PT AU BA BE GP AF BF CA TI SO SE BS LA DT CT CY CL SP HO DE ID AB C1 RP EM RI OI FU FX CR NR TC Z9 U1 U2 PU PI PA SN EI BN J9 JI PD PY VL IS PN SU SI MA BP EP AR DI D2 EA EY PG WC SC GA UT PM OA HC HP DA J Kamilar, JM; Bribiescas, RG; Bradley, BJ Kamilar, Jason M.; Bribiescas, Richard G.; Bradley, Brenda J. Is group size related to longevity in mammals? BIOLOGY LETTERS English Article lifespan; senescence; life history; predation; sociality PARASITE SPECIES RICHNESS; NORTH-AMERICAN BIRDS; LIFE-HISTORY; ECOLOGY; SENESCENCE; EVOLUTION; POPULATIONS; METABOLISM; SOCIALITY; SELECTION Life-history theory predicts that reduced extrinsic risk of mortality should increase species longevity over evolutionary time. Increasing group size should reduce an individual's risk of predation, and consequently reduce its extrinsic risk of mortality. Therefore, we should expect a relationship between group size and maximum longevity across species, while controlling for well-known correlates of longevity. We tested this hypothesis using a dataset of 253 mammal species and phylogenetic comparative methods. We found that group size was a poor predictor of maximum longevity across all mammals, as well as within primates and rodents. We found a weak but significant group-size effect on artiodactyl longevity, but in a negative direction. Body mass was consistently the best predictor of maximum longevity, which may be owing to lower predation risk and/or lower basal metabolic rates for large species. Artiodactyls living in large groups may exhibit higher rates of extrinsic mortality because of being more conspicuous to predators in open habitats, resulting in shorter lifespans. [Kamilar, Jason M.; Bribiescas, Richard G.; Bradley, Brenda J.] Yale Univ, Dept Anthropol, New Haven, CT 06520 USA; [Kamilar, Jason M.; Bradley, Brenda J.] Yale Univ, Yale Mol Anthropol Lab, New Haven, CT 06520 USA; [Bribiescas, Richard G.] Yale Univ, Yale Reprod Ecol Lab, New Haven, CT 06520 USA Kamilar, JM (reprint author), Yale Univ, Dept Anthropol, New Haven, CT 06520 USA. jason.kamilar@yale.edu Kamilar, Jason/E-1990-2011 Kamilar, Jason/0000-0001-6082-9396 Natural Environment Research Council [NE/D010020/1] Alexander R.D., 1974, Annual Rev Ecol Syst, V5, P325, DOI 10.1146/annurev.es.05.110174.001545; Altizer S, 2003, ANNU REV ECOL EVOL S, V34, P517, DOI 10.1146/annurev.ecolsys.34.030102.151725; AUSTAD SN, 1991, J GERONTOL, V46, pB47, DOI 10.1093/geronj/46.2.B47; Beauchamp G, 2010, BIOL LETTERS, V6, P42, DOI 10.1098/rsbl.2009.0691; Bininda-Emonds ORP, 2007, NATURE, V446, P507, DOI 10.1038/nature05634; Blumstein DT, 2008, BIOL LETTERS, V4, P146, DOI 10.1098/rsbl.2007.0606; Blumstein DT, 2006, ANIM BEHAV, V71, P389, DOI 10.1016/j.anbehav.2005.05.010; Burnham K.P., 2003, MODEL SELECTION MULT; Clutton-Brock T, 2002, SCIENCE, V296, P69, DOI 10.1126/science.296.5565.69; Ebensperger LA, 2006, BEHAV ECOL, V17, P410, DOI 10.1093/beheco/arj048; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Gaillard JM, 2003, POPUL DEV REV, V29, P39; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; Jones Kate E., 2009, Ecology (Washington D C), V90, P2648, DOI 10.1890/08-1494.1; Jullien M, 2000, ECOLOGY, V81, P3416, DOI 10.1890/0012-9658(2000)081[3416:TSVOFI]2.0.CO;2; Kamilar J. M., 2008, AM J PRIMATOL, V70, P1, DOI DOI 10.1002/AJP.20553; Kamilar JM, 2009, AM J PHYS ANTHROPOL, V139, P382, DOI 10.1002/ajpa.20993; MADDISON WP, 2007, MESQUITE MODULAR SYS; MOLVAR EM, 1994, J MAMMAL, V75, P621, DOI 10.2307/1382509; Morand S, 2000, P ROY SOC B-BIOL SCI, V267, P1999, DOI 10.1098/rspb.2000.1241; Munshi-South J, 2006, AUK, V123, P108, DOI 10.1642/0004-8038(2006)123[0108:DILSIP]2.0.CO;2; Nunn CL, 2003, AM NAT, V162, P597, DOI 10.1086/378721; Ricklefs RE, 2008, FUNCT ECOL, V22, P379, DOI 10.1111/j.1365-2435.2008.01420.x; Shattuck MR, 2010, P NATL ACAD SCI USA, V107, P4635, DOI 10.1073/pnas.0911439107; Wasser DE, 2010, J ZOOL, V280, P103, DOI 10.1111/j.1469-7998.2009.00671.x; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Wilkinson GS, 2002, AGING CELL, V1, P124, DOI 10.1046/j.1474-9728.2002.00020.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 29 20 20 2 51 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 BIOL LETTERS Biol. Lett. DEC 23 2010 6 6 736 739 10.1098/rsbl.2010.0348 4 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 678TO WOS:000284104000005 20462887 Bronze, Green Published 2018-11-12 J Ansari, S; Daehler, CC Ansari, Shahin; Daehler, Curtis C. Life history variation in a temperate plant invader, Verbascum thapsus along a tropical elevational gradient in Hawaii BIOLOGICAL INVASIONS English Article Elevation; Life history; Montane; Plant invasion; Subalpine; Threshold size; Verbascum thapsus COMMON MULLEIN; ALTITUDINAL GRADIENT; POPULATION-DYNAMICS; CIRSIUM-VULGARE; OLD-FIELD; SIZE; INVASIONS; REPRODUCTION; BIOLOGY; WEED Few studies have examined the life history of temperate plant invaders in the tropics. Temperate invaders that utilize seasonal cues to influence their life histories may be expected to behave differently in the tropics. This study examined variation in life history in an invading temperate weed, Verbascum thapsus, across an elevation gradient (1,690-2,720 m) along the montane and subalpine slopes of Mauna Kea, Hawaii. Over 7,000 seedlings were marked and monitored over a period of 3 years. Germination, survival, growth, and reproduction in V. thapsus varied among sites along the elevational gradient. Compared to plants at lower elevations, those at higher elevation sites (>2,000 m) had lower early seedling survival, higher established rosette survival, higher vegetative growth rates, higher threshold sizes for flowering, and commonly lived more than 3 years before flowering. The abundance of competing vegetation generally decreased with elevation, and this may drive variation in V. thapsus survival and growth. Size-dependent survival appears to play a major role in the selection for smaller size at first flowering and shorter generation time at lower elevations. This pattern is opposite to that reported in temperate mountains where high elevation plants flower sooner and at smaller size, but both patterns appear consistent with general life history theory for biennials. Due to novel biotic and climatic interactions in the tropics, predictions of growth patterns and invasion dynamics for temperate weeds in the tropics can be misleading when based on the plant's behavior in temperate systems. [Ansari, Shahin] SWCA Environm Consultants, Honolulu, HI 96813 USA; [Daehler, Curtis C.] Univ Hawaii, Dept Bot, Honolulu, HI 96822 USA Ansari, S (reprint author), SWCA Environm Consultants, 201 Merchant St, Honolulu, HI 96813 USA. sansari@swca.com University of Hawaii at Manoa We would like to thank Momoka Yao, Pirjo Dewinkle, and Lauren Weisenberger for helping with fieldwork and Ryan Taira for creating the distribution map. This research was supported by a grant from the Ecology, Evolution, and Conservation Biology Program at the University of Hawaii at Manoa. ABRAHAMSON WG, 1973, AM NAT, V107, P651, DOI 10.1086/282864; Alexander JM, 2009, ECOLOGY, V90, P612, DOI 10.1890/08-0453.1; ANSARI S, 2007, THESIS U HAWAII MANO; APHALO PJ, 1995, FUNCT ECOL, V9, P5, DOI 10.2307/2390084; Arevalo JR, 2005, PERSPECT PLANT ECOL, V7, P185, DOI 10.1016/j.ppees.2005.09.003; Ballare CL, 1999, TRENDS PLANT SCI, V4, P97, DOI 10.1016/S1360-1385(99)01383-7; BALLARE CL, 1987, PLANT CELL ENVIRON, V10, P551, DOI 10.1111/1365-3040.ep11604091; BULLOCK JM, 1994, J ECOL, V82, P101, DOI 10.2307/2261390; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Crawley MJ, 1996, PHILOS T ROY SOC B, V351, P1251, DOI 10.1098/rstb.1996.0108; Daehler CC, 2005, PERSPECT PLANT ECOL, V7, P203, DOI 10.1016/j.ppees.2005.08.002; Daehler CC, 1998, BIOL CONSERV, V84, P167, DOI 10.1016/S0006-3207(97)00096-7; DAVIS RM, 1969, B TORREY BOT CLUB, V96, P660, DOI 10.2307/2483546; DEJONG TJ, 1989, ACTA BOT NEERL, V38, P41, DOI 10.1111/j.1438-8677.1989.tb01911.x; DEJONG TJ, 1987, VEGETATIO, V70, P149; EHRLEN J, 1999, LIFE HIST EVOLUTION; Gagne W. C., 1990, MANUAL FLOWERING PLA, P45; Gerlach JD, 2003, ECOL APPL, V13, P167, DOI 10.1890/1051-0761(2003)013[0167:TLHCOI]2.0.CO;2; GLIER JH, 1973, CRYOBIOLOGY, V10, P328, DOI 10.1016/0011-2240(73)90051-5; GROSS KL, 1980, J ECOL, V68, P919, DOI 10.2307/2259465; GROSS KL, 1981, OECOLOGIA, V48, P209, DOI 10.1007/BF00347966; GROSS KL, 1978, CAN J PLANT SCI, V58, P401, DOI 10.4141/cjps78-062; GROSS KL, 1982, ECOLOGY, V63, P921, DOI 10.2307/1937232; JUVIK JO, 1992, ALIEN PLANT INVASION, P254; KACHI N, 1985, J ECOL, V73, P887, DOI 10.2307/2260155; KLINKHAMER PGL, 1991, OIKOS, V61, P88, DOI 10.2307/3545410; Korner C, 1999, ALPINE PLANT LIFE; LACEY EP, 1986, TRENDS ECOL EVOL, V1, P72, DOI 10.1016/0169-5347(86)90021-2; Loope LL, 1992, ALIEN PLANT INVASION, P551; Mack RN, 1996, BIOL CONSERV, V78, P107, DOI 10.1016/0006-3207(96)00021-3; Metcalf JC, 2003, TRENDS ECOL EVOL, V18, P471, DOI 10.1016/S0169-5347(03)00162-9; Newsome A.E., 1986, P1; PARHAM BEV, 1976, COMMON WEEDS NZ ILLU; Parker IM, 2003, CONSERV BIOL, V17, P59, DOI 10.1046/j.1523-1739.2003.02019.x; Pauchard A, 2004, CONSERV BIOL, V18, P238, DOI 10.1111/j.1523-1739.2004.00300.x; POLUNIN O, 1969, FLOWERS EUROPE; PYSEK P, 1995, PLANT INVASIONS, P39; Reichard SH, 1997, CONSERV BIOL, V11, P193, DOI 10.1046/j.1523-1739.1997.95473.x; REINARTZ JA, 1984, J ECOL, V72, P927, DOI 10.2307/2259541; REINARTZ JA, 1984, J ECOL, V72, P913, DOI 10.2307/2259540; REINARTZ JA, 1984, J ECOL, V72, P897, DOI 10.2307/2259539; REJMANEK M, 1995, PLANT INVASIONS, P3; Roy J, 1990, BIOL INVASIONS EUROP, P335; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; SEMENZA RJ, 1978, WEED SCI, V26, P577; Sutherland S, 2004, OECOLOGIA, V141, P24, DOI 10.1007/s00442-004-1628-x; SVABODA J, 1987, ARCTIC ALPINE RES, V19, P373; Tassin J, 2003, REV ECOL-TERRE VIE, V58, P257; Tutin T. G., 1972, FLORA EUROPEA, V3; Wesselingh RA, 1997, ECOLOGY, V78, P2118, DOI 10.1890/0012-9658(1997)078[2118:TSFFID]2.0.CO;2; WESTER L, 1983, J BIOGEOGR, V10, P307, DOI 10.2307/2844740; WILLIAMS GJ, 1976, OECOLOGIA, V25, P47, DOI 10.1007/BF00345033; Williamson MH, 1996, BIOL CONSERV, V78, P163, DOI 10.1016/0006-3207(96)00025-0 53 14 15 1 28 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 1387-3547 BIOL INVASIONS Biol. Invasions DEC 2010 12 12 SI 4033 4047 10.1007/s10530-010-9810-z 15 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 711ID WOS:000286581800010 2018-11-12 J Janowitz, SA; Fischer, K Janowitz, Susann A.; Fischer, Klaus Costing reproduction: effects of mating opportunity on mating success in male Bicyclus anynana butterflies BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Cost of mating; Life history theory; Residual reproductive value; Sex ratio; Sexual selection; Trade-off CONDITION DEPENDENCE; ONTHOPHAGUS-BINODIS; CERATITIS-CAPITATA; FIGHTING BEHAVIOR; FEMALE LONGEVITY; MATE ASSESSMENT; OLDER MALES; EVOLUTION; COURTSHIP; PLASTICITY It is frequently assumed that males have an almost unlimited reproductive capacity, while access to receptive females is typically limiting. Consequently, sexual selection is expected to favor vigorous courtship behavior in males. If such behavior is associated with non-trivial costs, ample current mating opportunities should be accompanied by a reduction in future mating vigor. To test this hypothesis, three treatments differing in sex ratio were established using the tropical butterfly Bicyclus anynana: 50 males each were housed either with 0, 25, or 50 females. Mating trials involving the competition among males from each treatment for a single virgin female were carried out on days 3, 9, and 15 after allocation to treatments. While there was no difference on day 3, prior mating opportunity clearly reduced mating success on days 9 and 15, being lowest if identical numbers of males and females were housed together. This finding suggests accumulating costs associated with high courtship and/or mating activity. Further, older males were more active and initiated copulation earlier than the younger ones, consistent with the residual reproductive value hypothesis. We found no evidence for a survival or fertility cost of mating. [Janowitz, Susann A.; Fischer, Klaus] Ernst Moritz Arndt Univ Greifswald, Inst Zool, D-17489 Greifswald, Germany; [Janowitz, Susann A.; Fischer, Klaus] Ernst Moritz Arndt Univ Greifswald, Zool Museum, D-17489 Greifswald, Germany Fischer, K (reprint author), Ernst Moritz Arndt Univ Greifswald, Inst Zool, Johann Sebastian Bach Str 11-12, D-17489 Greifswald, Germany. klaus.fischer@uni-greifswald.de Greifswald University This study was supported by a start-up fund from Greifswald University. We thank Kristin Franke for help with parts of the experiments and two anonymous reviewers for valuable comments on this paper. Andersson M., 1994, SEXUAL SELECTION; ARNQVIST G, 1992, ANIM BEHAV, V43, P559, DOI 10.1016/0003-3472(92)90079-O; Barnes AI, 2003, ANIM BEHAV, V66, P199, DOI 10.1006/anbe.2003.2122; Bissoondath CJ, 1996, BEHAV ECOL SOCIOBIOL, V39, P285, DOI 10.1007/s002650050291; Brakefield Paul M., 1997, V83, P65; Brakefield PM, 2001, J EVOLUTION BIOL, V14, P148, DOI 10.1046/j.1420-9101.2001.00248.x; BRAKEFIELD PM, 1991, ECOL ENTOMOL, V16, P291, DOI 10.1111/j.1365-2311.1991.tb00220.x; Chapman T, 1998, P ROY SOC B-BIOL SCI, V265, P1879, DOI 10.1098/rspb.1998.0516; Cordts R, 1996, ANIM BEHAV, V52, P269, DOI 10.1006/anbe.1996.0172; ENQUIST M, 1990, ANIM BEHAV, V39, P1, DOI 10.1016/S0003-3472(05)80721-3; Ferkau C, 2006, ETHOLOGY, V112, P1117, DOI 10.1111/j.1439-0310.2006.01266.x; Fischer K, 2008, P ROY SOC B-BIOL SCI, V275, P1517, DOI 10.1098/rspb.2007.1455; Fischer K, 2006, J INSECT BEHAV, V19, P657, DOI 10.1007/s10905-006-9057-9; Fischer K, 2007, ECOL ENTOMOL, V32, P674, DOI 10.1111/j.1365-2311.2007.00922.x; FOWLER K, 1989, NATURE, V338, P760, DOI 10.1038/338760a0; Gaskin T, 2002, ANIM BEHAV, V63, P121, DOI 10.1006/anbe.2001.1896; Geister TL, 2007, BEHAV ECOL, V18, P658, DOI 10.1093/beheco/arm024; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Iyengar VK, 2009, BEHAV ECOL SOCIOBIOL, V63, P847, DOI 10.1007/s00265-009-0724-7; JOHNSTONE RA, 1995, J THEOR BIOL, V177, P87, DOI 10.1016/S0022-5193(05)80006-2; Joron M, 2003, NATURE, V424, P191, DOI 10.1038/nature01713; Kemp DJ, 2006, BIOL J LINN SOC, V88, P565, DOI 10.1111/j.1095-8312.2006.00643.x; Kemp DJ, 2001, BEHAV ECOL SOCIOBIOL, V49, P429, DOI 10.1007/s002650100318; Kemp DJ, 2002, BEHAV ECOL, V13, P456, DOI 10.1093/beheco/13.4.456; Kotiaho JS, 2000, BEHAV ECOL SOCIOBIOL, V48, P188, DOI 10.1007/s002650000221; Kotiaho JS, 2002, BEHAV ECOL, V13, P791, DOI 10.1093/beheco/13.6.791; Kotiaho JS, 2003, J INSECT PHYSIOL, V49, P817, DOI 10.1016/S0022-1910(03)00117-3; Larsen T., 1991, BUTTERFLIES KENYA TH; Lewis Z, 2007, J INSECT BEHAV, V20, P201, DOI 10.1007/s10905-007-9075-2; Lyytinen A, 2004, P ROY SOC B-BIOL SCI, V271, P279, DOI 10.1098/rspb.2003.2571; Marcotte M, 2005, J INSECT PHYSIOL, V51, P537, DOI 10.1016/j.jinsphys.2004.12.009; Martin OY, 2004, J EVOLUTION BIOL, V17, P357, DOI 10.1046/j.1420-9101.2003.00668.x; Nieberding CM, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002751; PARKER GA, 1974, J THEOR BIOL, V47, P223, DOI 10.1016/0022-5193(74)90111-8; Paukku S, 2005, J INSECT PHYSIOL, V51, P1220, DOI 10.1016/j.jinsphys.2005.06.012; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Robertson KA, 2005, P ROY SOC B-BIOL SCI, V272, P1541, DOI 10.1098/rspb.2005.3142; Roff D. A., 2002, LIFE HIST EVOLUTION; Simmons LW, 2007, J EVOLUTION BIOL, V20, P488, DOI 10.1111/j.1420-9101.2006.01274.x; Simmons LW, 2001, J EVOLUTION BIOL, V14, P585, DOI 10.1046/j.1420-9101.2001.00309.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steigenga MJ, 2005, J EVOLUTION BIOL, V18, P281, DOI 10.1111/j.1420-9101.2004.00855.x; SVARD L, 1989, BEHAV ECOL SOCIOBIOL, V24, P395, DOI 10.1007/BF00293267; THORNHILL R, 1980, ANIM BEHAV, V28, P52, DOI 10.1016/S0003-3472(80)80007-8; Thornhill R., 1983, EVOLUTION INSECT MAT; van't Hof AE, 2005, MOL ECOL NOTES, V5, P169, DOI 10.1111/j.1471-8268.2005.00870.x; WEDELL N, 1992, BEHAV ECOL SOCIOBIOL, V31, P301; WINDIG JJ, 1994, ECOL ENTOMOL, V19, P285, DOI 10.1111/j.1365-2311.1994.tb00420.x; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3 49 16 16 0 30 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. DEC 2010 64 12 1999 2006 10.1007/s00265-010-1011-3 8 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology 680WN WOS:000284268300009 2018-11-12 J Moiroux, J; Le Lann, C; Seyahooei, MA; Vernon, P; Pierre, JS; Van Baaren, J; Van Alphen, JJM Moiroux, Joffrey; Le Lann, Cecile; Seyahooei, Majeed A.; Vernon, Philippe; Pierre, Jean-Sebastien; Van Baaren, Joan; Van Alphen, Jacques J. M. Local adaptations of life-history traits of a Drosophila parasitoid, Leptopilina boulardi: does climate drive evolution? ECOLOGICAL ENTOMOLOGY English Article Life-history theory; parasitoids; precipitation; reproductive strategies; resource distribution; temperature; trade-offs THERMAL ADAPTATION; STRESS RESISTANCE; ADULT DROSOPHILA; CLINAL VARIATION; ASOBARA TABIDA; BODY-SIZE; MELANOGASTER; TEMPERATURE; POPULATIONS; PLASTICITY 2. We compared life-history traits of five populations of Leptopilina boulardi, a Drosophila parasitoid, originating from contrasting climates. Referring to cline studies, we hypothesised shorter lifespan, earlier reproduction, and lower lipid content in populations from the hottest and driest areas if life histories have been selected in response to temperature and/or humidity. 3. Our results are opposite to these predictions. Females from humid and mild climates invested more in early reproduction and lived for fewer days than females from dry and hot areas, which were synovigenic (i.e. they matured additional eggs during adult life) and able to synthesise lipids during adult life. 4. We suggest that life histories are more adapted to host distribution than to climatic factors. Drosophila patches are more abundant in the humid area, allowing the parasitoids to spend less energy and time finding hosts. This may result in selection for early reproduction traded-off against longevity. In the hot and dry climate, females have to fly large distances to find host patches. Synovigeny, a long lifespan, lipogenesis, and high dispersal ability may be adaptive there. This is the first time that between-population differences in the ability to synthesise lipids have been described in parasitoids. [Moiroux, Joffrey] Univ Rennes 1, CNRS, ECOBIO, UMR 6553, F-35042 Rennes, France; [Moiroux, Joffrey; Seyahooei, Majeed A.; Van Alphen, Jacques J. M.] Leiden Univ, Inst Biol, Van der Klaauw Lab, Leiden, Netherlands; [Vernon, Philippe] Univ Rennes 1, ECOBIO, UMR 6553, Paimpoint, France Moiroux, J (reprint author), Univ Rennes 1, CNRS, ECOBIO, UMR 6553, 263 Ave Gen Leclerc,CS 74205,Campus Beaulieu, F-35042 Rennes, France. joffrey.moiroux@univ-rennes1.fr Le Lann, Cecile/C-1005-2013; Askari Seyahooei, Majeed/S-6557-2016 Le Lann, Cecile/0000-0003-4719-3228; Askari Seyahooei, Majeed/0000-0002-6219-749X; Moiroux, Joffrey/0000-0002-0132-3763 Ministere de l'Enseignement Superieur et de la Recherche This research was supported by the Ministere de l'Enseignement Superieur et de la Recherche (grant to Joffrey Moiroux) and is part of the Marie Curie excellence chair COMPAREVOL (http://comparevol.univ-rennes1.fr/), ECOCLIM programme founded by Region Bretagne and CLIMEVOL programme founded by the Agence Nationale de la Recherche. We are grateful to Jacintha Ellers for helpful comments on a previous version of this manuscript. AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705; Dahlgaard J, 2001, EVOLUTION, V55, P738, DOI 10.1554/0014-3820(2001)055[0738:BDIOAI]2.0.CO;2; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; Ellers J, 2004, EVOL ECOL RES, V6, P993; Ellers J, 1996, NETH J ZOOL, V46, P227; Ellers J, 1998, J ANIM ECOL, V67, P318, DOI 10.1046/j.1365-2656.1998.00195.x; Gilchrist GW, 2008, EVOL APPL, V1, P513, DOI 10.1111/j.1752-4571.2008.00040.x; Gilchrist GW, 2004, INTEGR COMP BIOL, V44, P461, DOI 10.1093/icb/44.6.461; Giron D, 2003, J INSECT PHYSIOL, V49, P141, DOI 10.1016/S0022-1910(02)00258-5; Griffiths JA, 2005, J EVOLUTION BIOL, V18, P213, DOI 10.1111/j.1420-9101.2004.00782.x; Hadley N. F., 1994, WATER RELATIONS TERR; Karan D, 1998, EVOLUTION, V52, P825, DOI 10.1111/j.1558-5646.1998.tb03706.x; KOPELMAN AH, 1986, ANN ENTOMOL SOC AM, V79, P808, DOI 10.1093/aesa/79.5.808; Liefting M, 2009, EVOLUTION, V63, P1954, DOI 10.1111/j.1558-5646.2009.00683.x; Mitrovski P, 2001, P ROY SOC B-BIOL SCI, V268, P2163, DOI 10.1098/rspb.2001.1787; Norry FM, 2006, GENETICA, V128, P81, DOI 10.1007/s10709-005-5537-7; Nunney L, 1997, EVOLUTION, V51, P1529, DOI 10.1111/j.1558-5646.1997.tb01476.x; *R DEV COR TEAM, 2007, R LANG ENV STAT COMP; Rivero A, 2002, EVOL ECOL RES, V4, P407; Schmidt PS, 2008, EVOLUTION, V62, P1204, DOI 10.1111/j.1558-5646.2008.00351.x; Schmidt PS, 2005, EVOLUTION, V59, P1721; SIBLY RM, 1994, FUNCT ECOL, V8, P486, DOI 10.2307/2390073; Sorensen JG, 2005, J EVOLUTION BIOL, V18, P829, DOI 10.1111/j.1420-9101.2004.00876.x; STARMER WT, 1989, BIOL J LINN SOC, V37, P247, DOI 10.1111/j.1095-8312.1989.tb01903.