, V44, P787, DOI 10.1139/f87-096; GULLAND JA, 1961, J CONSEIL PERMANENT, V26, P215; Haugen TO, 1996, J FISH BIOL, V49, P301, DOI 10.1111/j.1095-8649.1996.tb00025.x; Haugen TO, 1996, J FISH BIOL, V48, P964; HAUGEN TO, 2000, IN PRESS J FISH BIOL; Hendry AP, 1998, CAN J FISH AQUAT SCI, V55, P1387, DOI 10.1139/cjfas-55-6-1387; Hosmer DW, 1989, APPL LOGISTIC REGRES; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Hutchings JA, 1996, ECOSCIENCE, V3, P25, DOI 10.1080/11956860.1996.11682311; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; HUTCHINGS JA, 1993, EXPLOITATION EVOLVIN, P107; HUTCHINGS JA, 1997, EARLY LIFE HIST RECR, P139; JONSSON B, 1984, OECOLOGIA, V61, P319, DOI 10.1007/BF00379628; Kinnison MT, 1998, CAN J FISH AQUAT SCI, V55, P1946, DOI 10.1139/cjfas-55-8-1946; Littell RC, 1996, SAS SYSTEM MIXED MOD; MCKENZIE WD, 1983, COPEIA, P770; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Moreau J., 1987, P81; NEWMAN RA, 1988, EVOLUTION, V42, P763, DOI 10.1111/j.1558-5646.1988.tb02494.x; NORTHCOTE TG, 1995, REV FISH BIOL FISHER, V5, P141; PERRIN N, 1990, FUNCT ECOL, V4, P53, DOI 10.2307/2389652; POLICANSKY D, 1993, EXPLOITATION EVOLVIN, P2; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick David, 1996, P243; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; REZNICK DN, 1993, EXPLOITATION EVOLVIN, P72; Ricker W. E., 1975, FISHERIES RES BOARD, V191, P382; RICKER WE, 1969, METHODS ESTIMATING V; Roff D. A., 1997, EVOLUTIONARY QUANTIT; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; Schlichting C. D., 1998, PHENOTYPIC EVOLUTION; Schmalhausen I. I., 1949, FACTORS EVOLUTION; Sokal R.R., 1995, BIOMETRY; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1983, EVOLUTION, V37, P601, DOI 10.1111/j.1558-5646.1983.tb05577.x; STEARNS SC, 1983, AM ZOOL, V23, P65; Travis Joseph, 1994, P171; VETTER EF, 1988, FISH B-NOAA, V86, P25; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Woolland J.V., 1988, J GRAYLING SOC SPR, P28; Wootton R. J., 1990, ECOLOGY TELEOST FISH; WOOTTON RJ, 1979, S ZOOL SOC LOND, V44, P133 57 33 34 0 7 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos JUL 2000 90 1 107 118 10.1034/j.1600-0706.2000.900111.x 12 Ecology Environmental Sciences & Ecology 341ML WOS:000088594100011 2018-11-12 J Tella, JL; Bortolotti, GR; Dawson, RD; Forero, MG Tella, JL; Bortolotti, GR; Dawson, RD; Forero, MG The T-cell-mediated immune response and return rate of fledgling American kestrels are positively correlated with parental clutch size PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article immunocompetence; clutch size; offspring viability; American kestrel FLYCATCHERS FICEDULA-HYPOLEUCA; MATE CHOICE; EMBRYONIC-DEVELOPMENT; NESTLING WEIGHT; BLOOD PARASITES; HIRUNDO-RUSTICA; BARN SWALLOWS; PARUS-MAJOR; GREAT TITS; VITAMIN-E Life-history theory predicts that parents face a trade-off between the number and viability of the progeny they produce. We found evidence for an apparent trade-off in a free-living population of American kestrels (Falco sparverius), as larger clutches produced more but lighter fledglings. However, while the body mass of fledglings has traditionally been used as a measure of survival prospect, offspring immunocompetence should also play an important role; We thus measured the T-cell-mediated immune response of fledgling kestrels in relation to brood traits and nest-rearing conditions through a cross-fostering experiment. The immune response was positively correlated with the body condition of fledglings, but was also higher in those hatched from five-egg than four-egg clutches. These results were not influenced by other brood traits, nor by current exposure to stressors and infectious agents, as measured by serological variables. Such ability to resist pathogens may account for why the probability of offspring returning to the study area in subsequent years, when controlling for brood size, was higher for five-egg than four-egg clutches. These results suggest an optimal clutch size through maternal effects on offspring immunocompetence rather than a trade-off between the number and quality of the offspring. Univ Saskatchewan, Dept Biol, Saskatoon, SK S7N 5E2, Canada Tella, JL (reprint author), Univ Saskatchewan, Dept Biol, Saskatoon, SK S7N 5E2, Canada. bortolotti@sask.usask.ca Tella, Jose/I-3707-2015; CSIC, EBD Donana/C-4157-2011 Tella, Jose/0000-0002-3038-7424; CSIC, EBD Donana/0000-0003-4318-6602 BORTOLOTTI GR, 1992, ANIM BEHAV, V44, P811, DOI 10.1016/S0003-3472(05)80577-9; BORTOLOTTI GR, 1994, J RAPTOR RES, V28, P127; BORTOLOTTI GR, 1993, ORNIS SCAND, V24, P41, DOI 10.2307/3676408; Bustamante J, 1997, BIOL CONSERV, V80, P153, DOI 10.1016/S0006-3207(96)00136-X; Christe P, 1998, OIKOS, V83, P175, DOI 10.2307/3546559; CRAWLEY MJ, 1993, GLIM ECOLOISTS; FORERO MG, 1998, THESIS U SEVILLA SPA; Gerrard JM, 1996, BIRDS BESNARD LAKE A; GOTO N, 1978, POULTRY SCI, V57, P246, DOI 10.3382/ps.0570246; Haq AU, 1996, POULTRY SCI, V75, P1092, DOI 10.3382/ps.0751092; Lessells C.M., 1991, P32; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; MAXWELL MH, 1993, WORLD POULTRY SCI J, V49, P34, DOI 10.1079/WPS19930004; McCullagh P., 1983, GEN LINEAR MODELLING; Merino S, 1999, ANIM BEHAV, V58, P219, DOI 10.1006/anbe.1999.1127; MONOGHAN P, 1997, TRENDS ECOL EVOL, V12, P270; Moreno J, 1999, P ROY SOC B-BIOL SCI, V266, P1105, DOI 10.1098/rspb.1999.0750; Moreno J, 1998, OECOLOGIA, V115, P312, DOI 10.1007/s004420050522; Ots I, 1998, FUNCT ECOL, V12, P700, DOI 10.1046/j.1365-2435.1998.00219.x; Owens IPF, 1999, TRENDS ECOL EVOL, V14, P170, DOI 10.1016/S0169-5347(98)01580-8; PASTORET P, 1998, HDB VERTEBRATE IMMUN; Potti J, 1999, OECOLOGIA, V120, P1, DOI 10.1007/s004420050826; Ramsay SL, 1998, P ROY SOC B-BIOL SCI, V265, P1401, DOI 10.1098/rspb.1998.0448; RICKLEFS RE, 1992, P NATL ACAD SCI USA, V89, P4722, DOI 10.1073/pnas.89.10.4722; ROYAL NJ, 1999, FUNCT ECOL, V13, P298; Saino N, 1997, J ANIM ECOL, V66, P827, DOI 10.2307/5998; Saino N, 1997, P NATL ACAD SCI USA, V94, P549, DOI 10.1073/pnas.94.2.549; Saino N, 1998, OIKOS, V81, P217, DOI 10.2307/3547043; Selman RG, 1996, P ROY SOC B-BIOL SCI, V263, P1585, DOI 10.1098/rspb.1996.0232; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; Smits JE, 1999, FUNCT ECOL, V13, P567, DOI 10.1046/j.1365-2435.1999.00338.x; SOLER JJ, 1999, BEHAV ECOL, V10, P281; Sorci G, 1997, P ROY SOC B-BIOL SCI, V264, P1593, DOI 10.1098/rspb.1997.0222; Stearns S. C., 1992, EVOLUTION LIFE HIST; Surai PF, 1998, BRIT POULTRY SCI, V39, P257, DOI 10.1080/00071669889222; Tella JL, 1999, P NATL ACAD SCI USA, V96, P1785, DOI 10.1073/pnas.96.4.1785; TINBERGEN JM, 1990, J ANIM ECOL, V59, P1113, DOI 10.2307/5035; WEDEKIND C, 1994, PHILOS T R SOC B, V346, P303, DOI 10.1098/rstb.1994.0147; WIEBE KL, 1993, ORNIS SCAND, V24, P197, DOI 10.2307/3676735; WIEBE KL, 1995, J ZOOL, V237, P285, DOI 10.1111/j.1469-7998.1995.tb02763.x; Wiehn J, 1997, ETHOLOGY, V103, P304; Wiehn J, 1997, J AVIAN BIOL, V28, P47, DOI 10.2307/3677093 43 66 66 0 5 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. MAY 7 2000 267 1446 891 895 10.1098/rspb.2000.1086 5 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 316CK WOS:000087149700007 10853731 Green Published 2018-11-12 J Radford, AN; Blakey, JK Radford, AN; Blakey, JK Is variation in brood sex ratios adaptive in the great tit (Parus major)? BEHAVIORAL ECOLOGY English Article great tits; molecular sexing SEASONAL-VARIATION; SEYCHELLES WARBLERS; QUALITY; BIRDS; ATTRACTIVENESS; MANIPULATION; CONSEQUENCES; COMPETITION; ADJUSTMENT; ALLOCATION Life-history theory predicts skewed offspring sex ratios in a range of situations in which the costs and benefits of producing the two sexes differ. In recent years, many studies have demonstrated biased sex ratios in a variety of bird species. However, many of these investigations have been based on small sample sizes, on data from a single year, or both. Using a recently developed polymerase chain reaction-based molecular DNA technique, 912 great tit (Parus major) nestlings from 118 broods in 5 different years were sexed. As found in a number of previous studies on the same species, there were significant predictors of offspring sex ratio in individual years. However, there were no consistent trends across years, and none of the measured variables significantly predicted sex ratio over all years combined. Furthermore, brood sex ratio of the population did not depart from the expected binomial distribution. Although there are theoretical advantages to manipulating the sex ratio in this and other species, the physiological mechanism by which it is achieved in birds remains obscurer We argue that data from several years are needed to confirm whether facultative sex ratio manipulation is a consistent breeding strategy used by birds. Univ Oxford, Dept Zool, Edward Grey Inst Field Ornithol, Oxford OX1 3PS, England Radford, AN (reprint author), Univ Cambridge, Dept Zool, Downing St, Cambridge CB2 3EJ, England. BEDNARZ JC, 1991, AM NAT, V137, P116, DOI 10.1086/285149; BLAKEY JK, 1994, IBIS, V136, P457, DOI 10.1111/j.1474-919X.1994.tb01122.x; BLAKEY JK, 1994, ANIM BEHAV, V47, P1227, DOI 10.1006/anbe.1994.1165; BLANK JL, 1983, P NATL ACAD SCI-BIOL, V80, P6141, DOI 10.1073/pnas.80.19.6141; BORTOLOTTI GR, 1986, AM NAT, V127, P495, DOI 10.1086/284498; Bradbury RR, 1998, P ROY SOC B-BIOL SCI, V265, P895, DOI 10.1098/rspb.1998.0375; BURLEY N, 1981, SCIENCE, V211, P721, DOI 10.1126/science.211.4483.721; CARWLEY MJ, 1993, GLIM ECOLOGISTS; CHARNOV E L, 1982; CHARNOV EL, 1975, EVOLUTION, V29, P366, DOI 10.1111/j.1558-5646.1975.tb00216.x; Charnov Eric L., 1993, P1; CLARK AB, 1978, SCIENCE, V201, P163, DOI 10.1126/science.201.4351.163; CLUTTONBROCK TH, 1984, NATURE, V308, P358, DOI 10.1038/308358a0; Daan S, 1996, BEHAV ECOL, V7, P426, DOI 10.1093/beheco/7.4.426; DHONDT AA, 1970, BIRD STUDY, V17, P282, DOI 10.1080/00063657009476285; DIJKSTRA C, 1990, FUNCT ECOL, V4, P143, DOI 10.2307/2389333; DRENT PJ, 1984, ARDEA, V72, P127; Ellegren H, 1996, P NATL ACAD SCI USA, V93, P11723, DOI 10.1073/pnas.93.21.11723; Fisher R. A., 1958, GENETICAL THEORY NAT; FRANK SA, 1990, ANNU REV ECOL SYST, V21, P13, DOI 10.1146/annurev.ecolsys.21.1.13; GREENWOOD PJ, 1979, ANIM BEHAV, V27, P645, DOI 10.1016/0003-3472(79)90001-0; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; HAMILTON WD, 1967, SCIENCE, V156, P477, DOI 10.1126/science.156.3774.477; HOWE HF, 1977, SCIENCE, V198, P744, DOI 10.1126/science.198.4318.744; Koenig WD, 1996, AUK, V113, P902, DOI 10.2307/4088867; Kolliker M, 1999, BEHAV ECOL, V10, P68, DOI 10.1093/beheco/10.1.68; Komdeur J, 1996, P ROY SOC B-BIOL SCI, V263, P661, DOI 10.1098/rspb.1996.0099; Komdeur J, 1997, NATURE, V385, P522, DOI 10.1038/385522a0; KRACKOW S, 1995, BIOL REV, V70, P225, DOI 10.1111/j.1469-185X.1995.tb01066.x; Lessells CM, 1996, J AVIAN BIOL, V27, P135, DOI 10.2307/3677142; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; MACARTHUR RH, 1965, THEORETICAL MATH BIO, P388, DOI DOI 10.1038/NATURE04624; *MIN INC, 1998, MIN REF MAN WIND; *NAG, 1993, GEN LIN INT MOD; NORRIS K, 1993, NATURE, V362, P537, DOI 10.1038/362537a0; NORRIS KJ, 1990, BEHAV ECOL SOCIOBIOL, V26, P129; OLSEN PD, 1991, BEHAV ECOL SOCIOBIOL, V28, P417, DOI 10.1007/BF00164123; PERRINS CM, 1963, THESIS U OXFORD OXFO; PERRINS CM, 1990, POPULATION BIOL PASS, P121; SHAW RF, 1953, AM NAT, V87, P337, DOI 10.1086/281794; SLAGSVOLD T, 1992, J ANIM ECOL, V61, P249, DOI 10.2307/5318; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; SMITH JNM, 1989, AM NAT, V133, P830, DOI 10.1086/284955; Svensson E, 1996, P ROY SOC B-BIOL SCI, V263, P357, DOI 10.1098/rspb.1996.0055; Svensson L., 1992, IDENTIFICATION GUIDE; Tella JL, 1996, IBIS, V138, P342, DOI 10.1111/j.1474-919X.1996.tb04350.x; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; Verboven N, 1998, OIKOS, V81, P511, DOI 10.2307/3546771; WEATHERHEAD PJ, 1979, AM NAT, V113, P201, DOI 10.1086/283379; WIEBE KL, 1992, BEHAV ECOL SOCIOBIOL, V30, P379; WILLIAMS GC, 1979, PROC R SOC SER B-BIO, V205, P567, DOI 10.1098/rspb.1979.0085; WILLSON MF, 1963, AM NAT, V97, P405, DOI 10.1086/282292; ZIJLSTRA M, 1992, FUNCT ECOL, V6, P553, DOI 10.2307/2390052 53 70 70 1 7 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 BEHAV ECOL Behav. Ecol. MAY-JUN 2000 11 3 294 298 10.1093/beheco/11.3.294 5 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 337VN WOS:000088382500008 Bronze 2018-11-12 J Lively, CM; Hazel, WN; Schellenberger, MJ; Michelson, KS Lively, CM; Hazel, WN; Schellenberger, MJ; Michelson, KS Predator-induced defense: Variation for inducibility in an intertidal barnacle ECOLOGY English Article Acanthina angelica; barnacle; Chthamalus anisopoma; conditional strategy; defense, predator induced; genetic polymorphism; Gulf of California; inducible defense; life-history strategies; phenotypic plasticity; variation for inducibility; variation, quantitative LIFE-HISTORY SHIFTS; MARINE BRYOZOAN; BIOMPHALARIA-GLABRATA; PHENOTYPIC PLASTICITY; CHTHAMALUS-ANISOPOMA; SHELL DIMORPHISM; REACTION NORMS; EVOLUTION; SETTLEMENT; MAINTENANCE Phenotypic plasticity is a widespread and often adaptive feature of organisms living in heterogeneous environments. The advantages of plasticity seem particularly clear in organisms that show environmentally cued switches between alternative morphs. Information concerning the presence and nature of variation underlying the induction of these morphs, especially under field conditions, would be valuable. Here we examined the basis for variation underlying a predator-induced defense in an intertidal barnacle (Chthamalus anisopoma). In a previous experiment, juvenile barnacles were exposed to a predatory gastropod (Acanthina angelica). Some of these individuals were induced to develop as a predation-resistant form, but other individuals developed as the default, undefended morph. Here we tested two alternative explanations for this observation. One, the "continuous-sensitivity" model, holds that there is normally distributed genetic variation for sensitivity to the cue. This model predicts that, given sufficient exposure to the predator, all individuals would develop as the induced form; it suggests that the previous findings resulted from an insufficient dose of the cue. The second model, the "discontinuous-sensitivity" model, asserts that there is a genetic polymorphism for inducibility such that some individuals are not able to respond to the cue. This model suggests that, with repeated exposures to the predator, the resulting dose-response curve would reach an asymptote at <100%. We conducted a dose-response experiment in order to contrast these two alternatives, and to examine an expectation generated by life-history theory, namely, that repeated exposure to the predator would induce maturity at a younger age. With respect to the life-history prediction, we found no evidence to suggest that repeated exposure of juvenile barnacles to Acanthina affected the age at maturity, even though we found strong evidence for size-selective attack by this predator. With respect to variation underlying induction to the defended morph, we obtained a dose-response curve showing a significant asymptote at about 22% induction, which is inconsistent with the continuous-sensitivity model. Hence the results indicate the possibility of a developmental polymorphism in the barnacle, but no indication of life-history shifts in response to the predator. Indiana Univ, Dept Biol, Bloomington, IN 47405 USA; Depauw Univ, Dept Biol Sci, Greencastle, IN 46135 USA Lively, CM (reprint author), Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. Lively, Curtis/A-8057-2011 BRONMARK C, 1992, SCIENCE, V258, P1348, DOI 10.1126/science.258.5086.1348; BRUSCA RC, 1980, COMMON INTERTIDAL IN; COLLINS JP, 1983, AM ZOOL, V23, P77; CONNELL JH, 1961, ECOL MONOGR, V31, P61, DOI 10.2307/1950746; CONNELL JH, 1961, ECOLOGY, V42, P710, DOI 10.2307/1933500; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; DUNGAN ML, 1986, AM NAT, V127, P292, DOI 10.1086/284486; FALCONER CS, 1981, INTRO QUANTITATIVE G; GAINES S, 1985, OECOLOGIA, V67, P267, DOI 10.1007/BF00384297; HARVELL CD, 1990, Q REV BIOL, V65, P323, DOI 10.1086/416841; Harvell CD, 1998, EVOLUTION, V52, P80, DOI 10.1111/j.1558-5646.1998.tb05140.x; HARVELL CD, 1986, AM NAT, V128, P810, DOI 10.1086/284607; HARVELL CD, 1992, ECOLOGY, V73, P1567, DOI 10.2307/1940010; Hazel W. N., 1993, ADAPTATION STOCHASTI, P147; HAZEL WN, 1990, P ROY SOC B-BIOL SCI, V242, P181, DOI 10.1098/rspb.1990.0122; HAZEL WN, 1979, ECOL ENTOMOL, V4, P393, DOI 10.1111/j.1365-2311.1979.tb00599.x; HAZEL WN, 1983, ECOL ENTOMOL, V8, P37, DOI 10.1111/j.1365-2311.1983.tb00480.x; Hosmer DW, 1989, APPL LOGISTIC REGRES; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; Keen A.M., 1971, SEA SHELLS TROPICAL; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEVINS R, 1962, AM NAT, V96, P361, DOI 10.1086/282245; LIVELY CM, 1993, ECOLOGY, V74, P162, DOI 10.2307/1939511; LIVELY CM, 1986, EVOLUTION, V40, P232, DOI 10.1111/j.1558-5646.1986.tb00466.x; LIVELY CM, 1986, ECOLOGY, V67, P858, DOI 10.2307/1939808; LIVELY CM, 1986, AM NAT, V128, P561, DOI 10.1086/284588; Lively Curtis M., 1999, P245; LLOYD DG, 1984, BIOL J LINN SOC, V21, P357, DOI 10.1111/j.1095-8312.1984.tb01600.x; MALUSA JR, 1986, BIOL BULL-US, V170, P409, DOI 10.2307/1541851; MALUSA JR, 1985, VELIGER, V28, P1; McCollum SA, 1996, EVOLUTION, V50, P583, DOI 10.1111/j.1558-5646.1996.tb03870.x; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; MITTELBACH GG, 1981, ECOLOGY, V62, P1370, DOI 10.2307/1937300; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; NORUSIS MJ, 1994, SPSS ADV STAT 6 1; PFENNIG DW, 1992, EVOLUTION, V46, P1408, DOI 10.1111/j.1558-5646.1992.tb01133.x; RAIMONDI PT, 1991, OECOLOGIA, V85, P349, DOI 10.1007/BF00320610; RAIMONDI PT, 1988, ECOLOGY, V69, P400, DOI 10.2307/1940438; RAIMONDI PT, 1990, ECOL MONOGR, V60, P283, DOI 10.2307/1943059; Roff DA, 1996, Q REV BIOL, V71, P3, DOI 10.1086/419266; Rollo C. D., 1995, PHENOTYPES THEIR EPI; Schlichting C. D., 1998, PHENOTYPIC EVOLUTION; SCHLICHTING CD, 1986, ANNU REV ECOL SYST, V17, P667, DOI 10.1146/annurev.es.17.110186.003315; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; THORNHILL JA, 1986, PARASITOLOGY, V93, P443, DOI 10.1017/S0031182000081166; TOLLRIAN R, 1995, ECOLOGY, V76, P1691, DOI 10.2307/1940703; TOLLRIAN R, 1999, ECOLOGY EVOLUTION IN; Travis Joseph, 1994, P99; TREXLER JC, 1993, ECOLOGY, V74, P1629, DOI 10.2307/1939921 50 53 57 0 23 ECOLOGICAL SOC AMER WASHINGTON 1707 H ST NW, STE 400, WASHINGTON, DC 20006-3915 USA 0012-9658 ECOLOGY Ecology MAY 2000 81 5 1240 1247 10.2307/177204 8 Ecology Environmental Sciences & Ecology 309XQ WOS:000086795100005 2018-11-12 J Nager, RG; Monaghan, P; Houston, DC Nager, RG; Monaghan, P; Houston, DC Within-clutch trade-offs between the number and quality of eggs: Experimental manipulations in gulls ECOLOGY English Article chick survival; clutch size; egg composition; egg number; egg quality; egg size; Larus fuscus; Lesser Black-backed Gull; life history theory; trade-offs EARLY NESTLING GROWTH; BLACK-BACKED GULLS; PARENTAL QUALITY; HERRING GULL; SIZE VARIATION; LARUS-ARGENTATUS; ZEBRA FINCHES; NUTRITIONAL CONSTRAINTS; FICEDULA-HYPOLEUCA; CHICK SURVIVAL We experimentally increased the number of eggs laid by Lesser Black-backed Gulls and examined the relationship between egg number and egg quality. Egg quality was measured in terms of egg composition and the probability that an egg would give rise to a fledged chick. In measuring the latter, we removed the potentially confounding effects (1) between parental quality and equality and (2) between increased egg production and parental condition, using a cross-fostering protocol in which eggs were reared by control parents. Lesser Black-backed Gulls were capable of producing, on average, almost three times the normal clutch of three eggs. Although egg mass did not fall below that of the last laid egg in normal clutches, as the clutch extended beyond three, experimental eggs contained relatively less lipid and relatively more water. Overall, the percentage of eggs that gave rise to hedged chicks (when reared singly by a foster parent) declined significantly with position in the experimental laying sequence; about two-thirds of the eggs laid at the beginning of the laying sequence gave rise to fledged chicks, whereas only about one-third of the last laid eggs did so. This was not due to any seasonal change in the capacity of foster parents to rear the chicks, and neither hatching nor fledging success of the eggs was related to their fresh mass. Thus, as more eggs are laid, important changes in egg composition occur that have in themselves, substantial effects on offspring survival. This study provides clear evidence of a trade-off between egg number and egg quality. Univ Glasgow, Div Environm & Evolutionary Biol, Ornithol Grp, Glasgow G12 8QQ, Lanark, Scotland Monaghan, P (reprint author), Univ Glasgow, Div Environm & Evolutionary Biol, Ornithol Grp, Graham Kerr Bldg, Glasgow G12 8QQ, Lanark, Scotland. P.Monaghan@bio.gla.ac.uk Monaghan, Pat/E-6810-2015; Monaghan, Pat/A-4271-2008 ALISAUSKAS RT, 1986, CONDOR, V88, P84, DOI 10.2307/1367757; AMUNDSEN T, 1990, AUK, V107, P410, DOI 10.2307/4087629; Amundsen T, 1996, J ANIM ECOL, V65, P545, DOI 10.2307/5735; AMUNDSEN T, 1995, CONDOR, V97, P345, DOI 10.2307/1369020; APANIUS V, 1998, AVIAN GROWTH DEV EVO, P203; ARCESE P, 1988, J ANIM ECOL, V57, P119, DOI 10.2307/4768; Bernardo J, 1996, AM ZOOL, V36, P216; Blomqvist D, 1997, OECOLOGIA, V110, P18, DOI 10.1007/s004420050128; BOLTON M, 1991, J ANIM ECOL, V60, P949, DOI 10.2307/5424; BOLTON M, 1993, CAN J ZOOL, V71, P273, DOI 10.1139/z93-039; BOLTON M, 1992, J ANIM ECOL, V61, P521, DOI 10.2307/5607; BOUTIN S, 1990, CAN J ZOOL, V68, P203, DOI 10.1139/z90-031; BROUWER A, 1995, IBIS, V137, P272, DOI 10.1111/j.1474-919X.1995.tb03249.x; Carey Cynthia, 1996, P324; CRAWLEY MJ, 1992, GLIM ECOLOGISTS; DOBUSH GR, 1985, CAN J ZOOL, V63, P1917, DOI 10.1139/z85-285; Erikstad KE, 1998, J AVIAN BIOL, V29, P3, DOI 10.2307/3677334; Finkler MS, 1998, J COMP PHYSIOL B, V168, P17, DOI 10.1007/s003600050116; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.ecolsys.22.1.409; GRAVELAND J, 1990, EXPERIENTIA, V46, P962, DOI 10.1007/BF01939390; HARIO M, 1991, ORNIS SCAND, V22, P308, DOI 10.2307/3676501; HARRIS M. P., 1965, IBIS, V107, P256, DOI 10.1111/j.1474-919X.1965.tb07304.x; HAYMES GT, 1977, CAN J ZOOL, V55, P1762, DOI 10.1139/z77-228; HAYWOOD S, 1993, Q REV BIOL, V68, P33, DOI 10.1086/417910; Heaney V, 1998, IBIS, V140, P693, DOI 10.1111/j.1474-919X.1998.tb04719.x; HEANEY V, 1995, P ROY SOC B-BIOL SCI, V261, P361, DOI 10.1098/rspb.1995.0160; HILL WL, 1993, DEV PSYCHOBIOL, V26, P237, DOI 10.1002/dev.420260502; HOUSTON DC, 1995, IBIS, V137, P322, DOI 10.1111/j.1474-919X.1995.tb08028.x; HOUSTON DC, 1983, J ZOOL, V200, P509; HOUSTON DC, 1995, J COMP PHYSIOL B, V165, P161, DOI 10.1007/BF00301480; JARVINEN A, 1983, ORNIS SCAND, V14, P253, DOI 10.2307/3676313; Kilpi M, 1996, IBIS, V138, P212, DOI 10.1111/j.1474-919X.1996.tb04330.x; MAGRATH RD, 1992, J ZOOL, V227, P639, DOI 10.1111/j.1469-7998.1992.tb04420.x; Mand R, 1996, ORNIS FENNICA, V73, P131; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; McRae SB, 1997, IBIS, V139, P701; MEATHREL C E, 1987, Colonial Waterbirds, V10, P55, DOI 10.2307/1521231; MEATHREL CE, 1987, CONDOR, V89, P364, DOI 10.2307/1368489; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; Monaghan P, 1998, P ROY SOC B-BIOL SCI, V265, P1731, DOI 10.1098/rspb.1998.0495; MONAGHAN P, 1995, P ROY SOC B-BIOL SCI, V259, P189, DOI 10.1098/rspb.1995.0027; NAGER RG, 1992, P ROY SOC B-BIOL SCI, V249, P259, DOI 10.1098/rspb.1992.0112; Nager RG, 1999, P NATL ACAD SCI USA, V96, P570, DOI 10.1073/pnas.96.2.570; NISBET ICT, 1978, IBIS, V120, P207, DOI 10.1111/j.1474-919X.1978.tb06777.x; OJANEN M, 1979, ORNIS SCAND, V10, P22, DOI 10.2307/3676340; Oppliger A, 1996, NATURE, V381, P565, DOI 10.1038/381565a0; PARSONS J, 1970, NATURE, V228, P1221, DOI 10.1038/2281221a0; PARSONS J, 1976, CONDOR, V78, P481, DOI 10.2307/1367097; Perrins CM, 1996, IBIS, V138, P2, DOI 10.1111/j.1474-919X.1996.tb04308.x; Ramsay SL, 1997, J ANIM ECOL, V66, P649, DOI 10.2307/5918; REID WV, 1990, EVOLUTION, V44, P1780, DOI 10.1111/j.1558-5646.1990.tb05248.x; RHYMER JM, 1988, OECOLOGIA, V75, P20, DOI 10.1007/BF00378809; RICKLEFS RE, 1984, CONDOR, V86, P1, DOI 10.2307/1367333; RICKLEFS RE, 1978, AUK, V95, P135, DOI 10.2307/4085504; RICKLEFS RE, 1977, AUK, V94, P350; RICKLEFS RE, 1974, PUBLICATIONS NUTTALL, V15, P152; Roff Derek A., 1992; ROQUE L, 1994, POULTRY SCI, V73, P1838, DOI 10.3382/ps.0731838; Ryder J.P., 1980, P153; RYDER JP, 1977, WILSON BULL, V89, P473; SALZER DW, 1990, ANIM BEHAV, V39, P1149, DOI 10.1016/S0003-3472(05)80787-0; Schwabl H., 1997, P3; Selman RG, 1996, P ROY SOC B-BIOL SCI, V263, P1585, DOI 10.1098/rspb.1996.0232; SINERVO B, 1993, BIOSCIENCE, V43, P210, DOI 10.2307/1312121; SINERVO B, 1991, J EXP ZOOL, V257, P252, DOI 10.1002/jez.1402570216; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH HG, 1995, ECOLOGY, V76, P1, DOI 10.2307/1940626; Stearns S. C., 1992, EVOLUTION LIFE HIST; VANNOORDWIJK AJ, 1981, GENETICA, V55, P221, DOI 10.1007/BF00127206; WALSBERG GE, 1983, AVIAN BIOL, V7, P161; WIEBE KL, 1995, J ZOOL, V237, P285, DOI 10.1111/j.1469-7998.1995.tb02763.x; WILLIAMS AJ, 1982, IBIS, V124, P456, DOI 10.1111/j.1474-919X.1982.tb03791.x; WILLIAMS TD, 1993, OIKOS, V67, P250, DOI 10.2307/3545469; WILLIS M, 1994, DANCE MAG, V68, P36; WINKLER DW, 1985, EVOLUTION, V39, P667, DOI 10.1111/j.1558-5646.1985.tb00403.x 75 122 124 1 36 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology MAY 2000 81 5 1339 1350 10.2307/177212 12 Ecology Environmental Sciences & Ecology 309XQ WOS:000086795100013 2018-11-12 J Sandercock, BK; Beissinger, SR; Stoleson, SH; Melland, RR; Hughes, CR Sandercock, BK; Beissinger, SR; Stoleson, SH; Melland, RR; Hughes, CR Survival rates of a neotropical parrot: Implications for latitudinal comparisons of avian demography ECOLOGY English Review avian demography; Forpus passerinus; Green-rumped Parrotlet; mark-recapture; multistate models; nonbreeder; site fidelity; social systems; survival; tropical vs. temperate LIFE-HISTORY EVOLUTION; CAVITY-NESTING BIRDS; BREEDING DISPERSAL; CAPTURE-RECAPTURE; POPULATION BIOLOGY; SITE-FIDELITY; VARIABLE ENVIRONMENT; HATCHING ASYNCHRONY; SOCIAL-ORGANIZATION; TEMPERATE FORESTS Latitudinal variation in avian demography played an important early role in the development of life history theory, especially in the idea of a cost of reproduction. Recent attempts to determine the survivorship of tropical birds with mark-recapture statistics have proved controversial. Here, we use a small neotropical bird, the Green-rumped parrotlet (Forpus passerinus), as a model system for investigating sources of heterogeneity that might bias interspecific comparisons. Mark-resighting data were collected on 1334 adult parrotlets over a decade. We expected adult survival to be low because this parrot lays a large clutch (mean = 7 eggs), is a cavity nester, and breeds in a highly seasonal environment. A two-age-class term in local survival was nonsignificant, indicating that an age or transience effect was unimportant. Local survival of males did not vary annually, but 19.3% of the yearly variation in female survival was explained by rates of nest loss during stages when females were incubating or brooding young. The overall local survival rate of parrotlets (phi = 0.565) was identical to temperate hole-nesting species of the same body size but was lower than that of tropical birds that lay smaller clutches. However, we also detected considerable heterogeneity in parrotlet survival. Females and males that were sighted but did not breed comprised a mean 23.5% and 52.9% of our population, respectively. Using multistate models, we found that breeders had significantly higher probabilities of local survival (phi = 0.678 vs. 0.486), of retaining their status as breeders (psi = 0.719 vs. 0.279), and of detection (p = 0.997 vs. 0.375) than did nonbreeders. Overall, males and females had comparable local survival rates (breeders phi = 0.698 vs. 0.658, nonbreeders phi = 0.536 vs. 0.436). Our estimates of local survival could be affected by breeding dispersal, but site fidelity of parrotlets was strong: 95% of adults moved <500 m in consecutive years. A literature review for tropical birds showed that mark-resighting studies usually report return rates based on resightings of breeding or territorial adults, whereas mist net studies rely on recaptures and pool birds of different age and social status in their calculations of local survival. Future studies should attempt to compare subsets of avian populations that are similar in demography. Because rates of site fidelity and social system may differ among species, these factors must also be considered in interspecific comparisons of avian life histories. Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA; US Forest Serv, USDA, Rocky Mt Res Stn, Albuquerque, NM 87106 USA; Univ N Dakota, Dept Biol, Grand Forks, ND 58202 USA; Univ Miami, Dept Biol, Coral Gables, FL 33124 USA Sandercock, BK (reprint author), Univ British Columbia, Dept Forest Sci, Ctr Appl Conservat Biol, 3041-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. Sandercock, Brett/L-1644-2016; Beissinger, Steven/F-3809-2012 Sandercock, Brett/0000-0002-9240-0268; ANDERSON DR, 1985, J ANIM ECOL, V54, P89, DOI 10.2307/4622; ARCESE P, 1987, ANIM BEHAV, V35, P773, DOI 10.1016/S0003-3472(87)80114-8; BAKER M, 1995, CONDOR, V97, P663, DOI 10.2307/1369175; Beissinger S.R., 1992, P73; Beissinger S. R., 1993, ADAPTATION STOCHASTI, P132; Beissinger SR, 1998, ANIM BEHAV, V55, P21, DOI 10.1006/anbe.1997.0576; Beissinger SR, 1996, AM NAT, V147, P655, DOI 10.1086/285872; BEISSINGER SR, 1991, AUK, V108, P863; BENSCH S, 1991, J ANIM ECOL, V60, P857, DOI 10.2307/5418; BLONDEL J, 1992, J ANIM ECOL, V61, P205, DOI 10.2307/5523; BRAWN JD, 1995, ECOLOGY, V76, P41, DOI 10.2307/1940630; BRAWN JD, 1988, CONDOR, V90, P61, DOI 10.2307/1368434; Brawn JD, 1999, P INT ORN C, V22, P297; Brosset A., 1990, P259; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; BROWNIE C, 1985, USFWS RES PUBLICATIO, V156; BURNHAM KP, 1992, WILDLIFE 2001 : POPULATIONS, P16; BURNHAM KP, 1987, AM FISHERIES SOC MON, V5; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; CATTERALL CP, 1989, J ANIM ECOL, V58, P557, DOI 10.2307/4848; Chase MK, 1997, AUK, V114, P354, DOI 10.2307/4089238; CURLEE AP, 1995, BEHAV ECOL, V6, P192, DOI 10.1093/beheco/6.2.192; CURRY RL, 1989, J ANIM ECOL, V58, P441, DOI 10.2307/4841; DARLEY JA, 1971, CAN J ZOOLOG, V49, P1465, DOI 10.1139/z71-216; DOWSETT RJ, 1985, BIOTROPICA, V17, P145, DOI 10.2307/2388507; DOWSETT RJ, 1986, OSTRICH, V57, P25, DOI 10.1080/00306525.1986.9633635; Dowsett-Lamaire F., 1983, Gerfaut, V73, P221; DOWSETTLEMAIRE F, 1985, BIOTROPICA, V17, P137, DOI 10.2307/2388506; DOWSETTLEMAIRE F, 1983, OSTRICH, V54, P105, DOI 10.1080/00306525.1983.9634453; DRILLING NE, 1988, AUK, V105, P480; ELDER WH, 1985, WILSON BULL, V97, P517; EMLEN ST, 1991, J ANIM ECOL, V60, P309, DOI 10.2307/5462; Faaborg J, 1995, AUK, V112, P503, DOI 10.2307/4088741; FOGDEN MPL, 1972, IBIS, V114, P307, DOI 10.1111/j.1474-919X.1972.tb00831.x; FORSHAW JM, 1973, PARROTS WORLD; Francis CM, 1995, J APPL STAT, V22, P1075, DOI 10.1080/02664769524838; FRANKLIN DC, 1989, EMU, V89, P140, DOI 10.1071/MU9890140; FREED LA, 1987, AM NAT, V130, P507, DOI 10.1086/284728; FRITH CB, 1995, EMU, V95, P84, DOI 10.1071/MU9950084; GIBBS HL, 1987, J ANIM ECOL, V56, P797, DOI 10.2307/4949; GIBBS JP, 1993, BIOTROPICA, V25, P236, DOI 10.2307/2389188; GRAVES GR, 1983, J FIELD ORNITHOL, V54, P407; Greenberg R., 1980, P493; GREENBERG R, 1986, OECOLOGIA, V69, P618, DOI 10.1007/BF00410372; Greenberg R, 1997, J AVIAN BIOL, V28, P103, DOI 10.2307/3677303; GREENWOOD PJ, 1982, ANNU REV ECOL SYST, V13, P1, DOI 10.1146/annurev.es.13.110182.000245; Grenier JL, 1999, CONDOR, V101, P752, DOI 10.2307/1370062; Haas CA, 1998, AUK, V115, P929, DOI 10.2307/4089511; HARVEY PH, 1979, J ANIM ECOL, V48, P305, DOI 10.2307/4115; HOLMES RT, 1992, ECOLOGY AND CONSERVATION OF NEOTROPICAL MIGRANT LANDBIRDS, P563; Johnston JP, 1997, AM NAT, V150, P771, DOI 10.1086/286093; Jullien M, 1998, J ANIM ECOL, V67, P227, DOI 10.1046/j.1365-2656.1998.00171.x; Karr J.R., 1990, P215; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; Kinnaird MF, 1996, AUK, V113, P431, DOI 10.2307/4088909; Koenig WD, 1996, TRENDS ECOL EVOL, V11, P514, DOI 10.1016/S0169-5347(96)20074-6; KREMENTZ DG, 1989, OIKOS, V56, P203, DOI 10.2307/3565337; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lepson JK, 1995, AUK, V112, P402, DOI 10.2307/4088727; LEWIS DM, 1982, IBIS, V124, P511, DOI 10.1111/j.1474-919X.1982.tb03795.x; Ligon J.D., 1989, P219; LINDSEY GD, 1995, CONDOR, V97, P528, DOI 10.2307/1369038; Loery G, 1997, AUK, V114, P431, DOI 10.2307/4089244; LOISELLE BA, 1992, BIOSCIENCE, V42, P838, DOI 10.2307/1312083; MARTIN TE, 1986, WILSON BULL, V98, P38; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martin TE, 1995, J APPL STAT, V22, P863, DOI 10.1080/02664769524676; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MCDONALD DB, 1993, BEHAV ECOL, V4, P297, DOI 10.1093/beheco/4.4.297; MONTALVO S, 1992, ORNIS SCAND, V23, P491, DOI 10.2307/3676681; MOORE WS, 1989, CONDOR, V91, P242, DOI 10.2307/1368301; MORTON ES, 2000, IN PRESS J FIELD ORN, V71; Morton ML, 1997, ARDEA, V85, P145; Murphy MT, 1996, CONDOR, V98, P82, DOI 10.2307/1369511; MURRAY BG, 1985, ORNITHOL MONOGR, V36, P505; NEWTON I, 1994, BIOL CONSERV, V70, P265, DOI 10.1016/0006-3207(94)90172-4; NICHOLS JD, 1994, ECOLOGY, V75, P2052, DOI 10.2307/1941610; NICHOLS JD, 1984, J WILDLIFE MANAGE, V48, P289, DOI 10.2307/3808491; Nur N., 1993, RM229 USDA FOR SERV, P237; Oatley T.B., 1993, P77; ORELL M, 1994, OECOLOGIA, V100, P339, DOI 10.1007/BF00316963; PEACH W, 1995, IBIS, V137, P497, DOI 10.1111/j.1474-919X.1995.tb03259.x; POWELL GVN, 1995, CONSERV BIOL, V9, P354, DOI 10.1046/j.1523-1739.1995.9020354.x; Pradel R, 1997, BIOMETRICS, V53, P60, DOI 10.2307/2533097; PRADEL R, 1998, PROGRAM SURGE VERSIO; Prevot-Julliard AC, 1998, AUK, V115, P85; RABENOLD KN, 1985, BEHAV ECOL SOCIOBIOL, V17, P1, DOI 10.1007/BF00299422; RALPH CJ, 1994, WILSON BULL, V106, P615; RALPH CJ, 1994, CONDOR, V96, P503, DOI 10.2307/1369332; Ralph CJ, 1996, CONDOR, V98, P312, DOI 10.2307/1369149; Ralph CJ, 1998, CONDOR, V100, P468, DOI 10.2307/1369712; RALPH CJ, 1995, CONDOR, V97, P729, DOI 10.2307/1369181; Remsen JV, 1996, AUK, V113, P381, DOI 10.2307/4088905; REMSEN JV, 1983, BIOTROPICA, V15, P223, DOI 10.2307/2387833; Ricklefs RE, 1997, ECOL MONOGR, V67, P23, DOI 10.1890/0012-9615(1997)067[0023:CDONWP]2.0.CO;2; Robinson S.K., 1990, P229; Rohner C, 1997, ANIM BEHAV, V53, P901, DOI 10.1006/anbe.1996.0381; ROWLEY I, 1993, EMU, V93, P235, DOI 10.1071/MU9930235; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; SAETHER BE, 1989, ORNIS SCAND, V20, P13, DOI 10.2307/3676702; *SAS I, 1990, SAS US GUID STAT VER; SHIELDS WM, 1984, AUK, V101, P780, DOI 10.2307/4086904; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SMITH JNM, 1989, AM NAT, V133, P830, DOI 10.1086/284955; SMITH SM, 1978, AM NAT, V112, P571, DOI 10.1086/283298; SMITH TB, 1990, EVOLUTION, V44, P832, DOI 10.1111/j.1558-5646.1990.tb03808.x; SNOW D. W., 1962, ZOOLOGICA [NEW YORK], V47, P65; SNOW DW, 1974, CONDOR, V76, P262, DOI 10.2307/1366339; SNYDER NFR, 1987, PARROTS LUQUILLO NAT; SPENDELOW JA, 1995, ECOLOGY, V76, P2415, DOI 10.2307/2265817; Stearns S. C., 1992, EVOLUTION LIFE HIST; STILES F.G., 1988, TROPICAL RAINFORESTS, P243; STILES FG, 1992, ECOLOGY, V73, P1375, DOI 10.2307/1940683; Stoleson Scott H., 1997, P157; Stoleson SH, 1997, ECOL MONOGR, V67, P131, DOI 10.1890/0012-9615(1997)067[0131:HABRAF]2.0.CO;2; THOMPSON CF, 1973, ECOL MONOGR, V43, P145, DOI 10.2307/1942192; TROTH RG, 1979, VERTEBRATE ECOLOGY N, P17; Vehrencamp S.L., 1988, P291; WALTMAN JR, 1992, WILSON BULL, V104, P65; WEATHERHEAD PJ, 1986, ANIM BEHAV, V34, P1299, DOI 10.1016/S0003-3472(86)80201-9; WESTCOTT DA, 1994, CONDOR, V96, P672, DOI 10.2307/1369470; WILLIS EO, 1974, ECOL MONOGR, V44, P153, DOI 10.2307/1942309; Woodworth BL, 1998, J FIELD ORNITHOL, V69, P1; YOMTOV Y, 1987, AUST WILDLIFE RES, V14, P319; ZACK S, 1992, BEHAVIOUR, V123, P194, DOI 10.1163/156853992X00020; ZACK S, 1985, AUK, V102, P754 127 99 99 1 38 ECOLOGICAL SOC AMER WASHINGTON 1707 H ST NW, STE 400, WASHINGTON, DC 20006-3915 USA 0012-9658 ECOLOGY Ecology MAY 2000 81 5 1351 1370 10.1890/0012-9658(2000)081[1351:SROANP]2.0.CO;2 20 Ecology Environmental Sciences & Ecology 309XQ WOS:000086795100014 2018-11-12 J Thomas, F; Teriokhin, AT; Renaud, F; De Meeus, T; Guegan, JF Thomas, F; Teriokhin, AT; Renaud, F; De Meeus, T; Guegan, JF Human longevity at the cost of reproductive success: evidence from global data JOURNAL OF EVOLUTIONARY BIOLOGY English Article comparative analysis; Homo sapiens; reproduction; somatic maintenance; spatial-series; trade-off DROSOPHILA-MELANOGASTER; LIFE-SPAN; SELECTION; PREVALENCE; SURVIVAL; AGE A trade-off between reproduction and somatic maintenance and hence survival is fundamental to life-history theory. We investigated the relationship between female fecundity and longevity in Homo sapiens using data from 153 countries located all over the world. The raw correlation between life span and fecundity was highly significant with a negative trend. After longevity and fecundity estimates were controlled for by confounding factors such as historical (i.e. human ethnic groups), religious, geographical, socio-economical and parasitological components, we still observed a negative relationship between the mean female fecundity and the mean longevity in a country. These findings support the hypothesis for the existence of a trade-off between these two key life-history traits in humans, as also reported by a recent single longitudinal study in England. IRD, Ctr Etud Polymorphisme Microorganismes, CEPM UMR CNRS IRD 9926, F-34032 Montpellier 1, France; Moscow MV Lomonosov State Univ, Dept Biol, Moscow 119899, Russia Thomas, F (reprint author), IRD, Ctr Etud Polymorphisme Microorganismes, CEPM UMR CNRS IRD 9926, 911 Ave Agropolis,BP 5045, F-34032 Montpellier 1, France. thomas@cepm.mpl.ird.fr Guegan, Jean-Francois/F-4346-2012; Robine, Jean-Marie/F-5439-2011 Guegan, Jean-Francois/0000-0002-7218-107X; Robine, Jean-Marie/0000-0002-4111-6195 Anderson RM, 1991, INFECT DIS HUMANS DY; CavalliSforza LL, 1997, P NATL ACAD SCI USA, V94, P7719, DOI 10.1073/pnas.94.15.7719; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Deerenberg C, 1996, J AVIAN BIOL, V27, P321, DOI 10.2307/3677263; Draper N, 1981, APPL REGRESSION ANAL; ENGSTROM G, 1992, THEOR APPL GENET, V85, P26, DOI 10.1007/BF00223841; Erikstad KE, 1998, ECOLOGY, V79, P1781; GAVRILOV LA, 1984, GEOGR MED, V14, P305; Gems D, 1996, NATURE, V379, P723, DOI 10.1038/379723a0; GOMPERTZ B, 1825, PHILOS T ROY SOC LON, V115, P513, DOI DOI 10.1098/RSTL.1825.0026; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Jones H., 1990, POPULATION GEOGRAPHY; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1981, EVOLUTIONARY APPROAC, P165; MANGEL M, 1988, DYNAMICAL MODELING B; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; Moller Anders Pape, 1997, P105; MOLLER AP, 1993, J ANIM ECOL, V62, P309, DOI 10.2307/5362; NORRIS K, 1994, J ANIM ECOL, V63, P601, DOI 10.2307/5226; Partridge L, 1999, P ROY SOC B-BIOL SCI, V266, P255, DOI 10.1098/rspb.1999.0630; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; Polis GA, 1998, ECOLOGY, V79, P2560, DOI 10.1890/0012-9658(1998)079[2560:PAAMCO]2.0.CO;2; Prowse N, 1997, J INSECT PHYSIOL, V43, P501, DOI 10.1016/S0022-1910(97)00014-0; RICHNER H, 1995, P NATL ACAD SCI USA, V92, P1192, DOI 10.1073/pnas.92.4.1192; Roff Derek A., 1992; Rose MR, 1998, OIKOS, V83, P443, DOI 10.2307/3546672; SNELL TW, 1977, EVOLUTION, V31, P882, DOI 10.1111/j.1558-5646.1977.tb01082.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Telford SR, 1998, J EXP BIOL, V201, P1847; Teriokhin AT, 1998, EVOL ECOL, V12, P291, DOI 10.1023/A:1006500216676; VANVOORHIES WA, 1992, NATURE, V360, P456, DOI 10.1038/360456a0; Westendorp RGJ, 1998, NATURE, V396, P743, DOI 10.1038/25519; WILKINSON L, 1992, SYSTAT STAT VERSION; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; ZAR JH, 1996, BIOSTATISTICAL ANAL; ZWAAN B, 1995, EVOLUTION, V49, P649, DOI 10.1111/j.1558-5646.1995.tb02301.x; Zwaan BJ, 1999, HEREDITY, V82, P589, DOI 10.1046/j.1365-2540.1999.00544.x 39 29 31 3 14 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. MAY 2000 13 3 409 414 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 313ZQ WOS:000087030000005 2018-11-12 J Brommer, J; Kokko, H; Pietiainen, H Brommer, J; Kokko, H; Pietiainen, H Reproductive effort and reproductive values in periodic environments AMERICAN NATURALIST English Article life history; reproductive effort; reproductive value; intergenerational trade-off; Ural owl; evolutionarily stable strategy OPTIMAL LIFE-HISTORIES; GREAT HORNED OWLS; CYCLIC FOOD CONDITIONS; SNOWSHOE HARE CYCLE; FLUCTUATING ENVIRONMENTS; PARENTAL EFFORT; TENGMALMS OWL; SMALL MAMMALS; NONTERRITORIAL FLOATERS; VARYING ENVIRONMENT Life-history theory concerns the optimal spread of reproduction over an organism's life span. In variable environments, there may be extrinsic differences between breeding periods within an organism's life, affecting both offspring and parent and giving rise to intergenerational trade-offs. Such trade-offs are often discussed in terms of reproductive value for parent and offspring. Here, we consider parental life-history optimization in response to varying offspring values of a population regulated by territoriality, where the quality of the environment varies periodically. Periods are interpreted as either within-year (seasonality) or between-years variation (cyclicity). The evolutionarily stable strategy in a general model with two-phased periodicity in the environment ran generate either higher or lower effort in the more favorable of the two phases; hence knowing survival prospects of offspring does not suffice for predicting reproductive effort-the future of all descendants and the parent must be tracked. We also apply our method to data on the Ural owl Strix uralensis, a species preying on cyclically fluctuating voles. The observed dynamics are best predicted by assuming delayed reproductive costs and Type II functional response. Accounting for varying offspring values can lead to cases where both reproductive effort and recruitment of offspring are higher in the phase when voles are not maximally abundant, a pattern supported by our data. Univ Helsinki, Dept Systemat & Ecol, Div Populat Biol, FIN-00014 Helsinki, Finland; Univ Cambridge, Dept Zool, Cambridge CB2 3EJ, England Brommer, J (reprint author), Univ Helsinki, Dept Systemat & Ecol, Div Populat Biol, POB 17,Arkadiankatu 7, FIN-00014 Helsinki, Finland. Brommer, Jon/C-3613-2008; Kokko, Hanna/C-7861-2009 Brommer, Jon/0000-0002-2435-2612; AMAT JA, 1995, BEHAVIOUR, V132, P519, DOI 10.1163/156853995X00180; BOONSTRA R, 1994, EVOL ECOL, V8, P196, DOI 10.1007/BF01238250; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; Brommer JE, 1998, J ANIM ECOL, V67, P359, DOI 10.1046/j.1365-2656.1998.00201.x; Bruun M, 1997, ANIM BEHAV, V54, P73, DOI 10.1006/anbe.1996.0435; CARLISLE TR, 1982, ANIM BEHAV, V30, P824, DOI 10.1016/S0003-3472(82)80156-5; Caswell H., 1989, MATRIX POPULATION MO; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Cherrett J. M., 1982, ECOLOGICAL CONCEPTS, P285; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; Daan Serge, 1997, P311; Dale S, 1996, BEHAV ECOL SOCIOBIOL, V39, P31, DOI 10.1007/s002650050264; Doebeli M, 1997, J EVOLUTION BIOL, V10, P107, DOI 10.1007/s000360050012; ENS BJ, 1992, J ANIM ECOL, V61, P703, DOI 10.2307/5625; FISHER R. A., 1930, GENETICAL THEORY NAT; FRETWELL SD, 1972, POPULATIONS SEASONAL; GOODMAN D, 1982, AM NAT, V119, P803, DOI 10.1086/283956; GOURLEY RS, 1977, THEOR POPUL BIOL, V11, P49, DOI 10.1016/0040-5809(77)90006-5; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; HAKKARAINEN H, 1994, OECOLOGIA, V97, P209, DOI 10.1007/BF00323151; HAKKARAINEN H, 1994, ANIM BEHAV, V48, P84; HANSKI I, 1991, J ANIM ECOL, V60, P353, DOI 10.2307/5465; HANSKI I, 1995, ECOLOGY, V76, P840, DOI 10.2307/1939349; HASTINGS A, 1978, J THEOR BIOL, V75, P527, DOI 10.1016/0022-5193(78)90361-2; HEIKKILA J, 1994, OIKOS, V70, P245, DOI 10.2307/3545635; Heino M, 1998, TRENDS ECOL EVOL, V13, P367, DOI 10.1016/S0169-5347(98)01380-9; HENTTONEN H, 1987, OIKOS, V50, P353, DOI 10.2307/3565496; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; Holling C.S., 1959, CAN ENTOMOL, V91, P358; Inchausti P, 1998, J ANIM ECOL, V67, P180, DOI 10.1046/j.1365-2656.1998.00189.x; Jedrzejewski W, 1996, J ANIM ECOL, V65, P105, DOI 10.2307/5704; JONSSON KI, 1995, OIKOS, V74, P35, DOI 10.2307/3545672; KACELNIK A, 1989, ACT 19 C INT ORN, V2, P1843; Kokko H, 1996, OIKOS, V77, P173, DOI 10.2307/3545599; Kokko H, 2000, ECOLOGY, V81, P252, DOI 10.1890/0012-9658(2000)081[0252:BSAPPD]2.0.CO;2; Kokko H, 1998, AM NAT, V152, P354, DOI 10.1086/286174; KORPIMAKI E, 1988, J ANIM ECOL, V57, P1027, DOI 10.2307/5109; KORPIMAKI E, 1991, OECOLOGIA, V85, P543, DOI 10.1007/BF00323767; KORPIMAKI E, 1988, J ANIM ECOL, V57, P97, DOI 10.2307/4766; Korpimaki E, 1998, ECOLOGY, V79, P2448, DOI 10.2307/176834; Korpimaki E, 1996, ECOSCIENCE, V3, P264, DOI 10.1080/11956860.1996.11682341; Law R, 1979, POPULATION DYNAMICS, P81; Leimar O, 1996, BEHAV ECOL, V7, P316, DOI 10.1093/beheco/7.3.316; LINDSTROM E, 1988, OIKOS, V52, P115, DOI 10.2307/3565990; LUNDBERG A, 1981, ORNIS SCAND, V12, P111, DOI 10.2307/3676035; LUNDBERG A, 1979, OECOLOGIA, V41, P273, DOI 10.1007/BF00377431; Marrow P, 1996, PHILOS T R SOC B, V351, P17, DOI 10.1098/rstb.1996.0002; MCNAMARA JM, 1993, J THEOR BIOL, V161, P23, DOI 10.1006/jtbi.1993.1037; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MCNAMARA JM, 1995, EVOL ECOL, V9, P185, DOI 10.1007/BF01237756; McNamara JM, 1997, THEOR POPUL BIOL, V51, P94, DOI 10.1006/tpbi.1997.1291; MEIJER T, 1989, J BIOL RHYTHM, V4, P351, DOI 10.1177/074873048900400304; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; NEWTON I, 1986, J ANIM ECOL, V55, P463, DOI 10.2307/4731; Norrdahl K, 1996, OECOLOGIA, V107, P478, DOI 10.1007/BF00333938; NORRDAHL K, 1995, BIOL REV, V70, P621, DOI 10.1111/j.1469-185X.1995.tb01654.x; Pasztor L, 1996, J EVOLUTION BIOL, V9, P511, DOI 10.1046/j.1420-9101.1996.9040511.x; Pen I, 1999, AM NAT, V153, P384, DOI 10.1086/303183; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PIETIAINEN H, 1988, AUK, V105, P316; PIETIAINEN H, 1986, Ornis Fennica, V63, P26; PIETIAINEN H, 1989, J ANIM ECOL, V58, P905, DOI 10.2307/5132; Poysa H, 1997, BEHAV ECOL SOCIOBIOL, V40, P101, DOI 10.1007/s002650050321; Rodenhouse NL, 1997, ECOLOGY, V78, P2025, DOI 10.1890/0012-9658(1997)078[2025:SDROPS]2.0.CO;2; Rohner C, 1997, ANIM BEHAV, V53, P901, DOI 10.1006/anbe.1996.0381; Rohner C, 1996, J ANIM ECOL, V65, P359, DOI 10.2307/5882; Rohner C, 1996, CAN J ZOOL, V74, P1092, DOI 10.1139/z96-121; SAUROLA P, 1987, BIOL CONSERVATION NO, P81; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SMITH JM, 1993, Q REV BIOL, V68, P557; SOUTHERN HN, 1970, J ZOOL, V162, P197; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TAYLOR PD, 1990, AM NAT, V135, P95, DOI 10.1086/285034; Tolonen P, 1996, ECOSCIENCE, V3, P165, DOI 10.1080/11956860.1996.11682327; TULJAPURKAR S, 1989, THEOR POPUL BIOL, V35, P227, DOI 10.1016/0040-5809(89)90001-4; Wiebe KL, 1996, AUK, V113, P258, DOI 10.2307/4088961; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 85 41 44 2 27 UNIV CHICAGO PRESS CHICAGO 5720 SOUTH WOODLAWN AVE, CHICAGO, IL 60637-1603 USA 0003-0147 AM NAT Am. Nat. APR 2000 155 4 454 472 10.1086/303335 19 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 308WR WOS:000086736300003 10753074 2018-11-12 J Ferguson, SH; McLoughlin, PD Ferguson, SH; McLoughlin, PD Effect of energy availability, seasonality, and geographic range on brown bear life history ECOGRAPHY English Review INDUSTRIAL RESOURCE EXTRACTION; CLIMATIC VARIABILITY; LATITUDINAL GRADIENT; NATURAL-SELECTION; URSUS-ARCTOS; R-SELECTION; K-SELECTION; POPULATION; DYNAMICS; ENVIRONMENTS Life-history theory allows predictions of how changes in environmental selection pressures along a species' geographic distribution result in discrete shifts in life-history traits. We tested for spatial patterns of 24 populations of brown bears Ursus arctos across North America that grouped according to the following environmental and population parameters: evapotranspiration as a correlate of primary productivity of vegetation, coefficient of variation of monthly evapotranspiration values as a measure of seasonality, population density, and adult female weight. Cluster analysis grouped brown bear populations into two regions: Pacific-coastal populations characterized by high population density and large females that lived in areas of high primary productivity and low seasonality, and inland and barren-ground populations characterized by relatively low density and small bears that lived in areas of low productivity and high seasonality. For each region, we tested whether life-history traits (age at maturity and interbirth interval) related to primary productivity or seasonality. High altitude (interior; > 1000 m) and high latitude (barren-ground; > 65 degrees N) populations respond to extremes in seasonality with risk-spreading adaptations. For example, age at maturity and interbirth interval increased with greater seasonality. In contrast, pacific-coastal populations living on the western edge of brown bear geographic range respond to intraspecific competition at high densities by maximizing offspring competitive ability. For trample, age at maturity increased with greater primary productivity and high population density. In each region, the female parent decided on the life-history trade-offs required to reduce the risks of offspring mortality depending on the environmental pattern. Univ Saskatchewan, Dept Biol, Saskatoon, SK S7N 5E2, Canada Ferguson, SH (reprint author), Lakehead Univ, Fac Forest & Forest Environm, 955 Oliver Rd, Thunder Bay, ON P7B SE1, Canada. steven.ferguson@lakeheadu.ca AUNE K, 1986, ROCKY MOUNTAIN FRONT; AUNE K, 1989, E FRONT GRIZZLY STUD; AUNE K. E., 1994, INT C BEAR RES MANAG, V9, P451; AUNE KE, 1987, E FRONT GRIZZLY STUD; BALLARD WB, 1993, SCI MON; BANCI V, 1991, INT C BEAR RES MAN, V9, P129; BARNES VG, 1988, DENSITY ESTIMATES ES; Begon M., 1986, ECOLOGY INDIVIDUALS; Blackburn TM, 1997, PHILOS T ROY SOC B, V352, P419, DOI 10.1098/rstb.1997.0030; BLANCHARD BM, 1980, T N AM WILDL NAT RES, V45, P263; BLANCHARD BM, 1987, INT C BEAR RES MANAG, V7, P99; BOYCE MS, 1978, OECOLOGIA, V36, P1, DOI 10.1007/BF00344567; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; Brown J. H., 1995, MACROECOLOGY; BROWN JH, 1984, AM NAT, V124, P255, DOI 10.1086/284267; Case RL, 1998, URSUS-SERIES, V10, P41; CLARKSON PL, 1994, INT C BEAR RES MANAG, V9, P213; CLARKSON PL, 1993, FEMALE PRODUCTIVITY; COHEN D, 1976, AM NAT, V110, P801, DOI 10.1086/283103; Crete M, 1997, J ZOOL, V242, P765, DOI 10.1111/j.1469-7998.1997.tb05825.x; Dood AR, 1986, FINAL PROGRAMMATIC E; Ferguson SH, 1996, ECOGRAPHY, V19, P382, DOI 10.1111/j.1600-0587.1996.tb00249.x; Ferguson SH, 1996, ECOSCIENCE, V3, P7; Flegr J, 1997, J THEOR BIOL, V188, P121, DOI 10.1006/jtbi.1997.0458; GLENN L.P., 1976, INT C BEAR RES MAN, V3, P381; GLENN LP, 1980, INT C BEAR RES MAN, V4, P313; GLENN LP, 1973, REPORT 1972 BROWN BE; GLENN LP, 1975, REPORT 1974 BROWN BE; Gould S. J., 1981, MISMEASURE MAN; Guegan JF, 1998, NATURE, V391, P382, DOI 10.1038/34899; HALDANE JBS, 1956, PROC R SOC SER B-BIO, V145, P306, DOI 10.1098/rspb.1956.0039; HENGEVELD R, 1982, J BIOGEOGR, V9, P303, DOI 10.2307/2844717; Jacoby ME, 1999, J WILDLIFE MANAGE, V63, P921, DOI 10.2307/3802806; Knight R. R., 1989, YELLOWSTONE GRIZZLY; KNIGHT RR, 1986, YELLOWSTONE GRIZZLY; KNIGHT RR, 1989, YELLOWSTONE GRIZZLY; KNIGHT RR, 1985, YELLOWSTONE GRIZZLY; KNIGHT RR, 1988, YELLOWSTONE GRIZZLY; LeFranc M. N., 1987, GRIZZLY BEAR COMPEND; LEITH H, 1976, PRIMARY PRODUCTIVITY, P237; Loehle C, 1998, J BIOGEOGR, V25, P735, DOI 10.1046/j.1365-2699.1998.2540735.x; Loreau M, 1998, P ROY SOC B-BIOL SCI, V265, P33, DOI 10.1098/rspb.1998.0260; MAC ARTHUR ROBERT H., 1967; MACARTHUR R, 1960, AM NAT, V94, P25, DOI 10.1086/282106; MARES MA, 1982, ECOLOGY, V63, P267, DOI 10.2307/1938940; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; MCLELLAN BN, 1989, CAN J ZOOL, V67, P1865, DOI 10.1139/z89-266; MCLELLAN BN, 1989, CAN J ZOOL, V67, P1856, DOI 10.1139/z89-264; MCLELLAN BN, 1994, MONO SER, V3, P3; MCLELLAN BN, 1984, POPULATION PARAMETER; MILLER S.D., 1997, IMPACTS HEAVY HUNTIN; MILLER SD, 1982, CAN FIELD NAT, V96, P448; MILLER SD, 1980, ESTIMATES DENSITY ST; MILLER SD, 1990, BROWN BEAR DENSITY A; MILLER SD, 1992, BROWN BEAR DENSITY A; MILLER SJ, 1982, 3 GOV NW TERR; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; NAGY JA, 1989, POPULATION CHARACTER; Nagy JA, 1983, STUDY GRIZZLY BEARS; NAGY JA, 1983, ECOLOGICAL STUDIES G; NAGY JAS, 1990, INT C BEAR, V8, P227; Paetkau D, 1998, CONSERV BIOL, V12, P418, DOI 10.1046/j.1523-1739.1998.96457.x; Pasitschniak-Arts Maria, 1993, Mammalian Species, V439, P1; PEARSON AM, 1975, CNA WILDL SERV REP S, V34; Perry G, 1997, TRENDS ECOL EVOL, V12, P360, DOI 10.1016/S0169-5347(97)01097-5; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Rapoport E. H., 1982, AEROGRAPHY GEOGRAPHI; REYNOLDS HV, 1980, STRUCTURE STATUS REP; Reynolds HV, 1984, STRUCTURE STATUS REP; REYNOLDS HV, 1993, EVALUATION EFFECTS H; REYNOLDS HV, 1976, N SLOPE GRIZZLY BEAR; ROMESBURG H. C., 1984, CLUSTER ANAL RES; Rosenzweig Michael L., 1993, P52; ROSENZWEIG ML, 1968, AM NAT, V102, P67, DOI 10.1086/282523; RUSSELL RH, 1979, STUDY GRIZZLY BEAR U; SAJAH H, 1990, FUNCT ECOL, V4, P769; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCHOEN J, 1986, BROWN BEAR HABITAT P; SCHOEN J, 1990, BROWN BEAR HABITAT P; SELLER SRA, 1994, INT C BEAR RES MAN, V9, P283; SELLERS RA, 1993, POPULATION DYNAMICS; SERVHEEN C, 1979, MISSION MOUNTAINS GR; SERVHEEN C, 1981, THESIS U MONTANA MIS; SMITH RB, 1984, TERROR LAKE HYDROELE; SMITH RB, 1991, TERROR LAKE HYDROELE; Stearns S. C., 1981, EVOLUTION TODAY, P371; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEVENS GC, 1989, AM NAT, V133, P240, DOI 10.1086/284913; STRINGHAM SF, 1990, INT C BEAR, V8, P433; THORNTHWAITE CW, 1957, DREXEL I TECHNOL LAB, V10, P181; VANDAELE LJ, 1999, IN PRESS URSUS; Welch CA, 1997, ECOLOGY, V78, P1105, DOI 10.2307/2265862; WHITTAKER RH, 1967, BIOL REV, V42, P207, DOI 10.1111/j.1469-185X.1967.tb01419.x; WIELGUS RB, 1994, BIOL CONSERV, V67, P161, DOI 10.1016/0006-3207(94)90362-X; Wiens JA, 1989, ECOLOGY BIRD COMMUNI; Willmott C.J., 1977, PUBLICATIONS CLIMATO, V30, P1; WILLMOTT CJ, 1985, J CLIMATOL, V5, P589, DOI 10.1002/joc.3370050602; Yoshimura J, 1996, RES POPUL ECOL, V38, P165, DOI 10.1007/BF02515724; ZEVELOFF SI, 1988, EVOLUTION LIFE HIST, P123 102 66 67 3 31 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-7590 1600-0587 ECOGRAPHY Ecography APR 2000 23 2 193 200 10.1034/j.1600-0587.2000.230205.x 8 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 312BU WOS:000086924000005 2018-11-12 J Rose, KA Rose, KA Why are quantitative relationships between environmental quality and fish populations so elusive? ECOLOGICAL APPLICATIONS English Article; Proceedings Paper 3rd Annual Conference on Fisheries, Habitat, and Pollution NOV 06-08, 1997 CHARLESTON, SOUTH CAROLINA Natl Marine Fisheries Serv, NOAA, Coast Serv Ctr, Atlantic States Marine Fisheries Commiss, S Carolina Sea Grant Consort, S Carolina Dept Natl Resources, Univ S Carolina Belle W Baruch Inst Marin Bio & Coastal Res, TerrAqua Envirnom Sci & Policy, LLC environmental quality; fish; fisheries, habitat, and pollution; individual-based models; life-history theory; multidisciplinary studies; population dynamics EARLY-LIFE STAGES; STRIPED BASS; LARGEMOUTH BASS; MARINE; RECRUITMENT; MANAGEMENT; FISHERIES; BEHAVIOR; CONTAMINANTS; VARIABILITY Despite the ecological and economic importance of fish, fisheries management has generally failed to achieve its principal goal of sustainability. Management is hindered because most exploited fish are long-lived species that utilize a variety of habitats and exhibit high interannual fluctuations in abundance. Effective management requires that we understand how natural and anthropogenic sources of variability in abiotic variables (termed environmental quality [EQ]) affect fish population dynamics. Quantifying the effects of anthropogenic changes in EQ on fish populations has remained elusive and controversial. I illustrate, with examples, six issues related to quantifying EQ effects on fish populations. These examples also serve as demonstrations of how modeling can be used to address these issues. The six issues are: (1) detectability-high interannual variation and interaction effects among climatic variables that affect population dynamics make isolating effects of individual stressors difficult; (2) complex habitat and nonintuitive responses-spatial heterogeneity in habitat can result in population responses that are disproportionate to the changes in EQ; (3) regional predictions-biological realism is often sacrificed unnecessarily when broad spatial scale predictions are needed; (4) community interactions-too little attention is paid to how community-level interactions can affect population-based analyses; (5) sublethal effects-sublethal effects are often ignored but can have large effects on population dynamics; and (6) cumulative effects-the combined effect of multiple stressors can be much different than expected from the sum of their individual effects. Examples include a variety of freshwater and marine species. Quantifying EQ effects on fish populations can be improved by considering these issues in analyses, and by taking a true multidisciplinary approach that combines individual-based modeling and life history theory. Louisiana State Univ, Coastal Fisheries Inst, Baton Rouge, LA 70803 USA; Louisiana State Univ, Dept Oceanog & Coastal Sci, Baton Rouge, LA 70803 USA Rose, KA (reprint author), Louisiana State Univ, Coastal Fisheries Inst, Wetlands Resources Bldg, Baton Rouge, LA 70803 USA. ATCHISON GJ, 1987, ENVIRON BIOL FISH, V18, P11, DOI 10.1007/BF00002324; BARNTHOUSE LW, 1984, BIOSCIENCE, V34, P14, DOI 10.2307/1309420; Botsford LW, 1997, SCIENCE, V277, P509, DOI 10.1126/science.277.5325.509; BRADFORD MJ, 1992, FISH B-NOAA, V90, P439; Breitburg DL, 1999, MAR ECOL PROG SER, V178, P39, DOI 10.3354/meps178039; Butler MJ, 1995, MAR ECOL PROG SER, V129, P119, DOI 10.3354/meps129119; *CDFG, 1987, 20 CDFG; Clark ME, 1997, ECOL MODEL, V94, P157, DOI 10.1016/S0304-3800(96)00010-5; COOPER JC, 1981, T AM FISH SOC, V110, P180, DOI 10.1577/1548-8659(1981)110<180:ROYDIS>2.0.CO;2; COUTANT CC, 1990, T AM FISH SOC, V119, P757, DOI 10.1577/1548-8659(1990)119<0757:SHSFSB>2.3.CO;2; CROWDER LB, 1994, ECOL APPL, V4, P437, DOI 10.2307/1941948; DeAngelis D.L., 1994, Lecture Notes in Biomathematics, V100, P390; DEANGELIS DL, 1992, INDIVIDUAL-BASED MODELS AND APPROACHES IN ECOLOGY, P67; Fenton R, 1996, FISHERIES, V21, P6, DOI 10.1577/1548-8446(1996)021<0006:RAFDFW>2.0.CO;2; FOGARTY MJ, 1991, TRENDS ECOL EVOL, V6, P241, DOI 10.1016/0169-5347(91)90069-A; Garcia SM, 1997, AM FISH S S, V20, P3; GOODYEAR CP, 1985, T AM FISH SOC, V114, P107, DOI 10.1577/1548-8659(1985)114<107:TMFAEV>2.0.CO;2; HALL LW, 1991, REV AQUAT SCI, V4, P261; Hennemuth RC, 1979, CONT QUANTITATIVE EC, P507; Houde E.D, 1987, AM FISH SOC S, V2, P17; HOUDE ED, 1994, ICES J MAR SCI, V51, P91, DOI 10.1006/jmsc.1994.1008; Jaworska Joanna S., 1997, Journal of Aquatic Ecosystem Stress and Recovery, V6, P15, DOI 10.1023/A:1008280503843; Jaworska JS, 1997, ECOL MODEL, V99, P113, DOI 10.1016/S0304-3800(96)01943-6; Keleher CJ, 1996, T AM FISH SOC, V125, P1, DOI 10.1577/1548-8659(1996)125<0001:TLTSDI>2.3.CO;2; KOONCE JF, 1977, J FISH RES BOARD CAN, V34, P1900, DOI 10.1139/f77-256; Laevastu T., 1993, MARINE CLIMATE WEATH; LITTLE EE, 1993, AM FISH S S, V14, P67; MATHERS RA, 1985, AQUAT TOXICOL, V6, P157; MCKIM JM, 1985, FUNDAMENTALS AQUATIC, P58; MEISNER JD, 1990, CAN J FISH AQUAT SCI, V47, P1065, DOI 10.1139/f90-122; MILLS E L, 1988, P11; MITZNER L, 1991, North American Journal of Fisheries Management, V11, P534, DOI 10.1577/1548-8675(1991)011<0534:EOEVUC>2.3.CO;2; MORGAN MJ, 1990, ENVIRON TOXICOL CHEM, V9, P489, DOI 10.1897/1552-8618(1990)9[489:EOFOTF]2.0.CO;2; MYERS RA, 1995, 2024 NAT RES COUNC C; PEPIN P, 1991, CAN J FISH AQUAT SCI, V48, P503, DOI 10.1139/f91-065; Rose K.A., 1992, Fisheries Oceanography, V1, P281, DOI 10.1111/j.1365-2419.1992.tb00001.x; ROSE KA, 1993, AM FISH S S, V14, P125; Rose KA, 1999, ECOL MONOGR, V69, P127, DOI 10.1890/0012-9615(1999)069[0127:IBMOYP]2.0.CO;2; Rose Kenneth A., 1996, P194; Rothschild B. J., 1986, DYNAMICS MARINE FISH; Schramm Harold L. Jr., 1995, North American Journal of Fisheries Management, V15, P671; Seehausen O, 1997, SCIENCE, V277, P1808, DOI 10.1126/science.277.5333.1808; Shepherd J.G., 1984, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V185, P255; SINDERMANN CJ, 1996, OCEAN POLLUTION EFFE; SISSENWINE MP, 1984, EXPLOITATION MARINE, P59, DOI DOI 10.1007/978-3-642-70157-3_3; STEVENS DE, 1985, T AM FISH SOC, V114, P12, DOI 10.1577/1548-8659(1985)114<12:TDOSBI>2.0.CO;2; TYLER JA, 1994, REV FISH BIOL FISHER, V4, P91, DOI 10.1007/BF00043262; UPHOFF JH, 1989, T AM FISH SOC, V118, P251, DOI 10.1577/1548-8659(1989)118<0251:EEOSOE>2.3.CO;2; von Westernhagen H., 1988, P253; WALTERS CJ, 1988, CAN J FISH AQUAT SCI, V45, P1848, DOI 10.1139/f88-217; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 51 146 152 3 53 ECOLOGICAL SOC AMER WASHINGTON 1707 H ST NW, STE 400, WASHINGTON, DC 20006-3915 USA 1051-0761 ECOL APPL Ecol. Appl. APR 2000 10 2 367 385 10.2307/2641099 19 Ecology; Environmental Sciences Environmental Sciences & Ecology 296DT WOS:000086008300005 2018-11-12 J Stearns, SC; Ackermann, M; Doebeli, M; Kaiser, M Stearns, SC; Ackermann, M; Doebeli, M; Kaiser, M Experimental evolution of aging, growth, and reproduction in fruitflies PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article life-history evolution; lifespan; age at maturity; body size; Drosophila LIFE-HISTORY TRAITS; DROSOPHILA-MELANOGASTER; CORRELATED RESPONSES; ARTIFICIAL SELECTION; LABORATORY EVOLUTION; MORTALITY PLATEAUS; TEMPERATURE; SENESCENCE; RATES; AGE We report in this paper an evolutionary experiment on Drosophila that tested life-history theory and the evolutionary theory of aging. As theory predicts, higher extrinsic mortality rates did lead to the evolution of higher intrinsic mortality rates, to shorter lifespans. and to decreased age and size at eclosion; peak fecundity also shifted earlier in life. These results confirm the key role of extrinsic mortality rates in the evolution of growth, maturation, reproduction, and aging, and they do so with a selection regime that maintained selection on fertility throughout life while holding population densities constant. Univ Basel, Inst Zool, CH-4051 Basel, Switzerland Stearns, SC (reprint author), Univ Basel, Inst Zool, Rheinsprung 9, CH-4051 Basel, Switzerland. steve.stearns@unibas.ch Doebeli, Michael/D-5391-2012; Ackermann, Martin/V-4554-2017 Ackermann, Martin/0000-0003-0087-4819; Kaiser, Marcel/0000-0003-1785-7302; Stearns, Stephen/0000-0002-6621-4373 Abrams PA, 1995, EVOLUTION, V49, P1055, DOI 10.1111/j.1558-5646.1995.tb04433.x; Bell GAC, 1997, HEREDITY, V78, P490, DOI 10.1038/hdy.1997.77; Bennett AF, 1997, EVOLUTION, V51, P36, DOI 10.1111/j.1558-5646.1997.tb02386.x; Bennett AF, 1999, AM ZOOL, V39, P346; CAREY JR, 1992, SCIENCE, V258, P457; CAVICCHI S, 1989, J EVOLUTION BIOL, V2, P235, DOI 10.1046/j.1420-9101.1989.2040235.x; Charlesworth B, 1997, CURR BIOL, V7, pR440, DOI 10.1016/S0960-9822(06)00213-2; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Elena SF, 1996, SCIENCE, V272, P1802, DOI 10.1126/science.272.5269.1802; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GINGERICH PD, 1983, SCIENCE, V222, P159, DOI 10.1126/science.222.4620.159; GOMPERTZ B, 1825, PHILOS T ROY SOC LON, V115, P513, DOI DOI 10.1098/RSTL.1825.0026; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; HUEY RB, 1991, EVOLUTION, V45, P751, DOI 10.1111/j.1558-5646.1991.tb04343.x; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; LEON JA, 1976, J THEOR BIOL, V60, P301, DOI 10.1016/0022-5193(76)90062-X; LEROI AM, 1994, EVOLUTION, V48, P1244, DOI 10.1111/j.1558-5646.1994.tb05309.x; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; McColl G, 1996, GENETICS, V143, P1615; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; Mueller LD, 1996, P NATL ACAD SCI USA, V93, P15249, DOI 10.1073/pnas.93.26.15249; Partridge L, 1999, P ROY SOC B-BIOL SCI, V266, P255, DOI 10.1098/rspb.1999.0630; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PARTRIDGE L, 1995, EVOLUTION, V49, P538, DOI 10.1111/j.1558-5646.1995.tb02285.x; Pletcher SD, 1998, EVOLUTION, V52, P454, DOI 10.1111/j.1558-5646.1998.tb01645.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Ricklefs RE, 1998, AM NAT, V152, P24, DOI 10.1086/286147; Roff Derek A., 1992; Rose M. R, 1991, EVOLUTIONARY BIOL AG; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stearns SC, 1996, EVOLUTION, V50, P795, DOI 10.1111/j.1558-5646.1996.tb03889.x; WEISMANN A, 1889, ESSAYS HEREDITY KIND; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; ZWAAN B, 1995, EVOLUTION, V49, P635, DOI 10.1111/j.1558-5646.1995.tb02300.x 37 188 200 0 91 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. MAR 28 2000 97 7 3309 3313 10.1073/pnas.060289597 5 Multidisciplinary Sciences Science & Technology - Other Topics 299JK WOS:000086195200064 10716732 Green Published, Bronze 2018-11-12 J Gotthard, K; Nylin, S; Wiklund, C Gotthard, K; Nylin, S; Wiklund, C Individual state controls temperature dependence in a butterfly (Lasiommata maera) PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article life-history theory; growth rate; state dependence; phenotypic plasticity; time-stress; seasonality COUNTERGRADIENT VARIATION; PARARGE-AEGERIA; GROWTH-RATES; PLASTICITY; SIZE; CONSEQUENCES; ENVIRONMENT In ectotherms there is typically a strong and positive correlation between growth rate and ambient temperature when food is not limiting. However, the exact relationship between growth rate and temperature varies among populations in many species. As a consequence, it has been suggested that selection for a rapid increase in growth rate with temperature should be stronger in populations experiencing a high degree of time-stress, compared with populations experiencing little time-stress. In the present study we take this adaptive hypothesis further and investigate if variation in time-stress among individuals of a single population may affect the relationship between growth rate and ambient temperature. Time-stress was manipulated by rearing larvae of the butterfly Lasiommata maera in different day-length regimes. The results show that individuals experiencing a higher degree of time-stress increase their growth rates more in higher temperatures compared with individuals under less time-stress. Hence, the adaptive hypothesis was supported and the relationship between growth rate and temperature was highly state dependent. These findings may be of general importance for understanding the evolution of life histories in seasonal environments. Univ Stockholm, Dept Zool, S-10691 Stockholm, Sweden Gotthard, K (reprint author), Univ Neuchatel, Inst Zool, Rue Emile Argand 11, CH-2007 Neuchatel, Switzerland. karl.gotthard@zool.unine.ch Gotthard, Karl/F-1163-2011; Nylin, Soren/B-7375-2008 Nylin, Soren/0000-0003-4195-8920 Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Alexandrov V.Y., 1977, CELLS MOL TEMPERATUR; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Atkinson D, 1997, TRENDS ECOL EVOL, V12, P235, DOI 10.1016/S0169-5347(97)01058-6; BERGMANN C, 1847, GOTTINGER STUDIEN, V1, P595; Blanckenhorn WU, 1997, OECOLOGIA, V111, P318, DOI 10.1007/s004420050241; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; DANKS HV, 1994, SERIES ENTOM, V52, P5; Gotthard K, 1998, J EVOLUTION BIOL, V11, P21; Gotthard K, 1999, OIKOS, V84, P453, DOI 10.2307/3546424; GOTTHARD K, 1994, OECOLOGIA, V99, P281, DOI 10.1007/BF00627740; GOTTHARD K, 1999, THESIS U STOCKHOLM S; Hargreaves B, 1983, BUTTERFLIES BRITAIN; HOFFMANN KH, 1985, ENV PHYSL BIOCH INSE, P1; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; Nylin S, 1996, EVOLUTION, V50, P1351, DOI 10.1111/j.1558-5646.1996.tb02377.x; NYLIN S, 1994, SERIES ENTOM, V52, P41; Ratte H. T., 1985, ENV PHYSL BIOCH INSE, P31; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SchmidtNielsen K., 1990, ANIMAL PHYSL; Schultz ET, 1996, FUNCT ECOL, V10, P366, DOI 10.2307/2390285; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; Tauber M.J., 1986, SEASONAL ADAPTATIONS; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WIKLUND C, 1984, OECOLOGIA, V63, P23, DOI 10.1007/BF00379780 30 51 54 1 19 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. MAR 22 2000 267 1443 589 593 10.1098/rspb.2000.1042 5 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 298LP WOS:000086140900011 10787163 Green Published 2018-11-12 J Jokela, J; Haukioja, E Jokela, J; Haukioja, E Evolution of strategies to stay in the game BIOLOGY & PHILOSOPHY English Article evolutionary failure; evolutionary success; fitness; game of life; life-history evolution; natural selection PHENOTYPIC PLASTICITY; LIFE-HISTORY; TACTICS Life-history evolution is a complex process. Life-history theory covers the fundamental level of the process, the evolution of life-history traits. Life-history traits interact; those coevolving as a response to the same selection pressure form life-history tactics. Top level of the hierarchy, life-history strategy, is formed by genetically interconnected tactics. Our aim is to expand the traditional view to life-history evolution by considering what boundary conditions a successful life-history strategy has to fulfil. We claim that the most fundamental condition successful strategies have to meet is to minimize the risk of evolutionary failure. Here the risk of failure refers to failure in transferring practitioners of the strategy to the next time point, either through survival, or by reproduction. We make an attempt to classify types of risks as they lead to evolutionary failure, and discuss how risk minimization ideas may be approached empirically. We conclude that understanding how traits evolve may not cover all aspects of how strategies evolve. We emphasize that bookkeeping of the actual causes of failure might help in developing life-history theory that uses causes of selection to predict responses to selection. ETH Zentrum NW, ETH Zurich, CH-8092 Zurich, Switzerland; Univ Turku, Dept Biol, Sect Ecol, FIN-20500 Turku, Finland Jokela, J (reprint author), ETH Zentrum NW, ETH Zurich, CH-8092 Zurich, Switzerland. Jokela, Jukka/F-8626-2010; Group, JJ/G-2466-2011 Jokela, Jukka/0000-0002-1731-727X BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; BRANDON RN, 1990, ADAPTATION ENV; BUSS L, 1987, EVOLUTION INDIVIDUAL; Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Endler JA, 1986, NATURAL SELECTION WI; GOTTHARD K, 1995, OIKOS, V74, P3, DOI 10.2307/3545669; Grime JP., 1988, PLANT EVOLUTIONARY B, P371; HARPER JL, 1970, J ECOL, V58, P681, DOI 10.2307/2258529; HAUKIOJA E, 1982, J THEOR BIOL, V99, P357, DOI 10.1016/0022-5193(82)90010-8; Levins R., 1968, EVOLUTION CHANGING E; Levins R., 1985, DIALECTICAL BIOL; Maynard-Smith J, 1982, EVOLUTION THEORY GAM; MCARTHUR RH, 1967, THEORY ISLAND BIOGEO; Roff Derek A., 1992; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; SCRIVEN M, 1959, SCIENCE, V130, P477, DOI 10.1126/science.130.3374.477; SLOBODKIN LB, 1974, Q REV BIOL, V49, P181, DOI 10.1086/408082; Sober Elliott, 1984, NATURE SELECTION; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEARNS SC, 1982, ENV ADAPTATION EVOLU, P3; THODAY JM, 1953, SYM SOC EXP BIOL, V7, P96; TUOMI J, 1983, OIKOS, V40, P369, DOI 10.2307/3544309; Tuomi J., 1988, P109; VIA S, 1995, TRENDS ECOL EVOL, V10, P212, DOI 10.1016/S0169-5347(00)89061-8 29 4 4 0 2 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0169-3867 1572-8404 BIOL PHILOS Biol. Philos. MAR 2000 15 2 177 196 10.1023/A:1006688902786 20 History & Philosophy Of Science History & Philosophy of Science 297VB WOS:000086102400002 2018-11-12 J de Kroon, H; van Groenendael, J; Ehrlen, J de Kroon, H; van Groenendael, J; Ehrlen, J Elasticities: A review of methods and model limitations ECOLOGY English Review conservation; elasticity; Hypochaeris radicata; life history theory; loop analysis; matrix population model; perturbation analysis; population growth rate; sensitivity; trade-offs POPULATION-GROWTH RATE; TABLE RESPONSE EXPERIMENTS; PROJECTION MATRIX ANALYSIS; LOGGERHEAD SEA-TURTLES; LIFE-HISTORIES; SENSITIVITY ANALYSIS; CARETTA-CARETTA; PERENNIAL HERB; LOOP ANALYSIS; TRADE-OFFS Elasticity is a perturbation measure in matrix projection models that quantifies the proportional change in population growth rate as a function of a proportional change in a demographic transition (growth, survival, reproduction, etc.). Elasticities thus indicate the relative "importance" of life cycle transitions for population growth and maintenance. In this paper. we discuss the applications of elasticity analysis, and its extension, loop analysis, in life history studies and conservation, Elasticity can be interpreted as the relative contribution of a demographic parameter to population growth rate. Loop analysis reveals the underlying pathway structure of the life cycle graph. The different kinds of results of the two analyses in studies of life histories are emphasized. Because elasticities quantify the relative importance of life cycle transitions to population growth rate, it is generally inferred that management should focus on the transitions with the largest elasticities. Such predictions based on elasticities seem robust, but we do identify three situations where problems may arise. The mathematical properties and biological constraints that underlie these pitfalls are explained. Examples illustrate the additional information that needs to be taken into account for a sensible use of elasticities in population management. We conclude by indicating topics that are in need of research. Agr Univ Wageningen, Dept Environm Sci, Nat Conservat & Plant Ecol Grp, NL-6708 PD Wageningen, Netherlands; Univ Nijmegen, Dept Aquat Ecol & Environm Biol, NL-6500 GL Nijmegen, Netherlands; Uppsala Univ, Dept Ecol Bot, S-75236 Uppsala, Sweden de Kroon, H (reprint author), Agr Univ Wageningen, Dept Environm Sci, Nat Conservat & Plant Ecol Grp, Bornsesteeg 69, NL-6708 PD Wageningen, Netherlands. Hans.deKroon@staf.ton.wau.nl de Kroon, Hans/B-3359-2009; Ehrlen, Johan/H-6286-2013 de Kroon, Hans/0000-0001-6151-3561; Ehrlen, Johan/0000-0001-8539-8967 ARMITAGE KB, 1974, ECOLOGY, V55, P1233, DOI 10.2307/1935452; Batista WB, 1998, ECOLOGY, V79, P38, DOI 10.1890/0012-9658(1998)079[0038:DOASTT]2.0.CO;2; Benton TG, 1996, AM NAT, V147, P115, DOI 10.1086/285843; BOYCE MS, 1977, THEOR POPUL BIOL, V12, P366, DOI 10.1016/0040-5809(77)90050-8; BRAULT S, 1993, ECOLOGY, V74, P1444, DOI 10.2307/1940073; Caswell H, 2000, ECOLOGY, V81, P619, DOI 10.1890/0012-9658(2000)081[0619:PARPAT]2.0.CO;2; CASWELL H, 1989, ECOL MODEL, V46, P221, DOI 10.1016/0304-3800(89)90019-7; Caswell H, 1996, ECOL MODEL, V88, P73, DOI 10.1016/0304-3800(95)00070-4; CASWELL H, 1992, INDIVIDUAL-BASED MODELS AND APPROACHES IN ECOLOGY, P36; CASWELL H, 1982, ECOLOGY, V63, P1218, DOI 10.2307/1938846; Caswell H, 1996, ECOLOGY, V77, P870, DOI 10.2307/2265507; CASWELL H, 1984, AQUACULTURE, V43, P123, DOI 10.1016/0044-8486(84)90016-4; CASWELL H, 1978, THEOR POPUL BIOL, V14, P215, DOI 10.1016/0040-5809(78)90025-4; CASWELL H, 1986, LECTURES MATH LIFE S, V18, P171; CASWELL H, 1997, STRUCTURED POPULATIO, P19; CASWELL H, 1985, POPULATION BIOL EVOL, P187; Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; CROWDER LB, 1994, ECOL APPL, V4, P437, DOI 10.2307/1941948; Cunnington DC, 1996, CAN J ZOOL, V74, P291, DOI 10.1139/z96-036; De Matos MB, 1998, J ECOL, V86, P706, DOI 10.1046/j.1365-2745.1998.00294.x; DEKROON H, 1987, OIKOS, V50, P3, DOI 10.2307/3565395; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; DOAK D, 1994, ECOL APPL, V4, P446, DOI 10.2307/1941949; Drechsler M, 1998, BIOL CONSERV, V86, P401, DOI 10.1016/S0006-3207(98)00021-4; Easterling MR, 2000, ECOLOGY, V81, P694, DOI 10.2307/177370; Ehrlen J, 1998, CONSERV BIOL, V12, P470, DOI 10.1046/j.1523-1739.1998.96420.x; EHRLEN J, 1995, J ECOL, V83, P297, DOI 10.2307/2261568; ENRIGHT NJ, 1995, OECOLOGIA, V104, P79, DOI 10.1007/BF00365565; Eriksson O, 1996, OIKOS, V77, P248, DOI 10.2307/3546063; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Grant A, 2000, ECOLOGY, V81, P680, DOI 10.1890/0012-9658(2000)081[0680:EAFDDP]2.0.CO;2; Heppell SS, 1996, ECOL APPL, V6, P556, DOI 10.2307/2269391; Heppell SS, 1998, COPEIA, P367, DOI 10.2307/1447430; Heppell SS, 1996, WILDLIFE RES, V23, P143, DOI 10.1071/WR9960143; Heppell SS, 2000, ECOLOGY, V81, P654, DOI 10.1890/0012-9658(2000)081[0654:LHAEPP]2.0.CO;2; HEPPELL SS, 1994, J WILDLIFE MANAGE, V58, P479, DOI 10.2307/3809319; Hoffmann WA, 1999, ECOLOGY, V80, P1354, DOI 10.1890/0012-9658(1999)080[1354:FAPDOW]2.0.CO;2; Horvitz C., 1997, STRUCTURED POPULATIO, P247, DOI [10. 1007/978-1-4615-5973-3, DOI 10.1007/978-1-4615-5973-3]; HORVITZ CC, 1995, ECOL MONOGR, V65, P155, DOI 10.2307/2937136; HUBBELL SP, 1979, AM NAT, V113, P277, DOI 10.1086/283385; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Levin L, 1996, ECOL APPL, V6, P1295, DOI 10.2307/2269608; LEWIS ER, 1976, ECOLOGY, V57, P33, DOI 10.2307/1936396; Lewontin R. C., 1965, P77; Ludwig D, 1999, ECOLOGY, V80, P298, DOI 10.1890/0012-9658(1999)080[0298:IIMTEA]2.0.CO;2; McGraw JB, 1996, AM NAT, V147, P47, DOI 10.1086/285839; MENDOZA GA, 1986, FOREST ECOL MANAG, V15, P219, DOI 10.1016/0378-1127(86)90068-X; MENGES ES, 1990, CONSERV BIOL, V4, P52, DOI 10.1111/j.1523-1739.1990.tb00267.x; MESSERTONGIBBON.M, 1993, ECOLOGY, V74, P2467; Mills LS, 1999, CONSERV BIOL, V13, P815, DOI 10.1046/j.1523-1739.1999.98232.x; MOLONEY KA, 1988, ECOLOGY, V69, P1588, DOI 10.2307/1941656; Nakaoka M, 1997, OIKOS, V79, P59, DOI 10.2307/3546090; OLMSTED I, 1995, ECOL APPL, V5, P484, DOI 10.2307/1942038; Oostermeijer JGB, 1996, J ECOL, V84, P153, DOI 10.2307/2261351; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Roff Derek A., 1992; Saether BE, 1996, OIKOS, V77, P217, DOI 10.2307/3546060; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; SCHEMSKE DW, 1994, ECOLOGY, V75, P584, DOI 10.2307/1941718; Shea K, 1998, ECOL APPL, V8, P824, DOI 10.1890/1051-0761(1998)008[0824:EBAIWM]2.0.CO;2; SHEA K, 1994, J ECOL, V82, P951, DOI 10.2307/2261457; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; SILVERTOWN J, 1992, FUNCT ECOL, V6, P130, DOI 10.2307/2389746; Silvertown J, 1996, CONSERV BIOL, V10, P591, DOI 10.1046/j.1523-1739.1996.10020591.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Valverde T, 1998, J ECOL, V86, P545, DOI 10.1046/j.1365-2745.1998.00280.x; van Tienderen PH, 2000, ECOLOGY, V81, P666, DOI 10.1890/0012-9658(2000)081[0666:EATLBD]2.0.CO;2; VANDERMEER J, 1978, OECOLOGIA, V32, P79, DOI 10.1007/BF00344691; VANGROENENDAEL J, 1988, TRENDS ECOL EVOL, V3, P264, DOI 10.1016/0169-5347(88)90060-2; VANGROENENDAEL J, 1994, ECOLOGY, V75, P2410, DOI 10.2307/1940894; VANTIENDEREN PH, 1995, ECOLOGY, V76, P2482, DOI 10.2307/2265822; Wardle GM, 1998, ECOLOGY, V79, P2539, DOI 10.2307/176842; WERNER PA, 1977, ECOLOGY, V58, P1103, DOI 10.2307/1936930; Wisdom MJ, 2000, ECOLOGY, V81, P628, DOI 10.2307/177365; Wisdom MJ, 1997, J WILDLIFE MANAGE, V61, P302, DOI 10.2307/3802585; ZAGT RJ, 1997, THESIS U UTRECHT UTR 78 355 362 4 133 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology MAR 2000 81 3 607 618 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2 12 Ecology Environmental Sciences & Ecology 289GD WOS:000085611400002 2018-11-12 J Jakobsson, A; Eriksson, O Jakobsson, A; Eriksson, O A comparative study of seed number, seed size, seedling size and recruitment in grassland plants OIKOS English Article PHYLOGENETICALLY INDEPENDENT CONTRASTS; COMMUNITY INVASIBILITY; SEMINATURAL PASTURES; TROPICAL TREES; TRADE-OFFS; ANGIOSPERMS; ESTABLISHMENT; COLONIZATION; STRATEGIES; ABUNDANCE In this study we analyse relationships between seed number, seed size, seedling size and recruitment success in grassland plants. The often hypothesised trade-off between seed size and seed number was supported by a cross-species analysis and by an analysis of 35 phylogenetically independent contrasts, derived from a data-set of 72 species. Apart from among-species relatedness, we also controlled for possible confounding effect of plant size that may influence both seed size and seed number. A sowing experiment with 50 species was performed in the field. The seeds were sown in a grassland and subjected to two treatments, disturbance and undisturbed sward. Evidence for seed-limited recruitment was obtained for 45 of the species. Disturbance had a significant, or nearly significant, positive effect on recruitment for 16 of the 45 species. The relative recruitment in undisturbed sward increased with increased seed size, and both recruitment success and seedling size were positively related to seed size. We suggest that a trade-off between competitive ability and number of recruitment opportunities follows from the trade-off between seed size and seed number, through a causal chain from seed size via seedling size to recruitment success. The relationships between seed size, seed number and recruitment may be an important underlying mechanism for abundance and dynamics of plant species in grassland vegetation. This is an example of a direct link between evolutionary life-history theory, and theory of plant community structure. Univ Stockholm, Dept Bot, SE-10691 Stockholm, Sweden Jakobsson, A (reprint author), Univ Stockholm, Dept Bot, SE-10691 Stockholm, Sweden. ARMSTRONG DP, 1993, ECOLOGY, V74, P1092, DOI 10.2307/1940479; Burke MJW, 1996, ECOLOGY, V77, P776, DOI 10.2307/2265501; Eriksson A, 1997, NORD J BOT, V17, P469, DOI 10.1111/j.1756-1051.1997.tb00344.x; ERIKSSON A, 1995, ECOGRAPHY, V18, P310, DOI 10.1111/j.1600-0587.1995.tb00133.x; Eriksson O, 1998, ECOL RES, V13, P229, DOI 10.1046/j.1440-1703.1998.00260.x; Eriksson O, 1997, ECOGRAPHY, V20, P559, DOI 10.1111/j.1600-0587.1997.tb00424.x; Eriksson O, 1998, J ECOL, V86, P922, DOI 10.1046/j.1365-2745.1998.00309.x; Fagerstrom T, 1997, OIKOS, V80, P588, DOI 10.2307/3546634; Froborg H, 1997, J VEG SCI, V8, P395, DOI 10.2307/3237329; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; GRIME JP, 1998, COMP PLANT ECOLOGY; GROSS KL, 1984, J ECOL, V72, P369, DOI 10.2307/2260053; GRUBB PJ, 1977, BIOL REV, V52, P107, DOI 10.1111/j.1469-185X.1977.tb01347.x; GRUBB PJ, 1982, PLANT COMMUNITY WORK, P79; Harper J. L., 1977, POPULATION BIOL PLAN; HARPER JL, 1970, ANNU REV ECOL SYST, V1, P256; Harvey P. H., 1991, COMP METHOD EVOLUTIO; Harvey PH, 1996, J ANIM ECOL, V65, P255, DOI 10.2307/5872; KELLY CK, 1995, OECOLOGIA, V102, P377, DOI 10.1007/BF00329805; KELLY CK, 1993, OECOLOGIA, V94, P356, DOI 10.1007/BF00317109; LEISHMAN MR, 1995, J ECOL, V83, P517, DOI 10.2307/2261604; LID J, 1994, NORSK FLORA NORSKE; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; Marshall C., 1990, CLONAL GROWTH PLANTS; MAZER SJ, 1989, ECOL MONOGR, V59, P153, DOI 10.2307/2937284; Metcalfe DJ, 1998, PLANT ECOL, V134, P131, DOI 10.1023/A:1009789922595; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; RABINOWITZ D, 1978, OECOLOGIA, V37, P213, DOI 10.1007/BF00344992; REES M, 1995, J ECOL, V83, P857, DOI 10.2307/2261422; Rees M, 1997, OIKOS, V78, P116, DOI 10.2307/3545807; REES M, 1993, NATURE, V366, P150, DOI 10.1038/366150a0; Salisbury EJ, 1942, REPROD CAPACITY PLAN; SHIPLEY B, 1992, AM NAT, V139, P467, DOI 10.1086/285339; Silvertown J, 1996, PHILOS T ROY SOC B, V351, P1233, DOI 10.1098/rstb.1996.0106; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tilman D, 1997, ECOLOGY, V78, P81, DOI 10.1890/0012-9658(1997)078[0081:CIRLAG]2.0.CO;2; VANDERMAAREL E, 1993, J VEG SCI, V4, P179, DOI 10.2307/3236103; VENABLE DL, 1992, AM NAT, V140, P287, DOI 10.1086/285413; Westoby M, 1996, PHILOS T R SOC B, V351, P1309, DOI 10.1098/rstb.1996.0114 40 330 357 9 126 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos MAR 2000 88 3 494 502 10.1034/j.1600-0706.2000.880304.x 9 Ecology Environmental Sciences & Ecology 292UK WOS:000085813300004 2018-11-12 J de Valpine, P de Valpine, P A new demographic function maximized by life-history evolution PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article life-history evolution; density dependence; evolutionarily stable strategies; convergence stability STABILITY; SELECTION; FITNESS; MODELS; OPTIMIZATION; STRATEGIES A goal of life-history theory has been to understand what combination of demographic traits is maximized by natural selection. In practice, researchers usually choose either density-independent population growth rate, lambda, or lifetime reproductive success, R-0, (expected number of offspring produced in a lifetime). Others have shown that the maxima of density-independent lambda and R-0 are evolutionarily stable strategies under specific density-dependent conditions: population regulation by equal density dependence among all age classes for lambda and by density dependence on a single age class for R-0. Here I extend these connections between density-independent optimization models and density-dependent invasion function models in two ways. First. I derive a new demographic function for which a maximum corresponds to attainability of the equilibrium strategy or stability of the mean rather than stability of the variance of the strategy distribution. Second, I show explicitly a continuous range of cases with maxima between those for the lambda, and R-0. Graphical and biological interpretations are given for an example model. Finally, exceptions to a putative life-history generality (from lambda and R-0 models), that high early-life mortality selects for high iteroparity are shown. Univ Calif Davis, Dept Environm Sci & Policy, Ctr Populat Biol, Davis, CA 95616 USA; Univ Calif Davis, Inst Theoret Dynam, Davis, CA 95616 USA de Valpine, P (reprint author), Univ Calif Davis, Dept Environm Sci & Policy, Ctr Populat Biol, 1 Shields Ave, Davis, CA 95616 USA. ABRAMS PA, 1993, EVOL ECOL, V7, P465, DOI 10.1007/BF01237642; ABRAMS PA, 1993, EVOLUTION, V47, P982, DOI 10.1111/j.1558-5646.1993.tb01254.x; BULMER M, 1994, THEORETICAL EVOLUTIO; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Charnov Eric L., 1993, P1; CHESSON PL, 1981, AM NAT, V117, P923, DOI 10.1086/283778; CHRISTIANSEN FB, 1991, AM NAT, V138, P37, DOI 10.1086/285203; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Eshel I, 1996, J MATH BIOL, V34, P485; ESHEL I, 1983, J THEOR BIOL, V103, P99, DOI 10.1016/0022-5193(83)90201-1; ESHEL I, 1981, THEOR POPUL BIOL, V19, P420, DOI 10.1016/0040-5809(81)90029-0; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; Heino M, 1997, PHILOS T R SOC B, V352, P1647, DOI 10.1098/rstb.1997.0146; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Roff Derek A., 1992; Stearns S. C., 1992, EVOLUTION LIFE HIST; Taylor P, 1997, EVOL ECOL, V11, P579, DOI 10.1007/s10682-997-1513-2; TAYLOR PD, 1989, THEOR POPUL BIOL, V36, P125, DOI 10.1016/0040-5809(89)90025-7; YOUNG TP, 1990, EVOL ECOL, V4, P157, DOI 10.1007/BF02270913 23 5 6 1 7 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. FEB 22 2000 267 1441 357 362 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 288HL WOS:000085556600008 10722217 2018-11-12 J Ricklefs, RE Ricklefs, RE Lack, Skutch, and Moreau: The early development of life-history thinking CONDOR English Article; Proceedings Paper Meeting of the North-American-Ornithological-Societies APR, 1998 ST LOUIS, MISSOURI N Amer Ornithol Soc Alexander Skutch; clutch size; David Lack; history of biology; life-history theory; Reginald Moreau Papers by Reginald Moreau, David Lack, and Alexander Skutch published during the 1940s set the stage for the development of thinking about life histories over the following decades. Lack was concerned about the fundamental issue of individual vs. group selection and turned life-history evolution into a battleground for this debate. His monolithic focus on nesting success as a measure of fitness and on food availability as the principal determinant of nesting success obscured the rich empirical background brought to the debate by Skutch and the diverse evolutionary forces envisioned by Moreau. Lack's strong convictions, single-mindedness, and eloquence forced biologists to confront several important problems but also held back the full development of life-history theory until the mid-1960s. Retrospective consideration of these early life-history studies shows how science can progress through a balance of conviction and reflection. Univ Missouri, Dept Biol, St Louis, MO 63121 USA Ricklefs, RE (reprint author), Univ Missouri, Dept Biol, 8001 Nat Bridge Rd, St Louis, MO 63121 USA. Allee W., 1949, PRINCIPLES ANIMAL EC; Andrewartha H. G., 1954, DISTRIBUTION ABUNDAN; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; BAKER JR, EVOLUTION ESSAYS ASP, P161; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Hesse R, 1937, ECOLOGICAL ANIMAL GE; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D., 1966, POPULATION STUDIES B; Lack D., 1968, ECOLOGICAL ADAPTATIO; Lack D, 1949, IBIS, V91, P455, DOI [DOI 10.1111/J.1474-919X.1949.TB02294.X, 10.1111/j.1474-919X.1949.tb02294.x]; LACK D, 1954, NATURAL REGULATION A; LEVINS R, 1962, AM NAT, V96, P361, DOI 10.1086/282245; Lewontin R. C., 1965, P77; MACARTHUR RH, 1962, P NATL ACAD SCI USA, V48, P1893, DOI 10.1073/pnas.48.11.1893; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; SIMPSON GG, 1961, TEACH COLL REC, V60, P617; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SMITH FE, 1961, ECOLOGY, V42, P403, DOI 10.2307/1932093; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wynne-Edwards V., 1962, ANIMAL DISPERSION RE 23 51 55 0 19 COOPER ORNITHOLOGICAL SOC LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0010-5422 CONDOR Condor FEB 2000 102 1 3 8 10.1650/0010-5422(2000)102[0003:LSAMTE]2.0.CO;2 6 Ornithology Zoology 282BE WOS:000085195300002 2018-11-12 J Guill, JM; Heins, DC Guill, JM; Heins, DC Interannual variation in clutch and egg size of the Banded Darter, Etheostoma zonale COPEIA English Article LIFE-HISTORY; REPRODUCTION; PERCIDAE; PISCES We found significant variation among years in the reproductive life-history traits of a single population of the Banded Darter, Etheostoma zonale from the Duck River drainage of Tennessee. Standard length-adjusted avenge clutch size varied by a factor of 1.38 among years and adjusted ripe egg mass by a factor of 1.21. Interannual variation in E. zonale's clutch size appears to be less extensive than is geographic variation reported previously, and egg size is generally less variable than is clutch size, both geographically and temporally, as has been predicted from life-history theory. Tulane Univ, Dept Ecol Evolut & Organismal Biol, New Orleans, LA 70118 USA Guill, JM (reprint author), Tulane Univ, Dept Ecol Evolut & Organismal Biol, 310 Dinwiddie Hall, New Orleans, LA 70118 USA. guill@mailhost.tcs.tulane.edu Ballinger R.E., 1983, P241; Bart H.L. Jr, 1993, P553; Charnov Eric L., 1993, P1; Endler JA, 1986, NATURAL SELECTION WI; FISHER WL, 1990, AM MIDL NAT, V123, P268, DOI 10.2307/2426555; FORD NB, 1989, ECOLOGY, V70, P1768, DOI 10.2307/1938110; Futuyma Douglas J., 1986, EVOLUTIONARY BIOL; Guill JM, 1996, ENVIRON BIOL FISH, V46, P409, DOI 10.1007/BF00005021; Heins David C., 1993, Ichthyological Exploration of Freshwaters, V4, P11; HEINS DC, 1989, COPEIA, P727; HEINS DC, 1992, COPEIA, P404, DOI 10.2307/1446200; HEINS DC, 1993, J FISH BIOL, V42, P819, DOI 10.1111/j.1095-8649.1993.tb00392.x; HUBBS C, 1967, B TEX MEM MUS, V13, P1; KNIGHT JG, 1992, AM MIDL NAT, V127, P91, DOI 10.2307/2426325; MARSH E, 1984, COPEIA, P291, DOI 10.2307/1445184; PAINE MD, 1990, J FISH BIOL, V37, P473, DOI 10.1111/j.1095-8649.1990.tb05877.x; REZNICK D, 1986, J HERPETOL, V20, P457, DOI 10.2307/1564515; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Roff Derek A., 1992; Schlichting C. D., 1998, PHENOTYPIC EVOLUTION; SEIGEL RA, 1985, J ANIM ECOL, V54, P497, DOI 10.2307/4494; SMITH GR, 1995, HERPETOLOGICA, V51, P342; SOKAL RR, 1995, BIOMETRY PRINCIPLES; TINKLE DW, 1993, ECOLOGY, V74, P2413, DOI 10.2307/1939592; WEDDLE GK, 1991, COPEIA, P419, DOI 10.2307/1446591 25 9 9 0 1 AMER SOC ICHTHYOLOGISTS & HERPETOLOGISTS MIAMI MAUREEN DONNELLY, SECRETARY FLORIDA INT UNIV BIOLOGICAL SCIENCES, 11200 SW 8TH STREET, MIAMI, FL 33199 USA 0045-8511 1938-5110 COPEIA Copeia FEB 1 2000 1 230 233 4 Zoology Zoology 281XN WOS:000085186900022 2018-11-12 J Murphy, MT Murphy, MT Evolution of clutch size in the Eastern Kingbird: Tests of alternative hypotheses ECOLOGICAL MONOGRAPHS English Review brood size; clutch size, evolution of; fecundity, future; individual optimization; life-history theory; nest predation; offspring recruitment of brood size, fledging size; passerines; reproduction, cost of; survival; Tyrannus tyrannus FLYCATCHER FICEDULA-ALBICOLLIS; BROOD-MANIPULATION EXPERIMENTS; SWALLOWS TACHYCINETA-BICOLOR; KITTIWAKE RISSA-TRIDACTYLA; KESTREL FALCO-TINNUNCULUS; LIFE-HISTORY EVOLUTION; TITS PARUS-CAERULEUS; BREEDING BLUE TITS; GREAT TITS; PIED FLYCATCHER David Lack proposed that parental feeding ability ultimately limited clutch size in bird species in which the young were dependent upon their parents for food. However, many species can raise broods that are larger than their normal clutch size. Based on nine years of experimental results from an individually marked population of Eastern Kingbirds (Tyrannus tyrannus) breeding in central New York (USA), I test six hypotheses that have been proposed as explanations for why birds fail to lay larger, seemingly more productive clutch sizes. I modified brood sizes by adding or removing 1-2 nestlings when broods were 1-3 d old and then documented the effects of brood size and manipulated brood size on nestling size and survivorship, offspring recruitment, adult survival, and future adult reproduction. Most first clutches of the season held three eggs (62% of 503 clutches), but the proportion of young to hedge did not vary with brood size (1-5 young), and as a result, broods of five were the most productive. Lack's basic food-limitation model was thus rejected. Although nestling mass and ninth-primary length at fledging declined with brood size, offspring survival during the immediate 10-12 d period after fledging was unrelated to nestling mass or lengths of the tarsus or ninth primary. The findings that the underweight young in broods of four and five did not suffer disproportionate mortality and that they were just as likely to appear as recruits in future years led to a rejection of the extended version of Lack's food-limitation model. Comparisons of annual variation in the relationship between productivity and brood size showed that productivity increased with brood size in eight of nine years (significant in six years). Thus, high temporal stochastic variation in conditions for rearing young (the "bad-years" hypothesis) is unlikely to explain the relatively small clutch size of kingbirds. Predictions of two other hypotheses that predict asymmetrically low survivorship of young in large broods (the "cliff-edge" and "brood-parasitism" hypotheses) were also rejected. On the other hand, evidence suggested that females individualize clutch size such that each female lays a clutch that matches her individual feeding ability. Although fledgling production was not adversely affected by experimental increases in brood size, most enlarged broods lost young during the 10-12 d immediately after fledging. Thus, enlarged broods ultimately produced no more independent young than did control broods that began with the same number of eggs, Fledgling deaths were not related to nestling mass or size, and recruitment was independent of manipulations. Survival and fecundity costs of reproduction also existed for females. Male survival (68%) was independent of the number of young that had been raised (0-5 young), and future breeding efforts were not compromised by elevated effort in the past year. However, females that raised broods of five were less likely to return to breed in the following year (42%) than were females that raised 2-4 young (62%). Among the survivors, females that raised enlarged broods in the preceding year also experienced more hatching failure and fledged fewer young than females that raised reduced broods in the preceding year. I suggest that costs of reproduction probably set the ultimate limit to clutch size in Eastern Kingbirds. I did not test the hypothesis that high rates of nest predation favor the evolution of small clutch size, but given that predators destroyed similar to 50% of nests each year, it is also likely that nest predation has contributed to the evolution of the current clutch size of kingbirds. Whether a female produces a clutch of three or four eggs is probably determined by individual differences in parental ability, which may be related to either intrinsic properties of the female or territory quality. Hartwick Coll, Dept Biol, Oneonta, NY 13820 USA Murphy, MT (reprint author), Hartwick Coll, Dept Biol, Oneonta, NY 13820 USA. murphym@hartwick.edu *AN SOFTW, 1994, STAT VERS 4 1; ASKENMO C, 1979, AM NAT, V114, P748, DOI 10.1086/283523; ASKENMO C, 1977, Ornis Scandinavica, V8, P1, DOI 10.2307/3675982; BARBER CA, 1995, CONDOR, V97, P352, DOI 10.2307/1369021; BISCHOFF CM, 1993, ANIM BEHAV, V45, P631, DOI 10.1006/anbe.1993.1079; BLANCHER PJ, 1985, J ANIM ECOL, V54, P1017, DOI 10.2307/4394; BORENSTEIN M, 1988, STAT POWER COMPUTER; Boulinier T, 1997, ECOLOGY, V78, P1284, DOI 10.2307/2265880; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Bryant DM, 1988, FUNCT ECOL, V2, P23, DOI 10.2307/2389456; BRYANT DM, 1979, J ANIM ECOL, V48, P655, DOI 10.2307/4185; BRYANT DM, 1975, IBIS, V117, P180, DOI 10.1111/j.1474-919X.1975.tb04206.x; BULMER MG, 1985, AM NAT, V126, P63, DOI 10.1086/284396; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; COOCH EG, 1994, OIKOS, V69, P447, DOI 10.2307/3545857; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; DAVIES NB, 1977, ANIM BEHAV, V25, P1016, DOI 10.1016/0003-3472(77)90053-7; Davis D. E., 1955, Condor, V57, P208, DOI 10.2307/1365084; DESTEVEN D, 1980, EVOLUTION, V34, P278, DOI 10.1111/j.1558-5646.1980.tb04816.x; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; FRANK SA, 1990, AM NAT, V136, P244, DOI 10.1086/285094; Gill FB, 1990, ORNITHOLOGY; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; GODFRAY HCJ, 1987, AM NAT, V129, P221, DOI 10.1086/284632; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.ecolsys.22.1.409; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; GOODBURN SF, 1991, IBIS, V133, P85, DOI 10.1111/j.1474-919X.1991.tb04815.x; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; HEGNER RE, 1987, AUK, V104, P470, DOI 10.2307/4087546; HESPENHEIDE HA, 1971, IBIS, V113, P59, DOI 10.1111/j.1474-919X.1971.tb05123.x; Hillstrom L, 1995, FUNCT ECOL, V9, P807, DOI 10.2307/2389978; HOCHACHKA W, 1991, J ANIM ECOL, V60, P995, DOI 10.2307/5427; HOGSTEDT G, 1980, SCIENCE, V210, P1148, DOI 10.1126/science.210.4474.1148; JACOBSEN KO, 1995, ECOLOGY, V76, P1636, DOI 10.2307/1938164; JOHNSTON RD, 1993, IBIS, V135, P311, DOI 10.1111/j.1474-919X.1993.tb02849.x; Julliard R, 1997, ECOLOGY, V78, P394; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D., 1966, POPULATION STUDIES B; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LIMA SL, 1987, ECOLOGY, V68, P1062, DOI 10.2307/1938378; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LIOU LW, 1993, AM NAT, V141, P507, DOI 10.1086/285488; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; Maigret JL, 1997, BEHAV ECOL, V8, P250, DOI 10.1093/beheco/8.3.250; Martin T.E., 1992, Current Ornithology, V9, P163; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; McCleery RH, 1996, J ANIM ECOL, V65, P96, DOI 10.2307/5703; MCKITRICK MC, 1990, BEHAV ECOL SOCIOBIOL, V26, P149, DOI 10.1007/BF00172081; MEIJER T, 1990, BEHAVIOUR, V114, P117, DOI 10.1163/156853990X00077; MERILA J, 1993, J EVOLUTION BIOL, V6, P375, DOI 10.1046/j.1420-9101.1993.6030375.x; MOLLER AP, 1993, J ANIM ECOL, V62, P309, DOI 10.2307/5362; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; MOREHOUSE EL, 1968, AUK, V85, P44; Morris DW, 1996, J ANIM ECOL, V65, P43, DOI 10.2307/5698; MORRIS DW, 1992, EVOLUTION, V46, P1848, DOI 10.1111/j.1558-5646.1992.tb01173.x; MOUNTFORD MD, 1968, J ANIM ECOL, V37, P363, DOI 10.2307/2953; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; Murphy M. T., 1996, CONDOR, V98, P83; Murphy MT, 1997, AM MIDL NAT, V138, P344, DOI 10.2307/2426827; MURPHY MT, 1986, ECOLOGY, V67, P1483, DOI 10.2307/1939079; MURPHY MT, 1983, AUK, V100, P326; MURPHY MT, 1987, CONDOR, V89, P721, DOI 10.2307/1368518; MURPHY MT, 1983, ECOLOGY, V64, P914, DOI 10.2307/1937213; MURPHY MT, 1996, BIRDS N AM, P1; Nager RG, 1997, J ANIM ECOL, V66, P495, DOI 10.2307/5944; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; NUR N, 1986, J ANIM ECOL, V55, P983, DOI 10.2307/4428; NUR N., 1990, POPULATION BIOL PASS, P281; Orell M, 1996, IBIS, V138, P630, DOI 10.1111/j.1474-919X.1996.tb04764.x; ORELL M, 1988, OECOLOGIA, V77, P423, DOI 10.1007/BF00378054; Perrins CM, 1996, IBIS, V138, P2, DOI 10.1111/j.1474-919X.1996.tb04308.x; PERRINS CM, 1975, J ANIM ECOL, V44, P695, DOI 10.2307/3712; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; PETTIFOR RA, 1993, J ANIM ECOL, V62, P131, DOI 10.2307/5488; PETTIFOR RA, 1993, J ANIM ECOL, V62, P145, DOI 10.2307/5489; PLATT JR, 1964, SCIENCE, V146, P347, DOI 10.1126/science.146.3642.347; POWER HW, 1989, CONDOR, V91, P753, DOI 10.2307/1368058; Ramsay SL, 1997, J ANIM ECOL, V66, P649, DOI 10.2307/5918; Ramstack JM, 1998, WILSON BULL, V110, P233; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RISCH TS, 1995, ECOLOGY, V76, P1643, DOI 10.2307/1938165; ROSA SM, 1994, WILSON BULL, V106, P668; ROSKAFT E, 1985, J ANIM ECOL, V54, P255, DOI 10.2307/4635; SAFRIEL UN, 1975, ECOLOGY, V56, P703, DOI 10.2307/1935505; Sanz JJ, 1995, J AVIAN BIOL, V26, P313, DOI 10.2307/3677046; SCHLUTER D, 1986, BIOL J LINN SOC, V29, P23, DOI 10.1111/j.1095-8312.1986.tb01768.x; SEGER J, 1987, OXFORD SURVEY EVOLUT, V5, P182; Siikamaki P, 1997, FUNCT ECOL, V11, P176, DOI 10.1046/j.1365-2435.1997.00075.x; SIIKAMAKI P, 1994, FUNCT ECOL, V8, P587, DOI 10.2307/2389919; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; Stearns S. C., 1992, EVOLUTION LIFE HIST; SULLIVAN KA, 1989, J ANIM ECOL, V58, P275, DOI 10.2307/5000; TINBERGEN JM, 1990, BEHAVIOUR, V114, P161, DOI 10.1163/156853990X00103; TINBERGEN JM, 1990, J ANIM ECOL, V59, P1113, DOI 10.2307/5035; TOROK J, 1990, POPULATION BIOL PASS, P307; VANDERWERF E, 1992, ECOLOGY, V73, P1699, DOI 10.2307/1940021; Ward S, 1996, PHYSIOL ZOOL, V69, P930, DOI 10.1086/physzool.69.4.30164236; WEIMERSKIRCH H, 1992, OIKOS, V64, P464, DOI 10.2307/3545162; Wernham CV, 1998, J ANIM ECOL, V67, P25, DOI 10.1046/j.1365-2656.1998.00166.x; WESTERTERP KR, 1984, OECOLOGIA, V62, P376, DOI 10.1007/BF00384270; WHEELWRIGHT NT, 1991, CAN J ZOOL, V69, P2540, DOI 10.1139/z91-358; WIGGINS DA, 1990, CONDOR, V92, P534, DOI 10.2307/1368257; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Winkler DW, 1995, AUK, V112, P737; Woodard JD, 1999, ANIM BEHAV, V57, P105, DOI 10.1006/anbe.1998.0998 112 38 39 2 28 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9615 1557-7015 ECOL MONOGR Ecol. Monogr. FEB 2000 70 1 1 20 10.1890/0012-9615(2000)070[0001:EOCSIT]2.0.CO;2 20 Ecology Environmental Sciences & Ecology 282FZ WOS:000085208500001 2018-11-12 J Alonzo, SH; Warner, RR Alonzo, SH; Warner, RR Female choice, conflict between the sexes and the evolution of male alternative reproductive behaviours EVOLUTIONARY ECOLOGY RESEARCH English Article alternative reproductive behaviours; life-history theory; multi-player dynamic game models; reproductive strategies; sexual conflict STOCHASTIC DYNAMIC GAME; STABLE STRATEGIES; SEXUAL SELECTION; MATING TACTICS; PARENTAL CARE; DECISION; FISH; ORGANIZATION; SATELLITES; PLASTICITY The importance of conflict between the sexes has recently been recognized as a driving force in the evolution of mating systems and reproductive behaviour. Past theory on the evolution of alternative reproductive strategies focused primarily on interactions within a single sex. These interactions can generate frequency- and condition-dependent fitness, which maintain the stable co-existence of alternative reproductive behaviours. We argue that interactions between the sexes (such as female choice and intersexual conflict) are a common but ignored mechanism that will influence the evolution of male alternative reproductive behaviours. Using a modelling approach that links dynamic games, we examine the influence of female choice on the stability and expression of male alternatives. By modelling five different biological scenarios, we show that female choice can suppress the existence of male alternative reproductive behaviours even when frequency- or condition-dependent mechanisms alone would predict their stable co-existence. Furthermore, we find that variation in female choice can lead to the stable coexistence of male alternative reproductive behaviours in the absence of traditional mechanisms known to allow the evolution of reproductive alternatives. Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA Alonzo, SH (reprint author), Univ Calif Santa Cruz, Dept Environm Studies, Santa Cruz, CA 95064 USA. shalonzo@cats.ucsc.edu Warner, Robert/M-5342-2013 Warner, Robert/0000-0002-3299-5685 Alcock J., 1979, P381; ARAK A, 1988, ANIM BEHAV, V36, P10; AUSTAD SN, 1984, AM ZOOL, V24, P309; Bednekoff PA, 1996, TRENDS ECOL EVOL, V11, P383, DOI 10.1016/0169-5347(96)81140-2; CARO TM, 1986, ANIM BEHAV, V34, P1483, DOI 10.1016/S0003-3472(86)80219-6; Charnov Eric L., 1993, P1; CLARK CW, 1999, DYNAMIC STATE VARIAB; COOPER WS, 1982, J THEOR BIOL, V94, P135, DOI 10.1016/0022-5193(82)90336-8; Dawkins R, 1980, SOCIOBIOLOGY NATURE, P331; DOMINEY WJ, 1984, AM ZOOL, V24, P385; Dunbar R.I.M., 1983, P423; EBERHARD WG, 1982, AM NAT, V119, P420, DOI 10.1086/283920; Gross M. R., 1984, Fish reproduction: strategies and tactics., P55; GROSS MR, 1991, PHILOS T R SOC B, V332, P59, DOI 10.1098/rstb.1991.0033; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; GROSS MR, 1982, Z TIERPSYCHOL, V60, P1; Henson SA, 1997, ANNU REV ECOL SYST, V28, P571, DOI 10.1146/annurev.ecolsys.28.1.571; HOFFMAN SG, 1985, EVOLUTION, V39, P915, DOI 10.1111/j.1558-5646.1985.tb00432.x; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; HOUSTON AI, 1987, J THEOR BIOL, V129, P57, DOI 10.1016/S0022-5193(87)80203-5; Houston AI, 1988, EVOL ECOL, V2, P51, DOI 10.1007/BF02071588; HOWARD RD, 1984, AM ZOOL, V24, P397; KAPLAN RH, 1984, AM NAT, V123, P393, DOI 10.1086/284211; Lejeune P., 1985, CAH ETHOL APPL, V5, P1; LEVENE H, 1953, AM NAT, V87, P331, DOI 10.1086/281792; Lucas JR, 1996, ANIM BEHAV, V51, P501, DOI 10.1006/anbe.1996.0056; LUCAS JR, 1995, AM NAT, V146, P365, DOI 10.1086/285805; LUTTBERG BT, 1997, THESIS U CALIFORNIA; LUTTBERG BT, IN PRESS BEHAV ECOL; MANGEL M, 1994, BEHAV ECOL, V5, P412, DOI 10.1093/beheco/5.4.412; MANGEL M, 1992, ANNU REV ECOL SYST, V23, P507; MANGEL M, 1990, MATH BIOSCI, V100, P241, DOI 10.1016/0025-5564(90)90041-V; Mangel M., 1988, DYNAMIC MODELING BEH; MANGEL M, 1990, AM NAT, V135, P688; Maxwell MR, 1998, ANIM BEHAV, V55, P1011, DOI 10.1006/anbe.1997.0671; Maynard-Smith J, 1982, EVOLUTION THEORY GAM; MCNAMARA JM, 1990, EVOL ECOL, V4, P298, DOI 10.1007/BF02270929; McNamara JM, 1997, J THEOR BIOL, V189, P211, DOI 10.1006/jtbi.1997.0511; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; MOORE MC, 1991, HORM BEHAV, V25, P154, DOI 10.1016/0018-506X(91)90048-M; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; Parker G.A., 1984, BEHAVIOURAL ECOLOGY, P30; RUBENSTEIN DI, 1980, LIMITS ACTION ALLOCA, P65; SMITH JM, 1988, J THEOR BIOL, V130, P247, DOI 10.1016/S0022-5193(88)80100-0; TABORSKY M, 1987, BEHAVIOUR, V102, P82, DOI 10.1163/156853986X00063; TABORSKY M, 1994, ADV STUD BEHAV, V21, P1; VANDENBERGHE EP, 1989, ANIM BEHAV, V38, P875, DOI 10.1016/S0003-3472(89)80119-8; VANDENBERGHE EP, 1992, BEHAV ECOL SOCIOBIOL, V30, P373, DOI 10.1007/BF00176171; VANDENBERGHE EP, 1990, ETHOLOGY, V84, P319; WALTZ EC, 1982, BEHAV ECOL SOCIOBIOL, V10, P75, DOI 10.1007/BF00300166; WARNER RR, 1984, EVOLUTION, V38, P148, DOI 10.1111/j.1558-5646.1984.tb00268.x; WARNER RR, 1995, BEHAV ECOL, V6, P73, DOI 10.1093/beheco/6.1.73; Warner RR, 1998, J FISH BIOL, V53, P82, DOI 10.1006/jfbi.1998.0825; WARNER RR, 1985, P 5 INT COR REEF C, P145 54 66 67 0 30 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. FEB 2000 2 2 149 170 22 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 291BL WOS:000085713000002 2018-11-12 J Toft, S Toft, S Species and age effects in the value of cereal aphids as food for a spider (Araneae) EKOLOGIA-BRATISLAVA English Article; Proceedings Paper 18th European Colloquium of Arachnology JUL 12-17, 1999 STARA LESNA, SLOVAKIA DANONE Cokoladovny as, VEPOS spol sro, YPOR spol sro, Alojz Petras, Cyanamid CR sro, Pivovar Karsay, NISYS Nitriansky Informacny Syst, Biodeconta spol ro RHOPALOSIPHUM-PADI; DIETS All three species of aphids from cereal crops, Rhopalosiphum padi, Sitobion avenae and Metopolophium dirhodum were low duality prey for hatchlings of the wolf spider Pardosa prativaga, as revealed by development, growth and survival of the spider when the aphids were given as single-species diets. The species differed in food value, however, with M. dirhodum of highest value, S. avenae intermediate, and R. padi the lowest value. The latter species was no better than starvation. Spiderlings on a mixed diet of all three aphids showed intermediate performance, indicating that they were unable to select optimally among the prey available. Small juvenile instars of R. padi were of higher value as food than mature females. This result was predicted from life-history theory on the assumption that low food value is associated with a costly (chemical) defence against predators. Aarhus Univ, Dept Zool, DK-8000 Aarhus C, Denmark Toft, S (reprint author), Aarhus Univ, Dept Zool, Bldg 135, DK-8000 Aarhus C, Denmark. BERNAYS EA, 1994, ECOLOGY, V75, P1997, DOI 10.2307/1941604; Bilde T, 1997, BIOL AGRIC HORTIC, V15, P143; BILDE T, 1994, ENTOMOL EXP APPL, V73, P151, DOI 10.1111/j.1570-7458.1994.tb01850.x; Bilde T, 1997, ENTOMOPHAGA, V42, P21, DOI 10.1007/BF02769876; Booiji C.J.H., 1996, ARTHROPOD NATURAL EN, P107; Stearns S. C., 1992, EVOLUTION LIFE HIST; TOFT S, 1995, J APPL ECOL, V32, P552, DOI 10.2307/2404652; Toft S, 1997, ENTOMOPHAGA, V42, P63, DOI 10.1007/BF02769881; Toft S, 1999, OECOLOGIA, V119, P191, DOI 10.1007/s004420050776; Toft S., 1997, P 16 EUR C AR SIEDL, P301; TURNBULL A. L., 1960, CANADIAN JOUR JOUR ZOOL, V38, P859, DOI 10.1139/z60-091; UETZ GW, 1992, J ARACHNOL, V20, P207 12 8 8 0 1 SLOVAK ACADEMIC PRESS LTD BRATISLAVA PO BOX 57 NAM SLOBODY 6, 810 05 BRATISLAVA, SLOVAKIA 1335-342X EKOL BRATISLAVA Ekol. Bratisl. 2000 19 3 273 278 6 Ecology Environmental Sciences & Ecology 356AM WOS:000089420800032 2018-11-12 J Mayhew, PJ; Heitmans, WRB Mayhew, PJ; Heitmans, WRB Life history correlates and reproductive biology of Laelius pedatus (Hymenoptera : Bethylidae) in The Netherlands EUROPEAN JOURNAL OF ENTOMOLOGY English Article Laelius pedatus; Bethylidae; Hymenoptera; parasitoid; clutch size; sex ratio; geographic range; Trogoderma angustum; Trogoderma glabrum; life history; development; reproduction PARASITOID WASP; TROGODERMA-VARIABILE; INSECT PARASITOIDS; CLUTCH SIZE; SEX-RATIOS; HOST; FITNESS; FIELD; COLEOPTERA; GROWTH Bethylid wasps are a medium sized family of parasitic Hymenoptera, with biological control potential, which have recently proved excellent model systems for testing evolutionary and life history theory. We report observations on a species of Laelius from The Netherlands. The species is morphologically indistinguishable from Laelius padatus, previously reported only from the New World. Reciprocal crosses between the Dutch wasps and L, pedatus from Madison, Wisconsin, USA confirmed that the Dutch population belongs to L. pedatus. We compared the life history of the Dutch wasps with those from Madison by rearing them on Trogoderma glabrum, but found no significant differences. The Dutch wasps successfully parasitize Trogoderma angustum, an invasive museum and domestic pest found in situ, but suffer high developmental mortality on T. glabrum. Wasp egg size was positively correlated with the size of ovipositing female, which was also negatively correlated with the developmental mortality of offspring. Larger wasps also carried more mature eggs. Time taken to lay the clutch increased with the size of the eventual clutch laid and was longer in unmated than mated females. When some wasps died before completing development, surviving members of the brood grew to a larger size and took longer to complete development. The number of males per brood increased with previous oviposition experience, an indication of sperm depletion through life. We discuss the implications of these trends for parasitoid life history theory. Leiden Univ, Inst Evolutionary & Ecol Sci, NL-2300 RA Leiden, Netherlands Mayhew, PJ (reprint author), Univ York, Dept Biol, POB 373, York YO10 5YW, N Yorkshire, England. Mayhew, Peter/B-1370-2008; Mayhew, Peter/I-6363-2012 Mayhew, Peter/0000-0002-7346-6560 Al-Kirshi AG, 1997, M D GESELL ALLG ANGE, V11, P367; Bennett DM, 1998, J ANIM ECOL, V67, P580; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; COYNE J, 1994, NATURE, V369, P189, DOI 10.1038/369189a0; Crawley MJ, 1993, GLIM ECOLOGISTS; Ellers J, 1998, J ANIM ECOL, V67, P318, DOI 10.1046/j.1365-2656.1998.00195.x; Evans H.E., 1978, MEM AM ENTOMOL I, V27, P1; FITTON MG, 1978, HDB IDENT BR INSECTS, V7, P1; Flanders Stanley E., 1942, ANN ENT SOC AMERICA, V35, P251; GAULD ID, 1988, HYMENOPTERA; Godfray HCJ., 1994, PARASITOIDS BEHAV EV; Gordh G, 1990, MEM AM ENTOMOL I, V46, P1; Grbic M, 1998, P NATL ACAD SCI USA, V95, P1097, DOI 10.1073/pnas.95.3.1097; Guertin DS, 1996, ECOL ENTOMOL, V21, P27, DOI 10.1111/j.1365-2311.1996.tb00262.x; Hardy ICW, 1998, BEHAV ECOL SOCIOBIOL, V42, P383, DOI 10.1007/s002650050453; Hardy ICW, 1998, BIOL J LINN SOC, V64, P239; Harvey JA, 1998, PHYSIOL ENTOMOL, V23, P113, DOI 10.1046/j.1365-3032.1998.232072.x; HARVEY JA, 1994, ECOLOGY, V75, P1420, DOI 10.2307/1937465; Harvey JA, 2000, OIKOS, V88, P621, DOI 10.1034/j.1600-0706.2000.880319.x; JERVIS MA, 1986, BIOL REV, V61, P395, DOI 10.1111/j.1469-185X.1986.tb00660.x; KAZMER DJ, 1995, ECOLOGY, V76, P412, DOI 10.2307/1941200; KING BH, 1987, Q REV BIOL, V62, P367, DOI 10.1086/415618; KLEIN JA, 1991, ANN ENTOMOL SOC AM, V84, P72, DOI 10.1093/aesa/84.1.72; KLEIN JA, 1990, ANN ENTOMOL SOC AM, V83, P809, DOI 10.1093/aesa/83.4.809; Kozlowski J, 1997, AM NAT, V149, P352; LUFT PA, 1993, ANN ENTOMOL SOC AM, V86, P497, DOI 10.1093/aesa/86.4.497; Mackauer M., 1997, Ecological Studies, V130, P191; Mayhew PJ, 1999, J ANIM ECOL, V68, P906, DOI 10.1046/j.1365-2656.1999.00338.x; Mayhew PJ, 1998, BEHAV ECOL, V9, P54, DOI 10.1093/beheco/9.1.54; Mayhew PJ, 1999, ANIM BEHAV, V58, P131, DOI 10.1006/anbe.1999.1106; Mayhew PJ, 1998, ECOL LETT, V1, P139; Mayhew PJ, 1997, OECOLOGIA, V110, P218, DOI 10.1007/s004420050153; Mayhew PJ, 1997, ENTOMOL EXP APPL, V84, P115, DOI 10.1046/j.1570-7458.1997.00206.x; MAYHEW PJ, 1996, THESIS U LONDON LOND; MERTINS JW, 1982, ENTOMOL NEWS, V93, P139; MERTINS JW, 1980, ANN ENTOMOL SOC AM, V73, P686, DOI 10.1093/aesa/73.6.686; MORGAN DJW, 1994, OIKOS, V71, P423, DOI 10.2307/3545830; Murphy S. T., 1990, Biocontrol News and Information, V11, P107; MYHEW PJ, 1998, AM NAT, V151, P419; Nagelkerke C.J., 1991, P193; ONEILL KM, 1990, J ZOOL, V220, P115, DOI 10.1111/j.1469-7998.1990.tb04297.x; Otto M, 1998, OECOLOGIA, V117, P353, DOI 10.1007/s004420050668; Perez-Lachaud G, 1999, BIOL CONTROL, V14, P152, DOI 10.1006/bcon.1998.0685; Perkins J. F., 1976, HDB IDENTIFICATION B, V6; Petersen G, 1996, ANIM BEHAV, V51, P1363, DOI 10.1006/anbe.1996.0139; QI YT, 1990, CONTR SHANGHAI I ENT, V9, P59; QI YT, 1990, CONTR SHANGHAI I ENT, V9, P52; Salt G, 1941, BIOL REV CAMB PHILOS, V16, P239, DOI 10.1111/j.1469-185X.1941.tb01103.x; SEQUEIRA R, 1992, EVOL ECOL, V6, P34, DOI 10.1007/BF02285332; Sevenster JG, 1998, EVOLUTION, V52, P1241, DOI 10.1111/j.1558-5646.1998.tb01853.x; Thompson S.N., 1990, P64; VINSON SB, 1980, Q REV BIOL, V55, P143, DOI 10.1086/411731; VINSON SB, 1980, ANNU REV ENTOMOL, V25, P397, DOI 10.1146/annurev.en.25.010180.002145; VISSER ME, 1994, J ANIM ECOL, V63, P963, DOI 10.2307/5273; Weidner H., 1993, BESTIMMUNGSTABELLEN; West SA, 1996, J ANIM ECOL, V65, P631, DOI 10.2307/5742 57 21 21 0 6 CZECH ACAD SCI, INST ENTOMOLOGY CESKE BUDEJOVICE BRANISOVSKA 31, CESKE BUDEJOVICE 370 05, CZECH REPUBLIC 1210-5759 EUR J ENTOMOL Eur. J. Entomol. 2000 97 3 313 322 10.14411/eje.2000.048 10 Entomology Entomology 368GK WOS:000090109200003 Bronze 2018-11-12 J de Jong, TJ; Klinkhamer, PGL; de Heiden, JLH de Jong, TJ; Klinkhamer, PGL; de Heiden, JLH The evolution of generation time in metapopulations of monocarpic perennial plants: some theoretical considerations and the example of the rare thistle Carlina vulgaris EVOLUTIONARY ECOLOGY English Article expected life time reproductive success (R-0); life history theory; local extinction; population biology POPULATION-DYNAMICS; CYNOGLOSSUM-OFFICINALE; DENSITY-DEPENDENCE; LIFE-HISTORIES; THRESHOLD SIZE; AGE; OPTIMIZATION; REPRODUCTION; COMPETITION; BIENNIALS Life-history models for populations in a single patch, in which density dependence occurs through competition between seedlings for safe-sites, suggest that timing of flowering in monocarpic perennials is such that expected lifetime reproductive success (R-0) is maximised. We discuss metapopulation models in which local populations go extinct either (1) because all rosettes die locally, or (2) because seedling recruitment is limited to restricted periods in time. In both cases there is selection for shorter optimal generation times than suggested by the single-patch model. The mechanism is that in young populations competition between seedlings for safe sites is relaxed for some years. This mostly benefits types with short generation times. Carlina vulgaris flowers earlier than the single-patch model suggests. The metapopulation effect is sufficiently strong to account for the differences but other factors cannot be outruled. Data on other monocarpic perennials are discussed. Flowering in Cirsium vulgare is also earlier than suggested by the single-patch model, but for other species the picture is far from clear. Leiden Univ, Inst Evolutionary & Ecol Sci, Leiden, Netherlands de Jong, TJ (reprint author), Leiden Univ, Inst Evolutionary & Ecol Sci, Leiden, Netherlands. dejong@rulsfb.leidenuniv.nl Klinkhamer, Peter/S-1900-2017 Klinkhamer, Peter/0000-0001-8650-2199 AGREN GI, 1984, OIKOS, V43, P369, DOI 10.2307/3544155; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; CRAWLEY MJ, 1987, J THEOR BIOL, V125, P475, DOI 10.1016/S0022-5193(87)80215-1; DEJONG TJ, 1989, ACTA BOT NEERL, V38, P41, DOI 10.1111/j.1438-8677.1989.tb01911.x; deJong TJ, 1995, ECOGRAPHY, V18, P384; DEJONG TJ, 1987, VEGETATIO, V70, P149; GERITZ SAH, 1995, AM NAT, V146, P685, DOI 10.1086/285820; GERITZ SAH, 1988, THEOR POPUL BIOL, V33, P161, DOI 10.1016/0040-5809(88)90011-1; Hanski Ilkka, 1997, P5, DOI 10.1016/B978-012323445-2/50003-1; Harper J. L., 1977, POPULATION BIOL PLAN; HEIDEN JLH, 1991, MEIJENDEL MEDEDELING, V21, P43; Heino M, 1997, EVOL ECOL, V11, P67, DOI 10.1023/A:1018435513099; KACHI N, 1985, J ECOL, V73, P887, DOI 10.2307/2260155; KELLY D, 1985, AM NAT, V125, P473, DOI 10.1086/284355; KLINKHAMER PGL, 1991, OIKOS, V61, P88, DOI 10.2307/3545410; KLINKHAMER PGL, 1992, FUNCT ECOL, V6, P308, DOI 10.2307/2389522; KLINKHAMER PGL, 1989, ACTA BOT NEERL, V38, P57, DOI 10.1111/j.1438-8677.1989.tb01912.x; Klinkhamer PGL, 1996, OIKOS, V75, P259, DOI 10.2307/3546249; LACEY EP, 1986, TRENDS ECOL EVOL, V1, P72, DOI 10.1016/0169-5347(86)90021-2; Levins R., 1968, EVOLUTION CHANGING E; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; OLIVIERI I, 1995, AM NAT, V146, P202, DOI 10.1086/285795; Olivieri Isabelle, 1997, P293, DOI 10.1016/B978-012323445-2/50017-1; Pasztor L, 1996, J EVOLUTION BIOL, V9, P511, DOI 10.1046/j.1420-9101.1996.9040511.x; PIELOU EC, 1977, MATH ECOLOGY; Rademaker MCJ, 1998, J EVOLUTION BIOL, V11, P623, DOI 10.1046/j.1420-9101.1998.11050623.x; Rees M, 1999, AM NAT, V154, P628, DOI 10.1086/303268; Rees M, 2000, ECOLOGICAL CONSEQUEN; Roff Derek A., 1992; Ronce O, 1997, AM NAT, V150, P220, DOI 10.1086/286064; SKELLAM JG, 1951, BIOMETRIKA, V38, P196, DOI 10.1093/biomet/38.1-2.196; Stearns S. C., 1992, EVOLUTION LIFE HIST; VANDERMEIJDEN E, 1992, ACTA BOT NEERL, V41, P249, DOI 10.1111/j.1438-8677.1992.tb01333.x; Wesselingh RA, 1997, ECOLOGY, V78, P2118, DOI 10.1890/0012-9658(1997)078[2118:TSFFID]2.0.CO;2; WESSELINGH RA, 1993, ACTA BOT NEERL, V42, P81 35 19 19 0 4 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. 2000 14 3 213 231 10.1023/A:1011063625087 19 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 441CA WOS:000169212400004 2018-11-12 B Rowe, DC Rodgers, JL; Rowe, DC; Miller, WB Rowe, DC Environmental and genetic influences on pubertal development: Evolutionary life history traits? GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY: THEORETICAL AND EMPIRICAL CONTRIBUTIONS FROM THE BIOLOGICAL AND BEHAVIORAL SCIENCES English Proceedings Paper Conference on Genetic Influences on Fertility and Related Process DEC, 1997 TUCSON, AZ NIH, Off Behavior & Social Sci Res, Soc Stud Social Biol heritability; evolution; menarche; pubertal development MENARCHE; AGE; MODEL; ONSET; MATURATION; EVENTS; TWINS Precocious pubertal development has been observed among girls in single parent families and among girls exposed to family conflict. One explanation for their precocious puberty is that it is evolutionarily adaptive (called here the "life history theory" view). Another explanation is that mothers simply pass on genes for precocious puberty. Thus, family environmental circumstances are not causally determinative of rates of pubertal development. The evidence for these two views was evaluated using the genetically-informative sibling pairs from the National Longitudinal Study of Adolescent Health. Both menarcheal age and pubertal timing were heritable (h(2) = .44 and .40, respectively), with negligible shared environmental variation. However, in White girls, greater parental warmth delayed puberty, as did living in two parent families. A test of genetic influences underlying the correlation of warmth and pubertal timing was negative, however. Although some of these findings were inconsistent with the evolutionary life history theory, they did not disprove it decisively. Univ Arizona, Div Family Studies, Tucson, AZ 85721 USA Rowe, DC (reprint author), Univ Arizona, Div Family Studies, 210 FCR Bldg, Tucson, AZ 85721 USA. BELSKY J, 1991, CHILD DEV, V62, P682, DOI 10.2307/1131169; Calabrese L H, 1983, Phys Sportsmed, V11, P86, DOI 10.1080/00913847.1983.11708458; CAMPBELL BC, 1995, J BIOSOC SCI, V27, P127; DEFRIES JC, 1985, BEHAV GENET, V15, P467, DOI 10.1007/BF01066239; DRAPER P, 1990, J PERS, V58, P141, DOI 10.1111/j.1467-6494.1990.tb00911.x; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; DRAPER P, 1988, SOCIOBIOLOGY PERSPEC; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; ELLIS BJ, 1998, IN PRESS CHILD DEV; FISCHBEIN S, 1977, ACTA GENET MED GEMEL, V26, P151, DOI 10.1017/S0001566000009946; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.2307/1131582; Harris J. R., 1998, NURTURE ASSUMPTION; KAPRIO J, 1995, HUM BIOL, V67, P739; Lewontin R.C., 1984, NOT OUR GENES; Losoya SH, 1997, DEV PSYCHOL, V33, P1012, DOI 10.1037/0012-1649.33.6.1012; MACCOBY EE, 1991, CHILD DEV, V62, P676, DOI 10.2307/1131168; MacDonald K, 1997, HUM NATURE-INT BIOS, V8, P327, DOI 10.1007/BF02913038; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; Pickles A, 1998, BEHAV GENET, V28, P243, DOI 10.1023/A:1021615228995; PLOMIN R, 1991, BEHAV BRAIN SCI, V14, P373, DOI 10.1017/S0140525X00070278; Rowe D. C, 1994, LIMITS FAMILY INFLUE; STEINBERG L, 1988, DEV PSYCHOL, V24, P122, DOI 10.1037/0012-1649.24.1.122; TRELOAR SA, 1990, AM J HUM GENET, V47, P137 23 46 48 0 6 SPRINGER DORDRECHT PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0-7923-7860-1 2000 147 168 22 Genetics & Heredity; Reproductive Biology Genetics & Heredity; Reproductive Biology BR55X WOS:000166812400008 2018-11-12 J Marlowe, FW Marlowe, FW The patriarch hypothesis - An alternative explanation of menopause HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article grandmother hypothesis; hadza; life history theory; male-male competition; menopause; oocyte depletion; pair-bond; patriarch hypothesis LIFE-SPAN; MORTALITY; EVOLUTION; MEN Menopause is puzzling because life-history theory predicts there should be no selection for outliving one's reproductive capacity. Adaptive explanations of menopause offered thus far turn on women's long-term investment in offspring and grandoffspring, all variations on the grandmother hypothesis. Here, I offer a very different explanation. The patriarch hypothesis proposes that once males became capable of maintaining high status and reproductive access beyond their peak physical condition, selection favored the extension of maximum life span in males. Because the relevant genes were not on the Y chromosome, life span increased in females as well. However, the female reproductive span was constrained by the depletion of viable oocytes, which resulted in menopause. Harvard Univ, Dept Anthropol, Peabody Museum, Cambridge, MA 02138 USA Marlowe, FW (reprint author), Harvard Univ, Dept Anthropol, Peabody Museum, Cambridge, MA 02138 USA. fmarlowe@fas.harvard.edu Marlowe, Frank/G-9752-2012 Alexander R. D, 1990, SPECIAL PUBLICATION, VI; AUSTAD SN, 1994, EXP GERONTOL, V29, P255, DOI 10.1016/0531-5565(94)90005-1; AUSTAD SN, 1997, WE AGE SCI IS DISCOV; ELLISON PT, IN PRESS FERTILE GRO; GAULIN SJC, 1980, J HUM EVOL, V9, P227, DOI 10.1016/0047-2484(80)90024-X; Goodall J., 1986, CHIMPANZEES GOMBE PA; GOSDEN RG, 1985, BIOL MENOPAUSE CAUSE; GURVEN M, 1997, CURR ANTHROPOL, V38, P566; HAMILTON JB, 1948, RECENT PROG HORM RES, V3, P257; HAMILTON JB, 1969, J GERONTOL, V24, P395, DOI 10.1093/geronj/24.4.395; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hart C. W. M., 1979, TIWI N AUSTR; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hill K, 1991, Hum Nat, V2, P313, DOI 10.1007/BF02692196; Howell N., 1979, DEMOGRAPHY DOBE KUNG; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; JONES NGB, 1992, AM J PHYS ANTHROPOL, V89, P159, DOI 10.1002/ajpa.1330890204; JONES NGB, UNPUB FORAGER OLYMPI; KEEN I, 1982, MAN, V17, P620, DOI 10.2307/2802037; Lancaster J. B., 1992, HER PRIME NEW VIEWS, P7; LOVEJOY CO, 1977, SCIENCE, V198, P291, DOI 10.1126/science.198.4314.291; MARLOWE F, 1999, S EV COOP M PLANCK I; Marlowe FW, 1999, EVOL HUM BEHAV, V20, P391, DOI 10.1016/S1090-5138(99)00021-5; Marlowe FW, 1999, BEHAV ECOL SOCIOBIOL, V46, P57, DOI 10.1007/s002650050592; Marsh H., 1986, Reports of the International Whaling Commission Special Issue, P57; Peccei JS, 1995, ETHOL SOCIOBIOL, V16, P425, DOI 10.1016/0162-3095(95)00069-0; ROGERS AR, 1993, EVOL ECOL, V7, P406, DOI 10.1007/BF01237872; SPENCER B, 1927, ARUNTU STUDY STONE A; Symons D., 1979, EVOLUTION HUMAN SEXU; TRINKAUS E, 1995, J ARCHAEOL SCI, V22, P121, DOI 10.1016/S0305-4403(95)80170-7; Turner Trudy R., 1994, P76; Vallois HV, 1961, SOCIAL LIFE EARLY MA, P214; VOMSAAL FS, 1988, PHYSL REPROD, P1213; WALKER A, 1993, NARIOKOTOME; Washburn SL, 1981, AGING BIOL BEHAV, P11; Weiss K., 1981, OTHER WAYS GROWING O, P25; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wood James W., 1994, P19 39 55 55 2 40 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 2000 11 1 27 42 10.1007/s12110-000-1001-7 16 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 312FG WOS:000086932100002 26193094 2018-11-12 J Bereczkei, T; Hofer, A; Ivan, Z Bereczkei, T; Hofer, A; Ivan, Z Low birth weight, maternal birth-spacing decisions, and future reproduction - A cost-benefit analysis HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article birth spacing; cost-benefit analysis; gypsies; Hungary; low birth weight; reproductive decisions EVOLUTIONARY ECOLOGY; STRATEGIES; ATTACHMENT; GYPSIES The aim of this study is an analysis of the possible adaptive consequences of delivery of low birth weight infants. We attempt to reveal the cost and benefit components of bearing small children, estimate the chance of the infants' survival, and calculate the mothers' reproductive success. According to life-history theory, under certain circumstances mothers can enhance their lifetime fitness by lowering the rate of investment in an infant and/or enhancing the rate of subsequent births. We assume that living in a risky environment and giving birth to a small infant may involve a shift from qualitative to quantitative production of offspring. Given high infant mortality rates, parents will have a reproductive interest in producing a relatively large number of children with a smaller amount of prenatal investment. This hypothesis was tested among 650 Gypsy and 717 non-Gypsy Hungarian mothers. Our study has revealed that 23.8% of the Gypsy mothers had low birth weight (<2,500 g) children, whose mortality rate is very high. These mothers also had more spontaneous abortions and stillbirths than those with normal weight children. As a possible response to these reproductive failures, they shortened birth spacing, gaining 2-4 years across their reproductive lifespan for having additional children. Because of the relatively short interbirth intervals, by the end of their fertility period, Gypsy mothers with one or two low birth weight infants have significantly more children than their ethnic Hungarian counter-parts. They appear to compensate for handicaps associated with low birth weights by having a larger number of closely spaced children following the birth of one or more infants with a reduced probability of survival. The possible alternative explanations are discussed, and the long-term reproductive benefits are estimated for bath ethnic groups. Janus Pannonius Univ Pecs, Dept Gen Psychol, H-7624 Pecs, Hungary Bereczkei, T (reprint author), Janus Pannonius Univ Pecs, Dept Gen Psychol, Ifjusag U 6, H-7624 Pecs, Hungary. btamas@btk.jpte.hu Abell T D, 1991, Fam Med, V23, P103; Abell T D, 1992, Hum Nat, V3, P335, DOI 10.1007/BF02734055; ABELL TD, 1991, J FAM PRACTICE, V32, P37; ALEXANDER RD, 1990, ETHOL SOCIOBIOL, V11, P241, DOI 10.1016/0162-3095(90)90012-U; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BERECZKEI T, 1993, ETHOL SOCIOBIOL, V14, P71, DOI 10.1016/0162-3095(93)90008-6; Bereczkei T, 1998, EVOL HUM BEHAV, V19, P283, DOI 10.1016/S1090-5138(98)00027-0; BERECZKEI T, 1996, HUMAN NATURE, V7, P268; BODNAR L, 1980, DEMOGRAFIA, V97, P111; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHOMITZ VR, 1995, FUTURE CHILD, V5, P121, DOI 10.2307/1602511; DEFO BK, 1993, J BIOSOC SCI, V25, P87; FORTHOFER RN, 1995, INTRO BIOSTATISTICS; HILL EM, 1992, ETHOL SOCIOBIOL, V13, P35, DOI 10.1016/0162-3095(92)90005-O; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; HORVATH M, 1979, DEMOGRAFIA, V22, P110; HUGHES D, 1995, FUTURE CHILD, V5, P87, DOI 10.2307/1602509; JONES NB, 1978, ANN HUM BIOL, V5, P487, DOI 10.1080/03014467800003141; JUN Z, 1992, EPIDEMIOLOGY, V3, P428, DOI 10.1097/00001648-199209000-00008; KOPP CB, 1990, MERRILL PALMER QUART, V36, P117; LANCASTER JB, 1989, GENDER ANTHR CRITICA, P95; MARTORELL R, 1987, YEARB PHYS ANTHROPOL, V30, P195; McFarland Robin, 1997, P163; Mulder M Borgerhoff, 1992, EVOLUTIONARY ECOLOGY, P339; PANETH NS, 1995, FUTURE CHILD, V5, P19, DOI 10.2307/1602505; Peacock N, 1991, Hum Nat, V2, P351, DOI 10.1007/BF02692197; Prentice A. M., 1987, REPROD ENERGETICS MA, P275; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; ROBERTSON CMT, 1990, J PEDIATR-US, V116, P19, DOI 10.1016/S0022-3476(05)81639-7; Roff Derek A., 1992; Stearns S. C., 1992, EVOLUTION LIFE HIST; SZEGO L, 1983, GYPSIES DID THEY COM; TAFFEL SM, 1989, TRENDS LOW BIRTH WEI; UTASSY A, 1991, GYPSY LIFE; Voland E, 1998, ANNU REV ANTHROPOL, V27, P347, DOI 10.1146/annurev.anthro.27.1.347; WEINRICH JD, 1977, BEHAV ECOL SOCIOBIOL, V2, P91, DOI 10.1007/BF00361896; WILCOX A, 1990, J PEDIATR-US, V116, P7, DOI 10.1016/S0022-3476(05)81638-5; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 40 13 14 0 7 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 2000 11 2 183 205 10.1007/s12110-000-1018-y 23 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 328TY WOS:000087867300003 26193366 2018-11-12 J Weimerskirch, H; Prince, PA; Zimmermann, L Weimerskirch, H; Prince, PA; Zimmermann, L Chick provisioning by the Yellow-nosed Albatross Diomedea chlororhynchos: response of foraging effort to experimentally increased costs and demands IBIS English Article PETREL THALASSOICA-ANTARCTICA; PELAGIC SEABIRD; CALONECTRIS-DIOMEDEA; REPRODUCTIVE EFFORT; PARENTAL EFFORT; BODY CONDITION; FOOD DELIVERY; STORM-PETRELS; MEAL SIZE; LONG We examined the provisioning strategy of a long-lived seabird to test the prediction from life-history theory that adults should preferentially allocate resources towards their own needs rather than towards their offspring, and to test the abilities of adults to regulate provisioning according to the chick needs. The individual provisioning behaviour of Yellow-nosed Albatrosses Diomedea chlororhynchos was studied, costs of flight being increased by adding a weight handicap to foraging parents, and needs of the chicks being increased by induced regurgitation (underfed chicks) or decreased by food supplementation (overfed chicks). Control birds were found to regulate provisioning in relation to the nutritional status of the chick and to the mass of the adult. As a result of increased foraging costs, and possibly of reduced foraging ability, handicapped adults spent more time foraging and delivered smaller meals. Unlike control birds, they were unable to regulate provisioning and lost slightly more mass than control birds, but they had similar survival to the next breeding season. The behaviour of parents rearing underfed chicks was similar to that of control birds, but adults rearing overfed chicks delivered smaller meals, at the same frequency as control birds. Thus, although parent Yellow-nosed Albatrosses can perceive the nutritional status of the chick and regulate provisioning accordingly, they are unable to increase the provisioning rate significantly. They primarily keep resources for themselves, their own body condition determining the level of investment in the chick. Most albatrosses and petrels behave so that primarily adult body condition is protected often at the expense of chick provisioning. Regulation abilities differ between species probably according to several factors such as foraging strategies, distance to feeding zones or body size. CNRS, CEBC, F-79360 Beauvoir, France; British Antarctic Survey, NERC, Cambridge CB3 0ET, England Weimerskirch, H (reprint author), CNRS, CEBC, F-79360 Beauvoir, France. ASHMOLE NP, 1971, AVIAN BIOL, V1, P223; Bertram DF, 1996, CAN J ZOOL, V74, P1876, DOI 10.1139/z96-211; BOLTON M, 1995, FUNCT ECOL, V9, P161, DOI 10.2307/2390560; CHASTEL O, 1995, ECOLOGY, V76, P2240, DOI 10.2307/1941698; CHAURAND T, 1994, J ANIM ECOL, V63, P275, DOI 10.2307/5546; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; DRENT RH, 1980, ARDEA, V68, P225; Erikstad KE, 1998, ECOLOGY, V79, P1781; GOODMAN D, 1974, AM NAT, V108, P247, DOI 10.1086/282906; HAMER KC, 1994, J AVIAN BIOL, V25, P198, DOI 10.2307/3677075; Hamer KC, 1997, IBIS, V139, P31, DOI 10.1111/j.1474-919X.1997.tb04501.x; HAMER KC, 1993, J ANIM ECOL, V62, P441, DOI 10.2307/5193; HUSSEL DJT, 1991, ACTA C INT ORNITHOL, V20, P946; JOUVENTIN P, 1983, Gerfaut, V73, P161; Kilner R, 1997, TRENDS ECOL EVOL, V12, P11, DOI 10.1016/S0169-5347(96)10061-6; Lack D., 1968, ECOLOGICAL ADAPTATIO; Lorentsen SH, 1996, J ANIM ECOL, V65, P381, DOI 10.2307/5884; MARTINS TLF, 1992, BEHAV ECOL, V4, P213; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MONAGHAN P, 1989, J ANIM ECOL, V58, P261, DOI 10.2307/4999; NORBERG RA, 1981, AM NAT, V118, P838, DOI 10.1086/283874; Nur N., 1987, P457; Pennycuick C.J, 1989, BIRD FLIGHT PERFORMA; Ricklefs R. E., 1983, STUD AVIAN BIOL, V8, P84; RICKLEFS RE, 1992, ANIM BEHAV, V43, P895, DOI 10.1016/0003-3472(92)90003-R; RICKLEFS RE, 1987, AUK, V104, P750; RICKLEFS RE, 1994, FUNCT ECOL, V8, P159, DOI 10.2307/2389899; RICKLEFS RE, 1985, J ANIM ECOL, V54, P883, DOI 10.2307/4385; SAETHER BE, 1993, BEHAV ECOL SOCIOBIOL, V33, P147, DOI 10.1007/BF00216594; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEARNS SC, 1992, ECOLUTION LIFE HIST; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Tveraa T, 1997, BEHAV ECOL, V8, P465, DOI 10.1093/beheco/8.5.465; Weimerskirch H, 1997, BEHAV ECOL, V8, P635, DOI 10.1093/beheco/8.6.635; Weimerskirch H, 1999, J AVIAN BIOL, V30, P165, DOI 10.2307/3677126; Weimerskirch H, 1998, J ANIM ECOL, V67, P99, DOI 10.1046/j.1365-2656.1998.00180.x; WEIMERSKIRCH H, 1995, BEHAV ECOL SOCIOBIOL, V36, P11; Weimerskirch H, 1997, ECOLOGY, V78, P2051; WEIMERSKIRCH H, 1994, ANIM BEHAV, V47, P472, DOI 10.1006/anbe.1994.1065; Weimerskirch H., 1999, P 22 INT ORN C DURB, P1178; WILKINSON L, 1996, SYSTAT; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WITTER MS, 1993, PHILOS T R SOC B, V340, P73, DOI 10.1098/rstb.1993.0050; WRIGHT J, 1989, BEHAV ECOL SOCIOBIOL, V25, P171, DOI 10.1007/BF00302916; YDENBERG RC, 1994, BEHAV ECOL, V5, P28, DOI 10.1093/beheco/5.1.28 46 54 55 0 16 BRITISH ORNITHOLOGISTS UNION TRING C/O NATURAL HISTORY MUSEUM, SUB-DEPT ORNITHOLOGY, TRING, HERTS, ENGLAND HP23 6AP 0019-1019 IBIS Ibis JAN 2000 142 1 103 110 10.1111/j.1474-919X.2000.tb07689.x 8 Ornithology Zoology 270YN WOS:000084564900013 2018-11-12 J Gotthard, K; Nylin, S; Wiklund, C Gotthard, K; Nylin, S; Wiklund, C Mating opportunity and the evolution of sex-specific mortality rates in a butterfly OECOLOGIA English Article life history theory; longevity; ageing; mortality rate; lepidoptera LIFE-HISTORY TRAITS; DROSOPHILA-MELANOGASTER; CORRELATED RESPONSES; PARARGE-AEGERIA; ARTIFICIAL SELECTION; SIZE DIMORPHISM; MALES EMERGE; SENESCENCE; PROTANDRY; REPRODUCTION Life history theory predicts that organisms should only invest resources into intrinsic components of life span to the degree that it pays off in terms of reproductive success. Here, we investigate if the temporal distribution of mating opportunities may have influenced the evolution of intrinsic mortality rates in the butterfly Pararge aegeria (Satyrinae). In this species, females mate only once and the frequency of male mating opportunities depends on the temporal emergence pattern of virgin females. As expected, in a population from Madeira where females emerge continuously throughout the year, there was no sex difference in adult life span, while in a Swedish population with synchronised female emergence, males had significantly shorter life spans compared to females. A logistic mortality model provided the best fit to the observed change in age-specific mortality and all categories reached an asymptotic mortality rate of a similar magnitude. However, the Swedish males reached this mortality plateau more rapidly than the other categories. External mortality, due to water and food limitation, affected the pattern of sex-specific mortality but males from Sweden still had higher rates of mortality compared to all other categories. Mie argue that selection on male longevity is likely to be weaker in Sweden because under synchronised emergence, all females emerge and mate within a short period of time, after which male reproductive value will quickly approach zero. On Madeira, however, male reproductive value decrease more slowly with age since the probability of finding a receptive female is constant over the year. Stockholm Univ, Dept Zool, S-10691 Stockholm, Sweden Gotthard, K (reprint author), Stockholm Univ, Dept Zool, S-10691 Stockholm, Sweden. karl.gotthard@zoologi.su.se Nylin, Soren/B-7375-2008; Gotthard, Karl/F-1163-2011 Nylin, Soren/0000-0003-4195-8920; ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; AUSTAD SN, 1991, J GERONTOL, V46, pB47, DOI 10.1093/geronj/46.2.B47; Carey J. R., 1993, APPL DEMOGRAPHY BIOL; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Chippindale AK, 1997, EVOLUTION, V51, P1536, DOI 10.1111/j.1558-5646.1997.tb01477.x; CHIPPINDALE AK, 1994, EVOLUTION, V48, P1880, DOI 10.1111/j.1558-5646.1994.tb02221.x; DAVIES NB, 1978, ANIM BEHAV, V26, P138, DOI 10.1016/0003-3472(78)90013-1; DENLINGER DL, 1988, OECOLOGIA, V77, P350, DOI 10.1007/BF00378041; FAGERSTROM T, 1982, OECOLOGIA, V52, P164, DOI 10.1007/BF00363830; FISHER R. A., 1930, GENETICAL THEORY NAT; GOTTHARD K, 1994, OECOLOGIA, V99, P281, DOI 10.1007/BF00627740; Higgins L. G., 1977, Entomologist's Record and Journal of Variation, V89, P22; HIGGINS LG, 1983, BUTTERFLIES BRIT EUR; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; JONES MJ, 1992, BIOL J LINN SOC, V46, P77, DOI 10.1111/j.1095-8312.1992.tb00851.x; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1987, EVOLUTION LONGEVITY; LEE ET, 1992, STAT METHODS SURVIVA; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; NYLIN S, 1995, BIOL J LINN SOC, V55, P143, DOI 10.1006/bijl.1995.0033; NYLIN S, 1993, ECOLOGY, V74, P1414, DOI 10.2307/1940071; Partridge L, 1996, P ROY SOC B-BIOL SCI, V263, P1365, DOI 10.1098/rspb.1996.0200; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PARTRIDGE L, 1995, EVOLUTION, V49, P538, DOI 10.1111/j.1558-5646.1995.tb02285.x; Pletcher SD, 1999, J EVOLUTION BIOL, V12, P430; PLETCHER SD, 1999, WINMODEST 1 0 DEMOGR; PROMISLOW DEL, 1993, J GERONTOL, V48, pB115, DOI 10.1093/geronj/48.4.B115; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Roff Derek A., 1992; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Rosen Carol G., 1984, STUDIES RELATIONAL G, V2, P38; *SAS I, 1998, REF GUID; SEVENSTER JG, 1993, J ANIM ECOL, V62, P720, DOI 10.2307/5392; SHREEVE TG, 1992, BIOL J LINN SOC, V46, P59, DOI 10.1111/j.1095-8312.1992.tb00850.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tatar M, 1997, OECOLOGIA, V111, P357, DOI 10.1007/s004420050246; VAUPEL JW, 1990, THEOR POPUL BIOL, V37, P220, DOI 10.1016/0040-5809(90)90037-V; WICKMAN PO, 1983, ANIM BEHAV, V31, P1206, DOI 10.1016/S0003-3472(83)80027-X; WIKLUND C, 1991, OIKOS, V60, P373, DOI 10.2307/3545080; WIKLUND C, 1977, OECOLOGIA, V31, P153, DOI 10.1007/BF00346917; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; ZWAAN B, 1995, EVOLUTION, V49, P635, DOI 10.1111/j.1558-5646.1995.tb02300.x; ZWAAN B, 1995, EVOLUTION, V49, P649, DOI 10.1111/j.1558-5646.1995.tb02301.x 45 42 44 0 9 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia JAN 2000 122 1 36 43 10.1007/PL00008833 8 Ecology Environmental Sciences & Ecology 277RG WOS:000084946900005 28307954 2018-11-12 J Geary, DC Geary, DC Evolution and proximate expression of human paternal investment PSYCHOLOGICAL BULLETIN English Review EXTRA-PAIR PATERNITY; GLUCOCORTICOID STRESS-RESPONSE; LIFE-HISTORY THEORY; SEXUAL SELECTION; REPRODUCTIVE SUCCESS; PARENTAL INVESTMENT; MARITAL DISRUPTION; AUSTRALOPITHECUS-AFARENSIS; CHILDHOOD EXPERIENCE; GENDER DIFFERENCES In more than 95% of mammalian species, males provide little direct investment in the well-being of their offspring. Humans are one notable exception to this pattern and, to date, the factors that contributed to the evolution and the proximate expression of human paternal care are unexplained (T. H. Clutton-Brock, 1989). The nature, extent, and influence of human paternal investment on the physical and social well-being of children are reviewed in light of the social and ecological factors that are associated with paternal investment in other species. On the basis of this review, discussion of the evolution and proximate expression of human paternal investment is provided. Univ Missouri, Dept Psychol, Columbia, MO 65211 USA Geary, DC (reprint author), Univ Missouri, Dept Psychol, 210 Mcalester Hall, Columbia, MO 65211 USA. GearyD@Missouri.edu ADLER NE, 1994, AM PSYCHOL, V49, P15, DOI 10.1037//0003-066X.49.1.15; AIELLO LC, 1994, NATURE, V368, P399, DOI 10.1038/368399a0; ALEXANDER RD, 1990, DID HUMANS EVOLVE RE; Altmann J, 1996, P NATL ACAD SCI USA, V93, P5797, DOI 10.1073/pnas.93.12.5797; AMATO PR, 1991, PSYCHOL BULL, V110, P26, DOI 10.1037//0033-2909.110.1.26; Amato PR, 1996, J MARRIAGE FAM, V58, P356, DOI 10.2307/353501; Amato PR, 1998, MEN IN FAMILIES, P241; Andersson M., 1994, SEXUAL SELECTION; Asa CS, 1998, AM ZOOL, V38, P251; BAKER R, 1996, SPERM WARS SCI SEX; BELLIS MA, 1990, ANIM BEHAV, V40, P997, DOI 10.1016/S0003-3472(05)81008-5; BELSKY J, 1984, CHILD DEV, V55, P692, DOI 10.2307/1130122; BELSKY J, 1993, PSYCHOL BULL, V114, P413, DOI 10.1037/0033-2909.114.3.413; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, HUM NATURE-INT BIOS, V8, P361, DOI 10.1007/BF02913039; BELSKY J, 1989, SYSTEMS DEV, V22, P119; BETZIG L, 1995, J FAM HIST, V20, P181, DOI 10.1177/036319909602000204; BETZIG L, 1989, CURR ANTHROPOL, V30, P654, DOI 10.1086/203798; BETZIG L, 1992, FATHER CHILD RELATIO, P111; BIRKHEAD TR, 1996, PARTNERSHIPS BIRDS S, P323; Black J. M., 1996, PARTNERSHIPS BIRDS S; Brandstrom A, 1997, DECLINE OF INFANT AND CHILD MORTALITY, P173; BRUNELLI SA, 1995, MERRILL PALMER QUART, V41, P152; Buchanan C. M., 1992, J RES ADOLESCENCE, V2, P261, DOI [10.1207/s15327795jra0203_4, DOI 10.1207/S15327795JRA0203_4]; Buckle L, 1996, ETHOL SOCIOBIOL, V17, P363, DOI 10.1016/S0162-3095(96)00075-1; Buss D. M., 1994, EVOLUTION DESIRE STR; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Carson J., 1993, PARENT CHILD PLAY DE, P197; CHAGNON NA, 1988, SCIENCE, V239, P985, DOI 10.1126/science.239.4843.985; CHERLIN AJ, 1991, SCIENCE, V252, P1386, DOI 10.1126/science.2047851; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHRISTENSEN A, 1990, J PERS SOC PSYCHOL, V59, P73, DOI 10.1037//0022-3514.59.1.73; Clark AG, 1999, SCIENCE, V283, P217, DOI 10.1126/science.283.5399.217; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CLUTTONBROCK TH, 1977, NATURE, V269, P797, DOI 10.1038/269797a0; CLUTTONBROCK TH, 1989, PROC R SOC SER B-BIO, V236, P339, DOI 10.1098/rspb.1989.0027; CLUTTONBROCK TH, 1991, NATURE, V351, P58; COX MJ, 1989, CHILD DEV, V60, P1015, DOI 10.2307/1130775; CRANO WD, 1978, AM SOCIOL REV, V43, P463, DOI 10.2307/2094772; Crick NR, 1997, DEV PSYCHOL, V33, P579, DOI 10.1037/0012-1649.33.4.579; DALY M, 1985, ETHOL SOCIOBIOL, V6, P197, DOI 10.1016/0162-3095(85)90012-3; DALY M, 1982, ETHOL SOCIOBIOL, V3, P11, DOI 10.1016/0162-3095(82)90027-9; Daly M., 1988, HOMICIDE; Darwin C, 1859, ORIGINS SPECIES MEAN; Darwin C.R., 1871, DESCENT MAN SELECTIO; DAVIES PT, 1994, PSYCHOL BULL, V116, P387, DOI 10.1037/0033-2909.116.3.387; Davis JN, 1997, Q REV BIOL, V72, P407, DOI 10.1086/419953; Dawkins R., 1989, SELFISH GENE; de Waal Frans, 1997, BONOBO FORGOTTEN APE; Dickemann M., 1981, NATURAL SELECTION SO, P417; DIXON A, 1994, NATURE, V371, P698, DOI 10.1038/371698a0; DIXSON AF, 1993, PRIMATES, V34, P525, DOI 10.1007/BF02382663; DRAPER P, 1989, ETHOL SOCIOBIOL, V10, P145, DOI 10.1016/0162-3095(89)90017-4; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; DUNBAR RIM, 1995, ANIM BEHAV, V50, P1057, DOI 10.1016/0003-3472(95)80106-5; EiblEibesfeldt Irenaus, 1989, HUMAN ETHOLOGY; Emery RE, 1988, MARRIAGE DIVORCE CHI; EMLEN ST, 1995, P NATL ACAD SCI USA, V92, P8092, DOI 10.1073/pnas.92.18.8092; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; Essock-Vitale S., 1988, HUMAN REPROD BEHAV D, P221; FELDMAN SS, 1983, CHILD DEV, V54, P1628, DOI 10.1111/j.1467-8624.1983.tb00079.x; FIewlett Barry S., 1992, FATHER CHILD RELATIO, P153; FIewlett Barry S., 1988, HUMAN REPROD BEHAV D, P263; FISHER HE, 1989, AM J PHYS ANTHROPOL, V78, P331, DOI 10.1002/ajpa.1330780303; Flinn M. V., 1992, FATHER CHILD RELATIO, P57; Flinn MV, 1996, HUM NATURE-INT BIOS, V7, P125, DOI 10.1007/BF02692108; FLINN MV, 1995, CURR ANTHROPOL, V36, P854, DOI 10.1086/204444; Flinn MV, 1997, AM J PHYS ANTHROPOL, V102, P33; FLINN MV, 1988, ETHOL SOCIOBIOL, V9, P1, DOI 10.1016/0162-3095(88)90002-7; Flinn MV, 1986, ECOLOGICAL ASPECTS S, P217; Florsheim P, 1998, CHILD DEV, V69, P1437, DOI 10.2307/1132276; FOX GL, 1995, MARRIAGE FAM REV, V20, P257; FRAYER DW, 1985, ANNU REV ANTHROPOL, V14, P429, DOI 10.1146/annurev.an.14.100185.002241; Freeman-Gallant CR, 1998, BEHAV ECOL, V9, P486, DOI 10.1093/beheco/9.5.486; FURSTENBERG FF, 1987, AM SOCIOL REV, V52, P695, DOI 10.2307/2095604; FURSTENBERG FF, 1994, J FAM ISSUES, V15, P173, DOI 10.1177/0192513X94015002002; FURSTENBERG FF, 1985, J MARRIAGE FAM, V47, P893, DOI 10.2307/352332; FURSTENBERG FF, 1983, AM SOCIOL REV, V48, P656, DOI 10.2307/2094925; FURSTENBERG FF, 1990, ANNU REV SOCIOL, V16, P379, DOI 10.1146/annurev.so.16.080190.002115; Gaulin SJC, 1997, HUM NATURE-INT BIOS, V8, P139, DOI 10.1007/s12110-997-1008-4; Geary D. C., 1998, MALE FEMALE EVOLUTIO; Goodall J., 1986, CHIMPANZEES GOMBE PA; Gottman JM, 1998, MEN IN FAMILIES, P149; Graziano W. G., 1997, HDB PERSONALITY PSYC, P795, DOI DOI 10.1016/B978-012134645-4/50031-7; Greenstein TN, 1996, J MARRIAGE FAM, V58, P585, DOI 10.2307/353719; Griffin P. B., 1992, FATHER CHILD RELATIO, P297; Hames R, 1996, ETHOL SOCIOBIOL, V17, P181, DOI 10.1016/0162-3095(96)00003-9; HAMES R, 1992, FATHER CHILD RELATIO, P85; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; HARKNESS S, 1992, FATHER CHILD RELATIO, P191; HARTUNG J, 1982, CURR ANTHROPOL, V23, P1, DOI 10.1086/202775; HED HME, 1987, HUM BIOL, V59, P785; HERLIHY D, 1965, ECON HIST REV, V18, P225; Hewlett Barry S., 1992, FATHER CHILD RELATIO; Hill K, 1988, HUMAN REPROD BEHAV D, P277; HOWES P, 1989, CHILD DEV, V60, P1044, DOI 10.2307/1130778; HRDY SB, 1979, ETHOL SOCIOBIOL, V1, P13, DOI 10.1016/0162-3095(79)90004-9; Hurtado A. M., 1992, FATHER CHILD RELATIO, P31; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; IRONS W, 1993, BEHAV BRAIN SCI, V16, P295, DOI 10.1017/S0140525X00030089; IRONS W, 1979, NATURAL SELECTION SO, P257; JOHANNA A, 1995, ETHOL SOCIOBIOL, V16, P221; JONES NGB, 1997, UNITING PSYCHOL BIOL, P279; Kaar P, 1998, EVOL HUM BEHAV, V19, P139, DOI 10.1016/S1090-5138(98)00007-5; Kaplan HS, 1998, MEN IN FAMILIES, P55; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; Kempenaers B, 1998, ANIM BEHAV, V55, P845, DOI 10.1006/anbe.1997.0667; KENRICK DT, 1992, BEHAV BRAIN SCI, V15, P75, DOI 10.1017/S0140525X00067595; KERIG PK, 1993, DEV PSYCHOL, V29, P931, DOI 10.1037/0012-1649.29.6.931; KLINDWORTH H, 1995, HUM NATURE-INT BIOS, V6, P221, DOI 10.1007/BF02734140; Kluwer ES, 1996, J MARRIAGE FAM, V58, P958, DOI 10.2307/353983; Kok J, 1997, DECLINE OF INFANT AND CHILD MORTALITY, P193; Krebs JR, 1993, INTRO BEHAV ECOLOGY; Krishnan L., 1998, ROLE FATHER CHILD DE, P25; LAMB ME, 1985, DEV PSYCHOL, V21, P768, DOI 10.1037/0012-1649.21.5.768; LAMB ME, 1986, MARRIAGE FAM REV, V9, P67; LAMB ME, 1981, ROLE FATHER CHILD DE, P459; Lamb Michael E, 1982, NONTRADITIONAL FAMIL, P117; LAMPERT A, 1992, SOC BIOL, V39, P65; LANCASTER JB, 1987, PARENTING LIFE SPAN, P187; Larson Allan, 1996, P187; Leakey MG, 1998, NATURE, V393, P62, DOI 10.1038/29972; LEAKEY MG, 1995, NATURE, V376, P565, DOI 10.1038/376565a0; Leigh SR, 1996, AM J PHYS ANTHROPOL, V101, P455, DOI 10.1002/(SICI)1096-8644(199612)101:4<455::AID-AJPA2>3.0.CO;2-V; Leighton D.R., 1987, P135; LOVEJOY CO, 1981, SCIENCE, V211, P341, DOI 10.1126/science.211.4480.341; Maccoby E. E., 1993, J FAMILY PSYCHOL, V7, P24, DOI 10.1037/0893-3200.7.1.24; MACDONALD K, 1995, POLIT LIFE SCI, V14, P3; MacDonald K, 1997, HUM NATURE-INT BIOS, V8, P327, DOI 10.1007/BF02913038; MACDONALD K, 1992, CHILD DEV, V63, P753, DOI 10.2307/1131231; MAYNARDSMITH J, 1977, ANIM BEHAV, V25, P1, DOI DOI 10.1016/0003-3472(77)90062-8); MCHENRY HM, 1992, AM J PHYS ANTHROPOL, V87, P407, DOI 10.1002/ajpa.1330870404; MCHENRY HM, 1991, J HUM EVOL, V20, P21, DOI 10.1016/0047-2484(91)90043-U; MCHENRY HM, 1994, J HUM EVOL, V27, P77, DOI 10.1006/jhev.1994.1036; MCHENRY HM, 1994, P NATL ACAD SCI USA, V91, P6780, DOI 10.1073/pnas.91.15.6780; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MILLER EM, 1994, PERS INDIV DIFFER, V17, P227, DOI 10.1016/0191-8869(94)90029-9; Miller L. C., 1997, EVOLUTIONARY SOCIAL, P197; MOCK DW, 1990, TRENDS ECOL EVOL, V5, P39, DOI 10.1016/0169-5347(90)90045-F; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; Moller AP, 1997, BEHAV ECOL SOCIOBIOL, V41, P353, DOI 10.1007/s002650050395; MOLLER AP, 1994, SEXUAL SELECTION BAR; MORRISON AS, 1977, AM J EPIDEMIOL, V106, P487, DOI 10.1093/oxfordjournals.aje.a112496; MULDER MB, 1990, BEHAV ECOL SOCIOBIOL, V27, P255; Murdock George, 1981, ATLAS WORLD CULTURES; OKAGAKI L., 1993, PARENTING ECOLOGICAL, P227; OLIVER MB, 1993, PSYCHOL BULL, V114, P29, DOI 10.1037/0033-2909.114.1.29; PARK HK, 1995, PLASMA PHYS CONTROLL, V2, P3; Parke RD, 1998, HDB CHILD PSYCHOL, V3, P463, DOI DOI 10.1002/9780470147658.CHPSY0308; Parker GA, 1996, P ROY SOC B-BIOL SCI, V263, P315, DOI 10.1098/rspb.1996.0048; Pedersen F A, 1991, Hum Nat, V2, P271, DOI 10.1007/BF02692189; PERRENOUD A, 1991, DECLINE MORTALITY EU, P18; PERRONE M, 1979, AM NAT, V113, P351, DOI 10.1086/283394; PERUSSE D, 1994, BEHAV GENET, V24, P327, DOI 10.1007/BF01067533; Peterson C, 1998, PSYCHOL SCI, V9, P127, DOI 10.1111/1467-9280.00023; Pierce EP, 1998, AUK, V115, P602; Plavcan JM, 1997, AM J PHYS ANTHROPOL, V103, P37, DOI 10.1002/(SICI)1096-8644(199705)103:1<37::AID-AJPA4>3.0.CO;2-A; Pleck JH, 1997, ROLE FATHER CHILD DE, P66; Post John D, 1985, FOOD SHORTAGE CLIMAT; POTTHOFF RF, 1965, AM J HUM GENET, V17, P480; RAY JC, 1992, AM J PRIMATOL, V28, P231, DOI 10.1002/ajp.1350280402; Reid A, 1997, DECLINE OF INFANT AND CHILD MORTALITY, P129; Reid I., 1998, CLASS BRITAIN; REISS D, 1995, J MARRIAGE FAM, V57, P543, DOI 10.2307/353911; Reynolds JD, 1997, BEHAV ECOL, V8, P126, DOI 10.1093/beheco/8.2.126; REYNOLDS JD, 1987, IBIS, V129, P225, DOI 10.1111/j.1474-919X.1987.tb03203.x; Reynolds JD, 1996, TRENDS ECOL EVOL, V11, pA68; RICHMOND BG, 1995, J HUM EVOL, V29, P229, DOI 10.1006/jhev.1995.1058; Rohner RP, 1998, CURR DIR PSYCHOL SCI, V7, P157, DOI 10.1111/1467-8721.ep10836851; Rollet C, 1997, DECLINE OF INFANT AND CHILD MORTALITY, P213; ROUHANI S, 1992, CAMBRIDGE ENCY HUMAN, P281; Rowe D. C, 1994, LIMITS FAMILY INFLUE; Rushton JP, 1996, PSYCHON B REV, V3, P21, DOI 10.3758/BF03210739; RUSSELL G, 1982, NONTRADITIONAL FAMIL, P139; RUTBERG AT, 1983, J THEOR BIOL, V104, P93, DOI 10.1016/0022-5193(83)90403-4; SAPOLSKY RM, 1986, J NEUROSCI, V6, P2240; SCARR S, 1983, CHILD DEV, V54, P424, DOI 10.1111/j.1467-8624.1983.tb03884.x; SCARR S, 1989, AM PSYCHOL, V44, P1402, DOI 10.1037//0003-066X.44.11.1402; SCHER A, 1994, J SOC PERS RELAT, V11, P601, DOI 10.1177/0265407594114007; SCHOFIELD R, 1991, DECLINE MORTALITY EU; SCHULTZ H, 1991, INT REV SOC HIST, V36, P232, DOI 10.1017/S002085900011051X; Secord P, 1983, TOO MANY WOMEN; SECORD PF, 1983, PERS SOC PSYCHOL B, V9, P525, DOI 10.1177/0146167283094002; Sheldon BC, 1997, BEHAV ECOL, V8, P421, DOI 10.1093/beheco/8.4.421; Silverstein LB, 1999, AM PSYCHOL, V54, P397, DOI 10.1037//0003-066X.54.6.397; SILVERSTEIN LB, 1991, AM PSYCHOL, V46, P1025, DOI 10.1037//0003-066X.46.10.1025; Simons R.L., 1996, HDB SOCIAL SUPPORT F, P269; Smuts B. B., 1985, SEX FRIENDSHIP BABOO; Smuts B. B., 1992, FATHER CHILD RELATIO, P1; STEVENSON MR, 1988, CHILD DEV, V59, P793, DOI 10.2307/1130577; Symons D., 1979, EVOLUTION HUMAN SEXU; TANNER JM, 1990, FOETUS MAN PHYSICAL; THORNHILL R, 1976, AM NAT, V110, P153, DOI 10.1086/283055; TRAVIS CB, 1991, J SOC ISSUES, V47, P117, DOI 10.1111/j.1540-4560.1991.tb01826.x; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Tucker JS, 1997, J PERS SOC PSYCHOL, V73, P381; UNITED NATIONS, 1985, SOC DIFF CHILD MORT; Vallin J., 1991, DECLINE MORTALITY EU, P38; VINING DR, 1986, BEHAV BRAIN SCI, V9, P167, DOI 10.1017/S0140525X00021968; Voland E, 1988, HUMAN REPROD BEHAV D, P253; Waynforth D, 1998, EVOL HUM BEHAV, V19, P369, DOI 10.1016/S1090-5138(98)00031-2; West M. M., 1976, ROLE FATHER CHILD DE, P185; WESTNEAT DF, 1993, BEHAV ECOL, V4, P66, DOI 10.1093/beheco/4.1.66; Whiting Beatrice, 1975, CHILDREN 6 CULTURES; Whiting Beatrice, 1988, CHILDREN DIFFERENT W; Whitten P.L., 1987, P343; WHITTINGHAM LA, 1995, BEHAV ECOL SOCIOBIOL, V37, P103, DOI 10.1007/BF00164155; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; Wilson E.O., 1975, P1; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; WOLF L, 1988, ANIM BEHAV, V36, P1601, DOI 10.1016/S0003-3472(88)80102-7; Wrangham R., 1996, DEMONIC MALES APES O; WRANGHAM RW, 1980, BEHAVIOUR, V75, P262, DOI 10.1163/156853980X00447 214 296 309 2 59 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0033-2909 1939-1455 PSYCHOL BULL Psychol. Bull. JAN 2000 126 1 55 77 10.1037/0033-2909.126.1.55 23 Psychology; Psychology, Multidisciplinary Psychology 276HM WOS:000084872100003 10668350 2018-11-12 B Walsh, A Bancroft, J Walsh, A Human reproductive strategies and life history theory ROLE OF THEORY IN SEX RESEARCH KINSEY INSTITUTE SERIES English Proceedings Paper Conference on the Role of Theory in Sex Research MAY 14-17, 1998 KINSEY INST, BLOOMINGTON, IN KINSEY INST EVOLUTIONARY PERSPECTIVE; SEXUAL STRATEGIES; ATTACHMENT; GENETICS; FAMILY Boise State Univ, Boise, ID 83725 USA BAILEY JM, 1997, UNITING PSYCHOL BIOL, P81; BARKOW J, 1991, DARWIN SEX STAT BIOL; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BERGER B, 1984, WAR FAMILY CAPTURING; BONNER JT, 1965, SIZE CYCLE; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; CASHDAN E, 1993, ETHOL SOCIOBIOL, V14, P1, DOI 10.1016/0162-3095(93)90014-9; CHISHOLM J, 1993, CURR ANTHROPOL, V34, P3; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Fisher H., 1992, ANATOMY LOVE NATURAL; Gangestad S. W., 1990, J PERS, V58, P70; LANCASTER A, 1987, PARENTING LIFE SPAN, P187; LOVEJOY CO, 1981, SCIENCE, V211, P341, DOI 10.1126/science.211.4480.341; MARRIS P, 1991, ATTACHMENT LIFE CYCL, P77; Mayr E., 1972, P87; MCDONALD K, 1997, HUMAN NATURE, V8, P327; OLIVER M, 1993, PSYCHOL BULL, V14, P29; PLOMIN R, 1995, J CHILD PSYCHOL PSYC, V36, P33, DOI 10.1111/j.1469-7610.1995.tb01655.x; Rossi AS, 1997, CHILD YOUTH SERV REV, V19, P369, DOI 10.1016/S0190-7409(97)00023-6; ROSSI AS, 1977, DAEDALUS, V106, P1; SCARR S, 1992, CHILD DEV, V63, P1, DOI 10.2307/1130897; SCARR S, 1983, CHILD DEV, V54, P424, DOI 10.1111/j.1467-8624.1983.tb03884.x; SHAVER PR, 1988, PSYCHOL LOVE, P68; TOOBY J, 1990, J PERS, V58, P17, DOI 10.1111/j.1467-6494.1990.tb00907.x; WALSH A, 1995, SOC BIOL, V42, P95; WALSH A, 1995, BIOSOCIOLOGY EMERGIN; WALSH A, 1990, FREE INQUIRY CREATIV, V18, P37; Wilson P., 1980, MAN PROMISING PRIMAT 30 2 2 0 0 INDIANA UNIV PRESS BLOOMINGTON 601 NORTH MORTON STREET, BLOOMINGTON, IN 47404-3797 USA 0-253-33706-2 KINSEY INST 2000 6 17 32 16 Psychology, Social Psychology BR18E WOS:000165807300002 2018-11-12 J Berube, CH; Festa-Bianchet, M; Jorgenson, JT Berube, CH; Festa-Bianchet, M; Jorgenson, JT Individual differences, longevity, and reproductive senescence in bighorn ewes ECOLOGY English Article bighorn sheep; life history theory; longevity; Ovis canadensis; population density; reproductive success; senescence; trade-offs, early reproductive success LIFE-HISTORY CONSEQUENCES; SEALS HALICHOERUS-GRYPUS; FEMALE RED DEER; BODY-WEIGHT; NATURAL-POPULATIONS; BREEDING EXPERIENCE; OVIS-CANADENSIS; SOAY SHEEP; AGE; SUCCESS Within individual iteroparous mammals, a high rate of reproduction in early life may occur at the cost of decreased reproduction near the end of life, leading to reproductive senescence. Using long-term data on marked individuals from two populations of bighorn sheep (Ovis canadensis), we tested for the existence of reproductive senescence and of trade-offs between longevity and early reproductive success in ewes, which have an observed maximum life-span of 19 yr. Lamb production decreased in older ewes, while weaning success for parous ewes was independent of age in one population and decreased with age in the other. The age-related decrease in lamb production followed a slight decrease in body mass, which began at similar to 11 yr of age. Reproductive senescence in this species appears to begin 6-7 yr after the onset of survival senescence. Longevity was positively related to late-summer body mass at 6 yr. Contrary to reproductive cost theories, there was no negative relationship between early and late reproductive success or between early reproductive success and longevity; instead, those relationships tended to be weakly positive. Longevity had a strong positive influence on lifetime reproductive success in both populations. Since the longest lived ewes were among the heaviest as young adults and had high reproductive success throughout their lifetime, longevity appears to be state-dependent; only ewes of higher phenotypic quality survived long enough to reach reproductive senescence. Models that assume that survival to old age is random with respect to phenotype are therefore not applicable to reproductive senescence in bighorn sheep. Univ Sherbrooke, Dept Biol, Grp Rech Ecol Nutr & Energet, Sherbrooke, PQ J1K 2R1, Canada; Alberta Dept Environm Protect, Nat Resources Serv, Canmore, AB T1W 1P1, Canada Berube, CH (reprint author), Univ Moncton, Dept Biol, Moncton, NB E1A 3E9, Canada. berubec@umoncton.ca Festa-Bianchet, Marco/0000-0002-2352-3379 ADELMAN RC, 1982, TESTING THEORIES AGI; ALBON SD, 1983, J ANIM ECOL, V52, P969, DOI 10.2307/4467; ATKINSON SN, 1995, FUNCT ECOL, V9, P559, DOI 10.2307/2390145; Berube CH, 1996, BEHAV ECOL, V7, P60, DOI 10.1093/beheco/7.1.60; BERUBE CH, 1997, THESIS U SHERBROOKE; BOYD IL, 1984, J ZOOL, V203, P113; BURNHAM KP, 1993, BIOMETRICS, V49, P1194, DOI 10.2307/2532261; Byers J., 1997, AM PRONGHORN; CAMERON RD, 1993, CAN J ZOOL, V71, P480, DOI 10.1139/z93-069; CHARLESWORTH B, 1993, GENETICA, V91, P11, DOI 10.1007/BF01435984; Clutton-Brock T. H, 1982, RED DEER BEHAV ECOLO; Clutton-Brock T.H., 1988, REPROD SUCCESS STUDI; CluttonBrock TH, 1996, J ANIM ECOL, V65, P675, DOI 10.2307/5667; Dobson FS, 1999, J ANIM ECOL, V68, P73, DOI 10.1046/j.1365-2656.1999.00268.x; EDNEY EB, 1968, NATURE, V220, P281, DOI 10.1038/220281a0; Festa-Bianchet M, 1998, ECOL LETT, V1, P91; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; Festa-Bianchet M, 1998, BEHAV ECOL, V9, P144, DOI 10.1093/beheco/9.2.144; FESTABIANCHET M, 1988, J ZOOL, V214, P653, DOI 10.1111/j.1469-7998.1988.tb03764.x; FESTABIANCHET M, 1995, ECOLOGY, V76, P871, DOI 10.2307/1939352; FestaBianchet M, 1996, CAN J ZOOL, V74, P330, DOI 10.1139/z96-041; FestaBianchet M, 1997, CAN J ZOOL, V75, P1372, DOI 10.1139/z97-763; FESTABIANCHET M, 1989, J ANIM ECOL, V58, P785, DOI 10.2307/5124; Fisher R. A., 1958, GENETICAL THEORY NAT; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; GAILLARD JM, 1992, CAN J ZOOL, V70, P1541, DOI 10.1139/z92-212; GAILLARD JM, 1994, EVOLUTION, V48, P509, DOI 10.1111/j.1558-5646.1994.tb01329.x; Green WCH, 1990, BEHAV ECOL, V1, P148, DOI 10.1093/beheco/1.2.148; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HOOGLAND JL, 1995, BLACK TAILED PRAIRIE; IVERSON SJ, 1993, PHYSIOL ZOOL, V66, P61, DOI 10.1086/physzool.66.1.30158287; JORGENSON JT, 1993, J WILDLIFE MANAGE, V57, P429, DOI 10.2307/3809267; JORGENSON JT, 1993, CAN J ZOOL, V71, P2509, DOI 10.1139/z93-344; Jorgenson JT, 1997, ECOLOGY, V78, P1019, DOI 10.2307/2265855; KING WJ, 1991, OECOLOGIA, V86, P528, DOI 10.1007/BF00318319; Komdeur J, 1996, BEHAV ECOL, V7, P417, DOI 10.1093/beheco/7.4.417; le Boeuf B.J., 1988, P344; LEADERWILLIAMS N, 1983, J REPROD FERTIL, V67, P247; Lessells C.M., 1991, P32; LUNN NJ, 1994, J ANIM ECOL, V63, P827, DOI 10.2307/5260; Marrow P, 1996, PHILOS T R SOC B, V351, P17, DOI 10.1098/rstb.1996.0002; McDonald DB, 1996, ECOLOGY, V77, P2373, DOI 10.2307/2265739; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MEDINA JJ, 1996, CLOCK AGES WHY WE AG; MITCHELL B, 1976, J ZOOL, V180, P107, DOI 10.1111/j.1469-7998.1976.tb04667.x; Morris DW, 1996, J ANIM ECOL, V65, P43, DOI 10.2307/5698; NELSON ME, 1990, J MAMMAL, V71, P689, DOI 10.2307/1381809; Newton I, 1997, ECOLOGY, V78, P1000, DOI 10.1890/0012-9658(1997)078[1000:SARVIS]2.0.CO;2; NORUSIS MJ, 1994, SPSS ADV STAT VERSIO; PAUL A, 1993, INT J PRIMATOL, V14, P105, DOI 10.1007/BF02196506; PEMBERTON JM, 1991, EVOLUTION, V45, P93, DOI 10.1111/j.1558-5646.1991.tb05269.x; Portier C, 1998, J ZOOL, V245, P271, DOI 10.1111/j.1469-7998.1998.tb00101.x; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Prothero J., 1987, Basic Life Sciences, V42, P49; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1983, AM ZOOL, V23, P15; SAETHER BE, 1983, J MAMMAL, V64, P226, DOI 10.2307/1380552; SKOGLAND T, 1988, OIKOS, V51, P238, DOI 10.2307/3565648; Stearns S. C., 1992, EVOLUTION LIFE HIST; SUGIYAMA Y, 1994, AM J PRIMATOL, V32, P311, DOI 10.1002/ajp.1350320408; SYDEMAN WJ, 1991, ECOLOGY, V72, P2204, DOI 10.2307/1941571; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VAUPEL JW, 1985, AM STAT, V39, P176, DOI 10.2307/2683925; WAUTERS L, 1989, J ANIM ECOL, V58, P637, DOI 10.2307/4853; WAUTERS LA, 1995, OIKOS, V72, P402, DOI 10.2307/3546126; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WOLFE LD, 1981, J MAMMAL, V62, P698, DOI 10.2307/1380591; Zar JH, 1984, BIOSTATISTICAL ANAL 70 166 169 2 62 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology DEC 1999 80 8 2555 2565 10.2307/177240 11 Ecology Environmental Sciences & Ecology 264VR WOS:000084204100009 2018-11-12 J Horak, P; Tegelmann, L; Ots, I; Moller, AP Horak, P; Tegelmann, L; Ots, I; Moller, AP Immune function and survival of great tit nestlings in relation to growth conditions OECOLOGIA English Article brood size manipulation; nestling immunocompetence; nestling survival; Parus major; phytohaemagglutinin test PARUS-MAJOR; OFFSPRING SURVIVAL; HIRUNDO-RUSTICA; BARN SWALLOWS; BROOD SIZE; IMMUNOCOMPETENCE; STRESS; HEALTH; HYPOTHESIS; RESPONSES Life history theory predicts a trade-of between number and quality of offspring. Reduced quality with increasing broad size may arise from a decrease in body condition or in immunocompetence that would be important in fighting off virulent: parasites by immunologically naive offspring. We tested the effect of rearing conditions on immune function of nestling great tits (Parus major) by reducing or increasing broods by two hatchlings. In the middle of the nestling period (on day 8), nestlings from enlarged broods developed lower T cell responses [as measured from the cutaneous swelling reaction to injection with phytohaemagglutinin (PHA)] and tended to have lower total leukocyte and lymphocyte concentrations in their peripheral blood than nestlings from reduced broods. Brood size manipulation affected the PHA response of nestlings most strongly in small clutches, suggesting that nestling immune function was dependent on their parents' condition, as estimated by original clutch size. Intra-brood differences in nestling mortality were unrelated to immune parameters, but nestlings in broods without mortality had a stronger PHA response, higher concentration of lymphocytes and higher body mass on day 15 than nestlings in broods with mortality. These results support the prediction that the immune function of altricial birds is affected by rearing conditions, and that growth and immune parameters are related to inter-brood differences in nestling survival. Univ Paris 06, CNRS, URA 258, Ecol Lab, F-75252 Paris 05, France; Tartu State Univ, Inst Zool & Hydrobiol, EE-51014 Tartu, Estonia; Inst Zool & Bot, EE-51014 Tartu, Estonia Horak, P (reprint author), Tartu State Univ, Inst Zool & Hydrobiol, Vanemuise 46, EE-51014 Tartu, Estonia. horak@zbi.ee Horak, Peeter/A-2351-2009 Horak, Peeter/0000-0002-1442-9903 Christe P, 1998, OIKOS, V83, P175, DOI 10.2307/3546559; Dein FJ., 1986, CLIN AVIAN MED, P174; DUFVA R, 1995, FUNCT ECOL, V9, P785, DOI 10.2307/2390253; FITZGERALD L, 1988, IMMUNOL TODAY, V9, P337, DOI 10.1016/0167-5699(88)91332-1; GROSS WB, 1983, AVIAN DIS, V27, P972, DOI 10.2307/1590198; HORAK P, 1995, OECOLOGIA, V102, P515, DOI 10.1007/BF00341365; Horak P, 1998, FUNCT ECOL, V12, P750, DOI 10.1046/j.1365-2435.1998.00244.x; Lessells C.M., 1991, P32; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; LINDEN M, 1992, ECOLOGY, V73, P336, DOI 10.2307/1938745; MAXWELL MH, 1993, WORLD POULTRY SCI J, V49, P34, DOI 10.1079/WPS19930004; McCleery R.H., 1988, P136; MCCORKLE F, 1980, POULTRY SCI, V59, P616, DOI 10.3382/ps.0590616; MOLLER AP, 1998, P 22 INT ORN C DURB; NORDLING D, 1998, THESIS UPPSALA U; NUR N, 1984, J ANIM ECOL, V53, P497, DOI 10.2307/4530; Ots I, 1998, FUNCT ECOL, V12, P700, DOI 10.1046/j.1365-2435.1998.00219.x; Ots I, 1996, P ROY SOC B-BIOL SCI, V263, P1443, DOI 10.1098/rspb.1996.0210; Ots I, 1998, OECOLOGIA, V116, P441, DOI 10.1007/s004420050608; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; Roff Derek A., 1992; Saino N, 1997, J ANIM ECOL, V66, P827, DOI 10.2307/5998; Saino N, 1997, BEHAV ECOL, V8, P364, DOI 10.1093/beheco/8.4.364; Saino N, 1995, BEHAV ECOL, V6, P397, DOI 10.1093/beheco/6.4.397; Saino N, 1996, BEHAV ECOL, V7, P227, DOI 10.1093/beheco/7.2.227; SAINO N, 1998, P 22 INT ORN C DURB; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SIEGEL HS, 1985, WORLD POULTRY SCI J, V41, P36, DOI 10.1079/WPS19850003; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; Stearns S. C., 1992, EVOLUTION LIFE HIST; TINBERGEN JM, 1990, J ANIM ECOL, V59, P1113, DOI 10.2307/5035; van Noordwijk A.J., 1988, P119 32 137 138 3 30 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia NOV 1999 121 3 316 322 10.1007/s004420050934 7 Ecology Environmental Sciences & Ecology 261RC WOS:000084021700004 28308319 2018-11-12 J MacDonald, K MacDonald, K An evolutionary perspective on human fertility POPULATION AND ENVIRONMENT English Article CHILDHOOD EXPERIENCE; IMMIGRATION POLICY; FAMILY ENVIRONMENT; RACE DIFFERENCES; 5-FACTOR MODEL; PERSONALITY; TWINS; CHILDBEARING; INVESTMENT; AMENORRHEA This paper illustrates evolutionary approaches to population issues. Life history theory is a general theoretical framework that incorporates environmental influences, contextual influences, and heritable variation. In general, physically or psychologically stressful environments delay maturation and the onset of reproductive competence. Perceptions of scarcity also result in lower fertility by delaying reproduction or having fewer children-a phenomenon viewed as an adaptation to ancestral environments. The desire for upward social mobility is viewed as an evolved motive disposition affecting fertility decisions. The opportunity for upward social mobility typically results in delaying reproduction and lowering fertility in the interest of increasing investment in children. Variation in life history strategies is also influenced by genetic variation, but genetic variation interacts with cultural shifts in the social control of sexual behavior. Finally, I discuss the effects of between-group competition for resources on population issues. Immigration policy and group differences in fertility influence political power within and between societies, often with explosive results. Demographic expansion has often been an instrument of ethnic competition and is an important source of conflict in the contemporary world. Calif State Univ Long Beach, Dept Psychol, Long Beach, CA 90840 USA MacDonald, K (reprint author), Calif State Univ Long Beach, Dept Psychol, Long Beach, CA 90840 USA. ABERNETHY V, 1993, ECOL ECON, V8, P235, DOI 10.1016/0921-8009(93)90060-J; Barkow J. H., 1989, DARWIN SEX STATUS BI; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Berry BJL, 1996, POPUL DEV REV, V22, P207, DOI 10.2307/2137433; Bookman M. Z, 1997, DEMOGRAPHIC STRUGGLE; BORGERHOFFMULDE.M, 1999, M HUM BEH EV SOC SAL; Boyd R., 1985, CULTURE EVOLUTIONARY; BOYD R, 1992, HIST EVOLUTION; BOYLE J, 1996, POPUL ENVIRON, V20, P317; BUSS DM, 1994, EVOLUTION DESIRE; Calabrese L H, 1983, Phys Sportsmed, V11, P86, DOI 10.1080/00913847.1983.11708458; CARSON J, 1993, PARENT CHILD PLAY DE; CLUTTONBROCK TH, 1989, PROC R SOC SER B-BIO, V236, P339, DOI 10.1098/rspb.1989.0027; COHEN SM, 1986, JEWISH FAMILY MYTHS, P221; COLEMAN DA, 1990, BIOSOCIAL ASPECTS SO, P59; COLEMAN O, 1992, BRIT POPULATION; Courbage Y, 1999, POPUL ENVIRON, V20, P353, DOI 10.1023/A:1023353611329; DIAMOND J, 1986, ANNU REV ECOL SYST, V17, P17, DOI 10.1146/annurev.es.17.110186.000313; DIGMAN JM, 1990, ANNU REV PSYCHOL, V41, P417, DOI 10.1146/annurev.psych.41.1.417; DJORDJEVIC D, 1992, COLUMBIA HIST E EURO; DORNBUSCH SM, 1985, CHILD DEV, V56, P326, DOI 10.2307/1129723; DORNBUSCH SM, 1988, FEMINISM CHILDREN NE, P274; Eisenberg JF, 1981, MAMMALIAN RAD; Elder Jr GH, 1974, CHILDREN GREAT DEPRE; ELLIS BJ, 1999, M HUM BEH EV SOC SAL; ELLIS BJ, 1999, IN PRESS CHILD DEV, V70; FISCHBEIN S, 1977, ACTA GENET MED GEMEL, V26, P151, DOI 10.1017/S0001566000009946; FISCHBEIN S, 1977, ANN HUM BIOL, V4, P417, DOI 10.1080/03014467700002401; FURSTENBERG FF, 1991, FAM RELAT, V40, P127, DOI 10.2307/585470; FURSTENBERG FF, 1989, AM PSYCHOL, V44, P313, DOI 10.1037/0003-066X.44.2.313; Geary D. C., 1998, MALE FEMALE EVOLUTIO; GILBAR GG, 1997, POPULATION DILEMMAS; GOLDSTEIN S, 1981, MODERN JEWISH FERTIL, P160; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.2307/1131582; GRUENWALD PETER, 1967, LANCET, P1026; Guttentag M, 1983, TOO MANY WOMEN SEX R; HAJNAL J., 1983, FAMILY FORMS HIST EU, P65; Hajnal J., 1965, POPULATION HIST ESSA, P101; HERRNSTEIN R, 1973, IQ MERITOCRACY; Herrnstein RJ, 1994, BELL CURVE INTELLIGE; HERZ FM, 1982, ETHNICITY FAMILY THE, P364; Jensen A. R., 1998, G FACTOR SCI MENTAL; JOHNSON P, 1985, SAVING SPENDING WORK; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; Kelly M, 1999, POPUL ENVIRON, V20, P325, DOI 10.1023/A:1023349510420; Kleiman D.G., 1981, P332; KLEIMAN DG, 1977, Q REV BIOL, V52, P39, DOI 10.1086/409721; KNODE J, 1974, DECLINE FERTILITY GE; Krebs JR, 1993, INTRO BEHAV ECOLOGY; KRIKORIAN M, 1999, COMMUNICATION; LANCASTER JB, 1987, PARENTING LIFE SPAN, P187; Laslett P., 1983, FAMILY FORMS HIST EU, P513; Lee J, 1999, POPUL DEV REV, V25, P33, DOI 10.1111/j.1728-4457.1999.00033.x; LENZ F, 1931, HUM HERED, P565; LIEBERMAN S, 1978, MIDSTREAM, V24, P9; Low BS, 1996, HUM NATURE-INT BIOS, V7, P353, DOI 10.1007/BF02732899; LYNN R, 1987, PERS INDIV DIFFER, V8, P813, DOI 10.1016/0191-8869(87)90135-8; Lynn R., 1996, DYSGENICS GENETIC DE; MACDONALD K, 1984, CHILD DEV, V55, P1265, DOI 10.2307/1129996; MACDONALD K, 1995, POLIT LIFE SCI, V14, P3; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; MACDONALD K, 1991, ETHOL SOCIOBIOL, V12, P449, DOI 10.1016/0162-3095(91)90025-L; MacDonald K, 1998, POPUL ENVIRON, V19, P295, DOI 10.1023/A:1024652205516; MacDonald K., 1998, CULTURE CRITIQUE EVO; MACDONALD K, 1988, SOCIAL PERSONALITY D; MACDONALD KB, 1994, PEOPLE SHALL DWELL J; MACFARLANE A, 1986, MARRIAGE LOVE ENGLAN; MACFARLANE A, 1980, BASTARDY ITS COMP HI, P71; MARTIN NG, 1977, J BIOSOC SCI, V9, P91; MCLANAHAN S, 1989, J MARRIAGE FAM, V51, P557, DOI 10.2307/352157; MILLER AKH, 1977, ANN HUM BIOL, V4, P253, DOI 10.1080/03014467700007142; MILLER EM, 1994, MANKIND QUART, V34, P297; MILLEREM, 1994, PERSONALITY INDIVIDU, V17, P227; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; MOSS JJ, 1964, ACTA SOCIOL, V8, P98; NORTON AJ, 1992, US BUREAU CENSUS P23, V180; PARSONS J, 1998, HUMAN POPULATION COM; PLOMIN R, 1989, J MARRIAGE FAM, V51, P791, DOI 10.2307/352177; RAMET S, 1992, NATIONALISM FEDERALI; Ritterband Paul, 1981, MODERN JEWISH FERTIL; Rowe D. C, 1994, LIMITS FAMILY INFLUE; ROWE DC, 1999, M HUM BEH EV SOC SAL; Rushton J. P., 1995, RACE EVOLUTION BEHAV; RUSHTON JP, 1988, PERS INDIV DIFFER, V9, P1009, DOI 10.1016/0191-8869(88)90135-3; Southwood T. R. E, 1981, THEORETICAL ECOLOGY, P30; SURBEY M, 1999, M HUM BEH EV SOC SAL; SURBEY MK, 1990, MG PRIMATOL, V13, P11; TANNER JM, 1990, FOETUS MAN PHYSICAL; TURKE PW, 1989, POPUL DEV REV, V15, P61, DOI 10.2307/1973405; WALL R, 1983, FAMILY FORMS HIST EU, P493; WARREN MP, 1986, NEW ENGL J MED, V314, P1348, DOI 10.1056/NEJM198605223142104; WARREN MP, 1991, J CLIN ENDOCR METAB, V72, P847, DOI 10.1210/jcem-72-4-847; Wilson E.O., 1975, P1; Wilson J. Q., 1985, CRIME HUMAN NATURE; WILSON JQ, 1993, COMMENTARY, V95, P24; Wrigley E. A., 1981, POPULATION HIST ENGL; ZAJONC RB, 1979, J PERS SOC PSYCHOL, V37, P1325; 1995, CURRENT POPULATION R 98 21 21 0 7 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0199-0039 1573-7810 POPUL ENVIRON Popul. Env. NOV 1999 21 2 223 246 24 Demography; Environmental Studies Demography; Environmental Sciences & Ecology 259DV WOS:000083879900006 2018-11-12 J Enquist, BJ; West, GB; Charnov, EL; Brown, JH Enquist, BJ; West, GB; Charnov, EL; Brown, JH Allometric scaling of production and life-history variation in vascular plants NATURE English Article GROWTH-RATE; FOREST TREES; COMMUNITIES; ALLOCATION; AMAZONIA; DENSITY; BIOMASS A prominent feature of comparative life histories is the well documented negative correlation between growth rate and life span(1,2). Patterns of resource allocation during growth and reproduction reflect life-history differences between species(1,2). This is particularly striking in tropical forests, where tree species can differ greatly in their rates of growth and ages of maturity but still attain similar canopy sizes(3,4). Here we provide a theoretical framework for relating life-history variables to rates of production, dM/dt, where M is above-ground mass and t is time. As metabolic rate limits production as an individual grows, dM/dt proportional to M-3/4. Incorporating interspecific variation in resource allocation to wood density, we derive a universal growth law that quantitatively fits data for a large sample of tropical tree species with diverse life histories. Combined with evolutionary life-history theory(1), the growth law also predicts several qualitative features of tree demography and reproduction. This framework also provides a general quantitative answer to why relative growth rate (1/M)(dM/df) decreases with increasing plant size (proportional to M-1/4) and how it varies with differing allocation strategies(5-8). Natl Ctr Ecol Anal & Synth, Santa Barbara, CA 93101 USA; Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA; Santa Fe Inst, Santa Fe, NM 87501 USA; Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA Enquist, BJ (reprint author), Natl Ctr Ecol Anal & Synth, 735 State St,Suite 300, Santa Barbara, CA 93101 USA. Enquist, Brian/0000-0002-6124-7096 AUGSPURGER CK, 1983, J ECOL, V71, P759, DOI 10.2307/2259591; BORCHERT R, 1994, ECOLOGY, V75, P1437, DOI 10.2307/1937467; CEBRIAN J, 1994, FUNCT ECOL, V8, P518, DOI 10.2307/2390077; Chambers JQ, 1998, NATURE, V391, P135, DOI 10.1038/34325; Charnov Eric L., 1993, P1; DENSLOW JS, 1980, BIOTROPICA, V12, P47, DOI 10.2307/2388156; Enquist BJ, 1998, NATURE, V395, P163, DOI 10.1038/25977; Fearnside PM, 1997, FOREST ECOL MANAG, V90, P59, DOI 10.1016/S0378-1127(96)03840-6; GLEESON SK, 1994, FUNCT ECOL, V8, P543, DOI 10.2307/2390080; GRIME JP, 1975, J ECOL, V63, P393, DOI 10.2307/2258728; GRUBB PJ, 1977, BIOL REV, V52, P107, DOI 10.1111/j.1469-185X.1977.tb01347.x; Harvey P. H., 1991, COMP METHOD EVOLUTIO; Hubbell SP, 1999, SCIENCE, V283, P554, DOI 10.1126/science.283.5401.554; Janzen D., 1986, GUANACASTE NATL PARK; MALAVASSI IC, 1998, MODERAS COSTA RICA 1; Niklas K.J., 1994, PLANT ALLOMETRY SCAL; NIKLAS KJ, 1993, AM J BOT, V80, P461, DOI 10.2307/2445392; PETERS RH, 1988, OECOLOGIA, V74, P612, DOI 10.1007/BF00380061; Richards P.W., 1996, TROPICAL RAIN FOREST; RICKLEFS RE, 1977, AM NAT, V111, P376, DOI 10.1086/283169; SMITH DW, 1982, CAN J FOREST RES, V12, P186, DOI 10.1139/x82-028; SOBRADO MA, 1986, OECOLOGIA, V68, P413, DOI 10.1007/BF01036748; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEVENS GC, 1987, ECOLOGY, V68, P77, DOI 10.2307/1938806; Thomas SC, 1996, EVOL ECOL, V10, P517, DOI 10.1007/BF01237882; Tilman D, 1988, PLANT STRATEGIES DYN; West GB, 1999, NATURE, V400, P664, DOI 10.1038/23251; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122; WHITTAKE.RH, 1968, J ECOL, V56, P1, DOI 10.2307/2258063; WILLIAMSON GB, 1984, B TORREY BOT CLUB, V111, P51, DOI 10.2307/2996210 30 383 419 9 143 MACMILLAN MAGAZINES LTD LONDON PORTERS SOUTH, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 0028-0836 NATURE Nature OCT 28 1999 401 6756 907 911 10.1038/44819 5 Multidisciplinary Sciences Science & Technology - Other Topics 251UL WOS:000083464700056 2018-11-12 J Golla, W; Hofer, H; East, ML Golla, W; Hofer, H; East, ML Within-litter sibling aggression in spotted hyaenas: effect of maternal nursing, sex and age ANIMAL BEHAVIOUR English Article DOMINATED MAMMALIAN SOCIETY; HYENA CROCUTA-CROCUTA; COMMUTING SYSTEM; BROOD REDUCTION; PREDATOR COPES; MIGRATORY PREY; SOCIAL-ORGANIZATION; GROWTH-RATES; COMPETITION; RATIOS Models that address facultative siblicide in avian species predict that the costs and benefits of sibling aggression will change in relation to the level of food provisioning by parents. In spotted hyaenas, Crocuta cracuta, one of the few mammalian species in which facultative siblicide occurs, aggression rates between siblings were highest when cubs competed for access to maternal milk. In the Serengeti National Park Tanzania, nursing of cubs by spotted hyaena mothers was influenced by the migratory movements of herbivores and the social status of the mother. Consistent with predictions from avian models, rates of sibling aggression among spotted hyaena littermates were inversely related to levels of maternal input in terms of lactation. Long-distance foraging trips by mothers (commuting trips) resulted in low cub growth. Rates of aggression were higher in years when cub growth rates were low than in years when cub growth rates were medium or high. Rates of aggression between littermates belonging to high-ranking mothers, who nursed their cubs more frequently than low-ranking mothers, were lower than those between siblings of low-ranking mothers. Aggression rates in all-female and all-male litters were higher than in mixed-sex litters. Identical payoff expectations of same-sex litters may provide an explanation for this result. In accordance with predictions from life history theory, aggression rates declined with age and increasing reproductive value of siblings. (C) 1999 The Association for the Study of Animal Behaviour. Max Planck Inst Verhaltensphysiol, D-82305 Seewiesen, Germany Golla, W (reprint author), 1513 10th Ave S, Lethbridge, AB T1K 0B1, Canada. Hofer, Heribert/0000-0002-2813-7442 BORTOLOTTI GR, 1986, ECOLOGY, V67, P182, DOI 10.2307/1938517; BORTOLOTTI GR, 1986, AM NAT, V127, P495, DOI 10.1086/284498; CLARK MM, 1991, ANIM BEHAV, V42, P161, DOI 10.1016/S0003-3472(05)80621-9; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CRONK L, 1993, AM SCI, V81, P272; Drea CM, 1996, ANIM BEHAV, V51, P1323, DOI 10.1006/anbe.1996.0136; DRUMMOND H, 1991, AM NAT, V138, P623, DOI 10.1086/285238; DRUMMOND H, 1989, ANIM BEHAV, V37, P806, DOI 10.1016/0003-3472(89)90065-1; EAST M, 1989, J ZOOL, V219, P690, DOI 10.1111/j.1469-7998.1989.tb02614.x; EAST ML, 1991, ANIM BEHAV, V42, P651, DOI 10.1016/S0003-3472(05)80247-7; EAST ML, 1993, BEHAV ECOL SOCIOBIOL, V33, P355; EAST ML, 1991, ANIM BEHAV, V42, P637, DOI 10.1016/S0003-3472(05)80246-5; East ML, 1997, TRENDS ECOL EVOL, V12, P401, DOI 10.1016/S0169-5347(97)87387-9; EDWARDS TC, 1983, AUK, V100, P630; FORBES LS, 1992, THEOR POPUL BIOL, V41, P135, DOI 10.1016/0040-5809(92)90041-Q; Frank Laurence G., 1996, P78; FRANK LG, 1986, ANIM BEHAV, V34, P1510, DOI 10.1016/S0003-3472(86)80221-4; FRANK LG, 1991, SCIENCE, V252, P702, DOI 10.1126/science.2024122; FRANK LG, 1990, J ZOOL, V221, P308, DOI 10.1111/j.1469-7998.1990.tb04001.x; FRANK LG, 1995, SERENGETI, V2, P364; Fraser D, 1990, J Reprod Fertil Suppl, V40, P355; Glickman Stephen E., 1993, Perspectives in Ethology, V10, P87; GOLLA W, 1993, THESIS LUDWIG MAXIMI; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Hofer H, 1997, APPL ANIM BEHAV SCI, V51, P307, DOI 10.1016/S0168-1591(96)01113-6; HOFER H, 1993, ANIM BEHAV, V46, P575, DOI 10.1006/anbe.1993.1224; HOFER H, 1993, ANIM BEHAV, V46, P559, DOI 10.1006/anbe.1993.1223; HOFER H, 1993, ANIM BEHAV, V46, P547, DOI 10.1006/anbe.1993.1222; Hofer H., 1995, SERENGETI, P332; HOLEKAMP KE, 1995, AM NAT, V145, P261, DOI 10.1086/285739; Holekamp KE, 1996, J REPROD FERTIL, V108, P229; HURLBERT SH, 1984, ECOL MONOGR, V54, P187, DOI 10.2307/1942661; Kruuk H, 1972, SPOTTED HYENA STUDY; Lamprecht J, 1992, BIOL FORSCHUNG PLANU; Martin PR, 1986, MEASURING BEHAV INTR; MCNAMARA JM, 1994, P ROY SOC B-BIOL SCI, V258, P23, DOI 10.1098/rspb.1994.0136; Mills M. G. L., 1990, KALAHARI HYAENAS COM; Mock D. W., 1997, EVOLUTION SIBLING RI; MOCK DW, 1984, SCIENCE, V225, P731, DOI 10.1126/science.225.4663.731; MOCK DW, 1987, BEHAV ECOL SOCIOBIOL, V20, P247, DOI 10.1007/BF00292177; MOCK DW, 1986, EVOLUTION, V40, P459, DOI 10.1111/j.1558-5646.1986.tb00499.x; MOCK DW, 1987, ECOLOGY, V68, P1760, DOI 10.2307/1939867; MOCK DW, 1990, AM SCI, V78, P438; OCONNOR RJ, 1978, ANIM BEHAV, V26, P79, DOI 10.1016/0003-3472(78)90008-8; PARKER GA, 1974, J THEOR BIOL, V47, P223, DOI 10.1016/0022-5193(74)90111-8; PARKER GA, 1989, AM NAT, V133, P846, DOI 10.1086/284956; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; POPP JL, 1979, GREAT APES PERSPECTI, V5, P317; Pournelle G. H., 1965, Journal of Mammalogy, V46, P503, DOI 10.2307/1377649; Roff Derek A., 1992; SIBLY RM, 1990, ANIM BEHAV, V39, P63, DOI 10.1016/S0003-3472(05)80726-2; Sinclair A. R. E., 1979, SERENGETI DYNAMICS E; SMALE L, 1995, ANIM BEHAV, V50, P671, DOI 10.1016/0003-3472(95)80128-6; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; Sokal R. R., 1981, BIOMETRY; Stearns S. C., 1992, EVOLUTION LIFE HIST; WERSCHKUL DF, 1979, IBIS, V121, P97, DOI 10.1111/j.1474-919X.1979.tb05022.x; WILKINSON L, 1990, SYSTAT SYSTEM STAT; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 59 48 51 2 23 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. OCT 1999 58 4 715 726 10.1006/anbe.1999.1189 12 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 249TA WOS:000083347600003 2018-11-12 J Glazier, DS Glazier, DS Variation in offspring investment within and among populations of Gammarus minus SAY (Crustacea : Amphipoda) in ten mid-Appalachian springs (USA) ARCHIV FUR HYDROBIOLOGIE English Article LIFE-HISTORY; BODY-SIZE; HYALELLA-AZTECA; EGG SIZE; GAMMARIDEAN AMPHIPODS; HOLOPEDIUM-GIBBERUM; MICRO-DISTRIBUTION; PULEX AMPHIPODA; PATTERNS; FECUNDITY Amphipod crustaceans in freshwater springs offer excellent opportunities for testing hypotheses of life-history ecology and evolution. In this study, several hypotheses were tested regarding variation in brood mass, brood size (number of embryos per brood) and individual embryo mass within and among populations of Gammarus minus in ten cold springs in central Pennsylvania, U.S.A. Brood mass and brood size showed strong relationships with maternal body mass both within and among populations. Most of the relationships between brood mass and maternal mass were isometric or nearly so, as predicted by the hypothesis that available body volume within a confining exoskeleton is the major factor causing body-size scaling of reproductive investment in amphipods. However, as expected from optimal offspring investment theory, embryo mass was usually unrelated to maternal mass and its variation was much less than that of brood mass and brood size. The effects of other factors were assessed by adjusting each reproductive trait to maternal mass (designated by the term "relative"). As predicted by life-history theory, relative embryo mass and number were negatively correlated among populations. However, such trade-offs were usually absent within populations. Relative embryo mass was significantly greater during winter than summer in all four populations sampled, though varied seasonal effects occurred on relative brood mass and brood size. This seasonal variation in offspring size was unexpected, because in other amphipods it has usually been attributed tb changes in water temperature, which varied little during the year in the study springs. Other potential causes of this variation are seasonal changes in food availability and watercress coverage. Relative brood mass, brood size and embryo mass varied significantly among the ten populations sampled. This variation was independent of differences in water chemistry among the springs. However, predation and watercress coverage appeared to have significant effects on reproductive investment in G. minus. Amphipods in springs with watercress and sculpin predators produced relatively many small eggs, whereas those in springs without watercress and sculpin predators produced relatively few large eggs. Eggs of intermediate size and number were produced in springs with watercress, but no sculpin predators. In addition, female size at maturation was smaller, and the slopes of brood mass and embryo mass regressed on maternal mass were steeper in predator-rich vs, predator-poor springs. It is suggested that these patterns are the result of habitat differences in age-specific growth and mortality rates, as predicted by life-history theory. However, it is not known whether the interpopulation differences in offspring investment are the result of evolutionary or phenotypically plastic responses to environmental variation. Juniata Coll, Dept Biol, Huntingdon, PA 16652 USA Glazier, DS (reprint author), Juniata Coll, Dept Biol, Huntingdon, PA 16652 USA. glazier@juniata.edu ADAMS J, 1987, FRESHWATER BIOL, V17, P307, DOI 10.1111/j.1365-2427.1987.tb01050.x; *AM PUBL HLTH ASS, 1985, STAND METH EX WAT WA; ARTS MT, 1988, CAN J FISH AQUAT SCI, V45, P2147, DOI 10.1139/f88-249; Bernardo J, 1996, AM ZOOL, V36, P216; BERRIGAN D, 1991, OIKOS, V60, P313, DOI 10.2307/3545073; Calder W. A., 1984, SIZE FUNCTION LIFE H; CHAMBERS MR, 1977, HYDROBIOLOGIA, V53, P155, DOI 10.1007/BF00029294; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CULVER DC, 1985, STYGOLOGIA, V1, P43; CULVER DC, 1995, ADAPTATION NATURAL S; DUNN AM, 1995, OIKOS, V73, P199, DOI 10.2307/3545908; FRANCE RL, 1992, CRUSTACEANA, V62, P240, DOI 10.1163/156854092X00145; FREDETTE TJ, 1986, J CRUSTACEAN BIOL, V6, P57, DOI 10.2307/1547931; GEE JHR, 1982, J ANIM ECOL, V51, P817, DOI 10.2307/4007; GIBBONS WN, 1991, J N AM BENTHOL SOC, V10, P444, DOI 10.2307/1467669; Glazier D. S., 1998, P49; GLAZIER DS, 1992, ECOLOGY, V73, P910, DOI 10.2307/1940168; GLAZIER DS, 1987, HYDROBIOLOGIA, V150, P33, DOI 10.1007/BF00006608; GLAZIER DS, 1992, FRESHWATER BIOL, V28, P149, DOI 10.1111/j.1365-2427.1992.tb00572.x; GOOCH JL, 1990, AM MIDL NAT, V124, P93, DOI 10.2307/2426082; GOOCH JL, 1991, MEMOIRS ENTOMOLOGICA, V155, P29; GREGG WW, 1982, AQUAT BOT, V14, P309, DOI 10.1016/0304-3770(82)90105-X; HALEY CJ, 1997, THESIS VIRGINIA POLY; HARGEBY A, 1988, FRESHWATER BIOL, V19, P235, DOI 10.1111/j.1365-2427.1988.tb00345.x; HOLOMUZKI JR, 1990, FRESHWATER BIOL, V24, P509, DOI 10.1111/j.1365-2427.1990.tb00728.x; Holsinger JR, 1976, FRESHWATER AMPHIPOD; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; HOWARDWILLIAMS C, 1983, HYDROBIOLOGIA, V99, P207, DOI 10.1007/BF00008772; HYNES HBN, 1955, J ANIM ECOL, V24, P352, DOI 10.2307/1718; HYNES HBN, 1954, J ANIM ECOL, V23, P38, DOI 10.2307/1660; KERNHANSEN U, 1978, VERH INT VEREIN LIMN, V20, P1440; KOLDING S, 1981, OIKOS, V37, P167, DOI 10.2307/3544461; KONOPACKA A, 1988, Zoologica Poloniae, V35, P165; LAFRANCE K, 1985, LIMNOL OCEANOGR, V30, P1067, DOI 10.4319/lo.1985.30.5.1067; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; MALTBY L, 1991, OIKOS, V61, P11, DOI 10.2307/3545402; MCCABE J, 1994, OIKOS, V69, P203, DOI 10.2307/3546139; Miller J. D., 1977, CRUSTACEANA S, V4, P153; MORRIS DW, 1987, OIKOS, V49, P332, DOI 10.2307/3565769; NAYLOR C, 1988, J ANIM ECOL, V57, P493, DOI 10.2307/4920; NELSON WG, 1980, SARSIA, V65, P61; NEWMAN RM, 1990, HOLARCTIC ECOL, V13, P293; NEWMAN RM, 1984, ECOLOGY, V65, P1535, DOI 10.2307/1939133; Perrin N, 1988, FUNCT ECOL, V2, P283, DOI 10.2307/2389399; Peters R.H., 1983, P1; Pinkster S, 1980, CRUSTACEANA S, V6, P225; POCKL M, 1993, FRESHWATER BIOL, V30, P73, DOI 10.1111/j.1365-2427.1993.tb00790.x; POULIN R, 1995, FUNCT ECOL, V9, P364, DOI 10.2307/2389998; Preziosi RF, 1996, OECOLOGIA, V108, P424, DOI 10.1007/BF00333717; PRINGLE S, 1982, OIKOS, V38, P369, DOI 10.2307/3544679; Reiss M. J., 1989, ALLOMETRY GROWTH REP; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Roff Derek A., 1992; Rohlf F.J., 1995, STAT TABLES; SAINTE-MARIE B, 1991, HYDROBIOLOGIA, V223, P189, DOI 10.1007/BF00047641; SHEADER M, 1983, J MAR BIOL ASSOC UK, V63, P517, DOI 10.1017/S0025315400070855; SHEADER M, 1970, J MAR BIOL ASSOC UK, V50, P1079, DOI 10.1017/S0025315400005968; Sheader M, 1996, MAR BIOL, V124, P519, DOI 10.1007/BF00351033; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; SKADSHEIM A, 1984, OIKOS, V43, P94, DOI 10.2307/3544250; SKADSHEIM A, 1990, OIKOS, V57, P207, DOI 10.2307/3565941; SKADSHEIM A, 1989, J EXP MAR BIOL ECOL, V127, P25, DOI 10.1016/0022-0981(89)90207-4; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Sokal R.R., 1995, BIOMETRY; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steele D. H., 1991, CRUSTACEAN EGG PRODU, P157; STEELE DH, 1975, CAN J ZOOL, V53, P1116, DOI 10.1139/z75-131; STRONG DR, 1972, ECOLOGY, V53, P1103, DOI 10.2307/1935422; Sutcliffe D.W., 1993, Freshwater Forum, V3, P26; TESSIER AJ, 1986, FRESHWATER BIOL, V16, P279, DOI 10.1111/j.1365-2427.1986.tb00971.