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Terblanche JS, 2004, J INSECT PHYSIOL, V50, P419, DOI 10.1016/j.jinsphys.2004.02.009; UNWIN DM, 1984, PHYSIOL ENTOMOL, V9, P115, DOI 10.1111/j.1365-3032.1984.tb00687.x; Varaldi J, 2003, SCIENCE, V302, P1930, DOI 10.1126/science.1088798; Vernon P, 1996, EXPERIENTIA, V52, P155, DOI 10.1007/BF01923362; Visser B, 2008, J INSECT PHYSIOL, V54, P1315, DOI 10.1016/j.jinsphys.2008.07.014; Visser B, 2010, P NATL ACAD SCI USA, V107, P8677, DOI 10.1073/pnas.1001744107 32 16 16 2 32 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0307-6946 ECOL ENTOMOL Ecol. Entomol. DEC 2010 35 6 727 736 10.1111/j.1365-2311.2010.01233.x 10 Entomology Entomology 679OH WOS:000284170200008 2018-11-12 J Jacobs, MW; Sherrard, KM Jacobs, Molly W.; Sherrard, Kristin M. Bigger is not always better: Offspring size does not predict growth or survival for seven ascidian species ECOLOGY English Article ascidian; growth rate; offspring size; size-quality tradeoff; survival; tunicate MARINE HARD SUBSTRATA; EGG SIZE; SEED MASS; SOLITARY ASCIDIANS; REPRODUCTIVE PATTERNS; ADAPTIVE SIGNIFICANCE; EVOLUTIONARY ECOLOGY; PSYCHOTRIA RUBIACEAE; COLONIAL STRATEGIES; CIONA-INTESTINALIS The presumed trade-off between offspring size and quality predicted by life history theory is often invoked to explain the wide range of propagule sizes observed in animals and plants. This trade-off is broadly supported by intraspecific studies but has been difficult to test in an interspecific context, particularly in animals. We tested the fitness consequences of offspring size both intra-and interspecifically for seven species of ascidians (sessile, suspension-feeding, marine invertebrates) whose offspring volumes varied over three orders of magnitude. We measured two major components of fitness, juvenile growth rates and survival, in laboratory and field experiments encompassing several food conditions. Contrary to the predictions of life history theory, larger offspring size did not result in higher rates of growth or survival, and large offspring did not perform better under nutritional stress, either intraspecifically or interspecifically. In fact, two of the four species with small offspring grew rapidly enough to catch up in size to the species with large offspring in as little as eight weeks, under wild-type food conditions. Trade-offs between growth potential and defense may overwhelm and obscure any trade-offs between offspring size and survival or growth rate. While large initial size may still confer a competitive advantage, we failed to detect any consequences of interspecific variation in initial size. This implies that larger offspring in these species, far from being inherently superior in growth or survival, require compensation in other aspects of life history if reproductive effort is to be efficient. Our results suggest that the importance of initial offspring size is context dependent and often overestimated relative to other life history traits. [Jacobs, Molly W.] Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA; [Jacobs, Molly W.; Sherrard, Kristin M.] Friday Harbor Labs, Friday Harbor, WA 98250 USA; [Sherrard, Kristin M.] Univ Chicago, Dept Mol Genet & Cell Biol, Chicago, IL 60637 USA Jacobs, MW (reprint author), McDaniel Coll, Dept Biol, 2 Coll Hill, Westminster, MD 21157 USA. mjacobs@mcdaniel.edu NSF GRF; NSF DDIG; SICB; University of Chicago; Sigma Xi; Alan J. Kohn Fellowship; NSF [OCE 0217304, IBN 0113603] Authorship order is alphabetical; authors contributed equally to this work. Comments from R. R. Strathmann, M. LaBarbera, C. Pfister, D. Grunbaum, J. Voigt, J. Ruesink, J. Pineda, M. Von Dassow, the WHOI Larval Biology discussion group, J. Havenhand, and four anonymous reviewers greatly improved this manuscript. V. Starczak assisted with statistical analyses. We thank R. R. Strathmann for assistance with experimental design, and the director and staff of Friday Harbor Laboratories for research space and support. Support was provided by an NSF GRF to M. W. Jacobs, an NSF DDIG, SICB Student Research Grant, the University of Chicago Hinds Fund, a Sigma Xi Grant in Aid of Research, and an Alan J. Kohn Fellowship to K. M. Sherrard, and NSF grants OCE 0217304 and IBN 0113603 to R. R. Strathmann. Andersson MH, 2009, HELGOLAND MAR RES, V63, P249, DOI 10.1007/s10152-009-0156-9; Berrill NJ, 1935, PHILOS T ROY SOC B, V225, P255, DOI 10.1098/rstb.1935.0013; BERRILL NJ, 1950, TUNICATA ACCOUNT BRI; Bolton TF, 1996, BIOL BULL, V190, P329, DOI 10.2307/1543025; CHRISTIANSEN FB, 1979, THEOR POPUL BIOL, V16, P267, DOI 10.1016/0040-5809(79)90017-0; Cloney R.A., 1987, P607; Dalling JW, 2002, J ECOL, V90, P557, DOI 10.1046/j.1365-2745.2002.00695.x; Edmunds PJ, 2006, P R SOC B, V273, P2275, DOI 10.1098/rspb.2006.3589; Einum S, 2004, EVOL ECOL RES, V6, P443; Emlet RB, 1997, EVOLUTION, V51, P141, DOI 10.1111/j.1558-5646.1997.tb02395.x; Fox CW, 2000, ECOLOGY, V81, P3029, DOI 10.1890/0012-9658(2000)081[3029:NSOSBE]2.0.CO;2; GARSTANG WALTER, 1928, QUART JOUR MICROS SCI, V72, P51; GREENE CH, 1983, MAR ECOL PROG SER, V13, P121, DOI 10.3354/meps013121; GROSS KL, 1984, J ECOL, V72, P369, DOI 10.2307/2260053; Harvey P. H., 1991, COMP METHOD EVOLUTIO; Hodkinson DJ, 1998, FUNCT ECOL, V12, P762, DOI 10.1046/j.1365-2435.1998.00256.x; HUGHES DJ, 1986, PHILOS T R SOC B, V313, P23, DOI 10.1098/rstb.1986.0023; JACKSON JBC, 1977, AM NAT, V111, P743, DOI 10.1086/283203; Jacobs MW, 2008, INVERTEBR BIOL, V127, P217, DOI 10.1111/j.1744-7410.2008.00125.x; KARLSSON B, 1984, OIKOS, V43, P376, DOI 10.2307/3544156; KOTT P, 1985, Memoirs of the Queensland Museum, V23, P1; LAMBERT CC, 1995, CAN J ZOOL, V73, P1666, DOI 10.1139/z95-198; LAMBERT G, 1968, BIOL BULL, V135, P296, DOI 10.2307/1539783; LAWRENCE JM, 1984, INT J INVER REP DEV, V7, P249, DOI 10.1080/01688170.1984.10510097; LEISHMAN M, 1995, FUNCTIONAL ECOLOGY, V8, P205; LEISHMAN MR, 1994, AM NAT, V143, P890, DOI 10.1086/285638; Levitan DR, 2000, AM NAT, V156, P175, DOI 10.1086/303376; LITVAK MK, 1992, MAR ECOL PROG SER, V81, P13, DOI 10.3354/meps081013; MARANON T, 1993, FUNCT ECOL, V7, P591, DOI 10.2307/2390136; Marshall DJ, 2006, ECOLOGY, V87, P214, DOI 10.1890/05-0350; Marshall DJ, 2005, AUSTRAL ECOL, V30, P275, DOI 10.1111/j.1442-9993.2005.01463.x; Marshall DJ, 2005, OIKOS, V108, P602, DOI 10.1111/j.0030-1299.2005.13588.x; Marshall DJ, 2003, MAR ECOL PROG SER, V259, P139, DOI 10.3354/meps259139; Marshall DJ, 2008, ADV MAR BIOL, V53, P1, DOI 10.1016/S0065-2881(07)53001-4; MAZER SJ, 1989, ECOL MONOGR, V59, P153, DOI 10.2307/2937284; MCCLINTOCK JB, 1986, COMP BIOCHEM PHYS A, V85, P341, DOI 10.1016/0300-9629(86)90259-8; McEdward LR, 1997, BIOL J LINN SOC, V60, P381; MCEDWARD LR, 1987, MAR ECOL PROG SER, V37, P159, DOI 10.3354/meps037159; Moles AT, 2003, J BIOGEOGR, V30, P105, DOI 10.1046/j.1365-2699.2003.00781.x; Moles AT, 2003, ECOLOGY, V84, P3148, DOI 10.1890/02-0662; Moran AL, 2001, ECOLOGY, V82, P1597, DOI 10.1890/0012-9658(2001)082[1597:OSAPIV]2.0.CO;2; Nakaya F, 2005, P ROY SOC B-BIOL SCI, V272, P1963, DOI 10.1098/rspb.2005.3143; Osman RW, 1996, INVERTEBR REPROD DEV, V30, P217, DOI 10.1080/07924259.1996.9672548; PAULAY G, 1985, J EXP MAR BIOL ECOL, V93, P1, DOI 10.1016/0022-0981(85)90145-5; Paz H, 2005, FUNCT ECOL, V19, P707, DOI 10.1111/j.1365-2435.2005.00984.x; Paz H, 1999, ECOLOGY, V80, P1594; PERRON FE, 1981, MAR BIOL, V61, P215, DOI 10.1007/BF00386662; PERRON FE, 1986, B MAR SCI, V39, P485; QIAN PY, 1991, J EXP MAR BIOL ECOL, V148, P11, DOI 10.1016/0022-0981(91)90143-K; Rasanen K, 2005, OECOLOGIA, V142, P546, DOI 10.1007/s00442-004-1762-5; Rees M, 1997, OIKOS, V78, P116, DOI 10.2307/3545807; Reitzel AM, 2005, J EXP MAR BIOL ECOL, V317, P189, DOI 10.1016/j.jembe.2004.11.018; RUSS GR, 1982, OECOLOGIA, V53, P12, DOI 10.1007/BF00377130; Ryland J.S., 1993, Oceanography and Marine Biology an Annual Review, V31, P445; Searle S.R., 1992, VARIANCE COMPONENTS; SEBENS KP, 1982, AM NAT, V120, P189, DOI 10.1086/283982; Sherrard KM, 2005, MAR ECOL PROG SER, V287, P127, DOI 10.3354/meps287127; Sherrard KM, 2005, MAR ECOL PROG SER, V287, P139, DOI 10.3354/meps287139; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; STONER DS, 1990, ECOLOGY, V71, P1682, DOI 10.2307/1937577; Strathmann MF, 1987, REPROD DEV MARINE IN; STRATHMANN RR, 1990, AM ZOOL, V30, P197; STRATHMANN RR, 1977, AM NAT, V111, P373, DOI 10.1086/283168; SVANE I, 1983, SARSIA, V68, P249, DOI 10.1080/00364827.1983.10420578; SWALLA BJ, 2000, SYST BIOL, V49, P122; Tarjuelo I, 2004, INVERTEBR BIOL, V123, P168; TEJEDO M, 1992, OECOLOGIA, V90, P294, DOI 10.1007/BF00317189; Turnbull LA, 1999, J ECOL, V87, P899, DOI 10.1046/j.1365-2745.1999.00405.x; Turon X, 2004, MOL PHYLOGENET EVOL, V33, P309, DOI 10.1016/j.ympev.2004.06.011; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; WESTOBY M, 1992, TRENDS ECOL EVOL, V7, P368, DOI 10.1016/0169-5347(92)90006-W; YOUNG CM, 1985, MAR BIOL, V84, P309, DOI 10.1007/BF00392501; YOUNG CM, 1986, MAR BIOL, V91, P513, DOI 10.1007/BF00392603 74 10 10 2 42 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 ECOLOGY Ecology DEC 2010 91 12 3598 3608 10.1890/09-2072.1 11 Ecology Environmental Sciences & Ecology 699AA WOS:000285635100021 21302831 2018-11-12 J Cox, RM; Parker, EU; Cheney, DM; Liebl, AL; Martin, LB; Calsbeek, R Cox, Robert M.; Parker, Elizabeth U.; Cheney, Diane M.; Liebl, Andrea L.; Martin, Lynn B.; Calsbeek, Ryan Experimental evidence for physiological costs underlying the trade-off between reproduction and survival FUNCTIONAL ECOLOGY English Article costs of reproduction; energy allocation; haematocrit; immune function; parasitemia; reproductive investment SEXUAL SIZE DIMORPHISM; EGG-PRODUCTION; IMMUNE-RESPONSE; EVOLUTIONARY ECOLOGY; ANOLIS LIZARDS; IMMUNOCOMPETENCE; TESTOSTERONE; HYPOTHESIS; SELECTION; PARASITES P>1. A central tenet of life-history theory is that investment in reproduction compromises survival. However, the underlying physiological mechanisms that link reproduction to survival are poorly understood, particularly in wild populations. 2. Previous experiments in the brown anole lizard (Anolis sagrei) show that the elimination of reproduction via surgical ovariectomy results in a dramatic increase in the survival of wild females. We hypothesized that this trade-off reflects underlying differences in energy allocation between reproduction and physiological processes that influence survival. 3. To test this hypothesis, we compared ovariectomized (OVX) females to reproductive controls (SHAM) with respect to four physiological parameters that are thought to influence survival: energy storage, haematocrit, immune function and parasitemia. 4. Consistent with previous studies, we found that OVX females exhibited increased survival and growth relative to reproductive SHAM females. At the end of the breeding season, OVX also exceeded SHAM with respect to energy storage, haematocrit and immune response to phytohemagglutinin challenge. 5. Contrary to our predictions, OVX were more likely than SHAM to exhibit high levels of parasitemia. However, growth and parasite load were positively correlated in OVX and negatively correlated in SHAM, suggesting that reproductive investment may compromise parasite tolerance rather than parasite resistance. 6. Collectively, our results provide direct experimental evidence that reproductive investment affects several key physiological traits that likely interact to influence survival in wild populations. [Cox, Robert M.; Parker, Elizabeth U.; Cheney, Diane M.; Calsbeek, Ryan] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA; [Liebl, Andrea L.; Martin, Lynn B.] Univ S Florida, Dept Integrat Biol, Tampa, FL USA Cox, RM (reprint author), Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA. robert.m.cox@dartmouth.edu Martin, Lynn/C-2037-2009 Martin, Lynn/0000-0002-5887-4937; Calsbeek, Ryan/0000-0002-9236-4092 National Science Foundation [DAB 0816862]; Howard Hughes Medical Institute; Dartmouth College; University of South Florida We thank B. Calsbeek, M. C. Duryea, A. Gasc, C. Keenan, and C. Palmer for assistance with field and laboratory work. We thank N. Bottomley of Regatta Point and R. Hart of February Point Resort Estates for permission to work on their property. Research was conducted under permits from the Bahamas Department of Agriculture and the Institutional Animal Care and Use Committee at Dartmouth College (protocol 07-02-03). This project was funded by awards from the National Science Foundation (DAB 0816862 to R. Calsbeek) and the Howard Hughes Medical Institute (E. Parker), and by start-up funding from Dartmouth College (R. Calsbeek) and the University of South Florida (L. Martin). ANDREWS R, 1974, ECOLOGY, V55, P1317, DOI 10.2307/1935459; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; Bonneaud C, 2003, AM NAT, V161, P367, DOI 10.1086/346134; Calisi RM, 2009, HORM BEHAV, V56, P1, DOI 10.1016/j.yhbeh.2009.02.010; Calsbeek R, 2008, EVOLUTION, V62, P1137, DOI 10.1111/j.1558-5646.2008.00356.x; Calsbeek R, 2008, J ANIM ECOL, V77, P103, DOI 10.1111/j.1365-2656.2007.01320.x; CHINZEI Y, 1985, J INSECT PHYSIOL, V31, P441, DOI 10.1016/0022-1910(85)90090-3; Cox RM, 2006, J ANIM ECOL, V75, P1361, DOI 10.1111/j.1365-2656.2006.01160.x; Cox RM, 2006, FUNCT ECOL, V20, P880, DOI 10.1111/j.1365-2435.2006.01177.x; Cox RM, 2009, J EVOLUTION BIOL, V22, P1586, DOI 10.1111/j.1420-9101.2009.01772.x; Cox RM, 2010, EVOLUTION, V64, P1321, DOI 10.1111/j.1558-5646.2009.00906.x; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; Demas GE, 1997, AM J PHYSIOL-REG I, V273, pR1631; DERICKSON WK, 1976, AM ZOOL, V16, P711; DUNLAP KD, 1993, COPEIA, P1045; French SS, 2009, INTEGR COMP BIOL, V49, pE59; French SS, 2007, AM NAT, V170, P79, DOI 10.1086/518569; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Hanssen SA, 2004, P ROY SOC B-BIOL SCI, V271, P925, DOI 10.1098/rspb.2004.2678; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hatle JD, 2008, EXP GERONTOL, V43, P900, DOI 10.1016/j.exger.2008.08.005; Hosken DJ, 2001, CURR BIOL, V11, pR379, DOI 10.1016/S0960-9822(01)00211-1; Kalmbach E, 2004, J AVIAN BIOL, V35, P501, DOI 10.1111/j.0908-8857.2004.03271.x; Kennedy MW, 2006, TRENDS ECOL EVOL, V21, P653, DOI 10.1016/j.tree.2006.09.017; Kilgas P, 2006, PHYSIOL BIOCHEM ZOOL, V79, P565, DOI 10.1086/502817; LANDWER AJ, 1994, OECOLOGIA, V100, P243, DOI 10.1007/BF00316951; LEE JC, 1989, COPEIA, P930, DOI 10.2307/1445979; Liebl AL, 2009, FUNCT ECOL, V23, P1091, DOI 10.1111/j.1365-2435.2009.01592.x; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Martin LB, 2003, P ROY SOC B-BIOL SCI, V270, P153, DOI 10.1098/rspb.2002.2185; Martin LB, 2006, FUNCT ECOL, V20, P290, DOI 10.1111/j.1365-2435.01094.x; Martin LB, 2008, PHILOS T R SOC B, V363, P321, DOI 10.1098/rstb.2007.2142; MILLET S, 2007, DEV COMP IMMUNOL, V31, P199; Moreno J, 1999, P ROY SOC B-BIOL SCI, V266, P1105, DOI 10.1098/rspb.1999.0750; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; NORRIS K, 1994, J ANIM ECOL, V63, P601, DOI 10.2307/5226; Olsson M, 2000, P ROY SOC B-BIOL SCI, V267, P2339, DOI 10.1098/rspb.2000.1289; Oppliger A, 2004, CAN J ZOOL, V82, P1713, DOI [10.1139/z04-152, 10.1139/Z04-152]; Partridge L, 2005, CELL, V120, P461, DOI 10.1016/j.cell.2005.01.026; Raberg L, 2009, PHILOS T R SOC B, V364, P37, DOI 10.1098/rstb.2008.0184; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff D. A., 2002, LIFE HIST EVOLUTION; Salvador A, 1996, BEHAV ECOL, V7, P145, DOI 10.1093/beheco/7.2.145; SCHALL JJ, 1982, SCIENCE, V217, P1057, DOI 10.1126/science.7112113; SCHALL JJ, 1992, OECOLOGIA, V92, P58, DOI 10.1007/BF00317262; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Staats CM, 1996, BIOTROPICA, V28, P388, DOI 10.2307/2389202; Stearns S. C., 1992, EVOLUTION LIFE HIST; Svensson E, 2001, P NATL ACAD SCI USA, V98, P12561, DOI 10.1073/pnas.211071298; Svensson EI, 2009, EVOLUTION, V63, P3124, DOI 10.1111/j.1558-5646.2009.00782.x; Wagner EC, 2008, J EXP BIOL, V211, P2960, DOI 10.1242/jeb.017897; WHITTIER JM, 1992, BIOL REPTILIA, V18, P24; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams TD, 2004, FUNCT ECOL, V18, P330, DOI 10.1111/j.0269-8463.2004.00829.x; Woodley SK, 1999, HORM BEHAV, V35, P205, DOI 10.1006/hbeh.1999.1514; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zera AJ, 2007, ANNU REV ECOL EVOL S, V38, P793, DOI 10.1146/annurev.ecolsys.38.091206.095615 59 69 74 1 76 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0269-8463 FUNCT ECOL Funct. Ecol. DEC 2010 24 6 1262 1269 10.1111/j.1365-2435.2010.01756.x 8 Ecology Environmental Sciences & Ecology 684XU WOS:000284589400012 Bronze 2018-11-12 J Kaptijn, R; Thomese, F; van Tilburg, TG; Liefbroer, AC Kaptijn, Ralf; Thomese, Fleur; van Tilburg, Theo G.; Liefbroer, Aart C. How Grandparents Matter Support for the Cooperative Breeding Hypothesis in a Contemporary Dutch Population HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article Allomothers; Cooperative breeding; Grandparents; Kin selection; Life history theory; Reproductive success CHILD-CARE; FERTILITY DECISIONS; HUMAN LONGEVITY; EVOLUTION; LIFE; KIN; EXPLANATION; MENOPAUSE; SURVIVAL; DEMAND Low birth rates in developed societies reflect women's difficulties in combining work and motherhood. While demographic research has focused on the role of formal childcare in easing this dilemma, evolutionary theory points to the importance of kin. The cooperative breeding hypothesis states that the wider kin group has facilitated women's reproduction during our evolutionary history. This mechanism has been demonstrated in pre-industrial societies, but there is no direct evidence of beneficial effects of kin's support on parents' reproduction in modern societies. Using three-generation longitudinal data anchored in a sample of grandparents aged 55 and over in 1992 in the Netherlands, we show that childcare support from grandparents increases the probability that parents have additional children in the next 8 to 10 years. Grandparental childcare provided to a nephew or niece of childless children did not significantly increase the probability that those children started a family. These results suggest that childcare support by grandparents can enhance their children's reproductive success in modern societies and is an important factor in people's fertility decisions, along with