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VENABLE DL, 1992, AM NAT, V140, P287, DOI 10.1086/285413; WELLBORN GA, 1995, AM MIDL NAT, V133, P322, DOI 10.2307/2426397; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; WILDISH DJ, 1982, INT J INVER REP DEV, V5, P1; WILKINSON L, 1992, SYSTAT STAT SYSTAT I; WILLIAMS DD, 1986, FRESHWATER BIOL, V16, P115, DOI 10.1111/j.1365-2427.1986.tb00952.x; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667; Zar JH, 1984, BIOSTATISTICAL ANAL; Zielinski D, 1998, CRUSTACEANA, V71, P129, DOI 10.1163/156854098X00112 80 21 22 5 12 E SCHWEIZERBARTSCHE VERLAGSBUCHHANDLUNG STUTTGART NAEGELE U OBERMILLER, SCIENCE PUBLISHERS, JOHANNESSTRASSE 3A, D 70176 STUTTGART, GERMANY 0003-9136 ARCH HYDROBIOL Arch. Hydrobiol. OCT 1999 146 3 257 283 27 Limnology; Marine & Freshwater Biology Marine & Freshwater Biology 254KJ WOS:000083610200001 2018-11-12 J Bertschy, KA; Fox, MG Bertschy, KA; Fox, MG The influence of age-specific survivorship on pumpkinseed sunfish life histories ECOLOGY English Article centrarchids; fishes; gonads; Lepomis gibbosus; life history theory; maturation; population; sunfish; survival SMALLMOUTH BASS; LEPOMIS-GIBBOSUS; BODY-SIZE; SALVELINUS-FONTINALIS; PHENOTYPIC PLASTICITY; MICROPTERUS-DOLOMIEUI; OVERWINTER MORTALITY; NATURAL-SELECTION; BROOK TROUT; REPRODUCTION Data from five pumpkinseed sunfish (Lepomis gibbosus) populations were used to generate age-specific survival rates and to test the prediction of life history theory that early maturity and high annual reproductive effort are favored by low adult survival relative to that of juveniles. The prediction relating age-specific survival to reproductive effort was supported by a strong negative correlation (r = -0.95) between the ratio of adult-to-juvenile survivorship and the mean gonadosomatic index of females in the population. The relationship between the adult-to-juvenile survival ratio and the mean age at maturity was in the direction predicted by life history theory, but it was not significant. Strong correlations between mean age at maturity and both juvenile growth and the adult-to-juvenile growth ratio indicate that growth may affect the timing of maturity more strongly than survivorship in some species. We estimated the survival cost of reproduction in the populations with the use of demographic data in an optimal life history model developed from the discrete version of the Euler-Lotka equation. Estimated costs ranged from 5% to 52%, with the two populations exhibiting early maturity, high reproductive allocation, and stunted adult body size displaying the highest survival costs of reproduction in the model. Annual survivorship curves from adults in these two populations showed a marked concavity not illustrated in the other populations, supporting the prediction of life history theory that high reproductive effort results in a high survival cost of reproduction. The selective pressure of a low adult-to-juvenile survival ratio appears to favor the evolution of increased reproductive effort in pumpkinseeds, even when this results in the further decline of an already low adult survival rate. Trent Univ, Watershed Ecosyst Grad Program, Peterborough, ON K9J 7B8, Canada; Trent Univ, Environm & Resource Studies Program, Peterborough, ON K9J 7B8, Canada; Trent Univ, Dept Biol, Peterborough, ON K9J 7B8, Canada Bertschy, KA (reprint author), Trent Univ, Watershed Ecosyst Grad Program, Peterborough, ON K9J 7B8, Canada. BAGENAL TB, 1978, INT BIOL PROGRAMME H, V3, P101; BAYLIS JR, 1993, T AM FISH SOC, V122, P500, DOI 10.1577/1548-8659(1993)122<0500:ALHOSB>2.3.CO;2; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; CAMPANA SE, 1993, CAN J FISH AQUAT SCI, V50, P1062, DOI 10.1139/f93-123; CARLANDER KD, 1982, T AM FISH SOC, V111, P332, DOI 10.1577/1548-8659(1982)111<332:SIFCLF>2.0.CO;2; CHANG WYB, 1982, CAN J FISH AQUAT SCI, V39, P1208, DOI 10.1139/f82-158; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; CRIVELLI AJ, 1988, ARCH HYDROBIOL, V111, P449; DANYLCHUK AJ, 1994, ENVIRON BIOL FISH, V39, P119, DOI 10.1007/BF00004929; DANYLCHUK AJ, 1994, CAN J FISH AQUAT SCI, V51, P490, DOI 10.1139/f94-051; DEACON LI, 1987, ENVIRON BIOL FISH, V19, P281, DOI 10.1007/BF00003229; DEMASTER DP, 1978, J FISH RES BOARD CAN, V35, P912, DOI 10.1139/f78-148; Dufresne F, 1990, BEHAV ECOL, V1, P140, DOI 10.1093/beheco/1.2.140; Fox MG, 1998, CAN J FISH AQUAT SCI, V55, P737, DOI 10.1139/cjfas-55-3-737; FOX MG, 1994, ECOLOGY, V75, P1157, DOI 10.2307/1939439; FOX MG, 1991, CAN J FISH AQUAT SCI, V48, P1792, DOI 10.1139/f91-211; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GROSS MR, 1979, CAN J ZOOL, V57, P1507, DOI 10.1139/z79-197; HUTCHINGS JA, 1994, OIKOS, V70, P12, DOI 10.2307/3545693; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Hutchings JA, 1996, ECOSCIENCE, V3, P25, DOI 10.1080/11956860.1996.11682311; Justus J. A., 1994, Ecology of Freshwater Fish, V3, P9, DOI 10.1111/j.1600-0633.1994.tb00102.x; KEAST A, 1977, Environmental Biology of Fishes, V2, P235, DOI 10.1007/BF00005992; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; LAW R, 1979, AM NAT, V113, P3, DOI 10.1086/283361; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MILLER HELEN CARTER, 1963, BEHAVIOUR, V22, P88, DOI 10.1163/156853963X00329; MILLERGRAZIANO CL, 1994, SHOCK, V1, P317, DOI 10.1097/00024382-199405000-00001; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; OLIVER JD, 1979, T AM FISH SOC, V108, P130, DOI 10.1577/1548-8659(1979)108<130:OMOFSB>2.0.CO;2; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; POST JR, 1989, CAN J FISH AQUAT SCI, V46, P1958, DOI 10.1139/f89-246; PRESSLEY PH, 1981, EVOLUTION, V35, P282, DOI 10.1111/j.1558-5646.1981.tb04887.x; RAFFETTO NS, 1990, ECOLOGY, V71, P1523, DOI 10.2307/1938289; REGIER HENRY A., 1962, TRANS AMER FISH SOC, V91, P362, DOI 10.1577/1548-8659(1962)91[362:VOTSMF]2.0.CO;2; REID WV, 1987, OECOLOGIA, V74, P458, DOI 10.1007/BF00378945; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; RIDGWAY MS, 1991, J ANIM ECOL, V60, P665, DOI 10.2307/5304; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Roff Derek A., 1992; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; Scott WB, 1973, B FISHERIES RES BOAR, V184; Seber GAF, 1982, ESTIMATION ANIMAL AB; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SHUTER BJ, 1980, T AM FISH SOC, V109, P1, DOI 10.1577/1548-8659(1980)109<1:SSOTEO>2.0.CO;2; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEEL RGD, 1980, PRINCIPLES PROCEDURE; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; TRIPPEL EA, 1987, CAN J FISH AQUAT SCI, V44, P1018, DOI 10.1139/f87-119; WERNER EE, 1977, J FISH RES BOARD CAN, V34, P360, DOI 10.1139/f77-058; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 61 39 42 2 30 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology OCT 1999 80 7 2299 2313 10.2307/176911 15 Ecology Environmental Sciences & Ecology 243QU WOS:000083009400014 2018-11-12 J Walsh, A Walsh, A Life history theory and female readers of pornography PERSONALITY AND INDIVIDUAL DIFFERENCES English Article pornography; reproductive strategy; life history; parental attachment ADOLESCENT SEXUAL-BEHAVIOR; EVOLUTIONARY-THEORY; STRATEGIES; ATTACHMENT; INVESTMENT; MODEL This study explores the possibility that female interest in pornography might signal a more 'male-like' reproductive strategy. According to life history theory, early attachment experiences have the effect of 'setting' reproductive strategies as restrictive or unrestrictive. It was found that female readers of pornography were significantly more likely to be from divorced homes, to be divorced themselves, to assess their parental attachment less positively and to report less positive affect than female non-readers. Female readers were also found to score significantly closer to males than to female nonreaders on six of eight sexuality-related indices. On the two occasions when they differed significantly from males, they also differed from female non-readers. Male readers and non-readers did not differ on any of the indices of sexuality, but they did report less positive attachment experiences. (C) 1999 Elsevier Science Ltd. All rights reserved. Boise State Univ, Dept Criminal Justice, Boise, ID 83702 USA Walsh, A (reprint author), Boise State Univ, Dept Criminal Justice, Boise, ID 83702 USA. ALCOCK J, 1989, ANIMAL BEHAV EVOLUTI; Barber N, 1998, EVOL HUM BEHAV, V19, P125, DOI 10.1016/S1090-5138(98)00004-X; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; CASHDAN E, 1993, ETHOL SOCIOBIOL, V14, P1, DOI 10.1016/0162-3095(93)90014-9; CHISHOLM J, 1993, CURR ANTHROPOL, V34, P3; CHISHOLM J, 1996, HUMAN NATURE, V1, P1; Christensen F. M., 1990, PORNOGRAPHY OTHER SI; COLES CD, 1984, ARCH SEX BEHAV, V13, P187, DOI 10.1007/BF01541647; DAITZMAN R, 1980, PERS INDIV DIFFER, V1, P103, DOI 10.1016/0191-8869(80)90027-6; ELLIS BJ, 1990, J SEX RES, V27, P527, DOI 10.1080/00224499009551579; Ellis L., 1989, THEORIES RAPE INQUIR; ELSHTAIN J, 1991, TAKING SIDES CLASHIN; Fisher H., 1992, ANATOMY LOVE NATURAL; Gangestad S. W., 1990, J PERS, V58, P70; HARRIS GT, 1994, J CONSULT CLIN PSYCH, V62, P387, DOI 10.1037/0022-006X.62.2.387; ITZIN C, 1992, PORNOGRAPHY WOMEN VI; IZARD CE, 1974, J CONSULT CLIN PSYCH, V42, P468, DOI 10.1037/h0036554; KENRICK DT, 1990, J PERS, V58, P97, DOI 10.1111/j.1467-6494.1990.tb00909.x; MacDonald K, 1997, HUM NATURE-INT BIOS, V8, P327, DOI 10.1007/BF02913038; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; OLIVER M, 1993, PSYCHOL BULL, V14, P29; Rossi AS, 1997, CHILD YOUTH SERV REV, V19, P369, DOI 10.1016/S0190-7409(97)00023-6; Rowe D. C., 1996, DELINQUENCY CRIME CU; SHAVER P, 1988, PSYCHOL LOVE; SHEPHER J, 1985, ETHOL SOCIOBIOL, V6, P103, DOI 10.1016/0162-3095(85)90003-2; Strossen N., 1995, DEFENDING PORNOGRAPH; Symons D., 1979, EVOLUTION HUMAN SEXU; TOOBY J, 1990, J PERS, V58, P17, DOI 10.1111/j.1467-6494.1990.tb00907.x; UDRY JR, 1988, AM SOCIOL REV, V53, P709, DOI 10.2307/2095817; WALSH A, 1993, ETHOL SOCIOBIOL, V14, P25, DOI 10.1016/0162-3095(93)90015-A; WALSH A, 1995, SOC BIOL, V42, P95; Walsh A., 1993, VIVA DIFFERENCE CELE; WALSH A, 1990, FREE INQUIRY CREATIV, V18, P37 34 3 3 0 7 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. OCT 1999 27 4 779 787 10.1016/S0191-8869(98)00281-5 9 Psychology, Social Psychology 212TU WOS:000081233400017 2018-11-12 J Silvertown, J; Dodd, M Silvertown, J; Dodd, M The demographic cost of reproduction and its consequences in balsam fir (Abies balsamea) AMERICAN NATURALIST English Article cost of reproduction; fir wave; Abies balsamea; plant demography; self-thinning; life-history evolution SEED PRODUCTION; VEGETATIVE GROWTH; OENOTHERA-BIENNIS; PLANTS; FOREST; TREES; HERB; WAVE; REGENERATION; POPULATIONS It is an axiom of life-history theory that reproduction involves age-specific costs in terms of survival or future reproduction. The measurement of costs of reproduction in plants is difficult, and few field studies have measured these costs in terms of fitness or demographic components, thus creating a hiatus between theory and data. in this article, we describe methods for overcoming the problem, illustrated by a field study of balsam fir. We used serial correlation and a permutation test to detect growth costs of reproduction and show how these translate into demographic costs when relative tree size (and therefore growth) is critical to survival. Using chronosequences, we reconstructed the age- and size-specific dynamics of a subalpine population of Abies balsamea. A matrix model describing these dynamics was then used to estimate age- and size-specific probabilities of future survival to maturity (Z(ix)). By using a regression model of the relationship between tree size, age, and Z(ix), we were able to estimate the maximum age-specific demographic cost of reproduction for trees of all ages. The shape of the age-specific cost curve for A. balsamea may explain why, contrary to a previously published hypothesis, age at first reproduction in A. balsamea does nor vary between wave-regenerating and normal populations. Open Univ, Dept Biol, Ecol & Conservat Res Grp, Milton Keynes MK7 6AA, Bucks, England Silvertown, J (reprint author), Open Univ, Dept Biol, Ecol & Conservat Res Grp, Milton Keynes MK7 6AA, Bucks, England. J.Silvertown@Open.ac.uk Antonovics J., 1980, LIMITS ACTION ALLOCA, P1; ASHMAN TL, 1992, OECOLOGIA, V92, P266, DOI 10.1007/BF00317374; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; Boucher DH, 1997, J ECOL, V85, P235, DOI 10.2307/2960654; CALVO RN, 1990, AM NAT, V136, P499, DOI 10.1086/285110; CALVO RN, 1993, ECOLOGY, V74, P1033, DOI 10.2307/1940473; CASWELL H, 1984, J THEOR BIOL, V107, P169, DOI 10.1016/S0022-5193(84)80128-9; CASWELL H, 1982, J THEOR BIOL, V98, P519, DOI 10.1016/0022-5193(82)90134-5; CASWELL H, 1989, ESTIMATION ANAL INSP, P92; CHARLESWORTH B, 1994, EVOLUTION AQGE STRUC; Cunningham SA, 1997, OECOLOGIA, V111, P36, DOI 10.1007/s004420050205; DICK JM, 1990, TREE PHYSIOL, V6, P105, DOI 10.1093/treephys/6.1.105; EIS S, 1965, CAN J BOTANY, V43, P1553, DOI 10.1139/b65-165; ELKASSABY YA, 1992, CAN J BOT, V70, P1429, DOI 10.1139/b92-179; Fisher R. A., 1958, GENETICAL THEORY NAT; FOX JF, 1991, ECOLOGY, V72, P1013, DOI 10.2307/1940601; Geber MA, 1997, J ECOL, V85, P211, DOI 10.2307/2960652; GREENE DF, 1994, ECOLOGY, V75, P642, DOI 10.2307/1941722; GROSS HL, 1972, CAN J BOT, V50, P2431, DOI 10.1139/b72-312; HOFFMANN AJ, 1984, OECOLOGIA, V61, P109, DOI 10.1007/BF00379095; HOLMSGAARD E, 1956, P INT U FOR RES ORG, P158; HORVITZ CC, 1988, ECOLOGY, V69, P1741, DOI 10.2307/1941152; Karlsson PS, 1996, J ECOL, V84, P915, DOI 10.2307/2960562; LAW R, 1979, AM NAT, V113, P3, DOI 10.1086/283361; LEFKOVITCH LP, 1965, BIOMETRICS, V21, P1, DOI 10.2307/2528348; MARCHAND PJ, 1986, CAN J FOREST RES, V16, P591, DOI 10.1139/x86-102; MARCHAND PJ, 1995, NAT HIST, V104, P26; MOHLER CL, 1978, J ECOL, V66, P599, DOI 10.2307/2259153; MOLONEY KA, 1986, CAN J BOT, V64, P341, DOI 10.1139/b86-049; MORRIS RF, 1951, FIREST CHRON, V24, P106; MUIR AN, 1995, CAN J BOT, V73, P1683, DOI 10.1139/b95-182; NEWELL EA, 1991, J ECOL, V79, P365, DOI 10.2307/2260719; Obeso JR, 1997, J ECOL, V85, P159, DOI 10.2307/2960648; OBESO JR, 1993, ECOGRAPHY, V16, P365, DOI 10.1111/j.1600-0587.1993.tb00226.x; PINERO D, 1982, J ECOL, V70, P473, DOI 10.2307/2259916; PRIMACK RB, 1990, AM NAT, V136, P638, DOI 10.1086/285120; REEKIE EG, 1991, J ECOL, V79, P1061, DOI 10.2307/2261098; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; SAMSON DA, 1986, AM NAT, V127, P667, DOI 10.1086/284512; SATO K, 1993, ECOLOGY, V74, P1538, DOI 10.2307/1940081; SAULNIER TP, 1995, J ECOL, V83, P23, DOI 10.2307/2261147; SCHMID B, 1995, CAN J BOT, V73, P1831, DOI 10.1139/b95-194; SHIPLEY B, 1992, AM NAT, V139, P467, DOI 10.1086/285339; Silvertown J, 1999, P ROY SOC B-BIOL SCI, V266, P729, DOI 10.1098/rspb.1999.0697; Silvertown J, 1996, EVOL ECOL, V10, P77, DOI 10.1007/BF01239348; SOHN JJ, 1977, ECOLOGY, V58, P1366, DOI 10.2307/1935088; SPRUGEL DG, 1976, J ECOL, V64, P889, DOI 10.2307/2258815; Stearns S. C., 1992, EVOLUTION LIFE HIST; SYRJANEN K, 1993, OIKOS, V67, P465, DOI 10.2307/3545358; TAPPEINER JC, 1969, FOREST SCI, V15, P171; WEINER J, 1990, TRENDS ECOL EVOL, V5, P360, DOI 10.1016/0169-5347(90)90095-U 53 38 40 1 19 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. SEP 1999 154 3 321 332 10.1086/303238 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 251VU WOS:000083467700006 10506547 2018-11-12 J Hagen, EH Hagen, EH The functions of postpartum depression EVOLUTION AND HUMAN BEHAVIOR English Article; Proceedings Paper Meeting of the Human-Behavior-and-Evolution-Society JUN 26-30, 1996 NORTHWESTERN UNIV, EVANSTON, IL Human Behav & Evolut Soc NORTHWESTERN UNIV postpartum depression; parental investment; life history theory; evolutionary psychology; reproduction; mental health PREGNANCY-INDUCED HYPERTENSION; MOTHER INFANT INTERACTIONS; POSTNATAL DEPRESSION; SOCIAL SUPPORT; REPRODUCTIVE STRATEGIES; PSYCHIATRIC MORBIDITY; THYROID-DYSFUNCTION; RISK-FACTORS; LIFE EVENTS; WOMEN Evolutionary approaches to parental care suggest that parents will not automatically invest in all offspring, and they should reduce or eliminate investment in their children if the costs outweigh the benefits. Lack of paternal or social support will increase the costs born by mothers, whereas infant health problems will reduce the evolutionary benefits to be gained, Numerous studies support the correlation between postpartum depression (PPD) and lack of social support or indicators of possible infant health and development problems, PPD may be an adaptation that informs mothers that they are suffering or have suffered a fitness cost, which motivates them to reduce or eliminate investment in offspring under certain circumstances, and that may help them negotiate greater levers of investment from others, PPD also appears to be a good model for depression in general. (C) 1999 Elsevier Science Inc. Univ Calif Santa Barbara, Dept Anthropol, Santa Barbara, CA 93106 USA Hagen, EH (reprint author), Univ Calif Santa Barbara, Dept Anthropol, Santa Barbara, CA 93106 USA. hagen@sscf.ucsb.edu Acien P, 1996, EUR J OBSTET GYN R B, V67, P9, DOI 10.1016/0301-2115(96)02423-2; AFFONSO D D, 1986, Journal of Psychosomatic Obstetrics and Gynecology, V5, P15, DOI 10.3109/01674828609016739; AFFONSO DD, 1984, BIRTH-ISS PERINAT C, V11, P231, DOI 10.1111/j.1523-536X.1984.tb00790.x; ALEXANDER RD, 1986, ETHOL SOCIOBIOL, V7, P253, DOI 10.1016/0162-3095(86)90052-X; American Psychiatric Association (APA), 1994, DIAGN STAT MAN MENT; Ananth CV, 1995, ACTA OBSTET GYN SCAN, V74, P788, DOI 10.3109/00016349509021198; Areias MEG, 1996, BRIT J PSYCHIAT, V169, P36, DOI 10.1192/bjp.169.1.36; ATKINSON AK, 1984, J ABNORM PSYCHOL, V93, P115, DOI 10.1037/0021-843X.93.1.115; AXELROD R, 1988, SCIENCE, V242, P1385, DOI 10.1126/science.242.4884.1385; Axelrod R., 1984, EVOLUTION COOPERATIO, P88; Barkow Jerome H., 1992, ADAPTED MIND EVOLUTI; BECK CT, 1992, NURS RES, V41, P166; Beck CT, 1996, NURS RES, V45, P297, DOI 10.1097/00006199-199609000-00008; Beck CT, 1995, NURS RES, V44, P298; Beck CT, 1996, NURS RES, V45, P98, DOI 10.1097/00006199-199603000-00008; Beck CT, 1996, NURS RES, V45, P225, DOI 10.1097/00006199-199607000-00006; Beischer NA, 1996, AUST NZ J OBSTET GYN, V36, P239, DOI 10.1111/j.1479-828X.1996.tb02703.x; Betzig L., 1988, HUMAN REPROD BEHAV D; BIRTCHNELL J, 1993, HUMANS RELATE; Blurton Jones N. G., 1989, SOCIOBIOLOGY SEXUAL, P265; Boath E, 1998, J REPROD INFANT PSYC, V16, P199, DOI DOI 10.1080/02646839808404568; BONGAARTS J, 1979, NATURAL FERTILITY, P107; BOYCE P, 1991, J AFFECT DISORDERS, V21, P245, DOI 10.1016/0165-0327(91)90004-C; CAMPBELL SB, 1992, DEV PSYCHOPATHOL, V4, P29, DOI 10.1017/S095457940000554X; CAMPBELL SB, 1991, J ABNORM PSYCHOL, V100, P594, DOI 10.1037/0021-843X.100.4.594; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Cohn J. F., 1991, DEV PSYCHOPATHOL, V3, P367, DOI DOI 10.1017/S0954579400007574; COHN JF, 1990, DEV PSYCHOL, V26, P15, DOI 10.1037/0012-1649.26.1.15; COLLINS NL, 1993, J PERS SOC PSYCHOL, V65, P1243, DOI 10.1037//0022-3514.65.6.1243; COX JL, 1983, SOC PSYCHIATR, V18, P25, DOI 10.1007/BF00583384; COX JL, 1987, BRIT J PSYCHIAT, V150, P782, DOI 10.1192/bjp.150.6.782; COX JL, 1993, BRIT J PSYCHIAT, V163, P27, DOI 10.1192/bjp.163.1.27; CRAMER B, 1993, INF MENTAL HLTH J, V14, P283, DOI 10.1002/1097-0355(199324)14:4<283::AID-IMHJ2280140404>3.0.CO;2-I; CUTRONA CE, 1986, CHILD DEV, V57, P1507, DOI 10.2307/1130428; CUTRONA CE, 1983, J ABNORM PSYCHOL, V92, P161, DOI 10.1037//0021-843X.92.2.161; CUTRONA CE, 1982, CLIN PSYCHOL REV, V2, P487, DOI 10.1016/0272-7358(82)90026-5; DALY M, 1980, J MARRIAGE FAM, V42, P277, DOI 10.2307/351225; Daly M., 1983, SEX EVOLUTION BEHAV; Daly M., 1988, HOMICIDE; DALY M, 1987, NEBR S MOT LINC NEBR; Daly M., 1984, INFANTICIDE COMP EVO, P487; Daly Martin, 1995, P1269; DECOURCYWHEELER RHB, 1995, PAEDIATR PERINAT EP, V9, P431; Dickeman Mildred, 1979, EVOLUTIONARY BIOL HU, P321; Dickemann M., 1981, NATURAL SELECTION SO, P417; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; FIELD T, 1985, DEV PSYCHOL, V21, P1152, DOI 10.1037/0012-1649.21.6.1152; FIGUEREDO AJ, 1993, ETHOL SOCIOBIOL, V14, P353, DOI 10.1016/0162-3095(93)90024-C; Fowles E R, 1996, J Soc Pediatr Nurs, V1, P75, DOI 10.1111/j.1744-6155.1996.tb00004.x; GARDNER R, 1982, ARCH GEN PSYCHIAT, V39, P1436; Ghubash R, 1997, BRIT J PSYCHIAT, V171, P65, DOI 10.1192/bjp.171.1.65; Gilbert P., 1989, HUMAN NATURE SUFFERI; GOTLIB IH, 1991, J ABNORM PSYCHOL, V100, P122, DOI 10.1037/0021-843X.100.2.122; GOTLIB IH, 1989, J CONSULT CLIN PSYCH, V57, P269, DOI 10.1037/0022-006X.57.2.269; GRAFF LA, 1991, PERCEPT MOTOR SKILL, V73, P1137, DOI 10.2466/PMS.73.8.1137-1138; GRIMES DA, 1994, AM J OBSTET GYNECOL, V170, P1489; Gupta V, 1996, Indian Pediatr, V33, P293; HAGEN EH, 1998, ASCAP ANN M U CAL DA; HAGEN EH, 1996, HUM BEH EV SOC 8 ANN; HAGEN EH, UNPUB PARENTAL INVES; HAGEN EH, 1998, HUM BEH EV SOC 10 AN; HAGEN EH, 1998, 97 ANN M AM ANTHR AS; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; Hames R, 1996, ETHOL SOCIOBIOL, V17, P181, DOI 10.1016/0162-3095(96)00003-9; Harkness S., 1987, MED ANTHROPOL Q, V1, P194; HARRIS B, 1992, BMJ-BRIT MED J, V305, P152, DOI 10.1136/bmj.305.6846.152; HARRIS B, 1994, BRIT J PSYCHIAT, V164, P288, DOI 10.1192/bjp.164.3.288; HARTUNG J, 1985, BEHAV BRAIN SCI, V8, P661, DOI 10.1017/S0140525X00045520; HARTUNG J, 1982, CURR ANTHROPOL, V23, P1, DOI 10.1086/202775; HAWTHORNE G, 1994, DIABETES RES CLIN PR, V25, P183, DOI 10.1016/0168-8227(94)90007-8; HENDERSON S, 1974, J NERV MENT DIS, V159, P172, DOI 10.1097/00005053-197409000-00004; HENDERSON S, 1981, BRIT J PSYCHIAT, V138, P391, DOI 10.1192/bjp.138.5.391; HENDERSON S, 1978, BRIT J PSYCHIAT, V132, P463, DOI 10.1192/bjp.132.5.463; HENDERSON S, 1980, BRIT J PSYCHIAT, V136, P574, DOI 10.1192/bjp.136.6.574; HENDERSON S, 1977, BRIT J PSYCHIAT, V131, P185, DOI 10.1192/bjp.131.2.185; Hill K, 1988, HUMAN REPROD BEHAV D, P277; HOBFOLL SE, 1995, J CONSULT CLIN PSYCH, V63, P445, DOI 10.1037/0022-006X.63.3.445; HOFFMAN Y, 1991, INF MENTAL HLTH J, V12, P65, DOI 10.1002/1097-0355(199121)12:1<65::AID-IMHJ2280120107>3.0.CO;2-T; HOPKINS J, 1987, J ABNORM PSYCHOL, V96, P237, DOI 10.1037//0021-843X.96.3.237; HOPKINS J, 1984, PSYCHOL BULL, V95, P498, DOI 10.1037//0033-2909.95.3.498; HRDY SB, 1992, ETHOL SOCIOBIOL, V13, P409, DOI 10.1016/0162-3095(92)90011-R; HRDY SB, 1979, ETHOL SOCIOBIOL, V1, P13, DOI 10.1016/0162-3095(79)90004-9; IFABUMUYI OI, 1985, ACTA PSYCHIAT SCAND, V72, P63, DOI 10.1111/j.1600-0447.1985.tb02572.x; JENNINGS KD, IN PRESS J AFFECTIVE; Jinadu M K, 1990, Int J Soc Psychiatry, V36, P93, DOI 10.1177/002076409003600202; KUMAR R, 1984, BRIT J PSYCHIAT, V144, P35, DOI 10.1192/bjp.144.1.35; LAMPERT A, 1992, SOC BIOL, V39, P65; Lancaster J. B, 1986, SCH AGE PREGNANCY PA, P17; Leathers SJ, 1997, J NERV MENT DIS, V185, P129, DOI 10.1097/00005053-199703000-00001; Li XF, 1996, INT J GYNECOL OBSTET, V54, P1, DOI 10.1016/0020-7292(96)02667-7; LOGSDON MC, 1994, RES NURS HEALTH, V17, P449, DOI 10.1002/nur.4770170608; MANN J, 1992, ADAPTED MIND EVOLUTI, P367; McGuire Michael, 1998, DARWINIAN PSYCHIAT; MILLER J E, 1989, American Journal of Human Biology, V1, P409, DOI 10.1002/ajhb.1310010403; Murray L, 1996, INT REV PSYCHIATR, V8, P55, DOI 10.3109/09540269609037817; MURRAY L, 1992, J CHILD PSYCHOL PSYC, V33, P543, DOI 10.1111/j.1469-7610.1992.tb00890.x; MURRAY L, 1991, INF MENTAL HLTH J, V12, P219, DOI 10.1002/1097-0355(199123)12:3<219::AID-IMHJ2280120308>3.0.CO;2-G; NESSE RM, 1991, SCIENCES, V31, P30, DOI 10.1002/j.2326-1951.1991.tb02346.x; NI HY, 1994, EPIDEMIOLOGY, V5, P490; O'Hara MW, 1995, POSTPARTUM DEPRESSIO; OHARA MW, 1986, ARCH GEN PSYCHIAT, V43, P569; OHARA MW, 1982, J ABNORM PSYCHOL, V91, P457, DOI 10.1037/0021-843X.91.6.457; OHARA MW, 1984, J ABNORM PSYCHOL, V93, P158, DOI 10.1037//0021-843X.93.2.158; OHara MW, 1996, INT REV PSYCHIATR, V8, P37, DOI 10.3109/09540269609037816; OHARA MW, 1983, J NERV MENT DIS, V171, P336, DOI 10.1097/00005053-198306000-00002; OHARA MW, 1985, AM J FAM THER, V13, P49, DOI 10.1080/01926188508251276; OHARA MW, 1988, MOTHERHOOD MENTAL IL, P17; Omu AE, 1996, ACTA OBSTET GYN SCAN, V75, P443, DOI 10.3109/00016349609033351; Paige K. E., 1981, POLITICS REPROD RITU; PARK EHM, 1995, PSYCHOLOGIA, V38, P199; PAYKEL ES, 1980, BRIT J PSYCHIAT, V136, P339, DOI 10.1192/bjp.136.4.339; PEDERSEN CA, 1993, J AFFECT DISORDERS, V29, P201, DOI 10.1016/0165-0327(93)90034-H; POP VJM, 1991, NEW ENGL J MED, V324, P1815; PRICE J, 1994, BRIT J PSYCHIAT, V164, P309, DOI 10.1192/bjp.164.3.309; RICHMAN JA, 1991, J NERV MENT DIS, V179, P139, DOI 10.1097/00005053-199103000-00005; Roff Derek A., 1992; Schieber B, 1994, Bull Pan Am Health Organ, V28, P229; Schweitzer R. D., 1992, AUSTR J MARRIAGE FAM, V13, P19; Scorza WE, 1996, CLIN PERINATOL, V23, P31; SEGUIN L, 1995, OBSTET GYNECOL, V85, P583, DOI 10.1016/0029-7844(94)00449-N; SHIMIZU YM, 1987, J CROSS CULT PSYCHOL, V18, P15, DOI 10.1177/0022002187018001004; Slavin M. O., 1992, ADAPTIVE DESIGN HUMA; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stewart S, 1996, Health Care Women Int, V17, P319; Symons D., 1979, EVOLUTION HUMAN SEXU; THORNHILL NW, 1990, ETHOL SOCIOBIOL, V11, P155, DOI 10.1016/0162-3095(90)90008-T; Thornhill R, 1998, ADV STUD BEHAV, V27, P319; Thornhill R., 1989, SOCIOBIOLOGY SOCIAL, P73; Thorpe K.J., 1992, J REPROD INFANT PSYC, V10, P191, DOI DOI 10.1080/02646839208403953; TOOBY J, 1990, ETHOL SOCIOBIOL, V11, P375, DOI 10.1016/0162-3095(90)90017-Z; Tooby J., 1992, ADAPTED MIND EVOLUTI, V163, P163, DOI DOI 10.1098/RSTB.2006.1991; UPADHYAYA A, 1990, ACTA PSYCHIAT SCAND, V81, P148, DOI 10.1111/j.1600-0447.1990.tb06469.x; VOLAND E, 1984, J HUM EVOL, V13, P99, DOI 10.1016/S0047-2484(84)80080-9; Walker JJ, 1996, EUR J OBSTET GYN R B, V65, P127, DOI 10.1016/0028-2243(95)02318-M; Warner R, 1996, BRIT J PSYCHIAT, V168, P607, DOI 10.1192/bjp.168.5.607; WATSON E, 1986, SOC SCI MED, V23, P869, DOI 10.1016/0277-9536(86)90215-7; WATSON JP, 1984, BRIT J PSYCHIAT, V144, P453, DOI 10.1192/bjp.144.5.453; WATSON P, UNPUB EVOLUTIONARY T; WEISS PAM, 1994, GEBURTSH FRAUENHEILK, V54, P697, DOI 10.1055/s-2007-1023626; Weissman MM, 1991, PSYCHIAT DISORDERS A, P53; WENEGRAT B, 1995, ILLNESS POWER; WHIFFEN VE, 1989, J ABNORM PSYCHOL, V98, P274, DOI 10.1037/0021-843X.98.3.274; WHIFFEN VE, 1988, J ABNORM PSYCHOL, V97, P467, DOI 10.1037//0021-843X.97.4.467; WHIFFEN VE, 1992, CLIN PSYCHOL REV, V12, P485, DOI 10.1016/0272-7358(92)90068-J; WHIFFEN VE, 1993, J CONSULT CLIN PSYCH, V61, P485; WHIFFEN VE, 1991, J PSYCHIATR NEUROSCI, V16, P160; WIDDOWSON EM, 1976, S BREAST FEEDING MOT; WILSON M, 1994, INFANTICIDE PARENTAL, P73; WOLMAN BB, 1990, DEPRESSIVE DISORDERS, pR12; WOOD JW, 1994, DYNAMICS HUMAN REPRO; WORTHINGTONROBE.BS, 1985, NUTR PREGNANCY LACTA; Yoshida K, 1997, J AFFECT DISORDERS, V43, P69, DOI 10.1016/S0165-0327(96)01419-X; ZELKOWITZ P, 1995, CAN J PSYCHIAT, V40, P80, DOI 10.1177/070674379504000205 154 101 107 0 32 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. SEP 1999 20 5 325 359 10.1016/S1090-5138(99)00016-1 35 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences 257EE WOS:000083768900003 2018-11-12 J Miaud, C; Guyetant, R; Elmberg, J Miaud, C; Guyetant, R; Elmberg, J Variations in life-history traits in the common frog Rana temporaria (Amphibia : Anura): a literature review and new data from the French Alps JOURNAL OF ZOOLOGY English Article life-history; phenotypic plasticity; age; size; Anura; Rana temporaria GEOGRAPHIC-VARIATION; PHENOTYPIC PLASTICITY; ALTITUDINAL VARIATION; TRITURUS-CRISTATUS; GENETIC-BASIS; BODY-SIZE; BUFO-BUFO; GROWTH; AGE; POPULATIONS Life-history traits of Rana temporaria were studied in an alpine French population and in the literature. In the living frogs, mean adult body length was greater in females than in males. Sexual dimorphism in body length was 0.109 using Lovich & Gibbons (1992) formula, but tended to decrease with age. Age of adult frogs was assessed by skeletochronology, and age distribution was not significantly different between the sexes (range 4-15 years in males, 5-12 in females). Adult survival rate was about 0.80 in both sexes. Once maturity was reached, the total expected longevity was 6.1 years in males and 5.5 years in females. Age and body length were positively correlated in both sexes. The growth coefficient (K) was 0.47 in males, and 0.55 in females, mainly reflected as faster female growth between metamorphosis and maturation. Growth rate generally decreased before sexual maturity was reached. On average, females matured 1 year later than males. Newly metamorphosed froglets averaged 16.1 mm. When combined with published data from 12 European populations of R. temporaria, the following general patterns emerge. Mean adult body length is significantly greater in females than in males, and mean body length at maturity shows the same trend. Variation in mean age at maturity and in longevity are considerable among populations, but there is no consistent trend of difference between the sexes. Body length and age are correlated between males and females, i.e. populations with long and old males also have long and old females. Mean adult body length, mean body length at maturity, age at maturity, and longevity all increase with decreasing activity period. Adults exposed to a short activity period grow slower but attain a greater final length. Sexual dimorphism in body length generally increases as activity period gets shorter. Polygons describing norms of reaction for maturation in an age-body length space are similarly oriented in both sexes, but with a wider range in age for females. This is due to an older age at maturity for females in populations with a short activity season. Mean age and length at maturity are significantly correlated in females, but not in males, partly supporting the hypothesis that this species has a flexible pattern of development. Observed patterns are compared with predictions from life-history theory, paying attention to all life stages and environmental variation. Univ Savoie, Mt Interdisciplinary Sci Ctr, Lab Aquat Ecosyst & Interfaces EA 1652, F-73376 Le Bourget Du Lac, France; Swedish Univ Agr Sci, Dept Anim Ecol, S-90183 Umea, Sweden Miaud, C (reprint author), Univ Savoie, Mt Interdisciplinary Sci Ctr, Lab Aquat Ecosyst & Interfaces EA 1652, F-73376 Le Bourget Du Lac, France. claude.miaud@univ-savoie.fr Elmberg, Johan/H-1868-2014 Adolph SC, 1996, OIKOS, V77, P267, DOI 10.2307/3546065; AEBLI HEINRICH, 1966, REV SUISSE ZOOL, V73, P1; ANGELIER E, 1968, Annales de Limnologie, V4, P113; Atkinson D, 1997, TRENDS ECOL EVOL, V12, P235, DOI 10.1016/S0169-5347(97)01058-6; AUGERT D, 1993, CAN J ZOOL, V71, P26, DOI 10.1139/z93-005; AUGERT D, 1992, THESIS U LYON FRANCE; BEATTIE RC, 1980, J ZOOL, V190, P1; BEATTIE RC, 1977, THESIS U DURHAM UK; BERNARDO J, 1994, AM NAT, V143, P14, DOI 10.1086/285594; BERNARDO J, 1993, TRENDS ECOL EVOL, V8, P166, DOI 10.1016/0169-5347(93)90142-C; BERVEN KA, 1987, EVOLUTION, V41, P1088, DOI 10.1111/j.1558-5646.1987.tb05878.x; BERVEN KA, 1982, EVOLUTION, V36, P962, DOI 10.1111/j.1558-5646.1982.tb05466.x; BERVEN KA, 1982, OECOLOGIA, V52, P360, DOI 10.1007/BF00367960; BERVEN KA, 1990, ECOLOGY, V71, P1599, DOI 10.2307/1938295; BERVEN KA, 1983, AM ZOOL, V23, P85; BRAND M, 1979, THESIS U BERN SWITZE; BROWN HA, 1967, EVOLUTION, V21, P742, DOI 10.1111/j.1558-5646.1967.tb03431.x; BRUCE RC, 1993, COPEIA, P313; BRUNEAU M, 1980, CAN J ZOOL, V58, P175, DOI 10.1139/z80-019; Caetano M. H., 1993, Amphibia-Reptilia, V14, P117, DOI 10.1163/156853893X00291; CASTANET J, 1990, ANN SCI NAT ZOOL, V11, P191; Charlesworth B., 1980, EVOLUTION AGE STRUCT; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; DANSTEDT RT, 1975, ECOLOGY, V56, P1054, DOI 10.2307/1936146; DAVIES NB, 1977, NATURE, V269, P56, DOI 10.1038/269056a0; Duellman W. E., 1985, BIOL AMPHIBIANS; ELMBERG J, 1990, CAN J ZOOL, V68, P121, DOI 10.1139/z90-017; ELMBERG J, 1991, FUNCT ECOL, V5, P340, DOI 10.2307/2389805; ESTEBAN M, 1990, ANN SCI NAT ZOOL, V11, P201; FALCONER DS, 1990, GENET RES, V56, P57, DOI 10.1017/S0016672300028883; FRANCILLONVIEILLOT H, 1990, J HERPETOL, V24, P13, DOI 10.2307/1564284; GADGIL M, 1972, AM NAT, V106, P14, DOI 10.1086/282748; GASC JP, 1997, ATLAS AMPHIBIANS REP; GIBBONS MM, 1984, HOLARCTIC ECOL, V7, P419; GISLEN T, 1959, ACTA VERTEBRATICA, V1, P197; GOATER CP, 1994, ECOLOGY, V75, P2264, DOI 10.2307/1940882; GUYETANT R, 1988, CR SOC BIOL, V182, P301; GUYETANT R, 1995, B SOC HERP FR, V71, P13; GUYETANT R, 1969, MILIEU C, V20, P231; HAAPANEN A, 1982, ANN ZOOL FENN, V19, P75; Hairston N. G, 1987, COMMUNITY ECOLOGY SA; Halliday T. R., 1988, J HERPETOL, V20, P570; HEMELAAR A, 1988, J HERPETOL, V22, P369, DOI 10.2307/1564332; HEUSSER H, 1970, Salamandra, V6, P80; HOLMS P, 1982, Transactions of the Natural History Society of Northumbria, V49, P14; JOLY P, 1991, Alytes (Paris), V9, P79; JORGENSEN CB, 1981, J ZOOL, V195, P449; JORGENSEN CB, 1979, BIOL SKR, V22, P1; JUSZCZYK WODZIMIERZ, 1959, ANN UNIV MARIAE CURIE SKODOWSKA SECT C BIOL, V14, P169; KAPLAN RH, 1979, AM NAT, V113, P671, DOI 10.1086/283425; KLEINENBERG S E, 1969, Zoologicheskii Zhurnal, V48, P1090; KOSKELA P, 1973, Annales Zoologici Fennici, V10, P414; KOSKELA P, 1975, Aquilo Ser Zoologica, V16, P1; KOZLOWSKA M, 1971, ACTA BIOL CRACOV ZOO, V14, P17; KRAWCZYK S, 1971, ACTA BIOL CRACOV ZOO, V14, P211; Krebs C.J., 1989, ECOLOGICAL METHODOLO; Leclair R, 1996, ECOGRAPHY, V19, P296, DOI 10.1111/j.1600-0587.1996.tb00239.x; LICHT LE, 1975, CAN J ZOOL, V53, P1254, DOI 10.1139/z75-150; LOFT B, 1974, PHYSL AMPHIBIA, V2; LOMAN J, 1978, EKOL POL-POL J ECOL, V26, P287; LOVICH JE, 1992, GROWTH DEVELOP AGING, V56, P269; MARTOF BERNARD S., 1959, AMER MIDLAND NAT, V61, P350, DOI 10.2307/2422506; MARTOF BS, 1965, AM MIDL NAT, V55, P101; MIAUD C, 1993, CAN J ZOOL, V71, P1874, DOI 10.1139/z93-267; MOEUR JE, 1980, J ANIM ECOL, V49, P775, DOI 10.2307/4226; MOORE J, 1949, ECOLOGY, V20, P459; PECHMANN JHK, 1994, THESIS DUKE U N CARO; PLYTYCZ B, 1984, FOLIA BIOL-KRAKOW, V32, P155; PROUT T, 1985, AM NAT, V126, P521, DOI 10.1086/284436; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; Roff Derek A., 1992; RYSER J, 1989, OECOLOGIA, V78, P264, DOI 10.1007/BF00377165; RYSER J, 1988, J ZOOL, V216, P673, DOI 10.1111/j.1469-7998.1988.tb02465.x; Ryser Jan, 1996, Amphibia-Reptilia, V17, P183, DOI 10.1163/156853896X00379; SALTHE SN, 1969, AM MIDL NAT, V81, P467, DOI 10.2307/2423983; Schabetsberger Robert, 1994, Alytes (Paris), V12, P41; SEBER GAF, 1973, ESTIMATION ANIMAL AB; SEMLITSCH RD, 1988, ECOLOGY, V69, P184, DOI 10.2307/1943173; SMIRINA EM, 1994, GERONTOLOGY, V40, P133, DOI 10.1159/000213583; SMITH CL, 1950, J EXP BIOL, V26, P412; SMITH DC, 1987, ECOLOGY, V68, P344, DOI 10.2307/1939265; Smith M. A., 1954, BRIT AMPHIBIANS REPT; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; van OORDT P. G. W. J., 1960, SYMPOSIA ZOOL SOC LONDON, V2, P29; VOLLESTAD LA, 1992, J ANIM ECOL, V61, P41, DOI 10.2307/5507; von BERTALANFFY LUDWIG, 1938, HUMAN BIOL, V10, P181; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 91 183 191 1 41 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. SEP 1999 249 1 61 73 10.1111/j.1469-7998.1999.tb01060.x 13 Zoology Zoology 241MW WOS:000082888000006 2018-11-12 J Johnsen, TS; Zuk, M Johnsen, TS; Zuk, M Parasites and tradeoffs in the immune response of female red jungle fowl OIKOS English Article MATE CHOICE; GALLUS-GALLUS; CELL; MORPHOLOGY; WATTLE Reproduction and survival are influenced by parasites, and recently, the ability of the immune system to fight infection has been included in life history theory. A condition dependent immune response predicts tradeoffs within the immune system and condition dependent tradeoffs with other life history traits. Female red jungle fowl (Gullus gallus) parasitized with an intestinal nematode (Ascaridia galli) had a higher concentration of eosinophils than controls, and parasitized and control females responded differently to injections of phytohemagglutinin (PHA). PHA injections stimulated an increase in granulocytes in parasitized females relative to controls. Although parasitized Females had greater circulating levels of the white blood cells that are involved in the cutaneous hypersensitivity response, control females exhibited greater swelling of the wing web six hours after injection. A. galli seemed to slow the cellular immune response to injections of PHA, suggesting a tradeoff within the cellular component of the immune system. Parasitized and control females differed in the relationship between immunoglobulin G (IgG) and the strength of the cutaneous hypersensitivity response. The decrease in cutaneous hypersensitivity with increasing IgG in parasitized vs control females suggests a condition dependent tradeoff between the cellular and humoral components of the immune system. Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Johnsen, TS (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. BEHNKE JM, 1992, INT J PARASITOL, V22, P861, DOI 10.1016/0020-7519(92)90046-N; Brown CR, 1995, P ROY SOC B-BIOL SCI, V262, P313, DOI 10.1098/rspb.1995.0211; Collias NE, 1996, ANIM BEHAV, V51, P1337, DOI 10.1006/anbe.1996.0137; COTTER PF, 1985, POULTRY SCI, V64, P1293, DOI 10.3382/ps.0641293; DAWKINS HJS, 1989, INT J PARASITOL, V19, P199, DOI 10.1016/0020-7519(89)90008-8; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; Demas GE, 1997, AM J PHYSIOL-REG I, V273, pR1631; KLESIUS P, 1977, POULTRY SCI, V56, P249, DOI 10.3382/ps.0560249; LOCHMILLER RL, 1993, AUK, V110, P503, DOI 10.2307/4088414; MCCORKLE F, 1980, POULTRY SCI, V59, P616, DOI 10.3382/ps.0590616; PARMENTIER HK, 1993, POULTRY SCI, V72, P1679, DOI 10.3382/ps.0721679; RICHNER H, 1993, J ANIM ECOL, V62, P703, DOI 10.2307/5390; RUFF MD, 1978, DIS POULTRY; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Wakelin Derek, 1997, P30; Winter MD, 1997, PARASITOLOGY, V114, P189, DOI 10.1017/S0031182096008311; ZUK M, 1995, P ROY SOC B-BIOL SCI, V260, P205, DOI 10.1098/rspb.1995.0081; Zuk M, 1998, ANIM BEHAV, V56, P493, DOI 10.1006/anbe.1998.0807; ZUK M, 1990, AM ZOOL, V30, P235 19 42 43 1 20 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos SEP 1999 86 3 487 492 10.2307/3546653 6 Ecology Environmental Sciences & Ecology 230JN WOS:000082248200009 2018-11-12 J Polishchuk, LV; Tseitlin, VB Polishchuk, LV; Tseitlin, VB Scaling of population density on body mass and a number-size trade-off OIKOS English Article ANIMAL ABUNDANCE; LIFE-HISTORIES; ENERGY-USE; INTERSPECIFIC ALLOMETRY; EQUIVALENCE RULE; MORTALITY-RATES; BRITISH BIRDS; MAMMALS; MACROECOLOGY; EVOLUTION The energetic equivalence rule (EER), that is the negative relationship between population density and body mass with the body mass exponent of - 0.75, is often observed for mammal species assemblages studied at regional scales. Little, however, is known about the mechanism that may generate it. Here we attempt to explain EER in terms of demography and life-history theory, namely on the basis of an interspecific trade-off between total lifetime female offspring and relative mass at birth. Based on data on 85 species of non-flying mammals from the territory and coastal waters of the former Soviet Union, we show that the number of offspring per lifetime is approximately inversely proportional to the relative mass at birth (the exponent is not significantly different from - 1). Simple mathematics shows that given some other conditions, this minus-one trade-off entails the energetic equivalence rule. Two other consequences also follow. First, as an interspecific trade-off evolves From the intraspecific trade-off of the same type, the tendency for small-bodied species to be more abundant than large ones may have its evolutionary origin in the intraspecific trade-off between offspring number and size. Second, the trade-off may solve the paradox relating to EER: how could it be that in spite of probably unequal food availability for so different species as, for example, mice and elephants their populations consume, on average, equal amounts of energy, as the rule implies? We suggest that populations of different species consume the same amount of energy per unit area per unit time because their individual members require the same amount of energy per unit mass per lifetime, the latter being a somewhat different formulation of the minus-one trade-off between lifetime offspring number and relative mass at birth. Moscow MV Lomonosov State Univ, Dept Vertebrate Zool & Gen Ecol, Fac Biol, Moscow 119899, Russia; Max Planck Inst Limnol, Dept Ecol Physiol, D-24302 Plon, Germany; RAS, PP Shirshov Oceanol Inst, Moscow 117851, Russia Polishchuk, LV (reprint author), Moscow MV Lomonosov State Univ, Dept Vertebrate Zool & Gen Ecol, Fac Biol, Moscow 119899, Russia. leonard@limnol.bio.msu.su Polishchuk, Leonard/I-9342-2012 BIBIKOV DI, 1985, WOLF ITS ORIGIN SYST; BIRD D, 1997, ASLO 97 CURRENT EMER, P100; Blackburn TM, 1997, J ANIM ECOL, V66, P233, DOI 10.2307/6025; BLACKBURN TM, 1993, J ANIM ECOL, V62, P694, DOI 10.2307/5389; Blackburn TM, 1998, AM NAT, V151, P68, DOI 10.1086/286103; BLACKBURN TM, 1993, J ANIM ECOL, V62, P519, DOI 10.2307/5201; BROWN JH, 1989, SCIENCE, V243, P1145, DOI 10.1126/science.243.4895.1145; Charnov EL, 1997, NATURE, V387, P393, DOI 10.1038/387393a0; Charnov Eric L., 1993, P1; COTGREAVE P, 1993, TRENDS ECOL EVOL, V8, P244, DOI 10.1016/0169-5347(93)90199-Y; CURRIE DJ, 1993, OIKOS, V67, P56, DOI 10.2307/3545095; DAMUTH J, 1993, NATURE, V365, P748, DOI 10.1038/365748a0; DAMUTH J, 1981, NATURE, V290, P699, DOI 10.1038/290699a0; DAMUTH J, 1987, BIOL J LINN SOC, V31, P193, DOI 10.1111/j.1095-8312.1987.tb01990.x; DAMUTH J, 1994, TRENDS ECOL EVOL, V9, P487, DOI 10.1016/0169-5347(94)90318-2; EBENMAN B, 1995, OIKOS, V73, P225, DOI 10.2307/3545912; Elton C.S., 1927, ANIMAL ECOLOGY; Enquist BJ, 1998, NATURE, V395, P163, DOI 10.1038/25977; Fa JE, 1997, J ANIM ECOL, V66, P98, DOI 10.2307/5968; GHILAROV MS, 1944, REPORTS USSR ACAD SC, V43, P283; GORDON IJ, 1989, FUNCT ECOL, V3, P285, DOI 10.2307/2389367; Greenwood JJD, 1996, PHILOS T R SOC B, V351, P265, DOI 10.1098/rstb.1996.0023; Harvey P. H., 1991, COMP METHOD EVOLUTIO; Hudson D.J., 1964, STATISTICS; LABARBERA M, 1989, ANNU REV ECOL SYST, V20, P97, DOI 10.1146/annurev.es.20.110189.000525; LAWTON J, 1991, NATURE, V354, P444, DOI 10.1038/354444a0; LAWTON JH, 1989, OIKOS, V55, P429, DOI 10.2307/3565606; Loder N, 1997, OIKOS, V78, P195, DOI 10.2307/3545817; MARQUET PA, 1990, SCIENCE, V250, P1125, DOI 10.1126/science.250.4984.1125; MARQUET PA, 1995, J ANIM ECOL, V64, P325, DOI 10.2307/5894; MILLAR JS, 1983, ECOLOGY, V64, P631, DOI 10.2307/1937181; Mina M. V., 1976, GROWTH ANIMALS; NEE S, 1991, NATURE, V351, P312, DOI 10.1038/351312a0; Peters R.H., 1983, P1; PETERS RH, 1983, OECOLOGIA, V60, P89, DOI 10.1007/BF00379325; PETERS RH, 1984, AM NAT, V124, P498, DOI 10.1086/284290; Peters RH, 1991, CRITIQUE ECOLOGY; Pimm S. L, 1991, BALANCE NATURE ECOLO; POLISHCHUK LV, 1994, TRENDS ECOL EVOL, V9, P264, DOI 10.1016/0169-5347(94)90295-X; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; Prothero J., 1987, Basic Life Sciences, V42, P49; RAMSAY MA, 1986, AM NAT, V127, P735, DOI 10.1086/284522; RICKER WE, 1973, J FISH RES BOARD CAN, V30, P409, DOI 10.1139/f73-072; Roff Derek A., 1992; SAETHER BE, 1994, P R SOC LOND B, V265, P263; SCHMALHAUSEN II, 1986, FACTORS EVOLUTION; Schmidt-Nielsen K., 1984, SCALING WHY IS ANIMA; Sibly RM, 1997, J ZOOL, V243, P1, DOI 10.1111/j.1469-7998.1997.tb05751.x; Silva M, 1997, J ANIM ECOL, V66, P327, DOI 10.2307/5979; SILVA M, 1995, AM NAT, V145, P704, DOI 10.1086/285764; Smith D. P., 1992, FORMAL DEMOGRAPHY; Sokal R.R., 1995, BIOMETRY; Stearns S. C., 1992, EVOLUTION LIFE HIST; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WITTING L, 1995, J THEOR BIOL, V177, P129, DOI 10.1006/jtbi.1995.0231; YABLOKOV AV, 1966, VARIABILITY MAMMALS; ZHIRNOV LV, 1982, REVIVAL ECOLOGY CONS 57 10 10 3 9 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos SEP 1999 86 3 544 556 10.2307/3546659 13 Ecology Environmental Sciences & Ecology 230JN WOS:000082248200015 2018-11-12 J Van Zyl, AJ Van Zyl, AJ Breeding biology of the Common Kestrel in southern Africa (32 degrees S) compared to studies in Europe (53 degrees N) OSTRICH English Article CLUTCH-SIZE VARIATION; FALCO-TINNUNCULUS; PASSERINE BIRDS; LAYING DATE; HYPOTHESIS; SELECTION; SURVIVAL; PARENT The breeding biology of 24 pairs of Southern African Kestrels Falco tinnunculus rupicolus was studied over two seasons in the Tarkastad District (32 degrees S), South Africa, and compared to studies of the western European Kestrel Falco tinnunculus tinnunculus (53 degrees N). Most Southern African Kestrels bred in old stick nests and on cliffs at densities comparable with average densities of European Kestrels (24.3 pairs. 100 km(-2) vs. 12-32 pairs. 100 km(-2)). Mean clutch size was smaller than found in Europe (3.21 eggs vs. 4.4 eggs) while incubation period at one nest was 26 days and within the range of the European Kestrel (26-31 days). Nestling (30-31 days) and post-fledging periods (32-39 days) were also similar to the range recorded for the European Kestrel (27-35 days and 13-31 days respectively). The number of chicks fledged was inversely related to laying date, as in Europe. Provisioning rates to nestlings were higher than in Europe (57.4 items.nest(-1) vs. 13-19.2 items.nest(-1)), but the estimated size and amount of food delivered to the nest per day was lower (151.8 g.nest(-1) vs. 325 g.nest(-1)). Chick growth rates were within the range measured for European Kestrel chicks (Ricklef's growth rate constant K = 0.257 vs. K = 0.166-0.312) but wing feather-growth rate was marginally lower. Only clutch size fitted predictions of life-history theory over latitudinal gradients although more data is needed on other life-history parameters. I suggest that environmental variation resulting in differences in food availability and food quality are responsible for latitudinal trends in life-history traits. Univ Cape Town, Percy Fitzpatrick Inst African Ornithol, ZA-7700 Rondebosch, South Africa Van Zyl, AJ (reprint author), Transvaal Museum, Dept Birds, POB 413, ZA-0001 Pretoria, South Africa. Baker M, 1995, AUK, V112, P249, DOI 10.2307/4088786; BRIGHAM LC, 1992, PHILOS LITERATURE, V16, P15, DOI 10.1353/phl.1992.0055; Calder W. A., 1984, SIZE FUNCTION LIFE H; CAVE A J, 1968, Netherlands Journal of Zoology, V18, P313; CRAMP S, 1980, HDB BIRDS EUROPE MID, V2; DIJKSTRA C, 1982, IBIS, V124, P210, DOI 10.1111/j.1474-919X.1982.tb03766.x; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; DRENT RH, 1980, ARDEA, V68, P225; HUSSELL DJT, 1985, AUK, V102, P632; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; KIRKPATRICK M, 1990, EVOLUTION, V44, P180, DOI 10.1111/j.1558-5646.1990.tb04288.x; KOMEN J, 1989, Journal of Raptor Research, V23, P94; Kostrzewa R., 1987, Oekologie der Voegel, V9, P119; KULESZA G, 1990, IBIS, V132, P407, DOI 10.1111/j.1474-919X.1990.tb01059.x; KUUSELA S, 1984, ANN ZOOL FENN, V21, P309; MASMAN D, 1989, J EVOLUTION BIOL, V2, P435, DOI 10.1046/j.1420-9101.1989.2060435.x; MASMAN D, 1988, J ANIM ECOL, V57, P411, DOI 10.2307/4914; MEIJER T, 1990, BEHAVIOUR, V114, P117, DOI 10.1163/156853990X00077; MENDELSOHN JM, 1989, OSTRICH, V60, P1, DOI 10.1080/00306525.1989.9634498; MOLLER AP, 1984, ORNIS SCAND, V15, P43, DOI 10.2307/3676002; NEWTON I, 1979, POPULATIOA ECOLOGY R; PIKULA J, 1984, ACTA SC NAT BRUNO, V18, P1; PRICE T, 1988, SCIENCE, V240, P798, DOI 10.1126/science.3363360; RICKLEFS RE, 1972, AUK, V89, P826, DOI 10.2307/4084111; RICKLEFS RE, 1967, ECOLOGY, V48, P978, DOI 10.2307/1934545; SIEGFRIED WR, 1989, PERSP VERT, V6, P385; SIMMONS RE, IN PRESS HARRIERS TH; SIMMONS RE, 1989, THESIS U WITWATERSRA; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; Steyn P., 1982, BIRDS PREY SO AFRICA; Tinbergen L., 1940, Ardea, V29, P63; VANZYL AJ, 1994, BIRD STUDY, V41, P124; VANZYL AJ, 1997, ATLAS SO AFRICAN BIR, V1, P264; VILLAGE A, 1982, J ANIM ECOL, V51, P413, DOI 10.2307/3974; VILLAGE A, 1986, J ZOOL, V208, P367; Village A., 1990, THE KESTREL 36 8 8 0 6 NATL INQUIRY SERVICES CENTRE PTY LTD GRAHAMSTOWN 19 WORCESTER STREET, PO BOX 377, GRAHAMSTOWN 6140, SOUTH AFRICA 0030-6525 OSTRICH Ostrich SEP 1999 70 2 127 132 10.1080/00306525.1999.9634527 6 Ornithology Zoology 262CR WOS:000084048500005 2018-11-12 J MacDonald, DH; Hewlett, BS MacDonald, DH; Hewlett, BS Reproductive interests and forager mobility CURRENT ANTHROPOLOGY English Article SPATIAL ABILITY; POPULATIONS; EVOLUTION; PATTERNS; SYSTEMS; SEX; NAVIGATION; KNOWLEDGE; SELECTION; CULTURE Guided by life-history theory, we examine the contexts in which reproductive interests (e.g., attracting and keeping a spouse) shape forager mobility. Using quantitative intercultural and intracultural mating distance data, we report significant correlations between mating distance and population density not only among foragers but also among farmers. Further, in all of the cultures for which we could find data males on average traveled considerably farther than females in a lifetime, and among Aka foragers of Central Africa age and sex significantly impacted distances traveled. We propose a descriptive model of forager mobility that supplements existing subsistence-focused models by incorporating reproductive interests at all levels. GAI Consultants Inc, Monroeville, PA 15146 USA; Washington State Univ, Vancouver, WA USA MacDonald, DH (reprint author), GAI Consultants Inc, Monroeville, PA 15146 USA. Hames, Raymond/0000-0002-6931-3342 Anastasio Angelo, 1972, NW ANTHR RES NOTES, V6, P109; Bailey R.C., 1991, BEHAV ECOLOGY EFE PY; BAMFORTH DB, 1986, AM ANTIQUITY, V51, P38, DOI 10.2307/280392; Barnes R. H., 1996, SEA HUNTERS INDONESI; BASU A, 1973, J BIOSOC SCI, V5, P367; BEATON JM, 1991, FIRST AM SEARCH RES, P209; Biella P., 1997, YANOMAMO INTERACTIVE; BINFORD LR, 1980, AM ANTIQUITY, V45, P4, DOI 10.2307/279653; BINFORD LR, 1983, U MICHIGAN MUSEUM AN, V72, P27; BIRDSELL JB, 1953, AM NAT, V87, P171, DOI 10.1086/281776; BORGERHOFF MM, 1992, EVOLUTIONARY ECOLOGY, P339; BOYCE AJ, 1967, ANN HUM GENET, V30, P35; CASHDAN E, 1984, HUM ECOL, V12, P443, DOI 10.1007/BF01531128; CAVALLISFORZA LL, 1982, ANN HUM GENET, V46, P257, DOI 10.1111/j.1469-1809.1982.tb00717.x; Chagnon N.A., 1992, YANOMAMO; COLCHESTER M, 1984, HUM ECOL, V12, P291, DOI 10.1007/BF01540593; CROGNIER E, 1977, J HUM EVOL, V6, P159, DOI 10.1016/S0047-2484(77)80123-1; Dabbs JM, 1998, EVOL HUM BEHAV, V19, P89, DOI 10.1016/S1090-5138(97)00107-4; DURHAM WH, 1992, ANNU REV ANTHROPOL, V21, P331, DOI 10.1146/annurev.an.21.100192.001555; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; FIX AG, 1974, ANN HUM GENET, V37, P327, DOI 10.1111/j.1469-1809.1974.tb01839.x; Flannery K., 1986, GUILA NAQUITZ ARCHAI; Flinn M. V., 1988, HUMAN REPROD BEHAV D, P189; Frison G. C., 1991, PREHISTORIC HUNTERS; Gaulin S. J. C., 1988, HUMAN REPROD BEHAV D, P129; Good K. R., 1989, THESIS U FLORIDA GAI; GOULD RA, 1985, AM ANTIQUITY, V50, P117, DOI 10.2307/280637; HAMES R, 1983, ADAPTIVE RESPONSES N, P192; HAMES RB, 1980, STUDIES HUNTING FISH, P31; HARPENDING H, 1976, KALAHARI HUNTER GATH, P152; Hassan Fekri A, 1981, DEMOGRAPHIC ARCHAEOL; HAWKES K, 1991, ETHOL SOCIOBIOL, V12, P29, DOI 10.1016/0162-3095(91)90011-E; Hawkes K., 1992, EVOLUTIONARY ECOLOGY, P269; HAWLETT BS, 1988, HUMAN REPRODUCTIVE B, P263; HEADLAND TN, 1987, ETHNOLOGY, V26, P261, DOI 10.2307/3773591; HEWLETT B, 1982, MAN, V17, P418, DOI 10.2307/2801706; Hewlett B. S., 1986, AFRICAN PYGMIES; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Ichikawa Mitsuo, 1978, SENRI ETHNOL STUD, V1, P131; Jochim M. A., 1976, HUNTER GATHERER SUBS; Kaplan H., 1992, EVOLUTIONARY ECOLOGY, P167; KELLY RL, 1983, J ANTHROPOL RES, V39, P277, DOI 10.1086/jar.39.3.3629672; Kelly RL, 1995, FORAGING SPECTRUM; Lee R.B., 1968, MAN HUNTER; LIZOT J, 1978, LIBRE, V4, P69; LOURANDOS N, 1997, CONTINENT HUNTERS GA; LOURANDOS N, 1997, CONTINENT HUNTER GAT; MacDonald DH, 1998, J ANTHROPOL ARCHAEOL, V17, P217, DOI 10.1006/jaar.1998.0325; MACDONALD DH, 1998, SUBSISTENCE TOOL USE; MACDONALD DH, 1999, IN PRESS PLAINS ANTH, V44; MALECOT G, 1948, MATHEMATIQUES HEREDI; MANDRYK CAS, 1993, J ANTHROPOL RES, V49, P39; MELTZER DJ, 1998, 31 ANN CHACM C BEING; Moffat SD, 1998, EVOL HUM BEHAV, V19, P73, DOI 10.1016/S1090-5138(97)00104-9; OCONNELL JF, 1984, J ANTHROPOL RES, V40, P504, DOI 10.1086/jar.40.4.3629795; Politis GG, 1996, WORLD ARCHAEOL, V27, P492, DOI 10.1080/00438243.1996.9980322; Sampson C.G., 1988, STYLISTIC BOUNDARIES; SERJEANTSON S, 1975, HUM BIOL, V47, P399; SILVERMAN I, 1992, ADAPTED MIND EVOLUTI, P533; Smole W., 1976, YANOAMA INDIANS CULT; Sutter J, 1952, POPULATION, V7, P249, DOI 10.2307/1524207; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Turnbull CM, 1986, AFRICAN PYGMIES, P103; WEISS KM, 1976, AM J PHYS ANTHROPOL, V44, P31, DOI 10.1002/ajpa.1330440106; WHITE N, 1990, HUNTER GATHERER DEMO, P171; WIJSMAN EM, 1984, ANNU REV ECOL SYST, V15, P279; WILLIAMS BJ, 1974, MODEL BAND SOC, V29; Wilmsen E., 1974, LINDENMEIER PLEISTOC; WOBST HM, 1974, AM ANTIQUITY, V39, P147, DOI 10.2307/279579; WOOD JW, 1985, AM NAT, V125, P747, DOI 10.1086/284378; WRANGHAM RW, 1979, SOC SCI INFORM, V18, P335; Wright S., 1951, ANN EUGEN, V15, P322; YASUDA N, 1975, HUM BIOL, V47, P81; YELLEN J, 1972, WORLD ARCHAEOL, V4, P244, DOI 10.1080/00438243.1972.9979535; Yengoyan A., 1968, MAN HUNTER, P185 76 56 57 0 7 UNIV CHICAGO PRESS CHICAGO 5720 SOUTH WOODLAWN AVE, CHICAGO, IL 60637-1603 USA 0011-3204 CURR ANTHROPOL Curr. Anthropol. AUG-OCT 1999 40 4 501 523 10.1086/200047 23 Anthropology Anthropology 239BT WOS:000082749500009 2018-11-12 J McAdam, DSO; Liley, NR; Tan, ESP McAdam, DSO; Liley, NR; Tan, ESP Comparison of reproductive indicators and analysis of the reproductive seasonality of the tinfoil barb, Puntius schwanenfeldii, in the Perak River, Malaysia ENVIRONMENTAL BIOLOGY OF FISHES English Article tropical riverine ecology; life history; river regulation; ovarian histology WEAKLY ELECTRIC FISH; CYPRINID FISH; STREAM; TELEOSTEI; CAPTIVITY; BIOLOGY The reproductive seasonality of Puntius schwanenfeldii from the Perak River, Malaysia was investigated over a 19 month period. Females greater than 160 g had mature or rematuring ovaries, and males of all sizes had mature testes throughout the study period. Analysis of female reproductive condition was based upon the presence of post ovulatory follicles (POF), the gonadosomatic index (GSI) and the volume fraction of stage IV oocytes (IV%), and GSI and presence of tubercles for males. Recrudescence followed immediately after ovulation, which allowed the use of objective thresholds to identify recently spawned females during the GSI and IV% recovery period. GSI and IV% were the best indicators of reproductive patterns as a result of their recovery period being longer than for POF. Male tubercles and GSI showed some statistically significant variation, but no clear relation with observed changes in female indicators. Reproduction was apparently aseasonal, and this pattern is likely an effect of flow regulation by dams which have virtually eliminated the dominant flood period and most seasonal flow variation. Hypothesized shifts in the reproductive seasonality due to flow regulation are consistent with predictions based on life history theory under conditions of altered environmental seasonality. Univ British Columbia, Dept Zool, Vancouver, BC V6T 1Z4, Canada; Univ Sains Malaysia, Sch Biol Sci, Penang 11800, Malaysia McAdam, DSO (reprint author), Minist Fisheries, POB 9359 Stn Prov Gov, Victoria, BC V8W 9M2, Canada. steve.mcadam@gems7.gov.bc.ca BAXTER RM, 1977, ANNU REV ECOL SYST, V8, P255, DOI 10.1146/annurev.es.08.110177.001351; BIRSTEIN VJ, 1993, CONSERV BIOL, V7, P773, DOI 10.1046/j.1523-1739.1993.740773.x; BURT A, 1988, ENVIRON BIOL FISH, V22, P15, DOI 10.1007/BF00000541; CARDWELL JR, 1995, J COMP PHYSIOL A, V176, P55; CHRISTENSEN MS, 1992, INT REV GES HYDROBIO, V77, P593, DOI 10.1002/iroh.19920770405; Davies B.R., 1979, P113; DESILVA KHGM, 1991, J TROP ECOL, V7, P289; ELIAS H, 1983, GUIDE PRACTICAL STER; EMERSON LS, 1990, J FISH BIOL, V36, P721, DOI 10.1111/j.1095-8649.1990.tb04326.x; Gore J. A., 1989, ALTERNATIVES REGULAT; HAILS AJ, 1982, J FISH BIOL, V21, P157, DOI 10.1111/j.1095-8649.1982.tb03996.x; HARIKUMAR S, 1994, ENVIRON BIOL FISH, V39, P129, DOI 10.1007/BF00004930; Ho Sino-Chye, 1995, V1, P163; Holden P.B., 1979, P57; ISAACNAHUM VJ, 1988, J FISH BIOL, V32, P383, DOI 10.1111/j.1095-8649.1988.tb05375.x; KIRSCHBAUM F, 1987, ENVIRON BIOL FISH, V20, P11, DOI 10.1007/BF00002023; KIRSCHBAUM F, 1979, BEHAV ECOL SOCIOBIOL, V4, P331, DOI 10.1007/BF00303241; KRAMER DL, 1978, ECOLOGY, V59, P976, DOI 10.2307/1938549; LAKE JS, 1967, AUST J MAR FRESH RES, V18, P137; LAM TJ, 1983, FISH PHYSIOL, V9, P65; LILEY NR, 1983, FISH PHYSIOL, V9, P1; Lowe-McConnell R.H., 1975, FISH COMMUNITIES TRO; LOWE-MCCONNELL R.H., 1987, ECOLOGICAL STUDIES T; MANN RHK, 1979, S ZOOLOGICAL SOC LON, V44, P161; MCADAM DSO, 1994, THESIS U BRIT COLUMB; MCKAYE KR, 1977, ECOLOGY, V58, P291, DOI 10.2307/1935604; Mohsin A. K., 1983, FRESHWATER FISHES PE; Munro A.D., 1990, P145; Paugy D., 1982, Revue de Zoologie Africaine, V96, P286; POFF NL, 1995, ECOLOGY, V76, P606, DOI 10.2307/1941217; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Rinchard J, 1996, J FISH BIOL, V49, P883, DOI 10.1006/jfbi.1996.0219; Roff Derek A., 1992; WEIBEL ER, 1979, STEREOLOGICAL METHOD, V1; Welcomme R.L., 1985, 262 FAO; WELCOMME RL, 1976, J FISH BIOL, V8, P351, DOI 10.1111/j.1095-8649.1976.tb03964.x; WEST G, 1990, AUST J MAR FRESH RES, V41, P199; Wiley M. L., 1970, B AM MUS NAT HIST, V143, P143; Zar JH, 1984, BIOSTATISTICAL ANAL 39 8 9 0 3 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes AUG 1999 55 4 369 380 10.1023/A:1007563914300 12 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 227NH WOS:000082086100003 2018-11-12 J Chen, Y; Mello, LGS Chen, Y; Mello, LGS Growth and maturation of cod (Gadus morhua) of different year classes in the Northwest Atlantic, NAFO subdivision 3Ps FISHERIES RESEARCH English Article Gadus morhua; Northwest Atlantic; growth; maturation; year-class; principal component analysis; life-history theory; robust estimation LIFE-HISTORY PARAMETERS; SEXUAL MATURITY; WHITE SUCKER; EGG SIZE; AGE; NEWFOUNDLAND; REPRODUCTION; TEMPERATURE; EVOLUTION; FISHERIES Using data collected in fishery-independent bottom-trawl surveys of cod in NAFO subdivision 3Ps, we examine (1) the variations in growth and maturation of cod among year classes from 1969 to 1990 and (2) inter-relationships between growth and maturation of cod. To reduce impacts of outliers on data analyses, a robust maximum likelihood estimator is used to fit the von Bertalanffy growth function to size-at-age data. An overall indicator for pre-maturity growth of cod is developed using a robust principal component analysis. This study suggests that cod born during 1980s have smaller length-at-age values when compared with cod born in 1970s. The age at maturity declined steadily from the highest of 7 yr old for the 1981 year-class to 5 yr old for the 1990 year-class. Growth and maturation were significantly related to each other. A cohort of cod that had a higher growth rate in their young ages tended to mature earlier. The impacts of the findings in this study on the management of the fish stock are discussed. (C) 1999 Elsevier Science B.V. All rights reserved. Mem Univ Newfoundland, Fisheries & Marine Inst, Fisheries Conservat Chair, St John, NF A1C 5R3, Canada Chen, Y (reprint author), Mem Univ Newfoundland, Fisheries & Marine Inst, Fisheries Conservat Chair, St John, NF A1C 5R3, Canada. ychen@caribou.ifml.nf.ca BEACHAM TD, 1983, GROWTH MATURITY ATLA, P1142; Beverton R. J. H., 1959, CIBA FDN C AGEING, V5, P142, DOI DOI 10.1002/9780470715253.CH10; BEVERTON RJH, 1992, J FISH BIOL, V41, P137, DOI 10.1111/j.1095-8649.1992.tb03875.x; BEVERTON RJH, 1957, FISH INVEST SER, V2; Bowering W. R., 1996, North American Journal of Fisheries Management, V16, P747, DOI 10.1577/1548-8675(1996)016<0747:CIAACP>2.3.CO;2; BRANDER KM, 1994, ICES J MAR SCI, V51, P71, DOI 10.1006/jmsc.1994.1007; BRATTEY J, 1996, 9692 DFO; Chambers RC, 1996, CAN J FISH AQUAT SCI, V53, P1986, DOI 10.1139/cjfas-53-9-1986; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; Charnov Eric L., 1993, P1; CHEN Y, 1994, CAN J FISH AQUAT SCI, V51, P2066, DOI 10.1139/f94-209; CHEN Y, 1994, CAN J FISH AQUAT SCI, V51, P1420, DOI 10.1139/f94-142; CHEN Y, 1994, AQUAT SCI, V56, P206, DOI 10.1007/BF00879965; CHEN Y, 1995, T AM FISH SOC, V124, P262, DOI 10.1577/1548-8659(1995)124<0262:GAAFSO>2.3.CO;2; CHEN Y, 1999, IN PRESS CAN J FISH; CHEN Y, 1999, UNPUB FISHERY B; COLBY PJ, 1981, CAN J FISH AQUAT SCI, V38, P1814, DOI 10.1139/f81-228; Craig J. F, 1987, BIOL PERCH RELATED F; Doubleday W. G., 1981, NAFO SCI COUNC STUD, V2, P7; DREVETNYAK KV, 1996, G49 ICES COUNC; FOURNIER D, 1996, AUTODIF C PLUS PLUS; GALLUCCI VF, 1979, T AM FISH SOC, V108, P14, DOI 10.1577/1548-8659(1979)108<14:RFATAS>2.0.CO;2; GOMES MC, 1995, FISH OCEANOGR, V4, P85, DOI 10.1111/j.1365-2419.1995.tb00065.x; GULLAND JA, 1961, UK MINISTRY AGR FISH, V23; HANSEN P, 1992, J GLOBAL OPTIM, V2, P41, DOI DOI 10.1007/BF00121301; HEGGE O, 1991, T AM FISH SOC, V120, P141, DOI 10.1577/1548-8659(1991)120<0141:AASASM>2.3.CO;2; Hilborn R., 1992, QUANTITATIVE FISHERI; HILL RC, 1977, COMMUN STAT A-THEOR, V6, P309, DOI 10.1080/03610927708827494; HUTCHINGS JA, 1994, MAR ECOL PROG SER, V108, P21, DOI 10.3354/meps108021; HUTCHINGS JA, 1993, CAN J FISH AQUAT SCI, V50, P2468, DOI 10.1139/f93-271; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; JENSEN AL, 1985, CAN J FISH AQUAT SCI, V42, P164, DOI 10.1139/f85-020; JOBLING M, 1995, ICESCM1995P4; JONES R, 1961, MAR RES SCOT, V2, P1; JORGENSEN T, 1990, J CONSEIL, V46, P235; KINGSLEY MCS, 1980, T AM FISH SOC, V109, P252, DOI 10.1577/1548-8659(1980)109<252:VBGP>2.0.CO;2; Kjesbu OS, 1996, J FISH BIOL, V49, P1197; KNUTSEN GM, 1985, T AM FISH SOC, V114, P507, DOI 10.1577/1548-8659(1985)114<507:GDAFSO>2.0.CO;2; KOVTSOVA MV, 1995, ICES COUNCIL M PAPER, V12; KRISTIANSEN TS, 1996, ICESCM1996G48; Krohn M, 1997, CAN J FISH AQUAT SCI, V54, P113, DOI 10.1139/f96-159; LILLY GR, 1996, 9669 DFO; MOREAU J, 1987, FISH GROWTH; MORGENSTERN R, 1994, EUROPHYS NEWS, V25, P3; MURPHY GI, 1965, J FISH RES BOARD CAN, V22, P191, DOI 10.1139/f65-016; Myers RA, 1997, FISH B-NOAA, V95, P762; NIKOLSKII GV, 1965, THEORY FISH POPULATI; PALOHEIMO JE, 1965, J FISH RES BOARD CAN, V22, P521, DOI 10.1139/f65-048; PAULY D, 1980, J CONSEIL, V39, P175; Ricker W. E., 1975, FISHERIES RES BOARD, V191, P382; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; ROLLET C, 1995, 95103 DFO; Rousseeuw P. J., 1987, ROBUST REGRESSION OU; SHACKELL NL, 1995, ICESCM1995P1; SHELTON PA, 1996, 9691 DFO; Statistical Analysis Software (SAS), 1987, SAS STAT GUID PERS C; SWAIN DP, 1993, CAN J FISH AQUAT SCI, V50, P1255, DOI 10.1139/f93-142; Trippel EA, 1998, T AM FISH SOC, V127, P339, DOI 10.1577/1548-8659(1998)127<0339:ESAVAS>2.0.CO;2; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; TRIPPEL EA, 1994, ICES MAR SC, V198, P414; TRIPPEL EA, 1997, 2157 FISH AQ SCI; VOGT NB, 1987, 87747 CHEM INT LAB S 62 15 18 0 6 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0165-7836 1872-6763 FISH RES Fish Res. AUG 1999 42 1-2 87 101 10.1016/S0165-7836(99)00036-3 15 Fisheries Fisheries 232UY WOS:000082389400007 2018-11-12 J Ellis, BJ; McFadyen-Ketchum, S; Dodge, KA; Pettit, GS; Bates, JE Ellis, BJ; McFadyen-Ketchum, S; Dodge, KA; Pettit, GS; Bates, JE Quality of early family relationships and individual differences in the timing of pubertal maturation in girls: A longitudinal test of an evolutionary model JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY English Article LIFE-HISTORY THEORY; PERSONALITY-DEVELOPMENT; REPRODUCTIVE STRATEGY; CHILDHOOD EXPERIENCE; GENETIC INFLUENCES; YOUNG ADOLESCENTS; CONDUCT PROBLEMS; MENARCHEAL AGE; FATHER ABSENCE; BREAST-CANCER In an 8-year prospective study of 173 girls and their families, the authors tested predictions from J. Belsky, L. Steinberg, and P. Draper's (1991) evolutionary model of individual differences in pubertal timing. This model suggests that more negative-coercive (or less positive-harmonious) family relationships in early childhood provoke earlier reproductive development in adolescence. Consistent with the model, fathers' presence in the home, more time spent by fathers in child care, greater supportiveness in the parental dyad, more father-daughter affection, and more mother-daughter affection, as assessed prior to kindergarten, each predicted later pubertal timing by daughters in 7th grade. The positive dimension of family relationships, rather than the negative dimension, accounted for these relations. In total, the quality of fathers' investment in the family emerged as the most important feature of the proximal family environment relative to daughters' pubertal timing. Vanderbilt Univ, Dept Psychol & Human Dev, Nashville, TN 37240 USA; Duke Univ, Ctr Child & Family Policy, Durham, NC 27706 USA; Auburn Univ, Dept Human Dev & Family Studies, Auburn, AL 36849 USA; Indiana Univ, Dept Psychol, Bloomington, IN 47401 USA Ellis, BJ (reprint author), Univ Canterbury, Dept Psychol, Private Bag 4800, Christchurch 1, New Zealand. b.ellis@psyc.canterbury.ac.nz NICHD NIH HHS [HD 30572, R01 HD030572]; NIMH NIH HHS [T32-MH18921-08, R01 MH056961, R01 MH042498, T32 MH018921, MH 42498, R01 MH056961-02] ACHENBACH TM, 1983, MANUAL CHILD BEAHV C; BANK L, 1993, J MARRIAGE FAM, V55, P371, DOI 10.2307/352808; Belsky J, 1998, DEV PSYCHOPATHOL, V10, P301, DOI 10.1017/S095457949800162X; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bennion L. D., 1992, MONOGRAPHS SOC RES C, V57, P1, DOI DOI 10.1111/J.1540-5834.1992.TB00300.X; Bereczkei T, 1996, HUM NATURE-INT BIOS, V7, P257, DOI 10.1007/BF02733397; Bingham C R, 1990, J Adolesc Res, V5, P18, DOI 10.1177/074355489051004; BROOKSGUNN J, 1987, CHILD DEV, V58, P829, DOI 10.2307/1130220; BROOKSGUNN J, 1988, ANN HUM BIOL, V15, P35, DOI 10.1080/03014468800009441; CAMPBELL BC, 1995, J BIOSOC SCI, V27, P127; CARSKADON MA, 1993, J ADOLESCENT HEALTH, V14, P190, DOI 10.1016/1054-139X(93)90004-9; CASPI A, 1991, J PERS SOC PSYCHOL, V61, P157, DOI 10.1037//0022-3514.61.1.157; CONGER JJ, 1984, ADOLESCENCE YOUTH; CONGER RD, 1992, CHILD DEV, V62, P525; DODGE KA, 1995, J ABNORM PSYCHOL, V104, P632, DOI 10.1037/0021-843X.104.4.632; DODGE KA, 1990, SCIENCE, V250, P1678, DOI 10.1126/science.2270481; DODGE KA, 1994, CHILD DEV, V65, P649, DOI 10.1111/j.1467-8624.1994.tb00774.x; DRAPER P, 1990, J PERS, V58, P141, DOI 10.1111/j.1467-6494.1990.tb00911.x; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; ELLIS BJ, IN PRESS CHILD DEV; ELLIS BJ, IN PRESS J PERSONALI; ELLIS BJ, 1999, QUALITY CHILDHOOD EN; Farber S. L., 1981, IDENTICAL TWINS REAR; Feldman SS, 1990, THRESHOLD DEV ADOLES; FLANNERY DJ, 1993, J ADOLESCENT RES, V8, P21, DOI DOI 10.1177/074355489381003; Flinn M. V., 1988, HUMAN REPROD BEHAV D, P189; FLINN MV, 1995, CURR ANTHROPOL, V36, P854, DOI 10.1086/204444; FORGATCH MS, 1991, DEVELOPMENT AND TREATMENT OF CHILDHOOD AGGRESSION, P291; Garn SM, 1980, CONSTANCY CHANGE HUM, P113; GEARY DC, IN PRESS PSYCHOLOGIC; Graber JA, 1997, J AM ACAD CHILD PSY, V36, P1768, DOI 10.1097/00004583-199712000-00026; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.2307/1131582; HELM P, 1990, Scandinavian Journal of Primary Health Care, V8, P59, DOI 10.3109/02813439008994930; HETHERINGTON EM, 1972, DEV PSYCHOL, V7, P313, DOI 10.1037/h0033339; HETHERINGTON EM, 1986, PSYCHOPATHOLOGICAL D, P332; Hollingshead A. A., 1975, 4 FACTOR INDEX SOCIA; HOOGLAND JL, 1982, SCIENCE, V215, P1639, DOI 10.1126/science.215.4540.1639; IZARD MK, 1990, MG PRIMATOL, V13, P159; JONES B, 1972, MED J AUSTRALIA, V2, P533; KAMPERT JB, 1988, AM J EPIDEMIOL, V128, P962; KAPRIO J, 1995, HUM BIOL, V67, P739; KELLAM SG, 1992, PREVENTING ANTISOCIA, P162; Kim K, 1998, J ADOLESCENCE, V21, P231, DOI 10.1006/jado.1998.0149; MacDonald K, 1997, HUM NATURE-INT BIOS, V8, P327, DOI 10.1007/BF02913038; Manlove J, 1997, J MARRIAGE FAM, V59, P263, DOI 10.2307/353469; McClintock MK, 1996, CURR DIR PSYCHOL SCI, V5, P178, DOI 10.1111/1467-8721.ep11512422; McFadyenKetchum SA, 1996, CHILD DEV, V67, P2417, DOI 10.2307/1131631; MEYER JM, 1991, AM J MED GENET, V39, P148, DOI 10.1002/ajmg.1320390207; Mezzich AC, 1997, DRUG ALCOHOL DEPEN, V44, P157, DOI 10.1016/S0376-8716(96)01333-6; MILLER EM, 1994, MANKIND QUART, V34, P297; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; MORRISON JA, 1992, AM J PUBLIC HEALTH, V82, P1613; NESS R, 1991, AM J HUM BIOL, V3, P41, DOI 10.1002/ajhb.1310030108; PERUSSE D, 1998, UNPUB RETHINKING INF; PETERSEN AC, 1988, J YOUTH ADOLESCENCE, V17, P117, DOI 10.1007/BF01537962; PETTIT GS, 1989, DEV PSYCHOL, V25, P413, DOI 10.1037//0012-1649.25.3.413; Pettit GS, 1997, CHILD DEV, V68, P908, DOI 10.1111/j.1467-8624.1997.tb01970.x; PETTIT GS, 1990, J APPLIED DEV PSYCHO, V11, P395; PHINNEY VG, 1990, ADOLESCENCE, V25, P321; RIERDAN J, 1985, J YOUTH ADOLESCENCE, V14, P237, DOI 10.1007/BF02090321; ROFF MA, 1992, EVOLUTION LIFE HIST; ROTHBAUM F, 1994, PSYCHOL BULL, V116, P55, DOI 10.1037/0033-2909.116.1.55; Sanders S. A., 1990, ADOLESCENCE PUBERTY, P50; SCHOLL TO, 1989, ANN HUM BIOL, V16, P335, DOI 10.1080/03014468900000462; SIEGLER TE, 1990, SOCIOENDOCRINOLOGY P, P159; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEINBERG L, 1988, DEV PSYCHOL, V24, P122, DOI 10.1037/0012-1649.24.1.122; Sulloway F. J., 1996, BORN REBEL BIRTH ORD; SURBEY M, 1990, SOCIOENDOCRINOLOGY P, p71Y; SUSMAN EJ, 1991, J YOUTH ADOLESCENCE, V20, P167, DOI 10.1007/BF01537607; SUSMAN EJ, 1985, J YOUTH ADOLESCENCE, V14, P245, DOI 10.1007/BF02090322; TRELOAR SA, 1990, AM J HUM GENET, V47, P137; UDRY JR, 1979, J BIOSOC SCI, V11, P433; UDRY JR, 1982, DEMOGRAPHY, V19, P53, DOI 10.2307/2061128; VIHKO RK, 1986, CANCER SURV, V5, P561; WELLENS R, 1992, AM J HUM BIOL, V4, P783, DOI 10.1002/ajhb.1310040610; WIERSON M, 1993, ADOLESCENCE, V28, P913 78 182 189 0 20 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0022-3514 J PERS SOC PSYCHOL J. Pers. Soc. Psychol. AUG 1999 77 2 387 401 10.1037/0022-3514.77.2.387 15 Psychology, Social Psychology 230FG WOS:000082240700014 10474213 2018-11-12 J Mauck, RA; Marschall, EA; Parker, PG Mauck, RA; Marschall, EA; Parker, PG Adult survival and imperfect assessment of parentage: Effects on male parenting decisions AMERICAN NATURALIST English Article life history; parentage; uncertainty; extrapair fertilizations; adult survival; dynamic programming EXTRA-PAIR PATERNITY; CARE; DNA; BEHAVIOR; INVESTMENT; SUCCESS; FERTILIZATION; UNCERTAINTY; CONFIDENCE; EVOLUTION Applications of molecular methods to assess parentage have revealed that the distribution of reproductive success among individuals often differs, sometimes dramatically, from expectation based on observation of behavioral association. Much theory exists on whether and when males should reduce parental care in response to level of paternity. Life-history theory predicts that trade-offs in reproductive effort should be influenced by adult survival. We used a dynamic programming approach to address how level of paternity, ability to assess paternity, and adult survival rate interact to affect male tolerance of reduced parentage in a given brood. Adult survival has the greatest influence on male decisions such that, for any given cost of reproduction and value of male care, tolerance of extrapair fertilizations (EPFs) decreases as adult survival increases. An unexpected result of these models is that an optimal response also depends on a male's ability to predict probability of parentage (i.e., uncertainty). These models better characterize the nature of paternity uncertainty and its effect on EPF tolerance than have previous models and add to our understanding of the complex relationship between uncertainty, mating strategies, and adult survival. Ohio State Univ, Dept Ecol Evolut & Organismal Biol, Columbus, OH 43210 USA Mauck, RA (reprint author), Ohio State Univ, Dept Ecol Evolut & Organismal Biol, Columbus, OH 43210 USA. Marschall, Elizabeth/0000-0002-8026-4203 ANDERSON CM, 1992, AM J PHYS ANTHROPOL, V87, P479, DOI 10.1002/ajpa.1330870408; Austin JJ, 1996, MOL ECOL, V5, P145, DOI 10.1111/j.1365-294X.1996.tb00300.x; BEISSINGER SR, 1986, ECOLOGY, V67, P1445, DOI 10.2307/1939076; BEISSINGER SR, 1990, AM NAT, V136, P20, DOI 10.1086/285080; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BIRKHEAD TR, 1992, SPERM COMPETITION BI; Bukowski TC, 1997, ANIM BEHAV, V53, P381, DOI 10.1006/anbe.1996.0329; Bull CM, 1998, BEHAV ECOL SOCIOBIOL, V44, P63, DOI 10.1007/s002650050515; BURKE T, 1989, NATURE, V338, P249, DOI 10.1038/338249a0; CHASTEL O, 1995, ECOLOGY, V76, P2240, DOI 10.2307/1941698; DIXON A, 1994, NATURE, V371, P698, DOI 10.1038/371698a0; Dunn Peter O., 1998, Ornithological Monographs, V49, P147; EDELSTEINKESHET L, 1988, MATH MODELS BIOL; Elgar MA, 1992, CANNIBALISM ECOLOGY, P1; FAIRBANKS LA, 1995, BEHAVIOUR, V132, P733, DOI 10.1163/156853995X00126; Gill FB, 1990, ORNITHOLOGY; Goossens B, 1998, BEHAV ECOL SOCIOBIOL, V43, P281, DOI 10.1007/s002650050492; Gowaty Patricia Adair, 1996, V6, P21; GRAVELAND J, 1994, NATURE, V368, P446, DOI 10.1038/368446a0; GYLLENSTEN UB, 1990, NATURE, V343, P168, DOI 10.1038/343168a0; HARRAP S, 1995, CHICKADEES TITS NUT; Houston AI, 1995, ANIM BEHAV, V50, P1635, DOI 10.1016/0003-3472(95)80017-4; HUNTER FM, 1992, ANIM BEHAV, V44, P149, DOI 10.1016/S0003-3472(05)80764-X; Huntington C. E., 1996, BIRDS N AM; JEFFREYS AJ, 1985, NATURE, V314, P67, DOI 10.1038/314067a0; JENNINGS MJ, 1994, ENVIRON BIOL FISH, V39, P153, DOI 10.1007/BF00004932; Kaitala A, 1997, BEHAV ECOL, V8, P429, DOI 10.1093/beheco/8.4.429; Kempenaers B, 1996, ANIM BEHAV, V51, P1165, DOI 10.1006/anbe.1996.0118; Kvarnemo C, 1997, BEHAV ECOL, V8, P605, DOI 10.1093/beheco/8.6.605; LAVERY RJ, 1990, ETHOLOGY, V86, P326; Lissemore FM, 1997, BEHAV ECOL, V8, P318; LUISELLI L, 1995, ACTA OECOL, V16, P375; MANGEL M, 1988, DYNAMIC MODELLING BE; MAUCK RA, 1995, AUK, V108, P444; MOCK DW, 1990, TRENDS ECOL EVOL, V5, P39, DOI 10.1016/0169-5347(90)90045-F; OPPLIGER A, 1994, BEHAV ECOL, V5, P130, DOI 10.1093/beheco/5.2.130; PAUL A, 1992, FOLIA PRIMATOL, V58, P93, DOI 10.1159/000156613; PHILIPP DP, 1994, MOL ECOL, V3, P563, DOI 10.1111/j.1365-294X.1994.tb00087.x; ROBERTSON IC, 1993, J ZOOL, V231, P583, DOI 10.1111/j.1469-7998.1993.tb01940.x; Schwagmeyer PL, 1998, P ROY SOC B-BIOL SCI, V265, P1861, DOI 10.1098/rspb.1998.0513; SCHWAGMEYER PL, 1993, ANIM BEHAV, V46, P1020, DOI 10.1006/anbe.1993.1286; SCOTT MP, 1993, P NATL ACAD SCI USA, V90, P2242, DOI 10.1073/pnas.90.6.2242; SMITH JM, 1978, EVOLUTION SEX; SMITH RL, 1993, J INSECT BEHAV, V6, P93, DOI 10.1007/BF01049150; SMITH RL, 1997, SOCIAL BEHAV INSECTS, P116; SOZOU PD, 1994, J THEOR BIOL, V171, P251, DOI 10.1006/jtbi.1994.1229; Stearns S. C., 1992, EVOLUTION LIFE HIST; Svensson O, 1998, ANIM BEHAV, V56, P175, DOI 10.1006/anbe.1998.0769; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Tyler JA, 1997, J ANIM ECOL, V66, P122, DOI 10.2307/5970; VANCASSEL M, 1994, ACTA OECOL, V15, P63; WESTNEAT DF, 1995, ANIM BEHAV, V49, P21, DOI 10.1016/0003-3472(95)80150-2; WESTNEAT DF, 1993, BEHAV ECOL, V4, P66, DOI 10.1093/beheco/4.1.66; WHITTINGHAM LA, 1992, AM NAT, V139, P1115, DOI 10.1086/285376; WHITTINGHAM LA, 1993, ANIM BEHAV, V46, P139, DOI 10.1006/anbe.1993.1169; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Winkler DW, 1991, BEHAV ECOL, V2, P133, DOI 10.1093/beheco/2.2.133; WINKLER DW, 1987, AM NAT, V130, P526, DOI 10.1086/284729; XIA XH, 1992, AM NAT, V139, P1126, DOI 10.1086/285377 59 70 71 0 20 UNIV CHICAGO PRESS CHICAGO 5720 SOUTH WOODLAWN AVE, CHICAGO, IL 60637-1603 USA 0003-0147 AM NAT Am. Nat. JUL 1999 154 1 99 109 10.1086/303216 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 225YT WOS:000081994100007 29587496 2018-11-12 J Korfiatis, KJ; Stamou, GP Korfiatis, KJ; Stamou, GP Habitat templets and the changing worldview of ecology BIOLOGY & PHILOSOPHY English Article ecological worldview; habitat templets; models; theory LIFE-HISTORY EVOLUTION; COMPETITION CONTROVERSY; NATURAL-SELECTION; COMMUNITY ECOLOGY; R-SELECTION; K-SELECTION; STRATEGIES; INFERENCE; PATTERNS; BIOLOGY Habitat templets are graphical-qualitative models which describe the development of life-history strategies in specific environmental conditions. In the context of the previous models of life-history strategies, life-history theorists focused on the density-dependent factors as the factors determining life-history strategies. With the use of habitat templets, the focus is oriented towards the environmental causal factors, considering density-dependent phenomena as by-products of the environmental impact. This implies an important shift in causality as well as in the worldview of life-history theorists: population is not considered as a closed system isolated from the environment. The object of study is the organism-in-its-environment, as a complex multilevel system. This shift has also methodological consequences: Life-history theory combines holistic and reductionistic insights, using a variety of heuristic models. This imposes a new conception of generality as well as of the structure of scientific theories. Aristotelian Univ Salonika, Sch Biol, Dept Ecol, GR-54006 Salonika, Greece Korfiatis, KJ (reprint author), Aristotelian Univ Salonika, Sch Biol, Dept Ecol, UPB 119, GR-54006 Salonika, Greece. Korfiatis, Konstantinos/0000-0003-0297-6499 BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; Brandon R. N., 1996, CONCEPTS METHODS EVO, P179; Brown J. H., 1986, COMMUNITY ECOLOGY, P41; Case T. J., 1986, COMMUNITY ECOLOGY, P467; CASWELL H, 1982, AM NAT, V120, P317, DOI 10.1086/283993; Cody M. L., 1975, ECOLOGY EVOLUTION CO; COLLINS JP, 1986, J HIST BIOL, V19, P169, DOI 10.1007/BF00138874; COLLINS JP, 1986, J HIST BIOL, V19, P257, DOI 10.1007/BF00138879; CONNELL JH, 1983, AM NAT, V122, P661, DOI 10.1086/284165; CONNELL JH, 1980, OIKOS, V35, P131, DOI 10.2307/3544421; COOPER G, 1993, BIOL PHILOS, V8, P359, DOI 10.1007/BF00857684; DAVID JF, 1993, ACTA OECOL, V14, P129; FRETWELL SD, 1975, ANNU REV ECOL SYST, V6, P1, DOI 10.1146/annurev.es.06.110175.000245; GREENSLADE PJ, 1972, EVOLUTION, V26, P203, DOI 10.1111/j.1558-5646.1972.tb00188.x; GREENSLADE PJM, 1983, AM NAT, V122, P352, DOI 10.1086/284140; Grime J. P., 1979, PLANT STRATEGIES VEG; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; GRIME JP, 1993, OIKOS, V68, P385, DOI 10.2307/3544906; HAILA Y, 1982, ANN ZOOL FENN, V19, P255; HAILA Y, 1986, Biology and Philosophy, V1, P377, DOI 10.1007/BF00140960; Haila Y., 1992, HUMANITY NATURE ECOL; HARPER JL, 1967, J APPL ECOL, V4, P267, DOI 10.2307/2401336; HASLETT JR, 1994, J THEOR BIOL, V167, P407, DOI 10.1006/jtbi.1994.1079; HILBORN R, 1982, ACTA BIOTHEOR, V31, P145, DOI 10.1007/BF01857238; JANZEN DH, 1970, AM NAT, V104, P501, DOI 10.1086/282687; JONGELING T, 1991, THESIS AMSTERDAM; Kareiva P., 1989, P68; KORFIATIS K, 1995, NEUSIS, V2, P27; KORFIATIS KJ, 1994, HIST PHIL LIFE SCI, V16, P97; KRIMBAS C, 1986, DARVINIKA, P15; Lawton JH, 1996, OIKOS, V75, P145, DOI 10.2307/3546237; LEVIN SA, 1974, AM NAT, V108, P207, DOI 10.1086/282900; LEVINS R, 1966, AM SCI, V54, P421; LEVINS R, 1980, CONCEPTUAL ISSUES EC; Levins R., 1968, EVOLUTION CHANGING E; LEVINS R, 1993, Q REV BIOL; LEWIN R, 1983, SCIENCE, V221, P737, DOI 10.1126/science.221.4612.737; LOEHLE C, 1988, ECOLOGY, V69, P284, DOI 10.2307/1943184; MAC ARTHUR ROBERT H., 1967; MacArthur R. H., 1972, GEOGRAPHICAL ECOLOGY; MCINTOSH RP, 1995, BIOL REV, V70, P317, DOI 10.1111/j.1469-185X.1995.tb01069.x; MCINTOSH RP, 1987, ANNU REV ECOL SYST, V18, P321, DOI 10.1146/annurev.ecolsys.18.1.321; PALLADINO P, 1991, J HIST BIOL, V24, P223; PARRY GD, 1981, OECOLOGIA, V48, P260, DOI 10.1007/BF00347974; PEET RK, 1976, ECOLOGY, V57, P613; Peters RH, 1991, CRITIQUE ECOLOGY; Pickett STA, 1994, ECOLOGICAL UNDERSTAN; ROUGHGARDEN J, 1983, AM NAT, V122, P583, DOI 10.1086/284160; Roughgarden J., 1989, PERSPECTIVES ECOLOGI; SIMBERLOFF D, 1983, AM NAT, V122, P626, DOI 10.1086/284163; Sloep P.B., 1987, Biology & Philosophy, V2, P1, DOI 10.1007/BF00127559; SLOEP PB, 1993, BRIT J PHILOS SCI, V44, P231, DOI 10.1093/bjps/44.2.231; SOUTHWOOD TR, 1974, AM NAT, V108, P791, DOI 10.1086/282955; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; STAMOU GP, 1993, OIKOS, V66, P27, DOI 10.2307/3545191; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TAYLOR P, 1989, OIKOS, V54, P121, DOI 10.2307/3565906; TILMAN D, 1990, OIKOS, V58, P3, DOI 10.2307/3565355; TOFT CA, 1983, AM NAT, V122, P618, DOI 10.1086/284162; VANDERSTEEN W, 1983, ACTA BIOTHERORETICA, V34, P81; WARD D, 1993, OIKOS, V67, P376, DOI 10.2307/3545485; Whittaker R. H., 1975, Unifying concepts in ecology. Report of the plenary sessions of the First international congress of ecology, The Hague, the Netherlands, September 8-14, 1974., P169; WHITTAKER RH, 1979, AM NAT, V113, P185, DOI 10.1086/283378; WIEGERT RG, 1988, ANNU REV ECOL SYST, V6, P311; WIENS JA, 1977, AM SCI, V65, P590; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; WILSON DS, 1988, OIKOS, V53, P269, DOI 10.2307/3566073 72 23 23 1 7 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0169-3867 BIOL PHILOS Biol. Philos. JUL 1999 14 3 375 393 10.1023/A:1006543127454 19 History & Philosophy Of Science History & Philosophy of Science 222RA WOS:000081797500004 2018-11-12 J Frankino, WA; Juliano, SA Frankino, WA; Juliano, SA Costs of reproduction and geographic variation in the reproductive tactics of the mosquito Aedes triseriatus OECOLOGIA English Article life history evolution; treehole mosquito; mortality rate; predation; manipulation of reproductive investment LARVAL TREEHOLE MOSQUITOS; POPULATION PERFORMANCE; PARENTAL INVESTMENT; LIFE HISTORIES; HOLE MOSQUITO; BODY SIZE; PREDATION; CULICIDAE; DIPTERA; PREY The eastern treehole mosquito, Aedes triseriatus (Say), was used in two experiments testing assumptions and predictions of life history theory. Experiment 1 employed direct, phenotypic manipulations of reproductive investment (blood meal mass) to test for a physiological cost of reproduction expressed as reduced longevity with increasing reproductive investment. As predicted, A. triseriatus from Vero Beach, Fla., showed costs increasing with investment in reproduction, but mosquitoes from Ashland, Va., showed the opposite response. This difference in apparent costs of reproduction may influence patterns of reproductive investment documented in the second experiment. To test the hypothesis that different predator-induced expected mortality rates among juveniles result in different patterns of reproductive allocation, we compared the allocation tactics of A. triseriatus from eight geographic populations, four sympatric with and four allopatric to the predatory mosquito, Toxorhynchites rutilus (Coq). Path analysis identified a phenotypic trade-off between offspring size and number, supporting this fundamental assumption of life history theory. Analysis of covariance revealed significant variation among populations in replete blood meal mass, reproductive output per unit blood meal mass (both measures of reproductive investment), mean egg mass, and egg number, although intrapopulation variation greatly exceeded interpopulation variation for all traits. Despite this variation among populations, there were no consistent or significant differences between populations sympatric vs, allopatric to the predator T. rutilus. This experiment therefore fails to support the hypothesis that greater mortality of juveniles should be associated with greater offspring size, lower offspring number, and lower reproductive investment. Our results are interesting, however, because they suggest that reproductive investment, reproductive output, and the trade-off between offspring size and number may evolve independently in this system. Illinois State Univ, Dept Biol Sci, Ecol Grp, Normal, IL 61790 USA Frankino, WA (reprint author), Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. frankino@indiana.edu Juliano, Steven/0000-0002-6178-4553 Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BERTRAM TS, 1962, AGE GROUPING METHODS; Bradshaw W.E., 1985, P3; BRADSHAW WE, 1988, OECOLOGIA, V74, P507, DOI 10.1007/BF00380047; BRADSHAW WE, 1989, AM NAT, V133, P869, DOI 10.1086/284957; BRADSHAW WE, 1983, OECOLOGIA, V57, P239, DOI 10.1007/BF00379586; BRIEGEL H, 1990, J INSECT PHYSIOL, V36, P165, DOI 10.1016/0022-1910(90)90118-Y; BRIEGEL H, 1985, J INSECT PHYSIOL, V31, P15, DOI 10.1016/0022-1910(85)90036-8; Chambers R.C., 1985, P25; Clements A.N., 1992, BIOL MOSQUITOES; COCHRANE A, 1972, P NJ MOSQ EXTERM ASS, V59, P65; Darsie R.F. Jr, 1981, Mosquito Systematics Supplement, V1, P1; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; HARD JJ, 1993, OIKOS, V66, P55, DOI 10.2307/3545195; Hechtel LJ, 1997, ECOLOGY, V78, P838; JALIL M, 1974, ENTOMOL EXP APPL, V17, P223, DOI 10.1111/j.1570-7458.1974.tb00340.x; Juliano SA, 1996, ENVIRON ENTOMOL, V25, P624, DOI 10.1093/ee/25.3.624; JULIANO SA, 1992, OIKOS, V63, P465, DOI 10.2307/3544974; JULIANO SA, 1993, OIKOS, V68, P229, DOI 10.2307/3544835; JULIANO SA, 1989, OIKOS, V56, P99, DOI 10.2307/3566092; KING RB, 1993, J HERPETOL, V27, P175, DOI 10.2307/1564934; KINGSOLVER JG, 1991, TRENDS ECOL EVOL, V6, P276, DOI 10.1016/0169-5347(91)90004-H; KITCHING RL, 1987, OIKOS, V48, P280, DOI 10.2307/3565515; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEONARD PM, 1995, ECOL ENTOMOL, V20, P125, DOI 10.1111/j.1365-2311.1995.tb00438.x; Li C.C, 1975, PATH ANAL PRIMER; LIVDAHL TP, 1979, EVOLUTION, V33, P765, DOI 10.1111/j.1558-5646.1979.tb04728.x; Lounibos LP, 1997, OECOLOGIA, V111, P189, DOI 10.1007/s004420050225; LOUNIBOS LP, 1993, OIKOS, V66, P114, DOI 10.2307/3545203; MATHER TN, 1983, AM J TROP MED HYG, V32, P189, DOI 10.4269/ajtmh.1983.32.189; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MILLER BR, 1982, J MED ENTOMOL, V19, P213, DOI 10.1093/jmedent/19.2.213; Mitchell Randall J., 1993, P211; MORRIS DW, 1987, OIKOS, V49, P332, DOI 10.2307/3565769; Munstermann L.E., 1985, P327; MUNSTERMANN LE, 1985, HDB INSECT REARING, V2, P15; Nannini MA, 1998, ANN ENTOMOL SOC AM, V91, P33, DOI 10.1093/aesa/91.1.33; NETER J, 1974, APPL LINEAR STAT MOD; Nijhout HF, 1998, P NATL ACAD SCI USA, V95, P3685, DOI 10.1073/pnas.95.7.3685; NOVAK RJ, 1978, MOSQ NEWS, V38, P515; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1992, TRENDS ECOL EVOL, V7, P99, DOI 10.1016/0169-5347(92)90250-F; PARTRIDGE L, 1991, ENVOLUTION REPRODUCT, P3; Pedhzur E.J., 1982, MULTIPLE REGRESSION, P577; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P134, DOI 10.1016/0169-5347(92)90150-A; Roff Derek A., 1992; Sims S.R., 1985, P359; Sinervo B, 1996, EVOLUTION, V50, P1299, DOI 10.1111/j.1558-5646.1996.tb02370.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH JM, 1991, EVOLUTION REPRODUCTI, P103; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEFFAN WA, 1981, ANNU REV ENTOMOL, V26, P159, DOI 10.1146/annurev.en.26.010181.001111; WALKER ED, 1987, J MED ENTOMOL, V24, P485, DOI 10.1093/jmedent/24.4.485; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667; Zavortink T.J., 1972, CONTRIB AM ENTOMOL I, V8, P1 59 19 20 1 3 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia JUL 1999 120 1 59 68 10.1007/s004420050833 10 Ecology Environmental Sciences & Ecology 223KF WOS:000081839700008 28308054 2018-11-12 J Miyashita, T Miyashita, T Life-history variation in closely related generalist predators living in the same habitat: a case study with three Cyclosa spiders FUNCTIONAL ECOLOGY English Article growth rate; life-history theory; selection pressure; survivorship; web spider NATURAL-SELECTION; NEPHILA-CLAVATA; STRATEGIES; EVOLUTION; DENSITY; TEMPLET; GROWTH 1. Generalist predators sharing similar food resources and phenologies as well as having no competitive interactions are expected to have a similar life-history pattern, but some closely related web spiders show different life-history traits. The present paper clarifies possible selection pressures affecting life-history traits of the three coexisting Cyclosa spiders and explores the significance of the life-history variation. 2. Cyclosa argenteoalba had lower daily survival rate and higher growth rate, C. sedeculata had higher daily survival rate and lower growth rate, and C. octotuberculata showed intermediate levels. This implies that the selection pressures these spiders experience differ appreciably even in the same habitat. 3. The significance of the life-history characteristics of the three species was evaluated by general life-history theories. Cyclosa argenteoalba showed distinguishing reproductive traits: shorter time to maturation, larger reproductive effort, larger relative clutch size, decreased clutch size with the number of clutches, and smaller egg size. These characteristics may have evolved in response to the larger ratio of juvenile to adult survivorship. Cyclosa octotuberculata had a clutch size much larger than the other two species, but relative clutch sizes accounting for body size were similar between C. octotuberculata and C. sedeculata. Also, the two species showed a similar time to maturation despite having different selection pressures. Probably, higher growth rate compensates for lower survivorship, leading to the similarity in some reproductive traits. Univ Tokyo, Sch Agr & Life Sci, Lab Wildlife Biol, Tokyo 113, Japan Miyashita, T (reprint author), Univ Tokyo, Sch Agr & Life Sci, Lab Wildlife Biol, Tokyo 113, Japan. BENKE AC, 1975, ECOLOGY, V56, P302, DOI 10.2307/1934962; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Dobzhansky T., 1950, American Scientist, V38, P209; EBERHARD WG, 1990, ANNU REV ECOL SYST, V21, P341, DOI 10.1146/annurev.es.21.110190.002013; ENDERS F, 1974, ECOLOGY, V55, P317, DOI 10.2307/1935219; GREENSTONE MH, 1980, ECOLOGY, V61, P1255, DOI 10.2307/1936843; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Hurd L. P., 1988, Complex Systems, V2, P549; MAC ARTHUR ROBERT H., 1967; MIYASHITA T, 1992, OECOLOGIA, V92, P339, DOI 10.1007/BF00317459; MIYASHITA T, 1986, RES POPUL ECOL, V28, P135, DOI 10.1007/BF02515542; Miyashita T, 1997, J ZOOL, V242, P137, DOI 10.1111/j.1469-7998.1997.tb02935.x; Mury Meyer E.J., 1987, Oikos, V50, P167; NYFFELER M, 1989, J APPL ENTOMOL, V107, P166, DOI 10.1111/j.1439-0418.1989.tb00246.x; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Price P.W., 1984, INSECT ECOLOGY; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Roff Derek A., 1992; ROGERS LE, 1976, ANN ENTOMOL SOC AM, V69, P387, DOI 10.1093/aesa/69.2.387; ROOT RB, 1976, ECOLOGY, V57, P132, DOI 10.2307/1936404; Santos M, 1997, EVOLUTION, V51, P420, DOI 10.1111/j.1558-5646.1997.tb02429.x; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; SOUTHWOOD TRE, 1987, INSECTS PLANTS; Stearns S. C., 1992, EVOLUTION LIFE HIST; TALLAMY DW, 1981, INSECT LIFE HIST PAT; Tauber C. A., 1989, SPECIATION ITS CONSE; TAYLOR DR, 1990, OIKOS, V58, P239, DOI 10.2307/3545432; Thompson J.N, 1994, COEVOLUTIONARY PROCE; Wise D. H., 1993, SPIDERS ECOLOGICAL W; WISE DH, 1983, J ARACHNOL, V11, P271; WOODMAN RL, 1992, ECOLOGY, V73, P1028, DOI 10.2307/1940177 35 6 7 0 4 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. JUN 1999 13 3 307 314 10.1046/j.1365-2435.1999.00318.x 8 Ecology Environmental Sciences & Ecology 218BX WOS:000081534300003 Bronze 2018-11-12 J Grafen, A Grafen, A Formal Darwinism, the individual-as-maximizing-agent analogy and bet-hedging PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article OPTIMAL LIFE-HISTORIES; FLUCTUATING ENVIRONMENTS; SELECTION; ADAPTATION; POPULATION; GENETICS; MODELS The central argument of The origin of species was that mechanical processes (inheritance of features and the differential reproduction they cause) can give rise to the appearance of design. The 'mechanical processes' are now mathematically represented by the dynamic systems of population genetics, and the appearance of design by optimization and game theory in which the individual plays the part of the maximizing agent. Establishing a precise individual-as-maximizing-agent (IMA) analogy for a population genetics system justifies optimization approaches, and so provides a modern formal representation of the core of Darwinism. It is a hitherto unnoticed implication of recent population-genetics models that, contrary to a decades-long consensus, an IMA analogy can be found in models with stochastic environments (subject to a convexity assumption), in which individuals maximize expected reproductive value. The key is that the total reproductive value of a species must be considered as constant, so therefore reproductive value should always be calculated in relative terms. This result removes a major obstacle from the theoretical challenge to find a unifying framework which establishes the IMA analogy for all of Darwinian biology, including as special cases inclusive fitness, evolutionarily stable strategies, evolutionary life-history theory, age-structured models and sex ratio theory. This would provide a formal, mathematical justification of fruitful and widespread but 'intentional' terms in evolutionary biology, such as 'selfish', 'altruism' and 'conflict'. Univ Oxford St Johns Coll, Oxford OX1 3JP, England Grafen, A (reprint author), Univ Oxford St Johns Coll, Oxford OX1 3JP, England. alan.grafen@sjc.ox.ac.uk Grafen, Alan/0000-0002-1843-6457 Allen C., 1998, NATURES PURPOSES ANA; BELL G, 1982, MASTERPIECE NATURE; BOOMSMA JJ, 1991, J EVOLUTION BIOL, V3, P383; Charlesworth B., 1994, EVOLUTION AGE STRUCT; COOPER WS, 1982, J THEOR BIOL, V94, P135, DOI 10.1016/0022-5193(82)90336-8; DARWIN C, 1859, ORIGIN SPECIES; Dawkins R, 1982, EXTENDED PHENOTYPE; Dawkins R., 1976, SELFISH GENE; DENNETT DC, 1995, DARWINS DANGEROUS ID; FISHER R. A., 1930, GENETICAL THEORY NAT; Goldstein H, 1980, CLASSICAL MECH; Grafen A, 1998, J THEOR BIOL, V194, P429, DOI 10.1006/jtbi.1998.0796; Grafen A, 1990, J THEOR BIOL, V144, P475; HACCOU P, 1995, THEOR POPUL BIOL, V47, P212, DOI 10.1006/tpbi.1995.1009; HAMILTON WD, 1970, NATURE, V228, P1218, DOI 10.1038/2281218a0; HAMILTON WD, 1990, P NATL ACAD SCI USA, V87, P3566, DOI 10.1073/pnas.87.9.3566; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Hammerstein P, 1996, J MATH BIOL, V34, P511; Hofbauer J., 1988, THEORY EVOLUTION DYN; KINGMAN JFC, 1961, P CAMBRIDGE PHIL SOC, V57, P574, DOI DOI 10.1017/S0305004100035635; MACARTHUR RH, 1965, THEORETICAL MATH BIO, P388, DOI DOI 10.1038/NATURE04624; Markowitz H, 1959, PORTFOLIO SELECTION; Maynard Smith J., 1973, Nature London, V246, P15; Maynard Smith J., 1978, ANNU REV ECOL SYST, V9, P31, DOI DOI 10.1146/ANNUREV.ES.09.110178.000335; MCNAMARA JM, 1991, THEOR POPUL BIOL, V40, P230, DOI 10.1016/0040-5809(91)90054-J; MCNAMARA JM, 1995, EVOL ECOL, V9, P185, DOI 10.1007/BF01237756; McNamara JM, 1997, THEOR POPUL BIOL, V51, P94, DOI 10.1006/tpbi.1997.1291; MCNAMARA JM, 1993, ACTA BIOTHEOR, V41, P165, DOI 10.1007/BF00712164; MORAN PAP, 1964, ANN HUM GENET, V27, P383; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; ROSE MR, 1996, ADAPTATION; SASAKI A, 1995, EVOLUTION, V49, P337, DOI 10.1111/j.1558-5646.1995.tb02246.x; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; Seger Jon, 1996, P93; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; Taylor PD, 1996, J MATH BIOL, V34, P654; TAYLOR PD, 1990, AM NAT, V135, P95, DOI 10.1086/285034; TULJAPURKAR S, 1989, THEOR POPUL BIOL, V35, P275; Weissing FJ, 1996, J MATH BIOL, V34, P533; Williams GC, 1966, ADAPTATION NATURAL S; Wright S., 1969, EVOLUTION GENETICS P 41 74 74 0 19 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. APR 22 1999 266 1421 799 803 10.1098/rspb.1999.0708 5 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 190NU WOS:000079970900007 Green Published 2018-11-12 J Steinbauer, MJ Steinbauer, MJ The population ecology of Amorbus Dallas (Hemiptera : Coreidae) species in Australia ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA English Article; Proceedings Paper 10th Symposium on Insect-Plant Relationships (SIP 10) JUL 04-10, 1998 UNIV MUSEUM NAT HIST, OXFORD, ENGLAND UNIV MUSEUM NAT HIST preference-performance linkage; life history theory; population dynamics; Amorbus; Eucalyptus LE-GUILLOU HEMIPTERA; GELONUS-TASMANICUS; OBSCURICORNIS WESTWOOD; EUCALYPTUS; OILS; PERFORMANCE; HYMENOPTERA; DYNAMICS Species of Amorbus Dallas (Hemiptera: Coreidae) appear to exhibit a tight link between oviposition preference and nymphal performance: females apparently select vigorous plant modules to facilitate the development of their offspring. Such behaviour suggests that these insects should exhibit population dynamics consistent with the latent classification proposed by Price et al. (1990). While this empirical hypothesis is intuitively appealing it does not appear to incorporate current population dynamics theory. Berryman's ecodynamics (1992) offers the potential to describe a species' population dynamics which is grounded in a quantitative theoretical framework. The population ecology of Amorbus species from Australia is considered in relation to these hypotheses. Cooperat Res Ctr Sustainable Prod Forestry, Canberra, ACT 2601, Australia; CSIRO, Div Entomol, Canberra, ACT 2601, Australia Steinbauer, MJ (reprint author), Cooperat Res Ctr Sustainable Prod Forestry, GPO Box 1700, Canberra, ACT 2601, Australia. Steinbauer, Martin/A-8612-2011 Steinbauer, Martin/0000-0002-0345-2905 Bashford R., 1992, Tasforests, V4, P87; Bashford R., 1993, Australian Forestry, V56, P375; BERREBI A, 1991, AM J HEMATOL, V37, P138, DOI 10.1002/ajh.2830370219; Berryman A.A., 1987, P3; BERRYMAN AA, 1992, ECODYNAMICS UNDERSTA; Berryman Alan A., 1994, P119; Berryman Alan A., 1997, American Entomologist, V43, P147; Brodbeck B., 1987, P347; Christensen P., 1989, Australian Forestry, V52, P103; Clarke AR, 1998, COLEOPTS BULL, V52, P253; DEBRUYN L, 1995, OECOLOGIA, V101, P461, DOI 10.1007/BF00329424; GREEN LR, 1972, THESIS U TASMANIA HO; Hodgkinson KC, 1982, EVOLUTION FLORA FAUN, P145; Hunter Mark D., 1997, P81; Leather S. R., 1990, INSECT PLANT INTERAC, V5, P175; Li H, 1996, BIOCHEM SYST ECOL, V24, P547, DOI 10.1016/0305-1978(96)00040-3; LI H, 1994, BIOCHEM SYST ECOL, V22, P631, DOI 10.1016/0305-1978(94)90076-0; LI H, 1995, BIOCHEM SYST ECOL, V23, P299, DOI 10.1016/0305-1978(95)97455-6; Miles P.W., 1972, Advances Insect Physiol, V9, P183, DOI 10.1016/S0065-2806(08)60277-5; MILES PW, 1994, ENTOMOL EXP APPL, V73, P163, DOI 10.1111/j.1570-7458.1994.tb01852.x; Neumann F. G., 1993, Australian Forestry, V56, P370; Noble J., 1982, EVOLUTION FLORA FAUN, P153; Nothnagle P.J., 1987, P59; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Patterson KC, 1996, CHEMOECOLOGY, V7, P94, DOI 10.1007/BF01239486; Price P. W., 1997, INSECT ECOLOGY; Price Peter W., 1994, P109; Price Peter W., 1996, American Entomologist, V42, P209; PRICE PW, 1994, RES POPUL ECOL, V36, P3, DOI 10.1007/BF02515079; PRICE PW, 1990, INSECT PLANT INTERAC, V2, P1; SCHAEFER CW, 1983, ANN ENTOMOL SOC AM, V76, P591, DOI 10.1093/aesa/76.4.591; SOUTHWOOD TRE, 1976, J ANIM ECOL, V45, P949, DOI 10.2307/3591; SPECHT RL, 1975, AUST J BOT, V23, P459, DOI 10.1071/BT9750459; Steams S. C., 1992, EVOLUTION LIFE HIST; STEIN SJ, 1992, OIKOS, V65, P190, DOI 10.2307/3545009; Steinbauer MJ, 1998, ECOL ENTOMOL, V23, P201; Steinbauer MJ, 1997, ENTOMOL EXP APPL, V82, P175, DOI 10.1046/j.1570-7458.1997.00128.x; Steinbauer MJ, 1998, B ENTOMOL RES, V88, P641, DOI 10.1017/S0007485300054316; Steinbauer MJ, 1997, AUST J ZOOL, V45, P49, DOI 10.1071/ZO96003; Steinbauer MJ, 1998, AUST J ENTOMOL, V37, P90, DOI 10.1111/j.1440-6055.1998.tb01552.x; Steinbauer MJ, 1998, AUST J ENTOMOL, V37, P155, DOI 10.1111/j.1440-6055.1998.tb01563.x; STEINBAUER MJ, 1995, J AUST ENTOMOL SOC, V34, P63; Steinbauer MJ, 1996, J NAT HIST, V30, P1185, DOI 10.1080/00222939600770641; Steinbauer MJ, 1997, AUST J ZOOL, V45, P631, DOI 10.1071/ZO97008; STEINBAUER MJ, 1995, J AUST ENTOMOL SOC, V34, P75; STEINBAUER MJ, 1995, THESIS U TASMANIA HO; STEINBAUER MJ, 1997, ENTOMOLOGIST, V24, P169; Stone C., 1993, Australian Forestry, V56, P363; WALLNER WE, 1987, ANNU REV ENTOMOL, V32, P317, DOI 10.1146/annurev.en.32.010187.001533; WAREING PF, 1981, GROWTH DIFFERENTIATI 50 4 4 0 0 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0013-8703 ENTOMOL EXP APPL Entomol. Exp. Appl. APR 1999 91 1 175 182 10.1046/j.1570-7458.1999.00481.x 8 Entomology Entomology 220QT WOS:000081679300024 2018-11-12 J Roitberg, BD; Robertson, IC; Tyerman, JGA Roitberg, BD; Robertson, IC; Tyerman, JGA Vive la variance: a functional oviposition theory for insect herbivores ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA English Article; Proceedings Paper 10th Symposium on Insect-Plant Relationships (SIP 10) JUL 04-10, 1998 UNIV MUSEUM NAT HIST, OXFORD, ENGLAND UNIV MUSEUM NAT HIST oviposition; strategy; catastrophe; theory; clutch; Lepidoptera; optimization; dynamic; bet hedging CLUTCH SIZE; PHYTOPHAGOUS INSECTS; LEPIDOPTERA; EVOLUTION; BEHAVIOR; CONSEQUENCES; ENVIRONMENT; TEPHRITIDAE; BUTTERFLIES; PREFERENCE We developed state-dependent life-history theory to explain the variance in clutch size decisions made by insect herbivores under a variety of ecological scenarios. An important aspect of our theory is explicit representation of the distribution of host quality and frequency of occurrence. Examination of the theory suggests that clutch size decisions can be highly non-linear with respect to host quality and variability. We then use our theory to explore the potential for bet-hedging strategies to evolve as a function of unpredictable catastrophic events that decimate entire clutches. Our analysis suggests that the benefits to employing such a strategy will frequently be outweighed by costs brought on by delayed oviposition. Simon Fraser Univ, Behav Ecol Res Grp, Burnaby, BC V5A 1S6, Canada; Simon Fraser Univ, Ctr Pest Management, Dept Biosci, Burnaby, BC V5A 1S6, Canada Roitberg, BD (reprint author), Simon Fraser Univ, Behav Ecol Res Grp, Burnaby, BC V5A 1S6, Canada. Marion-Poll, Frederic/D-8882-2011 Marion-Poll, Frederic/0000-0001-6824-0180 Bernays E. A., 1994, HOST PLANT SELECTION; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Brown JM, 1996, EVOLUTION, V50, P777, DOI 10.1111/j.1558-5646.1996.tb03887.x; BRYANT JP, 1983, OIKOS, V40, P357, DOI 10.2307/3544308; Camara MD, 1997, EVOLUTION, V51, P873, DOI 10.1111/j.1558-5646.1997.tb03669.x; Carriere Y, 1996, EVOL ECOL, V10, P289, DOI 10.1007/BF01237686; CHARNOV EL, 1984, FLA ENTOMOL, V67, P5, DOI 10.2307/3494101; Cheverud James M., 1994, P67; COURTNEY SP, 1986, OIKOS, V47, P112, DOI 10.2307/3565925; CRONIN JT, 1993, ECOLOGY, V74, P1813, DOI 10.2307/1939939; Denno RF, 1983, VARIABLE PLANTS HERB; ELLIGER CA, 1976, EXPERIENTIA, V32, P1364, DOI 10.1007/BF01937376; FARRELL BD, 1992, BIOSCIENCE, V42, P34, DOI 10.2307/1311626; Freese G, 1996, OECOLOGIA, V108, P293, DOI 10.1007/BF00334654; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; Godfray HCJ., 1994, PARASITOIDS BEHAV EV; HUNTER MD, 1992, EFFECTS RESOURCE DIS; JAENIKE J, 1978, THEOR POPUL BIOL, V14, P350, DOI 10.1016/0040-5809(78)90012-6; Karban R, 1997, ECOLOGY, V78, P1351; LAWTON JH, 1983, ANNU REV ENTOMOL, V28, P23, DOI 10.1146/annurev.en.28.010183.000323; MANGEL M, 1992, ANNU REV ECOL SYST, V23, P507; Mangel M., 1988, DYNAMIC MODELING BEH; PAPAJ DR, 1989, ANNU REV ENTOMOL, V34, P315, DOI 10.1146/annurev.en.34.010189.001531; POWELL JA, 1985, AUST J ZOOL, V33, P179, DOI 10.1071/ZO9850179; Price P. W., 1980, EVOLUTIONARY BIOL PA; Rausher M.D., 1992, P20; RENWICK JAA, 1994, ANNU REV ENTOMOL, V39, P377, DOI 10.1146/annurev.en.39.010194.002113; ROITBERG BD, 1993, NATURE, V364, P108, DOI 10.1038/364108a0; ROITBERG BD, 1992, BEHAV ECOL, V3, P156, DOI 10.1093/beheco/3.2.156; Roitberg BD, 1997, OIKOS, V80, P234, DOI 10.2307/3546591; ROITBERG BD, 1993, AM NAT, V142, P443, DOI 10.1086/285548; ROOT RB, 1984, ECOLOGY, V65, P147, DOI 10.2307/1939467; Rosenheim JA, 1996, EVOLUTION, V50, P2089, DOI 10.1111/j.1558-5646.1996.tb03595.x; SCRIBER JM, 1981, ANNU REV ENTOMOL, V26, P183, DOI 10.1146/annurev.en.26.010181.001151; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; STAMP NE, 1992, OECOLOGIA, V92, P124, DOI 10.1007/BF00317272; STAMP NE, 1980, AM NAT, V115, P367, DOI 10.1086/283567; THOMPSON JN, 1991, ANNU REV ENTOMOL, V36, P65, DOI 10.1146/annurev.en.36.010191.000433; VANALPHEN JJM, 1990, ANNU REV ENTOMOL, V35, P59, DOI 10.1146/annurev.en.35.010190.000423; WILKINSON L, 1992, SYSTAT MACINTOSH; ZALUCKI MP, 1990, ECOL ENTOMOL, V15, P231, DOI 10.1111/j.1365-2311.1990.tb00804.x 41 22 22 1 11 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0013-8703 ENTOMOL EXP APPL Entomol. Exp. Appl. APR 1999 91 1 187 194 10.1046/j.1570-7458.1999.00483.x 8 Entomology Entomology 220QT WOS:000081679300026 Bronze 2018-11-12 J Gillooly, JF; Baylis, JR Gillooly, JF; Baylis, JR Reproductive success and the energetic cost of parental care in male smallmouth bass JOURNAL OF FISH BIOLOGY English Article Micropterus dolomieui; smallmouth bass; cost of reproduction; parental care; life-history theory MICROPTERUS-DOLOMIEUI PISCES; BODY ELECTRICAL-CONDUCTIVITY; NONDESTRUCTIVE MEASUREMENT; GASTEROSTEUS-ACULEATUS; 3-SPINED STICKLEBACK; SEXUAL SELECTION; BLUEGILL SUNFISH; NEST DEFENSE; CENTRARCHIDAE; SIZE Direct field measurements of the energetic expenditure on parental care and within-nest reproductive success of individual male smallmouth bass Micropterus dolomieui were determined by measuring the change in total body mass as well as by total body electroconductivity analysis (TOBEC(TM)). With TOBEC, the change in total body lean mass of the same live individual was measured non-destructively at the beginning and end of the parental care period. Lean mass was the primary source of energy utilized during parental care indicating starvation and potential loss of future reproduction. Individual loss in lean mass was related positively to reproductive success suggesting that the energy expended during parental care does affect individual fitness. (C) 1999 The Fisheries Society of the British Isles. Univ Wisconsin, Dept Zool, Madison, WI 53706 USA Gillooly, JF (reprint author), Univ Wisconsin, Dept Zool, 430 Lincoln Dr, Madison, WI 53706 USA. gillooly@students.wisc.edu ADAMS SM, 1982, T AM FISH SOC, V111, P549, DOI 10.1577/1548-8659(1982)111<549:EPILBU>2.0.CO;2; *AOAC, 1994, OFF METH AN, P421; BAI SC, 1994, PROG FISH CULT, V56, P232, DOI 10.1577/1548-8640(1994)056<0232:TBECFN>2.3.CO;2; BAYLIS JR, 1981, ENVIRON BIOL FISH, V6, P223, DOI 10.1007/BF00002788; Baylis JR, 1995, AM FISH S S, V17, P217; Becker G. C., 1983, FISHES WISCONSIN; CHELLAPPA S, 1989, J FISH BIOL, V35, P275, DOI 10.1111/j.1095-8649.1989.tb02976.x; COLEMAN RM, 1985, BEHAV ECOL SOCIOBIOL, V18, P59; COLEMAN RM, 1991, ETHOLOGY, V87, P177, DOI 10.1111/j.1439-0310.1991.tb00245.x; Dufresne F, 1990, BEHAV ECOL, V1, P140, DOI 10.1093/beheco/1.2.140; Fischer RU, 1996, COPEIA, P459, DOI 10.2307/1446865; Fisher R. A., 1930, GENETIC THEORY NATUR; FITZGERALD GJ, 1989, EXP BIOL, V48, P295; GROSS MR, 1985, AM ZOOL, V25, P807; HINCH SG, 1991, T AM FISH SOC, V120, P657, DOI 10.1577/1548-8659(1991)120<0657:IODANN>2.3.CO;2; HOFF MJ, 1990, WISCONSIN DNR TECHNI, V171; JARAMILLO F, 1994, AQUAT LIVING RESOUR, V7, P87, DOI 10.1051/alr:1994011; LEGER C, 1982, AQUACULTURE, V25, P195; LINDSTROM K, 1993, ETHOL ECOL EVOL, V5, P97, DOI 10.1080/08927014.1993.9523117; MARCONATO A, 1993, BEHAV ECOL SOCIOBIOL, V32, P229; MEFFE GK, 1993, COPEIA, P596; PASTOUREAUD A, 1991, AQUACULTURE, V99, P167, DOI 10.1016/0044-8486(91)90296-J; RAFFETTO NS, 1990, ECOLOGY, V71, P1523, DOI 10.2307/1938289; REZNICK DN, 1987, OECOLOGIA, V73, P401, DOI 10.1007/BF00385257; RIDGWAY MS, 1988, CAN J ZOOL, V66, P1722, DOI 10.1139/z88-248; RIDGWAY MS, 1991, J ANIM ECOL, V60, P665, DOI 10.2307/5304; RIDGWAY MS, 1994, ENVIRON BIOL FISH, V39, P201, DOI 10.1007/BF00004938; SABAT AM, 1994, BEHAV ECOL, V5, P195, DOI 10.1093/beheco/5.2.195; Sargent Robert Craig, 1997, P292; Schmidt-Nielsen K., 1997, Animal physiology: adaptation and environment.; SHERIDAN MA, 1988, COMP BIOCHEM PHYS B, V90, P679, DOI 10.1016/0305-0491(88)90322-7; SHUTER BJ, 1980, T AM FISH SOC, V109, P1, DOI 10.1577/1548-8659(1980)109<1:SSOTEO>2.0.CO;2; THORP JH, 1989, CAN J FISH AQUAT SCI, V46, P1342, DOI 10.1139/f89-172; UNGER LM, 1983, BEHAV ECOL SOCIOBIOL, V13, P125, DOI 10.1007/BF00293802; VANDENBERGHE EP, 1992, BEHAV ECOL SOCIOBIOL, V30, P373, DOI 10.1007/BF00176171; Wiegmann DD, 1995, ANIM BEHAV, V50, P1543, DOI 10.1016/0003-3472(95)80010-7; WIEGMANN DD, 1992, EVOLUTION, V46, P1740, DOI 10.1111/j.1558-5646.1992.tb01166.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WOOTTON RJ, 1985, BEHAVIOUR, V93, P101, DOI 10.1163/156853986X00766 39 48 48 1 14 ACADEMIC PRESS LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0022-1112 J FISH BIOL J. Fish Biol. MAR 1999 54 3 573 584 10.1006/jfbi.1998.0888 12 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 174CM WOS:000079016600008 2018-11-12 J Hedrick, PW Hedrick, PW Antagonistic pleiotropy and genetic polymorphism: a perspective HEREDITY English Article balancing selection; equilibrium; finite population size; life history evolution; self-fertilization; sec-limited selection FITNESS COMPONENTS; RED DEER; EVOLUTION; DOMINANCE; ENVIRONMENT; SELECTION; MODELS; ROBUST Antagonistic pleiotropy, in which reproduction and viability counter each other, appears to be widely thought of great significance in life history theory and the evolution of senescence. However, the conditions for maintenance of polymorphism by antagonistic pleiotropy are quite restrictive. This is particularly so when there is no reversal of dominance for different traits, sex-limited expression of fitness components, finite population size or inbreeding. Furthermore, when antagonistic pleiotropy is compared with other mechanisms of balancing selection, it appears to. have more restrictive conditions for the maintenance of polymorphism. Although these theoretical findings do not preclude the presence of loci that exhibit antagonistic pleiotropy, because it appears so unlikely that antagonistic pleiotropy is an important factor maintaining polymorphism, empirical evidence suggesting antagonistic pleiotropy as the factor maintaining polymorphism should be carefully scrutinized. Arizona State Univ, Dept Biol, Tempe, AZ 85287 USA Hedrick, PW (reprint author), Arizona State Univ, Dept Biol, Tempe, AZ 85287 USA. philip.hedrick@asu.edu BULMER M, 1994, THEORETICAL EVOLUTIO; Charlesworth B, 1996, P NATL ACAD SCI USA, V93, P6140, DOI 10.1073/pnas.93.12.6140; CHARLESWORTH B, 1994, EVOLUTION AGE STRUCU; CHRISTIANSEN FB, 1975, AM NAT, V109, P11, DOI 10.1086/282970; CURTSINGER JW, 1994, AM NAT, V144, P210, DOI 10.1086/285671; FALCONER DS, 1981, INTRO QUANTITATIVE G; Haldane J. B. S., 1963, Journal of Genetics, V58, P237, DOI 10.1007/BF02986143; HAYMAN BI, 1953, HEREDITY, V7, P185, DOI 10.1038/hdy.1953.26; Hedrick P. W., 1990, POPULATION BIOL ECOL, P83; Hedrick PW, 1998, AM NAT, V152, P145, DOI 10.1086/286155; HEDRICK PW, 1990, HEREDITY, V65, P145, DOI 10.1038/hdy.1990.81; HEDRICK PW, 1995, HEREDITY, V75, P164, DOI 10.1038/hdy.1995.119; HEDRICK PW, 1986, ANNU REV ECOL SYST, V17, P535; HEDRICK PW, 1985, GENETICS POPULATIONS; HOEKSTRA RF, 1985, GENET RES, V45, P299, DOI 10.1017/S001667230002228X; KEIGHTLEY PD, 1987, GENETICS, V117, P319; KIDWELL JF, 1977, GENETICS, V85, P171; LEVENE H, 1953, AM NAT, V87, P331, DOI 10.1086/281792; Nuzhdin SV, 1997, P NATL ACAD SCI USA, V94, P9734, DOI 10.1073/pnas.94.18.9734; PEMBERTON JM, 1991, EVOLUTION, V45, P93, DOI 10.1111/j.1558-5646.1991.tb05269.x; PEMBERTON JM, 1988, EVOLUTION, V42, P921, DOI 10.1111/j.1558-5646.1988.tb02511.x; Prout T., 1980, Evolutionary Biology (New York), V13, P1; PROUT T, 1968, AM NAT, V102, P493, DOI 10.1086/282562; PROUT T, 1967, SCIENCE, V156, P534, DOI 10.1126/science.156.3774.534; PROUT T, 1998, GENETICS EVOLUTION S; ROBERTSON A, 1962, GENETICS, V47, P1291; Roff Derek A., 1992; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; ROSE MR, 1987, GENETIC CONSTRAINTS, P91; SERVICE PM, 1993, EVOLUTION, V47, P387, DOI 10.1111/j.1558-5646.1993.tb02101.x; SMITH JM, 1980, GENET RES, V35, P45, DOI 10.1017/S0016672300013926; Stearns S. C., 1992, EVOLUTION LIFE HIST 34 54 55 0 21 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 0018-067X 1365-2540 HEREDITY Heredity FEB 1999 82 2 126 133 10.1038/sj.hdy.6884400 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 176JD WOS:000079147200002 Bronze 2018-11-12 J Chachulski, E; Janakowski, S; Golinowski, W Chachulski, E; Janakowski, S; Golinowski, W Effects of fertility, weed density and crop competition on biomass partitioning in Centaurea cyanus L. ACTA SOCIETATIS BOTANICORUM POLONIAE English Article annual weeds; efficiency of reproduction; phenotypic plasticity; reproductive effort REPRODUCTIVE EFFORT; PHENOTYPIC PLASTICITY; ARABIDOPSIS-THALIANA; RESOURCE-ALLOCATION; ENERGY ALLOCATION; LIFE HISTORIES; PLANTS; SIZE; POPULATIONS; LIMITATION The influence of environmental factors on biomass partitioning of annual arable weed Centaurea cyanus was analysed. We investigated the effect of fertilisation, density and competition with the winter rye crop on the reproductive investment. Three fertiliser treatments and three density levels were applied. In Centaurea cyanus differences in the pattern of biomass allocation to reproduction are related to plant size. The relationship between reproductive and vegetative mass is close to linear. It is consistent with the model of linear size-dependent reproductive output. In Centaurea cyanus this model worked well for size differences that have been generated by interspecific competition, nutrients supply and density. Our data support the hypothesis that plastic changes in relationship between vegetative and generative biomass are environmentally-induced. Significantly different relationship between vegetative and reproductive biomass were detected among populations growing at different density and fertility levels. The fertilisation with mineral fertiliser and manure resulted in an increase of generative biomass allocated to flowerheads and a decrease of reproductive effort. Generative dry weight increased more rapidly with plant size in higher densities of population and at lower fertility levels. The experiment showed that the rate of weight allocated to reproductive structures was bigger under the pressure of competition with cereal crop. At low fertility level and high density, when the individuals were small, generative biomass increased faster with plant size. The production of seeds was not directly dependent on biomass allocated into total reproductive structures. At low level of nutrient supply C, cyanus gave more offspring per gram of its biomass. We discuss the results in context of life-history theory. From the strategic point of view, size-dependent variation in reproductive effort and in efficiency of reproduction can be interpreted as good tactics to favour high reproductive investment in small individuals, thus ensuring some offspring. Such a strategy is due to developmental constraints like short vegetation, the small amount of resources available and strong competition with crop. Agr Univ Warsaw, Fac Agr, Dept Bot, PL-02528 Warsaw, Poland Chachulski, E (reprint author), Agr Univ Warsaw, Fac Agr, Dept Bot, Ul Rakowiecka 26-30, PL-02528 Warsaw, Poland. AARSSEN LW, 1992, J ECOL, V80, P109, DOI 10.2307/2261067; BENNER BL, 1987, J ECOL, V75, P229, DOI 10.2307/2260548; BIERZYCHUDEK P, 1981, AM NAT, V117, P838, DOI 10.1086/283773; BOGGS CL, 1992, FUNCT ECOL, V6, P508, DOI 10.2307/2390047; CLAUSS MJ, 1994, J ECOL, V82, P447, DOI 10.2307/2261254; DUST JL, 1989, TREE, V4, P230; FENNER M, 1986, J ECOL, V74, P385, DOI 10.2307/2260262; FOX GA, 1992, EVOL ECOL, V6, P482, DOI 10.1007/BF02270693; HAINSWORTH FR, 1985, J ECOL, V73, P263, DOI 10.2307/2259782; Harper J. L., 1977, POPULATION BIOL PLAN; HARPER JL, 1970, J ECOL, V58, P681, DOI 10.2307/2258529; HICKMAN JC, 1975, J ECOL, V63, P689, DOI 10.2307/2258745; KAWANO S, 1983, OECOLOGIA, V57, P6, DOI 10.1007/BF00379554; KLINKHAMER PGL, 1987, NEW PHYTOL, V106, P773, DOI 10.1111/j.1469-8137.1987.tb00178.x; OHLSON M, 1988, J ECOL, V76, P1007, DOI 10.2307/2260629; OKTABA W, 1971, PANSTWOWE WYDAWNICTW, P413; REEKIE EG, 1992, OECOLOGIA, V90, P21, DOI 10.1007/BF00317804; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; REGEHR DL, 1976, ECOLOGY, V57, P1297, DOI 10.2307/1935054; SAMSON DA, 1986, AM NAT, V127, P667, DOI 10.1086/284512; SANS FX, 1994, CAN J BOT, V72, P10, DOI 10.1139/b94-003; SCHMID B, 1993, EVOLUTION, V47, P61, DOI 10.1111/j.1558-5646.1993.tb01199.x; SOKAL RR, 1969, BIOMETRY; *SPSS INC, 1992, SPSS US GUID; THOMPSON BK, 1991, CAN J BOT, V69, P442, DOI 10.1139/b91-061; THOMPSON JD, 1991, TRENDS ECOL EVOL, V6, P246, DOI 10.1016/0169-5347(91)90070-E; TURNER MD, 1983, ECOLOGY, V64, P469, DOI 10.2307/1939966; WARWICK SI, 1986, CAN J BOT, V65, P1403; WEAVER SE, 1985, CAN J BOT, V63, P1303, DOI 10.1139/b85-181; Weiner J., 1988, Plant reproductive ecology: patterns and strategies, P228 30 2 2 2 9 POLSKIE TOWARZYSTWO BOTANICZNE WARSAW AL UJAZDOWSKIE 4, 00-478 WARSAW, POLAND 0001-6977 ACTA SOC BOT POL Acta Soc. Bot. Pol. 1999 68 1 69 77 9 Plant Sciences Plant Sciences 202FZ WOS:000080642600012 2018-11-12 J Hill, K; Kaplan, H Hill, K; Kaplan, H Life history traits in humans: Theory and empirical studies ANNUAL REVIEW OF ANTHROPOLOGY English Review life history theory; mortality; fertility; age at maturity; body size; menopause; life span; interbirth interval; family size REPRODUCTIVE SUCCESS; PARENTAL INVESTMENT; DEMOGRAPHIC-TRANSITION; 19TH-CENTURY SWEDEN; FORAGER DEMOGRAPHY; OPTIMAL ALLOCATION; FEMALE MAMMALS; FERTILITY; SIZE; EVOLUTIONARY Life history theory offers evolutionary explanations for the timing of life events, with a particular focus on age-schedules of fertility and mortality and growth. Traditional models examine trade-offs between current and future reproduction and quality versus quantity of offspring. These models can be used to understand questions concerning time of gestation, age of weaning, juvenile mortality profiles, age at maturation, adult body size, fertility rates, senescence, menopause, and the length of the life span. The trajectory of energy acquisition and its allocations is also an important part of life history theory. Modifications of these models have been developed tee examine the period of learning, postweaning parental investment, and patterns of development In this article, we combine energetic and demographic approaches in order to examine the human life course from an optimality perspective. The evolved life history solves related problems across two generations. The first set of decisions concerns how to maximize own lifetime net energy production that can be used for reproduction. The second set of decisions concerns how to maximize total offspring energy production (summed over all offspring). Univ New Mexico, Dept Anthropol, Albuquerque, NM 87131 USA Hill, K (reprint author), Univ New Mexico, Dept Anthropol, Albuquerque, NM 87131 USA. kimhill@unm.edu Kaplan, Hillard/0000-0002-7398-7358 AIELLO LC, 1995, CURR ANTHROPOL, V36, P199, DOI 10.1086/204350; Alexander R.D., 1974, Annual Rev Ecol Syst, V5, P325, DOI 10.1146/annurev.es.05.110174.001545; AUSTAD SN, 1993, J ZOOL, V229, P695, DOI 10.1111/j.1469-7998.1993.tb02665.x; BAILEY RC, 1991, ANTHR PAP MUS ANTHR, V86; BARKOW JH, 1980, ETHOL SOCIOBIOL, V1, P163, DOI 10.1016/0162-3095(80)90006-0; BARKOW JH, 1989, DARWIN SEX STATUS; Becker Gary S., 1975, HUMAN CAPITAL; BELL G, 1986, Oxford Surveys in Evolutionary Biology, P83; BENPORATH Y, 1967, J POLIT ECON, V75, P352, DOI 10.1086/259291; BETZIG L, 1988, HUMAN REPROD BEHAV; Betzig L, 1986, DESPOTISM DIFFERENTI; Blake J., 1989, FAMILY SIZE ACHIEVEM; Blurton Jones N. G., 1978, HUMAN BEHAVIOUR ADAP, V18, P135; BOONE JL, 1986, AM ANTHROPOL, V88, P859; BORGERHOFF MM, 1987, AM ANTHROPOL, V89, P617, DOI DOI 10.1525/AA.1987.89.3.02A00050); Boyd R., 1985, CULTURE EVOLUTIONARY; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; BUSS DM, 1994, EVOLUTION DESIRE; CARO TM, 1995, INT J PRIMATOL, V16, P205, DOI 10.1007/BF02735478; CHAGNON NA, 1988, SCIENCE, V239, P985, DOI 10.1126/science.239.4843.985; CHARLESWORTH B, 1981, J THEOR BIOL, V88, P103, DOI 10.1016/0022-5193(81)90330-1; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1989, EVOL ECOL, V3, P236, DOI 10.1007/BF02270724; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; CLELAND J, 1987, POP STUD-J DEMOG, V41, P5, DOI 10.1080/0032472031000142516; CLELAND J, 1985, REPROD CHANGE DEV CO, P223; COALE AJ, 1986, DECLINE FERTILITY EU, P31; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CRONK L, 1991, ANNU REV ANTHROPOL, V20, P25, DOI 10.1146/annurev.an.20.100191.000325; CRONK L, 1991, AM ANTHROPOL, V93, P345, DOI 10.1525/aa.1991.93.2.02a00040; CRONK L, 1999, HUMAN BEHAV ADAPTATI; CROOZE H, 1981, DYNAMICS LARGE MAMMA; Davis K, 1945, ANN AM ACAD POLIT SS, V237, P1, DOI 10.1177/000271624523700102; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; DOWNEY DB, 1995, AM SOCIOL REV, V60, P746, DOI 10.2307/2096320; Draper P, 1987, PARENTING LIFE SPAN, P207; Easterlin R. A., 1980, POPULATION EC CHANGE, P81; ELLISON PT, 1995, HUMAN REPROD DECISIO; Fisher R. A., 1958, GENETICAL THEORY NAT; FLINN M, 1986, ETHOL SOCIOBIOL, V9, P1; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Geary D. C., 1998, MALE FEMALE EVOLUTIO; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HARPENDING H, 1994, AM J PHYS ANTHROPOL, V93, P385, DOI 10.1002/ajpa.1330930310; HARPENDING H, 1990, HLTH DISEASE TRANSIT, P241; HAWKES K, 1995, EVOL ECOL, V9, P662, DOI 10.1007/BF01237661; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; HAWKES K, 1989, COMP SOCIOECOLOGY BE, P341; Hill K., 1991, HUMAN NATURE, V2, P315; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Howell N., 1979, DEMOGRAPHY DOBE KUNG; HUFFMAN SL, 1978, POP STUD-J DEMOG, V32, P251, DOI 10.2307/2173560; HUGHES AL, 1986, SOC BIOL, V33, P109; Hurtado A M, 1992, Hum Nat, V3, P185, DOI 10.1007/BF02692239; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; HURTADO AM, 1990, J ANTHROPOL RES, V46, P293, DOI 10.1086/jar.46.3.3630428; IRONS W, 1993, BEHAV BRAIN SCI, V16, P295, DOI 10.1017/S0140525X00030089; IRONS W, 1990, ETHOL SOCIOBIOL, V11, P361, DOI 10.1016/0162-3095(90)90016-Y; IRONS W, 1983, SOCIAL BEHAVIOR FEMA, P169; IRONS W, 1979, EVOLUTIONARY BIOL HU, P257; JONES NB, 1986, ETHOL SOCIOBIOL, V7, P91, DOI 10.1016/0162-3095(86)90002-6; JONES NB, 1987, ETHOL SOCIOBIOL, V8, P183; JONES NGB, 1994, AM J PHYS ANTHROPOL, V93, P391, DOI 10.1002/ajpa.1330930311; KAPLAN H, 1985, CURR ANTHROPOL, V26, P131, DOI 10.1086/203235; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; Kaplan H., 1997, ZEUS SALMON BIODEMOG, P175; KAPLAN H, 1999, HUMAN BEHAV ADAPTATI; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; KIRKWOOD JK, 1991, EVOLUTION REPROD STR, P15; KIRKWOOD JK, 1990, PHYSL ECOLOGY EVOLUT, P165; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Lack D., 1954, NATURAL REGULATION A; LAM D, 1986, AM ECON REV, V76, P1103; LANCASTER JB, 1997, EVOLUTION FEMINISM, P466; LANCASTER JB, 1987, PARENTING LIFE SPAN, P187; LESLIE PW, 1989, AM J PHYS ANTHROPOL, V79, P103, DOI 10.1002/ajpa.1330790111; Lessells C.M., 1991, P32; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; LOVEJOY CO, 1977, SCIENCE, V198, P291, DOI 10.1126/science.198.4314.291; LOW BS, 1990, AM ANTHROPOL, V92, P457, DOI 10.1525/aa.1990.92.2.02a00130; LOW BS, 1991, ETHOL SOCIOBIOL, V12, P411, DOI 10.1016/0162-3095(91)90024-K; LUNN PG, 1984, AM J CLIN NUTR, V39, P227; LUTTBEG B, 1999, HUMAN BEHAV ADAPTATI; Marsh H., 1986, Reports of the International Whaling Commission Special Issue, P57; McGinley MA, 1988, EVOL ECOL, V2, P77, DOI 10.1007/BF02071590; MEALEY L, 1990, ETHOL SOCIOBIOL, V11, P83, DOI 10.1016/0162-3095(90)90030-A; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; MELANCON T, 1982, THESIS PENN STATE U; Mizroch S. A., 1981, REP INT WHALING COMM, V31, P425; Mulder MB, 1998, TRENDS ECOL EVOL, V13, P266, DOI 10.1016/S0169-5347(98)01357-3; Notestein F., 1945, FOOD WORLD, P36; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PAVELKA MSM, 1991, YEARB PHYS ANTHROPOL, V34, P13; Peccei JS, 1995, ETHOL SOCIOBIOL, V16, P425, DOI 10.1016/0162-3095(95)00069-0; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; PERUSSE D, 1993, BEHAV BRAIN SCI, V16, P267, DOI 10.1017/S0140525X00029939; Potts M, 1997, POPUL DEV REV, V23, P1, DOI 10.2307/2137459; Potts R, 1998, EVOL ANTHROPOL, V7, P81, DOI 10.1002/(SICI)1520-6505(1998)7:3<81::AID-EVAN3>3.0.CO;2-A; PRENTICE AM, 1987, S ZOOLOGICAL SOC LON, V57, P275; Rice SH, 1997, P NATL ACAD SCI USA, V94, P907, DOI 10.1073/pnas.94.3.907; ROFF DA, 1986, BIOSCIENCE, V36, P316, DOI 10.2307/1310236; Roff Derek A., 1992; ROGERS AR, 1993, EVOL ECOL, V7, P406, DOI 10.1007/BF01237872; ROGERS AR, 1990, ETHOL SOCIOBIOL, V11, P479, DOI 10.1016/0162-3095(90)90022-X; ROGERS AR, 1992, ALLOCATION PARENTAL; SIMONS JL, 1974, EFFECTS INCOME FERTI; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SPURR GB, 1998, CAMBRIDGE ENCY HUMAN, P358; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; SUGIYAMA L, 1999, IN PRESS HUMAN BEHAV; TURKE PW, 1985, ETHOL SOCIOBIOL, V6, P79, DOI 10.1016/0162-3095(85)90001-9; TURKE PW, 1989, POPUL DEV REV, V15, P61, DOI 10.2307/1973405; Ulijaszek S., 1998, CAMBRIDGE ENCY HUMAN; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VINING DR, 1986, BEHAV BRAIN SCI, V9, P167, DOI 10.1017/S0140525X00021968; Vitzthum Virginia J., 1994, Yearbook of Physical Anthropology, V37, P307; VOLAND E, 1990, BEHAV ECOL SOCIOBIOL, V26, P65; WADE GN, 1992, NEUROSCI BIOBEHAV R, V16, P235, DOI 10.1016/S0149-7634(05)80183-6; WHITTINGTON SL, 1991, AM J PHYS ANTHROPOL, V85, P167, DOI 10.1002/ajpa.1330850206; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WOOD JW, 1994, DYNAMICS HUMAN REPRO; WORTHMAN C, 1998, CAMBRIDGE ENCY HUMAN, V10, P365; WORTHMAN CM, 1993, J BIOSOC SCI, V25, P425; ZEI G, 1977, GENUS, V33, P15 131 210 217 1 176 ANNUAL REVIEWS PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 USA 0084-6570 1545-4290 ANNU REV ANTHROPOL Annu. Rev. Anthropol. 1999 28 397 430 10.1146/annurev.anthro.28.1.397 34 Anthropology Anthropology 270VA WOS:000084556800017 12295622 2018-11-12 J Roulin, A; Ducrest, AL; Dijkstra, C Roulin, A; Ducrest, AL; Dijkstra, C Effect of brood size manipulations on parents and offspring in the barn owl Tyto alba ARDEA English Article Tyto alba; brood size manipulation; nestling survival; future reproductive success LIFETIME REPRODUCTIVE SUCCESS; FOOD CONDITIONS; BIRDS; REDUCTION; COST; FLYCATCHER; ABUNDANCE; KESTREL; GROWTH; RANGE When the overall food demand of the young increases, parents can either increase their effort to feed the brood, potentially reducing their residual reproductive value, or alternatively maintain their effort, leading to offspring mortality. In long-lived species where fitness is related to the number of breeding attempts, life-history theory suggests that parents should restrict any increase of reproductive effort in a current brood so as not to compromise their survival prospects. We investigated this hypothesis in the Barn Owl Tyto alba by performing brood size manipulations. We enlarged or reduced broods by two nestlings to create some broods requiring more parental investment and others requiring less. We monitored the effect on the parents and the offspring. Total body mass gained by all nestmates from the 24th to the 25th day after the first hatching, a measure correlated with parental feeding rate, was not significantly different between enlarged and reduced broods. Body mass and body condition of male and female parents during the manipulation, renesting rate and their reproductive success measured the year after the manipulation were not significantly affected by the experiment. Nestling mortality was higher, and body mass of the surviving male and female nestlings was lower in enlarged than reduced roods. In conclusion, we detected an effect of brood size manipulations on nestlings but not on parents. In the Barn Owl, this suggests that when broods require extra parental effort, parents do not jeopardize their future reproductive success, and brood reduction occurs. Univ Bern, Dept Zool, CH-3032 Hinterkappelen, Switzerland; Univ Groningen, Dept Zool, NL-9750 AA Haren, Netherlands Roulin, A (reprint author), Univ Bern, Dept Zool, CH-3032 Hinterkappelen, Switzerland. Dijkstra, Cor/D-5876-2011 Dijkstra, Cor/0000-0002-7042-8083 BARTON NWH, 1993, IBIS, V135, P363, DOI 10.1111/j.1474-919X.1993.tb02107.x; BAUDVIN H, 1978, Nos Oiseaux, V34, P223; Brommer JE, 1998, J ANIM ECOL, V67, P359, DOI 10.1046/j.1365-2656.1998.00201.x; CRAMP S., 1985, BIRDS W PALEARTIC, VIV; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; DRENT RH, 1980, ARDEA, V68, P225; Durant JM, 1998, J ZOOL, V245, P137; GARD NW, 1990, WILSON BULL, V102, P605; GARD NW, 1993, CAN J ZOOL, V70, P2421; Griffiths R, 1997, GENE, V197, P225, DOI 10.1016/S0378-1119(97)00266-7; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; Griffiths R., 1996, P ROY SOC LOND B BIO, V263, P1249; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; HUSBY M, 1986, J ANIM ECOL, V55, P75, DOI 10.2307/4693; KALLANDER H, 1990, POPULATION BIOL PASS, P257; KORPIMAKI E, 1988, J ANIM ECOL, V57, P1027, DOI 10.2307/5109; KORPIMAKI E, 1992, J ANIM ECOL, V61, P103, DOI 10.2307/5513; KORPIMAKI E, 1996, ECOSCIENCE, V3, P263; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Marti CD, 1997, AUK, V114, P581, DOI 10.2307/4089277; MARTINS TLF, 1993, BEHAV ECOL, V4, P213, DOI 10.1093/beheco/4.3.213; NEWTON I, 1989, REPROD SUCCESS STUDI, P201; OCONNOR RJ, 1978, ANIM BEHAV, V26, P79, DOI 10.1016/0003-3472(78)90008-8; Orell M, 1996, IBIS, V138, P630, DOI 10.1111/j.1474-919X.1996.tb04764.x; REID WV, 1987, OECOLOGIA, V74, P458, DOI 10.1007/BF00378945; RICHNER H, 1995, P NATL ACAD SCI USA, V92, P1192, DOI 10.1073/pnas.92.4.1192; RICHNER H, 1989, J FIELD ORNITHOL, V60, P137; Roul BK, 1998, J MATER SYNTH PROCES, V6, P9, DOI 10.1023/A:1022698823898; Roulin A, 1998, EVOLUTION, V52, P1451, DOI 10.1111/j.1558-5646.1998.tb02026.x; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; SAETRE GP, 1995, J ANIM ECOL, V64, P21, DOI 10.2307/5824; Schonfeld M., 1975, Hercynia N F, V12, P257; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stenning MJ, 1996, TRENDS ECOL EVOL, V11, P243, DOI 10.1016/0169-5347(96)10030-6; Taylor I., 1994, BARN OWLS PREDATOR P; Tolonen P, 1996, ECOSCIENCE, V3, P165, DOI 10.1080/11956860.1996.11682327; Wilkinson L, 1989, SYSTAT SYSTEM STAT; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILSON RT, 1987, IBIS, V129, P305, DOI 10.1111/j.1474-919X.1987.tb03174.x 41 45 45 0 22 NEDERLANDSE ORNITHOLOGISCHE UNIE ZEIST C/O PAUL STARMANS, OUDE ARNHEMSEWEG 261, 3705 BD ZEIST, NETHERLANDS 0373-2266 ARDEA Ardea 1999 87 1 91 100 10 Ornithology Zoology 247QW WOS:000083232300009 2018-11-12 J Blanckenhorn, WU Blanckenhorn, WU Different growth responses to temperature and resource limitation in three fly species with similar life histories EVOLUTIONARY ECOLOGY English Article body size; development; Drosophila melanogaster; dung flies; growth; life history; resource limitation; Scathophaga stercoraria; seasonality; Sepsis cynipsea; temperature YELLOW DUNG FLY; REACTION NORMS; BODY-SIZE; EVOLUTIONARY DEMOGRAPHY; AMPHIBIAN METAMORPHOSIS; PHENOTYPIC PLASTICITY; PHYSIOLOGICAL TIME; SEPSIS-CYNIPSEA; BRUCHID BEETLE; ADULT SIZE Growth responses to temperature and resource limitation in three dipteran species with similar life histories were compared. With respect to current life history theory, two points are raised. First, growth rate in real time increased steeply with temperature in all species, following the standard pattern. However, when expressed in physiological time growth rate increased as temperature decreased in the yellow dung fly Scathophaga stercoraria, remained approximately constant in Sepsis cynipsea, and increased in Drosophila melanogaster. These responses can be understood as adaptations to climate and seasonality. It is concluded that some patterns of adaptation may be more easily interpreted if, and some may even go undetected unless, they are analysed in physiological time. Second, a decrease in body size, development rate and growth rate when resources are limited is believed to be nearly universal and generally predicted by life history models. Despite their similar life histories, the three species investigated showed qualitatively different growth responses to larval food shortage. At unlimited resources, yellow dung flies showed the fastest initial larval body mass gain per unit time, while those of S. cynipsea and D. melanogaster were lower and about equal. The period of no body mass gain at the end of larval development was longest in S. stercoraria and shortest in S. cynipsea. When facing resource limitation, S. stercoraria emerged smaller but earlier (thus nearly maintaining their growth rate), S. cynipsea smaller after the same development period, and D. melanogaster smaller and later (showing reduced and much reduced growth, respectively). It is concluded that whether growth really slows when resources are limited depends on the precise ecological circumstances of the species in question. More refined models, particularly those where mortality costs are independent of time, and more experiments are necessary to account for the variation in growth and size and age at maturity present in nature. Univ Zurich, Zool Museum, CH-8057 Zurich, Switzerland Blanckenhorn, WU (reprint author), Univ Zurich, Zool Museum, Winterthurerstr 190, CH-8057 Zurich, Switzerland. wolfman@zoolmus.unizh.ch Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; ANHOLT BR, 1995, ECOLOGY, V76, P2230, DOI 10.2307/1941696; ARNOLD C. Y., 1960, Proceedings. American Society for Horticultural Science, V76, P682; ARNOLD CHARLES Y., 1959, PROC AMER SOC HORT SCI, V74, P430; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; ATKINSON D, 1995, J THERM BIOL, V20, P61, DOI 10.1016/0306-4565(94)00028-H; Atkinson D, 1997, TRENDS ECOL EVOL, V12, P235, DOI 10.1016/S0169-5347(97)01058-6; BAKKER K., 1959, Entomologia Experimentalis et Applicata, V2, P171; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; BERRIGAN D, 1994, OIKOS, V70, P474, DOI 10.2307/3545787; Blanckenhorn WU, 1998, EVOLUTION, V52, P1394, DOI 10.1111/j.1558-5646.1998.tb02021.x; Blanckenhorn WU, 1998, ECOL ENTOMOL, V23, P1, DOI 10.1046/j.1365-2311.1998.00098.x; Blanckenhorn WU, 1997, OECOLOGIA, V111, P318, DOI 10.1007/s004420050241; BLANCKENHORN WU, 1994, OECOLOGIA, V97, P354, DOI 10.1007/BF00317325; Blanckenhorn WU, 1998, J EVOLUTION BIOL, V11, P735, DOI 10.1007/s000360050116; Blanckenhorn WU, 1997, OECOLOGIA, V109, P342, DOI 10.1007/s004420050092; CHURCH RB, 1966, GENET RES, V7, P383, DOI 10.1017/S0016672300009836; Danks HV, 1987, INSECT DORMANCY ECOL; DAVID J, 1967, J INSECT PHYSIOL, V13, P717, DOI 10.1016/0022-1910(67)90121-7; DAVID JEAN, 1967, NATUR CAN, V94, P209; EIGENBRODT HAROLD J., 1930, PHYSIOL ZOOL, V3, P392; Fox CW, 1996, OECOLOGIA, V108, P88, DOI 10.1007/BF00333219; FRASER DF, 1992, ECOLOGY, V73, P959, DOI 10.2307/1940172; Gilbert P., 1996, EVOLUTION, V50, P2346; Janisch E, 1925, PFLUG ARCH GES PHYS, V209, P414, DOI 10.1007/BF01730929; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; MOLLER H, 1989, FUNCT ECOL, V3, P673, DOI 10.2307/2389499; MOLLER H, 1989, FUNCT ECOL, V3, P683, DOI 10.2307/2389500; MORF C, 1997, THESIS U ZURICH; Muhlhauser C, 1996, ANIM BEHAV, V51, P1401, DOI 10.1006/anbe.1996.0143; NEGUS NC, 1992, CAN J ZOOL, V68, P619; NEWMAN RA, 1992, BIOSCIENCE, V42, P671, DOI 10.2307/1312173; Nijhout H. F., 1994, INSECT HORMONES; Nunney L, 1996, EVOLUTION, V50, P1193, DOI 10.1111/j.1558-5646.1996.tb02360.x; Nylin S, 1996, EVOLUTION, V50, P1351, DOI 10.1111/j.1558-5646.1996.tb02377.x; PROSSER CL, 1973, COMP ANIMAL PHYSL; PROWSER L, 1935, PHYSIOL ZOOL, V8, P474; Ratte H. T., 1985, ENV PHYSL BIOCH INSE, P31; ROBERTSON FW, 1963, GENET RES, V4, P74, DOI 10.1017/S001667230000344X; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; ROFF DA, 1986, BIOSCIENCE, V36, P316, DOI 10.2307/1310236; Roff Derek A., 1992; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Schmidt-Nielsen K., 1983, ANIMAL PHYSL ADAPTAT; SCHULZ K, 1989, THESIS FREE U BERLIN; SHORROCKS B, 1970, J ANIM ECOL, V39, P229, DOI 10.2307/2897; SIBLY RM, 1994, FUNCT ECOL, V8, P486, DOI 10.2307/2390073; Sokal R.R., 1995, BIOMETRY; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; SWEENEY BW, 1978, SCIENCE, V200, P444, DOI 10.1126/science.200.4340.444; Tabachnick BG, 1989, USING MULTIVARIATE S; TAYLOR F, 1981, AM NAT, V117, P1, DOI 10.1086/283683; vanderHave TM, 1996, J THEOR BIOL, V183, P329, DOI 10.1006/jtbi.1996.0224; VANSTRAALEN NM, 1983, J THEOR BIOL, V104, P349, DOI 10.1016/0022-5193(83)90111-X; VISSER ME, 1994, J ANIM ECOL, V63, P963, DOI 10.2307/5273; WANG JY, 1960, ECOLOGY, V41, P785, DOI 10.2307/1931815; Wigglesworth V. B., 1972, PRINCIPLES INSECT PH; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305 61 72 75 2 28 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. 1999 13 4 395 409 10.1023/A:1006741222586 15 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 327TD WOS:000087808500005 2018-11-12 J Glazier, DS Glazier, DS Trade-offs between reproductive and somatic (storage) investments in animals: a comparative test of the Van Noordwijk and De Jong model EVOLUTIONARY ECOLOGY English Review body storage; life history; reproductive costs; resource acquisition and allocation; trade-offs LIFE-HISTORY EVOLUTION; BLACK-BACKED GULLS; BODY CONDITION; FOOD LIMITATION; DAPHNIA-MAGNA; CLUTCH SIZE; ENERGY ALLOCATION; NUTRIENT RESERVES; GROUND-SQUIRRELS; RESOURCE-ALLOCATION Classical life-history theory predicts 'trade-offs' between reproductive and somatic investments. However, empirical studies have shown that intraspecific phenotypic correlations between these two resource investments are often positive or nonsignificant, rather than negative as predicted. The model of Van Noordwijk and De Jong (1986) was proposed to explain these unexpected results. According to their model, positive correlations between reproductive and somatic investments will result if individual variation in resource acquisition exceeds that of resource allocation, whereas negative correlations will result if individual variation in resource allocation exceeds that of resource acquisition. To test this model, I used body storage/condition as an index of somatic investment because it is usually strongly related to level of resource acquisition. I predicted that laboratory studies should more often show negative correlations between reproductive and somatic investments than field studies, because individual variation in resource acquisition is expected to be lower in controlled laboratory environments than in variable natural environments. A literature review revealed that correlations between somatic (storage) investment and reproductive investment (estimated as clutch/litter mass, number of offspring per clutch/litter, or number of clutches/litters) among conspecific breeding female animals are more often positive (15 species) or nonsignificant (17 species) than negative (6 species). Moreover, as expected, five of six negative correlations were observed in laboratory studies, whereas 13 of 15 positive correlations were observed in field studies. It is concluded that future empirical and theoretical work on life histories should consider individual variation in both resource acquisition and allocation and the interaction between the two. Juniata Coll, Dept Biol, Huntingdon, PA 16652 USA Glazier, DS (reprint author), Juniata Coll, Dept Biol, Huntingdon, PA 16652 USA. glazier@juniata.edu ADALSTEINSSON S, 1979, ANIM PROD, V28, P13, DOI 10.1017/S0003356100023011; ANKNEY CD, 1978, AUK, V95, P459; ARNOLD RLB, 1992, OECOLOGIA, V92, P138; BAIRD DJ, 1990, FUNCT ECOL, V4, P399, DOI 10.2307/2389602; Barash DP, 1989, MARMOTS SOCIAL BEHAV; BARCLAY RMR, 1989, BEHAV ECOL SOCIOBIOL, V24, P31, DOI 10.1007/BF00300115; BASSET A, 1993, OECOLOGIA, V93, P315, DOI 10.1007/BF00317872; Basset A, 1987, FUNCT ECOL, V1, P13, DOI 10.2307/2389352; Basset A, 1995, HYDROBIOLOGIA, V316, P127, DOI 10.1007/BF00016894; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BIERE A, 1995, J ECOL, V83, P629, DOI 10.2307/2261631; Billerbeck JM, 2000, OECOLOGIA, V122, P210, DOI 10.1007/PL00008848; Blem C.R., 1990, Current Ornithology, V7, P59; BOGGS CL, 1992, FUNCT ECOL, V6, P508, DOI 10.2307/2390047; BOLTON M, 1993, CAN J ZOOL, V71, P273, DOI 10.1139/z93-039; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; BROUGH CN, 1989, FUNCT ECOL, V3, P747, DOI 10.2307/2389507; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; CAMPBELL MT, 1993, J MAMMAL, V74, P971, DOI 10.2307/1382436; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; CHEPLICK GP, 1995, AM J BOT, V82, P621, DOI 10.2307/2445420; CHOQUENOT D, 1991, ECOLOGY, V72, P805, DOI 10.2307/1940583; Clutton-Brock T. H, 1982, RED DEER BEHAV ECOLO; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; De Boeck G, 2000, PHYSIOL BIOCHEM ZOOL, V73, P102, DOI 10.1086/316717; De Ruiter PC, 1987, FUNCT ECOL, V1, P109; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; Djawdan M, 1998, PHYSIOL ZOOL, V71, P584, DOI 10.1086/515963; Dobson FS, 1999, J ANIM ECOL, V68, P73, DOI 10.1046/j.1365-2656.1999.00268.x; DOBSON FS, 1995, ECOLOGY, V76, P851, DOI 10.2307/1939350; DOBSON FS, 1992, AM NAT, V140, P109, DOI 10.1086/285405; Doughty P, 1998, ECOLOGY, V79, P1073, DOI 10.1890/0012-9658(1998)079[1073:REAALT]2.0.CO;2; Doughty P, 1997, OECOLOGIA, V110, P508, DOI 10.1007/s004420050187; DRENT RH, 1980, ARDEA, V68, P225; Droney DC, 1998, FUNCT ECOL, V12, P920, DOI 10.1046/j.1365-2435.1998.00266.x; Duncan A., 1985, Advances in Limnology, V21, P81; Ellers J, 1996, NETH J ZOOL, V46, P227; ESCRIBANO R, 1992, J EXP MAR BIOL ECOL, V159, P77, DOI 10.1016/0022-0981(92)90259-D; Falconer DS, 1996, INTRO QUANTITATIVE G; FENNER M, 1986, J ECOL, V74, P385, DOI 10.2307/2260262; Festa-Bianchet M, 1998, ECOL LETT, V1, P91; FITZPATRICK LC, 1976, AM ZOOL, V16, P725; FOGDEN MPL, 1979, J ZOOL, V189, P233; FRASER DF, 1980, OECOLOGIA, V46, P302, DOI 10.1007/BF00346256; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GARCIA PFJ, 1993, CAN J ZOOL, V71, P2352, DOI 10.1139/z93-330; GEE JHR, 1988, FRESHWATER BIOL, V19, P333, DOI 10.1111/j.1365-2427.1988.tb00355.x; GITTLEMAN JL, 1988, AM ZOOL, V28, P863; Glazier D. S., 1998, P49; GLAZIER DS, 1990, AM NAT, V135, P269, DOI 10.1086/285042; GLAZIER DS, 1992, ECOLOGY, V73, P910, DOI 10.2307/1940168; Glazier DS, 1998, FRESHWATER BIOL, V40, P87, DOI 10.1046/j.1365-2427.1998.00333.x; GLAZIER DS, 1985, J MAMMAL, V66, P629, DOI 10.2307/1380789; Glazier DS, 2000, OECOLOGIA, V122, P335, DOI 10.1007/s004420050039; GLAZIER DS, 1992, OECOLOGIA, V90, P540, DOI 10.1007/BF01875448; GLAZIER DS, 1979, THESIS CORNELL U ITH; Golet GH, 1999, OECOLOGIA, V120, P530, DOI 10.1007/s004420050887; Gregory PT, 1998, AM NAT, V151, P477, DOI 10.1086/286134; Guntrip J, 1997, ECOL ENTOMOL, V22, P264, DOI 10.1046/j.1365-2311.1997.00076.x; HARRIS JH, 1987, J MAMMAL, V68, P58, DOI 10.2307/1381045; HEPP GR, 1987, AUK, V104, P435, DOI 10.2307/4087542; Herbers JM, 1998, OIKOS, V83, P145, DOI 10.2307/3546555; HIRSHFIELD MF, 1980, ECOLOGY, V61, P282, DOI 10.2307/1935187; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HOCHACHKA W, 1991, J ANIM ECOL, V60, P995, DOI 10.2307/5427; HOSSLER RJ, 1994, J MAMMAL, V75, P60, DOI 10.2307/1382236; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HOUSTON DC, 1983, J ZOOL, V200, P509; Humphries MM, 1996, J ANIM ECOL, V65, P332, DOI 10.2307/5879; HUSSELL DJT, 1972, ECOL MONOGR, V42, P317, DOI 10.2307/1942213; Jakob EM, 1996, OIKOS, V77, P61, DOI 10.2307/3545585; JOKELA J, 1995, OECOLOGIA, V104, P122, DOI 10.1007/BF00365570; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; JULIANO SA, 1986, ECOLOGY, V67, P1036, DOI 10.2307/1939826; Kennish R, 1997, OECOLOGIA, V109, P209, DOI 10.1007/s004420050075; KIELL DJ, 1980, CAN J ZOOL, V58, P416, DOI 10.1139/z80-055; Koskela E, 1997, J ANIM ECOL, V66, P341, DOI 10.2307/5980; KRAPU GL, 1981, AUK, V98, P29; Lack D., 1954, NATURAL REGULATION A; LAGUERIE P, 1991, J EVOLUTION BIOL, V5, P361; LOVETTDOUST J, 1980, BIOL J LINN SOC, V13, P155; Maltby L., 1994, P98; MALTBY L, 1990, FUNCT ECOL, V4, P393, DOI 10.2307/2389601; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MEFFE GK, 1993, CAN J FISH AQUAT SCI, V50, P2185, DOI 10.1139/f93-245; MILLAR JS, 1975, CAN J ZOOL, V53, P967, DOI 10.1139/z75-112; MitchellOlds T, 1996, EVOLUTION, V50, P1849, DOI 10.1111/j.1558-5646.1996.tb03571.x; Morris DW, 1996, ECOSCIENCE, V3, P1; Morris DW, 1998, OIKOS, V83, P518, DOI 10.2307/3546679; Mousseau TA, 1998, MATERNAL EFFECTS ADA; MURPHY MT, 1986, AUK, V103, P465; NAYLOR BJ, 1989, CAN J ZOOL, V67, P969, DOI 10.1139/z89-140; OGDEN J, 1974, J ECOL, V62, P291, DOI 10.2307/2258894; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; PERRIN N, 1990, OIKOS, V59, P70, DOI 10.2307/3545124; Pfister C, 1998, AUK, V115, P904; PIANKA ER, 1976, AM ZOOL, V16, P775; PIERSMA T, 1991, AUK, V108, P441; RANDOLPH PA, 1977, ECOLOGY, V58, P31, DOI 10.2307/1935106; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RICKART EA, 1982, CAN J ZOOL, V60, P3298, DOI 10.1139/z82-418; RICKLEFS RE, 1991, FUNCT ECOL, V5, P174, DOI 10.2307/2389255; Roast SD, 1999, MAR ECOL PROG SER, V191, P233, DOI 10.3354/meps191233; ROBB LA, 1992, J ANIM ECOL, V61, P215, DOI 10.2307/5524; Roff D. A., 1997, EVOLUTIONARY QUANTIT; Roff Derek A., 1992; ROGERS CM, 1993, ECOLOGY, V74, P419, DOI 10.2307/1939303; Rollo C. D., 1995, PHENOTYPES THEIR EPI; Rowe CL, 1996, FRESHWATER BIOL, V36, P723; Rowe CL, 1998, PHYSIOL ZOOL, V71, P27, DOI 10.1086/515885; Saether BE, 1997, AUK, V114, P333; Santos PD, 1987, FUNCT ECOL, V1, P215, DOI 10.2307/2389423; Schlichting C. D., 1998, PHENOTYPIC EVOLUTION; Scott DE, 1995, HERPETOLOGICA, V51, P462; SEYDACK AHW, 1992, OECOLOGIA, V90, P102, DOI 10.1007/BF00317815; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; Sinervo Barry, 1996, P149; SLANSKY F, 1980, J INSECT PHYSIOL, V26, P79, DOI 10.1016/0022-1910(80)90046-3; Sokal R.R., 1995, BIOMETRY; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tanaka Y, 1996, RES POPUL ECOL, V38, P11, DOI 10.1007/BF02514966; Taylor B.E., 1985, Advances in Limnology, V21, P285; TESSIER AJ, 1982, LIMNOL OCEANOGR, V27, P707, DOI 10.4319/lo.1982.27.4.0707; TESSIER AJ, 1983, LIMNOL OCEANOGR, V28, P667, DOI 10.4319/lo.1983.28.4.0667; Thomas DW, 1995, SYM ZOOL S, P233; THOMPSON RJ, 1983, OECOLOGIA, V56, P50, DOI 10.1007/BF00378216; TUOMI J, 1983, AM ZOOL, V23, P25; ULLRICH SO, 1983, CAN J FISH AQUAT SCI, V40, P17, DOI 10.1139/f83-004; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VERNON RG, 1984, S ZOOL SOC LOND, V51, P119; Voltura MB, 1998, PHYSIOL ZOOL, V71, P321, DOI 10.1086/515929; WAUTERS LA, 1995, OIKOS, V72, P402, DOI 10.2307/3546126; Wendeln H, 1999, J ANIM ECOL, V68, P205, DOI 10.1046/j.1365-2656.1999.00276.x; Wicklum D, 1996, AQUAT TOXICOL, V35, P237, DOI 10.1016/0166-445X(96)00795-3; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; Winkler DW, 1996, ECOLOGY, V77, P922, DOI 10.2307/2265512; WITTER MS, 1993, PHILOS T R SOC B, V340, P73, DOI 10.1098/rstb.1993.0050; WOOLLHEAD AS, 1983, J ANIM ECOL, V52, P603, DOI 10.2307/4575; Wootton R. J., 1990, ECOLOGY TELEOST FISH; WOOTTON RJ, 1977, J ANIM ECOL, V46, P823, DOI 10.2307/3643; Wright J, 1998, J ANIM ECOL, V67, P620; YOUNG CM, 1985, AM J CLIN NUTR, V41, P979 149 70 74 0 30 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. 1999 13 6 539 555 10.1023/A:1006793600600 17 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 375BC WOS:000165378800002 2018-11-12 J Chisholm, JS Chisholm, JS Attachment and time preference - Relations between early stress and sexual behavior in a sample of American university women HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article; Proceedings Paper Meeting of the Human-Behavior-and-Evolution-Society JUN 26-30, 1996 NORTHWESTERN UNIV, EVANSTON, IL Human Behav & Evolut Soc NORTHWESTERN UNIV attachment theory; early stress; environmental risk and uncertainty; life history theory; reproductive strategies; sexual behavior of young women LIFE-HISTORY VARIATION; EVOLUTIONARY PERSPECTIVE; REPRODUCTIVE STRATEGY; CHILDHOOD EXPERIENCE; NATURAL-SELECTION; PRESCHOOL DELAY; MENARCHEAL AGE; RISK-TAKING; GRATIFICATION; DETERMINANTS This paper investigates hypotheses drawn from two sources: (1) Belsky, Steinberg, and Draper's (1991) attachment theory model of the development of reproductive strategies, and (2) recent life history models and comparative data suggesting that environmental risk and uncertainty may be potent determinants of the optimal tradeoff between current and future reproduction. A retrospective, self-report study of 136 American university women aged 19-25 showed that current recollections of early stress (environmental risk and uncertainty) were related to individual differences in adult time preference and adult sexual behavior, and that individual differences in time preference were related to adult attachment organization and sexual behavior. These results are consistent with the hypothesis that perceptions of early stress index environmental risk and uncertainty and mediate the attachment process and the development of reproductive strategies. On this view individual differences in time preference are considered to be part of the attachment theoretical construct of an internal working model, which itself is conceived as an evolved algorithm for the contingent development of alternative reproductive strategies. Univ Western Australia, Dept Anat & Human Biol, Ctr Human Biol, Nedlands, WA 6907, Australia Chisholm, JS (reprint author), Univ Western Australia, Dept Anat & Human Biol, Ctr Human Biol, Nedlands, WA 6907, Australia. jchisholm@anhb.uwa.edu.au ABER J, 1993, SOC SCI RES COUNC CO; AINSLIE G, 1975, PSYCHOL BULL, V82, P463, DOI 10.1037/h0076860; AISLIE G, 1992, PICOECONOMICS STRATE; BANE MJ, 1989, SCIENCE, V245, P1047, DOI 10.1126/science.245.4922.1047; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, HUM NATURE-INT BIOS, V8, P361, DOI 10.1007/BF02913039; BERNARDO J, 1993, TRENDS ECOL EVOL, V8, P166, DOI 10.1016/0169-5347(93)90142-C; Bowlby J., 1973, ATTACHMENT LOSS, V2; Bowlby J, 1980, ATTACHMENT LOSS, V3; Bowlby J., 1969, ATTACHMENT LOSS, V1; BRETHERTON I, 1985, MONOGRAPHS SOC RES C, V50; BRUBANK V, 1988, ABORIGINAL ADOLESCEN; BURBANK VK, 1995, ETHOS, V23, P33, DOI 10.1525/eth.1995.23.1.02a00030; Burton L M, 1990, Hum Nat, V1, P123, DOI 10.1007/BF02692149; CAMPBELL BC, 1995, J BIOSOC SCI, V27, P127; CHARNOV E, 1993, EVOLUTIONARY ANTHR, V2, P191; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; Charnov Eric L., 1993, P1; CHISHOLM J, 1995, PERSPECTIVES HUMAN B, V1, P19; CHISHOLM J, 1995, ROMANTIC PASSION UNI, P42; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Clark C. W., 1990, RISK UNCERTAINTY TRI, P47; CLARK CW, 1991, BEHAV BRAIN SCI, V14, P85, DOI 10.1017/S0140525X00065432; Darwin C.R., 1871, DESCENT MAN SELECTIO; DENNETT DC, 1995, DARWINS DANGEROUS ID; DRAPER P, 1990, J PERS, V58, P141, DOI 10.1111/j.1467-6494.1990.tb00911.x; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; EMLEN ST, 1995, P NATL ACAD SCI USA, V92, P8092, DOI 10.1073/pnas.92.18.8092; Eveleth P. B., 1990, WORLDWIDE VARIATION; FISHER R. A., 1930, GENETICAL THEORY NAT; GARDNER W, 1993, ADOLESCENT RISK TAKI, P66; Gardner W., 1990, NEW DIR CHILD ADOLES, V50, P17; GARN SM, 1986, SCH AGE PREGNANCY PA, P77; Geronimus A., 1994, POWER DECISION SOCIA, P77; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; GERONIMUS AT, 1987, POPUL DEV REV, V13, P245, DOI 10.2307/1973193; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; Gottfredson M. R., 1990, GEN THEORY CRIME; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.2307/1131582; GRAFEN A, 1984, BEHAV ECOLOGY EVOLUT, P62; GREEN L, 1994, PSYCHOL SCI, V5, P33, DOI 10.1111/j.1467-9280.1994.tb00610.x; Harpending HC, 1990, DIS POPULATIONS TRAN, P251; Harris M, 1994, ASSESSING CULTURAL A, V12, P62; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037//0022-3514.52.3.511; HERRENKOHL EC, 1995, CHILD ABUSE NEGLECT, V19, P191, DOI 10.1016/0145-2134(94)00116-C; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; HILL EM, 1994, ETHOL SOCIOBIOL, V15, P323, DOI 10.1016/0162-3095(94)90006-X; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Johnson M., 1987, BODY MIND BODILY BAS; Johnson Mark, 1993, MORAL IMAGINATION IM; Kacelnik A, 1996, AM ZOOL, V36, P402; KAGAN J, 1994, GALENS PROPHECY TEMP; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; Khan AD, 1996, AM J HUM BIOL, V8, P717, DOI 10.1002/(SICI)1520-6300(1996)8:6<717::AID-AJHB3>3.0.CO;2-Q; Kim K, 1997, EVOL HUM BEHAV, V18, P109, DOI 10.1016/S1090-5138(96)00114-6; Krebs J.R., 1991, P105; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D., 1966, POPULATION STUDIES B; Lancaster JB, 1989, SOCIOBIOLOGY SOCIAL, P63; LAWRANCE EC, 1991, J POLIT ECON, V99, P54, DOI 10.1086/261740; Levins R., 1968, EVOLUTION CHANGING E; Loewenstein G., 1992, CHOICE TIME; LOGUE AW, 1988, BEHAV BRAIN SCI, V11, P665, DOI 10.1017/S0140525X00053978; Luker Kristin, 1991, AM PROSPECT, V5, P73; MAITAL S, 1977, ESSAYS LABOR MARKET, P179; MANGEL M, 1988, DYNAMIC MODELLING BE; MARRIS P, 1991, ATTACHMENT LIFE CYCL, P77; MENCHER JP, 1993, DID ALL MEN GO FEMAL; MISCHEL W, 1961, J ABNORM SOC PSYCH, V62, P543, DOI 10.1037/h0039842; MISCHEL W, 1988, J PERS SOC PSYCHOL, V54, P687, DOI 10.1037//0022-3514.54.4.687; MISCHEL W, 1961, J ABNORM SOC PSYCH, V63, P116, DOI 10.1037/h0046877; MISCHEL W, 1958, J ABNORM SOC PSYCH, V56, P57, DOI 10.1037/h0041895; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; Mulder M Borgerhoff, 1992, EVOLUTIONARY ECOLOGY, P339; Nussbaum Martha C., 1995, WOMEN CULTURE DEV ST, P61; ORAND A, 1974, SOC FORCES, V53, P53, DOI 10.2307/2576837; OYAMA S, 1985, ONTOGENY INFORMATION; PARKER GA, 1989, ETHOL ECOL EVOL, V1, P195, DOI 10.1080/08927014.1989.9525523; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; Parkes C. M., 1991, ATTACHMENT LIFE CYCL; PHOENIX A, 1993, POLITICS PREGNANCY A, P74; Plotkin H. C., 1994, DARWIN MACH NATURE K; PRESSER HB, 1978, SOC BIOL, V25, P94, DOI 10.1080/19485565.1978.9988327; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PROOS LA, 1991, ACTA PAEDIATR SCAND, V80, P852, DOI 10.1111/j.1651-2227.1991.tb11960.x; PURVIS A, 1995, J ZOOLGOICAL SOC LON, V237, P1; ROGERS AR, 1994, AM ECON REV, V84, P460; ROGERS AR, 1990, ETHOL SOCIOBIOL, V11, P479, DOI 10.1016/0162-3095(90)90022-X; Rubenstein D.I., 1982, P91; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; Scheper-Hughes Nancy, 1992, DEATH WEEPING VIOLEN; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; Sen A., 1992, INEQUALITY REEXAMINE; Sen A. K., 1993, SCI AM MAY, P40; SHODA Y, 1990, DEV PSYCHOL, V26, P978, DOI 10.1037/0012-1649.26.6.978; SKOLNICK A, 1986, LIFE-SPAN DEV BEHAV, V7, P173; SMITH EA, 1992, EVOLUTIONARY ECOLOGY, P25; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stephens D. W., 1990, RISK UNCERTAINTY TRI, P19; SURBEY MK, 1990, MG PRIMATOL, V13, P11; Tanner JM, 1962, GROWTH ADOLESCENCE; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Vila B, 1997, POLIT LIFE SCI, V16, P3; VILA B, 1994, CRIMINOLOGY, V32, P501; Wall S., 1978, PATTERNS ATTACHMENT; Wilkinson R, 1996, UNHEALTHY SOC; Wilson J. Q., 1985, CRIME HUMAN NATURE; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; Wolkind S, 1985, CHILD ADOLESCENT PSY, P34; ZIMBARDO P, 1992, STANFORD TIME PERSPE; ZIMBARDO P, 1992, TIME PERSPECTIVE BIA; ZIMBARDO PG, 1990, STANFORD TIME PERSPE 116 59 60 0 5 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 1999 10 1 51 83 10.1007/s12110-999-1001-1 33 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 199TK WOS:000080498200002 26197415 2018-11-12 J Wiley, AS; Carlin, LC Wiley, AS; Carlin, LC Demographic contexts and the adaptive role of mother-infant attachment - A hypothesis HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article adaptation; attachment theory; demography; life history theory EVOLUTIONARY; CHILDHOOD; HISTORY; CARE; ORGANIZATION; STRATEGIES; MORTALITY; YOUNG Currently much debate surrounds the significance of cross-cultural variation in mother-infant attachment. Is only one form of attachment "healthy," or are different types of attachment adaptations to local socio-ecological conditions? Juvenile mortality rates have been promoted as important features of local environments that shape attachment, which in turn affects later reproductive strategies. To this we add fertility. Fertility changes the environment of a child by influencing the number of potential caregivers and competitors for care, and the cultural ethos regarding the rights of children. Different combinations of fertility and mortality will likely give rise to different attachment forms, and only under one regime (low fertility and mortality) do we expect exclusivity in attachment. James Madison Univ, Dept Anthropol & Sociol, Harrisonburg, VA 22807 USA; Univ Durham, Durham DH1 3HP, England Wiley, AS (reprint author), James Madison Univ, Dept Anthropol & Sociol, MSC 7501, Harrisonburg, VA 22807 USA. Carlin, Leslie/0000-0003-3360-273X Ainsworth M. D., 1967, INFANCY UGANDA INFAN; Ainsworth M. D. S., 1977, CULTURE INFANCY, P119; AINSWORTH MDS, 1965, CHILD CARE GROWTH LO, P205; AINSWORTH MDS, 1982, PLACE ATTACHMENT HUM, P3; AINSWORTH MDS, 1977, CULTURE INFANCY VARI, P49; Aries Philippe, 1962, CENTURIES CHILDHOOD; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, HUM NATURE-INT BIOS, V8, P361, DOI 10.1007/BF02913039; Belsky J., 1994, DEV LIFE HDB CLIN, P373; BLEDSOE CH, 1988, SOC SCI MED, V27, P627, DOI 10.1016/0277-9536(88)90011-1; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; Bowlby J., 1982, ATTACHMENT ATTACHMEN; Bowlby J., 1965, CHILD CARE GROWTH LO; Bowlby J., 1980, LOSS SADNESS DEPRESS, V3; Caldwell J. C., 1982, THEORY FERTILITY DEC; Cassidy Claire, 1980, SOCIAL BIOL PREDICTO, P109; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; DROTAR D, 1991, AM J ORTHOPSYCHIAT, V61, P23, DOI 10.1037/h0079231; HANDWERKER WP, 1986, CULTURE REPRODUCTION, P1; Harpending HC, 1990, DIS POPULATIONS TRAN, P251; HEWLETT BS, 1991, J ANTHROPOL RES, V47, P1; HILL EM, 1994, ETHOL SOCIOBIOL, V15, P323, DOI 10.1016/0162-3095(94)90006-X; HINDE RA, 1982, PLACE ATTACHMENT HUM, P60; HRDY SB, 1992, ETHOL SOCIOBIOL, V13, P409, DOI 10.1016/0162-3095(92)90011-R; JOHANSSON SR, 1987, J FAM HIST, V12, P343, DOI 10.1177/036319908701200119; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; Konner Melvin J., 1977, CULTURE INFANCY VARI, P287; LAMB ME, 1985, INFANT MOTHER ATTACH; LANCASTER JB, 1987, PARENTING LIFE SPAN, P187; LEIDERMAN PH, 1977, CULTURE INFANCY, P405; LEVINE NE, 1988, ETHNOLOGY, V27, P231, DOI 10.2307/3773519; LEVINE R, 1987, PARENTING LIFE SPAN, P271; LEVINE R. A., 1998, BIOSOCIAL PERSPECTIV, P102; LEVINE RA, 1990, HUM DEV, V33, P73, DOI 10.1159/000276504; LEVINE RA, 1994, CHILD CARE CULTURE L; MAIN M, 1990, HUM DEV, V33, P48, DOI 10.1159/000276502; Main M., 1990, ATTACHMENT PRESCHOOL, P121; Morelli G. A., 1991, INTERSECTIONS ATTACH, P41; MULDER MB, 1985, J ANTHROPOL RES, V41, P231, DOI 10.1086/jar.41.3.3630593; NAG M, 1962, FACTORS AFFECTING HU, V66; NOTESTEIN FW, 1977, EVOLUTION POPULATION, P140; PANTERBRICK C, 1995, HUMAN POPULATIONS DI, P174; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Rohner RP, 1975, THEY LOVE ME THEY LO; ROSSI A, 1987, PARENTING LIFE SPAN, P31; Scheper-Hughes N., 1992, DEATH WEEPING; SCHEPERHUGHES N, 1984, SOC SCI MED, V19, P535, DOI 10.1016/0277-9536(84)90049-2; SCRIMSHAW SCM, 1978, POPUL DEV REV, V4, P383, DOI 10.2307/1972856; SCRIMSHAW SCM, 1983, DETERMINANTS FERTILI, V2, P245; Sroufe L. A., 1988, CLIN IMPLICATIONS AT, P18; SROUFE LA, 1984, CHILD DEV, V55, P17, DOI 10.2307/1129832; Sulloway F. J., 1996, BORN REBEL BIRTH ORD; TRIVERS RL, 1974, AM ZOOL, V14, P249; TRONICK EZ, 1992, DEV PSYCHOL, V28, P568, DOI 10.1037/0012-1649.28.4.568; VALENZUELA M, 1990, CHILD DEV, V61, P1984, DOI 10.2307/1130852; Wall S., 1978, PATTERNS ATTACHMENT; Weisner T.S., 1987, PARENTING LIFE SPAN, P237; Whiting Beatrice, 1975, CHILDREN 6 CULTURES; WILEY AS, 1992, MED ANTHROPOL Q, V6, P216, DOI 10.1525/maq.1992.6.3.02a00030; WILEY AS, 1994, ANN M AM ANTHR ASS A; ZELLER AC, 1987, MAN, V22, P528, DOI 10.2307/2802504 62 2 2 1 3 ALDINE DE GRUYTER DIVISION WALTER DE GRUYTER INC HAWTHORNE 200 SAW MILL RIVER, HAWTHORNE, NY 10532 USA 1045-6767 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 1999 10 2 135 161 10.1007/s12110-999-1012-y 27 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 205PT WOS:000080830300002 26196140 2018-11-12 J Hill, K; Hurtado, AM Hill, K; Hurtado, AM Packer and colleagues' model of menopause for humans HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Editorial Material demography; fertility; "grandmother hypothesis"; life history theory; menopause; reproductive senescence Univ New Mexico, Dept Anthropol, Albuquerque, NM 87131 USA Hill, K (reprint author), Univ New Mexico, Dept Anthropol, Albuquerque, NM 87131 USA. Charlesworth B., 1980, EVOLUTION AGE STRUCT; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; HAWKES K, 1989, COMP SOCIOECOLOGY BE, P341; HILL K, 1999, IN PRESS ANN REV ANT; Hill K., 1991, HUMAN NATURE, V2, P315; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; KAPLAN H, 1999, UNPUB EVOLUTION HUMA; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; ROGERS AR, 1993, EVOL ECOL, V7, P406, DOI 10.1007/BF01237872; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 12 3 3 1 3 ALDINE DE GRUYTER DIVISION WALTER DE GRUYTER INC HAWTHORNE 200 SAW MILL RIVER, HAWTHORNE, NY 10532 USA 1045-6767 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 1999 10 2 199 204 10.1007/s12110-999-1015-8 6 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 205PT WOS:000080830300005 26196143 2018-11-12 J Burgess, RL; Drais, AA Burgess, RL; Drais, AA Beyond the "Cinderella effect" - Life history theory and child maltreatment HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article behavior genetics; child abuse; cost-benefit analysis; family management practices; life history theory; parental investment ABUSE; POVERTY; NEGLECT A central thesis of this paper is that understanding the nature of child maltreatment is so complex that no one disciplinary specialty is likely to be sufficient for the task. Although life history theory is the guiding principle for our analysis, we argue that an evolutionary explanation adds precision by incorporating empirical findings originating from the fields of anthropology; clinical, developmental, and social psychology; and sociology. Although evolutionary accounts of child maltreatment have been largely limited to the role of the coefficient of relatedness, the prospective reproductive value of a child, and the residual reproductive potential of parents, a case is made for expanding this basic application. An explanatory model is presented that describes how ecological conditions as well as parental and child traits interact to influence the degree of parental investment. As shown in the model, these various "marker variables" alter parental perceptions of the benefits and costs associated with child care and promote low-investment parenting, which leads to disrupted family management practices and to a downward-spiraling, self-perpetuating system of coercive family interaction, increased parental rejection of the child, and even lower parental investment. Child maltreatment is the ultimate outcome of this downward trajectory of family relations. Penn State Univ, Dept Human Dev & Family Studies, University Pk, PA 16802 USA Burgess, RL (reprint author), Penn State Univ, Dept Human Dev & Family Studies, 110 Henderson Bldg S, University Pk, PA 16802 USA. rlb8@psu.edu ALEXANDER RD, 1990, ETHOL SOCIOBIOL, V11, P241, DOI 10.1016/0162-3095(90)90012-U; ASHWORTH K, 1994, J POLICY ANAL MANAG, V13, P658, DOI 10.2307/3325492; BANK L, 1990, ADV FAM RES, P247; Becker G.S, 1981, TREATISE FAMILY; BECKER GS, 1988, J LAW ECON, V31, P1, DOI 10.1086/467147; BLUM DEBORAH, 1997, SEX BRAIN BIOL DIFFE; BOLTON FG, 1983, BONDING FAILS CLIN A; BURGESS RL, 1974, AM SOCIOL REV, V39, P427, DOI 10.2307/2094299; BURGESS RL, 1984, EXPERIENCING ADOLESC, P119; BURGESS RL, 1981, ADV FAMILY INTERVENT, P1; BURGESS RL, 1988, CASE STUDIES FAMILY, P15; BURGESS RL, 1997, ANN M BEH GEN ASS TO; BURGESS RL, 1988, SOCIOBIOLOGICAL PERS, P293; BURGESS RL, 1988, FAMILY ABUSE ITS CON, P38; Capaldi D. M., 1989, PSYCHOMETRIC PROPERT; CAPRON C, 1989, NATURE, V340, P552, DOI 10.1038/340552a0; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Cowen EL, 1997, DEV PSYCHOPATHOL, V9, P565; Daly M., 1981, NATURAL SELECTION SO, P405; Drake B, 1996, CHILD ABUSE NEGLECT, V20, P1003, DOI 10.1016/0145-2134(96)00091-9; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; EGELAND B, 1988, CHILD DEV, V59, P1080, DOI 10.1111/j.1467-8624.1988.tb03260.x; ELDER GH, 1984, LIFE-SPAN DEV BEHAV, V6, P109; ELDER GH, 1983, HUMAN DEV INTERDISCI, P93; Gallimore Ronald, 1974, CULTURE BEHAV ED STU; GARBARINO J, 1992, CHILD ABUSE NEGLECT, V16, P455, DOI 10.1016/0145-2134(92)90062-V; GELLES R, 1987, FAMILY VIOLENCE; GELLES RJ, 1992, AM BEHAV SCI, V35, P258, DOI 10.1177/0002764292035003005; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HARPENDING H, 1988, BIOL CONTRIBUTIONS C, P293; Henry JP, 1993, INTEGR PHYS BEH SCI, V28, P368; Herrnstein RJ, 1994, BELL CURVE INTELLIGE; HERRSTEIN RJ, 1970, J EXP ANAL BEHAV, V13, P243, DOI 10.1901/jeab.1970.13-243; HRDY SB, 1992, ETHOL SOCIOBIOL, V13, P409, DOI 10.1016/0162-3095(92)90011-R; HUGHES HM, 1988, AM J ORTHOPSYCHIAT, V58, P77, DOI 10.1111/j.1939-0025.1988.tb01568.x; JOURLIES EN, 1987, J ABNORMAL CHILD PSY, V15, P163; KARRMORSE R, 1997, GHOSTS NURSERY TRACI; KEMPE CH, 1962, JAMA-J AM MED ASSOC, V181, P17, DOI 10.1001/jama.1962.03050270019004; Lancaster JB, 1983, HUMANS ADAPT BIOCULT, P33; LENINGTON S, 1981, ETHOL SOCIOBIOL, V2, P17, DOI 10.1016/0162-3095(81)90019-4; LIGHTCAP JL, 1982, ETHOL SOCIOBIOL, V3, P61, DOI 10.1016/0162-3095(82)90001-2; Maccoby E. E., 1983, HDB CHILD PSYCHOL, V4, P1; MacDonald K, 1997, HUM NATURE-INT BIOS, V8, P327, DOI 10.1007/BF02913038; MARLOWE F, 1998, ANN M HUM BEH EV SOC; MCGUE M, 1993, NATURE NURTURE PSYCH, P59, DOI DOI 10.1037/10131-003; Mednick Sarnoff A., 1980, CRIME JUSTICE ANN RE, V2, P85; Patterson G. R., 1992, ANTISOCIAL BOYS SOCI, V4; Patterson G. R., 1988, RELATIONSHIPS FAMILI, P283; PATTERSON GR, 1984, BOUNDARY AREAS PSYCH, P43; Patterson GR, 1982, COERCIVE FAMILY PROC; PELTON LH, 1978, AM J ORTHOPSYCHIAT, V48, P608, DOI 10.1111/j.1939-0025.1978.tb02565.x; PERRY BD, 1997, CHILDREN VIOLENT SOC, P124; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PLOMIN R, 1991, BEHAV BRAIN SCI, V14, P373, DOI 10.1017/S0140525X00070278; POLANSKY NA, 1981, DAMAGED PARENTS ANAT; Potts R., 1996, HUMANITYS DESCENT CO; REID JB, 1987, J ABNORM CHILD PSYCH, V15, P457, DOI 10.1007/BF00916461; Reid JB, 1981, VIOLENT BEHAV SOCIAL, P83; REID JB, 1984, SOCIAL BIOL ORIGINS, P238; Rowe D. C, 1994, LIMITS FAMILY INFLUE; Stearns S. C., 1992, EVOLUTION LIFE HIST; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TRIVERS RL, 1974, AM ZOOL, V14, P244; VONDRA JI, 1990, MARRIAGE FAM REV, V15, P19; WAHLER RG, 1984, EDUC TREAT CHILD, V7, P335; WALLER JH, 1971, SOC BIOL, V18, P252, DOI 10.1080/19485565.1971.9987927; WIDOM CS, 1989, PATHWAYS CRIMINAL VI, P1; WILSON M, 1994, INFANTICIDE PARENTAL, P73; Wilson WJ, 1987, TRULY DISADVANTAGED 69 8 9 1 13 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 1999 10 4 373 398 10.1007/s12110-999-1008-7 26 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 282EG WOS:000085203400002 26196415 2018-11-12 J Warner, RR Warner, RR The role of extreme iteroparity and risk avoidance in the evolution of mating systems JOURNAL OF FISH BIOLOGY English Article; Proceedings Paper Annual Symposium of the Fisheries-Society-of-the-British-Isles on Tropical Fish Biology JUL 13-16, 1998 SOUTHAMPTON, ENGLAND Fisheries Soc British Isles (FSBI) life history; mating systems; risk aversion; Thalassoma bifasciatum CORAL-REEF FISH; THALASSOMA-BIFASCIATUM PISCES; FEMALE MATE CHOICE; SEXUAL SELECTION; BLUEHEAD WRASSE; PACIFIC SALMON; REPRODUCTIVE-BEHAVIOR; FILIAL CANNIBALISM; SITE DETERMINATION; SEARCH THEORY How much should a female be willing to risk in any one reproductive event? Highly iteroparous females will be risk averse and very conservative in their behaviour. Such females will be expected to avoid mortality risks and seek assurance that any current reproductive activity is safe. By way of minimizing risk, these same females will not engage in mate assessment or mate searching to the same degree as less iteroparous species, if these activities involve increased risk of mortality. Using a field experiment in a highly iteroparous species (the bluehead wrasse, Thalassoma bifasciatum), it is shown that females in this species are indeed relatively risk averse. More importantly, the experiment also shows that individuals vary in their risk aversion depending on local population size, in a manner predicted from life-history theory. Then it is reviewed how several important aspects of the mating system in this species are best interpreted as results of conservative, risk-averse female behaviour. Finally, these ideas are generalized to suggest how basic aspects of the mating system might differ between species with many reproductive events over the lifetime (e.g. many tropical reef fishes) v. species with few reproductive opportunities (e.g. many temperate Freshwater and marine fishes). (C) 1998 The Fisheries Society of the British Isles. Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA Warner, RR (reprint author), Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA. wamer@lifesci.ucsb.edu Warner, Robert/M-5342-2013 Warner, Robert/0000-0002-3299-5685 Andersson M., 1994, SEXUAL SELECTION; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Breder C. M., 1966, MODES REPROD FISHES; CHARNOV E L, 1982; CLUTTONBROCK TH, 1991, NATURE, V351, P58; Dunbar R.I.M., 1983, P423; DUNHAM ML, 1995, THEOR POPUL BIOL, V47, P347, DOI 10.1006/tpbi.1995.1016; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; FLEMING IA, 1994, EVOLUTION, V48, P637, DOI 10.1111/j.1558-5646.1994.tb01350.x; FOOTE CJ, 1990, BEHAVIOUR, V115, P283, DOI 10.1163/156853990X00617; FOOTE CJ, 1989, ANIM BEHAV, V38, P721, DOI 10.1016/S0003-3472(89)80022-3; GADGIL M, 1972, AM NAT, V106, P574, DOI 10.1086/282797; GROSS MR, 1991, PHILOS T R SOC B, V332, P59, DOI 10.1098/rstb.1991.0033; Henson SA, 1997, ANNU REV ECOL SYST, V28, P571, DOI 10.1146/annurev.ecolsys.28.1.571; Houde A. E., 1997, SEX COLOR MATE CHOIC; JANETOS AC, 1980, BEHAV ECOL SOCIOBIOL, V7, P107, DOI 10.1007/BF00299515; JOHANNES R E, 1978, Environmental Biology of Fishes, V3, P65, DOI 10.1007/BF00006309; LUTTBEG B, 1999, IN PRESS BEHAV ECOLO; Mazalov V, 1996, AM NAT, V148, P123, DOI 10.1086/285914; MERTZ DB, 1971, AM NAT, V105, P437, DOI 10.1086/282736; PETERSEN CW, 1990, J EXP MAR BIOL ECOL, V135, P117, DOI 10.1016/0022-0981(90)90011-Z; QUINN TP, 1994, ANIM BEHAV, V48, P751, DOI 10.1006/anbe.1994.1300; REAL L, 1990, AM NAT, V136, P376, DOI 10.1086/285103; REAL LA, 1991, AM NAT, V138, P901, DOI 10.1086/285259; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; ROBERTSON DR, 1977, Z TIERPSYCHOL, V45, P298; Roff Derek A., 1992; SALE P F, 1978, Environmental Biology of Fishes, V3, P85, DOI 10.1007/BF00006310; Sale P.F., 1980, Oceanography and Marine Biology an Annual Review, V18, P367; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHULTZ ET, 1989, EVOLUTION, V43, P1497, DOI 10.1111/j.1558-5646.1989.tb02599.x; SCHWAGMEYER PL, 1979, AM NAT, V114, P932, DOI 10.1086/283541; SHAPIRO DY, 1994, ECOLOGY, V75, P1334, DOI 10.2307/1937458; SIH A, 1994, J FISH BIOL, V45, P111, DOI 10.1111/j.1095-8649.1994.tb01087.x; SIKKEL PC, 1994, ANIM BEHAV, V47, P1149, DOI 10.1006/anbe.1994.1153; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TABORSKY M, 1994, ADV STUD BEHAV, V23, P1, DOI 10.1016/S0065-3454(08)60351-4; Thresher R., 1984, REPROD REEF FISHES; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Warner R.R., 1991, P387; Warner R.R., 1986, P803; WARNER RR, 1987, ANIM BEHAV, V35, P1470, DOI 10.1016/S0003-3472(87)80019-2; WARNER RR, 1990, ANIM BEHAV, V39, P540, DOI 10.1016/S0003-3472(05)80420-8; WARNER RR, 1988, NATURE, V335, P719, DOI 10.1038/335719a0; WARNER RR, 1984, EVOLUTION, V38, P148, DOI 10.1111/j.1558-5646.1984.tb00268.x; WARNER RR, 1995, P ROY SOC B-BIOL SCI, V262, P135, DOI 10.1098/rspb.1995.0187; WARNER RR, 1980, EVOLUTION, V34, P508, DOI 10.1111/j.1558-5646.1980.tb04840.x; WARNER RR, 1990, AM NAT, V135, P205, DOI 10.1086/285039; WARNER RR, 1992, EVOLUTION, V46, P1421, DOI 10.1111/j.1558-5646.1992.tb01134.x; WARNER RR, 1984, AM SCI, V72, P128; WARNER RR, 1980, ECOLOGY, V61, P772, DOI 10.2307/1936747; Warner RR, 1995, ENVIRON BIOL FISH, V44, P337, DOI 10.1007/BF00008248; Warner RR, 1997, BIOSCIENCE, V47, P561, DOI 10.2307/1313162; WARNER RR, 1991, BIOL BULL-US, V181, P199, DOI 10.2307/1542090; WARNER RR, 1988, TRENDS ECOL EVOL, V3, P133, DOI 10.1016/0169-5347(88)90176-0; WARNER RR, 1975, SCIENCE, V190, P633, DOI 10.1126/science.1188360 58 25 25 0 6 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-1112 1095-8649 J FISH BIOL J. Fish Biol. DEC 1998 53 A 82 93 10.1006/jfbi.1998.0825 12 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 154MA WOS:000077891900007 2018-11-12 J Jonsson, KI; Tuomi, J; Jaremo, J Jonsson, KI; Tuomi, J; Jaremo, J Pre- and postbreeding costs of parental investment OIKOS English Article REPRODUCTIVE EFFORT TACTICS; LIFE-HISTORY EVOLUTION; CLUTCH-SIZE; STURNUS-VULGARIS; PREDATION RISK; TRADE-OFFS; BIRDS; RESERVES; CONSEQUENCES; PERFORMANCE Costs of reproduction are traditionally defined as reductions in the potential for future fitness contributions, induced by current reproductive investments, i.e. postbreeding costs. However, preparation for breeding and parental care may expose parents to survival costs already before offspring independence. Such prebreeding survival costs have only rarely been considered in the context of life history evolution. Theoretical analyses show that pre- and postbreeding costs have differential effects on fitness, and a distinction between these two systems of costs may therefore be of crucial importance in analyses of optimal parental investment. With prebreeding costs, optimal parental investment is lower than with postbreeding costs, ceteris paribus. We illustrate this in a simple analysis of optimal clutch size, and provide general conditions for optimal ditch size with prebreeding and postbreeding costs, respectively. Through their differential effects on fitness, systems of costs may also influence and direct the evolution of behavioural and physiological patterns associated with parental investments. The distinction between pre- and postbreeding costs provides new perspectives on costs of reproduction that may prove fruitful in the future development of life history theory. It also allows analyses of optimal life histories under reproductive costs in semelparous organisms. As predation may be an important mechanism behind prebreeding survival costs, we emphasize the role of predation and anti-predatory behaviour in the evolution of life histories and breeding behaviour. Turku Univ, Dept Biol, Ecol Zool Lab, FIN-20014 Turku, Finland; Univ Oulu, Dept Biol, FIN-90570 Oulu, Finland; Lund Univ, Dept Theoret Ecol, SE-22362 Lund, Sweden Jonsson, KI (reprint author), Lund Univ, Dept Theoret Ecol, SE-22362 Lund, Sweden. Jonsson, Ingemar/K-6047-2013 ALERSTAM T, 1984, OIKOS, V43, P253, DOI 10.2307/3544778; ANKNEY CD, 1991, CONDOR, V93, P1029, DOI 10.2307/3247743; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BERGLUND A, 1986, OIKOS, V46, P349, DOI 10.2307/3565833; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; CORK SJ, 1991, J ZOOL, V225, P567, DOI 10.1111/j.1469-7998.1991.tb04325.x; DALY M, 1978, AM NAT, V112, P771, DOI 10.1086/283319; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; FOWLER K, 1989, NATURE, V338, P760, DOI 10.1038/338760a0; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; HARIO M, 1991, ORNIS SCAND, V22, P308, DOI 10.2307/3676501; HAUKIOJA E, 1979, Ornis Fennica, V56, P45; HEDENSTROM A, 1992, J THEOR BIOL, V158, P535, DOI 10.1016/S0022-5193(05)80714-3; JACOBSEN KO, 1995, ECOLOGY, V76, P1636, DOI 10.2307/1938164; JONES PJ, 1979, J ZOOL, V189, P1; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; JONSSON KI, 1995, OIKOS, V74, P35, DOI 10.2307/3545672; JONSSON KI, 1994, TRENDS ECOL EVOL, V9, P304, DOI 10.1016/0169-5347(94)90042-6; Jonsson KI, 1995, ECOSCIENCE, V2, P311; KETTERSON ED, 1992, AM NAT, V140, pS33, DOI 10.1086/285396; KING JR, 1985, AM ZOOL, V25, P955; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D., 1954, NATURAL REGULATION A; Lee SJ, 1996, P ROY SOC B-BIOL SCI, V263, P619, DOI 10.1098/rspb.1996.0093; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; MILLAR JS, 1975, CAN J ZOOL, V53, P967, DOI 10.1139/z75-112; MORENO J, 1989, BIOL J LINN SOC, V37, P297, DOI 10.1111/j.1095-8312.1989.tb01907.x; Moreno J., 1993, Etologia, V3, P41; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROWE L, 1994, ANIM BEHAV, V48, P1049, DOI 10.1006/anbe.1994.1338; SAETHER BE, 1993, BEHAV ECOL SOCIOBIOL, V33, P147, DOI 10.1007/BF00216594; SCHWARZKOPF L, 1994, LIZARD ECOLOGY, P7; SCHWARZKOPF L, 1992, BEHAV ECOL SOCIOBIOL, V31, P17, DOI 10.1007/BF00167812; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SIBLY R, 1984, J THEOR BIOL, V111, P463, DOI 10.1016/S0022-5193(84)80234-9; SINERVO B, 1994, LIZARD ECOLOGY, P73; Sinervo B, 1996, EVOLUTION, V50, P1299, DOI 10.1111/j.1558-5646.1996.tb02370.x; SINERVO B, 1991, J EXP BIOL, V155, P323; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TUOMI J, 1983, AM ZOOL, V23, P25; TUOMI J, 1990, OIKOS, V58, P387, DOI 10.2307/3545231; TUTTLE MD, 1981, SCIENCE, V214, P677, DOI 10.1126/science.214.4521.677; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; WITTER MS, 1993, PHILOS T R SOC B, V340, P73, DOI 10.1098/rstb.1993.0050; WITTER MS, 1994, ANIM BEHAV, V48, P201, DOI 10.1006/anbe.1994.1227 56 17 18 0 14 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos DEC 1998 83 3 424 431 10.2307/3546670 8 Ecology Environmental Sciences & Ecology 162MK WOS:000078350500003 2018-11-12 J Sinervo, B; Svensson, E Sinervo, B; Svensson, E Mechanistic and selective causes of life history trade-offs and plasticity OIKOS English Article EXPERIMENTALLY ELEVATED TESTOSTERONE; SNAKE THAMNOPHIS-ORDINOIDES; DARK-EYED JUNCOS; HOME-RANGE SIZE; REPRODUCTIVE EFFORT; CLUTCH SIZE; NATURAL-SELECTION; MALE LIZARDS; EGG SIZE; COLLARED FLYCATCHER We discuss the mechanistic ("proximate") and selective ("ultimate") factors that cause life history trade-offs such as the trade-off between offspring quality and quantity and that between current and future reproduction. We point out that key concepts in life history theory and evolutionary biology such as negative genetic correlations and trade-offs can be understood in terms of physiological mechanisms. More specifically, negative genetic correlations causing trade-offs between life history traits are caused by hormones and their regulatory genes that have multiple and opposing, pleiotropic effects on two or more traits. Consequently, investigations of these mechanisms is a natural complement to the classical population genetical approach. We critically dissect the argument, put forward by other workers, that experimental manipulations of organismal physiology or other phenotypic traits do not reveal genetic life history trade-offs, bur only reflects phenotypic plasticity. We reject this idea and discuss the proposed alternative approach: laboratory selection experiments. We point out some problems associated with laboratory selection experiments and suggest that experimental manipulations of life history traits and secondary sexual characters in natural populations is an important and invaluable empirical method if one aims to get a better understanding of life history evolution in the wild. Finally, we discuss the proximate-ultimate dichotomy, the physiology of phylogenetic constraints, the role of physiological mechanisms in population differentiation in life history trade-offs, and the importance of phenotypic plasticity in shaping such trade-offs. We suggest that life history plasticity in many cases may stein from the same endocrine mechanisms (gonadotropin, gonadal steroids, and adrenal glucocorticoids) as those involved in life history trade-offs. In particular, attempts to dichotomize life history trade-offs and life history plasticity may be unrealistic as the hormones governing both life history phenomena are Likely to share key mechanisms in common. Univ Calif Santa Cruz, Dept Biol, Santa Cruz, CA 95064 USA Sinervo, B (reprint author), Univ Calif Santa Cruz, Dept Biol, Santa Cruz, CA 95064 USA. sinervo@biology.ucsc.edu Svensson, Erik/E-8324-2010 Svensson, Erik/0000-0001-9006-016X ANDERSSON M, 1982, NATURE, V299, P818, DOI 10.1038/299818a0; ANDERSSON M, 1994, SEXUAL SLECTION; ANDREWS R, 1974, ECOLOGY, V55, P1317, DOI 10.2307/1935459; Barbazanges A, 1996, J NEUROSCI, V16, P3943; BESEDOVSKI HO, 1995, ENDOCR REV, V17, P64; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; BRODIE ED, 1992, EVOLUTION, V46, P1284, DOI 10.1111/j.1558-5646.1992.tb01124.x; BRODIE ED, 1993, EVOLUTION, V47, P844, DOI 10.1111/j.1558-5646.1993.tb01238.x; CALLARD IP, 1978, GEN COMP CLIN ENDOCR; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; DENARDO DF, 1994, HORM BEHAV, V28, P273, DOI 10.1006/hbeh.1994.1023; DENARDO DF, 1994, HORM BEHAV, V28, P53, DOI 10.1006/hbeh.1994.1005; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; Endler JA, 1986, NATURAL SELECTION WI; Falconer DS, 1996, INTRO QUANTITATIVE G; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; FROST DR, 1989, MISC PUBL U KANSAS M, V81, P1; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GIBBS HL, 1987, NATURE, V327, P511, DOI 10.1038/327511a0; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; GUSTAFSSON L, 1995, NATURE, V375, P311, DOI 10.1038/375311a0; Harvey P. H., 1991, COMP METHOD EVOLUTIO; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; HIRSHFIELD MF, 1980, ECOLOGY, V61, P282, DOI 10.2307/1935187; HOGSTEDT G, 1980, SCIENCE, V210, P1148, DOI 10.1126/science.210.4474.1148; HOUDE AE, 1994, P ROY SOC B-BIOL SCI, V256, P125, DOI 10.1098/rspb.1994.0059; Jones R.E., 1978, P763; JONES RE, 1975, GEN COMP ENDOCR, V26, P354, DOI 10.1016/0016-6480(75)90089-1; JONES RE, 1976, GEN COMP ENDOCR, V30, P101, DOI 10.1016/0016-6480(76)90071-X; KETTERSON ED, 1992, AM NAT, V140, pS33, DOI 10.1086/285396; KETTERSON ED, 1991, HORM BEHAV, V25, P489, DOI 10.1016/0018-506X(91)90016-B; KIRKPATRICK M, 1982, EVOLUTION, V36, P1, DOI 10.1111/j.1558-5646.1982.tb05003.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LACK D, 1954, NATURAL REGULATION A; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1981, P NATL ACAD SCI-BIOL, V78, P3721, DOI 10.1073/pnas.78.6.3721; LANDWER AJ, 1994, OECOLOGIA, V100, P243, DOI 10.1007/BF00316951; Licht P, 1976, Recent Prog Horm Res, V33, P169; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; MARLER CA, 1988, BEHAV ECOL SOCIOBIOL, V23, P21, DOI 10.1007/BF00303053; MARLER CA, 1991, ANIM BEHAV, V42, P209, DOI 10.1016/S0003-3472(05)80552-4; MAYR E, 1961, SCIENCE, V134, P1501, DOI 10.1126/science.134.3489.1501; MERILA J, 1994, BIOL J LINN SOC, V52, P19, DOI 10.1006/bijl.1994.1036; Munck A., 1995, ANN NY ACAD SCI, V774, P115; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; NOLAN V, 1992, CONDOR, V94, P364, DOI 10.2307/1369209; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; Pomiankowski A.N., 1988, Oxford Surveys in Evolutionary Biology, V5, P136; PRICE TD, 1984, EVOLUTION, V38, P483, DOI 10.1111/j.1558-5646.1984.tb00314.x; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROSE M, 1980, NATURE, V287, P141, DOI 10.1038/287141a0; Rose Michael R., 1996, P221; ROSE MR, 1981, GENETICS, V97, P187; SAAD AH, 1986, DEV COMP IMMUNOL, V10, P235, DOI 10.1016/0145-305X(86)90006-6; SAPOLSKY R M, 1992, P287; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; SCHLUTER D, 1993, EVOLUTION, V47, P658, DOI 10.1111/j.1558-5646.1993.tb02119.x; SINERVO B, 1994, LIZARD ECOLOGY, P73; Sinervo B, 1996, NATURE, V380, P240, DOI 10.1038/380240a0; Sinervo B, 1996, EVOLUTION, V50, P1299, DOI 10.1111/j.1558-5646.1996.tb02370.x; Sinervo B, 1996, EVOLUTION, V50, P1314, DOI 10.1111/j.1558-5646.1996.tb02371.x; SINERVO B, 1991, J EXP ZOOL, V257, P252, DOI 10.1002/jez.1402570216; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; Sinervo Barry, 1996, P149; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1984, AM NAT, V123, P56, DOI 10.1086/284186; Svensson E, 1997, BEHAV ECOL, V8, P92, DOI 10.1093/beheco/8.1.92; Svensson E, 1997, EVOLUTION, V51, P1276, DOI 10.1111/j.1558-5646.1997.tb03974.x; TUOMI J, 1983, AM ZOOL, V23, P25; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILSON BS, 1992, COPEIA, P691; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134 83 138 139 4 64 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos DEC 1998 83 3 432 442 10.2307/3546671 11 Ecology Environmental Sciences & Ecology 162MK WOS:000078350500004 2018-11-12 J Svensson, E; Sheldon, BC Svensson, E; Sheldon, BC The social context of life history evolution OIKOS English Review PARENT-OFFSPRING CONFLICT; SECONDARY SEXUAL CHARACTER; SWALLOW HIRUNDO-RUSTICA; CLUTCH SIZE; REPRODUCTIVE EFFORT; BARN SWALLOW; DROSOPHILA-MELANOGASTER; DIRECTIONAL SELECTION; FUNDAMENTAL THEOREM; COLLARED FLYCATCHER We discuss ways in which the social environment as individual inhabits may have influenced, and continues to influence, the lift history patterns it follows. We argue that the social context in which a life history is expressed has the potential to influence the evolution of that life history in four distinct ways, and that these may not always have been fully considered in classic life history theory. First, conflicts of interest are frequent when non-clonal organisms interact. and this is particularly true for reproduction, where conflicts between the sexes and between parents and offspring have numerous potential impacts on life histories. Second, the occurrence of frequency- and density-dependent selection arising from social interactions can have important consequences for predicting the evolutionary trajectories of life histories. Third, research in sexual selection has often been free of a life-history perspective: combining the two has the potential to offer interesting insights into the process of sexual selection and the evolution of sexual ornamentation, Finally, we illustrate some of the more dramatic outcomes of these factors for life history evolution by discussing the evolution and maintenance of within population polymorphisms in life histories. An appreciation of the roles of social interactions may provide a solution to some long-standing questions in life-history research, such as how high levels of additive genetic variance for traits closely related to fitness are maintained. Lund Univ, Dept Ecol, SE-22362 Lund, Sweden Sheldon, BC (reprint author), Uppsala Univ, Dept Zool, Villavagen 9, SE-75236 Uppsala, Sweden. ben.sheldon@zoologi.uu.se Sheldon, Ben/A-8056-2010; Svensson, Erik/E-8324-2010 Sheldon, Ben/0000-0002-5240-7828; Svensson, Erik/0000-0001-9006-016X Andersson M., 1994, SEXUAL SELECTION; BARLOW DP, 1995, SCIENCE, V270, P1610, DOI 10.1126/science.270.5242.1610; BRISKIE JV, 1994, P ROY SOC B-BIOL SCI, V258, P73, DOI 10.1098/rspb.1994.0144; BURLEY N, 1981, SCIENCE, V211, P721, DOI 10.1126/science.211.4483.721; BURLEY N, 1986, AM NAT, V127, P415, DOI 10.1086/284493; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; CHARNOV E L, 1982; Charnov EL, 1997, NATURE, V387, P393, DOI 10.1038/387393a0; CLARK AB, 1978, SCIENCE, V201, P163, DOI 10.1126/science.201.4351.163; CLARK AG, 1995, GENETICS, V139, P189; Clutton-Brock T., 1991, P234; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; COOCH EG, 1989, J ANIM ECOL, V58, P711, DOI 10.2307/4858; COOKE F, 1990, AM NAT, V136, P261, DOI 10.1086/285095; Cuervo JJ, 1996, OECOLOGIA, V108, P252, DOI 10.1007/BF00334648; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; DAVIES NB, 1992, DNNOCK BEHAV SOCIAL; Dawkins R, 1982, EXTENDED PHENOTYPE; Day T, 1996, P ROY SOC B-BIOL SCI, V263, P333, DOI 10.1098/rspb.1996.0051; DeKogel CH, 1996, ANIM BEHAV, V51, P699, DOI 10.1006/anbe.1996.0073; DELOPE F, 1993, EVOLUTION, V47, P1152, DOI 10.1111/j.1558-5646.1993.tb02142.x; Ellegren H, 1996, P NATL ACAD SCI USA, V93, P11723, DOI 10.1073/pnas.93.21.11723; EMLEN ST, 1992, NATURE, V356, P331, DOI 10.1038/356331a0; FISHER R. A., 1930, GENETICAL THEORY NAT; FRANK SA, 1992, TRENDS ECOL EVOL, V7, P92, DOI 10.1016/0169-5347(92)90248-A; GODFRAY HCJ, 1991, PHILOS T ROY SOC B, V332, P67, DOI 10.1098/rstb.1991.0034; GODFRAY HCJ, 1987, AM NAT, V129, P221, DOI 10.1086/284632; GODFRAY HCJ, 1992, ANIM BEHAV, V43, P473, DOI 10.1016/S0003-3472(05)80106-X; GRAFEN A, 1990, J THEOR BIOL, V144, P473, DOI 10.1016/S0022-5193(05)80087-6; GROSS MR, 1985, NATURE, V313, P47, DOI 10.1038/313047a0; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; GUSTAFSSON L, 1995, NATURE, V375, P311, DOI 10.1038/375311a0; GUSTAFSSON L, 1986, AM NAT, V128, P761, DOI 10.1086/284601; HAIG D, 1989, AM NAT, V134, P147, DOI 10.1086/284971; HAMILTON WD, 1967, SCIENCE, V156, P477, DOI 10.1126/science.156.3774.477; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HAMILTON WD, 1964, J THEOR BIOL, V7, P17, DOI 10.1016/0022-5193(64)90039-6; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HAWKES K, 1995, EVOL ECOL, V9, P662, DOI 10.1007/BF01237661; Hoglund J, 1998, OIKOS, V83, P478, DOI 10.2307/3546675; HORI M, 1993, SCIENCE, V260, P216, DOI 10.1126/science.260.5105.216; HOULE D, 1992, GENETICS, V130, P195; Hurst Laurence D., 1997, V18, P211; Jenni L, 1994, MOULT AGEING EUROPEA; JONSSON KI, 1995, OIKOS, V74, P35, DOI 10.2307/3545672; KAWECKI TJ, 1993, OIKOS, V66, P309, DOI 10.2307/3544819; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; KEMPENAERS B, 1995, ANIM BEHAV, V49, P1047, DOI 10.1006/anbe.1995.0134; Kempenaers B, 1997, ANIM BEHAV, V53, P423, DOI 10.1006/anbe.1996.0377; KIRKPATRICK M, 1982, EVOLUTION, V36, P1, DOI 10.1111/j.1558-5646.1982.tb05003.x; Kluijver HN, 1951, ARDEA, V39, P1; Kokko H, 1997, BEHAV ECOL SOCIOBIOL, V41, P99, DOI 10.1007/s002650050369; Lack D., 1954, NATURAL REGULATION A; LANK DB, 1995, NATURE, V378, P59, DOI 10.1038/378059a0; LESLIE PH, 1948, BIOMETRIKA, V35, P213, DOI 10.1093/biomet/35.3-4.213; Mappes J, 1996, P ROY SOC B-BIOL SCI, V263, P785, DOI 10.1098/rspb.1996.0117; MASMAN D, 1989, J EVOLUTION BIOL, V2, P435, DOI 10.1046/j.1420-9101.1989.2060435.x; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; McVean GT, 1997, P ROY SOC B-BIOL SCI, V264, P739, DOI 10.1098/rspb.1997.0105; MEDAWAR PB, 1952, UNSOALVED PROBLEM BI; Mochizuki A, 1996, GENETICS, V144, P1283; MOLLER AP, 1989, NATURE, V339, P132; MOLLER AP, 1994, EVOLUTION, V48, P1676, DOI 10.1111/j.1558-5646.1994.tb02204.x; MOLLER AP, 1994, SEXUAL SELECTION BAR; MOORE T, 1991, TRENDS GENET, V7, P45, DOI 10.1016/0168-9525(91)90230-N; OWENS IPF, 1994, P ROY SOC B-BIOL SCI, V257, P1, DOI 10.1098/rspb.1994.0086; OWENS IPF, 1993, TRENDS ECOL EVOL, V8, P269, DOI 10.1016/0169-5347(93)90251-J; PACKER C, 1995, AM NAT, V145, P833, DOI 10.1086/285771; PACKER C, 1995, NATURE, V373, P60, DOI 10.1038/373060a0; Parker G.A., 1982, P173; PARKER GA, 1972, J THEOR BIOL, V36, P529, DOI 10.1016/0022-5193(72)90007-0; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1987, SEXUAL SELECTION TES, P265; PFENNIG DW, 1992, EVOLUTION, V46, P1408, DOI 10.1111/j.1558-5646.1992.tb01133.x; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PRICE T, 1988, SCIENCE, V240, P798, DOI 10.1126/science.3363360; PROMISLOW DEL, 1992, P ROY SOC B-BIOL SCI, V250, P143, DOI 10.1098/rspb.1992.0142; Qvarnstrom A, 1997, P ROY SOC B-BIOL SCI, V264, P1225, DOI 10.1098/rspb.1997.0169; Rice WR, 1996, NATURE, V381, P232, DOI 10.1038/381232a0; Roff Derek A., 1992; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Saino N, 1997, EVOLUTION, V51, P562, DOI 10.1111/j.1558-5646.1997.tb02443.x; Saino N, 1996, BEHAV ECOL, V7, P227, DOI 10.1093/beheco/7.2.227; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Sheldon BC, 1997, BEHAV ECOL, V8, P421, DOI 10.1093/beheco/8.4.421; Shuster SM, 1997, NATURE, V388, P373, DOI 10.1038/41089; Sinervo B, 1996, NATURE, V380, P240, DOI 10.1038/380240a0; SKULASON S, 1995, TRENDS ECOL EVOL, V10, P366, DOI 10.1016/S0169-5347(00)89135-1; SLAGSVOLD T, 1994, NATURE, V370, P136, DOI 10.1038/370136a0; SLAGSVOLD T, 1994, AM NAT, V143, P59, DOI 10.1086/285596; SMITH HG, 1994, BEHAV ECOL, V5, P57, DOI 10.1093/beheco/5.1.57; SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Svensson E, 1997, BEHAV ECOL, V8, P92, DOI 10.1093/beheco/8.1.92; Svensson E, 1996, P ROY SOC B-BIOL SCI, V263, P357, DOI 10.1098/rspb.1996.0055; TABORSKY M, 1994, ADV STUD BEHAV, V23, P1, DOI 10.1016/S0065-3454(08)60351-4; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; Trivers R. L., 1972, SEXUAL SELECTION DES, P137; TRIVERS RL, 1974, AM ZOOL, V14, P249; WARNER RR, 1995, P ROY SOC B-BIOL SCI, V262, P135, DOI 10.1098/rspb.1995.0187; Wedell N, 1996, AM NAT, V148, P1075, DOI 10.1086/285972; WESTNEAT DF, 1993, BEHAV ECOL, V4, P66, DOI 10.1093/beheco/4.1.66; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 105 48 48 1 22 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos DEC 1998 83 3 466 477 10.2307/3546674 12 Ecology Environmental Sciences & Ecology 162MK WOS:000078350500007 2018-11-12 J Hoglund, J; Sheldon, BC Hoglund, J; Sheldon, BC The cost of reproduction and sexual selection OIKOS English Article COLLARED FLYCATCHER; VIABILITY COSTS; HIRUNDO-RUSTICA; BARN SWALLOW; CLUTCH SIZE; WOLF SPIDER; TRADE-OFFS; GREAT TIT; ORNAMENTATION; IMMUNOCOMPETENCE When analysing how individuals allocate resources, sexual display should be regarded as is any other life-history trait: patterns of allocation are expected to be individually optimised. It thus follows that the costs of sexual selection cannot be studied by simply comparing unmanipulated individual effort and some measure of cost. This rather trivial consequence of life-history theory has received surprisingly little attention in studies of sexual selection despite the almost universal acceptance of the theory and the fact that several papers have addressed the question specifically in the context of sexual selection. We therefore again outline why sexual displays are expected to be optimised at the level of the individual and why individuals with high access to resources should generally display at higher levels than individuals short of resources, We use some recent findings from studies of birds and spiders particularly relevant to the above questions that illustrate these principles. The examples we present show that the cost of sexual selection could be mediated in many ways and we thus suggest that future studies should focus on such mechanisms. Uppsala Univ, Dept Zool, SE-75236 Uppsala, Sweden Hoglund, J (reprint author), Uppsala Univ, Dept Zool, Villavagen 9, SE-75236 Uppsala, Sweden. jacob.hoglund@zoologi.uu.se Sheldon, Ben/A-8056-2010 Sheldon, Ben/0000-0002-5240-7828; Hoglund, Jacob/0000-0002-5840-779X Allander K, 1997, FUNCT ECOL, V11, P358, DOI 10.1046/j.1365-2435.1997.00095.x; CADE W, 1975, SCIENCE, V190, P1312, DOI 10.1126/science.190.4221.1312; CADE WH, 1984, BEHAVIOUR, V88, P61, DOI 10.1163/156853984X00489; CADE WH, 1981, SCIENCE, V212, P563, DOI 10.1126/science.212.4494.563; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; Ellegren H, 1996, P NATL ACAD SCI USA, V93, P11723, DOI 10.1073/pnas.93.21.11723; Endler JA, 1986, NATURAL SELECTION WI; GADGIL M, 1972, AM NAT, V106, P574, DOI 10.1086/282797; GRAFEN A, 1990, J THEOR BIOL, V144, P473, DOI 10.1016/S0022-5193(05)80087-6; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; GUSTAFSSON L, 1995, NATURE, V375, P311, DOI 10.1038/375311a0; HOGSTEDT G, 1980, SCIENCE, V210, P1148, DOI 10.1126/science.210.4474.1148; Kokko H, 1997, BEHAV ECOL SOCIOBIOL, V41, P99, DOI 10.1007/s002650050369; KOTIAHO J, 1997, THESIS U JYVASKYLA; Levins R., 1968, EVOLUTION CHANGING E; Mappes J, 1996, P ROY SOC B-BIOL SCI, V263, P785, DOI 10.1098/rspb.1996.0117; MOLLER AP, 1989, NATURE, V339, P132; MOLLER AP, 1994, SEXUAL SELECTION BAR; NORRIS K, 1994, J ANIM ECOL, V63, P601, DOI 10.2307/5226; NUR N, 1984, J THEOR BIOL, V110, P275, DOI 10.1016/S0022-5193(84)80059-4; Parri S, 1997, ANIM BEHAV, V53, P305, DOI 10.1006/anbe.1996.0371; PRAT T, 1997, ANIM BEHAV, V54, P893; Qvarnstrom A, 1997, P ROY SOC B-BIOL SCI, V264, P1225, DOI 10.1098/rspb.1997.0169; RICHNER H, 1995, P NATL ACAD SCI USA, V92, P1192, DOI 10.1073/pnas.92.4.1192; Roff Derek A., 1992; RYAN MJ, 1981, BEHAV ECOL SOCIOBIOL, V8, P273, DOI 10.1007/BF00299526; RYAN MJ, 1982, AM NAT, V119, P136, DOI 10.1086/283899; Saino N, 1997, EVOLUTION, V51, P562, DOI 10.1111/j.1558-5646.1997.tb02443.x; Saino N, 1997, P NATL ACAD SCI USA, V94, P549, DOI 10.1073/pnas.94.2.549; Saino N, 1996, BEHAV ECOL, V7, P227, DOI 10.1093/beheco/7.2.227; Sheldon BC, 1997, P ROY SOC B-BIOL SCI, V264, P297, DOI 10.1098/rspb.1997.0042; Sheldon BC, 1996, ANIM BEHAV, V52, P645, DOI 10.1006/anbe.1996.0207; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Stearns S. C., 1992, EVOLUTION LIFE HIST; TINBERGEN JM, 1990, BEHAVIOUR, V114, P161, DOI 10.1163/156853990X00103; Williams GC, 1966, ADAPTATION NATURAL S 36 84 86 1 23 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos DEC 1998 83 3 478 483 10.2307/3546675 6 Ecology Environmental Sciences & Ecology 162MK WOS:000078350500008 2018-11-12 J Bruno, JF Bruno, JF Fragmentation in Madracis mirabilis (Duchassaing and Michelotti): How common is size-specific fragment survivorship in corals? JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY English Article asexual reproduction; corals; dispersal; fragmentation; life history; Madracis mirabilis STATES VIRGIN-ISLANDS; POPULATION-DYNAMICS; PROPAGULE SIZE; PHENOTYPIC PLASTICITY; PORITES SCLERACTINIA; EVOLUTIONARY ECOLOGY; ACROPORA-CERVICORNIS; LIFE HISTORIES; REEF CORALS; SEED SIZE Fragmentation is an important asexual mode of reproduction for many coral species and other marine invertebrates. General life history theory and models of coral fragmentation predict that intra- and inter-specific variation in fragment size should be positively related to survival and inversely related to dispersal distance. To test these predictions I examined fragmentation in the Caribbean branching coral Madracis mirabilis, which produces relatively small fragments. The effects of intra-specific variation in fragment size on fragment survival and dispersal in M. mirabilis were examined by following the fate of 60 labeled fragments for 11 months at three sites. Fragment dispersal distance was limited (generally < 20 cm), was not significantly related to fragment size, and varied among sites, being greatest at a shallow forereef site. Although the smallest fragments displayed the lowest survivorship (approximate to 50%), there was no apparent increase in survivorship with size among larger fragments (i.e., those 5-15 cm in length), and there was no overall significant relationship between fragment size and survivorship. In contrast, fragment survivorship varied greatly among sites (29-81%), being the highest at two forereef sites (10 and 20 m depth) and lowest at a lagoon site with high sedimentation (10 m depth). Although natural fragments of M. mirabilis are smaller than almost any other known fragmenting coral species, they can have a high rate of survivorship in forereef environments. The results of this and other studies do not support the predicted general inter- and intra-specific relationships between fragment size and survivorship and suggest that fragment survivorship is highly context and species specific, and is also greatly influenced by factors other than fragment size. (C) 1998 Elsevier Science B.V. All rights reserved. Brown Univ, Dept Ecol & Evolutionary Biol, Providence, RI 02912 USA Bruno, JF (reprint author), Brown Univ, Dept Ecol & Evolutionary Biol, Box G-W, Providence, RI 02912 USA. John_Bruno@Brown.edu BAK RPM, 1981, 4TH P INT COR REEF S, V2, P221; BOTHWELL AM, 1981, 4TH P INT COR REEF S, V2, P137; BROWN BE, 1985, J EXP MAR BIOL ECOL, V86, P139, DOI 10.1016/0022-0981(85)90027-9; Bruno JF, 1997, ECOLOGY, V78, P2177, DOI 10.1890/0012-9658(1997)078[2177:CVFPPI]2.0.CO;2; BRUNO JF, 1995, THESIS CALIFORNIA ST; CHAMBERLAIN JA, 1975, B MAR SCI, V25, P112; CONNELL JH, 1973, BIOLOGY GEOLOGY CORA, V2, P205; Cox EF, 1992, P 7 INT COR REEF S G, V1, P513; DENNY MW, 1985, ECOL MONOGR, V55, P69, DOI 10.2307/1942526; EDMUNDS PJ, 1989, CORAL REEFS, V8, P37, DOI 10.1007/BF00304690; EDMUNDS PJ, 1991, MAR ECOL PROG SER, V78, P201, DOI 10.3354/meps078201; Edmunds PJ, 1996, MAR ECOL PROG SER, V143, P165, DOI 10.3354/meps143165; FENNER DP, 1993, B MAR SCI, V53, P1099; FOSTER AB, 1979, J EXP MAR BIOL ECOL, V39, P25, DOI 10.1016/0022-0981(79)90003-0; Harper J. L., 1977, POPULATION BIOL PLAN; HELMUTH B, 1993, J EXP MAR BIOL ECOL, V165, P251, DOI 10.1016/0022-0981(93)90109-2; HEYWARD AJ, 1985, CORAL REEFS, V4, P35, DOI 10.1007/BF00302202; HIGHSMITH RC, 1982, MAR ECOL PROG SER, V7, P207, DOI 10.3354/meps007207; HIGHSMITH RC, 1980, OECOLOGIA, V46, P322, DOI 10.1007/BF00346259; HUGHES DC, 1985, J MATER SCI LETT, V4, P101, DOI 10.1007/BF00719908; HUGHES RN, 1983, BIOL J LINN SOC, V20, P39, DOI 10.1111/j.1095-8312.1983.tb01588.x; HUGHES TP, 1985, ECOL MONOGR, V55, P141, DOI 10.2307/1942555; HUGHES TP, 1987, AM NAT, V129, P818, DOI 10.1086/284677; HUNTER CL, 1993, EVOLUTION, V47, P1213, DOI 10.1111/j.1558-5646.1993.tb02148.x; JACKSON JBC, 1977, AM NAT, V111, P743, DOI 10.1086/283203; KNOWLTON N, 1981, NATURE, V294, P251, DOI 10.1038/294251a0; Knowlton N, 1990, SMITHSON CONTR MAR S, V31, P1, DOI DOI 10.5479/SI.01960768.31.1; Kobayashi A., 1984, Galaxea, V3, P13; Lack D., 1968, ECOLOGICAL ADAPTATIO; Lang JC, 1990, ECOSYSTEMS WORLD, V25; LASKER HR, 1984, MAR ECOL PROG SER, V19, P261, DOI 10.3354/meps019261; LASKER HR, 1990, ECOLOGY, V71, P1578, DOI 10.2307/1938293; LASKER HR, 1985, 5TH P INT COR REEF C, V4, P331; LEWIS JB, 1991, MAR ECOL PROG SER, V70, P101, DOI 10.3354/meps070101; LOYA Y, 1976, NATURE, V261, P490, DOI 10.1038/261490a0; MORSE DH, 1985, OECOLOGIA, V67, P372, DOI 10.1007/BF00384943; NEIGEL JE, 1983, EVOLUTION, V37, P437, DOI 10.1111/j.1558-5646.1983.tb05561.x; PATTERSON MR, 1992, AM ZOOL, V32, P566; POTTS DC, 1985, MAR ECOL PROG SER, V23, P79, DOI 10.3354/meps023079; ROGERS CS, 1982, B MAR SCI, V32, P532; RYLAARSDAM KW, 1983, MAR ECOL PROG SER, V13, P249, DOI 10.3354/meps013249; SCHINDLER JS, 1985, THESIS G WASHINGTON; Sebens K. P., 1992, P 7 INT COR REEF S, V1, P557; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STODDART DR, 1974, 2ND P INT COR REEF S, V2, P473; TUNNICLIFFE V, 1981, P NATL ACAD SCI-BIOL, V78, P2427, DOI 10.1073/pnas.78.4.2427; WAHLE CM, 1983, BIOL BULL, V165, P778, DOI 10.2307/1541478; WALLACE CC, 1985, MAR BIOL, V88, P217, DOI 10.1007/BF00392585; WEIS IM, 1982, CAN J BOT, V60, P1868, DOI 10.1139/b82-233; WESTOBY M, 1992, TRENDS ECOL EVOL, V7, P368, DOI 10.1016/0169-5347(92)90006-W; WILBUR HM, 1977, AM NAT, V111, P43, DOI 10.1086/283137; WINN AA, 1988, ECOLOGY, V69, P1537, DOI 10.2307/1941651; WOODLEY JD, 1981, SCIENCE, V214, P749, DOI 10.1126/science.214.4522.749; WULFF JL, 1985, 5TH P INT COR REEF S, V5, P119 54 25 25 0 1 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0022-0981 J EXP MAR BIOL ECOL J. Exp. Mar. Biol. Ecol. NOV 30 1998 230 2 169 181 10.1016/S0022-0981(98)00080-X 13 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 152NX WOS:000077784600002 2018-11-12 J Polak, M; Starmer, WT Polak, M; Starmer, WT Parasite-induced risk of mortality elevates reproductive effort in male Drosophila PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article parasitism; longevity; reproductive effort; Drosophila; Macrocheles BIOMPHALARIA-GLABRATA; SEXUAL SELECTION; LIFE-HISTORY; MELANOGASTER; COST; EVOLUTION A trade-off between sex and somatic maintenance is fundamental to life-history theory. Tests of this trade-off usually emphasize deleterious consequences of increased reproduction on life span. Here we show the reverse effect, that reductions in the expected life span elevate sexual activity. Experimentally parasitized male Drosophila nigrospiracula lived shorter lives, but before dying, they courted females significantly more than unparasitized controls. This greater courtship resulted in increased mating speed, and potentially greater reproductive success than parasitized males would have achieved otherwise. The results show that an environmental reduction in life span increases reproductive effort, and support the hypothesis of a trade-off between these key life-history traits. Syracuse Univ, Dept Biol, Syracuse, NY 13244 USA Polak, M (reprint author), Syracuse Univ, Dept Biol, Lyman Hall,108 Coll Pl, Syracuse, NY 13244 USA. Beckage Nancy E., 1997, P3; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CLUTTONBROCK TH, 1988, REPROD SUCCESS; Ewald PW, 1994, EVOLUTION INFECT DIS; FORBES MRL, 1993, OIKOS, V67, P444, DOI 10.2307/3545356; FOWLER K, 1989, NATURE, V338, P760, DOI 10.1038/338760a0; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gems D, 1996, NATURE, V379, P723, DOI 10.1038/379723a0; KRANTZ GW, 1983, U CALIFORNIA SPECIAL, V3304, P91; LEE ET, 1992, STAT METHODS SURVIVA; Lessells C.M., 1991, P32; MARKOW TA, 1988, J COMP PSYCHOL, V102, P169, DOI 10.1037/0735-7036.102.2.169; MARTRIDGE L, 1988, REPROD SUCCESS, P11; MEULEMAN E A, 1972, Netherlands Journal of Zoology, V22, P355; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; Polak M, 1997, AM NAT, V149, P955, DOI 10.1086/286032; Polak M, 1996, ECOLOGY, V77, P1379, DOI 10.2307/2265535; Polak M, 1998, ECOLOGY, V79, P1807, DOI 10.1890/0012-9658(1998)079[1807:EOEOHC]2.0.CO;2; POLAK M, 1995, EVOLUTION, V49, P660, DOI 10.1111/j.1558-5646.1995.tb02302.x; POLAK M, 1999, UNPUB PARASITE MEDIA; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROSE MR, 1981, GENETICS, V97, P187; Templeton A.R., 1982, P225; THORNHILL JA, 1986, PARASITOLOGY, V93, P443, DOI 10.1017/S0031182000081166; VANVOORHIES WA, 1992, NATURE, V360, P456, DOI 10.1038/360456a0; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zar J. H., 1984, BIOSTATISTICAL ANAL 32 94 96 2 18 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. NOV 22 1998 265 1411 2197 2201 10.1098/rspb.1998.0559 5 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 143DZ WOS:000077240900009 9872007 Green Published 2018-11-12 J Siems, DP; Sikes, RS Siems, DP; Sikes, RS Tradeoffs between growth and reproduction in response to temporal variation in food supply ENVIRONMENTAL BIOLOGY OF FISHES English Article resource allocation; phenotypic plasticity; gut length; gonadosomatic index SUSTAINED METABOLIC-RATE; PIMEPHALES-PROMELAS; PHENOTYPIC PLASTICITY; FATHEAD MINNOWS; LIFE HISTORIES; SIZE; EVOLUTION; DEFENSE; PREDICTABILITY; MONOPOLIZATION Allocating resources to growth or to reproduction is a fundamental tradeoff in evolutionary life history theory. In environments with unpredictable food resources, natural selection is expected to favor increased allocation to reproduction. Although effects of selection are realized only across generations, short-term changes in food predictability might influence intra-generational tradeoffs in resource allocation. We assessed the ability of fathead minnows, Pimephales promelas, to adjust allocation to growth and reproduction in response to predictable, unpredictable, and switched feeding schedules. Fish in the switched treatments were changed from unpredictable to predictable feeding schedules just after reaching sexual maturity. Egg production did not differ significantly among treatments despite the fact that females on the unpredictable and switched feeding schedules grew more slowly than those on the predictable schedule. Switched males were heavier and had proportionally larger testes than males in predictable and unpredictable treatments. Increased allocation to reproduction or growth by fish on unpredictable and switched feeding schedules was associated with changes in gut length relative to body mass. Both sexes showed a remarkable degree of phenotypic plasticity in response to resource availability and sex differences in allocation patterns were consistent with adaptive responses in the context of the fathead mating system. Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA; Univ Minnesota, James Ford Bell Museum Nat Hist, St Paul, MN 55108 USA Siems, DP (reprint author), Bemidji State Univ, Aquat Biol Program, Sattgast Hall,1500 Birchmont Dr NE, Bemidji, MN 56601 USA. dsiems@vax1.bemidji.msus.edu ALM G, 1959, CONNECTION MATURITY, V40, P5; Bagenal T.B., 1978, P75; BALTZ DM, 1982, ENVIRON BIOL FISH, V7, P229, DOI 10.1007/BF00002498; BENOIT DA, 1977, PROG FISH CULT, V39, P67, DOI 10.1577/1548-8659(1977)39[67:SSOFMO]2.0.CO;2; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; COHEN D, 1967, J THEOR BIOL, V16, P1, DOI 10.1016/0022-5193(67)90050-1; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; COLWELL RK, 1974, ECOLOGY, V55, P1148, DOI 10.2307/1940366; DEBEER GR, 1958, EMBRYOS ANCESTORS; DEWITT TJ, 1993, CAN J ZOOL, V71, P1276, DOI 10.1139/z93-176; Eddy S., 1974, NO FISHES; FRETWELL SD, 1972, POPULATIONS SEASONAL; GALE WF, 1982, T AM FISH SOC, V111, P35, DOI 10.1577/1548-8659(1982)111<35:FASFOT>2.0.CO;2; GRAND TC, 1994, ANIM BEHAV, V47, P91, DOI 10.1006/anbe.1994.1010; GRANT JWA, 1992, ANIM BEHAV, V44, P101, DOI 10.1016/S0003-3472(05)80759-6; HAMMOND KA, 1992, PHYSIOL ZOOL, V65, P952, DOI 10.1086/physzool.65.5.30158552; HIRSHFIELD MF, 1980, ECOLOGY, V61, P282, DOI 10.2307/1935187; Hofer R., 1991, Fish and Fisheries Series, P413; HURLBERT SH, 1984, ECOL MONOGR, V54, P187, DOI 10.2307/1942661; HUTCHINGS JA, 1985, OIKOS, V45, P118, DOI 10.2307/3565229; ISAAK D, 1961, THESIS U MINNESOTA M; Kamler E., 1992, EARLY LIFE HIST FISH; KONARZEWSKI M, 1994, PHYSIOL ZOOL, V67, P1186, DOI 10.1086/physzool.67.5.30163889; LECREN ED, 1951, J ANIM ECOL, V20, P201; Levins R., 1968, EVOLUTION CHANGING E; LOTT DF, 1984, BEHAVIOUR, V88, P266, DOI 10.1163/156853984X00353; Mann R.H.K., 1984, P171; MCMILLAN V, 1974, Zeitschrift fuer Tierpsychologie, V34, P25; MEFFE GK, 1992, COPEIA, P94, DOI 10.2307/1446539; MILLER TJ, 1988, CAN J FISH AQUAT SCI, V45, P1657, DOI 10.1139/f88-197; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; Plotkin H.C., 1988, P1; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SMITH RJF, 1974, T AM FISH SOC, V103, P65, DOI 10.1577/1548-8659(1974)103<65:FMOTDP>2.0.CO;2; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; UNGER LM, 1983, BEHAV ECOL SOCIOBIOL, V13, P125, DOI 10.1007/BF00293802; VIA S, 1995, TRENDS ECOL EVOL, V10, P212, DOI 10.1016/S0169-5347(00)89061-8; WOOTTON JT, 1991, EVOLUTION, V45, P1947, DOI 10.1111/j.1558-5646.1991.tb02699.x; WOOTTON RJ, 1992, NETH J ZOOL, V42, P291 42 31 33 2 12 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes NOV 1998 53 3 319 329 10.1023/A:1007407925835 11 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 133ML WOS:000076690300009 2018-11-12 J Stearns, SC; Ackermann, M; Doebeli, M Stearns, SC; Ackermann, M; Doebeli, M The experimental evolution of aging in fruitflies EXPERIMENTAL GERONTOLOGY English Article; Proceedings Paper 4th International Symposium on the Neurobiology and Neuroendocrinology of Aging JUL 26-31, 1998 BREGENZ, AUSTRIA SO Ill Univ, Sch Med, RW Johnson Pharmaceut Res Inst, Junifur Fdn, Orentreich Fdn Advancement Sci, Searle Pharmaceut, SO Ill Univ, Grad Sch evolution; aging; Drosophila The evolutionary theory of aging suggests that the level of repair will evolve to an intermediate optimum that permits the accumulation of random damage to cells. This, in turn, causes a decline in essential functions during the life span of an organism. The central claim of the life history theory of aging is that intrinsic mortality rates evolve in response to changes in extrinsic mortality rates. To prove this central claim, it must be evaluated experimentally. Experimental evolution is an approach that has been yielding interesting results from both a variety of questions posed and organisms examined. In this article the organism chosen for study is the fruitfly (Drosophilia melanogaster) in which the evolutionary effects of high and low adult mortality rates are compared. It has been found that higher extrinsic mortality rates lead to the evolution of higher intrinsic mortality rates and a shorter life span. This is the first clear experimental demonstration of the central claim of the evolutionary theory of aging. (C) 1998 Elsevier Science Inc. Univ Basel, Inst Zool, CH-4051 Basel, Switzerland Stearns, SC (reprint author), Univ Basel, Inst Zool, Rheinsprung 9, CH-4051 Basel, Switzerland. stearns@ubaclu.unibas.ch Ackermann, Martin/V-4554-2017; Stearns, Stephen/F-4099-2012; Doebeli, Michael/D-5391-2012 Ackermann, Martin/0000-0003-0087-4819; Stearns, Stephen/0000-0002-6621-4373 Charlesworth B., 1980, EVOLUTION AGE STRUCT; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Kirkwood TBL, 1985, HDB BIOL AGING, P27; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Roff Derek A., 1992; ROSE M, 1991, EVOLUTION AGING; Stearns S. C., 1992, EVOLUTION LIFE HIST; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 10 12 12 1 10 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0531-5565 1873-6815 EXP GERONTOL Exp. Gerontol. NOV-DEC 1998 33 7-8 785 792 10.1016/S0531-5565(98)00021-7 8 Geriatrics & Gerontology Geriatrics & Gerontology 150EH WOS:000077650200012 9951622 Green Published 2018-11-12 J Hemborg, AM Hemborg, AM Costs of reproduction in subarctic Ranunculus acris: a five-year field experiment OIKOS English Article LIFE-HISTORY EVOLUTION; LADYS-SLIPPER ORCHID; FRUIT PRODUCTION; SEED PRODUCTION; SOUTHWESTERN NORWAY; GERANIUM-MACULATUM; PRIMULA-VERIS; SHORT-TERM; GROWTH; LIMITATION A fundamental prediction of life-history theory is that current reproduction reduces chances of future reproductive activity and success. In plants, however, short-term manipulative experiments often fail to support this. One reason may be the within-species variation in reproductive frequency and success among habitats and years. In this study, Ranunculus acris in three subarctic habitat types (a meadow forest, a fen woodland, and an alpine meadow) was prevented from seed production by flower bud removal during four years. The objective was to test if this treatment increased future reproductive activity relative to naturally reproducing plants. In the fifth year, all plants were left intact to test if natural, as compared to previously prevented reproduction, entailed negative effects on future fruiting success, seed set, fecundity and/or seed quality. In all habitat types, there were costs of reproduction in terms of reduced future reproductive activity, as naturally reproducing plants produced sexual shoots less frequently than plants for which flower buds were removed. In terms of other traits, fecundity costs of reproduction were detected at two habitats. In the meadow forest, naturally reproducing plants had fewer seeds, due to fewer flowers, compared to previously bud-removed plants. At the alpine meadow, reproduction entailed reduced future seed nitrogen content, and thus, potentially lower future offspring quality. In contrast, at the fen woodland, seeds of naturally reproducing plants weighed more than those of previously bud-removed plants. No costs were found in terms of fruiting success (the proportion of all flowers that set at least one seed), ovules per flower or seed set at any habitat. These results show that costs of reproduction varied among habitat types and were detectable in some, but not all selected traits. We should therefore not expect reproductive costs to be equally expressed in all environments. Uppsala Univ, Dept Ecol Bot, SE-75236 Uppsala, Sweden Hemborg, AM (reprint author), Uppsala Univ, Dept Ecol Bot, Villavagen 14, SE-75236 Uppsala, Sweden. asa.hemborg@vaxtbio.uu.se ACKERMAN JD, 1990, ECOLOGY, V71, P263, DOI 10.2307/1940265; AGREN J, 1992, OECOLOGIA, V92, P177, DOI 10.1007/BF00317361; AGREN J, 1988, OECOLOGIA, V76, P175, DOI 10.1007/BF00379950; AGREN J, 1994, OIKOS, V70, P35, DOI 10.2307/3545696; ASHMAN TL, 1992, OECOLOGIA, V92, P266, DOI 10.1007/BF00317374; BAKER HG, 1972, ECOLOGY, V53, P997, DOI 10.2307/1935413; BAZZAZ FA, 1979, NATURE, V279, P554, DOI 10.1038/279554a0; BENEDETTI JK, 1978, BIOMETRICS, V34, P680, DOI 10.2307/2530389; BIERZYCHUDEK P, 1981, AM NAT, V117, P838, DOI 10.1086/283773; Bliss L. C., 1971, ANNU REV ECOL SYST, V2, P405, DOI DOI 10.1146/ANNUREV.ES.02.110171.002201; Chapin FS, 1985, PHYSL ECOLOGY N AM P, P16; CHESTER AL, 1982, HOLARCTIC ECOL, V5, P200; Despland E, 1997, AM J BOT, V84, P928, DOI 10.2307/2446283; Dudash MR, 1997, ECOLOGY, V78, P484; FOX JF, 1991, ECOLOGY, V72, P1013, DOI 10.2307/1940601; GALEN C, 1993, ECOLOGY, V74, P1052, DOI 10.2307/1940475; GALEN C, 1993, OECOLOGIA, V95, P187, DOI 10.1007/BF00323489; GEBER MA, 1990, EVOLUTION, V44, P799, DOI 10.1111/j.1558-5646.1990.tb03806.x; Geber MA, 1997, J ECOL, V85, P211, DOI 10.2307/2960652; Hanley ME, 1997, FUNCT ECOL, V11, P398, DOI 10.1046/j.1365-2435.1997.00104.x; HARPER JL, 1967, J ECOL, V55, P247, DOI 10.2307/2257876; Hemborg AM, 1998, OIKOS, V82, P149, DOI 10.2307/3546925; Horovitz A., 1985, CRC HDB FLOWERING, P155; HORVITZ CC, 1988, ECOLOGY, V69, P1741, DOI 10.2307/1941152; INGHE O, 1988, OIKOS, V51, P203, DOI 10.2307/3565644; JENNERSTEN O, 1991, OIKOS, V61, P197, DOI 10.2307/3545337; John E, 1997, J ECOL, V85, P419, DOI 10.2307/2960566; JOHNSON MP, 1968, AM NAT, V102, P405, DOI 10.1086/282554; Johnstone JF, 1997, ARCTIC ALPINE RES, V29, P459, DOI 10.2307/1551993; LAGERBERG T, 1938, VILDA VAXTER NORDEN; LAW R, 1979, AM NAT, V113, P3, DOI 10.1086/283361; LEHTILA K, 1995, ECOLOGY, V76, P1084, DOI 10.2307/1940917; LEVIN DA, 1988, PLANT POPULATION ECO, P35; MONTALVO AM, 1987, BIOTROPICA, V19, P24, DOI 10.2307/2388456; NILSSON O, 1986, NORDISK FJALLFLORA; OSTERBYE U, 1975, HEREDITAS, V80, P91; PARTRIDGE L, 1992, TRENDS ECOL EVOL, V7, P99, DOI 10.1016/0169-5347(92)90250-F; POTVIN C, 1990, ECOLOGY, V71, P1389, DOI 10.2307/1938276; Preston KA, 1998, OIKOS, V81, P279, DOI 10.2307/3547048; PRIMACK RB, 1990, AM NAT, V136, P638, DOI 10.1086/285120; PRIMACK RB, 1994, AM J BOT, V81, P1083, DOI 10.2307/2445469; Ramsey M, 1997, INT J PLANT SCI, V158, P785, DOI 10.1086/297491; REEKIE EG, 1987, AM NAT, V129, P876, DOI 10.1086/284681; Roff Derek A., 1992; SARUKHAN J, 1973, J ECOL, V61, P675, DOI 10.2307/2258643; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCHMID B, 1992, OIKOS, V65, P13, DOI 10.2307/3544882; SCHWEIZER CJ, 1969, SCIENCE, V165, P73, DOI 10.1126/science.165.3888.73; SNOW AA, 1989, ECOLOGY, V70, P1286, DOI 10.2307/1938188; SONESSON M, 1974, OIKOS, V25, P121, DOI 10.2307/3543633; Sperens U, 1997, ECOGRAPHY, V20, P521, DOI 10.1111/j.1600-0587.1997.tb00421.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; SYRJANEN K, 1993, OIKOS, V67, P465, DOI 10.2307/3545358; THOREN LM, 1998, IN PRESS J ECOL; Tilman D, 1988, PLANT STRATEGIES DYN; Totland O, 1996, ECOGRAPHY, V19, P269, DOI 10.1111/j.1600-0587.1996.tb01254.x; TOTLAND O, 1994, ECOGRAPHY, V17, P159, DOI 10.1111/j.1600-0587.1994.tb00089.x; Totland O, 1997, CAN J BOT, V75, P137, DOI 10.1139/b97-016; TUOMI J, 1983, AM ZOOL, V23, P25; WATSON MA, 1984, AM NAT, V123, P411, DOI 10.1086/284212; Williams GC, 1966, ADAPTATION NATURAL S; ZIMMERMAN JK, 1989, AM J BOT, V76, P67, DOI 10.2307/2444775 62 14 14 0 9 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos NOV 1998 83 2 273 282 10.2307/3546838 10 Ecology Environmental Sciences & Ecology 137XJ WOS:000076942100007 2018-11-12 J Blanckenhorn, WU Blanckenhorn, WU Adaptive phenotypic plasticity in growth, development, and body size in the yellow dung fly EVOLUTION English Review body size; development; diapause; genetic variation; growth rate; life history; phenotypic plasticity; Scathophaga stercoraria GENOTYPE-ENVIRONMENT INTERACTION; AQUARIUS-REMIGIS HETEROPTERA; SCATHOPHAGA-STERCORARIA L; LIFE-HISTORY; SCATOPHAGA-STERCORARIA; COPULA DURATION; REACTION NORMS; AMPHIBIAN METAMORPHOSIS; QUANTITATIVE GENETICS; EVOLUTIONARY DEMOGRAPHY Life-history theory predicts that age and size at maturity of organisms should be influenced by time and food constraints on development. This study investigated phenotypic plasticity in growth, development, body size, and diapause in the yellow dung fly, Scathophaga stercoraria. Full-sib families were allowed to develop under predator-free field conditions. The time before the onset of winter was varied and each brood was split into three environments differing in the amount of dung a set number of larvae had as a resource. When resources were abundant and competition was minimal, individuals of both sexes grew to larger body sizes, took longer time to mature, and were able to increase their growth rates to attain large body sizes despite shorter effective development periods later in the season. In contrast, limited larval resources and strong competition constrained individuals to mature earlier at a smaller adult size, and growth rates could not be increased but were at least maintained. This outcome is predicted by only two life-history optimality models, which treat mortality due to long development periods and mortality due to fast growth as independent. Elevated preadult mortality indicated physiological costs of fast growth independent of predation. When larval resources were limited, mortality increased with heritable variation in development time for males, and toward the end of the season mortality increased as larval resources became more abundant because this induced longer development periods. Sexual and fecundity selection favoring large body size in this species is thus opposed by larval viability selection favoring slower growth in general and shorter development periods when time and resources are limited; this overall combination of selective pressures is presumably shaping the reaction norms obtained here. Flexible growth rates are facilitated by low genetic correlations between development time and body size, a possible consequence of selection for plasticity. Heritable variation was evident in all traits investigated, as well as in phenotypic plasticity of these traits (genotype x interactions). This is possibly maintained by unpredictable spatiotemporal variation in dung abundance, competition, and hence selection. Univ Zurich Irchel, Museum Zool, CH-8057 Zurich, Switzerland Blanckenhorn, WU (reprint author), Univ Zurich Irchel, Museum Zool, Winterthurerstr 190, CH-8057 Zurich, Switzerland. wolfman@zoolmus.unizh.ch Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Amano K., 1983, Japanese Journal of Sanitary Zoology, V34, P165; Andersson M., 1994, SEXUAL SELECTION; ANDREWARTHA HG, 1952, BIOL REV, V27, P50, DOI 10.1111/j.1469-185X.1952.tb01363.x; ANHOLT BR, 1995, ECOLOGY, V76, P2230, DOI 10.2307/1941696; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Becker W A., 1992, MANUAL QUANTITATIVE; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; Blanckenhorn WU, 1998, ECOL ENTOMOL, V23, P1, DOI 10.1046/j.1365-2311.1998.00098.x; Blanckenhorn WU, 1997, OECOLOGIA, V111, P318, DOI 10.1007/s004420050241; BLANCKENHORN WU, 1994, OECOLOGIA, V97, P354, DOI 10.1007/BF00317325; BLANCKENHORN WU, 1995, J EVOLUTION BIOL, V8, P21, DOI 10.1046/j.1420-9101.1995.8010021.x; Blanckenhorn WU, 1997, OECOLOGIA, V109, P342, DOI 10.1007/s004420050092; BORGIA G, 1981, ANIM BEHAV, V29, P71, DOI 10.1016/S0003-3472(81)80153-4; BORGIA G, 1982, EVOLUTION, V36, P307, DOI 10.1111/j.1558-5646.1982.tb05046.x; BRADFORD MJ, 1993, ECOLOGY, V74, P1129, DOI 10.2307/1940482; Bradford MJ, 1997, ECOLOGY, V78, P442; Bradshaw W, 1996, EVOLUTION, V50, P1176, DOI 10.1111/j.1558-5646.1996.tb02358.x; Brandon RN, 1996, AM NAT, V148, P189, DOI 10.1086/285918; CHURCH RB, 1966, GENET RES, V7, P383, DOI 10.1017/S0016672300009836; CLUTTONBROCK TH, 1985, NATURE, V313, P131, DOI 10.1038/313131a0; COHEN D, 1970, AM NAT, V104, P389, DOI 10.1086/282672; COTTON D C F, 1979, Irish Naturalists' Journal, V19, P347; Crawley MJ, 1993, GLIM ECOLOGISTS; Danks HV, 1987, INSECT DORMANCY ECOL; FALCONER DS, 1989, INTRO QUANTITATIVE G; Fox CW, 1998, EVOLUTION, V52, P172, DOI 10.1111/j.1558-5646.1998.tb05150.x; Fox CW, 1996, OECOLOGIA, V108, P88, DOI 10.1007/BF00333219; FRASER DF, 1992, ECOLOGY, V73, P959, DOI 10.2307/1940172; FRY JD, 1992, EVOLUTION, V46, P540, DOI 10.1111/j.1558-5646.1992.tb02057.x; GIBBONS DS, 1987, ECOL ENTOMOL, V12, P173, DOI 10.1111/j.1365-2311.1987.tb00996.x; GILLIAM JF, 1987, ECOLOGY, V68, P1856, DOI 10.2307/1939877; GORODKOV KB, 1984, CATALOGUE PALAEARCTI, P11; GOTTHARD K, 1995, OIKOS, V74, P3, DOI 10.2307/3545669; GOTTHARD K, 1994, OECOLOGIA, V99, P281, DOI 10.1007/BF00627740; HAMMER O, 1941, VIDENSKABELIGE MEDDE, V105, P140; Hegmann J.P., 1982, P177; JANN P, 1997, THESIS U ZURICH ZURI; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; Levins R, 1969, Symp Soc Exp Biol, V23, P1; Luvchiev V.I., 1982, Ekologiya (Sofia), V10, P59; MEILE P, 1996, THESIS U ZURICH ZURI; MOLLER H, 1989, FUNCT ECOL, V3, P673, DOI 10.2307/2389499; MOLLER H, 1989, FUNCT ECOL, V3, P683, DOI 10.2307/2389500; MOUSSEAU TA, 1989, EVOLUTION, V43, P1483, DOI 10.1111/j.1558-5646.1989.tb02598.x; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; MOUSSEAU TA, 1989, HEREDITY, V62, P315, DOI 10.1038/hdy.1989.45; Muhlhauser C, 1996, ANIM BEHAV, V51, P1401, DOI 10.1006/anbe.1996.0143; NEGUS NC, 1992, CAN J ZOOL, V68, P619; NEWMAN RA, 1988, EVOLUTION, V42, P763, DOI 10.1111/j.1558-5646.1988.tb02494.x; NEWMAN RA, 1988, EVOLUTION, V42, P774, DOI 10.1111/j.1558-5646.1988.tb02495.x; NEWMAN RA, 1992, BIOSCIENCE, V42, P671, DOI 10.2307/1312173; Nijhout H. F., 1994, INSECT HORMONES; Nunney L, 1996, EVOLUTION, V50, P1193, DOI 10.1111/j.1558-5646.1996.tb02360.x; Nylin S, 1996, EVOLUTION, V50, P1351, DOI 10.1111/j.1558-5646.1996.tb02377.x; NYLIN S, 1994, SERIES ENTOM, V52, P41; ORZACK SH, 1994, AM NAT, V143, P361, DOI 10.1086/285608; OTRONEN M, 1993, BEHAVIOUR, V126, P63, DOI 10.1163/156853993X00344; PARKER GA, 1970, J ANIM ECOL, V39, P185, DOI 10.2307/2895; PARKER GA, 1970, J INSECT PHYSIOL, V16, P1301, DOI 10.1016/0022-1910(70)90131-9; PARKER GA, 1994, NATURE, V370, P53, DOI 10.1038/370053a0; PARTRIDGE L, 1993, EVOLUTION, V47, P213, DOI 10.1111/j.1558-5646.1993.tb01211.x; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; Ratte H. T., 1985, ENV PHYSL BIOCH INSE, P31; Reeve JP, 1996, EVOLUTION, V50, P1927, DOI 10.1111/j.1558-5646.1996.tb03580.x; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff D, 1983, DIAPAUSE LIFE CYCLE, P253; Roff D. A., 1997, EVOLUTIONARY QUANTIT; Roff DA, 1996, EVOLUTION, V50, P1392, DOI 10.1111/j.1558-5646.1996.tb03913.x; ROFF DA, 1987, HEREDITY, V58, P103, DOI 10.1038/hdy.1987.15; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; ROFF DA, 1986, BIOSCIENCE, V36, P316, DOI 10.2307/1310236; Roff Derek A., 1992; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SCHLICHTING CD, 1986, ANNU REV ECOL SYST, V17, P667, DOI 10.1146/annurev.es.17.110186.003315; SHINE R, 1988, AM NAT, V131, P124, DOI 10.1086/284778; SHORROCKS B, 1970, J ANIM ECOL, V39, P229, DOI 10.2307/2897; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; SIGURJONSDOTTIR H, 1984, ECOL ENTOMOL, V9, P81, DOI 10.1111/j.1365-2311.1984.tb00700.x; SIGURJONSDOTTIR H, 1981, BEHAV ECOL SOCIOBIOL, V8, P219, DOI 10.1007/BF00299834; SIGURJONSDOTTIR H, 1995, ECOL ENTOMOL, V20, P84, DOI 10.1111/j.1365-2311.1995.tb00432.x; SIGURJONSDOTTIR H, 1980, THESIS U LIVERPOOL L; SIMMONS LW, 1991, J EVOLUTION BIOL, V4, P593, DOI 10.1046/j.1420-9101.1991.4040593.x; SINERVO B, 1990, OECOLOGIA, V83, P228, DOI 10.1007/BF00317757; Sokal R.R., 1995, BIOMETRY; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; STEARNS SC, 1992, EVOUTION LIFE HIST; TAYLOR F, 1980, THEOR POPUL BIOL, V18, P125, DOI 10.1016/0040-5809(80)90044-1; TAYLOR F, 1981, AM NAT, V117, P1, DOI 10.1086/283683; VIA S, 1984, EVOLUTION, V38, P881, DOI 10.1111/j.1558-5646.1984.tb00359.x; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; WARD PI, 1991, BEHAV ECOL SOCIOBIOL, V29, P77, DOI 10.1007/BF00166481; WARD PI, 1990, ECOL ENTOMOL, V15, P115, DOI 10.1111/j.1365-2311.1990.tb00791.x; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; Wigglesworth V. B., 1972, PRINCIPLES INSECT PH; WIKLUND C, 1991, OIKOS, V60, P241, DOI 10.2307/3544871; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; Windig JJ, 1997, J EVOLUTION BIOL, V10, P853, DOI 10.1007/s000360050058; WOOTTON RJ, 1979, S ZOOL SOC LOND, V44, P133 105 137 138 2 62 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution OCT 1998 52 5 1394 1407 10.2307/2411309 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 137RZ WOS:000076931100016 28565396 Bronze 2018-11-12 J Qualls, CP; Shine, R Qualls, CP; Shine, R Costs of reproduction in conspecific oviparous and viviparous lizards, Lerista bougainvillii OIKOS English Article LIFE-HISTORY EVOLUTION; RELATIVE CLUTCH MASS; SQUAMATE REPTILES; NATURAL-SELECTION; ESCAPE TACTICS; TRADE-OFFS; CONSEQUENCES; PREDATION For iteroparous organisms, life history theory predicts a trade-off between current reproductive expenditure and probable future reproductive output. A high current investment in reproduction may entail "costs", by decreasing an organism's chances of surviving to reproduce again and/or decreasing its future fecundity. Both of these "costs of reproduction" may be present in squamate reptiles, and because viviparous animals carry their offspring for longer, they may experience greater costs than do similar oviparous taxa. We examined the costs of reproduction in both oviparous and viviparous forms of the lizard, Lerista bougainvillii, to address three questions: (1) Are any costs of reproduction incurred by reproducing female L. bougainvillii? (2) If so, what is the nature of these costs? and (3) Are the costs greater for live-bearers than for egg-layers? Some of the variables measured showed the intuitively predicted costs, but many showed different, and sometimes surprising, patterns. For example, despite being burdened with their offspring, gravid females (both egg-layers and live-bearers) had faster running speeds than their non-reproductive counterparts. This counter-intuitive result may be due to a shift in escape strategy, to less frequent stopping and turning, by reproductive lizards. Contrary to prediction, the costs of reproduction do not appear to be significantly greater for viviparous L, bougainvillii than for their oviparous conspecifics. Live-bearers have larger body sizes, which may offset the predicted increase in costs associated with the evolution of viviparity. Thus, while straightforward in theory, actually measuring the costs of reproduction is a very complex task. Ecological differences between taxa, behavioral shifts by reproductive individuals, and seasonal shifts in behavior or performance can all make it difficult to determine what "costs" are present in different groups of organisms. Given this complexity, attempts to model the costs of reproduction on the basis of any single index (other than lifetime reproductive success) will likely be applicable only to small groups of ecologically similar taxa. Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia Qualls, CP (reprint author), Virginia Polytech Inst & State Univ, Dept Biol, Blacksburg, VA 24061 USA. cqualls@vt.edu Shine, Richard/B-8711-2008 ANDREWS RM, 1994, COPEIA, P91; BALLINGER RE, 1977, ECOLOGY, V58, P628, DOI 10.2307/1939012; BAUWENS D, 1981, J ANIM ECOL, V50, P733, DOI 10.2307/4133; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BEUCHAT CA, 1990, PHYSIOL ZOOL, V63, P555, DOI 10.1086/physzool.63.3.30156228; BLACKBURN DG, 1993, HERPETOLOGICA, V49, P118; BRODIE ED, 1989, AM NAT, V134, P225, DOI 10.1086/284977; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Cogger H. G., 1992, REPTILES AMPHIBIANS; Congdon J.D., 1982, Biology of Reptilia, V13, P233; COOPER WE, 1990, BEHAV ECOL SOCIOBIOL, V27, P153; FAIRBAIRN J, 1998, IN PRESS MOL PHYLOGE; FISHER R. A., 1930, GENETICAL THEORY NAT; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Greer AE, 1989, BIOL EVOLUTION AUSTR; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; LEGER DW, 1994, ANIM BEHAV, V48, P823, DOI 10.1006/anbe.1994.1306; NIEWIAROWSKI PH, 1994, EVOLUTION, V48, P137, DOI 10.1111/j.1558-5646.1994.tb01300.x; PARTRIDGE L, 1992, TRENDS ECOL EVOL, V7, P99, DOI 10.1016/0169-5347(92)90250-F; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PIANKA ER, 1976, AM ZOOL, V16, P775; QUALLS CP, 1995, J ZOOL, V237, P13, DOI 10.1111/j.1469-7998.1995.tb02742.x; Qualls CP, 1997, J HERPETOL, V31, P60, DOI 10.2307/1565329; QUALLS CP, 1995, OECOLOGIA, V103, P73, DOI 10.1007/BF00328427; Qualls FJ, 1997, FUNCT ECOL, V11, P757, DOI 10.1046/j.1365-2435.1997.00150.x; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; ROSE MR, 1983, AM ZOOL, V23, P15; SCHWARZKOPF L, 1994, LIZARD ECOLOGY, P7; SCHWARZKOPF L, 1992, BEHAV ECOL SOCIOBIOL, V31, P17, DOI 10.1007/BF00167812; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SHINE R, 1990, J THERM BIOL, V15, P301, DOI 10.1016/0306-4565(90)90016-B; Shine R, 1996, EVOLUTION, V50, P2111, DOI 10.1111/j.1558-5646.1996.tb03599.x; SINERVO B, 1991, J EXP BIOL, V155, P323; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TINKLE DW, 1975, ECOLOGY, V56, P427, DOI 10.2307/1934973; VITT LJ, 1982, HERPETOLOGICA, V38, P237; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILSON S.K., 1988, AUSTR REPTILES 44 32 34 1 12 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos SEP 1998 82 3 539 551 10.2307/3546374 13 Ecology Environmental Sciences & Ecology 109GZ WOS:000075314900012 2018-11-12 J Bouskila, A; Robinson, ME; Roitberg, BD; Tenhumberg, B Bouskila, A; Robinson, ME; Roitberg, BD; Tenhumberg, B Life-history decisions under predation risk: Importance of a game perspective EVOLUTIONARY ECOLOGY English Article development; frequency dependence; genetic algorithm; ontogenetic shifts; predation risk AMPHIBIAN METAMORPHOSIS; GENETIC ALGORITHMS; DIFFERENTIAL PREDATION; TIME CONSTRAINTS; SIZE; AVOIDANCE; DILUTION; SNAKES We model ontogenetic shifts (e.g. in food or habitat use) during development under predation risk. We ask whether inclusion of slate and frequency dependence will provide new insights when compared with game-free life-history theory. We model a simple biological scenario in which a prey animal must switch from a low-predation, low-growth habitat to a high-predation, high-growth habitat, To assess the importance of frequency dependence, we compare the results of four scenarios of increasing complexity: (1) no predation; (2) constant predation; (3) frequency-dependent predation (predation risk diluted at high prey density), and (4) frequency-dependent predation as in (3) but with predators allowed to respond adaptively to prey behaviour. State dependence is included in all scenarios through initial size, assumed to be environmental. A genetic algorithm is used to search for optimal solutions to the scenarios. We find substantially different results in the four different scenarios and suggest a decision tree by which biological systems could be tested to ascertain which scenario is most applicable. Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada Roitberg, BD (reprint author), Simon Fraser Univ, Dept Biol Sci, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada. Bouskila, Amos/B-4847-2010 Bouskila, Amos/0000-0002-6995-5070 Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; ANTONISSE J, 1989, PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P86; ARNOLD SJ, 1978, ECOLOGY, V59, P1014, DOI 10.2307/1938553; BEASLEY D, 1993, U COMPUT, V15, P58; BEASLEY D, 1993, U COMPUT, V15, P170; BOUSKILA A, 1995, ECOLOGY, V76, P165, DOI 10.2307/1940639; Davis L., 1991, HDB GENETIC ALGORITH, P61; DAVIS L., 1987, GENETIC ALGORITHMS S; GODIN JGJ, 1988, CAN J ZOOL, V66, P2360, DOI 10.1139/z88-350; Goldberg D. E, 1989, GENETIC ALGORITHMS S; HOLLAND J, 1975, ADAPTATION NATURAL A; IWASA Y, 1995, J THEOR BIOL, V172, P33, DOI 10.1006/jtbi.1995.0003; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; MANGEL M, 1989, ECOL ENTOMOL, V14, P181, DOI 10.1111/j.1365-2311.1989.tb00768.x; McGregor R, 1996, EVOLUTION, V50, P1579, DOI 10.1111/j.1558-5646.1996.tb03930.x; MURDOCH WW, 1994, ECOLOGY, V75, P271, DOI 10.2307/1939533; Rausher M.D., 1992, P20; RICHMOND ND, 1947, ECOLOGY, V28, P53, DOI 10.2307/1932918; ROFF DA, 1991, AM ZOOL, V31, P205; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SMITHGILL SJ, 1979, AM NAT, V113, P563, DOI 10.1086/283413; Stearns S. C., 1992, EVOLUTION LIFE HIST; SUMIDA BH, 1990, J THEOR BIOL, V147, P59, DOI 10.1016/S0022-5193(05)80252-8; TREHERNE JE, 1982, ANIM BEHAV, V32, P536; TURNER GF, 1986, AM NAT, V128, P228, DOI 10.1086/284556; WASSERSUG RJ, 1977, ECOLOGY, V58, P830, DOI 10.2307/1936218; WERNER EE, 1983, ECOLOGY, V64, P1540, DOI 10.2307/1937508; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; WRONA FJ, 1991, AM NAT, V137, P186, DOI 10.1086/285153 31 22 23 0 10 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0269-7653 EVOL ECOL Evol. Ecol. AUG 1998 12 6 701 715 10.1023/A:1006585516023 15 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 113DK WOS:000075534600006 2018-11-12 J Erikstad, KE; Fauchald, P; Tveraa, T; Steen, H Erikstad, KE; Fauchald, P; Tveraa, T; Steen, H On the cost of reproduction in long-lived birds: The influence of environmental variability ECOLOGY English Article brood enlargement; cost of reproduction; life history; long-lived species; models; parental effort; seabirds; stochastic environment CLUTCH-SIZE; BODY CONDITION; THALASSOICA-ANTARCTICA; SOMATERIA-MOLLISSIMA; PARENTAL INVESTMENT; POPULATION-DYNAMICS; FRATERCULA-ARCTICA; RISSA-TRIDACTYLA; FOOD DELIVERY; STORM-PETREL Life history theory suggests that animals should balance their current investment in young against their chances to reproduce in the future. One fundamental prediction from the theory is that long-lived species should be restrictive in any increase of their current investment. It has been suggested that long-lived species, therefore, have evolved a fixed level of investment in young in order to maximize their own adult survival. However, recent experimental studies have shown that long-lived seabirds have a flexible reproductive performance and adjust their effort in raising young, both according to their own body condition and to the need of the chicks. In this study, we present a model of the optimal balance between reproductive effort and adult survival for long-lived birds breeding in a stochastic environment. During poor breeding conditions, maximum fitness is achieved either by not breeding at all, or by abandoning the brood. Beyond a certain threshold in breeding conditions, there is a steep increase in reproductive effort and an equally steep decrease in adult survival. The model is applied to two hypothetical long-lived seabirds differing in their potential fecundity. For the genotype with a potentially high fecundity, the model predicts a high threshold for breeding (i.e., breeding conditions need to be very good for the species to attempt breeding); above the threshold, the value of reproduction in terms of fitness is high. For the genotype with potentially low fecundity, the model predicts a low threshold for breeding, and the value of reproduction in terms of fitness is low. By increasing clutch size in the model, we examine the optimal response of the two genotypes to an experimental brood size manipulation. For both genotypes, the model predicts that the threshold for breeding is lower among controls than among enlarged broods, giving a range of possible outcomes of the experiment depending on breeding conditions. The few studies on brood enlargements in long-lived species carried out so far may support the predictions from the model. Norwegian Inst Nat Res, Dept Arctic Ecol, N-9005 Tromso, Norway; Univ Tromso, Inst Biol & Geol, Dept Ecol & Zool, N-9037 Tromso, Norway Erikstad, KE (reprint author), Norwegian Inst Nat Res, Dept Arctic Ecol, Storgata 25, N-9005 Tromso, Norway. Steen, Harald/A-3198-2012 ALDRICH TW, 1983, AUK, V100, P670; Amundsen T, 1996, OIKOS, V76, P613, DOI 10.2307/3546359; ANDERSEN R, 1995, POLAR BIOL, V15, P65; ANDERSEN R, 1993, CINCLUS, V16, P15; ANKERNILSSEN T, 1992, THESIS U TRONDHEIM T; ANKNEY CD, 1978, AUK, V95, P459; APARICIO JM, 1993, OIKOS, V68, P186, DOI 10.2307/3545327; BARRETT RT, 1992, COLON WATERBIRD, V15, P24, DOI 10.2307/1521351; BOLTON M, 1995, ANIM BEHAV, V50, P231, DOI 10.1006/anbe.1995.0235; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; CHASTEL O, 1995, ECOLOGY, V76, P2240, DOI 10.2307/1941698; Chastel O, 1995, AUK, V112, P964, DOI 10.2307/4089027; CHASTEL O, 1993, OECOLOGIA, V94, P278, DOI 10.1007/BF00341328; CHAURAND T, 1994, J ANIM ECOL, V63, P275, DOI 10.2307/5546; CLUTTONBROCK TH, 1988, REPRODUCTIVE SUCCESS; Coulson J. G., 1959, Bird Study, V6, P97; COULSON JC, 1984, IBIS, V126, P525, DOI 10.1111/j.1474-919X.1984.tb02078.x; CURIO E, 1988, AM NAT, V131, P825, DOI 10.1086/284824; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; DRENT RH, 1980, ARDEA, V68, P225; Erikstad KE, 1997, BEHAV ECOL SOCIOBIOL, V40, P95, DOI 10.1007/s002650050320; ERIKSTAD KE, 1995, OECOLOGIA, V103, P270, DOI 10.1007/BF00328614; ERIKSTAD KE, 1993, AUK, V110, P623, DOI 10.2307/4088426; HAMER KC, 1994, J AVIAN BIOL, V25, P198, DOI 10.2307/3677075; HATCH SA, 1990, CAN J ZOOL, V68, P1680, DOI 10.1139/z90-248; HATCH SA, 1993, IBIS, V135, P247, DOI 10.1111/j.1474-919X.1993.tb02841.x; HOGSTEDT G, 1980, SCIENCE, V210, P1148, DOI 10.1126/science.210.4474.1148; HUDSONPJ, 1985, ATLANTIC ALCIDAE, P233; JACOBSEN KO, 1995, ECOLOGY, V76, P1636, DOI 10.2307/1938164; JOHNSEN I, 1994, OIKOS, V71, P273, DOI 10.2307/3546276; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; MONAGHAN P, 1989, J ANIM ECOL, V58, P261, DOI 10.2307/4999; MONAGHAN P, 1992, ARDEA, V80, P70; NEWTON I, 1989, LIFETIME REPRODUCTIO; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; REID WV, 1987, OECOLOGIA, V74, P458, DOI 10.1007/BF00378945; RICKLEFS RE, 1992, ANIM BEHAV, V43, P895, DOI 10.1016/0003-3472(92)90003-R; RICKLEFS RE, 1987, AUK, V104, P750; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; RICKLEFS RE, 1991, ACTA INT ORNITHOL C, V20, P992; Roff Derek A., 1992; SAETHER BE, 1993, BEHAV ECOL SOCIOBIOL, V33, P147, DOI 10.1007/BF00216594; SANZ JJ, 1995, OECOLOGIA, V103, P358, DOI 10.1007/BF00328625; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tombre IM, 1996, J ANIM ECOL, V65, P325, DOI 10.2307/5878; Tveraa T, 1997, BEHAV ECOL, V8, P465, DOI 10.1093/beheco/8.5.465; VADER W, 1990, STUD AVIAN BIOL, V14, P175; WEIMERSKIRCH H, 1992, OIKOS, V64, P464, DOI 10.2307/3545162; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WOOLLER RD, 1992, TRENDS ECOL EVOL, V7, P111, DOI 10.1016/0169-5347(92)90143-Y 55 176 177 3 59 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology JUL 1998 79 5 1781 1788 8 Ecology Environmental Sciences & Ecology 101CX WOS:000074853000027 2018-11-12 J Czarnoleski, M; Kozlowski, J Czarnoleski, M; Kozlowski, J Do Bertalanffy's growth curves result from optimal resource allocation? ECOLOGY LETTERS English Article Bertalanffy's equation; growth curves; indeterminate growth; life history evolution; optimal resource allocation; optimization models; reproduction; seasonality; trade-off INDETERMINATE GROWTH; LIFE-HISTORY; REPRODUCTION; MATURITY; MODEL; SIZE; AGE Bertalanffy's equation is commonly used to model indeterminate growth. Bertalanffy claimed that this growth pattern results from growth potential decreasing with age. An alternative approach provided by life history theory predicts that indeterminate growth is optimal for organisms in a seasonal environment and results not from decreasing growth potential but from allocating increasingly less energy with age into growth, and more into reproduction. Bertalanffy's curves are the result of evolutionary optimization and should not be used in optimization models as an assumption, but they can be used as a tool to describe the indeterminate growth pattern phenomenologically. (C) 1998 Blackwell Science Ltd/CNRS. Jagiellonian Univ, Inst Environm Biol, PL-30063 Krakow, Poland Czarnoleski, M (reprint author), Jagiellonian Univ, Inst Environm Biol, Oleandry 2A, PL-30063 Krakow, Poland. czarn@eko.uj.edu.pl; kozlo@eko.uj.edu.pl Kozlowski, Jan/K-5549-2012 Kozlowski, Jan/0000-0002-7084-2030; Czarnoleski, Marcin/0000-0003-2645-0360 Beverton R. J. H., 1959, CIBA FDN C AGEING, V5, P142, DOI DOI 10.1002/9780470715253.CH10; Charnov Eric L., 1993, P1; Day T, 1997, AM NAT, V149, P381, DOI 10.1086/285995; Heino M, 1996, FUNCT ECOL, V10, P245, DOI 10.2307/2389849; Jokela J, 1997, EVOLUTIONARY ECOLOGY; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kozlowski J, 1996, P ROY SOC B-BIOL SCI, V263, P559, DOI 10.1098/rspb.1996.0084; KOZLOWSKI J, 1998, IN PRESS EVOL ECOL; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; NODA T, 1995, MAR BIOL, V122, P73, DOI 10.1007/BF00349279; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; Roff Derek A., 1992; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; Stearns S. C., 1992, EVOLUTION LIFE HIST; VONBERTALANFFY L, 1957, Q REV BIOL, V32, P217, DOI 10.1086/401873; Weinberg JR, 1996, MAR BIOL, V126, P663, DOI 10.1007/BF00351333 17 59 60 1 18 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. JUL 1998 1 1 5 7 10.1046/j.1461-0248.1998.0007b.x 3 Ecology Environmental Sciences & Ecology 161RN WOS:000078302900002 2018-11-12 J Leather, SR; Beare, JA; Cooke, RCA; Fellowes, MDE Leather, SR; Beare, JA; Cooke, RCA; Fellowes, MDE Are differences in life history parameters of the pine beauty moth Panolis flammea modified by host plant quality or gender? ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA English Article Panolis flammea; host plant quality; birth weight; larval development; emergence time; gender differences; oviposition; longevity; adult weight; Pinus sylvestris; Pinus contorta D-AND-S; PHENOTYPIC PLASTICITY; SURVIVAL; GROWTH; BUTTERFLIES; FECUNDITY; LARVAE; SIZE; CONSEQUENCES; INSECTS Pine beauty moth (Panolis flammea D&S, Lepidoptera: Noctuidae) were reared individually from egg hatch to pupation on one of three host plants, Pinus sylvestris (native host plant), Pinus contorta (Central Interior seed origin - good quality introduced host) and P. contorta (Alaskan seed origin - poor quality introduced host). After emerging from the pupae the adult moths were confined to a Skeena River seed origin of P. contorta. Female pupal weight and adult life span were significantly higher on P. sylvestris than on the two lodgepole pine seed origins. Development time was, however, not significantly different between treatments, but larval mean relative growth rate was found to be negatively correlated with birth weight and positively correlated with pupal weight. The time to emerge from the pupa was also not significantly different between treatments. However, there were marked differences between the genders. Male moths lost a significantly greater proportion of their weight over the pupal stage but lived significantly longer as adults than the females. Female moths emerged from the pupal stage significantly sooner than male moths. There was no apparent advantage of lai-ge birth size when looked at in terms of subsequent performance. These results are discussed in light of current life history theory. Univ London Imperial Coll Sci Technol & Med, Dept Biol, Ascot SL5 7PY, Berks, England; Univ London Imperial Coll Sci Technol & Med, NERC, Ctr Populat Biol, Ascot SL5 7PY, Berks, England Leather, SR (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Biol, Silwood Pk, Ascot SL5 7PY, Berks, England. Fellowes, Mark/H-9400-2012 Fellowes, Mark/0000-0001-5431-8637 DELVI MR, 1971, OECOLOGIA, V8, P267, DOI 10.1007/BF00346474; Dixon A. F. G, 1971, Bull Ent Res, V61, P97; Dixon AFG, 1987, APHIDS THEIR BIOL NA, P315; DIXON AFG, 1985, APHID ECOLOGY; JANZ N, 1994, OECOLOGIA, V99, P132, DOI 10.1007/BF00317093; Leather SR, 1987, FUNCT ECOL, V1, P331, DOI 10.2307/2389789; Leather S. R., 1990, INSECT PLANT INTERAC, V5, P175; LEATHER S. R., 1995, B ENTOMOL RES, V84, P515; LEATHER SR, 1985, ECOL ENTOMOL, V10, P213, DOI 10.1111/j.1365-2311.1985.tb00550.x; LEATHER SR, 1984, OECOLOGIA, V65, P70, DOI 10.1007/BF00384464; LEATHER SR, 1981, ANN APPL BIOL, V97, P135, DOI 10.1111/j.1744-7348.1981.tb03006.x; LEATHER SR, 1981, ANN APPL BIOL, V99, P115, DOI 10.1111/j.1744-7348.1981.tb05136.x; LEATHER SR, 1988, OIKOS, V51, P386, DOI 10.2307/3565323; LEATHER SR, 1985, B ENTOMOL RES, V75, P641, DOI 10.1017/S000748530001590X; Leather SR, 1997, B ENTOMOL RES, V87, P75, DOI 10.1017/S0007485300036385; LEATHER SR, 1986, OECOLOGIA, V71, P90, DOI 10.1007/BF00377325; LEATHER SR, 1983, Z ANGEW ENTOMOL, V96, P623; LECLAIRE M, 1994, OECOLOGIA, V100, P379, DOI 10.1007/BF00317858; LINES R, 1966, SCOTTISH FORESTRY, V20, P91; MACKEY AP, 1978, OECOLOGIA, V32, P367, DOI 10.1007/BF00345114; OHSAKI N, 1994, ECOLOGY, V75, P59, DOI 10.2307/1939382; Ratte H.T., 1985, P33; Rossiter MC, 1996, ANNU REV ECOL SYST, V27, P451, DOI 10.1146/annurev.ecolsys.27.1.451; SCRIBER JM, 1981, ANNU REV ENTOMOL, V26, P183, DOI 10.1146/annurev.en.26.010181.001151; SLANSKY F, 1980, PHYSIOL ENTOMOL, V5, P73, DOI 10.1111/j.1365-3032.1980.tb00212.x; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STOYENHOFF JL, 1994, ENTOMOLOGY, V3, P1450; Wainhouse D, 1997, B ENTOMOL RES, V87, P95, DOI 10.1017/S0007485300036415; Watt A.D., 1988, P243; WATT AD, 1989, ECOL ENTOMOL, V14, P225, DOI 10.1111/j.1365-2311.1989.tb00773.x; WATT AD, 1979, ANN APPL BIOL, V91, P147, DOI 10.1111/j.1744-7348.1979.tb06485.x; WATT AD, 1987, OECOLOGIA, V72, P429, DOI 10.1007/BF00377575; WIKLUND C, 1977, OECOLOGIA, V31, P153, DOI 10.1007/BF00346917; WIKLUND C, 1984, OIKOS, V43, P391, DOI 10.2307/3544158 34 20 20 4 9 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0013-8703 ENTOMOL EXP APPL Entomol. Exp. Appl. JUN 1998 87 3 237 243 10.1046/j.1570-7458.1998.00327.x 7 Entomology Entomology 103CP WOS:000074964100002 2018-11-12 J Hairston, NG; Bohonak, AJ Hairston, NG; Bohonak, AJ Copepod reproductive strategies: Life-history theory, phylogenetic pattern and invasion of inland waters JOURNAL OF MARINE SYSTEMS English Article; Proceedings Paper 6th International Conference on Copepoda JUL 29-AUG 03, 1996 OLDENBURG, GERMANY Copepoda; allocation; diapause; dispersal; metamorphosis; ontogenetic niche shift; parasitism EGG-SIZE; DISPERSAL STRATEGIES; LABIDOCERA-AESTIVA; PREDATION RISK; CLUTCH SIZE; ZOOPLANKTON; METAMORPHOSIS; CONSEQUENCES; ENVIRONMENTS; CRUSTACEAN Life-history theory predicts that different reproductive strategies should evolve in environments that differ in resource availability, mortality, seasonality, and in spatial or temporal variation. Within a population, the predicted optimal strategy is driven by tradeoffs that are mediated by the environment in which the organisms live. At the same time, phylogenetic history may circumscribe natural selection by dictating the range of phenotypes upon which selection can act, or by limiting the range of environments encountered. Comparisons of life-history patterns in related organisms provide a powerful tool for understanding both the nature of selection on life-history characters and the diversity of life-history patterns observed in nature. Here, we explore reproductive strategies of the Copepoda, a well defined group with many phylogenetically independent transitions from free-living to parasitic life styles, from marine to inland waters, and from active development to diapause. Most species are iteroparous annuals, and most (with the exception of some parasitic taxa) develop through a relatively restricted range of life-history stages (nauplii and copepodids, or some modification thereof). Within these bounds, we suggest that there may be a causal relationship between the success of numerous copepod taxa in inland waters and the prevalence of either diapause or parasitism within these groups. We hypothesize that inland waters are more variable spatially and temporally than marine habitats, and accordingly, we interpret diapause and parasitism as mechanisms for coping with environmental variance. (C) 1998 Elsevier Science B.V. All rights reserved. Cornell Univ, Ecol & Systemat Sect, Ithaca, NY 14853 USA Hairston, NG (reprint author), Cornell Univ, Ecol & Systemat Sect, Corson Hall, Ithaca, NY 14853 USA. nghl@cornell.edu AFANASEV KI, 1989, OKEANOLOGIYA+, V29, P300; Allan J. D., 1980, EVOLUTION ECOLOGY ZO, P388; ALLAN JD, 1976, AM NAT, V110, P165, DOI 10.1086/283056; Bayly I. A. E., 1992, NONMARINE CENTROPAGI; Begon M., 1990, ECOLOGY INDIVIDUALS; BOILEAU MG, 1991, ZOOL J LINN SOC-LOND, V102, P375, DOI 10.1111/j.1096-3642.1991.tb00007.x; BOILEAU MG, 1988, HYDROBIOLOGIA, V167, P393, DOI 10.1007/BF00026331; BOILEAU MG, 1991, EVOLUTION, V45, P721, DOI 10.1111/j.1558-5646.1991.tb04341.x; BRANER M, 1989, LECTURE NOTES STATIS, V55, P81; BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; BUCKLIN A, 1985, MAR BIOL, V84, P219, DOI 10.1007/BF00392490; BUCKLIN A, 1991, J GEOPHYS RES-OCEANS, V96, P14799, DOI 10.1029/91JC01209; BUCKLIN A, 1989, J GEOPHYS RES-OCEANS, V94, P8277, DOI 10.1029/JC094iC06p08277; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; COHEN D, 1970, AM NAT, V104, P389, DOI 10.1086/282672; COHEN D, 1985, MATH TOPICS POPULATI, P110; De Meeus T., 1993, P61; DESTASIO BT, 1989, ECOLOGY, V70, P1377; DESTASIO BT, 1992, B MATH BIOL, V54, P313, DOI 10.1016/S0092-8240(05)80029-1; DRENNER RW, 1980, EVOLUTION ECOLOGY ZO, P587; Dussart B, 1985, REPERTOIRE MONDIAL C; Dussart B., 1967, COPEPODES EAUX CONTI, VI; Dussart B.H., 1995, COPEPODA INTRO COPEP; ELGMORK K, 1965, NATURE, V205, P413, DOI 10.1038/205413a0; ELLNER S, 1985, THEOR POPUL BIOL, V28, P50, DOI 10.1016/0040-5809(85)90022-X; GEORGE VS, 1985, MAR ECOL PROG SER, V21, P145, DOI 10.3354/meps021145; GEORGE VS, 1990, THESIS U RHODE ISLAN; GOUDEYPERRIERE F, 1979, CAH BIOL MAR, V20, P201; Hairston N.G. Jr, 1987, P281; Hairston Nelson G. Jr., 1994, Hydrobiologia, V292-293, P209, DOI 10.1007/BF00229943; HAIRSTON NG, 1983, LIMNOL OCEANOGR, V28, P935, DOI 10.4319/lo.1983.28.5.0935; HAIRSTON NG, 1984, AM NAT, V123, P733, DOI 10.1086/284236; HAIRSTON NG, 1995, ECOLOGY, V76, P1706, DOI 10.2307/1940704; Hairston NG, 1996, LIMNOL OCEANOGR, V41, P1087, DOI 10.4319/lo.1996.41.5.1087; Hairston NG, 1996, HYDROBIOLOGIA, V320, P27, DOI 10.1007/BF00016802; HAMBRIGHT KD, 1992, ENVIRON BIOL FISH, V35, P401, DOI 10.1007/BF00004992; Harvey P. H., 1991, COMP METHOD EVOLUTIO; HUTCHINSON G. E., 1951, ECOLOGY, V32, P571, DOI 10.2307/1931745; Huys R, 1991, COPEPOD EVOLUTION; KABATA Z, 1973, J FISH RES BOARD CAN, V30, P881, DOI 10.1139/f73-150; KERFOOT WC, 1974, ECOLOGY, V55, P1259, DOI 10.2307/1935454; LAMPERT W, 1985, ERGEB LIMNOL, V21, P311; LEVIN SA, 1984, THEOR POPUL BIOL, V26, P165, DOI 10.1016/0040-5809(84)90028-5; Lin Ching-Long, 1993, P5, DOI 10.1109/CCST.1993.386836; LINDLEY JA, 1992, J CRUSTACEAN BIOL, V12, P368, DOI 10.2307/1549030; LONSDALE DJ, 1981, MAR ECOL PROG SER, V5, P333, DOI 10.3354/meps005333; LONSDALE DJ, 1985, BIOL BULL, V168, P419, DOI 10.2307/1541522; MAIER G, 1992, INT REV GES HYDROBIO, V77, P455, DOI 10.1002/iroh.19920770309; MARCUS NH, 1994, LIMNOL OCEANOGR, V39, P154, DOI 10.4319/lo.1994.39.1.0154; MARCUS NH, 1979, BIOL BULL, V157, P297, DOI 10.2307/1541056; MARCUS NH, 1982, BIOL BULL, V162, P39, DOI 10.2307/1540968; McKinney ML, 1991, HETEROCHRONY EVOLUTI; Nei M, 1975, MOL POPULATION GENET; OBRIEN WJ, 1979, AM SCI, V67, P572; POULIN R, 1995, EVOLUTION, V49, P325, DOI 10.1111/j.1558-5646.1995.tb02245.x; REES M, 1994, AM NAT, V144, P43, DOI 10.1086/285660; REES M, 1993, NATURE, V366, P150, DOI 10.1038/366150a0; RICHMAN S, 1983, LIMNOL OCEANOGR, V28, P948, DOI 10.4319/lo.1983.28.5.0948; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SCHMINKE H K, 1982, Drosera, V82, P101; SEVIGNY JM, 1989, MAR BIOL, V102, P321, DOI 10.1007/BF00428484; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stephens DW, 1986, FORAGING THEORY; SVENSSON JE, 1995, FUNCT ECOL, V9, P774, DOI 10.2307/2390251; Tauber M.J., 1986, SEASONAL ADAPTATIONS; TRUJILLOORTIZ A, 1995, CIENC MAR, V21, P39, DOI 10.7773/cm.v21i1.982; Twombly S, 1996, ECOLOGY, V77, P1855, DOI 10.2307/2265789; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WERNER EE, 1984, ANNREV ECOL SYSTEMAT, P393; Werner EE, 1988, SIZE STRUCTURED POPU; WINFIELD IJ, 1983, OECOLOGIA, V60, P406, DOI 10.1007/BF00376860; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667 74 32 33 0 31 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0924-7963 J MARINE SYST J. Mar. Syst. JUN 1998 15 1-4 23 34 10.1016/S0924-7963(97)00046-8 12 Geosciences, Multidisciplinary; Marine & Freshwater Biology; Oceanography Geology; Marine & Freshwater Biology; Oceanography 101NY WOS:000074876100005 2018-11-12 J Veiga, JP; Salvador, A; Merino, S; Puerta, M Veiga, JP; Salvador, A; Merino, S; Puerta, M Reproductive effort affects immune response and parasite infection in a lizard: a phenotypic manipulation using testosterone OIKOS English Article LIVING MALE LIZARDS; IMMUNOCOMPETENCE HANDICAP; SCELOPORUS-OCCIDENTALIS; GREAT TITS; AGGRESSION; COST; PREVALENCE; HEMATOZOA; DEFENSE; BIRDS Life-history theory predicts that there is a trade-off between reproductive effort and several traits that determine fitness. Infectious disease has gained acceptance as a crucial Factor linking both variables. In most instances phenotypic manipulation is necessary to convincingly demonstrate a causal relationship of reproductive effort on parasitism. However, experimental studies that manipulate reproductive effort or parasite load have been rarely conducted in reptiles. In this study, we manipulated reproductive effort of male lizards (Psammodromus algirus) through testosterone implants, and measured the associated response in some haematological variables and parasite load. Testosterone-supplemented males had lower scores than control males in factor 1 of a PCA for different blood parameters. This factor is correlated with the number of white blood cells, especially lymphocytes, and with plasma glucose levels. Experimental males also had higher scores in factor 3 that is mainly related to protein catabolism. Scores of males in component 1 tended to be correlated negatively with tick load, while scores in component 3 were correlated positively with the number of haemogregarines in the blood. These results suggest that higher investment in reproduction decreases the immune defences, and conduces to the use of structural resources, which may render individuals more susceptible to some haemoparasites. This is consistent with the idea that an increase in reproductive effort mediated by testosterone has a negative effect on the ability to counteract parasite infections. CSIC, Dept Ecol Evolut, Museo Nacl Ciencias Nat, E-28006 Madrid, Spain; Univ Paris 06, Ecol Lab, CNRS, URA 258, F-75252 Paris 05, France; Univ Complutense Madrid, Fac Ciencias Biol, Dept Biol Anim Fisiol Anim 2, E-28040 Madrid, Spain Veiga, JP (reprint author), CSIC, Dept Ecol Evolut, Museo Nacl Ciencias Nat, Jose Gutierrez Abascal 2, E-28006 Madrid, Spain. Merino, Santiago/A-6183-2008; Evolutionary Ecology, Ecologia Evolutiva/M-3553-2014; Salvador, Alfredo/K-1670-2014 ABELENDA M, 1992, ACTA ENDOCRINOL-COP, V126, P434, DOI 10.1530/acta.0.1260434; Barnes H.J., 1986, P472; COOPER BT, 1985, CLIN GASTROENTEROL, V14, P599; DRABKIN DL, 1945, AM J MED SCI, V209, P268; DUNLAP KD, 1995, PHYSIOL ZOOL, V68, P608, DOI 10.1086/physzool.68.4.30166347; EVANS RH, 1983, J WILDLIFE DIS, V19, P349, DOI 10.7589/0090-3558-19.4.349; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Fox S.F., 1983, P149; GENTRY RT, 1976, J COMP PHYSIOL PSYCH, V90, P18, DOI 10.1037/h0077264; GLAZEBROOK JS, 1981, J COMP PATHOL, V91, P361, DOI 10.1016/0021-9975(81)90006-2; GODFREY RD, 1987, J WILDLIFE DIS, V23, P558, DOI 10.7589/0090-3558-23.4.558; GOUNNI AS, 1994, NATURE, V367, P183, DOI 10.1038/367183a0; GREINER EC, 1980, P HELM SOC WASH, V47, P142; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; KETTERSON ED, 1992, AM NAT, V140, pS33, DOI 10.1086/285396; Lessells C.M., 1991, P32; LOWRY OH, 1951, J BIOL CHEM, V193, P265; MARLER CA, 1988, BEHAV ECOL SOCIOBIOL, V23, P21, DOI 10.1007/BF00303053; MARLER CA, 1995, BEHAV ECOL SOCIOBIOL, V37, P225, DOI 10.1007/s002650050185; MARLER CA, 1991, ANIM BEHAV, V42, P209, DOI 10.1016/S0003-3472(05)80552-4; Merino S, 1995, AUK, V112, P1041, DOI 10.2307/4089037; MOORADIAN AD, 1987, ENDOCR REV, V8, P1, DOI 10.1210/edrv-8-1-1; MOORE MC, 1987, GEN COMP ENDOCR, V65, P225, DOI 10.1016/0016-6480(87)90170-5; NATT MP, 1952, POULTRY SCI, V31, P735, DOI 10.3382/ps.0310735; NORRIS K, 1994, J ANIM ECOL, V63, P601, DOI 10.2307/5226; Oppliger A, 1996, NATURE, V381, P565, DOI 10.1038/381565a0; Ots I, 1996, P ROY SOC B-BIOL SCI, V263, P1443, DOI 10.1098/rspb.1996.0210; Puerta M, 1996, COMP HAEMATOL INT, V6, P102, DOI 10.1007/BF00426050; Saino N, 1995, BEHAV ECOL, V6, P397, DOI 10.1093/beheco/6.4.397; Salvador A, 1996, BEHAV ECOL, V7, P145, DOI 10.1093/beheco/7.2.145; Salvador A, 1997, BEHAV ECOL, V8, P135, DOI 10.1093/beheco/8.2.135; SCHALL JJ, 1987, OECOLOGIA, V73, P389, DOI 10.1007/BF00385255; Skarstein F, 1996, OIKOS, V76, P359, DOI 10.2307/3546208; SMITH ER, 1977, METHOD PSYCHOBIOL, P259, DOI DOI 10.1016/B978-0-12-461003-3.50014-3; Sorci G, 1996, OIKOS, V76, P121, DOI 10.2307/3545754; Stearns S. C., 1992, EVOLUTION LIFE HIST; SVAHN K, 1974, OIKOS, V25, P43, DOI 10.2307/3543544; Sypek J., 1988, P211; TELFORD SR, 1970, AM MIDL NAT, V83, P516, DOI 10.2307/2423961; Turner R.J., 1988, P129; WEDEKIND C, 1994, AM NAT, V143, P936, DOI 10.1086/285641; Williams GC, 1966, ADAPTATION NATURAL S; WOLKE RE, 1982, J WILDLIFE DIS, V18, P175, DOI 10.7589/0090-3558-18.2.175; ZUK M, 1995, P ROY SOC B-BIOL SCI, V260, P205, DOI 10.1098/rspb.1995.0081 45 53 55 1 17 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos JUN 1998 82 2 313 318 10.2307/3546971 6 Ecology Environmental Sciences & Ecology 101QB WOS:000074878700012 2018-11-12 J Heppell, SS Heppell, SS Application of life-history theory and population model analysis to turtle conservation COPEIA English Article LOGGERHEAD SEA-TURTLES; LONG-LIVED ORGANISMS; CHELYDRA-SERPENTINA; CARETTA-CARETTA; MUD TURTLE; DEMOGRAPHY; MANAGEMENT; PARAMETERS; VIABILITY; PATTERNS As more reptiles find their way onto endangered species lists, it is increasingly important to identify management alternatives that can be applied across taxa. I have compared life tables from several turtle populations using elasticity analysis, a method that calculates the proportional contribution of each vital rate (age-specific survival and fecundity) to the annual population multiplication rate, lambda [In (lambda) = r, the intrinsic rate of increase]. Most freshwater turtles share similar elasticity patterns across age classes, in spite of large variations in mean annual fecundity, annual survival, and age at maturity. High adult survival elasticity and low fecundity elasticity in these species suggests that conservation efforts that reduce mortality of adults are likely to stabilize declining populations. Desert tortoises and sea turtles had different elasticity patterns, with relatively higher juvenile elasticities when summed across age classes. Three different life tables for painted turtles also showed variation in elasticity patterns. Approximate elasticities can be generated for age-based matrices without a complete life table for each species, requiring only age at maturity, adult female annual survival, and population multiplication rate. This approximation may help identify sensitive life stages for poorly known species, thereby guiding research and management efforts and furthering our understanding of life-history patterns. Duke Univ, Dept Zool, Beaufort, NC 28516 USA Heppell, SS (reprint author), Duke Univ, Dept Zool, 135 Duke Marine Lab Rd, Beaufort, NC 28516 USA. BROOKS RJ, 1991, CAN J ZOOL, V69, P1314, DOI 10.1139/z91-185; Caswell H., 1989, MATRIX POPULATION MO; COCHRAN ME, 1992, ECOL MONOGR, V62, P345, DOI 10.2307/2937115; Congdon J.D., 1990, P45; CONGDON JD, 1993, CONSERV BIOL, V7, P826, DOI 10.1046/j.1523-1739.1993.740826.x; CONGDON JD, 1994, AM ZOOL, V34, P397; Congdon Justin D., 1994, P181; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; CROWDER LB, 1994, ECOL APPL, V4, P437, DOI 10.2307/1941948; Cunnington DC, 1996, CAN J ZOOL, V74, P291, DOI 10.1139/z96-036; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; DOAK D, 1994, ECOL APPL, V4, P446, DOI 10.2307/1941949; Frazer N.B., 1990, P183; FRAZER NB, 1991, ECOLOGY, V72, P2218, DOI 10.2307/1941572; HARLESS M, 1979, TURTLES PERSPECTIVES; Heppell SS, 1996, ECOL APPL, V6, P556, DOI 10.2307/2269391; Heppell SS, 1996, WILDLIFE RES, V23, P143, DOI 10.1071/WR9960143; IVERSON JB, 1991, HERPETOLOGICA, V47, P373; IVERSON JB, 1991, CAN J ZOOL, V69, P385, DOI 10.1139/z91-060; Leslie PH, 1945, BIOMETRIKA, V33, P183, DOI 10.2307/2332297; Meffe G. K., 1994, PRINCIPLES CONSERVAT; Mitchell J. C., 1988, HERPETOL MONOGR, V2, P40; Perrins C. M., 1991, BIRD POPULATION STUD, P594; SHAFFER ML, 1990, CONSERV BIOL, V4, P39, DOI 10.1111/j.1523-1739.1990.tb00265.x; SHINE R, 1995, OIKOS, V72, P343, DOI 10.2307/3546119; Soule M. E., 1987, VIABLE POPULATIONS C; Stearns S. C., 1992, EVOLUTION LIFE HIST; TINKLE DW, 1981, ECOLOGY, V62, P1426, DOI 10.2307/1941498; Turner F.B., 1987, P DES TORT COUNC 198, V1984, P68; VANBUSKIRK J, 1994, COPEIA, P66; WILBUR HM, 1975, ECOLOGY, V56, P64, DOI 10.2307/1935300; WILBUR HM, 1988, BIOL REPTILIA B, V16, P396 32 231 246 9 116 AMER SOC ICHTHYOLOGISTS HERPETOLOGISTS BUSINESS OFFICE CARBONDALE SOUTHERN ILLINOIS UNIV, DEPT ZOOLOGY, CARBONDALE, IL 62901-6501 USA 0045-8511 COPEIA Copeia MAY 1 1998 2 367 375 10.2307/1447430 9 Zoology Zoology ZN379 WOS:000073640000007 2018-11-12 J Morand, S; Sorci, G Morand, S; Sorci, G Determinants of life-history evolution in nematodes PARASITOLOGY TODAY English Article POPULATION-DYNAMICS; BODY-SIZE; PARASITISM; REPRODUCTION; PHYLOGENIES; TRAITS What are the determinants of parasite life-history evolution? Does life-history evolution of parasitic species differ from their free-living relatives? How and why do host and parasite life-history traits covary? Here, Serge Morand and Gabriele Sorci use recent comparative studies to investigate life-history evolution in nematodes which present both parasitic and free-living groups. Application of life-history theory to nematodes suggests that the conventional wisdom concerning the high fecundity of parasitic species could simply be the result of the larger body size of the latter when compared with free-living forms. The authors also emphasize, with the use of examples, that in most cases parasite life-history evolution depends on host features. Univ Perpignan, Ctr Biol & Ecol Trop & Mediterraneenne, Lab Biol Anim, CNRS,UMR 5555, F-66860 Perpignan, France; Univ Paris 06, Ecol Lab, CNRS, URA 258, F-75252 Paris 05, France Morand, S (reprint author), Univ Perpignan, Ctr Biol & Ecol Trop & Mediterraneenne, Lab Biol Anim, CNRS,UMR 5555, F-66860 Perpignan, France. morand@gala.univ-perp.fr Morand, Serge/M-5433-2018 Morand, Serge/0000-0003-3986-7659 ANDERSON RM, 1985, ADV PARASIT, V24, P1, DOI 10.1016/S0065-308X(08)60561-8; CALOW P, 1983, PARASITOLOGY, V86, P197, DOI 10.1017/S0031182000050897; Charnov Eric L., 1993, P1; COMBES C, 1995, INTERACTIONS DURABLE; DUVAUXMIRET O, 1992, P NATL ACAD SCI USA, V89, P778, DOI 10.1073/pnas.89.2.778; Esch G. W., 1977, Regulation of parasite populations. (Proc. Symp. sponsored by Amer. Microscop. Soc. & Amer. Soc. Parasit., New Orleans, 10-14 Nov. 1975)., P9; ESCH GW, 1993, FUNCTIONAL BIOL PARS; FAIN A, 1994, INT J PARASITOL, V24, P1273, DOI 10.1016/0020-7519(94)90194-5; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FORBES MRL, 1993, OIKOS, V67, P444, DOI 10.2307/3545356; HARVEY PH, 1991, PHILOS T ROY SOC B, V332, P31, DOI 10.1098/rstb.1991.0030; HARVEY PH, 1991, COMP METHODS EVOLUTI; HOCHBERG ME, 1992, J EVOLUTION BIOL, V5, P491, DOI 10.1046/j.1420-9101.1992.5030491.x; JOHN JL, 1994, Q REV BIOL, V69, P327, DOI 10.1086/418649; KEYMER A, 1982, PARASITOLOGY, V84, pR3; KEYMER AE, 1991, ACTA OECOL, V12, P105; KIRCHNER TB, 1980, ECOLOGY, V61, P232, DOI 10.2307/1935179; Malakhov V. V., 1994, NEMATODES STRUCTURE; MAUPAS E, 1900, ARCH ZOOL EXP GEN, V8, P463; Moller AP, 1996, EVOLUTION, V50, P2066, DOI 10.1111/j.1558-5646.1996.tb03592.x; Morand S, 1996, FUNCT ECOL, V10, P210, DOI 10.2307/2389845; Morand S, 1996, OECOLOGIA, V107, P274, DOI 10.1007/BF00327912; Morand S., 1996, GENESIS MAINTENANCE, P243; Peters R.H., 1983, P1; POULIN R, 1995, PARASITOL TODAY, V11, P342, DOI 10.1016/0169-4758(95)80187-1; POULIN R, 1995, BIOL J LINN SOC, V54, P231; Poulin R, 1997, INT J PARASITOL, V27, P959, DOI 10.1016/S0020-7519(97)00055-6; Poulin R, 1996, ADV PARASIT, V37, P107, DOI 10.1016/S0065-308X(08)60220-1; READ AF, 1995, PARASITOLOGY, V111, P359, DOI 10.1017/S0031182000081919; SKORPING A, 1991, OIKOS, V60, P365, DOI 10.2307/3545079; Slatkin M., 1983, COEVOLUTION; Sorci G, 1997, P ROY SOC B-BIOL SCI, V264, P285, DOI 10.1098/rspb.1997.0040; Sorci G, 1996, OIKOS, V76, P121, DOI 10.2307/3545754; SOUTHGATE VR, 1989, PARASITOL RES, V75, P381, DOI 10.1007/BF00931134; Stearns S. C., 1992, EVOLUTION LIFE HIST; WHARTON DA, 1986, FUNCTIONAL BIOL NEMA 36 34 35 0 11 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0169-4758 PARASITOL TODAY Parasitol. Today MAY 1998 14 5 193 196 10.1016/S0169-4758(98)01223-X 4 Parasitology Parasitology ZJ662 WOS:000073239500009 17040750 2018-11-12 J Langtimm, CA; O'Shea, TJ; Pradel, R; Beck, CA Langtimm, CA; O'Shea, TJ; Pradel, R; Beck, CA Estimates of annual survival probabilities for adult Florida manatees (Trichechus manatus latirostris) ECOLOGY English Article life history traits; marine mammals; mark-recapture; open population models; photo-identification; sighting probabilities; survival probabilities; Trichechus manatus CAPTURE-RECAPTURE DATA; NATURAL-POPULATIONS; LIFE-HISTORIES; MODEL SELECTION; MARKED ANIMALS; MAMMALS; RATES; PATTERNS; MORTALITY; IDENTIFICATION The population dynamics of large, long-lived mammals are particularly sensitive to changes in adult survival. Understanding factors affecting survival patterns is therefore critical for developing and testing theories of population dynamics and for developing management strategies aimed at preventing declines or extinction in such taxa. Few studies have used modern analytical approaches for analyzing variation and testing hypotheses about survival probabilities in large mammals. This paper reports a detailed analysis of annual adult survival in the Florida manatee (Trichechus manatus latirostris), an endangered marine mammal, based on a mark-recapture approach. Natural and boat-inflicted scars distinctively "marked" individual manatees that were cataloged in a computer-based photographic system. Photo-documented resightings provided "recaptures." Using open population models, annual adult-survival probabilities were estimated for manatees observed in winter in three areas of Florida: Blue Spring, Crystal River, and the Atlantic coast. After using goodness-of-fit tests in Program RELEASE to search for violations of the assumptions of mark-recapture analysis, survival and sighting probabilities were modeled under several different biological hypotheses with Program SURGE. Estimates of mean annual probability of sighting varied from 0.948 for Blue Spring to 0.737 for Crystal River and 0.507 for the Atlantic coast. At Crystal River and Blue Spring, annual survival probabilities were best estimated as constant over the study period at 0.96 (95% CI = 0.951-0.975 and 0.900-0.985, respectively). On the Atlantic coast, where manatees are impacted more by human activities, annual survival probabilities had a significantly lower mean estimate of 0.91 (95% CI = 0.887-0.926) and varied unpredictably over the study period. For each study area, survival did not differ between sexes and was independent of relative adult age. The high constant adult-survival probabilities estimated for manatees in the Blue Spring and Crystal River areas were consistent with current mammalian life history theory and other empirical data available for large, long-lived mammals. Adult survival probabilities in these areas appeared high enough to maintain growing populations if other traits such as reproductive rates and juvenile survival were also sufficiently high. Lower and variable survival rates on the Atlantic coast are cause for concern. US Geol Survey, Florida Caribbean Sci Ctr, Sirenia Project, Gainesville, FL 32601 USA; CNRS, Ctr Ecol Fonct & Evolut, F-34293 Montpellier 5, France Beck, CA (reprint author), US Geol Survey, Florida Caribbean Sci Ctr, Sirenia Project, 412 NE 16th Ave, Gainesville, FL 32601 USA. Pradel, Roger/A-8666-2008 Pradel, Roger/0000-0002-2684-9251; Beck, Cathy/0000-0002-5388-5418 ACKERMAN BB, 1995, 1 US DEP INT NAT BIO, P13; ACKERMAN BB, 1995, 1 US DEP INT NAT BIO, P223; AMSTRUP SC, 1995, CAN J ZOOL, V73, P1312, DOI 10.1139/z95-155; ANDERSON DR, 1994, ECOLOGY, V75, P1780, DOI 10.2307/1939637; ARNASON AN, 1981, CAN J FISH AQUAT SCI, V38, P1077, DOI 10.1139/f81-148; BECK CA, 1995, 1 US DEP INT NAT BIO, P120; BENGTSON JL, 1981, THESIS U MINNESOTA M; BENTON TG, 1995, EVOL ECOL, V9, P559, DOI 10.1007/BF01237655; Benton TG, 1996, AM NAT, V147, P115, DOI 10.1086/285843; BRETAGNOLLE V, 1994, J WILDLIFE MANAGE, V58, P175, DOI 10.2307/3809565; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; Buckland S.T., 1990, Reports of the International Whaling Commission Special Issue, P149; BURNHAM KP, 1995, BIOMETRICS, V51, P888, DOI 10.2307/2532990; BURNHAM KP, 1992, WILDLIFE 2001 : POPULATIONS, P16; BURNHAM KP, 1987, AM FISH SOC MONOGR, V5, P1; CAROTHERS AD, 1973, BIOMETRICS, V29, P79, DOI 10.2307/2529678; CAROTHERS AD, 1979, J ANIM ECOL, V48, P836; CAUGHLEY G, 1966, ECOLOGY, V47, P906, DOI 10.2307/1935638; CHARNOV EL, 1986, OIKOS, V47, P129, DOI 10.2307/3566037; Clutton-Brock T. H, 1982, RED DEER BEHAV ECOLO; EBERHARDT L L, 1977, Environmental Conservation, V4, P205; EBERHARDT LL, 1994, CAN J ZOOL, V72, P360, DOI 10.1139/z94-049; EBERHARDT LL, 1985, J WILDLIFE MANAGE, V49, P997, DOI 10.2307/3801386; EBERHARDT LL, 1977, J FISH RES BOARD CAN, V34, P183, DOI 10.1139/f77-028; Eberhardt LL, 1995, POPULATION BIOL FLOR, P269; EISENBERG JF, 1981, MAMMALIAN RAD ANAL T; Fowler C.W., 1981, P437; GAILLARD JM, 1993, J ANIM ECOL, V62, P778; GAILLARD JM, 1994, EVOLUTION, V48, P509, DOI 10.1111/j.1558-5646.1994.tb01329.x; GARROTT RA, 1994, J WILDLIFE MANAGE, V58, P642, DOI 10.2307/3809677; GONZALEZ FT, 1994, MAR MAMMAL SCI, V10, P348, DOI 10.1111/j.1748-7692.1994.tb00489.x; HAMMOND PS, 1990, REPORT INT WHALING C, V12, P1; HARGROVE JW, 1994, BIOMETRICS, V50, P1129, DOI 10.2307/2533449; Hartman D. S., 1979, SPEC PUBL AM SOC MAM, V5, P1; Harvey P.H., 1989, Oxford Surveys in Evolutionary Biology, V6, P13; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; HARWOOD J, 1978, J APPL ECOL, V15, P401, DOI 10.2307/2402600; Hiby L., 1990, REP INT WHALING COMM, P57; HINES JE, 1989, US FISH WILDLIFE SER, V24, P1; IRVINE AB, 1982, FISH B-NOAA, V80, P621; IRVINE AB, 1983, BIOL CONSERV, V25, P315; Kendall WL, 1997, ECOLOGY, V78, P563; LAWS R. M., 1966, EAST AFR WILDLIFE J, V4, P1; LEBOEUF BJ, 1974, AM ZOOL, V14, P163; LEBRETON JD, 1993, TRENDS ECOL EVOL, V8, P91, DOI 10.1016/0169-5347(93)90058-W; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LOISON A, 1994, CAN J ZOOL, V72, P591, DOI 10.1139/z94-081; MARMONTEL M, 1995, POPULATION BIOL FLOR, P98; MCCLENAGHAN LR, 1988, J MAMMAL, V69, P481, DOI 10.2307/1381339; MILLAR JS, 1983, ECOLOGY, V64, P631, DOI 10.2307/1937181; MITHTHAPALA S, 1989, J ZOOL, V218, P527, DOI 10.1111/j.1469-7998.1989.tb04996.x; *NAT OC ATM ADM, 1985, 8997 NAT OC ATM ADM; NICHOLS JD, 1992, BIOSCIENCE, V42, P94, DOI 10.2307/1311650; O'Shea T. J., 1995, POPULATION BIOL FLOR, P157; O'Shea T. J., 1995, 1 US DEP INT NAT BIO; O'Shea Thomas J., 1995, P297; O'Shea TJ, 1988, P 3 SE NONG END WILD, P184; O'Shea TJ, 1995, POPULATION BIOL FLOR, P194; Olesiuk P.F., 1990, Reports of the International Whaling Commission Special Issue, P209; OSHEA TJ, 1985, J WILDLIFE MANAGE, V49, P1, DOI 10.2307/3801830; OSHEA TJ, 1990, J MAMMAL, V71, P531; PARADIS E, 1993, J WILDLIFE MANAGE, V57, P158, DOI 10.2307/3809012; POLLOCK KH, 1990, WILDLIFE MONOGR, P1; Pradel R., 1993, P29; Pradel R., 1997, BIOMETRICS, V53, P88; PRADEL R, 1993, USERS MANUAL PROGRAM; PROMISLOW DEL, 1992, P ROY SOC B-BIOL SCI, V247, P203, DOI 10.1098/rspb.1992.0030; RALLS K, 1976, Q REV BIOL, V51, P245, DOI 10.1086/409310; RALLS K, 1980, REP INT WHALING COMM, V2, P233; RATHBUN GB, 1990, FLORIDA MARINE RES P, V48, P1; RATHBUN GB, 1995, POPULATION BIOL FLOR, P135; REID JP, 1991, MAR MAMMAL SCI, V7, P180, DOI 10.1111/j.1748-7692.1991.tb00564.x; REID JP, 1995, POPULATION BIOL FLOR, P171; REYNOLDS JE, 1994, MAR MAMMAL SCI, V10, P163, DOI 10.1111/j.1748-7692.1994.tb00258.x; Saether BE, 1997, TRENDS ECOL EVOL, V12, P143, DOI 10.1016/S0169-5347(96)10068-9; SANDLAND RL, 1981, BIOMETRIKA, V68, P531, DOI 10.2307/2335602; SAUER JR, 1989, J WILDLIFE MANAGE, V53, P137, DOI 10.2307/3801320; SHANE S H, 1984, Florida Scientist, V47, P180; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; *US MAR MAMM COMM, 1995, ANN REP MAR MAMM COM; WOOLLER RD, 1992, TRENDS ECOL EVOL, V7, P111, DOI 10.1016/0169-5347(92)90143-Y 81 45 53 1 26 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 USA 0012-9658 ECOLOGY Ecology APR 1998 79 3 981 997 10.1890/0012-9658(1998)079[0981:EOASPF]2.0.CO;2 17 Ecology Environmental Sciences & Ecology ZG985 WOS:000073060300019 2018-11-12 J Mace, R Mace, R The coevolution of human fertility and wealth inheritance strategies PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article; Proceedings Paper Annual Meeting of the American-Anthropological-Association NOV 20-25, 1996 SAN FRANCISCO, CA Amer Anthropol Assoc human life history; fertility; mortality; wealth inheritance; primogeniture; demographic transaction CHILD-MORTALITY; REPRODUCTIVE SUCCESS; PARENTAL INVESTMENT; GABBRA PASTORALISTS; RURAL AREA; INFANT; MODEL; STATE; LIFE; BANGLADESH Life history theory concerns the scheduling of births and the level of parental investment in each offspring. In most human societies the inheritance of wealth is an important part of parental investment. Patterns of wealth inheritance and other reproductive decisions, such as family size, would be expected to influence each other. Here I present an adaptive model of human reproductive decision-making, using a state-dependent dynamic model. Two decisions made by parents are considered: when to have another baby, and thus the pattern of reproduction through life; and how to allocate resources between children at the end of the parents' life. Optimal decision rules are those that maximize the number of grandchildren. Decisions are assumed to depend on the state of the parent, which is described at any time by two variables: number of living sons, and wealth. The dynamics of the model are based on a traditional African pastoralist system, but it is general enough to approximate to any means of subsistence where an increase in the amount of wealth owned increases the capacity for future production of resources. The model is used to show that, in the unpredictable environment of a traditional pastoralist society, high fertility and a biasing of wealth inheritance to a small number of children are frequently optimal. Most such societies are now undergoing a transition to lower fertility, known as the demographic transition. The effects on fertility and wealth inheritance strategies of reducing mortality risks, reducing the unpredictability of the environment and increasing the costs of raising children are explored. Reducing mortality has little effect on completed family sizes of living children or on the wealth they inherit. Increasing the costs of raising children decreases optimal fertility and increases the inheritance left to each child at each level of wealth, and has the potential to reduce fertility to very low levels. The results offer an explanation for why wealthy families are frequently also those with the smallest number of children in heterogenous, post-transition societies. UCL, Dept Anthropol, London WC1E 6BT, England Mace, R (reprint author), UCL, Dept Anthropol, Gower St, London WC1E 6BT, England. r.mace@ucl.ac.uk Mace, Ruth/0000-0002-6137-7739 ALAM N, 1995, J BIOSOC SCI, V27, P393; Anderies JM, 1996, ETHOL SOCIOBIOL, V17, P221, DOI 10.1016/0162-3095(96)00037-4; BEAUCHAMP G, 1994, ETHOL SOCIOBIOL, V15, P31, DOI 10.1016/0162-3095(94)90026-4; BOHLER E, 1995, J BIOSOC SCI, V27, P431; CLELAND J, 1995, HUMAN REPRODUCTIVE DECISIONS, P207; Conrad C, 1996, POPUL DEV REV, V22, P331, DOI 10.2307/2137438; Fisher R. A., 1930, GENETIC THEORY NATUR; HARTUNG J, 1982, CURR ANTHROPOL, V23, P1, DOI 10.1086/202775; HOEM J, 1992, POPUL DEV REV, V16, P735; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; HUBBACH J, 1957, WIVES WENT COLL; JOHANSSON SR, 1987, POPUL DEV REV, V13, P439, DOI 10.2307/1973134; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; Lack D., 1968, ECOLOGICAL ADAPTATIO; LeGrand TK, 1996, POP STUD-J DEMOG, V50, P51, DOI 10.1080/0032472031000149046; LOW BS, 1991, ETHOL SOCIOBIOL, V12, P411, DOI 10.1016/0162-3095(91)90024-K; Mace R, 1996, INT J GYNECOL OBSTET, V54, P137, DOI 10.1016/0020-7292(96)02691-4; Mace R, 1997, J BIOSOC SCI, V29, P499, DOI 10.1017/S0021932097004999; Mace R, 1996, ETHOL SOCIOBIOL, V17, P263, DOI 10.1016/0162-3095(96)00044-1; Mace R, 1996, BEHAV ECOL SOCIOBIOL, V38, P75, DOI 10.1007/s002650050219; MACE R, 1998, IN PRESS NOMADIC PEO; MADISE NJ, 1995, J BIOSOC SCI, V27, P95; MANGEL M, 1988, DYNAMIC MODELLING BE; Marrow P, 1996, PHILOS T R SOC B, V351, P17, DOI 10.1098/rstb.1996.0002; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; Murdock G. P., 1967, ETHNOGRAPHIC ATLAS; Newell Colin, 1994, METHODS MODELS DEMOG; PISON G, 1993, INT J EPIDEMIOL, V22, P72, DOI 10.1093/ije/22.1.72; ROGERS AR, 1995, HUMAN REPRODUCTIVE DECISIONS, P76; RONSMANS C, 1995, POP STUD-J DEMOG, V49, P443, DOI 10.1080/0032472031000148766; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; VINING DR, 1986, BEHAV BRAIN SCI, V9, P167, DOI 10.1017/S0140525X00021968; WEAVER LT, 1993, LANCET, V341, P1327, DOI 10.1016/0140-6736(93)90827-4 34 94 95 0 9 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. MAR 29 1998 353 1367 389 397 10.1098/rstb.1998.0217 9 Biology Life Sciences & Biomedicine - Other Topics ZL796 WOS:000073472400004 9569432 Green Published 2018-11-12 J De Jong, TJ; Goosen-De Roo, L; Klinkhamer, PGL De Jong, TJ; Goosen-De Roo, L; Klinkhamer, PGL Is the threshold size for flowering in Cynoglossum officinale fixed or dependent on environment? NEW PHYTOLOGIST English Article initiation of flowering; life history theory; vernalization; plasticity; Cynoglossum officinale L. ROSETTE SIZE; VERNALIZATION; PHOTOPERIOD; PREDICTIONS; BEHAVIOR; FATE In the monocarpic perennial Cynoglossum officinale L, the probability of flowering is related to the size of the plant. In previous work it was observed that this relation varies between years. We hypothesized that variable conditions during the winter, the period of vernalization, explain this variation, We collected plants from the field in autumn and placed these under different simulated winter conditions in a climate room. In contrast to our hypothesis, the probability of initiating flowering at a given size was not affected by: (a) the temperature during the cold period, (b) the duration of the cold period, or (c) the application of a plant hormone (GA(3)) or an inhibitor of gibberellin synthesis (paclobutazol) during the cold period. Winter cold is not necessary for floral initiation, and is only required for elongation of the inflorescence. It is unlikely that winter temperature affects the fraction of plants flowering. Subsequent morphological investigation of flower development in material collected in the field showed that large plants had primordial inflorescences well before vernalization, sometimes as early as August. In plants grown from seeds under constant conditions in a climate room, the probability of initiating the inflorescence differed for plants grown at various temperatures (34.1% at 15 degrees C, 100% at 20 degrees C, and 95% at 25 degrees C). Our results suggest that environmental conditions in August and September, up to 10 months before actual flowering, could affect the fraction of flowering plants. Leiden Univ, Inst Evolutionary & Ecol Sci, NL-2300 RA Leiden, Netherlands; Leiden State Univ, Inst Mol Plant Sci, NL-2333 AL Leiden, Netherlands De Jong, TJ (reprint author), Leiden Univ, Inst Evolutionary & Ecol Sci, POB 9516, NL-2300 RA Leiden, Netherlands. T.J.de_Jong@biology.leidenuniv.nl Klinkhamer, Peter/S-1900-2017 Klinkhamer, Peter/0000-0001-8650-2199 ATHERTON JG, 1987, MANIPULATION FLOWERI, P1833; BASKIN JM, 1979, J ECOL, V67, P601, DOI 10.2307/2259115; BOOIJ R, 1995, SCI HORTIC-AMSTERDAM, V63, P143, DOI 10.1016/0304-4238(95)00803-2; CASWELL H, 1978, ECOLOGY, V59, P53, DOI 10.2307/1936631; DEJONG TJ, 1991, FUNCT ECOL, V5, P750; DEJONG TJ, 1986, NEW PHYTOL, V103, P219; DEJONG TJ, 1989, HDB FLOWERING, V6, P281; EVANS LT, 1993, AUST J PLANT PHYSIOL, V20, P655, DOI 10.1071/PP9930655; GROSS KL, 1981, OECOLOGIA, V48, P209, DOI 10.1007/BF00347966; Harper J. L., 1977, POPULATION BIOL PLAN; HARTSEMA A. M., 1961, Encyclopedia of plant physiology., V16, P123; INOUYE DW, 1980, OECOLOGIA, V47, P171, DOI 10.1007/BF00346816; KARLSSON BH, 1993, AM J BOT, V80, P646, DOI 10.2307/2445435; KLINKHAMER PGL, 1987, OIKOS, V49, P303, DOI 10.2307/3565765; LACEY EP, 1986, TRENDS ECOL EVOL, V1, P72, DOI 10.1016/0169-5347(86)90021-2; Le Nard M., 1993, P617; McDaniel CN, 1996, J EXP BOT, V47, P465, DOI 10.1093/jxb/47.4.465; MEDD RW, 1978, WEED RES, V18, P369, DOI 10.1111/j.1365-3180.1978.tb01175.x; THOMPSON DJ, 1991, CAN J BOT, V69, P368, DOI 10.1139/b91-050; VANDERMEIJDEN E, 1979, J ECOL, V67, P131, DOI 10.2307/2259341; WERNER PA, 1975, OECOLOGIA, V20, P197, DOI 10.1007/BF00347472; Wesselingh RA, 1997, ECOLOGY, V78, P2118, DOI 10.1890/0012-9658(1997)078[2118:TSFFID]2.0.CO;2; WESSELINGH RA, 1993, ACTA BOT NEERL, V42, P81; WESSELINGH RA, 1995, HEREDITY, V74, P415, DOI 10.1038/hdy.1995.59; WESSELINGH RA, 1995, THESIS U LEIDEN NETH; WURR DCE, 1995, J EXP BOT, V46, P1487, DOI 10.1093/jxb/46.10.1487 26 20 21 0 7 CAMBRIDGE UNIV PRESS NEW YORK 40 WEST 20TH STREET, NEW YORK, NY 10011-4211 USA 0028-646X NEW PHYTOL New Phytol. MAR 1998 138 3 489 496 10.1046/j.1469-8137.1998.00118.x 8 Plant Sciences Plant Sciences ZG719 WOS:000073032500011 Bronze 2018-11-12 J Giske, J; Huse, G; Fiksen, O Giske, J; Huse, G; Fiksen, O Modelling spatial dynamics of fish REVIEWS IN FISH BIOLOGY AND FISHERIES English Review adaptation; artificial neural networks; fish; fitness; game theory; genetic algorithms; hearing; ideal free distribution; learning; life history theory; memory; migration; olfaction; optimal foraging theory; optimization; sensory organs; spatial modelling; stochastic dynamic programming; vision IDEAL FREE DISTRIBUTIONS; EVOLUTIONARILY STABLE STRATEGY; LIFE-HISTORY PROBLEM; ALBURNUS-ALBURNUS L; VERTICAL-DISTRIBUTION; LATERAL-LINE; FLUCTUATING ENVIRONMENTS; NUMERICAL SIMULATIONS; GENETIC ALGORITHMS; PLANKTIVOROUS FISH Our ability to model spatial distributions of fish populations is reviewed by describing the available modelling tools. Ultimate models of the individual's motivation for behavioural decisions are derived from evolutionary ecology. Mechanistic models for how fish sense and may respond to their surroundings are presented for vision, olfaction, hearing, the lateral line and other sensory organs. Models for learning and memory are presented, based both upon evolutionary optimization premises and upon neurological information processing and decision making. Functional tools for modelling behaviour and life histories can be categorized as belonging to an optimization or an adaptation approach. Among optimization tools, optimal foraging theory, life history theory, ideal free distribution, game theory and stochastic dynamic programming are presented. Among adaptation tools, genetic algorithms and the combination with artificial neural networks are described. The review advocates the combination of evolutionary and neurological approaches to modelling spatial dynamics of fish. Univ Bergen, Bergen High Technol Ctr, Dept Fisheries & Marine Biol, N-5020 Bergen, Norway Giske, J (reprint author), Univ Bergen, Bergen High Technol Ctr, Dept Fisheries & Marine Biol, N-5020 Bergen, Norway. Jarl.Giske@ifm.uib.no Giske, Jarl/A-2402-2010; Fiksen, Oyvind/F-1771-2011 Giske, Jarl/0000-0001-5034-8177; Fiksen, Oyvind/0000-0002-9687-5842 ABRAHAMS MV, 1986, BEHAV ECOL SOCIOBIOL, V19, P409, DOI 10.1007/BF00300543; ACKLEY D, 1992, ARTIF LIFE, V2, P487; AKSNES DL, 1990, MAR ECOL PROG SER, V64, P209, DOI 10.3354/meps064209; Aksnes DL, 1997, SARSIA, V82, P137, DOI 10.1080/00364827.1997.10413647; AKSNES DL, 1993, ECOL MODEL, V67, P233, DOI 10.1016/0304-3800(93)90007-F; ALLDREDGE AL, 1984, NATO C SERIES, V4, P407; ANDERSON RW, 1995, J THEOR BIOL, V175, P89, DOI 10.1006/jtbi.1995.0123; Atema J, 1988, SENSORY BIOL AQUATIC; Baird RC, 1996, CHEM SENSES, V21, P121, DOI 10.1093/chemse/21.2.121; BAIRD RC, 1995, DEEP-SEA RES PT I, V42, P675, DOI 10.1016/0967-0637(95)00022-X; BALCHEN JG, 1976, STF48A76045 SINTEF; Beauchamp G, 1997, J ANIM ECOL, V66, P671, DOI 10.2307/5920; BENHAMOU S, 1995, J THEOR BIOL, V173, P163, DOI 10.1006/jtbi.1995.0053; Blarer A, 1996, EVOL ECOL, V10, P81, DOI 10.1007/BF01239349; BLAXTER JHS, 1985, J MAR BIOL ASSOC UK, V65, P737, DOI 10.1017/S0025315400052565; Bleckmann H., 1989, P501; BLECKMANN H, 1993, FISH FISHERIES SERIE, V7, P201; BROEKHUIZEN N, 1994, FUNCT ECOL, V8, P770, DOI 10.2307/2390237; BUSH RR, 1955, STOCHASTIC MODELS LE; Calow P., 1981, PHYSL ECOLOGY EVOLUT, P3; CARACO T, 1980, ECOLOGY, V61, P119, DOI 10.2307/1937162; CHARNOV EL, 1976, THEOR POPUL BIOL, V9, P129, DOI 10.1016/0040-5809(76)90040-X; CLARK CW, 1993, TRENDS ECOL EVOL, V8, P205, DOI 10.1016/0169-5347(93)90100-4; CLARK CW, 1986, THEOR POPUL BIOL, V30, P45, DOI 10.1016/0040-5809(86)90024-9; CLARK CW, 1988, AM NAT, V131, P271, DOI 10.1086/284789; CLARK CW, 1995, OIKOS, V72, P205, DOI 10.2307/3546222; COOMBS S, 1989, MECHANOSENSORY LATER; CRAIG RB, 1979, AM NAT, V113, P31, DOI 10.1086/283363; Dagorn L, 1997, BIOSYSTEMS, V44, P167, DOI 10.1016/S0303-2647(97)00051-8; DAGORN L, 1995, SCI MAR, V59, P335; DANGELO DJ, 1995, CAN J FISH AQUAT SCI, V52, P1893, DOI 10.1139/f95-782; DAVIS L, 1991, HDB GENETIC ALGORITH; Dawkins R., 1976, SELFISH GENE; DAWKINS R, 1995, RIVER EDEN; DeAngelis D.L., 1992, INDIVIDUAL BASED MOD; Dower JF, 1997, ADV MAR BIOL, V31, P169, DOI 10.1016/S0065-2881(08)60223-0; DUNBRACK RL, 1984, CAN J FISH AQUAT SCI, V41, P1176, DOI 10.1139/f84-139; Ebenman B., 1988, SIZE STRUCTURED POPU; Eiane K, 1997, ECOL MODEL, V98, P123, DOI 10.1016/S0304-3800(96)01909-6; EKEBERG O, 1995, ADAPT BEHAV, V3, P363, DOI 10.1177/105971239500300402; EMLEN JM, 1966, AM NAT, V100, P611, DOI 10.1086/282455; EULER L, 1760, HIST ACAD ROYALE SCI, V16, P144; FERNO A, 1998, IN PRESS SARSIA, V83; FIKSEN O, 1995, ICES J MAR SCI, V52, P483, DOI 10.1016/1054-3139(95)80062-X; Fiksen O, 1997, ECOLOGY, V78, P1446; FIKSEN O, 1995, FISH OCEANOGR, V4, P193, DOI 10.1111/j.1365-2419.1995.tb00143.x; FIKSEN O, 1998, IN PRESS SARSIA, V83; FISHER R. A., 1930, GENETICAL THEORY NAT; FLEMING RM, 1939, J CONS CONS PERMA IN, V14, P210; FRANSZ HG, 1991, NETH J SEA RES, V28, P67, DOI 10.1016/0077-7579(91)90005-L; FRETWELL S D, 1969, Acta Biotheoretica, V19, P16, DOI 10.1007/BF01601953; FRETWELL SD, 1972, POPULATIONS SEASONAL; GABRIEL W, 1988, AM NAT, V132, P199, DOI 10.1086/284845; GABRIEL W, 1988, VERH INT VEREIN LIMN, V23, P807; GERRITSEN J, 1977, J FISH RES BOARD CAN, V34, P73, DOI 10.1139/f77-008; Gilliam J.F., 1988, P173; GILLIAM JF, 1990, NATO ADV SCI I G-ECO, V20, P797; GISKE J, 1993, EVOL ECOL, V7, P233, DOI 10.1007/BF01237741; Giske J., 1994, Vie et Milieu, V44, P1; GISKE J, 1992, SARSIA, V77, P253, DOI 10.1080/00364827.1992.10413510; Giske J, 1997, ECOL MODEL, V95, P45, DOI 10.1016/S0304-3800(96)00027-0; GISKE J, 1995, J THEOR BIOL, V173, P41, DOI 10.1016/S0022-5193(05)80003-7; Gleitman H., 1971, FISH PHYSIOL, V6, P191; Goldberg D. E, 1989, GENETIC ALGORITHMS S; Gomez F, 1997, ADAPT BEHAV, V5, P317, DOI 10.1177/105971239700500305; Guthrie D.M., 1993, Fish and Fisheries Series, V7, P89; HAKANSON L, 1995, ECOL MODEL, V78, P195, DOI 10.1016/0304-3800(93)E0103-A; HALLAM BE, 1994, ADAPT BEHAV, V3, P51, DOI 10.1177/105971239400300104; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HARA TJ, 1993, FISH FISHERIES SERIE, V7, P170; HARLEY CB, 1981, J THEOR BIOL, V89, P611, DOI 10.1016/0022-5193(81)90032-1; Hart Paul J.B., 1993, Fish and Fisheries Series, V7, P253; Hawkins A.D., 1993, Fish and Fisheries Series, V7, P129; HENSON SM, 1995, J THEOR BIOL, V176, P33, DOI 10.1006/jtbi.1995.0173; Hilborn R., 1997, MONOGRAPHS POPULATIO, V28; Hinton G. E., 1987, Complex Systems, V1, P495; Holland J., 1975, ADAPTATION NATURAL A; Holling C. S., 1959, Canadian Entomologist, V91, P385; HOPFIELD JJ, 1982, P NATL ACAD SCI-BIOL, V79, P2554, DOI 10.1073/pnas.79.8.2554; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; HUGIE DM, 1994, J FISH BIOL, V45, P151, DOI 10.1006/jfbi.1994.1220; HUSE G, 1998, IN PRESS FISHERIES R; HUSTON M, 1988, BIOSCIENCE, V38, P682, DOI 10.2307/1310870; HUTH A, 1994, ECOL MODEL, V75, P135, DOI 10.1016/0304-3800(94)90013-2; IWASA Y, 1982, AM NAT, V120, P171, DOI 10.1086/283980; JACHNER A, 1995, ARCH HYDROBIOL, V133, P71; JACHNER A, 1995, ARCH HYDROBIOL, V133, P305; Joseph J., 1958, DT HYDROGR Z, V11, P49; JUMPER GY, 1991, AM NAT, V138, P1431, DOI 10.1086/285295; Kalmijn A.J., 1988, P83; Kalmijn A.J., 1988, P151; KAREIVA P, 1994, ECOLOGY, V75, P1, DOI 10.2307/1939376; KATZ PL, 1974, AM NAT, V108, P758, DOI 10.1086/282953; KETTERSON ED, 1992, AM NAT, V140, pS33, DOI 10.1086/285396; Kieffer J.D., 1992, Reviews in Fish Biology and Fisheries, V2, P125, DOI 10.1007/BF00042881; Kobayashi A, 1995, ADV CHEM SER, V250, P367; Kohonen T, 1984, SELF ORG ASS MEMORY; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; Langton C. G., 1997, ARTIFICIAL LIFE OVER; Langton C. G., 1989, SANTA FE I STUDIES S, V6; LEGAC F, 1993, FISH PHYSIOL BIOCHEM, V11, P219, DOI 10.1007/BF00004569; Lehodey P, 1997, NATURE, V389, P715, DOI 10.1038/39575; Leon Jesus Alberto, 1993, Lecture Notes in Biomathematics, V98, P105; Lomnicki A., 1988, POPULATION ECOLOGY I; LOOSE CJ, 1994, ECOLOGY, V75, P2255, DOI 10.2307/1940881; Lotka AJ, 1907, AM J SCI, V24, P199; LOTKA AJ, 1925, ELEMENTS PHYSICAL BI; Lu Z, 1996, J COMP PHYSIOL A, V179, P227; LUECKE C, 1981, CAN J FISH AQUAT SCI, V38, P1264, DOI 10.1139/f81-168; MACARTHUR RH, 1966, AM NAT, V100, P603, DOI 10.1086/282454; MacCall A. D., 1990, DYNAMIC GEOGRAPHY MA; MANGEL M, 1986, ECOLOGY, V67, P1127, DOI 10.2307/1938669; Mangel M., 1988, DYNAMIC MODELING BEH; MCFARLAND DJ, 1977, NATURE, V269, P15, DOI 10.1038/269015a0; MCGURK MD, 1986, MAR ECOL PROG SER, V34, P227, DOI 10.3354/meps034227; MCLAREN IA, 1974, AM NAT, V108, P91, DOI 10.1086/282887; MCLAREN IA, 1963, J FISH RES BOARD CAN, V20, P685, DOI 10.1139/f63-046; MCNAMARA JM, 1985, J THEOR BIOL, V117, P231, DOI 10.1016/S0022-5193(85)80219-8; MCNAMARA JM, 1986, AM NAT, V127, P358, DOI 10.1086/284489; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; MCNAMARA JM, 1991, THEOR POPUL BIOL, V40, P230, DOI 10.1016/0040-5809(91)90054-J; MCNAMARA JM, 1994, AM NAT, V144, P978, DOI 10.1086/285721; MCNAMARA JM, 1990, EVOL ECOL, V4, P298, DOI 10.1007/BF02270929; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MCNAMARA JM, 1995, EVOL ECOL, V9, P185, DOI 10.1007/BF01237756; MCNAMARA JM, 1995, P ROY SOC B-BIOL SCI, V261, P279, DOI 10.1098/rspb.1995.0148; MCNAMARA JM, 1993, ACTA BIOTHEOR, V41, P165, DOI 10.1007/BF00712164; Menczer F, 1996, ADAPT BEHAV, V4, P317, DOI 10.1177/105971239600400305; Metz J. A. J., 1986, DYNAMICS PHYSL STRUC; MILINSKI M, 1979, Z TIERPSYCHOL, V51, P36; Milinski Manfred, 1993, Fish and Fisheries Series, V7, P285; MITCHELL M, 1996, INTRO GENET ALGORITH; Monod J, 1971, CHANCE NECESSITY ESS; MONTANA J, 1989, 11 INT JOINT C ART I, P762; MONTGOMERY J, 1995, REV FISH BIOL FISHER, V5, P399, DOI 10.1007/BF01103813; Montgomery J.C., 1989, P561; Moody AL, 1996, BEHAV ECOL SOCIOBIOL, V38, P131, DOI 10.1007/s002650050225; MOORE A, 1990, PHILOS T ROY SOC B, V329, P11, DOI 10.1098/rstb.1990.0145; MURDOCH WW, 1966, AM NAT, V100, P5, DOI 10.1086/282396; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; NEILL WH, 1979, AM ZOOL, V19, P305; NODA M, 1994, ANIM BEHAV, V47, P1413, DOI 10.1006/anbe.1994.1188; NOLFI S, 1994, ADAPT BEHAV, V3, P5, DOI 10.1177/105971239400300102; OKSANEN T, 1992, TRENDS ECOL EVOL, V7, P313, DOI 10.1016/0169-5347(92)90231-Y; OLSEN OAS, 1989, 198952W ITK NTH; Parisi D, 1990, NETWORK-COMP NEURAL, V1, P149, DOI 10.1088/0954-898X/1/2/003; Parker G.A., 1982, P173; Parker G.A., 1984, BEHAVIOURAL ECOLOGY, P30; PARSLOW JS, 1989, AUST J MAR FRESH RES, V40, P403; Popper AN, 1996, MAR FRESHW BEHAV PHY, V27, P95, DOI 10.1080/10236249609378957; PYKE GH, 1977, Q REV BIOL, V52, P137, DOI 10.1086/409852; Quirk James P., 1987, INTERMEDIATE MICROEC; REED M, 1982, MODEL IDENT CONTROL, V3, P65, DOI 10.4173/mic.1982.2.1; REEKE GN, 1993, ANNU REV NEUROSCI, V16, P597, DOI 10.1146/annurev.ne.16.030193.003121; Reeves C. R., 1993, MODERN HEURISTIC TEC; RILEY GA, 1946, J MAR RES, V6, P54; Roff Derek A., 1992; Rogers P.H., 1988, P131; Rosland R, 1997, FISH OCEANOGR, V6, P19, DOI 10.1046/j.1365-2419.1997.00023.x; Rosland R, 1997, SARSIA, V82, P113, DOI 10.1080/00364827.1997.10413645; ROSLAND R, 1994, PROG OCEANOGR, V34, P1, DOI 10.1016/0079-6611(94)90025-6; ROTHSCHILD BJ, 1988, J PLANKTON RES, V10, P465, DOI 10.1093/plankt/10.3.465; RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0; SAILA SB, 1996, COMPUTERS FISHERIES, P8; SALVANES AGV, 1995, J FISH BIOL, V47, P679, DOI 10.1111/j.1095-8649.1995.tb01934.x; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; SCHELLART NAM, 1992, NETH J ZOOL, V42, P459; Schoener T. W., 1971, A Rev Ecol Syst, V2, P369, DOI 10.1146/annurev.es.02.110171.002101; Schoener T.W., 1987, P5; SIBLY R, 1976, AM NAT, V110, P601, DOI 10.1086/283093; SLAGSTAD D, 1975, STF48A75050 SINTEF; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0; SMITH JM, 1974, J THEOR BIOL, V47, P209, DOI 10.1016/0022-5193(74)90110-6; SMITH JM, 1996, P BRIT ACAD, V88, P291; Smith R.J.F., 1992, Reviews in Fish Biology and Fisheries, V2, P33, DOI 10.1007/BF00042916; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEPHENS DW, 1981, ANIM BEHAV, V29, P628, DOI 10.1016/S0003-3472(81)80128-5; Stephens DW, 1996, BIOL BULL, V191, P85, DOI 10.2307/1543067; Stephens DW, 1986, FORAGING THEORY; SUMIDA BH, 1990, J THEOR BIOL, V147, P59, DOI 10.1016/S0022-5193(05)80252-8; Sundby S, 1997, SCI MAR, V61, P159; SUTHERLAND WJ, 1983, J ANIM ECOL, V52, P821, DOI 10.2307/4456; SUTHERLAND WJ, 1992, ANIM BEHAV, V44, P345, DOI 10.1016/0003-3472(92)90040-G; SVERDRUP HU, 1942, OCEANS; Terzopoulos Demetri, 1994, Artificial Life, V1, P327, DOI 10.1162/artl.1994.1.4.327; THORPE WH, 1963, LEARNING INSTINCT AN; Toquenaga Y, 1996, TRENDS ECOL EVOL, V11, P478, DOI 10.1016/0169-5347(96)20075-8; Tregenza T., 1995, Advances in Ecological Research, V26, P253, DOI 10.1016/S0065-2504(08)60067-7; TULJAPURKAR S, 1997, POPULATION COMMUNITY, V18; Turner JRG, 1996, PHILOS T ROY SOC B, V351, P1157, DOI 10.1098/rstb.1996.0100; TYLER JA, 1994, REV FISH BIOL FISHER, V4, P91, DOI 10.1007/BF00043262; TYLER JA, 1995, ECOLOGY, V76, P580, DOI 10.2307/1941215; Utne ACW, 1997, SARSIA, V82, P129, DOI 10.1080/00364827.1997.10413646; Vabo R, 1997, FISH OCEANOGR, V6, P155, DOI 10.1046/j.1365-2419.1997.00037.x; VANROOIJ AJF, 1996, SERIES MACHINE PERCE, V26; Walker MM, 1997, NATURE, V390, P371, DOI 10.1038/37057; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; WRIGHT R, 1994, MORAL ANIMAL; YOSHIMURA J, 1991, EVOL ECOL, V5, P173, DOI 10.1007/BF02270833; Yoshimura J, 1996, RES POPUL ECOL, V38, P165, DOI 10.1007/BF02515724; Yoshimura Jin, 1993, Lecture Notes in Biomathematics, V98, P1; Zhivotovsky Lev A., 1996, Santa Fe Institute Studies in the Sciences of Complexity Proceedings, V26, P131 205 96 96 2 43 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0960-3166 1573-5184 REV FISH BIOL FISHER Rev. Fish. Biol. Fish. MAR 1998 8 1 57 91 10.1023/A:1008864517488 35 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology ZB089 WOS:000072434600003 2018-11-12 J Heimpel, GE; Rosenheim, JA Heimpel, GE; Rosenheim, JA Egg limitation in parasitoids: A review of the evidence and a case study BIOLOGICAL CONTROL English Article; Proceedings Paper Symposium on Critical Issues in Host Selection by Insect Parasitoids, at the XX International Congress of Entomology 1996 MILAN, ITALY HOST-FEEDING BEHAVIOR; MICROPLITIS-CROCEIPES HYMENOPTERA; SPATIAL DENSITY DEPENDENCE; PATCH TIME ALLOCATION; SEX-RATIOS; BIOLOGICAL-CONTROL; APHYTIS-MELINUS; ADAPTIVE SUPERPARASITISM; OVIPOSITION DECISIONS; EPIDINOCARSIS-LOPEZI Life history theory predicts that a nontrivial proportion of parasitoids should exhaust their egg supply during their lifetime. We reviewed the literature on egg limitation in parasitoids and found partial support for this prediction. Most of the evidence in support of egg limitation is indirect and does not constitute absolute proof of egg limitation. However, a few direct studies in which field-collected parasitoids were dissected, gave unequivocal evidence of egg limitation. Egg limitation was detected both in proovigenic species, in which it signals the attainment of maximum fecundity, and in synovigenic species, where it is more likely to be temporary than permanent. We demonstrated substantial egg limitation in the synovigenic parasitoid Aphytis aonidiae. Although an unknown (and probably large) proportion of egg-limited individuals was apparently unable to mature eggs for unknown reasons, the egg load distribution indicated that even those individuals able to mature eggs could be at risk of becoming egg limited. Thus, egg limitation in this species can apparently occur through egg depletion or an inability to mature eggs. We investigated possible correlations between time of day time of gear, ambient temperature, parasitoid size, and host density on egg limitation in A, aonidiae. We found a slight tendency for egg load to drop during the course of the day. Although we could detect no effect of time of year or of temperature on egg load, larger parasitoids had higher egg loads than did smaller ones. Finally, we could detect no effect of host density on egg load. This result is paradoxical given recent theory predicting increased egg limitation with increased host availability We suggest that already-documented state-dependent behavior in A. aonidiae may partly explain this unexpected result. Parasitoids may reduce the risk of egg limitation when the host encounter rate is high by exhibiting increasingly selective host-use patterns with declining egg load. (C) 1998 Academic Press. Univ Minnesota, Dept Entomol, St Paul, MN 55108 USA; Univ Calif Davis, Dept Entomol, Davis, CA 95616 USA Heimpel, GE (reprint author), Univ Minnesota, Dept Entomol, St Paul, MN 55108 USA. Askew R. R., 1974, EVOLUTIONARY STRATEG, P130; BEDDINGTON JR, 1978, NATURE, V273, P513, DOI 10.1038/273513a0; BRIGGS CJ, 1995, J ANIM ECOL, V64, P403, DOI 10.2307/5900; CASAS J, 1989, ECOL ENTOMOL, V14, P257, DOI 10.1111/j.1365-2311.1989.tb00954.x; CASAS J, 1993, J ANIM ECOL, V62, P194, DOI 10.2307/5494; COLLIER TR, 1994, J ANIM ECOL, V63, P299, DOI 10.2307/5548; COLLIER TR, 1995, ANN ENTOMOL SOC AM, V88, P206, DOI 10.1093/aesa/88.2.206; CRONIN JT, 1993, ECOL ENTOMOL, V18, P293, DOI 10.1111/j.1365-2311.1993.tb01104.x; CRONIN JT, 1993, ECOLOGY, V74, P1813, DOI 10.2307/1939939; CRONIN JT, 1991, THESIS FLORIDA STATE; DONALDSON JS, 1991, ECOL ENTOMOL, V16, P35, DOI 10.1111/j.1365-2311.1991.tb00190.x; DRIESSEN G, 1992, ECOL ENTOMOL, V17, P17, DOI 10.1111/j.1365-2311.1992.tb01034.x; FLANDERS STANLEY E., 1950, CANADIAN ENT, V82, P134; FLETCHER JP, 1994, P ROY SOC B-BIOL SCI, V258, P163, DOI 10.1098/rspb.1994.0157; Getz WM, 1996, AM NAT, V148, P333, DOI 10.1086/285928; Godfray H.C.J., 1987, Oxford Surveys in Evolutionary Biology, V4, P117; GODFRAY HCJ, 1990, AM NAT, V136, P715, DOI 10.1086/285126; Godfray HCJ., 1994, PARASITOIDS BEHAV EV; GULMAHAMAD H, 1978, HILGARDIA, V46, P205, DOI 10.3733/hilg.v46n07p205; Hassell M. P., 1973, INSECT POPULATION EC; Hassell M. P, 1978, DYNAMICS ARTHROPOD P; Hassell Michael, 1992, P265, DOI 10.1002/9781444314076.ch11; Heimpel GE, 1996, BIOL REV, V71, P373, DOI 10.1111/j.1469-185X.1996.tb01279.x; Heimpel GE, 1997, OECOLOGIA, V110, P346, DOI 10.1007/s004420050168; Heimpel GE, 1996, ECOLOGY, V77, P2410, DOI 10.2307/2265742; HEIMPEL GE, 1995, J ANIM ECOL, V64, P153, DOI 10.2307/5751; HEIMPEL GE, UNPUB EFFECTS TIME E; HOPPER KR, 1991, ENVIRON ENTOMOL, V20, P292, DOI 10.1093/ee/20.1.292; HOPPER KR, 1986, ENVIRON ENTOMOL, V15, P476, DOI 10.1093/ee/15.3.476; HUGHES JP, 1994, J INSECT BEHAV, V7, P433, DOI 10.1007/BF02025442; HUNTER MS, 1993, OECOLOGIA, V93, P421, DOI 10.1007/BF00317887; HUNTER MS, 1995, J ANIM ECOL, V64, P95, DOI 10.2307/5830; IWASA Y, 1984, THEOR POPUL BIOL, V26, P205, DOI 10.1016/0040-5809(84)90030-3; JANSSEN A, 1989, FUNCT ECOL, V3, P469, DOI 10.2307/2389621; JERVIS MA, 1986, BIOL REV, V61, P395, DOI 10.1111/j.1469-185X.1986.tb00660.x; JERVIS MA, 1993, J NAT HIST, V27, P67, DOI 10.1080/00222939300770051; KIDD NAC, 1989, RES POPUL ECOL, V31, P235, DOI 10.1007/BF02513204; KLOMP H., 1958, ARCH NEERLAND ZOOL, V13, P134; Kuhlmann U, 1996, INT J PEST MANAGE, V42, P131, DOI 10.1080/09670879609371982; LESSELLS CM, 1985, J ANIM ECOL, V54, P27, DOI 10.2307/4618; MANGEL M, 1987, J MATH BIOL, V25, P1, DOI 10.1007/BF00275885; MANGEL M, 1989, AM NAT, V133, P688, DOI 10.1086/284945; Mangel M., 1988, DYNAMIC MODELING BEH; MINKENBERG OPJM, 1992, OIKOS, V65, P134, DOI 10.2307/3544896; MORRISON G, 1981, ECOL ENTOMOL, V6, P55, DOI 10.1111/j.1365-2311.1981.tb00972.x; MURDOCH WW, 1990, CRITICAL ISSUES IN BIOLOGICAL CONTROL, P1; Nicholson AJ, 1935, P ZOOL SOC LOND, V3, P551, DOI DOI 10.1111/J.1096-3642.1935.TB01680.X; ODE PJ, 1994, THESIS U WISCONSIN M; POLLARD E, 1967, THESIS U READING UK; ROGERS D, 1972, J ANIM ECOL, V41, P369, DOI 10.2307/3474; Rosenheim J.A., 1994, RECENT ADV STUDY APH, P41; Rosenheim JA, 1996, ANIM BEHAV, V51, P841, DOI 10.1006/anbe.1996.0088; ROSENHEIM JA, 1992, ECOL ENTOMOL, V17, P263, DOI 10.1111/j.1365-2311.1992.tb01057.x; Rosenheim JA, 1996, EVOLUTION, V50, P2089, DOI 10.1111/j.1558-5646.1996.tb03595.x; Rosenheim JA, 1996, AM NAT, V148, P501, DOI 10.1086/285937; ROSENHEIM JA, 1994, ECOL ENTOMOL, V19, P374, DOI 10.1111/j.1365-2311.1994.tb00255.x; ROSENHEIM JA, 1991, J ANIM ECOL, V60, P873, DOI 10.2307/5419; Shea K, 1996, J ANIM ECOL, V65, P743, DOI 10.2307/5673; STILING PD, 1987, ECOLOGY, V68, P844, DOI 10.2307/1938356; Thompson W. R., 1924, Annales de la Faculte des Sciences de Marseille, V2, P69; Van Alphen J. J. M., 1996, P1; VANDIJKEN MJ, 1993, ENTOMOL EXP APPL, V68, P51; VANDIJKEN MJ, 1991, ECOL ENTOMOL, V16, P233; VANEMDEN HF, 1990, CRITICAL ISSUES IN BIOLOGICAL CONTROL, P63; VANEMDEN HF, 1963, ENTOMOL MON MAG, V98, P265; VISSER ME, 1992, BEHAV ECOL SOCIOBIOL, V31, P163, DOI 10.1007/BF00168643; VISSER ME, 1994, J ANIM ECOL, V63, P963, DOI 10.2307/5273; VISSER ME, 1992, J ANIM ECOL, V61, P93, DOI 10.2307/5512; WALDE SJ, 1988, ANNU REV ENTOMOL, V33, P441, DOI 10.1146/annurev.en.33.010188.002301; WATT K. E. F., 1959, CANADIAN ENT, V91, P129 70 126 136 0 32 ACADEMIC PRESS INC SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1049-9644 BIOL CONTROL Biol. Control FEB 1998 11 2 160 168 10.1006/bcon.1997.0587 9 Biotechnology & Applied Microbiology; Entomology Biotechnology & Applied Microbiology; Entomology YY742 WOS:000072179400011 2018-11-12 J Voland, E Voland, E Evolutionary ecology of human reproduction ANNUAL REVIEW OF ANTHROPOLOGY English Review reproductive strategies; fecundity; fertility; differential parental investment; demography BIASED PARENTAL INVESTMENT; GABBRA PASTORALISTS; OFFSPRING CONFLICT; HUMAN-POPULATIONS; HIGH FERTILITY; SEX; AGE; CHILDHOOD; HISTORY; SUCCESS Evolutionary ecology of human reproduction is defined as the application of natural selection theory to the study of human reproductive strategies and decision-making in an ecological context. The basic Darwinian assumption is that humans-like all other organisms-are designed to maximize their inclusive fitness within the ecological constraints to which they are exposed. Life history theory, which identifies trade-off problems in reproductive investment, and evolutionary physiology and psychology, which analyzes the adaptive mechanisms regulating reproduction, are two crucial tools of evolutionary reproductive ecology. Advanced empirical insights have been obtained mainly with respect to the ecology of fecundity, fertility, child-care strategies, and differential parental investment. Much less is known about the ecology of nepotism and the postgenerative life span. The following three theoretical aspects, which are not well understood, belong to the desiderata of future improvement in evolutionary human reproductive ecology: (a) the significance of and the interactions between different levels of adaptability (genetic, ontogenetic, and contextual) for the adaptive solution of reproductive problems; (b) the dialectics of constraints and adaptive choices in reproductive decisions; and (c) the dynamics of demographic change. Univ Giessen, Zentrum Philosophie & Grundlagen Wissensch, D-35394 Giessen, Germany Voland, E (reprint author), Univ Giessen, Zentrum Philosophie & Grundlagen Wissensch, D-35394 Giessen, Germany. eckart.voland@phil.uni-giessen.de Robine, Jean-Marie/F-5439-2011 Robine, Jean-Marie/0000-0002-4111-6195 Alberdi L. M., 1987, Bosque, V8, P77; Alexander R. D., 1987, BIOL MORAL SYSTEMS; ANDERSON M, 1993, POP STUD-J DEMOG, V47, P319, DOI 10.1080/0032472031000147046; ANDERSON M, 1988, POPULATION CHANGE NW; Anderson R.S., 1992, Fish & Shellfish Immunology, V2, P299, DOI 10.1016/S1050-4648(06)80034-3; BAKER RR, 1993, ANIM BEHAV, V46, P861, DOI 10.1006/anbe.1993.1271; BARBER N, 1994, PSYCHOL REP, V75, P403, DOI 10.2466/pr0.1994.75.1.403; BEAUCHAMP G, 1994, ETHOL SOCIOBIOL, V15, P31, DOI 10.1016/0162-3095(94)90026-4; BECKER S, 1993, BIOMEDICAL DEMOGRAPH, P21; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BERECZKEI T, 1993, ETHOL SOCIOBIOL, V14, P71, DOI 10.1016/0162-3095(93)90008-6; Bereczkei T, 1996, HUM NATURE-INT BIOS, V7, P257, DOI 10.1007/BF02733397; Bereczkei T, 1997, P ROY SOC B-BIOL SCI, V264, P17, DOI 10.1098/rspb.1997.0003; Berte Nancy A., 1988, HUMAN REPRODUCTIVE B, P83; BETZIG LL, 1986, CURR ANTHROPOL, V27, P397, DOI 10.1086/203457; Bhuiya A, 1997, POP STUD-J DEMOG, V51, P57, DOI 10.1080/0032472031000149726; Blurton Jones N. G., 1993, JUVENILE PRIMATES LI, P309; BORG MO, 1989, DEMOGRAPHY, V26, P301, DOI 10.2307/2061527; BOUCHARD G, 1987, RECH SOCIOGRAPH, V28, P229; BRITTAIN AW, 1991, SOC BIOL, V38, P94; Campbell BC, 1995, YEARB PHYS ANTHROPOL, V38, P1; CAMPBELL KL, 1988, NATURAL HUMAN FERTIL, P39; CAMPBELL KL, 1994, HUMAN REPROD ECOLOGY; Chagnon N.A., 1979, EVOLUTIONARY BIOL HU, P213; CHASIOTIS A, 1994, JOURNEYS INTO CROSS-CULTURAL PSYCHOLOGY, P68; CHASIOTIS A, 1997, DEV INTERACTION ATTA, P305; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHOWDHURY AI, 1993, J BIOSOC SCI, V25, P455; CLAY DC, 1992, POP STUD-J DEMOG, V46, P491, DOI 10.1080/0032472031000146476; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Conrad C, 1996, POPUL DEV REV, V22, P331, DOI 10.2307/2137438; CRITESCU M, 1975, J HUM EVOL, V4, P521; CRONK L, 1991, ANNU REV ANTHROPOL, V20, P25, DOI 10.1146/annurev.an.20.100191.000325; Cronk L, 1991, Hum Nat, V2, P387, DOI 10.1007/BF02692198; CUMMING DC, 1994, ANN NY ACAD SCI, V709, P55, DOI 10.1111/j.1749-6632.1994.tb30388.x; CUTLER WB, 1979, J BIOSOC SCI, V11, P425; DALY M, 1988, COMP PERSPECTIVES MO, P91; DALY M, 1994, INFANTICIDE PARENTAL, P121; DANKERHOPFE H, 1986, YEARB PHYS ANTHROPOL, V29, P81; Dawkins R, 1982, EXTENDED PHENOTYPE G; Dickemann M., 1981, NATURAL SELECTION SO, P417; DUNBAR RIM, 1995, ETHOL SOCIOBIOL, V16, P233, DOI 10.1016/0162-3095(95)00022-D; DUNBAR RIM, 1995, HUM NATURE-INT BIOS, V6, P273, DOI 10.1007/BF02734142; DUNBAR RIM, 1995, HUMAN REPROD DECISIO; EBERSTADT N, 1994, POPUL DEV REV, V20, P137, DOI 10.2307/2137633; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; ELLISON PT, 1994, ANNU REV ANTHROPOL, V23, P255, DOI 10.1146/annurev.anthro.23.1.255; ESSOCKVITALE SM, 1985, ETHOL SOCIOBIOL, V6, P155, DOI 10.1016/0162-3095(85)90028-7; Euler HA, 1996, HUM NATURE-INT BIOS, V7, P39, DOI 10.1007/BF02733489; FIewlett Barry S., 1992, FATHER CHILD RELATIO, P153; Fitzpatrick David, 1985, MARRIAGE IRELAND, P116; FLEMING AF, 1985, BRIT J OBSTET GYNA S, V5, P32; FLINN MV, 1989, SOCIOBIOLOGY SEXUAL, P206; FRISANCHO AR, 1984, HUM BIOL, V56, P583; GARN SM, 1984, AM J DIS CHILD, V138, P32, DOI 10.1001/archpedi.1984.02140390024008; Gaulin SJC, 1997, HUM NATURE-INT BIOS, V8, P139, DOI 10.1007/s12110-997-1008-4; GAULIN SJC, 1990, AM ANTHROPOL, V92, P994, DOI 10.1525/aa.1990.92.4.02a00080; GAULIN SJC, 1991, AM J PHYS ANTHROPOL, V85, P61, DOI 10.1002/ajpa.1330850108; GRAY R, 1993, BIOMEDICAL DEMOGRAPH; Grayson D. K., 1993, EVOLUTIONARY ANTHR, V2, P151, DOI DOI 10.1002/EVAN.1360020502; HAGER BJ, 1992, ETHOL SOCIOBIOL, V13, P385, DOI 10.1016/0162-3095(92)90010-2; HAMES R, 1987, ETHOL SOCIOBIOL, V8, P259, DOI 10.1016/0162-3095(87)90028-8; HAWKES K, 1988, CURR ANTHROPOL, V29, P469, DOI 10.1086/203657; HAWKES K, 1989, COMP SOCIOECOLOGY BE, P341; HEWLETT BS, 1991, J ANTHROPOL RES, V47, P1; HILL EM, 1992, ETHOL SOCIOBIOL, V13, P35, DOI 10.1016/0162-3095(92)90005-O; HILL EM, 1994, ETHOL SOCIOBIOL, V15, P323, DOI 10.1016/0162-3095(94)90006-X; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; HRDY SB, 1992, ETHOL SOCIOBIOL, V13, P409, DOI 10.1016/0162-3095(92)90011-R; HRDY SB, 1993, HUM NATURE-INT BIOS, V4, P1, DOI 10.1007/BF02734088; Hurtado A M, 1992, Hum Nat, V3, P185, DOI 10.1007/BF02692239; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Imhof A., 1984, PREINDUSTRIAL POPULA, P191; Irwin C., 1989, SOCIOBIOLOGY SEXUAL, P234; Johnson RC, 1997, EVOL HUM BEHAV, V18, P341, DOI 10.1016/S1090-5138(97)00044-5; JONES NB, 1986, ETHOL SOCIOBIOL, V7, P91, DOI 10.1016/0162-3095(86)90002-6; JONES NGB, 1992, AM J PHYS ANTHROPOL, V89, P159, DOI 10.1002/ajpa.1330890204; Kaar P, 1996, P ROY SOC B-BIOL SCI, V263, P1475, DOI 10.1098/rspb.1996.0215; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; KAPLAN HS, 1995, HUMAN REPROD DECISIO, P96; Khan AD, 1996, AM J HUM BIOL, V8, P717, DOI 10.1002/(SICI)1520-6300(1996)8:6<717::AID-AJHB3>3.0.CO;2-Q; Kiernan KE, 1997, POP STUD-J DEMOG, V51, P41, DOI 10.1080/0032472031000149716; Kim K, 1997, EVOL HUM BEHAV, V18, P109, DOI 10.1016/S1090-5138(96)00114-6; KLINDWORTH H, 1995, HUM NATURE-INT BIOS, V6, P221, DOI 10.1007/BF02734140; KRIEDTE P, 1992, GESCH GES, V18, P70; KRISHNAN V, 1993, J BIOSOC SCI, V25, P213; LANDALE NS, 1989, DEMOGRAPHY, V26, P203, DOI 10.2307/2061520; LEE R, 1994, ANN NY ACAD SCI, V709, P396, DOI 10.1111/j.1749-6632.1994.tb30425.x; LOW BS, 1989, J COMP PSYCHOL, V103, P311, DOI 10.1037/0735-7036.103.4.311; LUNN PG, 1996, VARIABILITY HUMAN FE, P195; Mace R, 1997, J BIOSOC SCI, V29, P499, DOI 10.1017/S0021932097004999; Mace R, 1996, ETHOL SOCIOBIOL, V17, P263, DOI 10.1016/0162-3095(96)00044-1; Mace R, 1996, BEHAV ECOL SOCIOBIOL, V38, P75, DOI 10.1007/s002650050219; MANN J, 1992, ADAPTED MIND EVOLUTI, P367; MARGULIS SW, 1993, BEHAV ECOL SOCIOBIOL, V32, P41; MCCULLOUGH JM, 1991, ETHOL SOCIOBIOL, V12, P195, DOI 10.1016/0162-3095(91)90003-9; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Mulder M Borgerhoff, 1992, EVOLUTIONARY ECOLOGY, P339; MULDER MB, 1995, CURR ANTHROPOL, V36, P573, DOI 10.1086/204405; MULDER MB, 1989, BEHAV ECOL SOCIOBIOL, V24, P145, DOI 10.1007/BF00292097; NESSE R, 1994, WHY WE GET SICK NEW; Niraula BB, 1995, SOC BIOL, V42, P256, DOI 10.1080/19485565.1995.9988906; PANTERBRICK C, 1995, HUMAN POPULATIONS DI, P174; Peacock N, 1991, Hum Nat, V2, P351, DOI 10.1007/BF02692197; Peccei JS, 1995, ETHOL SOCIOBIOL, V16, P425, DOI 10.1016/0162-3095(95)00069-0; PENNINGTON R, 1993, STRUCTURE AFRICAN PA; Pentzos-Daponte A, 1984, Anthropol Anz, V42, P219; PERUSSE D, 1993, BEHAV BRAIN SCI, V16, P267, DOI 10.1017/S0140525X00029939; PEYRONNET JC, 1976, REV HIST MOD CONTEMP, V23, P418; RASA AE, 1989, SOCIOBIOLOGY SEXUAL; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RHEUBOTTOM DB, 1988, J FAM HIST, V13, P359, DOI 10.1177/036319908801300122; RILEY AP, 1993, BIOMEDICAL DEMOGRAPH, P50; Robinson WC, 1997, POP STUD-J DEMOG, V51, P63, DOI 10.1080/0032472031000149736; ROGERS AR, 1995, HUMAN REPRODUCTIVE DECISIONS, P76; ROGERS AR, 1993, EVOL ECOL, V7, P406, DOI 10.1007/BF01237872; ROGERS AR, 1990, ETHOL SOCIOBIOL, V11, P479, DOI 10.1016/0162-3095(90)90022-X; ROSETTA L, 1995, HUMAN REPRODUCTIVE DECISIONS, P52; SANDLER DP, 1984, AM J EPIDEMIOL, V119, P765, DOI 10.1093/oxfordjournals.aje.a113797; Schellekens J, 1997, J INTERDISCIPL HIST, V27, P637, DOI 10.2307/206538; SCHELLEKENS J, 1991, J FAM HIST, V16, P139, DOI 10.1177/036319909101600203; SIEFF DF, 1990, CURR ANTHROPOL, V31, P25, DOI 10.1086/203801; Silk J B, 1990, Hum Nat, V1, P25, DOI 10.1007/BF02692145; Smith E. A., 1992, EVOLUTIONARY ECOLOGY; SMITH EA, 1994, CURR ANTHROPOL, V35, P595, DOI 10.1086/204319; SPIESS KH, 1993, FAMILIE VERWANDTSCHA; Stearns S. C., 1992, EVOLUTION LIFE HIST; STRAKAGEIERSBAC.S, 1988, HOMO, V39, P171; SURBEY MK, 1987, ETHOL SOCIOBIOL, V8, pS47; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TRIVERS RL, 1974, AM ZOOL, V14, P249; Turke P., 1988, HUMAN REPROD BEHAV D, P173; Turke PW, 1997, EVOL HUM BEHAV, V18, P3, DOI 10.1016/S1090-5138(96)00073-6; TURKE PW, 1989, POPUL DEV REV, V15, P61, DOI 10.2307/1973405; UDRY JR, 1982, DEMOGRAPHY, V19, P53, DOI 10.2307/2061128; VAREA C, 1993, AM J HUM BIOL, V5, P297, DOI 10.1002/ajhb.1310050308; VINING DR, 1986, BEHAV BRAIN SCI, V9, P167, DOI 10.1017/S0140525X00021968; VITZTHUM VJ, 1997, EVOLVING FEMALE LIFE, P242; VOLAND E, 1994, NATURWISSENSCHAFTEN, V81, P224, DOI 10.1007/s001140050060; Voland E, 1997, CURR ANTHROPOL, V38, P129, DOI 10.1086/204593; VOLAND E, 1995, HUM NATURE-INT BIOS, V6, P33, DOI 10.1007/BF02734134; Voland E, 1995, J SOC EVOL SYST, V18, P397, DOI 10.1016/1061-7361(95)90025-X; VOLAND E, 1989, ETHOL SOCIOBIOL, V10, P223, DOI 10.1016/0162-3095(89)90001-0; Voland E, 1988, HUMAN REPROD BEHAV D, P253; WASSER SK, 1994, HUM NATURE-INT BIOS, V5, P293, DOI 10.1007/BF02692156; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Winterhalder B, 1992, EVOLUTIONARY ECOLOGY, P3; WOOD JW, 1994, DYNAMICS HUMAN REPRO 149 92 95 2 25 ANNUAL REVIEWS PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 USA 0084-6570 1545-4290 ANNU REV ANTHROPOL Annu. Rev. Anthropol. 1998 27 347 374 10.1146/annurev.anthro.27.1.347 28 Anthropology Anthropology 134RZ WOS:000076758100017 12295433 2018-11-12 J Reekie, EG Reekie, EG An explanation for size-dependent reproductive allocation in Plantago major CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE English Article allometry; life-history theory; size constraints; reproductive effort; reproductive cost RESOURCE-ALLOCATION; SEED PRODUCTION; GENETIC-VARIABILITY; LAWN WEEDS; POPULATIONS; GENECOLOGY; HABITATS; ECOLOGY; GROWTH; TIME This study examined whether variation in reproductive allocation with size could be explained by differences in the trade-off between reproduction and growth. Seeds from 32 half-sibling families were collected from sites differing in mowing frequency and availability of light, nutrients, and water. Six seedlings from each family were grown in controlled environments and photoperiod manipulations were used to control reproduction. Mass of vegetative and reproductive plants of the same family were compared to assess the trade-off between reproduction and growth. Families collected from habitats with a tall canopy were larger and experienced a greater decrease in growth with reproduction than families from habitats where mowing maintained a short canopy. Reproductive output showed no relationship with size, while reproductive allocation (capsule mass to vegetative mass) decreased with size. This decrease may be a direct consequence of the increase in reproductive cost with size. The increase in cost can be partially explained by increased allocation to reproductive support structures; large individuals produce capsules on more elongate scapes and have a lower capsule to scape ratio. Differences in size and morphology among habitats are presumably the result of selection to avoid damage in mown sites and to avoid shade and ensure pollination in sites with a tall canopy and reduced wind movement. Acadia Univ, Dept Biol, Wolfville, NS B0P 1X0, Canada Reekie, EG (reprint author), Acadia Univ, Dept Biol, Wolfville, NS B0P 1X0, Canada. ereekie@ace.acadiau.ca *ASS OFF AN CHEM, 1990, OFF METH AN; BLOM CWPM, 1977, OECOLOG PLANTAR, V12, P363; CHAPIN FS, 1980, ANNU REV ECOL SYST, V11, P233, DOI 10.1146/annurev.es.11.110180.001313; Coleman JS, 1995, FUNCT ECOL, V9, P951; *COUNC SOIL TEST P, 1980, HDB REF METH SOIL TE; DOUST JL, 1989, TRENDS ECOL EVOL, V4, P230, DOI 10.1016/0169-5347(89)90166-3; ESCARRE J, 1991, J ECOL, V79, P1099, DOI 10.2307/2261101; HAWTHORN WR, 1976, J ECOL, V64, P511, DOI 10.2307/2258771; HAWTHORN WR, 1978, CAN J BOT, V56, P2533, DOI 10.1139/b78-306; HAWTHORN WR, 1974, CAN J PLANT SCI, V54, P383, DOI 10.4141/cjps74-059; LOTZ LAP, 1986, OECOLOGIA, V69, P25, DOI 10.1007/BF00399033; LOTZ LAP, 1990, J ECOL, V78, P757, DOI 10.2307/2260897; MENDEZ M, 1993, CAN J BOT, V71, P309, DOI 10.1139/b93-032; MIAO SL, 1991, ECOLOGY, V72, P586, DOI 10.2307/2937198; NISHITANI S, 1993, ECOL RES, V8, P173, DOI 10.1007/BF02348530; OSTERTAG R, 1994, J VEG SCI, V5, P303, DOI 10.2307/3235853; PRIMACK RB, 1982, EVOLUTION, V36, P742, DOI 10.1111/j.1558-5646.1982.tb05440.x; REEKIE EG, 1992, OECOLOGIA, V90, P21, DOI 10.1007/BF00317804; SAMSON DA, 1986, AM NAT, V127, P667, DOI 10.1086/284512; SANS FX, 1994, CAN J BOT, V72, P10, DOI 10.1139/b94-003; SCHMID B, 1993, EVOLUTION, V47, P61, DOI 10.1111/j.1558-5646.1993.tb01199.x; SHIPLEY B, 1992, AM NAT, V139, P467, DOI 10.1086/285339; SHITAKA Y, 1993, OECOLOGIA, V95, P334, DOI 10.1007/BF00320985; TUOMI J, 1983, AM ZOOL, V23, P25; VANDIJK H, 1984, THEOR APPL GENET, V68, P43, DOI 10.1007/BF00252310; VANDIJK H, 1981, THEOR APPL GENET, V60, P285, DOI 10.1007/BF00263720; WARWICK SI, 1980, NEW PHYTOL, V85, P289, DOI 10.1111/j.1469-8137.1980.tb04470.x; WARWICK SI, 1979, NEW PHYTOL, V83, P509, DOI 10.1111/j.1469-8137.1979.tb07616.x; Weiner J., 1988, Plant reproductive ecology: patterns and strategies, P228; Willson M. F., 1983, PLANT REPROD ECOLOGY; ZAMMIT CA, 1993, J ECOL, V81, P499, DOI 10.2307/2261528 31 34 66 0 14 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA, ONTARIO K1A 0R6, CANADA 0008-4026 CAN J BOT Can. J. Bot.