the availability of formal childcare. [Kaptijn, Ralf] Vrije Univ Amsterdam, Fac Social Sci, NL-1081 HV Amsterdam, Netherlands; [Liefbroer, Aart C.] Vrije Univ Amsterdam, Netherlands Interdisciplinary Demog Inst, Dept Social Demog, NL-1081 HV Amsterdam, Netherlands; [Liefbroer, Aart C.] Vrije Univ Amsterdam, Dept Social Res Methodol, NL-1081 HV Amsterdam, Netherlands Kaptijn, R (reprint author), Vrije Univ Amsterdam, Fac Social Sci, Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands. r.w.j.kaptijn@vu.nl van Tilburg, Theo/F-1269-2010; Thomese, Fleur/F-4803-2013 van Tilburg, Theo/0000-0002-1005-6732; Bettio F, 2004, FEM ECON, V10, P85, DOI 10.1080/1354570042000198245; Bianchi S. M., 2006, CHANGING RHYTHMS AM; Brame R, 1998, J QUANT CRIMINOL, V14, P245, DOI 10.1023/A:1023030312801; Cardia E, 2003, REV ECON DYNAM, V6, P431, DOI 10.1016/S1094-2025(03)00009-7; Crittenden AN, 2008, HUM NATURE-INT BIOS, V19, P249, DOI 10.1007/s12110-008-9043-3; Deeg DJH, 2002, J CLIN EPIDEMIOL, V55, P319, DOI 10.1016/S0895-4356(01)00475-9; Del Boca D, 2002, J POPUL ECON, V15, P549, DOI 10.1007/s001480100089; Draper D, 2008, HDB MULTILEVEL ANAL, P77, DOI [DOI 10.1007/978-0-387-73186-5_2, 10.1007/978-0-387-73186-5_2]; Euler HA, 1996, HUM NATURE-INT BIOS, V7, P39, DOI 10.1007/BF02733489; Gauthier A., 2005, NEW DEMOGRAPHIC REGI, P95; Grant J., 2004, LOW FERTILITY POPULA; Gray A, 2005, J SOC POLICY, V34, P557, DOI 10.1017/S0047279405009153; GRAY A, 2002, DEMAND SUPPLY CHILDC; Gurven M, 2006, P ROY SOC B-BIOL SCI, V273, P835, DOI 10.1098/rspb.2005.3380; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Hank K, 2003, J MARRIAGE FAM, V65, P584, DOI 10.1111/j.1741-3737.2003.00584.x; Hank K, 2009, J FAM ISSUES, V30, P53, DOI 10.1177/0192513X08322627; Hawkes K, 2003, AM J HUM BIOL, V15, P380, DOI 10.1002/ajhb.10156; Hawkes K, 2004, NATURE, V428, P128, DOI 10.1038/428128a; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hoem JM, 2008, DEMOGR RES, V19, P249, DOI 10.4054/DemRes.2008.19.10; HOX J.J., 2002, MULTILEVEL ANAL TECH; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Hrdy SB, 2005, GRANDMOTHERHOOD EVOL, P295; Johnson J. O., 2005, WHOS MINDING KIDS CH; Jones NGB, 2002, AM J HUM BIOL, V14, P184, DOI 10.1002/ajhb.10038; KNIPSCHEER CPM, 1995, LIVING ARRANGEMENTS; Kohli M., 1999, EUROPEAN SOC, V1, P81, DOI [DOI 10.1080/14616696.1999.10749926, 10.1080/14616696.1999.10749926]; Liao T. F., 1994, INTERPRETING PROBABI; Marlowe FW, 2003, EVOL HUM BEHAV, V24, P217, DOI 10.1016/S1090-5138(03)00014-X; Marlowe FW, 2001, CURR ANTHROPOL, V42, P755, DOI 10.1086/323820; McDonald P., 2000, J POPULATION RES, V17, P1, DOI DOI 10.1007/BF03029445; McDonald P, 2006, POPUL DEV REV, V32, P485, DOI 10.1111/j.1728-4457.2006.00134.x; Newson L, 2005, PERS SOC PSYCHOL REV, V9, P360, DOI 10.1207/s15327957pspr0904_5; Newson L, 2007, EVOL HUM BEHAV, V28, P199, DOI 10.1016/j.evolhumbehav.2007.01.003; Newson L, 2009, POPUL DEV REV, V35, P117, DOI 10.1111/j.1728-4457.2009.00263.x; Pollet T. V., 2006, J CULTURAL EVOLUTION, V4, P203, DOI DOI 10.1556/JCEP.4.2006.3-4.1; Pollet TV, 2009, J BIOSOC SCI, V41, P355, DOI 10.1017/S0021932009003307; Rasbash J., 2004, USERS GUIDE MLWIN; Robson SL, 2006, SCH AM RES, P17; Scelza BA, 2009, AM J HUM BIOL, V21, P448, DOI 10.1002/ajhb.20934; Sear R, 2008, HUM NATURE-INT BIOS, V19, P277, DOI 10.1007/s12110-008-9042-4; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; SETTERSTEN RA, 2007, INTERPERSONAL RELATI, V12, P3; Shanley DP, 2001, BIOESSAYS, V23, P282, DOI 10.1002/1521-1878(200103)23:3<282::AID-BIES1038>3.3.CO;2-0; SMITH JM, 1964, NATURE, V201, P1145, DOI 10.1038/2011145a0; TURKE PW, 1989, POPUL DEV REV, V15, P61, DOI 10.2307/1973405; Vandell DL, 2003, J MARRIAGE FAM, V65, P375, DOI 10.1111/j.1741-3737.2003.00375.x; Wheelock J, 2002, J SOC POLICY, V31, P441, DOI 10.1017/S0047279402006657 49 40 41 1 28 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. DEC 2010 21 4 393 405 10.1007/s12110-010-9098-9 13 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 689BY WOS:000284903500003 Other Gold, Green Published 2018-11-12 J Jonason, PK; Koenig, BL; Tost, J Jonason, Peter K.; Koenig, Bryan L.; Tost, Jeremy Living a Fast Life The Dark Triad and Life History Theory HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article Dark triad; Life history theory; Future discounting; Sex differences SINGLE-ITEM MEASURE; CONSTRUCT-VALIDITY; RISK-TAKING; K-FACTOR; PERSONALITY; STRATEGIES; SOCIOBIOLOGY; MACHIAVELLIANISM; INTELLIGENCE; PSYCHOPATHY The current research applied a mid-level evolutionary theory that has been successfully employed across numerous animal species-life history theory-in an attempt to understand the Dark Triad personality trait cluster (narcissism, psychopathy, and Machiavellianism). In Study 1 (N = 246), a measure of life history strategy was correlated with psychopathy, but unexpectedly with neither Machiavellianism nor narcissism. Study 2 (N = 321) replicated this overall pattern of results using longer, traditional measures of the Dark Triad traits and alternative, future-discounting indicators of life history strategy (a smaller-sooner, larger-later monetary dilemma and self-reported risk-taking behaviors). Additional findings suggested two sources of shared variance across the Dark Triad traits: confidence in predicting future outcomes and openness to short-term mating. [Jonason, Peter K.] Univ S Alabama, Dept Psychol, Mobile, AL 36688 USA; [Koenig, Bryan L.] Singapore Agcy Sci Technol & Res, Singapore 178903, Singapore; [Tost, Jeremy] New Mexico State Univ, Dept Psychol, Las Cruces, NM 88003 USA Jonason, PK (reprint author), Univ S Alabama, Dept Psychol, Life Sci Bldg,Room 320, Mobile, AL 36688 USA. pjonason@usouthal.edu Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Byrnes JP, 1999, PSYCHOL BULL, V125, P367, DOI 10.1037//0033-2909.125.3.367; CHRISTIE R, 1970, STUDIES MACHIAVELLIA; CRONBACH LJ, 1955, PSYCHOL BULL, V52, P281, DOI 10.1037/h0040957; ELLIS B, 1988, PERSONALITY INDIVIDU, V9, P697; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2010, PSYCHOL EMOT MOTIV A, P3; Frederick S, 2002, J ECON LIT, V40, P351, DOI 10.1257/002205102320161311; GEARY DC, 2005, ORIGIN MIND EVOLUTIO; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; Gosling SD, 2003, J RES PERS, V37, P504, DOI 10.1016/S0092-6566(03)00046-1; Green L, 1996, PSYCHOL AGING, V11, P79, DOI 10.1037//0882-7974.11.1.79; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Jakobwitz S, 2006, PERS INDIV DIFFER, V40, P331, DOI 10.1016/j.paid.2005.07.006; Jonason P. K., 2010, INDIVIDUAL DIFFERENC, V8, P111; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jonason PK, 2010, PERS INDIV DIFFER, V49, P606, DOI 10.1016/j.paid.2010.05.030; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones DN, 2007, CURR RES SOC PSYCHOL, V12, P186; Kirby KN, 1996, PSYCHON B REV, V3, P100, DOI 10.3758/BF03210748; Lee KB, 2005, PERS INDIV DIFFER, V38, P1571, DOI 10.1016/j.paid.2004.09.016; London H., 1973, PSYCHOL PERSUADER; MAC ARTHUR ROBERT H., 1967; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Myerson J, 2001, J EXP ANAL BEHAV, V76, P235, DOI 10.1901/jeab.2001.76-235; Olderbak S, 2009, PERS INDIV DIFFER, V46, P604, DOI 10.1016/j.paid.2008.12.019; Panksepp J., 1998, AFFECTIVE NEUROSCIEN; Paulhus D. L., MANUAL SELF IN PRESS; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; RASKIN R, 1988, J PERS SOC PSYCHOL, V54, P890, DOI 10.1037//0022-3514.54.5.890; Read D, 2004, ORGAN BEHAV HUM DEC, V94, P22, DOI 10.1016/j.obhdp.2004.01.002; Robins RW, 2001, PERS SOC PSYCHOL B, V27, P151, DOI 10.1177/0146167201272002; Rushton J. P., 1995, RACE EVOLUTION BEHAV; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; RUSHTON JP, 1987, ACTA GENET MED GEMEL, V36, P289, DOI 10.1017/S0001566000006048; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; STRATHMAN A, 1994, J PERS SOC PSYCHOL, V66, P742, DOI 10.1037/0022-3514.66.4.742; Thornhill R, 2004, EVOLUTIONARY PSYCHOLOGY, PUBLIC POLICY AND PERSONAL DECISIONS, P249; Trafimow D, 2003, PSYCHOL REV, V110, P526, DOI 10.1037/0033-295X.110.3.526; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Vernon PA, 2008, PERS INDIV DIFFER, V44, P445, DOI 10.1016/j.paid.2007.09.007; Wanous JP, 1996, PSYCHOL REP, V78, P631, DOI 10.2466/pr0.1996.78.2.631; Wilson E.O., 1975, P1; Wilson M, 2004, P ROY SOC B-BIOL SCI, V271, pS177, DOI 10.1098/rsbl.2003.0134 50 97 99 4 37 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. DEC 2010 21 4 428 442 10.1007/s12110-010-9102-4 15 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 689BY WOS:000284903500005 2018-11-12 J Scantlebury, M; McWilliams, MM; Marks, NJ; Dick, JTA; Edgar, H; Lutermann, H Scantlebury, M.; McWilliams, M. Maher; Marks, N. J.; Dick, J. T. A.; Edgar, H.; Lutermann, H. Effects of life-history traits on parasite load in grey squirrels JOURNAL OF ZOOLOGY English Article parasite; sexual selection; reproduction; testosterone; size dimorphism ALTERNATIVE REPRODUCTIVE TACTICS; SEXUAL SIZE DIMORPHISM; RED SQUIRRELS; BODY-MASS; GROUND-SQUIRRELS; IMMUNE DEFENSE; NATURAL-POPULATIONS; FLEA INFESTATION; SCIURUS-VULGARIS; HOST MORPHOLOGY Life-history theory stipulates that resources are limited and consequently investment in one trait (e.g. reproduction) compromises resources allocated to another (e.g. immune defence). Differential investment of resources can occur at the level of the individual (i.e. between reproductive status and body condition) as well as at higher levels such as between individuals of different ages or sexes. Male mammals generally invest resources to secure the greatest number of matings while females maximize their own fitness by allocating more resources to body maintenance, including immune function. Accordingly, sex biases in parasite loads appear common among mammal species and have been linked to sex differences in morphology (e.g. body size), behaviour (e.g. mate searches) and physiology (e.g. testosterone). We examined sex biases in parasite load and potential trade-offs between body condition, reproductive investment and immune function in grey squirrels Sciuris carolinensis, a species with a highly promiscuous mating system but no sexual size dimorphism. We found male-biased parasite loads for two of four parasites. The intensity of infection with fleas but not nematodes was affected by testis size. This suggests that behavioural traits may contribute to nematode load. Neither reproductive effort nor nematode infection influenced body condition for either sex but lactating females were in better condition than non-lactating females. Immune function, as measured by spleen mass, was positively correlated with body size and negatively with body condition. Nematode infection was associated with a reduction in spleen mass only in males. Thus, the effects of behavioural and physiological differences as well as sex on parasite load depend on the parasite species involved. This provides support for the hypothesis that males favour investment in mating effort at the expense of immune function. [Scantlebury, M.; McWilliams, M. Maher; Marks, N. J.; Dick, J. T. A.] Queens Univ Belfast, Sch Biol Sci, Ctr Med Biol, Belfast BT9 7BL, Antrim, North Ireland; [Edgar, H.] AFBI, Agri Food Biosci Inst, Vet Sci Div, Belfast, Antrim, North Ireland; [Lutermann, H.] Univ Pretoria, Dept Zool & Entomol, ZA-0002 Pretoria, South Africa Scantlebury, M (reprint author), Queens Univ Belfast, Sch Biol Sci, Ctr Med Biol, 97 Lisburn Rd, Belfast BT9 7BL, Antrim, North Ireland. m.scantlebury@qub.ac.uk Lutermann, Heike/A-4692-2008 Lutermann, Heike/0000-0002-7521-2302 Queen's University Belfast and Veterinary Sciences Division, Agri-Food Biosciences Institute, (AFBI), Stormont, Belfast, UK The research was supported by Queen's University Belfast and Veterinary Sciences Division, Agri-Food Biosciences Institute, (AFBI), Stormont, Belfast, UK to whom we are grateful. We would also like to thank Donald Whiteside from the Forest Service Northern Ireland and Laura Moore for assistance in the field and Eileen Harris from the Natural History Museum (London) for help in parasite identification. Bachman GC, 2003, J EXP BIOL, V206, P2373, DOI 10.1242/jeb.00467; BARNARD CJ, 1990, PARASITSIM HOST BEHA; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Becker CD, 1998, OIKOS, V81, P81, DOI 10.2307/3546470; BECKER CD, 1992, THESIS U ALBERTA EDM; Blanco G, 2001, BIOL J LINN SOC, V72, P279, DOI 10.1006/bijl.2000.0503; Boonstra R, 2008, GEN COMP ENDOCR, V158, P61, DOI 10.1016/j.ygcen.2008.05.004; Christe P, 2000, ECOL LETT, V3, P207; Clutton-Brock T.H., 1988, P325; Corbin E, 2008, MAMMAL REV, V38, P108, DOI 10.1111/j.1365-2907.2007.00112.x; Crawley M. J., 2007, R BOOK; Demas GE, 2005, P ROY SOC B-BIOL SCI, V272, P1845, DOI 10.1098/rspb.2005.3126; Deter J, 2007, INT J PARASITOL, V37, P813, DOI 10.1016/j.ijpara.2007.01.012; Devevey G, 2008, FUNCT ECOL, V22, P1091, DOI 10.1111/j.1365-2435.2008.01493.x; Fernandez-Llario P, 2004, EUR J WILDLIFE RES, V50, P13, DOI 10.1007/s10344-003-0028-6; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GARSIDE P, 1989, J HELMINTHOL, V63, P251, DOI 10.1017/S0022149X00009068; GITTLEMAN JL, 1988, AM ZOOL, V28, P863; Guinet C, 1998, CAN J ZOOL, V76, P1418, DOI 10.1139/cjz-76-8-1418; Gurnell J, 1996, J APPL ECOL, V33, P325, DOI 10.2307/2404754; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Hanssen SA, 2003, OECOLOGIA, V136, P457, DOI 10.1007/s00442-003-1282-8; HARISON A, 2010, OIKOS, V119, P1099; Hawlena H, 2006, FUNCT ECOL, V20, P1028, DOI 10.1111/j.1365-2435.2006.01190.x; Hawlena H, 2007, ETHOLOGY, V113, P394, DOI 10.1111/j.1439-0310.2007.01332.x; Hayssen V, 2008, J MAMMAL, V89, P852, DOI 10.1644/07-MAMM-A-217.1; Hopkins G., 1971, LEPTOPSYLLIDAE ANCIS, VV; Humphries MM, 1996, J ANIM ECOL, V65, P332, DOI 10.2307/5879; Humphries MM, 1999, CAN J ZOOL, V77, P171, DOI 10.1139/cjz-77-1-171; JOHN JL, 1994, Q REV BIOL, V69, P327, DOI 10.1086/418649; Kakuma Y, 2003, PHYSIOL BEHAV, V78, P61, DOI 10.1016/S0031-9384(02)00942-3; KENWARD RE, 1985, S BR ECOL SOC, V25, P319; Khokhlova IS, 2002, J ZOOL, V258, P349, DOI 10.1017/S0952836902001498; Klein SL, 2004, PARASITE IMMUNOL, V26, P247, DOI 10.1111/j.0141-9838.2004.00710.x; Klein SL, 2000, NEUROSCI BIOBEHAV R, V24, P627, DOI 10.1016/S0149-7634(00)00027-0; Koprowski JL, 2005, J MAMMAL, V86, P309, DOI 10.1644/BWG-232.1; KOPROWSKI JL, 1993, BEHAV ECOL, V4, P165; KOPROWSKI JL, 1998, ECOLOGY EVOLUTIONARY, P33; Koprowski John L., 2007, P86; Koprowski John L., 1994, Mammalian Species, V480, P1, DOI 10.2307/3504263; Krasnov BR, 2005, OECOLOGIA, V146, P209, DOI 10.1007/s00442-005-0189-y; Kristan DM, 2000, J EXP BIOL, V203, P3495; Kristan DM, 2003, FUNCT ECOL, V17, P464, DOI 10.1046/j.1365-2435.2003.00751.x; Kristan DM, 2002, J EXP BIOL, V205, P3955; Li FH, 2007, PHYSIOL BEHAV, V90, P490, DOI 10.1016/j.physbeh.2006.10.009; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; McKean KA, 2001, P NATL ACAD SCI USA, V98, P7904, DOI 10.1073/pnas.131216398; Millar J.S., 1987, Symposia of the Zoological Society of London, P231; Millesi E, 1998, ETHOLOGY, V104, P298; Moller AP, 1998, OIKOS, V83, P301, DOI 10.2307/3546841; Moore SL, 2002, SCIENCE, V297, P2015, DOI 10.1126/science.1074196; Mooring MS, 2006, ANIM BEHAV, V72, P737, DOI 10.1016/j.anbehav.2006.02.006; Mooring MS, 1998, ANIM BEHAV, V56, P1561, DOI 10.1006/anbe.1998.0915; Mooring MS, 1996, BEHAV ECOL SOCIOBIOL, V39, P259, DOI 10.1007/s002650050288; Morand S, 2004, PARASITOLOGY, V129, P505, DOI [10.1017/S0031182004005840, 10.1016/ensam.inra.fr]; Neuhaus P, 2003, P ROY SOC B-BIOL SCI, V270, pS213, DOI 10.1098/rsbl.2003.0073; Poulin R, 1996, INT J PARASITOL, V26, P1311, DOI 10.1016/S0020-7519(96)00108-7; Poulin R, 1996, AM NAT, V147, P287, DOI 10.1086/285851; PRICE T, 1993, BIOL J LINN SOC, V48, P187, DOI 10.1006/bijl.1993.1014; Radespiel U, 2000, AM J PRIMATOL, V51, P21, DOI 10.1002/(SICI)1098-2345(200005)51:1<21::AID-AJP3>3.0.CO;2-C; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Rozsa L, 2000, J PARASITOL, V86, P228, DOI 10.1645/0022-3395(2000)086[0228:QPISOH]2.0.CO;2; Saino N, 1995, BEHAV ECOL, V6, P397, DOI 10.1093/beheco/6.4.397; Scantlebury M, 2008, PHYSIOL BEHAV, V94, P359, DOI 10.1016/j.physbeh.2008.02.003; Scantlebury M, 2007, P R SOC B, V274, P2169, DOI 10.1098/rspb.2007.0690; Schalk G, 1997, OIKOS, V78, P67, DOI 10.2307/3545801; Schradin C, 2009, AM NAT, V173, P376, DOI 10.1086/596535; Schwanz LE, 2008, BEHAV ECOL SOCIOBIOL, V62, P1351, DOI 10.1007/s00265-008-0563-y; Schwanz LE, 2006, J EXP BIOL, V209, P5029, DOI 10.1242/jeb.02601; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Sheridan LAD, 2000, OIKOS, V88, P327, DOI 10.1034/j.1600-0706.2000.880211.x; Soulsby EJL, 1982, HELMINTHS ARTHROPODS, P212; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Stearns S. C., 1992, EVOLUTION LIFE HIST; Thompson Steven D., 1992, P213; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Vicente J, 2007, NATURWISSENSCHAFTEN, V94, P581, DOI 10.1007/s00114-007-0231-5; WATKINS RA, 1991, J PROTOZOOL, V38, P573, DOI 10.1111/j.1550-7408.1991.tb06082.x; WAUTERS L, 1989, J ANIM ECOL, V58, P637, DOI 10.2307/4853; WAUTERS LA, 1995, OIKOS, V72, P402, DOI 10.2307/3546126; Wauters LA, 2007, ECOGRAPHY, V30, P51, DOI 10.1111/j.2006.0906-7590.04646.x; WEBLEY LS, 1985, GEN COMP ENDOCR, V59, P15; Westneat DF, 1998, P ROY SOC B-BIOL SCI, V265, P1065, DOI 10.1098/rspb.1998.0400; Wilson K, 1996, FUNCT ECOL, V10, P592, DOI 10.2307/2390169; Wilson K, 1997, PARASITOL TODAY, V13, P33, DOI 10.1016/S0169-4758(96)40009-6; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; Woods HA, 2003, PHYSIOL BIOCHEM ZOOL, V76, P406, DOI 10.1086/374285; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 89 28 28 1 56 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. DEC 2010 282 4 246 255 10.1111/j.1469-7998.2010.00734.x 10 Zoology Zoology 690NA WOS:000285010300005 2018-11-12 J Van Allen, BG; Briggs, VS; McCoy, MW; Vonesh, JR Van Allen, Benjamin G.; Briggs, Venetia S.; McCoy, Michael W.; Vonesh, James R. Carry-over effects of the larval environment on post-metamorphic performance in two hylid frogs OECOLOGIA English Article Complex life cycles; Post-metamorphic growth; Delayed density dependence; Delayed life history effects COMPLEX LIFE-CYCLES; AMPHIBIAN METAMORPHOSIS; PREDATION RISK; SIZE; HISTORY; GROWTH; CONSEQUENCES; CALLIDRYAS; ECOSYSTEMS; PLASTICITY Life history theory and empirical studies suggest that large size or earlier metamorphosis are suitable proxies for increased lifetime fitness. Thus, across a gradient of larval habitat quality, individuals with similar phenotypes for these traits should exhibit similar post-metamorphic performance. Here we examine this paradigm by testing for differences in post-metamorphic growth and survival independent of metamorphic size in a temperate (spring peeper, Pseudacris crucifer) and tropical (red-eyed treefrog, Agalychnis callidryas) anuran reared under differing larval conditions. For spring peepers, increased food in the larval environment increased post-metamorphic growth efficiency more than predicted by metamorphic phenotype and led to increased mass. Similarly, red-eyed treefrogs reared at low larval density ended the experiment at a higher mass than predicted by metamorphic phenotype. These results show that larval environments can have delayed effects not captured by examining only metamorphic phenotype. These delayed effects for the larval environment link larval and juvenile life history stages and could be important in the population dynamics of organisms with complex life cycles. [Van Allen, Benjamin G.; Vonesh, James R.] Virginia Commonwealth Univ, Dept Biol, Richmond, VA 23284 USA; [Briggs, Venetia S.] Boston Univ, Dept Biol, Boston, MA 02215 USA; [McCoy, Michael