-Rev. Can. Bot. JAN 1998 76 1 43 50 10.1139/b97-160 8 Plant Sciences Plant Sciences ZG614 WOS:000073021500005 2018-11-12 J Reekie, EG Reekie, EG An experimental field study of the cost of reproduction in Plantago major L. ECOSCIENCE English Article reproductive effort; life history theory; reproductive allocation; disturbance; r-versus K-selection GENETIC-VARIABILITY; OENOTHERA-BIENNIS; LAWN WEEDS; GROWTH; POPULATIONS; ALLOCATION; PINGUICULA; GENECOLOGY; HABITATS; ECOLOGY Plantago major is a variable species that occupies a wide range of open habitats with a herbaueous canopy. Previous studies have shown that individuals from habitats where the canopy is kept short by mowing have a higher reproductive allocation than individuals from habitats with a tall canopy. The present study was conducted to determine whether or not the cost of reproduction differed between these two habitats. Fifteen half-sibling families, selected from a ranee of habitats differing in canopy bright were grown in the laboratory. Reproduction was controlled experimentally by photoperiod manipulations, and vegetative and reproductive plants of each family were transplanted to either a mown (short canopy) or unmown (tall canopy) grass sward in the fall of the first year. Number of leaves, length and width of largest leaf, and capsule production were monitored over the next 18 months. Total shoot biomass was determined at the end of this period. Cost of reproduction was assessed in threeways, by i) comparing the subsequent performance of vegetative and reproductive individuals, ii) calculating the phenotypic correlation between reproductive output in the first year of growth and subsequent performance using only those individuals that reproduced in the first year, and iii) calculating the above correlations at the among family level. Regardless of method used, cost of reproduction was smaller in the mown than in the unmown plots, suggesting that differences in cost among habitats may be involved in selecting for different allocation patterns. Acadia Univ, Dept Biol, Wolfville, NS B0P 1X0, Canada Reekie, EG (reprint author), Acadia Univ, Dept Biol, Wolfville, NS B0P 1X0, Canada. BAILEY RC, 1992, OIKOS, V65, P349, DOI 10.2307/3545031; BLOM CWPM, 1977, OECOLOG PLANTAR, V12, P363; Crawford RMM, 1989, STUDIES PLANT SURVIV; FOX JF, 1991, ECOLOGY, V72, P1013, DOI 10.2307/1940601; GEBER MA, 1990, EVOLUTION, V44, P799, DOI 10.1111/j.1558-5646.1990.tb03806.x; HAWTHORN WR, 1976, J ECOL, V64, P511, DOI 10.2307/2258771; HAWTHORN WR, 1974, CAN J PLANT SCI, V54, P383, DOI 10.4141/cjps74-059; JURIK TW, 1985, OECOLOGIA, V66, P394, DOI 10.1007/BF00378305; LAW R, 1979, AM NAT, V113, P3, DOI 10.1086/283361; LOTZ LAP, 1986, OECOLOGIA, V69, P25, DOI 10.1007/BF00399033; LOTZ LAP, 1990, J ECOL, V78, P757, DOI 10.2307/2260897; MIAO SL, 1991, ECOLOGY, V72, P1634, DOI 10.2307/1940963; OBESO JR, 1993, ECOGRAPHY, V16, P365, DOI 10.1111/j.1600-0587.1993.tb00226.x; PINERO D, 1982, J ECOL, V70, P473, DOI 10.2307/2259916; PRIMACK RB, 1990, AM NAT, V136, P638, DOI 10.1086/285120; Reekie Edward G., 1997, P191, DOI 10.1016/B978-012083490-7/50009-8; REEKIE EG, 1991, J ECOL, V79, P1061, DOI 10.2307/2261098; REEKIE EG, 1992, OECOLOGIA, V90, P21, DOI 10.1007/BF00317804; REEKIE EG, 1987, AM NAT, V129, P876, DOI 10.1086/284681; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; REEKIE EG, 1991, CAN J BOT, V69, P2678, DOI 10.1139/b91-336; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; SAMPSON DA, 1986, AM NAT, V127, P667; SAULNIER TP, 1995, J ECOL, V83, P23, DOI 10.2307/2261147; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; SVENSSON BM, 1993, J ECOL, V81, P635, DOI 10.2307/2261662; SYRJANEN K, 1993, OIKOS, V67, P465, DOI 10.2307/3545358; THOMAS SC, 1993, ECOL MONOGR, V63, P231, DOI 10.2307/2937099; Thoren LM, 1996, OIKOS, V76, P427, DOI 10.2307/3546336; THOREN LM, 1996, ECOLOGICAL B, V45, P127; VANDIJK H, 1984, THEOR APPL GENET, V68, P43, DOI 10.1007/BF00252310; VANDIJK H, 1981, THEOR APPL GENET, V60, P285, DOI 10.1007/BF00263720; WARWICK SI, 1980, NEW PHYTOL, V85, P289, DOI 10.1111/j.1469-8137.1980.tb04470.x; WARWICK SI, 1979, NEW PHYTOL, V83, P509, DOI 10.1111/j.1469-8137.1979.tb07616.x; Weiner J., 1988, Plant reproductive ecology: patterns and strategies, P228; Willson M. F., 1983, PLANT REPROD ECOLOGY; ZIMMERMAN JK, 1991, ECOLOGY, V72, P597, DOI 10.2307/2937200 37 10 13 0 5 UNIVERSITE LAVAL ST FOY PAVILLON ALEXANDRE-VACHON, UNIV LAVAL, ST FOY, QUEBEC G1K 7P4, CANADA 1195-6860 ECOSCIENCE Ecoscience 1998 5 2 200 206 10.1080/11956860.1998.11682458 7 Ecology Environmental Sciences & Ecology 106KQ WOS:000075128800008 2018-11-12 J Halupka, K Halupka, K Nest-site selection and nest predation in meadow pipits FOLIA ZOOLOGICA English Article nest-site selection; body condition; nest predation; life history; Anthus pratensis LIFE-HISTORY EVOLUTION; CLUTCH-SIZE; SUCCESS; BIRDS; INCUBATION; CHOICE Reproduction in meadow pipits Anthus pratensis was studied in a wet sedge meadow in Poland. Birds placed nests on tussocks of sedges in two locations: on the tops of tussocks or below. Nests placed high were more vulnerable to predation (due to poor concealment) and less moist than nests placed low. Females that were in a poorer condition and incubated in wetter sites, were more likely to desert their clutches. Among females that continued incubation, nest moisture correlated positively with body condition. These findings suggest that nesting in a moist (but safer) site was associated with relatively higher energetic expenditure and females could recognize this cost. Some decisions regarding nest-site selection may be maladaptive since the meadow pipit occupies very diverse habitats, where selection acts in different directions, and young birds have some tendency to disperse far from their natal area. It is hypothesized that selective pressures on nest placement associated with abiotic factors (moisture, wind) will be more consistent across various habitats than those associated with predation. Contrary to predictions derived from life history theory, clutch size, growth rate of young and their age at fledging did not reflect differences in vulnerability to predation. However, the correlation between growth rate and fledging age was significantly stronger in vulnerable nests than in safe ones. This suggests that vulnerable nestlings, contrary to those reared in safer sites, fledged as soon as they were ready to do so. Univ Wroclaw, Dept Avian Ecol, PL-50335 Wroclaw, Poland Halupka, K (reprint author), Univ Wroclaw, Dept Avian Ecol, Sienkiewicza 21, PL-50335 Wroclaw, Poland. Halupka, Konrad/0000-0001-5139-1134 ASKENMO C, 1990, POPULATION BIOL PASS, P331; BANCROFT TA, 1964, BIOMETRICS, V20, P427, DOI 10.2307/2528486; BOSQUE C, 1995, AM NAT, V145, P234, DOI 10.1086/285738; Bures S, 1997, IBIS, V139, P173, DOI 10.1111/j.1474-919X.1997.tb04518.x; CALDER WA, 1971, CONDOR, V73, P314, DOI 10.2307/1365758; FILLIATER TS, 1994, CONDOR, V96, P761, DOI 10.2307/1369479; GREENWOOD PJ, 1982, ANNU REV ECOL SYST, V13, P1, DOI 10.1146/annurev.es.13.110182.000245; HALUPKA K, 1994, J AVIAN BIOL, V25, P251, DOI 10.2307/3677083; Halupka K, 1998, J AVIAN BIOL, V29, P129, DOI 10.2307/3677190; Halupka K, 1998, IBIS, V140, P144, DOI 10.1111/j.1474-919X.1998.tb04552.x; HANSKI IK, 1993, ORNIS FENNICA, V70, P65; HOGSTEDT G, 1978, ORNIS SCAND, V9, P193, DOI 10.2307/3675881; Hotker H., 1982, Ringing & Migration, V4, P45; HOTKER H, 1990, WIESENPIEPER, P595; JOHNSON DH, 1979, AUK, V96, P651; Koenen MT, 1996, WILSON BULL, V108, P292; KULESZA G, 1990, IBIS, V132, P407, DOI 10.1111/j.1474-919X.1990.tb01059.x; MAPPES T, 1994, OECOLOGIA, V98, P147, DOI 10.1007/BF00341466; MARTIN TE, 1992, ECOLOGY AND CONSERVATION OF NEOTROPICAL MIGRANT LANDBIRDS, P455; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MARTINDALE S, 1982, BEHAV ECOL SOCIOBIOL, V10, P85, DOI 10.1007/BF00300167; MARZLUFF JM, 1992, PINION JAY BEHAV ECO; MAYFIELD HF, 1975, WILSON BULL, V87, P456; MORTON ML, 1993, CONDOR, V95, P72, DOI 10.2307/1369388; NEWTON I, 1991, LIFETIME REPROD BIRD; Nilsson J., 1990, POPULATION BIOL PASS, P369; RICKLEFS RE, 1969, CONDOR, V71, P32, DOI 10.2307/1366045; ROSA SM, 1994, WILSON BULL, V106, P668; ROSENZWEIG ML, 1981, ECOLOGY, V62, P327, DOI 10.2307/1936707; Siegel S., 1956, NONPARAMETRIC STAT B; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; Sokal R.R., 1995, BIOMETRY; SOLER M, 1993, BIRD STUDY, V40, P232; WITH KA, 1994, CONDOR, V96, P1009, DOI 10.2307/1369110; YORIO P, 1994, CONDOR, V96, P1076, DOI 10.2307/1369116; ZERBA E, 1983, ORNIS SCAND, V14, P188, DOI 10.2307/3676152; 1995, STATISTICA 39 10 10 0 10 INST VERTEBRATE BIOLOGY AS CR BRNO KVETNA 8, BRNO 603 65, CZECH REPUBLIC 0139-7893 FOLIA ZOOL Folia Zool. 1998 47 1 29 37 9 Zoology Zoology ZQ900 WOS:000073914300005 2018-11-12 J Surbey, MK Surbey, MK Parent and offspring strategies in the transition at adolescence HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article; Proceedings Paper Meeting of the Human-Behavior-and-Evolution-Society JUN 26-30, 1996 NORTHWESTERN UNIV, EVANSTON, IL Human Behav & Evolut Soc NORTHWESTERN UNIV adolescence; conditional strategies; life history theory; parent-offspring conflict; puberty EVOLUTIONARY PERSPECTIVE; REPRODUCTIVE STRATEGIES; CHILDHOOD EXPERIENCE; MENARCHE; AGE; GIRLS; PSYCHOLOGY; FAMILIES; ECOLOGY; BIRTH Adolescence signifies a transition from the use of prereproductive to reproductive strategies in the life history of Homo sapiens. Insofar as human generations overlap, events at adolescence, surrounding the onset of puberty, offer a unique glimpse into human adaptation from the point of view of the changing strategies of both parents and offspring. The timing of puberty is an important life history trait that varies between species, but also between and within the sexes in human beings. The onset of puberty marks the beginning of the reproductive life, is affected by previous experience, and serves as a trigger for behavioral change. Surbey (1988, 1990) reported relationships between father absence, heightened levels of childhood stress, and early menarche and considered them within the context of human evolutionary history. Subsequently, similar findings have been reported in a number of human populations and have been interpreted from several evolutionary perspectives. This article discusses the extent to which these and related findings regarding alterations in the timing of human puberty reflect evolved parental or offspring strategies. It entails a consideration of the applicability of the concepts of phenotypic plasticity, nonadaptive genetic variation, and conditional and alternative reproductive strategies in describing the interwoven nature of strategies employed by parent and child in the transition at adolescence. Mt Allison Univ, Dept Psychol, Sackville, NB E4L 1C7, Canada Surbey, MK (reprint author), Mt Allison Univ, Dept Psychol, 49A York St, Sackville, NB E4L 1C7, Canada. msurbey@mta.ca Alexander R.D., 1974, Annual Rev Ecol Syst, V5, P325, DOI 10.1146/annurev.es.05.110174.001545; Anderson J L, 1992, Hum Nat, V3, P299, DOI 10.1007/BF02734054; AW E, 1970, HUM BIOL, V42, P329; BARKOW JH, 1984, J ANTHROPOL RES, V40, P367, DOI 10.1086/jar.40.3.3629760; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bereczkei T, 1996, HUM NATURE-INT BIOS, V7, P257, DOI 10.1007/BF02733397; BURRELL RJ, 1961, HUM BIOL, V33, P250; BYRNE R, 1988, 1911 BEST THINGS ANY; Calow P., 1981, P220; CAMPBELL BC, 1995, J BIOSOC SCI, V27, P127; CARFAGNA M, 1972, HUM BIOL, V44, P117; CHARLESWORTH WR, 1988, SOCIOBIOLOGICAL PERS, P24; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; COWGILL UM, 1966, ECOLOGY, V47, P614, DOI 10.2307/1933939; DALTON K, 1969, MENSTRUAL CYCLE; Daly M., 1988, HOMICIDE; DAMON A, 1969, HUM BIOL, V41, P161; DEVEREUX EC, 1969, J MARRIAGE FAM, V31, P257, DOI 10.2307/349942; DRAPER P, 1990, J PERS, V58, P141, DOI 10.1111/j.1467-6494.1990.tb00911.x; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; EMLEN ST, 1995, P NATL ACAD SCI USA, V92, P8092, DOI 10.1073/pnas.92.18.8092; Flinn M. V., 1988, HUMAN REPROD BEHAV D, P189; FLINN MV, 1996, EV HUM BEH C APR ANN; FRISCH RE, 1983, MENARCHE TRANSITION, P5; Frisch Rose E., 1974, SCIENCE, V185, P149; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.2307/1131582; GROSS MR, 1980, P NATL ACAD SCI-BIOL, V77, P6937, DOI 10.1073/pnas.77.11.6937; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037//0022-3514.52.3.511; HILL EM, 1994, ETHOL SOCIOBIOL, V15, P323, DOI 10.1016/0162-3095(94)90006-X; HILL JP, 1985, J YOUTH ADOLESCENCE, V14, P301, DOI 10.1007/BF02089236; HOOGLAND JL, 1982, SCIENCE, V215, P1639, DOI 10.1126/science.215.4540.1639; Howell N., 1979, DEMOGRAPHY DOBE KUNG; JAMES WH, 1973, AM J OBSTET GYNECOL, V116, P292, DOI 10.1016/0002-9378(73)91069-7; JENICEK M, 1974, ANN HUM BIOL, V1, P339, DOI 10.1080/03014467400000361; JOHNSTON FE, 1974, HUM BIOL, V4, P159; JOLLY A, 1985, EVOLUTION PRIMATE BE; KANTERO RL, 1971, ACTA OBSTET GYNECOL, V14, P30; Kim K, 1997, EVOL HUM BEHAV, V18, P109, DOI 10.1016/S1090-5138(96)00114-6; Konner M, 1986, SCH AGE PREGNANCY PA, P325; Lancaster J. B, 1986, SCH AGE PREGNANCY PA, P17; LANDAUER TK, 1981, HDB CROSS CULTURAL H, P355; LEBOEUF BJ, 1974, AM ZOOL, V14, P163; LEE MMC, 1963, PEDIATRICS, V32, P389; LIDICKER W Z JR, 1980, Biologist (Charleston), V62, P46; LINDGREN G, 1976, ANN HUM BIOL, V3, P510; LUNENFELD F, 1978, J BIOSOCIAL SCI S, V5, P43; MACARTHUR RH, 1962, P NATL ACAD SCI USA, V48, P1893, DOI 10.1073/pnas.48.11.1893; MACCOBY EE, 1991, CHILD DEV, V62, P676, DOI 10.2307/1131168; MALINA RM, 1977, ANN HUM BIOL, V4, P485, DOI 10.1080/03014467700002471; MEKOS D, 1995, UNPUB PSYCHOSOCIAL I; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; MONEY J, 1992, KASPAR HAUSER SYNDRO; PRADER A, 1963, J PEDIATR-US, V62, P646, DOI 10.1016/S0022-3476(63)80035-9; PRESSER HB, 1978, SOC BIOL, V25, P94, DOI 10.1080/19485565.1978.9988327; ROBERTS DF, 1967, BRIT J PREV SOC MED, V21, P170; Robertson E., 1992, J EARLY ADOLESC, V12, P174, DOI [10.1177/0272431692012002003, DOI 10.1177/0272431692012002003]; SCHOFELD M, 1965, SEXUAL BEHAV YOUNG P; SHORT RV, 1976, PROC R SOC SER B-BIO, V195, P3, DOI 10.1098/rspb.1976.0095; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STUKOVSKY R, 1967, HUM BIOL, V39, P277; SULLOWAY FJ, 1995, PSYCHOL INQ, V6, P75, DOI 10.1207/s15327965pli0601_15; SURBEY MK, 1987, INT J PRIMATOL, V8, P455; SURBEY MK, 1990, MG PRIMATOL, V13, P11; SURBEY MK, 1987, ETHOL SOCIOBIOL, V8, pS47; SURBEY MK, 1993, CANADIAN PSYCHOL, V34, P473; SURBEY MK, 1988, THESIS MCMASTER U HA; SURBEY MK, 1996, 8 HUM BEH EV SOC M J; Tanner J, 1976, WORLDWIDE VARIATION; TANNER JM, 1973, NATURE, V243, P95, DOI 10.1038/243095a0; Tanner JM, 1962, GROWTH ADOLESCENCE; TANNER JM, 1990, FOETUS MAN PHYSICAL; THORNHILL R, 1980, ANIM BEHAV, V28, P52, DOI 10.1016/S0003-3472(80)80007-8; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Trivers R. L., 1974, AM ZOOL, V14, P247; Turke P., 1988, HUMAN REPROD BEHAV D, P173; UDRY JR, 1982, DEMOGRAPHY, V19, P53, DOI 10.2307/2061128; VALSIK JA, 1965, HUM BIOL, V37, P5; VANDENBERGH JG, 1967, ENDOCRINOLOGY, V81, P345, DOI 10.1210/endo-81-2-345; VANDENBERGH JG, 1975, J REPROD FERTIL, V43, P515; VITZTHUM VJ, 1997, EVOLVING FEMALE LIFE, P242; VOLLMAN RF, 1966, EXCERPTA MED INT C S, V133, P1171; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; Weisfeld G. E., 1988, SOCIOBIOLOGICAL PERS, P207; WHITING JWM, 1965, SEXUAL BEHAV, P221; WIERSON M, 1993, ADOLESCENCE, V28, P913; WILSON DS, 1994, ETHOL SOCIOBIOL, V15, P219; WINICK M, 1981, BODY WEIGHT REGULATO, P229; WITTENBERGER JF, 1979, AM NAT, V114, P439, DOI 10.1086/283490; WOOD JW, 1994, DYNAMICS HUMAN REPRO; ZACHARIA.L, 1969, OBSTET GYNECOL, V33, P603 94 29 29 0 4 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 1998 9 1 67 94 10.1007/s12110-998-1012-3 28 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences ZD772 WOS:000072722300004 26197358 2018-11-12 J Olive, PJW; Rees, SW; Djunaedi, A Olive, PJW; Rees, SW; Djunaedi, A Influence of photoperiod and temperature on oocyte growth in the semelparous polychaete Nereis (Neanthes) virens MARINE ECOLOGY PROGRESS SERIES English Article Nereis (Neanthes) virens; photoperiodism; critical day length; polychaeta; oogenesis; temperature; seasonal reproduction; semelparity; Nereidae HARMOTHOE-IMBRICATA L; GAMETOGENIC CYCLE; LIFE-CYCLE; ENVIRONMENTAL-CONTROL; HOMARUS-AMERICANUS; CENTRAL CALIFORNIA; OOGENESIS; VITELLIN; ANNELIDA; SARS Environmental factors influencing the rate of oogenesis in the seasonal cycle of the semelparous polychaete Nereis (Neanthes) virens Sars have been investigated in specimens reared under commercial conditions (concrete tanks under natural light supplied with a mixture of power station heated and ambient sea water to maintain ca 18 degrees C all year round). The rate of oocyte growth is strongly influenced by the external photoperiod and the responses to static 24 h LD (light-dark) cycles have been investigated. Oocyte growth is more rapid when specimens are exposed to a 24 h LD cycle in which the photophase is below a critical value between 12 and 13 h. The critical photoperiod transition in natural environments is therefore at the autumn equinox. N. virens are able to respond to transfer between LD 16:8 h and LD 8:16 h at all times of the year, which suggests the operation of a continuously consulted system of photoperiodic control. The rate of oocyte growth in competent specimens is a linear function of the number of LD 8:16 h cycles experienced. The critical photoperiod divides the solar year into 2 nearly equal periods, with the short day period (winter) favouring oocyte growth. There is a synergism between the effects of photoperiod and seasonally reducing temperature. During the calendar winter transition to LD 8:16 h or other LD cycles below the critical value initiates rapid oocyte growth whatever the temperature but in the calendar summer this only occurs ii the external temperature is also reduced to 12 degrees C or below. The response to photoperiod and temperature is moderated by internal factors and under commercial production systems elevated rates of oocyte growth can only be achieved in females that are about 1 yr old. The oocyte growth induced by exposure to LD 8:16 h Light cycles and low temperature is similar to, but slightly less than, that induced by hormone deprivation, i.e, supra-oesophageal ganglion ablation. The results are discussed in relation to the control of seasonal cycles in Nereidae, the role of the endocrine system and in the context of the Life history theory for long lived semelparous organisms with variable age at maturity. Newcastle Univ, Dept Marine Sci & Coastal Management, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England; Seabait Ltd, Ashington NE63 9NW, Northd, England Olive, PJW (reprint author), Newcastle Univ, Dept Marine Sci & Coastal Management, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. p.j.w.olive@ncl.ac.uk AIKEN DE, 1989, CAN J FISH AQUAT SCI, V46, P145, DOI 10.1139/f89-019; BAERT JL, 1987, COMP BIOCHEM PHYS B, V88, P1191, DOI 10.1016/0305-0491(87)90023-X; BASS NR, 1972, J MAR BIOL ASSOC UK, V52, P701, DOI 10.1017/S0025315400021664; BENTLEY MG, 1992, OCEANOGR MAR BIOL, V30, P443; Bingham BL, 1997, INVERTEBR BIOL, V116, P61, DOI 10.2307/3226925; BLAKE GM, 1959, NATURE, V183, P126, DOI 10.1038/183126a0; BRAFIELD AE, 1967, J MAR BIOL ASSOC UK, V47, P619, DOI 10.1017/S0025315400035232; CARON A, 1993, OCEANOL ACTA, V16, P403; CHU JW, 1989, INT J INVERTEBR REPR, V15, P31; CLARK RB, 1961, BIOL REV, V36, P199, DOI 10.1111/j.1469-185X.1961.tb01584.x; CLARK S, 1988, INT J INVER REP DEV, V14, P245, DOI 10.1080/01688170.1988.10510383; CREASER EP, 1982, FISH B-NOAA, V80, P735; CREASER EP, 1983, SSRF767 NOAA NMFS, P1; DESROSIERS G, 1994, OCEANOL ACTA, V17, P683; DESROSIERS G, 1985, OCEANOL ACTA, V17, P178; DHAINAUT A, 1984, FORTS ZOOL, V29, P183; DJUNAEDI A, 1995, THESIS U NEWCASTLE U; FISCHER A, 1984, FORTS ZOOL, V29, P227; FISCHER A, 1979, NATURWISSENSCHAFTEN, V66, P316, DOI 10.1007/BF00441280; FISCHER A, 1991, J EXP ZOOL, V260, P106, DOI 10.1002/jez.1402600114; Fischer A., 1986, Advances in Invertebrate Reproduction, V4, P195; FISCHER A, 1985, CELL TISSUE RES, V240, P67; FISCHER A, 1993, INVERTEBR REPROD DEV, V23, P131, DOI 10.1080/07924259.1993.9672304; FONG PP, 1992, BIOL BULL, V182, P289, DOI 10.2307/1542249; FONG PP, 1992, MAR BIOL, V112, P81, DOI 10.1007/BF00349731; FONG PP, 1991, THESIS U CALIFORNIA; GARWOOD PR, 1982, INT J INVER REP DEV, V5, P161; Golding D.W., 1978, P117; GOLDING DW, 1985, INT J INVER REP DEV, V8, P51, DOI 10.1080/01688170.1985.10510124; GOLDING DW, 1987, INT J INVER REP DEV, V12, P281, DOI 10.1080/01688170.1987.10510326; GOLDING DW, 1994, P NATL ACAD SCI USA, V91, P11777, DOI 10.1073/pnas.91.25.11777; HAUENSCHILD C, 1960, COLD SPRING HARB SYM, V25, P491, DOI 10.1101/SQB.1960.025.01.051; HAUENSCHILD C, 1955, Z NATURFORSCH PT B, V10, P658; Olive P.J.W., 1986, Advances in Invertebrate Reproduction, V4, P371; Olive Peter J. W., 1994, Memoires du Museum National d'Histoire Naturelle, V162, P603; OLIVE PJW, 1981, J MAR BIOL ASSOC UK, V61, P193, DOI 10.1017/S0025315400046014; OLIVE PJW, 1993, AQUAT CONSERV, V3, P1, DOI 10.1002/aqc.3270030102; OLIVE PJW, 1983, INT J INVER REP DEV, V6, P307, DOI 10.1080/01651269.1983.10510056; OLIVE PJW, 1984, FORTS ZOOL, V29, P17; OLIVE PJW, 1983, INT J INVER REP DEV, V6, P339, DOI 10.1080/01651269.1983.10510059; Olive PJW, 1997, J THERM BIOL, V22, P489, DOI 10.1016/S0306-4565(97)00067-3; OLIVE PJW, 1997, REPRODUCTIVE BIOL IN, V8, P153; OLIVE PJW, 1981, ADV INVERTEBRATE REP, V2, P37; OLIVE PJW, 1985, PHYSL ADAPTATIONS MA, V39, P268; OLIVER MW, 1990, SYNAPSE, V5, P265, DOI 10.1002/syn.890050403; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PORCHET M, 1989, INVERTEBR REPROD DEV, V16, P53, DOI 10.1080/07924259.1989.9672060; PORCHET M, 1976, GEN COMP ENDOCR, V30, P378, DOI 10.1016/0016-6480(76)90090-3; PORCHET M, 1979, ROUX ARCH DEV BIOL, V186, P129, DOI 10.1007/BF00848174; Roff Derek A., 1992; SAUNDERS DS, 1978, INSECT CLOCKS; Saunders DS, 1977, INTRO BIOL RHYTHMS; SCHROEDER PC, 1975, REPRODUCTION MARINE, V3, P1; SMITH RI, 1950, J MORPHOL, V87, P417, DOI 10.1002/jmor.1050870303; SNOW DR, 1974, J NAT HIST, V8, P513, DOI 10.1080/00222937400770431; Sokal R.R., 1995, BIOMETRY; Stearns S. C., 1992, EVOLUTION LIFE HIST; WADDY SL, 1992, INVERTEBR REPROD DEV, V22, P245, DOI 10.1080/07924259.1992.9672277 58 26 26 0 5 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 1998 172 169 183 10.3354/meps172169 15 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 135RT WOS:000076817000015 Bronze 2018-11-12 S Kuzawa, CW Ruff, C Kuzawa, CW Adipose tissue in human infancy and childhood: An evolutionary perspective YEARBOOK OF PHYSICAL ANTHROPOLOGY, VOL 41 - 1998 Yearbook of Physical Anthropology English Review body fat; energetics; brain size; weaning; insulation; mortality; life-history theory; adaptation LIFE-HISTORY EVOLUTION; RELATIVE BRAIN SIZE; NUTRITIONAL-STATUS; BODY-COMPOSITION; DEVELOPING-COUNTRIES; PHYSICAL GROWTH; OBESE GENE; TEMPERATURE REGULATION; MALNOURISHED CHILDREN; ENERGY-EXPENDITURE Humans diverge from most mammals, including nonhuman primates, by depositing significant quantities of body fat in utero and are consequently one of the fattest species on record at birth. While explanations for the fat layer of human neonates have commonly assumed that it serves as insulation to compensate for hairlessness, empirical support for this hypothesis is presently weak. Whether the tissue's abundance at birth and growth changes in adiposity during infancy and childhood might be explained in light of its role as energy buffer has not been assessed, and this possibility is explored through development of a model of fat function and growth centered on two related hypotheses. The first is that the greater adiposity of human neonates is at least partially explainable as an accompaniment of the enlarged human brain, which demands a larger energy reserve to ensure that its obligatory needs are met when the flow of resources from mother or other caretakers is disrupted. The second is that age-related changes in the likelihood of experiencing such disruption have influenced the pattern of investment in the tissue, reflected today in peak adiposity during infancy and a decline to a leaner childhood period. Nutritional disruption is common at birth and until lactation is established, during which time human newborns survive from fats deposited prenatally, suggesting one possible explanation for the early onset of fat deposition. At weaning, the transition from breast milk to supplemental foods and the parallel transition from maternal to endogenous immune protection interact to increase the frequency and impact of nutritional disruption, and this may help explain why newborns devote roughly 70% of growth expenditure to fat deposition during the early postnatal months. Evidence is presented that fat stores are mobilized during infections, hinting at one possible mechanism underlying the association between nutritional status and infectious morbidity and mortality among infants in nutritionally stressed human populations. Consistent with the proposed hypothesis, well-fed infants acquire peak fat reserves by an age of peak prevalence of malnutrition, infectious disease, and fat reserve depletion in less-buffered contexts, and childhood - characterized by minimal investment in the tissue-is a stage of reduced risk of energy stress. The model presented here foregrounds energy storage in adipose tissue as an important life-history strategy and a means to modify mortality risk during the nutritionally turbulent period of infancy. Yrbk Phys Anthropol 41:177-209, 1998. (C) 1998 Wiley-Liss, Inc. Emory Univ, Dept Anthropol, Atlanta, GA 30322 USA Kuzawa, CW (reprint author), Emory Univ, Dept Anthropol, Atlanta, GA 30322 USA. ADAIR LS, 1984, J AM DIET ASSOC, V84, P543; ADOLPH EF, 1971, GROWTH, V35, P55; AHERNE W, 1966, J PATHOL BACTERIOL, V91, P223, DOI 10.1002/path.1700910126; AIELLO LC, 1995, CURR ANTHROPOL, V36, P199, DOI 10.1086/204350; ALEXANDER G, 1975, BRIT MED BULL, V31, P62, DOI 10.1093/oxfordjournals.bmb.a071243; ARBUTHNOTT E, 1989, P NUTR SOC, V48, P177, DOI 10.1079/PNS19890027; ARMSTRONG E, 1983, SCIENCE, V220, P1302, DOI 10.1126/science.6407108; ARNAUD J, 1996, CAN J ZOOL, V74, P254; ASKANAZI J, 1980, ANN SURG, V191, P40, DOI 10.1097/00000658-198001000-00008; BART KJ, 1985, PREVENTION INFANT MO, P28; BEALL CM, 1992, AM J HUM BIOL, V4, P747, DOI 10.1002/ajhb.1310040606; BEHRMAN RE, 1992, TXB PEDIAT; BEISEL WR, 1975, ANNU REV MED, V26, P9, DOI 10.1146/annurev.me.26.020175.000301; BERN C, 1992, B WORLD HEALTH ORGAN, V70, P705; BIER DM, 1977, DIABETES, V26, P1016, DOI 10.2337/diabetes.26.11.1016; BLACK RE, 1984, AM J CLIN NUTR, V39, P87; BLACK RE, 1993, PEDIATR INFECT DIS J, V12, P751, DOI 10.1097/00006454-199309000-00010; BLIX AS, 1984, ACTA PHYSIOL SCAND, V122, P443, DOI 10.1111/j.1748-1716.1984.tb07532.x; BLIX AS, 1979, PHYSIOL REV, V59, P285; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; BOUTOURLINE E, 1973, GROWTH, V37, P91; BOWEN WD, 1985, CAN J ZOOL, V63, P2841, DOI 10.1139/z85-424; BRISCOE J, 1979, AM J CLIN NUTR, V32, P648; BROOKE O, 1972, BRIT MED J, V5, P331; BROOKE OG, 1973, J PHYSIOL-LONDON, V233, P75, DOI 10.1113/jphysiol.1973.sp010298; BROOKE OG, 1973, ARCH DIS CHILD, V48, P901, DOI 10.1136/adc.48.11.901; BROWN KH, 1982, AM J CLIN NUTR, V36, P294; BRYDEN M M, 1969, Australian Journal of Zoology, V17, P153, DOI 10.1071/ZO9690153; BUZINA R, 1976, AM J CLIN NUTR, V29, P1051; Cahill Jr G. C., 1982, T AM CLIN CLIMAT ASS, V94, P1; Campfield LA, 1996, HORM METAB RES, V28, P619, DOI 10.1055/s-2007-979867; CARPENTIER YA, 1979, J TRAUMA, V19, P649, DOI 10.1097/00005373-197909000-00002; CASTELLINI MA, 1990, AM J PHYSIOL, V259, pR1086; CHANDRA RK, 1994, NUTRITION, V10, P207; Charnov Eric L., 1993, P1; Chehab FF, 1997, SCIENCE, V275, P88, DOI 10.1126/science.275.5296.88; CHEN LC, 1980, AM J CLIN NUTR, V33, P1836; CHEN LC, 1981, AM J EPIDEMIOL, V114, P284, DOI 10.1093/oxfordjournals.aje.a113193; CHUNG AW, 1948, J PEDIATR-US, V33, P1, DOI 10.1016/S0022-3476(48)80147-2; COCKBURN TA, 1971, CURR ANTHROPOL, V12, P45, DOI 10.1086/201168; COELHO A M JR, 1989, American Journal of Human Biology, V1, P429, DOI 10.1002/ajhb.1310010405; Cohen M. N., 1984, PALEOPATHOLOGY ORIGI; COLE TJ, 1977, T ROY SOC TROP MED H, V71, P196, DOI 10.1016/0035-9203(77)90005-0; COOPER AL, 1989, LIFE SCI, V45, P843, DOI 10.1016/0024-3205(89)90178-1; CUMMINS AG, 1994, J CLIN IMMUNOL, V14, P107, DOI 10.1007/BF01541343; Cunningham J J, 1995, Nutr Clin Pract, V10, P177, DOI 10.1177/0115426595010005177; DAVIES DP, 1980, P NUTR SOC, V39, P25, DOI 10.1079/PNS19800005; DAVIES PSW, 1992, AM J HUM BIOL, V4, P621, DOI 10.1002/ajhb.1310040508; DAWKINS MJR, 1964, P ROY SOC MED, V57, P1063; Debyser IWJ, 1995, INT J PRIMATOL, V16, P935, DOI 10.1007/BF02696111; DEGAMARRA ME, 1987, BIOL NEONATE, V52, P181; DETTWYLER KA, 1992, ANNU REV ANTHROPOL, V21, P171; DOBBING J, 1973, ARCH DIS CHILD, V48, P757, DOI 10.1136/adc.48.10.757; DUBOIS E, 1937, MECHANISM HEAT LOSS; DUGGAN MB, 1986, ARCH DIS CHILD, V61, P436, DOI 10.1136/adc.61.5.436; ECCLES MP, 1989, ARCH DIS CHILD, V64, P1559, DOI 10.1136/adc.64.11.1559; ELPHICK MC, 1981, PEDIATR RES, V15, P313, DOI 10.1203/00006450-198104000-00005; Eveleth P. B., 1990, WORLDWIDE VARIATION; Eveleth PB, 1986, HUMAN GROWTH, P221; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; FJELD CR, 1988, P NUTR SOC, V47, P227, DOI 10.1079/PNS19880039; FOLEY RA, 1991, PHILOS T ROY SOC B, V334, P223, DOI 10.1098/rstb.1991.0111; FOMON SJ, 1969, J NUTR, V98, P241; FOMON SJ, 1967, PEDIATRICS, V40, P863; FOMON SJ, 1982, AM J CLIN NUTR, V35, P1169, DOI 10.1093/ajcn/35.5.1169; FRISANCHO AR, 1974, AM J CLIN NUTR, V27, P1052; FRISANCHO AR, 1993, HUMAN ADAPTATION ACC; GALWAY K, 1987, CHILD SURVIVAL RISKS; GAMPEL B, 1965, HUM BIOL, V37, P29; GARN S. M., 1956, HUMAN BIOL, V28, P232; Gerhart KL, 1996, CAN J ZOOL, V74, P136, DOI 10.1139/z96-018; Gibson RS, 1990, PRINCIPLES NUTR ASSE; GORTMAKER SL, 1987, AM J DIS CHILD, V141, P535, DOI 10.1001/archpedi.1987.04460050077035; Gould S.J., 1977, ONTOGENY PHYLOGENY; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; GRANDE F, 1980, ASSESSMENT ENERGY ME; GREENBERG R, 1973, GLUCOSE HOMEOSTASIS, P49; Grunfeld C, 1996, NUTRITION, V12, pS24; Gura T, 1997, SCIENCE, V275, P751, DOI 10.1126/science.275.5301.751; GURNEY JM, 1972, T ROY SOC TROP MED H, V66, P653, DOI 10.1016/0035-9203(72)90312-4; HAAS JD, 1982, AM J PHYS ANTHROPOL, V59, P251, DOI 10.1002/ajpa.1330590304; HALAAS JL, 1995, SCIENCE, V269, P543, DOI 10.1126/science.7624777; Haldane J. B. S., 1949, Ricerca Scientifica Suppl, P68; Hardy A., 1960, NEW SCI, P642; Harsha D, 1986, CAUSATION CARDIOVASC, P190; HART BL, 1990, NEUROSCI BIOBEHAV R, V14, P273, DOI 10.1016/S0149-7634(05)80038-7; Harvey P.H., 1987, P181; Harvey P. H., 1991, COMP METHOD EVOLUTIO; Hasselbalch SG, 1996, AM J PHYSIOL-ENDOC M, V270, pE746; HAWKES K, 1995, CURR ANTHROPOL, V36, P688, DOI 10.1086/204420; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; HIRSCHHORN N, 1966, LANCET, V2, P128; HOLLIDAY MA, 1967, PEDIATR RES, V1, P185, DOI 10.1203/00006450-196705000-00005; Holliday MA, 1986, HUMAN GROWTH COMPREH, V2, P117; JANES MD, 1974, TROP GEOGR MED, V26, P389; Janson Charles H., 1993, P57; JOHNSTON FE, 1985, J HUM EVOL, V14, P341, DOI 10.1016/S0047-2484(85)80040-3; JOHNSTON FE, 1982, AM J PHYS ANTHROPOL, V58, P397, DOI 10.1002/ajpa.1330580407; JONES MD, 1979, SEMIN PERINATOL, V3, P121; Keller W, 1983, World Health Stat Q, V36, P129; KENNEDY GC, 1953, PROC R SOC SER B-BIO, V140, P578, DOI 10.1098/rspb.1953.0009; KERR DS, 1978, METABOLISM, V27, P411, DOI 10.1016/0026-0495(78)90097-5; KEYS A, 1950, BIOL HUMAN STARVATIO; LaManna JC, 1997, NEUROSURG CLIN N AM, V8, P145; LARGO RH, 1980, HELV PAEDIATR ACTA, V35, P419; Lee P. C., 1996, Evolutionary Anthropology, V5, P87, DOI 10.1002/(SICI)1520-6505(1996)5:3<87::AID-EVAN4>3.0.CO;2-T; LEONARD WR, 1994, AM J HUM BIOL, V6, P77, DOI 10.1002/ajhb.1310060111; LEONARD WR, 1994, AM J HUM BIOL, V6, P339, DOI 10.1002/ajhb.1310060309; LEONARD WR, 1992, AM J HUM BIOL, V4, P179, DOI 10.1002/ajhb.1310040204; LEWIS DS, 1983, J NUTR, V113, P2253; LIVINGSTONE FB, 1958, AM ANTHROPOL, V60, P533, DOI 10.1525/aa.1958.60.3.02a00110; Lowrey GH, 1986, GROWTH DEV CHILDREN; MALCOLM LA, 1969, AM J PHYS ANTHROPOL, V31, P39, DOI 10.1002/ajpa.1330310106; MALINA RM, 1974, HUM BIOL, V46, P453; MANNERS MJ, 1963, BRIT J NUTR, V17, P495, DOI 10.1079/BJN19630053; Marchini G, 1998, PEDIATRICS, V101, P429, DOI 10.1542/peds.101.3.429; MARTIN RD, 1981, NATURE, V293, P57, DOI 10.1038/293057a0; Martin RD, 1996, NEWS PHYSIOL SCI, V11, P149; MARTORELL R, 1975, AM J DIS CHILD, V129, P1296, DOI 10.1001/archpedi.1975.02120480022007; MARTORELL R, 1976, AM J CLIN NUTR, V29, P46; MARTORELL R, 1980, AM J CLIN NUTR, V33, P345; MASORO EJ, 1977, AM J CLIN NUTR, V30, P1311; MATA LJ, 1972, AM J CLIN NUTR, V25, P1267; MCCANCE RA, 1977, PEDIATR RES, V11, P1081; McFarland Robin, 1997, P163; MCILWAIN H, 1966, BIOCH CENTRAL NERVOU; MICHELI JL, 1994, ACTA PAEDIATR, V83, P35, DOI 10.1111/j.1651-2227.1994.tb13396.x; MILLA PJ, 1986, ACTA PAEDIATR SCAND, P5; MORGAN E, 1994, SCARS EVOLUTION; Morgan E., 1982, AQUATIC APE; Morris D., 1967, NAKED APE; MROSOVSKY N, 1977, BEHAV BIOL, V20, P205, DOI 10.1016/S0091-6773(77)90773-8; NITZAN M, 1968, AM J CLIN NUTR, V21, P1268; Norgan NG, 1997, INT J OBESITY, V21, P738, DOI 10.1038/sj.ijo.0800473; OFTEDAL OT, 1993, BRIT J NUTR, V70, P59, DOI 10.1079/BJN19930105; OFTEDAL OT, 1987, PHYSIOL ZOOL, V60, P560, DOI 10.1086/physzool.60.5.30156130; OFTEDAL OT, 1989, BIOL NEONATE, V56, P283; ORITSLAND NA, 1985, COMP BIOCHEM PHYS A, V82, P931, DOI 10.1016/0300-9629(85)90507-9; OWEN OE, 1967, J CLIN INVEST, V46, P1589, DOI 10.1172/JCI105650; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PASSINGHAM RE, 1985, BRAIN BEHAV EVOLUT, V26, P167, DOI 10.1159/000118773; PELLETIER DL, 1993, AM J PUBLIC HEALTH, V83, P1130, DOI 10.2105/AJPH.83.8.1130; PELLEYMOUNTER MA, 1995, SCIENCE, V269, P540, DOI 10.1126/science.7624776; PERSSON B, 1970, SCAND J CLIN LAB INV, V25, P9, DOI 10.3109/00365517009046184; POND C, 1997, EVOLVING FEMALE LIFE, P147; Pond C.M., 1991, P193; POND CM, 1995, J LIPID RES, V36, P2219; POND CM, 1992, CAN J ZOOL, V70, P342, DOI 10.1139/z92-050; POND CM, 1978, ANNU REV ECOL SYST, V9, P519, DOI 10.1146/annurev.es.09.110178.002511; PRECHTL HFR, 1986, EUR J OBSTET GYN R B, V21, P347, DOI 10.1016/0028-2243(86)90014-6; Raffel M, 1996, J ZOOL, V239, P437, DOI 10.1111/j.1469-7998.1996.tb05934.x; REA JN, 1971, HUM BIOL, V43, P46; RINGBERG TM, 1981, CAN J ZOOL, V59, P1040, DOI 10.1139/z81-145; ROBERTS SB, 1988, AM J CLIN NUTR, V48, P951; ROHDE J, 1988, Indian Pediatrics, V25, P914; ROSENBERG IH, 1977, AM J CLIN NUTR, V30, P1248; RYLANDER E, 1972, ACTA PAEDIATR SCAND, V61, P42, DOI 10.1111/j.1651-2227.1972.tb15901.x; Salbe AD, 1997, J CLIN INVEST, V99, P592, DOI 10.1172/JCI119200; SAUDUBRAY JM, 1981, J PEDIATR-US, V98, P904, DOI 10.1016/S0022-3476(81)80583-5; SCHAEFER O, 1977, AM J CLIN NUTR, V30, P1623; SCHNEEWEISS B, 1992, METABOLISM, V41, P125, DOI 10.1016/0026-0495(92)90138-Z; SCHROEDER DG, 1994, B WORLD HEALTH ORGAN, V72, P569; Schultz A. H., 1969, THE LIFE OF PRIMATES; SCHULZ DM, 1962, ARCH PATHOL, V74, P244; SCRIMSHAW N, 1989, ACTIVITY ENERGY EXPE, P215; SENIOR B, 1969, J PEDIATR, V74, P529, DOI 10.1016/S0022-3476(69)80035-1; SERENIUS F, 1988, ACTA PAEDIATR SCAND, P93; SHEPHARD RJ, 1991, BODY COMPOSITION BIO; Sinclair D, 1985, HUMAN GROWTH BIRTH; SNYDER JD, 1982, B WORLD HEALTH ORGAN, V60, P605; SPADY DW, 1976, AM J CLIN NUTR, V29, P1073; SPRAY CM, 1950, BRIT J NUTR, V4, P332, DOI 10.1079/BJN19500058; STALLONE DD, 1994, NUTR REV, V52, P37; Stearns S. C., 1992, EVOLUTION LIFE HIST; STETTLER N, 1992, PEDIATR RES, V31, P102, DOI 10.1203/00006450-199202000-00002; Stini W A, 1981, World Rev Nutr Diet, V37, P55; STINSON S, 1985, YEARB PHYS ANTHROPOL, V28, P123; SYMONDS ME, 1992, P NUTR SOC, V51, P165, DOI 10.1079/PNS19920026; Tanner J, 1976, WORLDWIDE VARIATION; TANNER JM, 1975, ARCH DIS CHILD, V50, P142, DOI 10.1136/adc.50.2.142; TANNER JM, 1990, FETUS MAN; THOMAS K, 1911, ARCH ANAT PHYSL, V9, P1123; Thompson DW, 1942, GROWTH FORM; TOMKINS A, 1981, LANCET, V1, P860; TRACEY KJ, 1992, P SOC EXP BIOL MED, V200, P233; TRACEY KJ, 1989, LANCET, V1, P1122; TUPASI TE, 1990, REV INFECT DIS, V12, pS1047; VATHANOPHAS K, 1990, REV INFECT DIS, V12, pS957; VICTORA CG, 1990, AM J CLIN NUTR, V52, P391; WALKER SP, 1988, EUR J CLIN NUTR, V42, P395; WATERLOW JC, 1975, NATURE, V258, P113, DOI 10.1038/258113a0; WATERLOW JC, 1994, EUR J CLIN NUTR, V48, pS72; WATTS ES, 1990, MG PRIMATOL, V14, P89; WEIGLE DS, 1994, FASEB J, V8, P302; WHITE DR, 1991, BRIT J RADIOL, V64, P149, DOI 10.1259/0007-1285-64-758-149; WHITEHEAD RG, 1984, EARLY HUM DEV, V9, P187, DOI 10.1016/0378-3782(84)90031-8; WIDDOWSON EM, 1974, P NUTR SOC, V33, P97, DOI 10.1079/PNS19740020; WIDDOWSON EM, 1950, NATURE, V166, P626, DOI 10.1038/166626a0; WIDDOWSON EM, 1955, BRIT J NUTR, V9, P316, DOI 10.1079/BJN19550043; WIGGINS R, 1985, DEV NEUROCHEMISTRY; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams GC, 1966, ADAPTATION NATURAL S; WILLIAMSON DH, 1986, BIOCHEM SOC T, V14, P225, DOI 10.1042/bst0140225; WILLIAMSON DH, 1987, P NUTR SOC, V46, P81, DOI 10.1079/PNS19870011; World Bank, 1993, WORLD DEV REP 1993 I; WORTHY GAJ, 1983, J MAMMAL, V64, P89, DOI 10.2307/1380753; YOUNG H, 1995, DISASTERS, V19, P94, DOI 10.1111/j.1467-7717.1995.tb00361.x; YOUNG VR, 1971, SCI AM, V225, P14, DOI 10.1038/scientificamerican1071-14; ZHANG YY, 1994, NATURE, V372, P425, DOI 10.1038/372425a0 209 214 221 1 39 WILEY-LISS, INC NEW YORK 605 THIRD AVE, NEW YORK, NY 10158-0012 USA 0096-848X YEARB PHYS ANTHROPOL Yearb. Phys. Anthropol. 1998 41 177 209 33 Anthropology Anthropology BM40T WOS:000078652400006 9881526 2018-11-12 J Olive, PJW; Fletcher, J; Rees, S; Desrosiers, G Olive, PJW; Fletcher, J; Rees, S; Desrosiers, G Interactions of environmental temperature with photoperiod in determining age at maturity in a semelparous Polychaete Nereis (Neanthes) virens Sars JOURNAL OF THERMAL BIOLOGY English Article breeding cycles; reproduction; temperature; photoperiod; Polychaeta; aquaculture; growth; maturation; Life History theory; growth rate; reaction norm LUGWORM ARENICOLA-MARINA; LIFE-HISTORY; REACTION NORMS; DEMOGRAPHIC PARAMETERS; PHENOTYPIC PLASTICITY; SPERM MATURATION; NEPHTYS-CECA; SIZE; REPRODUCTION; EVOLUTION 1. Larger members of the Polychaeta exhibit two contrasting life cycles: semelparous in the Nereidae, iteroparous in most others. 2. In semelparous forms environmental interaction determines age at reproduction and fecundity in the single spawning event whereas in iteroparous forms such interaction influences the variable age specific reproductive effort. 3. Development of aquaculture has created conditions where organisms are grown under conditions of optimum temperature for growth and unlimited food. 4. We present data on the life history responses (reaction norms) of the semelparous Nereis virens in which age at death in natural populations varies between 3 to 8+ years. 5. In Nereis virens minimum life span (=generation time) in culture is one year but the lifespan remains modular 12 months without manipulation of photoperiod. 6. Environmental temperature plays two roles: i) in conjunction with energy availability to determine "age at first/only reproduction" and secondly as an element (with photoperiod) in the control of gametogenic processes imposing seasonality on the life cycle. 7. The observations suggest that long generation time in natural populations of N. virens is is associated with reduced growth rate and that low growth rate is associated with reproduction at a larger size. (C) 1998 Elsevier Science Ltd. All rights reserved. Univ Newcastle Upon Tyne, Dept Marine Sci & Coastal Management, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England; Seabait Ltd, Ashington, Northd, England; Univ Quebec, Dept Oceanog, Rimouski, PQ G5L 3A1, Canada Olive, PJW (reprint author), Univ Newcastle Upon Tyne, Dept Marine Sci & Coastal Management, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Atkinson D, 1996, OIKOS, V77, P359, DOI 10.2307/3546078; ATKINSON D, UNPUB J THERM BIOL; BASS NR, 1972, J MAR BIOL ASSOC UK, V52, P701, DOI 10.1017/S0025315400021664; BENTLEY MG, 1985, INT J INVER REP DEV, V8, P139, DOI 10.1080/01688170.1985.10510137; BENTLEY MG, 1992, OCEANOGR MAR BIOL, V30, P443; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; BERRIGAN D, 1994, OIKOS, V70, P474, DOI 10.2307/3545787; BRAFIELD AE, 1967, J MAR BIOL ASSOC UK, V47, P619, DOI 10.1017/S0025315400035232; CARON A, 1993, OCEANOL ACTA, V16, P403; Caron A, 1996, MAR BIOL, V124, P537, DOI 10.1007/BF00351035; CREASER EP, 1982, FISH B-NOAA, V80, P735; CREASER EP, 1983, SSRF767 NOAA NMFS, P1; DESROSIERS G, 1994, OCEANOL ACTA, V17, P683; DESROSIERS G, 1991, CAN J ZOOL, V69, P560, DOI 10.1139/z91-084; ENGEN S, 1994, THEOR POPUL BIOL, V46, P232, DOI 10.1006/tpbi.1994.1026; FISCHER A, 1993, INVERTEBR REPROD DEV, V23, P131, DOI 10.1080/07924259.1993.9672304; GOLDING DW, 1994, P NATL ACAD SCI USA, V91, P11777, DOI 10.1073/pnas.91.25.11777; GRANT A, 1987, MAR BIOL, V95, P201, DOI 10.1007/BF00409006; GREMARE A, 1986, INT J INVER REP DEV, V9, P1; Hutchings JA, 1996, ECOSCIENCE, V3, P25, DOI 10.1080/11956860.1996.11682311; Klingenberg CP, 1997, ECOL ENTOMOL, V22, P55, DOI 10.1046/j.1365-2311.1997.00031.x; OLIVE, 1997, REPROD BIOL INVERTEB, V8; OLIVE P, UNPUB MAINS ECOLOGY; Olive P.J.W., 1986, Advances in Invertebrate Reproduction, V4, P371; OLIVE PJW, 1993, AQUAT CONSERV, V3, P1, DOI 10.1002/aqc.3270030102; OLIVE PJW, 1995, J THERM BIOL, V20, P79, DOI 10.1016/0306-4565(94)00030-M; OLIVE PJW, 1992, INVERTEBR REPROD DEV, V22, P165, DOI 10.1080/07924259.1992.9672269; PACEY AA, 1992, J EXP BIOL, V173, P165; PACEY AA, 1993, INVERTEBR REPROD DEV, V24, P27, DOI 10.1080/07924259.1993.9672328; SIBLY RM, 1994, FUNCT ECOL, V8, P486, DOI 10.2307/2390073; SNOW DR, 1974, J NAT HIST, V8, P513, DOI 10.1080/00222937400770431; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Watson GJ, 1997, INVERTEBR REPROD DEV, V31, P297, DOI 10.1080/07924259.1997.9672589 35 15 15 0 12 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0306-4565 J THERM BIOL J. Therm. Biol. DEC 1997 22 6 489 497 10.1016/S0306-4565(97)00067-3 9 Biology; Zoology Life Sciences & Biomedicine - Other Topics; Zoology ZJ891 WOS:000073264100013 2018-11-12 J Roitberg, BD; Mangel, M Roitberg, BD; Mangel, M Individuals on the landscape: behavior can mitigate landscape differences among habitats OIKOS English Article TEPHRITID FRUIT-FLY; RHAGOLETIS-POMONELLA; FLIES; CONSERVATION; ECOLOGY; BASIOLA We present a case study of the rose hip fly, Rhagoletis basiola, to demonstrate how one can connect landscape to population and evolutionary dynamics through the responses of individuals. Survey data from six different isolated rose habitats (Rosa sp.) near Vancouver, Canada were analyzed to determine the spatial distribution of rose hips within and among bushes. Rose hips were clumped at all sites; there was statistically significant variation in degree of clumping among sires. However, analyses using dynamic life history theory suggest that much of this variation may be mitigated by oviposition and movement response of individual flies to fruit distribution: sites that differ structurally may not differ evolutionarily. With this in mind, we provide five different indices that could be used to evaluate fly performance on different landscapes: 1) the probability that a cell r units away contains resource, given that the current cell contains resource, 2) the probability that a cell I units away contains resource, given that the current cell is de-void of resource. 3) the optimal distance to move from a cell that harbors Fruit, 4) the optimal distance to move ii om a cell that is devoid of fruit, and 5) the Expected Reproductive Success of a fly in a particular habitat. Those indices provide the link between landscape and individual behavior and suggest another way of addressing habitat conservation issues. UNIV CALIF SANTA CRUZ,DEPT ENVIRONM STUDIES,SANTA CRUZ,CA 95064 Roitberg, BD (reprint author), SIMON FRASER UNIV,DEPT BIOL SCI,BURNABY,BC V5A 1S6,CANADA. ALPHEN JJ, 1990, ANNU REV ENTOMOL, V35, P59; AVERILL AL, 1981, FLA ENTOMOL, V64, P222, DOI 10.2307/3494573; AVERILL AL, 1987, ECOLOGY, V68, P878, DOI 10.2307/1938359; BELL WJ, 1991, SEARCH BEHAV; BENHAMOU S, 1992, J THEOR BIOL, V159, P67, DOI 10.1016/S0022-5193(05)80768-4; Carriere Y, 1996, EVOL ECOL, V10, P289, DOI 10.1007/BF01237686; Curie E, 1996, TRENDS ECOL EVOL, V11, P260, DOI 10.1016/0169-5347(96)20046-1; Endler JA, 1986, NATURAL SELECTION WI; FALCONER DS, 1989, INTRO QUANTITATIVE G; Lima SL, 1996, TRENDS ECOL EVOL, V11, P131, DOI 10.1016/0169-5347(96)81094-9; MANGEL M, 1989, ECOL ENTOMOL, V14, P181, DOI 10.1111/j.1365-2311.1989.tb00768.x; MANGEL M, 1994, ECOLOGY, V75, P1289, DOI 10.2307/1937454; MANGEL M, 1994, PHILOS T ROY SOC B, V343, P93, DOI 10.1098/rstb.1994.0012; MANGEL M, 1992, ANNU REV ECOL SYST, V23, P507; Mangel M., 1988, DYNAMIC MODELING BEH; MATHER MH, 1987, SCIENCE, V236, P308, DOI 10.1126/science.236.4799.308; Mayr E., 1988, NEW PHILOS BIOL; Pojar J., 1994, PLANTS COASTAL BRIT; ROITBERG BD, 1982, J ANIM ECOL, V51, P307, DOI 10.2307/4326; ROITBERG BD, 1989, EVOL ECOL, V3, P183, DOI 10.1007/BF02270920; ROITBERG BD, 1991, OIKOS, V61, P389, DOI 10.2307/3545246; ROITBERG BD, 1988, EVOL ECOL, V2, P289, DOI 10.1007/BF02207562; ROITBERG BD, 1983, PHYSIOL ENTOMOL, V8, P69, DOI 10.1111/j.1365-3032.1983.tb00334.x; ROITBERG BD, 1985, J INSECT PHYSIOL, V31, P865, DOI 10.1016/0022-1910(85)90104-0; ROITBERG BD, 1984, OECOLOGIA, V62, P7, DOI 10.1007/BF00377365; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; WITH KA, 1995, ECOLOGY, V76, P2446, DOI 10.2307/2265819 27 39 41 1 10 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos NOV 1997 80 2 234 240 10.2307/3546591 7 Ecology Environmental Sciences & Ecology YA318 WOS:A1997YA31800005 2018-11-12 J Wesselingh, RA; Klinkhamer, PGL; DeJong, TJ; Boorman, LA Wesselingh, RA; Klinkhamer, PGL; DeJong, TJ; Boorman, LA Threshold size for flowering in different habitats: Effects of size-dependent growth and survival ECOLOGY English Article Cynoglossum officinale life history; facultative biennial; genetic variation; growth rate; hound's-tongue; optimization models; plant size and fitness; semelparous; survival; threshold size for flowering LIFE-HISTORY VARIATION; BIENNIALS CIRSIUM-VULGARE; SAND-DUNE AREA; CYNOGLOSSUM-OFFICINALE; DAUCUS-CAROTA; SEEDLING ESTABLISHMENT; PHENOTYPIC PLASTICITY; POPULATION-DYNAMICS; VERBASCUM-THAPSUS; NATURAL-SELECTION For organisms with indeterminate growth, life history theory predicts that in environments where organisms experience high survival rates or gain fecundity with age or size, natural selection favors delayed maturity. In semelparous perennial plants the onset of reproduction is regulated by a threshold size for flowering. We tested this prediction by comparing sand dune populations of the facultative biennial herb Cynoglossum officinale. We collected data on flowering probability, survival, and growth rate in relation to plant size in two habitat types, open areas and poplar thickets, in Meijendel, The Netherlands, and in Holkham, England. Survival of established rosettes was highest in Holkham and lowest in open areas in Meijendel. Relative growth rates in Holkham were about three times as high as those in Meijendel. These findings agreed with the differences in threshold sizes found among the sites: the Holkham field population harbored higher threshold sizes than the Meijendel sites. We used the field data to compare optimal threshold sizes for flowering predicted by three existing models, All three models gave the same rank order for threshold sizes as found in the field: Meijendel open < Meijendel poplar thicket < Holkham. One model, which maximized population growth rate lambda, predicted optimal threshold sizes that agreed very well with threshold sizes found in the field. The predictions of the two other models, both maximizing R-0, were consistently lower than the threshold sizes observed in Meijendel, while their predictions for Holkham were too high. LEIDEN UNIV, INST EVOLUT & ECOL SCI, SECT ECOL, NL-2300 RA LEIDEN, NETHERLANDS; INST TERR ECOL, MONKS WOOD EXPT STN, HUNTINGDON PE17 2LS, CAMBS, ENGLAND Klinkhamer, Peter/S-1900-2017; Wesselingh, Renate/F-4240-2011 Klinkhamer, Peter/0000-0001-8650-2199; Wesselingh, Renate/0000-0003-0241-2255 AUGSPURGER CK, 1985, OIKOS, V45, P341, DOI 10.2307/3565569; BASKIN JM, 1979, J ECOL, V67, P601, DOI 10.2307/2259115; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; BOORMAN LA, 1984, NEW PHYTOL, V96, P609, DOI 10.1111/j.1469-8137.1984.tb03596.x; Charlesworth B., 1994, EVOLUTION AGE STRUCT; COLONNELLI E, 1986, Fragmenta Entomologica, V18, P419; DEJONG TJ, 1988, J ECOL, V76, P366; DEJONG TJ, 1988, J ECOL, V76, P393; DEJONG TJ, 1989, FUNCT ECOL, V3, P201; DEJONG TJ, 1989, ACTA BOT NEERL, V38, P41, DOI 10.1111/j.1438-8677.1989.tb01911.x; DEJONG TJ, 1986, NEW PHYTOL, V103, P219; DEJONG TJ, 1990, J ECOL, V78, P1123, DOI 10.2307/2260956; DEJONG TJ, 1987, VEGETATIO, V70, P149; EBERT D, 1994, OIKOS, V69, P309, DOI 10.2307/3546152; GROSS KL, 1981, OECOLOGIA, V48, P209, DOI 10.1007/BF00347966; Harrison S, 1996, TRENDS ECOL EVOL, V11, P180, DOI 10.1016/0169-5347(96)20008-4; HILLER LK, 1979, J AM SOC HORTIC SCI, V104, P253; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; INOUYE DW, 1980, OECOLOGIA, V47, P171, DOI 10.1007/BF00346816; KACHI N, 1985, J ECOL, V73, P887, DOI 10.2307/2260155; KELLY D, 1985, AM NAT, V125, P473, DOI 10.1086/284355; KLINKHAMER PGL, 1988, J ECOL, V76, P383, DOI 10.2307/2260600; KLINKHAMER PGL, 1991, OIKOS, V61, P88, DOI 10.2307/3545410; KLINKHAMER PGL, 1987, OIKOS, V49, P303, DOI 10.2307/3565765; KLINKHAMER PGL, 1993, OIKOS, V67, P81, DOI 10.2307/3545098; *KNMI ROYAL NETH M, 1992, PUBL KNMI, V150, P92; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; LACEY EP, 1986, TRENDS ECOL EVOL, V1, P72, DOI 10.1016/0169-5347(86)90021-2; LACEY EP, 1986, J ECOL, V74, P73, DOI 10.2307/2260349; LACEY EP, 1988, ECOLOGY, V69, P220, DOI 10.2307/1943178; LEE JM, 1983, J ECOL, V71, P923, DOI 10.2307/2259602; LEVIN SA, 1984, THEOR POPUL BIOL, V26, P165, DOI 10.1016/0040-5809(84)90028-5; McGraw JB, 1996, AM NAT, V147, P47, DOI 10.1086/285839; PRIMACK RB, 1989, ANNU REV ECOL SYST, V20, P367, DOI 10.1146/annurev.es.20.110189.002055; PRINS AH, 1990, OIKOS, V59, P248, DOI 10.2307/3545541; PRINS AH, 1992, OIKOS, V65, P409, DOI 10.2307/3545556; REINARTZ JA, 1984, J ECOL, V72, P897, DOI 10.2307/2259539; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; ROFF DA, 1986, BIOSCIENCE, V36, P316, DOI 10.2307/1310236; ROFF DA, 1991, NETH J SEA RES, V27, P197, DOI 10.1016/0077-7579(91)90024-U; Roff Derek A., 1992; Schaffer WM, 1975, ECOLOGY EVOLUTION CO, P142; SKOGLAND T, 1989, OIKOS, V55, P101, DOI 10.2307/3565879; Sokal R.R., 1995, BIOMETRY; SOLDAAT LL, 1991, THESIS LEIDEN U LEID; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; *STSC, 1991, STATGR 5 0; VANDERMEULEN F, 1993, ECOSYSTEMS WORLD A, V2, P271; VRIELING K, 1991, THESIS LEIDEN U LEID; WERNER PA, 1975, OECOLOGIA, V20, P197, DOI 10.1007/BF00347472; WERNER PA, 1977, ECOLOGY, V58, P1103, DOI 10.2307/1936930; WESSELINGH RA, 1993, ACTA BOT NEERL, V42, P81; WESSELINGH RA, 1995, HEREDITY, V74, P415, DOI 10.1038/hdy.1995.59; Wesselingh RA, 1996, FUNCT ECOL, V10, P281, DOI 10.2307/2389854; WESSELINGH RA, 1995, THESIS LEIDEN U LEID; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; WOODRING JP, 1983, J INSECT PHYSIOL, V29, P461, DOI 10.1016/0022-1910(83)90075-6; YOUNG TP, 1985, ECOLOGY, V66, P1879, DOI 10.2307/2937383; YOUNG TP, 1984, J ECOL, V72, P637, DOI 10.2307/2260073 64 94 104 3 34 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology OCT 1997 78 7 2118 2132 10.1890/0012-9658(1997)078[2118:TSFFID]2.0.CO;2 15 Ecology Environmental Sciences & Ecology XZ789 WOS:A1997XZ78900016 2018-11-12 J Reale, D Reale, D Trophic resources and reproduction in mammals and birds REVUE D ECOLOGIE-LA TERRE ET LA VIE French Review PARENT-OFFSPRING CONFLICT; MOOSE ALCES-ALCES; SEX-RATIO VARIATION; MOUNTAIN BIGHORN SHEEP; BIASED MATERNAL EXPENDITURE; COLUMBIAN GROUND-SQUIRRELS; NORTHERN ELEPHANT SEAL; LIFE-HISTORY EVOLUTION; BEARS URSUS-MARITIMUS; ANTARCTIC FUR SEALS Problems raised by relationships between food resources and reproduction in mammals and birds are various and imply many theoretical and empirical aspects of biological fields such as physiology, ecology, ethology, population biology and genetics, The study of these relationships reveals ecological or evolutionary consequences of spatial and temporal variation in abundance and quality of trophic resources on reproduction. This paper first reviews and clarifies the main concepts of life history theory and sociobiology/behavioural ecology, generally used in that literature, followed by several recommandations upon their use, Afterwards, several currently developed aspects of birds and mammals reproduction in function of food resources availability are reviewed. Reproductive capacities and fecundity, adjustment in the number of young before or after birth or hatching, sex-ratio adjustment in the progeny and sex-biased investment,parental care, parental expenditure, parental investment and parent-offspring conflict in function of availability in food resources are analysed in details. The consequences of lowering trophic resources on some aspects of the offspring's ontogeny are also developed. Univ Rennes 1, Museum Natl Hist Nat, UMR 6553, Lab Evolut Syst Nat & Modifies, F-75005 Paris, France Reale, D (reprint author), Univ Rennes 1, Museum Natl Hist Nat, UMR 6553, Lab Evolut Syst Nat & Modifies, 36 Rue Geoffroy St Hilaire, F-75005 Paris, France. esnm2@mnhn.fr ALBON SD, 1986, J ZOOL, V209, P447, DOI 10.1111/j.1469-7998.1986.tb03603.x; ALBON SD, 1983, J ANIM ECOL, V52, P969, DOI 10.2307/4467; Alexander R.D., 1974, Annual Rev Ecol Syst, V5, P325, DOI 10.1146/annurev.es.05.110174.001545; Allaye Chan-Mcleod Ann C., 1994, Canadian Journal of Zoology, V72, P938; ALTMANN J, 1978, SCIENCE, V201, P1028, DOI 10.1126/science.98844; AMAT JA, 1995, BEHAVIOUR, V132, P519, DOI 10.1163/156853995X00180; Amundsen T, 1996, OIKOS, V76, P613, DOI 10.2307/3546359; AMUNDSEN T, 1991, ECOLOGY, V72, P797, DOI 10.2307/1940582; ANDERSON DJ, 1990, EVOLUTION, V44, P2069, DOI 10.1111/j.1558-5646.1990.tb04312.x; ANDERSON SS, 1987, J ZOOL, V211, P667, DOI 10.1111/j.1469-7998.1987.tb04478.x; Andersson M., 1994, SEXUAL SELECTION; ANDREASSEN HP, 1990, OIKOS, V59, P107, DOI 10.2307/3545129; ARNOLD GW, 1979, APPL ANIM ETHOL, V5, P43, DOI 10.1016/0304-3762(79)90006-3; Arnould JPY, 1996, CAN J ZOOL, V74, P254, DOI 10.1139/z96-032; ATKINSON SN, 1995, FUNCT ECOL, V9, P559, DOI 10.2307/2390145; BABBITT KJ, 1990, ANIM BEHAV, V40, P765, DOI 10.1016/S0003-3472(05)80705-5; BABBITT KJ, 1990, ETHOLOGY, V86, P102; BALDWIN JD, 1974, AM ZOOL, V14, P303; BALDWIN JD, 1976, Z TIERPSYCHOL, V40, P1; BANDY P J, 1970, Canadian Journal of Zoology, V48, P1401, DOI 10.1139/z70-238; BARBER N, 1991, Q REV BIOL, V66, P129, DOI 10.1086/417142; BARRETT L, 1992, ANIM BEHAV, V44, P111, DOI 10.1016/S0003-3472(05)80760-2; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; BATESON P, 1994, TRENDS ECOL EVOL, V9, P399, DOI 10.1016/0169-5347(94)90066-3; BATESON P, 1981, PHYSIOL BEHAV, V27, P841, DOI 10.1016/0031-9384(81)90051-2; BATESON P, 1981, ANIM BEHAV, V29, P173, DOI 10.1016/S0003-3472(81)80163-7; BATESON P, 1990, ANIM BEHAV, V40, P514, DOI 10.1016/S0003-3472(05)80532-9; BEKOFF M, 1985, EVOL BIOL, V19, P215; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BENGTSSON H, 1981, Z TIERPSYCHOL, V56, P255; BERGER J, 1992, ECOLOGY, V73, P323, DOI 10.2307/1938743; BERGER J, 1979, Z TIERPSYCHOL, V50, P188; BERGER J, 1980, J ZOOL, V192, P531; BERGER J, 1982, MAMMALIA, V46, P183, DOI 10.1515/mamm.1982.46.2.183; Berube CH, 1996, BEHAV ECOL, V7, P60, DOI 10.1093/beheco/7.1.60; BLONDEL J, 1985, J ANIM ECOL, V54, P531, DOI 10.2307/4497; BLONDEL J, 1992, J ANIM ECOL, V61, P205, DOI 10.2307/5523; BLONDEL J, 1995, COLLECTION ECOLOGIE, V27; BLOOD DA, 1970, J WILDLIFE MANAGE, V34, P451, DOI 10.2307/3799032; BONDRUPNIELSEN S, 1994, CAN J ZOOL, V72, P232, DOI 10.1139/z94-031; Boness D.J., 1991, Ecological Studies, V88, P173; BOSCH PC, 1987, J MAMMAL, V68, P425, DOI 10.2307/1381491; BOUSSES P, 1992, ONGULES / UNGULATES 91, P317; Bousses P, 1996, VIE MILIEU, V46, P285; BOUSSES P, 1991, THESIS U RENNES 1; BOUTIN S, 1990, CAN J ZOOL, V68, P203, DOI 10.1139/z90-031; BOWEN WD, 1985, CAN J ZOOL, V63, P2841, DOI 10.1139/z85-424; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Byers JA, 1995, BEHAV ECOL, V6, P451, DOI 10.1093/beheco/6.4.451; BYERS JA, 1990, BEHAV ECOL SOCIOBIOL, V26, P157; CALLOW P, 1979, BIOL REV, V54, P23; CARLISLE TR, 1982, ANIM BEHAV, V30, P824, DOI 10.1016/S0003-3472(82)80156-5; Cassinello J, 1996, P ROY SOC B-BIOL SCI, V263, P1461, DOI 10.1098/rspb.1996.0213; CHASTEL O, 1995, ECOLOGY, V76, P2240, DOI 10.2307/1941698; Chastel O, 1995, AUK, V112, P964, DOI 10.2307/4089027; Cheney D.L., 1988, P384; CHENEY DL, 1981, BEHAV ECOL SOCIOBIOL, V9, P153, DOI 10.1007/BF00293587; CLARK AB, 1978, SCIENCE, V201, P163, DOI 10.1126/science.201.4351.163; CLARK CW, 1990, EVOL ECOL, V4, P21, DOI 10.1007/BF02270712; CLARK CW, 1990, EVOL ECOL, V4, P312, DOI 10.1007/BF02270930; CLARK MM, 1990, ANIM BEHAV, V39, P735, DOI 10.1016/S0003-3472(05)80385-9; Clutton-Brock T., 1991, P234; Clutton-Brock T. H, 1982, RED DEER BEHAV ECOLO; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Clutton-Brock TH, 1988, REPROD SUCCESS, P472; CLUTTONBROCK TH, 1981, NATURE, V289, P487, DOI 10.1038/289487a0; CluttonBrock TH, 1996, J ANIM ECOL, V65, P675, DOI 10.2307/5667; CLUTTONBROCK TH, 1987, J ANIM ECOL, V56, P53, DOI 10.2307/4799; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CLUTTONBROCK TH, 1986, IBIS, V128, P317, DOI 10.1111/j.1474-919X.1986.tb02682.x; CLUTTONBROCK TH, 1986, Q REV BIOL, V61, P339, DOI 10.1086/415033; CLUTTONBROCK TH, 1989, PROC R SOC SER B-BIO, V236, P339, DOI 10.1098/rspb.1989.0027; CLUTTONBROCK TH, 1987, J ANIM ECOL, V56, P857, DOI 10.2307/4953; CLUTTONBROCK TH, 1983, J ANIM ECOL, V52, P367, DOI 10.2307/4560; CLUTTONBROCK TH, 1995, ANIM BEHAV, V49, P1345, DOI 10.1006/anbe.1995.0166; CLUTTONBROCK TH, 1991, J ANIM ECOL, V60, P593, DOI 10.2307/5300; CLUTTONBROCK TH, 1989, NATURE, V337, P260, DOI 10.1038/337260a0; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; COSTA DP, 1986, J ZOOL, V209, P21, DOI 10.1111/j.1469-7998.1986.tb03563.x; Cotton PA, 1996, BEHAV ECOL, V7, P178, DOI 10.1093/beheco/7.2.178; Cucco M, 1996, J ZOOL, V240, P141, DOI 10.1111/j.1469-7998.1996.tb05491.x; Daan S, 1996, BEHAV ECOL, V7, P426, DOI 10.1093/beheco/7.4.426; Davies N.B., 1991, P263; DAY ML, 1987, J ANIM SCI, V65, P1207; DERTING TL, 1989, ECOLOGY, V70, P587, DOI 10.2307/1940210; DIJKSTRA C, 1982, IBIS, V124, P210, DOI 10.1111/j.1474-919X.1982.tb03766.x; DITTUS WPJ, 1977, BEHAVIOUR, V63, P281, DOI 10.1163/156853977X00450; DITTUS WPJ, 1979, BEHAVIOUR, V69, P265, DOI 10.1163/156853979X00511; DOBSON FS, 1990, ETHOLOGY, V84, P3; DOIDGE DW, 1989, POLAR BIOL, V9, P155, DOI 10.1007/BF00297170; DONEY JM, 1984, ANIM PROD, V38, P191, DOI 10.1017/S000335610000218X; DRENT RH, 1980, ARDEA, V68, P225; DRUMMOND H, 1986, BEHAV ECOL SOCIOBIOL, V19, P365, DOI 10.1007/BF00295710; DRUMMOND H, 1989, ANIM BEHAV, V37, P806, DOI 10.1016/0003-3472(89)90065-1; DUNCAN P, 1985, BEHAVIOUR, V92, P188, DOI 10.1163/156853985X00442; DUNCAN P, 1984, ANIM BEHAV, V32, P255, DOI 10.1016/S0003-3472(84)80345-0; DUNCAN P, 1991, ECOLOGICAL STUDIES, V87; DUQUETTE LS, 1995, J MAMMAL, V76, P596, DOI 10.2307/1382368; Emlen S.T., 1991, P301; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; ESHEL I, 1991, AM NAT, V137, P167, DOI 10.1086/285152; EVANS RM, 1990, ANIM BEHAV, V39, P797, DOI 10.1016/S0003-3472(05)80391-4; EWBANK R, 1967, ANIM BEHAV, V15, P251, DOI 10.1016/0003-3472(67)90007-3; FAIRBANKS LA, 1995, BEHAVIOUR, V132, P733, DOI 10.1163/156853995X00126; FESTABIANCHET M, 1994, BEHAV ECOL, V5, P21, DOI 10.1093/beheco/5.1.21; FESTABIANCHET M, 1991, J ANIM ECOL, V60, P1077, DOI 10.2307/5432; FESTABIANCHET M, 1988, ANIM BEHAV, V36, P1445, DOI 10.1016/S0003-3472(88)80215-X; FESTABIANCHET M, 1991, ANIM BEHAV, V42, P71, DOI 10.1016/S0003-3472(05)80607-4; FESTABIANCHET M, 1988, J ZOOL, V214, P653, DOI 10.1111/j.1469-7998.1988.tb03764.x; FESTABIANCHET M, 1995, ECOLOGY, V76, P871, DOI 10.2307/1939352; FestaBianchet M, 1996, CAN J ZOOL, V74, P330, DOI 10.1139/z96-041; FestaBianchet M, 1996, ECOSCIENCE, V3, P42, DOI 10.1080/11956860.1996.11682313; FESTABIANCHET M, 1989, J ANIM ECOL, V58, P785, DOI 10.2307/5124; FISHER R. A., 1930, GENETICAL THEORY NAT; FLETCHER IC, 1971, ANIM BEHAV, V19, P108, DOI 10.1016/S0003-3472(71)80142-2; Forbes LS, 1996, ECOSCIENCE, V3, P45, DOI 10.1080/11956860.1996.11682314; FORBES LS, 1991, OIKOS, V62, P325, DOI 10.2307/3545497; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; FUCHS S, 1981, Z TIERPSYCHOL, V55, P19; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GAILLARD JM, 1992, CAN J ZOOL, V70, P1541, DOI 10.1139/z92-212; GAUTHIER D, 1985, BEHAVIOUR, V94, P128, DOI 10.1163/156853985X00307; GEIST V, 1971, WILDLIFE BEHAV ECOLO; GITTLEMAN JL, 1988, AM ZOOL, V28, P863; GITTLEMAN JL, 1988, ETHOLOGY, V79, P13; GITTLEMAN JL, 1987, S ZOOLOGICAL SOC LON, V57, P41; GODFRAY HCJ, 1991, PHILOS T ROY SOC B, V332, P67, DOI 10.1098/rstb.1991.0034; GODFRAY HCJ, 1995, AM NAT, V146, P1, DOI 10.1086/285784; GODFRAY HCJ, 1992, ANIM BEHAV, V43, P473, DOI 10.1016/S0003-3472(05)80106-X; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.ecolsys.22.1.409; GODFRAY HCJ, 1995, NATURE, V376, P133, DOI 10.1038/376133a0; GODFRAY HCJ, 1991, NATURE, V352, P328, DOI 10.1038/352328a0; GOMENDIO M, 1990, NATURE, V343, P261, DOI 10.1038/343261a0; GOMENDIO M, 1995, BEHAV ECOL SOCIOBIOL, V37, P71, DOI 10.1007/s0026550370071; GOMENDIO M, 1991, ANIM BEHAV, V42, P993, DOI 10.1016/S0003-3472(05)80152-6; GOSLING LM, 1986, AM NAT, V127, P772, DOI 10.1086/284524; GOSLING LM, 1986, AM NAT, V127, P893, DOI 10.1086/284532; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; GREEN DA, 1987, CAN J ZOOL, V65, P2159, DOI 10.1139/z87-329; GREEN WCH, 1993, ETHOLOGY, V95, P105; GREEN WCH, 1991, OECOLOGIA, V86, P521, DOI 10.1007/BF00318318; GREEN WCH, 1991, BEHAV ECOL SOCIOBIOL, V29, P373, DOI 10.1007/BF00165963; GREEN WCH, 1989, ANIM BEHAV, V38, P847, DOI 10.1016/S0003-3472(89)80116-2; GROSS JE, 1985, J MAMMAL, V66, P661, DOI 10.2307/1380792; Grubb P., 1974, ISLAND SURVIVORS ECO, P242; GUNN RG, 1969, J AGR SCI, V73, P289, DOI 10.1017/S0021859600014507; GUNN RG, 1975, J AGR SCI, V85, P465, DOI 10.1017/S0021859600062341; HAHN DC, 1981, ANIM BEHAV, V29, P421, DOI 10.1016/S0003-3472(81)80101-7; HAKKARAINEN H, 1994, ANIM BEHAV, V48, P843, DOI 10.1006/anbe.1994.1308; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HARCOURT AH, 1989, TRENDS ECOL EVOL, V4, P101, DOI 10.1016/0169-5347(89)90055-4; HARPER AB, 1986, AM NAT, V128, P99, DOI 10.1086/284542; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; HASKELL D, 1994, P ROY SOC B-BIOL SCI, V257, P161, DOI 10.1098/rspb.1994.0110; HAUSER MD, 1988, ANIM BEHAV, V36, P802, DOI 10.1016/S0003-3472(88)80163-5; HAUSER MD, 1988, AM NAT, V131, P573, DOI 10.1086/284807; HEINSOHN RG, 1990, TRENDS ECOL EVOL, V5, P403, DOI 10.1016/0169-5347(90)90024-8; HENNING SJ, 1981, AM J PHYSIOL, V241, pG199; HENNING SJ, 1985, ANNU REV PHYSIOL, V47, P231; Hewison AJM, 1996, BEHAV ECOL, V7, P461, DOI 10.1093/beheco/7.4.461; HEWSON R, 1981, J APPL ECOL, V18, P401, DOI 10.2307/2402402; HIGGINS LV, 1988, MAR MAMMAL SCI, V4, P44, DOI 10.1111/j.1748-7692.1988.tb00181.x; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HOEFS M, 1994, J MAMMAL, V75, P631, DOI 10.2307/1382510; HOFER H, 1993, ANIM BEHAV, V46, P575, DOI 10.1006/anbe.1993.1224; HOGG JT, 1992, BEHAV ECOL SOCIOBIOL, V31, P243; HOUSTON DB, 1989, J MAMMAL, V70, P412, DOI 10.2307/1381530; ILLIUS AW, 1995, J ANIM ECOL, V64, P481, DOI 10.2307/5651; IMS RA, 1990, TRENDS ECOL EVOL, V5, P135, DOI 10.1016/0169-5347(90)90218-3; Iverson S.J., 1991, Ecological Studies, V88, P180; JARMAN PJ, 1974, BEHAVIOUR, V48, P215, DOI 10.1163/156853974X00345; JORGENSON JT, 1993, CAN J ZOOL, V71, P2509, DOI 10.1139/z93-344; Jouventin P, 1996, IBIS, V138, P732, DOI 10.1111/j.1474-919X.1996.tb08830.x; KENT JP, 1992, BEHAV ECOL SOCIOBIOL, V30, P151, DOI 10.1007/BF00166697; Kilner R, 1997, TRENDS ECOL EVOL, V12, P11, DOI 10.1016/S0169-5347(96)10061-6; KLEIN DR, 1972, J WILDLIFE MANAGE, V36, P64, DOI 10.2307/3799189; KLOPFER P, 1977, ANIM BEHAV, V25, P286, DOI 10.1016/0003-3472(77)90004-5; Koldovsky O, 1995, AM ZOOL, V35, P446; KONIG B, 1989, ETHOLOGY, V82, P328; KORPIMAKI E, 1991, OECOLOGIA, V85, P543, DOI 10.1007/BF00323767; KORPIMAKI E, 1989, IBIS, V131, P51, DOI 10.1111/j.1474-919X.1989.tb02743.x; KOZLOWSKI J, 1989, EVOLUTION, V43, P1369, DOI 10.1111/j.1558-5646.1989.tb02588.x; Krebs J. R., 1984, BEHAV ECOLOGY EVOLUT, P380; KREBS JR, 1991, BEHAV ECOLOGY EVOLUT; KUCERA TE, 1991, J MAMMAL, V72, P745, DOI 10.2307/1381837; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D., 1954, NATURAL REGULATION A; LAMBRECHTS MM, 1993, IBIS, V135, P451, DOI 10.1111/j.1474-919X.1993.tb02118.x; LAVIGUEUR L, 1992, CAN J ZOOL, V70, P1753, DOI 10.1139/z92-243; LAZARUS J, 1986, ANIM BEHAV, V34, P1791, DOI 10.1016/S0003-3472(86)80265-2; le Boeuf B.J., 1988, P344; LEADERWILLIAMS N, 1982, OIKOS, V38, P27, DOI 10.2307/3544564; LEE PC, 1987, J ZOOL, V213, P409, DOI 10.1111/j.1469-7998.1987.tb03717.x; LEE PC, 1991, J ZOOL, V225, P99, DOI 10.1111/j.1469-7998.1991.tb03804.x; LEE PC, 1984, BEHAVIOUR, V91, P245, DOI 10.1163/156853984X00092; LEE PC, 1986, BEHAV ECOL SOCIOBIOL, V18, P353, DOI 10.1007/BF00299666; Leech SM, 1996, P ROY SOC B-BIOL SCI, V263, P983, DOI 10.1098/rspb.1996.0145; Lessells C.M., 1991, P32; LHEUREUX N, 1995, ANIM BEHAV, V49, P901, DOI 10.1006/anbe.1995.0122; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LOCHMILLER RL, 1987, J ZOOL, V211, P321, DOI 10.1111/j.1469-7998.1987.tb01537.x; LOCHMILLER RL, 1986, J WILDLIFE MANAGE, V50, P295, DOI 10.2307/3801916; LOUDON ASI, 1983, NATURE, V302, P145, DOI 10.1038/302145a0; LOUDON ASI, 1984, S ZOOL SOC LOND, V51, P233; LOUDON ASI, 1985, S ZOOLOGICAL SOC LON, V54, P183; LOW BS, 1978, AM NAT, V112, P197, DOI 10.1086/283260; LOZANO GA, 1995, BEHAV ECOL SOCIOBIOL, V37, P45; LUNDBERG S, 1994, J THEOR BIOL, V170, P215, DOI 10.1006/jtbi.1994.1180; LUNN NJ, 1993, J MAMMAL, V74, P908, DOI 10.2307/1382429; MACNAIR MR, 1978, ANIM BEHAV, V26, P111, DOI 10.1016/0003-3472(78)90010-6; MACNAIR MR, 1979, ANIM BEHAV, V27, P1202, DOI 10.1016/0003-3472(79)90067-8; MAESTRIPIERI D, 1991, BEHAVIOUR, V116, P239, DOI 10.1163/156853991X00058; MAGRATH RD, 1989, NATURE, V339, P536, DOI 10.1038/339536a0; Mangel M., 1988, DYNAMIC MODELING BEH; Marrow P, 1996, PHILOS T R SOC B, V351, P17, DOI 10.1098/rstb.1996.0002; MARTIN P, 1984, ANIM BEHAV, V32, P1257, DOI 10.1016/S0003-3472(84)80245-6; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MATTINGLY DK, 1985, ECOLOGY, V66, P928, DOI 10.2307/1940555; MATTINGLY DK, 1982, ECOLOGY, V63, P183, DOI 10.2307/1937043; MCCLURE PA, 1981, SCIENCE, V211, P1058, DOI 10.1126/science.211.4486.1058; MCEWAN EH, 1968, CAN J ZOOLOG, V46, P1023, DOI 10.1139/z68-143; MCEWAN EH, 1966, CAN J ZOOLOG, V44, P401, DOI 10.1139/z66-043; MCEWAN EH, 1971, CAN J ZOOLOG, V49, P443, DOI 10.1139/z71-068; MCGINLEY MA, 1984, AM NAT, V124, P597, DOI 10.1086/284299; MCNAB BK, 1980, AM NAT, V116, P106, DOI 10.1086/283614; MCNEILLY AS, 1987, ACTA ENDOCRINOL-COP, V115, P75, DOI 10.1530/acta.0.1150075; MECH LD, 1991, J MAMMAL, V72, P146, DOI 10.2307/1381989; MEILKE DB, 1986, J REPROD FERTIL, V78, P587; MENARD N, 1993, AM J PRIMATOL, V30, P101, DOI 10.1002/ajp.1350300203; MENDL M, 1989, ANIM BEHAV, V37, P513, DOI 10.1016/0003-3472(89)90100-0; MILLAR JS, 1981, EVOLUTION, V35, P1149, DOI 10.1111/j.1558-5646.1981.tb04986.x; MILLAR JS, 1977, EVOLUTION, V31, P370, DOI 10.1111/j.1558-5646.1977.tb01019.x; MITCHELL B, 1973, J ZOOL, V171, P141; Mock D. W., 1984, INFANTICIDE COMP EVO, P3; MOCK DW, 1995, TRENDS ECOL EVOL, V10, P130, DOI 10.1016/S0169-5347(00)89014-X; MOCK DW, 1992, TRENDS ECOL EVOL, V7, P409, DOI 10.1016/0169-5347(92)90022-4; MOCK DW, 1987, ECOLOGY, V68, P1760, DOI 10.2307/1939867; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; MONAGHAN P, 1989, J ANIM ECOL, V58, P261, DOI 10.2307/4999; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; MULLERSCHWARZE D, 1982, SCIENCE, V215, P85, DOI 10.1126/science.215.4528.85; MUNRO J., 1962, Animal Prod., V4, P203; MURPHY MT, 1986, AUK, V103, P465; Nager RG, 1997, J ANIM ECOL, V66, P495, DOI 10.2307/5944; NAGER RG, 1994, ARDEA, V82, P315; NUECHTERLEIN GL, 1981, CAN J ZOOL, V59, P994, DOI 10.1139/z81-138; Nunes S, 1996, J MAMMAL, V77, P807, DOI 10.2307/1382686; OCONNOR RJ, 1978, ANIM BEHAV, V26, P79, DOI 10.1016/0003-3472(78)90008-8; ODDE KG, 1985, J ANIM SCI, V61, P307; Oftedal O.T., 1985, P215; Oftedal O. T., 1984, S ZOOL SOC LOND, V51, P33; ORIANS GH, 1969, AM NAT, V103, P589, DOI 10.1086/282628; ORTIZ CL, 1984, AM NAT, V124, P416, DOI 10.1086/284282; PARKER GA, 1985, ANIM BEHAV, V33, P519, DOI 10.1016/S0003-3472(85)80075-0; PARKER GA, 1979, ANIM BEHAV, V27, P1210, DOI 10.1016/0003-3472(79)90068-X; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; PELABON C, 1995, BEHAV ECOL SOCIOBIOL, V37, P311; PERRIGO G, 1987, ANIM BEHAV, V35, P1298, DOI 10.1016/S0003-3472(87)80002-7; PERRINS CM, 1970, IBIS, V112, P242, DOI 10.1111/j.1474-919X.1970.tb00096.x; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; PIEROTTI R, 1981, AUK, V98, P532; POND CM, 1977, EVOLUTION, V31, P177, DOI 10.1111/j.1558-5646.1977.tb00995.x; PONTIER D, 1993, OIKOS, V66, P424, DOI 10.2307/3544936; PONTIER D, 1989, OECOLOGIA, V80, P390, DOI 10.1007/BF00379041; POYSA H, 1992, BEHAVIOUR, V123, P247, DOI 10.1163/156853992X00048; PRICE K, 1995, BEHAV ECOL SOCIOBIOL, V37, P201, DOI 10.1007/BF00176718; Putman RJ, 1996, MAMMAL REV, V26, P81, DOI 10.1111/j.1365-2907.1996.tb00148.x; RACHLOW JL, 1994, J MAMMAL, V75, P328, DOI 10.2307/1382551; RAMSAY MA, 1988, J ZOOL, V214, P601, DOI 10.1111/j.1469-7998.1988.tb03762.x; RANDOLPH PA, 1977, ECOLOGY, V58, P31, DOI 10.2307/1935106; Reale D, 1995, ETHOL ECOL EVOL, V7, P323, DOI 10.1080/08927014.1995.9522940; REALE D, 1996, THESIS U RENNES 1; REDONDO T, 1992, IBIS, V134, P180, DOI 10.1111/j.1474-919X.1992.tb08395.x; REDONDO T, 1992, ETHOLOGY, V92, P193; REDONDO T, 1992, BEHAVIOUR, V123, P261, DOI 10.1163/156853992X00057; REITER J, 1981, ANIM BEHAV, V29, P670, DOI 10.1016/S0003-3472(81)80002-4; REITER J, 1978, BEHAV ECOL SOCIOBIOL, V3, P337, DOI 10.1007/BF00303199; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RHIND SM, 1980, J REPROD FERTIL, V58, P127; RICKLEFS RE, 1968, P NATL ACAD SCI USA, V61, P847, DOI 10.1073/pnas.61.3.847; RIEDMAN ML, 1982, Q REV BIOL, V57, P405, DOI 10.1086/412936; ROBBINS CT, 1975, J WILDLIFE MANAGE, V39, P355, DOI 10.2307/3799914; ROBERTSON A, 1992, J ZOOL, V227, P661, DOI 10.1111/j.1469-7998.1992.tb04422.x; RODENHOUSE NL, 1992, ECOLOGY, V73, P357, DOI 10.2307/1938747; Roff Derek A., 1992; Rogowitz GL, 1996, AM ZOOL, V36, P197; RUTBERG AT, 1987, AM NAT, V130, P692, DOI 10.1086/284739; RUTBERG AT, 1986, AM NAT, V127, P89, DOI 10.1086/284469; RYG M, 1982, CAN J ZOOL, V60, P15, DOI 10.1139/z82-002; RYG M, 1982, CAN J ZOOL, V60, P2577, DOI 10.1139/z82-331; RYG M, 1982, CAN J ZOOL, V60, P2941, DOI 10.1139/z82-371; SADLEIR R M F S, 1984, Acta Zoologica Fennica, V171, P179; Sadleir R. M. F. S., 1969, Journal of Reproduction and Fertility Suppl, VNo. 6, P39; SAETHER BE, 1985, HOLARCTIC ECOL, V8, P100; SAETHER BE, 1993, J ANIM ECOL, V62, P482, DOI 10.2307/5197; SAETHER BE, 1983, J MAMMAL, V64, P226, DOI 10.2307/1380552; SAETHER BE, 1993, BEHAV ECOL SOCIOBIOL, V33, P147, DOI 10.1007/BF00216594; Sand H, 1996, OECOLOGIA, V106, P212, DOI 10.1007/BF00328601; Sand H, 1996, CAN J ZOOL, V74, P954, DOI 10.1139/z96-108; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; SHACKLETON DM, 1985, CAN J ZOOL, V63, P868, DOI 10.1139/z85-129; SIKES RS, 1995, J MAMMAL, V76, P348, DOI 10.2307/1382346; SIKES RS, 1995, ANIM BEHAV, V49, P1551, DOI 10.1016/0003-3472(95)90076-4; Sikes RS, 1996, BEHAV ECOL SOCIOBIOL, V38, P303, DOI 10.1007/s002650050246; SILK JB, 1983, AM NAT, V121, P56, DOI 10.1086/284039; SILK JB, 1988, AM NAT, V132, P1, DOI 10.1086/284834; SKOGLAND T, 1985, J ANIM ECOL, V54, P359, DOI 10.2307/4484; SKOGLAND T, 1990, OECOLOGIA, V84, P442, DOI 10.1007/BF00328158; SKOGLAND T, 1986, OIKOS, V46, P417, DOI 10.2307/3565843; Skogland T., 1989, ADV ETHOL, V29, P1; SMART JL, 1973, ANIM BEHAV, V21, P613, DOI 10.1016/S0003-3472(73)80024-7; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH EFS, 1991, ANIM BEHAV, V41, P513, DOI 10.1016/S0003-3472(05)80854-1; SMITH JM, 1991, ANIM BEHAV, V42, P1034, DOI 10.1016/S0003-3472(05)80161-7; SMITH JM, 1980, BEHAV ECOL SOCIOBIOL, V7, P247, DOI DOI 10.1007/BF00299371; SMITH WP, 1987, AM NAT, V130, P310, DOI 10.1086/284712; STAMPS J, 1985, BEHAVIOUR, V94, P1, DOI 10.1163/156853985X00253; STAMPS JA, 1990, AM NAT, V135, P671, DOI 10.1086/285068; STAMPS JA, 1978, BEHAV ECOL SOCIOBIOL, V3, P369, DOI 10.1007/BF00303200; STAMPS JA, 1980, SOCIOBIOLOGY NATURE, P589; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC, 1992, EVOLUTION LIFE HIST, P249; Stenning MJ, 1996, TRENDS ECOL EVOL, V11, P243, DOI 10.1016/0169-5347(96)10030-6; STERN D, 1978, ANN ZOOTECH, V27, P317, DOI 10.1051/animres:19780303; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0; SUTTIE JM, 1995, AM ZOOL, V35, P215; THOMAS DC, 1982, CAN J ZOOL, V60, P597, DOI 10.1139/z82-089; THORNE ET, 1976, J WILDLIFE MANAGE, V40, P330, DOI 10.2307/3800433; TINBERGEN JM, 1994, FUNCT ECOL, V8, P563, DOI 10.2307/2389916; TRILLMICH F, 1990, BEHAVIOUR, V114, P3, DOI 10.1163/156853990X00022; Trillmich F., 1991, Ecological Studies, V88, P247; TRILLMICH F, 1986, BEHAV ECOL SOCIOBIOL, V19, P157; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TRIVERS RL, 1974, AM ZOOL, V14, P249; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; TUOMI J, 1983, AM ZOOL, V23, P25; TUOMI J, 1990, OIKOS, V58, P387, DOI 10.2307/3545231; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANDERWERF E, 1992, ECOLOGY, V73, P1699, DOI 10.2307/1940021; VERME LJ, 1969, J WILDLIFE MANAGE, V33, P881, DOI 10.2307/3799320; VERME LJ, 1985, J WILDLIFE MANAGE, V49, P134, DOI 10.2307/3801858; VERME LJ, 1983, J WILDLIFE MANAGE, V47, P573, DOI 10.2307/3808595; VERME LJ, 1980, J WILDLIFE MANAGE, V44, P315, DOI 10.2307/3807961; VERME LJ, 1989, J MAMMAL, V70, P438, DOI 10.2307/1381538; VILA BL, 1992, ETHOLOGY, V92, P293; WAUTERS LA, 1995, BEHAV ECOL SOCIOBIOL, V37, P189, DOI 10.1007/s002650050180; WEIMERSKIRCH H, 1992, OIKOS, V64, P464, DOI 10.2307/3545162; WEIMERSKIRCH H, 1995, BEHAV ECOL SOCIOBIOL, V36, P11; WEINER J, 1989, ACTA THERIOL, V34, P3, DOI 10.4098/AT.arch.89-1; WHITE RG, 1983, OIKOS, V40, P377, DOI 10.2307/3544310; WHITE RG, 1984, S ZOOL SOC LOND, V51, P215; WHITE TCR, 1978, OECOLOGIA, V33, P71, DOI 10.1007/BF00376997; WILLIAMS GC, 1979, PROC R SOC SER B-BIO, V205, P567, DOI 10.1098/rspb.1979.0085; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILLIAMS TD, 1994, BIOL REV, V69, P35, DOI 10.1111/j.1469-185X.1994.tb01485.x; WILSON PN, 1960, BIOL REV, V35, P324, DOI 10.1111/j.1469-185X.1960.tb01466.x; WINKLER DW, 1987, AM NAT, V130, P526, DOI 10.1086/284729; WITTENBERGER JF, 1982, CONDOR, V84, P22, DOI 10.2307/1367816; WOOD AJ, 1962, CAN J ZOOLOG, V40, P593, DOI 10.1139/z62-053; YAMAMURA N, 1992, EVOLUTION, V46, P1236, DOI 10.1111/j.1558-5646.1992.tb00633.x; ZAHAVI A, 1977, J THEOR BIOL, V67, P603, DOI 10.1016/0022-5193(77)90061-3 365 3 3 0 15 SOC NATL PROTECTION NATURE ACCLIMATATION FRANCE PARIS 5 57 RUE CUVIER, 75005 PARIS 5, FRANCE 0249-7395 REV ECOL-TERRE VIE Rev. Ecol.-Terre Vie OCT-DEC 1997 52 4 369 410 42 Ecology Environmental Sciences & Ecology YR814 WOS:000071532900005 2018-11-12 J Takada, T; Caswell, H Takada, T; Caswell, H Optimal size at maturity in size-structured populations JOURNAL OF THEORETICAL BIOLOGY English Article REPRODUCTION; CONSEQUENCES; PREDICTIONS; COSTS; AGE Maturity is a critical point in the life cycle, and determining the optimal age or size at maturity is a classical problem in life history theory. Most organisms spend some time in non-reproductive immature stage. To explain the widespread occurrence of delayed maturity, a number of authors made mathematical models with the age-specific fecundity and survival rate, specified functional forms of fecundity and survival rate, and examined the possibility that two hypotheses hold. One hypothesis is that delayed maturation is advantageous when it leads to more fecundity of mature individuals. The other one is that the offspring produced by parents with delayed maturation may have higher survival in their juvenile period. In the present paper, we use the size-structured McKendrick-von Foerster equation as our basic model and obtain five conditions for delayed maturation. Two of these correspond to the above two hypotheses. The other three are new: we show that a discontinuous decrease at maturation in survival or growth rate can favor delayed maturation. We explore several numerical examples showing the operation of these mechanisms. (C) 1997 Academic Press Limited. WOODS HOLE OCEANOG INST,DEPT BIOL,WOODS HOLE,MA 02543 Takada, T (reprint author), HOKKAIDO TOKAI UNIV,DEPT INT CULTURAL RELAT,SAPPORO,HOKKAIDO 005,JAPAN. Caswell, Hal/0000-0003-4394-6894 ALM GUNNAR, 1959, REPT INST FRESHWATER RES DROTTNINGHOLM, V40, P5; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; CASWELL H, 1986, LECTURES MATH LIFE S, V18, P171; Caswell H., 1989, MATRIX POPULATION MO; CHARNOV EL, 1979, AM NAT, V113, P715, DOI 10.1086/283428; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CRANDALL RE, 1982, THEOR POPUL BIOL, V21, P11, DOI 10.1016/0040-5809(82)90003-X; de Roos A.M., 1996, STRUCTURED POPULATIO, P119; EIS S, 1965, CAN J BOTANY, V43, P1553, DOI 10.1139/b65-165; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GROSS RS, 1983, AM MIDL NAT, V109, P184, DOI 10.2307/2425529; HARDWICKWITMAN MN, 1985, J EXP MAR BIOL ECOL, V87, P283, DOI 10.1016/0022-0981(85)90211-4; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; LAW R, 1979, AM NAT, V113, P3, DOI 10.1086/283361; Metz J.A.J., 1986, LECT NOTES BIOMATHEM, V68; PAINE RT, 1976, ECOLOGY, V57, P858, DOI 10.2307/1941053; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; ROSS DA, 1984, CAN J FISH AQUAT SCI, V41, P989; SOHN JJ, 1977, ECOLOGY, V58, P1366, DOI 10.2307/1935088; SOMERTON DA, 1983, FISH B-NOAA, V81, P621; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; STEARNS SC, 1984, FISH REPROD; TULJAPURKAR S, 1990, P NATL ACAD SCI USA, V87, P1139, DOI 10.1073/pnas.87.3.1139; VANSICKLE J, 1977, J THEOR BIOL, V64, P571, DOI 10.1016/0022-5193(77)90289-2; ZON R, 1915, B USDA, V210 27 18 19 0 4 ACADEMIC PRESS LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0022-5193 J THEOR BIOL J. Theor. Biol. JUL 7 1997 187 1 81 93 10.1006/jtbi.1997.0420 13 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology XK424 WOS:A1997XK42400008 2018-11-12 J Evans, RM Evans, RM Parental investment and quality of insurance offspring in an obligate brood-reducing species, the American white pelican BEHAVIORAL ECOLOGY English Article insurance offspring quality; parental investment; Pelecanus erythrorhynchos CLUTCH SIZE; EVOLUTION; REDUCTION; SIBLICIDE; BIRDS; CONFLICT The last-hatched chick, or B-offspring, of American white pelicans typically survives only as ''insurance'' when its elder sibling fails. Life-history theory suggests that parents should invest relatively less in these disadvantaged insurance offspring. For an insurance strategy to be effective, however, reduced investment may be constrained by the need to maintain potential insurance offspring in a viable condition until at least 3-6 days of age, after which they are rarely needed. In agreement with the life-history prediction, egg size, resultant hatching mass, and growth rates at two-chick nests were significantly lower for E-offspring. When hatched in the laboratory B-eggs were also slightly bur significantly less efficient at converting egg size inter hatching mass. Despite these differences, B-chicks that were reared as singles, free from sibling competition from hatching onward, showed no decrement in survival or growth rate. When A-chicks were removed from nests with underweight 3- or 6-day-old B-chicks, a minority (21%) of B-chicks failed to recover but mean growth rates of survivors increased rapidly to control levels. Results suggest that although parental investment in B-offspring is reduced, it is usually adequate to produce and maintain potential insurance offspring in viable condition during the time that they are most likely to be needed as replacements for failed elder siblings. Evans, RM (reprint author), UNIV MANITOBA,DEPT ZOOL,WINNIPEG,MB R3T 2N2,CANADA. ANDERSON DJ, 1990, AM NAT, V135, P334, DOI 10.1086/285049; CASH KJ, 1986, BEHAV ECOL SOCIOBIOL, V18, P413, DOI 10.1007/BF00300515; CLUTTONBROCK TH, 1991, EVOLUTON PARENTAL CA; Cohen J, 1988, STAT POWER ANAL BEHA; Dorward DF, 1962, IBIS, V103, P174, DOI 10.1111/j.1474-919X.1962.tb07244.x; DRUMMOND H, 1987, Colonial Waterbirds, V10, P1, DOI 10.2307/1521225; Evans RM, 1996, BEHAV ECOL SOCIOBIOL, V39, P203, DOI 10.1007/s002650050282; EVANS RM, 1990, WILSON BULL, V102, P684; EVANS RM, 1990, ANIM BEHAV, V40, P963, DOI 10.1016/S0003-3472(05)80998-4; EVANS RM, 1987, WILSON BULL, V99, P190; EVANS RM, 1993, BIRDS N AM; FORBES LS, 1993, AM NAT, V142, P82, DOI 10.1086/285530; FORBES LS, 1990, J THEOR BIOL, V147, P345, DOI 10.1016/S0022-5193(05)80492-8; HAIG D, 1990, AM NAT, V136, P550, DOI 10.1086/285113; KONARZEWSKI M, 1993, OIKOS, V67, P97, DOI 10.2307/3545100; Lamey T.C., 1990, P399; Mock D. W., 1984, INFANTICIDE COMP EVO, P3; MOCK DW, 1987, BEHAV ECOL SOCIOBIOL, V20, P247, DOI 10.1007/BF00292177; MOCK DW, 1995, TRENDS ECOL EVOL, V10, P130, DOI 10.1016/S0169-5347(00)89014-X; MOCK DW, 1990, AM SCI, V78, P438; Mrosovsky N, 1990, RHEOSTASIS PHYSL CHA; OMALLEY JBE, 1980, CAN J ZOOL, V58, P603, DOI 10.1139/z80-085; SCHWABL H, 1993, P NATL ACAD SCI USA, V90, P11446, DOI 10.1073/pnas.90.24.11446; SIDLE J G, 1985, American Birds, V39, P859; SIMMONS R, 1988, IBIS, V130, P339, DOI 10.1111/j.1474-919X.1988.tb00992.x; ST CLAIR CC, 1995, ANIM BEHAV, V50, P1177, DOI 10.1016/0003-3472(95)80034-4; Wiebe KL, 1996, AUK, V113, P258, DOI 10.2307/4088961; WIEBE KL, 1994, ECOLOGY, V75, P813, DOI 10.2307/1941737; Winer BJ, 1971, STATISTICAL PRINCIPL 29 7 7 0 3 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 1045-2249 BEHAV ECOL Behav. Ecol. JUL-AUG 1997 8 4 378 383 10.1093/beheco/8.4.378 6 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology XM654 WOS:A1997XM65400004 Bronze 2018-11-12 J Blanckenhorn, WU Blanckenhorn, WU Effects of temperature on growth, development and diapause in the yellow dung fly - against all the rules? OECOLOGIA English Article body size; diapause; juvenile development; Scathophaga stercoraria; temperature SCATHOPHAGA-STERCORARIA L; SCATOPHAGA-STERCORARIA; SEASONAL-CHANGES; COPULA DURATION; BODY-SIZE; EVOLUTION; ENVIRONMENT; OVIPOSITION; ECTOTHERMS; SELECTION The effects of rearing temperature (and photoperiod) on growth, development. body size, and diapause induction and termination in the yellow dung fly, Scathophaga stercoraria, were investigated by allowing replicate families of larvae to develop in the field along a time sequence approaching the onset of winter. This was supplemented with extensive laboratory rearing. At constant laboratory temperatures, growth rates were maximal between 15 degrees C and 20 degrees C and decreased at higher (25 degrees C) and Iower (10 degrees C) temperatures, while the development rate was maximal at 15 degrees C. Perhaps related to this. yellow dung flies reached a given size faster at naturally variable, as opposed to constant. temperatures. In the field, lower temperatures towards the end of the season resulted in larger individuals that grew faster. Adult body size increased as development time, expressed in calendar days, increased, a positive relationship commonly taken for granted in life history theory, but decreased as development time expressed in degree-days increased. The effect of temperature oil growth, development and body size fall thus change or even reverse if individuals can alter their growth rate independently of development time, and if the physiological effects of temperature are factored out by converting development time into degree-days above a lower development threshold. Therefore, supposedly well-established trends possibly need to be re-examined along these lines. Pupal winter diapause towards the end of the season was highly reversible by temperature. Pre- and post-winter emergence patterns together suggest that the minimum time for yellow dung flies to successfully complete development. at any time of the year, is about 230-250 degree-days. Blanckenhorn, WU (reprint author), UNIV ZURICH, ZOOL MUSEUM, WINTERTHURERSTR 190, CH-8057 ZURICH, SWITZERLAND. Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Amano K., 1983, Japanese Journal of Sanitary Zoology, V34, P165; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; BERRIGAN D, 1994, OIKOS, V70, P474, DOI 10.2307/3545787; BICKEL PJ, 1977, MATH STATISTICS; Blanckenhorn WU, 1997, OECOLOGIA, V109, P342, DOI 10.1007/s004420050092; BORGIA G, 1981, ANIM BEHAV, V29, P71, DOI 10.1016/S0003-3472(81)80153-4; BORGIA G, 1982, EVOLUTION, V36, P307, DOI 10.1111/j.1558-5646.1982.tb05046.x; BRADSHAW WE, 1980, OECOLOGIA, V46, P13, DOI 10.1007/BF00346959; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; DANKS HV, 1987, INSECT DORMACY ECOLO; GIBBONS DS, 1987, ECOL ENTOMOL, V12, P173, DOI 10.1111/j.1365-2311.1987.tb00996.x; HAMMER O, 1941, VIDENSKABELIGE MEDDE, V105, P140; HOFFMANN KH, 1974, OECOLOGIA, V17, P39, DOI 10.1007/BF00345094; HUEY RB, 1989, TRENDS ECOL EVOL, V4, P131, DOI 10.1016/0169-5347(89)90211-5; Leather SR, 1993, ECOLOGY INSECT OVERW; Luvchiev V.I., 1982, Ekologiya (Sofia), V10, P59; Muhlhauser C, 1996, ANIM BEHAV, V51, P1401, DOI 10.1006/anbe.1996.0143; NYLIN S, 1994, SERIES ENTOM, V52, P41; OTRONEN M, 1993, BEHAVIOUR, V126, P63, DOI 10.1163/156853993X00344; PARKER GA, 1970, J ANIM ECOL, V39, P185, DOI 10.2307/2895; PARKER GA, 1994, NATURE, V370, P53, DOI 10.1038/370053a0; Ratte H. T., 1985, ENV PHYSL BIOCH INSE, P31; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff D, 1983, DIAPAUSE LIFE CYCLE, P253; Roff Derek A., 1992; SIBLY RM, 1994, FUNCT ECOL, V8, P486, DOI 10.2307/2390073; SIBLY RM, 1986, PHSYL ECOLOGY ANIMAL; SIGURJONSDOTTIR H, 1984, ECOL ENTOMOL, V9, P81, DOI 10.1111/j.1365-2311.1984.tb00700.x; SIGURJONSDOTTIR H, 1995, ECOL ENTOMOL, V20, P84, DOI 10.1111/j.1365-2311.1995.tb00432.x; SIGURJONSDOTTIR H, 1980, THESIS U LIVERPOOL; SIMMONS LW, 1991, J EVOLUTION BIOL, V4, P593, DOI 10.1046/j.1420-9101.1991.4040593.x; SMITHGILL SJ, 1979, AM NAT, V113, P563, DOI 10.1086/283413; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tauber M.J., 1986, SEASONAL ADAPTATIONS; TAYLOR F, 1981, AM NAT, V117, P1, DOI 10.1086/283683; VONBERTALANFFY L, 1960, FUNDAMENTAL ASPECTS, P137; WARD PI, 1991, BEHAV ECOL SOCIOBIOL, V29, P77, DOI 10.1007/BF00166481; WARD PI, 1990, ECOL ENTOMOL, V15, P115, DOI 10.1111/j.1365-2311.1990.tb00791.x; WELBERS P, 1975, OECOLOGIA, V21, P31, DOI 10.1007/BF00345891 40 42 42 0 12 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia JUL 1997 111 3 318 324 10.1007/s004420050241 7 Ecology Environmental Sciences & Ecology XP311 WOS:A1997XP31100004 28308125 2018-11-12 J Monaghan, P; Nager, RG Monaghan, P; Nager, RG Why don't birds lay more eggs? TRENDS IN ECOLOGY & EVOLUTION English Review FINCHES POEPHILA-GUTTATA; CLUTCH-SIZE; PIED FLYCATCHER; GREAT TITS; INCUBATION; COST; REPRODUCTION; CONSTRAINTS; FOOD; EVOLUTION Fifty years ago David Lack put forward a key hypothesis in life-history theory: that avian clutch size is ultimately determined by the number of young that parents can provide with food. Since then, a plethora of brood manipulations has shown that birds can rear more young than the number of eggs they lay, and prompted a search for negative effects of increased effort on future reproduction. However, recent studies have shown that the demands of laying and incubating eggs, generally omitted from experiments, could affect parental fitness. Lack's hypothesis, and the tests of its validity, need to be extended to encompass the full demands of producing and rearing the brood. Monaghan, P (reprint author), UNIV GLASGOW, APPL ORNITHOL UNIT, DIV ENVIRONM & EVOLUTIONARY BIOL, GRAHAM KERR BLDG, GLASGOW G12 8QQ, LANARK, SCOTLAND. Monaghan, Pat/A-4271-2008; Monaghan, Pat/E-6810-2015 BOLTON M, 1993, CAN J ZOOL, V71, P273, DOI 10.1139/z93-039; BOLTON M, 1992, J ANIM ECOL, V61, P521, DOI 10.2307/5607; BOUTIN S, 1990, CAN J ZOOL, V68, P203, DOI 10.1139/z90-031; Carey Cynthia, 1996, P324; Cooke F., 1995, SNOW GEESE LA PEROUS; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; ERIKSTAD KE, 1993, AUK, V110, P623, DOI 10.2307/4088426; GRAVELAND J, 1994, NATURE, V368, P446, DOI 10.1038/368446a0; HAFTORN S, 1985, AUK, V102, P470; HEANEY V, 1995, P ROY SOC B-BIOL SCI, V261, P361, DOI 10.1098/rspb.1995.0160; Heaney V, 1996, P ROY SOC B-BIOL SCI, V263, P1719, DOI 10.1098/rspb.1996.0251; HOCHACHKA W, 1992, BEHAV ECOL, V3, P42, DOI 10.1093/beheco/3.1.42; HOUSTON DC, 1995, J ZOOL, V235, P469, DOI 10.1111/j.1469-7998.1995.tb01763.x; HOUSTON DC, 1995, IBIS, V137, P322, DOI 10.1111/j.1474-919X.1995.tb08028.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lessells C.M., 1991, P32; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LYON BE, 1985, BEHAV ECOL SOCIOBIOL, V17, P279, DOI 10.1007/BF00300147; Martin T.E., 1992, Current Ornithology, V9, P163; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MILONOFF M, 1993, AUK, V110, P943, DOI 10.2307/4088655; MONAGHAN P, 1995, P ROY SOC B-BIOL SCI, V259, P189, DOI 10.1098/rspb.1995.0027; MORENO J, 1989, ORNIS SCAND, V20, P123, DOI 10.2307/3676879; MORENO J, 1991, IBIS, V133, P186, DOI 10.1111/j.1474-919X.1991.tb04830.x; NAGER RG, 1992, P ROY SOC B-BIOL SCI, V249, P259, DOI 10.1098/rspb.1992.0112; NAGER RG, IN PRESS J ANIM ECOL; NELSON J. B., 1964, IBIS, V106, P63, DOI 10.1111/j.1474-919X.1964.tb03681.x; NILSSON JA, 1988, ANIM BEHAV, V36, P641, DOI 10.1016/S0003-3472(88)80145-3; NILSSON JA, 1993, ORNIS SCAND, V24, P122, DOI 10.2307/3676361; Oppliger A, 1996, NATURE, V381, P565, DOI 10.1038/381565a0; Orell M, 1996, IBIS, V138, P630, DOI 10.1111/j.1474-919X.1996.tb04764.x; Partridge L., 1989, P421; Perrins CM, 1996, IBIS, V138, P2, DOI 10.1111/j.1474-919X.1996.tb04308.x; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; RAMSAY SL, IN PRESS J ANIM ECOL; Roff Derek A., 1992; SIIKAMAKI P, 1995, J AVIAN BIOL, V26, P76, DOI 10.2307/3677215; SINERVO B, 1991, J EXP ZOOL, V257, P252, DOI 10.1002/jez.1402570216; SMITH HG, 1989, ORNIS SCAND, V20, P156, DOI 10.2307/3676885; Stearns S. C., 1992, EVOLUTION LIFE HIST; SZEKELY T, 1994, IBIS, V136, P341, DOI 10.1111/j.1474-919X.1994.tb01105.x; Tombre IM, 1996, J ANIM ECOL, V65, P325, DOI 10.2307/5878; Van Es A.J.H., 1980, PROTEIN DEPOSITION A, P215; VANDERWERF E, 1992, ECOLOGY, V73, P1699, DOI 10.2307/1940021; Ward S, 1996, PHYSIOL ZOOL, V69, P930, DOI 10.1086/physzool.69.4.30164236; Williams Joseph B., 1996, P375; YOMTOV Y, 1993, AUK, V110, P95 49 314 322 0 127 ELSEVIER SCIENCE LONDON LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 0169-5347 1872-8383 TRENDS ECOL EVOL Trends Ecol. Evol. JUL 1997 12 7 270 274 10.1016/S0169-5347(97)01094-X 5 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity XF710 WOS:A1997XF71000008 21238065 2018-11-12 J Chown, SL; Gaston, KJ Chown, SL; Gaston, KJ The species-body size distribution: Energy, fitness and optimality FUNCTIONAL ECOLOGY English Article energy partitioning; mammal assemblages; physiological constraints SUSTAINABLE METABOLIC-RATE; POPULATION-DENSITY; MICROTUS-AGRESTIS; FRACTAL DIMENSION; NATURAL INCREASE; INTRINSIC RATE; EVOLUTION; MAMMALS; BIRDS; PATTERNS 1. Recently, fresh attempts have been made to understand the mechanisms structuring species-body size distributions. Of these, the model developed by Brown, Marquet & Taper (1993) (BMT), which uses measures of resource acquisition and conversion to determine an optimal body size (M*) for a given assemblage, is potentially the most significant. Here, we examine the novelty of the model and some of its assumptions, and test its empirical predictions. 2. The BMT model is one of a suite of physiological/life-history models examining size at maturity. Such energetic or 'physical' approaches to body size evolution have a considerable modern history and continue to enjoy attention in physiological ecology and life-history theory. 3. Although mortality significantly influences life-history evolution and mostly precludes the evolution of a body size that maximizes reproductive power output, it is excluded from the BMT model. Likewise, the model assumes that power and not efficiency is maximized, although there are conditions where this is not likely to be the case. Furthermore, the BMT model assumes that resource acquisition and conversion are physiologically limited, although the importance of physiological limitation in ecology remains unclear. 4. Additional assumptions of the model include coincidence of the optimum body size of an individual and a species, when in many species this is not the case, and coincidence of the most speciose size class in an assemblage and the optimal body size. Similarly, the probable influence of differences in the scaling of various parameters at the intra- and interspecific levels are not addressed, nor are the impacts of discrepancies between phenotypic and genotypic optima. 5. The measures of resource acquisition and conversion used in the BMT model are not only problematic, but also limit the utility of the model. If the scaling constants and exponents of field metabolic rate minus basal metabolic are used as a measure of resource acquisition beyond maintenance needs, and those for intrinsic rate of increase (r(max)) as a measure of resource conversion, the applicability of the model to other taxa can be extended. 6. Using these measures we show that the model continues to provide a reasonable prediction of M* for the terrestrial mammal assemblages of both North America and Australia. However, when taxonomic inclusiveness is reduced by removing eutherians from the Australian data set and by examining the predictions of the model with regard to diprotodonts only, the model fails to provide reasonable predictions of M*. 7. Given problems with the BMT model, but its clear ability to predict the modal body size of at least two terrestrial mammal assemblages, we suggest that there is considerable scope for exploring the relationships between resource acquisition and conversion at the level of the individual and energy partitioning between individuals in multispecies communities. UNIV SHEFFIELD, DEPT ANIM & PLANT SCI, SHEFFIELD S10 2TN, S YORKSHIRE, ENGLAND Chown, SL (reprint author), UNIV PRETORIA, DEPT ZOOL & ENTOMOL, ZA-0002 PRETORIA, SOUTH AFRICA. Chown, Steven/H-3347-2011 Chown, Steven/0000-0001-6069-5105 Alcock J., 1991, P10; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; BARLOW ND, 1994, OIKOS, V71, P326, DOI 10.2307/3546281; Bennett A.F., 1987, P1; BLACKBURN TM, 1995, J BIOGEOGR, V22, P7, DOI 10.2307/2846069; BLACKBURN TM, 1994, PHILOS T ROY SOC B, V343, P33, DOI 10.1098/rstb.1994.0005; BLACKBURN TM, 1994, TRENDS ECOL EVOL, V9, P471, DOI 10.1016/0169-5347(94)90311-5; Blackburn TM, 1996, J ANIM ECOL, V65, P52, DOI 10.2307/5699; Blackburn TM, 1996, OIKOS, V75, P551, DOI 10.2307/3545899; BLACKBURN TM, 1994, P ROY SOC B-BIOL SCI, V257, P293, DOI 10.1098/rspb.1994.0128; BLACKBURN TM, 1994, OIKOS, V70, P127, DOI 10.2307/3545707; BLANCKENHORN WU, 1995, EVOL ECOL, V9, P369, DOI 10.1007/BF01237760; BLOCK W, 1994, ACTA OECOL, V15, P5; BRONSON FH, 1989, MAMMALIAN REPRODUCTI; Brown J. H., 1995, MACROECOLOGY; Brown JH, 1996, AM NAT, V147, P1092, DOI 10.1086/285895; BROWN JH, 1987, AM NAT, V130, P1, DOI 10.1086/284694; BROWN JH, 1993, AM NAT, V142, P573, DOI 10.1086/285558; BROWN JH, 1989, SCIENCE, V243, P1145, DOI 10.1126/science.243.4895.1145; BROWN JH, 1991, AM NAT, V138, P1478, DOI 10.1086/285297; BURBIDGE AA, 1989, BIOL CONSERV, V50, P143, DOI 10.1016/0006-3207(89)90009-8; DAMUTH J, 1993, NATURE, V365, P748, DOI 10.1038/365748a0; DIAL KP, 1988, ECOLOGY, V69, P1620, DOI 10.2307/1941660; DIXON AFG, 1995, ECOL ENTOMOL, V20, P111, DOI 10.1111/j.1365-2311.1995.tb00436.x; DIXON AFG, 1994, ECOL ENTOMOL, V19, P121, DOI 10.1111/j.1365-2311.1994.tb00401.x; Dunbrack RL, 1987, EVOLUTIONARY PHYSL E, P191; DYKSTRA CR, 1992, PHYSIOL ZOOL, V65, P422, DOI 10.1086/physzool.65.2.30158261; Endler JA, 1986, NATURAL SELECTION WI; ERNSTING G, 1995, OIKOS, V72, P444, DOI 10.2307/3546131; FARLOW JO, 1976, ECOLOGY, V57, P841, DOI 10.2307/1941052; Feder M.E., 1987, P38; FEDER ME, 1991, FUNCT ECOL, V5, P136, DOI 10.2307/2389251; Feder ME, 1987, NEW DIRECTIONS ECOLO; FENCHEL T, 1993, OIKOS, V68, P375, DOI 10.2307/3544855; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gaston Kevin J., 1994, Biodiversity Letters, V2, P16, DOI 10.2307/2999696; GASTON KJ, 1988, ECOL ENTOMOL, V13, P399, DOI 10.1111/j.1365-2311.1988.tb00372.x; GASTON KJ, 1991, ECOL ENTOMOL, V16, P505, DOI 10.1111/j.1365-2311.1991.tb00242.x; GASTON KJ, 1993, OIKOS, V66, P172, DOI 10.2307/3545211; Gaston KJ, 1996, OIKOS, V75, P479, DOI 10.2307/3545889; GASTON KJ, 1995, IBIS, V137, P237, DOI 10.1111/j.1474-919X.1995.tb03245.x; GASTON KJ, 1995, BIODIVERS CONSERV, V4, P119, DOI 10.1007/BF00137780; Gaston KJ, 1996, J ANIM ECOL, V65, P701, DOI 10.2307/5669; GLAZIER DS, 1980, J BIOGEOGR, V7, P63, DOI 10.2307/2844547; Gnaiger E., 1987, P7; GNAIGER E, 1992, FUNCT ECOL, V6, P234; Hammond KA, 1996, J EXP BIOL, V199, P337; HAMMOND KA, 1994, PHYSIOL ZOOL, V67, P1479, DOI 10.1086/physzool.67.6.30163908; HANSEN S, 1995, PHYSIOL ZOOL, V68, P290, DOI 10.1086/physzool.68.2.30166505; HEMMINGSEN AXEL M., 1934, VIDENSKAB MEDDEL DANSK NATURHIST FOREN, V98, P125; HENNEMANN WW, 1983, OECOLOGIA, V56, P104, DOI 10.1007/BF00378224; HEUSNER AA, 1991, J EXP BIOL, V160, P25; Hirose Yoshimi, 1994, P19; HUTCHINSON GE, 1959, AM NAT, V93, P117, DOI 10.1086/282063; KIRK WDJ, 1991, ECOL ENTOMOL, V16, P351, DOI 10.1111/j.1365-2311.1991.tb00227.x; KOCHMER JP, 1988, SYST ZOOL, V37, P68, DOI 10.2307/2413193; KONARZEWSKI M, 1994, PHYSIOL ZOOL, V67, P1186, DOI 10.1086/physzool.67.5.30163889; KOTEJA P, 1991, FUNCT ECOL, V5, P56, DOI 10.2307/2389555; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kozlowski J, 1996, AM NAT, V147, P101, DOI 10.1086/285842; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; Kozlowski J, 1996, AM NAT, V147, P1087, DOI 10.1086/285894; LAWTON JH, 1990, PHILOS T R SOC B, V330, P283, DOI 10.1098/rstb.1990.0199; LEROI AM, 1994, AM NAT, V143, P381, DOI 10.1086/285609; LINDSEY CC, 1966, EVOLUTION, V20, P456, DOI 10.1111/j.1558-5646.1966.tb03380.x; Loder N, 1997, OIKOS, V78, P195, DOI 10.2307/3545817; MARQUET PA, 1995, J ANIM ECOL, V64, P325, DOI 10.2307/5894; MAURER BA, 1992, EVOLUTION, V46, P939, DOI 10.1111/j.1558-5646.1992.tb00611.x; MAURER BA, 1988, ECOLOGY, V69, P1923, DOI 10.2307/1941169; MAY RM, 1978, DIVERSITY INSECT FAU, P188; MCDEVITT RM, 1994, PHYSIOL ZOOL, V67, P1103, DOI 10.1086/physzool.67.5.30163884; MCDEVITT RM, 1994, PHYSIOL ZOOL, V67, P1117, DOI 10.1086/physzool.67.5.30163885; MORSE DR, 1985, NATURE, V314, P731, DOI 10.1038/314731a0; Oftedal O. T., 1984, S ZOOL SOC LOND, V51, P33; PAGEL MD, 1988, AM NAT, V132, P344, DOI 10.1086/284857; PAYNE PR, 1968, P NUTR SOC, V27, P129, DOI 10.1079/PNS19680037; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; Peters R.H., 1983, P1; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Reiss M. J., 1989, ALLOMETRY GROWTH REP; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; Roff Derek A., 1992; SHORROCKS B, 1991, FUNCT ECOL, V5, P457, DOI 10.2307/2389627; SIBLY RM, 1995, EVOL ECOL, V9, P242, DOI 10.1007/BF01237771; SIBLY RM, 1994, FUNCT ECOL, V8, P486, DOI 10.2307/2390073; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; Stearns S. C., 1992, EVOLUTION LIFE HIST; THOMPSON SD, 1987, OECOLOGIA, V71, P201, DOI 10.1007/BF00377285; Townsend CR, 1981, PHYSL ECOLOGY EVOLUT; TREVELYAN R, 1990, FUNCT ECOL, V4, P135, DOI 10.2307/2389332; WARREN PH, 1987, OECOLOGIA, V74, P231, DOI 10.1007/BF00379364; WATT WB, 1985, AM NAT, V125, P118, DOI 10.1086/284331; WATT WB, 1992, FUNCT ECOL, V6, P105; WEINER J, 1989, ACTA THERIOL, V34, P3, DOI 10.4098/AT.arch.89-1; WEINER J, 1992, TRENDS ECOL EVOL, V7, P384, DOI 10.1016/0169-5347(92)90009-Z; WESTERN D, 1982, OECOLOGIA, V54, P281, DOI 10.1007/BF00379994; Yampolsky LY, 1996, AM NAT, V147, P86, DOI 10.1086/285841; YODZIS P, 1992, AM NAT, V139, P1151, DOI 10.1086/285380; YOSHIMURA J, 1995, EVOLUTION, V49, P375, DOI 10.1111/j.1558-5646.1995.tb02250.x 99 49 49 0 27 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. JUN 1997 11 3 365 375 10.1046/j.1365-2435.1997.00096.x 11 Ecology Environmental Sciences & Ecology XF367 WOS:A1997XF36700013 2018-11-12 J Miller, EM Miller, EM Could nonshared environmental variance have evolved to assure diversification through randomness? EVOLUTION AND HUMAN BEHAVIOR English Article evolution; contrast effects; nonshared environmental variance; canalization; genetic determinism; diversification LIFE-HISTORY THEORY; OPPOSITE-SEX TWINS; B RIDGE COUNT; FLUCTUATING ENVIRONMENT; BEHAVIORAL DISCORDANCE; MONOZYGOTIC TWINS; GENETIC INFLUENCE; BIRTH-ORDER; STRATEGIES; HORMONES One of the more striking findings of modern human behavior genetics is the relatively small role for shared environmental experience and the large role for what is called nonshared, or nonfamilial variance. Much of this may be just evolved randomness. There are sound evolutionary reasons why the genotype should diversify by producing phenotypes that differ. Where there are several possible states of nature, an organism whose genotype produces phenotypes specialized for only one environment will go extinct when the environment changes. Diversification can be achieved by having a single genotype randomly produce different phenotypes. Biological models, supported by evidence from other species, show that substantial phenotypical randomness will often be desirable. Biological mechanisms exist far providing randomness. Canalization will be selected for when a single phenotype is optimal, but canalization will be selected against where diversification is desirable. General biological theory predicts this effect, and examples from other species illustrate it. Variability in personality, sexual strategy, and disease resistance could be selected for. Evolution could select for contrast effects by which siblings come to be different. Thus, much of the nonshared variance found by behavior geneticists may be merely revolved randomness. (C) Elsevier Science Inc., 1997. Miller, EM (reprint author), UNIV NEW ORLEANS,NEW ORLEANS,LA 70148, USA. BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BERRY RJ, 1978, POPULATIONS SMALL MA, P114; Bianchi DW, 1996, P NATL ACAD SCI USA, V93, P705, DOI 10.1073/pnas.93.2.705; BLANCHARD R, 1994, AM J PSYCHIAT, V151, P1375; BLANCHARD R, 1995, INT BEH DEV S BIOL B, P19; BLOCK RD, 1987, BEHAV BRAIN SCI, V10, P17; BOGLE AC, 1994, BEHAV GENET, V24, P65, DOI 10.1007/BF01067929; BOKLAGE CE, 1987, BEHAV BRAIN SCI, V10, P18, DOI 10.1017/S0140525X00055977; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Brigham E. F., 1994, FINANCIAL MANAGEMENT; BULL JJ, 1987, EVOLUTION, V41, P269; Bulmer M.G., 1980, MATH THEORY QUANTITA; CAREY G, 1986, BEHAV GENET, V16, P319, DOI 10.1007/BF01071314; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; DUNN J, 1990, SEPARATE LIVES WHY S; ELLIS L, 1988, J SEX RES, V25, P152, DOI 10.1080/00224498809551449; ELTON EJ, 1974, MANAGE SCI B-APPL, V21, P483, DOI 10.1287/mnsc.21.4.483; Ernst C., 1983, BIRTH ORDER ITS INFL; GARTNER K, 1990, LAB ANIM, V24, P71, DOI 10.1258/002367790780890347; GILLESPIE JH, 1981, EVOLUTION, V35, P468, DOI 10.1111/j.1558-5646.1981.tb04910.x; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; GOODMAN R, 1991, NEW GENETICS MENTAL, P212; GRILO CM, 1991, PSYCHOL BULL, V110, P520; HACCOU P, 1995, THEOR POPUL BIOL, V47, P212, DOI 10.1006/tpbi.1995.1009; HAMILTON WD, 1977, NATURE, V269, P578, DOI 10.1038/269578a0; Harper J. L., 1977, POPULATION BIOL PLAN; HARTUNG J, 1987, BEHAV BRAIN SCI, V10, P25, DOI 10.1017/S0140525X00056053; JACKLIN CN, 1983, DEV PSYCHOBIOL, V16, P163, DOI 10.1002/dev.420160302; KURNIT DM, 1987, AM J HUM GENET, V41, P979; Lalumiere ML, 1996, HUM NATURE-INT BIOS, V7, P281, DOI 10.1007/BF02733398; LEWONTIN RC, 1969, P NATL ACAD SCI USA, V62, P1056, DOI 10.1073/pnas.62.4.1056; LIVELY CM, 1986, AM NAT, V128, P561, DOI 10.1086/284588; Loehlin J.C., 1992, GENES ENV PERSONALIT; MACCOBY EE, 1979, CHILD DEV, V50, P632, DOI 10.1111/j.1467-8624.1979.tb02410.x; Markowitz H., 1959, PORTFOLIO SELECTION; MARX J, 1994, SCIENCE, V265, P1656, DOI 10.1126/science.7521969; MCGUIRE S, 1994, NATURE NURTURE MIDDL, P214; MILLER EM, 1994, MANKIND QUART, V34, P297; MILLER EM, 1994, PERS INDIV DIFFER, V17, P511, DOI 10.1016/0191-8869(94)90088-4; MOLENAAR PCM, 1993, BEHAV GENET, V23, P519, DOI 10.1007/BF01068142; PERUSSE D, 1994, BEHAV GENET, V24, P327, DOI 10.1007/BF01067533; PLOMIN R, 1990, PSYCHOL AGING, V5, P25, DOI 10.1037//0882-7974.5.1.25; PLOMIN R, 1987, BEHAV BRAIN SCI, V10, P1, DOI 10.1017/S0140525X00055941; PLOMIN R, 1994, SEPARATE SOCIAL WORL; POMIANKOWSKI A, 1995, P ROY SOC B-BIOL SCI, V260, P21, DOI 10.1098/rspb.1995.0054; REAL L, 1980, LIMITS ACTION; RESNICK SM, 1993, BEHAV GENET, V23, P323, DOI 10.1007/BF01067432; RIDLEY M, 1996, TIMES 0116; RIDLEY M, 1994, RED QUEEN; ROSE RJ, 1987, BEHAV GENET, V17, P125, DOI 10.1007/BF01065992; Rowe D. C, 1994, LIMITS FAMILY INFLUE; ROWE DC, 1981, DEV PSYCHOL, V17, P517, DOI 10.1037//0012-1649.17.5.517; SALISBURY EJ, 1942, REPRODUCTIVE CAPACIT; SEARS RS, 1993, INVESTMENT MANAGEMEN; Shields J., 1962, MONOZYGOTIC TWINS BR; SLATKIN M, 1976, AM NAT, V110, P31, DOI 10.1086/283047; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; Stearns S. C., 1992, EVOLUTION LIFE HIST; SULLOWAY FJ, 1995, PSYCHOL INQ, V6, P75, DOI 10.1207/s15327965pli0601_15; SULLOWAY FJ, 1996, BORN REBEL SIBLING R; vom Saal F S, 1984, Prog Clin Biol Res, V169, P135 61 9 9 0 3 ELSEVIER SCIENCE INC NEW YORK 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010 1090-5138 EVOL HUM BEHAV Evol. Hum. Behav. MAY 1997 18 3 195 221 10.1016/S1090-5138(96)00117-1 27 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences XF101 WOS:A1997XF10100004 2018-11-12 J Schneider, JM; Lubin, Y Schneider, JM; Lubin, Y Does high adult mortality explain semelparity in the spider Stegodyphus lineatus (Eresidae)? OIKOS English Article LIFE-HISTORY EVOLUTION; SIZE; CANNIBALISM; SELECTION; PREDATION; SURVIVAL; GUPPIES; GROWTH In life history theory, low adult survival is considered to favour the evolution of semelparity. Low adult survival could result from intrinsically high costs of reproduction or from high mortality due to extrinsic causes such as predation. In a held experiment, we removed females of the spider Stegodyphus lineatus from their young and induced a second breeding event to test these hypotheses. These semelparous spiders normally die after producing a single clutch, while the young are still in the nest. However, females that lose their brood will produce a second clutch. Experimental females that were protected from predation were capable of laying a second clutch and raising the young of two clutches. During the same time, the survival of unprotected females in the field was extremely low due to predation. When females were removed experimentally, growth and survival of first broods were reduced. None the less, a model revealed that only a small increment in adult survival would favour a second breeding attempt. We conclude that high predation pressure resulting in low adult survival selects for a single reproductive event in these spiders. BEN GURION UNIV NEGEV, JACOB BLAUSTEIN INST DESERT RES, MITRANI CTR DESERT RES, IL-84990 SEDE BOQER, ISRAEL Schneider, JM (reprint author), MAX PLANCK INST VERHALTENSPHYSIOL, D-82319 STARNBERG, GERMANY. Lubin, Yael/F-1382-2012; Schneider, Jutta/G-3727-2010 Lubin, Yael/0000-0003-3876-1668; Schneider, Jutta/0000-0001-8523-7354 ANDERSON JF, 1990, J ARACHNOL, V18, P73; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; CRAIG CL, 1987, AM NAT, V129, P47, DOI 10.1086/284622; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; CURIO E, 1988, ETHOLOGY, V79, P79; FOELIX R.F., 1981, BIOL SPIDERS; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Henschel J.R., 1996, Bulletin of the British Arachnological Society, V10, P138; Horel A., 1979, Revue Arachnologique, V2, P157; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; KRAFFT B, 1986, J ARACHNOL, V14, P219; MARSHALL SD, 1994, FUNCT ECOL, V8, P118, DOI 10.2307/2390120; POLIS GA, 1981, ANNU REV ECOL SYST, V12, P225, DOI 10.1146/annurev.es.12.110181.001301; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Roff Derek A., 1992; RYPSTRA AL, 1986, J ARACHNOL, V14, P193; Schneider JM, 1996, J ARACHNOL, V24, P148; SCHNEIDER JM, 1995, INSECT SOC, V42, P237, DOI 10.1007/BF01240418; SCHNEIDER JM, 1992, THESIS U MUNCHEN; SEIBT U, 1987, ANIM BEHAV, V35, P1903, DOI 10.1016/S0003-3472(87)80087-8; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Vollrath F., 1987, P357; WARD D, 1993, J ANIM ECOL, V62, P353, DOI 10.2307/5366; WARD D, 1992, ETHOLOGY, V92, P135; YOUNG TP, 1990, EVOL ECOL, V4, P157, DOI 10.1007/BF02270913 29 41 41 3 22 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos MAY 1997 79 1 92 100 10.2307/3546094 9 Ecology Environmental Sciences & Ecology WY148 WOS:A1997WY14800011 2018-11-12 J Dangerfield, JM Dangerfield, JM Growth and survivorship in juvenile woodlice: Is birth mass important? ECOGRAPHY English Article WOODLOUSE PORCELLIONIDES-PRUINOSUS; FROG BOMBINA-ORIENTALIS; EGG SIZE; TERRESTRIAL ISOPOD; OFFSPRING SIZE; ARMADILLIDIUM-VULGARE; LIFE-HISTORY; POPULATION-DYNAMICS; BREEDING PHENOLOGY; FOOD QUALITY Growth and survivorship of individually reared offspring or the woodlice (lsopoda: Oniscidae) Porcellionides pruinosus (Brandt) and Aphiloscia vilis (Budde-Lund) were measured under laboratory conditions. These measures of offspring fitness were compared to birth mass, which is a realistic measure of parental investment in offspring for these species, to test a key assumption of life history theory that an increase in resource allocation to offspring will increase offspring fitness. In both species birth mass had no significant effect on survivorship to 60 days and in P. pruinosus birth mass did not correlate with mass at IS, 30 or 45 days after birth. In A. vilis larger young al birth had a slight growth advantage to 15 days but not thereafter. There appears to lit little effect of birth mass on offspring fitness despite a considerable range in birth mass within broods. In these species high variance in juvenile growth may spread subsequent reproductive effort and avoid risks of total reproductive failure. UNIV BOTSWANA & SWAZILAND,DEPT BIOL SCI,GABORONE,BOTSWANA ALDABBAGH KY, 1981, J ANIM ECOL, V50, P61, DOI 10.2307/4031; BERVEN KA, 1988, OECOLOGIA, V75, P67, DOI 10.1007/BF00378815; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; CHAMBERS RJ, 1985, J ANIM ECOL, V54, P425, DOI 10.2307/4489; Clutton-Brock TH, 1988, REPROD SUCCESS, P472; DANGERFIELD JM, 1995, ETHOL ECOL EVOL, V7, P97, DOI 10.1080/08927014.1995.9522959; DANGERFIELD JM, 1992, OECOLOGIA, V89, P140, DOI 10.1007/BF00319026; DANGERFIELD JM, 1990, OECOLOGIA, V82, P251, DOI 10.1007/BF00323542; DANGERFIELD JM, 1987, THESIS U E ANGLIA; DANGERFIELD JM, 1989, MONIT ZOOL ITAL, V4, P411; HASSALL M, 1990, J ANIM ECOL, V59, P941, DOI 10.2307/5024; HOESE B, 1986, MONIT ZOOL ITAL NS M, V4, P153; HUBBELL SP, 1971, SYSTEMS ANAL SIMULAT, P269; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; KAPLAN RH, 1992, ECOLOGY, V73, P280, DOI 10.2307/1938739; KARLSSON B, 1984, OIKOS, V43, P376, DOI 10.2307/3544156; LACK D, 1954, NATURAL REGULATION A; LAWLOR LR, 1976, EVOLUTION, V30, P775, DOI 10.1111/j.1558-5646.1976.tb00958.x; LINSENMAIR KE, 1990, SOCIOBIOLOGY SEXUAL, P19; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; MERRIAM HG, 1971, CAN J ZOOLOG, V49, P667, DOI 10.1139/z71-105; PARICHY DM, 1992, OECOLOGIA, V91, P579, DOI 10.1007/BF00650334; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; REAVEY D, 1992, J ZOOL, V227, P277, DOI 10.1111/j.1469-7998.1992.tb04823.x; ROSSITER MC, 1991, FUNCT ECOL, V5, P386, DOI 10.2307/2389810; RUSHTON SP, 1983, OECOLOGIA, V57, P257, DOI 10.1007/BF00379587; SASSAMAN C, 1978, HEREDITY, V41, P385, DOI 10.1038/hdy.1978.109; SEMLITSCH RD, 1990, ECOLOGY, V71, P1789, DOI 10.2307/1937586; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SUNDERLAND KD, 1976, J ANIM ECOL, V45, P487, DOI 10.2307/3887; SUTTON SL, 1984, ZOOLOGICAL SOC LONDO, V53, P269; TAUBER CA, 1991, CAN J ZOOL, V69, P2644, DOI 10.1139/z91-372; TEJEDO M, 1992, OECOLOGIA, V90, P294, DOI 10.1007/BF00317189; TELFORD SR, 1995, AFR J ECOL, V33, P236, DOI 10.1111/j.1365-2028.1995.tb00801.x; VOSSEN P, 1988, THESIS STATE U GENT; WIKLUND C, 1984, OIKOS, V43, P391, DOI 10.2307/3544158; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667; WOODWARD BD, 1986, AM NAT, V128, P58, DOI 10.1086/284539 38 5 5 0 9 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0906-7590 ECOGRAPHY Ecography APR 1997 20 2 132 136 10.1111/j.1600-0587.1997.tb00355.x 5 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology WT788 WOS:A1997WT78800005 2018-11-12 J Zhang, DY; Jiang, XH Zhang, DY; Jiang, XH Evolutionarily stable reproductive strategies in sexual organisms .3. The effects of lottery density dependence and pollen limitation JOURNAL OF THEORETICAL BIOLOGY English Article PARENT-OFFSPRING CONFLICT; POLLINATED PLANTS; SEED PRODUCTION; ALLOCATION; COEXISTENCE; COMMUNITIES; DISPERSAL; FRUIT; SET This paper extends our previous work on modelling, within a single framework, the allocation of resources to reproduction vs. survival and the male vs. female components of reproduction in perennial plants. We derive the evolutionarily stable strategy (ESS) results under pollen limitation for both hermaphroditic and dioecious plant populations held stable through density-dependent juvenile recruitment. Pollen limitation affects female reproductive allocation in our model because there is post-flowering provisioning of offspring. We find that pollen limitation is unimportant to the ESS reproductive allocation and sex allocation so long as there are enough seeds to fill the empty sites left by the death of adults. To the extent that the relationships between gamete output and resource investment are linear for both sexes or sex functions, the separate treatment of reproductive and sex allocation in modern life-history and sex-allocation theories is adequate. In such cases, the ESS sex allocation is exactly what is found in traditional sex allocation theory, and the ESS reproductive allocation of hermaphrodites or females in a dioecious species maximizes the amount of resources allocated to reproduction during an average lifespan, an analogue of the usual maximization principle in life-history theory modified to include the possibility of pollen limitation and extended seed maturation. The ESS reproductive allocation of males in a dioecious species maximizes lifetime pollen production, independent of pollen limitation and the female's resource allocation. (C) 1997 Academic Press Limited. Zhang, DY (reprint author), LANZHOU UNIV,STATE KEY LAB ARID AGROECOL,LANZHOU 730000,PEOPLES R CHINA. Zhang, Da-Yong/B-3078-2011 Zhang, Da-Yong/0000-0003-1056-8735 BRUNET J, 1992, TRENDS ECOL EVOL, V7, P79, DOI 10.1016/0169-5347(92)90245-7; BULL J J, 1988, P96; BURD M, 1994, BOT REV, V60, P83, DOI 10.1007/BF02856594; BURD M, 1988, EVOLUTION, V42, P403, DOI 10.1111/j.1558-5646.1988.tb04145.x; BURD M, 1995, EVOLUTION, V49, P100, DOI 10.1111/j.1558-5646.1995.tb05962.x; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV E L, 1982; CHARNOV EL, 1979, P NATL ACAD SCI USA, V76, P2480, DOI 10.1073/pnas.76.5.2480; CHARNOV EL, 1988, THEOR POPUL BIOL, V34, P38, DOI 10.1016/0040-5809(88)90034-2; CHARNOV EL, 1986, J THEOR BIOL, V118, P321, DOI 10.1016/S0022-5193(86)80062-5; CHESSON PL, 1981, AM NAT, V117, P923, DOI 10.1086/283778; CHIARIELLO NR, 1991, RESPONSE PLANTS MULT; DOMINGUEZ CA, 1995, TRENDS ECOL EVOL, V10, P412, DOI 10.1016/S0169-5347(00)89158-2; FAGERSTROM T, 1988, TRENDS ECOL EVOL, V3, P303, DOI 10.1016/0169-5347(88)90106-1; FEINSINGER P, 1991, ECOLOGY, V72, P1953, DOI 10.2307/1941550; FISHER R. A., 1930, GENETICAL THEORY NAT; FREEMAN DC, 1980, OECOLOGIA, V47, P222, DOI 10.1007/BF00346825; GEBER MA, 1986, J THEOR BIOL, V118, P33, DOI 10.1016/S0022-5193(86)80006-6; GERITZ SAH, 1995, AM NAT, V146, P685, DOI 10.1086/285820; HAIG D, 1988, AM NAT, V131, P757, DOI 10.1086/284817; Hubbell S. P., 1986, CONSERVATION BIOL SC, P205; KAPLAN SM, 1972, HEREDITY, V28, P281, DOI 10.1038/hdy.1972.40; KISDI V, 1995, THEOR POPUL BIOL, V47, P191, DOI 10.1006/tpbi.1995.1008; KUNIN WE, 1993, ECOLOGY, V74, P2145, DOI 10.2307/1940859; LEVITAN DR, 1995, TRENDS ECOL EVOL, V10, P228, DOI 10.1016/S0169-5347(00)89071-0; Lloyd D.G., 1988, EVOLUTION SEX, P233; Lloyd DG., 1984, PERSPECTIVES PLANT P, P277; OLIVIERI I, 1994, AM NAT, V144, P373, DOI 10.1086/285682; PACALA SW, 1994, AM NAT, V143, P222, DOI 10.1086/285602; Queller D. C., 1989, Oxford Surveys in Evolutionary Biology, V6, P73; QUELLER DC, 1994, AM NAT, V144, pS84, DOI 10.1086/285654; SALE PF, 1977, AM NAT, V111, P337, DOI 10.1086/283164; SHAANKER RU, 1988, ANNU REV ECOL SYST, V19, P177, DOI 10.1146/annurev.es.19.110188.001141; SHMIDA A, 1984, VEGETATIO, V58, P29; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; STANTON ML, 1988, AM J BOT, V75, P540, DOI 10.2307/2444219; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; THOMSON JD, 1989, EVOLUTION, V43, P657, DOI 10.1111/j.1558-5646.1989.tb04261.x; YOUNG HJ, 1990, ECOLOGY, V71, P536, DOI 10.2307/1940307; Zhang DY, 1996, AM NAT, V147, P1115, DOI 10.1086/285898; ZHANG DY, 1994, AM NAT, V144, P65, DOI 10.1086/285661 42 11 11 0 8 ACADEMIC PRESS LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0022-5193 J THEOR BIOL J. Theor. Biol. MAR 21 1997 185 2 223 231 10.1006/jtbi.1996.0304 9 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology WQ734 WOS:A1997WQ73400008 2018-11-12 J Brown, GP; Weatherhead, PJ Brown, GP; Weatherhead, PJ Effects of reproduction on survival and growth of female northern water snakes, Nerodia sipedon CANADIAN JOURNAL OF ZOOLOGY English Article THAMNOPHIS-SIRTALIS; GARTER SNAKE; REPTILES; COSTS; POPULATION; BEHAVIOR; PREGNANCY; ECOLOGY; ADDERS The cornerstone of life-history theory is the expectation that current reproduction will have a detrimental effect on survival and (or) future reproduction. When fecundity increases with body size, the cost to future reproduction arises through decreased growth of reproductive individuals. We investigated the effects of reproduction on aspects of survival and growth in female northern water snakes (Nerodia sipedon). We did not find a decrease in survival associated with mating despite the conspicuousness of mating aggregations, and pregnancy did not impair locomotor ability. We found evidence of a decrease in over-winter survival of reproductive females related to their emaciated state following parturition. Reproductive females grew less in length than nonreproductive females, but increased similarly in mass. Following parturition, reproductive females weighed less than in the spring, indicating that mass gain prior to parturition was invested in the litter and that most foraging occurred prior to ovulation. Captive reproductive females given food ad libitum grew in length at a rate similar to free-living reproductive females, but increased more in mass. Captive females weighed more after giving birth than in the spring, indicating that unlike that of females in the wild, some of their mass increase was due to energy storage, and also that they continued to feed after ovulation. Consistent with the prediction that smaller females would benefit more than larger females from reproducing less and growing more to increase future fecundity, we found that smaller females participated less in mating aggregations and reproduced less often. CARLETON UNIV, DEPT BIOL, OTTAWA, ON K1S 5B6, CANADA Brown, Gregory/F-9897-2011 Brown, Gregory/0000-0002-2924-9040 ALDRIDGE RD, 1982, HERPETOLOGICA, V38, P71; ALEKSIUK M, 1971, ECOLOGY, V52, P485, DOI 10.2307/1937631; Andrews R.M., 1982, Biology of Reptilia, V13, P273; [Anonymous], 1985, SAS US GUID STAT VER; BARRY FE, 1992, BEHAV ECOL SOCIOBIOL, V30, P193, DOI 10.1007/BF00166703; BAUMAN M A, 1977, Journal of Herpetology, V11, P51, DOI 10.2307/1563291; BAUWENS D, 1981, J ANIM ECOL, V50, P733, DOI 10.2307/4133; BIRCHARD GF, 1984, COMP BIOCHEM PHYS A, V77, P519, DOI 10.1016/0300-9629(84)90221-4; BLEM CR, 1982, COPEIA, P961, DOI 10.2307/1444108; BRANA F, 1993, OIKOS, V66, P216, DOI 10.2307/3544807; BRODIE ED, 1989, AM NAT, V134, P225, DOI 10.1086/284977; GRAVES BM, 1993, J HERPETOL, V27, P33, DOI 10.2307/1564902; Gregory P.T., 1982, Biology of Reptilia, V13, P53; KING RB, 1986, COPEIA, P757; LARSEN KW, 1993, AM MIDL NAT, V129, P336, DOI 10.2307/2426514; LILLYWHITE H B, 1987, P422; MADSEN T, 1993, OECOLOGIA, V94, P488, DOI 10.1007/BF00566963; MADSEN T, 1992, OECOLOGIA, V92, P40, DOI 10.1007/BF00317260; NIEWIAROWSKI PH, 1994, EVOLUTION, V48, P137, DOI 10.1111/j.1558-5646.1994.tb01300.x; PARKER W S, 1987, P253; PLUMMER MV, 1983, COPEIA, P741, DOI 10.2307/1444340; Roff Derek A., 1992; SCHWARZKOPF L, 1993, ECOLOGY, V74, P1970, DOI 10.2307/1940840; SCRIBNER SJ, 1995, CAN J ZOOL, V73, P321, DOI 10.1139/z95-036; SEIGEL RA, 1987, OECOLOGIA, V73, P481, DOI 10.1007/BF00379404; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; STEWART JR, 1984, PHYSIOL ZOOL, V57, P377, DOI 10.1086/physzool.57.4.30163339; Weatherhead PJ, 1996, CAN J ZOOL, V74, P1617, DOI 10.1139/z96-179; WEATHERHEAD PJ, 1992, CAN J ZOOL, V70, P94, DOI 10.1139/z92-014; WEATHERHEAD PJ, 1995, BEHAV ECOL SOCIOBIOL, V36, P301, DOI 10.1007/s002650050152; WHITTIER JM, 1990, HERPETOLOGICA, V46, P219 31 43 44 0 14 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0008-4301 1480-3283 CAN J ZOOL Can. J. Zool. MAR 1997 75 3 424 432 10.1139/z97-052 9 Zoology Zoology XB776 WOS:A1997XB77600009 2018-11-12 J Klingenberg, CP; Spence, JR Klingenberg, CP; Spence, JR On the role of body size for life-history evolution ECOLOGICAL ENTOMOLOGY English Article body size; development time; fecundity; Gerridae; growth; life history; optimality; trade-off MILKWEED BUGS ONCOPELTUS; AQUARIUS-REMIGIS HETEROPTERA; WATER-STRIDERS HETEROPTERA; GREEN STINK BUG; INTRASPECIFIC VARIATION; PHENOTYPIC PLASTICITY; FITNESS COMPONENTS; SEXUAL SELECTION; TIME CONSTRAINTS; REACTION NORMS 1. Body size is a central element in current theories of life-history evolution. Models for optimal age at maturity are based on the assumptions that there is a trade-off between development time and adult size and that larger size provides a reproductive advantage. 2. The results of large, replicated experiments with the water strider Gerris buenoi (Heteroptera: Gerridae) contradict both these assumptions. Individual rearings under field conditions showed that there is a negative, not a positive, correlation between development time and adult size. The physiological basis of growth, with stretch-induced moulting, may provide a partial explanation for this correlation. 3. This study examined a number of fitness components for their correlations with female size: lifetime fecundity, reproductive life span, average volume per egg, total volume of eggs laid, and the proportion of eggs hatched. None of these traits was correlated with female size. 4. The data on water striders suggest an alternative scenario for life-history evolution, in which size is not an adaptive trait, but evolves as a correlated response to selection on other traits. This expands the range of possible models, and opens life-history theory to the debate about adaptation and optimality. Klingenberg, CP (reprint author), UNIV ALBERTA, DEPT SCI BIOL, EDMONTON, AB T6G 2E9, CANADA. Klingenberg, Christian Peter/B-3470-2010 Klingenberg, Christian Peter/0000-0002-8117-6141 Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Andersen NM., 1982, SEMIAQUATIC BUGS HEM; ARNQVIST G, 1990, OECOLOGIA, V84, P194, DOI 10.1007/BF00318271; ARNQVIST G, 1996, IN PRESS SOCIAL COMP, V1; BANKS MJ, 1987, J ANIM ECOL, V56, P815, DOI 10.2307/4950; BENNETCLARK HC, 1971, J INSECT PHYSIOL, V17, P2421, DOI 10.1016/0022-1910(71)90089-8; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; BLAKLEY N, 1981, ECOLOGY, V62, P57, DOI 10.2307/1936668; BLAKLEY N, 1978, BIOL BULL, V155, P499, DOI 10.2307/1540786; BLANCKENHORN WU, 1995, EVOL ECOL, V9, P369, DOI 10.1007/BF01237760; BLANCKENHORN WU, 1994, OECOLOGIA, V97, P354, DOI 10.1007/BF00317325; BLANCKENHORN WU, 1995, J EVOLUTION BIOL, V8, P21, DOI 10.1046/j.1420-9101.1995.8010021.x; BOGGS CL, 1986, ECOL ENTOMOL, V11, P7, DOI 10.1111/j.1365-2311.1986.tb00274.x; Bulmer M.G., 1980, MATH THEORY QUANTITA; Calder W. A., 1984, SIZE FUNCTION LIFE H; CHIANG RG, 1988, SCIENCE, V241, P1665, DOI 10.1126/science.241.4873.1665; DINGLE H, 1991, AM ZOOL, V31, P253; DINGLE H, 1988, EVOLUTION, V42, P79, DOI 10.1111/j.1558-5646.1988.tb04109.x; DIXON AFG, 1985, APHID ECOLOGY; Efron B, 1993, INTRO BOOTSTRAP; FAIRBAIRN DJ, 1988, EVOLUTION, V42, P1212, DOI 10.1111/j.1558-5646.1988.tb04181.x; FAIRBAIRN DJ, 1993, BEHAV ECOL, V4, P224, DOI 10.1093/beheco/4.3.224; FAIRBAIRN DJ, 1990, AM NAT, V136, P61, DOI 10.1086/285082; FAIRBAIRN DJ, 1994, AM NAT, V144, P101, DOI 10.1086/285663; FALCONER DS, 1989, INTRO QUANTITATIVE G; FIRKO M, 1986, THESIS U PENNSYLVANI; GEBHARDT MD, 1988, J EVOLUTION BIOL, V1, P335, DOI 10.1046/j.1420-9101.1988.1040335.x; GEBHARDT MD, 1993, J EVOLUTION BIOL, V6, P1, DOI 10.1046/j.1420-9101.1993.6010001.x; GOTTHARD K, 1994, OECOLOGIA, V99, P281, DOI 10.1007/BF00627740; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; Hegmann J.P., 1982, P177; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; JOHNSON MD, 1990, J KANSAS ENTOMOL SOC, V63, P414; KASULE FK, 1991, HEREDITY, V66, P281, DOI 10.1038/hdy.1991.35; KLINGENBERG CP, 1993, EVOLUTION, V47, P1834, DOI 10.1111/j.1558-5646.1993.tb01273.x; KLINGENBERG CP, IN PRESS INFLUENCE G; KUSANO T, 1982, RES POPUL ECOL, V24, P329, DOI 10.1007/BF02515580; LAMB RJ, 1992, ENVIRON ENTOMOL, V21, P10, DOI 10.1093/ee/21.1.10; LARSSON FK, 1989, DEUT ENTOMOL Z, V36, P329; Leather SR, 1987, FUNCT ECOL, V1, P331, DOI 10.2307/2389789; LEATHER SR, 1988, OIKOS, V51, P386, DOI 10.2307/3565323; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; MARSHALL LD, 1990, CAN J ZOOL, V68, P44, DOI 10.1139/z90-008; MCLAIN DK, 1991, ANN ENTOMOL SOC AM, V84, P174, DOI 10.1093/aesa/84.2.174; MESSINA FJ, 1993, HEREDITY, V71, P623, DOI 10.1038/hdy.1993.187; Nijhout H. F., 1994, INSECT HORMONES; NIJHOUT HF, 1979, J INSECT PHYSIOL, V25, P277, DOI 10.1016/0022-1910(79)90055-6; NIJHOUT HF, 1984, J INSECT PHYSIOL, V30, P629, DOI 10.1016/0022-1910(84)90047-7; ORESKES N, 1994, SCIENCE, V263, P641, DOI 10.1126/science.263.5147.641; ORZACK SH, 1994, AM NAT, V143, P361, DOI 10.1086/285608; PALMER JO, 1986, EVOLUTION, V40, P767, DOI 10.1111/j.1558-5646.1986.tb00536.x; PANIZZI AR, 1993, ENTOMOL EXP APPL, V68, P109, DOI 10.1111/j.1570-7458.1993.tb01694.x; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Peters R.H., 1983, P1; PRUESS KP, 1983, ENVIRON ENTOMOL, V12, P613, DOI 10.1093/ee/12.3.613; REEVE HK, 1993, Q REV BIOL, V68, P1, DOI 10.1086/417909; Reiss M. J., 1989, ALLOMETRY GROWTH REP; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Roff Derek A., 1992; ROWE L, 1990, CAN J ZOOL, V68, P399, DOI 10.1139/z90-057; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; RUBENSTEIN DI, 1984, AM ZOOL, V24, P345; *SAS I INC, 1988, SAS STAT US GUID; Sehnal F, 1985, COMPREHENSIVE INSECT, V2, P1; SHAW RG, 1987, EVOLUTION, V41, P812, DOI 10.1111/j.1558-5646.1987.tb05855.x; SLANSKY F, 1980, PHYSIOL ENTOMOL, V5, P73, DOI 10.1111/j.1365-3032.1980.tb00212.x; SMITH JM, 1985, Q REV BIOL, V60, P265, DOI 10.1086/414425; SOLBRECK C, 1989, OIKOS, V55, P387, DOI 10.2307/3565599; SOTA T, 1993, ANN ENTOMOL SOC AM, V86, P450, DOI 10.1093/aesa/86.4.450; SPENCE JR, 1980, CAN J ZOOL, V58, P1813, DOI 10.1139/z80-248; SPENCE JR, 1983, J ANIM ECOL, V52, P497, DOI 10.2307/4568; SPENCE JR, 1994, ANNU REV ENTOMOL, V39, P101; SPENCE JR, 1986, OECOLOGIA, V70, P68, DOI 10.1007/BF00377112; SPENCE JR, 1989, CAN J ZOOL, V67, P2432, DOI 10.1139/z89-344; SPENCE JR, 1981, ECOLOGY, V62, P1505, DOI 10.2307/1941507; SPENCE JR, 1996, IN PRESS OIKOS; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vepsalainen K., 1978, P218; WOODRING JP, 1983, J INSECT PHYSIOL, V29, P461, DOI 10.1016/0022-1910(83)90075-6; YAFUSO M, 1994, ECOL ENTOMOL, V19, P65, DOI 10.1111/j.1365-2311.1994.tb00391.x; ZIMMERMANN M, 1989, OECOLOGIA, V80, P187, DOI 10.1007/BF00380149 87 115 121 0 33 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0307-6946 1365-2311 ECOL ENTOMOL Ecol. Entomol. FEB 1997 22 1 55 68 10.1046/j.1365-2311.1997.00031.x 14 Entomology Entomology WJ174 WOS:A1997WJ17400008 2018-11-12 J Gogin, B; Loucky, J Gogin, B; Loucky, J Plasticity, political economy, and physical growth status of Guatemala Maya children living in the United States AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article migration; refugees; parental investment; life history theory NUTRITIONAL-STATUS; COMMUNITY Migration of Maya refugees to the United States since the late 1970s affords the opportunity to study the consequences of life in a new environment on the growth of Maya children. The children of this study live in Indiantown, Florida, and Los Angeles, California. Maya children between 4 and 14 years old (n = 240) were measured for height, weight, fatness, and muscularity. Overall, compared with reference data for the United States, the Maya children are, on average, healthy and well nourished. They are taller and heavier and carry more fat and muscle mass than Maya children living in a village in Guatemala. However, they are shorter, on average, than children of black, Mexican-American, and white ethnicity living in Indiantown. Children of Maya immigrants born in the United States tend to be taller than immigrant children born in Guatemala or Mexico. Families that invest economic and social resources in their children tend to have taller children. More economically successful families have taller children. Migration theory and political economy theory from the social sciences are combined with plasticity theory and life history theory (parental investment) from biology to interpret these data. (C) 1997 Wiley-Liss, Inc. WESTERN WASHINGTON UNIV, DEPT ANTHROPOL, BELLINGHAM, WA 98225 USA Gogin, B (reprint author), UNIV MICHIGAN, DEPT BEHAV SCI, DEARBORN, MI 48128 USA. ADAMS RN, 1970, CRUCIFIXION POWER; ALVARADO WR, 1995, TZOLKIN MAS QUE CALE; ASHBRANNER B, 1986, CHILDREN MAYA; Boas F, 1912, AM ANTHROPOL, V14, P530, DOI 10.1525/aa.1912.14.3.02a00080; Boas Franz, 1940, RACE LANGUAGE CULTUR; BOGIN B, 1984, HUM BIOL, V56, P527; Bogin B., 1988, Biological aspects of human migration, P90; BOGIN B, 1990, BIOSCIENCE, V40, P16, DOI 10.2307/1311235; BOGIN B, 1989, AM J PHYS ANTHROPOL, V78, P194; Bogin B, 1988, PATTERNS HUMAN GROWT; BOGIN B, 1995, HUMAN VARIABILITY PL, P46; BOGIN B, 1992, AM J PHYS ANTHROPOL, V1, P103; BOSSERT TJ, 1987, GUATEMALA HLTH SECTO; Brown JL, 1996, SCI AM, V274, P38, DOI 10.1038/scientificamerican0296-38; BURNS A, 1989, MIGRATION WORLD, V27, P20; Burns A. F., 1993, MAYA EXILE; CAMERON N, 1984, MEASUREMENT HUMAN GR; Crile GW, 1939, J NUTR, V18, P369; DIAMOND J, 1992, DISCOVER, V13, P70; DOWNING TE, 1979, MIGRATION FRONTIERS, P159; Fogel RW, 1986, HUMAN GROWTH COMPREH, P263, DOI DOI 10.1007/978-1-4615-7198-8_13; FRISANCHO AR, 1981, AM J CLIN NUTR, V34, P2540; Frisancho AR, 1990, ANTHROPOMETRIC STAND; Garn S. M., 1984, HUMAN GROWTH DEV, P59; GARN SM, 1987, J NUTR, V117, P817; Goff CW, 1948, AM J PHYS ANTHROP-NE, V6, P429, DOI 10.1002/ajpa.1330060413; Goldstein MS., 1943, DEMOGRAPHIC BODILY C; GURNEY JM, 1973, AM J CLIN NUTR, V26, P912; HAMILL PVV, 1977, VITAL HLTH STAT SERI, V11, P165; Handy J., 1984, GIFT DEVIL HIST GUAT; JACKSON J.A., 1969, MIGRATION; JOHNSON CL, 1981, VITAL HLTH STAT, V11, P219; JOHNSTON FE, 1985, AM J PHYS ANTHROPOL, V68, P215, DOI 10.1002/ajpa.1330680208; KOHPAHL G, 1994, SELECTED PAPERS REFU, V3, P153; KOMLOS J, 1994, STATURE LIVING STAND; LASKER GABRIEL WARD, 1952, HUMAN BIOL, V24, P262; LASKER GW, 1969, SCIENCE, V166, P1480, DOI 10.1126/science.166.3912.1480; Lasker GW, 1995, HUMAN VARIABILITY PL, P110; LEATHERMAN TL, 1996, AM J PHYS ANTHROPOL, V102, P1; LeVine R.A., 1977, CULTURE INFANCY VARI, P15; LOUCKY J, 1988, THESIS ANN ARBOR; Loucky J, 1996, CENTRAL AM CALIFORNI, P30; LOUCKY J, 1993, CONT ANTHR, P228; Manz Beatriz, 1988, REFUGEES HIDDEN WAR; MARTORELL R, 1989, HUM ORGAN, V48, P15, DOI 10.17730/humo.48.1.x20u5450x51h5211; MARTORELL R, 1976, AM J CLIN NUTR, V29, P46; MARTORELL R, 1984, PEDIATRICS, V84, P864; MENDEZ J, 1963, HUM BIOL, V35, P457; NAJJAR MF, 1989, VITAL HLTH STAT, V11, P239; ORLOVE BS, 1980, ANNU REV ANTHROPOL, V9, P253; PELLETIER DL, 1991, MONOGRAPH CORNELL FO, V12; PELTO GH, 1989, HUM ORGAN, V48, P11, DOI 10.17730/humo.48.1.eu7v81qn71w172tu; PLATTNER S, 1974, HUM ECOL, V2, P75, DOI 10.1007/BF01558114; Ravenstein E., 1885, J ROYAL STATISTICAL, V48, P167, DOI [DOI 10.2307/2979181, 10.2307/2979181]; ROBERTS DF, 1985, NUTRITIONAL ADAPTATI, P45; Roche AF, 1979, MONOGRAPHS SOC RES C, V44; SCHELL LM, 1986, HUM ORGAN, V45, P321, DOI 10.17730/humo.45.4.100781062387g4v7; Seckler D, 1980, W J AGR EC, V5, P219; Seckler D, 1982, NEWER CONCEPTS NUTR, P127; Shapiro HL., 1939, MIGRATION ENV; SHATTUCK DC, 1931, AM J PHYSIOL, V96, P518; Smith Carol, 1988, HARVEST VIOLENCE MAY, P206; SPURR GB, 1983, YEARB PHYS ANTHROPOL, V26, P1; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEBOR A, 1992, THESIS U FLORIDA GAI; Steggerda M, 1932, AM J PHYSIOL, V100, P274; Tanner J. M., 1981, HIST STUDY HUMAN GRO; TOBIAS PV, 1985, J HUM EVOL, V14, P347, DOI 10.1016/S0047-2484(85)80041-5; Tzian Leopoldo, 1994, MAYAS LADINOS CIFRAS; ULIJASZEK SJ, 1993, NUTR ANTHR PROSPECTS; van Wieringen J.C., 1986, HUMAN GROWTH, V3, P307; Warren Kay, 1989, SYMBOLISM SUBORDINAT; WATERLOW JC, 1977, B WORLD HEALTH ORGAN, V55, P489; Watts E. S, 1975, BIOSOCIAL INTERRELAT; WELLMEIER N, 1994, SELECTED PAPERS REFU, V3, P9 75 33 34 0 10 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 1096-8644 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. JAN 1997 102 1 17 32 16 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology WF864 WOS:A1997WF86400003 9034036 2018-11-12 J Iwasa, Y; Kubo, T Iwasa, Y; Kubo, T Optimal size of storage for recovery after unpredictable disturbances EVOLUTIONARY ECOLOGY English Article storage; optimal growth schedule; dynamic programming; disturbance; recovery; unpredictability; life history theory OPTIMAL-GROWTH SCHEDULE; PLANT ANTIHERBIVORE DEFENSE; RESOURCE-AVAILABILITY; AGROPYRON BUNCHGRASSES; ENERGY ALLOCATION; PERENNIAL PLANTS; HERBIVORY; STRATEGIES; DEFOLIATION; FIRE Terrestrial plants often live in environments in which above-ground photosynthetic organs (production parts) are suddenly removed by unpredictable disturbances, such as fire, frost, desiccation, pathogen attack, breakage by wind and trampling, or herbivory by insects and mammals. We study the optimal growth schedule for a plant having a below-ground storage organ that is used for recovery (or regrowth) of photosynthetic organs after disturbances. We assume the following: (1) the daily production rate increases with the production part size, but saturates for large size due to shading and local resource depletion, (2) disturbances occur randomly and remove all the aerial parts, (3) plants are finally killed by fatal disturbances that also occur randomly and (4) the plant chooses the pattern of growth, reproduction, storage and recovery after disturbances by reallocation of stored material to maximize the total lifetime reproductive success. The model is analysed by stochastic dynamic programming. The results are as follows: (1) the ratio of storage size to production part size (SIF ratio) is large if the longevity is large and if the disturbance rate is large but a little smaller than the productivity coefficient, (2) the SIF ratio is larger for mature plants than for small immature plants, (3) after disturbances, the above-ground production part recovers relatively quickly, but reproductive activity is depressed until storage size recovers and (4) the variations over time and between habitats differing in disturbance frequency are larger for storage size and for reproductive activity than for production part size. These tendencies are more pronounced for a linear production function (with initial Linear increase followed by a sudden stop), but less so for a hyperbolic production function (with a gradually decreasing slope). We also discuss the growth and regrowth behaviour of plants adapted to a disturbance frequency growing under one different disturbance frequency. Iwasa, Y (reprint author), KYUSHU UNIV,FAC SCI,DEPT BIOL,FUKUOKA 81281,JAPAN. Iwasa, Yoh/G-5368-2010; Kubo, Takuya/A-3414-2012 Iwasa, Yoh/0000-0003-0691-1852; Kubo, Takuya/0000-0001-6202-9624 BAZELY DR, 1991, OIKOS, V61, P327, DOI 10.2307/3545240; BELSKY AJ, 1993, EVOL ECOL, V7, P109, DOI 10.1007/BF01237737; BRYANT JP, 1983, OIKOS, V40, P357, DOI 10.2307/3544308; CALDWELL MM, 1981, OECOLOGIA, V50, P14, DOI 10.1007/BF00378790; CATES RG, 1975, ECOLOGY, V56, P391, DOI 10.2307/1934969; CHANDER D, 1983, FIRE FORESTRY, V1; CHAPIN FS, 1990, ANNU REV ECOL SYST, V21, P423, DOI 10.1146/annurev.ecolsys.21.1.423; COHEN D, 1967, J THEOR BIOL, V33, P299; COLEY PD, 1985, SCIENCE, V230, P895, DOI 10.1126/science.230.4728.895; CRAWLEY MJ, 1983, HERBIVORY DYNAMICS A; DNACKWERTS JE, 1987, ANN BOT, V59, P55; FEENY P, 1970, ECOLOGY, V51, P565, DOI 10.2307/1934037; FLINN MA, 1977, CAN J BOT, V55, P2550, DOI 10.1139/b77-291; GILL AM, 1976, J APPL ECOL, V13, P195, DOI 10.2307/2401938; Gill AM, 1981, FIRE AUSTR BIOTA, P243; Gulmon S. L., 1986, On the economy of plant form and function, P681; HANES TL, 1967, ECOLOGY, V48, P259, DOI 10.2307/1933108; Harper J. L., 1977, POPULATION BIOL PLAN; HIRABUKI N, 1987, ECOLOGY FOREST FIRE, P231; IWASA Y, 1984, THEOR POPUL BIOL, V26, P205, DOI 10.1016/0040-5809(84)90030-3; IWASA Y, 1995, J THEOR BIOL, V172, P33, DOI 10.1006/jtbi.1995.0003; IWASA Y, 1984, THEOR POPUL BIOL, V25, P78, DOI 10.1016/0040-5809(84)90007-8; Iwasa Y, 1996, THEOR POPUL BIOL, V50, P124, DOI 10.1006/tpbi.1996.0026; IWASA Y, 1989, AM NAT, V133, P480, DOI 10.1086/284931; IWASA Y, 1991, THEOR POPUL BIOL, V40, P246, DOI 10.1016/0040-5809(91)90055-K; Iwasa Y, 1991, BEHAV ECOL, V2, P56, DOI 10.1093/beheco/2.1.56; KIKUCHI T, 1989, FIRE ECOLOGY, P59; KIKUZAWA K, 1979, Japanese Journal of Ecology, V29, P111; KING D, 1983, ECOLOGY, V64, P16, DOI 10.2307/1937324; KULMAN HM, 1971, ANNU REV ENTOMOL, V16, P289, DOI 10.1146/annurev.en.16.010171.001445; LACEY CJ, 1974, AUST J BOT, V22, P29, DOI 10.1071/BT9740029; LEON JA, 1976, J THEOR BIOL, V60, P301, DOI 10.1016/0022-5193(76)90062-X; LEWINTON RC, 1969, P NATL ACAD SCI USA, V62, P1056; MANGEL M, 1988, DYNAMIC MODELLING BE; MARQUIS RJ, 1984, SCIENCE, V226, P537, DOI 10.1126/science.226.4674.537; MASCHINSKI J, 1989, AM NAT, V134, P1, DOI 10.1086/284962; MCNAMARA JM, 1987, BEHAV ECOL SOCIOBIOL, V20, P399, DOI 10.1007/BF00302982; MCNAUGHTON SJ, 1979, AM NAT, V113, P691, DOI 10.1086/283426; MCNAUGHTON SJ, 1983, OIKOS, V40, P329, DOI 10.2307/3544305; MESLEARD F, 1989, OECOLOGIA, V80, P127, DOI 10.1007/BF00789941; MULLETTE KJ, 1978, AUST J BOT, V26, P9, DOI 10.1071/BT9780009; NAVEH Z, 1975, Vegetatio, V29, P199, DOI 10.1007/BF02390011; NISHITANI S, 1985, STUDIES PLANT ADAPTA, P33; NOWAK RS, 1984, OECOLOGIA, V61, P311, DOI 10.1007/BF00379627; OKUBO T, 1977, WORLD REV ANIM PROD, V13, P45; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; PUGLIESE A, 1988, THEOR POPUL BIOL, V34, P215, DOI 10.1016/0040-5809(88)90022-6; PUGLIESE A, 1990, EVOL ECOL, V4, P75, DOI 10.1007/BF02270717; PUGLIESE A, 1988, BIOMATHEMATICS RELAT, P223; PULLIN AS, 1989, OIKOS, V54, P275, DOI 10.2307/3565285; RICHARDS JH, 1984, OECOLOGIA, V64, P21, DOI 10.1007/BF00377538; Rosenthal G., 1991, HERBIVORES THEIR INT; RYLE GJA, 1975, ANN BOT-LONDON, V39, P297, DOI 10.1093/oxfordjournals.aob.a084943; SASAKI A, 1991, THEOR POPUL BIOL, V39, P201, DOI 10.1016/0040-5809(91)90036-F; SHIYOMI M, 1986, ECOL MODEL, V32, P119, DOI 10.1016/0304-3800(86)90021-9; SHIYOMI M, 1982, B NAT GRASSL RES I, V22, P27; SUZUKI N, 1989, Ecological Research, V4, P373, DOI 10.1007/BF02348456; SUZUKI N, 1991, APPL ENTOMOL ZOOL, V26, P278; Suzuki Nobuhiko, 1994, Plant Species Biology, V9, P31, DOI 10.1111/j.1442-1984.1994.tb00079.x; TAKAHASHI S, 1984, B NAT GRASSL RES I, V28, P1; TAKATSUKI S, 1987, ECOLOGY FOREST FIRE, P255; TAKEHARA A, 1987, ECOLOGY FOREST FIRE, P223; TAYLOR HM, 1974, THEOR POPUL BIOL, V5, P104, DOI 10.1016/0040-5809(74)90053-7; TULJAPURKAR S, 1990, POPULATION DYNAMICS; VAIL SG, 1992, AM NAT, V139, P1, DOI 10.1086/285309; VANDERMEIJDEN E, 1990, FUNCT ECOL, V4, P597; VANDERMEIJDEN E, 1988, OIKOS, V51, P355, DOI 10.2307/3565318; VINCENT TL, 1980, THEOR POPUL BIOL, V17, P215, DOI 10.1016/0040-5809(80)90007-6; WEIN RW, 1973, ECOLOGY, V54, P845, DOI 10.2307/1935679; Whitham TG, 1991, PLANT ANIMAL INTERAC; Wright HA, 1982, FIRE ECOLOGY US SO C; YAMAMURA N, 1995, ECOL RES, V10, P19, DOI 10.1007/BF02347652; ZAMMIT C, 1987, ECOLOGY, V68, P1984, DOI 10.2307/1939889; ZU Y, 1990, ENERGY ECOLOGY REV 74 154 164 2 37 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. JAN 1997 11 1 41 65 10.1023/A:1018483429029 25 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity WH042 WOS:A1997WH04200003 2018-11-12 J Hill, EM; Ross, LT; Low, BS Hill, EM; Ross, LT; Low, BS The role of future unpredictability in human risk-taking HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article community college students; family unreliability; future unpredictability beliefs; life expectancy; life history theory; risk-taking; socioeconomic resources EVOLUTIONARY PERSPECTIVE; REPRODUCTIVE STRATEGIES; DEMOGRAPHIC-TRANSITION; PARENTAL INVESTMENT; NATURAL-SELECTION; SENSATION SEEKING; SELF-EFFICACY; SOCIAL-CLASS; LIFE; BEHAVIOR Models of risk-taking as used in the social sciences may be improved by including concepts from life history theory, particularly environmental unpredictability and life expectancy. Community college students completed self-report questionnaires measuring these constructs along with several well-known correlates. The frequency of risk-taking was higher for those with higher future unpredictability beliefs and shorter lifespan estimates (as measured by the Future Lifespan Assessment developed for this study), and unpredictability beliefs remained significant after accounting for standard predictors, such as sex and temperament. The results demonstrate the usefulness of applying concepts from life history theory to enhance our understanding of human behavior. UNIV MICHIGAN, ANN ARBOR, MI 48109 USA Hill, EM (reprint author), UNIV DETROIT MERCY, DEPT PSYCHOL, 8200 W OUTER DR, DETROIT, MI 48219 USA. American Psychiatry Association, 1994, DIAGN STAT MAN MENT; Antonovsky A, 1987, UNRAVELING MYSTERY H; APTER A, 1993, ACTA PSYCHIAT SCAND, V87, P1, DOI 10.1111/j.1600-0447.1993.tb03321.x; BARBER N, UNPUB PARENTAL INVES; BELL CC, 1993, PSYCHIATRY, V56, P46; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BERECZKEI T, 1993, ETHOL SOCIOBIOL, V14, P71, DOI 10.1016/0162-3095(93)90008-6; BIGLAN A, 1990, J BEHAV MED, V13, P245, DOI 10.1007/BF00846833; BOONE JL, 1986, AM ANTHROPOL, V88, P859; BOONE JL, 1988, HUMAN REPRODUCTIVE B, P201; BORGERHOFF MM, 1992, EVOLUTIONARY ECOLOGY, P339; Boswell J., 1990, KINDNESS STRANGERS A; Bromiley P, 1992, RISK TAKING BEHAV, P87; Bugos P., 1984, INFANTICIDE COMP EVO, P503; Burton L M, 1990, Hum Nat, V1, P123, DOI 10.1007/BF02692149; BUSEMEYER JR, 1993, PSYCHOL REV, V100, P432, DOI 10.1037/0033-295X.100.3.432; BUTLER R, 1986, BRIT J EDUC PSYCHOL, V56, P51, DOI 10.1111/j.2044-8279.1986.tb02645.x; CAMPBELL A, 1995, ETHOL SOCIOBIOL, V16, P99, DOI 10.1016/0162-3095(94)00072-F; CASTRO FG, 1989, HEALTH PSYCHOL, V8, P107; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHISHOLM JS, ATTACHMENT TIME PREF; COOKSEY EC, 1990, DEMOGRAPHY, V27, P207, DOI 10.2307/2061449; DALY M, 1985, ETHOL SOCIOBIOL, V6, P197, DOI 10.1016/0162-3095(85)90012-3; DALY M, 1980, J MARRIAGE FAM, V42, P277, DOI 10.2307/351225; Daly M., 1987, CHILD ABUSE NEGLECT, P201; Daly M., 1988, HOMICIDE; DALY M, 1983, SEX EVOLUTION BEHAVI; Daly M., 1984, INFANTICIDE COMP EVO, P487; Darwin C.R., 1871, DESCENT MAN SELECTIO; DICKEMANN M, 1986, ANTHR C SER OCT 7 U; DONOVAN JE, 1985, J CONSULT CLIN PSYCH, V53, P890, DOI 10.1037/0022-006X.53.6.890; DRAPER P, 1990, J PERS, V58, P141, DOI 10.1111/j.1467-6494.1990.tb00911.x; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; DRYFOOS JG, 1991, SELF REGULATORY BEHA, P23; DURANT RH, 1994, AM J PUBLIC HEALTH, V84, P612, DOI 10.2105/AJPH.84.4.612; EASTERLIN RA, 1980, BIRTH FORTUNE IMPACT; EMSHOFF J G, 1989, Prevention in Human Services, V7, P225; FARLEY F, 1991, SELF REGULATORY BEHA, P371; Fisher R. A., 1958, GENETICAL THEORY NAT; Fiske S. T., 1991, SOCIAL COGNITION; FRANK SA, 1990, ANNU REV ECOL SYST, V21, P13, DOI 10.1146/annurev.ecolsys.21.1.13; Fuchs Rachel Ginnis, 1984, ABANDONED CHILDREN F; FURBY L, 1992, DEV REV, V12, P1, DOI 10.1016/0273-2297(92)90002-J; GARCIA J, 1974, SCIENCE, V185, P824, DOI 10.1126/science.185.4154.824; GARDNER W, 1993, ADOLESCENT RISK TAKI, P66; GARDNER W, 1991, ADOLESCENTS AIDS EPI, P17; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; GERONIMUS AT, 1987, POPUL DEV REV, V13, P245, DOI 10.2307/1973193; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037//0022-3514.52.3.511; HAZAN C, 1990, J PERS SOC PSYCHOL, V59, P270, DOI 10.1037//0022-3514.59.2.270; Hill E. M., 1990, J BEHAV EC, V19, P81; HILL EM, 1992, ETHOL SOCIOBIOL, V13, P35, DOI 10.1016/0162-3095(92)90005-O; Hill EM, 1997, ADDICTION, V92, P583; HILL EM, 1994, ETHOL SOCIOBIOL, V15, P323, DOI 10.1016/0162-3095(94)90006-X; HILTON ME, 1987, J STUD ALCOHOL, V48, P515, DOI 10.15288/jsa.1987.48.515; HORN HS, 1984, BEHAVIORAL ECOLOGY E, P279; HRDY SB, 1992, ETHOL SOCIOBIOL, V13, P409, DOI 10.1016/0162-3095(92)90011-R; HUNT DK, 1992, J GEN INTERN MED, V7, P573, DOI 10.1007/BF02599194; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; KRAFT JM, 1994, DEMOGRAPHY, V31, P593, DOI 10.2307/2061793; KURTZ L, 1993, J DIVORCE REMARRIAGE, V20, P75; Lancaster J. B., 1994, SEXUALITY LIFE COURS, P39; LANCASTER JB, 1987, PARENTING LIFE SPAN, P187; LEIGH JP, 1993, INT J AGING HUM DEV, V36, P139, DOI 10.2190/ELMX-WXGJ-7HQN-AN18; Lessells C.M., 1991, P32; LOMRANZ J, 1983, INT J PSYCHOL, V18, P407, DOI 10.1080/00207598308247490; LOW B, 1993, EVOLUTIONARY ANTHR, P106; LOW B, 1988, CURR ANTHROPOL, V29, P563; LOW BS, 1990, AM ANTHROPOL, V92, P457, DOI 10.1525/aa.1990.92.2.02a00130; LOW BS, 1994, HUM NATURE-INT BIOS, V5, P223, DOI 10.1007/BF02692153; LOW BS, 1992, ETHOL SOCIOBIOL, V13, P463, DOI 10.1016/0162-3095(92)90013-T; LOW BS, 1991, ETHOL SOCIOBIOL, V12, P411, DOI 10.1016/0162-3095(91)90024-K; MACCOBY EE, 1991, CHILD DEV, V62, P676, DOI 10.2307/1131168; MANDLER G, 1985, COGNITIVE PSYCHOL ES; NELKIN D, 1970, SOC PROBL, V17, P472, DOI 10.1525/sp.1970.17.4.03a00060; OLSON SL, 1990, J ABNORM CHILD PSYCH, V18, P317, DOI 10.1007/BF00916568; OSGOOD DW, 1988, AM SOCIOL REV, V53, P81, DOI 10.2307/2095734; PIUTCHIK R, 1989, PROGR NEUROPSYCHOP S, V13, P23; PIUTCHIK R, 1994, IMPULSIVITY AGGRESSI, P7; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; RANSEL DL, 1988, MOTHERS MISERY CHILD; ROBINS LN, 1985, AM J ORTHOPSYCHIAT, V55, P27, DOI 10.1111/j.1939-0025.1985.tb03419.x; Roff Derek A., 1992; ROGERS AR, 1994, AM ECON REV, V84, P460; ROSS LT, UNPBU FAMILY UNPREDI; ROSS LT, IN PRESS INT J ADDIC; ROSS LT, UNPUB CHILDHOOD UNPR; ROTTER JB, 1966, PSYCHOL MONOGRAPHS, V80; Rubenstein D.I., 1982, P91; RYDELIUS PA, 1983, ACTA PSYCHIAT SCAND, V68, P368, DOI 10.1111/j.1600-0447.1983.tb07019.x; SCHNEIDER SL, 1986, J EXP PSYCHOL HUMAN, V12, P535, DOI 10.1037/0096-1523.12.4.535; SHERER M, 1982, PSYCHOL REP, V51, P663, DOI 10.2466/pr0.1982.51.2.663; SHERWOOD J, 1988, POVERTY 18 CENTURY S; Smith E. A., 1990, RISK UNCERTAINTY TRI, P167; Stearns S. C., 1992, EVOLUTION LIFE HIST; STRATHMAN A, 1994, J PERS SOC PSYCHOL, V66, P742, DOI 10.1037/0022-3514.66.4.742; SURBEY MK, 1990, MG PRIMATOL, V13, P11; TORRES A, 1988, FAM PLANN PERSPECT, V20, P169, DOI 10.2307/2135792; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; von Newmann J., 1947, THEORY GAMES EC BEHA; WEARY G, 1994, J PERS SOC PSYCHOL, V67, P308, DOI 10.1037/0022-3514.67.2.308; WEINRICH JD, 1977, BEHAV ECOL SOCIOBIOL, V2, P91, DOI 10.1007/BF00361896; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; WRIGLEY EA, 1981, POPULATION HIST; Yates J. F., 1990, JUDGMENT DECISION MA; Yates J. F., 1992, RISK TAKING BEHAV, P1; ZIMBARDO PG, 1990, STANFORD TIME PERSPE; ZUCKERMAN M, 1971, J CONSULT CLIN PSYCH, V36, P45, DOI 10.1037/h0030478; ZUCKERMAN M, 1980, PSYCHOL BULL, V88, P187, DOI 10.1037/0033-2909.88.1.187; Zuckerman M., 1979, EMOTIONS PERSONALITY, P163; Zuckerman M., 1994, BEHAV EXPRESSIONS BI 115 87 90 0 14 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 1997 8 4 287 325 10.1007/BF02913037 39 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences YD496 WOS:A1997YD49600001 26197163 2018-11-12 J MacDonald, K MacDonald, K Life history theory and human reproductive behavior - Environmental/contextual influences and heritable variation HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article human development; intelligence; life history theory; reproductive strategies FAMILY ENVIRONMENT; EVOLUTIONARY ANALYSIS; CHILDHOOD EXPERIENCE; RACE DIFFERENCES; 5-FACTOR MODEL; UNITED-STATES; PERSONALITY; CHILDBEARING; STRATEGIES; ADJUSTMENT The purpose of this article is to develop a model of life history theory that incorporates environmental influences, contextual influences, and heritable variation. I argue that physically or psychologically stressful environments delay maturation and the onset of reproductive competence. The social context is also important, and here I concentrate on the opportunity for upward social mobility as a contextual influence that results in delaying reproduction and lowering fertility in the interest of increasing investment in children. I also review evidence that variation in life history strategies is influenced by genetic variation as well. Finally, I show that cultural shifts in the social control of sexual behavior have had differential effects on individuals predisposed to high-versus low-investment reproductive strategies. MacDonald, K (reprint author), CALIF STATE UNIV LONG BEACH, DEPT PSYCHOL, LONG BEACH, CA 90840 USA. ABERNETHY V, 1993, ECOL ECON, V8, P235, DOI 10.1016/0921-8009(93)90060-J; Alderman G, 1992, MODERN BRIT JEWRY; Barkow J. H., 1989, DARWIN SEX STATUS BI; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Betzig L, 1986, DESPOTISM DIFFERENTI; BLAU ZS, 1969, GHETTO ESSAYS JEWISH, P57; Bonner J., 1980, EVOLUTION CULTURE AN; Bradley RH, 1984, HOME ENV EARLY COGNI, P5; *BUR CENS, 1992, STAT ABSTR US; BUSS DM, 1994, EVOLUTION DESIRE; Calabrese L H, 1983, Phys Sportsmed, V11, P86, DOI 10.1080/00913847.1983.11708458; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; COHEN SM, 1986, JEWISH FAMILY MYTHS, P221; COLEMAN DA, 1990, BIOSOCIAL ASPECTS SO, P59; COLEMAN O, 1992, BRIT POPULATION; CONGER RD, 1992, CHILD DEV, V63, P526, DOI 10.2307/1131344; DELLAPERGOLA S, 1986, JEWISH FAMISH MYTHS, P76; DIAMOND J, 1986, ANNU REV ECOL SYST, V17, P17, DOI 10.1146/annurev.es.17.110186.000313; DIGMAN JM, 1990, ANNU REV PSYCHOL, V41, P417, DOI 10.1146/annurev.psych.41.1.417; DORNBUSCH SM, 1985, CHILD DEV, V56, P326, DOI 10.2307/1129723; DORNBUSCH SM, 1988, FEMINISM CHILDREN NE, P274; Efron J. M, 1994, DEFENDERS RACE JEWIS; ELDER GH, 1981, CHILDREN GREAT DEPRE; FISCHBEIN S, 1977, ACTA GENET MED GEMEL, V26, P151, DOI 10.1017/S0001566000009946; FISCHBEIN S, 1977, ANN HUM BIOL, V4, P417, DOI 10.1080/03014467700002401; Fisher H, 1992, ANATOMY LOVE; Flinn MV, 1996, HUM NATURE-INT BIOS, V7, P125, DOI 10.1007/BF02692108; FLINN MV, 1995, CURR ANTHROPOL, V36, P854, DOI 10.1086/204444; Flinn MV, 1986, ECOLOGICAL ASPECTS S, P217; Frankel Jona-than, 1981, PROPHECY POLITICS SO; FURSTENBERG FF, 1991, FAM RELAT, V40, P127, DOI 10.2307/585470; FURSTENBERG FF, 1989, AM PSYCHOL, V44, P313, DOI 10.1037/0003-066X.44.2.313; GOLDSTEIN S, 1981, MODERN JEWISH FERTIL, P160; Gould S.J., 1977, ONTOGENY PHYLOGENY; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.2307/1131582; GRUENWALD PETER, 1967, LANCET, P1026; Guttentag M, 1983, TOO MANY WOMEN SEX R; HAJNAL J., 1983, FAMILY FORMS HIST EU, P65; Hajnal J., 1965, POPULATION HIST ESSA, P101; Herrnstein RJ, 1994, BELL CURVE INTELLIGE; HERZ FM, 1982, ETHNICITY FAMILY THE, P364; Jerison H. J., 1973, EVOLUTION BRAIN INTE; Johanson D., 1981, LUCY BEGINNINGS HUMA; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; Kleiman D.G., 1981, P332; KLEIMAN DG, 1977, Q REV BIOL, V52, P39, DOI 10.1086/409721; KNODE J, 1974, DECLINE FERTILITY GE; LANCASTER JB, 1987, PARENTING LIFE SPAN, P187; Laslett P., 1983, FAMILY FORMS HIST EU, P513; LENZ F, 1931, HUM HERED, P565; LERNER R, 1984, HUMAN PLASTICITY; Lewis Bernard, 1984, JEWS ISLAM; LIEBERMAN S, 1978, MIDSTREAM, V24, P9; LINDEMANN AS, 1991, JEW ACCUSED 3 ANTISE; LOVEJOY CO, 1981, SCIENCE, V211, P341, DOI 10.1126/science.211.4480.341; LYNN R, 1987, PERS INDIV DIFFER, V8, P813, DOI 10.1016/0191-8869(87)90135-8; Lynn R., 1996, DYSGENICS GENETIC DE; MACDONALD K, 1995, POLIT LIFE SCI, V14, P3; MACDONALD K, 1985, DEV REV, V5, P99, DOI 10.1016/0273-2297(85)90006-1; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; MACDONALD K, 1992, CHILD DEV, V63, P753, DOI 10.2307/1131231; MACDONALD K, 1991, ETHOL SOCIOBIOL, V12, P449, DOI 10.1016/0162-3095(91)90025-L; MacDonald K., 1993, PARENT CHILD PLAY DE, P113; MACDONALD K, 1988, SOCIAL PERSONALITY D; MACDONALD KB, 1994, PEOPLE THAT SHALL DW; MACFARLANE A, 1986, MARRIAGE LOVE ENGLAN; MACFARLANE A, 1980, BASTARDY ITS COMP HI, P71; MARTIN NG, 1977, J BIOSOC SCI, V9, P91; MCLANAHAN S, 1989, J MARRIAGE FAM, V51, P557, DOI 10.2307/352157; MILLER AKH, 1977, ANN HUM BIOL, V4, P253, DOI 10.1080/03014467700007142; MILLER EM, 1994, MANKIND QUART, V34, P297; MILLER EM, 1994, PERS INDIV DIFFER, V17, P227, DOI 10.1016/0191-8869(94)90029-9; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; MOSS JJ, 1964, ACTA SOCIOL, V8, P98; NORTON AJ, 1992, CURRENT POPULATION R; PLOMIN R, 1989, J MARRIAGE FAM, V51, P791, DOI 10.2307/352177; PLOMIN R, 1994, GENETICS EXPERIENCE; Ritterband Paul, 1981, MODERN JEWISH FERTIL; ROSS C, 1987, DEMOGRAPHY, V24, P587, DOI 10.2307/2061394; Rowe D. C, 1994, LIMITS FAMILY INFLUE; Rushton J. P., 1995, RACE EVOLUTION BEHAV; RUSHTON JP, 1988, PERS INDIV DIFFER, V9, P1009, DOI 10.1016/0191-8869(88)90135-3; SCARR S, 1978, AM SOCIOL REV, V43, P674, DOI 10.2307/2094543; Scholem G, 1971, MESSIANIC IDEA JUDAI; Schultz A. H., 1960, HUMAN GROWTH, P1; Shaw Stanford J., 1991, JEWS OTTOMAN EMPIRE; Southwood T. R. E, 1981, THEORETICAL ECOLOGY, P30; SURBEY MK, 1990, MG PRIMATOL, V13, P11; TANNER JM, 1990, FETUS MAN PHYSICAL G; TURKE PW, 1989, POPUL DEV REV, V15, P61, DOI 10.2307/1973405; WALL R, 1983, FAMILY FORMS HIST EU, P493; WARREN MP, 1986, NEW ENGL J MED, V314, P1348, DOI 10.1056/NEJM198605223142104; WARREN MP, 1991, J CLIN ENDOCR METAB, V72, P847, DOI 10.1210/jcem-72-4-847; Wilson E.O., 1975, P1; Wilson J. Q., 1985, CRIME HUMAN NATURE; WILSON JQ, 1993, COMMENTARY, V95, P24; WORTHMAN CM, 1990, SOCIOENDOCRINOLOGY P, P11; WRIGLEY EA, 1981, POPULATION HIST; ZAJONC RB, 1979, J PERS SOC PSYCHOL, V37, P1325; Zborowski Mark, 1952, LIFE IS WITH PEOPLE 100 40 43 0 3 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 1997 8 4 327 359 10.1007/BF02913038 33 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences YD496 WOS:A1997YD49600002 26197164 2018-11-12 J Belsky, J Belsky, J Attachment, mating, and parenting - An evolutionary interpretation HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article attachment security; facultative responses; mating; parenting; reproductive strategy ADULT ROMANTIC RELATIONSHIPS; INFANT-MOTHER ATTACHMENT; WORKING MODELS; CHILDHOOD ATTACHMENT; MATERNAL ATTACHMENT; STYLES; REPRESENTATIONS; ORGANIZATION; STRATEGIES; SITUATION A modern evolutionary perspective emphasizing life history theory and behavioral ecology is brought to bear on the three core patterns of attachment that are identified in studies of infants and young children in the Strange Situation and adults using the Adult Attachment Interview. Mating and parenting correlates of secure/autonomous, avoidant/dismissing, and resistant/preoccupied attachment patterns are reviewed, and the argument is advanced that security evolved to promote mutually beneficial interpersonal relations and high investment parenting; that avoidant/ dismissing attachment evolved to promote opportunistic interpersonal relations and low-investment parenting; and that resistant/preoccupied attachment evolved to foster ''helper-at-the-nest'' behavior and indirect reproduction. Belsky, J (reprint author), PENN STATE UNIV,S110 HENDERSON BLDG,UNIVERSITY PK,PA 16802, USA. Belsky, Jay/0000-0003-2191-2503 Ainsworth M, 1973, REV CHILD DEV RES, P1; Baker R. R., 1995, HUMAN SPERM COMPETIT; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, PSYCHOL INQ, V8, P182, DOI 10.1207/s15327965pli0803_3; Belsky J., 1994, DEV LIFE HDB CLIN, P373; Bowlby J., 1969, ATTACHMENT LOSS, V1; BRENNAN K, 1991, UNPUB DIMENSIONS ATT; BUSS DM, 1995, PSYCHOL INQ, V6, P1, DOI 10.1207/s15327965pli0601_1; CASSIDY J, 1994, CHILD DEV, V65, P971, DOI 10.2307/1131298; Charnov Eric L., 1993, P1; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; COHN DA, 1992, J FAM ISSUES, V13, P432, DOI 10.1177/019251392013004003; COHN DA, 1992, DEV PSYCHOPATHOL, V4, P417, DOI 10.1017/S0954579400000870; Cosmides L., 1987, LATEST BEST ESSAYS E, P277; CROWELL JA, 1991, DEV PSYCHOL, V27, P597, DOI 10.1037/0012-1649.27.4.597; CROWELL JA, 1988, CHILD DEV, V59, P1273, DOI 10.1111/j.1467-8624.1988.tb01496.x; EMLEN ST, 1995, AM SCI, V83, P148; EWING K, 1995, BIENN M SOC RES CHIL; FEENEY JA, 1992, AUST J PSYCHOL, V44, P69, DOI 10.1080/00049539208260145; FEENEY JA, 1990, J PERS SOC PSYCHOL, V58, P281, DOI 10.1037/0022-3514.58.2.281; FONAGY P, 1991, CHILD DEV, V62, P891, DOI 10.2307/1131141; FOX NA, 1995, PSYCHOL BULL, V117, P404, DOI 10.1037/0033-2909.117.3.404; Grossmann K, 1988, RELATIONSHIPS FAMILI, P241; HAFT WL, 1989, INF MENTAL HLTH J, V10, P157, DOI 10.1002/1097-0355(198923)10:3<157::AID-IMHJ2280100304>3.0.CO;2-3; HAMILTON C, 1994, THESIS U CALIFORNIA; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037//0022-3514.52.3.511; HILL EM, 1994, ETHOL SOCIOBIOL, V15, P323, DOI 10.1016/0162-3095(94)90006-X; HINDE R, 1982, PLACE ATTACHMENT HUM, P213; HINDE RA, 1990, HUM DEV, V33, P62, DOI 10.1159/000276503; KIRKPATRICK LA, 1994, J PERS SOC PSYCHOL, V66, P502, DOI 10.1037//0022-3514.66.3.502; KIRKPATRICK LA, 1994, PERS RELATIONSHIP, V1, P123, DOI DOI 10.1111/J.1475-6811.1994.TB00058.X; KOBAK R, 1994, J RES ADOLESCENCE, V4, P553, DOI 10.1207/s15327795jra0404_7; KOBAK R, 1992, UNPUB PARENTS SPOUSE; KREBS JR, 1991, BEHAVIOURAL ECOLOGY; KUNCE L. J., 1994, ADV PERSONAL RELATIO, V5, P205; LAMB ME, 1984, BEHAV BRAIN SCI, V7, P127, DOI 10.1017/S0140525X00026522; LAMB ME, 1985, INFANT MOTHER ATTACH; MAIN M, 1990, HUM DEV, V33, P48, DOI 10.1159/000276502; MULDER MB, 1992, EVOLUTIONARY ECOLOGY, P147; OCONNOR E, 1995, UNPUB WOMENS ADULT A; OWENS G, 1993, UNPUB INTERVIEW BASE; PISTOLE MC, 1989, J SOC PERS RELAT, V6, P505, DOI 10.1177/0265407589064008; RICCIUTI A, 1992, THESIS U VIRGINIA CH; SENCHAK M, 1992, J SOC PERS RELAT, V9, P51, DOI 10.1177/0265407592091003; Shaver Phillip R., 1993, ADV PERSONAL RELATIO, V4, P29; SIMPSON JA, 1990, J PERS SOC PSYCHOL, V59, P971, DOI 10.1037/0022-3514.59.5.971; SIMPSON JA, 1992, J PERS SOC PSYCHOL, V62, P434, DOI 10.1037/0022-3514.62.3.434; Sroufe L. A., 1988, CLIN IMPLICATIONS AT, P18; STEARNS S, 1993, EVOLUTION DEV, P13; VAN IJZENDOORN MH, 1995, PSYCHOL BULL, V117, P387, DOI 10.1037/0033-2909.117.3.387; van Ijzendoorn MH, 1996, J CONSULT CLIN PSYCH, V64, P8, DOI 10.1037/0022-006X.64.1.8; VANDENBOOM D, 1995, CHILD DEV, V65, P1449; VANIJZENDOORN M, 1992, INT J BEHAV DEV, V14, P375; WARD MJ, 1995, CHILD DEV, V66, P69, DOI 10.2307/1131191; WATERS E, 1995, M SOC RES CHILD DEV; ZIMMERMAN P, 1994, THESIS U REGENSBURG 56 92 96 0 26 ALDINE DE GRUYTER DIVISION WALTER DE GRUYTER INC HAWTHORNE 200 SAW MILL RIVER, HAWTHORNE, NY 10532 1045-6767 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 1997 8 4 361 381 10.1007/BF02913039 21 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences YD496 WOS:A1997YD49600003 26197165 2018-11-12 J McCormick, MI; Makey, LJ McCormick, MI; Makey, LJ Post-settlement transition in coral reef fishes: overlooked complexity in niche shifts MARINE ECOLOGY PROGRESS SERIES English Article complex life history; coral reef fish; settlement transition; metamorphosis; habitat shift; recruitment; Great Barrier Reef; field study GOATFISH UPENEUS-TRAGULA; RECRUITMENT DYNAMICS; NAKED GOBY; METAMORPHOSIS; LARVAE; POPULATIONS; DAMSELFISH; MORTALITY; JUVENILES; PATTERNS Events that occur during the transition between phases in a complex life history can have major consequences for the demography of populations. Life-history theory suggests that transitions should be abrupt to maximize survival in each life stage. We compare the transition from dispersive larva to settled juvenile in 3 common coral reef fishes, which were chosen to span a wide range of trophic groups, morphological forms and adult ecologies: a benthic microcarnivore, the goatfish Parupeneus multifasciatus (family: Mullidaei; a planktivore, the dartfish Pteroleotris evides (Microdesmidae); and a largely herbivorous damselfish, Pomacentrus amboinensis (Pomacentridae). Transitions from settled post-larva to juvenile varied in complexity and ranged from immediate to a gradual process lasting 3 wk. The goatfish displayed 3 distinct shifts in habitat and associations with other species within 2 wk of settlement before joining the juvenile population, while the dartfish displayed 2 major shifts in a 3 wk period. These habitat shifts coincided with changes in morphology associated with metamorphosis. In contrast, the damselfish settled directly into its adult habitat, and displayed neither shifts in habitat or species association nor a dramatic metamorphosis. Evidence suggests that the magnitude and duration of ecological shifts during the settlement transition can be predicted from information on the extent of metamorphosis. McCormick, MI (reprint author), JAMES COOK UNIV N QUEENSLAND, DEPT MARINE BIOL, TOWNSVILLE, QLD 4811, AUSTRALIA. McCormick, Mark/J-8301-2014 McCormick, Mark/0000-0001-9289-1645 ALDENHOVEN JM, 1986, MAR BIOL, V92, P237, DOI 10.1007/BF00392841; BALON EK, 1985, EARLY LIFE HIST FISH, P16; BEUKERS JS, 1995, MAR ECOL PROG SER, V125, P61, DOI 10.3354/meps125061; BOOTH DJ, 1991, J EXP MAR BIOL ECOL, V145, P149, DOI 10.1016/0022-0981(91)90172-S; BOOTH DJ, 1995, ECOLOGY, V76, P91, DOI 10.2307/1940634; BREITBURG DL, 1991, MAR BIOL, V109, P213, DOI 10.1007/BF01319389; BREITBURG DL, 1989, ENVIRON BIOL FISH, V26, P97, DOI 10.1007/BF00001026; BROTHERS E B, 1981, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V178, P369; CARR MH, 1995, MAR ECOL PROG SER, V124, P31, DOI 10.3354/meps124031; DOHERTY P, 1994, B MAR SCI, V54, P297; Doherty P.J., 1991, P261; DOHERTY PJ, 1988, OCEANOGR MAR BIOL, V26, P487; DOHERTY PJ, 1986, CORAL REEFS, V4, P225, DOI 10.1007/BF00298081; Finn MD, 1996, MAR FRESHWATER RES, V47, P423, DOI 10.1071/MF9960423; GRAF W, 1990, J NEUROBIOL, V21, P1136, DOI 10.1002/neu.480210716; GREEN AL, 1994, THESIS J COOK U TOWN; GREEN AL, 1993, P 7 INT COR REEF S, V1, P601; HENSLEY FR, 1993, ECOLOGY, V74, P2405, DOI 10.2307/1939591; Hixon M.A., 1991, P475; HOEZLER GA, 1988, MAR ECOL-PROG SER, V45, P193; KAUFMAN L, 1992, ENVIRON BIOL FISH, V34, P109, DOI 10.1007/BF00002386; KIKUYAMA S, 1993, INT REV CYTOL, V145, P105, DOI 10.1016/S0074-7696(08)60426-X; KINGSFORD MJ, 1989, MAR BIOL, V101, P285, DOI 10.1007/BF00428124; Leis J.M., 1991, P183; LIRMAN D, 1994, J EXP MAR BIOL ECOL, V180, P71, DOI 10.1016/0022-0981(94)90080-9; MARKLE DF, 1992, FISH B-NOAA, V90, P285; MARLIAVE JB, 1986, T AM FISH SOC, V115, P149, DOI 10.1577/1548-8659(1986)115<149:LOPDOR>2.0.CO;2; MCCORMICK MI, 1993, ENVIRON BIOL FISH, V37, P269, DOI 10.1007/BF00004634; MCCORMICK MI, 1994, MAR ECOL PROG SER, V112, P87, DOI 10.3354/meps112087; MCCORMICK MI, 1993, P 7 INT COR REEF S, V1, P616; MCFARLAND WN, 1982, BEHAV ECOL SOCIOBIOL, V11, P71, DOI 10.1007/BF00300094; MEEKAN MG, 1988, 6TH P INT COR REEF S, V2, P779; NEWMAN RA, 1994, ECOLOGY, V75, P1085, DOI 10.2307/1939432; ODUM E. P., 1955, AUK, V72, P128; OGDEN JC, 1977, MAR BIOL, V42, P273, DOI 10.1007/BF00397751; RANDALL JE, 1961, PAC SCI, V1, P251; RICHARDS WJ, 1987, B MAR SCI, V41, P392; Sale P.F., 1980, Oceanography and Marine Biology an Annual Review, V18, P367; SALE PF, 1971, COPEIA, P324; SALE PF, 1984, CORAL REEFS, V3, P91, DOI 10.1007/BF00263759; SHAND J, 1994, BRAIN BEHAV EVOLUT, V43, P51, DOI 10.1159/000113624; SHAND J, 1993, J COMP PHYSIOL A, V173, P115; SWEATMAN H, 1988, J EXP MAR BIOL ECOL, V124, P163, DOI 10.1016/0022-0981(88)90170-0; SWEATMAN HPA, 1985, 5TH P INT COR REEF C, V5, P367; SYMONS PEK, 1974, CAN J ZOOL, V52, P677, DOI 10.1139/z74-091; Tabachnick BG, 1989, USING MULTIVARIATE S; TANAKA M, 1989, NETH J SEA RES, V24, P57, DOI 10.1016/0077-7579(89)90170-1; TSUKAMOTO K, 1985, B JPN SOC SCI FISH, V51, P903; TSUKAMOTO K, 1989, J FISH BIOL, V35, P59; TUPPER M, 1995, MAR ECOL PROG SER, V118, P295, DOI 10.3354/meps118295; Werner EE, 1988, SIZE STRUCTURED POPU, P61; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; Wilson DT, 1997, MAR ECOL PROG SER, V153, P259, DOI 10.3354/meps153259; Youson J.H., 1988, P135 54 101 101 0 24 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 1997 153 247 257 10.3354/meps153247 11 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography XR974 WOS:A1997XR97400023 Bronze 2018-11-12 J Ito, K Ito, K Egg size and -number variations related to maternal size and age, and the relationship between egg size and larval characteristics in an annual marine gastropod, Haloa japonica (Opisthobranchia; Cephalaspidea) MARINE ECOLOGY PROGRESS SERIES English Article egg-size variation; egg-number variation; maternal size and age; intrapopulation; life-history theory; Opisthobranch; Haloa japonica CLUTCH SIZE; DEVELOPMENTAL VARIABILITY; DEVELOPMENT PATTERNS; ARIANTA-ARBUSTORUM; OFFSPRING FITNESS; SEED WEIGHT; BUTTERFLIES; DAPHNIA; ADULT; NUDIBRANCHIA Contrary to the traditional egg size-number trade-off model, egg size of the small opisthobranch Haloa japonica varies significantly within a population. To examine the cause of this variation, I estimated (1) the effects of maternal size and age (i.e, the number of days after the onset of breeding the egg was spawned) on egg size and number, and (2) the relationship between egg size and several larval characteristics, including larval size, length of survival under conditions of starvation, and time to hatching. Egg size and number decreased in the course of the breeding season under laboratory conditions and egg size increased with maternal size. Length of survival under conditions of starvation was positively correlated with egg volume. This reproductive pattern is similar to that of other taxonomic groups, such as annual plants, insects and a marine polychaete. The decrease of reproductive investment is best explained as a maternal investment strategy related to maternal mortality, as proposed by Begon & Parker (1986; Oikos 47:293-302). My data support the prediction of their theory. Ito, K (reprint author), HOKKAIDO UNIV, FAC FISHERIES, DEPT MARINE BIOL SCI, HAKODATE, HOKKAIDO 041, JAPAN. BAUR A, 1994, FUNCT ECOL, V8, P581, DOI 10.2307/2389918; BAUR B, 1990, ZOOL ANZ, V225, P253; BAYNE BL, 1978, J MAR BIOL ASSOC UK, V58, P825, DOI 10.1017/S0025315400056794; BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; BRABY MF, 1994, OIKOS, V71, P119, DOI 10.2307/3546179; BRABY MF, 1995, OIKOS, V72, P189, DOI 10.2307/3546221; BRETAGNOLLE F, 1995, ANN BOT-LONDON, V76, P607, DOI 10.1006/anbo.1995.1138; CAVERS PB, 1984, AM NAT, V124, P324, DOI 10.1086/284276; CHAFFEE C, 1984, J EXP MAR BIOL ECOL, V84, P73, DOI 10.1016/0022-0981(84)90231-4; Chester CM, 1996, J EXP MAR BIOL ECOL, V198, P113, DOI 10.1016/0022-0981(95)00197-2; CLARK KB, 1978, J MOLLUS STUD, V44, P283; Estebenet Alejandra L., 1993, Apex (Brussels), V8, P129; EYSTER LS, 1979, MAR BIOL, V51, P133, DOI 10.1007/BF00555192; GIBSON GD, 1995, MAR ECOL PROG SER, V121, P139, DOI 10.3354/meps121139; GLAZIER DS, 1992, ECOLOGY, V73, P910, DOI 10.2307/1940168; HAMATANI I, 1986, KETTEIBAN SEIBUTSU D, P209; HIRANO YJ, 1991, J MOLLUS STUD, V57, P133, DOI 10.1093/mollus/57.Supplement_Part_4.133; HURST ANNE, 1967, VELIGER, V9, P255; Ito K, 1996, MAR BIOL, V126, P395, DOI 10.1007/BF00354621; KANE M, 1992, CAN J BOT, V70, P562, DOI 10.1139/b92-071; KAPLAN RH, 1987, OECOLOGIA, V71, P273, DOI 10.1007/BF00377295; LALONDE RG, 1991, AM NAT, V138, P680, DOI 10.1086/285242; Macginitie GE, 1934, BIOL BULL-US, V67, P300, DOI 10.2307/1537166; MCEDWARD LR, 1987, MAR ECOL PROG SER, V37, P159, DOI 10.3354/meps037159; MCEDWARD LR, 1991, J EXP MAR BIOL ECOL, V147, P95, DOI 10.1016/0022-0981(91)90039-Y; MCGINLEY MA, 1989, EVOL ECOL, V3, P150, DOI 10.1007/BF02270917; MURPHY DD, 1983, OECOLOGIA, V56, P257, DOI 10.1007/BF00379699; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PENNINGS SC, 1990, J EXP MAR BIOL ECOL, V142, P43, DOI 10.1016/0022-0981(90)90136-Z; QIAN PY, 1992, J EXP MAR BIOL ECOL, V156, P23, DOI 10.1016/0022-0981(92)90014-2; Roff Derek A., 1992; RUOHOMAKI K, 1993, OIKOS, V68, P61, DOI 10.2307/3545309; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STAMP NE, 1990, AM J BOT, V77, P874, DOI 10.2307/2444503; TESSIER AJ, 1983, LIMNOL OCEANOGR, V28, P667, DOI 10.4319/lo.1983.28.4.0667; TESSIER AJ, 1989, OIKOS, V56, P269, DOI 10.2307/3565347; THOMPSON JN, 1989, OECOLOGIA, V79, P395, DOI 10.1007/BF00384320; THOMPSON TE, 1967, J MAR BIOL ASSOC UK, V47, P1, DOI 10.1017/S0025315400033518; THOMPSON TE, 1958, ADALARIA PROXIMA, V9, P246; Tomiyama Kiyonori, 1992, Venus the Japanese Journal of Malacology, V51, P293; Usuki I., 1966, Science Reports of Niigata University Series D Biology, VNo. 3, P107; Usuki I., 1966, Science Reports of Niigata University Series D Biology, VNo. 3, P87; WIKLUND C, 1983, OIKOS, V40, P53, DOI 10.2307/3544198; WIKLUND C, 1984, OIKOS, V43, P391, DOI 10.2307/3544158; Yusa Yoichi, 1994, Publications of the Seto Marine Biological Laboratory, V36, P249 45 39 40 1 16 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 1997 152 1-3 187 195 10.3354/meps152187 9 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography XK651 WOS:A1997XK65100016 Bronze 2018-11-12 J Heaney, V; Monaghan, P Heaney, V; Monaghan, P Optimal allocation of effort between reproductive phases: The trade-off between incubation costs and subsequent brood rearing capacity PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article STARLINGS STURNUS-VULGARIS; CLUTCH-SIZE; ENERGY-EXPENDITURE; PIED FLYCATCHER; EGG-PRODUCTION; SUCCESS; BIRDS; FOOD The optimal allocation of effort during reproduction is a key component of life history theory, with tradeoffs predicted to operate both within and between reproductive attempts. Experimental work in this held has largely concentrated on the latter. The need to partition investment between different phases of reproduction, and how this varies between individuals, has received little empirical investigation. In this study, the costs of the incubation phase in common terns Sterna hirundo were increased independently of those of the egg production and brood rearing phases. Incubation of a clutch of three eggs, rather than the two originally laid, reduced the subsequent capacity of parents to provision their brood of two, demonstrating an important trade-off between reproductive phases that has generally been omitted in estimations of optimal clutch size. These results show for the first time that an increase in the costs of incubation alone, which have often been considered relatively trivial, can significantly depress parental performance later in the same breeding attempt. The effect of increased incubation costs was found to be most marked in the lower quality pairs, which demonstrates that individuals differ in their capacity to compensate for deviations from their allocation of effort to different reproductive phases. UNIV GLASGOW, DIV ENVIRONM & EVOLUTIONARY BIOL, ORNITHOL UNIT, GLASGOW G12 8QQ, LANARK, SCOTLAND Monaghan, Pat/A-4271-2008; Monaghan, Pat/E-6810-2015 BALTZ ME, 1988, WILSON BULL, V100, P70; BIEBACH H, 1981, ARDEA, V69, P141; BIEBACH H, 1984, PHYSIOL ZOOL, V57, P26, DOI 10.1086/physzool.57.1.30155963; BRISKIE JV, 1989, AUK, V106, P269; COLEMAN RM, 1988, BEHAV ECOL SOCIOBIOL, V23, P367, DOI 10.1007/BF00303710; COULSON JC, 1985, IBIS, V127, P450, DOI 10.1111/j.1474-919X.1985.tb04841.x; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.ecolsys.22.1.409; HAFTORN S, 1985, AUK, V102, P470; HEANEY V, 1995, P ROY SOC B-BIOL SCI, V261, P361, DOI 10.1098/rspb.1995.0160; Hume R., 1993, COMMON TERN; King J.R., 1973, P78; Lessells C.M., 1991, P32; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MONAGHAN P, 1989, J ANIM ECOL, V58, P261, DOI 10.2307/4999; MONAGHAN P, 1995, P ROY SOC B-BIOL SCI, V259, P189, DOI 10.1098/rspb.1995.0027; MORENO J, 1989, ORNIS SCAND, V20, P123, DOI 10.2307/3676879; MORENO J, 1991, IBIS, V133, P186, DOI 10.1111/j.1474-919X.1991.tb04830.x; Nisbet I.C.T., 1984, Colonial Waterbirds, V7, P117, DOI 10.2307/1521090; NISBET ICT, 1975, IBIS, V117, P374, DOI 10.1111/j.1474-919X.1975.tb04225.x; PARSONS J, 1976, CONDOR, V78, P481, DOI 10.2307/1367097; Partridge L., 1989, P421; ROFF PA, 1992, EVOLUTION LIFE HIST; SIIKAMAKI P, 1995, J AVIAN BIOL, V26, P76, DOI 10.2307/3677215; SMITH HG, 1989, ORNIS SCAND, V20, P156, DOI 10.2307/3676885; Stearns S. C., 1992, EVOLUTION LIFE HIST; SZEKELY T, 1994, IBIS, V136, P341, DOI 10.1111/j.1474-919X.1994.tb01105.x; TATNER P, 1993, J ZOOL, V231, P215, DOI 10.1111/j.1469-7998.1993.tb01913.x; UTTLEY J D, 1992, Ardea, V80, P83; WALSBERG GE, 1978, PHYSIOL ZOOL, V51, P92, DOI 10.1086/physzool.51.1.30158668; Ward J. G., 1973, THESIS U BRIT COLUMB; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Winkler D.W., 1983, Current Ornithology, V1, P33; WRIGHT J, 1989, BEHAV ECOL SOCIOBIOL, V25, P171, DOI 10.1007/BF00302916 35 86 87 0 25 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. DEC 22 1996 263 1377 1719 1724 10.1098/rspb.1996.0251 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology WD196 WOS:A1996WD19600015 2018-11-12 J Meikle, DB; Drickamer, LC; Vessey, SH; Arthur, RD; Rosenthal, TL Meikle, DB; Drickamer, LC; Vessey, SH; Arthur, RD; Rosenthal, TL Dominance rank and parental investment in swine (Sus scrofa domesticus) ETHOLOGY English Article SEX-RATIO; MATERNAL DOMINANCE; NATURAL-SELECTION; SUCCESS; DEER; PIGS Using domestic swine, we tested the general prediction from life history theory that females increase their investment in offspring with increasing age and parity. Because increased investment may have a greater beneficial impact on the lifetime reproduction of sons than daughters, we also tested the prediction that older females would invest more in sons than in daughters compared to younger females. Finally, we examined whether age- or parity-related patterns of change in reproductive effort were associated with differences in the social dominance ranks of females. Female swine from a large number of domestic breeds were assigned to social groups, and their dominance ranks were determined based on the outcome of agonistic encounters. The prediction that older females produce larger litters was supported, but the increase was related only to age, not to parity Across all ages, high-ranking females produced a greater proportion of sons than low-ranking females. Contrary to our prediction, there was no rank-related change in the proportion of sons born with increasing age or parity. However, the mean body masses offspring born to high-ranking females increased with increasing maternal age and parity, but this was not the case for offspring of low-ranking females. Studies of free-ranging groups of swine are needed to determine whether an increase in body mass at birth would have different effects on the reproduction of sons or daughters. SO ILLINOIS UNIV, DEPT ANIM SCI FOOD & NUTR, CARBONDALE, IL 62901 USA AUSTAD SN, 1986, NATURE, V324, P58, DOI 10.1038/324058a0; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV E L, 1982; CHEN ZY, 1993, J ANIM SCI, V71, P1895, DOI 10.2527/1993.7171895x; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CLUTTONBROCK TH, 1984, NATURE, V308, P358, DOI 10.1038/308358a0; DOLHINOW P, 1979, AGGRESSIVE BEHAV, V5, P19, DOI 10.1002/1098-2337(1979)5:1<19::AID-AB2480050104>3.0.CO;2-7; Eisenberg J.F., 1972, Smithsonian Contributions to Zoology, VNo. 101, P1; EPSTEIN H, 1984, EVOLUTION DOMESTICAT, P145; FESTABIANCHET M, 1991, ANIM BEHAV, V42, P71, DOI 10.1016/S0003-3472(05)80607-4; FISHER R. A., 1930, GENETICAL THEORY NAT; HAFEZ ESE, 1969, BEHAVIOUR DOMESTIC A, P349; HANLY S, 1961, J REPROD FERTIL, V2, P182; Hayssen V., 1993, ASDELLS PATTERNS MAM; JAMES JW, 1967, P ECOL SOC AUST, V2, P171; JENSEN P, 1982, APPL ANIM ETHOL, V9, P47, DOI 10.1016/0304-3762(82)90165-1; KURZ JC, 1972, J WILDLIFE MANAGE, V36, P1240, DOI 10.2307/3799254; LLOYD PH, 1989, BEHAV ECOL SOCIOBIOL, V25, P411, DOI 10.1007/BF00300187; MCBRIDE G, 1965, ANIM PROD, V7, P67, DOI 10.1017/S0003356100022297; McBRIDE G., 1964, ANIM PROD, V6, P129; MEESE GB, 1973, ANIM BEHAV, V21, P326, DOI 10.1016/S0003-3472(73)80074-0; MEIKLE DB, 1993, ANIM BEHAV, V46, P79, DOI 10.1006/anbe.1993.1163; MENDL M, 1995, ANIM BEHAV, V50, P1361, DOI 10.1016/0003-3472(95)80051-4; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; PERRY JS, 1962, J REPROD FERTIL, V4, P175; PIANKA ER, 1976, AM ZOOL, V16, P775; Roff Derek A., 1992; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; WAUTERS LA, 1995, BEHAV ECOL SOCIOBIOL, V37, P189, DOI 10.1007/s002650050180; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; WITTENBERGER JF, 1981, ANIMAL SOCIAL BEHAVI; WOODGUSH DGM, 1990, BIOL BEHAV, V15, P62; WRIGHT DD, 1995, AM NAT, V145, P133, DOI 10.1086/285732 37 25 25 0 16 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0179-1613 1439-0310 ETHOLOGY Ethology DEC 1996 102 12 969 978 10.1111/j.1439-0310.1996.tb01174.x 10 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology WC949 WOS:A1996WC94900001 2018-11-12 J Klingenberg, CP Klingenberg, CP Individual variation of ontogenies: A longitudinal study of growth and timing EVOLUTION English Article age; allometry; common principal components; constraint; developmental time; Gerridae; growth; heterochrony; life history; morphometrics; ontogeny; size QUANTITATIVE GENETIC MODELS; STRIDER GENUS LIMNOPORUS; MORPHOLOGICAL INTEGRATION; DEVELOPMENTAL CONSTRAINTS; EVOLUTIONARY ALLOMETRY; SIZE REGULATION; LABORATORY RAT; BODY SIZE; GERRIDAE; HETEROPTERA This study of growth and developmental time in the water strider Limnoporus canaliculatus (Heteroptera: Gerridae) is based on longitudinal data from specimens reared individually in the laboratory. I analyzed multivariate allometry using a common principal components approach. This technique identified patterns of variation that were uncorrelated both within and among instars and which remained fairly constant throughout the growth period; in contrast, the overall amount of variation increased from young to older instars. Negative correlations between size and subsequent growth increments indicated convergent growth in the first three instars, but there was a transition to positive correlations (divergent growth) in later instars. Analysis of covariation among measurements made in different instars showed strong ontogenetic autocorrelation and revealed patterns remarkably similar to those found in mammals and birds; yet corresponding analyses of growth increments showed mainly independent variation in different instars. Therefore, I conclude that the strong correlations among stage-specific measurements result from the part-whole relationships inherent to these cumulative size data, but do not reflect specific properties of the organisms studied. In contrast to size increments, instar durations of water striders were highly correlated throughout the larval period, indicating that individuals tended to develop at either relatively fast or relatively slow rates in all instars. The correlations between growth increments and instar durations were nil or negative, contrary to expectations from life-history theory. The results of these analyses of individual variation match the findings from other water striders and from interspecific comparisons in the genus Limnoporus, but information about physiological mechanisms of molting and growth in insects cannot completely explain the patterns observed. Klingenberg, CP (reprint author), UNIV ALBERTA, DEPT BIOL SCI, EDMONTON, AB T6G 2E9, CANADA. Klingenberg, Christian Peter/B-3470-2010 Klingenberg, Christian Peter/0000-0002-8117-6141 AIROLDI JP, 1988, J ZOOL, V216, P21; ALBERCH P, 1979, PALEOBIOLOGY, V5, P296; ALBERCH P, 1985, SYST ZOOL, V34, P46, DOI 10.2307/2413344; ANDERSEN NM, 1992, CAN J ZOOL, V70, P753, DOI 10.1139/z92-110; ATCHLEY WR, 1992, SYST BIOL, V41, P196, DOI 10.2307/2992521; ATCHLEY WR, 1994, DEV GENET, V15, P92, DOI 10.1002/dvg.1020150110; ATCHLEY WR, 1984, AM NAT, V123, P519, DOI 10.1086/284220; ATCHLEY WR, 1991, BIOL REV, V66, P101, DOI 10.1111/j.1469-185X.1991.tb01138.x; BENNETCLARK HC, 1971, J INSECT PHYSIOL, V17, P2421, DOI 10.1016/0022-1910(71)90089-8; BJORKLUND M, 1993, EVOLUTION, V47, P1506, DOI 10.1111/j.1558-5646.1993.tb02171.x; BLAKLEY N, 1978, BIOL BULL, V155, P499, DOI 10.2307/1540786; BLANCKENHORN WU, 1991, EVOLUTION, V45, P1520, DOI 10.1111/j.1558-5646.1991.tb02655.x; BLANCKENHORN WU, 1995, J EVOLUTION BIOL, V8, P21, DOI 10.1046/j.1420-9101.1995.8010021.x; BLUM JW, 1985, J NUTR, V115, P417; BRYANT PJ, 1984, Q REV BIOL, V59, P387, DOI 10.1086/414040; CAMERON N, 1994, AM J PHYS ANTHROPOL, V93, P307, DOI 10.1002/ajpa.1330930304; CHEVERUD JM, 1982, EVOLUTION, V36, P499, DOI 10.1111/j.1558-5646.1982.tb05070.x; CHEVERUD JM, 1995, AM NAT, V145, P63, DOI 10.1086/285728; CHEVERUD JM, 1982, AM J PHYS ANTHROPOL, V59, P139, DOI 10.1002/ajpa.1330590204; CHEVERUD JM, 1984, J THEOR BIOL, V110, P155, DOI 10.1016/S0022-5193(84)80050-8; CHEVERUD JM, 1983, EVOLUTION, V37, P895, DOI 10.1111/j.1558-5646.1983.tb05619.x; COCK AG, 1966, Q REV BIOL, V41, P131, DOI 10.1086/404940; COWLEY DE, 1992, EVOLUTION, V46, P495, DOI 10.1111/j.1558-5646.1992.tb02054.x; COWLEY DE, 1990, AM NAT, V135, P242, DOI 10.1086/285041; CREIGHTON GK, 1986, EVOLUTION, V40, P94, DOI 10.1111/j.1558-5646.1986.tb05721.x; CUZIN-ROUDY J, 1975, Archives de Zoologie Experimentale et Generale, V116, P173; Efron B, 1993, INTRO BOOTSTRAP; ETTENSOHN CA, 1993, DEVELOPMENT, V119, P155; FAIRBAIRN DJ, 1984, OECOLOGIA, V61, P126, DOI 10.1007/BF00379098; FIRKO M, 1986, THESIS U PENNSYLVANI; Flury B, 1988, COMMON PRINCIPAL COM; Flury B. D., 1995, RECENT ADV DESCRIPTI, P90; FLURY BD, 1995, APPROXIMATION COMPUT, P179; FREEMAN JA, 1990, J EXP MAR BIOL ECOL, V143, P47, DOI 10.1016/0022-0981(90)90110-X; GOOD P, 1994, PERMUTATION TESTS PR; Gould S.J., 1977, ONTOGENY PHYLOGENY; GOULD SJ, 1989, EVOLUTION, V43, P516, DOI 10.1111/j.1558-5646.1989.tb04249.x; Hall B. K., 1992, EVOLUTIONARY DEV BIO; Hall Brian K., 1995, P3; HARTNOLL RG, 1981, J EXP MAR BIOL ECOL, V53, P235, DOI 10.1016/0022-0981(81)90022-8; JACKSON DA, 1993, ECOLOGY, V74, P2204, DOI 10.2307/1939574; KIRKPATRICK M, 1989, GENOME, V31, P778, DOI 10.1139/g89-137; KLINGENBERG CP, 1992, J ZOOL, V227, P453, DOI 10.1111/j.1469-7998.1992.tb04406.x; Klingenberg CP, 1996, NATO ADV SCI INST SE, V284, P23; KLINGENBERG CP, 1993, EVOLUTION, V47, P1834, DOI 10.1111/j.1558-5646.1993.tb01273.x; KLINGENBERG CP, 1992, AM NAT, V140, P601, DOI 10.1086/285430; Klingenberg CP, 1996, SYST BIOL, V45, P135, DOI 10.2307/2413611; KLINGENBERG CP, 1996, ROLE BODY SIZE LIFE; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LEAMY L, 1984, GROWTH, V48, P339; Lynch M., 1988, P29; MANLY BFJ, 1991, RANDOMIZATION MONTE; McKinney ML, 1991, HETEROCHRONY EVOLUTI; MONTEIRO LS, 1966, ANIM PROD, V8, P179, DOI 10.1017/S0003356100034565; MOSIMANN JE, 1970, J AM STAT ASSOC, V65, P930, DOI 10.2307/2284599; NEUENSCHWANDER B, 1991, THESIS U BERN BERN; Nijhout H. F., 1994, INSECT HORMONES; NIJHOUT HF, 1979, J INSECT PHYSIOL, V25, P277, DOI 10.1016/0022-1910(79)90055-6; PAULSEN SM, 1993, EVOLUTION, V47, P593, DOI 10.1111/j.1558-5646.1993.tb02115.x; Pitman E. J. G., 1937, J R STAT SOC B, V4, P225; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; RISKA B, 1986, EVOLUTION, V40, P1303, DOI 10.1111/j.1558-5646.1986.tb05753.x; RISKA B, 1984, GENETICS, V107, P79; Roff Derek A., 1992; SHEA BT, 1990, GENET RES, V56, P21, DOI 10.1017/S0016672300028846; SMITH JM, 1985, Q REV BIOL, V60, P265, DOI 10.1086/414425; SPENCE JR, 1980, CAN J ZOOL, V58, P1813, DOI 10.1139/z80-248; Stearns S. C., 1992, EVOLUTION LIFE HIST; STRAUSS RE, 1990, EVOLUTION, V44, P1558, DOI 10.1111/j.1558-5646.1990.tb03846.x; TANAKA A, 1981, J INSECT PHYSIOL, V27, P587, DOI 10.1016/0022-1910(81)90105-0; TANNER JM, 1963, NATURE, V199, P845, DOI 10.1038/199845a0; TEISSIER G, 1948, BIOMETRICS, V4, P14, DOI 10.2307/3001695; WAYNE RK, 1993, BONE, V7, P105; WEST TL, 1987, MAR BIOL, V96, P47, DOI 10.1007/BF00394837; WILSON PN, 1960, BIOL REV, V35, P324, DOI 10.1111/j.1469-185X.1960.tb01466.x; ZELDITCH ML, 1988, EVOLUTION, V42, P28, DOI 10.1111/j.1558-5646.1988.tb04105.x; ZELDITCH ML, 1989, EVOLUTION, V43, P814, DOI 10.1111/j.1558-5646.1989.tb05179.x; ZELDITCH ML, 1987, SYST ZOOL, V36, P368, DOI 10.2307/2413401 78 32 32 0 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution DEC 1996 50 6 2412 2428 10.2307/2410709 17 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity WB946 WOS:A1996WB94600026 28565691 Bronze 2018-11-12 J Jouventin, P; Bried, J; Ausilio, E Jouventin, P; Bried, J; Ausilio, E Life-history variations of the Lesser Sheathbill Chionis minor in contrasting habitats IBIS English Article REPRODUCTIVE EFFORT; MARION-ISLAND; SURVIVAL; BEHAVIOR; FOOD From 1987 until 1995, life-history traits of the Lesser Sheathbill Chionis minor in the Kerguelen Archipelago were compared with those at other localities, where this species breeds in seabird colonies, At Kerguelen Island only, some pairs breed on shores free of penguin and cormorant colonies, Moreover, pairs, including nonbreeders, and solitary individuals maintain territories all the year round, Site and mate changes were not linked, and all divorces were permanent, Fidelity rates were similar in all localities and so were the annual survival rates of adults, The survival rate of immature individuals was highest at Kerguelen Island, where sheathbills laid smaller clutches, produced fewer fledglings and had lower breeding success than in the other islands. At Kerguelen Island, pairs breeding on shores had similar clutch sizes but fledged fewer offspring than those breeding in seabird colonies. Further, the proportion of vacant territories and nonbreeders was higher on shores, Kerguelen sheathbills devoted less time to food acquisition than those on Marion Island, being exceptionally kleptoparasitic, and spent a smaller part of their foraging time exploiting seabird colonies, Their diet was mainly algae. The differences on Kerguelen Island as compared with other localities were caused by the presence of an extensive intertidal zone on the former, which reduced competition, making many more sites suitable and the environment more predictable, These life-history and behavioural traits are discussed in relation to life-history theory, As differences were also found, although less extensive, within the Kerguelen Archipelago, we suggest that some traits represent an adaptive response to external constraints and that the life-history strategy of the Lesser Sheathbill is particularly opportunistic. Jouventin, P (reprint author), CNRS,CEBC,F-79360 BEAUVOIR NIORT,FRANCE. Beck JR, 1972, BRIT ANTARCTIC SURV, V69, P1; Begon M., 1986, ECOLOGY INDIVIDUALS; Blankley WO, 1981, CORMORANT, V9, P77; BURGER AE, 1981, ARDEA, V69, P167; BURGER AE, 1979, ARDEA, V67, P1; BURGER AE, 1980, Z TIERPSYCHOL, V52, P381; BURGER AE, 1980, OSTRICH, V51, P39, DOI 10.1080/00306525.1980.9633539; BURGER AE, 1981, CONDOR, V83, P106, DOI 10.2307/1367416; BURGER AE, 1984, WILSON BULL, V96, P20; CLOBERT J, 1985, LECTURE NOTES STAT, V19, P197; COOPER J, 1988, ENVIRON CONSERV, V15, P317, DOI 10.1017/S0376892900029817; CROXALL JP, 1982, COMITE NATIONAL FRAN, V51, P479; DERENNE P, 1976, COM NAT FRANC RECH A, V40, P17; Despin B., 1972, CNFRA Publs, VNo. 31, P1; DOWNES MC, 1959, AUST NAT ANTARCT R B, V1; GIRET A., 1987, CNFRA, V58, P17; GUILLOTIN M, 1980, Gerfaut, V70, P51; HATCH SA, 1993, IBIS, V135, P247, DOI 10.1111/j.1474-919X.1993.tb02841.x; HIRONS GJM, 1984, J ZOOL, V202, P145; JONES NV, 1963, BRIT ANTARCTIC SURV, V2, P53; Jouventin P., 1988, INT COUNC BIRD PRESE, V5, P225; Marchant S, 1993, HDB AUSTR NZ ANTARCT, V2; MONAGHAN P, 1989, J ANIM ECOL, V58, P261, DOI 10.2307/4999; PRADEL R, 1989, USERS MANUAL PROGRAM; SAFRIEL UN, 1984, J ANIM ECOL, V53, P867, DOI 10.2307/4664; *SAS I INC, 1988, SAS STAT US GUIDE 6; SHAW P, 1986, IBIS, V128, P48, DOI 10.1111/j.1474-919X.1986.tb02091.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; TKINSON D, 1985, BEHAV ECOLOGY ECOLOG, P99; VERHEYDEN C, 1991, OECOLOGIA, V86, P132, DOI 10.1007/BF00317400; VERHEYDEN C, 1988, REV ECOL, V43, P47; Viot C.R., 1993, Marine Ornithology, V21, P1; WEIMERSKIRCH H, 1992, OIKOS, V64, P464, DOI 10.2307/3545162; WEIMERSKIRCH H, 1987, J ANIM ECOL, V56, P1043, DOI 10.2307/4965; WEIMERSKIRCH H, 1985, EMU, V85, P22, DOI 10.1071/MU9850022; WEIMERSKIRCH H, 1989, EMU, V89, P15, DOI 10.1071/MU9890015; WILLIAMS AJ, 1979, BIOL CONSERV, V15, P59, DOI 10.1016/0006-3207(79)90015-6; WOEHLER EC, 1991, TECHNICAL PUBLICATIO, V11, P263 38 6 8 0 2 BRITISH ORNITHOLOGISTS UNION TRING C/O NATURAL HISTORY MUSEUM, SUB-DEPT ORNITHOLOGY, TRING, HERTS, ENGLAND HP23 6AP 0019-1019 IBIS Ibis OCT 1996 138 4 732 741 10.1111/j.1474-919X.1996.tb08830.x 10 Ornithology Zoology VN463 WOS:A1996VN46300015 2018-11-12 J Freese, G; Zwolfer, H Freese, G; Zwolfer, H The problem of optimal clutch size in a tritrophic system: The oviposition strategy of the thistle gallfly Urophora cardui (Diptera, Tephritidae) OECOLOGIA English Article clutch size; galls; fitness; tritrophic interactions; Urophora cardui EUROSTA-SOLIDAGINIS DIPTERA; HOST SELECTION; CENTAUREA-DIFFUSA; CIRSIUM-ARVENSE; TROPHIC LEVELS; PLANT; EVOLUTION; BEHAVIOR; DENSITY; INSECTS The problem of optimal clutch sizes is a central theme in life history theory. Optimal allocation of eggs is especially complicated for insects in tritrophic systems. In this study we analyze some of the processes determining clutch sizes of the thistle gallfly Urophora cardui, a monophagous tephritid fly associated with Cirsium arvense. U. cardui forms multilocular shoot galls, which vary broadly in their size and number of their gall cells. We investigate various fitness consequences of gall size. An analysis of the number of cells per gall (which is correlated with gall diameter and gall weight) showed that in U. cardui there is mutual facilitation rather than larval competition. Increasing numbers of larvae per gall led to a decreasing mortality and increasing larval weight. Larval weight in turn was positively correlated with the probability of survival to adulthood and with adult weight and fecundity. Thus, all fitness parameters measured favoured large galls. Clutch sizes in oviposition experiments were distinctly larger than the number of gall cells of field populations and in cage experiments, suggesting high mortality of eggs and/or early larval instars. There was a significant relationship between the internal structure (i.e., the size of the growing point) of the bud and clutch size, suggesting that U. cardui females are able to measure bud quality and adapt clutch sizes accordingly. Clutch size was positively correlated with the female's age at first oviposition and negatively with the number of previous ovipositions and previously laid eggs. Since the potential egg capacity per female is higher than the average number of larvae it is likely to produce during its short adult lifespan, U. cardui females tend to be time-limited rather than egg-limited, which might favour large clutches once an appropriate oviposition site has been located. As the development of the gall and hence the fate of a clutch depends on a number of unpredictable factors, exclusive concentration of eggs in a few large clusters would involve risks which could be avoided by increasing the number of clutches. Therefore we interpret the high variation of clutch sizes in U. cardui as a mixed strategy of bet hedging and gambling. Freese, G (reprint author), UNIV BAYREUTH,DEPT ANIM ECOL 1,POB 101251,D-95440 BAYREUTH,GERMANY. Allee W., 1949, PRINCIPLES ANIMAL EC; ANDERSON SS, 1989, ECOLOGY, V70, P1048, DOI 10.2307/1941373; AVERILL AL, 1989, FRUIT FLIES THEIR BI, P209; Babendreier D, 1995, MITT DGAAE, V10, P595; BALL JC, 1973, CAN ENTOMOL, V105, P1453, DOI 10.4039/Ent1051453-11; BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; BERUBE DE, 1980, Z ANGEW ENTOMOL, V90, P299; CHARNOV EL, 1984, FLA ENTOMOL, V67, P5, DOI 10.2307/3494101; EBER S, 1994, J ANIM ECOL, V63, P187, DOI 10.2307/5594; Freese G, 1995, ECOL ENTOMOL, V20, P351, DOI 10.1111/j.1365-2311.1995.tb00467.x; FRITZ RS, 1990, OECOLOGIA, V82, P325, DOI 10.1007/BF00317479; GARGIULLO PM, 1981, ENVIRON ENTOMOL, V10, P392, DOI 10.1093/ee/10.3.392; GHENT ARTHUR W., 1960, BEHAVIOUR, V16, P110, DOI 10.1163/156853960X00070; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.ecolsys.22.1.409; HARRIS P, 1980, Z ANGEW ENTOMOL, V90, P190; Hawkins B. A., 1994, PATTERN PROCESS HOST; HORNER JD, 1992, OECOLOGIA, V90, P323, DOI 10.1007/BF00317688; KLOMP H., 1967, ARCH NEER ZOOL, V17, P350; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LALONDE RG, 1984, CAN J BOT, V62, P1372, DOI 10.1139/b84-187; LALONDE RG, 1992, OECOLOGIA, V90, P534, DOI 10.1007/BF01875447; MANGEL M, 1987, J MATH BIOL, V25, P1, DOI 10.1007/BF00275885; MANGEL M, 1989, AM NAT, V133, P688, DOI 10.1086/284945; MICHAELIS H, 1984, THESIS U BAYREUTH; MINKENBERG OPJM, 1992, OIKOS, V65, P134, DOI 10.2307/3544896; NORUSIS MJ, 1990, SPSS PC PLUS HDB; PARKER GA, 1984, THEOR POPUL BIOL, V26, P27, DOI 10.1016/0040-5809(84)90022-4; PESCHKEN DP, 1975, CAN ENTOMOL, V107, P1101, DOI 10.4039/Ent1071101-10; RAUH M, 1994, THESIS U BAYREUTH; REDFERN M, 1989, P 7 INT S BIOL CONTR, P203; ROITBERG BD, 1993, NATURE, V364, P108, DOI 10.1038/364108a0; ROITBERG BD, 1988, EVOL ECOL, V2, P289, DOI 10.1007/BF02207562; ROMSTOCK M, 1987, THESIS U BAYREUTH; ROMSTOCKVOLKL M, 1990, J ANIM ECOL, V59, P251, DOI 10.2307/5171; SCHLUMPRECHT H, 1990, THESIS U BAYREUTH; SKINNER SW, 1985, BEHAV ECOL SOCIOBIOL, V17, P231, DOI 10.1007/BF00300141; SOBHIAN R, 1993, J APPL ENTOMOL, V116, P381, DOI 10.1111/j.1439-0418.1993.tb01211.x; STAMP NE, 1980, AM NAT, V115, P367, DOI 10.1086/283567; STAMP NE, 1981, OECOLOGIA, V49, P201, DOI 10.1007/BF00349188; Stearns S. C., 1992, EVOLUTION LIFE HIST; STINNER BR, 1979, ECOLOGY, V60, P918, DOI 10.2307/1936860; SUMERFORD DV, 1995, ENVIRON ENTOMOL, V24, P657, DOI 10.1093/ee/24.3.657; TSCHARNTKE T, 1992, ECOLOGY, V73, P1689, DOI 10.2307/1940020; TSUBAKI Y, 1981, RES POPUL ECOL, V23, P156, DOI 10.1007/BF02514098; Varley G. C., 1947, JOUR ANIMAL ECOL, V16, P139, DOI 10.2307/1493; VOLKL W, 1990, CAN ENTOMOL, V122, P349; WEIS AE, 1985, ECOLOGY, V66, P1261, DOI 10.2307/1939179; WEIS AE, 1988, ANNU REV ENTOMOL, V33, P467, DOI 10.1146/annurev.en.33.010188.002343; WEIS AE, 1983, ECOLOGY, V64, P688, DOI 10.2307/1937190; WEISSER WW, 1994, ENTOMOL EXP APPL, V70, P1, DOI 10.1111/j.1570-7458.1994.tb01753.x; WILSON K, 1994, J EVOLUTION BIOL, V7, P339, DOI 10.1046/j.1420-9101.1994.7030339.x; ZWOLFER H, 1979, FORTS ZOOL, V25, P331; ZWOLFER H, 1993, ECOL STU AN, V99, P211; ZWOLFER H, 1994, PLANT GALLS, V49, P245; ZWOLFER H, 1994, FLUX CONTROL BIOL SY; ZWOLFER H, 1969, COMMONWEALTH I BIOL, V11, P105 56 33 35 0 17 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia OCT 1996 108 2 293 302 10.1007/BF00334654 10 Ecology Environmental Sciences & Ecology VN743 WOS:A1996VN74300013 28307842 2018-11-12 J Leimar, O Leimar, O Life-history analysis of the Trivers and Willard sex-ratio problem BEHAVIORAL ECOLOGY English Article life-history theory reproductive success; reproductive value; sex allocation; sex ratio SELECTION; DOMINANCE; MAMMALS Phenotypic quality, such as condition or size, often varies between individuals. For species with extensive maternal care, the quality of offspring may partially be determined by the quality of their mother. Trivers and Willard (1973) predicted that high quality females should prefer offspring of the sex whose reproductive success is most strongly influenced by maternal care, which in many cases will be sons. Correspondingly, low quality females should prefer daughters. However, this prediction is not based on a proper analysis of variation in reproductive value. Using state-dependent life-history theory, I show here that high quality females should prefer offspring of the sex whose reproductive value is most strongly influenced by maternal care. I also show that when offspring quality is strongly determined by their mother's quality, but not influenced by their father's quality, high quality females can have higher reproductive value than high quality males, even though their reproductive success may be much lower. In such cases, high quality females should prefer daughters and, correspondingly, low quality females should prefer sons. Leimar, O (reprint author), UNIV STOCKHOLM,DEPT ZOOL,S-10691 STOCKHOLM,SWEDEN. Leimar, Olof/L-3781-2014 Leimar, Olof/0000-0001-8621-6977 Altmann J., 1980, BABOON MOTHERS INFAN; Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV E L, 1982; CHARNOV EL, 1981, NATURE, V289, P27, DOI 10.1038/289027a0; Clutton-Brock T.H., 1982, P223; CLUTTONBROCK TH, 1986, ANIM BEHAV, V34, P460, DOI 10.1016/S0003-3472(86)80115-4; CLUTTONBROCK TH, 1986, Q REV BIOL, V61, P339, DOI 10.1086/415033; FISHER R. A., 1930, GENETICAL THEORY NAT; FRANK SA, 1990, ANNU REV ECOL SYST, V21, P13, DOI 10.1146/annurev.ecolsys.21.1.13; HAUSFATER G, 1982, SCIENCE, V217, P752, DOI 10.1126/science.217.4561.752; HIRAIWAHASEGAWA M, 1993, TRENDS ECOL EVOL, V8, P395, DOI 10.1016/0169-5347(93)90040-V; MAYNARDSMITH J, 1980, BEHAV ECOL SOCIOBIOL, V7, P247; MCNAMARA JM, 1993, J THEOR BIOL, V161, P23, DOI 10.1006/jtbi.1993.1037; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; MCNAMARA JM, 1991, THEOR POPUL BIOL, V40, P230, DOI 10.1016/0040-5809(91)90054-J; PRICE GR, 1970, NATURE, V227, P520, DOI 10.1038/227520a0; SILK JB, 1983, AM NAT, V121, P56, DOI 10.1086/284039; TAYLOR PD, 1989, THEOR POPUL BIOL, V36, P125, DOI 10.1016/0040-5809(89)90025-7; TAYLOR PD, 1990, AM NAT, V135, P95, DOI 10.1086/285034; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; van Schaik C.P., 1991, American Naturalist, V138, P1555, DOI 10.1086/285300 22 148 148 2 18 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 1045-2249 BEHAV ECOL Behav. Ecol. FAL 1996 7 3 316 325 10.1093/beheco/7.3.316 10 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology VE099 WOS:A1996VE09900012 Bronze 2018-11-12 J vanRooij, JM; Kok, JP; Videler, JJ vanRooij, JM; Kok, JP; Videler, JJ Local variability in population structure and density of the protogynous reef herbivore Sparisoma viride ENVIRONMENTAL BIOLOGY OF FISHES English Article adaptation; territoriality; life history; mating; grazing pressure; coral reef; reproduction; Scaridae FISHES; SIZE; FOOD; PARROTFISHES; SELECTION We compare the (relative) abundance of life phases [juveniles (JU), initial phase (IF) and terminal phase (TP) fish], social categories (territorial and group adults), and fish following alternative mating styles, in three local populations of the protogynous reef herbivore, Sparisoma viride, on the fringing reef of Bonaire (Netherlands Antilles). In order to determine the adaptive significance of variations in social organization, they are related to the density of conspecifics and other herbivores and to the availability of food, shelter and mating sites. The most striking difference is the high abundance of JU and group fish at one location (Playa Frans) and the total absence of group fish at another (Red Slave). These differences are coherent with a gradient in population density, total herbivore density, scarid grazing pressure, and reproductive output, all of which are highest at Playa Frans and lowest at Red Slave. Exposure to waves and currents shows an inverse trend. The differences in the relative abundance of territorial fish can be explained by the concept of economic defendability, which is reduced at higher population density. In a life history context, small TP group males represent 'bachelors' that sacrifice current reproduction for better future prospects. As predicted by life history theory, early sex change is promoted at sites where the future rewards are higher (higher spawning rates of large TP males) and where the costs incurred during the bachelor phase are reduced (more spawning opportunities for group TP males). At Red Slave an alternative male mating style ('streaking') appears to be promoted by the lack of a refuge for group TP males and by a dense gorgonian canopy, allowing IP males to reside inside territories. We conclude that most observed differences in population structure can be considered adaptive in an ecological and in a life history context. Population density is a major factor in both contexts. Analysis of the variability in adult density in relation to JU density and the availability of food and shelter indicates that the S. viride populations at Bonaire are not totally controlled by stochastic processes. Considering the small spatial scale and the high dispersal of the planktonic embryos and larvae, the observed variability in behavioural and life history traits of S. viride points to a high degree of phenotypic plasticity. vanRooij, JM (reprint author), UNIV GRONINGEN, DEPT MARINE BIOL, POB 14, NL-9750 AA HAREN, NETHERLANDS. van Rooij, Jules/C-5858-2008 van Rooij, Jules/0000-0001-5009-3389; Videler, John/0000-0003-1226-9528 ALEVIZON W, 1984, ENVIRON BIOL FISH, V10, P149, DOI 10.1007/BF00001122; BARLOW GW, 1975, MAR BIOL, V33, P281, DOI 10.1007/BF00390566; BARLOW GW, 1981, ENVIRON BIOL FISH, V6, P65, DOI 10.1007/BF00001801; Brown J. L., 1964, Wilson Bulletin, V76, P160; BRUGGEMANN JH, 1994, MAR ECOL PROG SER, V106, P41, DOI 10.3354/meps106041; BRUGGEMANN JH, 1994, MAR ECOL PROG SER, V106, P57, DOI 10.3354/meps106057; CARDWELL JK, 1989, THESIS U BRIT COLUMB; DAVIES NB, 1984, BEHAV ECOLOGY EVOLUT, P148; DOHERTY PJ, 1988, OCEANOGR MAR BIOL, V26, P487; FRYDL P, 1979, W I INT REV GES HYDR, V64, P737; GYGI R A, 1975, Eclogae Geologicae Helvetiae, V68, P327; HANLEY F, 1984, J EXP MAR BIOL ECOL, V83, P159, DOI 10.1016/0022-0981(84)90043-1; HIXON MA, 1980, AM NAT, V115, P510, DOI 10.1086/283577; Iwasa Y, 1991, BEHAV ECOL, V2, P56, DOI 10.1093/beheco/2.1.56; KOLTES KH, 1993, B MAR SCI, V52, P792; Leis J.M., 1991, P183; NORUSIS MJ, 1990, SPSS PC PLUS 4 0 IBM, V2; NORUSIS MJ, 1990, SPSS PC PLUS 4 0 IBM, V3; NORUSIS MJ, 1990, SPSS PC PLUS 4 0 IBM, V1; REINBOTH R, 1968, Z NATURFORSCH PT B, VB 23, P852; Robertson D., 1978, SMITHSON CONTRIB ZOO, V255, P1, DOI DOI 10.5479/SI.00810282.255); Sale P.F., 1991, P564; SALE PF, 1994, OECOLOGIA, V98, P83, DOI 10.1007/BF00326094; Shapiro D.Y., 1991, P331; Sokal R. R., 1981, BIOMETRY; THRESHER RE, 1984, REPRODUCTION REEF FI; VANDUYL FC, 1985, PUBL FDN SCI RES SUR, V117; vanRooij JM, 1996, ENVIRON BIOL FISH, V47, P81, DOI 10.1007/BF00002381; VANROOIJ JM, 1995, IN PRESS MAR ECOL PR; VANROOIJ JM, 1996, IN PRESS ENV BIOL FI; Warner R.R., 1991, P387; WARNER RR, 1980, EVOLUTION, V34, P508, DOI 10.1111/j.1558-5646.1980.tb04840.x; WARNER RR, 1980, ECOLOGY, V61, P772, DOI 10.2307/1936747; WARNER RR, 1975, SCIENCE, V190, P633, DOI 10.1126/science.1188360 34 26 26 0 8 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes SEP 1996 47 1 65 80 10.1007/BF00002380 16 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology VB082 WOS:A1996VB08200006 2018-11-12 J Dobler, S; RowellRahier, M Dobler, S; RowellRahier, M Reproductive biology of viviparous and oviparous species of the leaf beetle genus Oreina ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA English Article Oreina; Chrysomelidae; viviparity; offspring size; fecundity; maternal investment EGG SIZE; CHEMICAL DEFENSE; PARENTAL CARE; CLUTCH SIZE; NUMBER; EVOLUTION; CHRYSOMELIDAE; COLEOPTERA; SELECTION; TACTICS In five species of the genus Oreina Chevrolat (Coleoptera, Chrysomelidae) we compared the size of offspring, the fecundity of the females, the timing of offspring production and female investment over the season. Two of the species, O. elongata and O. luctuosa, laid eggs, while O. cacaliae, O. gloriosa and O. variabilis gave birth to larvae. Offspring size corrected for female size was similar in the two oviparous species and in the viviparous O. cacaliae. In the two other viviparous species the larvae were two to three times bi,, geer in relation to the female. The greater size of the offspring was not traded off for lower fecundity in these latter two species, yet the production of bigger larvae was associated with a longer laying period and thereby a spreading of reproductive investment over the season. The prediction of life history theory that higher investment in individual offspring should be traded off for lower fecundity could not be confirmed. The investigation of egg and larval development showed that in one of the oviparous species, O. luctuosa, the length of the egg stage was more variable. This corroborates the view that in this species the eggs can be retained for varying times before being laid. Greater size at birth does not necessarily lead to shortened developmental times: the larval periods of O. cacaliae, O. elongata, O. gloriosa and O. variabilis were all comparable although the larvae of the first two species were relatively smaller when laid; only the small larvae of O. luctuosa needed significantly longer for their development. For all growth parameters examined the differences between species were larger than the differences between populations. A comparison of larval growth of the oligophagous species O. cacaliae on three plant genera showed that larval growth rate is influenced by the food plant. However, the plant on which the larvae grew worst is apparently not chosen for oviposition in the field. A comparison with a phylogeny of the species based on allozymes suggests that species with similar reproductive parameters are closely related, yet that viviparity evolved independently in O. cacaliae on one hand and O. variabilis and O. gloriosa on the other. UNIV BASEL,INST ZOOL,CH-4051 BASEL,SWITZERLAND Dobler, Susanne/0000-0002-0635-7719 BLACKBURN DG, 1992, AM ZOOL, V32, P313; Bontems C., 1985, Bulletin de la Societe Entomologique de France, V89, P973; BONTEMS C, 1984, Nouvelle Revue d'Entomologie, V1, P179; BONTEMS C, 1981, Nouvelle Revue d'Entomologie, V11, P93; BONTEMS C, 1978, Nouvelle Revue d'Entomologie, V8, P69; Bontems C, 1988, BIOL CHRYSOMELIDAE, P299, DOI DOI 10.1007/978-94-009-3105-3_; Bontems C., 1981, THESIS U PARIS 6, P6; Breden F., 1985, Entomography, V3, P455; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; Champion G. C., 1901, Transactions of the Entomological Society of London, P1; Chapman T. A., 1903, Transactions of the Entomological Society of London, P245; Dixon A.F.G., 1987, P3; DOBLER S, 1994, OECOLOGIA, V97, P271, DOI 10.1007/BF00323160; DOBLER S, 1996, EVOLUTION; EGGENBERGER F, 1991, NATURWISSENSCHAFTEN, V78, P317, DOI 10.1007/BF01221419; KRIEGBAUM H, 1988, THESIS U ERLANGEN NU; LIEBHERR JK, 1985, J NAT HIST, V19, P1079, DOI 10.1080/00222938500770681; Lloyd DG, 1988, EVOL ECOL, V2, P175, DOI 10.1007/BF02067276; MAC ARTHUR ROBERT H., 1967; MONTAGUE JR, 1981, AM NAT, V118, P865, DOI 10.1086/283877; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PASTEELS JM, 1995, J CHEM ECOL, V21, P1163, DOI 10.1007/BF02228318; PASTEELS JM, 1993, BIOCHEM SYST ECOL, V21, P135, DOI 10.1016/0305-1978(93)90019-N; PASTEELS JM, 1992, NATURWISSENSCHAFTEN, V79, P521, DOI 10.1007/BF01135774; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIANKA ER, 1976, AM ZOOL, V16, P775; RANK NE, 1992, NATURAL HIST E CALIF, P161; Rowell-Rahier M., 1991, Chemoecology, V2, P41, DOI 10.1007/BF01240665; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; *SAS I INC, 1990, SAS STAT US GUIDE VE; SCRIBER JM, 1981, ANNU REV ENTOMOL, V26, P183, DOI 10.1146/annurev.en.26.010181.001151; SEENO TN, 1982, ENTOMOGRAPHY, V1, P75; SHINE R, 1978, J THEOR BIOL, V75, P417, DOI 10.1016/0022-5193(78)90353-3; Sibly R., 1985, P75; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEWART LA, 1991, FUNCT ECOL, V5, P380, DOI 10.2307/2389809; Tabashnik B.E., 1987, P71; Tutin T.G., 1980, FLORA EUROPAEA; Tutin TG, 1980, FLORA EUROPAEA, VII; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667; WOURMS JP, 1992, AM ZOOL, V32, P276; Zar J. H., 1984, BIOSTATISTICAL ANAL 43 6 6 1 11 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0013-8703 ENTOMOL EXP APPL Entomol. Exp. Appl. AUG 1996 80 2 375 388 10.1111/j.1570-7458.1996.tb00950.x 14 Entomology Entomology VC946 WOS:A1996VC94600006 2018-11-12 J Dale, S; Gustavsen, R; Slagsvold, T Dale, S; Gustavsen, R; Slagsvold, T Risk taking during parental care: A test of three hypotheses applied to the pied flycatcher BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article parental care; predation risk; risk taking; reproductive value; Ficedula hypoleuca REPRODUCTIVE SUCCESS; COLORED MALES; NEST DEFENSE; MALE-REMOVAL; BROOD SIZE; FEMALES; BIRDS; INVESTMENT; PREDATION; SURVIVAL According to life-history theory, there will often be a conflict between investment in current versus future reproduction. If a predator appears during breeding, parents must make a compromise between ensuing the growth and survival of offspring (nest defence, feeding and brooding of young), and reducing the risk of predation to ensure their own survival. We model three hypotheses for the outcome of this conflict which are particularly relevant for altricial birds. They are not mutually exclusive, but focus on different costs and benefits. (1) Parental investment is determined by the parents' own risk of predation. This hypothesis predicts that a lone parent should take smaller risks than a parent that has a mate. (2) Parental investment is related to the reproductive value of the offspring: Parents are predicted to take greater risks for larger broods, larger-sized or older offspring. (3) Finally, we present the new hypothesis that parental investment is related to the harm that offspring would suffer during a period of no parental care (incubation, brooding, feeding). This hypothesis predicts that parents should take greater risks for younger offspring, or for offspring in poorer condition, because the marginal benefit of parental care is largest in such cases. Hence, one may also expect that lone parents should take greater risks than two parents because their offspring are more in need of care. We tested these hypotheses on the pied flycatcher (Ficedula hypoleuca) by presenting a stuffed predator of the parents (a sparrowhawk, Accipiter nisus) close to the nest when parents were feeding the young. Risk taking was measured as the time that elapsed until the first visit to the nest. Most support was found for the ''harm to offspring'' hypothesis. Previous studies have usually measured the intensity of nest defence against typical nest predators, and have found evidence for the ''reproductive value of offspring'' hypothesis. However, our model predicts that the importance of the reproductive value of the offspring should decrease relative to the harm that offspring would suffer if they were not cared for when the predator type changes from a nest predator to a predator of adults, and when conditions for breeding turn from good to bad. UNIV OSLO,DEPT BIOL,N-0316 OSLO,NORWAY ALATALO RV, 1982, ANIM BEHAV, V30, P585, DOI 10.1016/S0003-3472(82)80072-9; ANDERSSON M, 1980, ANIM BEHAV, V28, P536, DOI 10.1016/S0003-3472(80)80062-5; BART J, 1989, BEHAV ECOL SOCIOBIOL, V24, P109, DOI 10.1007/BF00299642; BLANCHER PJ, 1982, ANIM BEHAV, V30, P929, DOI 10.1016/S0003-3472(82)80167-X; BREITWISCH R, 1988, ANIM BEHAV, V36, P62, DOI 10.1016/S0003-3472(88)80250-1; BUITRON D, 1983, BEHAVIOUR, V87, P209, DOI 10.1163/156853983X00435; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CURIO E, 1975, ANIM BEHAV, V23, P1, DOI 10.1016/0003-3472(75)90056-1; Drost R, 1936, VOGELZUG, V6, P179; GREIGSMITH PW, 1980, ANIM BEHAV, V28, P604, DOI 10.1016/S0003-3472(80)80069-8; LARSON S, 1960, OIKOS, V11, P277; LAZARUS J, 1986, ANIM BEHAV, V34, P1791, DOI 10.1016/S0003-3472(86)80265-2; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lundberg A, 1992, PIED FLYCATCHER; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; MEEK SB, 1994, IBIS, V136, P305, DOI 10.1111/j.1474-919X.1994.tb01099.x; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; Newton I., 1986, SPARROWHAWK; PERRINS CM, 1980, ARDEA, V68, P133; REGELMANN K, 1986, ANIM BEHAV, V34, P1206, DOI 10.1016/S0003-3472(86)80180-4; REGELMANN K, 1983, BEHAV ECOL SOCIOBIOL, V13, P131, DOI 10.1007/BF00293803; SAETRE GP, 1994, ANIM BEHAV, V48, P1407, DOI 10.1006/anbe.1994.1376; SAETRE GP, 1995, J ANIM ECOL, V64, P21, DOI 10.2307/5824; SHALTER MD, 1975, J COMP PHYSIOL PSYCH, V89, P258, DOI 10.1037/h0076817; SLAGSVOLD T, 1994, AM NAT, V143, P59, DOI 10.1086/285596; SLAGSVOLD T, 1995, J ANIM ECOL, V64, P563, DOI 10.2307/5800; SLAGSVOLD T, 1995, ANIM BEHAV, V50, P1109, DOI 10.1016/0003-3472(95)80110-3; Stearns S. C., 1992, EVOLUTION LIFE HIST; STENMARK G, 1988, ANIM BEHAV, V36, P1646, DOI 10.1016/S0003-3472(88)80105-2; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; VONHAARTMAN L, 1988, P INT ORN C, V18, P1; WALLIN K, 1987, BEHAVIOUR, V102, P213, DOI 10.1163/156853986X00135; WIKLUND CG, 1990, BEHAV ECOL SOCIOBIOL, V26, P217; WINKLER DW, 1987, AM NAT, V130, P526, DOI 10.1086/284729 34 80 81 0 48 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0340-5443 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. JUL 1996 39 1 31 42 10.1007/s002650050264 12 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology UZ040 WOS:A1996UZ04000004 2018-11-12 J Martin, TE; Clobert, J Martin, TE; Clobert, J Nest predation and avian life-history evolution in Europe versus North America: A possible role of humans? AMERICAN NATURALIST English Article MITOCHONDRIAL-DNA VARIATION; CLUTCH-SIZE; PHYLOGENETIC REGRESSION; POPULATION-STRUCTURE; REPRODUCTIVE EFFORT; PASSERINE BIRDS; SURVIVAL RATES; BODY-WEIGHT; GENETICS; PATTERNS Life-history theory predicts that decreased mortality in early life can favor increased fecundity and reduced iteroparity. Similar to other causes of environmental variation, modification of the environment by humans potentially can change age-specific mortality and, hence, affect life-history evolution. Forests were removed throughout western Europe long ago, and nest predation (early mortality) is reduced in human-settled environments there, whereas nest predation is generally increased in areas settled by humans in North America. We controlled statistically for effects of body size and phylogeny and compared songbirds (Passeriformes) of Europe to those of North America and found that nest predation was lower in Europe. Associated with this decrease in early mortality in Europe, fecundity was increased and iteroparity was reduced via decreased adult survival rates, as predicted by theory. Moreover, continental differences were greater for species that were more vulnerable to nest predation (open-nesting species) than for species that used safer nest sites (hole-nesting species). These results suggest that nest predation can be an important influence on avian life-history evolution but that evolutionary constraints of nest predation may have been reduced in European systems because of large-scale modification of the environment. UNIV PARIS 06, INST ECOL, ECOL LAB, F-75252 PARIS, FRANCE Martin, TE (reprint author), UNIV MONTANA, MONTANA COOPERAT WILDLIFE RES UNIT, US NATL BIOL SERV, MISSOULA, MT 59812 USA. Martin, Thomas/F-6016-2011; Langerhans, R./A-7205-2009 Martin, Thomas/0000-0002-4028-4867; AVISE JC, 1980, J HERED, V71, P303, DOI 10.1093/oxfordjournals.jhered.a109376; AVISE JC, 1980, AUK, V97, P135; AVISE JC, 1980, SYST ZOOL, V29, P323, DOI 10.2307/2992339; BENNETT PM, 1988, NATURE, V333, P216, DOI 10.1038/333216b0; BERMINGHAM E, 1992, P NATL ACAD SCI USA, V89, P6624, DOI 10.1073/pnas.89.14.6624; BLEDSOE AH, 1988, AUK, V105, P504; BOSQUE C, 1995, AM NAT, V145, P234, DOI 10.1086/285738; BRITTINGHAM MC, 1988, ECOLOGY, V69, P581, DOI 10.2307/1941007; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CRAMP S, 1989, BIRDS W PALEARCTIC, V6; CRAMP S, 1985, BIRDS W PALEARCTIC, V5; CRAMP S, 1993, BIRDS W PALEARCTIC, V7; CURIO E, 1989, TRENDS ECOL EVOL, V4, P81, DOI 10.1016/0169-5347(89)90155-9; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; Dobson Andrew, 1990, V7, P115; DRENT RH, 1980, ARDEA, V68, P225; Dunning JB, 1984, W BIRD BANDING ASS M, V1; EKMAN J, 1986, EVOLUTION, V40, P159, DOI 10.1111/j.1558-5646.1986.tb05727.x; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; GARLAND T, 1993, SYST BIOL, V42, P265, DOI 10.2307/2992464; GILL FB, 1993, EVOLUTION, V47, P195, DOI 10.1111/j.1558-5646.1993.tb01210.x; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; GRAFEN A, 1992, J THEOR BIOL, V156, P405, DOI 10.1016/S0022-5193(05)80635-6; Harvey P. H., 1991, COMP METHOD EVOLUTIO; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; JOHNSON NK, 1988, CONDOR, V90, P428, DOI 10.2307/1368571; KULESZA G, 1990, IBIS, V132, P407, DOI 10.1111/j.1474-919X.1990.tb01059.x; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; Lack D., 1968, ECOLOGICAL ADAPTATIO; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; MARTEN JA, 1986, CONDOR, V88, P409, DOI 10.2307/1368266; Martin T.E., 1992, Current Ornithology, V9, P163; Martin TE, 1995, J APPL STAT, V22, P863, DOI 10.1080/02664769524676; MARTIN TE, 1993, AM NAT, V141, P897, DOI 10.1086/285515; MARTIN TE, 1988, AM NAT, V132, P900, DOI 10.1086/284896; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; MARTIN TE, 1993, BIOSCIENCE, V43, P523, DOI 10.2307/1311947; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MARTINS EP, 1991, EVOLUTION, V45, P534, DOI 10.1111/j.1558-5646.1991.tb04328.x; MARTINS EP, 1993, AM NAT, V142, P994, DOI 10.1086/285585; MATHER AS, 1990, GLOBAL FOREST RESOUR; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MOLLER AP, 1994, EVOLUTION, V48, P1089, DOI 10.1111/j.1558-5646.1994.tb05296.x; Murray B. G., 1979, POPULATION DYNAMICS; MURRAY BG, 1985, ORNITHOL MONOGR, V36, P505; Newton Ian, 1993, British Birds, V86, P638; NILSSON SG, 1986, AUK, V103, P432; NILSSON SG, 1984, ORNIS SCAND, V15, P167, DOI 10.2307/3675958; PAGEL M, 1994, P ROY SOC B-BIOL SCI, V255, P37, DOI 10.1098/rspb.1994.0006; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; PIOTROWSKA M, 1989, Acta Ornithologica (Warsaw), V25, P25; PURVIS A, 1993, SYST BIOL, V42, P569, DOI 10.2307/2992489; PURVIS A, 1995, COMPUT APPL BIOSCI, V11, P247; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; ROBBINS CS, 1989, P NATL ACAD SCI USA, V86, P7658, DOI 10.1073/pnas.86.19.7658; ROBBINS CS, 1989, WILDLIFE MONOGR, P1; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; SAETHER BE, 1989, ORNIS SCAND, V20, P13, DOI 10.2307/3676702; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Sibley CG, 1990, PHYLOGENY CLASSIFICA; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; SMALL MF, 1988, OECOLOGIA, V76, P62, DOI 10.1007/BF00379601; SNOW D, 1958, SUDY BLACKBIRDS; STJERNBERG T, 1979, Acta Zoologica Fennica, P1; SUTHERLAND WJ, 1989, TRENDS ECOL EVOL, V4, P273, DOI 10.1016/0169-5347(89)90200-0; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0; TAMPLIN JW, 1993, WILSON BULL, V105, P93; THORPE H, 1978, CONSERVATION AGR, P17; TOMIALOJC L, 1984, Acta Ornithologica (Warsaw), V20, P241; TOMIALOJC L, 1980, Polish Ecological Studies, V5, P141; WEBSTER MS, 1992, EVOLUTION, V46, P1621, DOI 10.1111/j.1558-5646.1992.tb01158.x; WILCOVE DS, 1985, ECOLOGY, V66, P1211, DOI 10.2307/1939174; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; ZINK RM, 1982, AUK, V99, P632; ZINK RM, 1993, WILSON BULL, V105, P399; ZINK RM, 1991, CONDOR, V93, P98, DOI 10.2307/1368611; ZINK RM, 1991, AUK, V108, P578, DOI 10.2307/4088098; ZINK RM, 1991, CONDOR, V93, P318, DOI 10.2307/1368947; ZINK RM, 1984, SYST ZOOL, V33, P205, DOI 10.2307/2413021; ZINK RM, 1990, SYST ZOOL, V39, P148, DOI 10.2307/2992452 88 132 133 0 18 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. JUN 1996 147 6 1028 1046 10.1086/285891 19 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology UP976 WOS:A1996UP97600008 2018-11-12 J Bradshaw, W; Holzapfel, CM Bradshaw, W; Holzapfel, CM Genetic constraints to life-history evolution in the pitcher-plant mosquito, Wyeomyia smithii EVOLUTION English Article diapause; mosquito; pleiotropy; tradeoffs; wyeomyia BUGS ONCOPELTUS-FASCIATUS; DROSOPHILA-MELANOGASTER; QUANTITATIVE CHARACTERS; ANTAGONISTIC PLEIOTROPY; CORRELATED RESPONSES; SELECTION; TRAITS; REPRODUCTION; FITNESS; COSTS Life-history theory relies heavily an the hypothesis that genetic tradeoffs among the components of fitness constrain their independent evolution and joint maximization. Herein we show that selection on preadult development time in the pitcher-plant mosquito, Wyeomyia smithii,, leads to a correlated response in cohort mean generation time but no correlated response in survivorship, fecundity. or cohort replacement rare. Lines selected for fast development achieve a higher capacity for increase (r(c)) than lines selected for slow development, independently of larval density. These results imply that tradeoffs due to underlying antagonistic pleiotropy affecting growth, development, survivorship. and reproduction are not necessary constraints to life-history evolution. Previous work with W. smithii has shown a positive generic correlation between development time and a general, genetically coordinated diapause syndrome. We propose that the observed nontradeoffs among the components of r(c) may be subsumed into an even more fundamental tradeoff between performance during the summer generations and synchronization of development and reproduction with the changing seasons, Consequently, critical tests of genetic tradeoffs as a constraint to the independent evolution or simultaneous optimization of fitness components may need to consider the seasonal context. Bradshaw, W (reprint author), UNIV OREGON, DEPT BIOL, EUGENE, OR 97403 USA. BARTON NH, 1987, GENET RES, V49, P157, DOI 10.1017/S0016672300026951; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1984, EVOLUTION, V38, P314, DOI 10.1111/j.1558-5646.1984.tb00290.x; Bradshaw W.E., 1983, P161; BRADSHAW WE, 1989, AM NAT, V133, P869, DOI 10.1086/284957; BRADSHAW WE, 1977, EVOLUTION, V31, P546, DOI 10.1111/j.1558-5646.1977.tb01044.x; BRADSHAW WE, 1980, OECOLOGIA, V46, P13, DOI 10.1007/BF00346959; BRADSHAW WE, 1972, CAN J ZOOLOG, V50, P713, DOI 10.1139/z72-098; CAMPBELL MD, 1992, ANN ENTOMOL SOC AM, V85, P445, DOI 10.1093/aesa/85.4.445; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; CLARK AG, 1987, GENETIC CONSTRAINTS, P25; DAY RW, 1989, ECOL MONOGR, V59, P433, DOI 10.2307/1943075; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DEJONG G, 1993, FUNCT ECOL, V7, P75, DOI 10.2307/2389869; DINGLE H, 1988, EVOLUTION, V42, P79, DOI 10.1111/j.1558-5646.1988.tb04109.x; Dingle H., 1986, P187; GUPTA AP, 1982, EVOLUTION, V36, P934, DOI 10.1111/j.1558-5646.1982.tb05464.x; HARD JJ, 1993, J EVOLUTION BIOL, V6, P707, DOI 10.1046/j.1420-9101.1993.6050707.x; Hegmann J.P., 1982, P177; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HOULE D, 1992, GENETICS, V130, P195; Istock C.A., 1978, P171; Istock C.A., 1983, PROCEEDINGS OF THE ANNUAL BIOLOGY COLLOQUIUM (OREGON STATE UNIVERSITY), P61; Istock C.A., 1981, P113; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1980, GENETICS, V94, P203; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; MUELLER LD, 1981, P NATL ACAD SCI-BIOL, V78, P1303, DOI 10.1073/pnas.78.2.1303; MUELLER LD, 1991, PHILOS T ROY SOC B, V332, P25, DOI 10.1098/rstb.1991.0029; PALMER JO, 1986, EVOLUTION, V40, P767, DOI 10.1111/j.1558-5646.1986.tb00536.x; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PARTRIDGE L, 1985, GENET RES, V46, P279, DOI 10.1017/S0016672300022783; PARTRIDGE L, 1993, EVOLUTION, V47, P213, DOI 10.1111/j.1558-5646.1993.tb01211.x; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROFF DA, 1987, HEREDITY, V58, P103, DOI 10.1038/hdy.1987.15; Roff Derek A., 1992; Rose M.R., 1990, P29; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; ROSE MR, 1981, GENETICS, V97, P187; ROSE MR, 1991, EVOLUTIONARY BIOL AI; *SAS I, 1985, SAS US GUID; SCHEINER SM, 1991, GENETICA, V84, P123, DOI 10.1007/BF00116552; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; WILLIS JH, 1991, EVOLUTION, V45, P441, DOI 10.1111/j.1558-5646.1991.tb04418.x 49 30 31 0 2 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution JUN 1996 50 3 1176 1181 10.2307/2410658 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UY555 WOS:A1996UY55500020 28565280 Bronze 2018-11-12 J Olsson, M; Gullberg, A; Shine, R; Madsen, T; Tegelstrom, H Olsson, M; Gullberg, A; Shine, R; Madsen, T; Tegelstrom, H Paternal genotype influences incubation period, offspring size and offspring shape in an oviparous reptile EVOLUTION English Article Lacerta agilis; incubation period; multiple paternity; offspring size and shape; paternal genes CLUTCH SIZE; EGG SIZE; TERRITORY ACQUISITION; UTA-STANSBURIANA; LACERTA-AGILIS; PARENTAL CARE; SAND LIZARD; NUMBER; TEMPERATURE; SELECTION Theoretical models for tie evolution of life-history traits assume a genetic basis for a significant proportion of the phenotypic variance observed in characteristics such as hatching date and offspring size. However, recent experimental work has shown that much oi the phenotypic variance in hatchling reptiles is induced by nongenetic factors, such as maternal nutrition and thermoregulation, and the physical conditions experienced during embryogenesis. Thus, there is no unambiguous evidence for strictly genetic (intraspecific) influences on the phenotypes of hatchling reptiles. We report results from a technique that uses a genetic marker trait and DNA fingerprinting to determine paternity of offspring from multiply sired clutches of European sand lizards, Lacerta agilis. By focusing on paternal rather than maternal effects, we show that hatchling genotypes exert a direct influence on the duration of incubation, the size (mass, snout-vent length) and shape !relative tail length) of the hatchling, and subsequent growth rates of the lizard during the first 3 mo oi life. Embryos with genes that code for a few days' delay in hatching are thereby larger when they hatch, having undergone further differentiation (and hence, have changed in bodily proportions), and are able to grow faster after hatching. Our data thus provide empirical support for a crucial but rarely tested assumption of life-history theory, and illuminate some of the proximate mechanisms that produce intraspecific variation in offspring phenotypes. UNIV SYDNEY,SCH BIOL SCI,SYDNEY,NSW 2006,AUSTRALIA; UPPSALA UNIV,DEPT GENET,S-75007 UPPSALA,SWEDEN Olsson, M (reprint author), GOTHENBURG UNIV,DEPT ZOOL,SECT ANIM ECOL,MEDICINAREGATAN 18,S-41390 GOTHENBURG,SWEDEN. Shine, Richard/B-8711-2008 Madsen, Thomas/0000-0002-0998-8372 AUSTIN CR, 1984, REPROD MAMMALS, V4; Bischoff W., 1984, HDB REPTILIEN AMPHIB, V2/I, P23; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; BULMER MG, 1985, MATH THEORY QUANTITA; BURGER J, 1990, J HERPETOL, V24, P158, DOI 10.2307/1564223; BURGER J, 1989, BEHAV ECOL SOCIOBIOL, V24, P201, DOI 10.1007/BF00295199; CHEVERUD JM, 1983, GENET RES, V42, P62; FALCONER DS, 1989, INTRO QUANTITATIVE G; FERGUSON GW, 1984, EVOLUTION, V38, P342, DOI 10.1111/j.1558-5646.1984.tb00292.x; Ford EB, 1927, BR J EXP BIOL, V5, P112; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; Gould S.J., 1977, ONTOGENY PHYLOGENY; Grafen A., 1988, REPROD SUCCESS, P454; GUILETTE LJ, 1992, J MORPHOL, V212, P1; GUILLETTE LJ, 1985, J MORPHOL, V184, P85, DOI 10.1002/jmor.1051840109; HEULIN B, 1990, CAN J ZOOL, V68, P1015, DOI 10.1139/z90-147; Hochberg Y., 1987, MULTIPLE COMP PROCED; KING RB, 1993, J HERPETOL, V27, P175, DOI 10.2307/1564934; LANG JW, 1985, AM ZOOL, V25, pA18; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; MADSEN T, 1992, OECOLOGIA, V92, P40, DOI 10.1007/BF00317260; NEWMAN RA, 1994, EVOLUTION, V48, P1773, DOI 10.1111/j.1558-5646.1994.tb02213.x; NUSSBAUM RA, 1989, AM NAT, V133, P591, DOI 10.1086/284939; NUSSBAUM RA, 1981, OECOLOGIA, V49, P8, DOI 10.1007/BF00376891; OLSSON M, 1994, ANIM BEHAV, V48, P607, DOI 10.1006/anbe.1994.1280; OLSSON M, 1994, ANIM BEHAV, V48, P193, DOI 10.1006/anbe.1994.1226; OLSSON M, 1994, NATURE, V369, P528, DOI 10.1038/369528b0; OLSSON M, 1994, NATURE, V372, P230, DOI 10.1038/372230a0; OLSSON M, 1992, THESIS U GOTEBORG SW; Packard G.C., 1991, P213, DOI 10.1017/CBO9780511585739.014; PALMER BD, 1994, IN PRESS J MORPHOL; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PRICE TD, 1985, AM NAT, V125, P169, DOI 10.1086/284336; Rykena S., 1988, MERTENSIELLA, V1, P41; SHINE R, 1978, J THEOR BIOL, V75, P417, DOI 10.1016/0022-5193(78)90353-3; SHINE R, 1977, AUST J ZOOL, V25, P655, DOI 10.1071/ZO9770655; SHINE R, 1993, OECOLOGIA, V96, P122, DOI 10.1007/BF00318039; SHINE R, 1995, AM NAT, V145, P809, DOI 10.1086/285769; SINERVO B, 1988, EVOLUTION, V42, P885, DOI 10.1111/j.1558-5646.1988.tb02509.x; SINERVO B, 1990, OECOLOGIA, V83, P228, DOI 10.1007/BF00317757; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STAMPS JA, 1994, ANIM BEHAV, V47, P1387, DOI 10.1006/anbe.1994.1186; STAMPS JA, 1994, ANIM BEHAV, V47, P1375, DOI 10.1006/anbe.1994.1185; VAISANEN R A, 1972, Ornis Fennica, V49, P25; VANNOORDWIJK AJ, 1981, GENETICA, V55, P221, DOI 10.1007/BF00127206; VIA S, 1995, TRENDS ECOL EVOL, V10, P212, DOI 10.1016/S0169-5347(00)89061-8; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667 48 39 41 0 19 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 0014-3820 EVOLUTION Evolution JUN 1996 50 3 1328 1333 10.2307/2410672 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UY555 WOS:A1996UY55500034 28565274 Bronze 2018-11-12 J Amat, JA; Carrascal, LM; Moreno, J Amat, JA; Carrascal, LM; Moreno, J Nest defence by chinstrap penguins Pygoscelis antarctica in relation to offspring number and age JOURNAL OF AVIAN BIOLOGY English Article BROOD SIZE; PARENTAL RESPONSE; CICHLID FISH We manipulated clutches of Chinstrap Penguins to examine the effects of brood size and offspring age on brood defence le, els. Nest defence intensity increased with increasing offspring age, Experimental birds reduced nest defence intensity after losing one egg, These results support predictions derived from life-history theory a which assumes changes in nest defence intensity to be related to changes in the reproductive value of the brood. Amat, JA (reprint author), CSIC, MUSEO NACL CIENCIAS NAT, J GUTIERREZ ABASCAL 2, E-28006 MADRID, SPAIN. carrascal@pinar1.csic.es; mcnjm19@pinar1.csic.es Carrascal, Luis M./B-8381-2008; CSIC, EBD Donana/C-4157-2011; Evolutionary Ecology, Ecologia Evolutiva/M-3553-2014 Carrascal, Luis M./0000-0003-1288-5531; CSIC, EBD Donana/0000-0003-4318-6602; Amat, Juan A./0000-0003-1685-1056 Ainley D. G., 1983, BREEDING BIOL ADELIE; AMAT JA, 1993, COLON WATERBIRD, V16, P213, DOI 10.2307/1521441; ANDERSSON M, 1980, ANIM BEHAV, V28, P536, DOI 10.1016/S0003-3472(80)80062-5; BUITRON D, 1983, BEHAVIOUR, V87, P209, DOI 10.1163/156853983X00435; CARLISLE TR, 1985, ANIM BEHAV, V33, P234, DOI 10.1016/S0003-3472(85)80137-8; CURIO E, 1986, ETHOLOGY, V72, P75; KNIGHT RL, 1986, AUK, V103, P318; LAVERY RJ, 1990, ANIM BEHAV, V40, P1128, DOI 10.1016/S0003-3472(05)80179-4; Marchant S, 1990, HDB AUSTR NZ ANTARCT, V1; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; MORENO J, 1994, POLAR BIOL, V14, P21; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PUGESEK BH, 1983, BEHAV ECOL SOCIOBIOL, V13, P161, DOI 10.1007/BF00299919; REDONDO T, 1989, BEHAVIOUR, V111, P161, DOI 10.1163/156853989X00646; RIDGWAY MS, 1989, ETHOLOGY, V80, P47; SARGENT RC, 1985, BEHAV ECOL SOCIOBIOL, V17, P43, DOI 10.1007/BF00299427; THORNHILL R, 1989, ETHOLOGY, V83, P31, DOI 10.1111/j.1439-0310.1989.tb00517.x; VINUELA J, 1995, ETHOLOGY, V99, P323; WALLIN K, 1987, BEHAVIOUR, V102, P213, DOI 10.1163/156853986X00135; WALTER D, 1983, BR BIRDS, V76, P312; WIKLUND CG, 1990, BEHAV ECOL SOCIOBIOL, V26, P217; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 22 12 12 2 6 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0908-8857 J AVIAN BIOL J. Avian Biol. JUN 1996 27 2 177 179 10.2307/3677150 3 Ornithology Zoology VF155 WOS:A1996VF15500013 2018-11-12 J Leimar, O Leimar, O Life history plasticity: Influence of photoperiod on growth and development in the common blue butterfly OIKOS English Article SEASONAL PLASTICITY; PIERIS-RAPAE; SIZE; LARVAE; ANTS; SELECTION; LEPIDOPTERA; LYCAENIDAE; PROTANDRY; QUALITY The daylength experienced by a larva provides information about the progression of the season, so that plasticity in growth and development with photoperiod might serve as an adaptation allowing efficient timing relative to the favorable part of the season. In an experiment with Polyommatus icarus it was found that shorter daylengths, indicating less time available until the season ends, resulted in faster development from hatching to adult eclosion. From hatching and into the earlier part of the final instar, larval mass increased approximately exponentially with time, but the rate of growth during this phase was not affected by photoperiod. Both the later part of the final instar and pupal development proceeded more rapidly in shorter daylengths. The decrease in total development time did not reduce female final size, measured as pupal mass, whereas males became somewhat smaller. Males developed slightly faster than females (protandry) and were heavier than females in the longer daylengths but lighter in the shorter daylengths. The observed lack of a trade-off between development time and adult size in females is discussed in the light of life history theory of optimal age and size at maturity. Leimar, O (reprint author), UNIV STOCKHOLM, DEPT ZOOL, S-10691 STOCKHOLM, SWEDEN. Leimar, Olof/L-3781-2014 Leimar, Olof/0000-0001-8621-6977 Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Beck S.D., 1980, INSECT PHOTOPERIODIS; BLAU WS, 1981, OECOLOGIA, V48, P116, DOI 10.1007/BF00346997; COURTNEY SP, 1983, ECOL ENTOMOL, V8, P271, DOI 10.1111/j.1365-2311.1983.tb00508.x; DANKS HV, 1994, SERIES ENTOM, V52, P5; Dempster J. P., 1984, The biology of butterflies. Symposium of the Royal Entomological Society of London Number 11., P97; FEENY P, 1985, ECOL MONOGR, V55, P167, DOI 10.2307/1942556; FIEDLER K, 1992, OECOLOGIA, V91, P468, DOI 10.1007/BF00650318; FIEDLER K, 1990, OECOLOGIA, V83, P284, DOI 10.1007/BF00317767; Fiedler K, 1991, J RES LEPIDOPTERA, V28, P239; Frohawk F. W., 1924, NATURAL HIST BRIT BU, VII; GILBERT N, 1986, J ANIM ECOL, V55, P317, DOI 10.2307/4711; GILBERT N, 1984, J ANIM ECOL, V53, P599, DOI 10.2307/4538; JONES RE, 1982, AUST J ZOOL, V30, P223, DOI 10.1071/ZO9820223; KARLSSON B, 1990, FUNCT ECOL, V4, P609, DOI 10.2307/2389728; KRISTENSEN CO, 1994, J APPL ENTOMOL, V117, P92, DOI 10.1111/j.1439-0418.1994.tb00712.x; Masaki S., 1978, P72; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; NYLIN S, 1992, BIOL J LINN SOC, V47, P301, DOI 10.1111/j.1095-8312.1992.tb00672.x; OHSAKI N, 1994, ECOLOGY, V75, P59, DOI 10.2307/1939382; PIERCE NE, 1981, SCIENCE, V211, P1185, DOI 10.1126/science.211.4487.1185; PIERCE NE, 1986, J ANIM ECOL, V55, P451, DOI 10.2307/4730; PIERCE NE, 1985, AM NAT, V125, P888, DOI 10.1086/284387; Reiss M. J., 1989, ALLOMETRY GROWTH REP; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff Derek A., 1992; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; SCHROEDER LA, 1986, ECOLOGY, V67, P1628, DOI 10.2307/1939094; Scriber J.M., 1992, P429; SINGER MC, 1982, AM NAT, V119, P440, DOI 10.1086/283924; Stearns S. C., 1992, EVOLUTION LIFE HIST; WICKMAN PO, 1990, HOLARCTIC ECOL, V13, P238; WIKLUND C, 1991, OIKOS, V60, P241, DOI 10.2307/3544871; WIKLUND C, 1977, OECOLOGIA, V31, P153, DOI 10.1007/BF00346917 35 70 72 1 16 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos JUN 1996 76 2 228 234 10.2307/3546194 7 Ecology Environmental Sciences & Ecology VC125 WOS:A1996VC12500004 2018-11-12 J Charnov, EL Charnov, EL Optimal flower lifetimes EVOLUTIONARY ECOLOGY English Article dimensional analysis; life-history theory; sex allocation; dimensionless variables; pollination ESS floral lifetimes satisfy the product theorem from sex allocation theory. The dimensionless time investment per flower is a symmetric function of two dimensionless gain:cost ratios, one for each gender function. Charnov, EL (reprint author), UNIV UTAH,DEPT BIOL,SALT LAKE CITY,UT 84112, USA. ASHMAN TL, 1994, NATURE, V371, P788, DOI 10.1038/371788a0; CHARNOV E L, 1982; CHARNOV EL, 1995, P NATL ACAD SCI USA, V92, P1446, DOI 10.1073/pnas.92.5.1446; CHARNOV EL, 1979, P NATL ACAD SCI USA, V76, P2480, DOI 10.1073/pnas.76.5.2480; Charnov Eric L., 1993, P1; SCHOEN DJ, 1995, IN PRESS EVOLUTION; STEPHENS DW, 1993, BEHAV ECOL, V4, P172, DOI 10.1093/beheco/4.2.172 7 7 8 0 2 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. MAY 1996 10 3 245 248 10.1007/BF01237682 4 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity UN976 WOS:A1996UN97600003 2018-11-12 J Lorentsen, SH Lorentsen, SH Regulation of food provisioning in the Antarctic petrel Thalassoica antarctica JOURNAL OF ANIMAL ECOLOGY English Article Antarctica; body mass; body condition; reproductive effort; chick growth WANDERING ALBATROSS; FEEDING RATES; ENERGY COSTS; STORM-PETREL; MEAL SIZE; REPRODUCTION; INCUBATION; DIOMEDEA; ISLAND; CHICK 1. Life-history theory predicts that individual birds should invest in reproduction according to their current body condition and the future prospects for survival and reproduction. Thus, it could be expected that current adult body condition should significantly influence food provisioning rates, food loads and concurrent chick growth in the Antarctic petrel. 2. In order to study the significance of parental body condition I correlated meal sizes, feeding frequencies and chick growth with the body condition of the parents. 3. There was a strong correlation between the average meal size delivered to a chick and its growth rare. Adult body condition at the time of hatching was strongly correlated with the average size of meals delivered to individual chicks. Male and female body condition at the time of hatching and average body condition of the pair at the first incubation shift and at hatching significantly influenced the body mass of the chick on day 30. Male body condition and the average body condition of the pair correlated significantly with the growth rate of the chick. 4. The difference in body mass at the age of 30 days of chicks from parents with good body condition compared with chicks from parents with poorer body condition was nearly double that expected. 5. The results strongly suggest that the effort spent during the chick-rearing period, and thus reproductive success, is regulated by the body condition of the parents. Lorentsen, SH (reprint author), NORWEGIAN INST NAT RES,TUNGASLETTA 2,N-7005 TRONDHEIM,NORWAY. ANDERSEN R, 1995, POLAR BIOL, V15, P65; BOLTON M, 1995, FUNCT ECOL, V9, P161, DOI 10.2307/2390560; CHAURAND T, 1994, J ANIM ECOL, V63, P275, DOI 10.2307/5546; COPESTAKE PG, 1988, POLAR BIOL, V8, P271, DOI 10.1007/BF00263175; CROXALL JP, 1982, J ANIM ECOL, V51, P177, DOI 10.2307/4318; CROXALL JP, 1983, IBIS, V125, P33, DOI 10.1111/j.1474-919X.1983.tb03081.x; Fisher H.I., 1971, Living Bird, V10, P19; HAMER KC, 1994, J AVIAN BIOL, V25, P198, DOI 10.2307/3677075; HAMER KC, 1993, J ANIM ECOL, V62, P441, DOI 10.2307/5193; HAMER KC, 1994, IBIS, V136, P271, DOI 10.1111/j.1474-919X.1994.tb01095.x; Hastings NAJ, 1975, STATISTICAL DISTRIBU; HATCH SA, 1990, ORNIS SCAND, V21, P89, DOI 10.2307/3676803; JOHNSEN I, 1994, OIKOS, V71, P273, DOI 10.2307/3546276; Krebs J.R., 1991, P105; LORENTSEN SH, 1994, POLAR BIOL, V14, P143; LORENTSEN SH, 1995, IBIS, V137, P345, DOI 10.1111/j.1474-919X.1995.tb08031.x; MARCHANT S, 1990, HDB AUSTR NZ ANTARCT; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; MEHLUM F, 1988, Polar Research, V6, P1, DOI 10.1111/j.1751-8369.1988.tb00576.x; Norusis M. J., 1985, SPSS X ADV STAT GUID; PRINCE PA, 1981, CONDOR, V83, P238, DOI 10.2307/1367315; PRINCE PA, 1981, ORNIS SCAND, V12, P207, DOI 10.2307/3676078; RICKLEFS RE, 1992, ANIM BEHAV, V43, P895, DOI 10.1016/0003-3472(92)90003-R; RICKLEFS RE, 1987, AUK, V104, P750; RICKLEFS RE, 1984, ORNIS SCAND, V15, P16, DOI 10.2307/3675998; RICKLEFS RE, 1994, FUNCT ECOL, V8, P159, DOI 10.2307/2389899; RICKLEFS RE, 1985, J ANIM ECOL, V54, P883, DOI 10.2307/4385; ROV N, 1994, 1991 92 NORSK POL, P9; SAETHER BE, 1993, BEHAV ECOL SOCIOBIOL, V33, P147, DOI 10.1007/BF00216594; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stephens DW, 1986, FORAGING THEORY; Warham J, 1990, PETRELS THEIR ECOLOG; WEIMERSKIRCH H, 1992, OIKOS, V64, P464, DOI 10.2307/3545162; WEIMERSKIRCH H, 1995, BEHAV ECOL SOCIOBIOL, V36, P11 34 54 55 0 4 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0021-8790 J ANIM ECOL J. Anim. Ecol. MAY 1996 65 3 381 388 10.2307/5884 8 Ecology; Zoology Environmental Sciences & Ecology; Zoology UM116 WOS:A1996UM11600013 2018-11-12 J Bridges, TS; Heppell, S Bridges, TS; Heppell, S Fitness consequences of maternal effects in Streblospio benedicti (Annelida: Polychaeta) AMERICAN ZOOLOGIST English Article; Proceedings Paper Symposium on Maternal Effects on Early Life History, Their Persistence, and Impact on Organismal Ecology, at the Annual Meeting of the American-Society-of-Zoologists DEC 27-30, 1993 LOS ANGELES, CA Amer Soc Zoologists EGG SIZE; CLUTCH SIZE; PARENTAL INVESTMENT; REPRODUCTIVE EFFORT; PROPAGULE SIZE; OFFSPRING SIZE; LIFE HISTORIES; CAPITELLA SP; EVOLUTION; POPULATION The degree to which a female partitions resources between fecundity and per offspring investment is a central question in life-history theory. Maternal effects may influence the nature of this tradeoff through their effect on per offspring investment and subsequent offspring fitness. The purpose of this study was to determine the effect of female age and size on brood size (number of offspring), per offspring investment, and fitness in the polychaete Streblospio benedicti, Early stage embryos were collected from brooding females of known age and size over a period of 100 days; these embryos were counted and analyzed for their C and N content. Female size had a positive effect on brood size; larger females produced larger broods. However, brood size decreased with female age (females did not increase in size after reaching sexual maturity). Brood size declined 20-46% between 60 and 160 days of age. During this same age period per offspring investment, measured in terms of C and N, increased by 25%. Offspring survivorship and size at two weeks post-release from the female were used as measures of offspring fitness, Offspring survivorship increased 28% between 60 and 160 days of age. Increased growth in offspring from older females resulted in a 23% increase in offspring size at two weeks, Including the maternal age effect in two population models for S. benedicti increased population growth rate (lambda), Population growth was increased to a greater degree when the maternal effect was modeled by enhancing offspring survival compared to when fecundity was increased by the same proportional amount. This suggests that the maternal effect may be adaptive, particularly when conditions for offspring survival and growth are poor. N CAROLINA STATE UNIV, DEPT MARINE EARTH & ATMOSPHER SCI, RALEIGH, NC 27695 USA; N CAROLINA STATE UNIV, DEPT ZOOL, RALEIGH, NC 27695 USA AKESSON B, 1982, INT J INVER REP DEV, V5, P59; ANTONOVICS J, 1986, OECOLOGIA, V69, P277, DOI 10.1007/BF00377634; BAGENAL TB, 1969, J FISH BIOL, V1, P349, DOI 10.1111/j.1095-8649.1969.tb03882.x; BARNES H, 1965, J ANIM ECOL, V34, P391, DOI 10.2307/2656; BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; BELK D, 1990, J CRUSTACEAN BIOL, V10, P128, DOI 10.2307/1548675; BELL SS, 1980, MARINE BENTHIC DYNAM, P179; BERRIGAN D, 1991, OIKOS, V60, P313, DOI 10.2307/3545073; BRIDGES TS, 1993, BIOL BULL, V184, P144, DOI 10.2307/1542224; BRIDGES TS, 1994, J EXP MAR BIOL ECOL, V177, P99, DOI 10.1016/0022-0981(94)90146-5; BRIDGES TS, 1992, THESIS N CAROLINA ST; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; BRODY MS, 1984, OECOLOGIA, V61, P55, DOI 10.1007/BF00379089; CAPINERA JL, 1979, AM NAT, V114, P350, DOI 10.1086/283484; Caswell H., 1989, MATRIX POPULATION MO; CAVERS PB, 1984, AM NAT, V124, P324, DOI 10.1086/284276; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHECKLEY DM, 1980, LIMNOL OCEANOGR, V25, P430, DOI 10.4319/lo.1980.25.3.0430; CHRISTIANSEN FB, 1979, THEOR POPUL BIOL, V16, P267, DOI 10.1016/0040-5809(79)90017-0; CHU JW, 1989, INVERTEBR REPROD DEV, V15, P131, DOI 10.1080/07924259.1989.9672033; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CONGDON JD, 1983, ECOLOGY, V64, P419, DOI 10.2307/1939959; EMLEN JM, 1984, POPULATION BIOL COEV; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GALLAGER SM, 1986, AQUACULTURE, V56, P105, DOI 10.1016/0044-8486(86)90021-9; GEORGE SB, 1990, INVERTEBR REPROD DEV, V17, P111, DOI 10.1080/07924259.1990.9672098; GLAZIER DS, 1992, ECOLOGY, V73, P910, DOI 10.2307/1940168; GRASSLE JF, 1974, J MAR RES, V32, P253; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HELM MM, 1973, J MAR BIOL ASSOC UK, V53, P673, DOI 10.1017/S0025315400058872; HORWOOD JW, 1989, J MAR BIOL ASSOC UK, V69, P81, DOI 10.1017/S0025315400049122; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; KAPLAN RH, 1984, AM NAT, V123, P393, DOI 10.1086/284211; KAPLAN RH, 1989, FUNCT ECOL, V3, P597, DOI 10.2307/2389574; KASULE FK, 1991, ECOL ENTOMOL, V16, P345, DOI 10.1111/j.1365-2311.1991.tb00226.x; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; KRAEUTER JN, 1981, J EXP MAR BIOL ECOL, V56, P3, DOI 10.1016/0022-0981(81)90003-4; KUZNETSOV V A, 1973, Journal of Ichthyology, V13, P669; LEVIN LA, 1991, EVOLUTION, V45, P380, DOI 10.1111/j.1558-5646.1991.tb04412.x; LEVIN LA, 1986, MAR BIOL, V92, P103, DOI 10.1007/BF00392752; LEVIN LA, 1984, BIOL BULL, V166, P494, DOI 10.2307/1541157; LEVIN LA, 1990, ECOLOGY, V71, P2191, DOI 10.2307/1938632; LEVIN LA, 1986, BIOL BULL, V171, P143, DOI 10.2307/1541913; LEVIN LA, 1987, ECOLOGY, V68, P1877, DOI 10.2307/1939879; MARSH AG, 1990, LIMNOL OCEANOGR, V35, P710, DOI 10.4319/lo.1990.35.3.0710; MARSH E, 1986, COPEIA, P18; MARSHALL LD, 1990, CAN J ZOOL, V68, P44, DOI 10.1139/z90-008; MCCANN LD, 1989, J EXP MAR BIOL ECOL, V131, P233, DOI 10.1016/0022-0981(89)90115-9; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; Michaels HJ, 1988, EVOL ECOL, V2, P157, DOI 10.1007/BF02067274; MONTELEONE DM, 1990, J EXP MAR BIOL ECOL, V140, P1, DOI 10.1016/0022-0981(90)90076-O; MOUSSEAU TA, 1991, ANNU REV ENTOMOL, V36, P511, DOI 10.1146/annurev.en.36.010191.002455; ORTON RA, 1990, FUNCT ECOL, V4, P91, DOI 10.2307/2389657; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PIANKA ER, 1970, ECOLOGY, V51, P703, DOI 10.2307/1934053; QIAN PY, 1992, J EXP MAR BIOL ECOL, V156, P23, DOI 10.1016/0022-0981(92)90014-2; QIAN PY, 1991, J EXP MAR BIOL ECOL, V148, P11, DOI 10.1016/0022-0981(91)90143-K; REZNICK D, 1981, EVOLUTION, V35, P941, DOI 10.1111/j.1558-5646.1981.tb04960.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Roff Derek A., 1992; ROSE MR, 1981, GENETICS, V97, P172; SEMLITSCH RD, 1985, OECOLOGIA, V65, P305, DOI 10.1007/BF00378903; SIBLY R, 1988, J THEOR BIOL, V133, P13, DOI 10.1016/S0022-5193(88)80021-3; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SKADSHEIM A, 1984, OIKOS, V43, P94, DOI 10.2307/3544250; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STRATHMANN RR, 1992, EVOLUTION, V46, P972, DOI 10.1111/j.1558-5646.1992.tb00613.x; STRONG DR, 1972, ECOLOGY, V53, P1103, DOI 10.2307/1935422; TESSIER AJ, 1991, ECOLOGY, V72, P468, DOI 10.2307/2937188; THOMAS CS, 1983, IBIS, V125, P567, DOI 10.1111/j.1474-919X.1983.tb03151.x; TRAVIS J, 1987, EVOLUTION, V41, P145, DOI 10.1111/j.1558-5646.1987.tb05777.x; VANCE RR, 1973, AM NAT, V107, P353, DOI 10.1086/282839; WATZIN MC, 1986, J EXP MAR BIOL ECOL, V98, P65, DOI 10.1016/0022-0981(86)90076-6; WIKLUND C, 1984, OIKOS, V43, P391, DOI 10.2307/3544158; WINEMILLER KO, 1993, AM NAT, V142, P585, DOI 10.1086/285559; WRAY GA, 1991, TRENDS ECOL EVOL, V6, P45, DOI 10.1016/0169-5347(91)90121-D 82 40 40 1 9 SOC INTEGRATIVE COMPARATIVE BIOLOGY MCLEAN 1313 DOLLEY MADISON BLVD, NO 402, MCLEAN, VA 22101 USA 0003-1569 AM ZOOL Am. Zool. APR 1996 36 2 132 146 15 Zoology Zoology UJ518 WOS:A1996UJ51800004 2018-11-12 J Resetarits, WJ Resetarits, WJ Oviposition site choice and life history evolution AMERICAN ZOOLOGIST English Article; Proceedings Paper Symposium on Maternal Effects on Early Life History, Their Persistence, and Impact on Organismal Ecology, at the Annual Meeting of the American-Society-of-Zoologists DEC 27-30, 1993 LOS ANGELES, CA Amer Soc Zoologists BATTUS-PHILENOR; HYLA-CHRYSOSCELIS; POND COMMUNITIES; RANA-SYLVATICA; PREFERENCE; PREDATION; FROGS; PERFORMANCE; COMPETITION; BUTTERFLIES Studies of life history evolution, as well as much of life history theory, have typically focused on ''hard'' components of life histories; phenotypic characteristics that can be readily observed, quantified, and ultimately, connected rather directly to fitness. Typical of these are propagule size, propagule number, and age and size at maturity. What is largely missing from the study of life history evolution is consideration of the role of behavior, principally female oviposition site choice, in the evolution of life histories. For oviparous organisms, natural selection cannot produce locally optimized ''hard'' components of life history phenotypes without a consistent environmental context (whether invariant or variable); in a variable environment, that consistent environmental context can be most effectively provided by interactive oviposition site choice. I present a model of selection on oviposition site choice in the context of the evolution of ''hard'' components of life history phenotypes, along with some experimental data illustrating oviposition site choice in response to predators. The model and data are then related to the overall question of the role of oviposition site choice in life history evolution. The conclusion is that oviposition site choice must be under equally strong selection with egg size, egg number and the other hard components of life histories in order to generate and optimize locally adapted or ecologically specialized life history phenotypes, and must therefore, play a significant role in the evolution of life histories. UNIV ILLINOIS, DEPT ECOL ETHOL & EVOLUT, CHAMPAIGN, IL 61820 USA Resetarits, WJ (reprint author), ILLINOIS NAT HIST SURVEY, CTR AQUAT ECOL, CHAMPAIGN, IL 61820 USA. ALFORD RA, 1989, ECOLOGY, V70, P206, DOI 10.2307/1938427; ARNOLD SJ, 1994, AM NAT, V143, P317, DOI 10.1086/285606; BANKS B, 1987, HOLARCTIC ECOL, V10, P14; BERNARDO J, 1996, AM ZOOL, V36; CHESSON J, 1984, ENVIRON ENTOMOL, V13, P531, DOI 10.1093/ee/13.2.531; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; DUNHAM AE, 1989, PHYSIOL ZOOL, V62, P335, DOI 10.1086/physzool.62.2.30156174; DUNNETT CW, 1955, J AM STAT ASSOC, V50, P1096; FAUTH JE, 1991, ECOLOGY, V72, P827, DOI 10.2307/1940585; Feeny P., 1983, P27; FRY JD, 1996, IN PRESS AM NAT; Heyer W.R., 1975, Biotopica, V7, P100; Holomuzki JR, 1995, COPEIA, P607, DOI 10.2307/1446757; HOPEY ME, 1994, COPEIA, P1023; HOWARD RD, 1978, ECOLOGY, V59, P789, DOI 10.2307/1938783; JOHNALDER HB, 1988, AM NAT, V132, P506, DOI 10.1086/284868; KATS LB, 1992, COPEIA, P468, DOI 10.2307/1446206; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LAWLER SP, 1993, ECOLOGY, V74, P174, DOI 10.2307/1939512; LEVIN SA, 1974, P NATL ACAD SCI USA, V71, P2744, DOI 10.1073/pnas.71.7.2744; MacAuthur R. H., 1967, THEORY ISLAND BIOGEO; MAGNUSSON WE, 1991, OECOLOGIA, V86, P310, DOI 10.1007/BF00317595; MCPEEK MA, 1989, OIKOS, V56, P187, DOI 10.2307/3565335; MORIN PJ, 1983, ECOL MONOGR, V53, P119, DOI 10.2307/1942491; Papaj D.R., 1983, P77; PAPAJ DR, 1987, OECOLOGIA, V74, P24, DOI 10.1007/BF00377341; PETRANKA JW, 1991, COPEIA, P234, DOI 10.2307/1446271; PETRANKA JW, 1994, COPEIA, P691, DOI 10.2307/1447185; PETRANKA JW, 1987, ANIM BEHAV, V35, P420, DOI 10.1016/S0003-3472(87)80266-X; RAUSHER MD, 1981, ECOL MONOGR, V51, P1, DOI 10.2307/2937304; RAUSHER MD, 1978, SCIENCE, V200, P1071, DOI 10.1126/science.200.4345.1071; RAUSHER MD, 1979, ECOLOGY, V60, P503, DOI 10.2307/1936070; RAUSHER MD, 1983, ANIM BEHAV, V31, P341, DOI 10.1016/S0003-3472(83)80052-9; RAUSHER MD, 1980, EVOLUTION, V34, P342, DOI 10.1111/j.1558-5646.1980.tb04823.x; RAUSHER MD, 1993, VARIABLE PLANTS HERB, P223; Resetarits William, 1995, Bulletin of the Ecological Society of America, V76, P380; RESETARITS WJ, 1989, ECOLOGY, V70, P220, DOI 10.2307/1938428; RESETARITS WJ, 1991, ECOLOGY, V72, P778, DOI 10.2307/1940580; RICHIE SA, 1992, ENVIRON ENTOMOL, V21, P737; RICHIE SA, 1994, J AM MOSQUITO CONT A, V10, P380; Roff Derek A., 1992; Roosenburg WM, 1996, AM ZOOL, V36, P157; SEALE DB, 1982, COPEIA, P627, DOI 10.2307/1444663; SINGER MC, 1988, EVOLUTION, V42, P977, DOI 10.1111/j.1558-5646.1988.tb02516.x; SINGER MC, 1984, S R ENTOMOL SOC, V11, P81; Singer MC, 1994, ECOSCIENCE, V1, P107, DOI 10.1080/11956860.1994.11682234; SKELLY DK, 1995, ECOLOGY, V76, P150, DOI 10.2307/1940638; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH DC, 1983, ECOLOGY, V64, P501, DOI 10.2307/1939970; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEEL RGD, 1980, PRINCIPLES PROCEDURE; WALDMAN B, 1982, BEHAV ECOL SOCIOBIOL, V10, P169, DOI 10.1007/BF00299681; WERNER EE, 1994, ECOLOGY, V75, P1368, DOI 10.2307/1937461; WHITTAKER RH, 1977, THEOR POPUL BIOL, V12, P117, DOI 10.1016/0040-5809(77)90039-9; Wilbur H.M, 1984, NEW ECOLOGY NOVEL AP, P114; WILBUR HM, 1987, ECOLOGY, V68, P1437, DOI 10.2307/1939227; WILBUR HM, 1985, ECOLOGY, V66, P1106, DOI 10.2307/1939162; WILBUR HM, 1977, AM NAT, V111, P43, DOI 10.1086/283137; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; WOODWARD BD, 1983, ECOLOGY, V64, P1549, DOI 10.2307/1937509 60 164 179 1 44 SOC INTEGRATIVE COMPARATIVE BIOLOGY MCLEAN 1313 DOLLEY MADISON BLVD, NO 402, MCLEAN, VA 22101 USA 0003-1569 AM ZOOL Am. Zool. APR 1996 36 2 205 215 11 Zoology Zoology UJ518 WOS:A1996UJ51800010 2018-11-12 J Sparkes, TC Sparkes, TC Effects of predation risk on population variation in adult size in a stream dwelling isopod OECOLOGIA English Article isopod; sculpin; salamander larvae; size-dependent mortality risk; antipredator life history strategy LIFE-HISTORY EVOLUTION; SELECTIVE PREDATION; LIRCEUS-FONTINALIS; HABITAT USE; COMPETITION; AGE; PREFERENCE; ALLOCATION; MORTALITY; MATURITY I used a combination of laboratory experiments and field surveys to examine the role that population-specific predation risk may play in shaping the life history strategy of a stream-dwelling isopod Lirceus fontinalis. Two focal populations were identified that were exposed to different predator types. The first population was exposed to larvae of the streamside salamander (Ambystoma barbouri) and the second to banded sculpin (Cottus carolinae). A laboratory experiment, in which different size classes of prey were offered simultaneously to individual predators, revealed that L. fontinalis suffered greatest mortality risk at small sizes with A. barbouri. Alternatively, with C. carolinae the risk of mortality was independent of size. Life history theory predicts that L, frontinalis from populations exposed to the gaps-limited salamander larvae should be larger at maturity relative to individuals from populations exposed to C. carolinae. Field surveys on the two focal populations both within 1 year and across 4 years supported this prediction. Four other populations, two exposed to streamside salamander larvas and two to fish, provided additional support for the prediction. I concluded that L. fontinalis exhibited an adaptive response in size at maturity in response to population-specific predation risk. I then used gut content assays of the major predators to assess whether the population-specific life history strategies adopted by L. fontinalis were successful in avoiding predation. Sparkes, TC (reprint author), UNIV KENTUCKY, TH MORGAN SCH BIOL SCI, CTR ECOL EVOLUT & BEHAV, LEXINGTON, KY 40506 USA. ADAMS J, 1985, BEHAVIOUR, V92, P277; BRODIE ED, 1983, HERPETOLOGICA, V39, P67; CALEF GW, 1973, ECOLOGY, V54, P741, DOI 10.2307/1935670; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHESSON J, 1978, ECOLOGY, V59, P211, DOI 10.2307/1936364; CONOVER WJ, 1980, PRACTICAL NONPARAMET; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; CROWLEY PH, 1991, AM NAT, V137, P567, DOI 10.1086/285184; GALBRAIT.MG, 1967, T AM FISH SOC, V96, P1, DOI 10.1577/1548-8659(1967)96[1:SPODBR]2.0.CO;2; HARVELL CD, 1990, Q REV BIOL, V65, P323, DOI 10.1086/416841; Havel J.E., 1987, P263; HEER LM, 1974, THESIS U KENTUCKY; HOLOMUZKI JR, 1988, OIKOS, V52, P79, DOI 10.2307/3565985; HOLOMUZKI JR, 1990, HOLARCTIC ECOL, V13, P300; HUANG CF, 1990, ECOLOGY, V71, P1515, DOI 10.2307/1938288; HUANG CF, 1991, OECOLOGIA, V85, P530, DOI 10.1007/BF00323765; HUANG CF, 1991, FRESHWATER BIOL, V25, P451, DOI 10.1111/j.1365-2427.1991.tb01388.x; HUBRICHT L, 1949, AM MIDL NAT, V42, P334, DOI 10.2307/2422012; KERFOOT WC, 1987, PREDATION DIRECT IND; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MORIN PJ, 1983, ECOL MONOGR, V53, P119, DOI 10.2307/1942491; NEWMAN RM, 1984, ECOLOGY, V65, P1535, DOI 10.2307/1939133; PAINE RT, 1966, AM NAT, V100, P65, DOI 10.1086/282400; PENNAK RW, 1989, FRESHWATER INVERTEBR; PETRANKA JW, 1986, ECOLOGY, V67, P729, DOI 10.2307/1937696; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Roff Derek A., 1992; *SAS, 1988, SAS STAT US GUID REL; SHORT TM, 1992, FRESHWATER BIOL, V27, P91, DOI 10.1111/j.1365-2427.1992.tb00526.x; SIH A, 1985, ANNU REV ECOL SYST, V16, P269, DOI 10.1146/annurev.es.16.110185.001413; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; STENHOUSE SL, 1983, J HERPETOL, V17, P210, DOI 10.2307/1563822; STYRON CE, 1969, AM MIDL NAT, V82, P402, DOI 10.2307/2423786; TAYLOR BE, 1992, AM NAT, V139, P248, DOI 10.1086/285326; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; WOOSTER D, 1994, OECOLOGIA, V99, P7, DOI 10.1007/BF00317077; Zaret T., 1980, PREDATION FRESHWATER 43 25 26 0 13 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia APR 1996 106 1 85 92 10.1007/BF00334410 8 Ecology Environmental Sciences & Ecology UF579 WOS:A1996UF57900010 28307160 2018-11-12 J Day, T; Taylor, PD Day, T; Taylor, PD Evolutionarily stable versus fitness maximizing life histories under frequency-dependent selection PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article CHARACTER DISPLACEMENT; NATURAL-SELECTION; COEVOLUTION; MODELS; TRAITS; AGE There has been recent interest in using the techniques of quantitative genetics to study optimal life histories under frequency-dependent selection, but a search of the literature has revealed no clear quantitative genetics recursion that incorporates both frequency dependence and overlapping generations. This may be due in part to the historical tendency of life-history theory to ignore frequency dependence. Here we provide such a recursion, and use it to explore the general question of how frequency-dependent selection bn life-history traits can cause the evolutionarily stable strategies to differ from the point of maximum mean fitness. Day, T (reprint author), QUEENS UNIV, DEPT MATH & STAT, KINGSTON, ON K7L 3N6, CANADA. Day, Troy/0000-0002-1052-6140 ABRAMS P, 1983, THEOR POPUL BIOL, V24, P22, DOI 10.1016/0040-5809(83)90044-8; ABRAMS PA, 1989, EVOL ECOL, V3, P215, DOI 10.1007/BF02270722; ABRAMS PA, 1993, EVOLUTION, V47, P982, DOI 10.1111/j.1558-5646.1993.tb01254.x; BROWN JS, 1987, EVOLUTION, V41, P66, DOI 10.1111/j.1558-5646.1987.tb05771.x; CHARLESWORTH B, 1993, P ROY SOC B-BIOL SCI, V251, P47, DOI 10.1098/rspb.1993.0007; Charlesworth B., 1994, EVOLUTION AGE STRUCT; FALCONER DS, 1989, INTRO QUANTITATIVE G; HALDANE JBS, 1932, CAUSES EVOLUTION; IWASA Y, 1991, EVOLUTION, V45, P1431, DOI 10.1111/j.1558-5646.1991.tb02646.x; KAWECKI TJ, 1993, OIKOS, V66, P309, DOI 10.2307/3544819; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1976, EVOLUTION, V30, P314, DOI 10.1111/j.1558-5646.1976.tb00911.x; Lande R., 1982, P21; LESLIE PH, 1948, BIOMETRIKA, V35, P213, DOI 10.1093/biomet/35.3-4.213; MATSUDA H, 1994, EVOLUTION, V48, P1764, DOI 10.1111/j.1558-5646.1994.tb02212.x; Roff Derek A., 1992; SLATKIN M, 1979, GENETICS, V93, P755; SLATKIN M, 1980, ECOLOGY, V61, P163, DOI 10.2307/1937166; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC., 1992, EVOLUTION LIFE HISTO; TAPER ML, 1992, EVOLUTION, V46, P317, DOI 10.1111/j.1558-5646.1992.tb02040.x; TAYLOR PD, 1996, IN PRESS EVOLUTION; TAYLOR PD, 1996, UNPUB EVOLUTIONARY S; VINCENT TL, 1988, ANNU REV ECOL SYST, V19, P423; Wright S., 1942, Bull Amer Math Soc, V48, P223, DOI 10.1090/S0002-9904-1942-07641-5 29 14 14 0 6 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. MAR 22 1996 263 1368 333 338 10.1098/rspb.1996.0051 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology UE093 WOS:A1996UE09300014 2018-11-12 J McNamara, JM; Houston, AI McNamara, JM; Houston, AI State-dependent life histories NATURE English Review CLUTCH SIZE; REPRODUCTIVE EFFORT; PHENOTYPIC PLASTICITY; REACTION NORMS; GREAT TIT; AGE; EVOLUTION; NUMBER; STRATEGIES; SELECTION Life-history theory is concerned with strategic decisions over an organism's lifetime. Evidence is accumulating about the way in which these decisions depend on the organism's physiological state and other components such as external circumstances. Phenotypic plasticity may be interpreted as an organism's response to its state. The quality of offspring may depend on the state and behaviour of the mother. Recent theoretical advances allow these and other state-dependent effects to be modelled within the same framework. UNIV BRISTOL, SCH BIOL SCI, BRISTOL BS8 1UG, AVON, ENGLAND McNamara, JM (reprint author), UNIV BRISTOL, SCH MATH, UNIV WALK, BRISTOL BS8 1TW, AVON, ENGLAND. Altmann J., 1988, P403; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; BLARER A, 1995, P R SOC LOND B, V262, P303; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; BRAULT S, 1993, ECOLOGY, V74, P1444, DOI 10.2307/1940073; Caswell H., 1989, MATRIX POPULATION MO; CHANDRA RK, 1975, SCIENCE, V190, P289, DOI 10.1126/science.1179211; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Clutton-Brock T.H., 1988, P325; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CLUTTONBROCK TH, 1985, J ANIM ECOL, V54, P831, DOI 10.2307/4381; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; COCHRAN ME, 1992, ECOL MONOGR, V62, P345, DOI 10.2307/2937115; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; ELLNER S, 1986, J THEOR BIOL, V123, P173, DOI 10.1016/S0022-5193(86)80151-5; Fisher R. A., 1958, GENETICAL THEORY NAT; FRANK LG, 1986, ANIM BEHAV, V34, P1510, DOI 10.1016/S0003-3472(86)80221-4; GREEN WCH, 1991, OECOLOGIA, V86, P521, DOI 10.1007/BF00318318; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; HARCOURT AH, 1989, TRENDS ECOL EVOL, V4, P101, DOI 10.1016/0169-5347(89)90055-4; HEINSOHN RG, 1991, AM NAT, V137, P864, DOI 10.1086/285198; HOLEKAMP KE, 1993, ANIM BEHAV, V46, P451, DOI 10.1006/anbe.1993.1214; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; HOUSTON DC, 1995, IBIS, V137, P322, DOI 10.1111/j.1474-919X.1995.tb08028.x; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; LANDE R, 1990, GENET RES, V55, P189, DOI 10.1017/S0016672300025520; LEFKOVITCH LP, 1965, BIOMETRICS, V21, P1, DOI 10.2307/2528348; LEIMAR O, IN PRESS BEHAV ECOL; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; Lumey L H, 1992, Paediatr Perinat Epidemiol, V6, P240, DOI 10.1111/j.1365-3016.1992.tb00764.x; LUNN NJ, 1993, J ZOOL, V229, P55, DOI 10.1111/j.1469-7998.1993.tb02620.x; MANGEL M, 1994, BEHAV ECOL, V5, P412, DOI 10.1093/beheco/5.4.412; Marrow P, 1996, PHILOS T R SOC B, V351, P17, DOI 10.1098/rstb.1996.0002; MCNAMARA JM, 1993, J THEOR BIOL, V161, P23, DOI 10.1006/jtbi.1993.1037; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; MCNAMARA JM, 1991, THEOR POPUL BIOL, V40, P230, DOI 10.1016/0040-5809(91)90054-J; MCNAMARA JM, 1995, EVOL ECOL, V9, P185, DOI 10.1007/BF01237756; MCNAMARA JM, 1993, ACTA BIOTHEOR, V41, P165, DOI 10.1007/BF00712164; MCNAMARA JM, IN PRESS THEOR POP B; MECH LD, 1991, J MAMMAL, V72, P146, DOI 10.2307/1381989; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; MOLLER AP, 1993, J ANIM ECOL, V62, P309, DOI 10.2307/5362; MOUSSEAU TA, 1991, ANNU REV ENTOMOL, V36, P511, DOI 10.1146/annurev.en.36.010191.002455; NORRIS K, 1994, J ANIM ECOL, V63, P601, DOI 10.2307/5226; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; PERRIN N, 1993, EVOL ECOL, V7, P576, DOI 10.1007/BF01237822; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; PERRINS CM, 1975, J ANIM ECOL, V44, P695, DOI 10.2307/3712; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; PETTIFOR RA, 1993, J ANIM ECOL, V62, P131, DOI 10.2307/5488; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PRICE K, 1993, BEHAV ECOL, V4, P144, DOI 10.1093/beheco/4.2.144; PRINCE PA, 1981, CONDOR, V83, P238, DOI 10.2307/1367315; REITER J, 1991, BEHAV ECOL SOCIOBIOL, V28, P153, DOI 10.1007/BF00172166; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; RISCH TS, 1995, ECOLOGY, V76, P1643, DOI 10.2307/1938165; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.es.18.110187.001233; Roff Derek A., 1992; SAETHER BE, 1993, J ANIM ECOL, V62, P482, DOI 10.2307/5197; SILK JB, 1983, AM NAT, V121, P56, DOI 10.1086/284039; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Steams S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; TANNER JE, 1994, ECOLOGY, V75, P2204, DOI 10.2307/1940877; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WEIMERSKIRCH H, 1992, OIKOS, V64, P464, DOI 10.2307/3545162; WITTER MS, 1993, PHILOS T R SOC B, V340, P73, DOI 10.1098/rstb.1993.0050; ZAMENHOF S, 1971, SCIENCE, V172, P850, DOI 10.1126/science.172.3985.850 73 501 504 5 165 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 0028-0836 1476-4687 NATURE Nature MAR 21 1996 380 6571 215 221 10.1038/380215a0 7 Multidisciplinary Sciences Science & Technology - Other Topics UB117 WOS:A1996UB11700042 8637568 2018-11-12 J Slagsvold, T; Dale, S Slagsvold, T; Dale, S Disappearance of female Pied Flycatchers in relation to breeding stage and experimentally induced molt ECOLOGY English Article adult predation; body mass; Ficedula hypoleuca; molt; physiological stress; sexual dimorphism FICEDULA-HYPOLEUCA; CLUTCH SIZE; HATCHING ASYNCHRONY; REPRODUCTIVE EFFORT; PREDATION RISK; BODY-MASS; BIRDS; COSTS; INCUBATION; SPARROWHAWKS According to life history theory, adult mortality during the breeding season may have an important influence on the evolution of several aspects of breeding ecology in birds, yet few studies have tried to quantify such mortality. We studied disappearance of Pied Flycatchers (Ficedula hypoleuca) during four breeding seasons in a woodland area in Norway provided with nest boxes. The main cause of disappearance was probably predation by the European Sparrowhawk (Accipiter nisus). Disappearance was nonsignificantly higher in females (10% per season, n = 305) than in males (7% per season, n = 269). Female disappearance peaked during egg-laying (0.53% per day), but was also high during the nest-building (0.42% per day) and nestling (0.36% per day) stages. It was low during incubation (0.05% per day), probably because less time was spent outside the nest. Low risk of predation during incubation may help to explain why female body mass remains high during this stage of breeding but drops soon after hatching. Females with selected flight feathers experimentally removed to simulate molt suffered a much higher disappearance per season (24%, n = 109) than did control females (10%, n = 305). This may help to explain why breeding and molt usually are temporally segregated activities in birds. Variation in female body mass and size (wing length, tarsus length), age, previous breeding experience, mating date, laying date, clutch size, and mating status could not account for the variation found in female disappearance. Disappearance was lower in males than in females during the nest-building period, despite the more conspicuous plumage color of males. This may be explained by the fact that only the female builds the nest. We suggest that risk of predation is an important constraint on sexual selection of male plumage color in species in which males take part in nest building. Slagsvold, T (reprint author), UNIV OSLO,DEPT BIOL,POB 1050,N-0316 OSLO,NORWAY. ANDERSSON M, 1978, ANIM BEHAV, V26, P1207, DOI 10.1016/0003-3472(78)90110-0; BEISSINGER SR, 1991, AUK, V108, P863; Breitwisch R., 1989, Current Ornithology, V6, P1; CRESSWELL W, 1993, ANIM BEHAV, V46, P609, DOI 10.1006/anbe.1993.1231; Creutz G., 1955, Journal fuer Ornithologie, V96, P241; CURIO E, 1975, ANIM BEHAV, V23, P1, DOI 10.1016/0003-3472(75)90056-1; DALE S, 1992, BEHAV ECOL SOCIOBIOL, V30, P165, DOI 10.1007/BF00166699; DALE S, 1994, ANIM BEHAV, V47, P1197, DOI 10.1006/anbe.1994.1158; DHONDT AA, 1981, ORNIS SCAND, V12, P127, DOI 10.2307/3676039; DRENT RH, 1980, ARDEA, V68, P225; Endler J.A., 1991, P169; FREED LA, 1981, ECOLOGY, V62, P1179, DOI 10.2307/1937282; GEER TA, 1978, CONDOR, V80, P419, DOI 10.2307/1367192; GOTMARK F, 1995, BEHAV ECOL, V6, P22, DOI 10.1093/beheco/6.1.22; GOTMARK F, 1994, P ROY SOC B-BIOL SCI, V256, P83, DOI 10.1098/rspb.1994.0053; GOTMARK F, IN PRESS OIKOS; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; HAFTORN S, 1985, AUK, V102, P470; HOUSTON AI, 1986, J THEOR BIOL, V119, P345, DOI 10.1016/S0022-5193(86)80146-1; Jenni L, 1994, MOULT AGEING EUROPEA; JONES G, 1986, BEHAV ECOL SOCIOBIOL, V19, P179; Karlsson L., 1986, Var Fagelvarld, V45, P131; Lifjeld JT, 1990, BEHAV ECOL, V1, P48, DOI 10.1093/beheco/1.1.48; LIFJELD JT, 1986, ANIM BEHAV, V34, P1441, DOI 10.1016/S0003-3472(86)80215-9; LIFJELD JT, 1988, ORNIS SCAND, V19, P111, DOI 10.2307/3676459; LIMA SL, 1986, ECOLOGY, V67, P377, DOI 10.2307/1938580; LIMA SL, 1987, ECOLOGY, V68, P1062, DOI 10.2307/1938378; LINDSTROM A, 1989, AUK, V106, P225; Lundberg A, 1992, PIED FLYCATCHER; MAGRATH RD, 1988, AM NAT, V131, P893, DOI 10.1086/284829; Martin T.E., 1992, Current Ornithology, V9, P163; MORENO J, 1989, ORNIS SCAND, V20, P123, DOI 10.2307/3676879; Newton I., 1986, SPARROWHAWK; NORDBERG RA, 1981, AM NAT, V118, P838; NUR N., 1990, POPULATION BIOL PASS, P281; ORELL M, 1980, ORNIS SCAND, V11, P43, DOI 10.2307/3676264; PART T, 1989, J ANIM ECOL, V58, P305, DOI 10.2307/5002; Payne RB, 1972, AVIAN BIOL, V2, P103; PERRINS CM, 1980, ARDEA, V68, P133; PROMISLOW DEL, 1992, P ROY SOC B-BIOL SCI, V250, P143, DOI 10.1098/rspb.1992.0142; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; ROBINSON SK, 1986, ECOLOGY, V67, P394, DOI 10.2307/1938582; ROGERS CM, 1987, ECOLOGY, V68, P1051, DOI 10.2307/1938377; SAETRE GP, 1995, J ANIM ECOL, V64, P21, DOI 10.2307/5824; *SAS I, 1989, JMP US GUID VERS 2 J; SEALY SG, 1986, J FIELD ORNITHOL, V57, P315; SELAS V, 1993, ORNIS FENNICA, V70, P144; SILVERIN B, 1981, ORNIS SCAND, V12, P133, DOI 10.2307/3676040; SLAGSVOLD T, 1989, AM NAT, V134, P239, DOI 10.1086/284978; SLAGSVOLD T, 1986, J ANIM ECOL, V55, P1115, DOI 10.2307/4437; SLAGSVOLD T, 1992, EVOLUTION, V46, P825, DOI 10.1111/j.1558-5646.1992.tb02087.x; SLAGSVOLD T, 1988, ECOLOGY, V69, P1918, DOI 10.2307/1941168; SLAGSVOLD T, 1990, ECOLOGY, V71, P1258, DOI 10.2307/1938263; SLAGSVOLD T, 1994, BEHAV ECOL SOCIOBIOL, V34, P239, DOI 10.1007/BF00183474; SLAGSVOLD T, 1988, ANIM BEHAV, V36, P433, DOI 10.1016/S0003-3472(88)80013-7; SLAGSVOLD T, 1995, IN PRESS ANIMAL BEHA, V50; SMITH HG, 1989, BEHAV ECOL SOCIOBIOL, V24, P417, DOI 10.1007/BF00293270; STENMARK G, 1988, ANIM BEHAV, V36, P1646, DOI 10.1016/S0003-3472(88)80105-2; Sternberg H., 1989, P55; STRESEMANN ERWIN, 1966, J ORNITHOL, V107, P1; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Verner J., 1969, Ornithological Monographs, VNo. 9, P1; von HAARTMAN LARS, 1954, ACTA ZOOL FENNICA, V83, P1; VONHAARTMAN L, 1988, 18 C INT ORN MOSC, P1; WALSBERG GE, 1983, AVIAN BIOL, V7, P161; WOOLFENDEN GE, 1984, FLORIDA SCRUB JAY 67 81 82 1 14 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology MAR 1996 77 2 461 471 10.2307/2265622 11 Ecology Environmental Sciences & Ecology TY198 WOS:A1996TY19800010 2018-11-12 J Young, BE Young, BE An experimental analysis of small clutch size in tropical House Wrens ECOLOGY English Article brood manipulation; clutch size; food limitation; future fecundity; nest predation; offspring quality; population model; survivorship; trade-off; Troglodytes aedon; tropics TIT PARUS-MAJOR; GREAT TIT; BROOD SIZE; TROGLODYTES-AEDON; PASSERINE BIRDS; NEST PREDATION; HATCHING ASYNCHRONY; COLLARED FLYCATCHER; MANIPULATED BROODS; JUVENILE SURVIVAL Trade-offs are central to life history theory, yet few studies have examined how geographic variation in trade-offs can lead to geographic variation in life history characters. I examined whether or not trade-offs for future fecundity or offspring survivorship could explain why tropical birds lay smaller clutches than their temperate relatives. I studied a tropical population (in Monteverde, Costa Pica) of the House Wren (Troglodytes aedon), a species that ranges in average clutch size from 6 in the temperate zone to 3.5 in the tropics. Three years of brood manipulation experiments showed weak effects of brood size on both future fecundity and offspring survivorship. Females that raised broods enlarged by two nestlings laid subsequent clutches, in the same breeding season, that were one-third of an egg smaller than those of females that did not raise enlarged first broods. Clutches in the year following brood manipulation were about a half an egg smaller for females raising enlarged broods than for females raising control or reduced broods. However, brood manipulation had no effect on male or female survivorship in any year of the study, despite the observation that both sexes increased their foraging rate to compensate for rearing larger broods. In two of three years, House Wrens were able to raise enlarged broods just as successfully as control and reduced broods, as measured by fledgling mass and survivorship of nestlings and fledglings. In one year, nestlings in enlarged broods hedged lighter and had lower fledgling survival than those in control or reduced broods. Predation of broods was unrelated to brood size, so food limitation appeared to be the mechanism causing the trade-off between brood number and offspring production. The pattern in tropical House Wrens is similar to that found in many studies of temperate passerines: in most years, brood sizes larger than the modal brood size appear to produce the most offspring. Thus, the same mechanism that controls dutch size in temperate birds may be at work in the tropics, but the level at which clutch size is controlled is lower in tropical birds, resulting in smaller clutches. A population model based on demographic parameters measured in the study population showed that the trade-off for offspring survivorship had a greater influence on fitness than the trade-off for future fecundity. Also, the clutch size strategy accruing the highest fitness depended on temporally varying conditions for reproduction. A strategy of laying 5-6 eggs had higher fitness than laying smaller clutches in years when conditions were favorable for reproduction, but clutch sizes of 3-4 (the observed clutch sizes in Monteverde) were most productive during less favorable years. Depending on the frequency of favorable years, House Wrens may be responding to a ''bad-years effect'' by lowering variance in reproductive success to maximize fitness over the long term. Alternatively, tropical birds may lay fewer eggs so that they can invest more care in each offspring, enhancing the chance that their offspring will survive and compete successfully in social contests for breeding territories. This offspring-quality hypothesis is supported by the observation that tropical House Wrens devote more time to the different stages of the reproductive cycle than do temperate House Wrens. UNIV WASHINGTON,DEPT ZOOL,SEATTLE,WA 98195 Alatalo R, 1990, POPULATION BIOL PASS, P323; ALVAREZ-LOPEZ H, 1984, Caldasia, V14, P85; ARNOLD TW, 1993, WILSON BULL, V105, P448; BALTZ ME, 1988, WILSON BULL, V100, P70; BEISSINGER SR, 1990, AM NAT, V136, P20, DOI 10.1086/285080; BEISSINGER SR, 1991, AUK, V108, P863; BOCK CE, 1992, AM NAT, V140, P815, DOI 10.1086/285442; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Caswell H., 1989, MATRIX POPULATION MO; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; DRILLING NE, 1988, AUK, V105, P480; FINKE MA, 1987, J ANIM ECOL, V56, P99, DOI 10.2307/4802; FOSTER RB, 1982, ECOLOGY TROPICAL FOR, P201; FREED LA, 1987, CONDOR, V89, P195, DOI 10.2307/1368780; FREED LA, 1987, AM NAT, V130, P507, DOI 10.1086/284728; FREED LA, 1986, BEHAV ECOL SOCIOBIOL, V19, P197; FRETWELL SD, 1969, IBIS, V111, P624, DOI 10.1111/j.1474-919X.1969.tb02581.x; GAINES SD, 1990, AM NAT, V135, P310, DOI 10.1086/285047; GARNETT MC, 1981, IBIS, V123, P31, DOI 10.1111/j.1474-919X.1981.tb00170.x; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.ecolsys.22.1.409; Grant BR, 1989, EVOLUTIONARY DYNAMIC; GRAVES J, 1991, AUK, V108, P967; GROSS AO, 1948, US NATL MUS BULL, V195, P113; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; HAGVAR S, 1989, FAUNA NORVEGICA C, V13, P33; HARPER RG, 1992, BEHAV ECOL, V3, P76, DOI 10.1093/beheco/3.1.76; Hesse R, 1937, ECOLOGICAL ANIMAL GE; HOCHACHKA W, 1991, J ANIM ECOL, V60, P995, DOI 10.2307/5427; Holdridge LR., 1967, LIFE ZONE ECOLOGY; JANZEN D H, 1974, Biotropica, V6, P69, DOI 10.2307/2989823; JARVINEN A, 1991, IBIS, V133, P62, DOI 10.1111/j.1474-919X.1991.tb04811.x; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; KARR JR, 1983, ECOLOGY, V64, P1481, DOI 10.2307/1937503; KENNEDY ED, 1990, CONDOR, V92, P861, DOI 10.2307/1368722; KLOMP H, 1970, ARDEA, V58, P1; KOENIG WD, 1986, CONDOR, V88, P499, DOI 10.2307/1368278; KULESZA G, 1990, IBIS, V132, P407, DOI 10.1111/j.1474-919X.1990.tb01059.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D., 1968, ECOLOGICAL ADAPTATIO; LANDE R, 1988, OECOLOGIA, V75, P601, DOI 10.1007/BF00776426; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; LEVINGS SC, 1982, ECOLOGY TROPICAL FOR, P355; LIMA SL, 1987, ECOLOGY, V68, P1062, DOI 10.2307/1938378; LINDEN M, 1992, ECOLOGY, V73, P336, DOI 10.2307/1938745; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LUNDBERG S, 1985, OIKOS, V45, P110, DOI 10.2307/3565228; MADER WJ, 1982, CONDOR, V84, P261, DOI 10.2307/1367368; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MAYFIELD HF, 1975, WILSON BULL, V87, P456; MOLLER AP, 1984, ORNIS SCAND, V15, P43, DOI 10.2307/3676002; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; MURPHY MT, 1989, OIKOS, V54, P3, DOI 10.2307/3565891; NUR N, 1984, J ANIM ECOL, V53, P497, DOI 10.2307/4530; NUR N., 1990, POPULATION BIOL PASS, P281; ORELL M, 1990, POPULATION BIOL PASS, P297; Perrins C.M., 1977, P181; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; Pollock K.H., 1990, WILDLIFE MONOGR, V107, P1; REDONDO T, 1992, IBIS, V134, P180, DOI 10.1111/j.1474-919X.1992.tb08395.x; Ricklefs R.E., 1977, P193; Ricklefs R. E., 1969, SMITHSONIAN CONTRIBU, V9; RICKLEFS RE, 1980, AUK, V97, P38; ROBINSON KD, 1991, AUK, V108, P277; ROBINSON SK, 1986, ECOLOGY, V67, P394, DOI 10.2307/1938582; ROSKAFT E, 1985, J ANIM ECOL, V54, P255, DOI 10.2307/4635; SAFRIEL UN, 1975, ECOLOGY, V56, P703, DOI 10.2307/1935505; SAUER JR, 1989, J WILDLIFE MANAGE, V53, P137, DOI 10.2307/3801320; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCHAUB R, 1992, AUK, V109, P585; SCHLUTER D, 1988, EVOLUTION, V42, P849, DOI 10.1111/j.1558-5646.1988.tb02507.x; Skutch A. F., 1953, Condor, V55, P121, DOI 10.2307/1364829; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; Smith N.G, 1982, ECOLOGY TROPICAL FOR, P331; SMITH SM, 1994, ECOLOGY, V75, P2043, DOI 10.2307/1941609; Stearns S. C., 1992, EVOLUTION LIFE HIST; TINBERGEN JM, 1987, ARDEA, V75, P111; TREXLER JC, 1993, ECOLOGY, V74, P1629, DOI 10.2307/1939921; VANDERWERF E, 1992, ECOLOGY, V73, P1699, DOI 10.2307/1940021; WALSBERG GE, 1983, AVIAN BIOL, V7, P161; Wilkinson L, 1989, SYSTAT SYSTEM STAT; WINNETTMURRAY K, 1986, THESIS U FLORIDA GAI; YOUNG BE, 1994, AUK, V111, P545; YOUNG BE, 1994, CONDOR, V96, P341, DOI 10.2307/1369319; YOUNG BE, 1993, THESIS U WASHINGTON; Zach R., 1981, P95; ZACH R, 1982, CAN J ZOOL, V60, P1417, DOI 10.1139/z82-191 95 41 42 2 23 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology MAR 1996 77 2 472 488 10.2307/2265623 17 Ecology Environmental Sciences & Ecology TY198 WOS:A1996TY19800011 2018-11-12 J Frank, SA Frank, SA Models of parasite virulence QUARTERLY REVIEW OF BIOLOGY English Review GROUP SELECTION; VERTICAL TRANSMISSION; INCLUSIVE FITNESS; IMMUNE-SYSTEM; EVOLUTION; HOST; POPULATIONS; DISPERSAL; ORIGIN; COEVOLUTION Several evolutionary processes influence virulence, the amount of damage a parasite causes to its host. For example, parasites are favored to exploit their hosts prudently to prolong infection and avoid killing the host. Parasites also need to use some host resources to reproduce and transmit infections to new hosts. Thus parasites face a tradeoff between prudent exploitation and rapid reproduction-a life history tradeoff between longevity and fecundity. Other tradeoffs among components of parasite fitness also influence virulence. For example, competition among parasite genotypes favors rapid growth to achieve greater relative success within the host. Rapid growth may, however, lower the total productivity of the local group by over exploiting the host, which is a potentially renewable food supply. This is a problem of kin selection and group selection. I summarize models of parasite virulence with the theoretical tools of life history analysis, kin selection, and epidemiology. I then apply the theory to recent empirical studies and models of virulence. These applications, to nematodes, to the extreme virulence of hospital epidemics, and to bacterial meningitis, show the power of simple life history theory to highlight interesting questions and to provide a rich array of hypotheses. These examples also show the kinds of conceptual mistakes that commonly arise when only a few components of parasite fitness are analysed in isolation. The last part of the article connects standard models of parasite virulence to diverse topics, such as the virulence of bacterial plasmids, the evolution of genomes, and the processes that influenced conflict and cooperation among the earliest replicators near the origin of life. Frank, SA (reprint author), UNIV CALIF IRVINE, DEPT ECOL & EVOLUTIONARY BIOL, IRVINE, CA 92717 USA. Frank, Steven/0000-0001-7348-7794 NIGMS NIH HHS [GM42403] ANDERSON RM, 1982, PARASITOLOGY, V85, P411, DOI 10.1017/S0031182000055360; ANDERSON RM, 1991, J ANIM ECOL, V60, P1, DOI 10.2307/5443; ANDERSON RM, 1981, PHILOS T R SOC B, V291, P451, DOI 10.1098/rstb.1981.0005; Anderson RM, 1991, INFECT DIS HUMANS DY; ANDERSSON M, 1984, ANNU REV ECOL SYST, V15, P165, DOI 10.1146/annurev.es.15.110184.001121; [Anonymous], 1993, TRENDS MICROBIOL; ANTIA R, 1994, AM NAT, V144, P457, DOI 10.1086/285686; AXELROD R, 1981, SCIENCE, V211, P1390, DOI 10.1126/science.7466396; BIRGE EA, 1994, BACT BACTERIOPHAGE G; BONHOEFFER S, 1994, P ROY SOC B-BIOL SCI, V258, P133, DOI 10.1098/rspb.1994.0153; BONHOEFFER S, 1994, P NATL ACAD SCI USA, V91, P8062, DOI 10.1073/pnas.91.17.8062; BREMERMANN HJ, 1983, J THEOR BIOL, V100, P411, DOI 10.1016/0022-5193(83)90438-1; BREMERMANN HJ, 1989, J MATH BIOL, V27, P179, DOI 10.1007/BF00276102; BRESCH C, 1980, J THEOR BIOL, V85, P399, DOI 10.1016/0022-5193(80)90314-8; BULL JJ, 1991, J THEOR BIOL, V149, P63, DOI 10.1016/S0022-5193(05)80072-4; BULL JJ, 1991, EVOLUTION, V45, P875, DOI 10.1111/j.1558-5646.1991.tb04356.x; BULL JJ, 1994, EVOLUTION, V48, P1423, DOI 10.1111/j.1558-5646.1994.tb02185.x; CHARLESWORTH B, 1986, GENET RES, V48, P111, DOI 10.1017/S0016672300024836; CHARLESWORTH B, 1994, NATURE, V371, P215, DOI 10.1038/371215a0; CHARLESWORTH D, 1995, GENETICS, V140, P415; DAVIS BD, 1990, MICROBIOLOGY; Dietz K, 1976, MATH MODELS MED, V11, P1; DIETZ K, 1975, EPIDEMIOLOGY, P104; DOOLITTLE WF, 1984, NATURE, V307, P501, DOI 10.1038/307501b0; EIGEN M, 1971, NATURWISSENSCHAFTEN, V58, P465, DOI 10.1007/BF00623322; EIGEN M, 1979, HYPERCYCLE PRINCIPLE; EIGEN M, 1992, STEPS LIFE PERSPECTI; Ewald P.W., 1989, P21; EWALD PW, 1987, ANN NY ACAD SCI, V503, P295, DOI 10.1111/j.1749-6632.1987.tb40616.x; EWALD PW, 1983, ANNU REV ECOL SYST, V14, P465, DOI 10.1146/annurev.es.14.110183.002341; Ewald PW, 1994, EVOLUTION INFECT DIS; FENNER F, 1956, J Hyg (Lond), V54, P284; FINE PEM, 1975, ANN NY ACAD SCI, V266, P173, DOI 10.1111/j.1749-6632.1975.tb35099.x; Fisher R. A., 1958, GENETICAL THEORY NAT; FRANK SA, 1986, J THEOR BIOL, V122, P303, DOI 10.1016/S0022-5193(86)80122-9; FRANK SA, 1992, P ROY SOC B-BIOL SCI, V250, P195, DOI 10.1098/rspb.1992.0149; FRANK SA, 1994, J THEOR BIOL, V170, P393, DOI 10.1006/jtbi.1994.1200; FRANK SA, 1995, J THEOR BIOL, V176, P403, DOI 10.1006/jtbi.1995.0208; FRANK SA, 1995, NATURE, V377, P520, DOI 10.1038/377520a0; FRANK SA, 1994, P ROY SOC B-BIOL SCI, V258, P153, DOI 10.1098/rspb.1994.0156; Garnett G. P., 1994, P51; GRAFEN A, 1984, BEHAV ECOLOGY EVOLUT, P62; Hamilton W.D., 1972, Annual Rev Ecol Syst, V3, P193; HAMILTON WD, 1977, NATURE, V269, P578, DOI 10.1038/269578a0; HAMILTON WD, 1964, J THEOR BIOL, V7, P17, DOI 10.1016/0022-5193(64)90039-6; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Hamilton WD, 1975, BIOSOCIAL ANTHR, P135; HARDIN G, 1968, SCIENCE, V162, P1243; HARDIN G, 1993, LIVING LIMITS; HARDY K, 1986, BACT PLASMIDS; HERRE EA, 1993, SCIENCE, V259, P1442, DOI 10.1126/science.259.5100.1442; Hoekstra R F, 1987, Experientia Suppl, V55, P59; Holt RD, 1996, EVOL ECOL, V10, P1, DOI 10.1007/BF01239342; HURST GDD, 1992, TRENDS ECOL EVOL, V7, P373, DOI 10.1016/0169-5347(92)90007-X; HURST LD, 1992, P ROY SOC B-BIOL SCI, V247, P189, DOI 10.1098/rspb.1992.0027; JANZEN DH, 1979, ANNU REV ECOL SYST, V10, P13, DOI 10.1146/annurev.es.10.110179.000305; KLECKNER N, 1990, GENETICS, V124, P449; KNOLLE H, 1989, J THEOR BIOL, V136, P199, DOI 10.1016/S0022-5193(89)80226-7; LENSKI RE, 1994, J THEOR BIOL, V169, P253, DOI 10.1006/jtbi.1994.1146; Levin B.R., 1983, COEVOLUTION, P99; LEVIN BR, 1990, PARASITOLOGY, V100, pS103, DOI 10.1017/S0031182000073054; LEVIN BR, IN PRESS MATH BIOSCI; Levin Bruce R., 1994, Trends in Microbiology, V2, P76, DOI 10.1016/0966-842X(94)90538-X; LEVIN S, 1981, AM NAT, V117, P308, DOI 10.1086/283708; Levin S.A., 1983, COEVOLUTION, P21; LEWIN B, 1977, GENE EXPRESSION, V3; Lewontin R., 1970, ANNU REV ECOL SYST, V1, P1, DOI DOI 10.1146/ANNUREV.ES.01.110170.000245; LIPSITCH M, 1995, EVOLUTION, V49, P743, DOI 10.1111/j.1558-5646.1995.tb02310.x; LIPSITCH M, 1995, P ROY SOC B-BIOL SCI, V260, P321, DOI 10.1098/rspb.1995.0099; LIPSITCH M, 1995, J THEOR BIOL, V174, P427, DOI 10.1006/jtbi.1995.0109; LIPSITCH M, IN PRESS EVOLUTION; MAY RM, 1994, J THEOR BIOL, V170, P95, DOI 10.1006/jtbi.1994.1171; MAY RM, 1986, PROC R SOC SER B-BIO, V228, P241, DOI 10.1098/rspb.1986.0054; MAY RM, 1990, PARASITOLOGY, V100, pS89, DOI 10.1017/S0031182000073042; Maynard Smith J, 1995, MAJOR TRANSITIONS EV; Maynard-Smith J, 1988, EVOLUTIONARY PROGR, P219; MIEDEMA F, 1990, IMMUNOL TODAY, V11, P293, DOI 10.1016/0167-5699(90)90116-Q; MONTGOMERY EA, 1991, GENETICS, V129, P1085; MOTRO U, 1982, THEOR POPUL BIOL, V21, P394, DOI 10.1016/0040-5809(82)90026-0; NOWAK MA, 1994, P ROY SOC B-BIOL SCI, V255, P81, DOI 10.1098/rspb.1994.0012; NOWAK MA, 1991, SCIENCE, V254, P963, DOI 10.1126/science.1683006; QUELLER DC, 1992, AM NAT, V139, P540, DOI 10.1086/285343; RICK CM, 1984, APPL GENETICS, V4, P215; Roff Derek A., 1992; Rose M. R, 1991, EVOLUTIONARY BIOL AG; SASAKI A, 1991, THEOR POPUL BIOL, V39, P201, DOI 10.1016/0040-5809(91)90036-F; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; SMITH JM, 1979, NATURE, V280, P445, DOI 10.1038/280445a0; SMITH JM, 1993, J THEOR BIOL, V164, P437, DOI 10.1006/jtbi.1993.1165; Stearns S. C., 1992, EVOLUTION LIFE HIST; SZATHMARY E, 1987, J THEOR BIOL, V128, P463, DOI 10.1016/S0022-5193(87)80191-1; SZATHMARY E, 1989, TRENDS ECOL EVOL, V4, P200, DOI 10.1016/0169-5347(89)90073-6; Szathmary E., 1989, Oxford Surveys in Evolutionary Biology, V6, P169; TAYLOR PD, 1988, J THEOR BIOL, V130, P363, DOI 10.1016/S0022-5193(88)80035-3; TAYLOR PD, IN PRESS J THEORETIC; vanBaalen M, 1995, AM NAT, V146, P881, DOI 10.1086/285830; WADE MJ, 1978, Q REV BIOL, V53, P101, DOI 10.1086/410450; WERREN JH, 1988, TRENDS ECOL EVOL, V3, P297, DOI 10.1016/0169-5347(88)90105-X; WIEBES JT, 1979, ANNU REV ECOL SYST, V10, P1, DOI 10.1146/annurev.es.10.110179.000245; WILSON DS, 1980, NATURAL SELECTION PO; WRIGHT S, 1969, EVOLUTION GENETICS P, V2; YAMAMURA N, 1993, THEOR POPUL BIOL, V44, P95, DOI 10.1006/tpbi.1993.1020; YORKE JA, 1979, AM J EPIDEMIOL, V109, P103, DOI 10.1093/oxfordjournals.aje.a112666; YOUNG RJ, 1994, GENETICS, V137, P581 104 866 872 11 266 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0033-5770 1539-7718 Q REV BIOL Q. Rev. Biol. MAR 1996 71 1 37 78 10.1086/419267 42 Biology Life Sciences & Biomedicine - Other Topics UE275 WOS:A1996UE27500002 8919665 2018-11-12 J Cunnington, DC; Brooks, RJ Cunnington, DC; Brooks, RJ Bet-hedging theory and eigenelasticity: A comparison of the life histories of loggerhead sea turtles (Caretta caretta) and snapping turtles (Chelydra serpentina) CANADIAN JOURNAL OF ZOOLOGY English Article POPULATION; CONSERVATION The life table for snapping turtles (Chelydra serpentina) generated from a 16-year study in Algonquin Park, Ontario, suggests that the population is declining. We use a stage-based matrix model based on this life table to simulate population management options. In addition we analyze the demographic sensitivities of the Algonquin Park population life table and a life table recently published for a population of snapping turtles at the E.S. George Reserve in Michigan. The results are compared with a similar study of loggerhead sea turtles (Caretta caretta). We use these inter- and intra-specific comparisons to test bet-hedging life-history theory. Bet-hedging theory predicts that the long lives and low annual reproductive effort of turtles reduces the effect of low, stochastic juvenile survival on an individual's reproductive success. We test this prediction using proportional sensitivity of the intrinsic rate of increase to variation in life-table parameters (eigenelasticity) to compare the two populations of snapping turtles with each other and with loggerhead sea turtles. Annual adult survival is shown to be the variable most predictive of sensitivity to variation in first-year survival. UNIV GUELPH, DEPT ZOOL, GUELPH, ON N1G 2W1, CANADA BOBYN ML, 1994, CAN J ZOOL, V72, P28, DOI 10.1139/z94-005; BROOKS RJ, 1991, CAN J ZOOL, V69, P1314, DOI 10.1139/z91-185; BROOKS RJ, 1988, MANAGEMENT AMPHIBIAN, P173; BROWN GP, 1994, J HERPETOL, V28, P405, DOI 10.2307/1564950; Caswell H., 1989, MATRIX POPULATION MO; Congdon J.D., 1982, Biology of Reptilia, V13, P233; Congdon J.D., 1990, P45; CONGDON JD, 1993, CONSERV BIOL, V7, P826, DOI 10.1046/j.1523-1739.1993.740826.x; CONGDON JD, 1994, AM ZOOL, V34, P397; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; FRAZER NB, 1992, CONSERV BIOL, V6, P179, DOI 10.1046/j.1523-1739.1992.620179.x; GALBRAIGH DA, 1993, CONSERVATION MANAGEM; GALBRAITH DA, 1987, CAN J ZOOL, V65, P1581, DOI 10.1139/z87-247; GALBRAITH DA, 1989, COPEIA, P896, DOI 10.2307/1445975; GROOMBIRDGE B, 1982, AMPHIBIA REPTILIA 1; KLIMA E. F., 1982, BIOL CONSERVATION SE, P481; Mrosovsky N., 1983, CONSERVING SEA TURTL; OBBARD ME, 1981, CAN FIELD NAT, V95, P350; PARK E, 1971, WORLD OTTER JP LIPPI; PASSMORE HL, 1996, IN PRESS CONSERVATIO; PRITCHARD PCH, 1980, AM ZOOL, V20, P609; Roff Derek A., 1992; SMITH BT, 1976, LECTURE NOTES COMPUT, V6; STEARMS SC, 1976, Z REV BIOL, V51, P3; Wilbur H.M., 1988, Biology of Reptilia, V16, P387 25 50 50 0 23 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0008-4301 1480-3283 CAN J ZOOL Can. J. Zool. FEB 1996 74 2 291 296 10.1139/z96-036 6 Zoology Zoology UB985 WOS:A1996UB98500012 2018-11-12 J Benton, TG; Grant, A Benton, TG; Grant, A How to keep fit in the real world: Elasticity analyses and selection pressures on life histories ln a variable environment AMERICAN NATURALIST English Article POPULATION-DYNAMICS; FLUCTUATING ENVIRONMENT; EVOLUTION; DEMOGRAPHY; EXTINCTION; BIENNIALS; FITNESS; SIZE Most life-history theory assumes the environment is invariant. For the first time, analytical and numerical techniques were employed to investigate the impact of environmental variability on selection pressures (elasticities = proportional sensitivities) on a range of life histories. We find that the impact of variability is influenced significantly by the amount of variability an organism experiences (more variability affects selection pressures more), the correlations between variations among the vital rates (negative correlations are more likely to relax selection on fecundities and increase it on survival rates), and the life history in question (shorter life histories are more affected). In addition, the impact of a variable environment on the elasticities of life histories is sensitive to the sampling distribution used to generate the variability, and it is particularly sensitive to extreme values, such as those caused by occasional catastrophic events. The elasticities of life histories in highly variable environments may bear little relationship to those in a constant environment. In detailed optimality or evolutionarily stable strategy (ESS) modeling, variability in vital rates as small as a standard deviation being 10%-15% of the mean may appreciably alter the conclusions. Thus, it may be very important to consider the possible impact of environmental stochasticity and not to assume that it has no effect. UNIV E ANGLIA,SCH ENVIRONM SCI,NORWICH NR4 7TJ,NORFOLK,ENGLAND Benton, Tim/C-6493-2009; Grant, Alastair/L-7301-2018 Benton, Tim/0000-0002-7448-1973; Grant, Alastair/0000-0002-1147-2375 ABERG P, 1992, ECOLOGY, V73, P1488, DOI 10.2307/1940692; BENTON TG, 1992, ANIM BEHAV, V43, P125, DOI 10.1016/S0003-3472(05)80078-8; BENTON TG, IN PRESS EVOLUTIONAR; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1980, EVOLUTION AGE STRUCT; COE WR, 1953, J MAR RES, V15, P212; Cushing D.H, 1975, MARINE ECOLOGY FISHE; DEJONG TJ, 1988, J ECOL, V76, P366; DOLMAN PM, 1995, IBIS, V137, pS538; Favorite F., 1988, FISHING STOCK FLUCTU; FISHER R. A., 1930, GENETICAL THEORY NAT; FOX GA, 1993, EVOL ECOL, V7, P1, DOI 10.1007/BF01237731; GOTELLI NJ, 1991, ECOLOGY, V72, P457, DOI 10.2307/2937187; KALISZ S, 1991, ECOLOGY, V72, P575, DOI 10.2307/2937197; KLINKHAMER PGL, 1983, ECOL MODEL, V20, P223; LANDE R, 1988, P NATL ACAD SCI USA, V85, P7418, DOI 10.1073/pnas.85.19.7418; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LEVINTON JS, 1984, P NATL ACAD SCI-BIOL, V81, P5478, DOI 10.1073/pnas.81.17.5478; LOOSANOFF VL, 1964, BIOL BULL, V126, P423, DOI 10.2307/1539311; MAC ARTHUR ROBERT H., 1967; MAY RM, 1974, SCIENCE, V186, P645, DOI 10.1126/science.186.4164.645; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; MIDDLETON DAJ, 1993, J APPL ECOL, V30, P1, DOI 10.2307/2404265; MOLONEY KA, 1988, ECOLOGY, V69, P1588, DOI 10.2307/1941656; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; MURRAY BG, 1994, OIKOS, V69, P520, DOI 10.2307/3545865; Norton HTJ, 1928, P LOND MATH SOC, V28, P1; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; ORZACK SH, 1985, AM NAT, V125, P550, DOI 10.1086/284362; Orzack Steven Hecht, 1993, Lecture Notes in Biomathematics, V98, P63; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SEBENS KP, 1985, J EXP MAR BIOL ECOL, V87, P55, DOI 10.1016/0022-0981(85)90192-3; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; SIBLY R, 1986, J THEOR BIOL, V123, P311, DOI 10.1016/S0022-5193(86)80246-6; SIBLY R, 1983, J THEOR BIOL, V102, P527, DOI 10.1016/0022-5193(83)90389-2; SIBLY RM, 1993, J THEOR BIOL, V160, P533, DOI 10.1006/jtbi.1993.1034; Stearns S. C., 1992, EVOLUTION LIFE HIST; TAYLOR F, 1979, AM NAT, V113, P511, DOI 10.1086/283410; TULJAPURKAR S, 1990, P NATL ACAD SCI USA, V87, P1139, DOI 10.1073/pnas.87.3.1139; TULJAPURKAR S, 1989, THEOR POPUL BIOL, V35, P227, DOI 10.1016/0040-5809(89)90001-4; TULJAPURKAR S, 1990, LECTURE NOTES BIOMAT, V85; TULJAPURKAR SD, 1982, THEOR POPUL BIOL, V21, P141, DOI 10.1016/0040-5809(82)90010-7; WETHEY DS, 1985, ECOLOGY, V66, P445, DOI 10.2307/1940393; WIENER P, 1994, J THEOR BIOL, V166, P75, DOI 10.1006/jtbi.1994.1006 45 117 119 0 29 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 0003-0147 AM NAT Am. Nat. JAN 1996 147 1 115 139 10.1086/285843 25 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology TP423 WOS:A1996TP42300009 2018-11-12 J Jansen, WA Jansen, WA Plasticity in maturity and fecundity of yellow perch, Percaflavescens (Mitchill): Comparisons of stunted and normal-growing populations ANNALES ZOOLOGICI FENNICI English Article; Proceedings Paper 2nd International Percid Fish Symposium (PERCID II) AUG 21-25, 1995 VAASA, FINLAND Finnish Game & Fisheries Res Inst FLUVIATILIS L; GROWTH; LAKE; FLAVESCENS; EGG; DIFFERENTIATION; NORWAY; ROACH; FISH; SIZE Maturity, fecundity, and egg size of a stunted (mean length at age 5: 13.5 cm) and normal-growing (21.8 cm) population of yellow perch (Perca flavescens Mitchill) were studied in central Alberta, Canada. Stunted perch matured at a younger age and at a much smaller size than normal perch. Minimum size at initial maturation in stunted females was the smallest recorded in the literature for either perch (Perca) species. Relative fecundity, the slope of the fecundity-weight regression, and the gonado-somatic index were significantly higher in stunted perch. Mean dry weight of eggs, percentage connective tissue, gonad energy content, and gonad weight specific fecundity were similar for perch from both populations. Reproductive parameters of stunted perch are discussed in the context of life-history theory. UNIV ALBERTA,DEPT ZOOL,EDMONTON,AB T6G 2E9,CANADA ALM G, 1946, MEDD STATENS UNDERSO, V25, P1; ALM GUNNAR, 1952, REPT INST FRESHWATER RES DROTTNINGHOLM, V33, P17; ALM GUNNAR, 1959, REPT INST FRESHWATER RES DROTTNINGHOLM, V40, P5; [Anonymous], 1976, EVOL THEORY, V1, P179; BAGENAL T B, 1973, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V164, P186; Bagenal T.B., 1978, P75; BOISCLAIR D, 1989, CAN J FISH AQUAT SCI, V46, P457, DOI 10.1139/f89-062; BRAZO DC, 1975, T AM FISH SOC, V104, P726, DOI 10.1577/1548-8659(1975)104<726:AGAFOY>2.0.CO;2; CRAIG JF, 1980, J ANIM ECOL, V49, P291, DOI 10.2307/4290; CRAIG JF, 1974, FRESHWATER BIOL, V4, P417, DOI 10.1111/j.1365-2427.1974.tb00106.x; CRAIG JF, 1982, REP FRESHWAT BIOL AS, V50, P49; Deelder C. L., 1951, Hydrobiologia, V3, P357, DOI 10.1007/BF00045560; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; HARTMANN J, 1975, ARCH HYDROBIOL, V76, P269; HASLER AD, 1945, ECOLOGY, V26, P90, DOI 10.2307/1931918; HEALEY MC, 1975, J FISH RES BOARD CAN, V32, P427, DOI 10.1139/f75-053; HEALEY MC, 1978, J FISH RES BOARD CAN, V35, P945, DOI 10.1139/f78-155; HEALY ANN, 1954, SCI PROC ROY DUBLIN SOC, V26, P397; HEATH D, 1987, T AM FISH SOC, V116, P98, DOI 10.1577/1548-8659(1987)116<98:TOGDIG>2.0.CO;2; HERMAN E, 1959, PUBL WISC CONS DEP, V228, P1; Holcik J., 1969, PRACE LAB RYBARSTVA, V2, P269; JAMET JL, 1994, INT REV GES HYDROBIO, V79, P305, DOI 10.1002/iroh.19940790216; JANSEN W, 1991, VERH INT VEREIN LIMN, V24, P2356; JELLYMAN DJ, 1980, NEW ZEAL J MAR FRESH, V14, P391, DOI 10.1080/00288330.1980.9515881; JOBES F, 1952, US FISH WILDL SERV F, V70, P205; Kennedy W. A., 1949, Bulletin Fisheries Research Board of Canada, V81, P1; LABEELUND JH, 1990, CAN J ZOOL, V68, P1983, DOI 10.1139/z90-279; LANG B, 1983, SCHWEIZ Z HYDROL, V45, P480, DOI 10.1007/BF02538135; LAPPALAINEN A, 1988, ENVIRON BIOL FISH, V21, P231, DOI 10.1007/BF00004866; LASKAR K, 1945, ARCH HYDROBIOL, V15, P1009; Le Cren E. D., 1947, JOUR ANIMAL ECOL, V16, P188; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; LIND EA, 1974, ICHTHYOL FENN BOREAL, V3, P116; LINLOKKEN A, 1991, HYDROBIOLOGIA, V220, P179, DOI 10.1007/BF00006574; Makanova N. P., 1984, Journal of Ichthyology, V24, P163; MAKAROVA N, 1986, J ICHTHYOLOGY, V26, P157; MALISON JA, 1986, CAN J FISH AQUAT SCI, V43, P26, DOI 10.1139/f86-004; MANCE C, 1988, THESIS U ALBERTA EDM; MANN RHK, 1978, FRESHWATER BIOL, V8, P229, DOI 10.1111/j.1365-2427.1978.tb01444.x; MANSUETI ALICE JANE, 1964, CHESAPEAKE SCI, V5, P46, DOI 10.2307/1350790; Mitchell P., 1990, ATLAS ALBERTA LAKES; MUNCY ROBERT J., 1962, CHEASAPEAKE SCI, V3, P143, DOI 10.2307/1350992; NYBERG P, 1979, REP I FRESHWATER RES, V58, P139; PAPAGEORGIOU NK, 1977, FRESHWATER BIOL, V7, P559, DOI 10.1111/j.1365-2427.1977.tb01707.x; PERSSON L, 1990, J FISH BIOL, V37, P899, DOI 10.1111/j.1095-8649.1990.tb03593.x; PREPAS EE, 1988, HYDROBIOLOGIA, V159, P269, DOI 10.1007/BF00008240; RASK M, 1983, HYDROBIOLOGIA, V101, P139, DOI 10.1007/BF00008666; RIDGWAY LL, 1994, CAN J ZOOL, V72, P1576, DOI 10.1139/z94-209; ROPER K, 1936, Z FISCH, V34, P567; SANDSTROM O, 1995, J FISH BIOL, V47, P652, DOI 10.1006/jfbi.1995.0169; *SAS I, 1984, SAS US GUID; SCHNEIDER J, 1984, 1915 MICH DEP NAT RE, P1; SHAFI M, 1971, J FISH BIOL, V3, P39, DOI 10.1111/j.1095-8649.1971.tb05904.x; SHERI AN, 1969, CAN J ZOOLOG, V47, P55, DOI 10.1139/z69-012; Sokal R. R., 1981, BIOMETRY PRINCIPLES; Stearns S.C., 1984, P13; STEHLIK J, 1968, VESTNIK CESKOSLOVENS, V33, P88; SZTRAMKO L, 1977, T AM FISH SOC, V106, P578, DOI 10.1577/1548-8659(1977)106<578:AVITFO>2.0.CO;2; Tesch F. W., 1955, Zeitschrift fuer Fischerei, V4, P321; Thorpe J., 1977, FAO FISHERIES SYNOPS, V113; THORPE JE, 1977, J FISH RES BOARD CAN, V34, P1504, DOI 10.1139/f77-215; Trautman M. B., 1981, FISHES OHIO; TREASURER JW, 1981, J FISH BIOL, V18, P359, DOI 10.1111/j.1095-8649.1981.tb03778.x; TREASURER JW, 1981, J FISH BIOL, V18, P729, DOI 10.1111/j.1095-8649.1981.tb03814.x; TREASURER JW, 1983, ENVIRON BIOL FISH, V8, P3, DOI 10.1007/BF00004941; TSAI C-F, 1971, Chesapeake Science, V12, P270, DOI 10.2307/1350914; VILJANEN M, 1982, ANN ZOOL FENN, V19, P39; VOGEL DA, 1987, LIMNOLOGICAL FISHERI, P61; WARE DM, 1982, CAN J FISH AQUAT SCI, V39, P3, DOI 10.1139/f82-002; WELLS L, 1983, US FISH WILDL SERV T, P109; WOODHEAD AD, 1979, S ZOOL SOC LOND, V44, P179; WOOTTON RJ, 1979, S ZOOL SOC LOND, V44, P133 72 17 19 3 13 FINNISH ZOOLOGICAL BOTANICAL PUBLISHING BOARD HELSINKI UNIV HELSINKI P O BOX 17 (P. RAUTATIEKATU 13), FIN-00014 HELSINKI, FINLAND 0003-455X ANN ZOOL FENN Ann. Zool. Fenn. 1996 33 3-4 403 415 13 Ecology; Zoology Environmental Sciences & Ecology; Zoology WB445 WOS:A1996WB44500015 2018-11-12 J Blarer, A; Doebeli, M Blarer, A; Doebeli, M Heuristic optimization of the general life history problem: A novel approach EVOLUTIONARY ECOLOGY English Article heuristic optimization; resource allocation; reproductive effort; maturation; lifespan; simulated annealing ENERGY ALLOCATION; DYNAMIC-MODELS; EVOLUTION; ALGORITHM; SENESCENCE; MORTALITY; FITNESS The general life history problem concerns the optimal allocation of resources to growth, survival and reproduction. We analysed this problem for a perennial model organism that decides once each year to switch from growth to reproduction. As a fitness measure we used the Malthusian parameter r, which we calculated from the Euler-Lotka equation. Trade-offs were incorporated by assuming that fecundity is size dependent, so that increased fecundity could only be gained by devoting more time to growth and less time to reproduction. To calculate numerically the optimal r for different growth dynamics and mortality regimes, we used a simplified version of the simulated annealing method. The major differences among optimal life histories resulted from different accumulation patterns of intrinsic mortalities resulting from reproductive costs. If these mortalities were accumulated throughout life, i.e. if they were senescent, a bang-bang strategy was optimal, in which there was a single switch from growth to reproduction: after the age at maturity all resources were allocated to reproduction. If reproductive costs did not carry over from year to year, i.e. if they were not senescent, the optimal resource allocation resulted in a graded switch strategy and growth became indeterminate. Our numerical approach brings two major advantages for solving optimization problems in life history theory. First, its implementation is very simple, even for complex models that are analytically intractable. Such intractability emerged in our model when we introduced reproductive costs representing an intrinsic mortality. Second, it is not a backward algorithm. This means that lifespan does not have to be fixed at the begining of the computation. Instead, lifespan itself is a trait that can evolve. We suggest that heuristic algorithms are good tools for solving complex optimality problems in life history theory, in particular questions concerning the evolution of lifespan and senescence. Blarer, A (reprint author), UNIV BASEL, INST ZOOL, RHEINSPRUNG 9, CH-4051 BASEL, SWITZERLAND. Doebeli, Michael/D-5391-2012 ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; ABRAMS PA, 1991, EVOL ECOL, V5, P343, DOI 10.1007/BF02214152; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; Caswell H., 1989, P285; CHARLESWORTH B, 1990, NATURE, V346, P313, DOI 10.1038/346313a0; Charlesworth B., 1980, EVOLUTION AGE STRUCT; DUECK G, 1993, J COMPUT PHYS, V104, P86, DOI 10.1006/jcph.1993.1010; DUECK G, 1990, J COMPUT PHYS, V90, P161, DOI 10.1016/0021-9991(90)90201-B; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Helsgaun K, 2000, EUR J OPER RES, V126, P106, DOI 10.1016/S0377-2217(99)00284-2; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; JONES JS, 1990, NATURE, V348, P288, DOI 10.1038/348288d0; KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; Mangel M., 1988, DYNAMIC MODELING BEH; MCNAMARA JM, 1993, J THEOR BIOL, V161, P23, DOI 10.1006/jtbi.1993.1037; MCNAMARA JM, 1991, THEOR POPUL BIOL, V40, P230, DOI 10.1016/0040-5809(91)90054-J; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; METROPOLIS N, 1953, J CHEM PHYS, V21, P1087, DOI 10.1063/1.1699114; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; Press WH, 1988, NUMERICAL RECIPES C; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Roff Derek A., 1992; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; SCHAFFER WM, 1982, AM NAT, V120, P787, DOI 10.1086/284030; SILER W, 1979, ECOLOGY, V60, P750, DOI 10.2307/1936612; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547 30 8 9 1 3 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. JAN 1996 10 1 81 96 10.1007/BF01239349 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity TT492 WOS:A1996TT49200008 2018-11-12 B Sinclair, ARE Floyd, RB; Sheppard, AW; DeBarro, PJ Sinclair, ARE Mammal populations: Fluctuation, regulation, life history theory and their implications for conservation FRONTIERS OF POPULATION ECOLOGY English Proceedings Paper Frontiers of Population Ecology Conference to Celebrate the Centenary of the Birth of the Population Ecologist A J Nicholson (1895-1969) APR, 1995 CANBERRA, AUSTRALIA body size; population variability; intrinsic rate of increase; density dependence; viable population size Mammal populations exhibit a range of variability inversely related to body size when considered over absolute time. However, there is no relationship between population variability and body size over the length of a generation, so all species show the same intrinsic degree of variability Small species are not subject to more severe extrinsic perturbations than larger species. Therefore, the variability seen in small species is due to their high intrinsic rates of increase (r(m)) which allows them to recover faster from extrinsic perturbations. At the same time, the magnitude of decrease in a population must also be determined intrinsically, since the populations (in this analysis) were stationary in the longterm. Thus, in a given environment, both large and small species experience the same negative environmental effects, and the degree to which the species are buffered from these effects is inversely related to r(m) and positively related to body size. This implies that species are not simply passive responders to a stochastic environment, but are adapted to tolerate decline, or resist it, as a function of r(m), as predicted by life history theory. Since this tolerance or resistance to decline is a measure of density dependence in the population, it follows that small species must have high overcompensating density dependence while large species have weaker stabilising density dependence. This conclusion, which is in agreement with empirical studies, provides a generalisation on both the prevalence and intensity of density dependence in mammal populations. Thus, the evidence supports the hypothesis that population fluctuations are explained more by strong, overcompensating density dependence than by weak density dependence and high extrinsic stochasticity The intrinsic (density dependent) response to fluctuations appears to occur earlier in life (through fecundity and early juvenile mortality) in larger species, later (through juvenile and adult mortality) in smaller species. This trend may explain the inverse relationship of the strength of density dependence with body size seen above, because mortality responds faster to environmental change than does reproduction. Behaviour, particularly, social organisation and dispersal, is part of the specific intrinsic response or adaptation to perturbation, and contributes to the overcompensating density dependence in small species. A strong overcompensating behavioural response leads to population cycles or chaotic fluctuations (which appear cyclic) and their frequency is inversely related to body size. Causes of mortality involving food shortage affect all species but especially large ones. Predation causing regulation appears more frequently in small species, and because it produces delayed effects, it contributes to population cycles. The role of disease remains obscure. Since the strength of density dependence is inversely related to body size, it is the larger species which ore the most prone to extinction when at low density. Thus, large species must be conserved at relatively higher population size, In contrast, smaller species should be conserved by allowing dispersal between subpopulations. Sinclair, ARE (reprint author), UNIV BRITISH COLUMBIA,DEPT ZOOL,6270 UNIV BLVD,VANCOUVER,BC V6T 1Z4,CANADA. Sheppard, Andy/C-1045-2009 0 83 89 0 16 C S I R O EAST MELBOURNE PO BOX 89 (EAST ALBERT ST), EAST MELBOURNE 3002, AUSTRALIA 0-643-05781-1 1996 127 154 28 Ecology Environmental Sciences & Ecology BH90D WOS:A1996BH90D00011 2018-11-12 J Chisholm, JS Chisholm, JS The evolutionary ecology of attachment organization HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article; Proceedings Paper Symposium on Childhood in Life-History Perspective - Developing Views, at the Annual Meeting of the Society-for-Cross-Cultural-Research FEB 16-20, 1994 SANTA FE, NM Soc Cross Cultural Res life history theory; attachment theory; individual differences; reproductive strategies; environment of evolutionary adaptedness INFANT-MOTHER ATTACHMENT; REPRODUCTIVE STRATEGIES; CHILDHOOD EXPERIENCE; NATURAL-SELECTION; ECONOMIC HARDSHIP; BEHAVIOR; HISTORY; TEMPERAMENT; SECURITY; YOUNG Life history theory's principle of allocation suggests that because immature organisms cannot expend reproductive effort, the major trade-off facing juveniles will be the one between survival, on one hand, and growth and development, on the other. As a consequence, infants and children might be expected to possess psychobiological mechanisms for optimizing this trade-off. The main argument of this paper is that the attachment process serves this function and that individual differences in attachment organization (secure, insecure, and possibly others) may represent facultative adaptations to conditions of risk and uncertainty that were probably recurrent in the environment of human. evolutionary adaptedness. Chisholm, JS (reprint author), UNIV WESTERN AUSTRALIA, DEPT ANAT & HUMAN BIOL, NEDLANDS, WA 6907, AUSTRALIA. AINSWORTH M, 1969, INFANCY UGANDA INFAN; Ainsworth M. D. S, 1971, ORIGINS HUMAN SOCIAL, P17; AINSWORTH MDS, 1979, AM PSYCHOL, V34, P932, DOI 10.1037//0003-066X.34.10.932; AINSWORTH MDS, 1979, ADV STUD BEHAV, V9, P1; ALEXANDER R, 1979, SEXUAL SELECTION REP, P413; ANDREWS MW, 1991, CHILD DEV, V62, P686, DOI 10.2307/1131170; APTER D, 1983, J CLIN ENDOCR METAB, V57, P82, DOI 10.1210/jcem-57-1-82; BARKOW J, 1992, APAPTED MIN EVOLUTIO; BATES JE, 1985, MONOGR SOC RES CHILD, V50, P167, DOI 10.2307/3333832; BATESON P, 1994, TRENDS ECOL EVOL, V9, P399, DOI 10.1016/0169-5347(94)90066-3; Bateson P., 1982, P133; BATESON P, 1990, ANIM BEHAV, V40, P514, DOI 10.1016/S0003-3472(05)80532-9; Bateson P., 1976, GROWING POINTS ETHOL, P401; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J., 1994, DEV LIFE HDB CLIN, P373; BERNARDO J, 1993, TRENDS ECOL EVOL, V8, P166, DOI 10.1016/0169-5347(93)90142-C; BLAFFERHRDY S, 1977, AM SCI, V65, P40; Blurton J. N., 1993, JUVENILE PRIMATES LI, P309; BOGIN B, 1994, ACTA PAEDIATR, V83, P29, DOI 10.1111/j.1651-2227.1994.tb13418.x; Bogin B., 1995, BIOL ANTHR STATE SCI, P49; BONNER JT, 1965, SIZE CYCLE; BORGERHOFF MM, 1992, EVOLUTIONARY ECOLOGY, P339; BOSWELL J, 1988, KINDNESS STRANGERS A; Bowlby J., 1973, ATTACHMENT LOSS, V2; Bowlby J, 1980, ATTACHMENT LOSS, V3; Bowlby J., 1969, ATTACHMENT LOSS, V1; Bowlby J., 1965, CHILD CARE GROWTH LO; Boyd R., 1985, CULTURE EVOLUTIONARY; Brazelton T. B., 1974, EFFECT INFANT ITS CA, P49; Brenner MH, 1973, MENTAL ILLNESS EC; BRETHERTON I, 1985, MONOGR SOC RES CHILD, V50, P3, DOI 10.2307/3333824; BRETHERTON I, 1974, ORIGINS FEAR, P131; BRETHERTON I, 1985, MONOGRAPHS SOC RES C, V50; Campos J., 1983, HDB CHILD PSYCHOL, VII, P783; CARO TM, 1986, ANIM BEHAV, V34, P1483, DOI 10.1016/S0003-3472(86)80219-6; CASSIDY J, 1994, CHILD DEV, V65, P971, DOI 10.2307/1131298; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; CHISHOLM J, 1995, PERSPECTIVES HUMAN B, V1, P19; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHISHOLM JS, 1995, ROMANTIC PASSION UNI; COHN JF, 1983, CHILD DEV, V54, P185, DOI 10.2307/1129876; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CONGER RD, 1984, CHILD DEV, V55, P2234, DOI 10.2307/1129795; CROCKENBERG SB, 1981, CHILD DEV, V52, P857, DOI 10.1111/j.1467-8624.1981.tb03124.x; DEROUSSEAU CJ, 1990, MG PRIMATOL, V14, P1; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; DROTAR D, 1991, AM J ORTHOPSYCHIAT, V61, P23, DOI 10.1037/h0079231; DUNCAN GJ, 1994, CHILD DEV, V65, P296, DOI 10.1111/j.1467-8624.1994.tb00752.x; DUNN J, 1976, GROWING POINTS ETHOL, P481; Edgerton R. B., 1992, SICK SOC CHALLENGING; Egeland B, 1987, CHILD ABUSE NEGLECT, P255; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; EMLEN S, 1985, LATEST BEST ESSAYS E, P163; ERICKSON MF, 1985, MONOGR SOC RES CHILD, V50, P147, DOI 10.2307/3333831; Eveleth P. B., 1990, WORLDWIDE VARIATION; Fagen R., 1982, Perspectives in Ethology, V5, P365; Fagen Robert, 1993, P182; Foley R.A., 1992, P131; FOX R, 1989, SEARCH SOC QUEST BIO; FREEDMAN DG, 1993, J SOC EVOL SYST, V16, P297, DOI 10.1016/1061-7361(93)90037-R; Freud S, 1940, OUTLINE PSYCHOANALYS; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GARDNER W, 1993, ADOLESCENT RISK TAKI, P66; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; GOLDSMITH HH, 1994, CURR DIR PSYCHOL SCI, V3, P53, DOI 10.1111/1467-8721.ep10769948; GOMENDIO M, 1991, ANIM BEHAV, V42, P993, DOI 10.1016/S0003-3472(05)80152-6; GOTTLIEB G, 1991, DEV PSYCHOL, V27, P4, DOI 10.1037/0012-1649.27.1.4; GOULD SJ, 1991, J SOC ISSUES, V47, P43, DOI 10.1111/j.1540-4560.1991.tb01822.x; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.2307/1131582; GRAFEN A, 1984, BEHAV ECOLOGY EVOLUT, P62; GUNNAR MR, 1989, DEV PSYCHOL, V25, P355, DOI 10.1037/0012-1649.25.3.355; Hall B. K., 1992, EVOLUTIONARY DEV BIO; HARLOW HF, 1958, AM PSYCHOL, V13, P673, DOI 10.1037/h0047884; Harpending HC, 1990, DIS POPULATIONS TRAN, P251; Hausfater G., 1984, INFANTICIDE COMP EVO; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037//0022-3514.52.3.511; HERMANGIDDENS ME, 1988, AM J DIS CHILD, V142, P431, DOI 10.1001/archpedi.1988.02150040085025; HILL EM, 1994, ETHOL SOCIOBIOL, V15, P323, DOI 10.1016/0162-3095(94)90006-X; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hinde R. A., 1983, HDB CHILD PSYCHOL, VII, P27; HINDE RA, 1987, INDIVIDUALS RELATION; Hinde RA, 1961, CURRENT PROBLEMS ANI, P175; HINDE RA, 1982, PLACE ATTACHMENT HUM, P60; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HRDY SB, 1992, ETHOL SOCIOBIOL, V13, P409, DOI 10.1016/0162-3095(92)90011-R; HRDY SB, 1979, ETHOL SOCIOBIOL, V1, P13, DOI 10.1016/0162-3095(79)90004-9; ISABELLA RA, 1991, CHILD DEV, V62, P373, DOI 10.1111/j.1467-8624.1991.tb01538.x; Janson Charles H., 1993, P57; JOHNSTON TD, 1982, ADV STUD BEHAV, V12, P65, DOI 10.1016/S0065-3454(08)60046-7; JONES B, 1972, MED J AUSTRALIA, V2, P533; KAGAN J, 1982, PSYCHOL RES HUMAN IN; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; Kleiman D.G., 1981, P347; LAMB ME, 1985, INFANT MOTHER ATTACH; LAWRANCE EC, 1991, J POLIT ECON, V99, P54, DOI 10.1086/261740; LEMPERS JD, 1989, CHILD DEV, V60, P25, DOI 10.1111/j.1467-8624.1989.tb02692.x; LEVINE NE, 1987, POPUL DEV REV, V13, P281, DOI 10.2307/1973194; Levins R., 1968, EVOLUTION CHANGING E; LIESEN LT, 1995, POLIT LIFE SCI, V14, P145; LORENZ K., 1935, Journal fur Ornithologie, V83, P137, DOI 10.1007/BF01905355; LOTT DF, 1991, INTRASPECIFIC VARIAT; LOW BS, 1978, AM NAT, V112, P197, DOI 10.1086/283260; MAIN M, 1985, MONOGR SOC RES CHILD, V50, P66, DOI 10.2307/3333827; MAIN M, 1990, HUM DEV, V33, P48, DOI 10.1159/000276502; Main M., 1991, ATTACHMENT LIFE CYCL, P127; Main M., 1981, BEHAV DEV BIELEFELD, P651; MAITAL S, 1977, ESSAYS LABOR MARKET, P179; MARRIS P, 1991, ATTACHMENT LIFE CYCL, P77; MCLOYD VC, 1990, CHILD DEV, V61, P311, DOI 10.1111/j.1467-8624.1990.tb02781.x; Miller G. A., 1960, PLANS STRUCTURE BEHA; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; MONCKBERG F, 1992, HUMAN GROWTH BASIC C, P117; Nesse RM, 1995, WHY WE GET SICK NEW; ORAND A, 1974, SOC FORCES, V53, P53, DOI 10.2307/2576837; ORZACK SH, 1994, AM NAT, V143, P361, DOI 10.1086/285608; OYAMA S, 1985, ONTOGENY INFORMATION; OYAMA S, 1994, PSYCHOL ANTHR, P185; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; Peacock N, 1991, Hum Nat, V2, P351, DOI 10.1007/BF02692197; PEACOCK NR, 1990, MG PRIMATOL, V14, P195; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; PROMISLOW D, 1991, ACTA OECOL, V12, P94; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Radke-Yarrow M., 1991, ATTACHMENT LIFE CYCL, P115; RICKS MH, 1985, MONOGR SOC RES CHILD, V50, P211, DOI 10.2307/3333834; Roff Derek A., 1992; ROGERS AR, 1994, AM ECON REV, V84, P460; ROGERS AR, 1990, ETHOL SOCIOBIOL, V11, P479, DOI 10.1016/0162-3095(90)90022-X; ROSENBLUM LA, 1994, BIOL PSYCHIAT, V35, P221, DOI 10.1016/0006-3223(94)91252-1; ROSENBLUM LA, 1994, ACTA PAEDIATR, V83, P57, DOI 10.1111/j.1651-2227.1994.tb13266.x; Rubenstein D.I., 1982, P91; Rubenstein Daniel I., 1993, P38; Ruddick Sara, 1989, MATERNAL THINKING PO; SAMPSON RJ, 1994, CHILD DEV, V65, P523, DOI 10.2307/1131400; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; Scheper-Hughes Nancy, 1992, DEATH WEEPING VIOLEN; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; Shaver Phillip R., 1993, ADV PERSONAL RELATIO, V4, P29; SMITH EA, 1992, EVOLUTIONARY ECOLOGY, P25; SMITH EFS, 1991, ANIM BEHAV, V41, P513, DOI 10.1016/S0003-3472(05)80854-1; SMUTS B, 1995, HUM NATURE-INT BIOS, V6, P1, DOI 10.1007/BF02734133; Smuts B, 1992, Hum Nat, V3, P1, DOI 10.1007/BF02692265; Spitz RA, 1945, PSYCHOANAL STUD CHIL, V1, P53; Sroufe L. A., 1988, CLIN IMPLICATIONS AT, P18; SROUFE LA, 1977, CHILD DEV, V48, P1184, DOI 10.2307/1128475; STAMPS JA, 1991, AM ZOOL, V31, P338; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1982, EVOL DEV, P237; Suomi SJ, 1991, NEUROBIOLOGY LEARNIN, P195; SURBEY MK, 1990, MG PRIMATOL, V13, P11; TAUBER AI, 1994, J ROY SOC MED, V87, P27; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; TRICKETT PK, 1993, PSYCHOL SCI, V4, P81, DOI 10.1111/j.1467-9280.1993.tb00465.x; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TRIVERS RL, 1974, AM ZOOL, V14, P249; TRONICK EZ, 1987, AM ANTHROPOL, V89, P96, DOI 10.1525/aa.1987.89.1.02a00050; VALENZUELA M, 1990, CHILD DEV, V61, P1984, DOI 10.2307/1130852; VANSCHAIK CP, 1990, BEHAVIOUR, V115, P30, DOI 10.1163/156853990X00284; VAUGHN BE, 1990, CHILD DEV, V61, P1965, DOI 10.1111/j.1467-8624.1990.tb03578.x; VILA B, 1994, CRIMINOLOGY, V32, P311, DOI 10.1111/j.1745-9125.1994.tb01157.x; VITZTHUM V, 1994, IN PRESS HUMAN BIOL; WACHS TD, 1993, INFANT BEHAV DEV, V16, P391, DOI 10.1016/0163-6383(93)80044-9; Wall S., 1978, PATTERNS ATTACHMENT; WATERS E, 1985, MONOGR SOC RES CHILD, V50, P41, DOI 10.2307/3333826; WELLENS R, 1992, AM J HUM BIOL, V4, P783, DOI 10.1002/ajhb.1310040610; WILEY A, 1994, 93 ANN M AM ANTHR AS; WILEY AS, 1992, MED ANTHROPOL Q, V6, P216, DOI 10.1525/maq.1992.6.3.02a00030; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams GC, 1966, ADAPTATION NATURAL S; Wolkind S, 1985, CHILD ADOLESCENT PSY, P34; WORTHMAN C, 1994, HUM GROWTH DEV MOD R; WORTHMAN C, 1993, ANN M AM ASS ADV SCI; WYATT G, 1990, KINSEY I SERIES, V3, P182; YARROW LJ, 1967, EXCEPT INFANT, V1, P227 176 132 139 1 16 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 1996 7 1 1 37 37 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences TW817 WOS:A1996TW81700001 24203250 2018-11-12 J Morris, DW Morris, DW State-dependent life histories, Mountford's hypothesis, and the evolution of brood size JOURNAL OF ANIMAL ECOLOGY English Article body size; brood size; habitat; individual optimization; life history; littersize; Peromyscus WHITE-FOOTED MICE; CLUTCH-SIZE; PARENTAL INVESTMENT; HABITAT SELECTION; LITTER SIZE; GREAT TITS; REPRODUCTION; PEROMYSCUS; DISPERSAL; SURVIVAL 1. Mountford's cliff-edge hypothesis states that asymmetrically low survivorship in large broods can account for the common observation that mean brood size is less than the most productive size. A graphical model demonstrates how state-dependent life histories can explain Mountford's hypothesis. The model is based on the optimal allocation of parental resources to reproduction. It assumes that the optimum brood size depends upon the state of each phenotype in the population. 2. Variability among individuals will cause some to produce either smaller or larger broods than their optimum. Juvenile survival is expected to decline with increases in brood size beyond the parental optimum. Juvenile survival from large broods produced by low-quality parents will be exceptionally low, thereby generating Mountford's cliff-edge effect. 3. I tested the model with field data on the success of litters produced by small and large females of the white-footed mouse. The data, in this initial test of state-dependent life history theory, were consistent with the state-dependent explanation. Small females that produced large litters had significantly lower recruitment from those litters than did larger females that produced litters of the same size. 4. Interactions among litter size, juvenile survival, maternal body size and the timing of reproduction document that detailed natural history will be an essential feature in future tests of state-dependent theories. LAKEHEAD UNIV, FAC FORESTRY, THUNDER BAY, ON P7B 5E1, CANADA Morris, DW (reprint author), LAKEHEAD UNIV, DEPT BIOL, CTR NO STUDIES, THUNDER BAY, ON P7B 5E1, CANADA. Morris, Douglas/0000-0003-4515-9261 APARICIO JM, 1993, OIKOS, V68, P186, DOI 10.2307/3545327; BOUTIN S, 1988, J ANIM ECOL, V57, P455, DOI 10.2307/4917; Boyce M. S., 1988, EVOLUTION LIFE HIST, P3; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Calder W. A., 1984, SIZE FUNCTION LIFE H; COLEMAN RM, 1991, TRENDS ECOL EVOL, V6, P404, DOI 10.1016/0169-5347(91)90163-R; DAWKINS R, 1976, NATURE, V262, P131, DOI 10.1038/262131a0; DESTEVEN D, 1980, EVOLUTION, V34, P278, DOI 10.1111/j.1558-5646.1980.tb04816.x; DRICKAMER LC, 1973, J MAMMAL, V54, P523, DOI 10.2307/1379147; Eisenberg JF, 1981, MAMMALIAN RAD; FLEMING TH, 1978, EVOLUTION, V32, P45, DOI 10.1111/j.1558-5646.1978.tb01097.x; GOUNDIE TR, 1986, J MAMMAL, V67, P53, DOI 10.2307/1381001; HARVEY P. H., 1988, EVOLUTION LIFE HIST, P213; KLOMP H, 1970, ARDEA, V58, P1; LALONDE RG, 1991, AM NAT, V138, P680, DOI 10.1086/285242; Layne J. N., 1968, P148; Lessells C.M., 1991, P32; LIOU LW, 1993, AM NAT, V141, P507, DOI 10.1086/285488; MCLOSKEY RT, 1975, ECOLOGY, V56, P467, DOI 10.2307/1934978; MCLOSKEY RT, 1975, J MAMMAL, V56, P950, DOI 10.2307/1379675; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; MOLLER AP, 1991, ECOLOGY, V72, P1336, DOI 10.2307/1941106; MORRIS DW, 1992, EVOL ECOL, V6, P1, DOI 10.1007/BF02285330; MORRIS DW, 1986, EVOLUTION, V40, P169, DOI 10.1111/j.1558-5646.1986.tb05728.x; MORRIS DW, 1991, AM NAT, V138, P702, DOI 10.1086/285244; MORRIS DW, 1987, OIKOS, V49, P332, DOI 10.2307/3565769; MORRIS DW, 1989, EVOL ECOL, V3, P80, DOI 10.1007/BF02147934; MORRIS DW, 1985, OIKOS, V45, P290, DOI 10.2307/3565719; MORRIS DW, 1992, EVOLUTION, V46, P1848, DOI 10.1111/j.1558-5646.1992.tb01173.x; MORRIS DW, IN PRESS ECOSCIENCE; MORRIS DW, IN PRESS OIKOS; MOUNTFORD MD, 1968, J ANIM ECOL, V37, P363, DOI 10.2307/2953; MYERS P, 1983, J MAMMAL, V64, P1, DOI 10.2307/1380746; NORUSIS M, 1992, SPSS PC PLUS ADV STA; NUR N, 1984, OECOLOGIA, V65, P125, DOI 10.1007/BF00384475; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; Peters R.H., 1983, P1; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; RINTAMAA DL, 1976, J MAMMAL, V57, P593, DOI 10.2307/1379313; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; WOLFF J O, 1986, Virginia Journal of Science, V37, P208; WOLFF JO, 1988, ANIM BEHAV, V36, P456, DOI 10.1016/S0003-3472(88)80016-2; WOLFF JO, 1992, NATURE, V359, P409, DOI 10.1038/359409a0 44 25 26 0 9 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 1996 65 1 43 51 10.2307/5698 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology TR130 WOS:A1996TR13000004 2018-11-12 J McCleery, RH; Clobert, J; Julliard, R; Perrins, CM McCleery, RH; Clobert, J; Julliard, R; Perrins, CM Nest predation and delayed cost of reproduction in the great tit JOURNAL OF ANIMAL ECOLOGY English Article age-specific mortality; ageing; cost of reproduction; nest predation; life history; great tit LIFE-HISTORY EVOLUTION; INTERSPECIFIC COMPETITION; SITE SELECTION; BREEDING BLUE; SURVIVAL RATE; PARUS-MAJOR; CLUTCH SIZE; BIRDS; AGE; POPULATION 1. During a study on the great tit at Wytham Wood, Oxfordshire, nest predation by weasels was as high as 50% in some years prior to 1976. In 1976, nest-boxes were made virtually predator proof. 2. The change in nest-box type increased local recruitment rate and total population size of great and blue tits. We examined here the consequences of reduced nest predation on the survival rate of the great tit late in life. 3. Prior to 1976 (during the nest predation period), survival rate after the age of 5 years showed no decline and no relationship to the number of successful breeding attempts in either sex. 4. After 1976 (predator-proof period), both sexes showed increased mortality rates after the age of 5. However, only female survival was related to the number of successful breeding attempts, with a negative correlation. 5. This enhanced mortality late in life is likely to result from an increased cost of reproduction due to the combined effects of increased competition (higher adult density) and increased investment in reproduction (more young to raise because of reduced nest predation). These results fit predictions from life history theory, where increased effort early in life is predicted to trade with survival late in life. EDWARD GREY INST FIELD ORNITHOL,DEPT ZOOL,OXFORD,ENGLAND ANDERSON DR, 1994, ECOLOGY, V75, P1780, DOI 10.2307/1939637; BULMER MG, 1984, J THEOR BIOL, V106, P529, DOI 10.1016/0022-5193(84)90005-5; Burnham K. P., 1987, MONOGRAPH, V5; BURNHAM KP, 1993, BIOMETRICS, V49, P1194, DOI 10.2307/2532261; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; CLOBERT J, 1987, ARDEA, V75, P133; CLOBERT J, 1988, J ANIM ECOL, V57, P287, DOI 10.2307/4779; CLOBERT J, 1993, STUDY BIRD POPULATIO, P281; CLOBERT J, 1995, IN PRESS J APPLIED S; CLOBERT J, 1991, BIRD POPULATION STUD, P75; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; CURIO E, 1987, ARDEA, V75, P35; Dhondt A. A., 1971, Gerfaut, V61, P125; DHONDT AA, 1989, IBIS, V131, P268, DOI 10.1111/j.1474-919X.1989.tb02770.x; DHONDT AA, 1985, AUK, V102, P870; DHONDT AA, 1989, WILSON BULL, V101, P198; DHONDT AA, 1977, NATURE, V268, P521, DOI 10.1038/268521a0; DUNN E, 1977, J ANIM ECOL, V46, P633, DOI 10.2307/3835; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; JOHNSON DH, 1986, 13TH P INT BIOM C, P1; KEYFITZ N, 1985, APPLIED MATH DEMOGRA; LACK D, 1954, NATURAL REGULATION A; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEBRETON JD, 1993, TRENDS ECOL EVOL, V8, P91, DOI 10.1016/0169-5347(93)90058-W; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LI PJ, 1991, AUK, V108, P405; LIMA SL, 1987, ECOLOGY, V68, P1062, DOI 10.2307/1938378; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LOERY G, 1987, ECOLOGY, V68, P1038, DOI 10.2307/1938375; Lynch M., 1980, EVOLUTION ECOLOGY ZO, P367; Martin T.E., 1992, Current Ornithology, V9, P163; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; McCleery R.H., 1990, NATO ASI Series Series G Ecological Sciences, V24, P423; McCleery R. H., 1991, BIRD POPULATION STUD, P129; MCCULLAGH P, 1983, GENERALIZED LINEAR M; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MINOT EO, 1981, J ANIM ECOL, V50, P375, DOI 10.2307/4061; MINOT EO, 1986, J ANIM ECOL, V55, P331, DOI 10.2307/4712; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; NICHOLS JD, 1992, BIOSCIENCE, V42, P94, DOI 10.2307/1311650; NILSSON SG, 1986, AUK, V103, P432; NILSSON SG, 1984, ORNIS SCAND, V15, P167, DOI 10.2307/3675958; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; Perrins C.M., 1977, P181; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; PERRINS CM, 1988, REPRODUCTIVE SUCCESS, P136; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; Pollock K.H., 1990, WILDLIFE MONOGR, V107, P1; Pradel R., 1990, Ring International Ornithological Bulletin, V13, P193; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Rose M. R, 1991, EVOLUTIONARY BIOL AG; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; TINBERGEN JM, 1985, ARDEA, V73, P38; WEBBER MI, 1975, THESIS OXFORD; YDENBERG RC, 1984, BEHAV ECOL SOCIOBIOL, V15, P103, DOI 10.1007/BF00299376 59 53 55 0 12 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0021-8790 J ANIM ECOL J. Anim. Ecol. JAN 1996 65 1 96 104 10.2307/5703 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology TR130 WOS:A1996TR13000009 2018-11-12 S McQuaid, CD Ansell, AD; Gibson, RN; Barnes, M McQuaid, CD Biology of the gastropod family Littorinidae .1. Evolutionary aspects OCEANOGRAPHY AND MARINE BIOLOGY, VOL 34: AN ANNUAL REVIEW Oceanography and Marine Biology English Review SAXATILIS OLIVI PROSOBRANCHIA; SNAIL LITTORARIA-PALLESCENS; CONSTRICTA LAMARCK PROSOBRANCHIA; POLYMORPHIC MANGROVE SNAIL; SHELL COLOR POLYMORPHISM; ARCANA HANNAFORD-ELLIS; LACUNA-VINCTA MONTAGU; PAPUA-NEW-GUINEA; 2 MARINE SNAILS; INTERTIDAL SNAIL Gastropods of the family Littorinidae are abundant and ecologically important animals in shallow marine systems throughout the world. Ecological studies on this family have focused on geographical areas where the taxonomy is clear at species level. In some areas, notably the North Atlantic, this happy state does not exist and there has been extensive taxonomic confusion. As a result, considerable effort has gone into the study of the evolutionary biology of the littorinids over the last 20 years. Many of these studies have been aimed at understanding the taxonomic status of species. I have not addressed these. Others have used the group as a tool to consider evolutionary questions. These concern the maintenance of poly morphism in shell colour or shape, and especially the application of life history theory to mode of larval development and the influence of development type on dispersal and population heterozygosity. Overall the littorinids conform poorly or not at all to theoretical predictions. Colour polymorphisms seem to be maintained by selective forces based on predation (although the ecological literature suggests predation is not important at the population level) and heat uptake. The control of variation in shell shape is more difficult to explain and is influenced by the type of development. Direct developing species lack a planktonic larva, which is assumed to result in low gene flow. In examples of these species, shape appears to be largely genetically determined. For species with highly dispersive larvae, phenotypic responses to local factors, including growth rates, are important. But this generalization is not clear-cut, the evidence is conflicting and important counter-examples exist. The most direct evidence comes from breeding experiments. These are rare and, in at least two cases, provide examples that do not conform to this pattern. Dispersal and gene flow are expected to correlate with mode of larval development. In fact, we have little direct information on events between spawning and settlement and again this link is not clear. Direct developing species have been shown to raft or drift over long distances as adults. Species with long-lived planktonic larvae are expected to be highly dispersive, but correlations between settlement and adult density can be interpreted as indicating limited dispersal. A number of other observations on actual dispersal and geographic range of littorinids with different larval types do nor fit the theory. Direct developing species can show striking examples of founder effects. Despite this, there are only imperfect correlations between larval type and both within- and among-population genetic heterozygosity, implying that gene flow is not tightly bound to larval type. This may be partly explained by the lack of correlation between larval type and dispersal. We may also be misled by assuming that juvenile recruitment is not. genotype dependent. But most important is the fact that, while development mode is fixed for any species, heterozygosity is influenced by many factors. The absence of a clear correlation suggests that larval type and/or dispersal is only one of many factors that influence heterozygosity and does not have an overriding effect. There is a poor fit between predicted and actual reproductive strategies used by littorinids. One of the most useful ideas to emerge recently is the need to recognize phylogenetic constraints on mode of reproduction (and many other facets of biology for that matter). Evolutionary explanations can supersede a welter of imperfect and superfluous ecological explanations for the use of different strategies by different species. We require adaptive explanations only when a species shows a derived condition different from the primitive condition for the taxon to which it belongs. Thus ecological explanations are appropriate only in comparisons between species of similar ancestry or between populations of the same species exhibiting morphological or genetic differences. McQuaid, CD (reprint author), RHODES UNIV, DEPT ZOOL & ENTOMOL, ZA-6140 GRAHAMSTOWN, SOUTH AFRICA. ALERSTAM T, 1992, OIKOS, V65, P179, DOI 10.2307/3545008; ANDERSON D. T., 1961, PROC LINN SOC N S WALES, V86, P203; APPLETON RD, 1988, P NATL ACAD SCI USA, V85, P4387, DOI 10.1073/pnas.85.12.4387; ASH VB, 1989, ZOOL J LINN SOC-LOND, V96, P167, DOI 10.1111/j.1096-3642.1989.tb01825.x; ATKINSON WD, 1983, BIOL J LINN SOC, V20, P137, DOI 10.1111/j.1095-8312.1983.tb00358.x; ATKINSON WD, 1984, J ANIM ECOL, V53, P93, DOI 10.2307/4344; BACKELJAU T, 1992, 3RD P INT S LITT BIO, P9; BANDEL K, 1982, VELIGER, V25, P1; BEARDMORE JA, 1978, MARINE ORGANISMS GEN, P123; BEAUMONT AR, 1991, J CONSEIL, V47, P333; BERGER E, 1977, BIOL BULL, V153, P255, DOI 10.2307/1540433; BERGER EM, 1973, BIOL BULL-US, V145, P83, DOI 10.2307/1540349; BERGERARD J, 1981, B SOC ZOOL FR, V106, P277; BERRY AJ, 1961, J ANIM ECOL, V30, P27, DOI 10.2307/2111; BERRY AJ, 1980, J MOLLUS STUD, V46, P55; BOULDING EG, 1993, J EXP MAR BIOL ECOL, V169, P139, DOI 10.1016/0022-0981(93)90191-P; BOULDING EG, 1993, EVOLUTION, V47, P576, DOI 10.1111/j.1558-5646.1993.tb02114.x; BOULDING EG, 1993, VELIGER, V36, P43; BRANDWOOD A, 1985, J ZOOL, V206, P551; BURTON RS, 1983, MAR BIOL LETT, V4, P193; BYERS BA, 1990, BIOL J LINN SOC, V40, P3, DOI 10.1111/j.1095-8312.1990.tb00530.x; CALOW P, 1983, MOLLUSCA, V6, P649; CAUGANT D, 1980, VELIGER, V23, P107; Chia F.