W.] Univ S Florida, Dept Integrat Biol, Tampa, FL USA Van Allen, BG (reprint author), Rice Univ, Dept Ecol & Evolutionary Biol, MS-170,6100 Main St, Houston, TX 77005 USA. bengvanallen@gmail.com Van Allen, Benjamin/0000-0001-8489-4790; Vonesh, James/0000-0003-2481-9988 NSF [DEB-0717220]; National Academy of Science; scientific research society; VCU Rice Center; Smithsonian Tropical Research Institute We thank Anssi Laurila and three anonymous reviewers for valuable comments on an earlier version of this manuscript. We thank J. Hite, J. Kraus, K. Grayson, V. Rudolf, K. Warkentin, and R. Niccoli for help during research and manuscript preparation. We thank the Virginia Department of Game and Inland Fisheries (permit number 031450), the Virginia Commonwealth University (VCU) Animal Use and Care Committee (IACUC no. AM10112), the Smithsonian Tropical Research Institute and the Panamanian Autoridad Nacional del Ambiente for permission to conduct this research. Financial support was provided by NSF DEB-0717220, Grants-In-Aid of Research from the National Academy of Science administered by Sigma Xi, the scientific research society, the VCU Rice Center Student Research Funding Grant, and the Smithsonian Tropical Research Institute. The authors declare that all experiments followed the current laws of the countries they were conducted in. This is Rice Center contribution number 013. ALFORD RA, 1988, AM NAT, V131, P91, DOI 10.1086/284775; Altwegg R, 2003, EVOLUTION, V57, P872; Beckerman AP, 2002, TRENDS ECOL EVOL, V17, P263, DOI 10.1016/S0169-5347(02)02469-2; BLOCK MD, 2005, ECOLOGY, V86, P185; Briggs VS, 2008, ETHOLOGY, V114, P489, DOI 10.1111/j.1439-0310.2008.01490.x; Brown DD, 2007, DEV BIOL, V306, P20, DOI 10.1016/j.ydbio.2007.03.021; Chelgren ND, 2006, ECOL APPL, V16, P250, DOI 10.1890/04-0329; Cottingham KL, 2005, FRONT ECOL ENVIRON, V3, P145, DOI 10.2307/3868542; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Gimenez L, 2006, INTEGR COMP BIOL, V46, P615, DOI 10.1093/icb/ic1010; Gosner K. L., 1960, Herpetologica, V16, P225; Gosner K. L., 1960, Herpetologica, V16, P183; Grayson KL, 2005, COMP BIOCHEM PHYS A, V141, P298, DOI 10.1016/j.cbpb.2005.05.052; Ishizuya-Oka A, 2005, DEV GROWTH DIFFER, V47, P601; Karraker NE, 2008, ECOL APPL, V18, P724, DOI 10.1890/07-1644.1; LEIPS J, 1994, ECOLOGY, V75, P1345, DOI 10.2307/1937459; Maldonado M, 1999, J EXP MAR BIOL ECOL, V232, P9, DOI 10.1016/S0022-0981(98)00076-8; Marden JH, 2008, J EXP BIOL, V211, P3653, DOI 10.1242/jeb.023903; Marshall DJ, 2005, AUSTRAL ECOL, V30, P275, DOI 10.1111/j.1442-9993.2005.01463.x; Mccoy KA, 2007, J EXP ZOOL PART A, V307A, P637, DOI 10.1002/jez.417; McCoy MW, 2009, OIKOS, V118, P87, DOI 10.1111/j.1600-0706.2008.16878.x; Morey S, 2001, ECOLOGY, V82, P510, DOI 10.2307/2679876; Paradis AR, 1996, CAN J FISH AQUAT SCI, V53, P1226, DOI 10.1139/cjfas-53-6-1226; Peacor SD, 2007, THEOR POPUL BIOL, V71, P80, DOI 10.1016/j.tpb.2006.08.005; Pechenik JA, 1998, BIOSCIENCE, V48, P901, DOI 10.2307/1313294; Pechenik JA, 2006, INTEGR COMP BIOL, V46, P323, DOI 10.1093/icb/icj028; Phillips NE, 2004, ECOLOGY, V85, P2341, DOI 10.1890/03-3097; Podolsky RD, 2006, INTEGR COMP BIOL, V46, P577, DOI 10.1093/icb/ic1026; PYBURN WF, 1970, COPEIA, P209; *R DEV COR TEAM, 2007, R LANG ENV STAT COMP; Reading CJ, 2007, OECOLOGIA, V151, P125, DOI 10.1007/s00442-006-0558-1; Relyea RA, 2005, ECOL APPL, V15, P1118, DOI 10.1890/04-1291; Relyea RA, 2003, ECOL APPL, V13, P1515, DOI 10.1890/02-5298; Relyea RA, 2001, ECOLOGY, V82, P1947, DOI 10.1890/0012-9658(2001)082[1947:TLEOAP]2.0.CO;2; Rohr JR, 2006, ENVIRON HEALTH PERSP, V114, P46, DOI 10.1289/ehp.8405; Rubbo MJ, 2004, ECOLOGY, V85, P2519, DOI 10.1890/03-0653; Rudolf VHW, 2007, EVOL ECOL, V21, P121, DOI 10.1007/s10682-006-0017-9; Schreiber S, 2008, ECOL LETT, V11, P576, DOI 10.1111/j.1461-0248.2008.01171.x; SEMLITSCH RD, 1988, ECOLOGY, V69, P184, DOI 10.2307/1943173; Slos S, 2008, FUNCT ECOL, V22, P637, DOI 10.1111/j.1365-2435.2008.01424.x; SMITH DC, 1987, ECOLOGY, V68, P344, DOI 10.2307/1939265; TARVIN R, 2009, THESIS BOSTON U; Taylor BW, 1998, OECOLOGIA, V114, P494, DOI 10.1007/s004420050473; Twombly S, 1996, ECOLOGY, V77, P1855, DOI 10.2307/2265789; Vonesh JR, 2006, ECOLOGY, V87, P556, DOI 10.1890/05-0930; Vonesh JR, 2005, OECOLOGIA, V143, P280, DOI 10.1007/s00442-004-1806-x; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 49 26 26 2 41 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 OECOLOGIA Oecologia DEC 2010 164 4 891 898 10.1007/s00442-010-1728-8 8 Ecology Environmental Sciences & Ecology 680XX WOS:000284271900005 20658150 2018-11-12 J Park, SM; Cho, SI; Choi, MK Park, Sang-Mi; Cho, Sung-Il; Choi, Man-Kyu The effect of paternal investment on female fertility intention in South Korea EVOLUTION AND HUMAN BEHAVIOR English Article Life history theory; Fertility; Paternal investment; Employed women; Reproduction EVOLUTIONARY ECOLOGY; HOUSEHOLD LABOR; LIFE-HISTORY; 2ND BIRTHS; BEHAVIOR; DIVISION; CHILD Life history theory views reproduction as an outcome of resource allocation. The allocation of resources such as parental investments of time, energy and material resources involves trade-offs between number of offspring and timing of reproduction. Within the framework of mammalian parental investment, the outstanding feature of human reproduction is the high level of paternal care. Although empirical evidence suggests that human paternal investment may have evolved as a reproductive strategy to reduce infant and child mortality rates, the effects of actual paternal investment, including allocating time to child care, on female reproductive decisions have received relatively little attention. We examined the trade-off from two perspectives using a representative sample of married South Korean women aged 20-44 in 2005 (n=977). First, paternal investment in domestic labor, including child care and housework, was expected to be associated with women's preference regarding future reproduction. Second, relative paternal investment was expected to increase women's preference for future reproduction, especially among employed women. We found that increased paternal investment in child care and housework remarkably enhanced women's intention to have a second child, especially among employed women. In addition, although family members provide a low percentage of child care in South Korea, such help is likely to be a useful resource for second childbirth among employed women. Somewhat expectedly, older age and longer time since first birth had negative effects on women's second-child intention. There is growing evidence that, in the lowest fertility societies, paternal investment may be an essential resource for promoting future reproductive behavior of women, especially employed women. (C) 2010 Elsevier Inc. All rights reserved. [Choi, Man-Kyu] Korea Univ, Dept Healthcare Management, Coll Hlth Sci, Seoul 136703, South Korea; [Park, Sang-Mi; Cho, Sung-Il] Seoul Natl Univ, Sch Publ Hlth, Seoul, South Korea; [Park, Sang-Mi; Cho, Sung-Il] Seoul Natl Univ, Inst Hlth & Environm, Seoul, South Korea Choi, MK (reprint author), Korea Univ, Dept Healthcare Management, Coll Hlth Sci, San 1, Seoul 136703, South Korea. healthkw@naver.com Cho, Sung-il/0000-0003-4085-1494 Cho N.H., 1997, REPORT KOREAN NATL F; CHOI EY, 2006, HLTH WELFARE FORUM, V1, P18; CHOI SH, 2005, B DEP POPULATION POL; CLUTTONBROCK TH, 1991, NATURE, V351, P58; Coltrane S, 2000, J MARRIAGE FAM, V62, P1208, DOI 10.1111/j.1741-3737.2000.01208.x; Cooke LP, 2004, J MARRIAGE FAM, V66, P1246, DOI 10.1111/j.0022-2445.2004.00090.x; Darwin C.R., 1871, DESCENT MAN SELECTIO; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; Gibson M, 2002, HUM BIOL, V74, P111, DOI 10.1353/hub.2002.0004; Hong M.S., 1994, REPORT KOREAN NATL F; Kamo Y, 2000, SOC SCI RES, V29, P459, DOI 10.1006/ssre.2000.0674; Kaplan HS, 1998, MEN IN FAMILIES, P55; Kaptijn R, 2010, EVOL HUM BEHAV, V31, P59, DOI 10.1016/j.evolhumbehav.2009.07.007; Kim S.K., 2000, REPORT KOREAN NATL F; KIM WY, 2007, 307 BANK KOR; *KOR NAT STAT OFF, 2004, ANN REP WOM LIF 2004; *KOR NAT STAT OFF, 2006, ANN REP POP EC ACT 2; Korea Ministry for Health Welfare and Family Affairs, 2009, REP 1 GROUND PLAN LO; Lee S.S., 2006, HLTH WELFARE FORUM, V1, P5; MacDonald K, 1997, HUM NATURE-INT BIOS, V8, P327, DOI 10.1007/BF02913038; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; Morgan SP, 1996, POPUL DEV REV, V22, P19, DOI 10.2307/2808004; Olah LSZ, 2003, POPUL RES POLICY REV, V22, P171, DOI 10.1023/A:1025089031871; Park S.M., 2005, HLTH WELFARE FORUM, V4, P36; Park SM, 2008, J BIOSOC SCI, V40, P269, DOI 10.1017/S002193200700212X; RINDFUSS RR, 1978, SOCIAL DEMOGRAPHY, P1; Schoen R, 1999, J MARRIAGE FAM, V61, P790, DOI 10.2307/353578; Sear R, 2003, EVOL HUM BEHAV, V24, P25, DOI 10.1016/S1090-5138(02)00105-8; TAN PC, 1994, STUD FAMILY PLANN, V25, P222, DOI 10.2307/2137905; Torr BM, 2004, POPUL DEV REV, V30, P109, DOI 10.1111/j.1728-4457.2004.00005.x; United Nations, 2003, ANN REP HUM DEV REP; Voland E, 1998, ANNU REV ANTHROPOL, V27, P347, DOI 10.1146/annurev.anthro.27.1.347; WESTNEAT DF, 1993, BEHAV ECOL, V4, P66, DOI 10.1093/beheco/4.1.66; WESTOFF CF, 1990, INT FAMILY PLANNING, V16, P84; Whiting Beatrice, 1988, CHILDREN DIFFERENT W; Whitten P.L., 1987, P343; WINIKOFF B, 1983, STUD FAMILY PLANN, V14, P231, DOI 10.2307/1965748 37 5 5 0 13 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 EVOL HUM BEHAV Evol. Hum. Behav. NOV 2010 31 6 447 452 10.1016/j.evolhumbehav.2010.07.001 6 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences 679UE WOS:000284185500008 2018-11-12 J Reaney, LT; Knell, RJ Reaney, Leeann T.; Knell, Robert J. Immune activation but not male quality affects female current reproductive investment in a dung beetle BEHAVIORAL ECOLOGY English Article dung beetle; Euoniticellus intermedius; female reproductive decisions; immune activation; life-history trade-offs; offspring quality; terminal investment MALE MEALWORM BEETLES; IN-FIELD CRICKETS; TERMINAL INVESTMENT; EUONITICELLUS-INTERMEDIUS; DIFFERENTIAL ALLOCATION; TENEBRIO-MOLITOR; GRYLLUS-TEXENSIS; CHALLENGE; COSTS; EXPRESSION Changes in female reproductive investment can have large effects on offspring quality and thus maternal fitness. An immune activation is often expected to lead to a reduction in reproductive effort in order to release resources necessary for costly resistance to infection. Alternatively, an increase in investment in current reproduction may occur in order to maximize lifetime reproductive success: the so-called "terminal investment" effect. Additionally, females are expected to invest more in their reproductive effort when mating with higher quality males. Here, we investigate how an immune response and male quality affect the reproductive decisions made by female dung beetles, Euoniticellus intermedius. Female dung beetles invest a large amount of energy into each offspring, building large brood balls into which a single egg is laid. Maternal investment is therefore easily estimated from the number and size of the brood balls constructed. We found no affect of the mated male quality on female current reproductive investment. However, immune activation with lipopolysaccharide caused a significant reduction in the number of brood balls produced but did not affect brood ball size. An immune activation therefore caused resources to be diverted away from reproduction, as predicted by the "cost of immunity" hypothesis. Although life-history theory predicts 2 potentially opposing outcomes of an immune activation, a summary of studies investigating the trade-off between immune investment and current reproduction fails to provide any clear trends of what may predict the direction of this trade-off. [Reaney, Leeann T.; Knell, Robert J.] Univ London, Sch Biol & Chem Sci, London E1 4NS, England Knell, RJ (reprint author), Univ London, Sch Biol & Chem Sci, Mile End Rd, London E1 4NS, England. r.knell@qmul.ac.uk Leverhulme Trust [F/07476/AC] Leverhulme Trust (F/07476/AC). Adamo SA, 1999, ANIM BEHAV, V57, P117, DOI 10.1006/anbe.1998.0999; Ahmed AM, 2002, OIKOS, V97, P371, DOI 10.1034/j.1600-0706.2002.970307.x; Altincicek B, 2008, INSECT MOL BIOL, V17, P711, DOI 10.1111/j.1365-2583.2008.00835.x; Bidla G, 2005, DEV COMP IMMUNOL, V29, P669, DOI 10.1016/j.dci.2004.11.007; Bonneaud C, 2004, EVOLUTION, V58, P2823, DOI 10.1111/j.0014-3820.2004.tb01633.x; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Crawley MJ, 2002, STAT COMPUTING INTRO; EMLEN DJ, 1994, P ROY SOC B-BIOL SCI, V256, P131, DOI 10.1098/rspb.1994.0060; Fedorka KM, 2007, BEHAV ECOL, V18, P231, DOI 10.1093/beheco/arl067; Haine ER, 2007, DEV COMP IMMUNOL, V31, P456, DOI 10.1016/j.dci.2006.08.004; Hanssen SA, 2006, ECOLOGY, V87, P2440, DOI 10.1890/0012-9658(2006)87[2440:COAICA]2.0.CO;2; Harris WE, 2009, PHILOS T R SOC B, V364, P1039, DOI 10.1098/rstb.2008.0299; Hunt J, 1997, BEHAV ECOL SOCIOBIOL, V41, P109, DOI 10.1007/s002650050370; ILMONEN P, 2000, P R SOC B, V267, P66; Jacot A, 2005, J EVOLUTION BIOL, V18, P1060, DOI 10.1111/j.1420-9101.2005.00899.x; Jacot A, 2004, EVOLUTION, V58, P2280; Kimbrell DA, 2001, NAT REV GENET, V2, P256, DOI 10.1038/35066006; Kolm N, 2001, P ROY SOC B-BIOL SCI, V268, P2229, DOI 10.1098/rspb.2001.1792; Kotiaho JS, 2003, AM NAT, V161, P852, DOI 10.1086/375173; Lailvaux SP, 2005, FUNCT ECOL, V19, P632, DOI 10.1111/j.1365-2435.2005.01024.x; Leman JC, 2009, J EVOLUTION BIOL, V22, P163, DOI 10.1111/j.1420-9101.2008.01636.x; MAGNHAGEN C, 1991, BEHAV ECOL, V2, P351, DOI 10.1093/beheco/2.4.351; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; Nagai T, 2000, J BIOL CHEM, V275, P29264, DOI 10.1074/jbc.M002556200; Pomfret JC, 2006, ANIM BEHAV, V71, P567, DOI 10.1016/j.anbehav.2005.05.023; Pomfret JC, 2006, BEHAV ECOL, V17, P466, DOI 10.1093/beheco/arj050; R Development Core Team, 2009, R LANG ENV STAT COMP; Raberg L, 2000, ECOL LETT, V3, P382, DOI 10.1046/j.1461-0248.2000.00154.x; Rasband W. S., 1997, IMAGEJ; Roff Derek A., 1992; Rolff J, 1999, ANIM BEHAV, V58, P1105, DOI 10.1006/anbe.1999.1240; Sadd B, 2006, J EVOLUTION BIOL, V19, P321, DOI 10.1111/j.1420-9101.2005.01062.x; Schmid-Hempel P, 2003, SCIENCE, V300, P254, DOI 10.1126/science.1081133; Schwanz LE, 2008, FUNCT ECOL, V22, P691, DOI 10.1111/j.1365-2435.2008.01397.x; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Sheldon BC, 2000, TRENDS ECOL EVOL, V15, P397, DOI 10.1016/S0169-5347(00)01953-4; Shoemaker KL, 2007, PHYSIOL ENTOMOL, V32, P113, DOI 10.1111/j.1365-3032.2006.00552.x; Shoemaker KL, 2006, CAN J ZOOL, V84, P412, DOI 10.1139/z06-013; Uller T, 2006, FUNCT ECOL, V20, P873, DOI 10.1111/j.1365-2435.2006.01163.x; Vainikka A, 2007, ACTA ETHOL, V10, P63, DOI 10.1007/s10211-007-0031-0; Velando A, 2006, P R SOC B, V273, P1443, DOI 10.1098/rspb.2006.3480; Weil ZM, 2006, BIOL LETT-UK, V2, P393, DOI 10.1098/rsbl.2006.0475; Wigby S, 2008, J INSECT PHYSIOL, V54, P414, DOI 10.1016/j.jinsphys.2007.10.010; Worden BD, 2000, ANIM BEHAV, V59, P543, DOI 10.1006/anbe.1999.1368; Zuur A. F., 2009, MIXED EFFECTS MODELS 45 24 25 0 26 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. NOV-DEC 2010 21 6 1367 1372 10.1093/beheco/arq139 6 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 682US WOS:000284429100032 Bronze 2018-11-12 J Spee, M; Beaulieu, M; Dervaux, A; Chastel, O; Le Maho, Y; Raclot, T Spee, Marion; Beaulieu, Michael; Dervaux, Antoine; Chastel, Olivier; Le Maho, Yvon; Raclot, Thierry Should I stay or should I go? Hormonal control of nest abandonment in a long-lived bird, the Adelie penguin HORMONES AND BEHAVIOR English Article Corticosterone; Prolactin; Incubation success; Parental investment; Refeeding signal; Long-term fasting KING PENGUINS; REPRODUCTIVE SUCCESS; PROLACTIN SECRETION; PYGOSCELIS-ADELIAE; REFEEDING SIGNAL; PARENTAL CARE; CORTICOSTERONE; BEHAVIOR; STRESS; ANTARCTICA According to life-history theory, long-lived birds should favor their survival over the current reproductive attempt, when breeding becomes too costly. In seabirds, incubation is often associated with spontaneous long-term fasting. Below a threshold in body reserves, hormonal and metabolic shift characteristics of a switch from lipid to protein utilization (phase III, PIII) occur. These metabolic changes are paralleled by nest abandonment and stimulation of refeeding behavior. Parental behavior is then under control of two hormones with opposite effects: corticosterone (CORT) and prolactin which stimulate foraging and incubation behavior, respectively. The aim of this study was to determine the respective role of these two hormones in nest abandonment by Adelie penguins. To this end, plasma hormone levels were measured before egg-laying and at departure from the colony (i.e. when birds were relieved by their partner or abandoned their nest), and related to nutritional state and incubation success. We found that males abandoning their nest in PIII presented high CURT levels and low prolactin levels. Interestingly, males which presented high plasma levels of prolactin in PIII did not abandon. We show that although CORT is the first hormone to be affected by prolonged energy constraints, the combined effects of high CORT and low prolactin levels are necessary for parents to favor self-maintenance and abandon the nest. We provide insights into time-course changes of the endocrine profile as PIII proceeds and report that reaching proteolytic late fasting is not sufficient to induce nest abandonment in a long-lived bird. (C) 2010 Elsevier Inc. All rights reserved. [Spee, Marion; Beaulieu, Michael; Dervaux, Antoine; Le Maho, Yvon; Raclot, Thierry] CNRS UdS, Inst Pluridisciplinaire Hubert Curien, Dept Ecol Physiol Ethol DEPE, UMR 7178, F-67087 Strasbourg 2, France; [Chastel, Olivier] CNRS, Ctr Etud Biol Chize, F-79360 Villiers En Bois, France Spee, M (reprint author), CNRS UdS, Inst Pluridisciplinaire Hubert Curien, Dept Ecol Physiol Ethol DEPE, UMR 7178, 23 Rue Becquerel, F-67087 Strasbourg 2, France. marion.spee@c-strasbourg.fr Beaulieu, Michael/A-5261-2011 Beaulieu, Michael/0000-0002-9948-269X French Polar Institute Paul Emile Victor (IPEV); French MENRT We thank the French Polar Institute Paul Emile Victor (IPEV) who provided the financial and logistical support in Adelie Land. M. Spee and M. Beaulieu were the recipients of fellowships from the French MENRT. We are grateful to Dr. A.F. Parlow for kindly providing the CEBC with a chicken kit for prolactin assay (gift to A. Lacroix). At the CEBC, we thank A. Lacroix and C. Trouve for their expert technical assistance in prolactin measurements. We also thank Dr. M. Enstipp and Vincent A. Viblanc, who gave helpful comments and improved the English of the original version of the manuscript and Nicolas Poulin, Francois Criscuolo and Nicolas Hanuise for their help on statistical analyses. Ainley D. G., 1983, BREEDING BIOL ADELIE; ANGELIER F, 2009, FUNCT ECOL, V73, P784; Angelier F, 2007, J ANIM ECOL, V76, P1181, DOI 10.1111/j.1365-2656.2007.01295.x; Angelier F, 2007, BEHAV ECOL SOCIOBIOL, V61, P611, DOI 10.1007/s00265-006-0290-1; Angelier F, 2009, GEN COMP ENDOCR, V163, P142, DOI 10.1016/j.ygcen.2009.03.028; Beaulieu M, 2010, FUNCT ECOL, V24, P93, DOI 10.1111/j.1365-2435.2009.01638.x; Buntin John D., 1996, Advances in the Study of Behavior, V25, P161; Carlson AA, 2006, HORM BEHAV, V50, P94, DOI 10.1016/j.yhbeh.2006.01.009; CHALLET E, 1995, PHARMACOL BIOCHEM BE, V50, P405, DOI 10.1016/0091-3057(94)00287-S; CHAPPELL MA, 1993, BEHAV ECOL SOCIOBIOL, V33, P173, DOI 10.1007/BF00216598; Chastel O, 2005, HORM BEHAV, V47, P459, DOI 10.1016/j.yhbeh.2004.10.009; Chastel O, 2002, CONDOR, V104, P873, DOI 10.1650/0010-5422(2002)104[0873:POPSIR]2.0.CO;2; CHEREL Y, 1994, PHYSIOL ZOOL, V67, P1154, DOI 10.1086/physzool.67.5.30163887; CHEREL Y, 1988, AM