-S., 1970, Mar. Pollut. Bull., V1, P78, DOI 10.1016/0025-326X(70)90145-1; CLARKE B, 1970, NATURE, V228, P159, DOI 10.1038/228159a0; CLARKE B, 1978, PULMONATES A, V2, P219; CLARKE BC, 1979, PROC R SOC SER B-BIO, V205, P453, DOI 10.1098/rspb.1979.0079; COLE TJ, 1975, NATURE, V257, P794, DOI 10.1038/257794a0; COMFORT A, 1951, BIOL REV, V26, P285, DOI 10.1111/j.1469-185X.1951.tb01358.x; COOK LM, 1986, BIOL J LINN SOC, V29, P295, DOI 10.1111/j.1095-8312.1986.tb00281.x; COOK LM, 1990, HEREDITY, V65, P423, DOI 10.1038/hdy.1990.113; COOK LM, 1983, BIOL J LINN SOC, V20, P167, DOI 10.1111/j.1095-8312.1983.tb00360.x; COOK LM, 1986, BIOL J LINN SOC, V29, P101, DOI 10.1111/j.1095-8312.1986.tb01825.x; COOK LM, 1985, J ZOOL, V206, P297; COOK LM, 1993, J MOLLUS STUD, V59, P29, DOI 10.1093/mollus/59.1.29; COOK LM, 1992, 3RD P INT S LITT BIO, P247; CREESE RG, 1976, J EXP MAR BIOL ECOL, V23, P211, DOI 10.1016/0022-0981(76)90021-6; CRISP DJ, 1978, P NATO ADV STUD RES, P257; CROSSLAND S, 1993, MAR ECOL PROG SER, V96, P301, DOI 10.3354/meps096301; CURREY JD, 1982, J ANIM ECOL, V51, P47, DOI 10.2307/4309; DUDLEY R, 1980, NAUTILUS, V94, P108; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ETTER RJ, 1988, EVOLUTION, V42, P660, DOI 10.1111/j.1558-5646.1988.tb02485.x; FALLERFRITSCH RJ, 1977, BIOL BENTHIC ORGANIS, P225; FEVOLDEN SE, 1987, MAR ECOL PROG SER, V39, P129, DOI 10.3354/meps039129; Fish J.D., 1985, P143; FOLTZ DW, 1993, AM MALACOL BULL, V10, P55; FRETTER V, 1977, J MOLLUS STUD, V43, P255; FRETTER V, 1994, BRIT PROSOBRANCH MOL; GAINES MS, 1974, MAR BIOL, V27, P327, DOI 10.1007/BF00394368; GALLARDO CS, 1985, HELGOLANDER MEERESUN, V39, P165, DOI 10.1007/BF01997448; GRAHAME J, 1989, J MAR BIOL ASSOC UK, V69, P837, DOI 10.1017/S0025315400032203; GRAHAME J, 1973, J ANIM ECOL, V42, P391, DOI 10.2307/3293; GRAHAME J, 1977, MAR BIOL, V40, P217, DOI 10.1007/BF00390877; GRAHAME J, 1986, J ZOOL, V208, P229; GRAHAME J, 1982, INT J INVER REP DEV, V5, P91; GRAHAME J, 1992, J MAR BIOL ASSOC UK, V72, P499, DOI 10.1017/S0025315400037851; GRAHAME J, 1992, 3RD P INT S LITT BIO, P99; GRASSLE JF, 1978, MARINE ORGANISMS, P347; HAMILTON PV, 1978, MAR BIOL, V46, P49, DOI 10.1007/BF00393820; Hannaford Ellis C.J., 1983, Journal of Molluscan Studies, V49, P98; Hannaford Ellis C.J., 1984, Journal of Conchology, V31, P343; HART A, 1982, OECOLOGIA, V52, P37, DOI 10.1007/BF00349009; HELLER J, 1975, ZOOL J LINN SOC-LOND, V56, P153, DOI 10.1111/j.1096-3642.1975.tb00814.x; HELMUTH B, 1994, MAR BIOL, V120, P421, DOI 10.1007/BF00680216; HIGHSMITH RC, 1985, MAR ECOL PROG SER, V25, P169, DOI 10.3354/meps025169; HUGHES JM, 1986, EVOLUTION, V40, P68, DOI 10.1111/j.1558-5646.1986.tb05718.x; HUGHES R N, 1971, Journal of Experimental Marine Biology and Ecology, V6, P167, DOI 10.1016/0022-0981(71)90016-5; HUGHES RN, 1979, ZOOL J LINN SOC-LOND, V65, P119, DOI 10.1111/j.1096-3642.1979.tb01085.x; HUGHES RN, 1981, J ANIM ECOL, V50, P251, DOI 10.2307/4043; HUGHES RN, 1980, OECOLOGIA, V47, P130, DOI 10.1007/BF00541788; HUNTE W, 1988, MAR ECOL PROG SER, V45, P109, DOI 10.3354/meps045109; HUXHAM M, 1993, J EXP MAR BIOL ECOL, V168, P223, DOI 10.1016/0022-0981(93)90262-M; HYLLEBERG J, 1977, J MOLLUS STUD, V43, P192; INO T, 1949, J MAR RES, V8, P1; JABLONSKI D, 1986, B MAR SCI, V39, P565; JABLONSKI D, 1983, BIOL REV, V58, P21, DOI 10.1111/j.1469-185X.1983.tb00380.x; JANSON K, 1984, BIOL J LINN SOC, V22, P289, DOI 10.1111/j.1095-8312.1984.tb01680.x; JANSON K, 1983, MAR BIOL, V74, P49, DOI 10.1007/BF00394274; JANSON K, 1987, HEREDITY, V58, P31, DOI 10.1038/hdy.1987.5; JANSON K, 1983, OECOLOGIA, V59, P58, DOI 10.1007/BF00388072; JANSON K, 1985, BIOL J LINN SOC, V24, P51, DOI 10.1111/j.1095-8312.1985.tb00159.x; JANSON K, 1985, OPHELIA, V24, P125, DOI 10.1080/00785236.1985.10426625; JANSON K, 1982, J MOLLUS STUD, V48, P167; JANSON K, 1985, B MAR SCI, V37, P871; JANSON K, 1982, MAR BIOL, V69, P73, DOI 10.1007/BF00396963; JANSON K, 1985, J CONCHOL, V32, P9; JANSON K, 1987, BIOL J LINN SOC, V30, P245, DOI 10.1111/j.1095-8312.1987.tb00299.x; JOHANNESSON B, 1990, DEV HYDROB, V56, P71, DOI 10.1007/BF00028067; JOHANNESSON B, 1986, J EXP MAR BIOL ECOL, V102, P183, DOI 10.1016/0022-0981(86)90175-9; JOHANNESSON K, 1990, HYDROBIOLOGIA, V193, P89, DOI 10.1007/BF00028068; JOHANNESSON K, 1990, DEV HYDROB, V56, P99, DOI 10.1007/BF00028069; JOHANNESSON K, 1992, BIOL J LINN SOC, V47, P285, DOI 10.1111/j.1095-8312.1992.tb00671.x; JOHANNESSON K, 1993, EVOLUTION, V47, P1770, DOI 10.1111/j.1558-5646.1993.tb01268.x; JOHANNESSON K, 1988, MAR BIOL, V99, P507, DOI 10.1007/BF00392558; JOHANNESSON K, 1989, GENET RES, V54, P7, DOI 10.1017/S0016672300028317; JOHANNESSON K, 1992, 3RD P INT S LITT BIO, P1; JOHNSON CR, 1986, J EXP MAR BIOL ECOL, V97, P231, DOI 10.1016/0022-0981(86)90244-3; JOHNSON MS, 1991, HEREDITY, V67, P205, DOI 10.1038/hdy.1991.81; JONES JS, 1977, ANNU REV ECOL SYST, V8, P109, DOI 10.1146/annurev.es.08.110177.000545; KALABUSHKIN BA, 1976, ZH OBSHCH BIOL, V37, P369; KARTAVTSEV YP, 1981, GENETIKA+, V17, P1029; KEMP P, 1984, P NATL ACAD SCI-BIOL, V81, P811, DOI 10.1073/pnas.81.3.811; KILBURN R N, 1972, Annals of the Natal Museum, V21, P391; KIMURA M, 1968, NATURE, V217, P624, DOI 10.1038/217624a0; KNIGHT AJ, 1991, J MOLLUS STUD, V57, P81, DOI 10.1093/mollus/57.1.81; KNIGHT AJ, 1987, BIOL J LINN SOC, V32, P417, DOI 10.1111/j.1095-8312.1987.tb00441.x; LANGANCRANFORD KM, 1995, J EXP MAR BIOL ECOL, V186, P17, DOI 10.1016/0022-0981(94)00147-6; LAVIE B, 1986, SCI TOTAL ENVIRON, V57, P91, DOI 10.1016/0048-9697(86)90013-6; LAVIE B, 1987, ENVIRON MANAGE, V11, P345, DOI 10.1007/BF01867162; LEIGHTON D, 1963, ECOLOGY, V44, P227, DOI 10.2307/1932170; LESSIOS HA, 1992, MAR BIOL, V112, P517, DOI 10.1007/BF00356299; LEVINTON JS, 1978, MARINE ORGANISMS GEN, P229; Lewontin R. C., 1974, GENETIC BASIS EVOLUT; LIU LL, 1991, MAR BIOL, V111, P71, DOI 10.1007/BF01986348; LOWELL RB, 1994, J ZOOL, V234, P149, DOI 10.1111/j.1469-7998.1994.tb06062.x; MAC ARTHUR ROBERT H., 1967; MALLET AL, 1985, MAR BIOL, V87, P165, DOI 10.1007/BF00539424; MARTEL A, 1991, J EXP MAR BIOL ECOL, V150, P131, DOI 10.1016/0022-0981(91)90111-9; MARTEL A, 1991, MAR ECOL PROG SER, V72, P247, DOI 10.3354/meps072247; MARTEL A, 1993, MAR ECOL PROG SER, V99, P215, DOI 10.3354/meps099215; MASTRO E, 1982, VELIGER, V24, P239; McQuaid C.D., 1992, P85; McQuaid C. D., 1988, BEHAV ADAPTATION INT, P213; MCQUAID CD, 1985, J EXP MAR BIOL ECOL, V89, P97, DOI 10.1016/0022-0981(85)90120-0; MCQUAID CD, 1981, J EXP MAR BIOL ECOL, V54, P77, DOI 10.1016/0022-0981(81)90104-0; McQuaid CD, 1996, OCEANOGR MAR BIOL, V34, P263; MEEKAN MG, 1993, MAR ECOL PROG SER, V93, P217, DOI 10.3354/meps093217; MERCURIO KS, 1985, ECOLOGY, V66, P1417, DOI 10.2307/1938004; MILEIKOVSKY SA, 1975, MAR BIOL, V30, P129, DOI 10.1007/BF00391587; MILEIKOVSKY SA, 1971, MAR BIOL, V10, P193, DOI 10.1007/BF00352809; MILKMAN R, 1978, MARINE ORGANISMS GEN, P3; MOYSE J, 1982, J CONCHOL, V31, P7; NAYLOR R, 1982, J CONCHOL, V31, P17; NEI M, 1975, EVOLUTION, V29, P1, DOI 10.1111/j.1558-5646.1975.tb00807.x; NEI M, 1975, P NATL ACAD SCI USA, V72, P2758, DOI 10.1073/pnas.72.7.2758; NEI M, 1976, P NATL ACAD SCI USA, V73, P4164, DOI 10.1073/pnas.73.11.4164; NEWKIRK GF, 1975, MAR BIOL, V30, P227, DOI 10.1007/BF00390745; NEWKIRK GF, 1979, CAN J GENET CYTOL, V21, P505, DOI 10.1139/g79-055; NOY R, 1987, J EXP MAR BIOL ECOL, V109, P109, DOI 10.1016/0022-0981(87)90010-4; O-FOIGHIL D, 1989, Marine Biology (Berlin), V103, P349, DOI 10.1007/BF00397269; OCKELMANN KW, 1981, OPHELIA, V20, P1; OHTA T, 1974, NATURE, V252, P351, DOI 10.1038/252351a0; Olive P. J. W., 1985, PHYSL ADAPTATIONS MA, P267; PALMER AR, 1990, HYDROBIOLOGIA, V193, P155, DOI 10.1007/BF00028074; PALMER AR, 1985, EVOLUTION, V39, P699, DOI 10.1111/j.1558-5646.1985.tb00407.x; PALMER AR, 1984, MALACOLOGIA, V25, P477; PALMER AR, 1981, OECOLOGIA, V48, P308, DOI 10.1007/BF00346487; PETERSON CH, 1992, MAR ECOL PROG SER, V90, P257, DOI 10.3354/meps090257; PETRAITIS PS, 1982, J EXP MAR BIOL ECOL, V59, P207, DOI 10.1016/0022-0981(82)90116-2; Pettitt C., 1975, Journal Conch Lond, V28, P343; PICKEN GB, 1979, MALACOLOGIA, V19, P109; PILKINGTON MC, 1971, AUST J MAR FRESH RES, V22, P79; RAFFAELLI D, 1990, HYDROBIOLOGIA, V193, P271, DOI 10.1007/BF00028083; RAFFAELLI D, 1982, J MOLLUS STUD, V48, P342, DOI 10.1093/oxfordjournals.mollus.a065656; RAFFAELLI D, 1979, ZOOL J LINN SOC-LOND, V65, P219, DOI 10.1111/j.1096-3642.1979.tb01092.x; REID D G, 1988, Records of the Australian Museum, V40, P91; REID D.G, 1986, LITTORINID MOLLUSCS; REID DG, 1990, B MAR SCI, V47, P35; REID DG, 1993, J MOLLUS STUD, V59, P51, DOI 10.1093/mollus/59.1.51; REID DG, 1990, HYDROBIOLOGIA, V193, P1, DOI 10.1007/BF00028062; REID DG, 1989, PHILOS T R SOC B, V324, P1, DOI 10.1098/rstb.1989.0040; REID DG, 1987, BIOL J LINN SOC, V30, P1, DOI 10.1111/j.1095-8312.1987.tb00284.x; REID DG, 1991, P 10 INT MALACOLOGIC, P515; REIMCHEN TE, 1981, J CONCHOL, V30, P341; REIMCHEN TE, 1979, CAN J ZOOL, V57, P1070, DOI 10.1139/z79-135; REIMCHEN TE, 1989, BIOL J LINN SOC, V36, P97, DOI 10.1111/j.1095-8312.1989.tb00485.x; REIMCHEN TE, 1982, CAN J ZOOL, V60, P687, DOI 10.1139/z82-098; ROBERTSON AI, 1982, J EXP MAR BIOL ECOL, V63, P151, DOI 10.1016/0022-0981(82)90029-6; ROSE RJ, 1981, EQUINE VET J, V13, P7, DOI 10.1111/j.2042-3306.1981.tb03439.x; ROSEWATER J, 1982, Proceedings of the Biological Society of Washington, V95, P67; ROSEWATER J, 1970, Indo-Pacific Mollusca, V2, P417; Sacchi C. F., 1966, Atti della Societa Italiana di Scienze Naturali, V105, P351; SACCHI C F, 1979, Natura (Milan), V70, P7; SCHELTEMA RS, 1971, BIOL BULL-US, V140, P284, DOI 10.2307/1540075; SCHELTEMA RS, 1978, MARINE ORGANISMS GEN, P303; SCHELTEMA RS, 1989, P 23 EUR MAR BIOL S, P183; SEELEY RH, 1986, P NATL ACAD SCI USA, V83, P6897, DOI 10.1073/pnas.83.18.6897; Sergievsky S.O., 1992, P235; SIMPSON R D, 1985, Journal of the Malacological Society of Australia, V7, P17; SIMPSON RD, 1977, MAR BIOL, V44, P125, DOI 10.1007/BF00386953; SINGH SM, 1984, MALACOLOGIA, V25, P569; SLATKIN M, 1987, SCIENCE, V236, P787, DOI 10.1126/science.3576198; Smith D.A.S., 1976, Journal moll Stud, V42, P114; SMITH DAS, 1973, J MAR BIOL ASSOC UK, V53, P493, DOI 10.1017/S0025315400058720; SMITH JE, 1981, J MAR BIOL ASSOC UK, V61, P215, DOI 10.1017/S0025315400046026; SMITH JE, 1955, J ANIM ECOL, V24, P35, DOI 10.2307/1878; SMITH SM, 1982, MALACOLOGIA, V22, P535; SNYDER TP, 1973, MAR BIOL, V22, P177, DOI 10.1007/BF00391781; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; SPIGHT TM, 1976, ECOLOGY, V57, P1162, DOI 10.2307/1935042; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; STRUHSAKER JW, 1968, EVOLUTION, V22, P459, DOI 10.1111/j.1558-5646.1968.tb03986.x; SUNDBERG P, 1988, BIOL J LINN SOC, V35, P169, DOI 10.1111/j.1095-8312.1988.tb00464.x; SUNDELL K, 1985, J EXP MAR BIOL ECOL, V92, P115, DOI 10.1016/0022-0981(85)90091-7; TALBOT MMB, 1990, OCEANOGR MAR BIOL, V28, P155; TATARENKOV A, 1994, BIOL J LINN SOC, V53, P105, DOI 10.1006/bijl.1994.1063; TATARENKOV AN, 1995, VELIGER, V38, P85; TATARENKOV AN, 1992, 3RD P INT S LITT BIO, P25; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; TRUSSELL GC, 1993, MAR ECOL PROG SER, V100, P135, DOI 10.3354/meps100135; UNDERWOOD AJ, 1976, J EXP MAR BIOL ECOL, V23, P229, DOI 10.1016/0022-0981(76)90022-8; UNDERWOOD AJ, 1983, J EXP MAR BIOL ECOL, V66, P169, DOI 10.1016/0022-0981(83)90038-2; Van Valen L, 1965, AM NAT, V99, P377, DOI DOI 10.1086/282379; VANMARION P, 1981, J MOLLUS STUD, V47, P99, DOI 10.1093/oxfordjournals.mollus.a065562; VERMEIJ GJ, 1982, NATURE, V299, P349, DOI 10.1038/299349a0; VERMEIJ GJ, 1982, EVOLUTION, V36, P561, DOI 10.1111/j.1558-5646.1982.tb05077.x; VERMEIJ GJ, 1972, AM NAT, V106, P89, DOI 10.1086/282754; VERMEIJ GJ, 1973, MAR BIOL, V20, P319, DOI 10.1007/BF00354275; Vermeij GJ., 1978, BIOGEOGRAPHY ADAPTAT; VUILLEUMIER F, 1972, EXPERIENTIA, V28, P1241, DOI 10.1007/BF01946197; WARD RD, 1990, HYDROBIOLOGIA, V193, P53, DOI 10.1007/BF00028066; WARD RD, 1985, J MOLLUS STUD, V51, P86, DOI 10.1093/oxfordjournals.mollus.a065888; WARD RD, 1980, BIOL J LINN SOC, V14, P417, DOI 10.1111/j.1095-8312.1980.tb00116.x; WARD RD, 1986, HEREDITY, V57, P233, DOI 10.1038/hdy.1986.113; WARWICK T, 1982, J MOLLUS STUD, V48, P368, DOI 10.1093/oxfordjournals.mollus.a065661; WILKINS NP, 1980, VELIGER, V22, P355; WILKINS NP, 1978, MARINE ORGANISMS GEN, P141; WILSON AC, 1977, ANNU REV BIOCHEM, V46, P573, DOI 10.1146/annurev.bi.46.070177.003041; WIUM-ANDERSEN G, 1970, Ophelia, V8, P267; Woodward B. B., 1909, Proceedings of the Malacological Society of London, V8; YAMADA SB, 1989, MAR BIOL, V103, P403, DOI 10.1007/BF00397275; YAMAMDA SB, 1987, MAR BIOL, V96, P529; ZASLAVSKAYA NI, 1992, J MOLLUS STUD, V58, P377, DOI 10.1093/mollus/58.4.377; ZOUROS E, 1984, MALACOLOGIA, V25, P583 228 38 38 1 25 U C L PRESS LTD LONDON UNIV COLL LONDON, GOWER STREET, LONDON WC1E 6BT, ENGLAND 0078-3218 1-85728-581-6 OCEANOGR MAR BIOL Oceanogr. Mar. Biol. 1996 34 233 262 30 Fisheries; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography BG58Y WOS:A1996BG58Y00005 2018-11-12 J George, SB George, SB Echinoderm egg and larval quality as a function of adult nutritional state OCEANOLOGICA ACTA English Article; Proceedings Paper Colloquium on Biotic and Abiotic Interactions Regulating Life Cycle of Marine Invertebrates SEP 19-23, 1994 VILLEFRANCHE-SUR-MER, FRANCE ARBACIA-LIXULA ECHINODERMATA; MARINE BENTHIC INVERTEBRATES; LIFE-HISTORY THEORY; COD GADUS-MORHUA; REPRODUCTIVE STRATEGIES; LECITHOTROPHIC DEVELOPMENT; COMPARATIVE MORPHOMETRICS; POPULATION DIFFERENCES; LEPTASTERIAS-HEXACTIS; SCLERASTERIAS-MOLLIS Differences in egg and larval quality for some sea urchins and seastars were investigated in the field acid in the laboratory. In the field, sea urchins and seastars found at sites with an abundant supply of food were larger, and they produced large numbers of large, high quality eggs. For some female seastars, nutritional history determined the response to variation in food supply in the laboratory. While an increase in food ration did not affect the size of eggs produced by females from the favorable site, an increase in food ration led to an increase in egg size for those from the less favorable site. For all the echinoderms examined, egg numbers decreased when conditions became unfavorable. Larvae from females living in favorable environments grew and developed faster, and larval survival was high. A large percentage of sea urchin larvae from females living in favorable environments metamorphosed compared to those living in less favorable environments. Juvenile size did not vary as a function of past nutritional state in sea urchins but it did in seastars. Large numbers of high quality juveniles were produced by seastars from the favorable site. The differences in egg and larval quality observed in field studies might be due to differences in the abundance of preferred algae (food for some sea urchins) and molluscan species (food for some seastars) at the different sites. In laboratory studies, the responses to food availability were also influenced by the nutritional and gametogenic states of the females at the time of collection and by the duration of the experiments. HARBOR BRANCH OCEANOG INST INC, FT PIERCE, FL 34946 USA ANDREW NL, 1986, J EXP MAR BIOL ECOL, V97, P63, DOI 10.1016/0022-0981(86)90068-7; BAYNE BL, 1978, J MAR BIOL ASSOC UK, V58, P825, DOI 10.1017/S0025315400056794; BAYNE BL, 1975, J MAR BIOL ASSOC UK, V55, P675, DOI 10.1017/S0025315400017343; BERGIN F, 1987, C INT PAR LIV OURS C, P37; BERNARDO J, 1991, TRENDS ECOL EVOL, V6, P1, DOI 10.1016/0169-5347(91)90137-M; BERTHON JF, 1987, THESIS U P M CURIE P; Chiu S.T., 1988, P193; CRAIK JCA, 1987, J MAR BIOL ASSOC UK, V67, P169, DOI 10.1017/S0025315400026436; Crisp D.J., 1984, P103; de Ridder C., 1982, P57; Dehn P.F., 1980, P361; Dehn P.F., 1982, Echinoderms, P457; ECKELBARGER KJ, 1994, P BIOL SOC WASH, V107, P193; Emlet R.B., 1987, Echinoderm Studies, V2, P55; FENAUX L, 1994, LIMNOL OCEANOGR, V39, P84, DOI 10.4319/lo.1994.39.1.0084; GEORGE SB, 1994, ECHINODERMS THROUGH TIME, P297; GEORGE SB, 1990, J EXP MAR BIOL ECOL, V141, P107, DOI 10.1016/0022-0981(90)90217-Z; GEORGE SB, 1994, MAR ECOL PROG SER, V109, P95, DOI 10.3354/meps109095; GEORGE SB, 1994, J EXP MAR BIOL ECOL, V175, P121, DOI 10.1016/0022-0981(94)90179-1; GEORGE SB, 1990, INVERTEBR REPROD DEV, V17, P111, DOI 10.1080/07924259.1990.9672098; GEORGE SB, 1991, INVERTEBR REPROD DEV, V20, P237, DOI 10.1080/07924259.1991.9672204; GEORGE SB, 1990, THESIS U PARIS; GUGLIELMI G, 1969, THESIS FS NICE FRANC; HART MW, 1994, BIOL BULL, V186, P291, DOI 10.2307/1542275; HIRCHE HJ, 1993, MAR BIOL, V117, P615, DOI 10.1007/BF00349773; HOLLAND DL, 1978, BIOCH BIOPHYSICAL PE, P85; HORWOOD JW, 1989, J MAR BIOL ASSOC UK, V69, P81, DOI 10.1017/S0025315400049122; JACKSON GA, 1981, AM NAT, V118, P16, DOI 10.1086/283797; Jangoux M., 1982, P117; KAPLAN RH, 1984, AM NAT, V123, P393, DOI 10.1086/284211; Kawamura K., 1973, Scientific Rep Hokkaido Fish Exp Stn, VNo. 16, P1; KEATS DW, 1984, J EXP MAR BIOL ECOL, V80, P77, DOI 10.1016/0022-0981(84)90095-9; Kempf M., 1962, REC TRAV STA MAR END, V25, P47; KJESBU OS, 1992, J FISH BIOL, V41, P581, DOI 10.1111/j.1095-8649.1992.tb02685.x; LAWRENCE J M, 1973, Journal of Experimental Marine Biology and Ecology, V11, P263, DOI 10.1016/0022-0981(73)90026-9; LAWRENCE J M, 1979, Florida Scientist, V42, P9; Lawrence J.M., 1975, Oceanography mar Biol, V13, P213; LONNING SUNNIVA, 1963, SARSIA, V11, P25; LOWE EF, 1976, J EXP MAR BIOL ECOL, V21, P223, DOI 10.1016/0022-0981(76)90117-9; LUCAS MI, 1987, J MAR BIOL ASSOC UK, V67, P27, DOI 10.1017/S0025315400026345; Maggiore F., 1987, C INT PAR LIV OURS C, P65; MARECI TH, 1991, METHOD ASSESSING ENE; MCCLINTOCK JB, 1986, COMP BIOCHEM PHYS A, V85, P341, DOI 10.1016/0300-9629(86)90259-8; MCEDWARD LR, 1986, J EXP MAR BIOL ECOL, V96, P267, DOI 10.1016/0022-0981(86)90207-8; MCEDWARD LR, 1987, EVOLUTION, V41, P914, DOI 10.1111/j.1558-5646.1987.tb05865.x; MCEDWARD LR, 1986, J EXP MAR BIOL ECOL, V96, P251, DOI 10.1016/0022-0981(86)90206-6; MCEDWARD LR, 1987, MAR ECOL PROG SER, V37, P159, DOI 10.3354/meps037159; MCEDWARD LR, 1991, J EXP MAR BIOL ECOL, V147, P95, DOI 10.1016/0022-0981(91)90039-Y; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; MCGINLEY MA, 1989, EVOL ECOL, V3, P150, DOI 10.1007/BF02270917; McGinley MA, 1988, EVOL ECOL, V2, P77, DOI 10.1007/BF02071590; MENGE BA, 1972, ECOLOGY, V53, P635, DOI 10.2307/1934777; MENGE BA, 1974, ECOLOGY, V55, P84, DOI 10.2307/1934620; MENGE BA, 1975, MAR BIOL, V31, P87, DOI 10.1007/BF00390651; MONTGOMERY WL, 1980, ENVIRON BIOL FISH, V5, P143, DOI 10.1007/BF02391621; MORRIS DW, 1987, OIKOS, V49, P332, DOI 10.2307/3565769; MORRIS DW, 1992, EVOLUTION, V46, P1848, DOI 10.1111/j.1558-5646.1992.tb01173.x; NISSLING A, 1994, MAR ECOL PROG SER, V110, P67, DOI 10.3354/meps110067; Pearse John S., 1991, P513; Roff Derek A., 1992; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; SCHEIBLING RE, 1982, MAR BIOL, V70, P51, DOI 10.1007/BF00397296; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; SINERVO B, 1988, EVOLUTION, V42, P885, DOI 10.1111/j.1558-5646.1988.tb02509.x; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEARNS SC, 1992, Q REV BIOL; STRATHMANN RR, 1992, EVOLUTION, V46, P972, DOI 10.1111/j.1558-5646.1992.tb00613.x; Thompson R.J., 1984, Advances in Invertebrate Reproduction, V3, P425; THOMPSON RJ, 1983, OECOLOGIA, V56, P50, DOI 10.1007/BF00378216; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; TRAER K, 1980, ECHINODERMS PRESENT, P341; TURNER RL, 1976, J EXP MAR BIOL ECOL, V24, P49, DOI 10.1016/0022-0981(76)90042-3; Turner RL, 1979, REPROD ECOLOGY MARIN, P25; VADAS RL, 1977, ECOL MONOGR, V47, P337, DOI 10.2307/1942173; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; VANCE RR, 1973, AM NAT, V107, P353, DOI 10.1086/282839; VENABLE DL, 1992, AM NAT, V140, P287, DOI 10.1086/285413; XU RA, 1990, COMP BIOCHEM PHYS A, V96, P33, DOI 10.1016/0300-9629(90)90037-S; XU RA, 1990, J EXP MAR BIOL ECOL, V136, P23, DOI 10.1016/0022-0981(90)90098-W 81 47 49 2 20 GAUTHIER-VILLARS/EDITIONS ELSEVIER PARIS 23 RUE LINOIS, 75015 PARIS, FRANCE 0399-1784 OCEANOL ACTA Oceanol. Acta 1996 19 3-4 297 308 12 Oceanography Oceanography VB830 WOS:A1996VB83000020 2018-11-12 J Hadfield, MG; Strathmann, MF Hadfield, MG; Strathmann, MF Variability, flexibility and plasticity in life histories of marine invertebrates OCEANOLOGICA ACTA English Article; Proceedings Paper Colloquium on Biotic and Abiotic Interactions Regulating Life Cycle of Marine Invertebrates SEP 19-23, 1994 VILLEFRANCHE-SUR-MER, FRANCE FOOD-LIMITED GROWTH; DELAYED METAMORPHOSIS; LARVAL DEVELOPMENT; CAPITELLA-SP; EGG SIZE; LECITHOTROPHIC DEVELOPMENT; BENTHIC INVERTEBRATES; STREBLOSPIO-BENEDICTI; CREPIDULA-FORNICATA; APLYSIA-JULIANA Nearly all aspects of the life histories of individual marine-invertebrate species are characterized by ranges of;sizes, seasonal variation, and functional flexibility and phenotypic plasticity in response to varying environmental conditions; that is, they are highly polytypic. Four major areas of polytypy are considered: (1) breeding seasons and cycles vary greatly in time and duration with latitude and from year to year; (2) egg and larval sizes, while showing both genetic and stochastic variability in all species, are often also flexible responses to adult and larval nutrition; (3) modes of development are variable within a number of single species, often reflecting egg-size differences between populations, or even as a result of hatching age of siblings from a single egg mass; and (4) duration of the pelagic larval phase, both before and after the onset of metamorphic competence. Planktotrophic larvae show plastic responses to phytoplankton abundance in their morphologies, and most larvae are flexible in their age at metamorphosis because this complex process requires a more-or-less specialized substratum to induce it for most invertebrate species. New data are presented that provide additional examples of broad flexibility of sibling lecithotrophic larvae to hatch and settle at greatly differing ages. Larvae of the patelloidean gastropod Lottia pelta settled from 8 to 28 days after fertilization, and those of the fissurelloidean Diodora aspera hatched over a three week period from 7 to 30 days post-fertilization; larval settlement had a similarly broad range. Even the planktotrophic-lecithotrophic dichotomy breaks down as increasing numbers of species are found to produce larvae that can metamorphose without feeding (i.e. lecithotrophy), or feed and greatly extend their larval durations (planktotrophy) in the absence of suitable settlement substrata. Invertebrate groups with rigidly canalized life histories are noted to be components of the fouling community, and it is conjectured that an evolutionary history on floating substrata canalized their life histories toward high inbreeding tolerance, often selfing, and brief pelagic larval durations. We note that most life-history theory has considered extremes and major modes in invertebrate development, and suffers from lack of-attention to the abundance of polytypic life-history traits as evolutionary survival mechanisms at the species level. We conclude that response flexibility and plasticity increase both survivorship and fecundity of individuals, while life-history variability increases the likelihood of recruitment across populations and persistence over geological time. More data are needed on the ranges of scalar characters and flexible responses in marine-invertebrate life histories to rigorously evaluate their contributions to evolutionary success. FRIDAY HARBOR LABS,FRIDAY HARBOR,WA 98250 Hadfield, MG (reprint author), UNIV HAWAII,KEWALO MARINE LAB,41 AHUI ST,HONOLULU,HI 96813, USA. ANGER K, 1981, Journal of Crustacean Biology, V1, P518, DOI 10.2307/1548128; BARNES H, 1965, J ANIM ECOL, V34, P391, DOI 10.2307/2656; BAYNE B. L., 1965, OPHELIA, V2, P1; BELL JB, 1993, THESIS U HAWAII; Berrill N.J., 1975, P241; BHAUD M, 1989, B SOC GEOL FR, V5, P551; BHAUD MR, 1993, OCEANOL ACTA, V16, P191; BHAUD MR, 1991, B MAR SCI, V48, P420; BIRKELAND C, 1971, BIOL BULL-US, V141, P99, DOI 10.2307/1539994; BOIDRONMETAIRON IF, 1988, J EXP MAR BIOL ECOL, V119, P31, DOI 10.1016/0022-0981(88)90150-5; CAMERON RA, 1974, BIOL BULL-US, V146, P335, DOI 10.2307/1540409; CHRISTIANSEN FB, 1979, THEOR POPUL BIOL, V16, P267, DOI 10.1016/0040-5809(79)90017-0; EMLET RB, 1986, J EXP MAR BIOL ECOL, V95, P183, DOI 10.1016/0022-0981(86)90202-9; FENAUX L, 1994, LIMNOL OCEANOGR, V39, P84, DOI 10.4319/lo.1994.39.1.0084; GEORGE SB, 1990, INVERTEBR REPROD DEV, V17, P111, DOI 10.1080/07924259.1990.9672098; GIBSON GD, 1989, BIOL BULL, V176, P103, DOI 10.2307/1541577; GLESE AC, 1987, REPROD MARINE INVERT, V9, pCH4; GRASSLE JP, 1976, SCIENCE, V192, P567, DOI 10.1126/science.1257794; GROSBERG RK, 1986, NATURE, V322, P456, DOI 10.1038/322456a0; Hadfield M.G., 1990, Advances in Invertebrate Reproduction, V5, P247; HADFIELD MG, 1990, J MOLLUS STUD, V56, P239, DOI 10.1093/mollus/56.2.239; HADFIELD MG, 1995, PROGRAMME NATL DETER, V22, P2; HANSEN TA, 1980, SCIENCE, V199, P885; HARMS J, 1992, J EXP MAR BIOL ECOL, V156, P151, DOI 10.1016/0022-0981(92)90242-3; HART MW, 1994, BIOL BULL, V186, P291, DOI 10.2307/1542275; HARVEY AW, 1993, MAR BIOL, V117, P575, DOI 10.1007/BF00349768; HESLINGA GA, 1981, MALACOLOGIA, V20, P349; Hickman C. S., 1988, MALACOLOGICAL REV S, V4, P17; HIGHSMITH RC, 1986, B MAR SCI, V39, P347; HOAGLAND KE, 1988, BIOL BULL, V174, P109, DOI 10.2307/1541778; JABLONSKI D, 1986, B MAR SCI, V39, P565; JABLONSKI D, 1983, BIOL REV, V58, P21, DOI 10.1111/j.1469-185X.1983.tb00380.x; JACKSON GA, 1981, AM NAT, V118, P16, DOI 10.1086/283797; KEMPF SC, 1985, BIOL BULL-US, V169, P119, DOI 10.2307/1541392; KEMPF SC, 1981, MAR ECOL PROG SER, V6, P61, DOI 10.3354/meps006061; KOHN AJ, 1994, LIFE HIST BIOGEOGRAP; KUBOTA H, 1981, ADV INVERTEBRATE REP, P69; LEVIN LA, 1991, EVOLUTION, V45, P380, DOI 10.1111/j.1558-5646.1991.tb04412.x; LEVIN LA, 1984, BIOL BULL, V166, P494, DOI 10.2307/1541157; LEVIN LA, 1990, ECOLOGY, V71, P2191, DOI 10.2307/1938632; LEVIN LA, 1987, ECOLOGY, V68, P1877, DOI 10.2307/1939879; LUCAS MI, 1979, MAR BIOL, V55, P221, DOI 10.1007/BF00396822; MCEDWARD LR, 1987, MAR ECOL PROG SER, V37, P159, DOI 10.3354/meps037159; MCEDWARD LR, 1991, J EXP MAR BIOL ECOL, V147, P95, DOI 10.1016/0022-0981(91)90039-Y; MILLER SE, 1990, SCIENCE, V248, P356, DOI 10.1126/science.248.4953.356; Morris R. H., 1980, INTERTIDAL INVERTEBR; PAULAY G, 1985, J EXP MAR BIOL ECOL, V93, P1, DOI 10.1016/0022-0981(85)90145-5; PECHENIK JA, 1984, BIOL BULL, V166, P537, DOI 10.2307/1541160; PECHENIK JA, 1980, J EXP MAR BIOL ECOL, V44, P1, DOI 10.1016/0022-0981(80)90098-2; PECHENIK JA, 1991, J EXP MAR BIOL ECOL, V151, P17, DOI 10.1016/0022-0981(91)90012-L; PECHENIK JA, 1990, J EXP MAR BIOL ECOL, V136, P47, DOI 10.1016/0022-0981(90)90099-X; PECHENIK JA, 1990, OPHELIA, V32, P63, DOI 10.1080/00785236.1990.10422025; PECHENIK JA, 1984, J EXP MAR BIOL ECOL, V74, P241, DOI 10.1016/0022-0981(84)90128-X; POTSWALD HE, 1968, BIOL BULL, V135, P208, DOI 10.2307/1539628; Powell A. W. B., 1942, Bulletin Auckland Institute and Museum, V2, P1; QIAN PY, 1992, J EXP MAR BIOL ECOL, V157, P159, DOI 10.1016/0022-0981(92)90160-C; QIAN PY, 1991, J EXP MAR BIOL ECOL, V148, P11, DOI 10.1016/0022-0981(91)90143-K; QIAN PY, 1993, J EXP MAR BIOL ECOL, V166, P93, DOI 10.1016/0022-0981(93)90080-8; Reed Christopher G., 1991, P85; Richmond RH, 1990, GLOBAL ECOLOGICAL CO, P127; SARVER DJ, 1979, MAR BIOL, V54, P353, DOI 10.1007/BF00395441; Scheltema R. S., 1971, 4TH EUR MAR BIOL S, P7; Schelterna R.S., 1974, Thalassia Jugosl, V10, P297; Schroeder P.C., 1975, P1; SINERVO B, 1988, EVOLUTION, V42, P885, DOI 10.1111/j.1558-5646.1988.tb02509.x; STRATHMANN MF, 1987, REPROD DEV MARINE IN; STRATHMANN R, 1974, AM NAT, V108, P29, DOI 10.1086/282883; STRATHMANN RR, 1992, EVOLUTION, V46, P972, DOI 10.1111/j.1558-5646.1992.tb00613.x; STRATHMANN RR, 1993, BIOL BULL, V185, P232, DOI 10.2307/1542003; STRATHMANN RR, 1977, AM NAT, V111, P373, DOI 10.1086/283168; SWITZERDUNLAP MF, 1977, REPROD ECOLOGY MARIN, P199; THOMPSON TE, 1958, PHILOS T ROY SOC B, V242, P1, DOI 10.1098/rstb.1958.0012; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Thorson G., 1961, OCEANOGRAPHY AM ASS, V67, P455; THORSON GUNNAR, 1946, MEDDEL KOMM DANMARKS FISKERI OG HAVUNDERSOGELSER SER PLANKTON, V4, P1; TOONEN RJ, 1994, NATURE, V370, P511, DOI 10.1038/370511a0; Turner RL, 1979, REPROD ECOLOGY MARIN, P25; UNDERWOOD AJ, 1972, MAR BIOL, V17, P341, DOI 10.1007/BF00366745; VANCE RR, 1973, AM NAT, V107, P353, DOI 10.1086/282839; WEST HH, 1984, VELIGER, V26, P199; WILLIAMS LG, 1980, MALACOLOGIA, V20, P99; WILSON DP, 1968, J MAR BIOL ASSOC UK, V48, P367, DOI 10.1017/S002531540003455X; WILSON DP, 1970, J MAR BIOL ASSOC UK, V50, P1, DOI 10.1017/S0025315400000576; WILSON DP, 1970, J MAR BIOL ASSOC UK, V50, P33, DOI 10.1017/S0025315400000588 84 109 110 2 41 GAUTHIER-VILLARS PARIS S P E S-JOURNAL DEPT, 120 BD ST GERMAIN, F-75006 PARIS, FRANCE 0399-1784 OCEANOL ACTA Oceanol. Acta 1996 19 3-4 323 334 12 Oceanography Oceanography VB830 WOS:A1996VB83000023 2018-11-12 S Kaplan, H Steegmann, AT Kaplan, H A theory of fertility and parental investment in traditional and modern human societies YEARBOOK OF PHYSICAL ANTHROPOLOGY, YEARBOOK SERIES VOL 39: SUPPLEMENT 23 TO THE AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY Yearbook of Physical Anthropology English Review fertility; parental investment; life history theory; human capital; hunter-gatherers; demographic transition KESTREL FALCO-TINNUNCULUS; LIFE-HISTORY TRAITS; REPRODUCTIVE SUCCESS; POSTPARTUM AMENORRHEA; OPTIMAL ALLOCATION; OVARIAN-FUNCTION; ECONOMIC-THEORY; ACHE FORAGERS; CLUTCH-SIZE; GROWTH This paper has two interrelated goals. The first is to offer a general theory of fertility and parental investment across a broad spectrum of human societies. The second is to provide a perspective that unifies traditionally separate domains of anthropology. The basic foundation for the analysis is Life history theory and evolutionary biological models of optimal fertility regulation. This tradition is combined with human capital theory in economics to produce a more general theory of investments in embodied capital within and between generations. This synthesis results in a series of optimality models to examine the decision processes underlying fertility and parental investment upon which natural selection is expected to act. Those models are then applied to the hunting and gathering lifeway. This analysis focuses both on problems that all hunting and gathering peoples face and on the production of variable responses in relation to variable ecologies. Next, this consideration of optimal parental investment and fertility behavior in hunter-gatherers is united with existing models of the proximate determinants of human fertility. The analysis of proximate mechanisms is based on the idea that natural selection acts on the final phenotypic outcome of a coordinated system of physiological, psychological and cultural processes. The important conditions affecting parental investment and fertility in modern socioeconomic contexts are then discussed. An explanation of modern fertility and parental investment behavior in terms of the interaction of those conditions with the physiological and psychological mechanisms that evolved during our hunting and gathering history is proposed. The proposal is that skills-based competitive labor markets increase the value of parental investment in children and motivate better-educated, higher income parents to invest more per child than their less-educated, lower-earning counterparts. It is also suggested that the deviation from fitness maximization associated with low modern fertility is due to excess expenditures on both parental and offspring consumption, indicating that our evolved psychology is responding to cues in the modern environment that are not directly related to the fitness impacts of consumption. (C) 1996 Wiley-Liss, Inc. Kaplan, H (reprint author), UNIV NEW MEXICO, DEPT ANTHROPOL, ALBUQUERQUE, NM 87131 USA. Kaplan, Hillard/0000-0002-7398-7358 Alexander R.D., 1974, Annual Rev Ecol Syst, V5, P325, DOI 10.1146/annurev.es.05.110174.001545; BARKOW JH, 1980, ETHOL SOCIOBIOL, V1, P163, DOI 10.1016/0162-3095(80)90006-0; BARKOW JH, 1989, DARWIN SEX STATUS; BARNETT WS, 1985, HIGH SCOPE EARLY CHI, V2; BECKER G., 1991, TREATISE FAMILY; Becker Gary S., 1975, HUMAN CAPITAL; BECKER GS, 1986, J LABOR ECON, V4, pS1, DOI 10.1086/298118; BECKER GS, 1990, J POLIT ECON, V98, pS12, DOI 10.1086/261723; BECKER GS, 1976, J POLIT ECON, V84, pS143, DOI 10.1086/260536; BECKER GS, 1988, Q J ECON, V103, P1, DOI 10.2307/1882640; Becker GS, 1973, EC FAMILY MARRIAGE C, P81; BENPORATH Y, 1967, J POLIT ECON, V75, P352, DOI 10.1086/259291; Betzig L, 1986, DESPOTISM DIFFERENTI; Blake J., 1989, FAMILY SIZE ACHIEVEM; Blurton Jones N. G., 1994, KEY ISSUES HUNTER GA, P189; Blurton Jones N. G., 1978, HUMAN BEHAVIOUR ADAP, V18, P135; BOCK J, 1995, THESIS U NEW MEXICO; BONGAARTS J, 1983, FERTILITY BIOL BEHAV; BOONE JL, 1986, AM ANTHROPOL, V88, P859; BORGERHOFF MM, 1987, AM ANTHROPOL, V89, P617, DOI DOI 10.1525/AA.1987.89.3.02A00050); Boyd R., 1985, CULTURE EVOLUTIONARY; BURLEY N, 1979, AM NAT, V114, P835, DOI 10.1086/283532; CHAGNON NA, 1988, SCIENCE, V239, P985, DOI 10.1126/science.239.4843.985; CHAING AC, 1981, FUNDAMENTAL METHODS; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Charnov Eric L., 1993, P1; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Coale A., 1986, DECLINE FERTILITY EU, P1; COALE AJ, 1986, DECLINE FERTILITY EU, P31; *CONS LONG STUD, 1983, TWIG BENT LASTING EF; Cromer A., 1993, UNCOMMON SENSE HERET; CRONK L, 1991, AM ANTHROPOL, V93, P345, DOI 10.1525/aa.1991.93.2.02a00040; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; Denison E.F., 1985, TRENDS AM GROWTH 192; DETRAY DN, 1973, J POLITICAL EC, V82, pS70; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Dixit A.K, 1990, OPTIMIZATION EC THEO; DOWNEY DB, 1995, AM SOCIOL REV, V60, P746, DOI 10.2307/2096320; Draper P., 1976, KALAHARI HUNTER GATH, P199; Draper P, 1987, PARENTING LIFE SPAN, P207; Draper Patricia, 1975, ANTHR WOMEN, P77; ELLISON P, 1995, HUMAN REPROD DICISIO; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; ELLISON PT, 1989, AM J PHYS ANTHROPOL, V78, P519, DOI 10.1002/ajpa.1330780407; Feistner A.T.C., 1989, P21; FLINN M, 1986, ETHOL SOCIOBIOL, V9, P1; Grafen A., 1991, P5; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HANRY L, 1961, EUGENICS Q, V8, P81; HANSON LA, 1982, IMMUNOL TODAY, V3, P168, DOI 10.1016/0167-5699(82)90108-6; HARPENDING JC, 1990, HLTH DIS TRADITIONAL, P241; Hart B., 1995, MEANINGFUL DIFFERENC; HAWKES K, 1995, CURR ANTHROPOL, V36, P688, DOI 10.1086/204420; HAWKES K, 1989, COMP SOCIOECOLOGY BE, P341; Hernstein R., 1994, BELL CURVE INTELLIGE; HILL J, 1984, ETHOL SOCIOBIOL, V5, P77, DOI 10.1016/0162-3095(84)90011-6; HILL K, 1982, J HUM EVOL, V11, P521, DOI 10.1016/S0047-2484(82)80107-3; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; HOFFGINSBERG E, 1995, HDB PARENTING, V2; HOOD J, 1992, CAVEAT EMPTOR HEAD S, V187; HOWIE PW, 1990, BRIT MED J, V300, P11, DOI 10.1136/bmj.300.6716.11; HRDY SB, 1993, HUM NATURE-INT BIOS, V4, P1, DOI 10.1007/BF02734088; HUFFMAN SL, 1978, POP STUD-J DEMOG, V32, P251, DOI 10.2307/2173560; HUGHES AL, 1986, SOC BIOL, V33, P109; Hurtado A M, 1992, Hum Nat, V3, P185, DOI 10.1007/BF02692239; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; HURTADO AM, 1990, J ANTHROPOL RES, V46, P293, DOI 10.1086/jar.46.3.3630428; INTRILIGATOR MD, 1970, MATH OPTIMIZATION EC; IRONS W, 1993, BEHAV BRAIN SCI, V16, P295, DOI 10.1017/S0140525X00030089; IRONS W, 1990, ETHOL SOCIOBIOL, V11, P361, DOI 10.1016/0162-3095(90)90016-Y; IRONS W, 1983, SOCIAL BEHAVIOR FEMA, P169; IRONS W, 1995, CULTURAL REPROD SUCC; IRONS W, 1979, EVOLUTIONARY BIOL HU, P257; JONES NB, 1986, ETHOL SOCIOBIOL, V7, P91, DOI 10.1016/0162-3095(86)90002-6; JONES NB, 1987, ETHOL SOCIOBIOL, V8, P183; JONES NB, 1994, J ANTHROPOL RES, V50, P217, DOI 10.1086/jar.50.3.3630178; JONES NGB, 1989, COMP SOCIOEOLOGY BEH; JONES RE, 1994, ANN NY ACAD SCI, V709, P227, DOI 10.1111/j.1749-6632.1994.tb30410.x; KAPLAN H, 1993, BEHAV BRAIN SCI, V16, P297, DOI 10.1017/S0140525X00030090; KAPLAN H, 1985, CURR ANTHROPOL, V26, P131, DOI 10.1086/203235; KAPLAN H, 1985, CURR ANTHROPOL, V26, P223, DOI 10.1086/203251; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; KAPLAN H, 1996, UNPUB EVOLUTION HUMA; KAPLAN H, 1996, UNPUB COMPETITIVE LA; KAPLAN H, 1994, THEORY HUMAN PARENTA; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; Kelly R. L., 1995, FORAGING SPECTRUM DI; KNOEDEL J, 1986, DECLINE FERTILITY EU, P337; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Lack D., 1968, ECOLOGICAL ADAPTATIO; Lack D., 1954, NATURAL REGULATION A; LAM D, 1993, J POLIT ECON, V101, P710, DOI 10.1086/261894; LAM D, 1986, AM ECON REV, V76, P1103; LANCASTER JB, 1968, MATH ECONOMICS; LANCASTER JB, IN PRESS EVOLUTION F; LANCASTER JB, 1987, PARENTING LIFE SPAN, P187; LANCASTER JB, 1991, PRIMATOLOGY TODAY; LANTZ P, 1992, POP STUD-J DEMOG, V46, P121, DOI 10.1080/0032472031000146046; LEE PC, 1991, J ZOOL, V225, P99, DOI 10.1111/j.1469-7998.1991.tb03804.x; LEE RB, 1979, KUNG SAN MED WOMEN W, P236; LESLIE PW, 1989, AM J PHYS ANTHROPOL, V79, P103, DOI 10.1002/ajpa.1330790111; Lessells C.M., 1991, P32; LESTHAEGHE R, 1986, DECLINE FERTILITY EU, P261; LEWIS PR, 1991, FERTIL STERIL, V55, P529; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LINDERT PH, 1986, J POLIT ECON, V94, P1127, DOI 10.1086/261427; Livi-Bacci M, 1986, DECLINE FERTILITY EU, P182; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; LOW BS, 1990, AM ANTHROPOL, V92, P457, DOI 10.1525/aa.1990.92.2.02a00130; LUNN PG, 1984, AM J CLIN NUTR, V39, P227; McGinley MA, 1988, EVOL ECOL, V2, P77, DOI 10.1007/BF02071590; McGrew W.C., 1992, P229; MEALEY L, 1990, ETHOL SOCIOBIOL, V11, P83, DOI 10.1016/0162-3095(90)90030-A; Mincer J., 1974, SCH EXPERIENCE EARNI; Mulder M Borgerhoff, 1992, EVOLUTIONARY ECOLOGY, P339; MULDER MB, 1988, COMP SOCIOECOLOGY MA, P405; Oftedal O. T., 1984, S ZOOL SOC LOND, V51, P33; Palloni A, 1994, Bull Pan Am Health Organ, V28, P93; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; PERUSSE D, 1993, BEHAV BRAIN SCI, V16, P267, DOI 10.1017/S0140525X00029939; PRENTICE AM, 1987, S ZOOLOGICAL SOC LON, V57, P275; RETHERFORD RD, 1993, UNPUB DEMOGRAPHIC TR; ROFF DA, 1986, BIOSCIENCE, V36, P316, DOI 10.2307/1310236; Roff Derek A., 1992; ROGERS AR, 1994, AM ECON REV, V84, P460; ROGERS AR, 1990, ETHOL SOCIOBIOL, V11, P479, DOI 10.1016/0162-3095(90)90022-X; ROGERS AR, 1992, UNPUB ALLOCATION PAR; SCHWEINHART LJ, 1993, MONOGRAPHYS HIGH SCO, V10; SHEARD NF, 1988, NUTR REV, V46, P1; SHORT RV, 1984, SCI AM, V250, P35, DOI 10.1038/scientificamerican0484-35; SILK JB, 1978, FOLIA PRIMATOL, V29, P129, DOI 10.1159/000155835; SIMMS S, 1984, THESIS U UTAH; SIMONS JL, 1974, EFFECTS INCOME FERTI; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; TELEKI G, 1973, PREDATORY BEHAVIOR W; TOMES N, 1978, THESIS U CHICAGO DEP; Tooby J., 1987, P183; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; TURKE PW, 1985, ETHOL SOCIOBIOL, V6, P79, DOI 10.1016/0162-3095(85)90001-9; TURKE PW, 1989, POPUL DEV REV, V15, P61, DOI 10.2307/1973405; Van de Walle Francine, 1986, DECLINE FERTILITY EU, P201; VANSCHAIK CP, 1989, COMP SOCIOECOLOGY BE, P195; Varian Hal R., 1992, MICROECONOMIC ANAL; VINING DR, 1986, BEHAV BRAIN SCI, V9, P167, DOI 10.1017/S0140525X00021968; Vitzthum Virginia J., 1994, Yearbook of Physical Anthropology, V37, P307; VOLAND E, 1990, BEHAV ECOL SOCIOBIOL, V26, P65; WHITEHEAD RG, 1981, LANCET, V2, P161; Willis R.J., 1987, HDB LABOR ECONOMICS, P525; WILLIS RJ, 1973, J POLIT ECON, V81, pS14, DOI 10.1086/260152; WOOD JW, 1994, DYNAMICS HUMAN REPRO; WORTHMAN CM, 1993, J BIOSOC SCI, V25, P425; ZIGLER E, 1994, AM PSYCHOL, V49, P127, DOI 10.1037/0003-066X.49.2.127 157 206 208 4 57 WILEY-LISS, INC NEW YORK 605 THIRD AVE, NEW YORK, NY 10158-0012 USA 0096-848X YEARB PHYS ANTHROPOL Yearb. Phys. Anthropol. 1996 39 91 135 45 Anthropology Anthropology BH33Q WOS:A1996BH33Q00004 2018-11-12 J Blarer, A; Doebeli, M; Stearns, SC Blarer, A; Doebeli, M; Stearns, SC Diagnosing senescence: Inferring evolutionary causes from phenotypic patterns can be misleading PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article DROSOPHILA-MELANOGASTER; LIFE-HISTORY; OPTIMIZATION; SELECTION; ALGORITHM Based on the predictions of two theories for the evolution of senescence, the 'antagonistic pleiotropy' and the 'mutation accumulation' theory, an age-specific increase in mortality and a decrease in fecundity are widely used criteria to diagnose senescence in natural and laboratory populations. In this study we question the reliability of these criteria. Using a simple model we show that similar phenotypic patterns result from optimal life histories without senescence. With a tradeoff between reproduction and period survival, optimal life histories produce patterns of increasing mortality and decreasing fecundity as organisms age, even if the tradeoff does not deteriorate with age, so that we are not forced to invoke genetic effects such as antagonistic pleiotropy or accumulation of deleterious mutations to explain such patterns. Furthermore, if optimal life history theory is applied to senescent organisms, phenotypic patterns can result that are usually not associated with senescence. We conclude that the reliability of a diagnosis of senescence based on phenotypic patterns and the comprehension of the phenomenon senescence depends critically on understanding to what extent tradeoffs are determined by the effects of segregating genes. Blarer, A (reprint author), UNIV BASEL, INST ZOOL, RHEINSPRUNG 9, CH-4051 BASEL, SWITZERLAND. Doebeli, Michael/D-5391-2012; Stearns, Stephen/F-4099-2012 Stearns, Stephen/0000-0002-6621-4373 AUSTAD SN, 1992, AM J PRIMATOL, V28, P251, DOI 10.1002/ajp.1350280403; AUSTAD SN, 1993, J ZOOL, V229, P695, DOI 10.1111/j.1469-7998.1993.tb02665.x; BELLMAN R, 1957, DYNAMIC PROGRAMMING; BLARER A, 1995, IN PRESS EVOL ECOL; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHIPPINDALE AK, 1994, EVOLUTION, V48, P1880, DOI 10.1111/j.1558-5646.1994.tb02221.x; Comfort A, 1979, BIOL SENESCENCE; DUECK G, 1993, J COMPUT PHYS, V104, P86, DOI 10.1006/jcph.1993.1010; DUECK G, 1990, J COMPUT PHYS, V90, P161, DOI 10.1016/0021-9991(90)90201-B; FINCH CE, 1990, SCIENCE, V249, P902, DOI 10.1126/science.2392680; GAILLARD JM, 1994, EVOLUTION, V48, P509, DOI 10.1111/j.1558-5646.1994.tb01329.x; HIRSCH HR, 1980, J THEOR BIOL, V86, P149, DOI 10.1016/0022-5193(80)90072-7; HOEKSTRA RF, 1993, NETH J ZOOL, V43, P352; JOHNSON TE, 1990, SCIENCE, V249, P908, DOI 10.1126/science.2392681; KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; PARTRIDGE L, 1994, GENETICS EVOLUTION A, P109; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; Prothero J., 1987, Basic Life Sciences, V42, P49; Roff Derek A., 1992; ROSE M, 1980, NATURE, V287, P141, DOI 10.1038/287141a0; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1984, EVOLUTION, V38, P516, DOI 10.1111/j.1558-5646.1984.tb00317.x; ROSE MR, 1981, GENETICS, V97, P187; SERVICE PM, 1988, EVOLUTION, V42, P708, DOI 10.1111/j.1558-5646.1988.tb02489.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 31 18 18 2 10 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. DEC 22 1995 262 1365 305 312 10.1098/rspb.1995.0210 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology TQ738 WOS:A1995TQ73800008 8587888 2018-11-12 J VANTIENDEREN, PH VANTIENDEREN, PH LIFE-CYCLE TRADE-OFFS IN MATRIX POPULATION-MODELS ECOLOGY English Article DEMOGRAPHY; KILLER WHALES; LIFE HISTORY; MATRIX PROJECTIONS; POPULATION GROWTH RATE; SELECTION DIFFERENTIAL; SELECTION RESPONSE FINDING CONFIDENCE-LIMITS; GROWTH RATES; DEMOGRAPHY; SELECTION; ACQUISITION; PARAMETERS; ALLOCATION; ELASTICITY; CHARACTERS; RESOURCES Matrix projections allow identification of those phases in the life cycle with a high potential impact on the population growth rate. This impact is assessed by the sensitivity or elasticity of the matrix elements that are computed from life cycle data such as age-dependent survival or fecundity. Covariation among life cycle components, e.g., due to trade-offs, is a main subject of life history theory. Sensitivities or elasticities of matrix elements do not take this covariation into account. Integrated sensitivities and elasticities measure the net effect of a matrix element, combining its direct effect and indirect effects through correlation with other matrix elements. These measures are related to the selection differentials and expected selection responses from quantitative genetics. The use of these measures is illustrated with data on disease resistance in a perennial weed Plantago lanceolata, and the demography of killer whale pods. VANTIENDEREN, PH (reprint author), NETHERLANDS INST ECOL,POB 40,6666 ZG HETEREN,NETHERLANDS. van Tienderen, Peter/I-6018-2012 van Tienderen, Peter/0000-0002-7225-0856 ALVAREZBUYLLA ER, 1991, TRENDS ECOL EVOL, V6, P221, DOI 10.1016/0169-5347(91)90026-T; ALVAREZBUYLLA ER, 1994, ECOLOGY, V75, P255, DOI 10.2307/1939401; ALVAREZBUYLLA ER, 1993, OIKOS, V68, P273, DOI 10.2307/3544840; BIGG MA, 1990, REP INT WHALING COMM, V12, P383; BRAULT S, 1993, ECOLOGY, V74, P1444, DOI 10.2307/1940073; CASWELL H, 1978, THEOR POPUL BIOL, V14, P215, DOI 10.1016/0040-5809(78)90025-4; CASWELL H, 1983, AM ZOOL, V23, P35; CASWELL H, 1985, POPULATION BIOL EVOL, P187; Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; DENOOIJ MP, 1988, OECOLOGIA, V75, P535, DOI 10.1007/BF00776417; FALCONER DS, 1981, INTRO QUANTITATIVE G; KALISZ S, 1992, ECOLOGY, V73, P1082, DOI 10.2307/1940182; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lande R., 1982, P21; LINDERS EGA, 1994, THESIS U UTRECHT UTR; Olesiuk P.F., 1990, Reports of the International Whaling Commission Special Issue, P209; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; SHAW RG, 1987, EVOLUTION, V41, P812, DOI 10.1111/j.1558-5646.1987.tb05855.x; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; Stearns S. C., 1992, EVOLUTION LIFE HIST; TEMPLETON AR, 1980, THEOR POPUL BIOL, V18, P279, DOI 10.1016/0040-5809(80)90053-2; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANGROENENDAEL JM, 1988, TRENDS ECOL EVOL, V10, P264; VANTIENDEREN PH, 1994, J EVOLUTION BIOL, V7, P1, DOI 10.1046/j.1420-9101.1994.7010001.x; VANTIENDEREN PH, 1989, EVOL TREND PLANT, V3, P91 30 80 81 1 32 ECOLOGICAL SOC AMER TEMPE ARIZONA STATE UNIV CENTER ENVIRONMENTAL STUDIES, TEMPE, AZ 85287 0012-9658 ECOLOGY Ecology DEC 1995 76 8 2482 2489 10.2307/2265822 8 Ecology Environmental Sciences & Ecology TJ312 WOS:A1995TJ31200011 2018-11-12 J Fielding, DJ; Brusven, MA Fielding, DJ; Brusven, MA Ecological correlates between rangeland grasshopper (Orthoptera: Acrididae) and plant communities of southern Idaho ENVIRONMENTAL ENTOMOLOGY English Article life-history theory; disturbance; community structure; niche breadth; canonical correspondence analysis CANONICAL CORRESPONDENCE-ANALYSIS; MELANOPLUS-SANGUINIPES; STRATEGIES; ABUNDANCE; SUCCESSION; DIVERSITY; PATTERNS; HABITAT Grasshopper and plant community relationships in southern Idaho were examined within a life-history context. Plant species composition (by weight) and density and species composition of grasshoppers were estimated at 52 sites in south-central Idaho, representing a range of plant communities from native sagebrush-bunchgrass to exotic annual grasslands. The plant community at each site was evaluated using the Crime triangular model of plant life-history strategies, which consists of 3 axes representing adaptations to competition, stress, and disturbance. Four attributes were measured for the 20 most common grasshopper species: mean density, habitat breadth, average instar in June, and diet breadth. Grasshopper density, habitat breadth, and diet breadth were correlated positively with site scores on the disturbance axis of the Crime life history model and were correlated negatively with site scores on the competition and stress axes. Results suggest that characterization of grasshopper and plant community life-history strategies provides useful insights for understanding the dynamics of grasshopper assemblages from different habitats. UNIV IDAHO, DEPT PLANT SOIL & ENTOMOL SCI, MOSCOW, ID 83844 USA ANDERSON NORMAN L., 1964, ANN ENTOMOL SOC AMER, V57, P736; BAILEY RG, 1978, DESCRIPTION ECOREGIO; BANFILL J C, 1973, Melanderia, V12, P1; BONHAM CD, 1991, J VEG SCI, V2, P339, DOI 10.2307/3235925; BROWN JH, 1984, AM NAT, V124, P255, DOI 10.1086/284267; BROWN VK, 1985, OIKOS, V44, P17, DOI 10.2307/3544037; BROWN VK, 1983, OECOLOGIA, V56, P220, DOI 10.1007/BF00379693; BROWN VK, 1986, J ECOL, V74, P963, DOI 10.2307/2260227; BRUSVEN MA, 1960, 3 ND AGR EXP STN RES; CAPINERA JL, 1989, ENVIRON ENTOMOL, V18, P8, DOI 10.1093/ee/18.1.8; COOK CW, 1952, U RANGE MANAGE, V5, P331; FIELDING DJ, 1990, ENVIRON ENTOMOL, V19, P1786, DOI 10.1093/ee/19.6.1786; FIELDING DJ, 1992, J ECON ENTOMOL, V85, P783, DOI 10.1093/jee/85.3.783; FIELDING DJ, 1993, ENVIRON ENTOMOL, V22, P71, DOI 10.1093/ee/22.1.71; FRANCIS RC, 1979, J ENVIRON MANAGE, V8, P55; GRIME JP, 1984, NEW PHYTOL, V98, P15, DOI 10.1111/j.1469-8137.1984.tb06096.x; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; HARRIS GA, 1967, ECOL MONOGR, V37, P89, DOI 10.2307/2937337; HARRIS GA, 1970, ECOLOGY, V51, P529; HILL MO, 1973, ECOLOGY, V54, P427, DOI 10.2307/1934352; HILL MO, 1980, VEGETATIO, V42, P47, DOI 10.1007/BF00048870; HIRONAKA M, 1983, U IDAHO FOREST B, V35; Hull A. C., 1947, JOUR FOREST, V45, P555; Joern A., 1990, P415; JOERN A, 1979, Transactions of the American Entomological Society (Philadelphia), V105, P253; JOERN A, 1979, OECOLOGIA BERL, V33, P325; KEMP WP, 1994, CAN ENTOMOL, V126, P1075, DOI 10.4039/Ent1261075-4; KEMP WP, 1992, ENVIRON ENTOMOL, V21, P461, DOI 10.1093/ee/21.3.461; KLEMMEDSON JO, 1964, BOT REV, V30, P226, DOI 10.1007/BF02858603; KOLASA J, 1988, OIKOS, V53, P235, DOI 10.2307/3566068; MACK RN, 1981, AGRO-ECOSYSTEMS, V7, P145, DOI 10.1016/0304-3746(81)90027-5; Mack RN, 1989, BIOL INVASIONS GLOBA, P155; MCANELLY ML, 1986, BIOL BULL, V170, P368, DOI 10.2307/1541848; MELGOZA G, 1991, J RANGE MANAGE, V44, P27, DOI 10.2307/4002633; MULKERN GB, 1959, J ECON ENTOMOL, V52, P342, DOI 10.1093/jee/52.2.342; MURRAY RB, 1978, INT199 US FOR SERV R; NERNEY NJ, 1969, J ECON ENTOMOL, V62, P329, DOI 10.1093/jee/62.2.329; PFADT RE, 1982, ENVIRON ENTOMOL, V11, P690, DOI 10.1093/ee/11.3.690; PIERSON FB, 1991, J RANGE MANAGE, V44, P491, DOI 10.2307/4002751; REYNOLDS T D, 1981, Northwest Science, V55, P225; Shannon C. E, 1949, MATH THEORY COMMUNIC; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; SUGIHARA G, 1980, AM NAT, V116, P770, DOI 10.1086/283669; TER BRAAK CJF, 1987, VEGETATIO, V69, P69, DOI 10.1007/BF00038688; TERBRAAK CJF, 1986, ECOLOGY, V67, P1167; TERBRAAK CJF, LWA8802 TNO I APPL C; Tisdale E. W., 1981, FOREST WILDLIFE RANG, V33; WHISENANT SG, 1990, USDA INTERM, V276, P4; Wright H.A., 1982, FIRE ECOLOGY; YANG Y, 1994, FUNCT ECOL, V8, P36, DOI 10.2307/2390109; YANG YL, 1994, PHYSIOL ENTOMOL, V19, P75, DOI 10.1111/j.1365-3032.1994.tb01077.x; Zar J. H., 1984, BIOSTATISTICAL ANAL; 1976, NATIONAL RANGE HDB; SAS STAT USERS GUIDE, P87 55 17 23 0 7 ENTOMOLOGICAL SOC AMER LANHAM 10001 DEREKWOOD LANE, STE 100, LANHAM, MD 20706-4876 USA 0046-225X ENVIRON ENTOMOL Environ. Entomol. DEC 1995 24 6 1432 1441 10.1093/ee/24.6.1432 10 Entomology Entomology TL696 WOS:A1995TL69600008 2018-11-12 J Hillstrom, L Hillstrom, L Body mass reduction during reproduction in the Pied Flycatcher Ficedula hypoleuca: Physiological stress or adaptation for lowered costs of locomotion? FUNCTIONAL ECOLOGY English Article body mass change; costs of reproduction; mass adjustment; supplementary food CLUTCH SIZE; BREEDING BIRDS; BROOD SIZE; PARENTAL SURVIVAL; WEIGHT; MANIPULATION; STRATEGIES; ALBICOLLIS; PREDATION; SUCCESS 1. An important parameter in life-history theory is reproductive effort, i.e. the proportional amount of resources allocated to reproduction, and its effects on individual animals within a population, including the risk of predation, survival and fecundity in subsequent breeding attempts. Generally, it is believed that reproduction drains energy that otherwise could have been used for survival or subsequent reproduction. There has been a controversy about whether the mass loss in birds represents such an energetic drain in energy store or whether it is an adaptation to lower the flight costs of adults during nestling rearing. 2. Here I present an experiment that aimed to test these two hypotheses, i.e. 'the cost of reproduction hypothesis' and the 'mass adjustment hypothesis', by adding extra food in some territories during incubation and nestling rearing, while others were held as controls. 3. There was no effect of food addition on either final body mass (late nestling) or body mass change (from incubation to late nestling) for females of different treatments. However, in males there was a tendency for a lower final body mass in control broods, compared with males with supplementary food, and also for a larger body mass change of males in control broods compared with males with supplementary food in 1 of the 2 years. 4. There was a positive correlation between number of fledged young and body mass change for females, and a negative correlation existed between fledging success and final body mass for females. Thus, a large number of fledged young led to a greater body mass change and to a lower final body mass for females. However, there were no such correlations in males. 5. Hence this study provides some support for the 'cost of reproduction hypothesis', but also gives support for the 'mass adjustment hypothesis'. A certain amount of decline in body mass during breeding may be of adaptive value, but below some threshold limit, which can vary depending on environmental conditions, a somatic cost probably arises that may reduce future survival and/or fecundity. Thus, the two hypotheses for explaining body mass reduction in birds may not be mutually exclusive. Also, a third alternative 'benefit-cost hypothesis' is proposed, which predicts that parents should decrease their body mass to a level that optimizes parental investment and maximizes life-time reproductive success. UNIV UPPSALA,DEPT ZOOL,S-75236 UPPSALA,SWEDEN Alatalo R.V., 1985, P59; ALATALO RV, 1982, ANIM BEHAV, V30, P585, DOI 10.1016/S0003-3472(82)80072-9; ANDERSSON M, 1978, AM NAT, V411, P762; ASKENMO C, 1977, Ornis Scandinavica, V8, P1, DOI 10.2307/3675982; BJORKLUND M, 1986, ANIM BEHAV, V34, P1436, DOI 10.1016/S0003-3472(86)80214-7; Bryant DM, 1988, FUNCT ECOL, V2, P23, DOI 10.2307/2389456; BRYANT DM, 1979, J ANIM ECOL, V48, P655, DOI 10.2307/4185; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; COULSON JC, 1985, IBIS, V127, P450, DOI 10.1111/j.1474-919X.1985.tb04841.x; COULSON JC, 1983, ARDEA, V71, P235; Davies NB, 1992, DUNNOCK BEHAVIOUR SO; DERRICKSON EM, 1992, FUNCT ECOL, V6, P57, DOI 10.2307/2389771; DESTEVEN D, 1980, EVOLUTION, V34, P278, DOI 10.1111/j.1558-5646.1980.tb04816.x; Dhont A, 1971, P ADV STUDY I DYNAMI, P532; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; DOW H, 1983, J ANIM ECOL, V52, P681, DOI 10.2307/4447; DRENT RH, 1980, ARDEA, V68, P225; DRUMMOND H, 1989, ANIM BEHAV, V37, P806, DOI 10.1016/0003-3472(89)90065-1; Ekman JB, 1990, BEHAV ECOL, V1, P62, DOI 10.1093/beheco/1.1.62; ENOKSSON B, 1983, J ANIM ECOL, V452, P927; FREED LA, 1981, ECOLOGY, V62, P1179, DOI 10.2307/1937282; GIBBONS DW, 1987, J ANIM ECOL, V56, P403, DOI 10.2307/5056; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; HOGSTEDT G, 1981, AM NAT, V118, P568, DOI 10.1086/283850; HUSSELL DJT, 1972, ECOL MONOGR, V42, P317, DOI 10.2307/1942213; JOHNSON L. S., 1993, ANIM BEHAV, V46, P111; JONES G, 1987, ARDEA, V75, P145; JONES G, 1987, ORNIS SCAND, V419, P145; KOZLOWSKI J, 1989, EVOLUTION, V43, P1369, DOI 10.1111/j.1558-5646.1989.tb02588.x; Lack D., 1968, ECOLOGICAL ADAPTATIO; LACK D, 1954, NATURAL REGULATION A; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; LIFJELD JT, 1986, ANIM BEHAV, V34, P1441, DOI 10.1016/S0003-3472(86)80215-9; LIMA SL, 1986, ECOLOGY, V67, P377, DOI 10.2307/1938580; LINDEN M, 1992, ECOLOGY, V73, P336, DOI 10.2307/1938745; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Lundberg A, 1992, PIED FLYCATCHER; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MARTINS TLF, 1993, BEHAV ECOL, V4, P213, DOI 10.1093/beheco/4.3.213; MARTINS TLF, 1993, BEHAV ECOL SOCIOBIOL, V32, P61; MASMAN D, 1989, J EVOLUTIONARY BIOL, V42, P433; MCCAUSE RA, 1960, COMPOSITION FOODS; MOCK DW, 1987, ANIM BEHAV, V35, P150, DOI 10.1016/S0003-3472(87)80220-8; MORENO J, 1989, BIOL J LINN SOC, V37, P297, DOI 10.1111/j.1095-8312.1989.tb01907.x; MORENO J, 1989, CONDOR, V91, P178, DOI 10.2307/1368160; Murphy E.C., 1986, Current Ornithology, V4, P141; NORBERG RA, 1981, AM NAT, V118, P838, DOI 10.1086/283874; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; NUR N, 1988, ARDEA, V76, P155; NUR N, 1984, J ANIM ECOL, V53, P497, DOI 10.2307/4530; Nur N., 1987, P457; NUR N, 1984, OECOLOGIA, V65, P125, DOI 10.1007/BF00384475; NUR N, 1990, POPULATION BIOL PASS; OLSSON K, 1995, ETHOLOGY, V101, P160; ORELL M, 1988, OECOLOGIA, V77, P423, DOI 10.1007/BF00378054; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; PERRINS CM, 1980, 17 P INT ORN C, P159; REID WV, 1987, OECOLOGIA, V74, P458, DOI 10.1007/BF00378945; RICKLEFS R, 1974, PUBLICATIONS NUTTAL, V15; RICKLEFS RE, 1984, ORNIS SCAND, V15, P155, DOI 10.2307/3675956; ROSKAFT E, 1985, J ANIM ECOL, V54, P255, DOI 10.2307/4635; ROYAMA T, 1966, IBIS, V108, P313, DOI 10.1111/j.1474-919X.1966.tb07348.x; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; Stearns S. C., 1992, EVOLUTION LIFE HIST; TINBERGEN JM, 1987, ARDEA, V75, P111; TINBERGEN JM, 1990, J ANIM ECOL, V59, P1113, DOI 10.2307/5035; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WINKEL W, 1976, Journal fuer Ornithologie, V117, P419, DOI 10.1007/BF01647170; WOLF L, 1990, ANIM BEHAV, V39, P125, DOI 10.1016/S0003-3472(05)80732-8; 1985, SAS USERS GUIDE STAT 79 46 48 0 15 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0269-8463 FUNCT ECOL Funct. Ecol. DEC 1995 9 6 807 817 10.2307/2389978 11 Ecology Environmental Sciences & Ecology TU963 WOS:A1995TU96300002 2018-11-12 J Ransome, RD Ransome, RD Earlier breeding shortens life in female greater horseshoe bats PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES English Article AFFECTS SEX-RATIO; HAMSTERS MESOCRICETUS; POPULATION-CHANGES; PLECOTUS-AURITUS; RED DEER; SURVIVAL; GROWTH; FOOD; AGE; LONGEVITY Life history theory predicts that an individual may gain in fitness by postponing reproduction if, by doing so, future reproductive capacity or longevity is enhanced. To test this theory I studied the survival and fecundity of earlier (start age 2 years) and later (start age 3 years or later) breeding female bats. Mature females produce one young annually, may miss breeding in some years and can still breed at age 29 years. Earlier breeders (EB) have similar mean skeletal size and birth date to later breeders (LB), but they have higher fat reserves late in their first winter and in their second autumn, when follicular development starts, and are probably superior foragers. EB averaged 5.6 and LB 8.1 years at death. Higher mortality in the former group was associated with parturition later in July during early breeding attempts. Lifetime reproductive success (LRS) Of both groups was highly variable and strongly correlated with lifespan, which explained 99 and 96 % of observed variation respectively. Differences in mean lifespan had no significant effect upon the mean LRS of EB and LB (4.4 and 5.1 births per female respectively). Although earlier breeding reduces lifespan, because it starts a year earlier and breeding rates are higher in EB than in LB (96 % cf. 85 % per year), overall there appear to be equal fitness benefits. During rapid population recovery after a climate-induced crash, earlier breeding was enhanced and may be advantageous until the population stabilizes. Hence studies testing life history theory should take account of population trends and climate. These seem to be crucially interconnected via food availability, the growth of individuals, and fat storage. Ransome, RD (reprint author), UNIV BRISTOL,SCH BIOL,WOODLAND RD,BRISTOL BS8 1UG,AVON,ENGLAND. ALBON SD, 1983, J ZOOL, V200, P295; ALBON SD, 1987, J ANIM ECOL, V56, P69, DOI 10.2307/4800; Bacon P.J., 1989, P363; BARCLAY RMR, 1995, IN PRESS S ZOOL SOC, V68; BERGLUND A, 1986, OIKOS, V46, P349, DOI 10.2307/3565833; BOYD IL, 1989, J APPL ECOL, V26, P101, DOI 10.2307/2403654; CAUBERE B, 1984, REV ECOL-TERRE VIE, V39, P351; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Clutton-Brock T.H., 1988, P325; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; COULSON JC, 1976, J ANIM ECOL, V45, P205, DOI 10.2307/3775; CURIO E, 1988, AM NAT, V131, P825, DOI 10.1086/284824; DAVIS WH, 1966, J MAMMAL, V47, P383, DOI 10.2307/1377679; DRENT RH, 1980, ARDEA, V68, P225; FRISCH RE, 1980, FED PROC, V39, P2395; FRISCH RE, 1974, SCIENCE, V185, P949, DOI 10.1126/science.185.4155.949; FRISCH RE, 1988, SCI AM, V258, P70; Grafen A., 1988, REPROD SUCCESS, P454; GROSS MR, 1985, AM ZOOL, V25, P807; HARRISONMATTHEW.L, 1937, T ZOOL SOC LONDON, V23, P224; HUCK UW, 1987, BIOL REPROD, V37, P612, DOI 10.1095/biolreprod37.3.612; HUCK UW, 1986, BIOL REPROD, V35, P592, DOI 10.1095/biolreprod35.3.592; HUMPHREY S. R, 1976, SPECIAL PUBLICATION, V4, P1; JONES G, 1995, IN PRESS S ZOOL SOC, V68; KEEN R, 1980, J MAMMAL, V61, P1, DOI 10.2307/1379951; KWIECINSKI GG, 1987, AM J ANAT, V178, P410, DOI 10.1002/aja.1001780410; LEBOEUF BJ, 1988, REPRODUCTIVE SUCCESS, P342; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Mills J.A., 1989, P387; MILLS JA, 1973, J ANIM ECOL, V42, P147, DOI 10.2307/3409; NEWTON I, 1985, J ANIM ECOL, V51, P111; NEWTON I, 1989, LIFETIME REPRODUCTIO; OH YK, 1985, J REPROD FERTIL, V73, P121; OLLASON JC, 1978, J ANIM ECOL, V47, P961, DOI 10.2307/3681; Owen M., 1989, P349; PIANKA ER, 1976, AM ZOOL, V16, P775; Ransome R.D., 1991, P88; Ransome R.D., 1990, NATURAL HIST HIBERNA; RANSOME RD, 1968, J ZOOL, V154, P77; RANSOME RD, 1989, BIOL J LINN SOC, V38, P71, DOI 10.1111/j.1095-8312.1989.tb01564.x; RANSOME RD, 1994, ZOOL J LINN SOC-LOND, V112, P337, DOI 10.1111/j.1096-3642.1994.tb00324.x; RANSOME RD, 1973, PERIOD BIOL, V75, P169; RANSOME RD, 1971, J ZOOL, V164, P357; RYDELL J, 1989, OECOLOGIA, V80, P562, DOI 10.1007/BF00380082; Sadleir R. M. F. S., 1969, ECOLOGY REPRODUCTION; Saint Girons H., 1969, Mammalia, V33, P357, DOI 10.1515/mamm.1969.33.3.357; Saurola P., 1989, P327; SPEAKMAN JR, 1986, J ZOOL, V210, P515; STUDIER EH, 1994, J MAMMAL, V75, P71, DOI 10.2307/1382237; STUDIER EH, 1992, COMP BIOCHEM PHYS A, V103, P579, DOI 10.1016/0300-9629(92)90293-Y; THOMPSON MJA, 1987, J ZOOL, V211, P209, DOI 10.1111/j.1469-7998.1987.tb01529.x; Wimsatt WA, 1944, AM J ANAT, V74, P129, DOI 10.1002/aja.1000740202; Wooller R.D., 1989, P405; WOOLLER RD, 1977, IBIS, V119, P339, DOI 10.1111/j.1474-919X.1977.tb08252.x 54 43 44 0 21 ROYAL SOC LONDON LONDON 6 CARLTON HOUSE TERRACE, LONDON, ENGLAND SW1Y 5AG 0962-8436 PHILOS T ROY SOC B Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. NOV 29 1995 350 1332 153 161 10.1098/rstb.1995.0149 9 Biology Life Sciences & Biomedicine - Other Topics TL075 WOS:A1995TL07500005 2018-11-12 J BENTON, TG; GRANT, A; CLUTTONBROCK, TH BENTON, TG; GRANT, A; CLUTTONBROCK, TH DOES ENVIRONMENTAL STOCHASTICITY MATTER - ANALYSIS OF RED DEER LIFE-HISTORIES ON RUM EVOLUTIONARY ECOLOGY English Article STOCHASTIC DEMOGRAPHY; FITNESS; LIFE-HISTORY; RED DEER; SELECTION PRESSURES; COST OF REPRODUCTION VARIABLE ENVIRONMENTS; POPULATION-DYNAMICS; EVOLUTION; FITNESS; DEMOGRAPHY; GROWTH Most life-history theory assumes that short-term variation in an organism's environment does not affect the survivorships and fecundities of the organisms. This assumption is rarely met. Here we investigate the population and evolutionary biology of red deer, Cervus elephas, to see if relaxation of this assumption is likely to make significant differences to the predicted evolutionary biology of this species. To do this we used 21 years of data from a population of deer on Rum, Western Isles, Scotland. Population growth rates in a stochastic environment were estimated using Tuljapurkar's small noise approximation, confirmed by bootstrap simulation. Numerical differentiation was used to see if the selection pressures (i.e, sensitivities of population growth rate to changes in the vital rates) differ between the stochastic and deterministic cases. The data also allow the costs of reproduction to be estimated. These costs, incorporated as trade-offs into the sensitivity analysis, allow investigation of evolutionary benefits of different life-history tactics. Environmentally induced stochastic variation in the red deer vital rates causes a slight reduction (similar or equal to 1%) in the predicted population growth rate and has little impact on the estimated selection pressures on the deer's life-history. We thus conclude that, even though density-independent stochastic effects on the population are marked, the deer's fitness is not markedly affected by these and they are adapted to the average conditions they experience. However, the selected life-history is sensitive to the trade-offs between current fecundity, survivorship and future fecundity and it is likely that the environmental variance will affect these trade-offs and, thus, affect the life-history favoured by selection. We also show that the current average life-history is non-optimal and suggest this is a result of selection pressures exerted by culling and predation, now much reduced. As the use of stochastic or deterministic methods provide similar estimates in this case, the use of the latter is justified. Thus, r (the annual per capita rate of population growth) is an appropriate measure of fitness in a population with stochastic numerical fluctuations. In a population of constant size lifetime reproductive success is the obvious measure of fitness to use. UNIV E ANGLIA,SCH ENVIRONM SCI,NORWICH NR4 7TJ,NORFOLK,ENGLAND; UNIV CAMBRIDGE,DEPT ZOOL,LARGE ANIM RES GRP,CAMBRIDGE CB2 3EJ,ENGLAND Benton, Tim/C-6493-2009; Grant, Alastair/L-7301-2018 Benton, Tim/0000-0002-7448-1973; Grant, Alastair/0000-0002-1147-2375 ALBON SD, 1987, J ANIM ECOL, V56, P69, DOI 10.2307/4800; Albon SD, 1988, ECOLOGICAL CHANGE UP, P93; Albon Stephen D., 1992, P15; BENTON TG, IN PRESS AM NAT; BROWN D, 1993, J ANIM ECOL, V62, P490, DOI 10.2307/5198; Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Clutton-Brock T. H., 1989, RED DEER HIGHLANDS; CLUTTONBROCK TH, 1988, REPRODUCTIVE SUCCESS; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; Diggle PJ, 1990, TIME SERIES BIOSTATI; FOX GA, 1993, EVOL ECOL, V7, P1, DOI 10.1007/BF01237731; GISKE J, 1993, EVOL ECOL, V7, P223; KAZWECKI TJ, 1993, EVOL ECOL, V7, P155; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; ORZACK SH, 1985, AM NAT, V125, P550, DOI 10.1086/284362; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; RIPLEY BD, 1987, STOCHASTIC SIMULATIO; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SIBLY R, 1986, J THEOR BIOL, V123, P311, DOI 10.1016/S0022-5193(86)80246-6; SIBLY RM, 1993, J THEOR BIOL, V160, P533, DOI 10.1006/jtbi.1993.1034; SLADE NA, 1984, THEOR POPUL BIOL, V26, P361, DOI 10.1016/0040-5809(84)90039-X; TALJAPURKAR SD, 1990, LECTURE NOTES BIOMAT, V85; TULJAPURKAR S, 1990, P NATL ACAD SCI USA, V87, P1139, DOI 10.1073/pnas.87.3.1139; TULJAPURKAR S, 1989, THEOR POPUL BIOL, V35, P227, DOI 10.1016/0040-5809(89)90001-4; TULJAPURKAR SD, 1982, THEOR POPUL BIOL, V21, P141, DOI 10.1016/0040-5809(82)90010-7; TULJAPURKAR SD, 1980, THEOR POPUL BIOL, V18, P314, DOI 10.1016/0040-5809(80)90057-X; VANSICKLE J, 1990, THEOR POPUL BIOL, V37, P424, DOI 10.1016/0040-5809(90)90046-X 32 80 81 0 24 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. NOV 1995 9 6 559 574 10.1007/BF01237655 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity TE130 WOS:A1995TE13000001 2018-11-12 J MARTIN, K MARTIN, K PATTERNS AND MECHANISMS FOR AGE-DEPENDENT REPRODUCTION AND SURVIVAL IN BIRDS AMERICAN ZOOLOGIST English Article; Proceedings Paper Symposium on Reproductive Aging in Avian Species, at the 21st International Ornithology Congress AUG, 1994 VIENNA, AUSTRIA EUROPEAN BLACKBIRDS; WILLOW PTARMIGAN; CALIFORNIA GULL; CLUTCH-SIZE; SUCCESS; EXPERIENCE; FECUNDITY; POPULATION; SENESCENCE; GOOSE The majority of bird species exhibit age-dependent survival and reproduction. In almost all cases, first time breeders or young individuals perform at a lower and slower rate than older individuals. This review highlights the importance of age-dependent effects and urges further study of the proximate and ultimate mechanisms involved. Age effects show substantive variation across life history stage, breeding season, year, cohort, habitat types and environmental conditions both within and across taxons. In some populations or years, age effects disappear. Despite the variable patterns, age effects show amazing persistence in a variety of extreme ecological and environmental conditions. Experimental manipulations of food, predation pressure and breeding experience do not usually remove age effects. Age-dependent effects may be maintained or accumulate through the breeding season and profoundly influence fitness, or they may be washed out or reversed by events later in the breeding season. Recently, we have amassed substantive information about the patterns of variation in age-dependent reproduction and survival among individuals, but we have made little progress toward understanding the proximate mechanisms responsible for this variation. Proximate and ultimate processes are inextricably linked, and thus the study of age-dependence is highly relevant to the further development of life history theory. Studies of age-dependent performance have general relevance to population management and conservation issues as age sub-structuring may contribute substantially to annual or inter-populational variation in reproductive success. UNIV BRITISH COLUMBIA,DEPT FOREST SCI,VANCOUVER,BC V6T 1Z4,CANADA MARTIN, K (reprint author), CANADIAN WILDLIFE SERV,5421 ROBERTSON RD,RR1,DELTA,BC V4K 3N2,CANADA. AINLEY DG, 1978, CONDOR, V80, P138, DOI 10.2307/1367913; BRAUN CE, 1993, BIRDS N AM; Charlesworth B., 1980, EVOLUTION AGE STRUCT; COOCH EG, 1989, J ANIM ECOL, V58, P711, DOI 10.2307/4858; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; DESROCHERS A, 1992, ANIM BEHAV, V43, P885, DOI 10.1016/S0003-3472(06)80002-3; DESROCHERS A, 1992, ECOLOGY, V73, P1128, DOI 10.2307/1940186; DESROCHERS A, 1993, AUK, V110, P255; DESROCHERS A, 1996, PARTNERSHIPS BIRDS E; DESTEVEN D, 1980, EVOLUTION, V34, P278, DOI 10.1111/j.1558-5646.1980.tb04816.x; EWALD PW, 1982, J ANIM ECOL, V51, P429, DOI 10.2307/3975; FORSLUND P, 1992, J ANIM ECOL, V61, P195, DOI 10.2307/5522; GILCHRIST HG, 1994, J ORNITHOL, V135, P382; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; HANNON SJ, 1996, IN PRESS PARTNERSHIP; HOCHACHKA WM, 1994, J F ORNITHOL, V135, P383; HOLMES DJ, 1995, IN PRESS J GERONTOL; KREBS JR, 1991, BEHAVIOURAL ECOLOGY; Lack D., 1968, ECOLOGICAL ADAPTATIO; LESSELLS CM, 1989, AUK, V106, P375; MARTIN K, 1991, CAN J ZOOL, V69, P1834, DOI 10.1139/z91-253; MARTIN K, 1987, ANIM BEHAV, V35, P369, DOI 10.1016/S0003-3472(87)80260-9; Martin K., 1994, J ORNITHOL, V135, P381; Martin Kathy, 1993, P33; NEWTON I, 1988, REPROD SUCCESS, P201; NEWTON I, 1989, LIFETIME REPRODUCTIO; NOL E, 1987, J ANIM ECOL, V56, P301, DOI 10.2307/4816; NUR N, 1984, OIKOS, V43, P407, DOI 10.2307/3544163; OTTINGER MA, 1995, AM ZOOL, V35, P299; PART T, 1994, J ORNITHOL, V135, P384; PERRINS CM, 1974, IBIS, V116, P220, DOI 10.1111/j.1474-919X.1974.tb00242.x; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PUGESEK BH, 1981, SCIENCE, V212, P822, DOI 10.1126/science.212.4496.822; REID WV, 1988, ECOLOGY, V69, P1454, DOI 10.2307/1941642; ROBERTSON GJ, 1994, J AVIAN BIOL, V25, P149, DOI 10.2307/3677034; ROCKWELL RF, 1993, J ANIM ECOL, V62, P323, DOI 10.2307/5363; ROCKWELL RF, 1985, CONDOR, V87, P142, DOI 10.2307/1367145; Saether B.-E., 1990, Current Ornithology, V7, P251; SMITH JNM, 1981, EVOLUTION, V35, P1142, DOI 10.1111/j.1558-5646.1981.tb04985.x; SULLIVAN KA, 1988, ECOLOGY, V69, P118, DOI 10.2307/1943166; WHEELWRIGHT NT, 1994, J ANIM ECOL, V63, P686, DOI 10.2307/5234; WIEBE KL, 1994, J ORNITHOL, V135, P385; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 43 143 145 1 33 AMER SOC ZOOLOGISTS LAWRENCE 1041 NEW HAMPSHIRE ST, LAWRENCE, KS 66044 0003-1569 AM ZOOL Am. Zool. SEP 1995 35 4 340 348 9 Zoology Zoology TC815 WOS:A1995TC81500006 2018-11-12 J PONS, JM; MIGOT, P PONS, JM; MIGOT, P LIFE-HISTORY STRATEGY OF THE HERRING GULL - CHANGES IN SURVIVAL AND FECUNDITY IN A POPULATION SUBJECTED TO VARIOUS FEEDING CONDITIONS JOURNAL OF ANIMAL ECOLOGY English Article CAPTURE-RECAPTURE; FECUNDITY PARAMETERS; LARIDAE; LARUS ARGENTATUS; REFUSE TIP; SURVIVAL RATES LARUS-ARGENTATUS; REPRODUCTIVE EFFORT; NATURAL-SELECTION; BREEDING SUCCESS; CALIFORNIA GULLS; EGG-SIZE; RECRUITMENT; HYPOTHESES; NUMBERS; COLONY 1. The present study compares breeding parameters and adult survival rate in a herring gull colony before and after the closing of a large refuse tip where breeders used to find most of their food. During the first study period (1983-88) food of human origin was abundant and virtually always available. During the second period (1989-90) such food was scarce. 2. The annual adult survival rate was time-dependent. It varied from 0.826 (SE = 0.031) in 1987-88 to 0.975 (SE = 0.022) in 1985-86. The average survival rate calculated for 1983-90 was 0.881 (SE = 0.014). There was no significant difference in adult survival between males and females. The closure of the refuse tip was not followed by a significant decrease in adult survival rate. 3. After the refuse tip was closed, mean clutch size and mean production of young per breeding pair decreased by 6.7% and 49.1%, respectively. Mean adult body weight decreased by 4.6% for males and by 4.7% for females. 4. The proportion of non-breeders among former breeders and the proportion of 3- and 4-year-old individuals among ringed birds did not change after closure of the tip. 5. The results are discussed in terms of the life-history theory, which predicts that in long-lived species a decrease in food supply should affect fecundity before affecting adult survival. PONS, JM (reprint author), MUSEUM NATL HIST NAT,CTR RECH BIOL POPULAT OISEAUX,MAMMIFERES & OISEAUX LAB,55 RUE BUFFON,F-75005 PARIS,FRANCE. AEBISCHER NJ, 1992, BIRD STUDY, V39, P43, DOI 10.1080/00063659209477098; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Birkhead T.R., 1985, P145; Burnham K.P., 1987, AM FISHERIES SOC MON, V5, P437; CHABRZYK G, 1976, J ANIM ECOL, V45, P187, DOI 10.2307/3774; CLOBERT J, 1987, ARDEA, V75, P133; CLUTTONBROCK TH, 1991, J ANIM ECOL, V60, P593, DOI 10.2307/5300; CORMACK RM, 1964, BIOMETRIKA, V51, P429, DOI 10.1093/biomet/51.3-4.429; COULSON JC, 1983, ARDEA, V71, P235; COULSON JC, 1984, IBIS, V126, P525, DOI 10.1111/j.1474-919X.1984.tb02078.x; COULSON JC, 1986, BIRD STUDY, V33, P51, DOI 10.1080/00063658609476892; CROXALL JP, 1991, BIRD POPULATION STUD, P272; DAVIS JWF, 1975, IBIS, V117, P460, DOI 10.1111/j.1474-919X.1975.tb04239.x; DAVIS JWF, 1973, THESIS U OXFORD; DRENT RH, 1980, ARDEA, V68, P225; FORDHAM RA, 1970, J ANIM ECOL, V39, P14; Furness R.W., 1992, Seabird Group Newsletter, V63, P2; Furness R. W., 1987, SEABIRD ECOLOGY; FURNESS RW, 1992, ARDEA, V80, P105; GOODMAN D, 1974, AM NAT, V108, P247, DOI 10.1086/282906; HARRIS M. P., 1964, IBIS, V106, P432, DOI 10.1111/j.1474-919X.1964.tb03725.x; HARRIS MP, 1970, BIRD STUDY, V17, P325, DOI 10.1080/00063657009476275; HEMERY G, 1986, CR ACAD SCI III-VIE, V303, P353; HOUSTON DC, 1983, J ZOOL, V200, P509; JOLLY GM, 1965, BIOMETRIKA, V52, P225, DOI 10.2307/2333826; KADLEC JA, 1976, BIRD BANDING, V47, P8, DOI 10.2307/4512186; KLOMP NI, 1992, J APPL ECOL, V29, P341, DOI 10.2307/2404503; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LINARD JC, 1991, UNPUB FONCTIONNEMENT; Lloyd C, 1991, STATUS SEABIRDS BRIT; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MIGOT P, 1986, Alauda, V54, P268; MIGOT P, 1992, ARDEA, V80, P161; MIGOT P, 1987, THESIS U PARIS 6 PAR; MILLS JA, 1979, IBIS, V121, P53, DOI 10.1111/j.1474-919X.1979.tb05014.x; MONAGHAN P, 1986, EVOLUTION, V40, P1096, DOI 10.1111/j.1558-5646.1986.tb00577.x; MONAGHAN P, 1989, J ANIM ECOL, V58, P261, DOI 10.2307/4999; Mougin J.-L., 1991, Oiseau et la Revue Francaise d'Ornithologie, V61, P131; NOORDHUIS R, 1992, Ardea, V80, P115; NORSTROM RJ, 1986, ARDEA, V74, P1; NUR N., 1990, POPULATION BIOL PASS, P281; PATTON SR, 1988, WILSON BULL, V100, P431; Pianka ER, 1983, EVOLUTIONARY ECOLOGY; POLLOCK KH, 1984, BIOMETRICS, V40, P329, DOI 10.2307/2531386; PONS JM, 1994, ETHOL ECOL EVOL, V6, P1, DOI 10.1080/08927014.1994.9523003; PONS JM, 1992, ARDEA, V80, P143; PONS JM, 1992, THESIS U PARIS 11 OR; Pradel R., 1990, Ring International Ornithological Bulletin, V13, P193; Pradel R., 1993, P29; PRADEL R, 1988, UNPUB NOUVELLES APPR; PUGESEK BH, 1990, ECOLOGY, V71, P811, DOI 10.2307/1940332; SEBER GAF, 1965, BIOMETRIKA, V52, P249; SIBLY RM, 1983, J ANIM ECOL, V52, P35, DOI 10.2307/4586; SIBLY RM, 1983, J ANIM ECOL, V52, P51, DOI 10.2307/4587; SPAANS AL, 1971, ARDEA, V59, P73; SPAANS AL, 1987, STUDIES AVIAN BIOL, V10, P57; SPAANS M J, 1975, Limosa, V48, P1; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Winkler D.W., 1988, Oxford Surveys in Evolutionary Biology, V5, P185; WINKLER DW, 1985, EVOLUTION, V39, P667, DOI 10.1111/j.1558-5646.1985.tb00403.x 61 86 92 3 38 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0021-8790 J ANIM ECOL J. Anim. Ecol. SEP 1995 64 5 592 599 10.2307/5802 8 Ecology; Zoology Environmental Sciences & Ecology; Zoology RY351 WOS:A1995RY35100005 2018-11-12 J HUGHES, RN HUGHES, RN RESOURCE-ALLOCATION, DEMOGRAPHY AND THE RADIATION OF LIFE-HISTORIES IN ROUGH PERIWINKLES (GASTOPODA) HYDROBIOLOGIA English Article ALLOCATION TRADE OFFS; OVIPARITY BROODING; BODY SIZE; NICHE DIVERSIFICATION LITTORINA-SAXATILIS OLIVI; REPRODUCTION; NEGLECTA; POPULATIONS; MOLLUSCA; WINKLES; SHORES; GROWTH; SHELL; RUDIS Applicability of life-history theory to higher levels of comparison (from populations, through ecotypes to sibling species) was investigated in rough periwinkles, whose life histories have diversified since colonization of the North Atlantic by an oviparous ancestor in the upper Pliocene. Comparisons were made among populations of the ovoviviparous Littorina saxatilis, between L. saxatilis and its ecotype, L. neglecta (with an annual life history) and between the sibling species L, saxatilis and L. arcana, the latter of which retains the ancestral oviparity. Resource-allocation priority, reproductive effort and related trade offs were compared between the ecotypes and the sibling species by measuring changes in flesh mass and reproductive output in snails subjected to different degrees of food deprivation, and by measuring mortality rate of snails stressed by desiccation, high temperature and low salinity. Body size had a marked effect on all parameters, but after statistically removing this effect there remained no significant differences in allocation among ecotypes or species. Published demographical data were reviewed for correlations between habitat, mortality regime and life-history characteristics. Populations of L, saxatilis varied principally in size at birth and in adult size. Theoretical premises based on density-dependent versus density-independent mortality regimes could not explain these trends. Instead, size at birth may have reflected the mechanical, physiological or biological nature of mortality risk rather than its density dependence or independence. Adult size reflected the available sizes of crevices used for shelter and perhaps also the quality of feeding conditions. Radiation of life histories within the rough periwinkles is interpreted as a series of adaptations to a progressively wider range of habitats. The transition from oviparity to ovoviviparity allows colonization of estuaries, saltmarshes and pebble beaches too hazardous for naked egg masses. The transition from a perennial to an annual life history in barnacle ecotypes follows from allometric re-scaling of morphological and physiological parameters, enabling reproduction and brooding to occur at the small body size necessary for life within empty barnacle tests. This suite of adaptations allows exploitation of a relatively benign microhabitat that occurs almost ubiquitously on exposed rocky shores of the temperate North Atlantic. The persistence of oviparous forms, presumably in the face of competition from sympatric ovoviviparous forms, remains unexplained. HUGHES, RN (reprint author), UNIV WALES, SCH BIOL SCI, BANGOR LL57 2UW, GWYNEDD, WALES. Brody S., 1945, BIOENERGETICS GROWTH; CANNON JP, 1992, 3RD P INT S LITT BIO, P61; ELLIOTT JM, 1975, OECOLOGIA, V19, P195, DOI 10.1007/BF00345305; ELLIS CH, 1979, J CONCHOL, V30, P43; ELLIS CJH, 1983, J MOLLUS STUD, V49, P98; ERNSTING G, 1991, FUNCT ECOL, V5, P299, DOI 10.2307/2389268; Fish J.D., 1985, P143; GRAHAME J, 1990, HYDROBIOLOGIA, V193, P223, DOI 10.1007/BF00028079; GRAHAME J, 1989, J MAR BIOL ASSOC UK, V69, P837, DOI 10.1017/S0025315400032203; GRAHAME J, 1992, 3RD P INT S LITT BIO, P99; HART A, 1982, OECOLOGIA, V52, P37, DOI 10.1007/BF00349009; HOLLAND DL, 1975, MAR BIOL, V33, P235, DOI 10.1007/BF00390927; Hughes R, 1986, FUNCTIONAL BIOL MARI; HUGHES RN, 1980, J EXP MAR BIOL ECOL, V44, P211, DOI 10.1016/0022-0981(80)90153-7; HUGHES RN, 1981, J ANIM ECOL, V50, P251, DOI 10.2307/4043; HUGHES RN, 1980, OECOLOGIA, V47, P130, DOI 10.1007/BF00541788; JOHANNESSON B, 1990, DEV HYDROB, V56, P71, DOI 10.1007/BF00028067; JOHANNESSON K, 1990, HYDROBIOLOGIA, V193, P89, DOI 10.1007/BF00028068; MILL PJ, 1990, HYDROBIOLOGIA, V193, P21, DOI 10.1007/BF00028063; MILL PJ, 1992, 3RD P INT S LITT BIO, P305; NAYLOR R, 1982, J CONCHOL, V31, P17; PALMER AR, 1982, MALACOLOGIA, V23, P63; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; RAFFAELLI D, 1982, J MOLLUS STUD, V48, P342, DOI 10.1093/oxfordjournals.mollus.a065656; RAFFAELLI DG, 1978, J MOLLUS STUD, V44, P223; RAFFAELLI DG, 1978, J ANIM ECOL, V47, P71, DOI 10.2307/3923; RAFFAELLI DG, 1976, THESIS U WALES BANGO; REID DG, 1990, B MAR SCI, V47, P35; REID DG, 1993, J MOLLUS STUD, V59, P51, DOI 10.1093/mollus/59.1.51; ROBERTS DJ, 1980, MAR BIOL, V58, P47, DOI 10.1007/BF00386879; ROBERTS DJ, 1979, THESIS U WALES BANGO, P160; Ryan B. F., 1985, MINITAB HDB; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; Stearns S. C., 1992, EVOLUTION LIFE HIST; WARWICK T, 1990, HYDROBIOLOGIA, V193, P109, DOI 10.1007/BF00028070; Warwick T., 1983, J MOLLUS STUD, V48, P368 36 11 11 2 10 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 1573-5117 HYDROBIOLOGIA Hydrobiologia AUG 4 1995 309 1-3 1 14 10.1007/BF00014467 14 Marine & Freshwater Biology Marine & Freshwater Biology TD867 WOS:A1995TD86700002 2018-11-12 J LESICA, P; SHELLY, JS LESICA, P; SHELLY, JS EFFECTS OF REPRODUCTIVE MODE ON DEMOGRAPHY AND LIFE-HISTORY IN ARABIS-FECUNDA (BRASSICACEAE) AMERICAN JOURNAL OF BOTANY English Article POPULATION-DYNAMICS; MOUNT KENYA; EVOLUTION; PLANT; SIZE; AGE; ELASTICITY; SELECTION; HABITATS; BIOLOGY Life history theory predicts that trade-offs between growth and reproduction should be dictated by a population's mortality schedule. We tested this prediction with Arabis fecunda, a short-lived perennial that occurs in many different habitats in southwest Montana. Individuals produce either or both axillary or terminal inflorescences. Axillary-flowering plants are usually iteroparous and have smaller reproductive bouts, while terminal-flowering plants have larger reproductive bouts, and tend to be semelparous. We recorded size and fecundity of A. fecunda individuals from 1989 to 1993 in three different habitats. There was great variation in demographic and life history traits among the populations. A wide range of life history strategies among populations of A. fecunda is achieved through different proportions of axillary- and terminal-flowering plants. Arabis fecunda demonstrated a lower recruitment rate, higher survivorship, slower growth, and lower annual fecundity at the low-elevation site compared to the high-elevation site. At the low-elevation site population size was more stable, and elasticity analysis of matrix projection models indicated that adult survivorship was the most important demographic parameter contributing to population growth. This association of life history characters conforms to theoretical predictions. MONTANA NAT HERITAGE PROGRAM,HELENA,MT 59620 LESICA, P (reprint author), UNIV MONTANA,DIV BIOL SCI,MISSOULA,MT 59812, USA. BELL G, 1976, AM NAT, V110, P57, DOI 10.1086/283048; BOUTIN C, 1991, J ECOL, V79, P199, DOI 10.2307/2260793; Caswell H., 1989, MATRIX POPULATION MO; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; ELLSTRAND NC, 1987, AM J BOT, V74, P123, DOI 10.2307/2444338; GRANT MC, 1978, EVOLUTION, V32, P822, DOI 10.1111/j.1558-5646.1978.tb04637.x; Grime J. P., 1979, PLANT STRATEGIES VEG; HAMILTON MB, 1994, AM J BOT, V81, P1252, DOI 10.2307/2445400; HUTCHINGS MJ, 1991, ECOLOGY, V72, P2290, DOI 10.2307/1941579; KALISZ S, 1992, ECOLOGY, V73, P1082, DOI 10.2307/1940182; LAW R, 1977, EVOLUTION, V31, P233, DOI 10.1111/j.1558-5646.1977.tb01004.x; LEFKOVITCH LP, 1965, BIOMETRICS, V21, P1, DOI 10.2307/2528348; LESICA P, 1987, Natural Areas Journal, V7, P65; LESICA P, 1992, AM MIDL NAT, V128, P53, DOI 10.2307/2426412; LESICA P, 1993, UNPUB REPORT CONSERV; LOTZ LAP, 1990, J ECOL, V78, P757, DOI 10.2307/2260897; MENGES ES, 1990, CONSERV BIOL, V4, P52, DOI 10.1111/j.1523-1739.1990.tb00267.x; NEWELL SJ, 1981, J ECOL, V69, P997, DOI 10.2307/2259650; PYKE DA, 1986, ECOLOGY, V67, P240, DOI 10.2307/1938523; RICHARDS AJ, 1986, PLANT BREEDING SYSTE; ROLLINS RC, 1984, CONTRIBUTIONS GRAY H, V214, P1; SCHAFFER WM, 1979, ECOLOGY, V60, P1051, DOI 10.2307/1936872; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; STEARNS SC, 1992, EVOLUTIN LIFE HIST; van Groenendael J. M., 1985, STUDIES PLANT DEMOGR, P51; VANDERMEER J, 1978, OECOLOGIA, V32, P79, DOI 10.1007/BF00344691; VANGROENENDAEL J, 1988, TRENDS ECOL EVOL, V3, P264, DOI 10.1016/0169-5347(88)90060-2; VANGROENENDAEL JM, 1988, J ECOL, V76, P585, DOI 10.2307/2260614; WAITE S, 1984, J ECOL, V72, P809, DOI 10.2307/2259533; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; YOUNG TP, 1991, TRENDS ECOL EVOL, V6, P285, DOI 10.1016/0169-5347(91)90006-J; YOUNG TP, 1984, J ECOL, V72, P637, DOI 10.2307/2260073; YOUNG TP, 1981, AM NAT, V118, P27, DOI 10.1086/283798; YOUNG TP, 1990, EVOL ECOL, V4, P157, DOI 10.1007/BF02270913 36 25 25 0 15 BOTANICAL SOC AMER INC COLUMBUS OHIO STATE UNIV-DEPT BOTANY 1735 NEIL AVE, COLUMBUS, OH 43210 0002-9122 AM J BOT Am. J. Bot. JUN 1995 82 6 752 762 10.2307/2445615 11 Plant Sciences Plant Sciences RE203 WOS:A1995RE20300008 2018-11-12 J BARTAREAU, T BARTAREAU, T POLLINATION LIMITATION, COSTS OF CAPSULE PRODUCTION AND THE CAPSULE-TO-FLOWER RATIO IN DENDROBIUM-MONOPHYLLUM F MUELL (ORCHIDACEAE) AUSTRALIAN JOURNAL OF ECOLOGY English Article CAPSULE PRODUCTION; DENDROBIUM MONOPHYLLUM; ORCHID; POLLINATION LIMITATION; RESOURCE ALLOCATION FRUIT PRODUCTION; RESOURCE-ALLOCATION; PLANTS; SET; REPRODUCTION; EVOLUTION; FREQUENCY; PHENOLOGY; PATTERNS; DISPLAY In perennial plants, life-history theory suggests that natural selection should result in the optimization of fruit-to-flower ratios within the limits imposed by the trade-offs between resource allocation for present reproduction and future growth and reproduction. The tropical orchid Dendrobium monophyllum F. Muell., an epiphyte or lithophyte, offers no nectar rewards, is self-incompatible and has a capsule-to-flower ratio of about 1:14. The influence of pollination limitation and the costs of capsule production on capsule-to-flower ratios were assessed using experimental and field studies in which individual plants were observed for 3 years. Pollinators visited about 80% of flowers, and capsule production was significantly related to inflorescence size and pollinaria removal. About nine pollinator visits occurred per capsule. Pollinator visitation and capsule production did not vary significantly between years. The inflorescence size classes most successful in capsule production were also the most frequent in natural populations. The experimental supplementation of outcross pollen to flowers increased capsule set over controls by 45% within a year, but was limited to about 53%. A capsule-to-flower ratio of 1:2 in experimental plants significantly decreased the subsequent growth and flowering of individuals relative to controls. A capsule-to-flower ratio above 1:10 in naturally pollinated plants decreased flowering in the subsequent year. Thus, it is suggested than an increase in capsule production above 10% would not necessarily correlate with greater reproductive fitness because of the increased cost of capsule production. The capsule-to-flower ratio recorded in this study could be evolutionarily stable because of trade-offs between selection for pollinator attraction and the cost of capsule production. The production of surplus flowers appears to function in pollinator attraction and increases fitness through male function. JAMES COOK UNIV N QUEENSLAND,DEPT BOT & TROP AGR,TOWNSVILLE,QLD 4811,AUSTRALIA Ackerman J. D., 1986, Lindleyana, V1, P108; ACKERMAN JD, 1990, ECOLOGY, V71, P263, DOI 10.2307/1940265; ACKERMAN JD, 1989, SYST BOT, V14, P101, DOI 10.2307/2419054; Adams P. B., 1992, Australian Entomological Magazine, V19, P97; ADAMS P B, 1989, Orchadian, V9, P201; ADAMS PB, 1988, POLL 88 P S U MELB, P95; ADAMS PB, 1988, REPROD BIOL SPECIES, P25; ARDITTI J, 1967, BOT REV, V33, P1, DOI 10.1007/BF02858656; ARDITTI J, 1990, Lindleyana, V5, P249; Bartareau T., 1993, Orchadian, V10, P446; Bartareau T., 1994, Orchadian, V11, P106; BARTAREAU T, 1993, 2ND P AUSTR ORCH C, P85; BENZING DH, 1973, Q REV BIOL, V48, P277, DOI 10.1086/407590; BERRY PE, 1991, PLANT SYST EVOL, V174, P93, DOI 10.1007/BF00937697; CALVO RN, 1990, AM NAT, V136, P499, DOI 10.1086/285110; CALVO RN, 1993, ECOLOGY, V74, P1033, DOI 10.2307/1940473; CALVO RN, 1990, AM J BOT, V77, P736, DOI 10.2307/2444365; CALVO RN, 1990, AM J BOT, V7, P1378; CASWELL H, 1986, LECTURES MATH LIFE S, V18, P171; CHARLESWORTH D, 1991, PHILOS T R SOC B, V332, P91, DOI 10.1098/rstb.1991.0036; CHARLESWORTH D, 1989, TRENDS ECOL EVOL, V4, P289, DOI 10.1016/0169-5347(89)90023-2; Christensen D.E., 1992, Lindleyana, V7, P28; Dockrill AW, 1969, AUSTR INDIGENOUS ORC; DRESSLER RL, 1981, ORCHIDS THEIR CLASSI; FIRMAGE DH, 1988, AM J BOT, V75, P1371, DOI 10.2307/2444460; HAIG D, 1988, AM NAT, V131, P757, DOI 10.1086/284817; JANZEN DH, 1977, AM NAT, V111, P365, DOI 10.1086/283166; JANZEN DH, 1980, BIOTROPICA, V12, P72, DOI 10.2307/2387776; JOHANSEN B, 1990, BOT J LINN SOC, V103, P165, DOI 10.1111/j.1095-8339.1990.tb00183.x; JONES DL, 1983, 8TH P AUSTR ORCH C, P127; LLOYD DG, 1980, NEW PHYTOL, V86, P69, DOI 10.1111/j.1469-8137.1980.tb00780.x; MONTALVO AM, 1987, BIOTROPICA, V19, P24, DOI 10.2307/2388456; MORGAN M, 1993, EVOL ECOL, V7, P219, DOI 10.1007/BF01237740; PRIMACK RB, 1988, AM NAT, V136, P638; RODRIGUEZROBLES JA, 1992, AM J BOT, V79, P1009, DOI 10.2307/2444910; SCHEMSKE DW, 1980, EVOLUTION, V34, P489, DOI 10.1111/j.1558-5646.1980.tb04838.x; SNOW AA, 1989, ECOLOGY, V70, P1286, DOI 10.2307/1938188; Sokal R. R., 1981, BIOMETRY; STEPHENSON AG, 1981, ANNU REV ECOL SYST, V12, P253, DOI 10.1146/annurev.es.12.110181.001345; SUTHERLAND S, 1986, EVOLUTION, V40, P117, DOI 10.1111/j.1558-5646.1986.tb05723.x; SUTHERLAND S, 1986, ECOLOGY, V67, P991, DOI 10.2307/1939822; Tracey J. G., 1982, VEGETATION HUMID TRO; UPTON WT, 1989, DENDROBIUM ORCHIDS A; WYATT R, 1982, AM J BOT, V69, P585, DOI 10.2307/2443068; ZIMMERMAN JK, 1989, AM J BOT, V76, P67, DOI 10.2307/2444775; 1990, STATISTIX MANUAL 46 12 13 3 11 BLACKWELL SCIENCE PUBL AUSTR CARLTON 54 UNIVERSITY ST, P O BOX 378, CARLTON 3053, AUSTRALIA 0307-692X AUST J ECOL Aust. J. Ecol. JUN 1995 20 2 257 265 10.1111/j.1442-9993.1995.tb00537.x 9 Ecology Environmental Sciences & Ecology RF077 WOS:A1995RF07700004 2018-11-12 J SPITZE, K SPITZE, K QUANTITATIVE GENETICS OF ZOOPLANKTON LIFE-HISTORIES EXPERIENTIA English Article QUANTITATIVE GENETICS; LIFE HISTORY; EVOLUTION; CLADOCERA; HERITABILITY; DAPHNIA; ZOOPLANKTON BREEDING-SYSTEM VARIATION; LAKE DAPHNIA POPULATIONS; DROSOPHILA-MELANOGASTER; MORPHOLOGICAL-DIFFERENTIATION; COVARIANCE STRUCTURE; SEXUAL REPRODUCTION; NATURAL-SELECTION; PULEX; EVOLUTION; MAGNA Quantitative genetic techniques are powerful tools for use in understanding the microevolutionary process. Because of their size, lifespan, and ease of culture, many zooplankton species are ideal for quantitative genetic approaches. As model systems, studies of zooplankton life histories are becoming increasingly used for examination of the central paradigms of evolutionary theory. Two of the fundamental empirical questions that zooplankton quantitative genetics studies can answer are: 1) How much genetic variance exists in natural populations for life history traits? 2) What is the empirical evidence for trade-offs that permeate life history theory based on optimality approaches? A review of existing data on Daphnia indicates substantial genetic variance for body size, clutch size, and age at first reproduction. Average broad-sense heritabilities for these three characters across 19 populations of 6 species are 0.31, 0.31, and 0.34, respectively. Although there is some discrepancy between the two pertinent studies that were designed to decompose the total genetic variance into its additive and non-additive components, a crude average seems to suggest that approximately 60% of the total genetic variance has an additive basis. The existing data are somewhat inconsistent with respect to presence/absence of trade-offs (negative genetic correlations) among life history traits. A composite of the existing data seems to argue against the existence of strong trade-offs between offspring size and offspring number, between present and future reproduction, and between developmental rate and fecundity. However, there is some evidence for a shift toward more negative (less positive) covariances in more stressful environments (e.g., low food). Zooplankton will prove to be very useful in future study in several important areas of research, including the genetics and physiology of aging, the importance of genotype-environment interaction for life history traits, and the evolution of phenotypic plasticity. SPITZE, K (reprint author), UNIV MIAMI,DEPT BIOL,CORAL GABLES,FL 33124, USA. CARVALHO GR, 1987, J ANIM ECOL, V56, P469, DOI 10.2307/5061; CERNY M, 1993, HEREDITY, V71, P497, DOI 10.1038/hdy.1993.168; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHEVERUD JM, 1988, EVOLUTION, V42, P958, DOI 10.1111/j.1558-5646.1988.tb02514.x; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; COWLEY DE, 1990, AM NAT, V135, P242, DOI 10.1086/285041; DARWIN C, 1859, ORIGIN SPECIES; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DEMEESTER L, 1994, OECOLOGIA, V97, P333, DOI 10.1007/BF00317323; DEMEESTER L, 1993, OECOLOGIA, V96, P80, DOI 10.1007/BF00318033; DENG HW, 1994, IN PRESS EVOLUTION; Dingle H., 1982, EVOLUTION GENETICS L; EBERT D, 1993, HEREDITY, V70, P335, DOI 10.1038/hdy.1993.48; EBERT D, 1993, HEREDITY, V70, P344, DOI 10.1038/hdy.1993.49; Ebert Dieter, 1993, Archiv fuer Hydrobiologie Supplementband, V90, P453; Endler JA, 1986, NATURAL SELECTION WI; Falconer D. S., 1960, INTRO QUANTITATIVE G; FALCONER DS, 1989, INTRO QUANTITATIVE G; FALCONER DS, 1981, INTRO QUANTITATIVE G; Fisher R. A., 1919, Transactions of the Royal Society of Edinburgh, V52; FISHER R. A., 1930, GENETICAL THEORY NAT; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Giesel J.T., 1982, P189; GIESEL JT, 1980, OECOLOGIA, V47, P299, DOI 10.1007/BF00398520; GIESEL JT, 1982, AM NAT, V119, P464, DOI 10.1086/283926; GRANT BR, 1985, EVOLUTION, V39, P523, DOI 10.1111/j.1558-5646.1985.tb00392.x; HEBERT PDN, 1989, EVOLUTION, V43, P1004, DOI 10.1111/j.1558-5646.1989.tb02546.x; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HOULE D, 1992, GENETICS, V130, P195; INNES DJ, 1989, J HERED, V80, P6, DOI 10.1093/oxfordjournals.jhered.a110791; INNES DJ, 1988, EVOLUTION, V42, P1024, DOI 10.1111/j.1558-5646.1988.tb02521.x; KALISZ S, 1986, EVOLUTION, V40, P479, DOI 10.1111/j.1558-5646.1986.tb00501.x; KLEIVEN OT, 1992, OIKOS, V65, P197, DOI 10.2307/3545010; KOHN LAP, 1988, EVOLUTION, V42, P467, DOI 10.1111/j.1558-5646.1988.tb04153.x; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1976, EVOLUTION, V30, P314, DOI 10.1111/j.1558-5646.1976.tb00911.x; LANDE R, 1980, GENETICS, V94, P203; LARSSON P, 1991, HYDROBIOLOGIA, V225, P281, DOI 10.1007/BF00028406; LOFSVOLD D, 1986, EVOLUTION, V40, P559, DOI 10.2307/2408577; LOFSVOLD D, 1988, EVOLUTION, V42, P54, DOI 10.1111/j.1558-5646.1988.tb04107.x; LYNCH M, 1985, EVOLUTION, V39, P804, DOI 10.1111/j.1558-5646.1985.tb00422.x; LYNCH M, 1984, EVOLUTION, V38, P465, DOI 10.1111/j.1558-5646.1984.tb00312.x; LYNCH M, 1989, EVOLUTION, V43, P1724, DOI 10.1111/j.1558-5646.1989.tb02622.x; LYNCH M, 1983, EXP GERONTOL, V18, P147, DOI 10.1016/0531-5565(83)90008-6; LYNCH M, 1983, EVOLUTION, V37, P358, DOI 10.1111/j.1558-5646.1983.tb05545.x; LYNCH M, 1994, AM NAT, V144, P242, DOI 10.1086/285673; LYNCH M, 1988, GENET RES, V51, P137, DOI 10.1017/S0016672300024150; LYNCH M, 1995, FUNDAMENTALS QUANTIT; LYNCH M, UNPUB POPULATION GEN; Lynch Michael, 1994, P109; MAC ARTHUR ROBERT H., 1967; MCLAREN IA, 1976, BIOL BULL, V151, P200, DOI 10.2307/1540714; MORT MA, 1986, EVOLUTION, V40, P756, DOI 10.1111/j.1558-5646.1986.tb00535.x; MORT MA, 1985, HEREDITY, V55, P27, DOI 10.1038/hdy.1985.68; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; PACE ML, 1984, OECOLOGIA, V63, P43, DOI 10.1007/BF00379783; PRICE T, 1991, EVOLUTION, V45, P853, DOI 10.1111/j.1558-5646.1991.tb04354.x; REZNICK D, 1993, GENETICA, V91, P79, DOI 10.1007/BF01435989; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1984, AM NAT, V123, P565, DOI 10.1086/284222; ROSE MR, 1983, AM ZOOL, V23, P15; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHEMSKE DW, 1989, EVOLUTION, V43, P461, DOI 10.1111/j.1558-5646.1989.tb04240.x; SHAW RG, 1991, EVOLUTION, V45, P143, DOI 10.1111/j.1558-5646.1991.tb05273.x; SPITZE K, 1993, GENETICS, V135, P367; SPITZE K, 1992, AM NAT, V139, P229, DOI 10.1086/285325; SPITZE K, 1991, EVOLUTION, V45, P1081, DOI 10.1111/j.1558-5646.1991.tb04376.x; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TESSIER AJ, 1992, LIMNOL OCEANOGR, V37, P1; TWOMBLY S, 1993, FRESHWATER BIOL, V30, P105, DOI 10.1111/j.1365-2427.1993.tb00792.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WALSH JB, 1995, FUNDAMENTALS QUANTIT, V2; WEIDER LJ, 1985, J PLANKTON RES, V7, P101, DOI 10.1093/plankt/7.1.101; WILKINSON GS, 1990, EVOLUTION, V44, P1990, DOI 10.1111/j.1558-5646.1990.tb04305.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WYNGAARD GA, 1986, BIOL BULL, V170, P296, DOI 10.2307/1541810; YAMPOLSKY LY, 1991, HYDROBIOLOGIA, V225, P255; YAMPOLSKY LY, 1992, EVOLUTION, V46, P833, DOI 10.1111/j.1558-5646.1992.tb02089.x 83 18 18 0 17 BIRKHAUSER VERLAG AG BASEL PO BOX 133 KLOSTERBERG 23, CH-4010 BASEL, SWITZERLAND 0014-4754 EXPERIENTIA Experientia MAY 15 1995 51 5 454 464 10.1007/BF02143198 11 Multidisciplinary Sciences Science & Technology - Other Topics QZ379 WOS:A1995QZ37900004 2018-11-12 J STADLER, B STADLER, B ADAPTIVE ALLOCATION OF RESOURCES AND LIFE-HISTORY TRADE-OFFS IN APHIDS RELATIVE TO PLANT-QUALITY OECOLOGIA English Article APHIDS; COST OF REPRODUCTION; EMBRYO RESORPTION; PHENOTYPIC PLASTICITY; UROLEUCON REPRODUCTIVE INVESTMENT; COSTS; GROWTH; MODEL; SIZE The need to allocate a limited amount of energy between different life-history traits is a fundamental assumption in life-history theory. However, it has often turned out to be extremely difficult to measure the competing processes that contribute to costs or benefits for individual organisms. The present investigation begins by analysing how an aphid clonal lineage adapts its reproductive investment to moderate changes in host plant quality (e.g. during the life cycle of its host). Using Centaurea jacea and Uroleucon jaceae as a model plantaphid system, I show that reproductive investment can be far more complex than indicated by dry or wet mass of the gonads alone. The number of embryos of a particular size class or developmental state present in the reproductive system of an aphid is highly flexible and is influenced by the quality of the host plant. Next, the effects of a particular reproductive investment on survival during periods of food deprivation are analysed for aphids originating from host-plants of different qualities. When food stress is severe the ability to rapidly resorb and reallocate resources committed to offspring is important for survival. However, this ability is limited. I argue that, in periods of food stress, young, unsclerotized embryos might serve as a kind of energy buffer similar to a fat body and are therefore not relevant to cost-benefit calculations. However, embryos that are beginning to sclerotize within the ovarioles are not available for resorption and resource reallocation. They compete for nutrients with their mother and contribute to costs. Therefore, it is suggested that the reproductive investment of an aphid should not be equated with reproductive costs in a general way. The dynamics of adaptive resource allocation and resorption are a key feature of an aphid's life history, and the implications for life-history theory are discussed. STADLER, B (reprint author), UNIV BAYREUTH,BAYREUTH INST TENESTRIAL ECOSYST RES,D-95440 BAYREUTH,GERMANY. BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BLISS M, 1971, ANN ENTOMOL SOC AM, V64, P1407, DOI 10.1093/aesa/64.6.1407; BROUGH CN, 1990, INT J INSECT MORPHOL, V19, P155, DOI 10.1016/0020-7322(90)90001-6; BUNING J, 1985, J MORPHOL, V186, P209, DOI 10.1002/jmor.1051860206; BURPEE DM, 1993, EVOL ECOL, V7, P240, DOI 10.1007/BF01237742; DIXON AFG, 1993, FUNCT ECOL, V7, P267, DOI 10.2307/2390204; DIXON AFG, 1987, APHIDS THEIR BIOL A, V2, P269; ELKASSABY YA, 1992, CAN J BOT, V70, P1429, DOI 10.1139/b92-179; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; JENNINGS MJ, 1992, ENVIRON BIOL FISH, V35, P257, DOI 10.1007/BF00001892; JOHNSON B, 1958, AUST J SCI, V21, P143; KINDLMANN P, 1989, FUNCT ECOL, V3, P531, DOI 10.2307/2389567; KOBAYASHI M, 1993, J INSECT PHYSIOL, V39, P549, DOI 10.1016/0022-1910(93)90036-Q; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; MCCAULEY E, 1990, ECOLOGY, V71, P703, DOI 10.2307/1940324; NORUSIS MJ, 1990, SPSS PC PLUS IBM PC; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; Ponsen M.B., 1992, Wageningen Agricultural University Papers, V91, P1; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROITBERG BD, 1989, EVOL ECOL, V3, P183, DOI 10.1007/BF02270920; SCHULTZ ET, 1989, EVOLUTION, V43, P1497, DOI 10.1111/j.1558-5646.1989.tb02599.x; SCHWARZKOPF L, 1993, ECOLOGY, V74, P1970, DOI 10.2307/1940840; SOKAL RR, 1986, BIOMETRY; STADLER B, 1994, J ANIM ECOL, V63, P419, DOI 10.2307/5559; STADLER B, 1992, OECOLOGIA, V91, P273, DOI 10.1007/BF00317796; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SYRJANEN K, 1993, OIKOS, V67, P465, DOI 10.2307/3545358; WALTERS KFA, 1983, OECOLOGIA, V58, P70, DOI 10.1007/BF00384544; WARD SA, 1983, J ANIM ECOL, V52, P305, DOI 10.2307/4602; WARD SA, 1983, J ANIM ECOL, V52, P451, DOI 10.2307/4565; WARD SA, 1982, J ANIM ECOL, V51, P859, DOI 10.2307/4010; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 34 24 26 0 2 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia MAY 1995 102 2 246 254 10.1007/BF00333257 9 Ecology Environmental Sciences & Ecology QY664 WOS:A1995QY66400015 28306880 2018-11-12 J MAUCK, RA; GRUBB, TC MAUCK, RA; GRUBB, TC PETREL PARENTS SHUNT ALL EXPERIMENTALLY INCREASED REPRODUCTIVE COSTS TO THEIR OFFSPRING ANIMAL BEHAVIOUR English Article LEACHS STORM-PETREL; INDOOR FLIGHT EXPERIMENTS; TRAINED KESTRELS; SEX-DIFFERENCES; CLUTCH SIZE; PTILOCHRONOLOGY; MANIPULATION; GROWTH; CARE; SEABIRD Investment in current reproduction should be balanced against future reproduction. Thus, the allocation of resources during a breeding season is a trade-off between the needs of the parent and the needs of the offspring. Life-history theory predicts the trade-off point to favour the parent in long-lived species and the offspring in short-lived species. To investigate parent-offspring conflict in a long-lived species, the cost of flight was manipulated (by reducing wing span) in Leach's storm-petrel, Oceanodroma leucorhoa. The effect of the manipulation on adult nutritional condition was measured using ptilochronology and the effect on offspring nutritional condition was measured by tracking chick growth. No difference was found in nutritional condition between treatment and control parents. Treatment chicks gained mass more slowly and spent a greater proportion of nights without being fed by either parent. As predicted for a long-lived species, when faced with an increased cost of parental care, the storm-petrel parents apparently shunted that cost to their offspring. These results are compared with previous studies of long- and short-lived species in which parental costs were artificially increased. MAUCK, RA (reprint author), OHIO STATE UNIV,DEPT ZOOL,BEHAV ECOL GRP,COLUMBUS,OH 43210, USA. BEAUCHAMP G, 1990, J THEOR BIOL, V146, P513, DOI 10.1016/S0022-5193(05)80376-5; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BERNDT RUDOLF, 1963, PROC INTERNATL ORNITHOL CONGR, V13, P675; Brown R.G.B., 1980, P1; BROWN RGB, 1988, COLON WATERBIRD, V11, P1, DOI 10.2307/1521164; BROWN RGB, 1988, COLON WATERBIRD, V11, P176, DOI 10.2307/1520998; CIMPRICH D, 1990, ORNIS SCAND, V21, P277; CLARK CW, 1990, EVOL ECOL, V4, P21, DOI 10.1007/BF02270712; CUTHILL I, 1991, ANIM BEHAV, V42, P1007, DOI 10.1016/S0003-3472(05)80153-8; DUFFY DC, 1989, COLON WATERBIRD, V12, P164, DOI 10.2307/1521337; GROSS WILLIAM A. 0., 1935, AUK, V52, P382; GRUBB TC, 1989, AUK, V106, P314; GRUBB TC, IN PRESS CUR ORNITHO; HANEY JC, 1985, WILSON BULL, V97, P543; HARRIS MP, 1971, BIRD STUDY, V18, P113, DOI 10.1080/00063657109476302; HUNTINGTON CE, 1990, ACTA C INT ORNITHO S, V20, P543; JOUVENTIN P, 1990, NATURE, V343, P746, DOI 10.1038/343746a0; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; MARCHANT E, 1990, HDB AUSTR NZ ANTARCT, V1; MATHER MH, 1993, AUK, V109, P869; MORSE D H, 1979, Bird-Banding, V50, P145; NUR N, 1984, OECOLOGIA, V65, P125, DOI 10.1007/BF00384475; Pennycuick C.J, 1989, BIRD FLIGHT PERFORMA; Perrins C. M., 1979, BRIT TITS; PERRINS CM, 1973, IBIS, V115, P535, DOI 10.1111/j.1474-919X.1973.tb01991.x; PITTMAN RL, 1990, CONDOR, V92, P524; RICKLEFS RE, 1986, PHYSIOL ZOOL, V59, P649, DOI 10.1086/physzool.59.6.30158612; RICKLEFS RE, 1987, AM NAT, V130, P300, DOI 10.1086/284710; RICKLEFS RE, 1980, AUK, V97, P768; RICKLEFS RE, 1992, ANIM BEHAV, V43, P895, DOI 10.1016/0003-3472(92)90003-R; RICKLEFS RE, 1987, AUK, V104, P750; RICKLEFS RE, 1980, AUK, V97, P566; RICKLEFS RE, 1985, J ANIM ECOL, V54, P883, DOI 10.2307/4385; RICKLEFS RE, IN PRESS FUNCT ECOL; SAETHER BE, 1993, BEHAV ECOL SOCIOBIOL, V33, P147, DOI 10.1007/BF00216594; SLAGSVOLD T, 1988, ECOLOGY, V69, P1918, DOI 10.2307/1941168; SLAGSVOLD T, 1990, ECOLOGY, V71, P1258, DOI 10.2307/1938263; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TRIVERS RL, 1974, AM ZOOL, V11, P249; VERBEEK NAM, 1980, CONDOR, V82, P224, DOI 10.2307/1367481; VIDELER JJ, 1988, J EXP BIOL, V134, P173; VIDELER JJ, 1988, J EXP BIOL, V134, P185; WAITE TA, 1990, ORNIS SCAND, V21, P122, DOI 10.2307/3676807; WARHAM J, 1990, PETRELS; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WRIGHT J, 1989, BEHAV ECOL SOCIOBIOL, V25, P171, DOI 10.1007/BF00302916; WRIGHT J, 1990, ANIM BEHAV, V40, P462, DOI 10.1016/S0003-3472(05)80526-3; YOSEF R, 1992, CONSERV BIOL, V6, P447, DOI 10.1046/j.1523-1739.1992.06030447.x 48 102 103 2 26 ACADEMIC PRESS (LONDON) LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0003-3472 ANIM BEHAV Anim. Behav. APR 1995 49 4 999 1008 10.1006/anbe.1995.0129 10 Behavioral Sciences; Zoology Behavioral Sciences; Zoology QT441 WOS:A1995QT44100012 2018-11-12 J KAWECKI, TJ KAWECKI, TJ ADAPTIVE PLASTICITY OF EGG SIZE IN RESPONSE TO COMPETITION IN THE COWPEA WEEVIL, CALLOSOBRUCHUS-MACULATUS (COLEOPTERA, BRUCHIDAE) OECOLOGIA English Article LIFE HISTORY; DENSITY; PROPAGULE SIZE; SEED BEETLES; CALLOSOBRUCHUS LIFE-HISTORY; CLUTCH SIZE; AGE; ENVIRONMENT; STRATEGIES; FREQUENCY; SELECTION; HEIGHT; BEETLE; NUMBER Life history theory predicts that larger propagules should be produced when the offspring are expected to experience intense competition. This study tested whether female cowpea weevils responded to high larval or adult density by producing larger eggs. In a split-brood design I measured the effect of density experienced by females at their larval stage (1 vs. 4-6 larvae/cowpea) on the size of eggs produced just after emergence. The females were then kept either at low adult density (1 female+1 male per vial), or at high adult density (10 females+10 males) for 2 days, and tested for the effect of this adult density treatment on the size of eggs laid subsequently. I measured egg length and width, as well as the diameter of the entrance tunnel made by the larva, which can be regarded as a crude measure of larval size. Females that experienced high adult density subsequently laid slightly wider eggs than those kept at low density. This difference, albeit small (about 1-4% after correction for female weight and the effect of family, depending on the statistical model used), was statistically significant and robust to alterations of the statistical model. It may be a remnant of a larger plastic response of egg size to competition that has become eroded during many generations in high-density laboratory cultures. There was no difference in egg length or the diameter of the entrance tunnel. Eggs laid just after emergence by females reared at high larval density also tended to be wider than those produced by females that had no competitors. This effect was only marginally significant, however, and sensitive to the statistical model. Both egg length and width and the diameter of the entrance tunnel increased with female weight and decreased with female age. The tunnel diameter was positively correlated with both egg length and width, but the effect of width was larger. UNIV BASEL, INST ZOOL, CH-4051 BASEL, SWITZERLAND Kawecki, Tadeusz/K-5466-2015 Kawecki, Tadeusz/0000-0002-9244-1991 BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; Duellman WE, 1986, BIOL AMPHIBIANS; FOX CW, 1993, OECOLOGIA, V96, P139, DOI 10.1007/BF00318042; GIGA DP, 1985, AGR ECOSYST ENVIRON, V12, P229, DOI 10.1016/0167-8809(85)90114-8; KAWECKI TJ, 1993, OIKOS, V66, P309, DOI 10.2307/3544819; KING DA, 1990, AM NAT, V135, P809, DOI 10.1086/285075; MAKELA A, 1985, THEOR POPUL BIOL, V27, P239, DOI 10.1016/0040-5809(85)90001-2; MCLACHLAN AJ, 1989, FUNCT ECOL, V3, P633; MESSINA FJ, 1991, OECOLOGIA, V85, P447, DOI 10.1007/BF00320624; MIRMIRANI M, 1978, THEOR POPUL BIOL, V13, P304, DOI 10.1016/0040-5809(78)90049-7; MOLLER H, 1989, FUNCT ECOL, V3, P673, DOI 10.2307/2389499; ORTON RA, 1990, FUNCT ECOL, V4, P91, DOI 10.2307/2389657; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PERRIN N, 1989, FUNCT ECOL, V3, P29, DOI 10.2307/2389672; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Roff Derek A., 1992; SIBLY R, 1983, J THEOR BIOL, V102, P527, DOI 10.1016/0022-5193(83)90389-2; SIBLY R, 1988, J THEOR BIOL, V133, P13, DOI 10.1016/S0022-5193(88)80021-3; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH FE, 1963, ECOLOGY, V44, P651, DOI 10.2307/1933011; SMITH JM, 1986, THEOR POPUL BIOL, V30, P166, DOI 10.1016/0040-5809(86)90031-6; SOKAL RR, 1969, BIOMETRY; Stearns S. C., 1992, EVOLUTION LIFE HIST; VISSER ME, 1990, BEHAVIOUR, V114, P21, DOI 10.1163/156853990X00031; WILSON K, 1989, PHYSIOL ENTOMOL, V14, P115, DOI 10.1111/j.1365-3032.1989.tb00943.x; 1989, SAS STAT USERS GUIDE 26 36 37 1 15 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia APR 1995 102 1 81 85 10.1007/BF00333313 5 Ecology Environmental Sciences & Ecology QY046 WOS:A1995QY04600011 28306810 2018-11-12 J SAULNIER, TP; REEKIE, EG SAULNIER, TP; REEKIE, EG EFFECT OF REPRODUCTION ON NITROGEN ALLOCATION AND CARBON GAIN IN OENOTHERA-BIENNIS JOURNAL OF ECOLOGY English Article COST OF REPRODUCTION; LIFE HISTORY THEORY; RESOURCE ALLOCATION; REPRODUCTIVE EFFORT; SIZE DEPENDENT REPRODUCTION; TIME OF REPRODUCTION LIFE HISTORIES; SEED PRODUCTION; ANNUAL PLANTS; GROWTH; PHOTOSYNTHESIS; FLOWERS 1 Reproduction in Oenothera biennis has been shown to decrease growth in young plants, whereas reproduction in older plants temporarily increases growth and has no negative effect on growth in the long term. The causes of these variable effects were investigated by examining the effect of reproduction upon photosynthetic rate, leaf area production, chlorophyll content and nitrogen allocation in young versus old plants grown at low versus high nutrient availability. 2 Reproduction was controlled experimentally by gibberellic acid applications, and measurements were made at three developmental stages: bolting, flowering, and capsule maturation. At each stage, measurements were also made on corresponding vegetative plants of the same age. 3 Reproduction decreased nitrogen allocation to roots and increased allocation to shoots. The decrease in root allocation was greater at low nutrient availability. Reproduction increased leaf area and, at bolting, the magnitude of this increase was greater in plants grown at high nutrient availability. Reproduction generally decreased photosynthetic rates, chlorophyll content and nitrogen content of leaves. The magnitude of the decreases was usually less for plants grown at high nutrient availability. Photosynthetic rate increased with reproduction for older plants grown at high nutrient availability in the latter part of the experiment. 4 We suggest that differences among Oenothera biennis individuals in the effect of reproduction on carbon gain are related to differences in extent of nutrient reserves. Older plants and plants grown at high nutrient availability have greater nutrient reserves upon which to draw when reproduction is initiated. Reproduction in younger plants grown at lower nutrient availability will rapidly deplete nutrient reserves and nutrients which are part of the photosynthetic apparatus (e.g. the nitrogen within the chlorophyll molecule) will have to be mobilized to supply reproductive structures. Reproduction in this latter case will therefore have more of a detrimental effect on photosynthetic rate and leaf area production. ACADIA UNIV,DEPT BIOL,WOLFVILLE,NS B0P 1X0,CANADA Antonovics J., 1980, LIMITS ACTION ALLOCA, P1; BAZZAZ FA, 1979, NATURE, V279, P554, DOI 10.1038/279554a0; Bazzaz FA, 1992, SEEDS ECOLOGY REGENE, P1; BURT RL, 1964, AUST J BIOL SCI, V17, P867, DOI 10.1071/BI9640867; CHIARIELLO N, 1984, ECOLOGY, V65, P1290, DOI 10.2307/1938334; EVANS JR, 1989, OECOLOGIA, V78, P9, DOI 10.1007/BF00377192; Field C., 1986, EC PLANT FORM FUNCTI, P25; GROSS KL, 1981, OECOLOGIA, V20, P197; HALL IV, 1988, CAN J PLANT SCI, V68, P163, DOI 10.4141/cjps88-016; Harper J. L., 1977, POPULATION BIOL PLAN; HEILMEIER H, 1987, OECOLOGIA, V73, P109, DOI 10.1007/BF00376985; HEILMEIER H, 1986, OECOLOGIA, V70, P446; JURIK TW, 1985, OECOLOGIA, V66, P394, DOI 10.1007/BF00378305; KARLSSON PS, 1990, OIKOS, V59, P393, DOI 10.2307/3545151; KING D, 1982, THEOR POPUL BIOL, V21, P194, DOI 10.1016/0040-5809(82)90013-2; KING D, 1982, THEOR POPUL BIOL, V22, P1, DOI 10.1016/0040-5809(82)90032-6; LACEY EP, 1986, TRENDS ECOL EVOL, V43, P72; MAUN MA, 1974, CAN J BOT, V52, P2181, DOI 10.1139/b74-282; NEALES TF, 1968, BOT REV, V34, P107, DOI 10.1007/BF02872604; REEKIE EG, 1991, J ECOL, V79, P1061, DOI 10.2307/2261098; REEKIE EG, 1992, OECOLOGIA, V90, P21, DOI 10.1007/BF00317804; REEKIE EG, 1987, AM NAT, V129, P876, DOI 10.1086/284681; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; REINARTZ JA, 1984, J ECOL, V72, P897, DOI 10.2307/2259539; ROSS CW, 1974, PLANT PHYSL LABORATO; SALISBURY FB, 1978, PLANT PHYSIOL; SAMSON DA, 1986, AM NAT, V127, P667, DOI 10.1086/284512; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SHIPLEY B, 1992, AM NAT, V139, P467, DOI 10.1086/285339; SILBY R, 1986, J THEOR BIOL, V123, P311; SINCLAIR TR, 1975, SCIENCE, V189, P565, DOI 10.1126/science.189.4202.565; STEARNS SC, 1977, ANNU REV ECOL SYST, V12, P253; TOMPSON BK, 1991, CAN J BOT, V69, P442; Weiner J., 1988, Plant reproductive ecology: patterns and strategies, P228; WERK KS, 1983, OECOLOGIA, V57, P311, DOI 10.1007/BF00377173; WILLIAMS K, 1985, OECOLOGIA, V66, P530, DOI 10.1007/BF00379345; YOUNG TP, 1981, AM NAT, V118, P27, DOI 10.1086/283798 37 33 34 0 5 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0022-0477 J ECOL J. Ecol. FEB 1995 83 1 23 29 10.2307/2261147 7 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology QG774 WOS:A1995QG77400003 2018-11-12 J LANDWER, AJ LANDWER, AJ MANIPULATION OF EGG-PRODUCTION REVEALS COSTS OF REPRODUCTION IN THE TREE LIZARD (UROSAURUS-ORNATUS) OECOLOGIA English Article COST OF REPRODUCTION; EXPERIMENTAL MANIPULATION; FECUNDITY; GROWTH; UROSAURUS ORNATUS LIFE HISTORIES; NATURAL-SELECTION; BLUE TITS; EVOLUTION; SIZE; CONSTRAINTS Life-history theory predicts that the allocation of energy to current reproduction is associated with a decrement in future fecundity, future survival, or both. I treated this notion as the ''cost hypothesis'', and tested the assumption that current reproduction exacts a ''cost'' in future survival and fecundity. Surgical manipulations of egg production were applied to natural populations of the tree lizard, Urosaurus ornatus, in south western New Mexico by yolkectomy surgery in two different years. I reduced the number of eggs produced in the first clutch during vitellogenesis by approximately 50% in yolkectomized females relative to controls. Subsequent survival, fecundity, and growth of females were followed for two or three years, depending on the cohort. Treated females in both cohorts showed significantly higher growth and survivorship throughout the experiment than in controls. After 2 years, yolkectomized females had grown an additional 2 mm (snout-vent length) compared to controls, enough for them to add on average an additional egg to their next clutch. This demonstrated a cost in terms of future fecundity through a reduction ingrowth and an increase in mortality in these lizards. HARDIN SIMMONS UNIV,DEPT BIOL,ABILENE,TX 79698 LANDWER, AJ (reprint author), UNIV NEW MEXICO,DEPT BIOL,ALBUQUERQUE,NM 87131, USA. BAILEY RC, 1992, OIKOS, V65, P349, DOI 10.2307/3545031; BALLINGER R E, 1976, Southwestern Naturalist, V21, P203, DOI 10.2307/3669956; BALLINGER RE, 1984, J HERPETOL, V18, P480, DOI 10.2307/1564108; BALLINGER RE, 1977, ECOLOGY, V58, P628, DOI 10.2307/1939012; BELL G, 1984, EVOLUTION, V38, P300, DOI 10.1111/j.1558-5646.1984.tb00289.x; BELL G, 1986, COST REPRODUCTION; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; CASWELL H, 1982, ECOLOGY, V63, P1218, DOI 10.2307/1938846; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; Dunham A.E., 1988, Biology of Reptilia, V16, P441; FOX JF, 1991, ECOLOGY, V72, P1013, DOI 10.2307/1940601; HOULE D, 1992, GENETICS, V130, P195; JONES SM, 1987, ECOLOGY, V68, P1828, DOI 10.2307/1939874; Lande R., 1982, P21; MADSEN T, 1993, OECOLOGIA, V94, P488, DOI 10.1007/BF00566963; Merriam CH, 1898, LIFE ZONES CROP ZONE; MICHEL L, 1976, Southwestern Naturalist, V21, P281, DOI 10.2307/3669714; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; PARKER W S, 1973, Journal of Herpetology, V7, P21, DOI 10.2307/1562825; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PARTRIDGE L, 1992, TRENDS ECOL EVOL, V7, P99, DOI 10.1016/0169-5347(92)90250-F; PARTRIDGE L, 1988, SCIENCE, V214, P1449; PETTIFOR RA, 1993, J ANIM ECOL, V62, P145, DOI 10.2307/5489; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; SCHWARZKOPF L, 1993, ECOLOGY, V74, P1970, DOI 10.2307/1940840; SCHWARZKOPF L, 1992, BEHAV ECOL SOCIOBIOL, V31, P17, DOI 10.1007/BF00167812; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SINERVO B, 1991, J EXP ZOOL, V257, P252, DOI 10.1002/jez.1402570216; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SINERVO B, 1991, J EXP BIOL, V155, P323; SNELL HL, 1988, EVOL ECOL, V2, P353, DOI 10.1007/BF02207566; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TINKLE DW, 1969, AM NAT, V103, P501, DOI 10.1086/282617; TOUMI J, 1983, AM ZOOL, V23, P25; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILLSON MF, 1986, AM MIDL NAT, V115, P204, DOI 10.2307/2425852; 1991, SAS SYSTAT USERS GUI 40 41 41 0 10 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia DEC 1994 100 3 243 249 10.1007/BF00316951 7 Ecology Environmental Sciences & Ecology PZ755 WOS:A1994PZ75500006 28307007 2018-11-12 J FLETCHER, JP; HUGHES, JP; HARVEY, IF FLETCHER, JP; HUGHES, JP; HARVEY, IF LIFE EXPECTANCY AND EGG LOAD AFFECT OVIPOSITION DECISIONS OF A SOLITARY PARASITOID PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article CONSPECIFIC SUPERPARASITISM; ADAPTIVE SUPERPARASITISM; HOST DISCRIMINATION; CLUTCH SIZE; SELECTION; WASPS; HYMENOPTERA; EVOLUTION; STRATEGY; MATTER Life-history theory predicts that animals should be sensitive to both the amount of resources available and life expectancy in making reproductive decisions. Because it is easier to control the mortality of insect parasitoids (insects whose larva develop in or on another insect) than many other groups of animals, the best tests of these predictions have used them. However, because of the inter-correlation of several of the variables of interest, much of this evidence is equivocal, and experimental manipulations have failed to isolate the most important factors. Here we report an experiment which circumvents such problems by comparing the superparasitism rates of fed and starved parasitoids. By using the asexual solitary hymenopteran parasitoid Venturia canescens, we demonstrate that starved wasps with a reduced life expectancy lay eggs in low-quality hosts more frequently than those with a greater expected lifespan, as do parasitoids with higher egg loads and hence more resources available for reproduction. UNIV LIVERPOOL, DEPT ENVIRONM & EVOLUT BIOL, POPULAT BIOL RES GRP, LIVERPOOL L69 3BX, MERSEYSIDE, ENGLAND FLETCHER, JP (reprint author), UNIV DUNDEE, DEPT BIOL SCI, DUNDEE DD1 4HN, SCOTLAND. Ahmad T, 1936, J ANIM ECOL, V5, P67, DOI 10.2307/1092; CHARNOV EL, 1988, AM NAT, V132, P707, DOI 10.1086/284883; CHARNOV EL, 1985, ENVIRON ENTOMOL, V14, P383, DOI 10.1093/ee/14.4.383; DONALDSON JS, 1988, PHYSIOL ENTOMOL, V13, P407, DOI 10.1111/j.1365-3032.1988.tb01124.x; FISHER RC, 1961, J EXP BIOL, V38, P605; FLANDERS STANLEY E., 1950, CANADIAN ENT, V82, P134; HARVEY I, 1988, L COLL INRA, V48, P137; HUBBARD SF, 1987, J ANIM ECOL, V56, P387, DOI 10.2307/5055; IWASA Y, 1984, THEOR POPUL BIOL, V26, P205, DOI 10.1016/0040-5809(84)90030-3; JERVIS MA, 1986, BIOL REV, V61, P395, DOI 10.1111/j.1469-185X.1986.tb00660.x; MANGEL M, 1992, EVOL ECOL, V6, P152, DOI 10.1007/BF02270709; MANGEL M, 1987, J MATH BIOL, V25, P1, DOI 10.1007/BF00275885; MANGEL M, 1989, AM NAT, V133, P688, DOI 10.1086/284945; MANGEL M, 1989, J EVOLUTION BIOL, V2, P157, DOI 10.1046/j.1420-9101.1989.2030157.x; MARRIS G, 1986, J ANIM ECOL, V55, P631, DOI 10.2307/4744; MINKENBERG OPJM, 1992, OIKOS, V65, P134, DOI 10.2307/3544896; PARKER GA, 1984, THEOR POPUL BIOL, V26, P27, DOI 10.1016/0040-5809(84)90022-4; ROGERS D, 1972, ENTOMOL EXP APPL, V15, P190, DOI 10.1111/j.1570-7458.1972.tb00195.x; ROGERS DJ, 1970, THESIS U OXFORD; ROITBERG BD, 1993, NATURE, V364, P108, DOI 10.1038/364108a0; ROITBERG BD, 1992, BEHAV ECOL, V3, P156, DOI 10.1093/beheco/3.2.156; ROSENHEIM JA, 1991, J ANIM ECOL, V60, P373; SPEIRS DC, 1991, TRENDS ECOL EVOL, V6, P22, DOI 10.1016/0169-5347(91)90143-L; VANALPHEN JJM, 1982, NETH J ZOOL, V32, P232; VANALPHEN JJM, 1990, ANNU REV ENTOMOL, V35, P59, DOI 10.1146/annurev.en.35.010190.000423; VANDIJKEN MJ, 1987, ENTOMOL EXP APPL, V43, P183, DOI 10.1111/j.1570-7458.1987.tb03604.x; VANLENTEREN JC, 1975, NATURE, V254, P417, DOI 10.1038/254417a0; VISSER ME, 1992, ECOL ENTOMOL, V17, P76, DOI 10.1111/j.1365-2311.1992.tb01042.x; VISSER ME, 1993, BEHAV ECOL, V4, P22; VISSER ME, 1992, J ANIM ECOL, V61, P93, DOI 10.2307/5512; WEISSER WW, 1993, FUNCT ECOL, V7, P27, DOI 10.2307/2389864 31 83 85 0 13 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. NOV 22 1994 258 1352 163 167 10.1098/rspb.1994.0157 5 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology PU275 WOS:A1994PU27500010 7838854 2018-11-12 J BAUR, A BAUR, A WITHIN-CLUTCH AND BETWEEN-CLUTCH VARIATION IN EGG SIZE AND NUTRIENT CONTENT IN THE LAND SNAIL ARIANTA-ARBUSTORUM FUNCTIONAL ECOLOGY English Article CLUTCH SIZE; EGG WEIGHT; GASTROPODA; INDIVIDUAL VARIATION; LIFE HISTORY 1. Life-history theory often assumes that energy and nutrient contents are correlated with egg size. I assessed the within- and among-clutch variation in egg size, nitrogen (N) and carbon (C) content of eggs of the land snail Arianta arbustorum and examined their intercorrelations. I also examined whether the diet of the mother snail (Petasites albus or lettuce) and/or the time of the reproductive season when the eggs were laid affected the variation in egg size and nutrient content. 2. The volume of single eggs ranged from 5.5 to 26.3 mm3 (n = 956, grand mean 13.4 mm3). The overall range of the nitrogen concentration of the eggs was 3.1-5.0% (grand mean 4.1%), and that of the carbon concentration 28.6-34.9% (32.2%). The nitrogen concentration indicates that eggs of A. arbustorum have a protein concentration of 25.5%. 3. The within-clutch variation in egg size expressed by the coefficient of variation averaged 11.1% for egg volume, 8.4% for wet weight and 8.3% for dry weight. Corresponding values for the N and C concentrations were 3.7 and 1.6%. Thus, egg size was in general more variable than the nutrient concentration of the eggs. In all triats the within-clutch variation was significantly smaller than the among-clutch variation, indicating that individual snails produced eggs of relatively constant size and nutrient content. 4. Considering mean clutch values, the nutrient contents (in mg) scaled isometrically with egg size. On the within-clutch level the N content correlated with egg size in only 22 out of 36 clutches (61.1%), and the C content in only 23 of 36 clutches (63.9%). 5. Volume and wet weight but not dry weight were significantly larger in eggs produced by snails maintained on a lettuce diet than in eggs from snails fed on P. albus. This suggests a difference in water content of eggs laid by snails eating different diets. Furthermore, eggs produced by snails maintained on P. albus were more variable in dry weight than eggs produced by snails fed on lettuce. 6. Neither egg size nor nutrient composition in snails fed on both diets changed over the course of the reproductive season. 7. The dry weight of eggs from snails eating P. albus decreased with increasing clutch size, indicating a possible trade-off between egg size and number. This was not the case in snails maintained on lettuce. BAUR, A (reprint author), UNIV BASEL, CONSERVAT BIOL RES GRP, ST JOHANNS VORSTADT 10-12, CH-4056 BASEL, SWITZERLAND. 0 19 19 0 5 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 FUNCT ECOL Funct. Ecol. OCT 1994 8 5 581 586 10.2307/2389918 6 Ecology Environmental Sciences & Ecology PL918 WOS:A1994PL91800004 2018-11-12 J GOTTHARD, K; NYLIN, S; WIKLUND, C GOTTHARD, K; NYLIN, S; WIKLUND, C ADAPTIVE VARIATION IN GROWTH-RATE - LIFE-HISTORY COSTS AND CONSEQUENCES IN THE SPECKLED WOOD BUTTERFLY, PARARGE AEGERIA OECOLOGIA English Article PHYSIOLOGICAL TRADE-OFF; SIZE AND AGE AT MATURITY; STARVATION; LONGEVITY; SATYRINAE PHENOTYPIC PLASTICITY; TRADE-OFFS; SIZE; EVOLUTION; PROTANDRY; PREDATION; MATURITY; BIRDS; MORTALITY; NORMS An important assumption made in most life-history theory is that there is a trade-off between age and size at reproduction. This trade-off may, however, disappear if growth rate varies adaptively. The fact that individuals do not always grow at the maximum rate can only be understood if high growth rates carry a cost. This study investigates the presence and nature of such costs in Pararge aegeria. Five females from two populations with known differences in life history (south Sweden and Madeira) were allowed to oviposit in the laboratory and their offspring were reared in environmental chambers under conditions leading to direct development. We measured several aspects of life history, including development times, pupal and adult weights, growth rate, female fecundity, longevity and larval starvation endurance. In both populations there seemed to be genetic variation in growth rate. There was no evidence for a trade-off between age and size at pupation. As predicted, larvae with high growth rates also lost weight at a relatively higher rate during starvation. High weight-loss rates were furthermore associated with a lower probability of surviving when food became available again. This is apparently the first physiological trade-off with growth rate that has been experimentally demonstrated. In both populations there were significant differences in growth rate between the sexes, but the populations differed in which sex was growing at the highest rate. In Sweden males had higher growth rates than females, whereas the reverse was true for Madeira. These patterns most likely reflect differences in selection for protandry, in turn caused by differences in seasonality between Sweden and Madeira. Together with the finding that males had shorter average longevity than females in the Swedish, but not in the Madeiran, population, this indicates that a lower adult quality also may be a cost of high growth rate. We argue that for the understanding of life history variation it is necessary to consider not only the two dimensions of age and size, but also to take into full account the triangular nature of the relationship between size, time and growth rate. GOTTHARD, K (reprint author), UNIV STOCKHOLM,DEPT ZOOL,S-10691 STOCKHOLM,SWEDEN. Nylin, Soren/B-7375-2008; Gotthard, Karl/F-1163-2011 Nylin, Soren/0000-0003-4195-8920; Gotthard, Karl/0000-0002-4560-6271 CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; CLUTTONBROCK TH, 1985, NATURE, V313, P131, DOI 10.1038/313131a0; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; FRASER DF, 1992, ECOLOGY, V73, P959, DOI 10.2307/1940172; GEBHARDT MD, 1988, J EVOLUTION BIOL, V1, P335, DOI 10.1046/j.1420-9101.1988.1040335.x; GUNNARSSON B, 1990, OIKOS, V59, P205, DOI 10.2307/3545536; Hargreaves B, 1983, BUTTERFLIES BRITAIN; Higgins L. G., 1977, Entomologist's Record and Journal of Variation, V89, P22; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; NEGUS NC, 1992, CAN J ZOOL, V70, P2121, DOI 10.1139/z92-285; NIEWIAROWSKI PH, 1993, ECOLOGY, V74, P1992, DOI 10.2307/1940842; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; NYLIN S, 1993, ECOLOGY, V74, P1414, DOI 10.2307/1940071; OWEN DF, 1986, ECOL ENTOMOL, V11, P349, DOI 10.1111/j.1365-2311.1986.tb00312.x; PERRIN N, 1990, FUNCT ECOL, V4, P53, DOI 10.2307/2389652; Reavey D., 1991, P293; RICE JA, 1993, CAN J FISH AQUAT SCI, V50, P133, DOI 10.1139/f93-015; RICKLEFS RE, 1973, IBIS, V115, P177, DOI 10.1111/j.1474-919X.1973.tb02636.x; RICKLEFS RE, 1969, ECOLOGY, V50, P1031, DOI 10.2307/1936894; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff D, 1983, DIAPAUSE LIFE CYCLE, P253; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; SINERVO B, 1990, OECOLOGIA, V83, P228, DOI 10.1007/BF00317757; SINGER MC, 1982, AM NAT, V119, P337; SKELLY DK, 1990, ECOLOGY, V71, P2313, DOI 10.2307/1938642; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WIKLUND C, 1991, OIKOS, V60, P241, DOI 10.2307/3544871; WIKLUND C, 1977, OECOLOGIA, V31, P153, DOI 10.1007/BF00346917; WIKLUND C, 1983, ECOL ENTOMOL, V8, P233, DOI 10.1111/j.1365-2311.1983.tb00503.x; WILBUR HM, 1987, ECOLOGY, V68, P1437, DOI 10.2307/1939227; WILKINSON L, 1992, SYSTAT 5 I 36 218 225 7 63 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia OCT 1994 99 3-4 281 289 10.1007/BF00627740 9 Ecology Environmental Sciences & Ecology PP227 WOS:A1994PP22700009 28313882 2018-11-12 J LUNDBERG, S; SMITH, HG LUNDBERG, S; SMITH, HG PARENT-OFFSPRING CONFLICTS OVER REPRODUCTIVE EFFORTS - VARIATIONS UPON A THEME BY CHARNOV JOURNAL OF THEORETICAL BIOLOGY English Article CLUTCH-SIZE; MODELS; EVOLUTION A novel formulation of the theory of parent-offspring conflict is proposed. The basis of this formulation is an application of traditional life-history theory in combination with simple genetic arguments. The advanatage with this approach is conceptual, and the formulation is not in variance with earlier studies in the area. Parent-offspring conflict is, in our forumlation, not seen as a conflict between individuals, but as a tradeoff-an age-specific selection pressure acting on a trait, which is favourable when an individual is offspring and disadvantageous when it becomes parent. Using an ESS approach we investigate a simple offspring-wins problem: we find that a gene causing assertiveness of offspring will increase when rare, because the advantage thus gained by an assertive individual when young exceeds the cost incurred as adult by that half of its own offspring which belongs to the same assertive genotype. LUND UNIV,DEPT ANIM ECOL,S-22362 LUND,SWEDEN LUNDBERG, S (reprint author), LUND UNIV,DEPT ECOL,ECOL BLDG,S-22362 LUND,SWEDEN. Alexander R.D., 1974, Annual Rev Ecol Syst, V5, P325, DOI 10.1146/annurev.es.05.110174.001545; CAVALLISFORZA LL, 1978, THEOR POPUL BIOL, V14, P260; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1982, AM NAT, V119, P736, DOI 10.1086/283947; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; GODFRAY HCJ, 1991, PHILOS T ROY SOC B, V332, P67, DOI 10.1098/rstb.1991.0034; GODFRAY HCJ, 1992, ANIM BEHAV, V43, P473, DOI 10.1016/S0003-3472(05)80106-X; GODFRAY HCJ, 1991, NATURE, V352, P328, DOI 10.1038/352328a0; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; MACNAIR MR, 1978, ANIM BEHAV, V26, P111, DOI 10.1016/0003-3472(78)90010-6; MACNAIR MR, 1979, ANIM BEHAV, V27, P1202, DOI 10.1016/0003-3472(79)90067-8; PARKER GA, 1985, ANIM BEHAV, V33, P519, DOI 10.1016/S0003-3472(85)80075-0; PARKER GA, 1978, ANIM BEHAV, V26, P97, DOI 10.1016/0003-3472(78)90009-X; SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0; SMITH JM, 1983, PROC R SOC SER B-BIO, V219, P315, DOI 10.1098/rspb.1983.0076; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TRIVERS RL, 1974, AM ZOOL, V14, P249; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 19 9 9 0 5 ACADEMIC PRESS LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0022-5193 J THEOR BIOL J. Theor. Biol. SEP 21 1994 170 2 215 218 10.1006/jtbi.1994.1180 4 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology PK512 WOS:A1994PK51200009 7967642 2018-11-12 J ODONOGHUE, M ODONOGHUE, M EARLY SURVIVAL OF JUVENILE SNOWSHOE HARES ECOLOGY English Article FOOD LIMITATION; LIFE HISTORY THEORY; POPULATION CYCLE; SNOWSHOE HARE; SURVIVAL; TRADEOFFS; YUKON COLUMBIAN GROUND-SQUIRRELS; SUPPLEMENTAL FOOD; POPULATION-DYNAMICS; LITTER SIZE; CLUTCH-SIZE; PEROMYSCUS-LEUCOPUS; BROOD SIZE; EVOLUTION; DISPERSAL; BIOLOGY Juvenile snowshoe hares (Lepus americanus) were radio-tagged at birth on one food addition grid and one control grid, to determine early juvenile survival, the effects of the food addition on survival, and proximate causes of mortality. Indices of survival were also estimated by live-trapping on these grids and on a replicate pair of grids. The overall 30-d survival rates of radio-tagged leverets were 0.46, 0.15, and 0.43 for the first, second, and third litters of the year, respectively. There were no differences between early juvenile survival on the food addition and control grids in any of the litter groups. The main proximate cause of juvenile mortality was predation by small mammalian predators, the most important being red squirrels and arctic ground squirrels. Seventy percent of early juvenile mortality occurred during the first 5 d after birth. Survival of littermates was not independent; litters tended to all live or die as a unit more often than expected by chance. Fifty-one percent of litters had no known survivors after 14 d of age. Individual survival rates were negatively related to litter size and positively related to body size at birth, and litter size was negatively correlated with body size. These correlations were most closely related to differences in life history traits among litters born at different times of the summer, rather than to trade-offs among traits within litter groups. UNIV BRITISH COLUMBIA,DEPT ZOOL,ECOL GRP,VANCOUVER V6T 1W5,BC,CANADA ANGELSTAM P, 1984, OECOLOGIA, V62, P199, DOI 10.1007/BF00379014; BOONSTRA R, 1990, CAN J ZOOL, V68, P757, DOI 10.1139/z90-109; BOONSTRA R, 1985, CAN J ZOOL, V64, P1034; BOUTIN S, 1985, CAN J ZOOL, V63, P106, DOI 10.1139/z85-019; BOUTIN S, 1990, CAN J ZOOL, V68, P203, DOI 10.1139/z90-031; BOUTIN S, 1988, J ANIM ECOL, V57, P455, DOI 10.2307/4917; CARY JR, 1979, CAN J ZOOL, V57, P375, DOI 10.1139/z79-044; CAUGHLEY G, 1977, ANAL VERTEBRATE POPU; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Cox DR, 1970, ANAL BINARY DATA; DESY EA, 1983, J ANIM ECOL, V52, P127, DOI 10.2307/4592; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; DOBSON FS, 1985, CAN J ZOOL, V63, P2095, DOI 10.1139/z85-308; DOUGLAS GW, 1974, CAN J BOT, V52, P2505, DOI 10.1139/b74-327; Elton C, 1942, J ANIM ECOL, V11, P215, DOI 10.2307/1358; FESTABIANCHET M, 1991, J ANIM ECOL, V60, P1077, DOI 10.2307/5432; FLOWERDEW JR, 1972, J ANIM ECOL, V41, P553, DOI 10.2307/3195; FORD RG, 1984, ECOLOGY, V65, P122, DOI 10.2307/1939465; GRAF RP, 1987, ARCTIC, V40, P175; GREEN R. G., 1940, JOUR WILDLIFE MANAGEMENT, V4, P267, DOI 10.2307/3795613; HANSEN LP, 1979, J MAMMAL, V60, P335, DOI 10.2307/1379805; HOGSTEDT G, 1980, SCIENCE, V210, P1148, DOI 10.1126/science.210.4474.1148; Holling C. S., 1959, Canadian Entomologist, V91, P385; KAPLAN EL, 1958, J AM STAT ASSOC, V53, P457, DOI 10.2307/2281868; Keith L.B., 1990, Current Mammalogy, V2, P119; Keith L. B. et al., 1977, P INT C GAME BIOL, V13, P151; KEITH LB, 1984, WILDLIFE MONOGR, V90, P1; KEITH LB, 1978, WILDLIFE MONOGR, V58, P1; KLOMP H, 1970, ARDEA, V58, P1; KREBS CJ, 1986, J ANIM ECOL, V55, P963, DOI 10.2307/4427; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LEE ET, 1980, STATISTICAL METHODS; Lessells C.M., 1991, P32; MORRIS DW, 1986, EVOLUTION, V40, P169, DOI 10.1111/j.1558-5646.1986.tb05728.x; NUR N, 1984, J ANIM ECOL, V53, P497, DOI 10.2307/4530; ODONOGHUE M, 1992, CAN J ZOOL, V70, P1787, DOI 10.1139/z92-246; ODONOGHUE M, 1992, J ANIM ECOL, V61, P631, DOI 10.2307/5618; POLLOCK KH, 1989, J WILDLIFE MANAGE, V53, P7, DOI 10.2307/3801296; POLLOCK KH, 1989, BIOMETRICS, V45, P99, DOI 10.2307/2532037; RONGSTAD OJ, 1971, J WILDLIFE MANAGE, V35, P338, DOI 10.2307/3799610; SAVAGE IR, 1956, ANN MATH STAT, V27, P590, DOI 10.1214/aoms/1177728170; SEVERAID JH, 1942, SNOWSHOE HARE ITS LI; Sinclair A.R.E., 1989, P197; SINCLAIR ARE, 1988, J ANIM ECOL, V57, P787, DOI 10.2307/5093; SMITH JNM, 1988, J ANIM ECOL, V57, P269, DOI 10.2307/4778; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SULLIVAN TP, 1983, J ANIM ECOL, V52, P743, DOI 10.2307/4451; TREXLER JC, 1993, ECOLOGY, V74, P1629, DOI 10.2307/1939921; VAUGHAN MR, 1981, J WILDLIFE MANAGE, V45, P354, DOI 10.2307/3807918; Williams GC, 1966, ADAPTATION NATURAL S; WINDBERG LA, 1976, CAN J ZOOL, V54, P2061, DOI 10.1139/z76-240 54 50 50 0 8 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology SEP 1994 75 6 1582 1592 10.2307/1939619 11 Ecology Environmental Sciences & Ecology PE267 WOS:A1994PE26700007 2018-11-12 J ENS, BJ; PIERSMA, T; DRENT, RH ENS, BJ; PIERSMA, T; DRENT, RH THE DEPENDENCE OF WADERS AND WATERFOWL MIGRATING ALONG THE EAST ATLANTIC FLYWAY ON THEIR COASTAL FOOD SUPPLIES - WHAT IS THE MOST PROFITABLE RESEARCH-PROGRAM OPHELIA English Article OYSTERCATCHERS HAEMATOPUS-OSTRALEGUS; STANDARD OPERATIVE TEMPERATURE; TURNSTONE ARENARIA-INTERPRES; HEATED TAXIDERMIC MOUNTS; MUSSELS MYTILUS-EDULIS; GEESE BRANTA-BERNICLA; KNOT CALIDRIS-CANUTUS; MACOMA-BALTHICA; BRITISH ESTUARIES; PREY AVAILABILITY Predicting the effects of human activities, like shell-fisheries, exploitation of gas, recreation, chemical pollution, land reclamation and man-induced sea-level rise, on the population dynamics and migratory behaviour of the waders and waterfowl using the Wadden Sea and other intertidal areas along the East Atlantic Flyway is a tall order. Mathematical models with a strong empirical basis are our only hope for achieving this aim. Though applied models almost always sacrifice generality to achieve precision and realism, it is important to develop unifying concepts that can guide empirical research. We should aim to understand the underlying processes at the level of the individual consumers and consumed. These processes include social competition among the waders and waterfowl(the consumers) for nesting territories and wintering sites, as well as seasonal changes in availability of the prey (the consumed). With regard to the former it can be remarked that ultimately social competition revolves around access to resources vital for reproduction and survival. With regard to the latter we suspect that changes in prey availability are often due to changes in risk-taking behaviour on the part of the prey. In all these cases behavioural ecology and life history theory provide the concepts that link the 'decisions' of individuals to the population processes we aim to predict. The research programme that we describe has proven very useful in investigations of prey choice, migratory behaviour and local distribution patterns. It is only very recently that attempts are made to put the programme to full use in predicting the effects of habitat changes on the population dynamics of the affected birds. UNIV GRONINGEN, ZOOL LAB, 9750 AA HAREN, NETHERLANDS; NETHERLANDS INST SEA RES, 1790 AB DEN BURG, NETHERLANDS ENS, BJ (reprint author), INST FORESTRY & NAT RES, POB 167, 1790 AD DEN BURG, NETHERLANDS. Piersma, Theunis/D-1871-2012 BAKKEN GS, 1981, ECOLOGY, V62, P311, DOI 10.2307/1936705; BAKKEN GS, 1983, ECOLOGY, V64, P1658, DOI 10.2307/1937520; Beekman Jan H., 1991, Wildfowl Supplement, V1, P238; BOOTH DT, 1993, P ROY SOC B-BIOL SCI, V253, P125, DOI 10.1098/rspb.1993.0091; CALDOW RWG, IN PRESS ARDEA; CARMI N, 1992, AUK, V109, P268; CAYFORD JT, 1990, ANIM BEHAV, V40, P609, DOI 10.1016/S0003-3472(05)80691-8; CHARNOV EL, 1976, AM NAT, V110, P141, DOI 10.1086/283054; CHRISTY JH, 1984, BIOL REV, V59, P483, DOI 10.1111/j.1469-185X.1984.tb00412.x; CRESSWELL W, 1993, ANIM BEHAV, V46, P609, DOI 10.1006/anbe.1993.1231; DHONDT AA, 1988, ACTA OECOL-OEC GEN, V9, P337; Drent R. H., 1987, Disturbance in grasslands, P131; DURELL SEAL, 1984, ANIM BEHAV, V32, P1197; EBBINGE BS, 1989, IBIS, V131, P196, DOI 10.1111/j.1474-919X.1989.tb02762.x; Ens B., 1980, Watervogels, V5, P108; ENS BJ, 1993, NETH J SEA RES, V31, P477, DOI 10.1016/0077-7579(93)90060-6; ENS BJ, 1984, J ANIM ECOL, V53, P217, DOI 10.2307/4353; ENS BJ, 1986, IBIS, V128, P382, DOI 10.1111/j.1474-919X.1986.tb02687.x; ENS BJ, 1994, IN PRESS PREDICITIVE; ENS BJ, THESIS U GRONINGEN; Ens BJ, 1982, WADER STUDY GROUP B, V34, P16; ENS BJ, IN PRESS BEHAVIORAL; ENS BJ, IN PRESS ARDEA; EVANS PR, 1976, ARDEA, V64, P117; FRETWELL S D, 1969, Acta Biotheoretica, V19, P16, DOI 10.1007/BF01601953; FRETWELL SD, 1972, POPULATIONS SEASONAL; GENDRON RP, 1983, AM NAT, V121, P172, DOI 10.1086/284049; Goss-Custard J.D., 1985, P169; Goss-Custard J. D., 1970, P3; GOSS-CUSTARD J D, 1976, Wildfowl, V27, P157; Goss-Custard J.D., 1984, Behavior of Marine Animals, V6, P233; GOSSCUSTARD JD, 1993, BIRD STUDY, V40, P81, DOI 10.1080/00063659309477133; GOSSCUSTARD JD, 1977, J APPL ECOL, V14, P721, DOI 10.2307/2402805; GOSSCUSTARD JD, 1990, IBIS, V132, P273, DOI 10.1111/j.1474-919X.1990.tb01045.x; GOSSCUSTARD JD, 1988, J APPL ECOL, V25, P95, DOI 10.2307/2403612; GOSSCUSTARD JD, 1988, J ANIM ECOL, V57, P827, DOI 10.2307/5095; GOSSCUSTARD JD, 1980, ARDEA, V68, P31; GOSSCUSTARD JD, 1984, J ANIM ECOL, V53, P233, DOI 10.2307/4354; GREENSPAN BN, 1980, ANIM BEHAV, V28, P387, DOI 10.1016/S0003-3472(80)80047-9; HAIRSTON NG, 1960, AM NAT, V94, P421, DOI 10.1086/282146; HEDENSTROM A, 1992, J THEOR BIOL, V158, P535, DOI 10.1016/S0022-5193(05)80714-3; Holling C. S., 1959, Canadian Entomologist, V91, P385; HULSCHER J B, 1989, Limosa, V62, P177; HULSCHER JB, 1985, NETH J ZOOL, V35, P124; HULSCHER JB, 1982, ARDEA, V70, P89; HULSCHER JB, 1976, ARDEA, V64, P292; KACELNIK A, 1992, TRENDS ECOL EVOL, V7, P50, DOI 10.1016/0169-5347(92)90106-L; KLAASSEN M, 1993, NETH J SEA RES, V31, P495, DOI 10.1016/0077-7579(93)90061-V; KREBS JR, 1991, BEHAVIOURAL ECOLOGY; Lessells C.M., 1991, P32; Levins R., 1968, EVOLUTION CHANGING E; LOMNICKI A, 1978, J ANIM ECOL, V47, P461, DOI 10.2307/3794; Madsen J., 1988, Danish Review of Game Biology, V13, P1; MCFARLAND DJ, 1977, NATURE, V269, P15, DOI 10.1038/269015a0; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; MEIRE P, 1993, THESIS U GENT; MEIRE PM, 1986, ANIM BEHAV, V34, P1427, DOI 10.1016/S0003-3472(86)80213-5; MEIRE PM, IN PRESS ARDEA; MOSER ME, 1988, J APPL ECOL, V25, P473, DOI 10.2307/2403838; MURDOCH WW, 1992, INDIVIDUAL-BASED MODELS AND APPROACHES IN ECOLOGY, P18; MYERS JP, 1984, BEHAV MARINE ANIM, V6, P273; Pienkowski M.W., 1985, P331; PIERCE GJ, 1987, OIKOS, V49, P111, DOI 10.2307/3565560; PIERSMA T, 1993, NETH J SEA RES, V31, P331, DOI 10.1016/0077-7579(93)90052-T; PIERSMA T, 1987, MAR ECOL PROG SER, V38, P187, DOI 10.3354/meps038187; PIERSMA T, 1990, ARDEA, V78, P315; PIERSMA T, 1991, 20 C INT ORN CHRISTC, P761; PIERSMA T, IN PRESS AUK, V111; POOT M, 1994, THESIS U GRONINGEN, P158; Prins H. H. T, 1987, THESIS U GRONINGEN; PROP J, 1991, OECOLOGIA, V87, P19, DOI 10.1007/BF00323775; READING CJ, 1978, ESTUAR COAST MAR SCI, V6, P135, DOI 10.1016/0302-3524(78)90095-6; SALMON M, 1987, J CRUSTACEAN BIOL, V7, P25, DOI 10.2307/1548623; SCHOENER TW, 1986, AM ZOOL, V26, P81; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stephens DW, 1986, FORAGING THEORY; SUTER W, 1989, WADER STUDY GROUP B, V57, P22; SUTHERLAND WJ, 1982, OECOLOGIA, V55, P108, DOI 10.1007/BF00386724; SUTHERLAND WJ, 1982, J ANIM ECOL, V51, P491, DOI 10.2307/3979; SUTHERLAND WJ, 1982, ESTUAR COAST SHELF S, V14, P223, DOI 10.1016/S0302-3524(82)80047-9; SUTHERLAND WJ, 1987, BEHAVIOUR, V103, P187, DOI 10.1163/156853987X00341; SUTHERLAND WJ, P ROYAL SOC B; SUTHERLAND WJ, 1991, 20 ACT C INT ORN, P2199; SWENNEN C, 1989, ANIM BEHAV, V38, P8, DOI 10.1016/S0003-3472(89)80061-2; SWENNEN C, 1983, NETH J SEA RES, V17, P57, DOI 10.1016/0077-7579(83)90006-6; SZEKELY T, 1992, J ANIM ECOL, V61, P447, DOI 10.2307/5335; THOMPSON DBA, 1983, ANIM BEHAV, V31, P1226, DOI 10.1016/S0003-3472(83)80029-3; van Eerden M.R., 1984, P84; VINES G, 1980, ANIM BEHAV, V28, P1175, DOI 10.1016/S0003-3472(80)80105-9; WANINK J, 1985, OECOLOGIA, V67, P98, DOI 10.1007/BF00378457; WHITFIELD DP, 1988, ANIM BEHAV, V36, P408, DOI 10.1016/S0003-3472(88)80011-3; WHITFIELD DP, 1990, J ANIM ECOL, V59, P193, DOI 10.2307/5168; WHITFIELD DP, 1985, OECOLOGIA, V27, P554; WIERSMA P, 1994, CONDOR, V96, P257, DOI 10.2307/1369313; Wiersma Popko, 1993, Limosa, V66, P41; WITTER MS, 1993, PHILOS T R SOC B, V340, P73, DOI 10.1098/rstb.1993.0050; ZWARTS L, 1989, MAR ECOL PROG SER, V56, P255, DOI 10.3354/meps056255; ZWARTS L, 1993, NETH J SEA RES, V31, P441, DOI 10.1016/0077-7579(93)90059-2; ZWARTS L, 1992, MAR ECOL PROG SER, V83, P129, DOI 10.3354/meps083129; ZWARTS L, 1990, ARDEA, V78, P279; ZWARTS L, 1990, ARDEA, V78, P257; ZWARTS L, 1992, MAR ECOL PROG SER, V83, P113, DOI 10.3354/meps083113; ZWARTS L, 1980, BIRDS WADDEN SEA, P271; ZWARTS L, 1981, FEEDING SURVIVAL STR, P193 104 9 10 2 8 OPHELIA PUBLICATIONS STENSTRUP KIRKEBY SAND 19, DK-5771 STENSTRUP, DENMARK 0078-5326 OPHELIA Ophelia SEP 1994 6 127 151 25 Marine & Freshwater Biology Marine & Freshwater Biology PK307 WOS:A1994PK30700015 2018-11-12 J TRIPET, F; PERRIN, N TRIPET, F; PERRIN, N SIZE-DEPENDENT PREDATION BY DUGESIA-LUGUBRIS (TURBELLARIA) ON PHYSA-ACUTA (GASTROPODA) - EXPERIMENTS AND MODEL FUNCTIONAL ECOLOGY English Article LIFE-HISTORY THEORY; PREDATOR-PREY INTERACTIONS; SELECTION (DIRECT, INDIRECT) 1. We investigated experimentally predation by the flatworm Dugesia lugubris on the snail Physa acuta in relation to predator body length and to prey morphology [shell length (SL) and aperture width (AW)]. 2. SL and AW correlate strongly in the field, but display significant and independent variance among populations. In the laboratory, predation by Dugesia resulted in large and significant selection differentials on both SL and AW. Analysis of partial effects suggests that selection on AW was indirect, and mediated through its strong correlation with SL. 3. The probability P(ij) for a snail of size category i (SL) to be preyed upon by a flatworm of size category j was fitted with a Poisson-probability distribution, the mean of which increased linearly with predator size (i). Despite the low number of parameters, the fit was excellent (r2 = 0.96). We offer brief biological interpretations of this relationship with reference to optimal foraging theory. 4. The largest size class of Dugesia (>2 cm) did not prey on snails larger than 7 mm shell length. This size threshold might offer Physa a refuge against flatworm predation and thereby allow coexistence in the field. 5. Our results are further discussed with respect to previous field and laboratory observations on P acuta life-history patterns, in particular its phenotypic variance in adult body size. UNIV LAUSANNE,INST ZOOL & ECOL ANIM,CH-1015 LAUSANNE,SWITZERLAND Tripet, Frederic/M-6693-2015; Langerhans, R./A-7205-2009 Tripet, Frederic/0000-0002-7939-0712; 0 26 27 0 12 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0269-8463 FUNCT ECOL Funct. Ecol. AUG 1994 8 4 458 463 10.2307/2390069 6 Ecology Environmental Sciences & Ecology PA056 WOS:A1994PA05600005 2018-11-12 J SIBLY, RM; ATKINSON, D SIBLY, RM; ATKINSON, D HOW REARING TEMPERATURE AFFECTS OPTIMAL ADULT SIZE IN ECTOTHERMS FUNCTIONAL ECOLOGY English Article ADULT SIZE; LIFE-HISTORY THEORY; OPTIMIZATION; REACTION NORM 1. Rearing temperature may affect juvenile mortality, growth and development rates, adult mortality rate, and/or population growth rate. Increased juvenile growth rate may affect the trade-off curve relating fecundity to development period, lowering it and making it less steep. Here we identify the overall effects of temperature on optimal adult size. Larger bodies are favoured by decreased juvenile mortality rate and decreased population growth rate (the sum of these is termed discounted juvenile mortality rate). 2. The effects of the other variables depend on whether environmental heterogeneity is spatial or temporal. Under spatial heterogeneity larger adult bodies are favoured by increased juvenile growth rate but varying adult mortality rate has no effect. Under temporal heterogeneity larger adult bodies are favoured by increased adult mortality rate but the effects of juvenile growth rate depend on the details of the changes in the fecundity-development period trade-off curve. 3. If discounted juvenile mortality rate does not increase at higher temperatures, some of these predictions are hard to reconcile with the finding that higher rearing temperatures generally result in smaller adult bodies. Using available data, we conclude that temperature effects on juvenile growth in spatially heterogeneous environments, and on adult mortality in temporally heterogeneous environments, would generally predict larger rather than smaller size. 4. Predictions involving juvenile mortality and population growth rate are also evaluated using the available data, and mechanisms linking temperature to increased juvenile mortality are discussed. They include increased molecular damage, ectotherm predation and parasitism, drought and oxygen shortage. SIBLY, RM (reprint author), UNIV READING,DEPT PURE & APPL ZOOL,POB 228,READING RG6 2AJ,BERKS,ENGLAND. Sibly, Richard/0000-0001-6828-3543 0 147 151 1 50 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0269-8463 FUNCT ECOL Funct. Ecol. AUG 1994 8 4 486 493 10.2307/2390073 8 Ecology Environmental Sciences & Ecology PA056 WOS:A1994PA05600009 2018-11-12 J JONSSON, KI; TUOMI, J JONSSON, KI; TUOMI, J COSTS OF REPRODUCTION IN A HISTORICAL-PERSPECTIVE TRENDS IN ECOLOGY & EVOLUTION English Article CLUTCH-SIZE; EVOLUTION; SELECTION Costs of reproduction constitute a core assumption of life history theory. After reformulation by G.C. Williams, the cost hypothesis soon became a major foundation of phenotypic life history models. More-recent studies have approached reproductive costs from the perspective of quantitative genetics. Here, we present a brief historical perspective to the development of the cost of reproduction hypothesis. We evaluate the status and heuristic value of the different approaches, and outline how the approaches have originated. JONSSON, KI (reprint author), LUND UNIV, DEPT ECOL, S-22362 LUND, SWEDEN. Jonsson, Ingemar/K-6047-2013 ALERSTAM T, 1984, OIKOS, V43, P253, DOI 10.2307/3544778; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; Caswell H., 1989, MATRIX POPULATION MO; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; CHARNOV EL, 1989, HEREDITY, V62, P113, DOI 10.1038/hdy.1989.15; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; EMLEN JM, 1984, POPULATION BIOL COEV; FISHER R. A., 1930, GENETICAL THEORY NAT; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; LACK D, 1964, NATURE, V203, P98, DOI 10.1038/203098a0; Lack D., 1954, NATURAL REGULATION A; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; MANLY RFJ, 1990, STAGE STRUCTURED POP; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; Orton JH, 1929, NATURE, V123, P14, DOI 10.1038/123014a0; PARTRIDGE L, 1992, TRENDS ECOL EVOL, V7, P99, DOI 10.1016/0169-5347(92)90250-F; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; ROSE MR, 1983, AM ZOOL, V23, P15; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SVARDSON GUNNAR, 1949, REPT INST FRESHWATER RES DROTTNINGHOLM, V29, P115; TUOMI J, 1990, OIKOS, V58, P387, DOI 10.2307/3545231; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S 34 42 44 2 21 ELSEVIER SCIENCE LONDON LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 0169-5347 1872-8383 TRENDS ECOL EVOL Trends Ecol. Evol. AUG 1994 9 8 304 307 4 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity NX318 WOS:A1994NX31800016 21236867 2018-11-12 J ZHANG, DY; WANG, G ZHANG, DY; WANG, G EVOLUTIONARILY STABLE REPRODUCTIVE STRATEGIES IN SEXUAL ORGANISMS - AN INTEGRATED APPROACH TO LIFE-HISTORY EVOLUTION AND SEX ALLOCATION AMERICAN NATURALIST English Article POPULATION-GROWTH RATE; DARWINIAN FITNESS; PLANTS; SELECTION; AGE Resource allocation to reproduction versus survival and allocation of reproductive effort to male versus female function are two basic issues in evolutionary ecology of sexually reproducing organisms. Both have received considerable, but independent, theoretical and empirical attention. An integrated analysis of these two sorts of resource allocation is attempted using Maynard Smith's evolutionarily stable strategy (ESS) technique. The specific goal of this study is to determine under what circumstances separate study of reproductive and sex allocation is justified and under what conditions the rate of population growth is maximized by natural selection, which forms the basis of optimality theory of life-history evolution. We find that if female fitness gain increases linearly with resource investment, the ESS reproductive effort is immune from the effect of sex allocation and if, in addition, male fitness gain is a power function of investment, the ESS sex allocation does not depend on total reproductive effort. However, both male and female fitness gains have to be linear to justify the use of the usual maximization principle of life-history theory. LANZHOU UNIV,DEPT BIOL,LANZHOU 730000,PEOPLES R CHINA Zhang, Da-Yong/B-3078-2011 Zhang, Da-Yong/0000-0003-1056-8735 ABUGOV R, 1986, J THEOR BIOL, V122, P311, DOI 10.1016/S0022-5193(86)80123-0; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Begon M., 1986, ECOLOGY INDIVIDUALS; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BULL J J, 1988, P96; Caswell H., 1989, P285; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Charlesworth B, 1984, EVOLUTIONARY ECOLOGY, P117; CHARLESWORTH D, 1987, EVOLUTION, V41, P948, DOI 10.1111/j.1558-5646.1987.tb05869.x; Charlesworth D., 1984, BIOL J LINN SOC, V23, P333; CHARNOV E L, 1982; CHARNOV EL, 1979, AM NAT, V113, P465, DOI 10.1086/283407; CHARNOV EL, 1979, P NATL ACAD SCI USA, V76, P2480, DOI 10.1073/pnas.76.5.2480; CHARNOV EL, 1988, THEOR POPUL BIOL, V34, P38, DOI 10.1016/0040-5809(88)90034-2; CHARNOV EL, 1986, J THEOR BIOL, V118, P321, DOI 10.1016/S0022-5193(86)80062-5; EHRLICH PR, 1987, SCIENCE ECOLOGY; FISHER R. A., 1930, GENETICAL THEORY NAT; FRANK SA, 1990, ANNU REV ECOL SYST, V21, P13, DOI 10.1146/annurev.ecolsys.21.1.13; FREEMAN DC, 1981, EVOLUTION, V35, P194, DOI 10.1111/j.1558-5646.1981.tb04875.x; GOLDMAN DA, 1986, BOT REV, V52, P157, DOI 10.1007/BF02861000; KARLIN S, 1986, THEORETICAL STUDIES; Lessells C.M., 1991, P32; Lloyd D.G., 1988, EVOLUTION SEX, P233; LLOYD DG, 1982, AM NAT, V120, P571, DOI 10.1086/284014; Lloyd DG., 1984, PERSPECTIVES PLANT P, P277; MURRAY BG, 1985, OIKOS, V44, P509, DOI 10.2307/3565794; NUR N, 1984, OIKOS, V42, P413, DOI 10.2307/3544416; NUR N, 1987, OIKOS, V48, P338, DOI 10.2307/3565523; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0; SMITH JM, 1972, EVOLUTION; SMITH RH, 1991, ADV ECOL RES, V21, P63, DOI 10.1016/S0065-2504(08)60097-5; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STENSETH NC, 1983, OIKOS, V41, P152, DOI 10.2307/3544364; STENSETH NC, 1984, OIKOS, V42, P414, DOI 10.2307/3544417 38 36 47 0 13 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 0003-0147 AM NAT Am. Nat. JUL 1994 144 1 65 75 10.1086/285661 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology NV079 WOS:A1994NV07900006 2018-11-12 J FOX, MG FOX, MG GROWTH, DENSITY, AND INTERSPECIFIC INFLUENCES ON PUMPKINSEED SUNFISH LIFE-HISTORIES ECOLOGY English Article CENTRARCHIDS; COMPETITION; FISHES; GONADS; LIFE HISTORY THEORY; MATURATION; POPULATION; SUNFISH SUCKER CATOSTOMUS-COMMERSONI; CONTRASTING ENVIRONMENTS; GASTEROSTEUS-ACULEATUS; LEPOMIS-GIBBOSUS; FISH ASSEMBLAGES; SIZE; REPRODUCTION; EVOLUTION; PATTERNS; AGE I collected data on 27 pumpkinseed (Lepomis gibbosus) populations in eastern and central Ontario and conducted a transplant experiment with one of these populations to test growth and competition-related predictions of several life history models. The predictions are that early maturity and high gonadal investment will occur: (1) in large and fast-growing juveniles; (2) in populations with low adult:juvenile growth ratios; (3) in populations with low density; and (4) in the absence of bluegill sunfish (Lepomis macrochirus), a competing congener. Predictions 1 and 4 were fully supported and Prediction 2 was partly supported, but Prediction 3 was not. The earliest maturing juveniles within populations were significantly larger than conspecifics of the same age that did not mature. Females from a lake population that were transplanted into a fishless pond exhibited both significantly faster growth and a significantly higher gonad to body mass ratio (gonadosomatic index) than females living in the lake. At the population level, juvenile growth was significantly correlated with age at maturity (r = -0.53), but not with gonadosomatic index, whereas the Adult: Juvenile Growth Ratio showed a significant, negative correlation with gonadosomatic index (r = -0.66), but not with mean age at maturity. Mean age at maturity showed a stronger correlation with the indicator of life-span and adult survival rate (r = 0.74), suggesting that mortality is more important than growth in the shaping of reproductive life histories of pumpkinseed. High population density was associated with early maturity and high gonadal investment, the opposite of what was predicted. However, pumpkinseed populations that co-occurred with bluegills did mature significantly later and at a larger size and tended to have a lower gonadal investment than populations living in waterbodies without bluegills. This difference in reproductive patterns in the presence of bluegill is consistent with two-stage life history theory and may be the result of a direct effect of bluegills on pumpkinseed growth and survivorship, as well as differences in environmental conditions where the two species do or do not co-occur. FOX, MG (reprint author), TRENT UNIV,ENVIRONM & RESOURCE STUDIES PROGRAM,PETERBOROUGH K9J 7B8,ON,CANADA. ALM G, 1959, I FRESHWATER RES DRO, V40, P1; ALM G, 1946, MEDD STATENS UNDERSO, V25, P1; BAGENAL TB, 1978, INT BIOL PROGRAMME H, V3, P101; BALTZ DM, 1982, ENVIRON BIOL FISH, V7, P229, DOI 10.1007/BF00002498; Calow P., 1985, P13; CARLANDER KD, 1982, T AM FISH SOC, V111, P332, DOI 10.1577/1548-8659(1982)111<332:SIFCLF>2.0.CO;2; CARLANDER KD, 1977, HDB FRESHWATER FISHE, V2; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CONSTANTZ GD, 1979, OECOLOGIA, V40, P189, DOI 10.1007/BF00347936; CRIVELLI AJ, 1988, ARCH HYDROBIOL, V111, P449; CRIVELLI AJ, 1987, ENVIRON BIOL FISH, V18, P109, DOI 10.1007/BF00002599; DANYLCHUK AJ, IN PRESS CANADIAN J; DEACON LI, 1987, ENVIRON BIOL FISH, V19, P281, DOI 10.1007/BF00003229; DEMASTER DP, 1978, J FISH RES BOARD CAN, V35, P912, DOI 10.1139/f78-148; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; FOX MG, 1990, T AM FISH SOC, V119, P112, DOI 10.1577/1548-8659(1990)119<0112:EOFDOG>2.3.CO;2; FOX MG, 1991, CAN J FISH AQUAT SCI, V49, P1792; FOX MG, 1990, CAN J ZOOL, V68, P2487; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GROSS MR, 1982, Z TIERPSYCHOL, V60, P1; GROSS MR, 1980, THESIS U UTAH SALT L; HALL DJ, 1989, CAN J FISH AQUAT SCI, V46, P2203; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; KEAST A, 1977, Environmental Biology of Fishes, V2, P235, DOI 10.1007/BF00005992; KEAST A, 1978, J FISH RES BOARD CAN, V35, P12, DOI 10.1139/f78-003; KEAST A, 1989, ENVIRON BIOL FISH, V27, P201; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; KOZLOWSKI J, 1991, ACTA OECOL, V12, P11; KOZLOWSKI J, 1992, ACTA ECOLOGICA, V7, P15; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; LEGGETT WC, 1969, J FISH RES BOARD CAN, V26, P1585, DOI 10.1139/f69-142; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; MAC ARTHUR ROBERT H., 1967; Mann R.H.K., 1984, P171; MILLS CA, 1988, J FISH BIOL, V33, P53; MITTELBACH G, 1986, ENVIRON BIOL FISH, V16, P159, DOI 10.1007/BF00005168; MITTELBACH GG, 1988, ECOLOGY, V69, P614, DOI 10.2307/1941010; MORIN R, 1982, CAN J FISH AQUAT SCI, V39, P958, DOI 10.1139/f82-131; OSENBERG CW, 1992, ECOLOGY, V73, P255, DOI 10.2307/1938737; OSENBERG CW, 1988, CAN J FISH AQUAT SCI, V45, P17, DOI 10.1139/f88-003; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PINHORN AT, 1969, J FISH RES BOARD CAN, V26, P3133, DOI 10.1139/f69-298; PITT TK, 1975, J FISH RES BOARD CAN, V32, P1383, DOI 10.1139/f75-158; REGIER HENRY A., 1962, TRANS AMER FISH SOC, V91, P362, DOI 10.1577/1548-8659(1962)91[362:VOTSMF]2.0.CO;2; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Scott W. B, 1973, B FISH RES BOARD CAN, V184; SEABURG KEITH G., 1964, TRANS AMER FISH SOC, V93, P269, DOI 10.1577/1548-8659(1964)93[269:FHDRAG]2.0.CO;2; Sibly R., 1985, P75; Stearns S.C., 1984, P13; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TONN WM, 1986, CAN J FISH AQUAT SCI, V43, P194, DOI 10.1139/f86-022; TONN WM, 1982, ECOLOGY, V63, P1149, DOI 10.2307/1937251; TRIPPEL EA, 1989, CAN J ZOOL, V67, P2180, DOI 10.1139/z89-308; TRIPPEL EA, 1987, CAN J FISH AQUAT SCI, V44, P1018, DOI 10.1139/f87-119; Venne H, 1989, PHYSL ECOLOGY JAPAN, V1, P239; VOLLESTAD LA, 1990, J FISH BIOL, V37, P853, DOI 10.1111/j.1095-8649.1990.tb03589.x; WERNER EE, 1977, J FISH RES BOARD CAN, V34, P360, DOI 10.1139/f77-058; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; WOOTTON RJ, 1977, J ANIM ECOL, V46, P823, DOI 10.2307/3643 63 95 99 4 71 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology JUN 1994 75 4 1157 1171 10.2307/1939439 15 Ecology Environmental Sciences & Ecology NP103 WOS:A1994NP10300028 2018-11-12 J MILLER, EM MILLER, EM OPTIMAL ADJUSTMENT OF MATING EFFORT TO ENVIRONMENTAL-CONDITIONS - A CRITIQUE OF CHISHOLMS APPLICATION OF LIFE-HISTORY THEORY WITH COMMENTS ON RACE DIFFERENCES IN MALE PATERNAL INVESTMENT STRATEGIES MANKIND QUARTERLY English Article R/K REPRODUCTIVE STRATEGIES; EVOLUTIONARY ANALYSIS; CHILDHOOD EXPERIENCE; BEHAVIOR; TESTOSTERONE; SOCIOBIOLOGY; PERSPECTIVE; MINNESOTA; SELECTION In a recent article, Chisholm drew attention to the possibility of applying life history theory to humans. He argued that humans could have a built-in mechanism which detects parental stress (indicating high mortality conditions) and responds by increasing mating effort;at the expense of parenting effort. However, the production of more offspring in adverse times would force parents to divide scarcer resources among more children, thereby lowering reproductive success. The evolutionary facts are better explained by simple genetic mechanisms. The optimal strategy in the plentiful environments such as most tropical zones would differ from that appropriate to colder climates. Males in the tropics would be selected for high mating efforts, while males in harsher northern climates would be selected for strong pair bonding that would enhance the likelihood that their offspring will survive to reach maturity and reproduce in their turn. Certain racial differences can be explained by this theory of evolutionary adaptation. MILLER, EM (reprint author), UNIV NEW ORLEANS, NEW ORLEANS, LA 70148 USA. AMA PFM, 1986, J APPL PHYSIOL, V61, P1758; BACHU A, 1993, FERTILIGY AM WOMEN J; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BOUCHARD TJ, 1990, SCIENCE, V250, P223, DOI 10.1126/science.2218526; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Brownmiller S., 1975, AGAINST OUR WILL; BRUES AM, 1990, PEOPLE RACES; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHISHOLM JS, 1988, SOCIOBIOLOGICAL PERS, P340; DAMON A, 1962, AM J PHYS ANTHROPOL, V20, P461, DOI 10.1002/ajpa.1330200407; DRAPER P, 1989, ETHOL SOCIOBIOL, V10, P145, DOI 10.1016/0162-3095(89)90017-4; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; Eaves L, 1989, GENES CULTURE PERSON; ELLIS L, 1992, STEROIDS, V57, P72, DOI 10.1016/0039-128X(92)90032-5; ELLIS L, 1987, DEVIANT BEHAV, V8, P149, DOI 10.1080/01639625.1987.9967739; ELLIS L, 1991, J RES CRIME DELINQ, V28, P227, DOI 10.1177/0022427891028002006; ELLIS L, 1989, THEORIES RAPE; ELLIS L, 1993, SOCIAL STRATIFICATIO, V1, P159; FELLOUS M, 1990, ANN HUM GENET, V54, P287; FRISCH RE, 1988, SCI AM, V258, P88, DOI 10.1038/scientificamerican0388-88; FRISCH RE, 1972, DEV PSYCHOL, V7, P313; HAMMER MF, 1994, MOL BIOL EVOL, V11, P749; HIMES JH, 1988, CAN J SPORT SCI, V13, P117; JAYNES GD, 1989, COMMON DESTINY BLACK; LASKAMIERZEJEWS.T, 1982, DYMORFIZM PLCLOWY CZ; Lee R. B., 1968, MAN HUNTER, P30; LEWONTIN RC, 1969, P NATL ACAD SCI USA, V62, P1056, DOI 10.1073/pnas.62.4.1056; LIVELY CM, 1986, AM NAT, V128, P561, DOI 10.1086/284588; Loehlin J.C., 1992, GENES ENV PERSONALIT; LYKKEN DT, 1990, ACTA GENET MED GEMEL, V39, P35, DOI 10.1017/S0001566000005572; LYNN R, 1991, MANKIND QUART, V32, P99; LYNN R, 1991, MANKIND QUART, V31, P255; LYNN R, 1990, PSYCHOL REP, V67, P1203; MAC ARTHUR ROBERT H., 1967; MACCOBY EE, 1991, CHILD DEV, V62, P676, DOI 10.2307/1131168; MALINA RM, 1988, CAN J SPORT SCI, V13, P136; MILLER EM, 1994, PERS INDIV DIFFER, V17, P227, DOI 10.1016/0191-8869(94)90029-9; MILLER EM, 1993, PERS INDIV DIFFER, V15, P665, DOI 10.1016/0191-8869(93)90008-Q; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; MORGAN SP, 1993, AM J SOCIOL, V98, P799, DOI 10.1086/230090; OTTERBEIN KF, 1965, AM ANTHROPOL, V67, P66, DOI 10.1525/aa.1965.67.1.02a00050; PEARSON R, 1991, RACE INTELLIGENCE BI; PLOMIN R, 1990, HDB DEV PSYCHOPATHOL; POLLITZER WS, 1989, AM J CLIN NUTR, V50, P1244; ROBERTS GW, 1978, WOMEN JAMAICA; Rowe D. C, 1994, LIMITS FAMILY INFLUE; Rushton J. Philippe, 1994, RACE EVOLUTION BEHAV; RUSHTON JP, 1989, J RES PERS, V23, P35, DOI 10.1016/0092-6566(89)90032-9; RUSHTON JP, 1987, J RES PERS, V21, P529, DOI 10.1016/0092-6566(87)90038-9; RUSHTON JP, 1987, ACTA GENET MED GEMEL, V36, P289, DOI 10.1017/S0001566000006048; RUSHTON JP, 1988, PERS INDIV DIFFER, V9, P1009, DOI 10.1016/0191-8869(88)90135-3; RUSHTON JP, 1986, J PERS SOC PSYCHOL, V50, P1192, DOI 10.1037/0022-3514.50.6.1192; RUSHTON JP, 1992, PERS INDIV DIFFER, V13, P439, DOI 10.1016/0191-8869(92)90072-W; RUSHTON JP, 1989, SOC SCI MED, V28, P1211, DOI 10.1016/0277-9536(89)90339-0; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; RUSHTON JP, 1994, CURRENT ANTHR; RUSHTON JP, 1994, PERSONALITY INDIVIDU; SMITH MG, 1962, W INDIAN FAMILY STRU; Staples R., 1993, BLACK FAMILIES CROSS; TAYLOR J, 1992, PAVED GOOD INTENTION; Wilson J. Q., 1985, CRIME HUMAN NATURE; WORTHY M, 1970, J PERS SOC PSYCHOL, V16, P439, DOI 10.1037/h0020917; WORTHY M, 1977, EYE COLOR SEX RACE 64 11 11 0 4 COUNCIL SOCIAL & ECONOMIC STUDIES WASHINGTON 1133 13TH ST, NW #C-2, WASHINGTON, DC 20005 USA 0025-2344 MANKIND QUART Mankind Q. SUM 1994 34 4 297 316 20 Anthropology Anthropology RA348 WOS:A1994RA34800003 2018-11-12 J VOLLESTAD, LA; LABEELUND, JH VOLLESTAD, LA; LABEELUND, JH EVOLUTION OF THE LIFE-HISTORY OF ARCTIC CHARR SALVELINUS-ALPINUS EVOLUTIONARY ECOLOGY English Article MORTALITY; AGE AT MATURITY; GROWTH; REPRODUCTIVE INVESTMENT; LIFE HISTORY THEORY BROWN TROUT; DIMENSIONLESS NUMBERS; SALMO-TRUTTA; NATURAL MORTALITY; LOCH-RANNOCH; GROWTH; AGE; PARAMETERS; MATURITY; SURVIVAL Arctic chaff Salvelinus alpinus life histories are very variable, both within and between localities. In some lakes we find more than one phenotype (in Lake Thingvallavatn there are four), each phenotype having a characteristic life history. In spite of this, the life histories of 44 populations of Arctic chaff from throughout its range of distribution can be described accurately by a number of dimensionless indices made up from some common life-history descriptors (age and length at maturity, theoretical maximal length, instantaneous rate of natural mortality). This is contrary to what we previously have found for Brown trout Salmo trutta and we discuss this difference. We also test a new model which seeks to predict reproductive effort based on information on relative length at maturity (L(alpha))/L(inf)) and age at maturity. The model did not fit the observed reproductive investment data. NORWEGIAN WATER RESOURCES & ENERGY ADM, N-0301 OSLO, NORWAY VOLLESTAD, LA (reprint author), UNIV OSLO, DEPT BIOL, DIV ZOOL, POB 1050, N-0316 OSLO, NORWAY. Vollestad, Leif Asbjorn/0000-0002-9389-7982 Beverton R. J. H., 1959, CIBA FDN C AGEING, V5, P142, DOI DOI 10.1002/9780470715253.CH10; BEVERTON RJH, 1992, J FISH BIOL, V41, P137, DOI 10.1111/j.1095-8649.1992.tb03875.x; CHARNOV EL, 1991, PHILOS T ROY SOC B, V332, P41, DOI 10.1098/rstb.1991.0031; CHARNOV EL, 1989, EVOL ECOL, V3, P236, DOI 10.1007/BF02270724; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; CHARNOV EL, 1991, EVOL ECOL, V5, P63, DOI 10.1007/BF02285246; Charnov Eric L., 1993, P1; Dahl K., 1917, STUDIER FORSOK ORRET; DALENE M, 1973, THESIS OSLO; DEMPSON JB, 1985, CAN J ZOOL, V63, P315, DOI 10.1139/z85-048; FJELD E, 1985, THESIS OSLO; FJELDSET T, 1983, THESIS OSLO; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; FRASER NC, 1981, BIOL ARCTIC CHARR, P163; FROST WE, 1965, PROC R SOC SER B-BIO, V163, P232, DOI 10.1098/rspb.1965.0070; FURST M, 1978, INFORMATION FRAN SOT, V15, P1; GUDBERGSSON G, 1985, THESIS OSLO; GUNDERSON DR, 1980, CAN J FISH AQUAT SCI, V37, P2266, DOI 10.1139/f80-272; GUNDERSON DR, 1988, J CONSEIL, V44, P200; HARTLEY SE, 1992, J FISH BIOL, V41, P1021, DOI 10.1111/j.1095-8649.1992.tb02729.x; HEALEY MC, 1984, CAN J FISH AQUAT SCI, V41, P476, DOI 10.1139/f84-057; HEGGE O, 1991, T AM FISH SOC, V120, P141, DOI 10.1577/1548-8659(1991)120<0141:AASASM>2.3.CO;2; HINDAR K, 1986, BIOL J LINN SOC, V27, P269, DOI 10.1111/j.1095-8312.1986.tb01737.x; HUNTER JG, 1970, FISH RES BOARD CAN T, V231, P1; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; JONSSON B, 1989, FRESHWATER BIOL, V21, P71, DOI 10.1111/j.1365-2427.1989.tb01349.x; JONSSON B, 1982, CAN J FISH AQUAT SCI, V39, P1404, DOI 10.1139/f82-189; Jonsson B., 1989, PHYSL ECOL JAPAN, V1, P93; LABEELUND, 1991, THESIS TRONDHEIM; LABEELUND JH, 1989, J ANIM ECOL, V58, P525, DOI 10.2307/4846; LABEELUND JH, 1990, J FISH BIOL, V37, P755, DOI 10.1111/j.1095-8649.1990.tb02539.x; Lien L., 1978, Holarctic Ecology, V1, P279; MAAR ALEXANDER, 1949, REPT INST FRESHWATER RES DROTTNINGHOLM, V29, P57; MANN RHK, 1985, ENVIRON BIOL FISH, V13, P277, DOI 10.1007/BF00002911; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; MILLS CA, 1989, PHYSL ECOL JAPAN SPE, V1, P371; NORDENG H, 1983, CAN J FISH AQUAT SCI, V40, P1372, DOI 10.1139/f83-159; OTTAWAY EM, 1981, J FISH BIOL, V19, P593, DOI 10.1111/j.1095-8649.1981.tb03825.x; PAULY D, 1980, J CONSEIL, V39, P175; Ricker W. E., 1975, FISHERIES RES BOARD, V191, P382; RIGET FF, 1986, CAN J FISH AQUAT SCI, V43, P985, DOI 10.1139/f86-121; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; ROFF DA, 1982, CAN J FISH AQUAT SCI, V39, P1686, DOI 10.1139/f82-225; ROFF DA, 1986, BIOSCIENCE, V36, P316, DOI 10.2307/1310236; Roff Derek A., 1992; SANDLUND OT, 1992, OIKOS, V64, P305, DOI 10.2307/3545056; SAUNDERS L H, 1969, Naturaliste Canadien (Quebec), V96, P919; SHINE R, 1992, AM NAT, V139, P1257, DOI 10.1086/285385; SKURDAL J, 1982, ROYE SALVELINUS ALPI; Sokal R. R., 1981, BIOMETRY; SPARHOLT H, 1985, J FISH BIOL, V26, P313, DOI 10.1111/j.1095-8649.1985.tb04270.x; STEARNS SC, 1983, EVOLUTION, V37, P601, DOI 10.1111/j.1558-5646.1983.tb05577.x; SVENNING MA, 1985, THESIS TROMSO; Venne H, 1989, PHYSL ECOLOGY JAPAN, V1, P239; VOLLESTAD LA, 1990, J FISH BIOL, V37, P853, DOI 10.1111/j.1095-8649.1990.tb03589.x; VOLLESTAD LA, 1993, EVOL ECOL, V7, P207, DOI 10.1007/BF01239389; WALKER AF, 1988, BIOL CONSERV, V43, P43, DOI 10.1016/0006-3207(88)90077-8; WOOTON R.J., 1990, ECOLOGY TELEOST FISH; 1982, FJELDORREDUNDERSOGEL 61 27 28 0 1 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. MAY 1994 8 3 315 327 10.1007/BF01238281 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity NM256 WOS:A1994NM25600008 2018-11-12 J ROGERS, CM; NOLAN, V; KETTERSON, ED ROGERS, CM; NOLAN, V; KETTERSON, ED WINTER FATTENING IN THE DARK-EYED JUNCO - PLASTICITY AND POSSIBLE INTERACTION WITH MIGRATION TRADE-OFFS OECOLOGIA English Article PLASTICITY; LIFE HISTORY; MIGRATION; FAT; TRADE-OFF PHENOTYPIC PLASTICITY; GEOGRAPHIC-VARIATION; LIFE-HISTORY; BODY-MASS; REPRODUCTIVE TRAITS; WEIGHT; CONSEQUENCES; SPARROWS; BIRDS; FAT Although fat often supplies the major source of metabolic fuel during winter fasts of birds, this critical life-history trait is little studied by ecologists. In the dark-eyed junco Junco hyemalis, we have in a series of studies investigated the extent of plasticity in the winter fat reserve. Earlier (Rogers et al. 1993), we reported (1) a highly variable pattern of geographic variation in the winter fat reserve of junco populations in eastern North America, (2) disappearance of statistically significant interpopulation variation after experimental displacement to a common latitude, and (3) post-displacement temporal variation in the fat reserve. In analyses reported here, recent temperature, recent snowfall (a measure of short-term predictability of resources), season (perhaps reflecting continued exposure to unpredictable resources) and daylength explained spatial variation in the fat store. Recent temperature explained temporal variation in the fat reserves of groups of displaced juncos. These results suggest that plasticity in a life-history trait has evolved in an uncertain winter environment. Through environment-dependent fattening, the costs of fat can be avoided during warm periods and at locations where fat confers little benefit, whereas benefits of fat can be quickly gained if weather conditions become harsh and snowfall might restrict food. Three types of winter fatteners probably exist among birds: responders (fatten in response to the proximate environment), predictors (fatten in anticipation of long-term environmental conditions), and responder-predictors (combination of both types of regulation). Because dark-eyed juncos select different winter latitudes as they age, we hypothesize that the nonbreeding component of the life-history of juncos includes the co-adapted plastic traits of winter fattening and post-breeding migration. Life-history theory can apparently explain important traits related to fitness in the nonbreeding period. INDIANA UNIV,DEPT BIOL,BLOOMINGTON,IN 47405 ARCESE P, 1992, ECOLOGY, V73, P805, DOI 10.2307/1940159; Blem C.R., 1990, Current Ornithology, V7, P59; BLEM CR, 1986, CAN J ZOOL, V64, P2405, DOI 10.1139/z86-359; BLEM CR, 1975, WILSON BULL, V87, P543; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; BRAWN JD, 1991, OECOLOGIA, V86, P193, DOI 10.1007/BF00317531; BROWN KM, 1985, EVOLUTION, V39, P387, DOI 10.1111/j.1558-5646.1985.tb05675.x; CASWELL H, 1983, AM ZOOL, V23, P35; DAWSON WR, 1986, PHYSIOL ZOOL, V59, P357, DOI 10.1086/physzool.59.3.30156107; Ekman JB, 1990, BEHAV ECOL, V1, P62, DOI 10.1093/beheco/1.1.62; EVANS PR, 1969, J ANIM ECOL, V38, P415, DOI 10.2307/2781; FORD NB, 1989, ECOLOGY, V70, P1768, DOI 10.2307/1938110; HAFTORN S, 1989, WILSON BULL, V101, P217; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; HOUSTON AI, 1993, ORNIS SCAND, V24, P205, DOI 10.2307/3676736; Jain S., 1979, Topics in plant population biology., P160; KAPLAN RH, 1986, OECOLOGIA, V71, P273; KENDEIGH SC, 1969, COMP BIOCHEM PHYSIOL, V31, P941, DOI 10.1016/0010-406X(69)91803-9; Ketterson E.D., 1983, Current Ornithology, V1, P357; KETTERSON ED, 1976, ECOLOGY, V57, P679, DOI 10.2307/1936182; KETTERSON ED, 1982, AUK, V99, P243; KING JR, 1981, AUK, V98, P752; LEHIKOINEN E, 1987, ORNIS SCAND, V18, P216, DOI 10.2307/3676769; LESSELLS CM, 1989, J EVOLUTION BIOL, V2, P457, DOI 10.1046/j.1420-9101.1989.2060457.x; Levins R., 1968, EVOLUTION CHANGING E; Lima S. L., 1986, ECOLOGY, V67, P366; MCNAMARA JM, 1990, BEHAV MECH FOOD SELE, P39; MCNAMARA JM, 1990, LIVING PATCHY ENV; NEWMAN RA, 1989, ECOLOGY, V70, P1775, DOI 10.2307/1938111; NEWTON I, 1969, PHYSIOL ZOOL, V42, P96, DOI 10.1086/physzool.42.1.30152470; NOLAN V, 1983, WILSON BULL, V95, P603; NOLAN V, 1991, ETHOLOGY, V87, P123; NOLAN V, 1990, ECOLOGY, V71, P1267, DOI 10.2307/1938264; O'Connor R.J., 1973, P111; ROGERS CM, 1990, ORNIS SCAND, V21, P105, DOI 10.2307/3676805; ROGERS CM, 1987, ECOLOGY, V68, P1051, DOI 10.2307/1938377; ROGERS CM, 1993, ECOLOGY, V74, P1183, DOI 10.2307/1940488; ROGERS CM, 1991, ORNIS SCAND, V22, P387, DOI 10.2307/3676513; ROGERS CM, 1989, ANIM BEHAV, V37, P498, DOI 10.1016/0003-3472(89)90096-1; ROGERS CM, 1992, J FIELD ORNITHOL, V62, P349; ROGERS CM, 1993, IN PRESS ECOLOGY, V74; ROTENBERRY JT, 1991, ECOLOGY, V72, P1325, DOI 10.2307/1941105; SCHLICHTING CD, 1986, ANNU REV ECOL SYST, V17, P667, DOI 10.1146/annurev.es.17.110186.003315; SCHLICHTING CD, 1989, BIOSCIENCE, V39, P460, DOI 10.2307/1311138; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Weisberg S., 1985, APPLIED LINEAR REGRE; Williams GC, 1966, ADAPTATION NATURAL S; WONNACOTT TH, 1985, INTRO STATISTICS; 1985, SAS USERS GUIDE STAT; 1982, CLIMATOLOGICAL DATA; 1963, CLIMATOGRAPHY US, V84 53 21 21 1 10 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia MAY 1994 97 4 526 532 10.1007/BF00325892 7 Ecology Environmental Sciences & Ecology NL979 WOS:A1994NL97900014 28313743 2018-11-12 J ECKELBARGER, KJ ECKELBARGER, KJ DIVERSITY OF METAZOAN OVARIES AND VITELLOGENIC MECHANISMS - IMPLICATIONS FOR LIFE-HISTORY THEORY PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON English Review HETEROSYNTHETIC YOLK FORMATION; DEEP-SEA BENTHOS; LECITHOTROPHIC DEVELOPMENT; ULTRASTRUCTURAL EVIDENCE; PHRAGMATOPOMA-LAPIDOSA; CAENORHABDITIS-ELEGANS; REPRODUCTIVE PATTERNS; MARINE-INVERTEBRATES; PLANKTONIC COPEPOD; CAPITELLA-CAPITATA Metazoan life histories are diverse and the selective pressures that have shaped them have resulted in wide interspecific variation in egg size and energy content, fecundity, the age of first reproduction, and the number of and interval between reproductive episodes. Metazoan ovaries show wide morphological variation and a number of mechanisms have evolved by which yolk is synthesized within growing oocytes. The ovary and associated vitellogenic mechanisms play a direct role in the rate of egg production, the frequency of breeding, and the size and energy content of the egg and resultant consequences for larval dispersal. Evolutionary discussions of semelparity vs. iteroparity, r-selected and K-selected species, and the significance of interspecific variability in egg size, energy content and resultant larval mode, should consider the role of oogenesis because the developmental pathways established during oogenesis have a direct effect on subsequent life histories. Reproductive success in both pelagic and benthic marine communities is influenced by a species' capacity to convert food into egg production. The vitellogenic phase of oogenesis is generally the longest phase of egg growth but its duration varies by orders of magnitude between species due to interspecific differences in vitellogenic mechanisms. Metazoans can be viewed on a continuum from slow to fast egg producers, each utilizing physiologically distinct vitellogenic pathways that limit the rate of egg production. Reproductive responses to food vary widely among species and are probably correlated with interspecific differences in digestive kinetics and vitellogenic mechanisms. So-called opportunistic species have evolved specialized vitellogenic pathways for the rapid conversion of food into egg production while many other species (e.g., annual spawners) utilize slower pathways. There exist complex interrelationships between habitat, food, feeding strategies, digestive constraints, and vitellogenic mechanisms that need to be appreciated if marine community dynamics are to be fully comprehended. This review discusses the adaptive significance of metazoan ovaries and vitellogenic mechanisms and their possible life history consequences. UNIV MAINE, DEPT ANIM VET & AQUAT SCI, ORONO, ME 04469 USA ECKELBARGER, KJ (reprint author), UNIV MAINE, DARLING MARINE CTR, WALPOLE, ME 04573 USA. ARMANT DR, 1986, DEV BIOL, V113, P342, DOI 10.1016/0012-1606(86)90169-7; BEIJNINK FB, 1984, CELL TISSUE RES, V238, P339; BENTFELD ME, 1971, Z ZELLFORSCH MIK ANA, V115, P184, DOI 10.1007/BF00391124; BLADESECKELBARG.PI, 1992, BIOL BULL, V182, P241; BLADESECKELBARGER PI, 1984, J MORPHOL, V179, P33, DOI 10.1002/jmor.1051790105; BOWNES M, 1982, Q REV BIOL, V57, P247, DOI 10.1086/412802; BRAFIELD AE, 1967, J MAR BIOL ASSOC UK, V47, P619, DOI 10.1017/S0025315400035232; CHECKLEY DM, 1980, LIMNOL OCEANOGR, V25, P991, DOI 10.4319/lo.1980.25.6.0991; CLARK RB, 1973, OCEANOGR MAR BIOL AN, V11, P176; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Davidson E, 1986, GENE ACTIVITY EARLY; DAVIS WR, 1969, THESIS CALIFORNIA ST; Dunlap Pianka H, 1974, REPRODUCTION MARINE, P201; ECKELBARGER KJ, 1980, ZOOMORPHOLOGIE, V94, P241, DOI 10.1007/BF00998204; ECKELBARGER KJ, 1979, TISSUE CELL, V11, P425, DOI 10.1016/0040-8166(79)90054-5; ECKELBARGER KJ, 1986, B MAR SCI, V39, P426; ECKELBARGER KJ, 1983, BIOL BULL, V165, P379, DOI 10.2307/1541203; ECKELBARGER KJ, 1992, MAR BIOL, V114, P633, DOI 10.1007/BF00357260; ECKELBARGER KJ, 1988, MAR BIOL, V100, P103, DOI 10.1007/BF00392960; ECKELBARGER KJ, 1992, J MAR BIOL ASSOC UK, V72, P759, DOI 10.1017/S0025315400060033; ECKELBARGER KJ, 1982, J MORPHOL, V171, P305, DOI 10.1002/jmor.1051710306; ECKELBARGER KJ, 1983, CAN J ZOOL, V61, P487, DOI 10.1139/z83-065; ECKELBARGER KJ, 1976, B MAR SCI, V26, P117; ECKELBARGER KJ, 1994, REPRODUCTION DEV MAR; Emlet R.B., 1987, Echinoderm Studies, V2, P55; Fautin D.G., 1991, P267; Fischer A., 1986, Advances in Invertebrate Reproduction, V4, P195; FISCHER A, 1985, CELL TISSUE RES, V240, P67; Gage J, 1991, DEEP SEA BIOL NATURA; Gardiner S. L., 1992, American Zoologist, V32, p124A; GEORGE SB, 1990, INVERTEBR REPROD DEV, V17, P111, DOI 10.1080/07924259.1990.9672098; GHISELIN MT, 1978, AM ECON REV, V68, P233; Gould S.J., 1977, ONTOGENY PHYLOGENY; GRAHAME J, 1985, OCEANOGR MAR BIOL, V23, P373; GRASSLE JF, 1974, J MAR RES, V32, P253; GRASSLE JF, 1973, DEEP-SEA RES, V20, P643; GREMARE A, 1989, MAR BIOL, V100, P365, DOI 10.1007/BF00391152; GREMIGNI V, 1991, HYDROBIOLOGIA, V227, P105, DOI 10.1007/BF00027589; GREVE W, 1970, HELGOLAND WISS MEER, V20, P304, DOI 10.1007/BF01609908; GUSTAFSON RG, 1994, REPRODUCTION LARVAL; HAGEDORN HH, 1979, ANNU REV ENTOMOL, V24, P475, DOI 10.1146/annurev.en.24.010179.002355; HAND C, 1992, BIOL BULL, V182, P169, DOI 10.2307/1542110; HARRISON K E, 1990, Journal of Shellfish Research, V9, P1; HILL SD, 1981, BIOL BULL, V161, P327; HILL SD, 1982, BIOL BULL, V163, P366; Hines A. H., 1979, REPRODUCTIVE ECOLOGY, P213; HOFMANN DK, 1976, ARCH ENTWICKLUNGSUCH, V180, P47; HONEGGER TG, 1981, INT J INVER REP DEV, V3, P245; HUEBNER E, 1976, AM ZOOL, V16, P315; HUTCHINSON GE, 1967, TREATISE LIMNOLOGY, V2; Jamieson B. G. M., 1992, P217; JENNISON BL, 1979, CAN J ZOOL, V57, P403, DOI 10.1139/z79-047; JUMARS PA, 1990, PHILOS T R SOC A, V331, P85, DOI 10.1098/rsta.1990.0058; JUMARS PA, 1989, LIFE SCI R, V44, P235; KIMBLE J, 1983, DEV BIOL, V96, P189, DOI 10.1016/0012-1606(83)90322-6; LAWRENCE JM, 1984, INT J INVER REP DEV, V7, P249, DOI 10.1080/01688170.1984.10510097; LEVIN LA, 1986, MAR BIOL, V92, P103, DOI 10.1007/BF00392752; LEVIN LA, 1990, ECOLOGY, V71, P2191, DOI 10.2307/1938632; LEVIN LA, 1986, BIOL BULL, V171, P143, DOI 10.2307/1541913; LEVIN LA, 1984, ECOLOGY, V65, P1185, DOI 10.2307/1938326; LEVIN LA, 1994, REPRODUCTION LARVAL; LEVITAN DR, 1988, 6TH P INT ECH C ROTT, P181; LINKE P, 1992, MAR ECOL PROG SER, V81, P51, DOI 10.3354/meps081051; LOPEZ GR, 1987, Q REV BIOL, V62, P235, DOI 10.1086/415511; MAC ARTHUR ROBERT H., 1967; MACARTHUR R, 1960, AM NAT, V94, P25, DOI 10.1086/282106; Mackie GO, 1966, CNIDARIA THEIR EVOLU, P397; MANAHAN DT, 1982, SCIENCE, V215, P1253, DOI 10.1126/science.215.4537.1253; MARSH AG, 1989, MAR BIOL, V102, P519, DOI 10.1007/BF00438354; MARSHALL SM, 1956, PAPERS MARINE BIOL O, V3, P110; MCCLINTOCK JB, 1986, COMP BIOCHEM PHYS A, V85, P341, DOI 10.1016/0300-9629(86)90259-8; MCEDWARD LR, 1987, EVOLUTION, V41, P914, DOI 10.1111/j.1558-5646.1987.tb05865.x; MCEDWARD LR, 1987, MAR ECOL PROG SER, V37, P159, DOI 10.3354/meps037159; MCEDWARD LR, 1991, J EXP MAR BIOL ECOL, V147, P95, DOI 10.1016/0022-0981(91)90039-Y; OHMAN MD, 1987, LIMNOL OCEANOGR, V32, P1317, DOI 10.4319/lo.1987.32.6.1317; Pearse John S., 1991, P513; PENRY DL, 1990, OECOLOGIA, V82, P1, DOI 10.1007/BF00318526; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; QIAN PY, 1991, J EXP MAR BIOL ECOL, V148, P11, DOI 10.1016/0022-0981(91)90143-K; Raff RA, 1983, EMBRYOS GENES EVOLUT; RAIKHEL AS, 1992, ANNU REV ENTOMOL, V37, P217, DOI 10.1146/annurev.en.37.010192.001245; RAZOULS S, 1991, MAR BIOL, V110, P65, DOI 10.1007/BF01313093; REED CG, 1988, OPHELIA, V29, P1; REED CG, 1991, REPRODUCTION MARINE, V6, P85; RIEGER GE, 1980, ZOOMORPHOLOGY, V96, P215, DOI 10.1007/BF00310287; RIVEST BR, 1983, J EXP MAR BIOL ECOL, V69, P217, DOI 10.1016/0022-0981(83)90071-0; ROKOP FJ, 1974, SCIENCE, V186, P743, DOI 10.1126/science.186.4165.743; ROTH TF, 1964, J CELL BIOL, V20, P313, DOI 10.1083/jcb.20.2.313; RUNGE JA, 1984, J EXP MAR BIOL ECOL, V74, P53, DOI 10.1016/0022-0981(84)90037-6; RUTHMANN A, 1964, Z ZELLFORSCH MIK ANA, V63, P816, DOI 10.1007/BF00336223; Sargent J.R., 1986, P59; SCHECHTMAN AM, 1955, BIOL SPECIFICITY GRO, P3; SCHELTEMA RS, 1994, REPRODUCTION LARVAL; SCHROEDER PC, 1968, PAC SCI, V22, P476; SCOTT LB, 1989, DEV BIOL, V132, P91, DOI 10.1016/0012-1606(89)90208-X; SCOTT LB, 1990, DEV BIOL, V138, P188, DOI 10.1016/0012-1606(90)90188-O; SELMAN K, 1988, J EXP ZOOL, V246, P42, DOI 10.1002/jez.1402460107; SHINN GL, 1992, J MORPHOL, V211, P221, DOI 10.1002/jmor.1052110211; SOUTHWARD AJ, 1982, AM ZOOL, V22, P647; Spight T. M., 1979, REPRODUCTIVE ECOLOGY, P135; STARCK J, 1984, INT J INVER REP DEV, V7, P149, DOI 10.1080/01688170.1984.10510086; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STRATHMANN RR, 1977, MAR BIOL, V39, P305, DOI 10.1007/BF00391933; STRICKER SA, 1986, CAN J ZOOL, V64, P1256, DOI 10.1139/z86-188; Telfer W. H., 1975, Advances Insect Physiol, V11, P223, DOI 10.1016/S0065-2806(08)60164-2; TENORE KR, 1983, ESTUAR COAST SHELF S, V17, P733, DOI 10.1016/0272-7714(83)90039-2; TESTER PA, 1990, J EXP MAR BIOL ECOL, V141, P169, DOI 10.1016/0022-0981(90)90222-X; TLER PA, 1994, REPRODUCTION LARVAL; TURNER RD, 1973, SCIENCE, V180, P1377, DOI 10.1126/science.180.4093.1377; Turner RL, 1979, REPROD ECOLOGY MARIN, P25; Wallace R A, 1985, Dev Biol (N Y 1985), V1, P127; WILD AE, 1980, COATED VESICLES, P1; Williams J., 1967, BIOCH ANIMAL DEV, P341; Wourms J.P., 1987, REPRODUCTION MARINE, P50; Wynne-Edwards V., 1962, ANIMAL DISPERSION RE; YAMASHITA O, 1988, DEV GROWTH DIFFER, V30, P337; YOUNG CM, 1990, OPHELIA, V32, P1 117 84 86 0 18 ALLEN PRESS INC LAWRENCE 810 E 10TH ST, LAWRENCE, KS 66044 USA 0006-324X 1943-6327 P BIOL SOC WASH Proc. Biol. Soc. Wash. APR 20 1994 107 1 193 218 26 Biology Life Sciences & Biomedicine - Other Topics NG958 WOS:A1994NG95800021 2018-11-12 J GENOUD, M; PERRIN, N GENOUD, M; PERRIN, N FECUNDITY VERSUS OFFSPRING SIZE IN THE GREATER WHITE-TOOTHED SHREW, CROCIDURA-RUSSULA JOURNAL OF ANIMAL ECOLOGY English Article SIZE; REPRODUCTION; GROWTH; INDIVIDUAL VARIATION; LIFE-HISTORY THEORY LITTER SIZE; SORICIDAE; INSECTIVORA; POPULATION; EVOLUTION; HABITAT; SOREX 1. The relationships between female body mass (W(a)), litter size (m), juvenile growth rate (G) and mass at weaning (W20) were examined by monitoring natural litters in 29 greater white-toothed shrews, Crocidura russula (Hermann 1780). The trade-offs between m and G or W20 were further investigated by manipulating litter sizes: each of seven females reared four litters of 2, 4, 6 and 8 offspring. 2. Offspring mass at weaning (W20) exhibited a large variance, most of which could be attributed (ANCOVA On manipulated litters) to two effects: a litter-size effect, and a female individual effect, referred to as 'female quality'. 3. Litter size explained 68% of the variance in W20 among manipulated litters (linear regression). The limited milk supply was probably responsible for this effect, because litter size depressed growth rate during the first half of the lactation period (G1), but not during the weaning stage (G2). 4. Among non-manipulated litters, litter size correlated positively with maternal body mass (W(a)), so that large females tended to produce small juveniles. This correlation between m and W(a) is seen as the result of a body-mass dependence in the cost of raising a litter of a given size, during either pregnancy or lactation. 5. Differences in 'female quality' explained 16% of the variance in W20 among manipulated litters. This factor did not affect G1 and may thus relate to differences among offspring of different females in their rates of processing milk and/or external food during late lactation. 6. 'Female quality' was independent of both body mass and litter size: larger females did not produce larger offspring when controlled for litter size, while higher-quality females did not produce larger litters. 7. Our results support the hypothesis that most variance in adult and juvenile body masses is non-genetic, and stems from the trade-off between litter size and offspring size. GENOUD, M (reprint author), UNIV LAUSANNE,INST ZOOL & ANIM ECOL,CH-1015 LAUSANNE,SWITZERLAND. ALBON SD, 1987, J ANIM ECOL, V56, P69, DOI 10.2307/4800; BESANCON F, 1984, THESIS U LAUSANNE; CANTONI D, 1989, ANIM BEHAV, V38, P205, DOI 10.1016/S0003-3472(89)80083-1; Clutton-Brock TH, 1988, REPROD SUCCESS, P472; FALCONER D. S., 1965, Genetics today. Proceedings of the XI International Congress of Genetics, The Hague, the Netherlands, September, 1963., V3, P763; GENOUD M, 1985, J ZOOL, V207, P63; GENOUD M, 1979, TERRE VIE-REV ECOL A, V33, P539; GENOUD M, 1990, J ZOOL, V220, P41, DOI 10.1111/j.1469-7998.1990.tb04293.x; HANSKI I, 1984, ANN ZOOL FENN, V21, P157; JEANMAIREBESANCON F, 1988, ACTA THERIOL, V33, P477, DOI 10.4098/AT.arch.88-40; JEANMAIREBESANCON F, 1986, ACTA OECOL-OEC APPL, V7, P355; KENAGY GJ, 1990, J ANIM ECOL, V59, P73, DOI 10.2307/5159; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; KONIG B, 1993, BEHAV PROCESS, V28, P223; LACK D, 1954, NATURAL REGULATION A; MENDL M, 1988, J ZOOL, V215, P15, DOI 10.1111/j.1469-7998.1988.tb04882.x; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; RIBBLE DO, 1992, J ANIM ECOL, V61, P457, DOI 10.2307/5336; RICHNER H, 1989, J ANIM ECOL, V58, P427, DOI 10.2307/4840; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; TINBERGEN JM, 1990, J ANIM ECOL, V59, P1113, DOI 10.2307/5035; Trivers R. L., 1985, SOCIAL EVOLUTION; TRIVERS RL, 1974, AM ZOOL, V14, P249; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VOGEL P, 1969, Revue Suisse de Zoologie, V76, P1079; VOGEL P, 1972, Revue Suisse de Zoologie, V79, P1201; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 29 15 15 0 7 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0021-8790 J ANIM ECOL J. Anim. Ecol. APR 1994 63 2 328 336 10.2307/5551 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology MZ057 WOS:A1994MZ05700010 2018-11-12 J LAM, PKS LAM, PKS INTRASPECIFIC LIFE-HISTORY VARIATION IN RADIX PLICATULUS (GASTROPODA, PULMONATA, LYMNAEIDAE) JOURNAL OF ZOOLOGY English Article PEREGRA GASTROPODA; PHENOTYPIC PLASTICITY; POPULATIONS; GROWTH; FECUNDITY; SELECTION; SNAIL; BIOENERGETICS; CONSEQUENCES Life-histories of Radix plicatulus (Benson, 1842) populations inhabiting two neighbouring sites on a Hong Kong stream were investigated. In one of the two sites, R. plicatulus co-occurred with high densities of Pomacea levior which is known to prey on the egg capsules and hatchlings of sympatric gastropods. On the basis of general life-history theory, I hypothesized that R. plicatulus which co-occurred with P. levier should exhibit a life-history strategy characterized by a delayed reproduction, a longer recruitment period and a larger number of breeding bouts per year as compared with contemporaries inhabiting the other site with low P. levior abundance. Reproductive patterns of the two populations observed in the field accorded with the expectations of general life-history theory, and lent support to the hypothesis. However, laboratory culture experiments revealed no evidence of a genetic basis for the interpopulation differences. The importance of establishing a genetic basis for the interpopulation divergence before invoking an evolutionary explanation was discussed. LAM, PKS (reprint author), VICTORIA UNIV TECHNOL,DEPT ENVIRONM MANAGEMENT,POB 14428,VICTORIA,BC 3000,CANADA. LAM, Paul/B-9121-2008 LAM, Paul/0000-0002-2134-3710 ALDRIDGE DW, 1982, ECOLOGY, V63, P196, DOI 10.2307/1937044; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; BROWN KM, 1985, EVOLUTION, V39, P387, DOI 10.1111/j.1558-5646.1985.tb05675.x; BROWN MB, 1985, COMPUT STAT DATA AN, V3, P143, DOI 10.1016/0167-9473(85)90076-3; BROWNE RA, 1978, ECOLOGY, V59, P742, DOI 10.2307/1938778; CALOW P, 1981, MALACOLOGIA, V21, P5; Calow P., 1981, PHYSL ECOLOGY EVOLUT, P3; CALOW P, 1983, MOLLUSCA, V6, P649; CASWELL H, 1983, AM ZOOL, V23, P35; CHA MW, 1989, THESIS HONG KONG POL; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; GILL DE, 1983, P BIOL C, V41, P1; HUBENDICK BENGT, 1951, K SVENSKA VETENSKAPSAKAD HANDL, V3, P1; HUNTER RD, 1975, ECOLOGY, V56, P50, DOI 10.2307/1935299; HUNTER W. RUSSELL, 1961, PROC ZOOL SOC LONDON, V137, P135; LAM PKS, 1990, J MOLLUS STUD, V56, P17, DOI 10.1093/mollus/56.1.17; LAM PKS, 1989, J ANIM ECOL, V58, P589, DOI 10.2307/4850; LAM PKS, 1989, J ANIM ECOL, V58, P571, DOI 10.2307/4849; LAM PKS, 1988, J MOLLUS STUD, V54, P357, DOI 10.1093/mollus/54.3.357; Lynch M., 1987, P67; MA HHT, 1991, J ZOOL, V224, P347, DOI 10.1111/j.1469-7998.1991.tb06030.x; MALTBY L, 1986, J ANIM ECOL, V55, P721, DOI 10.2307/4750; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Sibly R., 1985, P75; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; WRONA FJ, 1986, CAN J FISH AQUAT SCI, V43, P2025, DOI 10.1139/f86-248; YOUNG TP, 1981, AM NAT, V118, P27, DOI 10.1086/283798 27 10 10 0 2 OXFORD UNIV PRESS UNITED KINGDOM OXFORD WALTON ST JOURNALS DEPT, OXFORD, ENGLAND OX2 6DP 0952-8369 J ZOOL J. Zool. MAR 1994 232 3 435 446 10.1111/j.1469-7998.1994.tb01584.x 12 Zoology Zoology NB640 WOS:A1994NB64000007 2018-11-12 J FORBES, MRL; CLARK, RG; WEATHERHEAD, PJ; ARMSTRONG, T FORBES, MRL; CLARK, RG; WEATHERHEAD, PJ; ARMSTRONG, T RISK-TAKING BY FEMALE DUCKS - INTRASPECIFIC AND INTERSPECIFIC TESTS OF NEST DEFENSE THEORY BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article LIFE HISTORY THEORY; PARENTAL INVESTMENT; PREDATION RISK; WATERFOWL; OBSERVER EFFECT RED-WINGED BLACKBIRDS; BROOD DEFENSE; PARENTAL INVESTMENT; LIFE-HISTORY; CLUTCH SIZE; SURVIVAL; BEHAVIOR; INTENSITY; KILLDEER; PREDATOR We tested several predictions of nest defense theory by observing variation in flushing distance and probability of nest abandonment within and between six species of waterfowl. In these species, only the females incubate eggs and attend offspring. First, we examined whether flushing distance by females varied in relation to clutch size, stage of incubation, and time of season, after controlling for the number of visits made to nests by observers. Revisits by observers appeared to affect flushing distance by females for reasons unrelated to the relative value of the current clutch. We found that as incubation progressed, females allowed observers to approach more closely before flushing from the nest. In some species, females with larger clutches allowed closer approaches to nests before flushing which was also consistent with nest defense theory. In contrast, time of season (Julian date) did not relate to flushing distance for any species. When species were compared, we found that species with moderate to high yearly mortality and high reproductive output per breeding attempt (e.g., northern shoveler and blue-winged teal) were less likely to abandon nesting attempts and exhibited ''riskier'' behavior (remained at nests when approached closely by observers) than species that had lower yearly mortality (e.g., mallard). Our results show that flushing distance and patterns of nest abandonment by female ducks conform to several predictions of nest defense theory. UNIV SASKATCHEWAN, DEPT BIOL, SASKATOON S7N 0W0, SASKATCHEWAN, CANADA; CARLETON UNIV, DEPT BIOL, OTTAWA K1S 5B6, ONTARIO, CANADA; CANADIAN WILDLIFE SERV PRAIRIE & NO WILDLIFE RES C, SASKATOON S7N 0X4, SK, CANADA FORBES, MRL (reprint author), UNIV REGINA, DEPT BIOL, REGINA S4S 0A2, SASKATCHEWAN, CANADA. Forbes, Mark/B-3575-2013 ANDERSSON M, 1980, ANIM BEHAV, V28, P536, DOI 10.1016/S0003-3472(80)80062-5; ARMSTRONG T, 1988, ANIM BEHAV, V36, P941, DOI 10.1016/S0003-3472(88)80180-5; ARNOLD TW, 1987, AM NAT, V130, P643, DOI 10.1086/284736; BARASH DP, 1975, WILSON BULL, V87, P367; Bellrose F. C., 1980, DUCKS GEESE SWANS N; BLANCHER PJ, 1982, ANIM BEHAV, V30, P929, DOI 10.1016/S0003-3472(82)80167-X; BRUNTON DH, 1990, BEHAV ECOL SOCIOBIOL, V26, P181; BRUNTON DH, 1986, WILSON BULL, V98, P605; Clark Robert G., 1988, Wildfowl, V39, P137; COOKE F, 1984, AUK, V101, P451; CURIO E, 1984, Z TIERPSYCHOL, V66, P101; CURIO E, 1985, Z TIERPSYCHOL, V69, P3; CURIO E, 1987, IBIS, V129, P344, DOI 10.1111/j.1474-919X.1987.tb03178.x; DSARGEANT AB, 1984, WILDL MONOGR, V89; FORBES MRL, 1989, ORNIS SCAND, V20, P211, DOI 10.2307/3676915; GLOUTNEY ML, 1993, J WILDLIFE MANAGE, V57, P597, DOI 10.2307/3809288; GREENWOOD RJ, 1990, WILDLIFE SOC B, V18, P75; GREIGSMITH PW, 1980, ANIM BEHAV, V28, P604, DOI 10.1016/S0003-3472(80)80069-8; JOHNSON DH, 1977, USDI FISH WILDL SERV, V6; KLETT AT, 1988, J WILDLIFE MANAGE, V52, P431, DOI 10.2307/3801586; KNIGHT RL, 1986, ANIM BEHAV, V34, P561, DOI 10.1016/S0003-3472(86)80125-7; KNIGHT RL, 1986, ANIM BEHAV, V34, P887, DOI 10.1016/S0003-3472(86)80075-6; KNIGHT RL, 1986, AUK, V103, P318; KNIGHT RL, 1987, CONDOR, V89, P175, DOI 10.2307/1368772; Krapu G.L., 1979, Wildfowl, V30, P35; KREMENTZ DG, 1989, OIKOS, V56, P203, DOI 10.2307/3565337; MALLORY ML, 1993, CONDOR, V95, P467, DOI 10.2307/1369370; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; ORTHMEYER DL, 1990, J WILDLIFE MANAGE, V54, P62, DOI 10.2307/3808901; PUGESEK BH, 1983, BEHAV ECOL SOCIOBIOL, V13, P161, DOI 10.1007/BF00299919; REDONDO T, 1989, BEHAV ECOL SOCIOBIOL, V25, P369, DOI 10.1007/BF00302995; REGELMANN K, 1983, BEHAV ECOL SOCIOBIOL, V13, P131, DOI 10.1007/BF00293803; REGELMANN K, 1986, BEHAVIOUR, V97, P10, DOI 10.1163/156853986X00298; RICKLEFS RE, 1977, CONDOR, V79, P376, DOI 10.2307/1368016; Roff Derek A., 1992; ROHWER FC, 1988, AUK, V105, P161; ROTELLA JJ, 1992, J WILDLIFE MANAGE, V56, P499, DOI 10.2307/3808865; SIEGEL S, 1988, NONPARAMETRIC STATIS; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; WEATHERHEAD PJ, 1982, Z TIERPSYCHOL, V60, P199; WEATHERHEAD PJ, 1990, ANIM BEHAV, V39, P1173, DOI 10.1016/S0003-3472(05)80789-4; WEATHERHEAD PJ, 1989, BEHAV ECOL SOCIOBIOL, V25, P129, DOI 10.1007/BF00302929; Welty JC, 1988, LIFE BIRDS; WESTNEAT DF, 1989, AUK, V106, P747; WIKLUND CG, 1990, BEHAV ECOL SOCIOBIOL, V26, P217; WILKINSON L, 1989, SYSTAT SYSTEM STATIS; Zar JH, 1984, BIOSTATISTICAL ANAL 47 68 69 0 18 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. FEB 1994 34 2 79 85 10.1007/BF00164178 7 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology MY908 WOS:A1994MY90800001 2018-11-12 J FRANK, KT; LEGGETT, WC FRANK, KT; LEGGETT, WC FISHERIES ECOLOGY IN THE CONTEXT OF ECOLOGICAL AND EVOLUTIONARY-THEORY ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS English Review POPULATION REGULATION; DENSITY DEPENDENCE; DISPERSAL; LIFE HISTORY THEORY CAPELIN MALLOTUS-VILLOSUS; COD GADUS-MORHUA; STOCK-RECRUITMENT RELATIONSHIP; ANCHOVY ENGRAULIS-MORDAX; SHAD ALOSA-SAPIDISSIMA; LIFE-HISTORY EVOLUTION; SMALL-SCALE TURBULENCE; LARVAL FISH; CLASS STRENGTH; ATLANTIC COD This review examines the application of fisheries ecological data in the development and testing of ecological and evolutionary theory, and the use of such theory in the pursuit of fisheries science. The development of modem fisheries ecology is traced from the beginning of the twentieth century to illustrate the paradigm shifts that have influenced the discipline. The major influence of ecological theory on the development of fisheries ecology was the application of the theory of density dependence, developed in the context of studies of insect population biology. This led to the theoretical construct of a functional relationship between stock and recruitment-a central concept in fisheries ecology. Fisheries ecological data have not been used extensively in the testing of theory. Important exceptions include contributions to the development and testing of self-thinning, the role of density independence in population dynamics, metapopulation modelling and associated theory, and life history theory. The potential for the use of fisheries ecological data in the development and testing of ecological and evolutionary theory is great. The importance of a greater consideration of ecological and evolutionary theory in the development of fisheries ecology is advocated. MCGILL UNIV, DEPT BIOL, MONTREAL H3A 1B1, PQ, CANADA FRANK, KT (reprint author), FISHERIES & OCEANS CANADA, BEDFORD INST OCEANOG, DIV MARINE FISH, POB 1006, DARTMOUTH B2Y 4A2, NS, CANADA. Leggett, William/F-6009-2011 ANDREWARTHA HG, 1952, BIOL REV, V27, P50, DOI 10.1111/j.1469-185X.1952.tb01363.x; ARNOLD GP, 1981, ANIMAL MIGRATION, P55; BAILEY KM, 1981, MAR ECOL PROG SER, V6, P1, DOI 10.3354/meps006001; Bams R. A., 1969, S SALMON TROUT STREA, P71; BAZZAZ FA, 1979, ANNU REV ECOL SYST, V10, P351, DOI 10.1146/annurev.es.10.110179.002031; BELL FH, 1958, J FISH RES BOARD CAN, V15, P625, DOI 10.1139/f58-033; BENTZEN P, 1993, J FISH BIOL, V43, P909, DOI 10.1006/jfbi.1993.1194; BERTRAM DF, 1993, THESIS MCGILL U MONT; Beverton R. J. H., 1957, DYNAMICS EXPLOITED 2, VXIX; BEVERTON RJH, 1992, NETH J SEA RES, V29, P61, DOI 10.1016/0077-7579(92)90008-3; BEVERTON RJH, 1965, BIOL SIGNIFICANCE CL, P79; BLAXTER JHS, 1982, ADV MAR BIOL, V20, P3; BRADFORD MJ, 1992, FISH B-NOAA, V90, P439; BRANDER K, 1992, CAN J FISH AQUAT SCI, V49, P238, DOI 10.1139/f92-028; BROMLEY PJ, 1989, J FISH BIOL, V35, P117; CAMPANA SE, 1989, CAN J FISH AQUAT SCI, V46, P171, DOI 10.1139/f89-287; CHAMBERS RC, 1987, CAN J FISH AQUAT SCI, V44, P1936, DOI 10.1139/f87-238; CHECKLEY DM, 1988, NATURE, V335, P346, DOI 10.1038/335346a0; CLARK C.W., 1985, BIOECONOMIC MODELING; CLARK CW, 1976, MATH BIOECONOMICS; CLARK WC, 1977, SPATIAL PATTERN PLAN; COHEN D, 1967, J THEOR BIOL, V16, P1, DOI 10.1016/0022-5193(67)90050-1; COHEN EB, 1991, CAN J FISH AQUAT SCI, V48, P1003, DOI 10.1139/f91-117; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CRECCO VA, 1984, CAN J FISH AQUAT SCI, V41, P1216, DOI 10.1139/f84-143; CURY P, 1989, CAN J FISH AQUAT SCI, V46, P670, DOI 10.1139/f89-086; Cushing D.H., 1978, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V173, P107; CUSHING D H, 1973, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V164, P142; Cushing D. H., 1982, CLIMATE FISHERIES; CUSHING DH, 1983, J PLANKTON RES, V5, P847, DOI 10.1093/plankt/5.6.847; CUSHING DH, 1984, J CONSEIL, V41, P159; CUSHING DH, 1990, ADV MAR BIOL, V26, P249, DOI 10.1016/S0065-2881(08)60202-3; CUSHING DH, 1973, J FISH RES BOARD CAN, V30, P1965, DOI 10.1139/f73-320; DAAN N, 1990, NETH J SEA RES, V26, P343, DOI 10.1016/0077-7579(90)90096-Y; DAGG MJ, 1984, MAR ECOL PROG SER, V19, P7, DOI 10.3354/meps019007; DAHL K, 1907, REPORT NORWEGIAN FIS, V2, P1; DEEVEY ES, 1947, Q REV BIOL, V22, P283, DOI 10.1086/395888; DELAFONTAINE Y, 1988, CAN J FISH AQUAT SCI, V45, P1173, DOI 10.1139/f88-140; Dickson R.R., 1993, Fisheries Oceanography, V2, P124, DOI 10.1111/j.1365-2419.1993.tb00130.x; ELLIOTT JM, 1993, J ANIM ECOL, V62, P371, DOI 10.2307/5368; ELLIOTT JM, 1987, J ANIM ECOL, V56, P83, DOI 10.2307/4801; FORTIER L, 1989, MAR ECOL PROG SER, V51, P19, DOI 10.3354/meps051019; Frank Kenneth T., 1993, Fisheries Oceanography, V2, P114, DOI 10.1111/j.1365-2419.1993.tb00129.x; FRANK KT, 1982, CAN J FISH AQUAT SCI, V39, P991, DOI 10.1139/f82-134; FRANK KT, 1992, CAN J FISH AQUAT SCI, V49, P2222, DOI 10.1139/f92-243; FRANK KT, 1983, CAN J FISH AQUAT SCI, V40, P754, DOI 10.1139/f83-098; FRANK KT, 1981, CAN J FISH AQUAT SCI, V38, P215, DOI 10.1139/f81-028; FRANK KT, 1989, J CONSEIL, V45, P146; FRANK KT, 1991, CAN J FISH AQUAT SCI, V48, P1350, DOI 10.1139/f91-161; FRANK KT, 1983, CAN J FISH AQUAT SCI, V40, P1442, DOI 10.1139/f83-166; FUIMAN LA, 1989, MAR ECOL PROG SER, V51, P291, DOI 10.3354/meps051291; GAUTHREAUX SA, 1980, ANIMAL MIGRATION ORI; GIESEL JT, 1976, ANNU REV ECOL SYST, V7, P57, DOI 10.1146/annurev.es.07.110176.000421; GODFRAY HCJ, 1992, NATURE, V359, P673, DOI 10.1038/359673a0; GORDOA A, 1991, CAN J FISH AQUAT SCI, V48, P2095, DOI 10.1139/f91-248; GOTELLI NJ, 1991, AM NAT, V138, P768, DOI 10.1086/285249; Grant James W.A., 1993, Canadian Special Publication of Fisheries and Aquatic Sciences, V118, P99; Gulland J. A., 1953, J CONS INT EXPLOR ME, V18, P351; GULLAND JA, 1982, J THEOR BIOL, V97, P69, DOI 10.1016/0022-5193(82)90277-6; HALL CAS, 1988, ECOL MODEL, V43, P5, DOI 10.1016/0304-3800(88)90070-1; HANKIN DG, 1980, FISH B-NOAA, V78, P555; Harden Jones F. R., 1968, FISH MIGRATION; Harper J. L., 1977, POPULATION BIOL PLAN; HARPER JL, 1961, EVOLUTION, V15, P209, DOI 10.2307/2406081; HAYMAN RA, 1980, T AM FISH SOC, V109, P54, DOI 10.1577/1548-8659(1980)109<54:EACSOD>2.0.CO;2; Hempel G., 1978, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V173, P145; HEMPEL GOTTHILF, 1965, CALIF COOP OCEANIC FISH INVEST REP, V10, P13; Hjort J., 1914, RAPP P V REUN CONS I, V20, P1; Hollowed A.B., 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V108, P207; Horn HS, 1978, BEHAVIOURAL ECOLOGY, P411; Houde E.D, 1987, AM FISH SOC S, V2, P17; HOUDE ED, 1989, FISH B-NOAA, V87, P471; Hovgard H., 1990, P36; Hutchinson GE, 1978, INTRO POPULATION ECO; ITO Y, 1980, COMP ECOLOGY; Janzen D. H., 1971, A Rev Ecol Syst, V2, P465, DOI 10.1146/annurev.es.02.110171.002341; JANZEN DH, 1976, ANNU REV ECOL SYST, V7, P347, DOI 10.1146/annurev.es.07.110176.002023; JENKINS GP, 1987, J EXP MAR BIOL ECOL, V110, P147, DOI 10.1016/0022-0981(87)90025-6; JOHNSON ML, 1990, ANNU REV ECOL SYST, V21, P449, DOI 10.1146/annurev.ecolsys.21.1.449; JONES R, 1973, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V164, P156; KAARTVEDT S, 1987, MAR ECOL PROG SER, V40, P195, DOI 10.3354/meps040195; KARBAN R, 1982, ECOLOGY, V63, P321, DOI 10.2307/1938949; KIKKAWA J, 1977, Australian Journal of Ecology, V2, P121, DOI 10.1111/j.1442-9993.1977.tb01132.x; KINGSFORD MJ, 1985, NEW ZEAL J MAR FRESH, V19, P429, DOI 10.1080/00288330.1985.9516107; LARKIN PA, 1977, T AM FISH SOC, V106, P1, DOI 10.1577/1548-8659(1977)106<1:AEFTCO>2.0.CO;2; LARKIN PA, 1964, J FISH RES BOARD CAN, V21, P477, DOI 10.1139/f64-041; LARKIN PA, 1978, ANNU REV ECOL SYST, V9, P57, DOI 10.1146/annurev.es.09.110178.000421; LASKER R, 1975, FISH B-NOAA, V73, P453; Leggett W.C., 1985, Contributions in Marine Science, V27, P277; Leggett W. C., 1984, MECHANISMS MIGRATION, P159; LEGGETT WC, 1984, CAN J FISH AQUAT SCI, V41, P1193, DOI 10.1139/f84-141; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; LEGGETT WC, 1977, ANNU REV ECOL SYST, V8, P285, DOI 10.1146/annurev.es.08.110177.001441; LEGGETT WC, 1994, IN PRESS NETH J SEA; LEGGETT WC, 1977, ASSESSING EFFECTS PO, P3; LITVAK MK, 1992, MAR ECOL PROG SER, V81, P13, DOI 10.3354/meps081013; LLOYD M, 1966, EVOLUTION, V20, P133, DOI 10.1111/j.1558-5646.1966.tb03350.x; LOFTUS KH, 1976, J FISH RES BOARD CAN, V33, P1822, DOI 10.1139/f76-235; MacCall A. D., 1990, DYNAMIC GEOGRAPHY MA; MACKENZIE BR, 1991, MAR ECOL PROG SER, V73, P149, DOI 10.3354/meps073149; MACKENZIE BR, 1994, IN PRESS LIMNOL OCEA; MAGNUSON JJ, 1988, AM FISH SOC S, V5, P1; MANGEL M, 1985, DECISION CONTROL UNC; Mann K., 1991, DYNAMICS MARINE ECOS; MANN R, 1982, FISH B-NOAA, V80, P315; MANN R, 1983, MAR ECOL PROG SER, V13, P211, DOI 10.3354/meps013211; MATLOCK GC, 1987, CONTRIB MAR SCI, V30, P39; MCCLEAVE JD, 1984, MECHANISMS MIGRATION; MONTELEONE DM, 1986, MAR ECOL PROG SER, V30, P133, DOI 10.3354/meps030133; MYERS RA, 1989, J MAR RES, V47, P635, DOI 10.1357/002224089785076208; MYERS RA, 1993, CAN J FISH AQUAT SCI, V50, P1599, DOI 10.1139/f93-181; MYERS RA, 1993, CAN J FISH AQUAT SCI, V50, P1576, DOI 10.1139/f93-179; NAIDU KS, 1970, CAN J ZOOLOG, V48, P1003, DOI 10.1139/z70-176; NELSON WR, 1977, FISH B-NOAA, V75, P23; Parrish R.H., 1981, Biological Oceanography, V1, P175; PAULIK GJ, 1973, RAPP P V REUN CONS I, V164, P303; PEPIN P, 1992, MAR ECOL PROG SER, V81, P1, DOI 10.3354/meps081001; PETERMAN RM, 1987, SCIENCE, V235, P354, DOI 10.1126/science.235.4786.354; PETERMAN RM, 1988, CAN J FISH AQUAT SCI, V45, P8, DOI 10.1139/f88-002; Peters RH, 1991, CRITIQUE ECOLOGY; PETERSEN CGJ, 1896, REPORT DANISH BIOL S, V6, P1; PETERSON WT, 1984, MAR ECOL PROG SER, V17, P65, DOI 10.3354/meps017065; Pope J.G., 1973, MATH THEORY DYNAMICS, P23; POTTS GW, 1984, FISH REPRODUCTION TA; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; QASIM S. Z., 1963, J MAR BIOL ASS INDIA, V5, P289; RICKER W. E., 1954, JOUR FISH RES BD CANADA, V11, P559; RIJNSDORP AD, 1991, J CONSEIL, V47, P352; Rivard D., 1993, Canadian Special Publication of Fisheries and Aquatic Sciences, V120, P31; ROFF DA, 1988, ENVIRON BIOL FISH, V22, P133, DOI 10.1007/BF00001543; Roff Derek A., 1992; ROSE GA, 1991, CAN J FISH AQUAT SCI, V48, P843, DOI 10.1139/f91-100; ROSE GA, 1989, CAN J FISH AQUAT SCI, V46, P1904, DOI 10.1139/f89-240; ROSE GA, 1989, J FISH BIOL, V35, P155; ROSE GA, 1990, ECOLOGY, V71, P33, DOI 10.2307/1940245; ROSE GA, 1993, NATURE, V366, P458, DOI 10.1038/366458a0; Rothschild B. J., 1986, DYNAMICS MARINE FISH; ROTHSCHILD BJ, 1988, J PLANKTON RES, V10, P465, DOI 10.1093/plankt/10.3.465; SCHAFFER WM, 1975, ECOLOGY, V56, P577, DOI 10.2307/1935492; SCHNUTE J, 1985, CAN J FISH AQUAT SCI, V42, P414, DOI 10.1139/f85-057; Shepherd J.G., 1984, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V185, P255; SHEPHERD JG, 1980, J CONSEIL, V39, P160; SHEPHERD JG, 1990, POPULATION REGULATIO, P29; SINCLAIR M, 1984, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V183, P269; Sinclair M., 1988, MARINE POPULATIONS E; SKUD BE, 1982, SCIENCE, V216, P144, DOI 10.1126/science.216.4542.144; SMITH RJF, 1985, CONTROL FISH MIGRATI; SNYDER RJ, 1991, ENVIRON BIOL FISH, V31, P381, DOI 10.1007/BF00002363; Solbreck C., 1985, Contributions in Marine Science, V27, P641; SOLEMDAL P, 1989, RAP PROCES, V191, P339; SOUTHWOOD TRE, 1981, ANIMAL MIGRATION, P197; STEARNS SC, 1983, EVOLUTION, V37, P601, DOI 10.1111/j.1558-5646.1983.tb05577.x; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STOCKER M, 1985, CAN J FISH AQUAT SCI, V42, P174, DOI 10.1139/f85-272; TAGGART CT, 1987, CAN J FISH AQUAT SCI, V44, P1729, DOI 10.1139/f87-211; THOMPSON KR, 1989, CAN J FISH AQUAT SCI, V46, P1831, DOI 10.1139/f89-230; TUCK GN, 1994, B MATH BIOL, V56, P107, DOI 10.1016/S0092-8240(05)80207-1; Tyler A.V., 1992, Fisheries Oceanography, V1, P97, DOI 10.1111/j.1365-2419.1992.tb00027.x; Walker B. W., 1952, California Fish and Game, V38, P409; Walters Carl, 1986, ADAPTIVE MANAGEMENT; WALTERS CJ, 1987, CAN J FISH AQUAT SCI, V44, P156, DOI 10.1139/f87-319; WALTERS CJ, 1988, CAN J FISH AQUAT SCI, V45, P1848, DOI 10.1139/f88-217; WALTERS CJ, 1981, CAN J FISH AQUAT SCI, V38, P704, DOI 10.1139/f81-093; WALTERS CJ, 1993, CAN J FISH AQUAT SCI, V50, P2058, DOI 10.1139/f93-229; WARE DM, 1980, CAN J FISH AQUAT SCI, V37, P1012, DOI 10.1139/f80-129; WARE DM, 1975, J FISH RES BOARD CAN, V32, P2503, DOI 10.1139/f75-288; WARNER RR, 1985, AM NAT, V125, P769, DOI 10.1086/284379; WELCH DW, 1986, CAN J FISH AQUAT SCI, V43, P108, DOI 10.1139/f86-012; WHITE PS, 1979, BOT REV, V45, P229, DOI 10.1007/BF02860857; WHITE TCR, 1976, OECOLOGIA, V22, P119, DOI 10.1007/BF00344712; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WOLDA H, 1988, ANNU REV ECOL SYST, V19, P1, DOI 10.1146/annurev.es.19.110188.000245; WOOTON RJ, 1990, ECOLOTY TELEOST FISH; WOURMS JP, 1972, J EXP ZOOL, V182, P389, DOI 10.1002/jez.1401820310; Wynne-Edwards V., 1962, ANIMAL DISPERSION RE 178 72 75 1 27 ANNUAL REVIEWS PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 USA 0066-4162 ANNU REV ECOL SYST Annu. Rev. Ecol. Syst. 1994 25 401 422 10.1146/annurev.es.25.110194.002153 22 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology PU883 WOS:A1994PU88300016 2018-11-12 J ROSLAND, R; GISKE, J ROSLAND, R; GISKE, J A DYNAMIC OPTIMIZATION MODEL OF THE DIEL VERTICAL-DISTRIBUTION OF A PELAGIC PLANKTIVOROUS FISH PROGRESS IN OCEANOGRAPHY English Review GASTEROSTEUS-ACULEATUS L; LIFE-HISTORY THEORY; WESTERN NORWAY; PREDATION RISK; ZOOPLANKTON COMMUNITY; EVOLUTIONARY ECOLOGY; MAUROLICUS-MUELLERI; WINTER DISTRIBUTION; CONTINENTAL-SLOPE; EASTERN TASMANIA A stochastic dynamic optimization model for the diel depth distribution of juveniles and adults of the mesopelagic planktivore Maurolicus muelleri (Gmelin) is developed and used for a winter situation. Observations from Masfjorden, western Norway, reveal differences in vertical distribution, growth and mortality between juveniles and adults in January. Juveniles stay within the upper 100m with high feeding rates, while adults stay within the 100-150m zone with very low feeding rates during the diel cycle. The difference in depth profitability is assumed to be caused by age-dependent processes, and are calculated from a mechanistic model for visual feeding. The environment is described as a set of habitats represented by discrete depth intervals along the vertical axis, differing with respect to light intensity, food abundance, predation risk and temperature. The short time interval (24h) allows fitness to be linearly related to growth (feeding), assuming that growth increases the future reproductive output of the fish. Optimal depth position is calculated from balancing feeding opportunity against mortality risk, where the fitness reward gained by feeding is weighted against the danger of being killed by a predator. A basic run is established, and the model is validated by comparing predictions and observations. The sensitivity for different parameter values is also tested. The modelled vertical distributions and feeding patterns of juvenile and adult fish correspond well with the observations, and the assumption of age differences in mortality-feeding trade-offs seems adequate to explain the different depth profitability of the two age groups. The results indicate a preference for crepuscular feeding activity of the juveniles, and the vertical distribution of zooplankton seems to be the most important environmental factor regulating the adult depth position during the winter months in Masfjorden. INST MARINE RES,N-5024 BERGEN,NORWAY ROSLAND, R (reprint author), UNIV BERGEN,DEPT FISHERIES & MARINE BIOL,HOYTEKNOLOGISENTERET,N-5020 BERGEN,NORWAY. Giske, Jarl/A-2402-2010 Giske, Jarl/0000-0001-5034-8177 AKSNES DL, 1990, MAR ECOL PROG SER, V64, P209, DOI 10.3354/meps064209; AKSNES DL, 1993, ECOL MODEL, V67, P233, DOI 10.1016/0304-3800(93)90007-F; Alexander R M, 1972, Symp Soc Exp Biol, V26, P273; ATEMA J, 1980, J CHEM ECOL, V6, P457, DOI 10.1007/BF01402922; BALINO BM, 1993, MAR ECOL PROG SER, V102, P35, DOI 10.3354/meps102035; BLAXTER JHS, 1976, LIGHT ECOLOGICAL FAC, V2, P189; BODEN BRIAN P., 1967, SYMP ZOOL SOC LONDON, V19, P15; BOUSKILA A, 1992, AM NAT, V139, P161, DOI 10.1086/285318; BURROWS MT, 1991, FUNCT ECOL, V5, P461, DOI 10.2307/2389628; CARACO T, 1980, ECOLOGY, V61, P119, DOI 10.2307/1937162; CHILDRESS JJ, 1980, MAR BIOL, V61, P27, DOI 10.1007/BF00410339; CLARK CW, 1990, EVOL ECOL, V4, P21, DOI 10.1007/BF02270712; CLARK CW, 1986, THEOR POPUL BIOL, V30, P45, DOI 10.1016/0040-5809(86)90024-9; CLARK CW, 1990, EVOL ECOL, V4, P312, DOI 10.1007/BF02270930; CLARK CW, 1988, AM NAT, V131, P271, DOI 10.1086/284789; CLARK TA, 1982, CSIRO145 MAR LAB REP; COLGAN P, 1993, BEHAV TELEOST FISHES, P31; EGGERS DM, 1976, J FISH RES BOARD CAN, V33, P1964, DOI 10.1139/f76-250; FALKPETERSEN IB, 1986, POLAR BIOL, V5, P235, DOI 10.1007/BF00446091; FISKEN O, 1993, IFM3593 U BERG DEP F; GELLER W, 1986, Archiv fuer Hydrobiologie Supplement, V74, P1; GEORGE DG, 1983, J PLANKTON RES, V5, P457, DOI 10.1093/plankt/5.4.457; Gilliam J. F., 1982, THESIS MICHIGAN STAT; GILLIAM JF, 1987, ECOLOGY, V68, P1856, DOI 10.2307/1939877; GISKE J, 1990, SARSIA, V75, P65, DOI 10.1080/00364827.1990.10413442; GISKE J, 1993, EVOL ECOL, V7, P233, DOI 10.1007/BF01237741; GISKE J, 1992, SARSIA, V77, P253, DOI 10.1080/00364827.1992.10413510; GISKE J, 1994, VIE MILIEU, V44; GJOSAETER J, 1981, Fiskeridirektoratets Skrifter Serie Havundersokelser, V17, P109; GJOSAETER J, 1986, FLODEVIGEN RAPPORTSE, V1, P1; HOLBROOK SJ, 1988, ECOLOGY, V69, P125, DOI 10.2307/1943167; HOLTBY LB, 1990, ECOLOGY, V71, P678, DOI 10.2307/1940322; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; HUNTLEY M, 1982, MAR BIOL, V71, P23, DOI 10.1007/BF00396989; IWASA Y, 1982, AM NAT, V120, P171, DOI 10.1086/283980; JAKOBSEN PJ, 1988, CAN J FISH AQUAT SCI, V45, P426, DOI 10.1139/f88-051; JOBLING M, 1981, J FISH BIOL, V19, P245, DOI 10.1111/j.1095-8649.1981.tb05829.x; JOHNSEN GH, 1987, LIMNOL OCEANOGR, V32, P873, DOI 10.4319/lo.1987.32.4.0873; KAARTVEDT S, 1988, MAR ECOL PROG SER, V45, P45, DOI 10.3354/meps045045; KATZ PL, 1974, AM NAT, V108, P758, DOI 10.1086/282953; KAWAGUCHI K, 1987, Biological Oceanography, V4, P99; KAWAGUCHI K, 1982, Biological Oceanography, V1, P337; KELLY EJ, 1993, ECOLOGY, V74, P351, DOI 10.2307/1939298; KIORBOE T, 1987, MAR ECOL PROG SER, V40, P1, DOI 10.3354/meps040001; KIRK JTO, 1981, AUST J MAR FRESH RES, V32, P517; LEONARDSSON K, 1991, OIKOS, V60, P149, DOI 10.2307/3544860; LEVY DA, 1990, CAN J FISH AQUAT SCI, V47, P1796, DOI 10.1139/f90-204; LIE U, 1983, SARSIA, V68, P65; LOPED P D C, 1979, Sarsia, V64, P199; MAGNESEN T, 1989, SARSIA, V74, P115, DOI 10.1080/00364827.1989.10420529; MANGEL M, 1986, ECOLOGY, V67, P1127, DOI 10.2307/1938669; MANGEL M, 1988, DYNAMIC MODELLING BE; MASON MD, 1993, T AM FISH SOC, V122, P844; MAUCHLINE J, 1991, MARINE BIOLOGY : ITS ACCOMPLISHMENT AND FUTURE PROSPECT, P107; MCLAREN IA, 1963, J FISH RES BOARD CAN, V20, P685, DOI 10.1139/f63-046; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; MCNAMARA JM, 1990, ADV APPL PROBAB, V22, P295, DOI 10.2307/1427537; MELO YC, 1991, S AFR J MARINE SCI, V10, P125; METCALFE NB, 1984, BEHAV ECOL SOCIOBIOL, V15, P203, DOI 10.1007/BF00292976; MILINSKI M, 1985, BEHAVIOUR, V93, P203, DOI 10.1163/156853986X00883; MILINSKI M, 1978, NATURE, V275, P642, DOI 10.1038/275642a0; MONTGOMERY JC, 1989, NEUROBIOLOGY EVOLUTI, P561; Priede I.G., 1985, P33; ROBERTSON D A, 1976, New Zealand Journal of Marine and Freshwater Research, V10, P311; ROBINSON CJ, 1989, J FISH BIOL, V35, P459, DOI 10.1111/j.1095-8649.1989.tb02997.x; ROBINSON CJ, 1989, J FISH BIOL, V34, P631, DOI 10.1111/j.1095-8649.1989.tb03341.x; Rosenberg GV., 1966, TWILIGHT STUDY ATMOS; ROSLAND R, 1993, IFM1193 U BERG DEP F; Samyshev E. Z., 1971, ANN BIOL-COPENHAGEN, V28, P212; SARGENT RC, 1990, ANN ZOOL FENN, V27, P101; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; Schmidt-Nielsen K., 1983, ANIMAL PHYSL ADAPTAT; Skartveit A, 1988, METEOROLOGICAL REPOR, V7; Stearns S.C., 1984, P13; STEPHENS DW, 1981, ANIM BEHAV, V29, P628, DOI 10.1016/S0003-3472(81)80128-5; STEPHENS DW, 1982, BEHAV ECOL SOCIOBIOL, V10, P251, DOI 10.1007/BF00302814; SUMIDA BH, 1990, J THEOR BIOL, V147, P59, DOI 10.1016/S0022-5193(05)80252-8; WERNER EE, 1988, ECOLOGY, V69, P1352, DOI 10.2307/1941633; WERNER EE, 1983, ECOLOGY, V64, P1540, DOI 10.2307/1937508; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Windell J.T., 1978, P159; WURTSBAUGH WA, 1988, NATURE, V333, P846, DOI 10.1038/333846a0; YDENBERG RC, 1989, ECOLOGY, V70, P1494, DOI 10.2307/1938208; YOUNG JW, 1986, MAR BIOL, V93, P147, DOI 10.1007/BF00428663; YOUNG JW, 1987, MAR BIOL, V95, P323, DOI 10.1007/BF00409562 85 64 63 1 16 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB 0079-6611 PROG OCEANOGR Prog. Oceanogr. 1994 34 1 1 43 10.1016/0079-6611(94)90025-6 43 Oceanography Oceanography PM185 WOS:A1994PM18500001 2018-11-12 J GRAVES, JL GRAVES, JL THE COSTS OF REPRODUCTION AND DIETARY RESTRICTION - PARALLELS BETWEEN INSECTS AND MAMMALS GROWTH DEVELOPMENT AND AGING English Article LIFE-HISTORY TRAITS; CORPUS ALLATUM ACTIVITY; DROSOPHILA-MELANOGASTER; FOOD RESTRICTION; POSTPONED SENESCENCE; PHENOTYPIC PLASTICITY; GENE-EXPRESSION; BODY-WEIGHT; FEMALE RATS; ARTIFICIAL SELECTION Dietary restriction increases life span in mammals. This essay connects the dietary restriction response to evolutionary life history theory and experiments related to it. Evolutionary biologists have shown mathematically that aging is an inevitable consequence of age-specific natural selection acting on species with somata separate from germ lines. Empirical tests of this prediction currently point to its general validity. Two specific genetic mechanisms are known which could underlie the evolution of aging under these conditions: age-specificity of gene effects and antagonistic pleiotropy between early and late ages. The antagonistic pleiotropy theory assumes that some genes with beneficial effects on early life fitness will have deleterious effects upon fitness in later life. Experimental work in insects, particularly selection experiments in Drosophila melanogaster, has tested these ideas. The negative genetic correlation between longevity and reproductive effort produced by selection has been shown to be paralleled, in some cases, by environmental manipulation. Thus the increase in life span caused by dietary restriction might be explained as an incidental consequence of lower reproductive effort. This response also could have been an adaptation,that enhanced fitness in some species that faced uncertain food supplies, a condition that may have evolved independently in a wide variety of taxa. Several schools of research, besides that of the evolutionary biologists concerned with genetic correlations, have produced corroborations of this hypothesis in insects and mammals: the gerontological work on life span extension, reproductive physiologists concerned with factors that affect fertility, and various life history studies. GRAVES, JL (reprint author), UNIV CALIF IRVINE,SCH BIOL SCI,DEPT ECOL & EVOLUTIONARY BIOL,IRVINE,CA 92717, USA. PHS HHS [95-2226406, P01-9970] ADOLPH SC, 1993, AM NAT, V142, P273, DOI 10.1086/285538; AGUILAR E, 1984, REV ESP FISIOL, V40, P83; AIGAKI T, 1984, EXP GERONTOL, V19, P267, DOI 10.1016/0531-5565(84)90022-6; AIGAKI T, 1984, EXP GERONTOL, V19, P19; AIJA S, 1991, J NUTR, V121, P1798; ALKASS JE, 1982, ANIM PROD, V34, P265, DOI 10.1017/S0003356100010205; ALMQUIST JO, 1982, J DAIRY SCI, V65, P814, DOI 10.3168/jds.S0022-0302(82)82270-4; ASKENMO C, 1979, AM NAT, V114, P748, DOI 10.1086/283523; ASKENMO C, 1977, Ornis Scandinavica, V8, P1, DOI 10.2307/3675982; AUSTAD SN, 1989, EXP GERONTOL, V24, P83, DOI 10.1016/0531-5565(89)90037-5; BARNES MA, 1980, THERIOGENOLOGY, V14, P67, DOI 10.1016/0093-691X(80)90135-1; BAZZARRE TL, 1984, NUTR REP INT, V29, P997; BEEBY JM, 1983, ANIM PROD, V37, P345, DOI 10.1017/S0003356100001951; BIERICH JR, 1991, Z GERONTOL, V24, P337; BISHOP JM, 1983, BIOCHEMISTRY-US, V50, P301; BRONSON FH, 1986, BIOL REV, V61, P157, DOI 10.1111/j.1469-185X.1986.tb00465.x; BRONSON FH, 1985, BIOL REPROD, V32, P1, DOI 10.1095/biolreprod32.1.1; BRONSON FH, 1986, ENDOCRINOLOGY, V118, P2483, DOI 10.1210/endo-118-6-2483; BRONSON FH, 1989, MAMMALIAN REPRODUCTI; BRYANT DM, 1979, J ANIM ECOL, V48, P655, DOI 10.2307/4185; CAMPAGNOLI C, 1992, European Journal of Gynaecological Oncology, V13, P139; CAMPBELL BA, 1987, J GERONTOL, V42, P154, DOI 10.1093/geronj/42.2.154; CHARKVARTY I, 1984, SERONO S PUBLICATION, V9, P367; CHATTERJEE B, 1990, J STEROID BIOCHEM, V37, P437, DOI 10.1016/0960-0760(90)90495-7; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; CLARE MJ, 1985, HEREDITY, V55, P19, DOI 10.1038/hdy.1985.67; DAVID J, 1971, EXP GERONTOL, V6, P249, DOI 10.1016/0531-5565(71)90037-4; DE AK, 1983, MECH AGEING DEV, V21, P37, DOI 10.1016/0047-6374(83)90014-3; DE GRIMALDO E. P., 1960, REV IBERICA PARASITOL, V20, P163; DEGRIMALDO E, 1960, REV IBERICA PARASITO, V20, P39; DERICKSON WK, 1976, ECOLOGY, V57, P445, DOI 10.2307/1936430; DERTING TL, 1989, ECOLOGY, V70, P587, DOI 10.2307/1940210; DESTEVEN D, 1980, EVOLUTION, V34, P278, DOI 10.1111/j.1558-5646.1980.tb04816.x; DICKERSON JWT, 1964, J ENDOCRINOL, V29, P111, DOI 10.1677/joe.0.0290111; DYER RG, 1981, J PHYSIOL-LONDON, V319, pP91; EARLE M, 1990, CAN J ZOOL, V68, P381, DOI 10.1139/z90-054; EGOSCUE HJ, 1970, J MAMMAL, V51, P622, DOI 10.2307/1378407; Eisenberg JF, 1981, MAMMALIAN RAD; ENGELMANN F, 1965, ARCH ANAT MICROSC MO, V54, P387; ENGELMANN F, 1970, PHYSL INSECT REPRODU; ERNSTING G, 1991, FUNCT ECOL, V5, P299, DOI 10.2307/2389268; FERGUSON GW, 1980, COPEIA, P259, DOI 10.2307/1444002; FERGUSON GW, 1984, EVOLUTION, V38, P342, DOI 10.1111/j.1558-5646.1984.tb00292.x; FERNANDES G, 1990, P SOC EXP BIOL MED, V193, P16; FITCH WM, 1985, SCIENCE, V228, P1169, DOI 10.1126/science.4001935; FRISCH RE, 1980, FED PROC, V39, P2395; FRISCH RE, 1984, BIOL REV, V59, P161, DOI 10.1111/j.1469-185X.1984.tb00406.x; FRISCH RE, 1977, P NATL ACAD SCI USA, V72, P4172; GARLAND T, 1994, IN PRESS ANN REV PHY, V56; Gillott C, 1980, ENTOMOLOGY; GLASS AR, 1979, ENDOCRINOLOGY, V104, P438, DOI 10.1210/endo-104-2-438; GLASS AR, 1984, ENDOCRINOLOGY, V115, P19, DOI 10.1210/endo-115-1-19; GLASS AR, 1980, FED PROC, V39, P2360; GRAVES JL, 1988, J INSECT PHYSIOL, V34, P1021, DOI 10.1016/0022-1910(88)90201-6; GRAVES JL, 1992, PHYSIOL ZOOL, V65, P268, DOI 10.1086/physzool.65.2.30158253; GRAVES JL, IN PRESS GENETICA; GRAVES JL, 1990, GENETIC EFFECTS AGIN, V2, pCH5; GROSVENOR CE, 1983, J ENDOCRINOL, V96, P215, DOI 10.1677/joe.0.0960215; HAMILTON GD, 1986, AM J PHYSIOL, V250, pR370; HAMILTON GD, 1985, BIOL REPROD, V32, P773, DOI 10.1095/biolreprod32.4.773; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HARVEY PH, 1991, AM NAT, V137, P556, DOI 10.1086/285183; HAYES JP, 1992, FUNCT ECOL, V6, P5, DOI 10.2307/2389765; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; HILLESHEIM E, 1991, EVOLUTION, V45, P1909, DOI 10.1111/j.1558-5646.1991.tb02696.x; HOLEHAN AM, 1985, MECH AGEING DEV, V32, P63, DOI 10.1016/0047-6374(85)90036-3; HOLEHAN AM, 1986, BIOL REV, V61, P329, DOI 10.1111/j.1469-185X.1986.tb00658.x; HOLEHAN AM, 1985, MECH AGEING DEV, V32, P179, DOI 10.1016/0047-6374(85)90078-8; HOLLIDAY R, 1989, BIOESSAYS, V10, P4; HOLLIDAY R, 1988, PERSPECT BIOL MED, V37, P109; HOWLAND BE, 1971, J REPROD FERTIL, V27, P467; INGRAM DK, 1987, J GERONTOL, V42, P78, DOI 10.1093/geronj/42.1.78; JEANFAUCHER C, 1982, BIOL NEONATE, V40, P45; JOHNSON BC, 1990, P SOC EXP BIOL MED, V193, P4; KAISER FE, 1991, J AM GERIATR SOC, V39, P235, DOI 10.1111/j.1532-5415.1991.tb01643.x; KAITALA A, 1991, FUNCT ECOL, V5, P12, DOI 10.2307/2389551; KANEREK RB, 1986, PHYSIOL BEHAV, V38, P509; KENAGY GJ, 1989, PHYSIOL ZOOL, V62, P470, DOI 10.1086/physzool.62.2.30156180; KENNEDY GC, 1963, J PHYSIOL-LONDON, V166, P408, DOI 10.1113/jphysiol.1963.sp007112; KENNEDY GC, 1963, J PHYSIOL-LONDON, V166, P395, DOI 10.1113/jphysiol.1963.sp007111; KHAN MA, 1982, J INSECT PHYSIOL, V28, P791, DOI 10.1016/0022-1910(82)90140-8; KHANSARI DN, 1991, MECH AGEING DEV, V57, P87, DOI 10.1016/0047-6374(91)90026-V; Kirkwood T.B.L., 1981, P165; KLEIN G, 1988, ACTA ONCOL, V27, P427, DOI 10.3109/02841868809093569; KLUYVER H N, 1971, P507; KULIN HE, 1984, J PEDIATR-US, V105, P325, DOI 10.1016/S0022-3476(84)80141-9; LARSSON K, 1974, PHYSIOL BEHAV, V13, P307, DOI 10.1016/0031-9384(74)90049-3; Le Bourg E, 1991, AGE NUTR, V2, P90; LEE SJ, 1981, J INSECT PHYS, V27, P93; Levins R., 1968, EVOLUTION CHANGING E; LICHTMAN R, 1991, J NURSE-MIDWIFERY, V36, P30, DOI 10.1016/0091-2182(91)90019-L; LOCHMILLER RL, 1985, COMP BIOCHEM PHYS A, V82, P49, DOI 10.1016/0300-9629(85)90703-0; Luckinbill LS, 1988, EVOL ECOL, V2, P85, DOI 10.1007/BF02071591; LUCKINBILL LS, 1985, HEREDITY, V55, P9, DOI 10.1038/hdy.1985.66; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; MARTIN G, 1990, GENETIC EFFECTS AGIN, V2; MAYNARDSMITH J, 1958, J EXP BIOL, V35, P832; McCabe T. T., 1950, 3 SPECIES PEROMYSCUS; MCNAB BK, 1980, AM NAT, V116, P106, DOI 10.1086/283614; MENENDEZPATTERSON A, 1982, PHARMACOL BIOCHEM BE, V17, P659, DOI 10.1016/0091-3057(82)90341-0; MEREDITH S, 1986, BIOL REPROD, V35, P68, DOI 10.1095/biolreprod35.1.68; MERRY BJ, 1991, MECH AGEING DEV, V58, P139, DOI 10.1016/0047-6374(91)90088-H; MERRY BJ, 1981, EXP GERONTOL, V16, P431, DOI 10.1016/0531-5565(81)90025-5; MILLER RS, 1958, ECOLOGY, V39, P118, DOI 10.2307/1929973; MORRIS JG, 1991, ENV METABOLIC ANN PH; MUELLER LD, 1988, AM NAT, V132, P786, DOI 10.1086/284890; MUELLER LD, 1987, P NATL ACAD SCI USA, V84, P1974, DOI 10.1073/pnas.84.7.1974; MUELLER LD, IN PRESS FUNCTIONAL; NDUKA EU, 1983, NUTR REP INT, V28, P31; NEGUS NC, 1987, CURRENT MAMMOLOGY, V1; NELSON RJ, 1993, PHYSIOL ZOOL, V66, P99, DOI 10.1086/physzool.66.1.30158289; NEWTON I, 1966, BR BIRDS, V19, P89; NEWTON I, 1979, J APPL ECOL, V16, P177; PARTRIDGE L, 1987, J INSECT PHYSIOL, V33, P745, DOI 10.1016/0022-1910(87)90060-6; PASHKO LL, 1983, J GERONTOL, V38, P8, DOI 10.1093/geronj/38.1.8; PERRIGO G, 1983, BIOL REPROD, V29, P455, DOI 10.1095/biolreprod29.2.455; PHELAN JP, 1989, GROWTH DEV AGING; PIACSEK BE, 1987, HDB ENDOCRINOLOGY, P143; PRETORIUS P S, 1968, South African Journal of Agricultural Science, V11, P319; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RICKLEFS RE, 1979, BIOL REV, V54, P269, DOI 10.1111/j.1469-185X.1979.tb01013.x; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; Riddiford L.M., 1985, P37; ROBERTSON JR, 1981, ECOLOGY, V62, P1585, DOI 10.2307/1941514; ROFF DA, 1990, INSECT LIFE CYCLES G, P1; RONNEKLEIV OK, 1978, BIOL REPROD, V19, P414, DOI 10.1095/biolreprod19.2.414; ROSE M, 1984, NEW SCI, V103, P15; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Rose M. R., 1985, REV BIOL RES AGING, V2, P85; ROSE MR, 1990, GROWTH DEVELOP AGING, V54, P7; ROSE MR, 1984, AM NAT, V123, P565, DOI 10.1086/284222; ROSE MR, 1992, EXP GERONTOL, V27, P241, DOI 10.1016/0531-5565(92)90048-5; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1981, GENETICS, V97, P187; ROSE MR, 1981, GENETICS, V97, P173; ROSE MR, 1990, REV BIOL RES AGING, V4, P3; ROSE MR, 1991, INSECT LIFE CYCLES G, pCH2; RUCKER R, 1986, J NUTR, V116, P177; Sacher G.A., 1959, CIBA F COLLOQ AGEING, V5, P115; SAUER JR, 1987, ANNU REV ECOL SYST, V18, P71; SCHENCK PE, 1980, BRIT J NUTR, V44, P179, DOI 10.1079/BJN19800025; SCHNEIDER JE, 1989, SCIENCE, V244, P1326, DOI 10.1126/science.2734610; SERVICE PM, 1988, EVOLUTION, V42, P708, DOI 10.1111/j.1558-5646.1988.tb02489.x; SERVICE PM, 1987, PHYSIOL ZOOL, V60, P321, DOI 10.1086/physzool.60.3.30162285; SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013; SERVICE PM, 1989, J INSECT PHYSIOL, V35, P447, DOI 10.1016/0022-1910(89)90120-0; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; Slama K., 1985, COMPREHENSIVE INSECT, V11, P357; SLOB AK, 1979, BRIT J NUTR, V41, P231, DOI 10.1079/BJN19790032; SOHAL RS, 1990, MECH AGEING DEV, V56, P223, DOI 10.1016/0047-6374(90)90084-S; SOHAL RS, 1990, MECH AGEING DEV, V53, P217, DOI 10.1016/0047-6374(90)90040-M; SREBNIK HH, 1978, ENV ENDOCRINOLOGY, P306; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEINER RA, 1983, NEUROENDOCRINE ASPEC, P183; Thoren M, 1991, Lakartidningen, V88, P1953; TYLER RH, IN PRESS GENETICA; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WALFORD RL, 1987, J NUTR, V117, P1650; WEAVER RJ, 1981, J INSECT PHYSIOL, V27, P75, DOI 10.1016/0022-1910(81)90035-4; WEINDRUCH R, 1982, SCIENCE, V215, P1415, DOI 10.1126/science.7063854; WEINDRUCH R, 1989, DIETARY RESTRICTION, P97; WESTERN D, 1982, OECOLOGIA, V54, P281, DOI 10.1007/BF00379994; WIDDOWSON EM, 1964, J ENDOCRINOL, V29, P119, DOI 10.1677/joe.0.0290119; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams GC, 1966, ADAPTATION NATURAL S; ZERA AJ, 1989, J INSECT PHYSIOL, V35, P7, DOI 10.1016/0022-1910(89)90031-0 171 19 19 2 5 GROWTH PUBL CO INC BAR HARBOR PO BOX 42, BAR HARBOR, ME 04609-0042 0017-4793 GROWTH DEVELOP AGING Growth Dev. Aging WIN 1993 57 4 233 249 17 Developmental Biology; Geriatrics & Gerontology Developmental Biology; Geriatrics & Gerontology MJ138 WOS:A1993MJ13800002 8300277 2018-11-12 J PERRIN, N; SIBLY, RM; NICHOLS, NK PERRIN, N; SIBLY, RM; NICHOLS, NK OPTIMAL-GROWTH STRATEGIES WHEN MORTALITY AND PRODUCTION-RATES ARE SIZE-DEPENDENT EVOLUTIONARY ECOLOGY English Article OPTIMAL GROWTH STRATEGY; OPTIMAL ENERGY ALLOCATION; LIFE-HISTORY THEORY; INDETERMINATE GROWTH Pontryagin's maximum principle from optimal control theory is used to find the optimal allocation of energy between growth and reproduction when lifespan may be finite and the trade-off between growth and reproduction is linear. Analyses of the optimal allocation problem to date have generally yielded 'bang-bang' solutions, i.e. determinate growth: life-histories in which growth is followed by reproduction, with no intermediate phase of simultaneous reproduction and growth. Here we show that an intermediate strategy (indeterminate growth) can be selected for if the rates of production and mortality either both increase or both decrease with increasing body size, this arises as a singular solution to the problem. Our conclusion is that indeterminate growth is optimal in more cases than was previously realized. The relevance of our results to natural situations is discussed. UNIV READING,DEPT PURE & APPL ZOOL,READING RG6 2AJ,BERKS,ENGLAND Sibly, Richard/0000-0001-6828-3543 0 37 37 2 8 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. NOV 1993 7 6 576 592 10.1007/BF01237822 17 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity MK423 WOS:A1993MK42300003 2018-11-12 J FRAZER, NB; GREENE, JL; GIBBONS, JW FRAZER, NB; GREENE, JL; GIBBONS, JW TEMPORAL VARIATION IN GROWTH-RATE AND AGE AT MATURITY OF MALE PAINTED TURTLES, CHRYSEMYS-PICTA AMERICAN MIDLAND NATURALIST English Article LIFE-HISTORY TRAITS; PHENOTYPIC PLASTICITY; ORDER TESTUDINES; NESTING ECOLOGY; MUD TURTLE; EVOLUTIONARY; SIZE; DEMOGRAPHY; REPRODUCTION; SURVIVORSHIP Growth rates of juveniles and age at maturity of males were examined in a population of painted turtles, Chrysemys picta, inhabiting a marsh in southwestern Michigan (approximately 42 degrees 24'N, 85 degrees 24'W) to compare temporal variation in these two important life history traits within a decade. Elongation of the third right foreclaw was used as an indicator of incipient sexual maturity of males. Males in the late 1980s reached maturity at least a year earlier than did those in the early 1980s. Analysis of climatological data revealed that growing seasons in the late 1980s were typically warmer and longer than in the early years of the decade. The observed changes in juvenile growth rates and age at maturity of male C. picta are in accord with recent field and laboratory studies of emydid turtles. They also support predictions of life history theory, and may serve as working hypotheses that can be tested with data from other long-term projects. If substantiated, these patterns may indicate how some freshwater turtle populations in temperate latitudes might respond to predicted global warming trends. FRAZER, NB (reprint author), SAVANNAH RIVER ECOL LAB,PO DRAWER E,AIKEN,SC 29802, USA. BERRY JF, 1980, OECOLOGIA, V44, P185, DOI 10.1007/BF00572678; Bury R.B., 1979, P571; CAGLE FR, 1948, COPEIA, P108; CASWELL H, 1983, AM ZOOL, V23, P35; CHRISTENS E, 1986, CAN J ZOOL, V64, P914, DOI 10.1139/z86-138; Congdon J.D., 1990, P45; CONGDON JD, 1989, PHYSIOL ZOOL, V62, P356, DOI 10.1086/physzool.62.2.30156175; CONGDON JD, 1983, HERPETOLOGICA, V39, P417; CONGDON JD, 1987, HERPETOLOGICA, V43, P39; Dunham A.E., 1990, P135; ECKERT KL, 1987, HERPETOLOGICA, V43, P315; ERNST C H, 1989, Bulletin of the Maryland Herpetological Society, V25, P135; ERNST C H, 1971, Herpetologica, V27, P135; Frazer N.B., 1990, P183; FRAZER NB, 1991, ECOLOGY, V72, P2218, DOI 10.2307/1941572; FRAZER NB, 1991, AM MIDL NAT, V125, P245, DOI 10.2307/2426229; Gibbons J.W., 1990, P124; Gibbons J.W., 1990, P311; Gibbons J.W., 1990, P19; GIBBONS JW, 1968, COPEIA, P260; GIBBONS JW, 1981, AM NAT, V117, P841, DOI 10.1086/283774; GIBBONS JW, 1978, EVOLUTION, V32, P297, DOI 10.1111/j.1558-5646.1978.tb00645.x; GIBBONS JW, 1968, ECOLOGY, V49, P399, DOI 10.2307/1934106; GIBBONS JW, 1969, ECOLOGY, V50, P340, DOI 10.2307/1934863; GIBBONS JW, 1967, THESIS MICHIGAN STAT; GIBBONS JW, 1990, HERPETOL MONOGR, V4, P6; IVERSON JB, 1991, HERPETOLOGICA, V47, P373; IVERSON JB, 1991, CAN J ZOOL, V69, P385, DOI 10.1139/z91-060; Lewontin R.C., 1965, GENETICS COLONIZING, P79; Mitchell J. C., 1988, HERPETOL MONOGR, V2, P40; MITCHELL JC, 1985, HERPETOLOGICA, V41, P45; PARMENTER RR, 1980, COPEIA, P503, DOI 10.2307/1444528; PARMENTER RR, 1981, COMP BIOCHEM PHYS A, V70, P235, DOI 10.1016/0300-9629(81)91451-1; Plummer M.V., 1979, P45; SCHWARZKOPF L, 1986, CAN J ZOOL, V64, P1148, DOI 10.1139/z86-173; Sexton O.J, 1965, COPEIA, P314; SEXTON OJ, 1959, ECOLOGY, V40, P716, DOI 10.2307/1929825; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; THORNHILL GM, 1982, J HERPETOL, V16, P347, DOI 10.2307/1563564; Wilbur H.M., 1988, Biology of Reptilia, V16, P387; WILBUR HM, 1975, ECOLOGY, V56, P64, DOI 10.2307/1935300; Williams GC, 1966, ADAPTATION NATURAL S; ZWEIFEL RG, 1989, AM MUS NOVIT, P1; 1987, CLIMATOLOGICAL DATA, V102; 1981, CLIMATOLOGICAL DATA, V96; 1984, CLIMATOLOGICAL DATA, V99; 1983, CLIMATOLOGICAL DATA, V98; 1982, CLIMATOLOGICAL DATA, V97; 1986, CLIMATOLOGICAL DATA, V101; 1988, CLIMATOLOGICAL DATA, V103; 1980, CLIMATOLOGICAL DATA, V95; 1985, CLIMATOLOGICAL DATA, V100 52 32 32 2 15 AMER MIDLAND NATURALIST NOTRE DAME UNIV NOTRE DAME, BOX 369, ROOM 295 GLSC, NOTRE DAME, IN 46556 0003-0031 AM MIDL NAT Am. Midl. Nat. OCT 1993 130 2 314 324 10.2307/2426130 11 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology ME264 WOS:A1993ME26400009 2018-11-12 J LAFFERTY, KD LAFFERTY, KD THE MARINE SNAIL, CERITHIDEA-CALIFORNICA, MATURES AT SMALLER SIZES WERE PARASITISM IS HIGH OIKOS English Article LIFE-HISTORY VARIATION; FRESH-WATER SNAIL; BIOMPHALARIA-GLABRATA; PHENOTYPIC PLASTICITY; SCHISTOSOMA-MANSONI; POPULATION; GROWTH; EVOLUTION; GASTROPODA; PREDATOR I investigated life-history and parasitism in the salt marsh snail, Cerithidea californica Latitude and growing conditions were important factors determining maturation size. After accounting for environmental variation, there was a negative association between the maturation size of snails and the prevalence of parasitic castration by larval trematodes. As predicted by life-history theory, this may represent an adaptation against parasitism that is similar to previous observations of life-history adaptations in species subject to predation or disturbance. However, it was unclear whether this adaptation was due to phenotypic plasticity or genetic differences among populations resulting from natural selection so I conducted a reciprocal transplant between sites with high and low prevalence and found source population differences in maturation size. It appears, therefore, that the life-history differences between.these populations are at least partially genetic or may represent an adaptive developmental switch that was initiate prior to the transplant. LAFFERTY, KD (reprint author), UNIV CALIF SANTA BARBARA,DEPT BIOL SCI,SANTA BARBARA,CA 93106, USA. Lafferty, Kevin/B-3888-2009 Lafferty, Kevin/0000-0001-7583-4593 ANDERSON RM, 1982, PARASITOLOGY, V85, P411, DOI 10.1017/S0031182000055360; Bagenal T.B., 1978, P75; BARCLAY HJ, 1982, AM NAT, V120, P26, DOI 10.1086/283967; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; BRIGHT DONALD B., 1960, BULL SOUTHERN CALIFORNIA ACAD SCI, V59, P9; BROWN KM, 1985, EVOLUTION, V39, P387, DOI 10.1111/j.1558-5646.1985.tb05675.x; BROWN KM, 1985, MALACOLOGIA, V26, P191; BROWN KM, 1988, AM MIDL NAT, V120, P289, DOI 10.2307/2426001; CALOW P, 1981, MALACOLOGIA, V21, P5; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; EISENBER.RM, 1966, ECOLOGY, V47, P889, DOI 10.2307/1935637; Endler JA, 1986, NATURAL SELECTION WI; Everitt B., 1977, ANAL CONTINGENCY TAB; Keymer A.E., 1991, P37; KURIS AM, 1973, EXP PARASITOL, V33, P365, DOI 10.1016/0014-4894(73)90040-4; KURIS AM, 1980, INT J PARASITOL, V10, P303, DOI 10.1016/0020-7519(80)90011-9; KURIS AM, 1974, Q REV BIOL, V49, P129, DOI 10.1086/408018; KURIS AM, 1992, CAN J FISH AQUAT SCI, V49, P327, DOI 10.1139/f92-037; LACK D, 1954, NATURAL REGULATION A; LAFFERTY KD, 1992, AM NAT, V140, P854, DOI 10.1086/285444; LAFFERTY KD, 1991, THESIS U CALIFORNIA; LAW R, 1977, EVOLUTION, V31, P233, DOI 10.1111/j.1558-5646.1977.tb01004.x; MARGOLIS L, 1982, J PARASITOL, V68, P131, DOI 10.2307/3281335; MARTIN W E, 1972, Bulletin Southern California Academy of Sciences, V71, P39; MINCHELLA DJ, 1983, PARASITOLOGY, V86, P335, DOI 10.1017/S0031182000050502; MINCHELLA DJ, 1985, PARASITOLOGY, V90, P205, DOI 10.1017/S0031182000049143; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; MOORE J, 1983, ECOLOGY, V64, P1000, DOI 10.2307/1937807; MUELEMAN EA, 1972, NETHERLANDS J ZOOLOG, V22, P355; PAGE HM, IN PRESS ZOOLOGICAL; PALMER AR, 1983, MAR BIOL, V75, P287, DOI 10.1007/BF00406014; PIANKA ER, 1976, AM ZOOL, V16, P775; RACE MS, 1981, VELIGER, V24, P18; REISE K, 1985, ECOLOGICAL STUDIES, V54; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Richards C.S., 1975, VeIiger, V17, P393; SCHULTZ ET, 1989, EVOLUTION, V43, P1497, DOI 10.1111/j.1558-5646.1989.tb02599.x; SMITHGILL SJ, 1983, AM ZOOL, V23, P47; SOLBRIG OT, 1974, J ECOL, V62, P473, DOI 10.2307/2258993; SOUSA WP, 1983, J EXP MAR BIOL ECOL, V73, P273, DOI 10.1016/0022-0981(83)90051-5; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; THORNHILL JA, 1986, PARASITOLOGY, V93, P443, DOI 10.1017/S0031182000081166; TINKLE DW, 1972, ECOLOGY, V53, P570, DOI 10.2307/1934772; WENNER AM, 1972, AM NAT, V106, P321, DOI 10.1086/282774; Williams GC, 1966, ADAPTATION NATURAL S; YAMADA SB, 1989, MAR BIOL, V103, P403, DOI 10.1007/BF00397275 48 106 108 0 27 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos OCT 1993 68 1 3 11 10.2307/3545303 9 Ecology Environmental Sciences & Ecology MB138 WOS:A1993MB13800001 2018-11-12 J POSTHUMA, L; VANSTRAALEN, NM POSTHUMA, L; VANSTRAALEN, NM HEAVY-METAL ADAPTATION IN TERRESTRIAL INVERTEBRATES - A REVIEW OF OCCURRENCE, GENETICS, PHYSIOLOGY AND ECOLOGICAL CONSEQUENCES COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY C-PHARMACOLOGY TOXICOLOGY & ENDOCRINOLOGY English Review ONYCHIURUS-ARMATUS COLLEMBOLA; CADMIUM-BINDING-PROTEINS; ISOPOD PORCELLIO-SCABER; SNAIL HELIX-ASPERSA; LIFE-HISTORY TRAITS; ORCHESELLA-CINCTA COLLEMBOLA; DROSOPHILA-MELANOGASTER; LUMBRICUS-RUBELLUS; ARTIFICIAL SELECTION; METALLOTHIONEIN GENE 1. The occurrence of genetic adaptation to heavy metals in natural populations of terrestrial invertebrates is evaluated from literature data. Five criteria for adaptation evidence are applied, with concepts from ecotoxicology, ecology, life-history theory and quantitative genetics. 2. There is strong evidence for the occurrence of adaptation in natural populations of the isopod Porcellio scaber (Isopoda), the springtails Isotoma notabilis, Onychiurus armatus and Orchesella cincta (Collembola), the blowfly Lucilia cuprina and the fruit fly Drosophila melanogaster (Diptera). Adaptation to metal-containing pesticides has been demonstrated in ticks (Acarina). Population divergence indicates acclimation or adaptation in many other species. 3. Metal adaptation has been achieved within a few generations under laboratory conditions in some species; adapted populations occur at field sites that have been polluted for decades, or longer. 4. Genetic variation for tolerance and life-history characteristics, allowing for adaptation, was quantified in a reference population of Orchesella cincta. Tolerance and life-history patterns in exposed field populations matched predictions from genetic variation. 5. Adaptation involves modification and intensification of existing physiological mechanisms for metal assimilation, excretion, immobilization or compartmentalized storage. There are indications of inter-population divergence in metal-binding proteins in a snail. In the fruit fly Drosophila melanogaster metal adaptation is achieved by duplication of the metallothionein gene. 6. An altered life-history is often part of the complex adaptation syndrome. Metal-adapted invertebrates have a shorter life-cycle and a higher reproductive effort. 7. Possible consequences of adaptation, consisting of costs of tolerance determined by genetic correlations, and probably of reduced genetic variation for tolerance and other features, are discussed. Reduced genetic variation is suggested by results for the springtail Orchesella cincta. 8. The distinction between ''costs of tolerance'' on the one hand and linkage disequilibrium or direct selection for altered life-history patterns on the other hand is discussed. 9. Species with high sensitivity (i.e. a low NOEC), that do not have populations maintaining sufficient genetic variation to evolve tolerance or modified life-history characteristics, or that have costly tolerance mechanisms, or both, are most at risk for extinction at sites with increasing metal pollution. 10. Metal adaptation in terrestrial invertebrates appears to be of degree rather than of kind: indications for a specific metal-fauna, equivalent to metal-vegetation, are lacking. FREE UNIV AMSTERDAM,DEPT ECOL & ECOTOXICOL,1081 HV AMSTERDAM,NETHERLANDS POSTHUMA, L (reprint author), NATL INST PUBL HLTH & ENVIRONM PROTECT,ECOTOXICOL LAB,POB 1,3720 BA BILTHOVEN,NETHERLANDS. Posthuma, Leo/0000-0003-0399-5499 Antonovics J., 1971, Advances in Ecological Research, V7, P1, DOI 10.1016/S0065-2504(08)60202-0; AOKI Y, 1984, COMP BIOCHEM PHYS C, V77, P279, DOI 10.1016/0742-8413(84)90013-6; AOKI Y, 1989, COMP BIOCHEM PHYS C, V93, P345, DOI 10.1016/0742-8413(89)90245-4; ASHIDA J, 1965, ANNU REV PHYTOPATHOL, V3, P153, DOI 10.1146/annurev.py.03.090165.001101; BAJRAKTARI I, 1987, Acta Biologiae et Medicinae Experimentalis, V12, P57; BAJRAKTARI I, 1987, Acta Biologiae et Medicinae Experimentalis, V12, P7; BAKER AJM, 1987, NEW PHYTOL, V106, P93; BAKER AJM, 1986, NEW PHYTOL, V102, P575, DOI 10.1111/j.1469-8137.1986.tb00833.x; BAUR B, 1988, J ANIM ECOL, V57, P71, DOI 10.2307/4764; BEEBY A, 1983, ENVIRON POLLUT A, V30, P233, DOI 10.1016/0143-1471(83)90024-7; BEEBY A, 1987, ENVIRON POLLUT, V46, P73, DOI 10.1016/0269-7491(87)90146-1; BEEBY A, 1988, ARCH ENVIRON CON TOX, V17, P507, DOI 10.1007/BF01055516; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BENGTSSON G, 1985, OECOLOGIA, V68, P63, DOI 10.1007/BF00379475; BENGTSSON G, 1985, J APPL ECOL, V22, P967, DOI 10.2307/2403244; BENGTSSON G, 1992, OIKOS, V63, P289, DOI 10.2307/3545390; BENGTSSON G, 1988, CAN J ZOOL, V66, P1518, DOI 10.1139/z88-223; BENGTSSON G, 1983, OIKOS, V40, P216, DOI 10.2307/3544585; BENTON MJ, 1990, J N AM BENTHOL SOC, V9, P271, DOI 10.2307/1467590; BLACKMAN G G, 1975, Journal of the South African Veterinary Association, V46, P337; BOUTRON CF, 1991, NATURE, V353, P153, DOI 10.1038/353153a0; BRADSHAW AD, 1981, STUDIES BIOL, V130; Bradshaw AD, 1990, HEAVY METAL TOLERANC, P323; Brandon R, 1991, ADAPTATION ENV; BROWN BE, 1982, BIOL REV, V57, P621, DOI 10.1111/j.1469-185X.1982.tb00375.x; BULMER MG, 1971, AM NAT, V105, P201, DOI 10.1086/282718; CHAGNON NL, 1989, ENVIRON TOXICOL CHEM, V8, P319, DOI 10.1897/1552-8618(1989)8[319:DSOAGI]2.0.CO;2; CHAGNON NL, 1989, ENVIRON TOXICOL CHEM, V8, P1141; CHAPCO W, 1978, CAN J GENET CYTOL, V20, P555, DOI 10.1139/g78-065; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHRISTIE NT, 1985, BIOCHEM GENET, V23, P571, DOI 10.1007/BF00504291; CHRISTIE NT, 1983, TOXICOLOGY, V26, P295, DOI 10.1016/0300-483X(83)90090-2; CLARK AG, 1990, EVOLUTION, V44, P637, DOI 10.1111/j.1558-5646.1990.tb05944.x; CLARKE GM, 1987, NATURE, V325, P345, DOI 10.1038/325345a0; COOK LM, 1967, HEREDITY, V22, P397, DOI 10.1038/hdy.1967.49; COOK LM, 1965, EVOLUTION, V19, P86, DOI 10.2307/2406297; CORP N, 1991, ENVIRON POLLUT, V74, P39, DOI 10.1016/0269-7491(91)90025-R; COULAUD J, 1992, PLANT SYST EVOL, V179, P175, DOI 10.1007/BF00937595; DALLINGER R, 1988, CELL BIOL TOXICOL, V4, P97, DOI 10.1007/BF00141289; DALLINGER R, 1989, COMP BIOCHEM PHYS C, V92, P355, DOI 10.1016/0742-8413(89)90068-6; DALLINGER R, 1993, ECOTOXICOLOGY METALS, P245; DAVISON AW, 1982, NATURE, V297, P400, DOI 10.1038/297400a0; DERR JA, 1980, EVOLUTION, V34, P548, DOI 10.1111/j.1558-5646.1980.tb04843.x; DESENDER K, 1989, OECOLOGIA, V78, P513, DOI 10.1007/BF00378743; DINGLE H, 1991, AM ZOOL, V31, P253; DINGLE H, 1988, EVOLUTION, V42, P79, DOI 10.1111/j.1558-5646.1988.tb04109.x; DONKER MH, 1990, COMP BIOCHEM PHYS C, V97, P119, DOI 10.1016/0742-8413(90)90181-8; DONKER MH, 1992, FUNCT ECOL, V6, P445, DOI 10.2307/2389282; DONKER MH, 1991, COMP BIOCHEM PHYS C, V100, P143, DOI 10.1016/0742-8413(91)90141-F; DONKER MH, 1993, ECOTOXICOLOGY METALS, P383; DONKER MH, 1992, PHYSL METAL ADAPTATI, P53; DONKER MH, 1993, IN PRESS OECOLOGIA B; DUCRUET JM, 1985, PLANT CELL PHYSIOL, V26, P419, DOI 10.1093/oxfordjournals.pcp.a076925; DUECK TA, 1984, ANGEW BOT, V58, P47; EBERHARDT LL, 1991, ECOL MONOGR, V61, P53, DOI 10.2307/1942999; Endler JA, 1986, NATURAL SELECTION WI; Ernst W.H.O., 1974, SCHWERMETALLVEGETATI; ERNST WHO, 1983, BER DEUT BOT GES, V96, P49; ERNST WHO, 1990, EVOL TREND PLANT, V4, P45; ERNSTING G, 1993, OIKOS, V66, P17, DOI 10.2307/3545190; FALCONER DS, 1981, INTRO QUANTITATIVE G; FIRKO MJ, 1990, J ECON ENTOMOL, V83, P647, DOI 10.1093/jee/83.3.647; FRATI F, 1992, BIOCHEM SYST ECOL, V20, P297, DOI 10.1016/0305-1978(92)90041-B; Georghiou G.P., 1972, ANNU REV ECOL SYST, V3, P133, DOI DOI 10.1146/ANNUREV.ES.03.110172.001025; GILL HJ, 1989, TOXICOLOGY, V56, P315, DOI 10.1016/0300-483X(89)90094-2; GILLESPIE RB, 1989, ENVIRON TOXICOL CHEM, V8, P309, DOI 10.1897/1552-8618(1989)8[309:EOCOTF]2.0.CO;2; GRAVES JL, 1992, PHYSIOL ZOOL, V65, P268, DOI 10.1086/physzool.65.2.30158253; GREVILLE RW, 1991, ENVIRON POLLUT, V74, P115, DOI 10.1016/0269-7491(91)90108-9; GRUNDY AJ, 1989, HOLARCTIC ECOL, V12, P112; GUTH DJ, 1977, HYDROBIOLOGIA, V55, P225, DOI 10.1007/BF00017554; HAEFELFINGER DR, 1991, THESIS BASEL; HAGVAR S, 1990, ENVIRON ENTOMOL, V19, P1263, DOI 10.1093/ee/19.5.1263; HALLIDAY WR, 1990, J ENTOMOL SCI, V25, P239, DOI 10.18474/0749-8004-25.2.239; HAMER DH, 1986, ANNU REV BIOCHEM, V55, P913, DOI 10.1146/annurev.bi.55.070186.004405; HARINGTON JS, 1959, NATURE, V184, P1739, DOI 10.1038/1841739b0; HEAGLER MG, 1993, ENVIRON TOXICOL CHEM, V12, P385, DOI 10.1897/1552-8618(1993)12[385:AGIMGH]2.0.CO;2; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; HILLESHEIM E, 1991, EVOLUTION, V45, P1909, DOI 10.1111/j.1558-5646.1991.tb02696.x; Hoffmann A.A., 1991, EVOLUTIONARY GENETIC; HOFFMANN AA, 1991, AM NAT, V138, P668, DOI 10.1086/285241; HOLLOWAY GJ, 1990, FUNCT ECOL, V4, P289, DOI 10.2307/2389588; Hopkin S.P., 1989, MICROSC ANAL, V14, P23; Hopkin S.P., 1989, ECOPHYSIOLOGY METALS; HOPKIN SP, 1984, J APPL ECOL, V21, P535, DOI 10.2307/2403427; HOPKIN SP, 1993, OIKOS, V66, P137, DOI 10.2307/3545206; HOPKIN SP, 1982, OECOLOGIA, V54, P227, DOI 10.1007/BF00378396; HOPKIN SP, 1990, J APPL ECOL, V27, P460, DOI 10.2307/2404294; Hopkin SP, 1984, S ZOOL SOC LOND, V53, P143; HUMBERT W, 1978, CELL TISSUE RES, V187, P397; IRELAND MP, 1977, HISTOCHEMISTRY, V51, P153, DOI 10.1007/BF00567221; IRELAND MP, 1979, ENVIRON POLLUT, V19, P271; JANSSEN GM, 1988, EVOLUTION, V42, P828, DOI 10.1111/j.1558-5646.1988.tb02503.x; JANSSEN MPM, 1991, ARCH ENVIRON CON TOX, V20, P305, DOI 10.1007/BF01064395; JOOSSE ENG, 1981, PEDOBIOLOGIA, V21, P346; JOOSSE ENG, 1983, PEDOBIOLOGIA, V25, P11; JOOSSE ENG, 1983, P INT C HEAVY METALS, P467; JOOSSE ENG, 1981, 3RD P INT C HEAV MET, P425; KEIDING J, 1967, WORLD REV PEST CONTR, V6, P115; Klerks P. L., 1989, ECOTOXICOLOGY PROBLE, P41; KLERKS PL, 1989, BIOL BULL, V176, P135, DOI 10.2307/1541580; KLERKS PL, 1987, ENVIRON POLLUT, V45, P173, DOI 10.1016/0269-7491(87)90057-1; KLERKS PL, 1990, HEAVY METAL ADAPTATI, P314; KOEHN RK, 1978, ECOLOGICAL GENETICS, P51, DOI DOI 10.1007/978-1-4612-6330-2; KOPP RL, 1992, ENVIRON TOXICOL CHEM, V11, P665, DOI 10.1897/1552-8618(1992)11[665:GIOESI]2.0.CO;2; KRAMER VJ, 1992, ENVIRON TOXICOL CHEM, V11, P357, DOI 10.1897/1552-8618(1992)11[357:GAKCMI]2.0.CO;2; Lauverjat S., 1989, Biology of Metals, V2, P97, DOI 10.1007/BF01129208; LEARY RF, 1989, TRENDS ECOL EVOL, V4, P214, DOI 10.1016/0169-5347(89)90077-3; LEFEBVRE C, 1984, J APPL ECOL, V21, P255, DOI 10.2307/2403051; Levitt J, 1980, RESPONSES PLANTS ENV; LOWER WR, 1975, MUTAT RES, V31, P315, DOI 10.1016/0165-1161(75)90112-0; LUPETTI P, 1992, 54TH C UN ZOOL IT PE; Macnair M. R., 1990, Heavy metal tolerance in plants: evolutionary aspects., P235; MACNAIR MR, 1991, GENETICA, V84, P213, DOI 10.1007/BF00127250; MACNAIR MR, 1987, TRENDS ECOL EVOL, V2, P354, DOI 10.1016/0169-5347(87)90135-2; MACNAIR MR, 1983, NEW PHYTOL, V95, P133, DOI 10.1111/j.1469-8137.1983.tb03476.x; MAGNUSSON J, 1986, TERATOGEN CARCIN MUT, V6, P289, DOI 10.1002/tcm.1770060405; MALTBY L, 1991, OIKOS, V61, P11, DOI 10.2307/3545402; MARONI G, 1987, GENETICS, V117, P739; MARONI G, 1986, GENETICS, V112, P493; MARONI G, 1990, HEAVY METAL TOLERANC, P216; MATTHEWSON M D, 1975, Journal of the South African Veterinary Association, V46, P341; MICOD RE, 1979, AM NAT, V113, P531; MIGULA P, 1993, IN PRESS SCI TOT ENV; MOLLER H, 1989, FUNCT ECOL, V3, P673, DOI 10.2307/2389499; MORGAN AJ, 1990, B ENVIRON CONTAM TOX, V44, P363, DOI 10.1007/BF01701216; MORGAN AJ, 1982, HISTOCHEMISTRY, V75, P269, DOI 10.1007/BF00496017; MORGAN JE, 1989, COMP BIOCHEM PHYS C, V92, P15, DOI 10.1016/0742-8413(89)90195-3; MORGAN JE, 1988, ENVIRON POLLUT, V55, P41, DOI 10.1016/0269-7491(88)90158-3; MORGAN JE, 1990, OECOLOGIA, V84, P559, DOI 10.1007/BF00328174; MUNKITTRICK KR, 1988, ECOTOX ENVIRON SAFE, V15, P7, DOI 10.1016/0147-6513(88)90038-3; NASSAR R, 1979, AUST J BIOL SCI, V32, P127; NEVO E, 1983, ISOZYMES-CURR T BIOL, V10, P69; NICHOLLS MK, 1985, NEW PHYTOL, V101, P207, DOI 10.1111/j.1469-8137.1985.tb02827.x; NOTTROT F, 1987, PEDOBIOLOGIA, V30, P45; NYBERG D, 1986, AM NAT, V127, P615, DOI 10.1086/284509; NYBERG D, 1983, EVOLUTION, V37, P341, DOI 10.1111/j.1558-5646.1983.tb05544.x; OBRIEN SJ, 1985, SCIENCE, V227, P1428, DOI 10.1126/science.2983425; OTTO E, 1986, P NATL ACAD SCI USA, V83, P6025, DOI 10.1073/pnas.83.16.6025; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; POSTHUMA L, 1990, J APPL ECOL, V27, P609, DOI 10.2307/2404306; POSTHUMA L, 1992, ARCH ENVIRON CON TOX, V22, P146, DOI 10.1007/BF00213314; POSTHUMA L, 1993, EVOLUTION, V47, P619, DOI 10.1111/j.1558-5646.1993.tb02116.x; POSTHUMA L, 1993, OIKOS, V67, P235, DOI 10.2307/3545468; POSTHUMA L, IN PRESS ACTA ZOOL F; PRICE T, 1991, EVOLUTION, V45, P853, DOI 10.1111/j.1558-5646.1991.tb04354.x; READ HJ, 1987, ENVIRON POLLUT, V48, P61, DOI 10.1016/0269-7491(87)90086-8; ROESIJADI G, 1992, AQUAT TOXICOL, V22, P81, DOI 10.1016/0166-445X(92)90026-J; ROLLO CD, 1991, CAN J ZOOL, V69, P978, DOI 10.1139/z91-142; ROSE MR, 1992, EXP GERONTOL, V27, P241, DOI 10.1016/0531-5565(92)90048-5; ROSE MR, 1984, EVOLUTION, V38, P516, DOI 10.1111/j.1558-5646.1984.tb00317.x; ROSE MR, 1981, GENETICS, V97, P173; ROSENHEIM JA, 1991, AM NAT, V137, P527, DOI 10.1086/285181; ROUSH RT, 1987, ANNU REV ENTOMOL, V32, P361, DOI 10.1146/annurev.en.32.010187.002045; RUSSELL LK, 1981, B ENVIRON CONTAM TOX, V26, P634, DOI 10.1007/BF01622148; SCHAT H, 1992, HEREDITY, V68, P219, DOI 10.1038/hdy.1992.35; SHAW AJ, 1991, EVOLUTION, V45, P1260, DOI 10.1111/j.1558-5646.1991.tb04391.x; SHAW J, 1988, NEW PHYTOL, V109, P211, DOI 10.1111/j.1469-8137.1988.tb03710.x; SHAW J, 1990, HEAVY METAL TOLERANC, P133; SIBLY RM, 1989, BIOL J LINN SOC, V37, P101, DOI 10.1111/j.1095-8312.1989.tb02007.x; SIEPEL H, UNPUB ENV POLLUTION; SIMKISS K, 1991, FUNCT ECOL, V5, P787, DOI 10.2307/2389542; SIMON E, 1975, Bulletin de la Societe Royale de Botanique de Belgique, V108, P273; SIMON E, 1977, NATURE, V265, P328, DOI 10.1038/265328a0; SLUYS R, 1988, Z ZOOL SYST EVOL, V26, P12; Sober Elliott, 1984, NATURE SELECTION; SOUTYGROSSET C, 1988, INT J INVER REP DEV, V14, P131, DOI 10.1080/01688170.1988.10510373; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STONE H, 1985, COMP BIOCHEM PHYS C, V80, P9, DOI 10.1016/0742-8413(85)90126-4; SULLIVAN JT, 1984, TROPENMED PARASITOL, V35, P189; SUZUKI KT, 1980, ARCH ENVIRON CON TOX, V9, P415, DOI 10.1007/BF01055293; THOMPSON ME, 1958, NATURE, V181, P647, DOI 10.1038/181647a0; TRANVIK L, 1989, OECOLOGIA, V80, P195, DOI 10.1007/BF00380150; TRANVIK L, 1992, SUSTAIN STRESSED ENV; TRANVK L, 1993, IN PRESS J APPL ECOL; TREVORS JT, 1985, FEMS MICROBIOL LETT, V32, P39, DOI 10.1016/0378-1097(85)90025-4; TYLER G, 1989, WATER AIR SOIL POLL, V47, P189, DOI 10.1007/BF00279327; VANCAPELLEVEEN HE, 1987, THESIS VRIJE U AMSTE; VANCAPELLEVEEN HE, 1985, P INT C HEAVY METALS; VANSTRAALEN NM, 1987, J APPL ECOL, V24, P953, DOI 10.2307/2403992; VANSTRAALEN NM, 1989, ECOTOX ENVIRON SAFE, V17, P190, DOI 10.1016/0147-6513(89)90038-9; VANSTRAALEN NM, 1985, OIKOS, V45, P253, DOI 10.2307/3565712; VANSTRAALEN NM, 1989, ECOTOX ENVIRON SAFE, V18, P241, DOI 10.1016/0147-6513(89)90018-3; VANSTRAALEN NM, 1993, IN PRESS 4TH P KFK T; VANSTRAALEN NM, 1986, P INT C ENV CONT AMS, P16; VANSTRAALEN NM, 1993, ECOTOXICOLOGY METALS, P427; VERKLEIJ JAC, 1985, STRUCTURE FUNCTIONIN, V2, P355; WALLACE B, 1982, J HERED, V73, P35, DOI 10.1093/oxfordjournals.jhered.a109572; WAYNE RK, 1986, EVOLUTION, V40, P78, DOI 10.1111/j.1558-5646.1986.tb05719.x; WEIS JS, 1989, BIOSCIENCE, V39, P89, DOI 10.2307/1310907; WHITEHEAD GB, 1961, J INSECT PHYSIOL, V7, P177, DOI 10.1016/0022-1910(61)90070-1; WIESER W, 1961, NATURE, V191, P1020, DOI 10.1038/1911020a0; WIESER W, 1961, Z NATURFORSCH PT B, VB 16, P816; WILLIS JH, 1991, EVOLUTION, V45, P441, DOI 10.1111/j.1558-5646.1991.tb04418.x; WILSON JB, 1988, EVOLUTION, V42, P408, DOI [10.2307/2409246, 10.1111/j.1558-5646.1988.tb04146.x]; ZIEGLER HV, 1990, BIOCHEM SYST ECOL, V18, P57 196 243 254 2 83 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB 0742-8413 COMP BIOCHEM PHYS C Comp. Biochem. Physiol. C-Pharmacol. Toxicol. Endocrinol. SEP 1993 106 1 11 38 10.1016/0742-8413(93)90251-F 28 Biochemistry & Molecular Biology; Endocrinology & Metabolism; Toxicology; Zoology Biochemistry & Molecular Biology; Endocrinology & Metabolism; Toxicology; Zoology MA392 WOS:A1993MA39200002 2018-11-12 J CLARK, C CLARK, C DYNAMIC-MODELS OF BEHAVIOR - AN EXTENSION OF LIFE-HISTORY THEORY (VOL 8, PG 205, 1993) TRENDS IN ECOLOGY & EVOLUTION English Correction, Addition CLARK CW, 1993, TRENDS ECOL EVOL, V8, P205, DOI 10.1016/0169-5347(93)90100-4 1 0 0 1 2 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, OXON, ENGLAND OX5 1GB 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. SEP 1993 8 9 338 338 1 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity LT681 WOS:A1993LT68100013 2018-11-12 J CALVO, RN CALVO, RN EVOLUTIONARY DEMOGRAPHY OF ORCHIDS - INTENSITY AND FREQUENCY OF POLLINATION AND THE COST OF FRUITING ECOLOGY English Article ASYMPTOTIC POPULATION GROWTH RATE; AVERAGE FITNESS; COST OF FRUITING; MATRIX MODEL; ORCHIDACEAE; POLLINATION FREQUENCY AND INTENSITY; POPULATION DYNAMICS; SEEDLING PRODUCTION PER FRUIT; TOLUMNIA-VARIEGATA TIPULARIA-DISCOLOR ORCHIDACEAE; NEOTROPICAL ORCHID; REPRODUCTION; PLANTS; LIMITATION; FITNESS; SELECTION; PATTERNS; BIOLOGY; BULBOSA Life history theory assumes that there is a trade-off between current reproduction and future growth or reproduction or both; therefore, natural selection is expected to result in the maximization of reproduction within the limits imposed by the trade-offs. Accordingly, it has been predicted that fruit and seed production in perennial plants should be resource limited. Many orchid species seem to be pollinator limited, but this hypothesis has been recently challenged by experimental studies that show a cost of increased fruit set in some orchids. In this study, I combined the results of a 2-yr pollination experiment and a 3-yr demographic assessment of a population of the orchid Tolumnia variegata in a matrix model of population dynamics, and by means of simulations I evaluated the effect of pollination intensity and frequency, fruit production, and cost of fruiting on the asymptotic population growth rate. Mean natural fruit set in this population was < 1%, whereas intermediate and high pollination intensity resulted in mean fruit set of 35 and 72%, respectively. In any given year, almost-equal-to 98% of all flowering individuals fail to set fruit under natural conditions. Despite the dramatic increase in fruit set after hand-pollination, only plants in the high pollination intensity treatment showed a statistically significant reduction in future growth and flowering. The simulations showed that a small seedling production per fruit would be enough to overcome the cost of fruiting; therefore, plants in this population should experience strong selection for increased pollination. This conclusion does not seem to explain the widespread occurrence of low fruit set and high proportion of fruiting failure among nonautogamous orchids. The results of this study suggest an alternative explanation: pollinator limitation could be evolutionarily stable if the correlation between fruit or seed production and seedling recruitment is sufficiently low. If an increase in fruit or seed production does not translate into an increase in fitness, then selection for increased pollination would not occur or would be too weak. To evaluate this alternative, quantitative studies on the transition from seed to seedling in natural orchid populations are required. UNIV MIAMI, DEPT BIOL, CORAL GABLES, FL 33124 USA Ackerman J.D., 1981, Madrono, V28, P101; ACKERMAN JD, 1990, ECOLOGY, V71, P263, DOI 10.2307/1940265; ACKERMAN JD, 1989, SYST BOT, V14, P101, DOI 10.2307/2419054; ACKERMAN JD, 1991, SYST BOT, V16, P182, DOI 10.2307/2418982; Ackermann J. D., 1985, American Orchid Society Bulletin, V54, P326; BERRY PE, 1991, PLANT SYSTEMATIC EVO, V174, P92; BOYDEN TC, 1982, OECOLOGIA, V55, P178, DOI 10.1007/BF00384485; CALVO RN, 1990, AM J BOT, V77, P1378, DOI 10.2307/2444598; CALVO RN, 1990, AM NAT, V136, P499, DOI 10.1086/285110; CALVO RN, 1990, AM J BOT, V77, P736, DOI 10.2307/2444365; CALVO RN, 1990, THESIS U MIAMI CORAL; CASWELL H, 1980, ECOLOGY, V61, P19, DOI 10.2307/1937149; Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV E L, 1982; COHEN D, 1990, AM NAT, V135, P218, DOI 10.1086/285040; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; DARWIN C, 1977, VARIOUS CONTRIVANCES; DIERINGER G, 1982, OHIO J SCI, V82, P218; Fisher R. A., 1958, GENETICAL THEORY NAT; FOX JF, 1991, ECOLOGY, V72, P1013, DOI 10.2307/1940601; HAIG D, 1988, AM NAT, V131, P757, DOI 10.1086/284817; Harper J. L., 1977, POPULATION BIOL PLAN; HORVITZ CC, 1988, ECOLOGY, V69, P200, DOI 10.2307/1943175; JANZEN DH, 1977, AM NAT, V111, P365, DOI 10.1086/283166; JANZEN DH, 1980, BIOTROPICA, V12, P72, DOI 10.2307/2387776; JENNERSTEN O, 1991, OIKOS, V61, P197, DOI 10.2307/3545337; LAW R, 1979, AM NAT, V113, P3, DOI 10.1086/283361; Lee T. D., 1988, Plant reproductive ecology: patterns and strategies, P179; LLOYD DG, 1980, NEW PHYTOL, V86, P81, DOI 10.1111/j.1469-8137.1980.tb00781.x; LUBBERS AE, 1989, ECOLOGY, V70, P85, DOI 10.2307/1938415; MEAGHER TR, 1987, ECOLOGY, V68, P803, DOI 10.2307/1938351; MELENDEZ EJ, 1990, THESIS U PUERTO RICO; MONTALVO AM, 1987, BIOTROPICA, V19, P24, DOI 10.2307/2388456; NILSSON LA, 1980, BOT NOTISER, V133, P367; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PRIMACK RB, 1989, ANNU REV ECOL SYST, V20, P367, DOI 10.1146/annurev.es.20.110189.002055; PRIMACK RB, 1990, AM NAT, V136, P638, DOI 10.1086/285120; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHEMSKE DW, 1980, EVOLUTION, V34, P489, DOI 10.1111/j.1558-5646.1980.tb04838.x; SNOW AA, 1989, ECOLOGY, V70, P1286, DOI 10.2307/1938188; SOHN JJ, 1977, ECOLOGY, V58, P1366, DOI 10.2307/1935088; Sokal R. R., 1981, BIOMETRY; STEPHENSON AG, 1981, ANNU REV ECOL SYST, V12, P253, DOI 10.1146/annurev.es.12.110181.001345; SUTHERLAND S, 1984, ECOLOGY, V65, P1093, DOI 10.2307/1938317; THIEN LB, 1972, CAN J BOTANY, V50, P2319, DOI 10.1139/b72-300; WASER PM, 1991, ECOLOGY, V72, P771, DOI 10.2307/1940579; WHIGHAM DF, 1980, AM J BOT, V67, P550, DOI 10.2307/2442295; Williams GC, 1966, ADAPTATION NATURAL S; WILLSON MF, 1983, MATE CHOICE PLANTS; ZIMMERMAN JK, 1989, ECOLOGY, V70, P1192, DOI 10.2307/1941389; ZIMMERMAN JK, 1989, AM J BOT, V76, P67, DOI 10.2307/2444775; ZIMMERMAN M, 1988, AM NAT, V131, P723, DOI 10.1086/284815 53 144 151 0 41 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 ECOLOGY Ecology JUN 1993 74 4 1033 1042 10.2307/1940473 10 Ecology Environmental Sciences & Ecology LD022 WOS:A1993LD02200007 2018-11-12 J DIXON, AFG; KUNDU, R; KINDLMANN, P DIXON, AFG; KUNDU, R; KINDLMANN, P REPRODUCTIVE EFFORT AND MATERNAL AGE IN ITEROPAROUS INSECTS USING APHIDS AS A MODEL GROUP FUNCTIONAL ECOLOGY English Article LIFE-HISTORY THEORY; OFFSPRING SIZE; OPTIMAL ENERGY ALLOCATION MODEL 1. Life-history theory predicts that as the residual reproductive value of an organism declines its current investment in reproduction should increase. This hypothesis has not been previously tested for insects. 2. The results of a laboratory study on the reproductive investment of the willow-carrot aphid, Cavariella aegopodii and the vetch aphid, Megoura viciae were compared with the predictions of the aphid optimal energy partitioning model. 3. The model's assumption that the fecundity function in aphids is triangular was supported. 4. As predicted by the model, the sizes of gonads decrease and those of the offspring increase with the age of the mother. 5. The large offspring born towards the end of a mother's life achieve a greater adult weight, mean relative growth rate and potential intrinsic rate of increase than the small offspring born early in a mother's life. The better performance of the last born is a consequence of their large birth size. 6. The size of the offspring varies inversely and the reproductive investment positively with residual reproductive value. The increase in offspring size towards the end of a mother's life is a consequence of the time lag between ovulation and birth and the cessation of ovulation well before a mother dies. The excess of energy produced by the soma in old mothers is used to accelerate the growth rate of the remaining offspring. This result can be extended to other groups that conform to the aphid model's assumptions. DIXON, AFG (reprint author), UNIV E ANGLIA,SCH BIOL SCI,NORWICH NR4 7TJ,NORFOLK,ENGLAND. Kindlmann, Pavel/H-7718-2014 0 22 23 0 6 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0269-8463 FUNCT ECOL Funct. Ecol. JUN 1993 7 3 267 272 10.2307/2390204 6 Ecology Environmental Sciences & Ecology LH022 WOS:A1993LH02200003 2018-11-12 J FORMANOWICZ, DR; SHAFFER, LR FORMANOWICZ, DR; SHAFFER, LR REPRODUCTIVE INVESTMENT IN THE SCORPION CENTRUROIDES-VITTATUS OECOLOGIA English Article REPRODUCTION; OFFSPRING SIZE; LITTER SIZE; SCORPIONS; CENTRUROIDES-VITTATUS LIFE-HISTORY EVOLUTION; PROPAGULE SIZE; EGG SIZE; NUMBER; COSTS; PLASTICITY Among invertebrates, scorpions possess a relatively unique set of reproductive traits. The interrelationships of these traits may have important implications for life history theory, yet there have been few studies of these traits in scorpions. Our data indicate that larger female Centruroides vittatus produce more offspring and have a higher total litter mass than smaller females. There was, however, no significant relationship between offspring size and female or litter size. Mean offspring mass increased with increases in total litter mass and within litter variation in offspring size (coefficients of variation) decreased with increasing total litter mass. These results suggest that large female scorpions with a larger investment in reproduction produced more offspring that were more uniform in size, but not significantly larger, than small females with less investment. The fractional clutch principle and physiological and functional constraints on size and number of offspring are suggested as possible explanations for the relationships we found among offspring size, variation in offspring size and total investment in offspring in C. vittatus. FORMANOWICZ, DR (reprint author), UNIV TEXAS,DEPT BIOL,BOX 19498,ARLINGTON,TX 76019, USA. Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BRADLEY RA, 1984, OECOLOGIA, V62, P53, DOI 10.1007/BF00377372; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; BRODIE ED, 1989, AM MIDL NAT, V122, P51; CALOW P, 1983, BIOL J LINN SOC, V20, P153, DOI 10.1111/j.1095-8312.1983.tb00359.x; CAPINERA JL, 1979, AM NAT, V114, P350, DOI 10.1086/283484; CRUMP ML, 1981, AM NAT, V117, P724, DOI 10.1086/283755; CRUMP ML, 1984, COPEIA, P302, DOI 10.2307/1445185; Endler JA, 1986, NATURAL SELECTION WI; FRANCKE O F, 1981, Southwestern Naturalist, V25, P517, DOI 10.2307/3670851; GODFRAY HCJ, 1991, OXFORD SURVEYS EVOLU, V4, P177; GODFRAY HCJ, 1991, TRE EVOLUTION REPROD; KAPLAN RH, 1984, AM NAT, V123, P393, DOI 10.1086/284211; Lack D., 1947, IBIS, V89, P309; LACK D, 1954, NATURAL REGULATION A; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; NUSSBAUM RA, 1981, OECOLOGIA, V49, P14; Packard G.C., 1987, P216; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; Polis G.A., 1990, P161; POLIS GA, 1981, ANNU REV ECOL SYST, V12, P225, DOI 10.1146/annurev.es.12.110181.001301; POLIS GA, 1983, INFANTICIDE EVOLUTIO, P87; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; RICKLEFS RE, 1968, P NATL ACAD SCI USA, V61, P847, DOI 10.1073/pnas.61.3.847; SHINE R, 1991, EVOLUTION, V45, P1696, DOI 10.1111/j.1558-5646.1991.tb02675.x; SIEGEL S, 1988, NONPARAMETRIC STATIS; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STAMP NE, 1980, AM NAT, V115, P367, DOI 10.1086/283567; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; WILBUR HM, 1977, AM NAT, V111, P43, DOI 10.1086/283137; WILKINSON L, 1987, SYSTAT SYSTEMS STATI 39 17 17 0 6 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia JUN 1993 94 3 368 372 10.1007/BF00317111 5 Ecology Environmental Sciences & Ecology LJ041 WOS:A1993LJ04100010 28313673 2018-11-12 J POSTHUMA, L; VERWEIJ, RA; WIDIANARKO, B; ZONNEVELD, C POSTHUMA, L; VERWEIJ, RA; WIDIANARKO, B; ZONNEVELD, C LIFE-HISTORY PATTERNS IN METAL-ADAPTED COLLEMBOLA OIKOS English Article ONYCHIURUS-ARMATUS COLLEMBOLA; ORCHESELLA-CINCTA COLLEMBOLA; HEAVY-METALS; POPULATION; MORTALITY; EVOLUTION; GROWTH; TOLERANCE; SOIL; LEAD Life-history theory predicts that pollutants can be selective agents which mould life-history patterns. Pollution-mediated decreased adult survival and reproductive success was expected to induce earlier maturation and an increased reproductive allocation per clutch. Divergence of life-history patterns in relation to metal exposure was studied in reference and metal-tolerant natural populations of the springtail species Orchesella cincta. Mortality, growth and reproduction were analysed in laboratory generation animals originating from six sites. The dose-effect relationship for mortality was similar for all populations, except for the control and the lowest exposure concentration. For animals from highly polluted sites, control mortality was higher than mortality in the low exposed group. Inter-population differences with regard to growth and reproduction were studied using two cadmium exposure levels. Body growth was analysed using Von Bertalanffy' s growth model. Inter-population differences for asymptotic weight and growth rate were small. Asymptotic weight depended on sex and treatment, growth rate also depended on population. Inter-population differences were highest for post-hatching body weight. Juvenile body weight was highest and least affected by cadmium in animals from metal-contaminated sites. Female weight at first reproduction depended on population and exposure. Age at first reproduction was lowest in the most exposed populations. Clutch size differences were not found, but realized fertility was higher in exposed populations, since more clutches per female were produced. It is concluded that life-history patterns in 0. cincta differ between populations which have experienced a different duration and intensity of metal exposure. As the differences were found in laboratory generation animals, there is evidence for genetic differences between populations. FREE UNIV AMSTERDAM,FAC BIOL,1081 HV AMSTERDAM,NETHERLANDS; UNIV KRISTEN SATYA WACANA,FAK BIOL,SALATIGA,INDONESIA Posthuma, Leo/0000-0003-0399-5499 BAJRAKTARI I, 1987, Acta Biologiae et Medicinae Experimentalis, V12, P57; BENGTSSON G, 1985, OECOLOGIA, V68, P63, DOI 10.1007/BF00379475; BENGTSSON G, 1985, J APPL ECOL, V22, P967, DOI 10.2307/2403244; BENGTSSON G, 1983, OIKOS, V40, P216, DOI 10.2307/3544585; Brandon R, 1991, ADAPTATION ENV; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CORP N, 1991, ENVIRON POLLUT, V74, P39, DOI 10.1016/0269-7491(91)90025-R; Cox DR, 1974, THEORETICAL STATISTI; DONKER MH, 1992, IN PRESS OECOLOGIA; DONKER MH, 1992, ECOTOXICOLOGY METALS; Endler JA, 1986, NATURAL SELECTION WI; ERNSTING G, 1993, IN PRESS OIKOS; FALCONER DS, 1981, INTRO QUANTITATIVE G; HAGVAR S, 1990, ENVIRON ENTOMOL, V19, P1263, DOI 10.1093/ee/19.5.1263; Hoffmann A.A., 1991, EVOLUTIONARY GENETIC; JANSSEN GM, 1988, EVOLUTION, V42, P828, DOI 10.1111/j.1558-5646.1988.tb02503.x; JANSSEN GM, 1987, PEDOBIOLOGIA, V30, P1; JANSSEN GM, 1985, THESIS VRIJE U AMSTE; JOOSSE ENG, 1983, PEDOBIOLOGIA, V25, P11; Klerks P. L., 1989, ECOTOXICOLOGY PROBLE, P41; KLERKS PL, 1989, BIOL BULL, V176, P135, DOI 10.2307/1541580; Kooijman S.A.L.M., 1988, P3; KOOIJMAN SALM, 1981, WATER RES, V15, P107; Levitt J, 1980, RESPONSES PLANTS ENV; MALTBY L, 1991, OIKOS, V61, P11, DOI 10.2307/3545402; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; POSTHUMA L, 1990, J APPL ECOL, V27, P609, DOI 10.2307/2404306; POSTHUMA L, 1992, ARCH ENVIRON CON TOX, V22, P146, DOI 10.1007/BF00213314; POSTHUMA L, 1992, IN PRESS EVOLUTION; READ HJ, 1987, ENVIRON POLLUT, V48, P61, DOI 10.1016/0269-7491(87)90086-8; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; ROD FH, 1991, OIKOS, V62, P13; ROD FH, 1989, BIOL J LINN SOC, V37, P101; SHAW J, 1988, NEW PHYTOL, V109, P211, DOI 10.1111/j.1469-8137.1988.tb03710.x; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; SOKAL RR, 1969, BIOMETRY; STROJAN CL, 1978, OIKOS, V31, P41, DOI 10.2307/3543382; TESTERINK GJ, 1982, ECOL ENTOMOL, V7, P341, DOI 10.1111/j.1365-2311.1982.tb00675.x; TRANVIK L, 1992, IN PRESS J APPL ECOL; VANSTRAALEN NM, 1987, J APPL ECOL, V24, P953, DOI 10.2307/2403992; VANSTRAALEN NM, 1989, ECOTOX ENVIRON SAFE, V17, P190, DOI 10.1016/0147-6513(89)90038-9; VANSTRAALEN NM, 1985, OECOLOGIA, V67, P220, DOI 10.1007/BF00384288; VEGTER JJ, 1983, PEDOBIOLOGIA, V25, P253; WEIS JS, 1989, BIOSCIENCE, V39, P89, DOI 10.2307/1310907; WILK MB, 1968, TECHNOMETRICS, V10, P825, DOI 10.2307/1267462; WILLIAMS ST, 1977, SOIL BIOL BIOCHEM, V9, P271, DOI 10.1016/0038-0717(77)90034-7; WILSON JB, 1988, EVOLUTION, V42, P408, DOI [10.2307/2409246, 10.1111/j.1558-5646.1988.tb04146.x] 48 49 49 1 13 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos JUN 1993 67 2 235 249 10.2307/3545468 15 Ecology Environmental Sciences & Ecology LF016 WOS:A1993LF01600006 2018-11-12 J CLARK, CW CLARK, CW DYNAMIC-MODELS OF BEHAVIOR - AN EXTENSION OF LIFE-HISTORY THEORY TRENDS IN ECOLOGY & EVOLUTION English Review PARENT-OFFSPRING CONFLICT; GROWTH Life history theory and behavioral ecology, two branches in the study of adaptation, have relied extensively on mathematical models, but have tended to employ different types of models, and different currencies of fitness. Recently, a new approach based on dynamic, state-variable models has been increasingly applied to the study of behavioral adaptations. In fact, this approach amounts to a unification of life history theory and behavioral ecology, to the extent that the line separating the two fields is virtually obliterated. Dynamic models (usually solved by computer) can yield both general principles and testable, quantitative or qualitative predictions about specific behavioral and life history phenomena. CLARK, CW (reprint author), UNIV BRITISH COLUMBIA,INST APPL MATH,VANCOUVER V6T 1Z2,BC,CANADA. BELLMAN R, 1957, DYNAMIC PROGRAMMING; CLARK CW, 1990, EVOL ECOL, V4, P312, DOI 10.1007/BF02270930; CLARK CW, 1988, AM NAT, V131, P271, DOI 10.1086/284789; FISHER R. A., 1930, GENETICAL THEORY NAT; HOUSTON AI, 1987, J THEOR BIOL, V129, P57, DOI 10.1016/S0022-5193(87)80203-5; KOZLOWSKI J, 1988, THEOR POPUL BIOL, V34, P118, DOI 10.1016/0040-5809(88)90037-8; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Lessells C.M., 1991, P32; Levins R., 1968, EVOLUTION CHANGING E; Lewontin R.C., 1987, P151; LUCAS JR, 1991, ANIM BEHAV, V41, P579, DOI 10.1016/S0003-3472(05)80898-X; MANGEL M, 1987, J MATH BIOL, V25, P1, DOI 10.1007/BF00275885; Mangel M., 1988, DYNAMIC MODELING BEH; MCFARLAND DJ, 1981, QUANTITATIVE ETHOLOG; MCNAMARA JM, 1986, AM NAT, V127, P358, DOI 10.1086/284489; PRICE K, 1992, B MATH BIOL, V54, P335, DOI 10.1007/BF02464837; ROITBERG BD, 1991, B MATH BIOL, V54, P401; Stearns S. C., 1992, EVOLUTION LIFE HIST; TRIVERS RL, 1974, AM ZOOL, V14, P249; Williams GC, 1966, ADAPTATION NATURAL S; YDENBERG RC, 1989, J THEOR BIOL, V139, P437, DOI 10.1016/S0022-5193(89)80064-5; YDENBERG RC, 1989, ECOLOGY, V70, P1494, DOI 10.2307/1938208; YOSHIMURA J, 1991, EVOL ECOL, V5, P173, DOI 10.1007/BF02270833; YOSHIMURA J, IN PRESS ADAPTTION S 24 41 43 1 12 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, OXON, ENGLAND OX5 1GB 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. JUN 1993 8 6 205 209 10.1016/0169-5347(93)90100-4 5 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity LE563 WOS:A1993LE56300006 21236149 2018-11-12 J WELTER, SC; STEGGALL, JW WELTER, SC; STEGGALL, JW CONTRASTING THE TOLERANCE OF WILD AND DOMESTICATED TOMATOES TO HERBIVORY - AGROECOLOGICAL IMPLICATIONS ECOLOGICAL APPLICATIONS English Article AGROECOLOGY; COST OF REPRODUCTION; CROP BREEDING; DEFOLIATION; DOMESTICATION; HERBIVORY; LIFE-HISTORY TRADE-OFFS; LYCOPERSICON-ESCULENTUM; RESOURCE ALLOCATION; TOLERANCE; TOMATO PLANTS; DEFOLIATION; RESPONSES; PHOTOSYNTHESIS; ALLOCATION; TOBACCO; YIELD Application of plant life-history theory to strategies for breeding crop plants for sustainable agriculture remains relatively unexplored. We determined the relative tolerance of wild and domesticated tomatoes to simulated herbivory and evaluated plant characteristics that may contribute to tolerance. Wild and domesticated tomatoes were subjected to different levels of defoliation ranging from 0 to 70%. Single defoliation events at lower levels (15-30%) did not significantly affect total fruit mass produced in either wild or domesticated tomatoes. Increased defoliation resulted in significant reductions in total fruit mass per plant and mean mass per fruit. Reduction in fruit output by the cultivar was almost-equal-to 3 times greater than the wild tomato for the first 8 wk of fruit production, whereas the loss in seasonal fruit production by the cultivar was 1.7 times greater than the wild tomato. We concluded that domestication of tomatoes may have decreased their relative tolerance to herbivory. Possible mechanisms for decreased tolerance include differences in leaf area index, light capture curves, and the relative allocation pattern to vegetative growth vs. reproductive structures. Optimization of potential life-history trade-offs between tolerance to herbivory and maximum fruiting abilities are proposed for cultivars of sustainable agriculture. WELTER, SC (reprint author), UNIV CALIF BERKELEY,DEPT ENTOMOL,BERKELEY,CA 94720, USA. BALDWIN IT, 1990, TRENDS ECOL EVOL, V5, P91, DOI 10.1016/0169-5347(90)90237-8; BALDWIN IT, 1988, OECOLOGIA, V77, P378, DOI 10.1007/BF00378046; BAZAZZ FA, 1987, BIOSCIENCE, V37, P58; BLOOM AJ, 1985, ANNU REV ECOL SYST, V16, P363, DOI 10.1146/annurev.es.16.110185.002051; Bloom AJ, 1985, OECOLOGIA, V65, P555, DOI 10.1007/BF00379672; CALDWELL MM, 1981, OECOLOGIA, V50, P14, DOI 10.1007/BF00378790; CHAPIN FS, 1980, ARCTIC ALPINE RES, V12, P553; CHAPIN FS, 1991, BIOSCIENCE, V41, P29, DOI 10.2307/1311538; COLEY PD, 1985, SCIENCE, V230, P895, DOI 10.1126/science.230.4728.895; CRAWLEY MJ, 1989, ANNU REV ENTOMOL, V34, P531, DOI 10.1146/annurev.en.34.010189.002531; FERY RL, 1987, J AM SOC HORTIC SCI, V112, P886; FLINT M, 1982, U CALIFORNIA DIVISIO, V3274; GHIDIU GM, 1989, J ECON ENTOMOL, V82, P891, DOI 10.1093/jee/82.3.891; GIFFORD RM, 1981, ANNU REV PLANT PHYS, V32, P485, DOI 10.1146/annurev.pp.32.060181.002413; GOLDBERG DE, 1983, AM J BOT, V70, P1098, DOI 10.2307/2442821; JACKSON W, 1989, ECOLOGY, V70, P1591, DOI 10.2307/1938090; JANSSENS MJJ, 1990, ECOL STUD, V78, P130; POLLEY HW, 1988, OECOLOGIA, V77, P261, DOI 10.1007/BF00379196; POSTON FL, 1976, J ECON ENTOMOL, V69, P109, DOI 10.1093/jee/69.1.109; Rick C. M., 1976, Evolution of crop plants., P268; SMITH CM, 1989, PLANT RESISTANCE INS, P75; STACEY DL, 1983, J HORTIC SCI, V58, P117, DOI 10.1080/00221589.1983.11515098; WELTER SC, 1991, ENVIRON ENTOMOL, V20, P1537, DOI 10.1093/ee/20.6.1537; WELTER SC, 1989, J ECON ENTOMOL, V82, P935, DOI 10.1093/jee/82.3.935; Welter SC, 1989, PLANT INSECT INTERAC, P135; WIENER J, 1990, AGROECOLOGY, P235; WILKINSON L, 1986, SYSTAT SYSTEM STATIS 27 37 39 0 18 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 1051-0761 ECOL APPL Ecol. Appl. MAY 1993 3 2 271 278 10.2307/1941830 8 Ecology; Environmental Sciences Environmental Sciences & Ecology LG199 WOS:A1993LG19900012 27759317 2018-11-12 J VANWINKLE, W; ROSE, KA; WINEMILLER, KO; DEANGELIS, DL; CHRISTENSEN, SW; OTTO, RG; SHUTER, BJ VANWINKLE, W; ROSE, KA; WINEMILLER, KO; DEANGELIS, DL; CHRISTENSEN, SW; OTTO, RG; SHUTER, BJ LINKING LIFE-HISTORY THEORY, ENVIRONMENTAL SETTING, AND INDIVIDUAL-BASED MODELING TO COMPARE RESPONSES OF DIFFERENT FISH SPECIES TO ENVIRONMENTAL-CHANGE TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY English Article SMALLMOUTH BASS; AMERICAN FISHES; POPULATIONS; PATTERNS; EXPLOITATION; RECRUITMENT; MANAGEMENT; BEHAVIOR; STYLES; SIZE We link life history theory, environmental setting, and individual-based modeling to compare the responses of two fish species to environmental change. Life history theory provides the framework for selecting representative species, and in combination with information on important environmental characteristics, it provides the framework for predicting the results of model simulations. Individual-based modeling offers a promising tool for integrating and extrapolating our mechanistic understanding of reproduction, growth, and mortality at the individual level to population-level responses such as size-frequency distributions and indices of year-class strength. Based on the trade-offs between life history characteristics of striped bass Morone saxatilis and smallmouth bass Micropterus dolomieu and differences in their respective environments, we predicted that young-of-year smallmouth bass are likely to demonstrate a greater compensatory change in growth and mortality than young-of-year striped bass in response to changes in density of early life stages and turnover rates of zooplankton prey. We tested this prediction with a simulation experiment. The pattern of model results was consistent with our expectations: by the end of the first growing season, compensatory changes in length and abundance of juveniles were more pronounced for smallmouth bass than for striped bass. The results also highlighted the dependence of model predictions on the interplay between density of larvae and juveniles and characteristics of their zooplankton prey. RG OTTO & ASSOCIATES,VIENNA,MD 21869; ONTARIO MINIST NAT RESOURCES,FISHERIES RES SECT,MAPLE L6A 1S9,ON,CANADA VANWINKLE, W (reprint author), OAK RIDGE NATL LAB,DIV ENVIRONM SCI,POB 2008,MS-6038,OAK RIDGE,TN 37831, USA. Shuter, Brian/A-3991-2008 ADAMS PB, 1980, FISH B-NOAA, V78, P1; ARMSTRONG MJ, 1990, ENVIRON BIOL FISH, V28, P77, DOI 10.1007/BF00751028; BARNTHOUSE LW, 1990, ENVIRON TOXICOL CHEM, V9, P297, DOI 10.1897/1552-8618(1990)9[297:ROTCTE]2.0.CO;2; BLAXTER JHS, 1986, T AM FISH SOC, V115, P98; CARLANDER KD, 1977, HDB FRESHWATER FISHE, V2; COWAN JH, 1993, T AM FISH SOC, V122, P439, DOI 10.1577/1548-8659(1993)122<0439:IBMOYO>2.3.CO;2; DeAngelis D.L., 1992, INDIVIDUAL BASED MOD; DEANGELIS DL, 1990, J GREAT LAKES RES, V16, P576, DOI 10.1016/S0380-1330(90)71446-3; DEANGELIS DL, 1991, ECOL MODEL, V57, P91, DOI 10.1016/0304-3800(91)90056-7; JAGER HI, IN PRESS RIVERS, V4; KAWASAKI T, 1980, B JPN SOC SCI FISH, V46, P289; LEAMAN BM, 1991, ENVIRON BIOL FISH, V30, P253, DOI 10.1007/BF02296893; LOMNICKI A, 1992, INDIVIDUAL-BASED MODELS AND APPROACHES IN ECOLOGY, P3; OTTO RG, 1987, EPRI EA5404 EL POW R; PEPIN P, 1991, CAN J FISH AQUAT SCI, V48, P1820, DOI 10.1139/f91-215; RIDGWAY MS, 1991, J ANIM ECOL, V60, P665, DOI 10.2307/5304; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; ROSE KA, 1993, T AM FISH SOC, V122, P415, DOI 10.1577/1548-8659(1993)122<0415:IBMOYO>2.3.CO;2; Rothschild B. J., 1986, DYNAMICS MARINE FISH; SALE PF, 1990, TRENDS ECOL EVOL, V5, P25, DOI 10.1016/0169-5347(90)90009-3; SCHAAF WE, 1987, ESTUARIES, V10, P267, DOI 10.2307/1351854; SETZLER EM, 1980, NOAA NMFS433 NAT OC; SHEPHERD JG, 1990, PHILOS T ROY SOC B, V330, P151, DOI 10.1098/rstb.1990.0189; VANWINKLE W, 1993, T AM FISH SOC, V122, P397, DOI 10.1577/1548-8659(1993)122<0397:IBATFP>2.3.CO;2; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WINEMILLER KO, 1991, OIKOS, V63, P318 27 30 30 0 20 AMER FISHERIES SOC BETHESDA 5410 GROSVENOR LANE SUITE 110, BETHESDA, MD 20814-2199 0002-8487 T AM FISH SOC Trans. Am. Fish. Soc. MAY 1993 122 3 459 466 10.1577/1548-8659(1993)122<0459:LLHTES>2.3.CO;2 8 Fisheries Fisheries LR876 WOS:A1993LR87600015 2018-11-12 J HUTCHINGS, JA HUTCHINGS, JA ADAPTIVE LIFE HISTORIES EFFECTED BY AGE-SPECIFIC SURVIVAL AND GROWTH-RATE ECOLOGY English Article ADAPTATION; BROOK TROUT; COST OF REPRODUCTION; FECUNDITY; FITNESS; GROWTH RATE; LIFE HISTORY; NEWFOUNDLAND; REPRODUCTIVE EFFORT; SALVELINUS-FONTINALIS; SURVIVAL SALMO-SALAR L; ATLANTIC SALMON; GENETIC-VARIATION; BROWN TROUT; EVOLUTION; REPRODUCTION; POPULATIONS; SELECTION; FISH; CONSEQUENCES Life history data for three unexploited populations of brook trout, Salvelinus fontinalis, were used to test the predictions of life history theory that, relative to juveniles, (1) high adult survival favors low reproductive effort and delayed reproduction, and (2) increased juvenile growth rate favors high effort and early reproduction. Field data supported both predictions. The population having the highest adult-to-juvenile survival ratio expended the least effort, reproduced latest in life, and experienced the lowest survival cost of reproduction. Among populations a high juvenile-to-adult growth rate was associated with early reproduction, high reproductive effort, and high reproductive cost. Early reproduction was also associated with increased growth within populations. The adaptive significance of interpopulation variation in life history was assessed by comparing the fitness, r, of observed life histories with those of potentially alternative strategies. Empirically derived fitness functions supported the hypothesis that population differences in life history were adaptive. Observed combinations of age-specific survival and fecundity were those that maximized fitness. Within populations the fitness advantages associated with reproducing early in life favored reduced age at reproduction for the fastest-growing individuals. The results are consistent with the predictions of life history theory and demonstrate empirically how survival and growth rate can independently and interactively influence life history evolution. HUTCHINGS, JA (reprint author), MEM UNIV NEWFOUNDLAND, DEPT BIOL, ST JOHNS A1B 3X9, NEWFOUNDLAND, CANADA. ALM G, 1959, I FRESHWATER RES DRO, V40, P1; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BERGLUND I, 1992, J FISH BIOL, V40, P281, DOI 10.1111/j.1095-8649.1992.tb02573.x; Beverton R. J. H., 1959, CIBA FDN C AGEING, V5, P142, DOI DOI 10.1002/9780470715253.CH10; BRETT JR, 1969, J FISH RES BOARD CAN, V26, P2363, DOI 10.1139/f69-230; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Charlesworth B., 1980, EVOLUTION AGE STRUCT; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CUNJAK RA, 1988, CAN J FISH AQUAT SCI, V45, P443, DOI 10.1139/f88-053; Doyle R.W., 1982, P157; ELLIOTT JM, 1976, J ANIM ECOL, V45, P273, DOI 10.2307/3779; FERGUSON MM, 1991, J FISH BIOL, V39, P79, DOI 10.1111/j.1095-8649.1991.tb05070.x; FISHER R. A., 1930, GENETICAL THEORY NAT; FOX MG, 1991, CAN J FISH AQUAT SCI, V48, P1792, DOI 10.1139/f91-211; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GJEDREM T, 1983, AQUACULTURE, V33, P51, DOI 10.1016/0044-8486(83)90386-1; GJERDE B, 1984, AQUACULTURE, V38, P229, DOI 10.1016/0044-8486(84)90147-9; GJERDE B, 1986, AQUACULTURE, V57, P37, DOI 10.1016/0044-8486(86)90179-1; Gross M.R., 1987, AM FISH SOC S, V1, P14; Hutchings J. A., 1990, THESIS MEMORIAL U NE; HUTCHINGS JA, 1991, OIKOS, V45, P1162; JONSSON B, 1985, T AM FISH SOC, V114, P182, DOI 10.1577/1548-8659(1985)114<182:LHPOFR>2.0.CO;2; LEGGETT WC, 1969, J FISH RES BOARD CAN, V26, P1585, DOI 10.1139/f69-142; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; Levins R., 1968, EVOLUTION CHANGING E; MAC ARTHUR ROBERT H., 1967; MCLAREN IA, 1974, BIOL BULL, V151, P200; MORRIS DW, 1992, EVOL ECOL, V6, P1, DOI 10.1007/BF02285330; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; MYERS RA, 1986, CAN J FISH AQUAT SCI, V43, P1242, DOI 10.1139/f86-154; MYERS RA, 1987, ECOLOGY, V68, P1839, DOI 10.2307/1939875; MYERS RA, 1983, MAR ECOL PROG SER, V11, P189, DOI 10.3354/meps011189; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; PARTRIDGE L, 1989, MORE EXACT ECOLOGY, P231; PAULY D, 1980, J CONSEIL, V39, P175; Peters R.H., 1983, P1; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PINHORN AT, 1969, J FISH RES BOARD CAN, V26, P3133, DOI 10.1139/f69-298; Power G, 1980, CHARRS SALMONID FISH, P141; Prout T., 1980, Evolutionary Biology (New York), V13, P1; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; ROBERTSON FW, 1963, GENET RES, V4, P74, DOI 10.1017/S001667230000344X; ROBISON OW, 1984, AQUACULTURE, V38, P155, DOI 10.1016/0044-8486(84)90227-8; ROFF DA, 1988, ENVIRON BIOL FISH, V22, P133, DOI 10.1007/BF00001543; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Rogerson R. J., 1981, NATURAL ENV NEWFOUND, P24; ROWE DK, 1990, J FISH BIOL, V36, P643, DOI 10.1111/j.1095-8649.1990.tb04319.x; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1975, ECOLOGY, V56, P577, DOI 10.2307/1935492; SCHAFFER WM, 1979, S ZOOL SOC LOND, V44, P307; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; SIBLY R, 1983, J THEOR BIOL, V102, P527, DOI 10.1016/0022-5193(83)90389-2; SIBLY R, 1985, J THEOR BIOL, V112, P553, DOI 10.1016/S0022-5193(85)80022-9; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1983, EVOLUTION, V37, P601, DOI 10.1111/j.1558-5646.1983.tb05577.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Thorpe J.E., 1986, Canadian Special Publication of Fisheries and Aquatic Sciences, V89, P7; THORPE JE, 1983, AQUACULTURE, V33, P119, DOI 10.1016/0044-8486(83)90392-7; TINKLE DW, 1972, ECOLOGY, V53, P570, DOI 10.2307/1934772; WARE DM, 1980, CAN J FISH AQUAT SCI, V37, P1012, DOI 10.1139/f80-129; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 63 191 192 6 55 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology APR 1993 74 3 673 684 10.2307/1940795 12 Ecology Environmental Sciences & Ecology KU399 WOS:A1993KU39900003 2018-11-12 J ROGERS, CM; SMITH, JNM ROGERS, CM; SMITH, JNM LIFE-HISTORY THEORY IN THE NONBREEDING PERIOD - TRADE-OFFS IN AVIAN FAT RESERVES ECOLOGY English Article AVIAN GUILD; BIRDS; ENERGY STORAGE STRATEGY; FAT STORAGE VS PREDICTABILITY OF RESOURCES; LIFE HISTORY; NONBREEDING PERIOD; OPTIMAL FAT HYPOTHESIS; POPULATION LIMITATION; PREDATION RISK; STARVATION RISK; TRADE-OFF; WINTER BREEDING BLUE TITS; PREDATION RISK; EYED JUNCOS; BROOD SIZE; CONSEQUENCES; SURVIVAL; WEIGHT; COST; REPRODUCTION; ADAPTATION We tested the hypothesis of optimal winter fat storage in birds. The hypothesis predicts that when the survivorship benefits (fasting capacity) but not the survivorship costs (higher cost of flight, lowered agility, increased exposure to predators) of fat are eliminated by predictable resources (e.g., tree- and shrub-borne food), species will be leaner than species exploiting unpredictable resources (e.g., ground-borne food subject to sudden covering by snow). The predicted pattern was found in an earlier study of avian communities in central North America, where snowfall is frequent. Here we tested the predictions of the hypothesis that (1) when ground- and tree-feeding guilds are compared between geographic regions of harsh and mild winter climate, only ground-feeders will have relatively high fat reserves, resulting in a significant guild x climate interaction term in a two-way analysis of variance, and (2) ground- and tree-foraging guilds will both show low fat reserves in a mild winter environment. To test these predictions, visible subcutaneous fat class was measured in both guilds in Wisconsin and Michigan (harsh winter environments) and southwestern British Columbia, northwestern Washington, and Tennessee (mild winter environments). Both predictions were supported. We suggest that small birds wintering in North America approach local optima in energy storage strategy and winter survivorship. The energy storage strategy thus appears to be a major life-history trait in the nonbreeding period. The trade-off between the costs and benefits of winter fat has two potential implications for understanding population limitation. First, trade-offs that reduce reserves can lead to lower survival in severe winter weather than would occur at maximum fat levels. Second, our study suggests that individual birds are sensitive to, and can control, both predation and starvation risks. Recent theory of population limitation indicates that as food abundance declines, birds feed to avoid starvation, but at the expense of increased mortality from predation. Together these studies suggest that populations are limited by interacting (predation, food supply) instead of single (food supply) factors. Study of trade-offs used by individuals to maximize survival can provide unique perspectives on population limitation. UNIV IOWA,CTR SCI EDUC,IOWA CITY,IA 52242; UNIV BRITISH COLUMBIA,ECOL GRP,VANCOUVER V6T 1Z4,BC,CANADA; UNIV BRITISH COLUMBIA,DEPT ZOOL,VANCOUVER V6T 1Z4,BC,CANADA; INDIANA UNIV,DEPT BIOL,BLOOMINGTON,IN 47405 Blem C.R., 1990, Current Ornithology, V7, P59; BLEM CR, 1975, WILSON BULL, V87, P543; BLEM CR, 1984, AUK, V101, P153; BRITTINGHAM MC, 1988, ECOLOGY, V69, P581, DOI 10.2307/1941007; BROWN KM, 1985, EVOLUTION, V39, P387, DOI 10.1111/j.1558-5646.1985.tb05675.x; BUTTEMER WA, 1985, OECOLOGIA, V68, P126, DOI 10.1007/BF00379484; CARACO T, 1979, ECOLOGY, V60, P611, DOI 10.2307/1936081; DILL LM, 1987, CAN J ZOOL, V65, P803, DOI 10.1139/z87-128; Ekman JB, 1990, BEHAV ECOL, V1, P62, DOI 10.1093/beheco/1.1.62; FREED LA, 1981, ECOLOGY, V62, P1179, DOI 10.2307/1937282; GADGIL M, 1972, AM NAT, V106, P14, DOI 10.1086/282748; GRUBB TC, 1982, ANIM BEHAV, V30, P637, DOI 10.1016/S0003-3472(82)80133-4; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; Lack D., 1966, POPULATION STUDIES B; LEHIKOINEN E, 1987, ORNIS SCAND, V18, P216, DOI 10.2307/3676769; LEHIKOINEN E, 1986, 14 U TURK DEP BIOL R; Lima S. L., 1986, ECOLOGY, V67, P366; LIMA SL, 1991, OECOLOGIA, V86, P105, DOI 10.1007/BF00317396; LIMA SL, 1985, OECOLOGIA, V66, P60, DOI 10.1007/BF00378552; MCNAMARA JM, 1986, AM NAT, V127, P358, DOI 10.1086/284489; MCNAMARA JM, 1987, ECOLOGY, V68, P1515, DOI 10.2307/1939235; MCNAMARA JM, 1982, FUNCTIONAL ONTOGENY, P60; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; NUR N, 1984, J ANIM ECOL, V53, P497, DOI 10.2307/4530; PACKARD CC, 1988, NEW DIRECTIONS ECOLO, P216; ROGERS CM, 1991, J FIELD ORNITHOL, V62, P349; ROGERS CM, 1990, ORNIS SCAND, V21, P105, DOI 10.2307/3676805; ROGERS CM, 1987, ECOLOGY, V68, P1051, DOI 10.2307/1938377; ROGERS CM, 1991, ORNIS SCAND, V22, P387, DOI 10.2307/3676513; ROGERS CM, 1993, IN PRESS ECOLOGY, V74; SIH A, 1980, SCIENCE, V210, P1041, DOI 10.1126/science.210.4473.1041; SIH A, 1982, ECOLOGY, V63, P786, DOI 10.2307/1936799; SMITH JNM, 1981, EVOLUTION, V35, P1142, DOI 10.1111/j.1558-5646.1981.tb04985.x; SNELL TW, 1977, EVOLUTION, V31, P882, DOI 10.1111/j.1558-5646.1977.tb01082.x; Sokal R. R., 1981, BIOMETRY; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SULLIVAN KA, 1988, ECOLOGY, V69, P118, DOI 10.2307/1943166; SZEKELY T, 1991, BEHAV ECOL SOCIOBIOL, V28, P203; WEBB DR, 1988, CONDOR, V90, P107, DOI 10.2307/1368439; WERNER EE, 1983, ECOLOGY, V64, P1540, DOI 10.2307/1937508; Williams GC, 1966, ADAPTATION NATURAL S; 1985, SAS USERS GUIDE STAT 42 90 91 0 36 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology MAR 1993 74 2 419 426 10.2307/1939303 8 Ecology Environmental Sciences & Ecology KN556 WOS:A1993KN55600012 2018-11-12 J VOLLESTAD, LA; LABEELUND, JH; SAEGROV, H VOLLESTAD, LA; LABEELUND, JH; SAEGROV, H DIMENSIONLESS NUMBERS AND LIFE-HISTORY VARIATION IN BROWN TROUT EVOLUTIONARY ECOLOGY English Article MORTALITY; AGE AT MATURITY; GROWTH; LIFE HISTORY THEORY Dimensionless numbers, made up from components of life history as defined by growth, mortality and maturation, may provide fresh insights into life history evolution. Most studies have previously shown that these numbers are more or less constants within taxa. The variation between taxa may clarify the evolution of different life histories. We examine the variation in three dimensionless numbers using data from 29 populations of Brown Trout Salmo trutta from Norway, and find that the dimensionless numbers are not constants for the Brown Trout populations. We find that the relationship between K of the von Bertalanffy growth equation and the mortality rate (M) increased with increasing growth rate. Also, relative length at maturity (L(alpha)/L(inf)) increased with increasing asymptotic length (L(inf)). We suggest that more such data should be collected from a large number of species and taxonomic groups, to allow a more detailed assessment of why these dimensionless numbers appear to be constants in some taxa and not in others. VOLLESTAD, LA (reprint author), UNIV OSLO,DEPT BIOL,DIV ZOOL,POB 1050 BLINDERN,N-0316 OSLO 3,NORWAY. Vollestad, Leif Asbjorn/0000-0002-9389-7982 0 19 21 0 8 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. MAR 1993 7 2 207 218 10.1007/BF01239389 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity KQ264 WOS:A1993KQ26400006 2018-11-12 J FAHRIG, L; HAYDEN, B; DOLAN, R FAHRIG, L; HAYDEN, B; DOLAN, R DISTRIBUTION OF BARRIER-ISLAND PLANTS IN RELATION TO OVERWASH DISTURBANCE - A TEST OF LIFE-HISTORY THEORY JOURNAL OF COASTAL RESEARCH English Article LIFE HISTORY; ANNUAL; BIENNIAL; PERENNIAL; HERBACEOUS; WOODY; CLONAL; STORM; WASHOVERFHOG ISLAND; DELMARVA PENINSULA POPULATION BIOLOGY; DUNE SYSTEM; SAND; SUCCESSION; VEGETATION; ECOLOGY; ANNUALS We document the relationships between the distributions of species and the pattern of ''overwash'' disturbance for plant species on Hog Island, a barrier island off the southern part of the Delmarva Peninsula (Virginis, U.S.A.). Overwash disturbance is the mortality of plants due to sand deposition during storms that create high waves that wash over the island. We analyzed the distribution of each of 95 species in relation to the pattern of overwash disturbance. We then ud the results to test the hypotheses that, as one moves from areas of low overwash disturbance frequency to areas of high overwash disturbance frequency, (1) the number of annual and biennial plant species increases relative to perennial species and (2) the number of woody plant species decreases relative to herbaceous species. These hypotheses are derived from life history theory which predicts that early maturation and short lifespan are advantageous in highly disturbed environments. There were large differences among the plant species in their tolerances to overwash disturbance. As expected, there were fewer woody plant species than expected at random in areas of high overwash disturbance frequency. However, the hypothesis that annual plant species would be more common than expected at random in frequently disturbed areas was not supported. This result may be explained by advantages of clonal growth and reproduction in perennial plants, in areas of high overwash probability. UNIV VIRGINIA,DEPT ENVIRONM SCI,CHARLOTTESVILLE,VA 22903 FAHRIG, L (reprint author), CARLETON UNIV,DEPT BIOL,OTTAWA K1S 5B6,ONTARIO,CANADA. Fahrig, Lenore/C-6494-2012 Fahrig, Lenore/0000-0002-3841-0342 CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; COLLINS SL, 1987, ECOLOGY, V68, P1243, DOI 10.2307/1939208; DENBOER PJ, 1981, OECOLOGIA, V50, P39, DOI 10.1007/BF00378792; DOLAN R, 1981, J SEDIMENT PETROL, V51, P737; DOLAN R, 1978, COAST ENG, V2, P21, DOI 10.1016/0378-3839(78)90003-0; DOLAN R, 1979, SCIENCE, V204, P401, DOI 10.1126/science.204.4391.401-a; Dolan R., 1987, J COASTAL RES, V3, P245; DYRNESS CT, 1973, ECOLOGY, V54, P57, DOI 10.2307/1934374; EHRENFELD JG, 1990, REV AQUAT SCI, V2, P437; ELLISON AM, 1987, ECOLOGY, V68, P576, DOI 10.2307/1938463; HALPERN CB, 1988, ECOLOGY, V69, P1703, DOI 10.2307/1941148; IWASA Y, 1989, AM NAT, V133, P480, DOI 10.1086/284931; JOENJE W, 1985, VEGETATIO, V62, P399, DOI 10.1007/BF00044767; LEE JA, 1985, VEGETATIO, V62, P319, DOI 10.1007/BF00044759; MAUN MA, 1985, CAN J BOT, V63, P113, DOI 10.1139/b85-014; MCCAFFREY CA, 1975, VIRGINIA COAST RESER, P385; PAYNE AM, 1984, AM MIDL NAT, V111, P86, DOI 10.2307/2425546; PEMADASA MA, 1974, J ECOL, V62, P379, DOI 10.2307/2258986; ROMAN CT, 1988, ESTUAR COAST SHELF S, V26, P233, DOI 10.1016/0272-7714(88)90062-5; SCHROEDER PM, 1979, ENVIRON MANAGE, V3, P331, DOI 10.1007/BF01867440; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SYMONIDES E, 1979, EKOL POL-POL J ECOL, V27, P191; VANDERMEIJDEN E, 1979, J ECOL, V67, P131, DOI 10.2307/2259341; WATKINSON AR, 1985, VEGETATIO, V62, P487, DOI 10.1007/BF00044776; WATKINSON AR, 1978, J ECOL, V66, P483, DOI 10.2307/2259147; ZAREMBA RE, 1986, ENVIRON GEOL WATER S, V8, P193, DOI 10.1007/BF02524947 27 30 30 0 3 COASTAL EDUCATION & RESEARCH FOUNDATION LAWRENCE 810 EAST 10TH STREET, LAWRENCE, KS 66044 0749-0208 J COASTAL RES J. Coast. Res. SPR 1993 9 2 403 412 10 Environmental Sciences; Geography, Physical; Geosciences, Multidisciplinary Environmental Sciences & Ecology; Physical Geography; Geology KW243 WOS:A1993KW24300008 2018-11-12 J BERCOVITCH, FB; BERARD, JD BERCOVITCH, FB; BERARD, JD LIFE-HISTORY COSTS AND CONSEQUENCES OF RAPID REPRODUCTIVE MATURATION IN FEMALE RHESUS MACAQUES BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article DROSOPHILA-MELANOGASTER; MATERNAL INVESTMENT; SEX-RATIO; EVOLUTION; PRIMATES; SURVIVAL; MONKEYS; SUCCESS; SENESCENCE; DOMINANCE Life history theory suggests that reproduction at one point in time involves costs in terms of energy, reduced survival, or probability of reproduction at a future point in time. In long-lived iteroparous organisms, initiating reproduction at a relatively young age may exact a cost in terms of reduced survivorship, but an early age of first reproduction could be beneficial if it lengthens the breeding lifespan. Data collected over 30 years from one population of rhesus macaques, Macaca mulatta, were analyzed to determine the fertility and survivorship costs of initiating reproduction at a relatively young age. Low population density and high social status increased the chances of accelerating age at first parturition, but high dominance rank was not associated with greater lifetime reproductive success. Rapid reproductive maturation neither reduced short-term survivorship nor decreased lifespan. Fertility costs arose if young females reared a male, but not female, offspring. The fitness consequences of rapid reproductive maturation depend upon longevity, with age at death having a significantly greater impact on lifetime reproductive success than age at first parturition. BERCOVITCH, FB (reprint author), UNIV PUERTO RICO, MED SCI CAMPUS, CARIBBEAN PRIMATE RES CTR, POB 1053, SABANA SECA, PR 00952 USA. Altmann J., 1988, P403; ALTMANN SA, 1962, ANN NY ACAD SCI, V102, P338, DOI 10.1111/j.1749-6632.1962.tb13650.x; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Berard J, 1990, THESIS U OREGON; BERCOVITCH FB, 1991, SOCIOENDOCRINOLOGY P, V12, P315; BERMAN CM, 1988, AM NAT, V131, P307, DOI 10.1086/284792; BRYANT DM, 1979, J ANIM ECOL, V48, P655, DOI 10.2307/4185; CHAPAIS B, 1980, J THEOR BIOL, V82, P47, DOI 10.1016/0022-5193(80)90090-9; Cheney D.L., 1988, P384; CLUTTONBROCK TH, 1983, J ANIM ECOL, V52, P367, DOI 10.2307/4560; CLUTTONBROCK TH, 1988, REPRODUCTIVE SUCCESS; CLUTTONBROCK TH, 1982, REPRODUCTIVE SUCCESS; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; DATTA S, 1988, ANIM BEHAV, V36, P754, DOI 10.1016/S0003-3472(88)80159-3; DESTEVEN D, 1980, EVOLUTION, V34, P278, DOI 10.1111/j.1558-5646.1980.tb04816.x; DRICKAMER LC, 1974, FOLIA PRIMATOL, V21, P61, DOI 10.1159/000155596; Duggleby C.R., 1986, P269; EKMAN J, 1986, EVOLUTION, V40, P159, DOI 10.1111/j.1558-5646.1986.tb05727.x; Endler JA, 1986, NATURAL SELECTION WI; Falconer D. S., 1960, INTRO QUANTITATIVE G; FEDIGAN LM, 1986, FOLIA PRIMATOL, V47, P143, DOI 10.1159/000156271; FEDIGAN LM, 1983, YEARB PHYS ANTHROPOL, V26, P91; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GREEN WCH, 1990, BEHAV ECOL SOCIOBIOL, V27, P99, DOI 10.1007/BF00168452; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; HARCOURT AH, 1987, J ZOOL, V213, P471, DOI 10.1111/j.1469-7998.1987.tb03721.x; Harvey P.H., 1987, P181; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; HORN HS, 1984, BEHAVIORAL ECOLOGY E, P279; KOYAMA N, 1992, PRIMATES, V33, P33, DOI 10.1007/BF02382761; LEE PC, 1986, BEHAV ECOL SOCIOBIOL, V18, P353, DOI 10.1007/BF00299666; LOY J, 1988, ECOLOGY BEHAVIOR FOO, P153; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; MAC ARTHUR ROBERT H., 1967; Marriot BM, 1988, ECOLOGY BEHAV FOOD E, P125; MEIKLE DB, 1988, BEHAV ECOL SOCIOBIOL, V22, P379, DOI 10.1007/BF00294974; NEWTON I, 1989, LIFETIME REPRODUCTIV; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PAUL A, 1984, FOLIA PRIMATOL, V42, P2, DOI 10.1159/000156140; Pianka E. R, 1978, EVOLUTIONARY ECOLOGY; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Rawlins R.G., 1986, P47; Rawlins R.G., 1986, P13; RAWLINS RG, 1985, AM J PRIMATOL, V9, P87, DOI 10.1002/ajp.1350090203; REITER J, 1991, BEHAV ECOL SOCIOBIOL, V28, P153, DOI 10.1007/BF00172166; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROBERTS MS, 1978, FOLIA PRIMATOL, V29, P229, DOI 10.1159/000155842; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1981, GENETICS, V97, P187; Sade D.S., 1967, P99; SADE DS, 1991, PRIMATE LIFE HIST EV, P181; Sade DS, 1985, BASIC DEMOGRAPHIC OB; SIMPSON MJA, 1981, NATURE, V290, P49, DOI 10.1038/290049a0; SMITH JNM, 1981, EVOLUTION, V35, P1142, DOI 10.1111/j.1558-5646.1981.tb04985.x; Sokal R. R., 1981, BIOMETRY; SOUMAH AG, 1991, FOLIA PRIMATOL, V57, P191, DOI 10.1159/000156586; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SUGIYAMA Y, 1982, FOLIA PRIMATOL, V39, P238, DOI 10.1159/000156080; TUOMI J, 1983, AM ZOOL, V23, P25; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; WILSON ME, 1983, AM J PHYS ANTHROPOL, V61, P103, DOI 10.1002/ajpa.1330610111; WOLFF JO, 1988, BEHAV ECOL SOCIOBIOL, V23, P127, DOI 10.1007/BF00299896; ZAR JH, 1974, BIOSTATISTICAL ANAL 68 67 68 0 21 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. FEB 1993 32 2 103 109 10.1007/BF00164042 7 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology KL513 WOS:A1993KL51300005 2018-11-12 J CHISHOLM, JS CHISHOLM, JS DEATH, HOPE, AND SEX - LIFE-HISTORY THEORY AND THE DEVELOPMENT OF REPRODUCTIVE STRATEGIES CURRENT ANTHROPOLOGY English Article WITHIN-GENERATION VARIANCE; NATURAL-SELECTION; EVOLUTIONARY PSYCHOLOGY; ECONOMIC HARDSHIP; MENSTRUAL CYCLES; OFFSPRING NUMBER; CHILDREN; ATTACHMENT; AGE; MENARCHE ManY social scientists reject evolutionary views of human behavior because of their supposed genetic determinism. To establish that not all evolutionary models are inherently deterministic, I first review the perennial adaptationist-mechanist controversy in evolutionary biology. I then outline life-history theory, a burgeoning field of biology devoted to the study of reproduction, growth and development, and ecology in an evolutionary context. I undertake next to show how life-history theory can provide a satisfactory resolution to the adaptationist-mechanist debate. Combining Promislow and Harvey's arguments about the role of mortality rates in the evolution of life-history traits with Belsky, Steinberg, and Draper's attachment-theory model of the development of alternative reproductive strategies in humans, I propose that the allocation of reproductive (''mating'' and ''parenting'') effort in adults may be partially contingent on their early experience with the causes and correlates of local high death rates. I conclude with a discussion of some implications of this proposal for the emerging field of evolutionary psychology. CHISHOLM, JS (reprint author), UNIV CALIF DAVIS, DEPT APPL BEHAV SCI, DAVIS, CA 95616 USA. ALBERCH P, 1990, PRIMATE LIFE HIST EV; ALEXANDER RD, 1990, ETHOL SOCIOBIOL, V11, P241, DOI 10.1016/0162-3095(90)90012-U; APTER D, 1983, J CLIN ENDOCR METAB, V57, P82, DOI 10.1210/jcem-57-1-82; BANE MJ, 1989, SCIENCE, V245, P1047, DOI 10.1126/science.245.4922.1047; BARKOW J, IN PRESS ADAPTED MIN; BATESON P, 1982, CURRENT PROBLEMS SOC; Bateson P., 1983, MATE CHOICE; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BERNARD J, 1975, ADOLESCENCE LIFE CYC; BETZIG L, 1988, HUMAN REPRODUCTIVE B; Betzig L, 1986, DESPOTISM DIFFERENTI; Bleier Ruth, 1986, FEMINIST APPROACHES; Bowlby J., 1973, ATTACHMENT LOSS, V2; Bowlby J, 1980, ATTACHMENT LOSS, V3; Bowlby J., 1969, ATTACHMENT LOSS, V1; Boyce M.S., 1988, EVOLUTION LIFE HIST; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Boyd R., 1985, CULTURE EVOLUTIONARY; BRETHERTON I, 1985, MONOGRAPHS SOC RES C, V209, P66; BROUDE GJ, 1990, ETHOS, V18, P103, DOI 10.1525/eth.1990.18.1.02a00040; BURBANK V, 1992, FATHER CHILD RELATIO; CAIN M, 1985, GENDER LIFE COURSE; Caldwell J. C., 1982, THEORY FERTILITY DEC; CALLAN H, 1984, MAN, V19, P404, DOI 10.2307/2802179; CAMPBELL B, 1992, 4TH BIENN M SOC RES; CARLISLE TR, 1982, ANIM BEHAV, V30, P824, DOI 10.1016/S0003-3472(82)80156-5; CARO TM, 1986, ANIM BEHAV, V34, P1483, DOI 10.1016/S0003-3472(86)80219-6; CASPI A, 1988, RELATIONSHIPS FAMILI; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARLESWORTH WR, 1986, HUM DEV, V29, P1, DOI 10.1159/000272991; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHERLIN AJ, 1991, SCIENCE, V252, P1386, DOI 10.1126/science.2047851; CHISHOLM J, 1992, NEW DIRECTIONS PSYCH; Chisholm JS., 1988, SOCIOBIOLOGICAL PERS; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CLUTTONBROCK TH, 1985, NATURE, V313, P131, DOI 10.1038/313131a0; COHN JF, 1983, CHILD DEV, V54, P185, DOI 10.2307/1129876; CONGER RD, 1984, CHILD DEV, V55, P2234, DOI 10.2307/1129795; COSMIDES L, 1987, LATEST BEST ESSAYS E; CRAWFORD CB, 1989, AM PSYCHOL, V44, P1449, DOI 10.1037/0003-066X.44.12.1449; CROCKENBERG SB, 1981, CHILD DEV, V52, P857, DOI 10.1111/j.1467-8624.1981.tb03124.x; CUTLER WB, 1979, J BIOSOC SCI, V11, P425; CUTLER WB, 1985, PHYSIOL BEHAV, V34, P805, DOI 10.1016/0031-9384(85)90381-6; CUTRIGHT P, 1972, FAM PLANN PERSPECT, V4, P24, DOI 10.2307/2133672; CVETKOVICH G, 1978, ADOLESCENCE, V13, P231; Daly M., 1988, HOMICIDE; DEROUSSEAU CJ, 1990, PRIMATE LIFE HIST EV; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; DROTAR D, 1991, AM J ORTHOPSYCHIAT, V61, P23, DOI 10.1037/h0079231; DUNBAR R, 1982, PERSPECTIVES ETHOLOG, V5; EASTERBROOKS MA, 1984, CHILD DEV, V55, P740, DOI 10.2307/1130126; EATON JOSEPH W., 1953, HUMAN BIOL, V25, P206; EGELAND B, 1987, CHILD ABUSE NEGLECT; Elder Jr GH, 1974, CHILDREN GREAT DEPRE; ELLISON PT, 1981, HUM BIOL, V53, P635; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; FAGEN R, 1982, PERSPECTIVES ETHOLOG, V5; Fisher S., 1973, FEMALE ORGASM PSYCHO; FRISCH RE, 1974, SCIENCE, V185, P949, DOI 10.1126/science.185.4155.949; FRISCH RE, 1978, SCIENCE, V199, P22, DOI 10.1126/science.199.4324.22; FRISCH RE, 1988, SCI AM, V258, P88, DOI 10.1038/scientificamerican0388-88; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GARN S, 1986, SCH AGE PREGNANCY PA; GHISELIN MT, 1986, HUM DEV, V29, P12; GILLESPIE JH, 1974, GENETICS, V76, P601; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; GILLESPIE JH, 1975, GENETICS, V81, P403; Gould S.J., 1977, ONTOGENY PHYLOGENY; GOULD SJ, 1991, J SOC ISSUES, V47, P43, DOI 10.1111/j.1540-4560.1991.tb01822.x; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; GOULD SJ, 1982, PALEOBIOLOGY, V8, P4, DOI 10.1017/S0094837300004310; HALL F, 1979, 1ST YEAR LIFE; Harris M, 1987, DEATH SEX FERTILITY; HARVEY P, 1991, EVOLUTION REPRODUCTI; Harvey P.H., 1989, Oxford Surveys in Evolutionary Biology, V6, P13; Harvey P. H., 1987, PRIMATE SOC; HAUSER MD, 1988, AM NAT, V131, P573, DOI 10.1086/284807; HAWKES K, 1989, COMP SOCIOECOLOGY; HAYDEN B, 1986, CULTURE REPRODUCTION; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037//0022-3514.52.3.511; HILL K, 1988, HUMAN REPRODUCTIVE B; HINDE R, 1990, CAUSES DEV INTERDISC; HINDE RA, 1987, INDIVIDUALS RELATION; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HORN H, 1984, BEHAVIOURAL ECOLOGY; IRONS W, 1983, SOCIAL BEHAVIOR FEMA; Johnson M, 1987, BODY MIND; JOHNSTON T, 1982, ADV STUDY BEHAVIOR, V12; JONES B, 1972, MED J AUSTRALIA, V2, P533; JONES NB, 1989, SOCIOBIOLOGY SEXUAL; KAPLAN RH, 1984, AM NAT, V123, P393, DOI 10.1086/284211; Kitcher P, 1985, VAULTING AMBITION; Kleiman DG, 1981, PARENTAL CARE MAMMAL; KOBAK RR, 1991, J PERS SOC PSYCHOL, V60, P861, DOI 10.1037//0022-3514.60.6.861; KRAEMER GW, 1992, BEHAV BRAIN SCI, V15, P493, DOI 10.1017/S0140525X00069752; LANCASTER JB, 1987, PARENTING LIFE SPAN; LEE PC, 1986, BEHAV ECOL SOCIOBIOL, V18, P353, DOI 10.1007/BF00299666; LEMPERS JD, 1989, CHILD DEV, V60, P25, DOI 10.1111/j.1467-8624.1989.tb02692.x; LESSELLS CM, 1991, BEHAVIOURAL ECOLOGY; LEVINE R, 1977, CULTURE INFANCY; LEVINE R, 1983, NEW DIRECTIONS CHILD, V20; LOVEJOY CO, 1981, SCIENCE, V211, P341, DOI 10.1126/science.211.4480.341; LOW B, IN PRESS ETHOLOGY SO; LOW BS, 1978, AM NAT, V112, P197, DOI 10.1086/283260; MAC ARTHUR ROBERT H., 1967; MACDONALD KB, 1988, SOCIOBIOLOGICAL PERS; MAIN M, 1985, MONOGR SOC RES CHILD, V50, P66, DOI 10.2307/3333827; MAIN M, 1984, CHILD ABUSE NEGLECT, V8, P203, DOI 10.1016/0145-2134(84)90009-7; MAIN M, 1990, HUM DEV, V33, P48, DOI 10.1159/000276502; MAIN M, 1991, ATTACHMENT LIFE CYCL; MARSHALL WA, 1986, HUMAN GROWTH COMPREH, V2; Martin RD., 1989, PRIMATE ORIGINS EVOL; MASTERS WH, 1988, HUMAN SEXUAL INADEQU; MCLOYD VC, 1990, CHILD DEV, V61, P311, DOI 10.1111/j.1467-8624.1990.tb02781.x; MEALEY L, 1990, PSYCHOL SCI, V1, P385, DOI 10.1111/j.1467-9280.1990.tb00247.x; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; MUELLER U, 1991, 1991 M HUM BEH EV SO; MULDER MB, 1989, J BIOSOC SCI, V21, P179; MULDER MB, 1988, REPRODUCTIVE SUCCESS; MULDER MB, 1991, BEHAVIOURAL ECOLOGY; OFFIT A, 1981, NIGHT THOUGHTS CONFE; OGDEN TH, 1986, MATRIX MIND; Ollman Berttell, 1979, SOCIAL SEXUAL REVOLU; OYAMA S, 1985, ONTOGENY INFORMATION; OYAMA S, 1982, PERSPECTIVES ETHOLOG, V5, P101; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; Parkes C. M., 1991, ATTACHMENT LIFE CYCL; PEACOCK NR, 1990, PRIMATE LIFE HIST EV; PEBLEY AR, 1979, STUD FAMILY PLANN, V10, P129, DOI 10.2307/1965691; PEREIRA ME, IN PRESS JUVENILE PR; Pianka E R., 1974, EVOLUTIONARY ECOLOGY; PIRKE KM, 1986, FERTIL STERIL, V46, P1083; Plotkin HC, 1982, LEARNING DEV CULTURE; PRESSER HB, 1978, SOC BIOL, V25, P94, DOI 10.1080/19485565.1978.9988327; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; RADKEYARROW M, 1991, ATTACHMENT LIFE CYCL; RICKS M, 1985, GROWING POINTS ATTAC, P221; ROGERS AR, 1990, ETHOL SOCIOBIOL, V11, P479, DOI 10.1016/0162-3095(90)90022-X; Rohner RP, 1975, THEY LOVE ME THEY LO; RUSHTON JP, 1987, J RES PERS, V21, P529, DOI 10.1016/0092-6566(87)90038-9; Rutter M, 1976, CYCLES DISADVANTAGE; RYDER NB, 1971, REPRODUCTION US 1965; SAMEROFF A, 1975, REV CHILD DEV RES, V4; SCARR S, 1983, CHILD DEV, V54, P424, DOI 10.1111/j.1467-8624.1983.tb03884.x; SCHEPERHUGHES N, 1987, CHILD SURVIVAL; SEGER J, 1987, OXFORD SURVEYS EVOLU, V4; SHAVER P, 1992, ADV PERSONAL RELATIO, V4; SHERIF M, 1990, SOCIAL PSYCHOL; SHORT RV, 1984, SCI AM, V250, P35, DOI 10.1038/scientificamerican0484-35; SIMPSON JA, 1991, J PERS SOC PSYCHOL, V60, P870, DOI 10.1037/0022-3514.60.6.870; SKOLNICK A, 1986, LIFE-SPAN DEV BEHAV, V7, P173; SKOLNICK A, 1981, PRESENT PAST MIDDLE; SLOBODKIN LB, 1974, Q REV BIOL, V49, P181, DOI 10.1086/408082; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH E, 1987, LATEST BEST ESSAYS E; SMITHGILL SJ, 1983, AM ZOOL, V23, P47; Smuts B, 1992, Hum Nat, V3, P1, DOI 10.1007/BF02692265; Smuts B.B., 1992, FATHER CHILD RELATIO; SOEFER EF, 1985, J ADOLESCENT HEALTH, V6, P383, DOI 10.1016/S0197-0070(85)80007-3; STANFORD JL, 1987, J CHRON DIS, V40, P995, DOI 10.1016/0021-9681(87)90113-5; STEARNS S, 1982, EVOLUTION DEV; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STUART FM, 1987, ARCH SEX BEHAV, V16, P91, DOI 10.1007/BF01542064; SUPER CM, 1986, INT J BEHAV DEV, V9, P545, DOI 10.1177/016502548600900409; Symons D., 1987, SOCIOBIOLOGY PSYCHOL; THOMPSON D, 1966, GROWTH FORM; THORNTON A, 1991, AM J SOCIOL, V96, P868, DOI 10.1086/229611; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; TOOBY J, 1989, ETHOL SOCIOBIOL, V10, P29, DOI 10.1016/0162-3095(89)90012-5; TOOBY J, 1990, ETHOL SOCIOBIOL, V11, P375, DOI 10.1016/0162-3095(90)90017-Z; TRINKAUS E, 1990, PRIMATE LIFE HIST EV; Trivers RR, 1972, SEXUAL SELECTION DES; TRONICK EZ, 1986, MATERNAL DEPRESSION; TURKE PW, 1989, POPUL DEV REV, V15, P61, DOI 10.2307/1973405; UDDENBERG N, 1974, J PSYCHOSOM RES, V18, P33, DOI 10.1016/0022-3999(74)90082-8; UDRY JR, 1982, DEMOGRAPHY, V19, P53, DOI 10.2307/2061128; VALENZUELA M, 1990, CHILD DEV, V61, P1984, DOI 10.2307/1130852; VANSCHAIK CP, 1990, BEHAVIOUR, V115, P30, DOI 10.1163/156853990X00284; Varela FJ, 1991, EMBODIED MIND; WARE H, 1977, P INT POPULATION C, V1; WARNER RR, 1975, SCIENCE, V190, P633, DOI 10.1126/science.1188360; WERNER EE, 1989, SCI AM, V260, P106, DOI 10.1038/scientificamerican0489-106; WERNER EE, 1989, AM J ORTHOPSYCHIAT, V59, P72, DOI 10.1111/j.1939-0025.1989.tb01636.x; WESTERN D, 1982, OECOLOGIA, V54, P281, DOI 10.1007/BF00379994; WHELAN EA, 1990, AM J EPIDEMIOL, V131, P625, DOI 10.1093/oxfordjournals.aje.a115546; Whiting J, 1975, ETHOS, V3, P183; Williams GC, 1966, ADAPTATION NATURAL S; Wilson E.O., 1975, P1; WINKLER D, 1988, OXFORD SURVEYS EVOLU, V5; WITTENBERG JF, 1979, HDB BEHAVIORAL NEURO; WITTENBERGER JF, 1980, ANNU REV ECOL SYST, V11, P197, DOI 10.1146/annurev.es.11.110180.001213; WOLKIND S, 1985, CHILD ADOLESCENT PSY; WORTHMAN C, JUVENILE PRIMATES LI; WORTHMAN C, 1992, NEW DIRECTIONS PSYCH; WYATT G, 1990, KINSEY I SERIES, V3; ZABIN LS, 1986, DEMOGRAPHY, V23, P595, DOI 10.2307/2061353 198 270 277 1 121 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0011-3204 1537-5382 CURR ANTHROPOL Curr. Anthropol. FEB 1993 34 1 1 24 10.1086/204131 24 Anthropology Anthropology KJ162 WOS:A1993KJ16200001 2018-11-12 J PAUL, A; KUESTER, J; PODZUWEIT, D PAUL, A; KUESTER, J; PODZUWEIT, D REPRODUCTIVE SENESCENCE AND TERMINAL INVESTMENT IN FEMALE BARBARY MACAQUES (MACACA-SYLVANUS) AT SALEM INTERNATIONAL JOURNAL OF PRIMATOLOGY English Article BARBARY MACAQUES; FECUNDITY; REPRODUCTIVE SENESCENCE; MATERNAL INVESTMENT; MENOPAUSE PRESBYTIS-ENTELLUS; JAPANESE MONKEYS; LANGUR MONKEYS; OLIVE BABOONS; SAGUINUS SP; AGE; BEHAVIOR; DOMINANCE; SUCCESS; MENOPAUSE The reproductive history of 207 female Barbary macaques, living in a large outdoor enclosure in Southwest Germany, was studied during an 11-year period. The results yielded a significant relationship between female age and fecundity, with fertility rates lower than expected among young and old females. Analysis of the reproductive history of individual females revealed a significant decline in fertility from prime age (7-12 years) to mid age (13-19 years), and from mid age to old age (20-25 years). The proportion of long interbirth intervals increased steadily among aging females. Infant survival was not significantly related to maternal age, but offspring of old females showed the highest survivorship. Behavioral observations revealed that old mothers weaned their offspring significantly later than younger mothers, suggesting that prolongation of interbirth intervals is due not only to deteriorating physical condition but also to increased maternal investment, as life history theory predicts. Reproduction ceased during the middle of the third decade of life. Final cessation of estrous cycling invariably occurred 3 or 4 years after the birth of the last offspring, but a postreproductive life span of greater-than-or-equal-to 5 years appears to be common in this population. Available data suggest that reproductive senescence and menopause are more common among nonhuman primates than widely believed and that both traits are part of an adaptive life history strategy. PAUL, A (reprint author), UNIV GOTTINGEN,INST ANTHROPOL,BURGERSTR 50,W-3400 GOTTINGEN,GERMANY. Alexander R. D., 1988, HERAUSFORDERUNG EVOL, P129; ALTMANN J, 1974, BEHAVIOUR, V49, P227, DOI 10.1163/156853974X00534; Altmann J., 1988, P403; ANDERSON CM, 1986, INT J PRIMATOL, V7, P305, DOI 10.1007/BF02736394; Angst W., 1975, Primate Behav, V4, P325; BORRIES C, 1991, INT J PRIMATOL, V12, P231, DOI 10.1007/BF02547586; Borries C, 1988, HUM EVOL, V3, P239, DOI DOI 10.1007/BF02435856; BOWDEN DM, AGING NONHUMAN PRIMA, P1; Catchpole HR, 1975, RHESUS MONKEY, V2, P117; Cheney D.L., 1988, P384; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; de Turckheim G., 1984, P241; DEAG JM, 1985, J ZOOL, V206, P403; DEAG JM, 1984, BARBARY MACAQUE CASE, P241; Dittus W.P.J., 1980, P263; Dittus WPJ, 1975, SOCIOECOLOGY PSYCHOL, P125; DOLHINOW P, 1979, AGGRESSIVE BEHAV, V5, P19, DOI 10.1002/1098-2337(1979)5:1<19::AID-AB2480050104>3.0.CO;2-7; DRICKAMER LC, 1974, FOLIA PRIMATOL, V21, P61, DOI 10.1159/000155596; DUNBAR RIM, 1980, J ANIM ECOL, V49, P485, DOI 10.2307/4259; DYKE B, 1986, AM J PRIMATOL, V10, P257, DOI 10.1002/ajp.1350100306; Fa J.E., 1984, P263; FAIRBANKS LA, 1986, ANIM BEHAV, V34, P1710, DOI 10.1016/S0003-3472(86)80258-5; FAIRBANKS LA, 1988, BEHAVIOUR, V104, P176, DOI 10.1163/156853988X00665; FISHER R. A., 1930, GENETICAL THEORY NAT; GAULIN SJC, 1980, J HUM EVOL, V9, P227, DOI 10.1016/0047-2484(80)90024-X; Goodall J., 1986, CHIMPANZEES GOMBE PA; GOULD KG, 1981, MATURITAS, V3, P157, DOI 10.1016/0378-5122(81)90007-4; GOUZOULES H, 1984, J MAMMAL, V65, P341, DOI 10.2307/1381178; GOUZOULES H, 1982, ANIM BEHAV, V30, P1138, DOI 10.1016/S0003-3472(82)80204-2; Graham C.E., 1979, P183; GRAHAM CE, 1979, AM J PHYS ANTHROPOL, V50, P291, DOI 10.1002/ajpa.1330500302; Graham CE, 1986, COMP PRIMATE BIOL, V3, P93; GRIEGER M, 1984, THESIS U GOTTINGEN G; HAMILTON WJ, 1982, ANIM BEHAV, V30, P29, DOI 10.1016/S0003-3472(82)80233-9; HARLEY D, 1990, AM J PHYS ANTHROPOL, V83, P253, DOI 10.1002/ajpa.1330830213; HASEGAWA T, 1980, FOLIA PRIMATOL, V33, P129, DOI 10.1159/000155930; HAUSER MD, 1984, FOLIA PRIMATOL, V43, P24, DOI 10.1159/000156168; HAWKES K, 1989, COMP SOCIOECOLOGY BE, P341; HIRAIWA-HASEGAWA M, 1984, Primates, V25, P401, DOI 10.1007/BF02381663; HODGEN GD, 1977, AM J OBSTET GYNECOL, V127, P581, DOI 10.1016/0002-9378(77)90352-0; HRDY SB, 1976, SCIENCE, V193, P913, DOI 10.1126/science.193.4256.913; HRDY SB, 1981, OTHER WAYS GROWING O, P59; Huffman M.A., 1990, P237; JENSEN GD, 1980, EXP GERONTOL, V15, P399, DOI 10.1016/0531-5565(80)90048-0; JOHNSON RL, 1989, PRIMATES, V30, P433, DOI 10.1007/BF02381265; JOLLY A, 1985, EVOLUTION PRIMATE BE; JONES EC, 1979, PSYCHOSOMATICS PERIM, P13; JONES ML, 1982, ZOOLOGICAL GARTEN, V52, P113; KOYAMA N, 1975, CONT PRIMATOLOGY, P411; Lancaster J., 1985, HER PRIME, P13; Lancaster JB, 1983, HUMANS ADAPT BIOCULT, P33; Lapin B.A., 1979, P14; Laws R. M., 1975, ELEPHANTS THEIR HABI; MAYER PJ, 1982, HUM ECOL, V10, P477, DOI 10.1007/BF01531168; MEHLMAN PT, 1989, INT J PRIMATOL, V10, P269, DOI 10.1007/BF02737418; MORI A, 1989, PRIMATES, V30, P147, DOI 10.1007/BF02381301; Moss C., 1988, ELEPHANT MEMORIES; NAKAMICHI M, 1988, RES REPORTS ARASHIYA, P87; Nicolson N. A, 1987, PRIMATE SOC, P330, DOI DOI 10.1017/S0952836903004576; Nishida T., 1990, P63; PARTCH J, 1978, AM J PHYS ANTHROPOL, V48, P425; PAUL A, 1988, ECOLOGY BEHAV FOOD E, P199; PAVELKA MSM, 1990, PRIMATES, V31, P363, DOI 10.1007/BF02381107; Rhine R.J., 1980, International Journal of Primatology, V1, P401, DOI 10.1007/BF02692282; Sade DS, 1972, FUNCTIONAL EVOLUTION, P378; SADE DS, 1976, YEARB PHYS ANTHROPOL, V20, P253; SIGG H, 1982, Primates, V23, P473, DOI 10.1007/BF02373959; SMALL MF, 1982, AM J PRIMATOL, V2, P137, DOI 10.1002/ajp.1350020202; Small MF, 1984, FEMALE PRIMATES STUD, P249; SMUTS B, 1989, AM J PRIMATOL, V19, P229, DOI 10.1002/ajp.1350190405; SOMMER V, 1992, IN PRESS AM J PRIMAT; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stewart K.J., 1988, P22; STRUM SC, 1982, AM J PRIMATOL, V3, P61, DOI 10.1002/ajp.1350030106; SUGIYAMA Y, 1982, FOLIA PRIMATOL, V39, P238, DOI 10.1159/000156080; TAKAHASHI H, 1980, PLANT CELL PHYSIOL, V21, P303, DOI 10.1093/oxfordjournals.pcp.a076003; TARDIF SD, 1985, BIOL REPROD, V33, P993, DOI 10.1095/biolreprod33.4.993; TARDIF SD, 1984, LAB ANIM SCI, V34, P504; TARDIF SD, 1986, PRIMATE REP, V14, P146; TILFORD B, 1981, J MAMMAL, V62, P638, DOI 10.2307/1380415; TRIVERS RL, 1974, AM ZOOL, V14, P249; Turke P., 1988, HUMAN REPROD BEHAV D, P173; VANNOORDWIJK MA, 1987, ANIM BEHAV, V35, P577, DOI 10.1016/S0003-3472(87)80284-1; VANWAGENEN G, 1972, J MED PRIMATOL, V1, P3; VOGEL C, 1975, HOMINISATION VERHALT, P1; Voland E, 1986, Anthropol Anz, V44, P19; WASER PM, 1978, FOLIA PRIMATOL, V29, P142, DOI 10.1159/000155836; Washburn SL, 1981, AGING BIOL BEHAV, P11; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams GC, 1966, ADAPTATION NATURAL S; WILSON ME, 1978, J MED PRIMATOL, V7, P202; WOLFE LD, 1981, J MAMMAL, V62, P698, DOI 10.2307/1380591 92 44 45 0 19 PLENUM PUBL CORP NEW YORK 233 SPRING ST, NEW YORK, NY 10013 0164-0291 INT J PRIMATOL Int. J. Primatol. FEB 1993 14 1 105 124 10.1007/BF02196506 20 Zoology Zoology KL808 WOS:A1993KL80800007 2018-11-12 J PERRIN, N; SIBLY, RM PERRIN, N; SIBLY, RM DYNAMIC-MODELS OF ENERGY ALLOCATION AND INVESTMENT ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS English Review LIFE-HISTORY THEORY; INDETERMINATE GROWTH; ALLOMETRY; STORAGE; OPTIMAL RESOURCE ALLOCATION OPTIMAL RESOURCE-ALLOCATION; OPTIMAL LIFE HISTORIES; REPRODUCTIVE EFFORT; NATURAL-SELECTION; OPTIMAL-GROWTH; ANNUAL PLANTS; OPTIMAL SIZE; STORAGE-ALLOCATION; VEGETATIVE PLANTS; PERENNIAL PLANTS In dynamic models of energy allocation, assimilated energy is allocated to reproduction, somatic growth, maintenance or storage, and the allocation pattern can change with age. The expected evolutionary outcome is an optimal allocation pattern, but this depends on the environment experienced during the evolutionary process and on the fitness costs and benefits incurred by allocating resources in different ways. Here we review existing treatments which encompass some of the possibilities as regards constant or variable environments and their predictability or unpredictability, and the ways in which production rates and mortality rates depend on body size and composition and age and on the pattern of energy allocation. The optimal policy is to allocate resources where selection pressures are highest, and simultaneous allocation to several body subsystems and reproduction can be optimal if these pressures are equal. This may explain balanced growth commonly observed during ontogeny. Growth ceases at maturity in many models; factors favouring growth after maturity include non-linear trade-offs, variable season length, and production and mortality rates both increasing (or decreasing) functions of body size. We cannot yet say whether these are sufficient to account for the many known cases of growth after maturity and not all reasonable models have yet been explored. Factors favouring storage are also reviewed. UNIV READING,DEPT PURE & APPL ZOOL,READING RG6 2AJ,BERKS,ENGLAND PERRIN, N (reprint author), BERN UNIV,DEPT BEHAV ECOL,ETHOL STN HASLI,CH-3032 HINTERKAPPELEN,SWITZERLAND. Sibly, Richard/0000-0001-6828-3543 ALEXANDER RM, 1982, OPTIMA ANIMALS; AMIR S, 1990, J THEOR BIOL, V147, P17, DOI 10.1016/S0022-5193(05)80250-4; BANKS S, 1986, CONTROL SYSTEMS ENG; BAZZAZ FA, 1979, NEW PHYTOL, V82, P223, DOI 10.1111/j.1469-8137.1979.tb07577.x; Bell D. J., 1975, SINGULAR OPTIMAL CON; BELL G, 1976, AM NAT, V110, P57, DOI 10.1086/283048; BELLMAN R, 1957, DYNAMIC PROGRAMMING; Berkovitz L. D., 1974, OPTIMAL CONTROL THEO; BLOOM AJ, 1985, ANNU REV ECOL SYST, V16, P363, DOI 10.1146/annurev.es.16.110185.002051; BRYSON AE, 1969, APPLIED OPTIMAL CONT; CASWELL H, 1982, ECOLOGY, V63, P1218, DOI 10.2307/1938846; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; CHIARIELLO N, 1984, ECOLOGY, V65, P1290, DOI 10.2307/1938334; CLARK CW, 1976, MATH BIOECONOMICS; COHEN D, 1971, J THEOR BIOL, V33, P299, DOI 10.1016/0022-5193(71)90068-3; COHEN D, 1976, J THEOR BIOL, V56, P1, DOI 10.1016/S0022-5193(76)80043-4; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; DENHOLM JV, 1975, J THEOR BIOL, V52, P251, DOI 10.1016/0022-5193(75)90056-9; FAGEN RM, 1972, AM NAT, V106, P258, DOI 10.1086/282766; Fisher R. A., 1958, GENETICAL THEORY NAT; GABRIEL W, 1982, ARCH HYDROBIOL, V95, P69; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GLEESON SK, 1992, AM NAT, V139, P1322, DOI 10.1086/285389; GOODMAN D, 1982, AM NAT, V119, P803, DOI 10.1086/283956; GOODMAN D, 1974, AM NAT, V108, P247, DOI 10.1086/282906; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HUXLEY JS, 1932, PROBLEMS RELATIVE GR; Intriligator M. D., 1971, MATH OPTIMIZATION EC; ITO Y, 1980, COMP ECOLOGY; IWASA Y, 1984, THEOR POPUL BIOL, V25, P78, DOI 10.1016/0040-5809(84)90007-8; IWASA Y, 1989, AM NAT, V133, P480, DOI 10.1086/284931; JOHNSON IR, 1987, ANN BOT-LONDON, V60, P133, DOI 10.1093/oxfordjournals.aob.a087429; JOHNSON IR, 1985, ANN BOT-LONDON, V55, P421, DOI 10.1093/oxfordjournals.aob.a086921; KING D, 1982, THEOR POPUL BIOL, V21, P194, DOI 10.1016/0040-5809(82)90013-2; KING D, 1983, ECOLOGY, V64, P16, DOI 10.2307/1937324; KING D, 1982, THEOR POPUL BIOL, V22, P1, DOI 10.1016/0040-5809(82)90032-6; KOZLOWSKI J, 1988, THEOR POPUL BIOL, V34, P118, DOI 10.1016/0040-5809(88)90037-8; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; LACEY EP, 1986, TRENDS ECOL EVOL, V1, P72, DOI 10.1016/0169-5347(86)90021-2; Leitmann G, 1966, INTRO OPTIMAL CONTRO; LEON JA, 1976, J THEOR BIOL, V60, P301, DOI 10.1016/0022-5193(76)90062-X; MACEVICZ S, 1976, BEHAV ECOL SOCIOBIOL, V1, P265, DOI 10.1007/BF00300068; MIRMIRANI M, 1978, THEOR POPUL BIOL, V13, P304, DOI 10.1016/0040-5809(78)90049-7; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; PALTRIDGE GW, 1974, J THEOR BIOL, V44, P23, DOI 10.1016/S0022-5193(74)80027-5; PARNAS H, 1976, J THEOR BIOL, V56, P19, DOI 10.1016/S0022-5193(76)80044-6; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; PERRIN N, 1992, AM NAT, V139, P1344, DOI 10.1086/285390; PERRIN N, 1989, FUNCT ECOL, V3, P279, DOI 10.2307/2389366; PERRIN N, 1990, OIKOS, V59, P70, DOI 10.2307/3545124; Perrin N, 1987, FUNCT ECOL, V1, P223, DOI 10.2307/2389424; PERRIN N, 1993, IN PRESS EVOL ECOL; PIANKA ER, 1976, AM ZOOL, V16, P775; Pontryagin L.S., 1964, MATH THEORY OPTIMAL; PUGLIESE A, 1987, J THEOR BIOL, V126, P33, DOI 10.1016/S0022-5193(87)80099-1; PUGLIESE A, 1988, THEOR POPUL BIOL, V34, P215, DOI 10.1016/0040-5809(88)90022-6; PUGLIESE A, 1990, EVOL ECOL, V4, P75, DOI 10.1007/BF02270717; RATHCKE B, 1985, ANNU REV ECOL SYST, V16, P179, DOI 10.1146/annurev.es.16.110185.001143; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; SCHAFFER WM, 1977, ECOLOGY, V58, P60, DOI 10.2307/1935108; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCHAFFER WM, 1982, AM NAT, V120, P787, DOI 10.1086/284030; Schaffer WM, 1975, ECOLOGY EVOLUTION CO, P142; SEBENS KP, 1982, ECOLOGY, V63, P209, DOI 10.2307/1937045; SIBLY R, 1985, J THEOR BIOL, V112, P553, DOI 10.1016/S0022-5193(85)80022-9; SIBLY RM, 1991, FUNCT ECOL, V5, P184, DOI 10.2307/2389256; SIBLY RM, 1989, BIOL J LINN SOC, V37, P101, DOI 10.1111/j.1095-8312.1989.tb02007.x; SIBLY RM, 1989, FUNCT ECOL, V3, P129, DOI 10.2307/2389293; SIBLY RM, 1992, GENES ECOLOGY, P87; SIBLY RM, 1986, EVOLUTIONARY PHYSL E, P37; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; Taylor B.E., 1985, Advances in Limnology, V21, P285; TAYLOR BE, 1992, AM NAT, V139, P248, DOI 10.1086/285326; TAYLOR HM, 1974, THEOR POPUL BIOL, V5, P104, DOI 10.1016/0040-5809(74)90053-7; TAYLOR PD, 1984, CAN J ZOOL, V62, P2264, DOI 10.1139/z84-329; THORNLEY JH, 1972, ANN BOT-LONDON, V36, P419, DOI 10.1093/oxfordjournals.aob.a084601; THORNLEY JH, 1972, ANN BOT-LONDON, V36, P431, DOI 10.1093/oxfordjournals.aob.a084602; Tilman D., 1982, RESOURCE COMPETITION; Tilman D, 1988, PLANT STRATEGIES DYN; VINCENT TL, 1980, THEOR POPUL BIOL, V17, P215, DOI 10.1016/0040-5809(80)90007-6; VONBERTALANFFY L, 1960, FUNDAMENTAL ASPECTS, P137; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; YODZIS P, 1981, ECOLOGY, V62, P1681, DOI 10.2307/1941522; ZIOLKO M, 1983, MATH BIOSCI, V64, P127, DOI 10.1016/0025-5564(83)90032-9 90 174 182 2 58 ANNUAL REVIEWS INC PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 0066-4162 ANNU REV ECOL SYST Annu. Rev. Ecol. Syst. 1993 24 379 410 10.1146/annurev.es.24.110193.002115 32 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology MJ371 WOS:A1993MJ37100014 2018-11-12 J ROITBERG, BD ROITBERG, BD TOWARDS A GENERAL-THEORY OF HOST ACCEPTANCE BY APHID PARASITOIDS EUROPEAN JOURNAL OF ENTOMOLOGY English Review APHIDOPHAGOUS; OVIPOSITION; THEORY; SUPERPARASITISM; HOST DISCRIMINATION; EGG STAGE; DYNAMIC MODELS; LIFE HISTORY I present the thesis that the most effective means of developing a unified theory of host exploitation by aphidophagous insects would be through a rational, first-principles approach. This approach entails the use of life history theory wherein host acceptance ''decisions'' are evaluated on the basis of contribution to current and future lifetime reproductive success wherein future success is discounted by life expectancy. A simple example involving egg load and host discrimination demonstrates the value of dynamic life history theory as a means of structuring experimental and empirically based research programs. Finally, I argue that a unified theory of host acceptance for aphidophagous insects must consider: (1) spatial distribution of hosts (2) hyperparasitoids and (3) population dynamics of telescoping generations of hosts. ROITBERG, BD (reprint author), SIMON FRASER UNIV,DEPT BIOL SCI,BEHAV ECOL RES GRP,BURNABY V5A 1S6,BC,CANADA. 0 4 5 0 4 CZECH ACAD SCI, INST ENTOMOLOGY CESKE BUDEJOVICE BRANISOVSKA 31, CESKE BUDEJOVICE, CZECH REPUBLIC 370 05 1210-5759 EUR J ENTOMOL Eur. J. Entomol. 1993 90 4 369 376 8 Entomology Entomology MT031 WOS:A1993MT03100001 2018-11-12 J BELSKY, AJ; CARSON, WP; JENSEN, CL; FOX, GA BELSKY, AJ; CARSON, WP; JENSEN, CL; FOX, GA OVERCOMPENSATION BY PLANTS - HERBIVORE OPTIMIZATION OR RED HERRING EVOLUTIONARY ECOLOGY English Article COMPENSATORY GROWTH; DYNAMIC MODELS; GRAZING TOLERANCE; HERBIVORE OPTIMIZATION; OVERCOMPENSATION; PLANT ANTIHERBIVORE STRATEGIES; PLANT HERBIVORE MUTUALISM The increased growth rates, higher total biomass, and increased seed production occasionally found in grazed or clipped plants are more accurately interpreted as the results of growth at one end of a spectrum of normal plant regrowth patterns, rather than as overcompensation, herbivore-stimulated growth, plant-herbivore mutualisms, or herbivore enhanced fitness. Plants experience injury from a wide variety of sources besides herbivory, including fire, wind, freezing, heat, and trampling; rapid regrowth may have been selected for by any one of the many types of physical disturbance or extreme conditions that damage plant tissues, or by a combination of all of them. Rapid plant regrowth is more likely to have evolved as a strategy to reduce the negative impacts of all types of damage than as a strategy to increase fitness following herbivory above ungrazed levels. There is no evolutionary justification and little evidence to support the idea that plant-herbivore mutualisms are likely to evolve. Neither life history theory nor recent theoretical models provide plausible explanations for the benefits of herbivory. Several assumptions underlie all discussions of the benefits of herbivory: that plant species are able to evolve a strategy of depending on herbivores to increase their productivity and fitness; that herbivores do not preferentially regraze the overcompensating plants; that resources will be sufficient for regrowth; and that being larger is always 'better' than being smaller. None of these assumptions is necessarily correct. BELSKY, AJ (reprint author), CORNELL UNIV,CTR ENVIRONM,HOLLISTER HALL,ITHACA,NY 14853, USA. Carson, Walter/A-2569-2013 Fox, Gordon/0000-0003-0595-1385 0 247 298 2 101 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. JAN 1993 7 1 109 121 10.1007/BF01237737 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity KH132 WOS:A1993KH13200007 2018-11-12 J OWENSMITH, N OWENSMITH, N COMPARATIVE MORTALITY-RATES OF MALE AND FEMALE KUDUS - THE COSTS OF SEXUAL SIZE DIMORPHISM JOURNAL OF ANIMAL ECOLOGY English Article MORTALITY; PREDATION; SEXUAL DIMORPHISM; SEX RATIO; TRAGELAPHUS-STREPSICEROS LIFE-HISTORY VARIATION; POPULATION-DYNAMICS; RED DEER; DALL SHEEP; DEMOGRAPHY; ECOLOGY; REPRODUCTION; EVOLUTION; RUMINANTS; PATTERNS 1. The aim of this study was to document the difference in age-specific mortality rates of male and female kudus, and to relate this difference to possible causes, in particular the influence of sexual size dimorphism. 2. The study was conducted over 10 years in the Kruger National Park, South Africa. Female survival was estimated by following cohorts of individually recognizable animals in closed social units. Male survival was estimated from year-class ratios, adjusted for population change. 3. Male mortality rate remained similar to that of females up to 3 years of age. Thereafter, male mortality accelerated sharply with age. A male reaching full weight at 6 years of age had only a 0.5 chance of surviving a further year. Female mortality started rising only after 6 years of age. Males lived up to 9 years, but females up to about 15 years. 4. The excess male mortality could not be explained by energetic expenditures in mate competition, increased hazards resulting from male dispersal, or the smaller group sizes typical of males. 5. Male kudus appeared more susceptible to malnutrition than females, possibly because of increased food demands resulting in accelerated tooth wear. However, male kudus showed higher mortality than females during periods of high rainfall when food shortages were less likely to be influential. 6. Male kudus are potentially less agile, and hence more susceptible to being caught by predators, than females. Loss of condition due to malnutrition may increase vulnerability to predation. Lions preferentially killed male kudus, especially large males. But the population sex ratio of kudus seemed to be equally female-biased in areas where lions were less abundant or absent. 7. Hence, the excess mortality incurred by male kudus could not be related primarily to any single cause. Males grow to a larger than optimal size for survival, relative to females, because of reproductive benefits, and thereby incur multiple costs. Nevertheless, predation is clearly an important factor amplifying the mortality predisposition due to large size. 8. Among African bovids there is no clear relation between sexual size dimorphism and the population sex ratio. Where a size difference between the sexes is less of an influence, other mortality factors arising from male competition come into play. In environments lacking large predators, mortality rates of both sexes may be atypically low, with implications for life-history theory. OWENSMITH, N (reprint author), UNIV WITWATERSRAND,CTR AFRICAN ECOL,DEPT ZOOL,WITWATERSRAND 2050,SOUTH AFRICA. Owen-Smith, Norman/0000-0001-8429-1201 ALLENROWLANDSON TS, 1980, THESIS RHODES U GRAH; ANDERSON JL, 1978, THESIS U LONDON; BELL RHV, 1971, SCI AM, V225, P86, DOI 10.1038/scientificamerican0771-86; BELL RHV, 1981, NOTES NYALA SITUATIO; BERGERUD AT, 1971, WILDLIFE MONOGR, V25, P1; BERRY H H, 1981, Madoqua, V12, P255; BIGALKE R C, 1970, Zoologica Africana, V5, P59; BOBEK B, 1990, J MAMMAL, V71, P230, DOI 10.2307/1382171; BOOTH VR, 1985, S AFR J ZOOL, V20, P57; CAUGHLEY G, 1966, ECOLOGY, V47, P906, DOI 10.2307/1935638; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHILD G, 1968, BEHAVIOUR LARGE MAMM; CLUTTONBROCK TH, 1987, J ZOOL, V211, P275, DOI 10.1111/j.1469-7998.1987.tb01534.x; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; Dasmann R. F., 1962, Journal of Wildlife Management, V26, P262, DOI 10.2307/3798701; ERRINGTON PL, 1956, SCIENCE, V124, P304, DOI 10.1126/science.124.3216.304; FAIRALL N, 1968, Zoologica Africana, V3, P189; Flook D. R., 1970, CANADIAN WILDLIFE SE, V11; Gasaway W. C., 1992, WILDL MONOGR, V120; GAVIN TA, 1984, WILDLIFE MONOGRAPHS, V91; GEIST V, 1974, AM ZOOL, V14, P205; GEIST V, 1986, CAN J ZOOL, V64, P380, DOI 10.1139/z86-059; GEIST V, 1971, MOUNTAIN SHEEP STUDY; GEORGIADIS N, 1985, AFR J ECOL, V23, P75, DOI 10.1111/j.1365-2028.1985.tb00718.x; GREENE CH, 1986, AM NAT, V128, P824, DOI 10.1086/284608; Grubb P., 1974, ISLAND SURVIVORS ECO, P242; Hillman J. C., 1979, THESIS U NAIROBI NAI; HILLMAN JC, 1986, BIOL CONSERV, V38, P255, DOI 10.1016/0006-3207(86)90125-4; HOEFS M, 1983, CAN J ZOOL, V61, P1346, DOI 10.1139/z83-181; Houston D.G, 1982, NO YELLOWSTONE ELK E; HUNTLEY BJ, 1971, J S AFR WILDL MANAGE, V1, P17; HVIDBERG-HANSEN H, 1971, Mammalia, V35, P1, DOI 10.1515/mamm.1971.35.1.1; ILLIUS AW, 1987, J ANIM ECOL, V56, P989, DOI 10.2307/4961; IRBY LR, 1977, S AFR J WILDL RES, V7, P73; JARMAN P J, 1973, East African Wildlife Journal, V11, P329; JARMAN PJ, 1974, BEHAVIOUR, V48, P215, DOI 10.1163/156853974X00345; Joubert S. C. J, 1977, Koedoe, VNo. 20, P125; JOUBERT SC, 1976, THESIS U PRETORIA PR; KLEIN DAVID R., 1960, JOUR WILDLIFE MANAGEMENT, V24, P80, DOI 10.2307/3797359; KLEIN DR, 1968, J WILDLIFE MANAGE, V32, P350, DOI 10.2307/3798981; LEADERWILLIAMS N, 1980, J WILDLIFE MANAGE, V44, P640, DOI 10.2307/3808011; LEUTHOLD W, 1978, J ANIM ECOL, V47, P561, DOI 10.2307/3801; LEUTHOLD W, 1979, Saeugetierkundliche Mitteilungen, V27, P1; Martin P.S., 1984, QUARTERNARY EXTINCTI; MASON D R, 1990, Koedoe, V33, P19; MASON DR, 1983, UNPUB MONITORING UNG; MELTON DA, 1983, AFR J ECOL, V21, P77, DOI 10.1111/j.1365-2028.1983.tb00313.x; MODHA KL, 1976, J APPL ECOL, V13, P453, DOI 10.2307/2401795; OLIVER MDN, 1978, S AFR J WILDL RES, V8, P95; Owen-Smith N., 1988, MEGAHERBIVORES INFLU; OWENSMITH N, 1990, J ANIM ECOL, V59, P893, DOI 10.2307/5021; OWENSMITH N, 1984, ANIM BEHAV, V32, P321, DOI 10.1016/S0003-3472(84)80264-X; OWENSMITH N, 1977, Q REV BIOL, V52, P1, DOI 10.1086/409720; OWENSMITH N, 1993, BEHAVIORAL ECOLOGY S; Pienaar U. de V., 1969, Koedoe, VNo. 12, P108; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; ROBINETTE W. L., 1957, JOUR WILD LIFE MANAGEMENT, V21, P1, DOI 10.2307/3797671; SCHALLER GB, 1977, MOUNTAIN MONARCHS WI; SIMMONS NM, 1984, J WILDLIFE MANAGE, V48, P156, DOI 10.2307/3808463; SIMPSON CD, 1968, J WILDLIFE MANAGE, V32, P149, DOI 10.2307/3798249; SIMPSON CD, 1974, THESIS TEXAS A M U C; Simpson CD., 1966, ARNOLDIA, V2, P1; SINCLAIR ARE, 1977, AFRICAN BUFFALO; SKOGLAND T, 1985, J ANIM ECOL, V54, P359, DOI 10.2307/4484; Smithers R. H. N., 1990, MAMMALS SO AFRICAN S; SMUTS GL, 1978, BIOSCIENCE, V28, P316, DOI 10.2307/1307372; SPINAGE CA, 1970, J ANIM ECOL, V39, P51, DOI 10.2307/2889; SPINAGE CA, 1972, ECOLOGY, V53, P645, DOI 10.2307/1934778; TABER RD, 1957, ECOLOGY, V38, P233, DOI 10.2307/1931682; UNDERWOOD R, 1978, S AFR J WILDL RES, V8, P43; WALTHER F R, 1972, Zeitschrift fuer Tierpsychologie, V31, P348; WILSON V. J., 1962, PROC ZOOL SOC LONDON, V138, P487; WILSON V J, 1970, Arnoldia (Rhodesia), V4, P1; WILSON VIVIAN J., 1965, EAST AFR WILDLIFE J, V3, P27; WOOLF A, 1979, WILDLIFE MONOGR, V67, P1 76 112 115 2 28 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0021-8790 J ANIM ECOL J. Anim. Ecol. 1993 62 3 428 440 10.2307/5192 13 Ecology; Zoology Environmental Sciences & Ecology; Zoology LK282 WOS:A1993LK28200003 2018-11-12 J FORSMAN, A FORSMAN, A SURVIVAL IN RELATION TO BODY-SIZE AND GROWTH-RATE IN THE ADDER, VIPERA-BERUS JOURNAL OF ANIMAL ECOLOGY English Article FLUCTUATING SELECTION; LIFE HISTORY; SIZE-DEPENDENT SURVIVAL; SNAKE LIFE-HISTORY EVOLUTION; REPRODUCTIVE SUCCESS; NATURAL-POPULATION; GARTER SNAKES; COLOR MORPHS; SELECTION; PERFORMANCE; DIMORPHISM; MORTALITY; REPTILES 1. Life-history theory suggests that it may pay an individual to trade present reproductive investment for growth, if this increases future reproductive capacity and/or longevity. Whether or not growth will increase longevity depends on the relationship between body size and survivorship. Here I examine the relationship between snout-vent length and survivorship in a natural population of adders, Vipera berus, using recapture data collected during 1986-92. and test for an associaton between relative growth rate and survival. 2. The proportion of individuals recaptured differed significantly among years in females but not in males. More males than females were recaptured, but the relationship between body size and survivorship did not differ between sexes. 3. The relationship between body size and survivorship varied among years. In 1987 survivorship decreased significantly with increasing snout-vent length. The pattern was significantly reversed the following year when survivorship increased with increasing size. In 1990 individuals intermediate in size survived better than small or large individuals. No significant relationship between survivorship and size was detected in 1986 and 1989. The explanation of this variability is suggested to be that food availability fluctuated over time. 4. There was no significant relationship between relative growth rate (a size-independent measure of growth rate relative to other individuals in the population) and subsequent survival. 5. It is concluded that, in temporally heterogeneous environments, allocating resources to growth will influence future reproductive success differently in different years, and that this may select for plasticity in life-history traits. FORSMAN, A (reprint author), UPPSALA UNIV,DEPT ZOOL,VILLAVAGEN 9,S-75236 UPPSALA,SWEDEN. Forsman, Anders/0000-0001-9598-7618 ANDREN C, 1981, BIOL J LINN SOC, V15, P235, DOI 10.1111/j.1095-8312.1981.tb00761.x; ANHOLT BR, 1991, EVOLUTION, V45, P1091, DOI 10.1111/j.1558-5646.1991.tb04377.x; [Anonymous], 1988, SAS STAT USERS GUIDE; BERNSTROM J, 1958, NATUR VASTMANLAND, P193; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CLUTTONBROCK TH, 1988, REPRODUCTIVE SUCCESS; Ebenman B., 1988, SIZE STRUCTURED POPU; FERGUSON GW, 1984, EVOLUTION, V38, P342, DOI 10.1111/j.1558-5646.1984.tb00292.x; FORSMAN A, 1993, OIKOS, V66, P279, DOI 10.2307/3544815; FORSMAN A, 1991, J ANIM ECOL, V60, P253, DOI 10.2307/5458; FORSMAN A, 1987, OIKOS, V50, P13, DOI 10.2307/3565396; FORSMAN A, 1991, FUNCT ECOL, V5, P717, DOI 10.2307/2389533; FORSMAN A, 1993, IN PRESS FUNCTIONAL, V7; GARLAND T, 1983, COPEIA, P1092, DOI 10.2307/1445117; GIBBS HL, 1987, NATURE, V327, P511, DOI 10.1038/327511a0; HAIRSTON NG, 1990, EVOLUTION, V44, P1796, DOI 10.1111/j.1558-5646.1990.tb05250.x; HALLIDAY TR, 1988, J HERPETOL, V22, P253, DOI 10.2307/1564148; HEATVOLE H, 1976, REPTILE ECOLOGY; HOSMER DW, 1989, APPLIED LOGISTIC REG; Huey R.B., 1982, Biology of Reptilia, V12, P25; JAYNE BC, 1990, EVOLUTION, V44, P1204, DOI 10.1111/j.1558-5646.1990.tb05226.x; KALISZ S, 1986, EVOLUTION, V40, P479, DOI 10.1111/j.1558-5646.1986.tb00501.x; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; LARSEN KW, 1989, HOLARCTIC ECOL, V12, P81; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; MADSEN T, 1988, OIKOS, V52, P73, DOI 10.2307/3565984; MADSEN T, 1988, HOLARCTIC ECOL, V11, P77; MILLAR JS, 1990, FUNCT ECOL, V4, P5, DOI 10.2307/2389646; MITCHELLOLDS T, 1987, EVOLUTION, V41, P1149, DOI 10.1111/j.1558-5646.1987.tb02457.x; PARKER W S, 1987, P253; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; POKKI J, 1981, ACTA ZOOL FENN, V164, P1; POUGH FH, 1977, J COMP PHYSIOL B, V116, P327; Pough FH, 1983, AM ZOOL, V23, P442; PRESTT I, 1971, J ZOOL, V164, P373; Reiss M. J., 1989, ALLOMETRY GROWTH REP; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; SAUER JR, 1987, ANNU REV ECOL SYST, V18, P71; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SIBLY RM, 1986, PHYSL ECOLOG ANIMALS; Sokal R. R., 1981, BIOMETRY; Turner F.B., 1977, P157; WADE MJ, 1990, EVOLUTION, V44, P1947, DOI 10.1111/j.1558-5646.1990.tb04301.x; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141 46 50 50 0 42 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0021-8790 J ANIM ECOL J. Anim. Ecol. 1993 62 4 647 655 10.2307/5385 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology MA346 WOS:A1993MA34600005 2018-11-12 J DICKEMANN, M DICKEMANN, M REPRODUCTIVE STRATEGIES AND GENDER CONSTRUCTION - AN EVOLUTIONARY VIEW OF HOMOSEXUALITIES JOURNAL OF HOMOSEXUALITY English Article COMPETITION; ATTITUDES In this chapter the author addresses the following question: Can the historical occurrence of various forms of homosexuality and bisexuality be explained as part of the management of reproduction in response to environmental conditions? She believes that explanations for the occurrence and forms of homosexuality appealing to genetics are biologically indefensible and historically inadequate. However, Darwinian behavioral theory, and specifically that subset termed life history theory, provides an explanatory framework. An individual's life course consists of behaviors coerced by parents and chosen by the individual in response to environmental conditions, forming a coherent reproductive strategy. In the process, alternate male and female genders, such as cadet sons, spinsters, and religious celibates are explained and the normative male bisexuality of Classical Athens and modem Mediterranean/Latin societies is elucidated. The rise of modern homosexuality in industrial nations results from the demographic transition to low mortality and low fertility, relaxing the reproductive management of children by parents and permitting a greater role for temperament in individual sexual and gender choices. DICKEMANN, M (reprint author), SONOMA STATE UNIV, ROHNERT PK, CA 94928 USA. ADAM BD, 1985, J HOMOSEXUAL, V11, P19; Alcock J., 1979, P381; ANDERSON WW, 1970, JUL P NAT AC SCI, V66, P780; BLACKWOOD E, 1985, J HOMOSEXUAL, V11, P1; Boone James L, 1983, RETHINKING HUMAN ADA, P79; BOONE JL, 1986, AM ANTHROPOL, V88, P859; BROWN JC, 1986, IMMODEST ACTS; Cade W., 1979, P343; CALLENDER C, 1985, J HOMOSEXUAL, V11, P165; CHARNOV E L, 1982; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CROMPTON L, 1981, J HOMOSEXUAL, V6, P11, DOI 10.1300/J082v06n01_03; CUMMINGS P, 1986, ADVOCATE 1104, P28; DEMETRIUS L, 1975, AM NAT, V109, P243, DOI 10.1086/282994; Dickeman Mildred, 1979, EVOLUTIONARY BIOL HU, P321; DICKEMANN M, 1979, SOC SCI INFORM, V18, P163, DOI 10.1177/053901847901800201; Dickemann M., 1981, NATURAL SELECTION SO, P417; DICKEMANN M, 1987, 1986 ANTHR C EV HUM; Dover Kenneth, 1978, GREEK HOMOSEXUALITY; DUBY G, 1978, MEDIEVAL MARRIAGE; DUBY G, 1977, CHIVALROUS SOC; Duby Georges, 1980, 3 ORDERS FEUDAL SOC; Dunbar R, 1984, REPRODUCTIVE DECISIO; Emlen S.T., 1981, P217; Emlen S.T., 1978, P245; Emlen S. T, 1984, BEHAVIOURAL ECOLOGY, P305; EMLEN ST, 1976, BEHAV ECOL SOCIOBIOL, V1, P283, DOI 10.1007/BF00300069; FRY P, 1985, J HOMOSEXUAL, V11, P137; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GRAY JP, 1985, J HOMOSEXUAL, V11, P55; HAMILTON WD, 1959, ANNU REV ECOL SYST, V5, P193; Herdt G., 1984, RITUALIZED HOMOSEXUA; HOGG JT, 1984, SCIENCE, V225, P526, DOI 10.1126/science.6539948; Horn HS, 1978, BEHAVIOURAL ECOLOGY, P411; HUMPHREYS RAL, 1970, TEAROOM TRADE IMPERS; Kirsch J. A. W., 1982, HOMOSEXUALITY SOCIAL, P183; KUTSCHE P, 1986, DEC ANN M AM ANTHR A; Lack D., 1954, NATURAL REGULATION A; LEBOEUF BJ, 1974, AM ZOOL, V14, P163; LEBOEUF BJ, 1969, SCIENCE, V163, P91, DOI 10.1126/science.163.3862.91; LEVITT EE, 1974, J HOMOSEXUAL, V1, P29, DOI 10.1300/J082v01n01_03; LICHT H, 1969, SEXUAL LIFE ANCIENT; Ligon J.D., 1981, P231; MAC ARTHUR ROBERT H., 1967; MACDONALD AP, 1974, J HOMOSEXUAL, V1, P9, DOI 10.1300/J082v01n01_02; Otte D., 1979, P259; PARKER R, 1985, J HOMOSEXUAL, V11, P155; PITHARAS L, 1986, ADVOCATE 1014, P28; ROBERTSON DR, 1972, SCIENCE, V177, P1007, DOI 10.1126/science.177.4053.1007; Ross MW, 1983, MARRIED HOMOSEXUAL M; SOLOMON BM, 1985, COMPANY EDUCATED WOM; STACEY PB, 1978, SCIENCE, V202, P1298, DOI 10.1126/science.202.4374.1298; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; TAYLOR CL, 1985, J HOMOSEXUAL, V11, P117; Thornhill R., 1983, EVOLUTION INSECT MAT; TINKLE DW, 1969, AM NAT, V103, P501, DOI 10.1086/282617; TRANIELLO JFA, 1978, SCIENCE, V202, P770, DOI 10.1126/science.202.4369.770; Trivers R. L., 1985, SOCIAL EVOLUTION; TRIVERS RL, 1974, AM ZOOL, V14, P249; TURNER J, 1986, ADVOCATE 1209, P6; WARNER RR, 1975, SCIENCE, V190, P633, DOI 10.1126/science.1188360; Weinrich J. D., 1982, HOMOSEXUALITY SOCIAL, P197; WEINRICH JD, 1977, THESIS HARVARD U ANN; West Eberhard M.J., 1975, Quarterly Review of Biology, V50, P1; West-Eberhard M.J., 1981, P3; WESTEBERHARD MJ, 1979, P AM PHILOS SOC, V123, P222; WESTEBERHARD MJ, 1978, SCIENCE, V200, P441, DOI 10.1126/science.200.4340.441; WESTEBERHARD MJ, 1982, 1982 C INT UIEIS SEC; Whitehead Harriet, 1981, SEXUAL MEANINGS CULT, P80; Wilson E.O., 1975, P1; Wilson E. O., 1978, HUMAN NATURE; Woolfenden G.E., 1981, P257; WOOLFENDEN GE, 1984, MONOGRAPHS POPULATIO, V20 74 13 14 0 11 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 0091-8369 1540-3602 J HOMOSEXUAL J. Homosex. 1993 24 3-4 55 71 10.1300/J082v24n03_04 17 Psychology, Multidisciplinary; Social Sciences, Interdisciplinary Psychology; Social Sciences - Other Topics KZ567 WOS:A1993KZ56700005 8505541 2018-11-12 J OLIVE, PJW OLIVE, PJW THE ADAPTIVE SIGNIFICANCE OF SEASONAL REPRODUCTION IN MARINE-INVERTEBRATES - THE IMPORTANCE OF DISTINGUISHING BETWEEN MODELS INVERTEBRATE REPRODUCTION & DEVELOPMENT English Article; Proceedings Paper 6TH INTERNATIONAL CONGRESS ON INVERTEBRATE REPRODUCTION ( 6TH ICIR ) JUN 28-JUL 03, 1992 UNIV DUBLIN, TRINITY COLL, DUBLIN, IRELAND INT SOC INVERTEBRATE REPROD UNIV DUBLIN, TRINITY COLL SEASONAL REPRODUCTION; LIFE-HISTORY THEORY; SPAWNING; NATURAL SELECTION HARMOTHOE-IMBRICATA L; GREAT BARRIER-REEF; L POLYCHAETA; CYCLE; POPULATION; POLYNOIDAE; SEA Seasonal reproduction is a dominant characteristic of the reproduction of major groups of marine invertebrates. The seasonality may be extreme culminating in very synchronised mass spawning events. Hypotheses to explain strongly seasonal reproduction are appraised in relation to demographic theory of life history which supposes that a limited resource (e.g., energy) may be allocated to (a) maintenance and defense against the environment (respiration, excretion, ionic regulation, etc.); (b) growth; or (c) propagule production and present reproduction. Allocation to each contributes to fitness through demographic components that can be defined by the Euler-Lotka equation. Hypotheses to account for strongly seasonal reproduction must explain the mechanism that confers selective advantage to highly seasonal non-random deployment of limited resources to reproduction. The various hypotheses proposed can be classified as (I) non-functional and (II) functional. Functional hypotheses suppose that a selective advantage accrues as a consequence of energy storage prior to allocation to reproductive function. There are costs associated with this energy storage that must be compensated by the selective advantage accruing from delayed deployment of resources. A number of different functional hypotheses can be identified which may be allocated to two sets of related hypotheses: (A) Synchronisation maximises offspring survival - the optimum larval survival strategy; and (B) Synchronisation maximises fitness independently of offspring survival - the optimum fertilisation strategy. Several versions of each can be identified; their predictions are examined and discussed in relation to possible consequences of enhanced rates of environmental change (global warming). OLIVE, PJW (reprint author), UNIV NEWCASTLE UPON TYNE,DEPT MARINE SCI & COASTAL MANAGEMENT,NEWCASTLE TYNE NE1 7RU,TYNE & WEAR,ENGLAND. BABCOCK RC, 1986, MAR BIOL, V90, P379, DOI 10.1007/BF00428562; BABCOCK RC, 1993, INV REPROD DEV, V22, P213; BARNES H, 1975, PUBBL STA ZOOL NAP S, V1, P1; BELL G, 1982, MASTERPIECE NATURE; CALOW P, 1990, FUNCT ECOL, V4, P283, DOI 10.2307/2389587; CASPERS H, 1984, MAR BIOL, V79, P229, DOI 10.1007/BF00393254; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CLARK RB, 1961, BIOL REV, V36, P199, DOI 10.1111/j.1469-185X.1961.tb01584.x; CLARK S, 1988, INT J INVER REP DEV, V14, P245, DOI 10.1080/01688170.1988.10510383; CLARKE A, 1993, INVERTEBR REPROD DEV, V22, P176; DALY J M, 1972, Marine Behaviour and Physiology, V1, P49; GARWOOD PR, 1982, INT J INVER REP DEV, V5, P161; GARWOOD PR, 1980, J EXP MAR BIOL ECOL, V47, P35, DOI 10.1016/0022-0981(80)90136-7; GIBBS PE, 1968, J MAR BIOL ASSOC UK, V48, P225, DOI 10.1017/S0025315400032550; HAMNER WM, 1988, B MAR SCI, V42, P459; HARRISON PL, 1984, SCIENCE, V223, P229; HOLLAND ND, 1975, BIOL BULL, V148, P219, DOI 10.2307/1540544; Kubota H., 1981, Developments in Endocrinology, V11, P69; LINDLEY JA, 1987, J MAR BIOL ASSOC UK, V67, P145, DOI 10.1017/S0025315400026424; LINDLEY JA, IN PRESS ANOMALOUS S; MINCHIN D, 1993, INV REPROD DEV, V22, P229; OLIVE PJW, 1970, MAR BIOL, V5, P259, DOI 10.1007/BF00346914; OLIVE PJW, 1985, ORIGINS RELATIONSHIP, P42; OLIVER MW, 1990, SYNAPSE, V5, P265, DOI 10.1002/syn.890050403; Orton J. H., 1920, J MAR BIOL ASSOC UK, V12, P339, DOI DOI 10.1017/S0025315400000102; Pearse J.S., 1990, Advances in Invertebrate Reproduction, V5, P311; PLATE S, IN PRESS B MUS NAT H; SACH G, 1975, MAR BIOL, V31, P157, DOI 10.1007/BF00391627; SIBLY RM, 1991, FUNCT ECOL, V5, P184, DOI 10.2307/2389256; SIBLY RM, 1989, BIOL J LINN SOC, V37, P101, DOI 10.1111/j.1095-8312.1989.tb02007.x; STARR M, 1990, SCIENCE, V247, P1071, DOI 10.1126/science.247.4946.1071; THORSON G, 1947, MEDDR KOMMN DANM FIS, V4, P1; TYLER PA, 1982, NATURE, V300, P747, DOI 10.1038/300747a0; TYLER PA, 1993, INV REP DEV, V22, P185; TYLER PA, 1988, OC MAR BIOL ANN REV, V26, P125 35 42 42 0 13 INT SCIENCE SERVICES/BALABAN PUBLISHERS REHOVOT PO BOX 2039, REHOVOT, ISRAEL 0168-8170 INVERTEBR REPROD DEV Invertebr. Reprod. Dev. DEC 1992 22 1-3 165 174 10.1080/07924259.1992.9672269 10 Reproductive Biology; Zoology Reproductive Biology; Zoology LK668 WOS:A1992LK66800022 2018-11-12 J LUNING, J LUNING, J PHENOTYPIC PLASTICITY OF DAPHNIA-PULEX IN THE PRESENCE OF INVERTEBRATE PREDATORS - MORPHOLOGICAL AND LIFE-HISTORY RESPONSES OECOLOGIA English Article DAPHNIA-PULEX; CHAOBORUS; NOTONECTA; PHENOTYPIC PLASTICITY; INDUCIBLE DEFENSE DEMOGRAPHIC COSTS; SELECTIVE PREDATION; INDUCIBLE DEFENSES; SPINED MORPHS; ZOOPLANKTON; CYCLOMORPHOSIS; NOTONECTA; INDUCTION; EVOLUTION; ECOLOGY Morphological and life history traits of two clones of the cladoceran Daphnia pulex were measured in the presence and absence,of size-selective insect predators, the midge larva Chaoborus flavicans, which preys on small Daphnia, and the water bug Notonecta glauca, which preys on large Daphnia. The aim was to detect predator-induced phenotypic changes, particularly the effect of simultaneous exposure to both types of predators. Other work has shown that in the presence of Chaoborus americanus, Daphnia pulex produce a so-called neck spine which may carry several teeth. The morphological modifications are supposed to serve as an anti-predator device. Furthermore, females exposed to Chaoborus often delay their maturation; this has been interpreted as a cost that balances the benefits of the neck teeth. In this investigation, females of both clones produced fewer but larger offspring than control animals when reared in the presence of Chaoborus flavicans. The offspring showed the typical neck spine and delayed first reproduction. In the presence of Notonecta glauca, one of the clones produced more and smaller offspring, and maturation occurred at earlier instars. The other clone also produced more offspring than the control but there was no size difference. When both predators were present, in most cases the reactions of the daphnids were similar to those in the Notonecta experiment. The response to Chaoborus appeared to be suppressed. The observed modifications are interpreted as evolved strategies that reduce the impact of size-selective predation. They are consistent with predictions of life-history theory. LUNING, J (reprint author), UNIV MUNICH,INST ZOOL,SEIDLSTR 25,W-8000 MUNICH 2,GERMANY. ADLER FR, 1990, TRENDS ECOL EVOL, V5, P407, DOI 10.1016/0169-5347(90)90025-9; BLACK AR, 1990, OECOLOGIA, V83, P117, DOI 10.1007/BF00324642; DODSON S, 1989, BIOSCIENCE, V39, P447, DOI 10.2307/1311136; DODSON SI, 1974, LIMNOL OCEANOGR, V19, P721, DOI 10.4319/lo.1974.19.5.0721; DODSON SI, 1989, OECOLOGIA, V78, P361, DOI 10.1007/BF00379110; DODSON SI, 1988, LIMNOL OCEANOGR, V33, P1274, DOI 10.4319/lo.1988.33.6.1274; ELSER MM, 1987, CAN J ZOOL, V65, P2846, DOI 10.1139/z87-433; GIESSLER S, 1982, THESIS LMU MUNCHEN; GRANT JWG, 1981, LIMNOL OCEANOGR, V26, P201, DOI 10.4319/lo.1981.26.2.0201; HANAZATO T, 1989, OECOLOGIA, V81, P450, DOI 10.1007/BF00378951; HARVELL CD, 1990, Q REV BIOL, V65, P323, DOI 10.1086/416841; HAVEL JE, 1984, LIMNOL OCEANOGR, V29, P487, DOI 10.4319/lo.1984.29.3.0487; HAVEL JE, 1985, LIMNOL OCEANOGR, V30, P853, DOI 10.4319/lo.1985.30.4.0853; JACOBS J, 1967, ARCH HYDROBIOL, V62, P467; KRUEGER DA, 1981, LIMNOL OCEANOGR, V26, P219, DOI 10.4319/lo.1981.26.2.0219; LYNCH M, 1979, LIMNOL OCEANOGR, V24, P353; Lynch M., 1980, EVOLUTION ECOLOGY ZO, P367; MCARDLE BH, 1979, ECOL ENTOMOL, V4, P267, DOI 10.1111/j.1365-2311.1979.tb00584.