J PHYSIOL, V254, pR170; Cockrem JF, 2006, GEN COMP ENDOCR, V149, P244, DOI 10.1016/j.ygcen.2006.06.002; Criscuolo F, 2005, J AVIAN BIOL, V36, P306, DOI 10.1111/j.0908-8857.2005.03371.x; DAVIS LS, 1986, AUK, V103, P379; DONOZAR JA, 1992, ORNIS SCAND, V23, P190; Garcia V, 1996, HORM BEHAV, V30, P259, DOI 10.1006/hbeh.1996.0031; Groscolas R, 2000, AM J PHYSIOL-REG I, V279, pR2104; Groscolas R, 2008, HORM BEHAV, V53, P51, DOI 10.1016/j.yhbeh.2007.08.010; Haussmann MF, 2003, EXP GERONTOL, V38, P787, DOI 10.1016/S0531-5565(03)00109-8; Haussmann MF, 2003, P ROY SOC B-BIOL SCI, V270, P1387, DOI 10.1098/rspb.2003.2385; Jenni-Eiermann Susanne, 1999, Biologia e Conservazione della Fauna, V102, P312; Kern M, 2005, CONDOR, V107, P665, DOI 10.1650/0010-5422(2005)107[0665:BMACLI]2.0.CO;2; Lormee H, 1999, HORM BEHAV, V35, P9, DOI 10.1006/hbeh.1998.1491; Robin JP, 1998, AM J PHYSIOL-REG I, V274, pR746, DOI 10.1152/ajpregu.1998.274.3.R746; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tveraa T, 1997, BEHAV ECOL, V8, P465, DOI 10.1093/beheco/8.5.465; Vleck CM, 2002, INTEGR COMP BIOL, V42, P76, DOI 10.1093/icb/42.1.76; Vleck CM, 2000, CONDOR, V102, P392, DOI 10.1650/0010-5422(2000)102[0392:SCAHTL]2.0.CO;2; Vleck CM, 2000, HORM BEHAV, V38, P149, DOI 10.1006/hbeh.2000.1589; VLECK CM, 1999, P 22 INT ORN C U NAT, P1210; Wingfield JC, 1998, AM ZOOL, V38, P191; YOUNGREN OM, 1991, BIOL REPROD, V44, P425, DOI 10.1095/biolreprod44.3.425 36 50 50 2 44 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0018-506X HORM BEHAV Horm. Behav. NOV 2010 58 5 762 768 10.1016/j.yhbeh.2010.07.011 7 Behavioral Sciences; Endocrinology & Metabolism Behavioral Sciences; Endocrinology & Metabolism 687SL WOS:000284798100009 20691185 2018-11-12 J Williams, JB; Miller, RA; Harper, JM; Wiersma, P Williams, Joseph B.; Miller, Richard A.; Harper, James M.; Wiersma, Popko Functional Linkages for the Pace of Life, Life-history, and Environment in Birds INTEGRATIVE AND COMPARATIVE BIOLOGY English Article; Proceedings Paper Annual Meeting of the Society-for-Integrative-and-Comparative-Biology JAN 03-07, 2010 Seattle, WA Soc Integrat & Comparat Biol BASAL METABOLIC-RATE; AEROBIC PERFORMANCE VARIATION; EVAPORATIVE WATER-LOSS; BODY-SIZE; DROSOPHILA-MELANOGASTER; ORGAN MASS; MEMBRANE-COMPOSITION; ENERGY-EXPENDITURE; RED JUNGLEFOWL; TROPICAL BIRDS For vertebrates, body mass underlies much of the variation in metabolism, but among animals of the same body mass, metabolism varies six-fold. Understanding how natural selection can influence variation in metabolism remains a central focus of Physiological Ecologists. Life-history theory postulates that many physiological traits, such as metabolism, may be understood in terms of key maturational and reproductive characteristics over an organism's life-span. Although it is widely acknowledged that physiological processes serve as a foundation for life-history trade-offs, the physiological mechanisms that underlie the diversification of life-histories remain elusive. Data show that tropical birds have a reduced basal metabolism (BMR), field metabolic rate, and peak metabolic rate compared with temperate counterparts, results consistent with the idea that a low mortality, and therefore increased longevity, and low productivity is associated with low mass-specific metabolic rate. Mass-adjusted BMR of tropical and temperate birds was associated with survival rate, in accordance with the view that animals with a slow pace of life tend to have increased life spans. To understand the mechanisms responsible for a reduced rate of metabolism in tropical birds compared with temperate species, we summarized an unpublished study, based on data from the literature, on organ masses for both groups. Tropical birds had smaller hearts, kidneys, livers, and pectoral muscles than did temperate species of the same body size, but they had a relatively larger skeletal mass. Direct measurements of organ masses for tropical and temperate birds showed that the heart, kidneys, and lungs were significantly smaller in tropical birds, although sample sizes were small. Also from an ongoing study, we summarized results to date on connections between whole-organism metabolism in tropical and temperate birds and attributes of their dermal fibroblasts grown in cell culture. Cells derived from tropical birds had a slower rate of growth, consistent with the hypothesis that these cells have a slower metabolism. We found that dermal fibroblasts from tropical birds resisted chemical agents that induce oxidative and non-oxidative stress better than do cells from temperate species, consistent with the hypothesis that birds that live longer invest more in self-maintenance such as antioxidant properties of cells. [Williams, Joseph B.; Wiersma, Popko] Ohio State Univ, Dept EEOB, Columbus, OH 43210 USA; [Miller, Richard A.; Harper, James M.] Univ Michigan, Sch Med, Dept Pathol, Ann Arbor, MI 48105 USA; [Miller, Richard A.; Harper, James M.] Univ Michigan, Geriatr Ctr, Ann Arbor, MI 48109 USA; [Miller, Richard A.; Harper, James M.] VA Med Ctr GRECC, Ann Arbor, MI 48109 USA Williams, JB (reprint author), Ohio State Univ, Dept EEOB, Columbus, OH 43210 USA. williams.1020@osu.edu NIA NIH HHS [AG024824, AG023122] Aschoff J, 1970, J. Orn., Berl., V111, P38, DOI 10.1007/BF01668180; AUSTAD SN, 1999, WHY WE AGE; Barja G, 1998, ANN NY ACAD SCI, V854, P224, DOI 10.1111/j.1749-6632.1998.tb09905.x; Bartholomew GA, 1972, ANIMAL PHYSL PRINCIP, P63; BENNETT AF, 1991, J EXP BIOL, V160, P1; BENNETT AF, 1988, AM ZOOL, V28, P699; BENNETT PM, 1987, J ZOOL, V213, P327, DOI 10.1111/j.1469-7998.1987.tb03708.x; BRACKENBURY JH, 1985, J EXP BIOL, V117, P349; Brody S., 1932, MISSOURI AGR EXP STA, V166, P89; Brookes PS, 1997, BBA-BIOMEMBRANES, V1330, P157, DOI 10.1016/S0005-2736(97)00160-0; Brown MF, 2007, AM J PHYSIOL-REG I, V292, pR2115, DOI 10.1152/ajpregu.00568.2006; Bryant DM, 1997, P NUTR SOC, V56, P1025, DOI 10.1079/PNS19970107; Brys K, 2007, EXP GERONTOL, V42, P845, DOI 10.1016/j.exger.2007.02.004; Brzek P, 2007, PHYSIOL BIOCHEM ZOOL, V80, P491, DOI 10.1086/520617; Buttemer WA, 2008, BIOL LETTERS, V4, P351, DOI 10.1098/rsbl.2008.0145; Calder W. A., 1984, SIZE FUNCTION LIFE H; Campisi J, 2001, EXP GERONTOL, V36, P607, DOI 10.1016/S0531-5565(00)00230-8; Cardillo M, 2002, J ANIM ECOL, V71, P79, DOI 10.1046/j.0021-8790.2001.00577.x; Chappell MA, 1999, J EXP BIOL, V202, P2269; Chappell MA, 1996, FUNCT ECOL, V10, P578, DOI 10.2307/2390167; Chappell MA, 2007, J EXP BIOL, V210, P4179, DOI 10.1242/jeb.006163; Charnov Eric L., 1993, P1; Chown SL, 2007, FUNCT ECOL, V21, P282, DOI 10.1111/j.1365-2435.2007.01245.x; COUTURE P, 1995, AM J PHYSIOL-REG I, V268, pR641; COX GW, 1985, AM NAT, V126, P451, DOI 10.1086/284432; DAAN S, 1990, AM J PHYSIOL, V259, pR333; DAAN S, 1991, ACTA C INT ORNITHOLO, V20, P1976; Darveau CA, 2002, NATURE, V417, P166, DOI 10.1038/417166a; DAWSON WR, 1976, J COMP PHYSIOL, V112, P317, DOI 10.1007/BF00692302; Demetrius L, 2006, J THEOR BIOL, V243, P455, DOI 10.1016/j.jtbi.2006.05.031; Dobson FS, 2007, P NATL ACAD SCI USA, V104, P17565, DOI 10.1073/pnas.0708868104; Dodds PS, 2001, J THEOR BIOL, V209, P9, DOI 10.1006/jtbi.2000.2238; DOHM M, 1994, AM J PHYSIOL, V36, pR1098; DUCHAMP C, 1993, AM J PHYSIOL, V265, pR1076; ELIA M, 1992, ENERGY METABOLISM, P19; Else PL, 1999, J COMP PHYSIOL B, V169, P296, DOI 10.1007/s003600050224; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FINCH C, 1990, LONGEVITY SENESCENCE; FOGDEN MPL, 1972, IBIS, V114, P307, DOI 10.1111/j.1474-919X.1972.tb00831.x; FRANCIS CM, 1999, P 22 INT ORN C DURB, P326; Garland T, 2005, J EXP BIOL, V208, P3015, DOI 10.1242/jeb.01745; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Hall M., 2004, CELL GROWTH CONTROL; Hammond KA, 2000, J EXP BIOL, V203, P2053; Harman D, 2001, ANN NY ACAD SCI, V928, P1, DOI 10.1111/j.1749-6632.2001.tb05631.x; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Harper JM, 2007, AGING CELL, V6, P1, DOI 10.1111/j.1474-9726.2006.00255.x; HAUSSMANN MF, 2005, THESIS IOWA STATE U; Hohtola E, 1998, AM J PHYSIOL-REG I, V275, pR1553, DOI 10.1152/ajpregu.1998.275.5.R1553; Holliday R, 2006, ANN NY ACAD SCI, V1067, P1, DOI 10.1196/annals.1354.002; Holmes DJ, 2001, EXP GERONTOL, V36, P869, DOI 10.1016/S0531-5565(00)00247-3; Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006; Hulbert AJ, 2005, J EXP BIOL, V208, P1593, DOI 10.1242/jeb.01482; Jorgensen P, 2004, CURR BIOL, V14, pR1014, DOI 10.1016/j.cub.2004.11.027; KENDEIGH SC, 1977, GRANIVOROUS BIRDS EC; KING JR, 1974, NUTTALL ORNITHOLOGIC, V15, P4; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Kleiber M, 1941, P SOC EXP BIOL MED, V48, P419; Kleiber M, 1975, FIRE LIFE INTRO ANIM; Kozlowski J, 2005, FUNCT ECOL, V19, P739, DOI 10.1111/j.1365-2435.2005.01021.x; KREBS HA, 1950, BIOCHIM BIOPHYS ACTA, V4, P249, DOI 10.1016/0006-3002(50)90032-1; KULESZA G, 1990, IBIS, V132, P407, DOI 10.1111/j.1474-919X.1990.tb01059.x; KURTZ H, 1998, SCIENCE, V281, P751; Lambert AJ, 2007, AGING CELL, V6, P607, DOI 10.1111/j.1474-9726.2007.00312.x; Lane N., 2009, LIFE ASCENDING 10 GR; LEVEY DJ, 1992, AM NAT, V140, P447, DOI 10.1086/285421; Linnen C, 2001, EVOL ECOL RES, V3, P877; MARSH RL, 1989, PHYSL COLD ADAPTATIO, P105; MCCULLY KK, 1995, J GERONTOL A-BIOL, V50, P130; McNab BK, 2003, NATURE, V426, P620, DOI 10.1038/426620b; Mila B, 2006, EVOLUTION, V60, P2403; Miller RA, 2002, EXP BIOL MED, V227, P500; Miller RA, 2011, AGEING RES REV, V10, P181, DOI 10.1016/j.arr.2010.01.002; Mitchell TW, 2007, EXP GERONTOL, V42, P1053, DOI 10.1016/j.exger.2007.09.004; Mockett RJ, 2001, EXP GERONTOL, V36, P441, DOI 10.1016/S0531-5565(00)00258-8; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; Mueller P, 2001, P NATL ACAD SCI USA, V98, P12550, DOI 10.1073/pnas.221456698; MUN OZ, 2005, PHYSIOL BIOCHEM ZOOL, V78, P1039; Nespolo RF, 2002, J EXP BIOL, V205, P2697; Ogburn CE, 1998, J GERONTOL A-BIOL, V53, pB287, DOI 10.1093/gerona/53A.4.B287; Pearl R, 1928, RATE LIVING; Perez VI, 2009, BBA-GEN SUBJECTS, V1790, P1005, DOI 10.1016/j.bbagen.2009.06.003; Piersma T, 1996, PHYSIOL ZOOL, V69, P191, DOI 10.1086/physzool.69.1.30164207; PORTER R, 1995, AM J PHYSIOL-REG I, V38, pR1213; Price T, 1997, PHILOS T ROY SOC B, V352, P519, DOI 10.1098/rstb.1997.0036; Promislow DEL, 2002, MECH AGEING DEV, V123, P841, DOI 10.1016/S0047-6374(02)00021-0; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; REMMEN H, 2009, J GERONTOL, V64, P1212; Ricklefs RE, 1997, ECOL MONOGR, V67, P23, DOI 10.1890/0012-9615(1997)067[0023:CDONWP]2.0.CO;2; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; RICKLEFS RE, 1976, IBIS, V118, P179, DOI 10.1111/j.1474-919X.1976.tb03065.x; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; Roff Derek A., 1992; Rolfe DFS, 1997, PHYSIOL REV, V77, P731; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSENMANN M, 1974, AM J PHYSIOL, V226, P490; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Savage VM, 2007, P NATL ACAD SCI USA, V104, P4718, DOI 10.1073/pnas.0611235104; Schaefer HC, 2004, IBIS, V146, P427, DOI 10.1111/j.1474-919X.2004.00276.x; Sgro CM, 2000, AM NAT, V156, P341, DOI 10.1086/303394; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Sibly RM, 2007, P NATL ACAD SCI USA, V104, P17707, DOI 10.1073/pnas.0707725104; SNOW DW, 1974, CONDOR, V76, P262, DOI 10.2307/1366339; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556; Speakman JR, 2004, AGING CELL, V3, P87, DOI 10.1111/j.1474-9728.2004.00097.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Swanson DL, 2006, J EXP BIOL, V209, P466, DOI 10.1242/jeb.02024; Talbot DA, 2004, J PHYSIOL-LONDON, V558, P123, DOI 10.1113/jphysiol.2004.063768; Tieleman BI, 2008, BEHAV ECOL, V19, P949, DOI 10.1093/beheco/arn051; Tieleman BI, 2006, FUNCT ECOL, V20, P491, DOI 10.1111/j.1365-2435.2006.01126.x; Tieleman BI, 2000, PHYSIOL BIOCHEM ZOOL, V73, P461, DOI 10.1086/317740; Tieleman BI, 2003, ECOLOGY, V84, P1800, DOI 10.1890/0012-9658(2003)084[1800:PVOLAA]2.0.CO;2; TUCKER VA, 1968, J EXP BIOL, V48, P67; Valencak T, 2007, COMP BIOCHEM PHYS A, V146, pS55, DOI 10.1016/j.cbpa.2007.01.038; Van Voorhies WA, 2003, J APPL PHYSIOL, V95, P2605, DOI 10.1152/japplphysiol.00448.2003; Van Voorhies WA, 2002, AGING CELL, V1, P91, DOI 10.1046/j.1474-9728.2002.00022.x; VANVOORHIES WA, 1992, NATURE, V360, P456, DOI 10.1038/360456a0; Vezina F, 2005, FUNCT ECOL, V19, P119, DOI 10.1111/j.0269-8463.2005.00942.x; Vezina F, 2006, J EXP BIOL, V209, P3141, DOI 10.1242/jeb.02338; Vleck CM, 2007, J ORNITHOL, V148, pS611, DOI 10.1007/s10336-007-0186-5; Wang ZM, 2001, J NUTR, V131, P2967; Weibel ER, 2004, RESP PHYSIOL NEUROBI, V140, P115, DOI 10.1016/j.resp.2004.01.006; Weibel ER, 2005, J EXP BIOL, V208, P1635, DOI 10.1242/jeb.01548; West GB, 1999, SCIENCE, V284, P1677, DOI 10.1126/science.284.5420.1677; West GB, 2003, NATURE, V421, P713, DOI 10.1038/421713a; West GB, 2002, P NATL ACAD SCI USA, V99, P2473, DOI 10.1073/pnas.012579799; WESTOBY M, 1995, J ECOL, V83, P892; Wheatley DN, 2007, AM J PHYSIOL-REG I, V292, pR2113, DOI 10.1152/ajpregu.00102.2007; White CR, 2004, PHYSIOL BIOCHEM ZOOL, V77, P929, DOI 10.1086/425186; White CR, 2003, P NATL ACAD SCI USA, V100, P4046, DOI 10.1073/pnas.0436428100; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P20866, DOI 10.1073/pnas.0707683104; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams JB, 1999, CONDOR, V101, P432, DOI 10.2307/1370011; Wu BJ, 2004, AM J PHYSIOL-REG I, V287, pR633, DOI 10.1152/ajpregu.00549.2003; Zhang YQ, 2009, J GERONTOL A-BIOL, V64, P1212, DOI 10.1093/gerona/glp132 140 46 48 2 64 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 1557-7023 INTEGR COMP BIOL Integr. Comp. Biol. NOV 2010 50 5 855 868 10.1093/icb/icq024 14 Zoology Zoology 673QM WOS:000283678100015 21558245 Green Published, Bronze 2018-11-12 J Coulson, T; Tuljapurkar, S; Childs, DZ Coulson, Tim; Tuljapurkar, Shripad; Childs, Dylan Z. Using evolutionary demography to link life history theory, quantitative genetics and population ecology JOURNAL OF ANIMAL ECOLOGY English Article age-stage structure; integral projection models; ontogenetic development; reproductive allocation; Soay sheep INTEGRAL PROJECTION MODELS; VARIABLE ENVIRONMENT; SELECTION; DYNAMICS; DENSITY; SIZE; AGE; CHARACTERS; FITNESS; GROWTH P>1. There is a growing number of empirical reports of environmental change simultaneously influencing population dynamics, life history and quantitative characters. We do not have a well-developed understanding of links between the dynamics of these quantities. 2. Insight into the joint dynamics of populations, quantitative characters and life history can be gained by deriving a model that allows the calculation of fundamental quantities that underpin population ecology, evolutionary biology and life history. The parameterization and analysis of such a model for a specific system can be used to predict how a population will respond to environmental change. 3. Age-stage-structured models can be constructed from character-demography associations that describe age-specific relationships between the character and: (i) survival; (ii) fertility; (iii) ontogenetic development of the character among survivors; and (iv) the distribution of reproductive allocation. 4. These models can be used to calculate a wide range of useful biological quantities including population growth and structure; terms in the Price equation including selection differentials; estimates of biometric heritabilities; and life history descriptors including generation time. We showcase the method through parameterization of a model using data from a well-studied population of Soay sheep Ovis aries. 5. Perturbation analysis is used to investigate how the quantities listed in summary point 4 change as each parameter in each character-demography function is altered. 6. A wide range of joint dynamics of life history, quantitative characters and population growth can be generated in response to changes in different character-demography associations; we argue this explains the diversity of observations on the consequences of environmental change from studies of free-living populations. 7. The approach we describe has the potential to explain within and between species patterns in quantitative characters, life history and population dynamics. [Coulson, Tim] Univ London Imperial Coll Sci Technol & Med, Dept Life Sci, Ascot SL5 7PY, Berks, England; [Tuljapurkar, Shripad] Stanford Univ, Dept Biol, Stanford, CA 94305 USA; [Childs, Dylan Z.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England Coulson, T (reprint author), Univ London Imperial Coll Sci Technol & Med, Dept Life Sci, Silwood Pk, Ascot SL5 7PY, Berks, England. t.coulson@imperial.ac.uk Childs, Dylan/C-9814-2010 Childs, Dylan/0000-0002-0675-4933; Coulson, Tim/0000-0001-9371-9003 Wellcome Trust; European Research Council; NERC; National Institute of Aging [P01/AG/22500]; Natural Environment Research Council [NE/E015921/1, NE/H007148/1, NE/G004854/1, NE/E013015/1] We are indebted to Tim Clutton-Brock, Josephine Pemberton, Steve Albon, Loeske Kruuk and Mick Crawley for maintaining the long-term study on St. Kilda. Thanks to the National Trust for Scotland Scottish and National Heritage for permission to work on St. Kilda and the Ministry of Defence, QinetiQ, Amey, and ESS staff on St. Kilda and Benbecula for logistical support. Jill Pilkington, previous field assistants, and many volunteers collected the data. This work was funded by a Wellcome Trust flexible travel award, a European Research Council Advanced Grant and an NERC standard grant to TC, a National Institute of Aging grant P01/AG/22500 to S.T. and a NERC fellowship to D.Z.C. Data collection are currently funded by NERC. Tim Benton, Tim Clutton-Brock, Jean-Michel Gaillard, Andres Lopez-Sepulchre, Aurelio Malo, Dan Nussey, Arpat Ozgul, Josephine Pemberton, Bernt-Erik Saether, Isabel Smallegange, Uli Steiner and an anonymous referee provided useful comments on an earlier version of the manuscript. AKESSON M, 2008, PLOS ONE, V3, P1; Benton TG, 2000, EVOL ECOL RES, V2, P769; Bulmer M.G., 1980, MATH THEORY QUANTITA; Caswell H, 2001, MATRIX POPULATION MO; Caswell H, 2009, OIKOS, V118, P1763, DOI 10.1111/j.1600-0706.2009.17620.x; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Childs DZ, 2004, P ROY SOC B-BIOL SCI, V271, P425, DOI 10.1098/rspb.2003.2597; Childs DZ, 2003, P ROY SOC B-BIOL SCI, V270, P1829, DOI 10.1098/rspb.2003.2399; Clutton-Brock T. H., 2004, SOAY SHEEP DYNAMICS; Coltman DW, 2002, P ROY SOC B-BIOL SCI, V269, P165, DOI 10.1098/rspb.2001.1851; Coulson T, 2008, ECOLOGY, V89, P1661, DOI 10.1890/07-1099.1; Coulson T, 1999, J ANIM ECOL, V68, P658, DOI 10.1046/j.1365-2656.1999.00298.x; Coulson T, 2001, SCIENCE, V292, P1528, DOI 10.1126/science.292.5521.1528; Coulson T, 2006, EVOL ECOL RES, V8, P1155; Coulson T, 2008, AM NAT, V172, P599, DOI 10.1086/591693; Easterling MR, 2000, ECOLOGY, V81, P694, DOI 10.2307/177370; Ellner SP, 2006, AM NAT, V167, P410, DOI 10.1086/499438; Falconer D. S., 1960, INTRO QUANTITATIVE G; Fortin D, 2005, ECOLOGY, V86, P1320, DOI 10.1890/04-0953; GOODNIGHT CJ, 1988, EVOLUTION, V42, P441, DOI 10.1111/j.1558-5646.1988.tb04151.x; Hairston NG, 2005, ECOL LETT, V8, P1114, DOI 10.1111/j.1461-0248.2005.00812.x; JACQUARD A, 1983, BIOMETRICS, V39, P465, DOI 10.2307/2531017; Jones OR, 2008, J ANIM ECOL, V77, P612, DOI 10.1111/j.1365-2656.2008.01382.x; Kruuk LEB, 2004, PHILOS T ROY SOC B, V359, P873, DOI 10.1098/rstb.2003.1437; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Lebreton JD, 1996, THEOR POPUL BIOL, V49, P291, DOI 10.1006/tpbi.1996.0015; Lefkovitch L. P., 1965, BIOMETRIKA, V35, P183; Metcalf CJE, 2008, P NATL ACAD SCI USA, V105, P10466, DOI 10.1073/pnas.0800777105; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Ozgul A, 2009, SCIENCE, V325, P464, DOI 10.1126/science.1173668; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PRICE GR, 1970, NATURE, V227, P520, DOI 10.1038/227520a0; PROUT T, 1971, GENETICS, V68, P127; PROUT T, 1985, AM NAT, V126, P521, DOI 10.1086/284436; R Development Core Team, 2009, R LANG ENV STAT COMP; Rees M, 2009, ECOL MONOGR, V79, P575, DOI 10.1890/08-1474.1; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.es.18.110187.001233; Schuetz EG, 2000, MOL PHARMACOL, V57, P188; Tuljapurkar S, 2006, ECOL LETT, V9, P324, DOI 10.1111/j.1461-0248.2006.00881.x; Tuljapurkar S, 2003, AM NAT, V162, P489, DOI 10.1086/378648; TULJAPURKAR S, 1990, POPULATION DYNAMICS; TURELLI M, 1994, GENETICS, V138, P913; WILLIS JH, 1991, EVOLUTION, V45, P441, DOI 10.1111/j.1558-5646.1991.tb04418.x; Wolf JB, 1998, TRENDS ECOL EVOL, V13, P64, DOI 10.1016/S0169-5347(97)01233-0 44 101 102 4 140 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 J ANIM ECOL J. Anim. Ecol. NOV 2010 79 6 1226 1240 10.1111/j.1365-2656.2010.01734.x 15 Ecology; Zoology Environmental Sciences & Ecology; Zoology 665YM WOS:000283074000010 20704627 Green Published, Bronze 2018-11-12 J Jones, JH; Wilson, ML; Murray, C; Pusey, A Jones, James Holland; Wilson, Michael L.; Murray, Carson; Pusey, Anne Phenotypic quality influences fertility in Gombe chimpanzees JOURNAL OF ANIMAL ECOLOGY English Article chimpanzee; demography; fertility; life-history theory; phenotypic quality LIFETIME REPRODUCTIVE SUCCESS; FEMALE CHIMPANZEES; NATIONAL-PARK; PAN-TROGLODYTES; DOMINANCE RANK; FUR SEALS; HISTORY; DEMOGRAPHY; MACAQUES; AGE P>1. Fertility is an important fitness component, but is difficult to measure in slowly reproducing, long-lived animals such as chimpanzees (Pan troglodytes). 2. We measured fertility and the effect of measured covariates on fertility in a 43-year sample of birth intervals of chimpanzees from the Gombe National Park, Tanzania using Cox proportional hazards regression with individual-level random effects. 3. The birth hazard declined with mothers' age at a rate of 0 center dot 84 per year following age at first reproduction. This value is somewhat stronger than previous estimates. 4. Loss of the infant that opened the birth interval increased the birth hazard 134-fold. 5. Birth intervals following the first complete birth interval were shorter than this first interval, while sex of the previous infant had no significant effect. 6. Maternal dominance rank was significant at the P < 0 center dot 1 level when coded as high/middle/low but was highly significant when we simply considered high rank vs. others. 7. Individual heterogeneity had a substantial impact on birth interval duration. We interpret this individual effect as a measure of phenotypic quality, controlling for the measured covariates such as dominance rank. This interpretation is supported by the correlation of individual heterogeneity scores with similar independent measures of body mass. [Jones, James Holland] Stanford Univ, Dept Anthropol, Stanford, CA 94305 USA; [Jones, James Holland] Stanford Univ, Woods Inst Environm, Stanford, CA 94305 USA; [Wilson, Michael L.] Univ Minnesota, Dept Anthropol, HH Humphrey Ctr 395, Minneapolis, MN 55455 USA; [Wilson, Michael L.; Pusey, Anne] Jane Goodall Inst, Ctr Primate Studies, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA; Lincoln Pk Zoo, Chicago, IL 60614 USA Jones, JH (reprint author), Stanford Univ, Dept Anthropol, 450 Serra Mall,Bldg 50, Stanford, CA 94305 USA. jhj1@stanford.edu Jones, James/0000-0003-1680-6757; Wilson, Michael/0000-0003-3073-4518 The Jane Goodall Institute (JGI); NIH/NICHD [K01HD051494]; Harris Steel Group; University of Minnesota; NSF [DBS-9021946, SBR-93109909, II-0431141, BCS-0648481]; NIH [R01 AI058715] We thank the many researchers who collected demographic data at Gombe, especially H. Matama, Y. Almasi, E. Mpongo, H. Mkono, under the direction of Jane Goodall and research directors D.A. Collins, J. Wallis and S. Kamenya. We thank Tanzania National Parks, the Tanzania Wildlife Research Institute and the Tanzania Commission for Science and Technology for permission to conduct research. The Jane Goodall Institute (JGI) supported the long-term study. J. Williams, J. Schumacher-Stankey and I. Gilby helped to develop the data base, G. Oehlert provided data from the growth model of body mass, and M. Emery Thompson and S. Tuljapurkar provided useful critical feedback. J.H.J. was supported by grant K01HD051494 from NIH/NICHD, and A. and M.L.W. by grants from Harris Steel Group, University of Minnesota, JGI, NSF (DBS-9021946, SBR-93109909, II-0431141, BCS-0648481), and NIH (R01 AI058715). Altmann J, 2003, AM J HUM BIOL, V15, P401, DOI 10.1002/ajhb.10157; Beauplet G, 2006, OIKOS, V112, P430, DOI 10.1111/j.0030-1299.2006.14412.x; Beauplet G, 2007, P R SOC B, V274, P1877, DOI 10.1098/rspb.2007.0454; Becker PH, 2008, P NATL ACAD SCI USA, V105, P12349, DOI 10.1073/pnas.0804179105; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Bercovitch FB, 1998, AM J PRIMATOL, V46, P135, DOI 10.1002/(SICI)1098-2345(1998)46:2<135::AID-AJP3>3.3.CO;2-A; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.2307/177240; Boesch C, 1997, ANIM BEHAV, V54, P811, DOI 10.1006/anbe.1996.0510; Burnham KP, 2002, MODEL SELECTION INFE; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Fedigan LM, 2008, AM J PHYS ANTHROPOL, V137, P82, DOI 10.1002/ajpa.20848; GALDIKAS BMF, 1990, AM J PHYS ANTHROPOL, V83, P185, DOI 10.1002/ajpa.1330830207; GOODALL J, 1983, Z TIERPSYCHOL, V61, P1; Goodall J., 1986, CHIMPANZEES GOMBE PA; Hossain MB, 2007, DEMOGRAPHY, V44, P771, DOI 10.1353/dem.2007.0047; Hurtado AM, 1996, ACHE LIFE HIST; Johnson SE, 2003, AM J PHYS ANTHROPOL, V120, P83, DOI 10.1002/ajpa.10139; Jones JH, 2005, AM J HUM BIOL, V17, P22, DOI 10.1002/ajhb.20099; Klein J.P., 1997, SURVIVAL ANAL TECHNI; KOYAMA N, 1992, PRIMATES, V33, P33, DOI 10.1007/BF02382761; Lang SLC, 2009, ECOLOGY, V90, P2513, DOI 10.1890/08-1386.1; Lawler RR, 2009, OECOLOGIA, V161, P491, DOI 10.1007/s00442-009-1382-1; Little R., 2002, STAT ANAL MISSING DA; Littleton J, 2005, AM J PRIMATOL, V67, P281, DOI 10.1002/ajp.20185; Mcloughlin PD, 2007, ECOLOGY, V88, P3192, DOI 10.1890/06-1974.1; Murray CM, 2006, BEHAV ECOL, V17, P1020, DOI 10.1093/beheco/arl042; Nishida T, 2003, AM J PRIMATOL, V59, P99, DOI 10.1002/ajp.10068; Packer C, 2000, PHILOS T ROY SOC B, V355, P1627, DOI 10.1098/rstb.2000.0725; Pelletier F, 2007, SCIENCE, V315, P1571, DOI 10.1126/science.1139024; Pusey A, 1997, SCIENCE, V277, P828, DOI 10.1126/science.277.5327.828; Pusey AE, 2005, INT J PRIMATOL, V26, P3, DOI 10.1007/s10764-005-0721-2; Pusey AE, 2007, CONSERV BIOL, V21, P623, DOI 10.1111/j.1523-1739.2007.00704.x; R Development Core Team, 2008, R LANG ENV STAT COMP; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; Richard AF, 2000, J HUM EVOL, V39, P381, DOI 10.1006/jhev.2000.0427; Robbins AM, 2006, AM J PHYS ANTHROPOL, V131, P511, DOI 10.1002/ajpa.20474; Roof KA, 2005, AM J PRIMATOL, V67, P199, DOI 10.1002/ajp.20177; Sear R, 2004, RES ECON ANTHROPOL, V23, P203, DOI 10.1016/S0190-1281(04)23008-6; Sheps M. C., 1973, MATH MODELS CONCEPTI; SILK JB, 1990, AM J PHYS ANTHROPOL, V82, P213, DOI 10.1002/ajpa.1330820210; Singer J. D., 2003, APPL LONGITUDINAL DA; Strier KB, 2006, AM J PHYS ANTHROPOL, V130, P227, DOI 10.1002/ajpa.20366; Strier KB, 2006, EVOL ANTHROPOL, V15, P44; Sugiyama Y, 2004, AM J PHYS ANTHROPOL, V124, P154, DOI 10.1002/ajpa.10345; Therneau TM, 2003, J COMPUT GRAPH STAT, V12, P156, DOI 10.1198/1061860031365; Therneau TM, 2000, MODELING SURVIVAL DA; Thompson ME, 2007, ANIM BEHAV, V73, P501, DOI 10.1016/j.anbehav.2006.09.007; Thomsen J, 2007, J ORG COMP ELECT COM, V17, P1; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; van Noordwijk MA, 1999, PRIMATES, V40, P105, DOI 10.1007/BF02557705; van Schaik Carel P., 2000, P27, DOI 10.1017/CBO9780511542312.004; Vaupel JW, 1985, SOCIOL METHODOL, V15, P179, DOI [10.2307/270850, DOI 10.2307/270850)]; Wich SA, 2004, J HUM EVOL, V47, P385, DOI 10.1016/j.jhevol.2004.08.006; Williams JM, 2004, ANIM BEHAV, V68, P523, DOI 10.1016/j.anbehav.2003.09.015; WOOD JW, 1994, DYNAMICS HUMAN REPRO; ZILHMAN A, 1990, J ZOOLOGY LONDON, V221, P37 57 30 30 1 14 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0021-8790 J ANIM ECOL J. Anim. Ecol. NOV 2010 79 6 1262 1269 10.1111/j.1365-2656.2010.01687.x 8 Ecology; Zoology Environmental Sciences & Ecology; Zoology 665YM WOS:000283074000013 20412347 Bronze, Green Accepted 2018-11-12 J Kelly, NB; Alonzo, SH Kelly, N. B.; Alonzo, S. H. Does a trade-off between current reproductive success and survival affect the honesty of male signalling in species with male parental care? JOURNAL OF EVOLUTIONARY BIOLOGY English Article life history; male allocation; parental care; reproductive strategies; sexual selection SEXUAL SELECTION; MATE CHOICE; 3-SPINED STICKLEBACK; MATING PREFERENCES; PATERNAL CARE; HOUSE FINCH; ORNAMENTATION; ADVERTISEMENT; EVOLUTION; BENEFITS Recent theory predicted that male advertisement will reliably signal investment in paternal care in species where offspring survival requires paternal care and males allocate resources between advertisement and care. However, the predicted relationship between care and advertisement depended on the marginal gains from investment in current reproductive traits. Life history theory suggests that these fitness gains are also subject to a trade-off between current and future reproduction. Here, we investigate whether male signalling remains a reliable indicator of parental care when males allocate resources between current advertisement, paternal care and survival to future reproduction. We find that advertisement is predicted to remain a reliable signal of male care but that advertisement may cease to reliably indicate male quality because low-quality males are predicted to invest in current reproduction, whereas higher-quality males are able to invest in both current reproduction and survival to future reproduction. [Kelly, N. B.; Alonzo, S. H.] Yale Univ, Osborne Mem Labs, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA Kelly, NB (reprint author), Yale Univ, Osborne Mem Labs, Dept Ecol & Evolutionary Biol, 165 Prospect St,Rm 427, New Haven, CT 06520 USA. natasha.kelly@yale.edu ANDERSSON M, 1986, EVOLUTION, V40, P804, DOI 10.1111/j.1558-5646.1986.tb00540.x; Andersson M., 1994, SEXUAL SELECTION; Badyaev AV, 2003, J EVOLUTION BIOL, V16, P1065, DOI 10.1046/j.1420-9101.2003.00628.x; Badyaev AV, 2002, BEHAV ECOL, V13, P591, DOI 10.1093/beheco/13.5.591; BAKKER TCM, 1994, BEHAV ECOL, V5, P74, DOI 10.1093/beheco/5.1.74; Candolin U, 2000, ANIM BEHAV, V60, P417, DOI 10.1006/anbe.2000.1481; Candolin U, 2000, P ROY SOC B-BIOL SCI, V267, P2425, DOI 10.1098/rspb.2000.1301; Candolin U, 1999, ANIM BEHAV, V58, P1261, DOI 10.1006/anbe.1999.1259; Coleman SW, 2004, NATURE, V428, P742, DOI 10.1038/nature02419; Duckworth RA, 2003, BEHAV ECOL SOCIOBIOL, V55, P176, DOI 10.1007/s00265-003-0671-7; GRAFEN A, 1990, J THEOR BIOL, V144, P473, DOI 10.1016/S0022-5193(05)80087-6; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; Griggio M, 2009, BEHAV ECOL, V20, P1072, DOI 10.1093/beheco/arp099; Helfman GS, 1997, DIVERSITY FISHES; Houle D, 2002, P ROY SOC B-BIOL SCI, V269, P97, DOI 10.1098/rspb.2001.1823; Jennions MD, 1997, BIOL REV, V72, P283, DOI 10.1017/S0006323196005014; Jeon J, 2008, BEHAV ECOL, V19, P344, DOI 10.1093/beheco/arm136; Kelly NB, 2009, P R SOC B, V276, P3175, DOI 10.1098/rspb.2009.0599; Kokko H, 1998, P ROY SOC B-BIOL SCI, V265, P1871, DOI 10.1098/rspb.1998.0515; Lopez P, 2005, BIOL LETT-UK, V1, P404, DOI 10.1098/rsbl.2005.0360; MACNAIR MR, 1979, ANIM BEHAV, V27, P1202, DOI 10.1016/0003-3472(79)90067-8; McNamara JM, 2003, P ROY SOC B-BIOL SCI, V270, P1925, DOI 10.1098/rspb.2003.2396; Moller AP, 2001, NATURWISSENSCHAFTEN, V88, P401, DOI 10.1007/s001140100255; Owens IPF, 1998, P ROY SOC B-BIOL SCI, V265, P397, DOI 10.1098/rspb.1998.0308; PARKER GA, 1989, AM NAT, V133, P846, DOI 10.1086/284956; PRICE T, 1993, BIOL J LINN SOC, V48, P187, DOI 10.1006/bijl.1993.1014; Stearns S. C., 1992, EVOLUTION LIFE HIST; WEDEKIND C, 1992, P ROY SOC B-BIOL SCI, V247, P169, DOI 10.1098/rspb.1992.0024; Williams GC, 1966, ADAPTATION NATURAL S; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3 30 7 7 3 14 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. NOV 2010 23 11 2461 2473 10.1111/j.1420-9101.2010.02111.x 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 669TX WOS:000283374200019 20860698 Bronze 2018-11-12 J Lutscher, F; Nisbet, RM; Pachepsky, E Lutscher, Frithjof; Nisbet, Roger M.; Pachepsky, Elizaveta Population persistence in the face of advection THEORETICAL ECOLOGY English Article Advection; Drift paradox; Persistence condition; Invasion speed; Integrodifference equation; Dispersal kernel DRIFT PARADOX; DISPERSAL PATTERNS; STREAM BENTHOS; INTEGRODIFFERENCE EQUATIONS; DENSITY-DEPENDENCE; SPREAD; INVERTEBRATES; MOVEMENTS; INVASIONS; INSECTS Many populations live in 'advective' media, such as rivers, where flow is biased in one direction. In these environments, populations face the possibility of extinction by being washed out of the system, even if the net reproductive rate (R) is greater than one. We propose a formal condition for population persistence in advective systems: a population can persist at any location in a homogeneous habitat if and only if it can invade upstream. This leads to a remarkably simple recipe for calculating the minimal value for the net reproductive rate for population persistence. We apply this criterion to discrete-time models of a semelparous population where dispersal is characterized by a mechanistically derived kernel. We demonstrate that persistence depends strongly on the form of the kernel's 'tail', a result consistent with previous literature on the speed of spread of invasions. We apply our theory to models of stream invertebrates with a biphasic life cycle, and relate our results to the 'colonization cycle' hypothesis where bias in downstream drift is offset by upstream bias in adult dispersal. In the absence of bias in adult dispersal, variability in the duration of the larval stage and in oviposition sites have a large effect of the persistence condition. The minimization calculations required in our approach are very straightforward, indicating the feasibility of future applications to life history theory. [Lutscher, Frithjof] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada; [Nisbet, Roger M.; Pachepsky, Elizaveta] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA Lutscher, F (reprint author), Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada. flutsche@uottawa.ca Nisbet, Roger/B-6951-2014; Lutscher, Frithjof/C-9484-2012 Lutscher, Frithjof/0000-0001-7380-7647 National Science and Engineering Research Council of Canada; University of Ottawa; US National Science Foundation [DEB- 0717259] The authors thank Mark Lewis and Ed McCauley for inspiring discussions. FL gratefully acknowledges support through a discovery grant from the National Science and Engineering Research Council of Canada and a startup grant by the University of Ottawa. RMN thanks the US National Science Foundation (Grant DEB- 0717259) for support. ANHOLT BR, 1995, ECOLOGY, V76, P2235, DOI 10.2307/1941697; Aronson D.G., 1975, LECT NOTES MATH, V446, P5, DOI DOI 10.1007/BFB0070595; Ballyk M, 1999, MATH BIOSCI, V158, P95, DOI 10.1016/S0025-5564(99)00006-1; BIRD GA, 1981, HYDROBIOLOGIA, V77, P65, DOI 10.1007/BF00006389; BISHOP JE, 1969, ARCH HYDROBIOL, V66, P56; Byers JE, 2006, MAR ECOL PROG SER, V313, P27, DOI 10.3354/meps313027; Cantrell RS, 2006, J DIFFER EQUATIONS, V231, P768, DOI 10.1016/j.jde.2006.08.018; Caswell H, 2001, MATRIX POPULATION MO; Clark JS, 2003, ECOLOGY, V84, P1979, DOI 10.1890/01-0618; Clark JS, 2001, AM NAT, V157, P537, DOI 10.1086/319934; DIMOND JB, 1967, ECOLOGY, V48, P855, DOI 10.2307/1933744; DUDLEYWILLIAMS D, 1993, FRESHWATER BIOL, V30, P199, DOI 10.1111/j.1365-2427.1993.tb00802.x; Elliott JM, 2003, FRESHWATER BIOL, V48, P1652, DOI 10.1046/j.1365-2427.2003.01117.x; ELLIOTT JM, 1971, J ANIM ECOL, V40, P235, DOI 10.2307/3339; FLECKER AS, 1988, AQUAT INSECT, V10, P33, DOI 10.1080/01650428809361308; Hastings A, 2005, ECOL LETT, V8, P91, DOI 10.1111/j.1461-0248.2004.00687.x; HERSHEY AE, 1993, ECOLOGY, V74, P2315, DOI 10.2307/1939584; Hsu SB, 2008, SIAM J MATH ANAL, V40, P776, DOI 10.1137/070703016; Huisman J, 2002, AM NAT, V159, P245, DOI 10.1086/338511; Humphries S, 2002, J ANIM ECOL, V71, P151, DOI 10.1046/j.0021-8790.2001.00579.x; Kopp M, 2001, OIKOS, V92, P522, DOI 10.1034/j.1600-0706.2001.920313.x; KOT M, 1986, MATH BIOSCI, V80, P109, DOI 10.1016/0025-5564(86)90069-6; Kot M, 1996, ECOLOGY, V77, P2027, DOI 10.2307/2265698; Kot M, 2004, THEOR POPUL BIOL, V66, P175, DOI 10.1016/j.tpb.2004.05.005; Lockwood DR, 2002, THEOR POPUL BIOL, V61, P297, DOI 10.1006/tpbi.202.1572; Lutscher F, 2005, SIAM J APPL MATH, V65, P1305, DOI 10.1137/S0036139904440400; Lutscher F, 2004, J MATH BIOL, V48, P293, DOI 10.1007/s00285-003-0234-6; Lutscher F, 2008, J MATH BIOL, V56, P499, DOI 10.1007/s00285-007-0127-1; Lutscher F, 2007, B MATH BIOL, V69, P1615, DOI 10.1007/s11538-006-9182-9; Lutscher F, 2006, B MATH BIOL, V68, P2129, DOI 10.1007/s11538-006-9100-1; Macneale KH, 2005, FRESHWATER BIOL, V50, P1117, DOI 10.1111/j.1365-2427.2005.01387.x; Macneale KH, 2004, FRESHWATER BIOL, V49, P1260, DOI 10.1111/j.1365-2427.2004.01266.x; Medlock J, 2003, MATH BIOSCI, V184, P201, DOI 10.1016/S0025-5564(03)00041-5; MULLER K, 1982, OECOLOGIA, V52, P202, DOI 10.1007/BF00363837; Muller K, 1970, OSTERR FISCHEREI, V23, P111; MULLER K, 1954, I FRESHWATER RES DRO, V34, P133; NEUBERT MG, 1995, THEOR POPUL BIOL, V48, P7, DOI 10.1006/tpbi.1995.1020; Pachepsky E, 2005, THEOR POPUL BIOL, V67, P61, DOI 10.1016/j.tpb.2004.09.001; Pearson WD, 1970, THESIS UTAH STATE U; Potapov AB, 2004, B MATH BIOL, V66, P975, DOI 10.1016/j.bulm.2003.10.010; Pringle J., 2009, MAR ECOL PROG SER, V337, P13; Siegel DA, 2008, P NATL ACAD SCI USA, V105, P8974, DOI 10.1073/pnas.0802544105; SMITH HL, 1995, THEORY CHEMOSTAT; Speirs DC, 2001, ECOLOGY, V82, P1219, DOI 10.2307/2679984; Svendsen CR, 2004, REV MACROINVERTEBRAT; TOWNSEND CR, 1976, J ANIM ECOL, V45, P759, DOI 10.2307/3579; Turner D, 2000, INT REV HYDROBIOL, V85, P141, DOI 10.1002/(SICI)1522-2632(200004)85:2/3<141::AID-IROH141>3.3.CO;2-G; Van Kirk R.W., 1999, Natural Resource Modeling, V12, P37; VANDENBOSCH F, 1992, J BIOGEOGR, V19, P135, DOI 10.2307/2845500; WATERS TF, 1972, ANNU REV ENTOMOL, V17, P253, DOI 10.1146/annurev.en.17.010172.001345; WATERS TF, 1961, ECOLOGY, V42, P532, DOI 10.2307/1932239; WEINBERGER HF, 1982, SIAM J MATH ANAL, V13, P353, DOI 10.1137/0513028; WILLIAMS DD, 1976, OIKOS, V27, P265, DOI 10.2307/3543905 53 39 39 3 23 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 1874-1738 1874-1746 THEOR ECOL-NETH Theor. Ecol. NOV 2010 3 4 271 284 10.1007/s12080-009-0068-y 14 Ecology Environmental Sciences & Ecology 654OS WOS:000282178400005 Other Gold 2018-11-12 J Reece, SE; Ali, E; Schneider, P; Babiker, HA Reece, Sarah E.; Ali, Eltayeb; Schneider, Petra; Babiker, Hamza A. Stress, drugs and the evolution of reproductive restraint in malaria parasites PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article Plasmodium falciparum; life-history trade-offs; gametocyte conversion; anti-malarial drug resistance; reproductive effort; resource allocation ENHANCED GAMETOCYTE FORMATION; PLASMODIUM-FALCIPARUM; EASTERN SUDAN; IN-VITRO; TRANSMISSION STRATEGIES; CHLOROQUINE TREATMENT; VIRULENCE EVOLUTION; CHABAUDI; LIFE; ERYTHROCYTES Life-history theory predicts that sexually reproducing organisms have evolved to resolve resource-allocation trade-offs between growth/survival versus