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RIESSEN HP, 1990, ECOLOGY, V71, P1536, DOI 10.2307/1938290; SCOTT MA, 1983, LIMNOL OCEANOGR, V28, P352, DOI 10.4319/lo.1983.28.2.0352; SWIFT MC, 1975, LIMNOL OCEANOGR, V20, P418, DOI 10.4319/lo.1975.20.3.0418; SWIFT MC, 1981, LIMNOL OCEANOGR, V26, P461, DOI 10.4319/lo.1981.26.3.0461; Threlkeld S.T., 1987, Memorie dell'Istituto Italiano di Idrobiologia Dott Marco de Marchi, V45, P353; VUORINEN I, 1989, LIMNOL OCEANOGR, V34, P243; WALLS M, 1989, LIMNOL OCEANOGR, V34, P390, DOI 10.4319/lo.1989.34.2.0390; WALLS M, 1991, OECOLOGIA, V87, P43, DOI 10.1007/BF00323778 28 90 90 1 36 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia DEC 1992 92 3 383 390 10.1007/BF00317464 8 Ecology Environmental Sciences & Ecology KC357 WOS:A1992KC35700010 28312604 2018-11-12 J VOLLRATH, F; PARKER, GA VOLLRATH, F; PARKER, GA SEXUAL DIMORPHISM AND DISTORTED SEX-RATIOS IN SPIDERS NATURE English Article SEXUAL dimorphism in body size is widespread in the animal kingdom. Whereas male giantism has been studied and explained extensively1,2, male dwarfism has not. Yet it is neither rare3-7 nor without theoretical interest8,9. Here we provide experimental and comparative data on spiders to support the theory that dwarf males are associated with high differential adult mortality, with males at much greater risk. Species with sedentary (low-risk) females have dwarf, roving (high-risk) males. Life-history theory could readily explain dwarfing if juvenile, but not adult, male mortality were large. We present a new model in which high mortality of searching mature males reduces the adult sex ratio (males: females), relaxing male-male competition and reducing the importance of male body size to favour dwarfing by early maturation. Early maturity also reduces male juvenile mortality and thus opposes adult mortality. This provides a mechanism that buffers skews in adult sex ratio and which is quite distinct from Fisher's principle10 and allied mechanisms9,11 for the primary sex ratio. ZOOL INST,CH-4051 BASEL,SWITZERLAND; SMITHSONIAN TROP RES INST,BALBOA,PANAMA; UNIV LIVERPOOL,DEPT ENVIRONM & EVOLUTIONARY BIOL,LIVERPOOL L69 3BX,ENGLAND VOLLRATH, F (reprint author), UNIV OXFORD,DEPT ZOOL,OXFORD OX1 3PS,ENGLAND. Parker, Geoff/C-4337-2008 Parker, Geoff/0000-0003-4795-6352 BEEBE W, 1934, ZOOLOGIKCA, V6, P149; Bertelsen E., 1951, Dana Reports, VNo. 39, P1; Caullery Maurice, 1908, Mitteilungen aus der Zoologischen Station zu Neapel Berlin, V18; CHRISTENSON TE, 1990, CONT ISSUES COMP PSY, P149; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CLUTTONBROCK T, IN PRESS Q REV BIOL; CUNNINGHAM JT, 1900, SEXUAL DIMORPHISM AN; DARWIN C, 1851, MONOGRAPH CIRRIPEDIA; DARWIN C, 1894, DESCENT MAN SELECTIO; ELGAR MA, 1990, J ZOOL, V222, P455, DOI 10.1111/j.1469-7998.1990.tb04044.x; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; FISHER R. A., 1930, GENETICAL THEORY NAT; GERHARDT U, 1930, ZOOL ANZ, V86, P80; Gertsch W. J., 1949, AM SPIDERS; GHISELIN MT, 1974, EC NATURE EVOLUTION; GUNNARSSON B, 1989, J ZOOL, V217, P1, DOI 10.1111/j.1469-7998.1989.tb02470.x; HAMILTON WD, 1967, SCIENCE, V156, P477, DOI 10.1126/science.156.3774.477; HENDRICK AV, 1989, TRENDS ECOL EVOL, V4, P136; KAESTNER A, 1967, INVERTEBRATE ZOOLOGY, V2; Koh J. K. H, 1989, GUIDE COMMON SINGAPO; LEVI HW, 1955, J NY ENT SOC, V58, P59; LOCKETT GH, 1951, BRIT SPIDERS, V1; LOCKETT GH, 1953, BRIT SPIDERS; MASCORD R, 1970, AUSTR SPIDERS; NEWMAN JA, 1991, AM NAT, V138, P1372, DOI 10.1086/285292; PAGEL MD, 1988, Q REV BIOL, V63, P413, DOI 10.1086/416027; PARKER GA, IN PRESS J FISH BIOL; Regan CT, 1925, P R SOC LOND B-CONTA, V97, P386, DOI 10.1098/rspb.1925.0006; SHINKAI E, 1984, SPIDERS JAPAN; Smith Geoffrey, 1906, Fauna Neapel Berlin, V29, P1; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; VOLLRATH F, 1980, Z TIERPSYCHOL, V53, P61; Vollrath F., 1987, P357; WATSON PJ, 1990, BEHAV ECOL SOCIOBIOL, V26, P77 34 185 186 1 58 MACMILLAN MAGAZINES LTD LONDON PORTERS SOUTH, 4 CRINAN ST, LONDON, ENGLAND N1 9XW 0028-0836 NATURE Nature NOV 12 1992 360 6400 156 159 10.1038/360156a0 4 Multidisciplinary Sciences Science & Technology - Other Topics JX752 WOS:A1992JX75200058 2018-11-12 J PART, T; GUSTAFSSON, L; MORENO, J PART, T; GUSTAFSSON, L; MORENO, J TERMINAL INVESTMENT AND A SEXUAL CONFLICT IN THE COLLARED FLYCATCHER (FICEDULA-ALBICOLLIS) AMERICAN NATURALIST English Article LIFE-HISTORY TRAITS; CALIFORNIA GULL; PARENTAL CARE; REPRODUCTIVE TACTICS; ENERGY-EXPENDITURE; AGE; EVOLUTION; ANIMALS; COSTS; BIRDS When the expectation of future reproduction is reduced by senescence, life-history theory predicts that reproductive effort will increase with increasing age. This idea was examined in the collared flycatcher by estimating whether reproductive costs increase with female age, comparing feeding rates and weight losses of old, "senescent" females (i.e., greater-than-or-equal-to 5 yr old) and middle-aged females (2-3 yr old) with the same breeding phenology and the same brood size, and testing whether feeding rate was correlated with daily energy expenditure and with weight loss of females during the nestling period. There was a negative relationship between fledgling production and subsequent survival among old females (greater-than-or-equal-to 5 yr old), but not among younger age classes, which suggests that reproductive effort increases with age. Also, old females fed their nestlings more often and lost more weight during the nestling period than did middle-aged females. Observed feeding rates were positively correlated with daily energy expenditure and weight loss. Since there was no evidence that individuals that survived to old ages were better at all ages, the results strongly suggest that old collared flycatcher females increase their reproductive effort at the cost of a decreased probability of surviving to the next year. However, the payoff of the increased reproductive effort of old females seemed to be small. We suggest that this is a consequence of a conflict between the sexes over the division of work, because old females generally are mated to younger males that probably have better future prospects. Data on male feeding rates in relation to female feeding rates support this idea. UNIV UPPSALA,DEPT ZOOL,S-75007 UPPSALA,SWEDEN Gustafsson, Lars/A-7634-2012 Gustafsson, Lars/0000-0001-6566-2863; Part, Tomas/0000-0001-7388-6672 ALATALO RV, 1986, NATURE, V323, P152, DOI 10.1038/323152a0; BROWN JL, 1978, BEHAV ECOL SOCIOBIOL, V4, P43, DOI 10.1007/BF00302560; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GROSS MR, 1985, AM ZOOL, V25, P807; Gustafsson L., 1989, P75; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; Houston A.I., 1985, P471; Karlsson L., 1986, Var Fagelvarld, V45, P131; LIFSON N, 1966, J THEOR BIOL, V12, P46, DOI 10.1016/0022-5193(66)90185-8; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; Moreno J, 1988, FUNCT ECOL, V2, P163, DOI 10.2307/2389691; MORENO J, 1989, AUK, V106, P18, DOI 10.2307/4087752; MORENO J, 1991, FUNCTIONAL ECOLOGY, V133, P186; NAGY KA, 1980, AM J PHYSIOL, V238, pR466; NUR N, 1988, ARDEA, V76, P155; NUR N, 1984, OIKOS, V43, P407, DOI 10.2307/3544163; PART T, 1990, ORNIS SCAND, V21, P83, DOI 10.2307/3676802; PART T, 1991, THESIS UPPSALA U UPP; PART T, 1989, J ANIM ECOL, V58, P307; PARTRIDGE L, 1989, SCIENCE, P421; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PUGESEK BH, 1981, SCIENCE, V212, P822, DOI 10.1126/science.212.4496.822; PUGESEK BH, 1984, OIKOS, V43, P409, DOI 10.2307/3544164; REID WV, 1988, ECOLOGY, V69, P1454, DOI 10.2307/1941642; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Sargent R.C., 1986, P275; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SPEAKMAN JR, 1988, SCI PROG, V72, P227; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Svensson L., 1984, IDENTIFICATION GUIDE; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WINKLER DW, 1987, AM NAT, V130, P526, DOI 10.1086/284729; WRIGHT J, 1989, BEHAV ECOL SOCIOBIOL, V25, P171, DOI 10.1007/BF00302916; 1987, SAS STAT GUIDE PERSO 41 102 102 2 40 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 0003-0147 AM NAT Am. Nat. NOV 1992 140 5 868 882 10.1086/285445 15 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology JU114 WOS:A1992JU11400009 19426046 2018-11-12 J JENNINGS, MJ; PHILIPP, DP JENNINGS, MJ; PHILIPP, DP REPRODUCTIVE INVESTMENT AND SOMATIC GROWTH-RATES IN LONGEAR SUNFISH ENVIRONMENTAL BIOLOGY OF FISHES English Article LIFE HISTORY; LEPOMIS-MEGALOTIS; REPRODUCTIVE INVESTMENT THALASSOMA-BIFASCIATUM PISCES; LIFE-HISTORY TRAITS; PHENOTYPIC PLASTICITY; STREAM; POPULATIONS; LABRIDAE; FISHES Allocation of energy to current reproduction at the expense of other functions, such as growth, can limit future reproductive potential. This cost of reproduction is a central concept of life history theory but has been difficult to verify in comparative field studies. Three levels of comparison of growth rates and reproductive investments were evaluated within and among populations of longear sunfish, Lepomis megalotis. All three demonstrated high levels of reproductive investment associated with reduced somatic growth. Within populations of central longear sunfish there are precociously mature sneaker males and later maturing parental males; sneakers have greater gonadosomatic index (GSI) values and slower somatic growth rates than parental males. Between subspecies of longear sunfish grown under common conditions, there are differences in age at maturity and in the level of physiological reproductive investment that are associated with distinct differences in growth rates. Between populations of central longear sunfish inhabiting different sites, there are differences in the level of reproductive investment that are also associated with differences in somatic growth. Each comparison produced evidence that trade-offs occur between these life history traits, supporting the hypothesis that there is a cost of reproduction among male sunfish and suggesting that differences in strategies of reproductive investment contribute to variation in somatic growth. ILLINOIS NAT HIST SURVEY,CTR AQUAT ECOL,CHAMPAIGN,IL 61820; UNIV ILLINOIS,DEPT ECOL ETHOL & EVOLUT,URBANA,IL 61801 Bagenal T.B., 1978, P75; Becker G. C., 1983, FISHES WISCONSIN; BENNET G, 1971, MANAGEMENT ARTIFICIA; BERRA TM, 1970, T AM FISH SOC, V99, P776, DOI 10.1577/1548-8659(1970)99<776:ROEDSO>2.0.CO;2; CARLANDER KD, 1982, T AM FISH SOC, V111, P332, DOI 10.1577/1548-8659(1982)111<332:SIFCLF>2.0.CO;2; CARLANDER KD, 1977, HDB FRESHWATER FISHE, V2; CASWELL H, 1982, AM NAT, V120, P317, DOI 10.1086/283993; DUPUIS HMC, 1988, BEHAV ECOL SOCIOBIOL, V23, P109, DOI 10.1007/BF00299894; FOX MG, 1991, CAN J FISH AQUAT SCI, V48, P1792, DOI 10.1139/f91-211; GROSS MR, 1980, P NATL ACAD SCI-BIOL, V77, P6937, DOI 10.1073/pnas.77.11.6937; GROSS MR, 1982, Z TIERPSYCHOL, V60, P1; GROSS MR, 1980, THESIS U UTAH SALT L; GROSSMAN GD, 1982, AM NAT, V120, P423, DOI 10.1086/284004; HORN HS, 1984, BEHAVIORAL ECOLOGY E, P279; HORWITZ RJ, 1978, ECOL MONOGR, V48, P307, DOI 10.2307/2937233; Hubbs C. L., 1935, Papers from the Michigan Academy of Science, V20, P669; Jennings M. J., 1991, THESIS U ILLINOIS UR; JENNINGS MJ, 1992, IN PRESS BEHAV ECOL; KEENLEYSIDE MH, 1972, COPEIA, P272; LARIMORE WR, 1959, T AM FISH SOC, V88, P261; SCHLOSSER IJ, 1982, ECOL MONOGR, V52, P395, DOI 10.2307/2937352; SCHULTZ ET, 1989, EVOLUTION, V43, P1497, DOI 10.1111/j.1558-5646.1989.tb02599.x; SCHULTZ ET, 1991, ENVIRON BIOL FISH, V30, P333, DOI 10.1007/BF02028849; Smith P. W., 1979, FISHES ILLINOIS; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Trautman M. B., 1957, FISHES OHIO 27 32 34 0 11 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0378-1909 ENVIRON BIOL FISH Environ. Biol. Fishes NOV 1992 35 3 257 271 10.1007/BF00001892 15 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology JW383 WOS:A1992JW38300006 2018-11-12 J HOM, CL HOM, CL MODELING REPRODUCTIVE ALLOCATION OF DUSKY SALAMANDERS USING OPTIMAL-CONTROL THEORY - PROS, CONS AND CAVEATS EVOLUTIONARY ECOLOGY English Article OPTIMAL CONTROL THEORY; LIFE HISTORY THEORY; REPRODUCTION ALLOCATION; DESMOGNATHUS Optimal control theory has been used to examine the evolution of life history characters in a variety of plant and animal species. In this paper, I examine control theoretic models of reproductive allocation in female dusky salamanders and consider some practical aspects of modelling, including the appropriateness of nonlinear formulations, methods for describing semelparous reproduction, and data needed to parameterize models. The model analysed includes state variables for somatic and reproductive tissue, energy intake and requirements for, physiological maintenance, and iteroparous reproduction. It predicts that female salamanders should spend the first part of their lives growing. After reaching sexual maturity, females should either spend the remainder of their lives reproducing at the expense of decreasing body size, possibly resulting in death by starvation, or maintain approximately constant body size at the expense of low reproductive output. This lack of correspondence to the observed biology of dusky salamanders suggests that not all the appropriate biology has been described. In particular, inclusion of a storage variable may be necessary in future modelling efforts. HOM, CL (reprint author), UNIV CALIF DAVIS,DEPT MATH,DAVIS,CA 95616, USA. 0 4 4 0 1 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. NOV 1992 6 6 458 481 10.1007/BF02270692 24 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity JV221 WOS:A1992JV22100002 2018-11-12 J FOX, GA FOX, GA ANNUAL PLANT LIFE HISTORIES AND THE PARADIGM OF RESOURCE-ALLOCATION EVOLUTIONARY ECOLOGY English Article LIFE HISTORY EVOLUTION; PHENOLOGY; OPTIMAL CONTROL THEORY; MODULARITY Much of life history theory follows from the idea that natural selection acts on the allocation of resources to competing and independent demographic functions. This paradigm has stimulated much research on the life histories of annual plants. Models of whole-plant resource budgets that use optimal control theory predict periods of 100% vegetative and 100% reproductive growth, sometimes with periods of mixed growth. I show here that this prediction follows from the assumption of independence of the competing 'vegetative' and 'reproductive' compartments. The prediction is qualitatively unchanged even after relaxing important simplifying assumptions used in most models. Although it follows naturally from the assumptions of the models, this kind of allocation pattern is unlikely to occur in many plants, because it requires that (1) leaf and flower buds can never simultaneously be carbon sinks; and (2) organs that accompany flowers, such as internodes and bracts, can never be net sources of photosynthate. Thus while resources are doubtless important for annual plants, an exclusively resource-based perspective may be inadequate to understand the evolution of their life histories. Progress in research may require models that incorporate, or are at least phenomenologically consistent with, the basic developmental rules of angiosperms. FOX, GA (reprint author), UNIV ARIZONA,DEPT ECOL & EVOLUT BIOL,TUCSON,AZ 85721, USA. Fox, Gordon/0000-0003-0595-1385 0 15 17 0 7 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. NOV 1992 6 6 482 499 10.1007/BF02270693 18 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity JV221 WOS:A1992JV22100003 2018-11-12 J STIBOR, H STIBOR, H PREDATOR INDUCED LIFE-HISTORY SHIFTS IN A FRESH-WATER CLADOCERAN OECOLOGIA English Article DAPHNIA; PREDATOR INDUCTION; LIFE-HISTORY STRATEGY; RESOURCE ALLOCATION; PHENOTYPIC PLASTICITY DAPHNIA-PULEX; CHEMICAL STIMULI; ECOLOGICAL ROLE; EVOLUTION; CHAOBORUS; POPULATION; PREY; AGE; CYCLOMORPHOSIS; ZOOPLANKTON Life-history theory predicts that maturity and resource allocation patterns are highly sensitive to selective predation. Under reduced adult survival, selection will favour genotypes capable of reproducing earlier, at a smaller size and with a higher reproductive effort. When exposed to water that previously held fish, (size selective predators which prefer larger Daphnia), individuals of Daphnia hyalina reproduced earlier, at a smaller size and had a higher reproductive investment. Hence the prey was able to switch its life history pattern in order to become less susceptible to predation by a specific predator. The cue that evokes the prey response is a chemical released by the predator. STIBOR, H (reprint author), MAX PLANCK INST LIMNOL,OKOPHYSIOL ABT,POSTFACH 165,W-2320 PLON,GERMANY. BRETT MT, 1992, OECOLOGIA, V89, P69, DOI 10.1007/BF00319017; BULL JJ, 1987, EVOLUTION, V41, P303, DOI 10.1111/j.1558-5646.1987.tb05799.x; CAMPBELL CE, 1991, FRESHWATER BIOL, V25, P155, DOI 10.1111/j.1365-2427.1991.tb00481.x; Caswell H., 1989, S BRIT ECOL SOC, V29, P285; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; DANGERFIELD JM, 1992, OECOLOGIA, V89, P140, DOI 10.1007/BF00319026; DODSON S, 1988, LIMNOL OCEANOGR, V33, P1431, DOI 10.4319/lo.1988.33.6_part_2.1431; DODSON SI, 1989, OECOLOGIA, V78, P361, DOI 10.1007/BF00379110; DODSON SI, 1988, FRESHWATER BIOL, V19, P109, DOI 10.1111/j.1365-2427.1988.tb00332.x; EGGERS DM, 1982, ECOLOGY, V63, P381, DOI 10.2307/1938956; GABRIEL W, 1991, INT VER THEOR ANGEW, V27, P2784; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; HANAZATO T, 1991, LIMNOL OCEANOGR, V36, P165, DOI 10.4319/lo.1991.36.1.0165; Havel J.E., 1987, P263; JACHNER A, 1988, Wiadomosci Ekologiczne, V34, P143; KERFOOT WC, 1980, EVOLUTION ECOLOGY ZO, P470; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; LAMPERT W, 1986, J PLANKTON RES, V8, P289, DOI 10.1093/plankt/8.2.289; LAMPERT W, 1988, VERH INT VEREIN LIMN, V23, P713; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Levins R., 1968, EVOLUTION CHANGING E; LOOSE JC, 1992, IN PRESS ARCH HYDR E; LYNCH M, 1986, LIMNOL OCEANOGR, V31, P17, DOI 10.4319/lo.1986.31.1.0017; MACHACEK J, 1991, HYDROBIOLOGIA, V225, P193, DOI 10.1007/BF00028397; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; PACE ML, 1984, OECOLOGIA, V63, P43, DOI 10.1007/BF00379783; PIJANOWSKA J, 1992, IN PRESS ARCH HYDROB; REZNIK AD, 1990, NATURE, V46, P357; RINGELBERG J, 1991, J PLANKTON RES, V13, P83, DOI 10.1093/plankt/13.1.83; SEMLITSCH RD, 1989, EVOLUTION, V43, P105, DOI 10.1111/j.1558-5646.1989.tb04210.x; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STIBOR H, 1991, THESIS U KIEL; TAYLOR BE, 1992, AM NAT, V139, P248, DOI 10.1086/285326; TOLLRIAN R, 1990, ARCH HYDROBIOL, V119, P191; TOWNSEND CR, 1986, OIKOS, V46, P372, DOI 10.2307/3565837; Vanni M.J., 1987, P149; VUORINEN I, 1989, LIMNOL OCEANOGR, V34, P245, DOI 10.4319/lo.1989.34.1.0245; WALLS M, 1989, LIMNOL OCEANOGR, V34, P390, DOI 10.4319/lo.1989.34.2.0390; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; Zaret T., 1980, PREDATION FRESHWATER 42 224 228 5 71 SPRINGER VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 0029-8549 OECOLOGIA Oecologia NOV 1992 92 2 162 165 10.1007/BF00317358 4 Ecology Environmental Sciences & Ecology JY895 WOS:A1992JY89500002 28313045 2018-11-12 J BAILEY, RC BAILEY, RC WHY WE SHOULD STOP TRYING TO MEASURE THE COST OF REPRODUCTION CORRECTLY OIKOS English Note LIFE-HISTORY TRAITS; PHENOTYPIC PLASTICITY; COVARIATION; PHYLOGENY; PATTERNS; SIZE The Cost of Reproduction (CoR) is a basic assumption of most models of life-history evolution. CoR's "correct" measurement, such that strictly genetic correlations between traits related to present versus future reproduction are evaluated, is not a valid test of the explanatory power of life-history models. If the genotype for an optimum effort is prevalent in a population, genetic variation for reproductive effort will be near zero. It follows that genetically based correlations will also be small, and artificial selection experiments will not reveal a genetic CoR. Similarly, no particular relationship between present and future reproductive output results from considering life-history traits to be "adaptively plastic" or using the "comparative approach" at inter-specific or higher taxonomic levels. Life-history theory is difficult to test because its predictions are general and relative rather than specific and quantitative. BAILEY, RC (reprint author), UNIV WESTERN ONTARIO,DEPT ZOOL,ECOL & EVOLUT GRP,LONDON N6A 5B7,ONTARIO,CANADA. Bailey, Robert/D-8538-2012; Bailey, Robert/H-6891-2012 Bailey, Robert/0000-0003-3574-0239; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1989, AM NAT, V133, P553, DOI 10.1086/284935; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; EMLEN JM, 1970, ECOLOGY, V51, P588, DOI 10.2307/1934039; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Harvey P. H., 1991, COMP METHOD EVOLUTIO; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1984, AM NAT, V123, P56, DOI 10.1086/284186; Stephens DW, 1986, FORAGING THEORY; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Williams GC, 1966, ADAPTATION NATURAL S 18 21 23 0 4 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos NOV 1992 65 2 349 352 10.2307/3545031 4 Ecology Environmental Sciences & Ecology JT280 WOS:A1992JT28000025 2018-11-12 J DASILVA, J; BELL, G DASILVA, J; BELL, G THE ECOLOGY AND GENETICS OF FITNESS IN CHLAMYDOMONAS .6. ANTAGONISM BETWEEN NATURAL-SELECTION AND SEXUAL SELECTION PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article REPRODUCTION; EVOLUTION; GROWTH; CHOICE; CYCLE Antagonism between the sexual and vegetative life cycles of eukaryotes is the most fundamental assumption of the theory of sexual selection. A trade-off between sexual competence and vegetative growth rate is expected from life-history theory, which predicts a negative genetic correlation between any two components of fitness that together define total fitness. Alternatively, intra-sexual competition or mate choice may create a positive correlation between vegetative growth and mating success. We have described the nature of the genetic correlation between mating efficiency and vegetative growth rate in the unicellular, facultatively sexual, chlorophyte alga Chlamydomonas reinhardtii. By selecting for mating efficiency and measuring the correlated response in vegetative growth rate, we found a negative genetic correlation between fitness components, as predicted by life-history theory. This is the first demonstration of a net viability cost of sexual selection. DASILVA, J (reprint author), MCGILL UNIV, DEPT BIOL, 1205 DOCTEUR PENFIELD AVE, MONTREAL H3A 1B1, QUEBEC, CANADA. [Anonymous], 1988, SAS STAT USERS GUIDE; BELL G, 1991, EVOLUTION, V45, P668, DOI 10.1111/j.1558-5646.1991.tb04337.x; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1991, PHILOS T ROY SOC B, V332, P81, DOI 10.1098/rstb.1991.0035; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CUNNINGHAM A, 1978, J GEN MICROBIOL, V104, P227, DOI 10.1099/00221287-104-2-227; DARWIN C, 1859, ORIGIN SPECIES; DARWIN CR, 1971, DESCENT MAN SELECTIO; FISHER R. A., 1930, GENETICAL THEORY NAT; FVCARLEY J, 1982, GAMETES SPORES IDEAS; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Harris EH, 1989, CHLAMYDOMONAS SOURCE; HODGKIN J, 1991, P ROY SOC B-BIOL SCI, V246, P19, DOI 10.1098/rspb.1991.0119; KATES JR, 1964, J CELL COMPAR PHYSL, V63, P157, DOI 10.1002/jcp.1030630204; KIRKPATRICK M, 1982, EVOLUTION, V36, P1, DOI 10.1111/j.1558-5646.1982.tb05003.x; KONDRASHOV AS, 1988, NATURE, V336, P435, DOI 10.1038/336435a0; LANDE R, 1981, P NATL ACAD SCI-BIOL, V78, P3721, DOI 10.1073/pnas.78.6.3721; NICHOLS WH, 1973, HDB PHYCOLOGICAL MET, P1; ODONALD P, 1980, GENETIC MODELS SEXUA; PARTRIDGE L, 1980, NATURE, V283, P290, DOI 10.1038/283290a0; Pomiankowski A.N., 1988, Oxford Surveys in Evolutionary Biology, V5, P136; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RICE WR, 1988, EVOLUTION, V42, P17; SCHMEISSER ET, 1973, DEV BIOL, V31, P31, DOI 10.1016/0012-1606(73)90318-7; SMITH JM, 1971, J THEOR BIOL, V30, P319; TAYLOR CE, 1987, AM NAT, V129, P721, DOI 10.1086/284668; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3 27 17 17 0 16 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. SEP 22 1992 249 1326 227 233 7 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology JQ914 WOS:A1992JQ91400002 2018-11-12 J REAL, LA; ELLNER, S REAL, LA; ELLNER, S LIFE-HISTORY EVOLUTION IN STOCHASTIC ENVIRONMENTS - A GRAPHICAL MEAN-VARIANCE APPROACH ECOLOGY English Article ENVIRONMENTAL VARIABILITY; ITEROPARITY; LIFE HISTORY EVOLUTION; REPRODUCTIVE EFFORT; RISK; STOCHASTICITY NATURAL-SELECTION; VARIABILITY; STRATEGIES; DISPERSAL; BEHAVIOR; RISK A small-variance approximation technique for examining the evolution of reproductive effort is developed, using a decomposition of fitness into arithmetic mean and variance components. Trait values often translate nonlinearly into fitness components such as offspring number or growth rate. A nonlinear relationship between phenotypic traits and fitness implies that the expected value of the fitness component will be a function of the arithmetic mean and variance in the traits influencing a given fitness component. The maximum expression of traits is often, however, a function of reproductive effort. Reproductive effort then influences the mean and variance in traits that affect fitness. Consequently, we can use these techniques to determine the optimal allocation of resources to current reproduction via their effects on the distribution of trait values. The optimal pattern of allocation is influenced by the quality and variability of the habitat and by the curvature of the trait-fitness relationship. The full range of adaptive responses, from semelparity to different degrees of iteroparity, can be predicted from the model. We extend the model to cases where reproductive effort can be partitioned into different offspring types, for example, offspring produced through chasmogamous and cleistogamous flowers. When more than one type of offspring is produced, then reproductive risks can be spread across offspring types and the conditions favoring semelparity are less restrictive. Semelparity is especially favored if the offspring types exhibit negative covariance in their contributions to growth rate. This new technique appears generally consistent with traditional life history theory, but can lead to some new insights that result from the explicit partitioning of the effects of central tendency and variability in trait-fitness relationships. N CAROLINA STATE UNIV,DEPT STAT,BIOMATH PROGRAM,RALEIGH,NC 27695 REAL, LA (reprint author), UNIV N CAROLINA,DEPT BIOL,CHAPEL HILL,NC 27599, USA. BELL G, 1982, MASTERPIECE NATURE; CARACO T, 1980, ECOLOGY, V61, P119, DOI 10.2307/1937162; CARACO T, 1985, ANIM BEHAV, V33, P216, DOI 10.1016/S0003-3472(85)80135-4; CASWELL H, 1987, ECOLOGY, V68, P1045, DOI 10.2307/1938376; CHANG WW, 1983, AM ECON REV, V73, P420; COHEN D, 1968, J ECOL, V56, P219, DOI 10.2307/2258075; COHEN D, 1966, J THEOR BIOL, V12, P110; EKBOHM G, 1980, AM NAT, V115, P445, DOI 10.1086/283572; Ellner S., 1989, Comments on Theoretical Biology, V1, P129; FRANK SA, 1990, AM NAT, V136, P244, DOI 10.1086/285094; GILLESPIE JH, 1974, GENETICS, V76, P601; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; HASTINGS A, 1979, P NATL ACAD SCI USA, V76, P4700, DOI 10.1073/pnas.76.9.4700; Henderson J.M., 1980, MICROECONOMIC THEORY; Intriligator M. D., 1971, MATH OPTIMIZATION EC; JANZEN DH, 1977, ANN MO BOT GARD, V64, P706, DOI 10.2307/2395296; KAITALA V, 1989, EVOL ECOL, V3, P283, DOI 10.1007/BF02285260; LACEY EP, 1983, AM NAT, V122, P114, DOI 10.1086/284122; LEVIN SA, 1984, THEOR POPUL BIOL, V26, P165, DOI 10.1016/0040-5809(84)90028-5; Levins R., 1968, EVOLUTION CHANGING E; REAL L, 1982, ECOLOGY, V63, P1617, DOI 10.2307/1940101; REAL L, 1986, ANNU REV ECOL SYST, V17, P371, DOI 10.1146/annurev.es.17.110186.002103; REAL L, 1980, LIMITS ACTION, P34; REAL LA, 1980, AM NAT, V115, P623, DOI 10.1086/283588; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Schaffer WM, 1975, ECOLOGY EVOLUTION CO, P142; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; SOUTHWOOD TRE, 1962, BIOL REV, V37, P171, DOI 10.1111/j.1469-185X.1962.tb01609.x; Stephens D. W, 1987, FORAGING THEORY; Tobin J., 1958, REV ECON STUD, V67, P65, DOI DOI 10.2307/2296205; VENABLE DL, 1985, AM NAT, V126, P577, DOI 10.1086/284440; Williams G. C., 1975, SEX EVOLUTION 32 32 32 1 16 ECOLOGICAL SOC AMER WASHINGTON 2010 MASSACHUSETTS AVE, NW, STE 400, WASHINGTON, DC 20036 0012-9658 ECOLOGY Ecology AUG 1992 73 4 1227 1236 10.2307/1940671 10 Ecology Environmental Sciences & Ecology JE984 WOS:A1992JE98400008 2018-11-12 J KOZLOWSKI, J KOZLOWSKI, J PLEIOTROPIC PARASITES AND LIFE-HISTORY THEORY TRENDS IN ECOLOGY & EVOLUTION English Letter KOZLOWSKI, J (reprint author), JAGIELLONIAN UNIV,INST ENVIRONM BIOL,OLEANDRY 2A,PL-30063 KRAKOW,POLAND. Kozlowski, Jan/K-5549-2012 Kozlowski, Jan/0000-0002-7084-2030 KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; MICHALAKIS Y, 1992, TRENDS ECOL EVOL, V7, P59, DOI 10.1016/0169-5347(92)90108-N; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J 4 0 0 1 5 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, OXON, ENGLAND OX5 1GB 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. JUL 1992 7 7 241 241 10.1016/0169-5347(92)90053-E 1 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity JB870 WOS:A1992JB87000010 21236019 2018-11-12 J METZ, JAJ; NISBET, RM; GERITZ, SAH METZ, JAJ; NISBET, RM; GERITZ, SAH HOW SHOULD WE DEFINE FITNESS FOR GENERAL ECOLOGICAL SCENARIOS TRENDS IN ECOLOGY & EVOLUTION English Article EVOLUTIONARY STABILITY; MODEL; ENVIRONMENTS; DEMOGRAPHY; SELECTION; LIFE Beginners in life history theory or evolutionary ecology seemingly face a variety of almost unrelated approaches. Yet the biomathematical literature of the last 10-20 years reflects the implicit acceptance of a common evolutionary framework, the core idea being that there exists a unique general fitness measure that concisely summarizes the overall time course of potential invasions by initially rare mutant phenotypes. Using such an invasion criterion to characterize fitness implicitly presupposes a scenario in which, during periods of clear evolutionary change, the rate of evolution is set primarily by the random occurrence (and initial establishment) of favourable mutations. Evolutionarily stable life history strategies (ESSs) may then be regarded as traps for the evolutionary random walk. UNIV CALIF SANTA BARBARA,DEPT BIOL SCI,SANTA BARBARA,CA 93106 METZ, JAJ (reprint author), LEIDEN UNIV,INST THEORET BIOL,KAISERSTR 63,2311 GP LEIDEN,NETHERLANDS. Nisbet, Roger/B-6951-2014 BAKER GL, 1990, CHAOTIC DYNAMICS INT; BARTON NH, 1989, ANNU REV GENET, V23, P337, DOI 10.1146/annurev.ge.23.120189.002005; BULMER MG, 1984, THEOR POPUL BIOL, V26, P367, DOI 10.1016/0040-5809(84)90040-6; Caswell H., 1989, MATRIX POPULATION MO; CHESSON PL, 1985, COMMUNITY ECOLOGY, P240; ESHEL I, 1983, J THEOR BIOL, V103, P99, DOI 10.1016/0022-5193(83)90201-1; ESHEL I, 1981, THEOR POPUL BIOL, V19, P420, DOI 10.1016/0040-5809(81)90029-0; Eshel I, 1991, GAME EQUILIBRIUM MOD, V1, P6; FERRIERE R, LECTURE NOTES BIOMAT; HAMMERSTEIN P, IN PRESS HDB GAME TH; HASSELL MP, 1976, J ANIM ECOL, V45, P471, DOI 10.2307/3886; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lande R., 1982, P21; LESSARD S, 1990, THEOR POPUL BIOL, V37, P157; LESSARD S, 1989, MATH EVOLUTIONARY TH, P207; LESSARD S, 1990, APPL MATH COMPUT, V32, P207; Metz J.A.J., 1986, DYNAMICS PHYSIOL STR; METZ JAJ, 1990, DYNAMISCHE SYSTEMEN, P320; NISBET RM, 1989, APPL MATH ECOLOGY, P428; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; ROUGHGARDEN J, 1979, THEORY POPULATION GE; SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0; SMITH JM, 1974, J THEOR BIOL, V47, P2509; TAYLOR PD, 1988, J THEOR BIOL, V130, P363, DOI 10.1016/S0022-5193(88)80035-3; TAYLOR PD, 1988, THEOR POPUL BIOL, V34, P145, DOI 10.1016/0040-5809(88)90039-1; TAYLOR PD, 1989, THEOR POPUL BIOL, V36, P125, DOI 10.1016/0040-5809(89)90025-7; TULJAPURKAR S, 1989, THEOR POPUL BIOL, V35, P227, DOI 10.1016/0040-5809(89)90001-4; TULJAPURKAR S, 1990, POPULATION DYNAMICS; TURELLI M, 1988, EVOLUTION, V42, P1342, DOI 10.1111/j.1558-5646.1988.tb04193.x; VANTIENDEREN PH, 1986, J THEOR BIOL, V122, P69, DOI 10.1016/S0022-5193(86)80225-9 30 689 700 5 106 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, OXON, ENGLAND OX5 1GB 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. JUN 1992 7 6 198 202 10.1016/0169-5347(92)90073-K 5 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity HW583 WOS:A1992HW58300009 21236007 2018-11-12 J PETERSEN, MR PETERSEN, MR REPRODUCTIVE ECOLOGY OF EMPEROR GEESE - SURVIVAL OF ADULT FEMALES CONDOR English Article REPRODUCTIVE ECOLOGY; ANNUAL SURVIVAL; FEMALE SURVIVAL; CHEN CANAGICUS; ALASKA LESSER SNOW GEESE; CANADA GEESE; BARNACLE GEESE; CLUTCH-SIZE; GOOSE; SUCCESS; EXPERIENCE; AGE; PERFORMANCE; PARASITISM Life history theory predicts a decrease in survival with increased reproductive effort of individuals. This relationship, however, is highly variable among and within species. I studied the nesting success and survival of adult female Emperor Geese during 1982-1986 and found no direct evidence that differential reproductive effort as measured by the number of eggs laid or hatching success had a significant negative effect on survival to the next breeding season. Incubated clutch size, hatched clutch size, number of parasitic eggs, nest initiation date, hatch date, and mass at hatch were not related to subsequent survival. Of the factors I examined, only an attempt to nest the previous season was related to survival of a female. I suggest that the higher probability of survival among non-nesting adult female Emperor Geese was primarily related to hunting pressure on the nesting area between spring and fall migration. The probability of survival was increased for females with larger clutches, suggesting a positive relationship between brood size and survival. UNIV CALIF DAVIS,DEPT WILDLIFE & FISHERIES BIOL,DAVIS,CA 95616 PETERSEN, MR (reprint author), US FISH & WILDLIFE SERV,ALASKA FISH & WILDLIFE RES CTR,1011 E TUDOR RD,ANCHORAGE,AK 99503, USA. ALDRICH TW, 1983, AUK, V100, P670; ANKNEY CD, 1978, AUK, V95, P459; ASKENMO C, 1979, AM NAT, V114, P748, DOI 10.1086/283523; BARRY THOMAS W., 1962, JOUR WILDLIFE MANAGEMENT, V26, P19, DOI 10.2307/3798163; BLACK JM, 1989, ANIM BEHAV, V37, P199, DOI 10.1016/0003-3472(89)90110-3; BLACK JM, 1989, ANIM BEHAV, V37, P187, DOI 10.1016/0003-3472(89)90109-7; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; BOYD H, 1953, BEHAVIOUR, V5, P85, DOI 10.1163/156853953X00069; BRAKHAGE GEORGE K., 1965, J WILDLIFE MANAGE, V29, P751, DOI 10.2307/3798552; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; CONOVER WJ, 1980, PRACTICAL NONPARAMET; COOKE F, 1981, CONDOR, V83, P322, DOI 10.2307/1367500; COOKE F, 1975, AUK, V92, P493, DOI 10.2307/4084603; COOPER JA, 1978, WILDLIFE MONO, V61; COULSON JC, 1966, J ANIM ECOL, V35, P269, DOI 10.2307/2394; EISENHAUER DI, 1976, THESIS PURDUE U W LA; EISENHAUER DI, 1977, WILDL MONO, V57; ELY CR, 1984, J WILDLIFE MANAGE, V48, P823, DOI 10.2307/3801429; FAY FRANCIS H., 1959, UNIV CALIFORNIA PUBL ZOOL, V63, P73; FINNEY G, 1978, CONDOR, V80, P147, DOI 10.2307/1367914; GABRIELSON IN, 1959, BIRDS ALASKA; GAUTHIER G, 1989, AUK, V106, P568; HANSON H. C., 1953, AUK, V70, P11; HANSON HC, 1962, 12 ARCT I TECH PAP; HARVEY JM, 1971, CAN J ZOOLOG, V49, P223, DOI 10.1139/z71-032; Harvey P.H., 1988, P189; HOLMES RT, 1973, CONDOR, V75, P150, DOI 10.2307/1365862; JACKSON MT, 1981, NAT GEOG SOC RES REP, V13, P287; Jenness A., 1970, DWELLERS TUNDRA LIFE; JONES N G B, 1972, Wildfowl, V23, P92; KAPLAN EL, 1958, J AM STAT ASSOC, V53, P457, DOI 10.2307/2281868; King J. G., 1986, T N AM WILDL NAT RES, V51, P464; KIRBY RE, 1986, J WILDLIFE MANAGE, V50, P29, DOI 10.2307/3801483; Kistchinski A.A., 1971, Wildfowl, V22, P29; KLEIN DR, 1966, ARCTIC, V19, P319; KRECHMAR AV, 1982, J ZOOL, V61, P254; KRUUK H, 1964, BEHAVIOUR S, V11; LAMPRECHT J, 1986, BEHAVIOUR, V97, P50, DOI 10.1163/156853986X00315; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; LESSELLS CM, 1985, IBIS, V127, P31, DOI 10.1111/j.1474-919X.1985.tb05035.x; LOMAN J, 1982, OECOLOGIA, V52, P253, DOI 10.1007/BF00363845; MACWHIRTER RB, 1989, CONDOR, V91, P485, DOI 10.2307/1368333; MARTIN P, 1986, MEASURING BEHAVIOUR; McCleery R.H., 1988, P136; MICKELSON PG, 1975, WILDL MONOG, V45; Newton I., 1977, P113; Nur N., 1987, Perspectives in Ethology, V7, P49; OWEN M, 1989, J ANIM ECOL, V58, P603, DOI 10.2307/4851; Owen M., 1982, Aquila, V89, P229; PAMPLIN JR W. L., 1986, T N AM WILDL NAT RES, V51, P487; Petersen M.R., 1982, Wildfowl, V33, P31; PETERSEN MR, 1990, WILSON BULL, V102, P413; PETERSEN MR, 1992, CONDOR, V94, P383, DOI 10.2307/1369211; PETERSEN MR, IN PRESS J FIELD ORN; POLLOCK KH, 1989, J WILDLIFE MANAGE, V53, P7, DOI 10.2307/3801296; PORTENKO LA, 1981, BIRDS CHUKCHI PENINS; RAVELING D G, 1970, Behaviour, V37, P291, DOI 10.1163/156853970X00394; RAVELING DG, 1981, J WILDLIFE MANAGE, V45, P817, DOI 10.2307/3808091; RAVELING DG, 1978, AUK, V95, P294; RAVELING DG, 1984, T N AM WILDL NAT RES, V49, P555; RAVELING DG, 1989, CAN J ZOOL, V66, P2766; RAVELING DG, 1977, 98 ONT MIN NAT RES F; ROCKWELL RF, 1983, OECOLOGIA, V56, P318, DOI 10.1007/BF00379706; SMITH JNM, 1981, EVOLUTION, V35, P1142, DOI 10.1111/j.1558-5646.1981.tb04985.x; Spencer D. L., 1951, Transactions of the North American Wildlife Conference, VNo. 16, P290; SULZBACH CS, 1979, CONDOR, V81, P232; Thomas C.S., 1988, P251; TIMM DE, 1979, MANAGEMENT BIOL PACI, P280; WELLER MILTON W., 1957, JOUR WILDLIFE MANAGEMENT, V21, P456, DOI 10.2307/3796681; WHITE GC, 1983, J WILDLIFE MANAGE, V47, P716, DOI 10.2307/3808607; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; YOMTOV Y, 1980, BIOL REV, V55, P93, DOI 10.1111/j.1469-185X.1980.tb00689.x; 1986, SPSSX USERS GUIDE 73 14 14 1 4 COOPER ORNITHOLOGICAL SOC LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 0010-5422 CONDOR Condor MAY 1992 94 2 398 406 10.2307/1369212 9 Ornithology Zoology HV531 WOS:A1992HV53100008 2018-11-12 J ROACH, DA ROACH, DA PARENTAL CARE AND THE ALLOCATION OF RESOURCES ACROSS GENERATIONS EVOLUTIONARY ECOLOGY English Article PARENTAL CARE; RESOURCE ALLOCATION; ESS; INCLUSIVE FITNESS; MENOPAUSE; EVOLUTION To understand the evolution of parental care behaviour, the cost of care must be evaluated in terms of lost reproductive potential. Using population genetics theory, a quantitative model of parental care is presented here to evaluate the allocation of resources between production and care of offspring, and care of grandoffspring. The results show that the evolutionarily stable investment ratio of resources to offspring versus grandoffspring is equal to 2:1. The expected investment in grandoffspring will decrease when there is a lower probability of survival of the parents to a late stage of the life cycle. These results are discussed in the context of general life history theory, inclusive fitness models, animal behaviour field studies, and the evolution of human menopause. ROACH, DA (reprint author), DUKE UNIV,DEPT ZOOL,DURHAM,NC 27706, USA. Roach, Deborah/0000-0002-5273-5370 0 2 2 0 5 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. MAY 1992 6 3 187 197 10.1007/BF02214161 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity HT005 WOS:A1992HT00500001 2018-11-12 J HOUSTON, AI; MCNAMARA, JM HOUSTON, AI; MCNAMARA, JM PHENOTYPIC PLASTICITY AS A STATE-DEPENDENT LIFE-HISTORY DECISION EVOLUTIONARY ECOLOGY English Article PHENOTYPIC PLASTICITY; LIFE-HISTORY THEORY; CLUTCH SIZE; STATE-DEPENDENT BEHAVIOR A genotype is said to show phenotypic plasticity if it can produce a range of environmentally dependent phenotypes. Plasticity may or may not be adaptive. We consider plasticity as a genetically determined trait and thus find the optimal response of an animal to its environment. Various aspects of this optimal response are illustrated with examples based on reproductive effort. We investigate the selection pressure for plastic as opposed to fixed strategies. An example with spatial heterogeneity is used to compare our approach with that of Stearns and Koella (1986). HOUSTON, AI (reprint author), UNIV OXFORD,DEPT ZOOL,NERC,BEHAV ECOL UNIT,S PARKS RD,OXFORD OX1 3PS,ENGLAND. 0 147 149 1 55 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. MAY 1992 6 3 243 253 10.1007/BF02214164 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity HT005 WOS:A1992HT00500004 2018-11-12 J DERIDDER, F; DHONDT, AA DERIDDER, F; DHONDT, AA THE REPRODUCTIVE-BEHAVIOR OF A CLONAL HERBACEOUS PLANT, THE LONGLEAVED SUNDEW DROSERA-INTERMEDIA, IN DIFFERENT HEATHLAND HABITATS ECOGRAPHY English Article COMPLEX LIFE-CYCLES; RESOURCE-ALLOCATION; POPULATIONS; PATTERNS; COSTS The reproductive behaviour of the longleaved sundew Drosera intermedia Hayne was studied in three hydrologically differing heathland habitats: a pool edge, an old path through the wet heath and a seepage area. Sexual reproductive allocation (SRA) (the slope of thc regression of sexual on vegetative biomass in a given season) differed strongly between years (related to temperature and precipitation) and habitats. Averaged over years. path plants had a higher SRA than plants in the seepage area and at the pool edge. Asexual reproductive allocation. expressed as thc size-dependent probability of reproducing asexually, did not differ between habitats in most years. The observations agreed with general life history theory. SRA was high in the path habitat where adult survival chances were low and juvenile (= seed, first year seedling) survival was high. SRA was lower in the seepage area where adult survival chances were higher and juvenile survival lower. At the pool edge, a habitat with high adult mortality and low juvenile establishment, the predicted optimal reproductive behaviour, a high SRA, was not observed due to environmental constraints (inundation). DERIDDER, F (reprint author), UNIV INSTELLING ANTWERP,DEPT BIOL,UNIVERSITEITSPLEIN 1,B-2610 WILRIJK,BELGIUM. Dhondt, Andre/A-8292-2008 Dhondt, Andre/0000-0002-4946-1401 BACKEUS I, 1988, HOLARCTIC ECOL, V11, P146; Bazzaz FA, 1985, STUDIES PLANT DEMOGR, P373; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BLOOM AJ, 1985, ANNU REV ECOL SYST, V16, P363, DOI 10.1146/annurev.es.16.110185.002051; BROK TCM, 1989, OECOLOGIA BERL, V80, P44; CASWELL H, 1982, ECOLOGY, V63, P1218, DOI 10.2307/1938846; CASWELL H, 1982, ECOLOGY, V63, P1223, DOI 10.2307/1938847; CASWELL H, 1985, POPULATION BIOL EVOL, P187; Caswell H., 1989, MATRIX POPULATION MO; CHAPIN FS, 1980, ANNU REV ECOL SYST, V11, P233, DOI 10.1146/annurev.es.11.110180.001313; CULLEN JM, 1978, NEW PHYTOL, V81, P443, DOI 10.1111/j.1469-8137.1978.tb02649.x; DERIDDER F, 1987, HOLARCTIC ECOL, V10, P299; DERIDDER F, 1992, ECOGRAPHY, V15, P129; DERIDDER F, 1990, THESIS U ANTWERP; DOUST JL, 1980, BIOL J LINN SOC, V13, P155; DOWDING P, 1981, ECOL B, V33, P615; FAVARD A, 1969, REV GEN BOT, V76, P157; FAVARD A, 1963, ANN SC NAT BOT E 4, V12, P265; FITTER AH, 1988, J ECOL, V76, P617, DOI 10.2307/2260563; HEILMAN PE, 1968, ECOLOGY, V49, P331, DOI 10.2307/1934463; LOTZ LAP, 1986, OECOLOGIA, V69, P25, DOI 10.1007/BF00399033; NORUSIS M, 1988, SPSS PC PLUS ADV STA; NORUSIS MJ, 1986, SPSS PC PLUS IBM PC; OHLSON M, 1988, J ECOL, V76, P1007, DOI 10.2307/2260629; PRIMACK RB, 1982, EVOLUTION, V36, P742, DOI 10.1111/j.1558-5646.1982.tb05440.x; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; SAMSON DA, 1986, AM NAT, V127, P667, DOI 10.1086/284512; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Schaffer WM, 1975, ECOLOGY EVOLUTION CO, P142; Sokal FJ, 1981, BIOMETRY; SOULE JD, 1981, B TORREY BOT CLUB, V108, P311, DOI 10.2307/2484709; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Swift MJ, 1979, STUDIES ECOLOGY, V5; THOMPSON K, 1981, AM NAT, V117, P205, DOI 10.1086/283700; THUM M, 1988, OECOLOGIA, V75, P472, DOI 10.1007/BF00376954; THUM M, 1988, THESIS MUNICH; TUOMI J, 1983, AM ZOOL, V23, P25; Van Cleve K., 1981, ECOL B, V33, P375; WATSON AP, 1982, AUST J ECOL, V7, P13, DOI 10.1111/j.1442-9993.1982.tb01296.x; Weiner J., 1988, Plant reproductive ecology: patterns and strategies, P228; Willson MF, 1983, PLANT REPRODUCTIVE E; Yodzis P, 1989, INTRO THEORETICAL EC 42 5 6 1 6 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0906-7590 ECOGRAPHY Ecography APR-JUN 1992 15 2 144 153 10 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology JC917 WOS:A1992JC91700002 2018-11-12 J MCNAMARA, JM; HOUSTON, AI MCNAMARA, JM; HOUSTON, AI STATE-DEPENDENT LIFE-HISTORY THEORY AND ITS IMPLICATIONS FOR OPTIMAL CLUTCH SIZE EVOLUTIONARY ECOLOGY English Article LIFE-HISTORY THEORY; CLUTCH SIZE; STATE-DEPENDENT BEHAVIOR Life-history theory is usually based on an animal's age or size. McNamara describes a general technique for finding the optimal life-history when an organism's strategy is allowed to depend on other aspects of its state. In this paper we describe the technique in the context of previous work in life-history theory and discuss how it can be used to look at decisions on a finer time scale than the usual annual decisions. We show how it can be used to model optimal clutch size when there is a trade-off between number and quality of offspring. It is shown that the optimal clutch size is typically less than the most productive clutch size. Measuring the value of a clutch in terms of the number of offspring that survive to breed or even the number of grandchildren that survive to breed may give misleading results. UNIV OXFORD,DEPT ZOOL,NERC,BEHAV ECOL UNIT,S PARKS RD,OXFORD OX1 3PS,ENGLAND 0 58 59 1 10 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. MAR 1992 6 2 170 185 10.1007/BF02270710 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity HF581 WOS:A1992HF58100006 2018-11-12 J HOWLAND, JM HOWLAND, JM LIFE-HISTORY OF COPHOSAURUS-TEXANUS (SAURIA, IGUANIDAE) - ENVIRONMENTAL CORRELATES AND INTERPOPULATIONAL VARIATION COPEIA English Article LIZARD SCELOPORUS-MERRIAMI; FOOD AVAILABILITY; REPRODUCTION; SIZE; STRATEGIES; EVOLUTION; PATTERNS; REPTILES; TRAITS The life history of a population of the greater earless lizard (Cophosaurus texanus) was investigated in Big Bend National Park, in the Chihuahuan Desert of western Texas. This population had (1) smaller clutch sizes, (2) lower clutch frequencies, (3) later onset of reproduction, (4) greater size (and possibly age) at first reproduction, (5) larger adult size, (6) lower growth rates, (7) higher adult survivorship, and (8) greater density than previously studied populations in central Texas. These lizards also showed reductions in clutch size, egg lipids, and storage lipids late in the reproductive season. The observed life-history characteristics suggest energy limitation in the Big Bend population whereas central Texas populations may be limited by high adult mortality. The observed differences are consistent with the predictions of current life-history theory. UNIV CALIF LOS ANGELES,DEPT BIOL,LOS ANGELES,CA 90024 BALLINGER RE, 1972, AM MIDL NAT, V88, P419, DOI 10.2307/2424366; BALLINGER RE, 1977, ECOLOGY, V58, P628, DOI 10.2307/1939012; BAUWENS D, 1981, J ANIM ECOL, V50, P733, DOI 10.2307/4133; BERVEN KA, 1983, AM ZOOL, V23, P85; CAGLE FR, 1950, COPEIA, P230; COGNDON JD, 1989, HERPETOLOGICA, V45, P305; DEGENHARDT WG, 1977, NATIONAL PARK SERVIC, V3, P533; DOBSON FS, 1987, AM NAT, V129, P382, DOI 10.1086/284643; Dunham A.E., 1988, Biology of Reptilia, V16, P441; Dunham A. E., 1981, MISC PUBL MUS ZOOL, V158, P1; DUNHAM AE, 1978, ECOLOGY, V59, P770, DOI 10.2307/1938781; DUNHAM AE, 1982, HERPETOLOGICA, V38, P208; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; ENGELING GA, 1972, THESIS SW TEXAS STAT; GRANT BW, 1988, ECOLOGY, V69, P167, DOI 10.2307/1943171; HOWLAND JM, 1983, THESIS U GEORGIA ATH; JOHNSON C, 1960, COPEIA, P297; Packard G.C., 1988, Biology of Reptilia, V16, P523; Peters J. A., 1951, Occasional Papers of the Museum of Zoology University of Michigan Ann Arbor, VNo. 537, P1; Ramsey L. W., 1949, Herpetologica San Diego, V5, P125; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; REZNICK DN, 1987, OECOLOGIA, V43, P401; RUBY DE, 1987, OECOLOGIA, V71, P473, DOI 10.1007/BF00378723; SCHRANK G D, 1973, Herpetologica, V29, P289; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; STEARNS SC, 1983, EVOLUTION, V37, P601, DOI 10.1111/j.1558-5646.1983.tb05577.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TINKLE DW, 1970, EVOLUTION, V24, P55, DOI 10.1111/j.1558-5646.1970.tb01740.x; VITT LJ, 1985, HERPETOLOGICA, V41, P419; VITT LJ, 1977, HERPETOLOGICA, V33, P333; WARNOCK BH, 1970, WILDFLOWERS BIG BEND; WAUER RH, 1971, SW NAT, V16, P1 32 18 20 0 4 AMER SOC ICHTHYOLOGISTS HERPETOLOGISTS BUSINESS OFFICE CARBONDALE SOUTHERN ILLINOIS UNIV, DEPT ZOOLOGY, CARBONDALE, IL 62901-6501 0045-8511 COPEIA Copeia FEB 3 1992 1 82 93 10.2307/1446538 12 Zoology Zoology HC975 WOS:A1992HC97500009 2018-11-12 J SHINE, R; SCHWARZKOPF, L SHINE, R; SCHWARZKOPF, L THE EVOLUTION OF REPRODUCTIVE EFFORT IN LIZARDS AND SNAKES EVOLUTION English Article FECUNDITY; LIZARDS; REPRODUCTION; REPTILES; SNAKES LIFE-HISTORY EVOLUTION; RELATIVE CLUTCH MASS; LIVE-BEARING LIZARD; SCELOPORUS-UNDULATUS; NATURAL-SELECTION; COMPARATIVE DEMOGRAPHY; ITEROPAROUS ANIMALS; HOLBROOKIA-MACULATA; WESTERN NEBRASKA; COST Life history theory suggests that the optimal evolved level of reproductive effort (RE) for an organism depends upon the degree to which additional current reproductive investment reduces future reproductive output. Future reproduction can be decreased in two ways, through (i) decreases in the organism's survival rate, and/or (ii) decreases in the organism's growth (and hence subsequent fecundity). The latter tradeoff-that is, the "potential fecundity cost"-should affect the evolution of RE only in species with relatively high survival rate, a relatively high rate of fecundity increase with body size, or a relatively high reproductive frequency per annum. Unless these conditions are met, the probable benefit in future fecundity obtained from decreasing present reproductive output is too low for natural selection to favor any reduction in RE below the maximum physiologically possible. Published data on survival rate, reproductive frequency and relative clutch mass (RCM) suggest that many lizard species fall well below the level at which natural selection can be expected to influence RE through such "potential fecundity" tradeoffs. Hence, the relative allocation of resources between growth and reproduction is unlikely to be directly optimized by natural selection in these animals. Instead, energy allocation should influence the evolution of RE only indirectly, via effects on an organism's probability of survival during reproduction. Survival costs of reproduction may be the most important evolutionary determinants of RE in may reptiles, and information on the nature and extent of such costs is needed before valid measures of reptilian RE can be constructed. SHINE, R (reprint author), UNIV SYDNEY,DEPT ZOOL A08,SYDNEY,NSW 2006,AUSTRALIA. Shine, Richard/B-8711-2008; Schwarzkopf, Lin/C-1242-2012 Schwarzkopf, Lin/0000-0002-1009-670X ANDERSSON M, 1978, AM NAT, V112, P762, DOI 10.1086/283317; ANDREWS R, 1974, ECOLOGY, V55, P1317, DOI 10.2307/1935459; Andrews R.M., 1982, Biology of Reptilia, V13, P273; BALLARD KP, 1981, REG STUD, V15, P213, DOI 10.1080/09595238100185221; BALLINGER R E, 1973, Journal of Herpetology, V7, P129, DOI 10.2307/1563210; BALLINGER RE, 1973, ECOLOGY, V54, P269, DOI 10.2307/1934336; BALLINGER RE, 1983, STUDIES MODEL ORGANI; BARBAULT R, 1976, COPEIA, P483; BAUWENS D, 1981, J ANIM ECOL, V50, P733, DOI 10.2307/4133; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BEUCHAT CA, 1986, COPEIA, P971, DOI 10.2307/1445294; BIRCHARD GF, 1984, COMP BIOCHEM PHYS A, V77, P519, DOI 10.1016/0300-9629(84)90221-4; BRODIE ED, 1989, AM NAT, V134, P225, DOI 10.1086/284977; BULL JJ, 1979, AM NAT, V114, P296, DOI 10.1086/283476; BURKHOLDER G L, 1974, Brigham Young University Science Bulletin Biological Series, V19, P1; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1986, OIKOS, V47, P129, DOI 10.2307/3566037; CLARK D R JR, 1976, Journal of Herpetology, V10, P133, DOI 10.2307/1562794; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CONGDON JD, 1982, BIOL REPTILIA, V13, P223; Drent R. H., 1980, INTEGRATED STUDY BIR, P225; DROGE DL, 1982, COPEIA, P356, DOI 10.2307/1444615; Dunham A.E., 1988, Biology of Reptilia, V16, P441; DUNHAM AE, 1982, HERPETOLOGICA, V38, P208; FERGUSON GW, 1980, ECOLOGY, V61, P313, DOI 10.2307/1935190; Fisher Ronald A., 1956, GENETICAL THEORY NAT; FITCH HS, 1970, U KANSAS MUS NAT HIS, V52, P1; FITCH HS, 1956, U KANS PUBLS MUS NAT, V8, P213; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GARRICK LD, 1974, PHYSIOL BEHAV, V12, P85, DOI 10.1016/0031-9384(74)90072-9; GOODMAN D, 1974, AM NAT, V108, P247, DOI 10.1086/282906; GOODMAN D, 1979, AM NAT, V113, P735, DOI 10.1086/283429; GUYER C, 1985, NORTHWEST SCI, V59, P294; HAILEY A, 1987, HERPETOL J, V1, P144; HASEGAWA M, 1984, HERPETOLOGICA, V40, P194; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HULSE A C, 1981, Annals of Carnegie Museum, V50, P353; IVERSON B, 1979, B FLORIDA STATE MUS, V24, P1; JONES SM, 1987, ECOLOGY, V68, P1828, DOI 10.2307/1939874; KOUFOPANOU V, 1984, OECOLOGIA, V64, P81, DOI 10.1007/BF00377548; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; MITCHELL JC, 1976, THESIS ARIZONA STATE; Nagy K.A., 1983, P24; PARKER W S, 1987, P253; PIANKA ER, 1972, COPEIA, P493; PIANKA ER, 1975, AM NAT, V109, P437; POUGH FH, 1980, AM NAT, V115, P92, DOI 10.1086/283547; RICKLEFS RE, 1974, AVIAN ENERGETICS, P152; ROSE M, 1980, NATURE, V287, P141, DOI 10.1038/287141a0; SCHAFFER WM, 1977, ECOLOGY, V58, P60, DOI 10.2307/1935108; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; SCHOENER TW, 1985, AM NAT, V126, P633, DOI 10.1086/284444; SEIGEL RA, 1987, OECOLOGIA, V73, P481, DOI 10.1007/BF00379404; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SHINE R, 1977, AUST J ZOOL, V25, P655, DOI 10.1071/ZO9770655; SIEGEL RA, 1984, OECOLOGIA, V61, P293; STEWART JR, 1984, HERPETOLOGICA, V40, P349; TAYLOR HM, 1974, THEOR POPUL BIOL, V5, P104, DOI 10.1016/0040-5809(74)90053-7; TINKLE D W, 1972, Herpetologica, V28, P351; TINKLE DW, 1973, COPEIA, P284; TINKLE DW, 1972, ECOLOGY, V53, P570, DOI 10.2307/1934772; TINKLE DW, 1973, COPEIA, P272; TINKLE DW, 1969, AM NAT, V103, P501, DOI 10.1086/282617; TINKLE DW, 1975, ECOLOGY, V56, P427, DOI 10.2307/1934973; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Turner F.B., 1977, P157; VANDEVENDER RW, 1982, HERPETOLOGICA, V38, P189; VINEGAR MB, 1975, AM MIDL NAT, V93, P388, DOI 10.2307/2424171; VINEGAR MB, 1975, ECOLOGY, V56, P172, DOI 10.2307/1935309; VITT LJ, 1982, HERPETOLOGICA, V38, P237; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; VITT LJ, 1978, J HERPETOL, V12, P65, DOI 10.2307/1563505; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; ZWEIFEL RICHARD G., 1966, AMER MUS NOVI TATES, V2247, P1 77 124 129 5 33 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 0014-3820 EVOLUTION Evolution FEB 1992 46 1 62 75 10.1111/j.1558-5646.1992.tb01985.x 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity HD993 WOS:A1992HD99300006 28564954 Bronze 2018-11-12 J REZNICK, D REZNICK, D MEASURING THE COSTS OF REPRODUCTION TRENDS IN ECOLOGY & EVOLUTION English Review LIFE-HISTORY TRAITS; DROSOPHILA-MELANOGASTER; EGG-PRODUCTION; EVOLUTION; SELECTION; PERFORMANCE; SENESCENCE; LONGEVITY; GENETICS; SURVIVAL The measurement of costs of reproduction is of interest because such costs are generally assumed by life history theory. There is some controversy concerning how to measure costs: common methods include experimental manipulations of life history, such as preventing some individuals from reproducing, or estimates of genetic correlations. These two methods often yield similar results, suggesting that one can serve as a substitute for the other. There are now experiments which demonstrate that there are different mechanisms underlying the response to an experimental manipulation versus a genetic correlation, so the two methods are not equivalent in estimating costs. REZNICK, D (reprint author), UNIV CALIF RIVERSIDE, DEPT BIOL, RIVERSIDE, CA 92521 USA. Remick, Daniel/0000-0002-2615-3713 Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BERNARDO J, 1991, TRENDS ECOL EVOL, V6, P1, DOI 10.1016/0169-5347(91)90137-M; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; CHARLESWORTH B, 1982, EVOLUTIONARY ECOLOGY, P117; FOWLER K, 1989, NATURE, V338, P760, DOI 10.1038/338760a0; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Luckinbill LS, 1988, EVOL ECOL, V2, P85, DOI 10.1007/BF02071591; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; MONTALVO AM, 1987, BIOTROPICA, V19, P24, DOI 10.2307/2388456; PAIGE KN, 1987, ECOLOGY, V68, P1691, DOI 10.2307/1939861; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1986, J INSECT PHYSIOL, V32, P925, DOI 10.1016/0022-1910(86)90140-X; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PARTRIDGE L, 1985, J INSECT PHYSIOL, V31, P393, DOI 10.1016/0022-1910(85)90084-8; PARTRIDGE L, 1987, J INSECT PHYSIOL, V33, P745, DOI 10.1016/0022-1910(87)90060-6; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; PARTRIDGE L, 1989, MORE EXACT ECOLOGY, P231; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1981, GENETICS, V97, P187; SERVICE PM, 1989, J INSECT PHYSIOL, V35, P447, DOI 10.1016/0022-1910(89)90120-0; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SINERVO B, 1990, SCIENCE, V248, P1106, DOI 10.1126/science.248.4959.1106; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364 30 253 258 3 92 ELSEVIER SCIENCE LONDON LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 0169-5347 1872-8383 TRENDS ECOL EVOL Trends Ecol. Evol. FEB 1992 7 2 42 45 10.1016/0169-5347(92)90104-J 4 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity HC167 WOS:A1992HC16700005 21235948 2018-11-12 J MANGEL, M; LUDWIG, D MANGEL, M; LUDWIG, D DEFINITION AND EVALUATION OF THE FITNESS OF BEHAVIORAL AND DEVELOPMENTAL PROGRAMS ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS English Review EVOLUTION; OVIPOSITION; SEX CHANGE; ONTOGENY; LIFE HISTORY THEORY OPTIMAL FORAGING THEORY; COMPLEX LIFE-CYCLES; QUANTITATIVE GENETICS; CLUTCH SIZE; AMPHIBIAN METAMORPHOSIS; NATURAL-SELECTION; TIME CONSTRAINTS; FRUIT-FLIES; EVOLUTION; GROWTH UNIV CALIF DAVIS, CTR POPULAT BIOL, DAVIS, CA 95616 USA; UNIV BRITISH COLUMBIA, DEPT MATH, VANCOUVER V6T 1Y4, BC, CANADA; UNIV BRITISH COLUMBIA, DEPT ZOOL, VANCOUVER V6T 1Y4, BC, CANADA MANGEL, M (reprint author), UNIV CALIF DAVIS, DEPT ZOOL, DAVIS, CA 95616 USA. ABRAHAMS MV, 1989, ECOLOGY, V70, P999, DOI 10.2307/1941368; ARTHUR W, 1991, THEORY EVOLUTION DEV; BARGMANN CI, 1991, SCIENCE, V251, P1243, DOI 10.1126/science.2006412; BARTON NH, 1991, GENETICS, V127, P229; BARTON NH, 1989, ANNU REV GENET, V23, P337, DOI 10.1146/annurev.ge.23.120189.002005; BERRY RJ, 1989, J ANIM ECOL, V58, P733, DOI 10.2307/5121; BLAKLEY N, 1981, ECOLOGY, V62, P57, DOI 10.2307/1936668; BLAKLEY N, 1978, BIOL BULL, V155, P499, DOI 10.2307/1540786; Bonner J. T., 1974, DEVELOPMENT; BONNER JT, 1988, EVOLUTION DEV; BOORSTIN DJ, 1985, DISCOVERERS; BOUSKILA A, 1992, AM NAT, V139, P161, DOI 10.1086/285318; BROWN GC, 1978, ENVIRON ENTOMOL, V7, P219, DOI 10.1093/ee/7.2.219; CARACO T, 1991, ECOLOGY, V72, P81, DOI 10.2307/1938904; CARO TM, 1986, ANIM BEHAV, V34, P1483, DOI 10.1016/S0003-3472(86)80219-6; CHARNOV E L, 1982; CHARNOV EL, 1984, FLA ENTOMOL, V67, P5, DOI 10.2307/3494101; CHESSON P, 1991, ECOLOGY, V72, P1187, DOI 10.2307/1941092; CLARK CW, 1990, EVOL ECOL, V4, P21, DOI 10.1007/BF02270712; CLARK CW, 1991, BEHAV BRAIN SCI, V14, P85, DOI 10.1017/S0140525X00065432; CLARK CW, 1990, EVOL ECOL, V4, P312, DOI 10.1007/BF02270930; CLARK CW, 1988, AM NAT, V131, P271, DOI 10.1086/284789; CLARK CW, 1976, MATH BIOECONOMICS; COLLINS MD, 1986, J APPL ENTOMOL, V102, P342, DOI 10.1111/j.1439-0418.1986.tb00932.x; COURANT R, 1962, METHODS MATH PHYSICS, V2; DHONDT AA, 1990, NATURE, V348, P723, DOI 10.1038/348723a0; DINGLE H, 1990, OECOLOGIA, V84, P199, DOI 10.1007/BF00318272; DYKHUIZEN DE, 1990, TRENDS ECOL EVOL, V5, P257, DOI 10.1016/0169-5347(90)90067-N; Endler JA, 1986, NATURAL SELECTION WI; FERNANDES DM, 1990, SEX CHANGE SEX ALLOC; FERNANDES DM, 1988, THESIS PRINCETON U; Fisher R. A., 1958, GENETICAL THEORY NAT; FITT GP, 1986, PHYSIOL ENTOMOL, V11, P133, DOI 10.1111/j.1365-3032.1986.tb00400.x; FORREST TG, 1987, OECOLOGIA, V73, P178, DOI 10.1007/BF00377505; GHISELIN MT, 1969, Q REV BIOL, V44, P189, DOI 10.1086/406066; GILLIAM JF, 1982, THESIS MICH STATE U; GLADSTEIN DS, 1991, OIKOS, V60, P121, DOI 10.2307/3545002; GLASSER JW, 1984, AM NAT, V124, P900, DOI 10.1086/284323; GODFRAY HCJ, 1988, THEOR POPUL BIOL, V33, P79, DOI 10.1016/0040-5809(88)90005-6; GODIN JGJ, 1990, NATO ADV SCI I G-ECO, V20, P739; GOMULKIEWICZ R, 1992, IN PRESS EVOLUTION; GOULD SJ, 1989, EVOLUTION, V43, P516, DOI 10.1111/j.1558-5646.1989.tb04249.x; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; GOUTIS C, 1992, B MATH BIOL, V54, P379, DOI 10.1007/BF02464839; Gray R.D., 1987, P69; HART PJB, 1986, ETHOL SOCIOBIOL, V7, P71, DOI 10.1016/0162-3095(86)90001-4; HART PJB, 1992, BEHAVIOURAL ECOLOGY; HOM CL, 1990, HERPETOLOGICA, V46, P304; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; IWASA Y, 1984, THEOR POPUL BIOL, V26, P205, DOI 10.1016/0040-5809(84)90030-3; Iwasa Y, 1991, BEHAV ECOL, V2, P56, DOI 10.1093/beheco/2.1.56; KELLY EJ, 1992, IN PRESS ECOLOGY; KIRKPATRICK M, 1990, GENETICS, V124, P979; Kirkpatrick M., 1988, P13; KIRKPATRICK M, 1989, J MATH BIOL, V27, P429, DOI 10.1007/BF00290638; Krebs J.R., 1983, P165, DOI 10.1017/CBO9780511759994.008; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; MAC ARTHUR ROBERT H., 1967; MANGEL M, 1987, J MATH BIOL, V25, P1, DOI 10.1007/BF00275885; MANGEL M, 1989, ECOL ENTOMOL, V14, P181, DOI 10.1111/j.1365-2311.1989.tb00768.x; MANGEL M, 1986, ECOLOGY, V67, P1127, DOI 10.2307/1938669; MANGEL M, 1991, EVOL ECOL, V5, P30, DOI 10.1007/BF02285243; Mangel M., 1988, DYNAMIC MODELING BEH; MANLY BFJ, 1985, STATISTICS NATURAL S; MARO PV, 1985, AENEID; MATSUDA R, 1982, CAN J ZOOL, V60, P733, DOI 10.1139/z82-103; MATSUDA R, 1987, ANIMAL EVOLUTION CHA; MCFARLAND DJ, 1977, NATURE, V269, P15, DOI 10.1038/269015a0; MCFARLAND DJ, 1981, QUANTITATIVE ETHOLOG; MCNAMARA JM, 1987, ANIM BEHAV, V35, P1084, DOI 10.1016/S0003-3472(87)80166-5; MCNAMARA JM, 1986, AM NAT, V127, P358, DOI 10.1086/284489; MCNAMARA JM, 1987, BEHAV ECOL SOCIOBIOL, V20, P399, DOI 10.1007/BF00302982; MCNAMARA JM, 1989, J THEOR BIOL, V137, P457, DOI 10.1016/S0022-5193(89)80040-2; MITCHELL WA, 1990, Q REV BIOL, V65, P43, DOI 10.1086/416584; MITCHELLOLDS T, 1986, AM NAT, V127, P379, DOI 10.1086/284490; NONACS P, 1989, EVOL ECOL, V3, P221, DOI 10.1007/BF02270723; ODENDAAL FJ, 1990, J INSECT BEHAV, V3, P183, DOI 10.1007/BF01417911; PALMER JO, 1984, ANN ENTOMOL SOC AM, V77, P188, DOI 10.1093/aesa/77.2.188; PIERCE GJ, 1987, OIKOS, V49, P111, DOI 10.2307/3565560; PLOMIN R, 1990, SCIENCE, V248, P183, DOI 10.1126/science.2183351; PRICE K, 1992, B MATH BIOL, V54, P335, DOI 10.1007/BF02464837; PYKE GH, 1977, Q REV BIOL, V52, P137, DOI 10.1086/409852; PYKE GH, 1984, ANNU REV ECOL SYST, V15, P523, DOI 10.1146/annurev.es.15.110184.002515; REAL L, 1986, ANNU REV ECOL SYST, V17, P371, DOI 10.1146/annurev.es.17.110186.002103; REAL L, 1990, AM NAT, V136, P376, DOI 10.1086/285103; RIECHERT SE, 1983, ANNU REV ECOL SYST, V14, P377, DOI 10.1146/annurev.es.14.110183.002113; RISKA B, 1986, EVOLUTION, V40, P1303, DOI 10.1111/j.1558-5646.1986.tb05753.x; ROE A, 1958, BEHAVIOR EVOLUTION; ROFF D, 1980, Evolutionary Theory, V4, P195; ROITBERG BD, 1992, BEHAV ECOL, V3, P156, DOI 10.1093/beheco/3.2.156; ROITBERG BD, 1990, BEHAVIOUR, V114, P65, DOI 10.1163/156853990X00059; ROITBERG BD, 1990, ECOLOGY, V71, P1871, DOI 10.2307/1937595; ROITBERG BD, 1992, B MATH BIOL, V54, P401, DOI 10.1007/BF02464840; ROSENHEIM JA, 1991, J ANIM ECOL, V60, P873, DOI 10.2307/5419; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SCHMALHAUSEN II, 1986, FACTORS EVOLUTION; SCHMITZ OJ, 1991, THEOR POPUL BIOL, V39, P100, DOI 10.1016/0040-5809(91)90042-E; Schoener T. W., 1971, A Rev Ecol Syst, V2, P369, DOI 10.1146/annurev.es.02.110171.002101; Schoener T.W., 1987, P5; Scott S.M., 1990, P69; SLATKIN M, 1987, EVOLUTION, V41, P799, DOI 10.1111/j.1558-5646.1987.tb05854.x; SLOBODKIN LB, 1964, AM SCI, V52, P342; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; Stephens DW, 1986, FORAGING THEORY; SWEENEY BW, 1978, SCIENCE, V200, P444, DOI 10.1126/science.200.4340.444; SZEKELY T, 1991, BEHAV ECOL SOCIOBIOL, V28, P203; THOMSON KS, 1988, MORPHOGENESIS EVOLUT; TURELLI M, 1990, THEOR POPUL BIOL, V38, P1, DOI 10.1016/0040-5809(90)90002-D; Waage JK, 1986, INSECT PARASITOIDS; WADE MJ, 1990, EVOLUTION, V44, P1947, DOI 10.1111/j.1558-5646.1990.tb04301.x; WALTERS CJ, 1978, ANNU REV ECOL SYST, V9, P157, DOI 10.1146/annurev.es.09.110178.001105; WARNER RR, 1988, ENVIRON BIOL FISH, V22, P81, DOI 10.1007/BF00001539; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Werner EE, 1988, SIZE STRUCTURED POPU; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; Williams GC, 1966, ADAPTATION NATURAL S; YDENBERG RC, 1989, ECOLOGY, V70, P1494, DOI 10.2307/1938208 120 67 67 0 8 ANNUAL REVIEWS PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 USA 0066-4162 ANNU REV ECOL SYST Annu. Rev. Ecol. Syst. 1992 23 507 536 30 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology JZ281 WOS:A1992JZ28100020 2018-11-12 J HILL, EM; LOW, BS HILL, EM; LOW, BS CONTEMPORARY ABORTION PATTERNS - A LIFE-HISTORY APPROACH ETHOLOGY AND SOCIOBIOLOGY English Article This paper applies an ecological model of reproductive choice, life history theory, to humans. It models a tension among further investment in self, in present offspring, and later investment in future offspring. Some reproductive decisions for men and women in modern societies may fit this type of "now vs later" analysis; we model the decision of a woman to have an elective abortion. This theory assumes a knowledge of the returns from parental investment (in terms of the child's future mating) and somatic investment (in terms of one's own future mating). Predictions about this decision can be made if the relevant parameters can be estimated: the probability of a child's future reproduction when reared by one or by two parents and the probabilities for each of the parents of mating again. We find evidence that abortion decisions are affected by age and previous parity of the mother, and by expectations of available investment by the father or other sources. Still, researchers are left with determining the shape of the trade-off curve between allocations to one's own mating or to a given child's, and with better specifying the effects of variations in resource parameters. UNIV MICHIGAN,SCH NAT RESOURCES,ANN ARBOR,MI 48104 HILL, EM (reprint author), UNIV MICHIGAN,ALCOHOL RES CTR,EVOLUT & HUMAN BEHAV PROGRAM,400 E EISENHOWER PKWY,ANN ARBOR,MI 48104, USA. ALCOCK J, 1979, ANIMAL BEHAVIOR EVOL; Alexander R. D., 1979, DARWINISM HUMAN AFFA; ALEXANDER RA, 1986, BIOL MORAL SYSTEMS; BETZIG L, 1988, HUMAN REPRODUCTIVE B; Bugos P., 1984, INFANTICIDE COMP EVO, P503; CHAGNON NA, 1979, EVOLUTIONARY BIOL HU; Coale A.J., 1986, DECLINE FERTILITY EU; COALE AJ, 1974, POPUL INDEX, V40, P203; DALY M, 1983, SEX EVOLUTION BEHAVI; Daly M., 1984, INFANTICIDE COMP EVO, P487; DEWSBURY DA, 1978, COMP ANIMAL BEHAVIOR; DICKEMANN M, 1986, OCT ANTHR C SERIES; DICKEMANN M, 1983, MAY WORKSH APPL LIF; Draper P, 1987, PARENTING LIFE SPAN, P207; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; Endler JA, 1986, NATURAL SELECTION WI; FISCHMAN SH, 1977, AM J ORTHOPSYCHIAT, V47, P127, DOI 10.1111/j.1939-0025.1977.tb03253.x; Fisher R. A., 1958, GENETICAL THEORY NAT; GLICK PC, 1986, J MARRIAGE FAM, V48, P737, DOI 10.2307/352566; GRAFEN A, 1978, ANIM BEHAV, V26, P645, DOI 10.1016/0003-3472(78)90131-8; HENSHAW SK, 1984, FAM PLANN PERSPECT, V16, P119, DOI 10.2307/2135001; HENSHAW SK, 1985, FAM PLANN PERSPECT, V17, P90, DOI 10.2307/2135271; KASARDA JD, 1986, STATUS ENHANCEMENT F; KREBS JR, 1984, BEHAVIOURAL ECOLOGY; Kurland J.A., 1984, P259; LANCASTER JB, 1987, PARENTING LIFE SPAN, P187; LEIBOWITZ A, 1986, DEMOGRAPHY, V23, P67, DOI 10.2307/2061408; LOW BS, 1989, SOC BIOL, V36, P82; LOW BS, 1978, AM NAT, V112, P197, DOI 10.1086/283260; LOW BS, 1990, AM ANTHROPOL, V92, P115; LOW BS, 1989, RISK UNCERTAINTY TRI; PEARSON JF, 1973, J BIOSOC SCI, V5, P453; PRITCHARD C, 1982, J BIOSOC SCI, V14, P127; RITCHIE M, 1989, OECOLOGIA, V82, P56; Scheper-Hughes N., 1987, CHILD SURVIVAL ANTHR, P1; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; SMITH JM, 1977, ANIM BEHAV, V25, P1, DOI 10.1016/0003-3472(77)90062-8; STEVENS DW, 1986, FORAGING THEORY; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Williams GC, 1966, ADAPTATION NATURAL S; Winterhalder B, 1981, HUNTER GATHERER FORA; WITTENBERGER JF, 1981, ANIMAL SOCIAL BEHAVI; WOOLFENDEN GE, 1984, FLORIDA SCRUB JAY 43 26 27 0 4 ELSEVIER SCIENCE INC NEW YORK 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010 0162-3095 ETHOL SOCIOBIOL Ethol.Sociobiol. JAN 1992 13 1 35 48 10.1016/0162-3095(92)90005-O 14 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical; Sociology; Zoology Psychology; Behavioral Sciences; Biomedical Social Sciences; Sociology; Zoology HE771 WOS:A1992HE77100004 11656141 2018-11-12 J CLAYTON, DH; GREGORY, RD; PRICE, RD CLAYTON, DH; GREGORY, RD; PRICE, RD COMPARATIVE ECOLOGY OF NEOTROPICAL BIRD LICE (INSECTA, PHTHIRAPTERA) JOURNAL OF ANIMAL ECOLOGY English Article BIRDS; COMPARATIVE; ECOLOGY; LICE; TROPICAL GENETIC DIFFERENTIATION; PHILOPTERIDAE; MALLOPHAGA; TRICHODECTIDAE; ISCHNOCERA 1. Data are presented comprising the first quantitative survey lice from Neotropical birds. The data were collected in the Andean foothills of south-eastern Peru using a novel scheme for quantitative sampling of ectoparasites from freshly killed hosts. 2. In total, 685 birds representing 127 species in 26 families were sampled for lice; 327 (47.7%) birds were parasitized, with a mean intensity of 6.6 lice per bird and a mean richness of 1.1 louse species per host species. 3. The bulk of variation in louse load was among host species nested within genera, although some variation occurred at higher taxonomic levels. 4. Lice were extremely host-specific; nearly all species were restricted to a single species of host (monoxenous). 5. Thirteen metapopulations of lice (10%) had significantly skewed sex ratios, of which four were skewed toward males, representing the first male-biased sex ratios reported for chewing lice. Thirty-four metapopulations (27%) had significantly skewed age ratios and showed an overall bias toward adults. 6. Results are discussed in relation to current life-history theory and are compared with the findings of a recent survey of lice from temperate-zone birds. Tropical lice are neither more speciose nor more abundant than temperate-zone lice, which is consistent with the view that the environment for chewing lice is delimited by the body of the host rather than by 'external' conditions. 7. Non-quantitative host-parasite records are reported for lice collected from an additional 75 birds representing 45 species in 20 families. UNIV MINNESOTA,DEPT ENTOMOL,ST PAUL,MN 55108 CLAYTON, DH (reprint author), UNIV OXFORD,DEPT ZOOL,SOUTH PARKS RD,OXFORD OX1 3PS,ENGLAND. ASH J. S., 1960, IBIS, V102, P93, DOI 10.1111/j.1474-919X.1960.tb05095.x; CHARNOV E L, 1982; Clayton D.H., 1991, BIRD PARASITE INTERA, P258; CLAYTON DH, 1990, J MED ENTOMOL, V27, P257, DOI 10.1093/jmedent/27.3.257; CLAYTON DH, 1984, ANN ENTOMOL SOC AM, V77, P340, DOI 10.1093/aesa/77.4.340; CLAYTON DH, 1990, AM ZOOL, V30, P251; CLAYTON DH, 1989, THESIS U CHICAGO; DEVANEY JA, 1976, POULTRY SCI, V55, P430, DOI 10.3382/ps.0550430; Dobzhansky T., 1950, American Scientist, V38, P209; Dogiel VA, 1964, GENERAL PARASITOLOGY; EICHLER W, 1972, ANGEWANDTE PARASITOL, V13, P1; FISHER R. A., 1930, GENETICAL THEORY NAT; GEIST ROBERT M., 1935, OHIO JOUR SCI, V35, P93; HAFNER MS, 1990, SYST ZOOL, V39, P192, DOI 10.2307/2992181; HAMILTON WD, 1967, SCIENCE, V156, P477, DOI 10.1126/science.156.3774.477; Harvey P. H., 1991, COMP METHOD EVOLUTIO; Holmes J.C., 1986, P187; KIERANS JE, 1967, MALLOPHAGA NEW ENGLA; MARGOLIS L, 1982, J PARASITOL, V68, P131, DOI 10.2307/3281335; Marshall A. G., 1981, ECOLOGY ECTOPARASITI; MARSHALL AG, 1981, ECOL ENTOMOL, V6, P155, DOI 10.1111/j.1365-2311.1981.tb00602.x; MCCLURE HE, 1972, SOME ECTOPARASITES B; NADLER SA, 1989, ANN ENTOMOL SOC AM, V82, P109, DOI 10.1093/aesa/82.1.109; NADLER SA, 1990, EVOLUTION, V44, P942, DOI 10.1111/j.1558-5646.1990.tb03816.x; NELSON RICHARD CLAY, 1965, J MED ENTOMOL, V2, P249; NELSON WA, 1977, J MED ENTOMOL, V13, P389, DOI 10.1093/jmedent/13.4-5.389; Price P. W., 1980, EVOLUTIONARY BIOL PA; PRICE PW, 1990, PARASITE COMMUNITIES : PATTERNS AND PROCESSES, P21; PRICE RD, 1983, INT J ENTOMOL, V25, P56; PRICE RD, 1975, ANN ENTOMOL SOC AM, V68, P617, DOI 10.1093/aesa/68.4.617; PRICE RD, IN PRESS J MED ENTOM; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; SIBLEY CG, 1990, PHYSLOGENY CLASSIFIC; SIBLEY CG, 1990, DISTRIBUTION TAXONOM; WAAGE JK, 1979, BIOL J LINN SOC, V12, P187, DOI 10.1111/j.1095-8312.1979.tb00055.x; WHEELER TA, 1986, CAN J ZOOL, V64, P630, DOI 10.1139/z86-093 36 81 87 2 14 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0021-8790 J ANIM ECOL J. Anim. Ecol. 1992 61 3 781 795 10.2307/5631 15 Ecology; Zoology Environmental Sciences & Ecology; Zoology JR167 WOS:A1992JR16700026 2018-11-12 J COLEMAN, RM; GROSS, MR COLEMAN, RM; GROSS, MR PARENTAL INVESTMENT THEORY - THE ROLE OF PAST INVESTMENT TRENDS IN ECOLOGY & EVOLUTION English Article AVIAN NEST DEFENSE; CONCORDE FALLACY; BROOD SIZE; DECISION RULES; INTENSITY; DESERTION; COMMIT; DOVES The role of past investment in parental-care behaviour has often been controversial. Some researchers have argued that organisms basing present investment on past investment are committing the 'Concorde fallacy'. Others have incorporated life history theory to suggest that investing according to past investment is one component of investing according to expected future reproductive success: a parent can use past investment as well as other information, such as brood size, to make its optimal parental-investment decisions. Although parental-investment research is still in its infancy, the incorporation of life history theory suggests that the Concorde fallacy is a misleading concept. COLEMAN, RM (reprint author), UNIV TORONTO,DEPT ZOOL,TORONTO M5S 1A1,ONTARIO,CANADA. ARMSTRONG T, 1988, ANIM BEHAV, V36, P941, DOI 10.1016/S0003-3472(88)80180-5; BOUCHER DH, 1977, AM NAT, V111, P786, DOI 10.1086/283207; BURGER J, 1989, BEHAVIOUR, V111, P129, DOI 10.1163/156853989X00628; CARLISLE TR, 1985, ANIM BEHAV, V33, P234, DOI 10.1016/S0003-3472(85)80137-8; COLEMAN RM, 1988, BEHAV ECOL SOCIOBIOL, V23, P367, DOI 10.1007/BF00303710; COLEMAN RM, 1985, BEHAV ECOL SOCIOBIOL, V18, P59; CURIO E, 1987, TRENDS ECOL EVOL, V2, P148, DOI 10.1016/0169-5347(87)90064-4; CURIO E, 1984, Z TIERPSYCHOL, V66, P101; DAWKINS R, 1976, NATURE, V262, P131, DOI 10.1038/262131a0; DAWKINS R, 1980, ANIM BEHAV, V28, P892, DOI 10.1016/S0003-3472(80)80149-7; Dawkins R., 1976, SELFISH GENE; FAGERSTROM T, 1982, OIKOS, V39, P116, DOI 10.2307/3544541; GOODMAN D, 1982, AM NAT, V119, P803, DOI 10.1086/283956; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; IMMELMANN K, 1989, DICT ETHOLOGY; KILPI M, 1987, ORNIS FENNICA, V64, P16; KNIGHT RL, 1986, AUK, V103, P318; Lifjeld JT, 1990, BEHAV ECOL, V1, P48, DOI 10.1093/beheco/1.1.48; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; MURRAY JAH, 1978, OXFORD ENGLISH DICT; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; REDONDO T, 1989, BEHAVIOUR, V111, P161, DOI 10.1163/156853989X00646; RIDGWAY MS, 1989, ETHOLOGY, V80, P47; ROBERTSON RJ, 1979, Z TIERPSYCHOL, V50, P124; SARGENT RC, 1985, BEHAV ECOL SOCIOBIOL, V17, P43, DOI 10.1007/BF00299427; SMITH JM, 1977, ANIM BEHAV, V25, P1, DOI 10.1016/0003-3472(77)90062-8; TRIVERS RL, 1972, SEXUAL SELECTION DES, P139; WEATHERHEAD PJ, 1979, BEHAV ECOL SOCIOBIOL, V5, P373, DOI 10.1007/BF00292525; WEATHERHEAD PJ, 1982, Z TIERPSYCHOL, V60, P199; WESTMORELAND D, 1989, ANIM BEHAV, V38, P1062, DOI 10.1016/S0003-3472(89)80145-9; WESTNEAT DF, 1989, AUK, V106, P747; WIKLUND CG, 1990, BEHAV ECOL SOCIOBIOL, V26, P217; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILSON A, 1973, CONCORDE FIASCO 35 41 42 0 23 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, OXON, ENGLAND OX5 1GB 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. DEC 1991 6 12 404 406 10.1016/0169-5347(91)90163-R 3 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity GQ384 WOS:A1991GQ38400010 21232521 2018-11-12 J WIEGLEB, G; BRUX, H; HERR, W WIEGLEB, G; BRUX, H; HERR, W HUMAN IMPACT ON THE ECOLOGICAL PERFORMANCE OF POTAMOGETON SPECIES IN NORTHWESTERN GERMANY VEGETATIO English Article; Proceedings Paper SYMP ON ECOLOGY OF SUBMERSED AND FLOATING-LEAVED AQUATIC VEGETATION ( SYMP SI-6-05 ) AT THE 5TH INTERNATIONAL CONGRESS OF ECOLOGY AUG 23-30, 1990 YOKOHAMA, JAPAN FLORISTIC CHANGE; HABITAT QUALITY; LIFE HISTORY; LOWLAND RIVERS; MACROPHYTES; POTAMOGETON PHENOTYPIC PLASTICITY; MACROPHYTE COMMUNITIES; AQUATIC MACROPHYTES; PECTINATUS L; LIFE-CYCLES; VEGETATION; PLANTS; STRATEGIES; DISTURBANCE; POPULATIONS The changes in habitat quality of lowland rivers in Lower Saxony (Germany) during the past 40 years are outlined. Almost all chemical, physical, and morphological parameters have changed, resulting in most cases in an enhanced potential productivity, accompanied by a complex disturbance regime. Historical reconstruction of the change in river vegetation is presented to compare the frequency of macrophyte species 40 years ago with the situation of today. For a total of 289 sampling sites, the floristic change was exactly reconstructed. Nearly all species show a decline in frequency. This trend is also recognizable in Potamogeton, with the exception of two narrow-leaved species. An attempt is made to explain both decline and maintenance in terms of life history characters (vital attributes) allowing the species to react to the changing habitat conditions. The successful species are characterized by certain life history characteristics which enable them to survive under the current disturbance regime. Most important aspects of life history are the ability to reproduce by means of turions and other fragments, a long-lived, deep-rooting rhizome system, phenotypic plasticity of above-ground parts, synchronous shoot polymorphism, and the potential to regenerate quickly from remaining buds after disturbance. The decline of formerly frequent species can be attributed mainly to the lack of certain key characters; however, physiological characters also may be important. The extirpation of some rare species could also be caused by random fluctuations in small populations. The general importance of population ecological research, particularly demography, life history theory, and the modelling of clonal populations in conservation ecology is stressed. INST APPL BIOL LANDSCAPE ECOL & LANDSCAPE PLANNING,W-2900 OLDENBURG,GERMANY WIEGLEB, G (reprint author), UNIV OLDENBURG,FACHBEREICH BIOL,POB 2503,W-2900 OLDENBURG,GERMANY. AGAMI M, 1986, PHYSIOL VEG, V24, P607; BRUX H, 1988, AQUAT BOT, V32, P23, DOI 10.1016/0304-3770(88)90086-1; BRUX H, 1989, DROSERA 89, P85; Brux H., 1987, ARCH HYDROBIOL S, V27, P115; Butcher R.W., 1933, J ECOL, V21, P59; CARBIENER R, 1990, VEGETATIO, V86, P71, DOI 10.1007/BF00045135; CONRAD M, 1990, BIOSYSTEMS, V24, P61, DOI 10.1016/0303-2647(90)90030-5; DAHL HJ, 1984, JB NATURSCHUTZ LANDS, V36, P26; DAWSON FH, 1988, HDB VEGETATION SCI, V151, P283; DAY RT, 1988, ECOLOGY, V69, P1044, DOI 10.2307/1941260; FELZINES JC, 1979, B SOC BOT N FRANCE, V32, P39; Grime J. P., 1979, PLANT STRATEGIES VEG; GRUBE H-J, 1975, Archiv fuer Hydrobiologie Supplement, V45, P376; HAEUPLER H, 1985, ROTE LISTE GEFASSPFL; HAGSTROM JO, 1916, K SVENSKA VETENSKAPS, V55, P1; HASLAM SM, 1987, RIVER PLANTS; HELLQUIST CB, 1980, RHODORA, V82, P331; HERR W, 1985, Goettinger Floristische Rundbriefe, V19, P2; Herr W., 1989, NATURSCHUTZ LANDSCHA, V18, P121; Herr W., 1989, NATURSCHUTZ LANDSCHA, V18, P145; HOLMES NTH, 1977, FRESHWATER BIOL, V7, P43, DOI 10.1111/j.1365-2427.1977.tb01656.x; HOLTTUM R. E., 1955, PHYTOMORPHOLOGY [DELHI], V5, P399; HOUGH RA, 1977, AQUAT BOT, V3, P297; HULLEN M., 1989, NATURSCHUTZ LANDSCHA, V18, P5; HUTCHINSON GE, 1975, TREATISE LIMNOLOGY, V3; KADONO Y, 1982, BOT MAG TOKYO, V95, P63, DOI 10.1007/BF02493411; KADONO Y, 1984, Japanese Journal of Ecology, V34, P161; KAUTSKY L, 1987, AQUAT BOT, V27, P177, DOI 10.1016/0304-3770(87)90065-9; KAUTSKY L, 1988, OIKOS, V53, P126, DOI 10.2307/3565672; KOHLER A, 1978, VEROFF NATURSCH LA S, V11, P251; KOHLER A, 1980, LANDWIRTSCHAFTLICHE, V37, P46; LOEHLE C, 1987, OIKOS, V49, P199, DOI 10.2307/3566027; MITCHELL DS, 1985, HYDROBIOLOGIA, V125, P137, DOI 10.1007/BF00045931; MURPHY KJ, 1990, AQUAT BOT, V36, P303, DOI 10.1016/0304-3770(90)90048-P; NOBLE IR, 1980, VEGETATIO, V43, P5, DOI 10.1007/BF00121013; PICKETT STA, 1989, OIKOS, V54, P129, DOI 10.2307/3565258; PIETSCH W, 1972, ARCH NATURSCHUTZ LAN, V12, P121; PIP E, 1979, AQUAT BOT, V7, P339, DOI 10.1016/0304-3770(79)90034-2; PRIMACK RB, 1989, ANNU REV ECOL SYST, V20, P367, DOI 10.1146/annurev.es.20.110189.002055; RAVEN JA, 1981, NEW PHYTOL, V88, P1; Roll H., 1938, ARCH HYDROBIOL, V34, P159; ROLL H, 1938, FEDDES REPERT S, V101, P108; SCHLICHTING CD, 1986, ANNU REV ECOL SYST, V17, P667, DOI 10.1146/annurev.es.17.110186.003315; SEDDON B, 1972, Freshwater Biology, V2, P107, DOI 10.1111/j.1365-2427.1972.tb00365.x; SONDERGAARD M, 1988, HDB VEGETATION SCI, V151, P63; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; Sukopp H., 1972, BER LANDWIRTSCH, V50, P112; TAYLOR DR, 1990, OIKOS, V58, P239, DOI 10.2307/3545432; TOMLINSON PB, 1982, ACTA BIOTHEOR, V31A, P162; van Steenis C. G. G. J., 1981, RHEOPHYTES WORLD; VANVIERSSEN W, 1989, AQUATIC WEEDS, P238; VANWIJK RJ, 1988, AQUAT BOT, V31, P211, DOI 10.1016/0304-3770(88)90015-0; Weber-Oldecop D. W., 1982, HEIMAT, V89, P122; Weber-Oldecop D.W., 1969, THESIS TU HANNOVER; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; WIEGLEB G, 1984, Goettinger Floristische Rundbriefe, V18, P65; WIEGLEB G, 1991, AQUAT BOT, V39, P131, DOI 10.1016/0304-3770(91)90028-4; WIEGLEB G, 1984, AQUAT BOT, V18, P313, DOI 10.1016/0304-3770(84)90055-X; WIEGLEB G, 1988, Feddes Repertorium, V99, P249; WIEGLEB G, 1978, ARCH HYDROBIOL, V83, P443; WIEGLEB G, 1989, NORD J BOT, V9, P241, DOI 10.1111/j.1756-1051.1989.tb00995.x; WIEGLEB G, 1989, VEGETATIO, V82, P163, DOI 10.1007/BF00045029; WIEGLEB G, 1984, INF NATURSCHUTZ LAND, V4, P109; Wiegleb G., 1989, LANDSCHAFT STADT, V21, P15; WIEGLEB G, 1984, EXCERPTA BOTANICA B, V23, P145; Wiegleb G., 1981, LIMNOLOGICA, V13, P427; Wiegleb G, 1989, VERH GES OKOL, V18, P665; WIEGLEB G, 1985, VERH GES OKOL, V13, P191; WIEGLEB G, 1988, HDB VEGETATION SCI, V151, P311; WIEGLEB G, 1991, IN PRESS VERH GES OK, V19; Wiegleb G., 1983, P INT S AQ MACR NIJM, P311; WIEGLEB G, 1989, BOT JB SYST, V109, P81; WIENS JA, 1989, FUNCT ECOL, V3, P385, DOI 10.2307/2389612; WILMANNS O, 1983, OKOLOGISCHE PFLANZEN 74 26 29 0 14 KLUWER ACADEMIC PUBL DORDRECHT SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS 0042-3106 VEGETATIO Vegetatio DEC 1991 97 2 161 172 10.1007/BF00035389 12 Plant Sciences; Ecology; Forestry Plant Sciences; Environmental Sciences & Ecology; Forestry HP978 WOS:A1991HP97800007 2018-11-12 J WHEELWRIGHT, NT; LEARY, J; FITZGERALD, C WHEELWRIGHT, NT; LEARY, J; FITZGERALD, C THE COSTS OF REPRODUCTION IN TREE SWALLOWS (TACHYCINETA-BICOLOR) CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE English Article BREEDING BLUE TITS; CLUTCH-SIZE; BROOD SIZE; GREAT TIT; PARENTAL SURVIVAL; SUCCESS; BIRDS; EVOLUTION; QUALITY; SEASON We investigated the effect of brood size on nestling growth and survival, and parental survival, and future fecundity in tree swallows (Tachycineta bicolor) over a 4-year period (1987-1990) in an effort to understand whether reproductive trade-offs limit clutch size in birds. In addition to examining naturally varying brood sizes in a population on Kent Island, New Brunswick, Canada, we experimentally modified brood sizes, increasing or decreasing the reproductive burdens of females by two offspring. Unlike previous studies, broods of the same females were enlarged or reduced in up to 3 successive years in a search for evidence of cumulative costs of reproduction that might go undetected by a single brood manipulation. Neither observation nor experiment supported the existence of a trade-off between offspring quality and quantity, in contrast with the predictions of life-history theory. Nestling wing length, mass, and tarsus length were unrelated to brood size. Although differences between means were in the direction predicted, few differences were statistically significant, despite large sample sizes. Nestlings from small broods were no more likely to return as breeding adults than nestlings from large broods, but return rates of both groups were very low. Parental return rates were also independent of brood size, and there was no evidence of a negative effect of brood size on future fecundity (laying date, clutch size). Reproductive success, nestling size, and survival did not differ between treatments for females whose broods were manipulated in successive years. Within the range of brood sizes observed in this study, the life-history costs of feeding one or two additional nestlings in tree swallows appear to be slight and cannot explain observed clutch sizes. Costs not measured in this study, such as the production of eggs or postfledging parental care, may be more important in limiting clutch size in birds. WHEELWRIGHT, NT (reprint author), BOWDOIN COLL,DEPT BIOL,BRUNSWICK,ME 04011, USA. ASKENMO C, 1979, AM NAT, V114, P748, DOI 10.1086/283523; BART J, 1989, BEHAV ECOL SOCIOBIOL, V24, P109, DOI 10.1007/BF00299642; BELL G, 1986, OXFORD SURVEYS EVOLU, V3, P88; BIEBACH H, 1981, ARDEA, V69, P141; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Breitwisch R., 1989, Current Ornithology, V6, P1; BRYANT DM, 1979, J ANIM ECOL, V48, P655, DOI 10.2307/4185; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Clark L, 1984, OECOLOGIA BERLIN, V65, P387; CLOBERT J, 1987, ACTA OECOL-OEC GEN, V8, P427; DENBOERHAZEWINKEL J, 1987, ARDEA, V75, P99; DESTEVEN D, 1980, EVOLUTION, V34, P278, DOI 10.1111/j.1558-5646.1980.tb04816.x; EAST ML, 1988, IBIS, V130, P393, DOI 10.1111/j.1474-919X.1988.tb00997.x; EKMAN J, 1986, EVOLUTION, V40, P156; FINKE MA, 1987, J ANIM ECOL, V56, P99, DOI 10.2307/4802; HARRIS RN, 1979, CAN J ZOOL, V57, P2072, DOI 10.1139/z79-273; HOGSTEDT G, 1980, SCIENCE, V210, P1148, DOI 10.1126/science.210.4474.1148; HOGSTEDT G, 1981, AM NAT, V118, P568, DOI 10.1086/283850; HUSSELL DJT, 1983, WILSON BULL, V95, P470; HUSSELL DJT, 1987, IBIS, V129, P243, DOI 10.1111/j.1474-919X.1987.tb03204.x; KORPIMAKI E, 1988, J ANIM ECOL, V57, P1027, DOI 10.2307/5109; Kuerzi R. G., 1941, Proceedings of the Linnean Society of New York, Vno. 52-53, P1; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LEFFELAAR D, 1986, BEHAV ECOL SOCIOBIOL, V18, P199, DOI 10.1007/BF00290823; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; MORENO J, 1989, ORNIS SCAND, V20, P123, DOI 10.2307/3676879; MORENO J, 1984, AUK, V101, P741, DOI 10.2307/4086901; Murphy E.C., 1986, Current Ornithology, V4, P141; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; NUR N, 1988, ARDEA, V76, P155; NUR N, 1984, J ANIM ECOL, V53, P497, DOI 10.2307/4530; NUR N, 1990, 1989 P NATO WORKSH D; ORELL M, 1988, OECOLOGIA, V77, P423, DOI 10.1007/BF00378054; Paynter R. A., 1954, BIRD BANDING, V25, P102; Paynter R. A., 1954, BIRD BANDING, V25, P136; Paynter R. A. Jr., 1954, Bird-Banding, V25, P35; PERRINS CM, 1975, J ANIM ECOL, V44, P695, DOI 10.2307/3712; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; PRIMACK RB, 1990, AM NAT, V136, P638, DOI 10.1086/285120; QUINNEY TE, 1986, WILSON BULL, V98, P147; REID WV, 1987, OECOLOGIA, V74, P458, DOI 10.1007/BF00378945; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROCKWELL RF, 1987, AM NAT, V130, P839, DOI 10.1086/284751; ROSKAFT E, 1985, J ANIM ECOL, V54, P255, DOI 10.2307/4635; SMITH HG, 1989, ORNIS SCAND, V20, P156, DOI 10.2307/3676885; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; SMITH JNM, 1981, EVOLUTION, V35, P1142, DOI 10.1111/j.1558-5646.1981.tb04985.x; Sokal RR, 1980, BIOMETRY; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STUTCHBURY BJ, 1988, CAN J ZOOL, V66, P827, DOI 10.1139/z88-122; WHEELWRIGHT NT, 1991, AUK, V108, P719, DOI 10.2307/4088118; WIGGINS DA, 1990, CONDOR, V92, P534, DOI 10.2307/1368257; WIGGINS DA, 1990, CAN J ZOOL, V68, P1292, DOI 10.1139/z90-193; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILLIAMS JB, 1988, AUK, V105, P706; Winkler D.W., 1988, Oxford Surveys in Evolutionary Biology, V5, P185; WOLF L, 1988, ANIM BEHAV, V36, P1601, DOI 10.1016/S0003-3472(88)80102-7; 1988, STATVIEW SE PLUS GRA 58 39 40 0 13 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0008-4301 CAN J ZOOL Can. J. Zool.-Rev. Can. Zool. OCT 1991 69 10 2540 2547 10.1139/z91-358 8 Zoology Zoology HD709 WOS:A1991HD70900005 2018-11-12 J MALTBY, L MALTBY, L POLLUTION AS A PROBE OF LIFE-HISTORY ADAPTATION IN ASELLUS-AQUATICUS (ISOPODA) OIKOS English Article ERPOBDELLA-OCTOCULATA HIRUDINEA; INTRASPECIFIC VARIATION; TOXICITY TESTS; GAMMARUS-PULEX; CRUSTACEA; INVERTEBRATES; EVOLUTION; GROWTH; FOOD; SIZE Habitat classification schemes attempt to predict the types of life-history patterns that should be selected for in particular habitats. Several such schemes have been proposed, all of which are based on habitat characteristics relating to productivity, disturbance and/or biotic interactions. As environmental pollution may impact one or all of these habitat characteristics, it should act as a selection pressure resulting in life-history modification and could therefore be used to test predictions arising from life-history theory. Two populations of the freshwater isopod, Asellus aquaticus (L.), separated by an effluent discharge from a disused coal mine, were studied to investigate whether they had adapted to the pollution by modifying their life history in accordance with the predictions of life-history theory. Using the classification scheme proposed by Sibly and Calow it was predicted that asellids below the discharge should invest less in reproduction and allocate this investment into fewer, larger offspring than asellids at the site above the discharge. Both these predictions were supported by field observations. Laboratory studies indicated that the observed differences in reproductive biology had a genetic basis and were therefore due to adaptation and not acclimation. MALTBY, L (reprint author), UNIV SHEFFIELD,DEPT ANIM & PLANT SCI,SHEFFIELD S10 2TN,S YORKSHIRE,ENGLAND. Maltby, Lorraine/A-6702-2012 Maltby, Lorraine/0000-0003-3817-4033 Andersson E., 1969, Report Institute of Freshwater Research Drottningholm, VNo. 49, P5; ASTON RJ, 1980, FRESHWATER BIOL, V10, P1, DOI 10.1111/j.1365-2427.1980.tb01175.x; BARLOCHER F, 1985, BOT J LINN SOC, V91, P83, DOI 10.1111/j.1095-8339.1985.tb01137.x; BARLOCHER F, 1973, ARCH HYDROBIOL, V72, P501; BRADSHAW AD, 1989, BIOL J LINN SOC, V37, P137, DOI 10.1111/j.1095-8312.1989.tb02099.x; BRADSHAW AD, 1981, STUDIES BIOL, V130; BUELER CM, 1984, FLA ENTOMOL, V67, P393, DOI 10.2307/3494718; BUIKEMA AL, 1979, J FISH RES BOARD CAN, V36, P321, DOI 10.1139/f79-050; CHAMBERS MR, 1977, HYDROBIOLOGIA, V53, P147, DOI 10.1007/BF00029293; FRASER J, 1978, WATER RES, V12, P637, DOI 10.1016/0043-1354(78)90145-8; GIUDICI MD, 1986, ENVIRON TECHNOL LETT, V7, P45; GIUDICI MD, 1986, B SOC IT BIOL, V62, P321; GOLLADAY SW, 1983, HOLARCTIC ECOL, V6, P157; GREEN DWJ, 1986, ARCH ENVIRON CON TOX, V15, P465, DOI 10.1007/BF01056557; GRIME P, 1989, BIOL J LINN SOC, V37, P3; KAUSHIK NK, 1971, ARCH HYDROBIOL, V68, P465; KAUSHIK NK, 1968, J ECOL, V56, P229, DOI 10.2307/2258076; KOSTALOS M, 1976, OIKOS, V27, P512, DOI 10.2307/3543471; MALTBY L, 1986, J ANIM ECOL, V55, P739, DOI 10.2307/4751; MALTBY L, 1987, ANN SOC ROY ZOOL BEL, V117, P105; MALTBY L, 1986, J ANIM ECOL, V55, P721, DOI 10.2307/4750; MALTBY L, 1987, ENVIRON POLLUT, V43, P271, DOI 10.1016/0269-7491(87)90180-1; MALTBY L, 1991, WATER RES, V25, P247, DOI 10.1016/0043-1354(91)90003-9; MARCUS JH, 1978, FRESHWATER BIOL, V8, P505, DOI 10.1111/j.1365-2427.1978.tb01473.x; MIGLIORE L, 1982, INT J INVER REP DEV, V4, P359; MURPHY PM, 1982, FRESHWATER BIOL, V12, P435, DOI 10.1111/j.1365-2427.1982.tb00638.x; NAYLOR C, 1990, WATER RES, V24, P757, DOI 10.1016/0043-1354(90)90032-2; OKLAND KA, 1978, HYDROBIOLOGIA, V59, P243, DOI 10.1007/BF00036504; RIDLEY M, 1979, Z TIERPSYCHOL, V51, P380; ROSSI L, 1985, OIKOS, V44, P175, DOI 10.2307/3544059; Sibly R., 1985, P75; SIBLY R, 1984, J THEOR BIOL, V111, P463, DOI 10.1016/S0022-5193(84)80234-9; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; STEEL E. A., 1961, PROC ZOOL SOC LONDON, V137, P71; SUTCLIFFE DW, 1981, FRESHWATER BIOL, V11, P183, DOI 10.1111/j.1365-2427.1981.tb01252.x; TOLBA MR, 1981, AQUAT TOXICOL, V1, P101, DOI 10.1016/0166-445X(81)90033-3; VANDEL A, 1926, B SOC ZOOL FRANCE, V51, P161; Wood R.J., 1981, GENETIC CONSEQUENCES, P97; WRONA FJ, 1986, CAN J FISH AQUAT SCI, V43, P2025, DOI 10.1139/f86-248 40 36 37 2 20 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos MAY 1991 61 1 11 18 10.2307/3545402 8 Ecology Environmental Sciences & Ecology FR485 WOS:A1991FR48500002 2018-11-12 J CHARNOV, EL; BERRIGAN, D CHARNOV, EL; BERRIGAN, D DIMENSIONLESS NUMBERS AND THE ASSEMBLY RULES FOR LIFE HISTORIES PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES English Article MAMMALIAN REPRODUCTION; NATURAL-SELECTION; ADAPTIVE FEATURES; SEX DETERMINATION; GROUND-SQUIRRELS; GROWTH; AGE; EVOLUTION; MATURITY; POPULATION This paper reviews recent efforts to use certain dimensionless numbers (DLNs) to classify life histories in plants and animals. These DLNs summarize the relation between growth, mortality and maturation, and several groups of animals show interesting patterns with respect to their numeric values. Finally we focus on one DLN, the product of the age of maturity and the adult instantaneous mortality, to show how evolutionary life history theory may be used to predict the value of the DLN, which differs greatly between major groups of animals. CHARNOV, EL (reprint author), UNIV UTAH,DEPT BIOL,SALT LAKE CITY,UT 84112, USA. ALEKSIUK M, 1969, CAN J ZOOLOG, V47, P965, DOI 10.1139/z69-157; ARMITAGE KB, 1981, OECOLOGIA, V48, P36, DOI 10.1007/BF00346986; Beverton R. J. H., 1963, Rapport Conseil Exploration Mer, V154, P44; Beverton R. J. H., 1959, CIBA FDN C AGEING, V5, P142, DOI DOI 10.1002/9780470715253.CH10; Calder W. A., 1984, SIZE FUNCTION LIFE H; CASEY GA, 1975, CAN J ZOOL, V53, P223, DOI 10.1139/z75-027; CHARNOV E L, 1982; CHARNOV EL, 1989, EVOL ECOL, V3, P236, DOI 10.1007/BF02270724; CHARNOV EL, 1989, NATURE, V338, P148, DOI 10.1038/338148a0; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; CHARNOV EL, 1986, OIKOS, V47, P129, DOI 10.2307/3566037; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; CHARNOV EL, 1991, EVOL ECOL, V5, P63, DOI 10.1007/BF02285246; CHARNOV EL, 1979, AM NAT, V113, P715, DOI 10.1086/283428; CLUTTONBROCK TH, 1982, RED DEER BEHAVIOR EC; CROWE DM, 1975, J MAMMAL, V56, P177, DOI 10.2307/1379615; CUSHING DH, 1968, FISHERIES BIOL; EBERT TA, 1975, AM ZOOL, V15, P755; FISHER R. A., 1930, GENETICAL THEORY NAT; GIORDANO FR, 1987, COMAP TOOLS TEACHING, P72; HANSEN CG, 1980, DESERT BIGHORN; Harvey P.H., 1989, Oxford Surveys in Evolutionary Biology, V6, P13; HOENIG JM, 1983, FISH B US, V82, P898, DOI DOI 10.1890/04-0594; Horwich R.H., 1972, Advances Ethol, V8, P1; HOWELLS W W, 1975, Journal of the Southern African Wildlife Management Association, V5, P95; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; LAVIGNE DM, 1982, J ANIM ECOL, V51, P195, DOI 10.2307/4319; LAWS R. M., 1966, EAST AFR WILDLIFE J, V4, P1; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; Mason CF, 1986, OTTERS; MILLAR JS, 1977, EVOLUTION, V31, P370, DOI 10.1111/j.1558-5646.1977.tb01019.x; MILLAR JS, 1983, ECOLOGY, V64, P631, DOI 10.2307/1937181; MORTON ML, 1971, J MAMMAL, V52, P611, DOI 10.2307/1378599; MYRCHA A, 1972, ACTA THERIO, V33, P443; Neal E., 1986, NATURAL HIST BADGERS; PAULY D, 1980, J CONSEIL, V39, P175; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Reiss M. J., 1989, ALLOMETRY GROWTH REP; RICKLEFS RE, 1969, NATURE, V223, P922, DOI 10.1038/223922a0; SHINE R, 1991, UNPUB AM NAT; SINCLAIR ARE, 1977, AFRICAN BUFFALO; SLADE NA, 1974, ECOLOGY, V55, P989, DOI 10.2307/1940350; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; SPINAGE CA, 1982, TERRITORIAL ANTELOPE; STAHL WR, 1962, SCIENCE, V137, P205, DOI 10.1126/science.137.3525.205; STEPHENS DW, 1991, DIMENSIONAL ANAL BEH; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0; TALBOT LM, 1963, E AFRICA WILDL MONOG, V12; Wackernagel H., 1965, International Zoo Yearbook, V5, P38, DOI 10.1111/j.1748-1090.1965.tb01567.x; WATSON A, 1990, NEW SCI, V1740, P45; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WISHNER L, 1982, E CHIPMUNKS 54 39 40 0 7 ROYAL SOC LONDON LONDON 6 CARLTON HOUSE TERRACE, LONDON, ENGLAND SW1Y 5AG 0962-8436 PHILOS T ROY SOC B Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. APR 29 1991 332 1262 41 48 10.1098/rstb.1991.0031 8 Biology Life Sciences & Biomedicine - Other Topics FK630 WOS:A1991FK63000005 2018-11-12 J GOTELLI, NJ GOTELLI, NJ DEMOGRAPHIC-MODELS FOR LEPTOGORGIA-VIRGULATA, A SHALLOW-WATER GORGONIAN ECOLOGY English Article CNIDARIA; COLONY GROWTH; DEMOGRAPHY; ELASTICITY; GORGONIAN; LIFE HISTORY THEORY; OCTOCORALLIA; RECRUITMENT; SURVIVORSHIP; TEMPORAL FLUCTUATIONS; TRANSITION MATRIX STABLE-POPULATION STRUCTURE; COMPLEX LIFE-CYCLES; VARIABLE ENVIRONMENTS; CONFIDENCE-INTERVALS; REPRODUCTIVE VALUE; CATEGORY SIZE; GROWTH-RATES; NEW-ZEALAND; DYNAMICS; AGE I used time-invariant and time-varying matrix models to analyze the demography of Leptogorgia virgulata, a shallow-water gorgonian. For a local population in the northeastern Gulf of Mexico, I estimated monthly rates of recruitment, colony growth, and mortality in a mapped 24-m2 plot for 2 yr. In a time-invariant model, average mortality and recruitment rates were nearly balanced, so the population growth rate, 1n(lambda), was close to 0.0. An elasticity analysis showed recruitment contributed < 5% to the measured rate of population growth. The most important component of population growth rate was survivorship, particularly of the large size classes. Results were similar for a patch model that incorporated spatial variation in recruitment and colony growth rates. Several published transition matrices of forest trees, which have a similar life history, were also characterized by low elasticities for recruitment. Fluctuations in population size of L. virgulata were analyzed with a time-varying matrix model. I randomized certain elements in the 23 monthly projection matrices and simulated the population track. For models with random temporal variation in survivorship, standard deviations (and coefficients of variation) of population size were consistently larger than observed. This result suggests that temporal variation in mortality rates tended to damp population fluctuations. The damping occurred at low population sizes: models with random variation in survivorship generated significantly smaller minimum population sizes than observed. In contrast, population tracks with random temporal variation in recruitment were not consistently different from observed. Although recruitment is widely regarded as an important factor structuring marine communities, its contribution to the temporal (but not spatial) dynamics of L. virgulata was minimal. This finding may be typical of long-lived organisms with delayed reproduction and indeterminate growth, such as forest trees and many sessile marine invertebrates. GOTELLI, NJ (reprint author), UNIV OKLAHOMA, DEPT ZOOL, NORMAN, OK 73019 USA. ADAMS RO, 1980, THESIS FLORIDA STATE; BIERZYCHUDEK P, 1982, ECOL MONOGR, V52, P335, DOI 10.2307/2937350; BOYCE MS, 1977, THEOR POPUL BIOL, V12, P366, DOI 10.1016/0040-5809(77)90050-8; BULLOCK SH, 1980, BIOTROPICA, V12, P247, DOI 10.2307/2387694; BURNS BR, 1985, AUST J ECOL, V10, P125, DOI 10.1111/j.1442-9993.1985.tb00874.x; CAFFEY HM, 1985, ECOL MONOGR, V55, P313, DOI 10.2307/1942580; CASWELL H, 1982, ECOLOGY, V63, P1218, DOI 10.2307/1938846; CASWELL H, 1982, ECOLOGY, V63, P1223, DOI 10.2307/1938847; CASWELL H, 1986, LECTURES MATH LIFE S, V18, P171; Caswell H., 1989, MATRIX POPULATION MO; COE WR, 1956, J MAR RES, V15, P212; COHEN JE, 1986, DEMOGRAPHY, V23, P105, DOI 10.2307/2061412; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; DAYTON PK, 1989, MAR ECOL PROG SER, V54, P75, DOI 10.3354/meps054075; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; Ebert TA, 1985, OECOLOGIA, V65, P461, DOI 10.1007/BF00379658; ENRIGHT N, 1979, AUST J ECOL, V4, P3, DOI 10.1111/j.1442-9993.1979.tb01195.x; GOTELLI NJ, 1987, MAR BIOL, V94, P45, DOI 10.1007/BF00392899; GOTELLI NJ, 1988, ECOLOGY, V69, P157, DOI 10.2307/1943170; GOTELLI NJ, 1985, THESIS FLORIDA STATE; GRIGG RW, 1977, ECOLOGY, V58, P278, DOI 10.2307/1935603; HANSKI I, 1989, TRENDS ECOL EVOL, V4, P113, DOI 10.1016/0169-5347(89)90061-X; Hartshorn G. S., 1975, Tropical ecological systems., P41; HEYDE CC, 1985, THEOR POPUL BIOL, V27, P120, DOI 10.1016/0040-5809(85)90007-3; HIGHSMITH RC, 1982, MAR ECOL PROG SER, V7, P207, DOI 10.3354/meps007207; HUBBELL SP, 1979, AM NAT, V113, P277, DOI 10.1086/283385; HUGHES TP, 1985, ECOL MONOGR, V55, P141, DOI 10.2307/1942555; HUGHES TP, 1984, AM NAT, V123, P778, DOI 10.1086/284239; HUGHES TP, 1987, AM NAT, V129, P818, DOI 10.1086/284677; KIRKPATRICK M, 1984, ECOLOGY, V65, P1874, DOI 10.2307/1937785; LANDE R, 1988, P NATL ACAD SCI USA, V85, P7418, DOI 10.1073/pnas.85.19.7418; LAW R, 1983, ECOLOGY, V64, P224, DOI 10.2307/1937069; LAW R, 1977, EVOLUTION, V31, P233, DOI 10.1111/j.1558-5646.1977.tb01004.x; LEFKOVITCH LP, 1965, BIOMETRICS, V21, P1, DOI 10.2307/2528348; LEIGH EG, 1981, J THEOR BIOL, V90, P213; LESLIE PH, 1948, BIOMETRIKA, V35, P213, DOI 10.1093/biomet/35.3-4.213; LESLIE PH, 1945, BIOMETRIKA, V33, P183, DOI DOI 10.1093/BI0MET/33.3.183; LEVERICH WJ, 1979, AM NAT, V113, P881, DOI 10.1086/283443; LEWONTIN RC, 1969, P NATL ACAD SCI USA, V62, P1056, DOI 10.1073/pnas.62.4.1056; LOOSANOF.VL, 1966, BIOL BULL, V130, P211, DOI 10.2307/1539698; LOOSANOFF VL, 1964, BIOL BULL, V126, P423, DOI 10.2307/1539311; Lopez A., 1961, PROBLEMS STABLE POPU; MEAGHER TR, 1982, ECOLOGY, V63, P1701, DOI 10.2307/1940112; MOLONEY KA, 1986, OECOLOGIA, V69, P176, DOI 10.1007/BF00377618; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; PAINE RT, 1984, ECOLOGY, V65, P1339, DOI 10.2307/1939114; PIMM SL, 1988, NATURE, V334, P613, DOI 10.1038/334613a0; PINERO D, 1984, J ECOL, V72, P977, DOI 10.2307/2259545; PLATT WJ, 1988, AM NAT, V131, P491, DOI 10.1086/284803; REDDINGIUS J, 1989, OECOLOGIA, V78, P1, DOI 10.1007/BF00377191; RICHTERDYN N, 1972, THEOR POPUL BIOL, V3, P406, DOI 10.1016/0040-5809(72)90014-7; ROUGHGARDEN J, 1985, ECOLOGY, V66, P54, DOI 10.2307/1941306; SARUKHAN J, 1974, J ECOL, V62, P921, DOI 10.2307/2258962; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; TULJAPURKAR S, 1989, THEOR POPUL BIOL, V35, P227, DOI 10.1016/0040-5809(89)90001-4; TULJAPURKAR S, 1985, THEOR POPUL BIOL, V28, P1, DOI 10.1016/0040-5809(85)90019-X; TULJAPURKAR SD, 1980, THEOR POPUL BIOL, V18, P314, DOI 10.1016/0040-5809(80)90057-X; TULJAPURKAR SD, 1982, THEOR POPUL BIOL, V21, P114, DOI 10.1016/0040-5809(82)90009-0; Underwood A.J., 1984, P151; USHER MB, 1966, J APPL ECOL, V3, P355, DOI 10.2307/2401258; VANDERMEER J, 1978, OECOLOGIA, V32, P79, DOI 10.1007/BF00344691; VANGROENENDAEL J, 1988, TRENDS ECOL EVOL, V3, P264, DOI 10.1016/0169-5347(88)90060-2; VANGROENENDAEL JM, 1988, J ECOL, V76, P585, DOI 10.2307/2260614; VANVALEN L, 1975, BIOTROPICA, V7, P260; WARNER RR, 1985, AM NAT, V125, P769, DOI 10.1086/284379; WERNER PA, 1977, ECOLOGY, V58, P1103, DOI 10.2307/1936930 67 70 71 0 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology APR 1991 72 2 457 467 10.2307/2937187 11 Ecology Environmental Sciences & Ecology FE248 WOS:A1991FE24800005 2018-11-12 J LEONARDSSON, K LEONARDSSON, K PREDICTING RISK-TAKING BEHAVIOR FROM LIFE-HISTORY THEORY USING STATIC OPTIMIZATION TECHNIQUE OIKOS English Article PREDATION RISK; FORAGING BEHAVIOR; HABITAT; METAMORPHOSIS; SELECTION; MINNOWS; SALMON; HAZARD; SIZE Gilliam improved the possibility of predicting habitat choice and risk-taking behaviour in juvenile animals by the rule of "minimization of mortality rate over growth rate (mu/g)", derived by using dynamic optimization technique. I have derived a similar expression (M/k) by using static optimization. M is instantaneous mortality rate, and k is the growth constant from the von Bertalanffy growth function. Both Gilliam's and my expressions were derived for situations where animals maximize fitness in stable populations (per capita growth rate r = 0). The more general expression from my analysis becomes (M+r)/k. Independent of the level of maximum fitness, the slope of the M-k curve at optimum growth and mortality conditions was found to be constant. This slope was determined by fecundity, size at reproduction, and maximum attainable size. In order to avoid using fitness explicitly in the final solution, I derived an alternative expression for predicting risk-taking behaviour. The resulting expression became s(W+g/W (= sG), where s is survival rate, W is individual weight, and g is growth rate. This expression was derived from the Euler-Lotka equation. The marginal risk describing the optimum trade off between growth and mortality became partial-mu/partial-g = (1-mu)/(W+g). Short-term sG-maximization should be appropriate in many different situations, but not for those which involves high initial costs such as long distance migration, and metamorphosis. In most situations (mu+r)/g-minimizers (mu/g when r = 0) and sG-maximizers should qualitatively behave similarly due to changes in growth and/or mortality conditions. Both rules may be used to predict ontogenetic niche shifts, but only sG can explicity predict at what body size the shift from one habitat to another should occur, W* = (s2g2-s1g1)/(s1-s2). LEONARDSSON, K (reprint author), UMEA UNIV,DEPT ANIM ECOL,S-90187 UMEA,SWEDEN. ABRAHAMS MV, 1989, ECOLOGY, V70, P999, DOI 10.2307/1941368; BENNETT ATD, 1989, TRENDS ECOL EVOL, V4, P3, DOI 10.1016/0169-5347(89)90004-9; CERRI RD, 1983, AM NAT, V121, P552, DOI 10.1086/284082; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CLARK CW, 1988, AM NAT, V131, P271, DOI 10.1086/284789; DILL LM, 1983, CAN J FISH AQUAT SCI, V40, P398, DOI 10.1139/f83-058; FRASER DF, 1986, ETHOLOGY, V73, P56; Gilliam J. F., 1982, THESIS MICHIGAN STAT; GILLIAM JF, 1987, ECOLOGY, V68, P1856, DOI 10.2307/1939877; GODIN JGJ, 1986, CAN J ZOOL, V64, P1675, DOI 10.1139/z86-251; HUNTINGFORD FA, 1988, J FISH BIOL, V32, P777, DOI 10.1111/j.1095-8649.1988.tb05416.x; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; MANGEL M, 1986, ECOLOGY, V67, P1127, DOI 10.2307/1938669; MCNAMARA JM, 1986, AM NAT, V127, P358, DOI 10.1086/284489; MILINSKI M, 1985, BEHAVIOUR, V93, P203, DOI 10.1163/156853986X00883; Milinski M., 1986, P236; OSENBERG CW, 1988, CAN J FISH AQUAT SCI, V45, P17, DOI 10.1139/f88-003; PANDIAN TJ, 1985, COPEIA, P653; Raff RA, 1983, EMBRYOS GENES EVOLUT; ROWE L, IN PRESS ECOLOGY; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SIBLY R, 1985, J THEOR BIOL, V112, P553, DOI 10.1016/S0022-5193(85)80022-9; Stephens DW, 1986, FORAGING THEORY; WASSERSUG RJ, 1977, ECOLOGY, V58, P830, DOI 10.2307/1936218; Werner E.E., 1988, P60; WERNER EE, 1988, ECOLOGY, V69, P1352, DOI 10.2307/1941633; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141 28 24 24 0 5 MUNKSGAARD INT PUBL LTD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos MAR 1991 60 2 149 154 10.2307/3544860 6 Ecology Environmental Sciences & Ecology FA952 WOS:A1991FA95200002 2018-11-12 J GODFRAY, HCJ; PARTRIDGE, L; HARVEY, PH GODFRAY, HCJ; PARTRIDGE, L; HARVEY, PH CLUTCH SIZE ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS English Review CLUTCH SIZE; LIFE HISTORY THEORY; BEHAVIORAL ECOLOGY PARENT-OFFSPRING CONFLICT; TIT PARUS-MAJOR; FLYCATCHER FICEDULA-ALBICOLLIS; OWL AEGOLIUS-FUNEREUS; SEX-RATIO; EGG SIZE; BROOD REDUCTION; GREAT TIT; HATCHING ASYNCHRONY; SNOW GEESE UNIV LONDON IMPERIAL COLL SCI & TECHNOL,CTR POPULAT BIOL,ASCOT SL5 7PY,BERKS,ENGLAND; UNIV EDINBURGH,DIV BIOL SCI,EDINBURGH EH9 3JT,MIDLOTHIAN,SCOTLAND; UNIV OXFORD,DEPT ZOOL,OXFORD OX1 3PS,ENGLAND GODFRAY, HCJ (reprint author), UNIV LONDON IMPERIAL COLL SCI & TECHNOL,DEPT BIOL,ASCOT SL5 7PY,BERKS,ENGLAND. Partridge, Linda/A-5501-2010 ALATALO RV, 1981, AM NAT, V117, P738, DOI 10.1086/283756; Alexander R.D., 1974, Annual Rev Ecol Syst, V5, P325, DOI 10.1146/annurev.es.05.110174.001545; ANDERSON DJ, 1990, AM NAT, V135, P334, DOI 10.1086/285049; ANDERSSON M, 1982, AM NAT, V120, P1, DOI 10.1086/283965; ANDERSSON M, 1976, IBIS, V118, P586; ANDERSSON M, 1984, PRODUCERS SCROUNGERS, P195; ANKNEY CD, 1978, AUK, V95, P459; ARCESE P, 1988, J ANIM ECOL, V57, P119, DOI 10.2307/4768; ARNOLD TW, 1987, AM NAT, V130, P643, DOI 10.1086/284736; BARTLETT J, 1987, BEHAV ECOL SOCIOBIOL, V21, P179, DOI 10.1007/BF00303208; BAYNE C J, 1969, Malacologia, V9, P391; BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BENNETT PM, 1986, THESIS U SUSSEX ENGL; BIEBACH H, 1984, PHYSIOL ZOOL, V57, P26, DOI 10.1086/physzool.57.1.30155963; BLACKBURN TM, 1991, IN PRESS AUK; Boag P.T., 1987, P45; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; BRUNING DF, 1973, NAT HIST, V82, P68; CHARNOV EL, 1984, FLA ENTOMOL, V67, P5, DOI 10.2307/3494101; CHARNOV EL, 1985, ENVIRON ENTOMOL, V14, P383, DOI 10.1093/ee/14.4.383; CHARNOV EL, 1976, THEOR POPUL BIOL, V9, P129, DOI 10.1016/0040-5809(76)90040-X; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; CHARNOV EL, 1988, AM NAT, V132, P727; CHEW FS, 1984, BIOL BUTTERFLIES, P65; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; COOKE F, 1990, AM NAT, V136, P261, DOI 10.1086/285095; COURTNEY SP, 1984, AM NAT, V123, P276, DOI 10.1086/284202; CRUZ YP, 1981, NATURE, V289, P27; DAVIES NB, 1988, ANIM BEHAV, V36, P262, DOI 10.1016/S0003-3472(88)80269-0; DAVIES NB, 1985, ANIM BEHAV, V33, P628, DOI 10.1016/S0003-3472(85)80087-7; Dawkins R., 1976, SELFISH GENE; DHONDT AA, 1990, NATURE, V348, P723, DOI 10.1038/348723a0; DIJKSTRA C, 1988, THESIS U GRONINGEN N; DIJKSTRA LJ, 1986, THESIS U LEIDEN NETH; DOWDEN PB, 1961, J ECON ENTOMOL, V54, P876, DOI 10.1093/jee/54.5.876; EADIE JM, 1988, CAN J ZOOL, V66, P1709, DOI 10.1139/z88-247; ELGAR MA, 1989, J ZOOL, V219, P137, DOI 10.1111/j.1469-7998.1989.tb02572.x; FALCONER DS, 1981, INTRO QUANTITATIVE G; FRANK SA, 1990, ANNU REV ECOL SYST, V21, P13, DOI 10.1146/annurev.ecolsys.21.1.13; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GARGETT V, 1978, OSTRICH, V49, P57, DOI 10.1080/00306525.1978.9632631; GHENT ARTHUR W., 1960, BEHAVIOUR, V16, P110, DOI 10.1163/156853960X00070; GIBBS HL, 1988, EVOLUTION, V42, P750, DOI 10.1111/j.1558-5646.1988.tb02493.x; GITTLEMAN JL, 1980, NATURE, V286, P149, DOI 10.1038/286149a0; Godfray H.C.J., 1987, Oxford Surveys in Evolutionary Biology, V4, P117; GODFRAY HCJ, 1991, PHILOS T ROY SOC B, V332, P67, DOI 10.1098/rstb.1991.0034; GODFRAY HCJ, 1987, AM NAT, V129, P221, DOI 10.1086/284632; GODFRAY HCJ, 1990, J THEOR BIOL, V145, P163, DOI 10.1016/S0022-5193(05)80122-5; GODFRAY HCJ, 1986, THEOR POPUL BIOL, V30, P215, DOI 10.1016/0040-5809(86)90034-1; GODFRAY HCJ, 1986, ECOL ENTOMOL, V11, P75, DOI 10.1111/j.1365-2311.1986.tb00281.x; GODFRAY HCJ, 1987, THEOR POPUL BIOL, V33, P79; GODFRAY HCJ, 1991, IN PRESS ANIM BEHAV; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; HAFTORN S, 1985, AUK, V102, P470; HAHN DC, 1981, ANIM BEHAV, V29, P421, DOI 10.1016/S0003-3472(81)80101-7; HAMILTON WD, 1964, J THEOR BIOL, V7, P17, DOI 10.1016/0022-5193(64)90039-6; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HARPER AB, 1986, AM NAT, V128, P99, DOI 10.1086/284542; HARVEY PE, 1991, COMP METHOD; HEGNER RE, 1987, AUK, V104, P470, DOI 10.2307/4087546; HENRY C S, 1972, Psyche (Cambridge), V79, P1, DOI 10.1155/1972/54050; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; HOGSTEDT G, 1981, J ANIM ECOL, V50, P219, DOI 10.2307/4041; HOGSTEDT G, 1980, SCIENCE, V210, P1148, DOI 10.1126/science.210.4474.1148; HORNFELDT B, 1990, IBIS, V132, P395, DOI 10.1111/j.1474-919X.1990.tb01058.x; IVES AR, 1989, AM NAT, V133, P671, DOI 10.1086/284944; IWASA Y, 1984, THEOR POPUL BIOL, V26, P205, DOI 10.1016/0040-5809(84)90030-3; JARVINEN A, 1989, IBIS, V131, P572, DOI 10.1111/j.1474-919X.1989.tb04792.x; JONES PJ, 1976, J ZOOLOGY LONDON, V189, P1; KLOMP H, 1970, ARDEA, V58, P1; KORPIMAKI E, 1989, IBIS, V131, P51, DOI 10.1111/j.1474-919X.1989.tb02743.x; KULESZA G, 1990, IBIS, V132, P407, DOI 10.1111/j.1474-919X.1990.tb01059.x; LACK D, 1947, IBIS, V90, P25; Lack D., 1966, POPULATION STUDIES B; Lack D., 1947, IBIS, V89, P309; LACK D, 1954, NATURAL REGULATION A; LANK DB, 1990, EVOLUTION, V44, P1436, DOI 10.1111/j.1558-5646.1990.tb03837.x; Lessells C.M., 1991, P32; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; LESSELLS CM, 1989, J ANIM ECOL, V58, P815, DOI 10.2307/5126; LIMA SL, 1987, ECOLOGY, V68, P1062, DOI 10.2307/1938378; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; LINDEN M, 1988, OIKOS, V51, P285, DOI 10.2307/3565309; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; MAGRATH RD, 1989, NATURE, V339, P536, DOI 10.1038/339536a0; MANGEL M, 1987, J MATH BIOL, V25, P1, DOI 10.1007/BF00275885; MANGEL M, 1989, AM NAT, V133, P688, DOI 10.1086/284945; MEYBURG BU, 1974, IBIS, V116, P224, DOI 10.1111/j.1474-919X.1974.tb00243.x; MILINSKI M, 1977, Z TIERPSYCHOL, V45, P373; MOCK DW, 1986, EVOLUTION, V40, P459, DOI 10.1111/j.1558-5646.1986.tb00499.x; MOCK DW, 1987, ANIM BEHAV, V35, P150, DOI 10.1016/S0003-3472(87)80220-8; MOUNTFORD MD, 1968, J ANIM ECOL, V37, P363, DOI 10.2307/2953; NELSON B, 1989, IBIS, V131, P609, DOI 10.1111/j.1474-919X.1989.tb04796.x; NUR N, 1984, J THEOR BIOL, V110, P275, DOI 10.1016/S0022-5193(84)80059-4; NUR N, 1986, J ANIM ECOL, V55, P983, DOI 10.2307/4428; OCONNOR RJ, 1978, ANIM BEHAV, V26, P79, DOI 10.1016/0003-3472(78)90008-8; PACKER C, 1987, AM NAT, V130, P636, DOI 10.1086/284735; Parker GA, 1987, EVOL ECOL, V1, P161, DOI 10.1007/BF02067398; PARKER GA, 1984, THEOR POPUL BIOL, V26, P27, DOI 10.1016/0040-5809(84)90022-4; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PARKER GA, 1989, AM NAT, V133, P846, DOI 10.1086/284956; PARKER GA, 1979, ANIM BEHAV, V27, P1210, DOI 10.1016/0003-3472(79)90068-X; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Partridge L., 1989, P421; PARTRIDGE L, 1989, MORE EXACT ECOLOGY, P231; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; PERRINS CM, 1975, J ANIM ECOL, V44, P695, DOI 10.2307/3712; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PILSON D, 1988, NATURE, V333, P361, DOI 10.1038/333361a0; POLIS GA, 1981, ANNU REV ECOL SYST, V12, P225, DOI 10.1146/annurev.es.12.110181.001301; PRICE T, 1988, SCIENCE, V240, P798, DOI 10.1126/science.3363360; PRICE T, 1989, AM NAT, V134, P950, DOI 10.1086/285023; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; REID WV, 1987, OECOLOGIA, V74, P458, DOI 10.1007/BF00378945; ROBENSTEIN DI, 1982, CURRENT PROBLEMS SOC, P91; ROCKWELL RF, 1987, AM NAT, V130, P839, DOI 10.1086/284751; ROHWER FC, 1988, AUK, V105, P161; ROSENHEIM JA, 1991, IN PRESS J ANIM ECOL; ROSKAFT E, 1985, J ANIM ECOL, V54, P255, DOI 10.2307/4635; ROTHSTEIN SI, 1990, TRENDS ECOL EVOL, V5, P101, DOI 10.1016/0169-5347(90)90161-6; SALTHE SN, 1969, AM MIDL NAT, V81, P467, DOI 10.2307/2423983; SHAANKER RU, 1988, ANNU REV ECOL SYST, V19, P177, DOI 10.1146/annurev.es.19.110188.001141; SILBY R, 1983, J THEOR BIOL, V102, P527; SIMMONS R, 1988, IBIS, V130, P339, DOI 10.1111/j.1474-919X.1988.tb00992.x; SINERVO B, 1990, SCIENCE, V248, P1106, DOI 10.1126/science.248.4959.1106; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SKINNER SW, 1985, BEHAV ECOL SOCIOBIOL, V17, P231, DOI 10.1007/BF00300141; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SLAGSVOLD T, 1989, J ANIM ECOL, V58, P837, DOI 10.2307/5127; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; Smith R.H., 1985, P423; SNOW BK, 1970, IBIS, V112, P299, DOI 10.1111/j.1474-919X.1970.tb00109.x; STAMP NE, 1980, AM NAT, V115, P367, DOI 10.1086/283567; Stephens DW, 1986, FORAGING THEORY; STINSON CH, 1979, EVOLUTION, V33, P1219, DOI 10.1111/j.1558-5646.1979.tb04775.x; STOUFFER PC, 1990, AUK, V107, P359, DOI 10.2307/4087620; STRAND MR, 1989, FLA ENTOMOL, V72, P32, DOI 10.2307/3494965; STRAND MR, 1989, BEHAV ECOL SOCIOBIOL, V24, P421, DOI 10.1007/BF00293271; SUZUKI Y, 1980, RES POPUL ECOL, V22, P366, DOI 10.1007/BF02530857; TAKAGI M, 1985, OECOLOGIA, V68, P1, DOI 10.1007/BF00379463; TAYLOR AD, 1988, J ANIM ECOL, V57, P163, DOI 10.2307/4770; TAYLOR PD, 1981, NATURE, V291, P64, DOI 10.1038/291064a0; TAYLOR PD, 1990, J THEOR BIOL, V148, P33; Taylor THC, 1937, BIOL CONTROL INSECT; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; TINKLE DW, 1969, AM NAT, V103, P501, DOI 10.1086/282617; TRIVERS RL, 1974, AM ZOOL, V14, P249; TSUBAKI Y, 1981, RES POPUL ECOL, V23, P156, DOI 10.1007/BF02514098; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANNOORDWIJK AJ, 1981, NETH J ZOOL, V31, P342; Waage J.K., 1985, P449; WAAGE JK, 1986, INSECT PARASITOIDS, P449; WEIS AE, 1983, ECOLOGY, V64, P688, DOI 10.2307/1937190; WERREN JH, 1980, SCIENCE, V208, P1157, DOI 10.1126/science.208.4448.1157; Williams G.C., 1971, GROUP SELECTION; Williams GC, 1966, ADAPTATION NATURAL S; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667; WINKLER DW, 1985, EVOLUTION, V39, P667, DOI 10.1111/j.1558-5646.1985.tb00403.x; Wynne-Edwards V., 1962, ANIMAL DISPERSION RE 164 188 193 0 53 ANNUAL REVIEWS INC PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 0066-4162 ANNU REV ECOL SYST Annu. Rev. Ecol. Syst. 1991 22 409 429 10.1146/annurev.ecolsys.22.1.409 21 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GR382 WOS:A1991GR38200017 2018-11-12 J LINTON, L; SIBLY, RM; CALOW, P LINTON, L; SIBLY, RM; CALOW, P TESTING LIFE-CYCLE THEORY BY COMPUTER-SIMULATION .1. INTRODUCTION OF GENETIC-STRUCTURE COMPUTERS IN BIOLOGY AND MEDICINE English Article LIFE-HISTORY THEORY; COST OF REPRODUCTION; TRADE-OFFS; ITEROPARITY; SEMELPARITY; COMPUTER SIMULATION HISTORIES; EVOLUTION Computer simulation was used to relax assumptions of analytical life-cycle theory about the eventual outcome of evolution in a constant environment. The computer simulation models, of diploid one-locus genetic systems, are described in detail. Good agreement was obtained between the analytical and simulation outcomes, except in some cases of discrepancy between the male and female life cycles. UNIV SHEFFIELD,DEPT ZOOL,SHEFFIELD S10 2TN,S YORKSHIRE,ENGLAND; UNIV READING,DEPT PURE & APPL ZOOL,READING RG6 2AJ,BERKS,ENGLAND LINTON, L (reprint author), UNIV CALGARY,DEPT BIOL SCI,CALGARY T2P 1NY,ALBERTA,CANADA. Sibly, Richard/0000-0001-6828-3543 BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; CASWELL H, 1986, AM NAT, V128, P707, DOI 10.1086/284598; Caswell H., 1989, MATRIX POPULATION MO; Charlesworth B., 1980, EVOLUTION AGE STRUCT; GOODMAN D, 1984, THEOR POPUL BIOL, V25, P1, DOI 10.1016/0040-5809(84)90002-9; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; Sibly R., 1985, P75; SIBLY R, 1983, J THEOR BIOL, V102, P527, DOI 10.1016/0022-5193(83)90389-2; SIBLY R, 1984, J THEOR BIOL, V111, P463, DOI 10.1016/S0022-5193(84)80234-9; SIBLY RM, 1991, COMPUT BIOL MED, V21, P357, DOI 10.1016/0010-4825(91)90016-3; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052 13 3 3 0 1 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB 0010-4825 COMPUT BIOL MED Comput. Biol. Med. 1991 21 5 345 355 10.1016/0010-4825(91)90015-2 11 Biology; Computer Science, Interdisciplinary Applications; Engineering, Biomedical; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Computer Science; Engineering; Mathematical & Computational Biology GV044 WOS:A1991GV04400007 1769226 2018-11-12 J SIBLY, RM; LINTON, L; CALOW, P SIBLY, RM; LINTON, L; CALOW, P TESTING LIFE-CYCLE THEORY BY COMPUTER-SIMULATION .2. BET-HEDGING REVISITED COMPUTERS IN BIOLOGY AND MEDICINE English Article BET-HEDGING; LIFE-HISTORY THEORY; TEMPORAL HETEROGENEITY; ITEROPARITY; SEMELPARITY; COMPUTER SIMULATION VARIABLE ENVIRONMENTS; POPULATION-DYNAMICS; EVOLUTION; HISTORIES; SIZE; CONSEQUENCES; ITEROPARITY; DEMOGRAPHY; SELECTION Analytical and computer models were used to reexamine bet-hedging, the reduction in fecundity that is evolutionarily advantageous in conditions of greater variation in juvenile survivorship or less variation in adult survivorship. The computer simulation models represent diploid one-locus genetic systems with semidominance. Schaffer's (1974) predictions proved remarkably robust when variations were symmetrical, and a simple modification allowed successful prediction for the asymmetries that occurred in the computer simulations when variations were large. UNIV READING,DEPT PURE & APPL ZOOL,READING RG6 2AJ,BERKS,ENGLAND; UNIV SHEFFIELD,DEPT ZOOL,SHEFFIELD S10 2TN,S YORKSHIRE,ENGLAND LINTON, L (reprint author), UNIV CALGARY,DEPT BIOL SCI,CALGARY T2P 1NY,ALBERTA,CANADA. Sibly, Richard/0000-0001-6828-3543 ABRAMS P, 1983, THEOR POPUL BIOL, V24, P22, DOI 10.1016/0040-5809(83)90044-8; BULMER MG, 1985, AM NAT, V126, P63, DOI 10.1086/284396; CASWELL H, 1983, AM ZOOL, V23, P35; Caswell H., 1989, MATRIX POPULATION MO; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; COHEN JE, 1987, ENCY STATISTICAL SCI, V8; EBERT TA, 1982, ECOL MONOGR, V52, P353, DOI 10.2307/2937351; FRANK SA, 1990, AM NAT, V136, P244, DOI 10.1086/285094; GOODMAN D, 1984, THEOR POPUL BIOL, V25, P1, DOI 10.1016/0040-5809(84)90002-9; HOEL PG, 1976, ELEMENTARY STATISTIC; JARVINEN A, 1986, OIKOS, V46, P365, DOI 10.2307/3565836; LACEY EP, 1983, AM NAT, V122, P114, DOI 10.1086/284122; LINTON L, 1991, COMPUT BIOL MED, V21, P345, DOI 10.1016/0010-4825(91)90015-2; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; NUR N, 1984, J ANIM ECOL, V53, P497, DOI 10.2307/4530; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; RITLAND K, 1984, AM NAT, V124, P656, DOI 10.1086/284305; RITLAND K, 1983, THEOR POPUL BIOL, V24, P213, DOI 10.1016/0040-5809(83)90026-6; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCHELLNER RA, 1982, J ECOL, V70, P273, DOI 10.2307/2259878; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TULJAPURKAR S, 1989, THEOR POPUL BIOL, V35, P227, DOI 10.1016/0040-5809(89)90001-4; TULJAPURKAR SD, 1982, THEOR POPUL BIOL, V21, P141, DOI 10.1016/0040-5809(82)90010-7 25 9 9 0 3 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB 0010-4825 COMPUT BIOL MED Comput. Biol. Med. 1991 21 5 357 367 10.1016/0010-4825(91)90016-3 11 Biology; Computer Science, Interdisciplinary Applications; Engineering, Biomedical; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Computer Science; Engineering; Mathematical & Computational Biology GV044 WOS:A1991GV04400008 1769227 2018-11-12 J LEAMAN, BM LEAMAN, BM REPRODUCTIVE STYLES AND LIFE-HISTORY VARIABLES RELATIVE TO EXPLOITATION AND MANAGEMENT OF SEBASTES STOCKS ENVIRONMENTAL BIOLOGY OF FISHES English Article ROCKFISH; LONGEVITY; REPRODUCTIVE VALUE; FISHERIES; SCORPAENIDAE EVOLUTION; AGE; SELECTION; FISHERY; GUILDS; TRAITS; COSTS; SIZE The characteristics of lightly and heavily exploited Pacific ocean perch, Sebastes alutus, stocks are evaluated relative to the predictions of life history theory. These long-lived species (50-100 year lifespan) show limited phenotypic plasticity and have little buffering against the effects of reduced lifespan. Reduced stock abundance has generated some compensatory increase in growth rate. Length at first maturity varies only slightly with increased growth rate, although age at maturity may decrease by 1-4 years. Growth increases yield larger (15-20%) size at age and increased reproductive effort at younger ages, but lower size-specific fecundity for these faster-growing fish. This suggests an energy allocation protocol favouring growth over reproduction in these long-lived animals. Rockfishes have late recruitment to fisheries (ages 10-15), and the detection time for results of management actions is equally long. Their vulnerability to overfishing means that indices of population changes, more representative of fishing effects than the catch rate index presently used, are required. Reproductive value indices are shown to be extremely sensitive and continuous with population abundance changes. Their incorporation into monitoring programs would permit more timely evaluation of management actions. Management policies developed for shorter-lived species are shown to be inappropriate for rockfishes. The need for an improved match in the time frame of the species' life history, and that of management strategies, is stressed. LEAMAN, BM (reprint author), FISHERIES & OCEANS CANADA, BIOL SCI BRANCH, PACIFIC BIOL STN, NANAIMO V9R 5K6, BC, CANADA. Archibald C.P., 1983, North American Journal of Fisheries Management, V3, P283, DOI 10.1577/1548-8659(1983)3<283:ROSHAD>2.0.CO;2; ARCHIBALD CP, 1981, CAN TECH REP FISH AQ, V1048; BALON EK, 1981, ENVIRON BIOL FISH, V6, P129, DOI 10.1007/BF00002776; BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; BEVERTON RJH, 1986, BASIC LIFE SCI, V42, P161; BOEHLERT GW, 1984, J EXP MAR BIOL ECOL, V79, P251, DOI 10.1016/0022-0981(84)90199-0; Borisov VM., 1978, J ICHTHYOL, V18, P896; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; CHARLESWORTH B, 1972, THEOR POPUL BIOL, V3, P377, DOI 10.1016/0040-5809(72)90011-1; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CLARKE A, 1987, MAR ECOL PROG SER, V38, P89, DOI 10.3354/meps038089; CROW J F, 1970, P591; Den Boer P. J., 1968, Acta Biotheoretica, V18, P165; EMLEN JM, 1970, ECOLOGY, V51, P588, DOI 10.2307/1934039; FISHER R. A., 1930, GENETICAL THEORY NAT; GADGIL M, 1970, AM NAT, V102, P52; Garrod D.J., 1984, P367; GIESEL JT, 1976, ANNU REV ECOL SYST, V7, P57, DOI 10.1146/annurev.es.07.110176.000421; GOODMAN D, 1982, AM NAT, V119, P803, DOI 10.1086/283956; GOODMAN LA, 1967, J R STAT SOC SER A-G, V130, P541, DOI 10.2307/2982523; Gunderson D. R., 1977, US FISH B, V75, P369; HIGHTOWER JE, 1987, CAN J FISH AQUAT SCI, V44, P803, DOI 10.1139/f87-098; ITO DH, 1987, 872 U AL SEA GRANT R, P287; LEAMAN BM, 1988, THESIS U BRIT COLUMB; LEAMAN BM, 1984, INT N PAC FISH COMM, V42, P85; LOFTUS KH, 1987, T AM FISH SOC, V116, P314, DOI 10.1577/1548-8659(1987)116<314:IST>2.0.CO;2; Mann R.H.K., 1984, P171; OOSTHUIZEN E, 1974, Netherlands Journal of Sea Research, V8, P378, DOI 10.1016/0077-7579(74)90006-4; PIKITCH EK, 1988, 8827 NAT OC ATM ADM; PINHORN AT, 1969, J FISH RES BOARD CAN, V26, P3133, DOI 10.1139/f69-298; PITT TK, 1975, J FISH RES BOARD CAN, V32, P1383, DOI 10.1139/f75-158; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RICKER WE, 1969, J FISH RES BOARD CAN, V26, P479, DOI 10.1139/f69-051; RICKLEFS RE, 1981, AM NAT, V117, P819, DOI 10.1086/283769; SCHAFFER WM, 1979, P NATL ACAD SCI USA, V76, P3567, DOI 10.1073/pnas.76.7.3567; SCHULTZ DL, 1989, EVOLUTION, V43, P473, DOI 10.1111/j.1558-5646.1989.tb04243.x; SHELDON RW, 1977, J FISH RES BOARD CAN, V34, P2344, DOI 10.1139/f77-314; SILVERTOWN JW, 1981, AM NAT, V118, P860, DOI 10.1086/283876; SOKAL RR, 1970, SCIENCE, V167, P1733, DOI 10.1126/science.167.3926.1733; STANLEY RD, 1987, P INT ROCKFISH S, P187; Stearns S.C., 1984, P13; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STOCKER M, 1989, IN PRESS N AM J FISH; Summerfelt RC, 1987, AGE GROWTH FISH; THEILACKER GH, 1987, FISH B-NOAA, V85, P213; TUOMI J, 1983, AM ZOOL, V23, P25; WALTERS CJ, 1989, IN PRESS CAN SPEC PU; Ware D.M., 1984, P349; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; YARBROUGH CJ, 1987, T AM FISH SOC, V116, P532, DOI 10.1577/1548-8659(1987)116<532:UPTIFM>2.0.CO;2 53 65 66 1 10 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes JAN 1991 30 1-2 253 271 10.1007/BF02296893 19 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology EU355 WOS:A1991EU35500024 2018-11-12 J CHARNOV, EL; BERRIGAN, D CHARNOV, EL; BERRIGAN, D EVOLUTION OF LIFE-HISTORY PARAMETERS IN ANIMALS WITH INDETERMINATE GROWTH, PARTICULARLY FISH EVOLUTIONARY ECOLOGY English Article DIMENSIONAL ANALYSIS; BODY SIZE ALLOMETRY; ESS; EVOLUTION OF MATURATION; GROWTH CURVE EVOLUTION Most evolutionary life history theory is developed in terms of the allocation of resources to the competing ends of growth, reproduction, and survivorship. In this paper we show that certain dimensionless numbers may be used to describe the relationship between growth, maturation, and adult mortality; our theory aims to predict these numbers and we are led to aggregate some basic features of life histories, rather than explicitly considering the allocation of a limited resource to different components of fitness. The phenomenology developed here has the convenient property that only parameters describing the shapes of two assumed trade-offs among life history traits appear in the solution of the resulting optimisation problem. Comparative inter- and intraspecific data on fish, lizard, snake and shrimp populations suggest that this approach may help explain some common patterns in the life histories of animals with indeterminate growth. CHARNOV, EL (reprint author), UNIV UTAH,DEPT BIOL,SALT LAKE CITY,UT 84112, USA. 0 69 70 0 28 CHAPMAN HALL LTD LONDON 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN 0269-7653 EVOL ECOL Evol. Ecol. JAN 1991 5 1 63 68 10.1007/BF02285246 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity EY323 WOS:A1991EY32300006 2018-11-12 J SIBLY, RM SIBLY, RM THE LIFE-HISTORY APPROACH TO PHYSIOLOGICAL ECOLOGY FUNCTIONAL ECOLOGY English Article; Proceedings Paper CONF ON NEW DIRECTIONS IN PHYSIOLOGICAL ECOLOGY MAR 26-29, 1990 UNIV SHEFFIELD, SHEFFIELD, ENGLAND BRIT ECOL SOC, SOC EXPTL BIOL, ENVIRONM PHYSIOL GRP UNIV SHEFFIELD LIFE-HISTORY THEORY; PHYSIOLOGICAL ECOLOGY; RECIPROCAL TRANSPLANT; SYMMORPHOSIS; TRADE-OFF SIBLY, RM (reprint author), UNIV READING,DEPT PURE & APPL ZOOL,READING RG6 2AJ,BERKS,ENGLAND. 0 33 33 1 5 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0269-8463 FUNCT ECOL Funct. Ecol. 1991 5 2 184 191 10.2307/2389256 8 Ecology Environmental Sciences & Ecology FH532 WOS:A1991FH53200008 2018-11-12 J SIBLY, RM; SMITH, RH; MOLLER, H SIBLY, RM; SMITH, RH; MOLLER, H EVOLUTIONARY DEMOGRAPHY OF A BRUCHID BEETLE .4. GENETIC TRADE-OFF, STABILIZING SELECTION AND A MODEL OF OPTIMAL BODY SIZE FUNCTIONAL ECOLOGY English Article CALLOSOBRUCHUS-MACULATUS; DEVELOPMENT RATE; FECUNDITY; LIFE-HISTORY THEORY; OPTIMAL BODY SIZE; STABILIZING SELECTION; TRADE-OFFS Body size is generally related to fecundity in arthropods, and in Callosobruchus maculatus (F.) fecundity and juvenile development rate are known to be genetically correlated, probably because both depend on body weight. Here we estimate the form of the genetic dependence on body weight from previously published breeding value plots, and we estimate physiological effects where necessary, to obtain a model of how natural selection affects body size in culture conditions. The genetic trade-off between fecundity and development rate leads to indirect stabilizing selection on female body weight at emergence. The model shows how optimal body weight increases with culture interval. Selection is shown to be weaker at longer culture intervals, so that genetic variation in body weight should there persist longer. Model predictions are shown to be robust by sensitivity analysis, and to fit the available data. Thus, predicted optimal body weights are intermediate, and observed body weights are close to those predicted on the basis of the culture history of the study population. SIBLY, RM (reprint author), UNIV READING,DEPT PURE & APPL ZOOL,POB 228,READING RG6 2AJ,BERKS,ENGLAND. Sibly, Richard/0000-0001-6828-3543 0 11 11 0 2 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0269-8463 FUNCT ECOL Funct. Ecol. 1991 5 5 594 601 10.2307/2389477 8 Ecology Environmental Sciences & Ecology GL110 WOS:A1991GL11000003 2018-11-12 J WILLOWS, RI WILLOWS, RI MODE OF DEVELOPMENT AND REPRODUCTIVE EFFORT IN MARINE-INVERTEBRATES - NO RELATIONSHIP PREDICTED BY LIFE-HISTORY THEORY FUNCTIONAL ECOLOGY English Letter WILLOWS, RI (reprint author), PLYMOUTH MARINE LAB,PROSPECT PL,PLYMOUTH PL1 3DH,ENGLAND. 0 4 4 1 2 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0269-8463 FUNCT ECOL Funct. Ecol. 1990 4 1 130 132 3 Ecology Environmental Sciences & Ecology CN391 WOS:A1990CN39100019 2018-11-12 J Charnov, EL; Skinner, SW Charnov, Eric L.; Skinner, Samuel W. Clutch size in parasitoids: the egg production rate as a constraint EVOLUTIONARY ECOLOGY English Article Optimal foraging; clutch size; life history theory; constraints; host-parasite interactions; host utilization SEX-RATIO; TRICHOGRAMMA-EVANESCENS; REPRODUCTIVE STRATEGY; EVOLUTION; WASPS; OVIPOSITION; HOST; ENVIRONMENT; ALLOCATION; INSECTS In many species of insect parasitoids, adult females mature eggs as they search their environment for hosts. In such species, the number of mature eggs, at the point of finding a host, is a function of the interhost time and the rate of egg maturation. Assuming that interhost search times are variable, we use a version of the marginal value theorem to derive a decision rule for optimizing the time spent exploiting individual hosts; this indirectly determines clutch size. We find that a threshold search time exists above which a female should simply lay her currently mature eggs and depart from the host. However, when the search time has been less than the threshold, a female should oviposit, but then remain on the host to mature and lay additional eggs, until the threshold time is reached. [Charnov, Eric L.] Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA; [Skinner, Samuel W.] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA Charnov, EL (reprint author), Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA. Andrewartha H. G., 1954, DISTRIBUTION ABUNDAN; BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; BELL WJ, 1975, BIOL REV, V50, P373, DOI 10.1111/j.1469-185X.1975.tb01058.x; CHARNOV E L, 1982; Charnov E. L., AM NATUR IN PRESS; CHARNOV EL, 1984, FLA ENTOMOL, V67, P5, DOI 10.2307/3494101; CHARNOV EL, 1981, NATURE, V289, P27, DOI 10.1038/289027a0; CHARNOV EL, 1985, ENVIRON ENTOMOL, V14, P383, DOI 10.1093/ee/14.4.383; CHARNOV EL, 1976, THEOR POPUL BIOL, V9, P129, DOI 10.1016/0040-5809(76)90040-X; CHARNOV EL, 1979, AM NAT, V113, P465, DOI 10.1086/283407; EDWARDS RL, 1954, BEHAVIOUR, V7, P88; Emlen J. M., 1983, POPULATION BIOL; GODFRAY HCJ, 1987, AM NAT, V129, P221, DOI 10.1086/284632; GODFRAY HCJ, 1986, THEOR POPUL BIOL, V30, P215, DOI 10.1016/0040-5809(86)90034-1; GREEN RF, 1982, J THEOR BIOL, V95, P43, DOI 10.1016/0022-5193(82)90286-7; IWASA Y, 1984, THEOR POPUL BIOL, V26, P205, DOI 10.1016/0040-5809(84)90030-3; JERVIS MA, 1986, BIOL REV, V61, P395, DOI 10.1111/j.1469-185X.1986.tb00660.x; Parker GA, 1987, EVOL ECOL, V1, P161, DOI 10.1007/BF02067398; PARKER GA, 1984, THEOR POPUL BIOL, V26, P27, DOI 10.1016/0040-5809(84)90022-4; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PRICE PW, 1972, ECOLOGY, V53, P190, DOI 10.2307/1935729; Rankin M.A., 1986, P27; Rosenzweig ML, 1987, EVOL ECOL, V1, P59, DOI 10.1007/BF02067269; SKINNER SW, 1985, BEHAV ECOL SOCIOBIOL, V17, P231, DOI 10.1007/BF00300141; SKUTCH AF, 1967, IBIS, V109, P579, DOI 10.1111/j.1474-919X.1967.tb00027.x; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; Stephens DW, 1986, FORAGING THEORY; Waage J.K., 1985, P449; Waage J.K., 1986, Symposia of the Royal Entomological Society of London, P63; WAAGE JK, 1979, J ANIM ECOL, V48, P353, DOI 10.2307/4166; WAAGE JK, 1984, J ANIM ECOL, V53, P417, DOI 10.2307/4525; WAAGE JK, 1982, ECOL ENTOMOL, V7, P103, DOI 10.1111/j.1365-2311.1982.tb00648.x; WAAGE JK, 1984, J ANIM ECOL, V53, P401, DOI 10.2307/4524 33 30 32 1 5 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. APR 1988 2 2 167 174 10.1007/BF02067275 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity V18VP WOS:000208032600006 2018-11-12 J Perrin, N Perrin, N. Why are offspring born larger when it is colder? Phenotypic plasticity for offspring size in the cladoceran Simocephalus vetulus (Muller) FUNCTIONAL ECOLOGY English Article Cladoceran; offspring size; growth; phenotypic plasticity; life-history theory It has been predicted on theoretical grounds (Sibly & Calow, 1983; Taylor & Williams, 1984) that optimal offspring size should be highly sensitive to juvenile growth and survival rates. To test such models, genetically-identical individuals of Simocephalus vetulus were reared at different temperatures and monitored for offspring size and juvenile growth rate. As adult size correlates negatively with temperature, an analysis of covariance was performed to separate the effects of temperature and maternal size. The result is that offspring size indeed correlates negatively with juvenile growth rate. Comparisons are made with field observations of several authors on seasonal variation of offspring size and alternative explanations are discussed. It is concluded that present experiments support the predictions of the theoretical models. Univ Lausanne, Inst Zool & Ecol Anim, CH-1015 Lausanne, Switzerland Perrin, N (reprint author), Univ Lausanne, Inst Zool & Ecol Anim, Batiment Biol, CH-1015 Lausanne, Switzerland. BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; Calow P, 1987, FUNCT ECOL, V1, P161; CASWELL H, 1980, THEOR POPUL BIOL, V17, P71, DOI 10.1016/0040-5809(80)90015-5; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CRAWFORD P, 1986, ESTUARIES, V9, P133, DOI 10.2307/1351946; Culver D., 1980, EVOLUTION ECOLOGY ZO, P358; FREDETTE TJ, 1986, J CRUSTACEAN BIOL, V6, P57, DOI 10.2307/1547931; GRANT JWG, 1981, LIMNOL OCEANOGR, V26, P201, DOI 10.4319/lo.1981.26.2.0201; HUTCHINSON G. E., 1951, ECOLOGY, V32, P571, DOI 10.2307/1931745; HUTCHINSON GE, 1967, TREATISE LIMNOLOGY; KERFOOT WC, 1974, ECOLOGY, V55, P1259, DOI 10.2307/1935454; KOLDING S, 1981, OIKOS, V37, P167, DOI 10.2307/3544461; Koza V., 1985, Advances in Limnology, V21, P193; KRUEGER DA, 1981, LIMNOL OCEANOGR, V26, P219, DOI 10.4319/lo.1981.26.2.0219; Lack D., 1954, NATURAL REGULATION A; LEBRETON JD, 1982, MODELES DYNAMIQUES D; MANGALO H H, 1986, Journal of Biological Sciences Research, V17, P169; Perrin N, 1987, FUNCT ECOL, V1, P223, DOI 10.2307/2389424; Pourriot R, 1982, ECOLOGIE PLANCTON EA, P113; Sibly R., 1985, P75; SIBLY R, 1983, J THEOR BIOL, V102, P527, DOI 10.1016/0022-5193(83)90389-2; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STENSON JAE, 1976, LIMNOL OCEANOGR, V21, P814, DOI 10.4319/lo.1976.21.6.0814; TAYLOR PD, 1984, CAN J ZOOL, V62, P2264, DOI 10.1139/z84-329; VONBERTALANFFY L, 1960, FUNDAMENTAL ASPECTS, P137 27 64 64 0 2 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 FUNCT ECOL Funct. Ecol. 1988 2 3 283 288 10.2307/2389399 6 Ecology Environmental Sciences & Ecology V26ZV WOS:000208584400002 2018-11-12 J BLONDEL, J BLONDEL, J FROM BIOGEOGRAPHY TO LIFE-HISTORY THEORY - A MULTITHEMATIC APPROACH ILLUSTRATED BY THE BIOGEOGRAPHY OF VERTEBRATES JOURNAL OF BIOGEOGRAPHY English Article BLONDEL, J (reprint author), CNRS,CTR LOUIS EMBERGER,BP 5051,F-34033 MONTPELLIER,FRANCE. ALCOVER JA, 1979, ELS MAMMIFERS BALEAR; Allen T. F. H., 1982, HIERARCHY PERSPECTIV; BERNARDLAURENT A, 1984, GIBIER FAUNE SAUVAGE, V2, P79; BEUG HJ, 1975, B GEOL WARSZAWA, V19, P101; Blondel J., 1984, Evolutionary Biology (New York), V18, P141; BLONDEL J, 1985, J ANIM ECOL, V54, P531, DOI 10.2307/4497; Blondel J., 1985, P477; BLONDEL J, 1986, BIOGEOGRAPHIE EVOLUT; BLONDEL J, 1981, MEDITERRANEAN TYPE S, P361; BLONDEL J, 1987, IN PRESS 19 ACT C IN; BLONDEL J, 1981, STUDIES AVIAN BIOL, V6, P414; BLONDEL J, 1987, UNPUB CONVERGENT TRA; BLONDEL J, 1987, ARDEA, V75, P51; BOCK WJ, 1963, 13TH P INT ORN C, P39; Burgess R. L, 1981, FOREST ISLAND DYNAMI; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; CHESSON P, 1978, ANNU REV ECOL SYST, V9, P323, DOI 10.1146/annurev.es.09.110178.001543; CHEYLAN G, 1984, REV ECOL-TERRE VIE, V39, P37; CLOBERT J, 1985, STATISTICS ORNITHOLO, P197; Cody M. L., 1975, ECOLOGY EVOLUTION CO; Cody M. L., 1974, COMPETITION STRUCTUR; CODY ML, 1978, ANNU REV ECOL SYST, V9, P265, DOI 10.1146/annurev.es.09.110178.001405; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; CODY ML, 1971, AVIAN BIOL, P462; CORMACK RM, 1964, BIOMETRIKA, V51, P429, DOI 10.1093/biomet/51.3-4.429; CRACRAFT J, 1974, SYST ZOOL, V23, P71, DOI 10.2307/2412241; CRACRAFT J, 1973, J ZOOL, V169, P455; CROWELL KL, 1981, IBIS, V123, P42, DOI 10.1111/j.1474-919X.1981.tb00171.x; Darlington Jr PJ, 1957, ZOOGEOGRAPHY GEOGRAP; DHONDT AA, 1980, ARDEA, V68, P121; Di Castri F. D., 1973, MEDITERRANEAN TYPE E; DIAMOND J. M, 1986, COMMUNITY ECOLOGY; DRAGOEV P, 1974, Acta Ornithologica (Warsaw), V14, P251; DRENT RH, 1980, ARDEA, V68, P225; FERRY C, 1970, TERRE VIE, V24, P153; FLORSCHUTZ F, 1971, PALAEOGEOGR PALAEOCL, V10, P233, DOI 10.1016/0031-0182(71)90049-6; FOSTER RB, 1980, CONSERVATION BIOL EV; GAUBERT H, 1985, ACTA OECOL-OEC GEN, V6, P305; GILBERT FS, 1980, J BIOGEOGR, V7, P209, DOI 10.2307/2844629; Gilbert L. E., 1980, Conservation biology. An evolutionary-ecological perspective., P11; GILL DE, 1978, ECOL MONOGR, V48, P145, DOI 10.2307/2937297; Hallam A., 1981, P303; HARRE, 1972, PHILOS SCI; JAMES FC, 1982, ECOLOGY, V63, P159, DOI 10.2307/1937041; KARR JR, 1982, AM NAT, V119, P220, DOI 10.1086/283904; Keast A., 1961, Bulletin of the Museum of Comparative Zoology, V123, P305; LACK D, 1965, J ECOL, V53, P237, DOI 10.2307/2257971; Le Houerou H.N., 1980, FORET MEDITERRANEENN, VII, P155; Le Houerou HN, 1980, FORET MEDITERRANEENN, V2, P31; LEVENE H, 1953, AM NAT, V87, P331, DOI 10.1086/281792; LEVIN SA, 1976, ANNU REV ECOL SYST, V7, P287, DOI 10.1146/annurev.es.07.110176.001443; LOUCKS OL, 1970, AM ZOOL, V10, P17; MacArthur R. H., 1972, GEOGRAPHICAL ECOLOGY; MACARTHUR RH, 1972, ECOLOGY, V53, P330, DOI 10.2307/1934090; MENGEL RM, 1964, LIVING BIRD, V3, P9; MOURERCHAUVIRE C, 1975, THESIS U C BERNARD L; NUR N, 1984, OECOLOGIA, V65, P125, DOI 10.1007/BF00384475; Olivieri I., 1985, STRUCTURE FUNCTIONIN, P77; PAINE RT, 1966, AM NAT, V100, P65, DOI 10.1086/282400; Perrins C. M., 1979, BRIT TITS; Pickett S. T., 1985, ECOLOGY NATURAL DIST; PICKETT STA, 1978, BIOL CONSERV, V13, P27, DOI 10.1016/0006-3207(78)90016-2; PICKETT STA, 1976, AM NAT, V110, P107, DOI 10.1086/283051; Pons A., 1984, WEBBIA, V38, P427; QUEZEL P, 1985, PLANT CONSERVATION M, P9; RICKLEFS RE, 1980, AUK, V97, P38; SALT GW, 1979, AM NAT, V113, P145, DOI 10.1086/283370; SALT GW, 1984, ECOLOGY EVOLUTIONARY; Sibley C.G., 1981, P301; Simberloff D., 1983, P411, DOI 10.1017/CBO9780511759994.013; Simberloff D., 1981, P40; SIMBERLOFF DS, 1980, 1980 P ORN C BERL, P1289; SIMPSON BB, 1978, ANNU REV ECOL SYST, V9, P497, DOI 10.1146/annurev.es.09.110178.002433; SOUSA WP, 1984, ANNU REV ECOL SYST, V15, P353, DOI 10.1146/annurev.es.15.110184.002033; STEGMANN B, 1938, FAUNE URSS, V1, P1; STRONG DR, 1983, ECOLOGICAL COMMUNITI; TAYLOR RJ, 1978, AM NAT, V112, P583, DOI 10.1086/283299; TOMIALOJC L, 1984, Acta Ornithologica (Warsaw), V20, P241; UDVARDY MDF, 1969, DYNAMIC ZOOGEOGRAPHY; VANNOORDWIJK AJ, 1980, ARDEA, V68, P193; VIGNE JD, 1983, THESIS U PARIS 6 PAR; VILETTE J, 1983, THESIS U C BERNARD L; Voous KH, 1960, ATLAS EUROPEAN BIRDS; Vuilleumier F., 1980, Evolutionary Biology (New York), V12, P235; VUILLEUMIER F, 1980, 17TH P INT ORN C, P1296; West DC, 1981, FOREST SUCCESSION CO; WHITE PS, 1979, BOT REV, V45, P229, DOI 10.1007/BF02860857; WIENS JA, 1976, ANNU REV ECOL SYST, V7, P81, DOI 10.1146/annurev.es.07.110176.000501; WIENS JA, 1981, STUDIES AVIAN BIOL, V6, P522; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williamson M., 1981, ISLAND POPULATIONS 91 27 28 0 4 BLACKWELL SCIENCE LTD OXFORD OSNEY MEAD, OXFORD, OXON, ENGLAND OX2 0EL 0305-0270 J BIOGEOGR J. Biogeogr. SEP 1987 14 5 405 422 10.2307/2844972 18 Ecology; Geography, Physical Environmental Sciences & Ecology; Physical Geography J8872 WOS:A1987J887200002 2018-11-12 J MCEDWARD, LR; COULTER, LK MCEDWARD, LR; COULTER, LK EGG VOLUME AND ENERGETIC CONTENT ARE NOT CORRELATED AMONG SIBLING OFFSPRING OF STARFISH - IMPLICATIONS FOR LIFE-HISTORY THEORY EVOLUTION English Note UNIV WASHINGTON, FRIDAY HARBOR LABS, FRIDAY HARBOR, WA 98250 USA MCEDWARD, LR (reprint author), UNIV ALBERTA, DEPT ZOOL, EDMONTON T6G 2E9, ALBERTA, CANADA. BAYNE BL, 1978, J MAR BIOL ASSOC UK, V58, P825, DOI 10.1017/S0025315400056794; BAYNE BL, 1975, J MAR BIOL ASSOC UK, V55, P675, DOI 10.1017/S0025315400017343; CAPINERA JL, 1979, AM NAT, V114, P350, DOI 10.1086/283484; CHIA FS, 1976, COELENTERATE ECOLOGY, P261; CHRISTIANSEN FB, 1979, THEOR POPUL BIOL, V16, P267, DOI 10.1016/0040-5809(79)90017-0; CRUMP ML, 1981, AM NAT, V117, P724, DOI 10.1086/283755; EMLET RB, 1987, IN PRESS ECHINODERM, V2; GRANT A, 1983, AM NAT, V122, P549, DOI 10.1086/284155; Hadfield M.G., 1975, P185; HADFIELD MG, 1984, MOLLUSCA, V7, P209; HENDLER G, 1975, AM ZOOL, V15, P691; Hermans C.O., 1979, REPRODUCTIVE ECOLOGY, P1; JOHNSON MJ, 1949, J BIOL CHEM, V181, P707; KAPLAN RH, 1980, PHYSIOL ZOOL, V53, P43, DOI 10.1086/physzool.53.1.30155774; KAPLAN RH, 1980, EVOLUTION, V34, P51, DOI 10.1111/j.1558-5646.1980.tb04788.x; MCEDWARD LR, 1987, IN PRESS MAR ECOL PR; Parsons TR, 1984, MANUAL CHEM BIOL MET; PECHENIK JA, 1979, AM NAT, V114, P859, DOI 10.1086/283533; PERRON FE, 1981, AM NAT, V118, P749, DOI 10.1086/283865; REAKA ML, 1979, REPROD ECOLOGY MARIN, P235; RICE ME, 1975, REPRODUCTION MARINE, V2, P67; Sastry A.N., 1979, P113; STRATHMANN RR, 1977, MAR BIOL, V39, P305, DOI 10.1007/BF00391933; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; STRATHMANN RR, 1980, PALEOBIOLOGY, V6, P373; THOMPSON RJ, 1983, OECOLOGIA, V56, P50, DOI 10.1007/BF00378216; Thorson G., 1936, Meddelelser om Gronland, V100, P1; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; THORSON GUNNAR, 1946, MEDDEL KOMM DANMARKS FISKERI OG HAVUNDERSOGELSER SER PLANKTON, V4, P1; Turner RL, 1979, REPROD ECOLOGY MARIN, P25; VANCE RR, 1974, AM NAT, V108, P879, DOI 10.1086/282963; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; VANCE RR, 1973, AM NAT, V107, P353, DOI 10.1086/282839; WIKLUND C, 1984, OIKOS, V43, P391, DOI 10.2307/3544158; ZAR JH, 1974, BIOSTATISTICAL ANAL 35 77 77 1 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution JUL 1987 41 4 914 917 10.2307/2408900 4 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity J0072 WOS:A1987J007200020 28564359 Bronze 2018-11-12 J PERRIN, MR; SWANEPOEL, P PERRIN, MR; SWANEPOEL, P BREEDING BIOLOGY OF THE BUSHVELD GERBIL TATERA-LEUCOGASTER IN RELATION TO DIET, RAINFALL AND LIFE-HISTORY THEORY SOUTH AFRICAN JOURNAL OF ZOOLOGY English Article KAFFRARIAN MUSEUM, KING WILLIAMS TOWN 5600, SOUTH AFRICA PERRIN, MR (reprint author), UNIV NATAL, DEPT ZOOL & ENTOMOL, POB 375, PIETERMARITZBURG 3200, SOUTH AFRICA. Acocks J. P. H, 1975, MEM BOT SURV S AFR, V40, P1; ALLANSON M, 1958, P ZOOL SOC LOND, V130, P375; Allen E. S., 1974, CHEM ANAL ECOLOGICAL; BLAND KP, 1969, J ZOOL, V157, P47; BODENHEIMER FS, 1946, ECOLOGY, V27, P255, DOI 10.2307/1932899; BOTHMA JD, 1969, THESIS TEXAS A M U; BROOKS PM, 1974, THESIS U PRETORIA; CARLTON MD, 1984, ORDERS FAMILIES RECE, pCH11; Chapman B. M., 1959, Proceedings of the Zoological Society of London, V133, P1; COETZEE C. G., 1965, ZOOL AFRICANA, V1, P29; CONLEY W, 1976, T S BIOL RESOURCES C; DAVIS D H S, 1974, Annals of the Transvaal Museum, V29, P135; Davis D. H. S., 1962, Annals of the Cape Provincial Museum, V2, P56; DAVIS DHS, 1953, J HYG-CAMBRIDGE, V51, P427, DOI 10.1017/S0022172400036718; DAVIS DHS, 1975, MAMMALS AFRICA IDENT; DAVIS DHS, 1964, ECOLOGICAL STUDIES S, P301; DAVIS DHS, 1946, S AFR MED J, V20, P511; De Graaff G, 1981, RODENTS SO AFRICA; Delany M. J., 1969, Journal of Reproduction and Fertility Suppl, VNo. 6, P229; DELANY M. J., 1964, PROC ZOOL SOC LONDON, V142, P347; Delany M. J., 1964, Revue de Zoologie et de Botanique Africaines, V70, P129; Delany M. J., 1966, Bull Br Mus nat Hist (zool), V13, P297; DEMOOR PP, 1969, J ZOOL, V157, P399; DIETERLEN FRITZ, 1967, Z SAUGETIERKUNDE, V32, P1; FIELD A C, 1975, East African Wildlife Journal, V13, P221; GOODING C. D., 1957, JOUR AUSTRALIAN INST AGRIC SCI, V23, P334; KEOGH HJ, 1978, J S AFR VET ASSOC, V49, P229; KERN NG, 1977, THESIS U PRETORIA; Koeppl J. W., 1982, MAMMAL SPECIES WORLD; KREBS CJ, 1974, ADV ECOL RES, V8, P267, DOI DOI 10.1016/S0065-2504(08)60280-9; LEATHAM JH, 1961, SEX INTERNAL SECRETI; MEASROCH VERONICA, 1954, PROC ZOOL SOC LONDON, V124, P631; MILLAR JS, 1978, ECOLOGY, V59, P1055, DOI 10.2307/1938558; MILLAR JS, 1977, EVOLUTION, V31, P370, DOI 10.1111/j.1558-5646.1977.tb01019.x; MORRIS P, 1972, Mammal Review, V2, P69, DOI 10.1111/j.1365-2907.1972.tb00160.x; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; MYERS K., 1962, AUSTRALIAN JOUR ZOOL, V10, P225, DOI 10.1071/ZO9620225; NEAL BR, 1982, Z SAUGETIERKD, V47, P287; NEWSOME A. E., 1966, CSIRO WILDLIFE RES, V11, P187; PERRIN MR, 1979, S AFR J WILDL RES, V9, P84; PERRIN MR, 1980, S AFR J SCI, V76, P487; PERRIN MR, 1980, ACTA OECOL-OEC GEN, V1, P71; PERRIN MR, 1980, S AFR J ZOOL, V15, P22; PERRIN MR, 1980, ACTA OECOL-OEC GEN, V1, P383; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; POOLE W. E., 1960, C S I R O WILDLIFE RES, V5, P21; Prasad M. R. N., 1956, Acta Zoologica Stockholm, V37, P87; Rautenbach I. L., 1982, ECOPLAN MONOGR, V1, P1; REYNOLDS HUDSON G., 1960, JOUR MAMMAL, V41, P48, DOI 10.2307/1376517; RICHARDSON LR, 1964, J NUTR, V82, P257, DOI 10.1093/jn/82.2.257; Sadleir R. M. F. S., 1969, ECOLOGY REPRODUCTION; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCHLITTER DA, 1978, B CARNEGIE MUS NAT H, V6, P1; SCHMIDTNIELSEN K, 1952, PHYSIOL REV, V32, P135; Skinner J. D, 1977, P39; Smithers RHN, 1983, MAMMALS SO AFRICAN S, DOI The University of Pretoria Press; SMITHERS RHN, 1971, MUS MEM TRUSTEES NAT, V4; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Swanepoel P., 1980, Annals of the Transvaal Museum, V32, P155; SWANEPOEL P, 1979, Annals of Carnegie Museum, V48, P7; WILSON VJ, 1975, MUS MEM TRUSTEES NAT, V5 62 22 23 1 4 BUREAU SCIENTIFIC PUBL PRETORIA P O BOX 1758, PRETORIA 0001, SOUTH AFRICA 0254-1858 S AFR J ZOOL South Afr. J. Zool. JUL 1987 22 3 218 227 10 Zoology Zoology J6187 WOS:A1987J618700007 2018-11-12 J SIBLY, R; CALOW, P SIBLY, R; CALOW, P ECOLOGICAL COMPENSATION - A COMPLICATION FOR TESTING LIFE-HISTORY THEORY JOURNAL OF THEORETICAL BIOLOGY English Article UNIV SHEFFIELD,DEPT ZOOL,SHEFFIELD S10 2TN,S YORKSHIRE,ENGLAND SIBLY, R (reprint author), UNIV READING,DEPT ZOOL,READING RG6 2AJ,BERKS,ENGLAND. Sibly, Richard/0000-0001-6828-3543 BERVEN KA, 1982, EVOLUTION, V36, P962, DOI 10.1111/j.1558-5646.1982.tb05466.x; MALTBY L, 1986, J ANIM ECOL, V55, P739, DOI 10.2307/4751; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; SIBLY R, 1983, J THEOR BIOL, V102, P527, DOI 10.1016/0022-5193(83)90389-2; SIBLY R, 1984, J THEOR BIOL, V111, P463, DOI 10.1016/S0022-5193(84)80234-9; SIBLY RM, 1985, BEHAVIOURAL ECOLOGY; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0 8 21 21 1 13 ACADEMIC PRESS LTD LONDON 24-28 OVAL RD, LONDON, ENGLAND NW1 7DX 0022-5193 J THEOR BIOL J. Theor. Biol. MAR 21 1987 125 2 177 186 10.1016/S0022-5193(87)80039-5 10 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology G7976 WOS:A1987G797600004 3657207 2018-11-12 J BEUCHAT, CA; ELLNER, S BEUCHAT, CA; ELLNER, S A QUANTITATIVE TEST OF LIFE-HISTORY THEORY - THERMOREGULATION BY A VIVIPAROUS LIZARD ECOLOGICAL MONOGRAPHS English Article N CAROLINA STATE UNIV, DEPT STAT, BIOMATH PROGRAM, RALEIGH, NC 27695 USA BEUCHAT, CA (reprint author), COLGATE UNIV, DEPT BIOL, HAMILTON, NY 13346 USA. AVERY RA, 1979, I BIOL STUDIES BIOL, V9; BALLINGER RE, 1979, ECOLOGY, V60, P901, DOI 10.2307/1936858; BALLINGER RE, 1973, ECOLOGY, V54, P269, DOI 10.2307/1934336; BERNHEIM HA, 1976, SCIENCE, V193, P237, DOI 10.1126/science.935867; BEUCHAT CA, 1986, COPEIA, P971, DOI 10.2307/1445294; BEUCHAT CA, 1982, THESIS CORNELL U ITH; BOWKER RG, 1984, PHYSIOL ZOOL, V57, P401, DOI 10.1086/physzool.57.4.30163342; BRADSHAW SD, 1980, COPEIA, P738; BURNS T A, 1970, Herpetologica, V26, P9; BUSTARD HR, 1967, COPEIA, P753; CASWELL H, 1982, J THEOR BIOL, V98, P519, DOI 10.1016/0022-5193(82)90134-5; CASWELL H, 1978, ECOLOGY, V59, P53, DOI 10.2307/1936631; Charlesworth B., 1980, CAMBRIDGE STUDIES MA, V1; CHARNOV E L, 1982; COGGER HG, 1974, AUST J ZOOL, V22, P319, DOI 10.1071/ZO9740319; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; COHEN D, 1968, J ECOL, V56, P219, DOI 10.2307/2258075; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Cowles RB, 1944, B AM MUS NAT HIST, V83, P263; Dawson W. R., 1975, PERSPECTIVES BIOPHYS, P443; DEWITT CB, 1967, PHYSIOL ZOOL, V40, P49, DOI 10.1086/physzool.40.1.30152438; ELLNER S, 1985, THEOR POPUL BIOL, V28, P50, DOI 10.1016/0040-5809(85)90022-X; ELLNER S, 1985, THEOR POPUL BIOL, V28, P80, DOI 10.1016/0040-5809(85)90023-1; Ellner S., 1984, Lecture Notes in Biomathematics, V54, P15; FITCH HENRY S., 1960, UNIV KANSAS PUBL MUS NAT HIST, V13, P85; FITCH HS, 1970, U KANSAS MUS NAT HIS, V52, P1; GARRICK LD, 1974, PHYSIOL BEHAV, V12, P85, DOI 10.1016/0031-9384(74)90072-9; GATTEN RE, 1974, COPEIA, P912; GERKING SD, 1979, PHYSIOL ZOOL, V52, P113, DOI 10.1086/physzool.52.2.30152557; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; Harper J. L., 1977, POPULATION BIOL PLAN; HASTINGS A, 1978, J THEOR BIOL, V75, P527, DOI 10.1016/0022-5193(78)90361-2; Heatwole H., 1976, REPTILE ECOLOGY; Huey R.B., 1982, Biology of Reptilia, V12, P25; HUEY RB, 1976, Q REV BIOL, V51, P363, DOI 10.1086/409470; HUEY RB, 1974, SCIENCE, V184, P1001, DOI 10.1126/science.184.4140.1001; KLUGER MJ, 1975, SCIENCE, V188, P166, DOI 10.1126/science.1114347; Lack D., 1966, POPULATION STUDIES B; LANG JW, 1979, COPEIA, P48, DOI 10.2307/1443728; LESLIE PH, 1945, BIOMETRIKA, V33, P183, DOI DOI 10.1093/BI0MET/33.3.183; Levin S. A., 1978, Ecological genetics: the interface., P3; LICHT P, 1966, COPEIA, P162, DOI 10.2307/1441122; MAGNUSON JJ, 1979, AM ZOOL, V19, P331; MAGNUSON JJ, 1967, LIZARD ECOLOGY S, P181; MAYER AM, 1983, GERMINATION SEEDS; McGinnis S. M., 1969, Herpetologica, V25, P38; Moll E. O, 1971, Bull Los Ang City Mus Sci, VNo. 11, P1; MUTH A, 1980, ECOLOGY, V61, P1335, DOI 10.2307/1939042; PACKARD GC, 1977, BIOL REV, V52, P71, DOI 10.1111/j.1469-185X.1977.tb01346.x; PATTERSON JW, 1978, J THERM BIOL, V3, P39, DOI 10.1016/0306-4565(78)90034-7; POUGH FH, 1980, AM NAT, V115, P92, DOI 10.1086/283547; POUGH FH, 1974, MISCELLANEOUS PUBLIC; REGAL PJ, 1966, COPEIA, P588; RICKLEFS RE, 1969, BREEDING BIOL BIRDS, P366; RUBY DE, 1984, HERPETOLOGICA, V40, P425; RUBY DE, 1977, HERPETOLOGICA, V33, P322; SAINTGIRONS H, 1975, VIE MILIEU C BIOL TE, V25, P137; SAINTGIRONS H, 1978, TERRE VIE, V32, P418; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHALL JJ, 1977, HERPETOLOGICA, V33, P261; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SHINE R, 1979, AM NAT, V113, P905, DOI 10.1086/283444; SHRODE JB, 1977, PHYSIOL ZOOL, V50, P1; SIBLY R, 1985, ANIM BEHAV, V33, P449, DOI 10.1016/S0003-3472(85)80069-5; SMITH JM, 1976, AM SCI, V64, P41; Sokal R. R., 1981, BIOMETRY; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEWART GLENN R., 1965, HERPETROLOGICA, V21, P81; Tinkle D. W., 1977, MISCELLANEOUS PUBLIC, V154; TINKLE DW, 1970, EVOLUTION, V24, P55, DOI 10.1111/j.1558-5646.1970.tb01740.x; TINKLE DW, 1969, AM NAT, V103, P501, DOI 10.1086/282617; VAUGHN LK, 1974, NATURE, V252, P473, DOI 10.1038/252473a0; Werner Y. L., 1978, NZ J ZOOLOGY, V5, P376; WHITTOW GC, 1970, COMP PHYSL THERMOREG, V1; WHITTOW GC, 1971, COMP PHYSL THERMOREG, V2; WITTEN GJ, 1978, COPEIA, P362; YAKOWITZ SJ, 1977, COMPUTATIONAL PROBAB 80 70 71 2 13 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9615 1557-7015 ECOL MONOGR Ecol. Monogr. MAR 1987 57 1 45 60 10.2307/1942638 16 Ecology Environmental Sciences & Ecology G4336 WOS:A1987G433600003 2018-11-12 J Perrin, N; Ruedi, M; Saiah, H Perrin, N.; Ruedi, M.; Saiah, H. Why is the cladoceran Simocephalus vetulus (Muller) not a 'bang-bang strategist'? A critique of the optimal-body-size model FUNCTIONAL ECOLOGY English Article Cladoceran; growth; reproductive strategy; dynamic optimization; life-history theory Lynch's (1980a) optimal-body-size model is designed to explain some major trends in cladoceran life histories; in particular the fact that large and littoral species seem to be bang-bang strategists (they grow first and then reproduce) whereas smaller planktonic species seem to be intermediate strategists (they grow and reproduce simultaneously). Predation is assumed to be an important selective pressure for these trends. Simocephalus vetulus (Muller) does not fit this pattern; being a littoral and relatively large species but an intermediate strategist. As shown by computer simulations, this species would reduce its per capita rate of increase by adopting the strategy predicted by the optimal-body-size model. Two aspects of the model are criticized: (1) the optimization criterion is shown to be incorrect and (2) the prediction of an intermediate strategy is not justified. Structural constraints are suggested to be responsible for the intermediate strategy of S. vetulus. Biotic interactions seem to have little effect on the observed life-history patterns of this species. [Perrin, N.; Ruedi, M.; Saiah, H.] Inst Zool & Ecol Anim, CH-1015 Lausanne, Switzerland Perrin, N (reprint author), Inst Zool & Ecol Anim, Batiment Biol, CH-1015 Lausanne, Switzerland. Ruedi, Manuel/B-3320-2013 Ruedi, Manuel/0000-0003-3283-7764 Allan J. D., 1980, EVOLUTION ECOLOGY ZO, P388; DUMONT HJ, 1975, OECOLOGIA, V19, P75, DOI 10.1007/BF00377592; GOODMAN D, 1982, AM NAT, V119, P803, DOI 10.1086/283956; KERFOOT WC, 1974, ECOLOGY, V55, P1259, DOI 10.2307/1935454; LEON JA, 1976, J THEOR BIOL, V60, P301, DOI 10.1016/0022-5193(76)90062-X; LYNCH M, 1977, ECOLOGY, V58, P763, DOI 10.2307/1936212; LYNCH M, 1980, Q REV BIOL, V55, P23, DOI 10.1086/411614; Lynch M., 1980, EVOLUTION ECOLOGY ZO, P367; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; SEBENS KP, 1982, ECOLOGY, V63, P209, DOI 10.2307/1937045; SIBLY R, 1985, J THEOR BIOL, V112, P553, DOI 10.1016/S0022-5193(85)80022-9; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; Taylor B.E., 1985, Advances in Limnology, V21, P285; TAYLOR HM, 1974, THEOR POPUL BIOL, V5, P104, DOI 10.1016/0040-5809(74)90053-7 14 14 14 0 3 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 FUNCT ECOL Funct. Ecol. 1987 1 3 223 228 10.2307/2389424 6 Ecology Environmental Sciences & Ecology V26ZS WOS:000208584100006 2018-11-12 J HANKIN, DG; MCKELVEY, R HANKIN, DG; MCKELVEY, R COMMENT ON FECUNDITY OF CHINOOK SALMON AND ITS RELEVANCE TO LIFE-HISTORY THEORY CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Letter UNIV MONTANA,DEPT MATH,MISSOULA,MT 59801 HANKIN, DG (reprint author), HUMBOLT STATE UNIV,DEPT FISHERIES,ARCATA,CA 95521, USA. DONALDSON LAUREN R., 1961, TRANS AMER FISH SOC, V90, P160, DOI 10.1577/1548-8659(1961)90[160:SBOCS]2.0.CO;2; DRAPER NR, 1981, APPLIED REGRESSION A; HEALEY MC, 1984, CAN J FISH AQUAT SCI, V41, P476, DOI 10.1139/f84-057; McGregor E. A., 1923, California Fish and Game, V9, P138; McGregor EA, 1922, CALIF FISH GAME REPO, V8, P161; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; RICKER WE, 1980, 944 CAN TECH REP FIS; SCHAFFER WM, 1975, ECOLOGY, V56, P577, DOI 10.2307/1935492; Schroder S. L., 1981, THESIS U WASHINGTON; Snedecor G.W., 1967, STATISTICAL METHODS; SNYDER JO, 1931, CALIF FISH GAME FISH, V34; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P2; VANDENBERGHE EP, 1984, CAN J FISH AQUAT SCI, V41, P204, DOI 10.1139/f84-022; VIRONSKIY BB, 1972, J ICHTHYOL, V12, P259; 1983, 1982 US FISH WILDL S 16 8 8 0 3 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0706-652X CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. 1985 42 2 393 394 2 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology ACG65 WOS:A1985ACG6500026 2018-11-12 J HEALEY, MC; HEARD, WR HEALEY, MC; HEARD, WR COMMENT ON FECUNDITY OF CHINOOK SALMON AND ITS RELEVANCE TO LIFE-HISTORY THEORY - REPLY CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Letter NOAA,AUKE BAY LAB,AUKE BAY,AK 99821 HEALEY, MC (reprint author), FISHERIES & OCEANS CANADA,FISHERIES RES BRANCH,PACIFIC BIOL STN,NANAIMO V9R 5K6,BC,CANADA. HEALEY MC, 1982, 1107 CAN TECH REP FI; RICH WH, 1925, B US BUR FISH, V41, P14; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; VANDENBERGHE EP, 1984, CAN J FISH AQUAT SCI, V41, P204, DOI 10.1139/f84-022 4 5 5 0 3 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0706-652X CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. 1985 42 2 394 395 2 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology ACG65 WOS:A1985ACG6500027 2018-11-12 J HEALEY, MC; HEARD, WR HEALEY, MC; HEARD, WR INTER-POPULATION AND INTRA-POPULATION VARIATION IN THE FECUNDITY OF CHINOOK SALMON (ONCORHYNCHUS-TSHAWYTSCHA) AND ITS RELEVANCE TO LIFE-HISTORY THEORY CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article NOAA,AUKE BAY LAB,AUKE BAY,AK 99821 HEALEY, MC (reprint author), FISHERIES & OCEANS CANADA,PACIFIC BIOL STN,NANAIMO V9R 5K6,BC,CANADA. Bagenal T.B., 1978, P75; Bagenal T. B., 1967, BIOL BASIS FRESHWATE, P89; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BIGLER MS, 1981, YUKON RIVER KING SAL; BURNER CJ, 1951, US FISH WILDLIFE SER, V61, P97; DAHLGREN BT, 1979, J FISH BIOL, V15, P71, DOI 10.1111/j.1095-8649.1979.tb03573.x; Galbreath J. L., 1964, Fish Commission Research Briefs, V10, P16; GEIGER MF, 1965, SALMON FECUNDITY STU, P122; GODFREY H, 1968, MS967 FISH RES BOARD; HEALEY MC, 1982, CAN J FISH AQUAT SCI, V39, P952, DOI 10.1139/f82-130; HEALEY MC, 1979, FISH B-NOAA, V77, P653; HEALEY MC, 1983, CAN FIELD NAT, V97; HEALEY MC, 1982, 1107 FISH AQ SCI CAN; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; MATHEWS SB, 1976, J FISH RES BOARD CAN, V33, P1667; McGregor E. A., 1923, California Fish and Game, V9, P138; McGregor E. A., 1922, CALIF FISH GAME, V8, P160; NELSON ML, 1969, 9 AL DEP FISH GAM CO; PARKER RR, 1962, J FISH RES BOARD CAN, V19, P561, DOI 10.1139/f62-037; PARKER RR, 1956, 1 AL DEP FISH GAM RE; Reimers P. E., 1971, LENGTH RESIDENCE JUV; RICKER WE, 1976, J FISH RES BOARD CAN, V33, P1483, DOI 10.1139/f76-191; ROUNSEFELL GEORGE A., 1957, U S FISH AND WILDLIFE SERV FISH BULL, V57, P451; SCHAFFER WM, 1975, ECOLOGY, V56, P577, DOI 10.2307/1935492; SNYDER JO, 1921, CALIF FISH GAME, V7, P63; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P2; VRONSKIY B B, 1972, Journal of Ichthyology, V12, P259; WARE DM, 1982, CAN J FISH AQUAT SCI, V39, P3, DOI 10.1139/f82-002; WOOTTON RJ, 1973, J FISH BIOL, V5, P89, DOI 10.1111/j.1095-8649.1973.tb04433.x; YANCEY RM, 1963, 440 US FISH WILDL SE 31 108 110 0 14 NATL RESEARCH COUNCIL CANADA OTTAWA RESEARCH JOURNALS, MONTREAL RD, OTTAWA ON K1A 0R6, CANADA 0706-652X CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. 1984 41 3 476 483 10.1139/f84-057 8 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology SP981 WOS:A1984SP98100011 2018-11-12 J LUCKINBILL, LS LUCKINBILL, LS AN EXPERIMENTAL-ANALYSIS OF A LIFE-HISTORY THEORY ECOLOGY English Article LUCKINBILL, LS (reprint author), WAYNE STATE UNIV, DEPT BIOL, DETROIT, MI 48202 USA. ABRAHAMSON WG, 1973, AM NAT, V107, P651, DOI 10.1086/282864; ABRAHAMSON WG, 1975, ECOLOGY, V56, P721, DOI 10.2307/1935508; ATWOOD KC, 1951, COLD SPRING HARB SYM, V16, P345, DOI 10.1101/SQB.1951.016.01.026; BARCLAY HJ, 1981, AM NAT, V117, P944, DOI 10.1086/283779; CHARLESWORTH B, 1971, ECOLOGY, V52, P469, DOI 10.2307/1937629; Cody M. L., 1971, P461; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; CONSTANTZ GD, 1979, OECOLOGIA, V40, P189, DOI 10.1007/BF00347936; DAVIDSON J, 1948, J ANIM ECOL, V17, P193, DOI 10.2307/1484; DERICKSON WK, 1976, ECOLOGY, V57, P445, DOI 10.2307/1936430; DYKHUIZEN D, 1978, EVOLUTION, V32, P125, DOI 10.1111/j.1558-5646.1978.tb01103.x; EMLEN JM, 1970, ECOLOGY, V21, P592; GADGIL M, 1972, AM NAT, V106, P14, DOI 10.1086/282748; GAINES MS, 1974, AM NAT, V108, P889, DOI 10.1086/282967; Gause G. F., 1934, STRUGGLE EXISTENCE; HANSEN SR, 1980, SCIENCE, V207, P1491; HARDER W, 1977, J APPL BACTERIOL, V43, P1, DOI 10.1111/j.1365-2672.1977.tb00717.x; HSU SB, 1977, SIAM J APPL MATH, V32, P366, DOI 10.1137/0132030; ISTOCK CA, 1967, EVOLUTION, V21, P592, DOI 10.1111/j.1558-5646.1967.tb03414.x; JANNASCH HW, 1967, ARCH MIKROBIOL, V59, P165, DOI 10.1007/BF00406328; KILHAM P, 1979, ERGEB LIMNOL, V13, P110; Koch A L, 1971, Adv Microb Physiol, V6, P147, DOI 10.1016/S0065-2911(08)60069-7; KUO MS, 1986, CARBOHYD RES, V156, P173, DOI 10.1016/S0008-6215(00)90109-5; LUCKINBILL LS, 1978, SCIENCE, V202, P1201, DOI 10.1126/science.202.4373.1201; LUCKINBILL LS, 1979, AM NAT, V113, P427, DOI 10.1086/283400; MAC ARTHUR ROBERT H., 1967; MacArthur R. H., 1972, GEOGRAPHICAL ECOLOGY; MAELZER DA, 1970, ECOLOGY, V51, P810, DOI 10.2307/1933973; MCNAUGHTON SJ, 1975, AM NAT, V109, P251, DOI 10.1086/282995; Mertz D. B., 1971, STATISTICAL ECOLOGY, P361; MONOD J, 1949, ANNU REV MICROBIOL, V3, P371, DOI 10.1146/annurev.mi.03.100149.002103; MORRIS R. F., 1963, MEM ENTOMOL SOC CANADA, V31, P116; MUELLER LD, 1981, P NATL ACAD SCI-BIOL, V78, P1303, DOI 10.1073/pnas.78.2.1303; MURDOCH WW, 1970, ECOLOGY, V51, P497, DOI 10.2307/1935385; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIANKA ER, 1972, AM NAT, V106, P581, DOI 10.1086/282798; RYAN FJ, 1949, J BACTERIOL, V58, P191; RYAN FJ, 1948, J BACTERIOL, V56, P699; RYAN FJ, 1954, J GEN MICROBIOL, V11, P364, DOI 10.1099/00221287-11-3-364; RYAN FS, 1948, J BACTERIOL, V58, P181; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SIEGEL S, 1956, NONPARAMETRIC METHOD; SMITH FE, 1961, ECOLOGY, V42, P403, DOI 10.2307/1932093; SMOUSE P, 1977, GENETICS, V86, P399; SMOUSE PE, 1976, AM NAT, V110, P849, DOI 10.1086/283107; SOLBRIG OT, 1974, J ECOL, V62, P473, DOI 10.2307/2258993; St. Amant J. L. S., 1970, Ecology, V51, P823; STANIER RY, 1970, MICROBIAL WORLD; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEWART FM, 1973, AM NAT, V107, P171, DOI 10.1086/282825; TAYLOR CE, 1980, EVOLUTION, V34, P1183, DOI 10.1111/j.1558-5646.1980.tb04064.x; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; WINOGRADSKI S, 1949, MICROBIOLOGIE SOL OE 55 23 23 0 7 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology 1984 65 4 1170 1184 10.2307/1938325 15 Ecology Environmental Sciences & Ecology TC006 WOS:A1984TC00600015 2018-11-12 J CANCINO, J CANCINO, J EXPERIMENTAL REARING OF BRYOZOANS - A TOOL TO TEST APPLICABILITY OF LIFE-HISTORY THEORY TO COLONIAL ANIMALS ARCHIVOS DE BIOLOGIA Y MEDICINA EXPERIMENTALES Spanish Meeting Abstract PONTIFICIA UNIV CATOLICA CHILE,FAC CIENCIAS BIOL,DEPT BIOL AMBIENTAL & POBLAC,UNIDAD ECOL MARINA,SANTIAGO,CHILE 0 0 0 0 0 SOC BIOL CHILE SANTIAGO CASILLA 14164 CORREO, SANTIAGO 9, CHILE 0004-0533 ARCH BIOL MED EXP 1983 16 2 R143 R143 1 Biology; Medicine, General & Internal; Medicine, Research & Experimental Life Sciences & Biomedicine - Other Topics; General & Internal Medicine; Research & Experimental Medicine RS731 WOS:A1983RS73100076 2018-11-12 J MYERS, RA; RUNGE, JA MYERS, RA; RUNGE, JA PREDICTIONS OF SEASONAL NATURAL MORTALITY-RATES IN A COPEPOD POPULATION USING LIFE-HISTORY THEORY MARINE ECOLOGY PROGRESS SERIES English Article DALHOUSIE UNIV, DEPT OCEANOG, HALIFAX B3H 4J1, NS, CANADA MYERS, RA (reprint author), DALHOUSIE UNIV, DEPT BIOL, HALIFAX B3H 4J1, NS, CANADA. Beverton R. J. H., 1957, FISHERY INVEST LON 2, V19, P1; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Culver D., 1980, EVOLUTION ECOLOGY ZO, P358; De Boor C., 1978, PRACTICAL GUIDE SPLI; Deevey G. B., 1960, Bulletin of the Bingham Oceanographic Collection, V17, P54; Doyle R.W., 1982, P157; DOYLE RW, 1981, CAN J FISH AQUAT SCI, V38, P1120, DOI 10.1139/f81-152; Johnson JK, 1981, THESIS OREGON STATE; KONSTANTINOV AS, 1958, T AIBS, V120, P506; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1975, GENET RES, V26, P221, DOI 10.1017/S0016672300016037; LANDRY MR, 1978, INT REV GES HYDROBIO, V63, P77, DOI 10.1002/iroh.19780630106; LANDRY MR, 1976, THESIS U WASHINGTON; MCLAREN IA, 1966, ECOLOGY, V47, P852, DOI 10.2307/1934273; MCLAREN IA, 1963, J FISH RES BOARD CAN, V20, P685, DOI 10.1139/f63-046; MILLER CB, 1977, LIMNOL OCEANOGR, V22, P326, DOI 10.4319/lo.1977.22.2.0326; MYERS RA, 1983, CAN J FISH AQUAT SCI; NELSON WG, 1980, SARSIA, V65, P61; PRECHT H, 1973, TEMPERATURE LIFE; SEKIGUCHI H, 1980, MAR BIOL, V58, P133, DOI 10.1007/BF00396124; SHAW RF, 1962, NATURE, V196, P454, DOI 10.1038/196454a0; SMITH JM, 1974, J THEOR BIOL, V47, P209, DOI 10.1016/0022-5193(74)90110-6; STEELE JH, 1977, SEA, V6, P857; UYE S, 1981, J EXP MAR BIOL ECOL, V50, P255, DOI 10.1016/0022-0981(81)90053-8; UYE SI, 1982, J EXP MAR BIOL ECOL, V57, P55, DOI 10.1016/0022-0981(82)90144-7; VIDAL J, 1980, MAR BIOL, V56, P111, DOI 10.1007/BF00397129; WILDE DJ, 1967, F OPTIMIZATION 28 33 33 1 4 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 1983 11 2 189 194 10.3354/meps011189 6 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography QE049 WOS:A1983QE04900011 Bronze 2018-11-12 J CASWELL, H CASWELL, H LIFE-HISTORY THEORY AND THE EQUILIBRIUM STATUS OF POPULATIONS AMERICAN NATURALIST English Article UNIV CONNECTICUT,BIOL SCI GRP,STORRS,CT 06268 Caswell, Hal/0000-0003-4394-6894 Andrewartha H. G., 1954, DISTRIBUTION ABUNDAN; BAKER H. G., 1965, The genetics of colonizing species: Proc. 1st Internat, Union biol Sci., Asilomar, California., P147; Baker H.G., 1965, GENETICS COLONIZING; CASE TJ, 1974, P NATL ACAD SCI USA, V71, P3073, DOI 10.1073/pnas.71.8.3073; CASWELL H, 1978, AM NAT, V112, P127, DOI 10.1086/283257; CASWELL H, 1978, THEOR POPUL BIOL, V14, P215, DOI 10.1016/0040-5809(78)90025-4; CASWELL H, 1981, AM NAT, V117, P529, DOI 10.1086/283733; CASWELL H, 1980, THEOR POPUL BIOL, V17, P71, DOI 10.1016/0040-5809(80)90015-5; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Cody M. L., 1974, COMPETITION STRUCTUR; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; Connolly J., 1979, Proceedings of the Society of Photo-Optical Instrumentation Engineers, vol.181. Contemporary Optical Systems & Components Specifications, P141; CROW JF, 1976, AM NAT, V110, P207, DOI 10.1086/283060; Daniel T. W., 1979, PRINCIPLES SILVICULT; DARWIN C, 1859, ORIGIN SPECIES; DAYTON PK, 1972, DEEP-SEA RES, V19, P199, DOI 10.1016/0011-7471(72)90031-9; Dobzhansky T., 1950, American Scientist, V38, P209; EMLEN JM, 1970, ECOLOGY, V51, P588, DOI 10.2307/1934039; FOWELLS HA, 1965, USDA AGR HDB, V271; Gause G. F., 1934, STRUGGLE EXISTENCE; GRASSLE JF, 1973, DEEP-SEA RES, V20, P643; GREEN R, 1975, AM NAT, V109, P1, DOI 10.1086/282969; GREEN RF, 1980, AM NAT, V116, P291, DOI 10.1086/283627; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Harper J. L., 1974, Annual Review of Ecology and Systematics, V5, P419, DOI 10.1146/annurev.es.05.110174.002223; Harper J. L., 1965, The genetics of colonizing species., P243; HARTSHORN GS, 1980, BIOTROPICA, V12, P23, DOI 10.2307/2388152; HUBBELL SP, 1979, SCIENCE, V203, P1299, DOI 10.1126/science.203.4387.1299; HUSTON M, 1979, AM NAT, V113, P81, DOI 10.1086/283366; HUTCHINSON G. E., 1951, ECOLOGY, V32, P571, DOI 10.2307/1931745; HUTCHINSON G. EVELYN, 1953, PROC ACAD NAT SCI PHILADELPHIA, V105, P1; HUTCHINSON GE, 1957, COLD SPRING HARB SYM, V22, P415, DOI 10.1101/SQB.1957.022.01.039; HUTCHINSON GE, 1961, AM NAT, V95, P137, DOI 10.1086/282171; KENDALL MG, 1969, ADV THEORY STATISTIC, V1; LACK D, 1945, J ANIM ECOL, V14, P12, DOI 10.2307/1395; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; LACK D, 1946, J ANIM ECOL, V15, P123, DOI 10.2307/1552; Lack D., 1966, POPULATION STUDIES B; LACK D, 1944, IBIS, V86, P160; LACK D, 1954, NATURAL REGULATION A; Leslie PH, 1945, BIOMETRIKA, V33, P183, DOI 10.2307/2332297; Levins R., 1967, EVOLUTION CHANGING E; Lewontin R. C., 1965, P77; LOUCKS OL, 1970, AM ZOOL, V10, P17; LOYA Y, 1976, ECOLOGY, V57, P278, DOI 10.2307/1934816; LOYA Y, 1976, NATURE, V259, P478, DOI 10.1038/259478a0; MAC ARTHUR ROBERT H., 1967; MACARTHUR R, 1970, Theoretical Population Biology, V1, P1, DOI 10.1016/0040-5809(70)90039-0; MACARTHUR R, 1967, AM NAT, V101, P377, DOI 10.1086/282505; MACARTHUR R, 1960, AM NAT, V94, P25, DOI 10.1086/282106; MACARTHUR RH, 1958, ECOLOGY, V39, P599, DOI 10.2307/1931600; MACARTHUR RH, 1964, P NATL ACAD SCI USA, V51, P1207, DOI 10.1073/pnas.51.6.1207; MACARTHUR RH, 1962, P NATL ACAD SCI USA, V48, P1893, DOI 10.1073/pnas.48.11.1893; MacArthur RH, 1968, POPULATION BIOL EVOL, P159; MAY RM, 1972, P NATL ACAD SCI USA, V69, P1109, DOI 10.1073/pnas.69.5.1109; May RM, 1973, STABILITY COMPLEXITY; MEATS A, 1971, OECOLOGIA, V6, P223, DOI 10.1007/BF00344916; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; MENGE BA, 1979, OECOLOGIA, V41, P245, DOI 10.1007/BF00377430; Mertz D. B., 1971, STATISTICAL ECOLOGY, P361; Nicholson AJ, 1933, J ANIM ECOL, V2, P132; NICHOLSON AJ, 1954, AUST J ZOOL, V2, P9, DOI 10.1071/ZO9540009; OSMAN RW, 1977, ECOL MONOGR, V47, P37, DOI 10.2307/1942223; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PINDER JE, 1978, ECOLOGY, V59, P175; POLIS GA, 1980, ECOLOGY, V61, P620, DOI 10.2307/1937428; PRICE GR, 1970, NATURE, V227, P520, DOI 10.1038/227520a0; RABENOLD KN, 1979, AM NAT, V114, P275, DOI 10.1086/283474; ROBERTSON A, 1968, POPULATION BIOL EVOL, P5; ROSE MR, 1982, AM ZOOL; Roughgarden J, 1977, Science, V196, P51, DOI 10.1126/science.196.4285.51; SALE PF, 1975, ECOLOGY, V56, P1343, DOI 10.2307/1934701; SANDERS HL, 1979, SARSIA, V64, P1; SCHOENER TW, 1974, SCIENCE, V185, P27, DOI 10.1126/science.185.4145.27; Sharpe FR, 1911, PHILOS MAG, V21, P435, DOI 10.1080/14786440408637050; Smith RL, 1980, ECOLOGY FIELD BIOL; SNELL TW, 1978, OECOLOGIA, V32, P119, DOI 10.1007/BF00344696; SOUSA WP, 1979, ECOLOGY, V60, P1225, DOI 10.2307/1936969; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; WIENS JA, 1977, AM SCI, V65, P590; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 83 100 101 3 21 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 0003-0147 AM NAT Am. Nat. 1982 120 3 317 339 10.1086/283993 23 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology PE800 WOS:A1982PE80000003 2018-11-12 J CHARNOV, EL CHARNOV, EL NATURAL-SELECTION AND SEX CHANGE IN PANDALID SHRIMP - TEST OF A LIFE-HISTORY THEORY AMERICAN NATURALIST English Article CHARNOV, EL (reprint author), UNIV UTAH,DEPT BIOL,SALT LAKE CITY,UT 84112, USA. ABRAMSON NJ, 1972, US FISH B, V70, P1021; ALLEN JA, 1959, J MAR BIOL ASSOC UK, V38, P189, DOI 10.1017/S002531540001568X; ALLEN JA, 1963, J MAR BIOL ASSOC UK, V43, P665, DOI 10.1017/S0025315400025601; Aoto T., 1952, Journal of the Faculty of Science Hokkaido University Zoology, V11, P1; APPOLONIO S, 1969, NO SHRIMP PANDALUS B; Bacci G., 1965, SEX DETERMINATION; Beverton R. J. H., 1963, Rapport Conseil Exploration Mer, V154, P44; Beverton R. J. H., 1959, CIBA FDN C AGEING, V5, P142, DOI DOI 10.1002/9780470715253.CH10; BEVERTON RJH, 1957, 19 MIN AGR FISH FOOD; BUTLER TH, 1964, J FISH RES BOARD CAN, V21, P1403, DOI 10.1139/f64-121; CHARNOV EL, 1976, NATURE, V263, P125, DOI 10.1038/263125a0; CHARNOV EL, 1977, NATURE, V266, P828, DOI 10.1038/266828a0; CHARNOV EL, 1978, SCIENCE, V200, P204, DOI 10.1126/science.200.4338.204; CHARNOV EL, 1979, AM NAT, V113; DIXON WJ, 1970, BMD BIOMEDICAL COMPU; Fisher R. A., 1958, GENETICAL THEORY NAT; FOX WW, 1972, THESIS U WASHINGTON; GEIBEL JJ, 1976, CALIF FISH GAME, V62, P255; GHISELIN MT, 1969, Q REV BIOL, V44, P189, DOI 10.1086/406066; GHISELIN MT, 1974, EC NATURE EVOLUTION; GIESE A, 1975, REPRODUCTION MARINE, V3; GIESE AC, 1974, REPRODUCTION MARINE, V1; GIESE AC, 1975, REPRODUCTION MARINE, V2; GIESE AC, 1977, REPRODUCTION MARINE, V4; GOTSHALL DW, 1972, CALIF DEP FISH GAME, V155, P1; GUMBEL EJ, 1958, STATISTICS EXTREMES; HAYNES EB, 1969, T AM FISH SOC, V98, P60, DOI 10.1577/1548-8659(1969)98[60:BOTNSP]2.0.CO;2; HESLOPHARRISON J, 1972, PLANT PHYSIOL, V6, P133; Hjort J., 1938, HVALRADETS SKRIFTER, V17, P1; HOAGLAND KE, 1978, MALACOLOGIA, V17, P365; HORSTED SA, 1956, MEDD DAN FISK HAV, V1, P118; IVANOV BG, 1969, FAO FISH REP, V57, P800; JENSEN J. P., 1958, MEDDEL DANMARKS FISK OG HAVUNDERSOG NY SER, V2, P1; Keyfitz N., 1968, INTRO MATH POPULATIO; Kubo I., 1951, Journal of the Tokyo University of Fisheries, V38, P1; LEIGH EG, 1976, P NATL ACAD SCI USA, V73, P3656, DOI 10.1073/pnas.73.10.3656; Levins R., 1968, EVOLUTION CHANGING E; Marshall A. J., 1964, INTERSEXUALITY VERTE, P145; MISTAKIDIS M. N., 1957, MIN AGRIC FISH AND FOOD GT BRIT FISH INVEST, V21 Ser. II, P1; Palenichko Z. G., 1941, ZOOLOGICHESK ZHUMAL [ZOOL JOUR], V20, P398; RAO P V, 1968, FAO (Food and Agriculture Organization of the United Nations) Fisheries Reports, V57, P285; RASMUSSEN B, 1953, REP NORW FISH MAR IN, V10, P160; Reinboth R., 1975, INTERSEXUALITY ANIMA; Scrivener J.C., 1971, 241 FISH RES BOARD C; SEBER GAF, 1973, ESTIMATION ANIMAL AB; SMITH JM, 1976, AM SCI, V64, P41; Van den Ende H, 1976, SEXUAL INTERACTIONS; WARNER RR, 1975, AM NAT, V109, P61, DOI 10.1086/282974; WARNER RR, 1975, SCIENCE, V190, P633, DOI 10.1126/science.1188360; 1968 FAO WORLD SCI C 50 94 95 1 15 UNIV CHICAGO PRESS CHICAGO 5720 S WOODLAWN AVE, CHICAGO, IL 60637 0003-0147 AM NAT Am. Nat. 1979 113 5 715 734 10.1086/283428 20 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology GV127 WOS:A1979GV12700007 2018-11-12