reproduction, and current versus future reproduction. Malaria parasites replicate asexually in their vertebrate hosts, but must reproduce sexually to infect vectors and be transmitted to new hosts. As different specialized stages are required for these functions, the division of resources between these life-history components is a fundamental evolutionary problem. Here, we test how drug-sensitive and drug-resistant isolates of the human malaria parasite Plasmodium falciparum resolve the trade-off between in-host replication and between-host transmission when exposed to treatment with anti-malarial drugs. Previous studies have shown that parasites increase their investment in sexual stages when exposed to stressful conditions, such as drugs. However, we demonstrate that sensitive parasites facultatively decrease their investment in sexual stages when exposed to drugs. In contrast to previous studies, we tested parasites from a region where treatment with antimalarial drugs is common and transmission is seasonal. We hypothesize that when exposed to drugs, parasites invest in their survival and future transmission by diverting resources from reproduction to replication. Furthermore, as drug-resistant parasites did not adjust their investment when exposed to drugs, we suggest that parasites respond to changes in their proliferation (state) rather the presence of drugs. [Reece, Sarah E.; Schneider, Petra] Univ Edinburgh, Ctr Immun Infect & Evolut, Sch Biol Sci, Edinburgh EH9 3JT, Midlothian, Scotland; [Reece, Sarah E.; Schneider, Petra; Babiker, Hamza A.] Univ Edinburgh, Inst Evolut, Sch Biol Sci, Edinburgh EH9 3JT, Midlothian, Scotland; [Reece, Sarah E.; Schneider, Petra; Babiker, Hamza A.] Univ Edinburgh, Inst Immunol & Infect Res, Sch Biol Sci, Edinburgh EH9 3JT, Midlothian, Scotland; [Ali, Eltayeb] Sudan Atom Energy Commiss, Khartoum, Sudan; [Ali, Eltayeb] Univ Khartoum, Fac Med, Dept Biochem, Khartoum, Sudan; [Babiker, Hamza A.] Sultan Qaboos Univ, Fac Med, Dept Biochem, Muscat, Oman Reece, SE (reprint author), Univ Edinburgh, Ctr Immun Infect & Evolut, Sch Biol Sci, Edinburgh EH9 3JT, Midlothian, Scotland. sarah.reece@ed.ac.uk Reece, Sarah/C-9447-2009 Reece, Sarah/0000-0001-6716-6732; Schneider, Petra/0000-0002-2616-237X Malaria Administration of the Sudanese Ministry of Health; Malaria Control Department in Gedaref State; Wellcome Trust; Medical Research Council, UK We are grateful to the villagers of Asar village, eastern Sudan, for their cooperation during the course of the study, and the support of the Malaria Administration of the Sudanese Ministry of Health, together with the Malaria Control Department in Gedaref State and the staff of the Gedaref Hospital. We thank D. H. Nussey, L. C. Pollitt and N. Mideo for discussions, J. Koella and three anonymous reviewers for their comments and the Wellcome Trust and Medical Research Council, UK, for funding. Adjuik M, 2004, LANCET, V363, P9; Ali E, 2006, T ROY SOC TROP MED H, V100, P176, DOI 10.1016/j.trstmh.2005.04.021; Alizon S, 2009, J EVOLUTION BIOL, V22, P245, DOI 10.1111/j.1420-9101.2008.01658.x; Auld JR, 2010, P ROY SOC B-BIOL SCI, V277, P503, DOI 10.1098/rspb.2009.1355; BABIKER HA, 1991, T ROY SOC TROP MED H, V85, P572, DOI 10.1016/0035-9203(91)90347-2; Babiker HA, 1998, AM J TROP MED HYG, V59, P582, DOI 10.4269/ajtmh.1998.59.582; Babiker HA, 2008, TRENDS PARASITOL, V24, P525, DOI 10.1016/j.pt.2008.08.001; Barnes KI, 2007, MALARIA J, V6, DOI 10.1186/1475-2875-6-122; BAYOUMI RAL, 1993, T ROY SOC TROP MED H, V87, P454, DOI 10.1016/0035-9203(93)90034-N; Buckling A, 1999, PARASITOLOGY, V118, P339, DOI 10.1017/S0031182099003960; Buckling A, 1999, EXP PARASITOL, V93, P45, DOI 10.1006/expr.1999.4429; Buckling AGJ, 1999, INT J PARASITOL, V29, P619, DOI 10.1016/S0020-7519(98)00230-6; Buckling AGJ, 1997, P ROY SOC B-BIOL SCI, V264, P553, DOI 10.1098/rspb.1997.0079; Carter R, 1993, Methods Mol Biol, V21, P67; Carter R, 1979, Bull World Health Organ, V57 Suppl 1, P37; Day T, 2003, TRENDS ECOL EVOL, V18, P113, DOI 10.1016/S0169-5347(02)00049-6; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Drakeley C, 2006, TRENDS PARASITOL, V22, P424, DOI 10.1016/j.pt.2006.07.001; Dyer M, 2003, AM J TROP MED HYG, V68, P403, DOI 10.4269/ajtmh.2003.68.403; Ekvall H, 1998, T ROY SOC TROP MED H, V92, P556, DOI 10.1016/S0035-9203(98)90913-0; Fischer B, 2009, AM NAT, V173, pE108, DOI 10.1086/596536; GARNHAM PCC, 1966, MALARIA PARASITES OT; JENSEN JB, 1977, J PARASITOL, V63, P883, DOI 10.2307/3279900; KOELLA JC, 1995, THEOR POPUL BIOL, V47, P277, DOI 10.1006/tpbi.1995.1012; LINES JD, 1991, PARASITOLOGY, V102, P167, DOI 10.1017/S0031182000062454; Long GH, 2008, INT J PARASITOL, V38, P1073, DOI 10.1016/j.ijpara.2007.12.001; McNamara JM, 2009, TRENDS ECOL EVOL, V24, P670, DOI 10.1016/j.tree.2009.05.011; McNamara JM, 2009, P ROY SOC B-BIOL SCI, V276, P4061, DOI 10.1098/rspb.2009.0959; Mideo N, 2008, CELL MICROBIOL, V10, P1947, DOI 10.1111/j.1462-5822.2008.01208.x; Mideo N, 2008, P ROY SOC B-BIOL SCI, V275, P1217, DOI 10.1098/rspb.2007.1545; Mutabingwa TK, 2005, LANCET, V365, P1474, DOI 10.1016/S0140-6736(05)66417-3; Nassir E, 2005, INT J PARASITOL, V35, P49, DOI 10.1016/j.ijpara.2004.10.014; Paul REL, 2003, MOL CELLS, V15, P139; Paul REL, 2003, ECOL LETT, V6, P866, DOI 10.1046/j.1461-0248.2003.00509.x; Paul REL, 2000, SCIENCE, V287, P128, DOI 10.1126/science.287.5450.128; Peatey CL, 2009, J INFECT DIS, V200, P1518, DOI 10.1086/644645; Pinheiro JC, 2000, MIXED EFFECTS MODELS; POLLITT LC, COMPETITION EV UNPUB; Puta C, 1997, TROP MED INT HEALTH, V2, P227, DOI 10.1046/j.1365-3156.1997.d01-267.x; Read AF, 2001, SCIENCE, V292, P1099, DOI 10.1126/science.1059410; Read AF, 2009, EVOL APPL, V2, P40, DOI 10.1111/j.1752-4571.2008.00066.x; Reece SE, 2008, NATURE, V453, P609, DOI 10.1038/nature06954; Reece SE, 2009, EVOL APPL, V2, P11, DOI 10.1111/j.1752-4571.2008.00060.x; Reece SE, 2005, P ROY SOC B-BIOL SCI, V272, P511, DOI 10.1098/rspb.2004.2972; Roff Derek A., 1992; Schlichting C. D., 1998, PHENOTYPIC EVOLUTION; Schneider P, 2008, MALARIA J, V7, DOI 10.1186/1475-2875-7-257; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 2007, EVOLUTION HLTH DIS; Taylor LH, 1997, PARASITOL TODAY, V13, P135, DOI 10.1016/S0169-4758(97)89810-9; Trager W, 1999, EXP PARASITOL, V91, P115, DOI 10.1006/expr.1998.4347; TRAGER W, 1992, J PROTOZOOL, V39, P429, DOI 10.1111/j.1550-7408.1992.tb01476.x; WILLIAMS GC, 1991, Q REV BIOL, V66, P1, DOI 10.1086/417048; Williams GC, 1966, ADAPTATION NATURAL S 54 22 23 2 17 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. OCT 22 2010 277 1697 3123 3129 10.1098/rspb.2010.0564 7 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 660LY WOS:000282645700009 20484242 Other Gold, Green Published 2018-11-12 J Palmer, TM; Doak, DF; Stanton, ML; Bronstein, JL; Kiers, ET; Young, TP; Goheen, JR; Pringle, RM Palmer, Todd M.; Doak, Daniel F.; Stanton, Maureen L.; Bronstein, Judith L.; Kiers, E. Toby; Young, Truman P.; Goheen, Jacob R.; Pringle, Robert M. Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article Acacia drepanolobium; cooperation; plant defense; life history theory; ant-plant SWOLLEN THORN ACACIAS; ANT-PLANT; SPATIOTEMPORAL VARIATION; ONTOGENIC SUCCESSION; ELASTICITY ANALYSIS; LARGE HERBIVORES; EVOLUTION; COMPETITION; COMMUNITY; COOPERATION Understanding cooperation is a central challenge in biology, because natural selection should favor "free-loaders" that reap benefits without reciprocating. For interspecific cooperation (mutualism), most approaches to this paradox focus on costs and benefits of individual partners and the strategies mutualists use to associate with beneficial partners. However, natural selection acts on lifetime fitness, and most mutualists, particularly longer-lived species interacting with shorter-lived partners (e.g., corals and zooxanthellae, tropical trees and mycorrhizae) interact with multiple partner species throughout ontogeny. Determining how multiple partnerships might interactively affect lifetime fitness is a crucial unexplored link in understanding the evolution and maintenance of cooperation. The tropical tree Acacia drepanolobium associates with four symbiotic ant species whose short-term individual effects range from mutualistic to parasitic. Using a long-term dataset, we show that tree fitness is enhanced by partnering sequentially with sets of different ant symbionts over the ontogeny of a tree. These sets include a "sterilization parasite" that prevents reproduction and another that reduces tree survivorship. Trees associating with partner sets that include these "parasites" enhance lifetime fitness by trading off survivorship and fecundity at different life stages. Our results demonstrate the importance of evaluating mutualism within a community context and suggest that lifespan inequalities among mutualists may help cooperation persist in the face of exploitation. [Palmer, Todd M.] Univ Florida, Dept Biol, Gainesville, FL 32611 USA; [Palmer, Todd M.; Doak, Daniel F.; Stanton, Maureen L.; Young, Truman P.; Goheen, Jacob R.; Pringle, Robert M.] Mpala Res Ctr, Nanyuki 10400, Kenya; [Doak, Daniel F.; Goheen, Jacob R.] Univ Wyoming, Dept Zool, Laramie, WY 82072 USA; [Stanton, Maureen L.; Young, Truman P.] Univ Calif Davis, Dept Ecol & Evolut, Davis, CA 95616 USA; [Young, Truman P.] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA; [Bronstein, Judith L.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA; [Kiers, E. Toby] Vrije Univ Amsterdam, Fac Earth & Life Sci, Inst Ecol Sci, NL-1081 HV Amsterdam, Netherlands; [Goheen, Jacob R.] Univ British Columbia, Dept Zool, Vancouver, BC V6T 1Z4, Canada; [Pringle, Robert M.] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA; [Pringle, Robert M.] Harvard Univ, Soc Fellows, Cambridge, MA 02138 USA Palmer, TM (reprint author), Univ Florida, Dept Biol, Gainesville, FL 32611 USA. tmp@ufl.edu Toby, Kiers/H-4819-2017; Stanton, Maureen/E-1204-2012 Toby, Kiers/0000-0002-0597-1653; National Science Foundation [DEB-0444071, DEB-0934734, OISE-0852961]; University of Florida We thank J. Lemboi, S. Akwam, and R. Eraguy for assistance and the Government of Kenya for permission to conduct this research (MOEST 13/001/36C483). This study was funded by National Science Foundation Grants DEB-0444071 (to T.M.P., M.L.S., and T.P.Y.), DEB-0934734 (to T.M.P. and D.F.D.), and OISE-0852961 (to R.M.P.) and by the University of Florida. AXELROD R, 1981, SCIENCE, V211, P1390, DOI 10.1126/science.7466396; Bascompte J, 2009, FRONT ECOL ENVIRON, V7, P429, DOI 10.1890/080026; Bascompte J, 2009, SCIENCE, V325, P416, DOI 10.1126/science.1170749; Benton TG, 1999, TRENDS ECOL EVOL, V14, P467, DOI 10.1016/S0169-5347(99)01724-3; Biesmeijer JC, 2006, SCIENCE, V313, P351, DOI 10.1126/science.1127863; Boege K, 2005, TRENDS ECOL EVOL, V20, P441, DOI 10.1016/j.tree.2005.05.001; Bronstein JL, 2006, NEW PHYTOL, V172, P412, DOI 10.1111/j.1469-8137.2006.01864.x; Caswell H, 2001, MATRIX POPULATION MO; Clement LW, 2008, BEHAV ECOL SOCIOBIOL, V62, P953, DOI 10.1007/s00265-007-0520-1; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Cote IM, 2000, OCEANOGR MAR BIOL, V38, P311; Davidson Diane W., 1993, Journal of Hymenoptera Research, V2, P13; Dejean A, 2008, BASIC APPL ECOL, V9, P316, DOI 10.1016/j.baae.2007.03.001; Djieto-Lordon C, 2004, ACTA OECOL, V26, P109, DOI 10.1016/j.actao.2004.03.007; Doak DF, 2005, AM NAT, V166, pE14, DOI 10.1086/430642; Dunn DW, 2008, PLOS BIOL, V6, P490, DOI 10.1371/journal.pbio.0060059; Edwards DP, 2009, NATURWISSENSCHAFTEN, V96, P1137, DOI 10.1007/s00114-009-0559-0; ENRIGHT NJ, 1995, OECOLOGIA, V104, P79, DOI 10.1007/BF00365565; Feldhaar H, 2003, INSECT SOC, V50, P9, DOI 10.1007/s000400300002; Fonseca CR, 2003, OIKOS, V102, P407; Foster KR, 2006, J EVOLUTION BIOL, V19, P1283, DOI 10.1111/j.1420-9101.2005.01073.x; Frederickson ME, 2005, OECOLOGIA, V143, P387, DOI 10.1007/s00442-004-1817-7; Frederickson ME, 2009, ECOLOGY, V90, P1595, DOI 10.1890/08-0010.1; Goheen JR, 2010, J ANIM ECOL, V79, P372, DOI 10.1111/j.1365-2656.2009.01644.x; HERRERA CM, 1988, BIOL J LINN SOC, V35, P95, DOI 10.1111/j.1095-8312.1988.tb00461.x; HOCKING B, 1970, T ROY ENT SOC LONDON, V122, P211; HORVITZ CC, 1990, ECOLOGY, V71, P1085, DOI 10.2307/1937377; HORVITZ CC, 1995, ECOL MONOGR, V65, P155, DOI 10.2307/2937136; Husband R, 2002, MOL ECOL, V11, P2669, DOI 10.1046/j.1365-294X.2002.01647.x; Izzo TJ, 2002, OECOLOGIA, V133, P200, DOI 10.1007/s00442-002-1027-0; JANZEN DH, 1975, SCIENCE, V188, P936, DOI 10.1126/science.188.4191.936; Kiers ET, 2003, NATURE, V425, P78, DOI 10.1038/nature01931; Kozlowski TT, 2002, BOT REV, V68, P270, DOI 10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2; Little AEF, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-124; MCKEY D, 1984, BIOTROPICA, V16, P81, DOI 10.2307/2387840; Morris WF, 2007, ECOLOGY, V88, P1021, DOI 10.1890/06-0442; NOE R, 1994, BEHAV ECOL SOCIOBIOL, V35, P1; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; Palmer TM, 2003, AM NAT, V162, pS63, DOI 10.1086/378682; Palmer TM, 2000, OECOLOGIA, V123, P425, DOI 10.1007/s004420051030; Palmer TM, 2004, ANIM BEHAV, V68, P993, DOI 10.1016/j.anbehav.2004.02.005; Palmer TM, 2002, OECOLOGIA, V133, P372, DOI 10.1007/s00442-002-1026-1; Palmer TM, 2007, ECOLOGY, V88, P3004, DOI 10.1890/07-0133.1; Palmer TM, 2008, SCIENCE, V319, P192, DOI 10.1126/science.1151579; Stachowicz JJ, 2001, BIOSCIENCE, V51, P235, DOI 10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2; Stanton ML, 1999, NATURE, V401, P578, DOI 10.1038/44119; Stanton ML, 2003, AM NAT, V162, pS10, DOI 10.1086/378646; Stanton ML, 2002, ECOL MONOGR, V72, P347, DOI 10.1890/0012-9615(2002)072[0347:CCTOIA]2.0.CO;2; Stat M, 2008, P NATL ACAD SCI USA, V105, P9256, DOI 10.1073/pnas.0801328105; Stowe KA, 2000, ANNU REV ECOL SYST, V31, P565, DOI 10.1146/annurev.ecolsys.31.1.565; THOMAS JA, 1992, OECOLOGIA, V91, P101, DOI 10.1007/BF00317247; Thompson J.N, 1994, COEVOLUTIONARY PROCE; Tylianakis JM, 2008, ECOL LETT, V11, P1351, DOI 10.1111/j.1461-0248.2008.01250.x; Waser NM, 1996, ECOLOGY, V77, P1043, DOI 10.2307/2265575; West SA, 2007, CURR BIOL, V17, pR661, DOI 10.1016/j.cub.2007.06.004; WILBUR HM, 1972, ECOLOGY, V53, P3, DOI 10.2307/1935707; WOOTTON JT, 1993, AM NAT, V141, P71, DOI 10.1086/285461; Young TP, 1997, OECOLOGIA, V109, P98, DOI 10.1007/s004420050063; Yu Douglas W., 1998, Proceedings of the Royal Society of London Series B Biological Sciences, V265, P275 59 121 121 10 221 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. OCT 5 2010 107 40 17234 17239 10.1073/pnas.1006872107 6 Multidisciplinary Sciences Science & Technology - Other Topics 658TJ WOS:000282512000035 20855614 Green Published, Bronze 2018-11-12 J Wilcoxen, TE; Boughton, RK; Schoech, SJ Wilcoxen, Travis E.; Boughton, Raoul K.; Schoech, Stephan J. Older can be better: physiological costs of paternal investment in the Florida scrub-jay BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Aphelocoma coerulescens; Senescence; Parental care; Cost of reproduction HISTORY TRADE-OFFS; REPRODUCTIVE EFFORT; PIED FLYCATCHERS; TERMINAL INVESTMENT; BODY CONDITION; TREE SWALLOWS; PARENTAL CARE; BROOD SIZE; BIRDS; AGE In species that undergo actuarial senescence, the value of current reproduction is predicted to increase relative to the value of future reproduction with age, as the probability of survival to another reproductive event is reduced. Therefore, life history theory predicts that aging animals should increase their investment in reproduction. However, an increase in reproductive investment may carry significant costs to the breeding individuals. We recorded provisioning rates of Florida scrub-jay male breeders, followed by their immediate capture to assess body condition and collect blood for an in vitro test of immunocompetence and an assay of baseline corticosterone for a measure of stress. Older males provisioned offspring and brooding mates at the highest rates. There was no evidence of any physiological deficits in males with high provisioning rates, independent of age. It appears that birds that survive to old age are high quality birds that maintain good physiological condition, which complements the value of experience and permits maximal investment in offspring. [Wilcoxen, Travis E.; Schoech, Stephan J.] Univ Memphis, Dept Biol, Memphis, TN 38152 USA; [Boughton, Raoul K.] Avian Ecol Lab, Archbold Biol Stn, Venus, FL 33960 USA Wilcoxen, TE (reprint author), Univ Memphis, Dept Biol, Memphis, TN 38152 USA. twilcoxn@memphis.edu Boughton, Raoul/0000-0002-3501-5697 Archbold Biological Station; National Science Foundation [IBN-034632, IBN-0508418, IOS-0909620]; Sigma Xi; American Ornithologists' Union; Florida Ornithological Society; College of Arts and Sciences at the University of Memphis We thank everyone at Archbold Biological Station for continued hospitality and support, particularly R Bowman. We are greatly indebted to MA Rensel and ES Bridge for their leadership and numerous contributions throughout the long field seasons. Furthermore, we thank GM Morgan, MA Desrosiers, and ZD Seilo for their hard work in the field and MD Venesky for cooking breakfast. This work was supported by the National Science Foundation (IBN-034632 to SJS, IBN-0508418 to RKB and SJS, and IOS-0909620, to TEW and SJS), Sigma Xi (Grant-in-Aid of Research to TEW), the American Ornithologists' Union (Josselyn Van Tyne Student Research Award to TEW), and the Florida Ornithological Society (Cruickshank Research Award to TEW). TEW was also supported by a Van Vleet Memorial Fellowship from the College of Arts and Sciences at the University of Memphis during the course of this research. The experiments in this work comply with the current laws of the United States of America and all methods were approved by the University of Memphis Institutional Animal Care and Use Committee. Ardia DR, 2005, J ANIM ECOL, V74, P517, DOI 10.1111/j.1365-2656.2005.00950.x; BERNIS F, 1966, MIGRACION AVES; Boughton RK, 2007, J EXP ZOOL PART A, V307A, P479, DOI 10.1002/jez.402; BRYANT DM, 1991, IBIS, V133, P236, DOI 10.1111/j.1474-919X.1991.tb04565.x; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Coulson J.C., 1985, P489; Daunt F, 2001, FUNCT ECOL, V15, P211, DOI 10.1046/j.1365-2435.2001.00515.x; DRENT RH, 1980, ARDEA, V68, P225; FISHER R. A., 1930, GENETICAL THEORY NAT; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Green AJ, 2001, ECOLOGY, V82, P1473, DOI 10.2307/2680003; GUSTAFSSON L, 1995, NATURE, V375, P311, DOI 10.1038/375311a0; Haussmann MF, 2005, OECOLOGIA, V145, P270, DOI 10.1007/s00442-005-0123-3; Ilmonen P, 2002, OECOLOGIA, V130, P199, DOI 10.1007/s004420100804; Ilmonen P, 2003, OECOLOGIA, V136, P148, DOI 10.1007/s00442-003-1243-2; KETTERSON ED, 1992, AM NAT, V140, P533; Kokko H, 1998, EVOL ECOL, V12, P739, DOI 10.1023/A:1006541701002; Landau S., 2003, HDB STAT ANAL USING; Legge S, 2000, ANIM BEHAV, V59, P1009, DOI 10.1006/anbe.2000.1382; Love OP, 2008, AM NAT, V172, pE99, DOI 10.1086/589521; Love OP, 2004, HORM BEHAV, V46, P59, DOI 10.1016/j.yhbeh.2004.02.001; Maigret JL, 1997, BEHAV ECOL, V8, P250, DOI 10.1093/beheco/8.3.250; MARTIN K, 1995, AM ZOOL, V35, P340; Matson KD, 2006, PHYSIOL BIOCHEM ZOOL, V79, P556, DOI 10.1086/501057; McDonald DB, 1996, ECOLOGY, V77, P2373, DOI 10.2307/2265739; MCGOWAN KJ, 1990, J ANIM ECOL, V59, P691, DOI 10.2307/4889; Millet S, 2007, DEV COMP IMMUNOL, V31, P188, DOI 10.1016/j.dci.2006.05.013; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; MUMME RL, 1992, BEHAV ECOL SOCIOBIOL, V31, P319; Murphy MT, 2000, AUK, V117, P902, DOI 10.1642/0004-8038(2000)117[0902:IRBTSC]2.0.CO;2; ORIANS GH, 1969, ANIM BEHAV, V17, P316, DOI 10.1016/0003-3472(69)90016-5; OWENS IPF, 1994, P ROY SOC B-BIOL SCI, V257, P1, DOI 10.1098/rspb.1994.0086; *PASW INC, 2009, PASW ADV MOD 17 0; Quinn JS, 1999, BEHAV ECOL SOCIOBIOL, V45, P1, DOI 10.1007/s002650050534; Ratcliffe N, 1998, J ANIM ECOL, V67, P853, DOI 10.1046/j.1365-2656.1998.6760853.x; Reid JM, 2003, J ANIM ECOL, V72, P765, DOI 10.1046/j.1365-2656.2003.00750.x; REID WV, 1987, OECOLOGIA, V74, P458, DOI 10.1007/BF00378945; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Schoech SJ, 1996, CONDOR, V98, P234, DOI 10.2307/1369141; Schoech SJ, 2007, GEN COMP ENDOCR, V154, P150, DOI 10.1016/j.ygcen.2007.05.027; SILVERIN B, 1986, GEN COMP ENDOCR, V64, P67, DOI 10.1016/0016-6480(86)90029-8; SILVERIN B, 1982, GEN COMP ENDOCR, V47, P18, DOI 10.1016/0016-6480(82)90078-8; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; STALLCUP JA, 1978, ANIM BEHAV, V26, P1144, DOI 10.1016/0003-3472(78)90104-5; Stearns S. C., 1992, EVOLUTION LIFE HIST; Valencia J, 2006, ANIM BEHAV, V71, P1021, DOI 10.1016/j.anbehav.2005.06.021; Velando A, 2006, P R SOC B, V273, P1443, DOI 10.1098/rspb.2006.3480; Viney ME, 2005, TRENDS ECOL EVOL, V20, P665, DOI 10.1016/j.tree.2005.10.003; Wilcoxen TE, 2010, BIOL LETTERS, V6, P552, DOI 10.1098/rsbl.2009.1078; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams TD, 2005, BIOSCIENCE, V55, P39, DOI 10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2; WINGFIELD JC, 1976, CONDOR, V78, P570, DOI 10.2307/1367117; WINGFIELD JC, 1994, PERSPECTIVES IN COMPARATIVE ENDOCRINOLOGY, P520; Woolfenden G. E., 1996, BIRDS N AM ONLINE, DOI DOI 10.2173/BNA.228; Woolfenden G. E., 1984, FLORIDA SCRUB JAY DE; WOOLFENDEN GE, 1998, BIRD RES; WUNDERLE JM, 1991, CURR ORNITHOL, V8, P273; Zera AJ, 1998, AM NAT, V152, P7, DOI 10.1086/286146 59 13 13 0 30 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. OCT 2010 64 10 1527 1535 10.1007/s00265-010-0966-4 9 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology 651AM WOS:000281897000002 2018-11-12 J He, WM; Thelen, GC; Ridenour, WM; Callaway, RM He, Wei-Ming; Thelen, Giles C.; Ridenour, Wendy M.; Callaway, Ragan M. Is there a risk to living large? Large size correlates with reduced growth when stressed for knapweed populations BIOLOGICAL INVASIONS English Article Exotic invasions; Competition; CSR; Life history theory; Phenotypic plasticity; Stress tolerance; Trade-off DEER MOUSE-POPULATIONS; PHENOTYPIC PLASTICITY; CENTAUREA-MACULOSA; INVASIVE PLANT; RAPID EVOLUTION; NATIVES; WEED A central hypothesis in ecology is that plant life history evolution is constrained by fundamental "compromises between the conflicting selection pressures resulting from particular combinations of competition, stress, and disturbance", with stress being defined as abiotic conditions that restrict production. Biogeographic differences among native and non-native ranges of invasive plants may provide unique opportunities for tests of this theory. We conducted a greenhouse experiment with Centaurea stoebe plants from North American and European populations. We compared the total biomass and phenotypic plasticity indices for plants from the native and non-native ranges under stressed and non-stressed conditions. The average size of Centaurea stoebe plants from 13 North American populations was greater than that of plants from 18 European populations regardless of stress treatment. However, when plants from the same populations were exposed to lower resources the differences in biomass between plants from North American and European populations were significantly less, suggesting that large plants were poorer stress tolerators. For all 31 populations the regression slope for the relationship between mean mass for populations in non-stressful conditions and mean mass in stressful conditions was less than 1.0, indicating that populations that produced large plants in good conditions also produced plants that grew disproportionately less in stressful conditions. These findings suggest that Centaurea stoebe may be evolving towards being a good "competitor" (sensu Grime, 1977) in its invasive range, but at the cost of being a good "stress tolerator". [He, Wei-Ming; Thelen, Giles C.; Ridenour, Wendy M.; Callaway, Ragan M.] Univ Montana, Div Biol Sci, Missoula, MT 59812 USA; [He, Wei-Ming] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China Callaway, RM (reprint author), Univ Montana, Div Biol Sci, Missoula, MT 59812 USA. ray.callaway@mso.umt.edu Aldo Leopold Wilderness Center; USFS Fire Sciences Laboratory; USDA; DoD SERDP; NSF; Office of Sponsored Research at The University of Montana; Civilian Research and Development Foundation; [30770335]; [30870395] The authors are grateful to Courtney Hall, Alfonso Valiente-Banuet, and Daniel Montesinos for their help during the course of experiment, to Urs Trier and Heinz Muller-Scharer for Centaurea stoebe seeds, and to Guofang Liu for his R analysis. We are also grateful for two very insightful reviews. This study was supported by grants awarded to Dr. Ragan M. Callaway (Aldo Leopold Wilderness Center, the USFS Fire Sciences Laboratory, the USDA, DoD SERDP, the NSF, the Office of Sponsored Research at The University of Montana, and the Civilian Research and Development Foundation) and grants awarded to Dr. Wei-Ming He (30770335 and 30870395). BLOSSEY B, 1995, J ECOL, V83, P887, DOI 10.2307/2261425; Bossdorf O, 2005, OECOLOGIA, V144, P1, DOI 10.1007/s00442-005-0070-z; Brady N.C, 1984, NATURE PROPERTIES SO; Callaway RM, 2006, TRENDS ECOL EVOL, V21, P369, DOI 10.1016/j.tree.2006.04.008; Callaway RM, 2004, ECOLOGY, V85, P1062, DOI 10.1890/02-0775; Chun YJ, 2007, ECOLOGY, V88, P1499, DOI 10.1890/06-0856; Gray A, 1879, AM J SCI ARTS, V118, P161, DOI 10.2475/ajs.s3-18.105.161; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Grime JP, 2001, PLANT STRATEGIES VEG; Hairston NG, 2005, ECOL LETT, V8, P1114, DOI 10.1111/j.1461-0248.2005.00812.x; HERMS DA, 1992, Q REV BIOL, V67, P283, DOI 10.1086/417659; Hulme PE, 2008, FUNCT ECOL, V22, P3, DOI 10.1111/j.1365-2435.2007.01369.x; JANZEN DH, 1975, SCIENCE, V188, P936, DOI 10.1126/science.188.4191.936; Lehmann C, 2005, ACTA OECOL, V28, P127, DOI 10.1016/j.actao.2005.03.005; Mal TK, 2005, AM J BOT, V92, P819, DOI 10.3732/ajb.92.5.819; Maron JL, 2004, ECOL MONOGR, V74, P261, DOI 10.1890/03-4027; MULLER H, 1989, WEED RES, V29, P103, DOI 10.1111/j.1365-3180.1989.tb00847.x; Newingham BA, 2006, OIKOS, V114, P397, DOI 10.1111/j.2006.0030-1299.14345.x; Pearson DE, 2006, ECOL LETT, V9, P443, DOI 10.1111/j.1461-0248.2006.00896.x; Pearson DE, 2008, ECOL APPL, V18, P321, DOI 10.1890/07-0766.1; R Development Core Team, 2009, R LANG ENV STAT COMP; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Ridenour WM, 2008, ECOL MONOGR, V78, P369, DOI 10.1890/06-1926.1; Ridenour WM, 2001, OECOLOGIA, V126, P444, DOI 10.1007/s004420000533; ROCHE CT, 1988, NORTHWEST SCI, V62, P242; SCHLICHTING CD, 1990, J EVOLUTION BIOL, V3, P411, DOI 10.1046/j.1420-9101.1990.3050411.x; SHIPLEY B, 1988, J ECOL, V76, P1101, DOI 10.2307/2260637; Siemann E, 2001, ECOL LETT, V4, P514, DOI 10.1046/j.1461-0248.2001.00274.x; Valladares F, 2006, J ECOL, V94, P1103, DOI 10.1111/j.1365-2745.2006.01176.x; Wikstrom SA, 2006, OECOLOGIA, V148, P593, DOI 10.1007/s00442-006-0407-2; Wolfe LM, 2004, ECOL LETT, V7, P813, DOI 10.1111/j.1461-0248.2004.00649.x 31 21 21 1 26 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 1387-3547 BIOL INVASIONS Biol. Invasions OCT 2010 12 10 3591 3598 10.1007/s10530-010-9753-4 8 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 652CA WOS:000281977200018 2018-11-12 J Marshall, DJ; Heppell, SS; Munch, SB; Warner, RR Marshall, Dustin J.; Heppell, Selina S.; Munch, Stephan B.; Warner, Robert R. The relationship between maternal phenotype and offspring quality: Do older mothers really produce the best offspring? ECOLOGY English Article egg size; fisheries management; life-history theory; marine protected areas; maternal effects; optimal offspring size COLONIAL MARINE INVERTEBRATE; LIFE-HISTORY STAGES; OPTIMAL EGG SIZE; TRANSGENERATIONAL PLASTICITY; ENVIRONMENTAL-QUALITY; EVOLUTIONARY ECOLOGY; REPRODUCTIVE OUTPUT; POPULATION-DYNAMICS; SEBASTES-MELANOPS; NATURAL-SELECTION Maternal effects are increasingly recognized as important drivers of population dynamics and determinants of evolutionary trajectories. Recently, there has been a proliferation of studies finding or citing a positive relationship between maternal size/age and offspring size or offspring quality. The relationship between maternal phenotype and offspring size is intriguing in that it is unclear why young mothers should produce offspring of inferior quality or fitness. Here we evaluate the underlying evolutionary pressures that may lead to a maternal size/age-offspring size correlation and consider the likelihood that such a correlation results in a positive relationship between the age or size of mothers and the fitness of their offspring. We find that, while there are a number of reasons why selection may favor the production of larger offspring by larger mothers, this change in size is more likely due to associated changes in the maternal phenotype that affect the offspring size-performance relationship. We did not find evidence that the offspring of older females should have intrinsically higher fitness. When we explored this issue theoretically, the only instance in which smaller mothers produce suboptimal offspring sizes is when a (largely unsupported) constraint on maximum offspring size is introduced into the model. It is clear that larger offspring fare better than smaller offspring when reared in the same environment, but this misses a critical point: different environments elicit selection for different optimal sizes of young. We suggest that caution should be exercised when interpreting the outcome of offspring-size experiments when offspring from different mothers are reared in a common environment, because this approach may remove the source of selection (e. g., reproducing in different context) that induced a shift in offspring size in the first place. It has been suggested that fish stocks should be managed to preserve these older age classes because larger mothers produce offspring with a greater chance of survival and subsequent recruitment. Overall, we suggest that, while there are clear and compelling reasons for preserving older females in exploited populations, there is little theoretical justification or evidence that older mothers produce offspring with higher per capita fitness than do younger mothers. [Marshall, Dustin J.] Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia; [Heppell, Selina S.] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA; [Munch, Stephan B.] SUNY Stony Brook, Dept Ecol & Evolut, Stony Brook, NY 11794 USA; [Warner, Robert R.] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA Marshall, DJ (reprint author), Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia. d.marshall1@uq.edu.au Marshall, Dustin/C-3450-2016; Warner, Robert/M-5342-2013; Marshall, Dustin/A-4185-2008 Warner, Robert/0000-0002-3299-5685; Australian Research Council; North Pacific Research Board [629]; Packard Foundation; Moore Foundation The authors thank Susan Sogard, Tim Benton, and two reviewers who provided extremely valuable comments. D. J. Marshall was supported by the Australian Research Council during the preparation of this manuscript. S. S. Heppell was supported in part by a grant from the North Pacific Research Board (Project number 629). Support was also provided by the Partnership for the Interdisciplinary Study of Coastal Oceans (PISCO), funded by the Packard Foundation and the Moore Foundation. This is PISCO contribution 368. Allen RM, 2008, AM NAT, V171, P225, DOI 10.1086/524952; Anderson CNK, 2008, NATURE, V452, P835, DOI 10.1038/nature06851; Bashey F, 2006, EVOLUTION, V60, P348, DOI 10.1554/05-087.1; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Beamish RJ, 2006, PROG OCEANOGR, V68, P289, DOI 10.1016/j.pocean.2006.02.005; Beckerman AP, 2006, P ROY SOC B-BIOL SCI, V273, P485, DOI 10.1098/rspb.2005.3315; Benton TG, 2008, J ANIM ECOL, V77, P1038, DOI 10.1111/j.1365-2656.2008.01434.x; BENTON TG, 1995, EVOL ECOL, V9, P559, DOI 10.1007/BF01237655; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Berkeley SA, 2004, FISHERIES, V29, P23, DOI 10.1577/1548-8446(2004)29[23:FSVPOA]2.0.CO;2; Berkeley SA, 2006, B MAR SCI, V78, P655; Bernardo J, 1996, AM ZOOL, V36, P216; Birkeland C, 2005, TRENDS ECOL EVOL, V20, P356, DOI 10.1016/j.tree.2005.03.015; Bobko SJ, 2004, FISH B-NOAA, V102, P418; Calder W. A., 1984, SIZE FUNCTION LIFE H; CHAMBERS RC, 1997, EARLY LIFE HIST RECR, P63; CONGDON JD, 1987, P NATL ACAD SCI USA, V84, P4145, DOI 10.1073/pnas.84.12.4145; Dias GM, 2010, OIKOS, V119, P154, DOI 10.1111/j.1600-0706.2009.17725.x; Dibattista JD, 2007, J EVOLUTION BIOL, V20, P201, DOI 10.1111/j.1420-9101.2006.01210.x; Einum S, 2004, EVOL ECOL RES, V6, P443; Einum S, 2002, AM NAT, V160, P756, DOI 10.1086/343876; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; Fox CW, 2000, ECOLOGY, V81, P3029, DOI 10.1890/0012-9658(2000)081[3029:NSOSBE]2.0.CO;2; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Fox CW, 1997, AM NAT, V149, P149, DOI 10.1086/285983; Galloway LF, 2007, SCIENCE, V318, P1134, DOI 10.1126/science.1148766; Halpern BS, 2003, ECOL APPL, V13, pS117; Heath DD, 1999, EVOLUTION, V53, P1605, DOI [10.1111/j.1558-5646.1999.tb05424.x, 10.2307/2640906]; Heath DD, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P178; Hendry AP, 2003, EVOL ECOL RES, V5, P421; Hendry AP, 2001, AM NAT, V157, P387, DOI 10.1086/319316; Hilborn R., 1992, REV FISH BIOL FISHER, V2, P177, DOI DOI 10.1007/BF00042883; Hunt J, 2004, TRENDS ECOL EVOL, V19, P329, DOI 10.1016/j.tree.2004.03.035; Kaiser MJ, 2007, CAN J FISH AQUAT SCI, V64, P1284, DOI 10.1139/F07-090; KAPLAN RH, 1992, ECOLOGY, V73, P280, DOI 10.2307/1938739; Kudo SI, 2006, CAN J ZOOL, V84, P1540, DOI 10.1139/Z06-163; LANDA K, 1992, EVOLUTION, V46, P1553, DOI 10.1111/j.1558-5646.1992.tb01145.x; Lindholm AK, 2006, BIOL LETTERS, V2, P586, DOI 10.1098/rsbl.2006.0546; Lucero Y, 2008, B MAR SCI, V83, P217; Lucero Y, 2009, CAN J FISH AQUAT SCI, V66, P557, DOI 10.1139/F09-012; Mangel M., 1988, DYNAMIC MODELING BEH; Marsh KN, 2008, J CHEM ENG DATA, V53, P1, DOI 10.1021/je700708q; Marshall DJ, 2006, ECOLOGY, V87, P214, DOI 10.1890/05-0350; Marshall DJ, 2003, ECOLOGY, V84, P3131, DOI 10.1890/02-0311; Marshall DJ, 2002, ECOL LETT, V5, P173, DOI 10.1046/j.1461-0248.2002.00257.x; Marshall DJ, 2008, ECOLOGY, V89, P2506, DOI 10.1890/07-0267.1; Marshall DJ, 2008, OCEANOGR MAR BIOL, V46, P203, DOI 10.1201/9781420065756.ch5; Marshall DJ, 2008, ECOLOGY, V89, P418, DOI 10.1890/07-0449.1; Marshall DJ, 2008, AM NAT, V171, P214, DOI 10.1086/524954; Marshall DJ, 2007, OIKOS, V116, P1957, DOI 10.1111/j.2007.0030-1299.16203.x; McCormick MI, 2006, ECOLOGY, V87, P1104, DOI 10.1890/0012-9658(2006)87[1104:MMCLTS]2.0.CO;2; Monro K, 2010, FUNCT ECOL, V24, P676, DOI 10.1111/j.1365-2435.2009.01665.x; Moran AL, 2001, ECOLOGY, V82, P1597, DOI 10.1890/0012-9658(2001)082[1597:OSAPIV]2.0.CO;2; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Palumbi SR, 2004, NATURE, V430, P621, DOI 10.1038/430621a; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Plaistow SJ, 2006, AM NAT, V167, P206, DOI 10.1086/499380; Plaistow SJ, 2007, AM NAT, V170, P520, DOI 10.1086/521238; RIJNSDORP AD, 1994, NETH J SEA RES, V32, P255, DOI 10.1016/0077-7579(94)90003-5; Rius M, 2010, FUNCT ECOL, V24, P685, DOI 10.1111/j.1365-2435.2009.01668.x; Roff Derek A., 1992; Russell AF, 2007, SCIENCE, V317, P941, DOI 10.1126/science.1146037; Sadeghi H, 2000, ECOL ENTOMOL, V25, P91, DOI 10.1046/j.1365-2311.2000.00234.x; Sakai S, 2001, AM NAT, V157, P348, DOI 10.1086/319194; Selkoe KA, 2006, ECOLOGY, V87, P3082, DOI 10.1890/0012-9658(2006)87[3082:CSAKAE]2.0.CO;2; SHULTZ ET, 1991, AM NAT, V138, P1408; SINGER MC, 1992, ANIM BEHAV, V44, P463, DOI 10.1016/0003-3472(92)90056-F; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Sogard SM, 2008, MAR ECOL PROG SER, V360, P227, DOI 10.3354/meps07468; STRATHMANN RR, 1995, AM ZOOL, V35, P426; STRATHMANN RR, 1982, AM NAT, V119, P91, DOI 10.1086/283892; STRATHMANN RR, 1984, J EXP MAR BIOL ECOL, V84, P85, DOI 10.1016/0022-0981(84)90232-6; TRIVERS RL, 1974, AM ZOOL, V14, P249; VANDENBERGHE EP, 1989, EVOLUTION, V43, P125, DOI 10.1111/j.1558-5646.1989.tb04212.x; Veliz D, 2006, MOL ECOL, V15, P4193, DOI 10.1111/j.1365-294X.2006.03078.x; Venturelli PA, 2009, P ROY SOC B-BIOL SCI, V276, P919, DOI 10.1098/rspb.2008.1507; Wade MJ, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P5; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; Warner RR, 1997, CORAL REEFS, V16, pS115, DOI 10.1007/s003380050247; WILLIAMS TD, 1994, BIOL REV, V69, P35, DOI 10.1111/j.1469-185X.1994.tb01485.x; Wright PJ, 2005, J ANIM ECOL, V74, P303, DOI 10.1111/j.1365-2656.2004.00924.x 82 80 80 4 84 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology OCT 2010 91 10 2862 2873 10.1890/09-0156.1 12 Ecology Environmental Sciences & Ecology 660PE WOS:000282654700006 21058547 2018-11-12 J Costantini, D; Rowe, M; Butler, MW; McGraw, KJ Costantini, David; Rowe, Melissah; Butler, Michael W.; McGraw, Kevin J. From molecules to living systems: historical and contemporary issues in oxidative stress and antioxidant ecology FUNCTIONAL ECOLOGY English Review ageing; antioxidants; free radicals; life-history; reproduction; sexual signals; sperm quality; stress physiology; vertebrates FREE-RADICAL THEORY; FATTY-ACID-COMPOSITION; LIPID-PEROXIDATION; TRADE-OFFS; LIFE-SPAN; CAROTENOID AVAILABILITY; SPERM MOTILITY; SEXUAL SIGNALS; ZEBRA FINCHES; DIETARY ANTIOXIDANTS P>1. Initial work on oxidative stress and antioxidant defences described basic chemical and biochemical properties and processes and applied this information to issues of animal health and husbandry. Seminal experimental investigations on the damaging effects of oxidative stress and the mitigating effects of antioxidant defences were conducted primarily in domesticated organisms. 2. In recent years, ecologists have taken to studying antioxidants and oxidative stress in free-ranging organisms and have integrated principles of oxidative stress into several core evolutionary concepts, such as life-history trade-offs (e.g. survival vs. reproduction), senescence and sexual selection. This initial flurry of studies has provided major advances in our understanding of how antioxidant defences evolve and function. 3. In this overview, it is our goal to provide ecologists with an accessible summary of (i) the biochemical basis and conceptual frameworks behind oxidative stress and antioxidants, (ii) the research questions and hypotheses that are generated by incorporating antioxidants and oxidative stress into models of life-history theory, ageing, mate selection, and honest signalling, and (iii) the trends in the evidence that have emerged from initial studies in these areas. 4. Though much progress has been made on the ecological and evolutionary relevance of antioxidant and oxidative stress physiology, no consensus has emerged regarding the primacy of how oxidative stress challenges or antioxidant limits or values shape organismal life-histories. However, there are many taxonomic biases in studies to date and several ideal environmental systems that are as-of-yet untapped. [Costantini, David] Univ Glasgow, Fac Biomed & Life Sci, Div Ecol & Evolutionary Biol, Glasgow G12 8QQ, Lanark, Scotland; [Rowe, Melissah; Butler, Michael W.; McGraw, Kevin J.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA Costantini, D (reprint author), Univ Glasgow, Fac Biomed & Life Sci, Div Ecol & Evolutionary Biol, Graham Kerr Bldg, Glasgow G12 8QQ, Lanark, Scotland. d.costantini@bio.gla.ac.uk Costantini, David/C-6006-2013; Rowe, Melissah/G-3905-2015 Rowe, Melissah/0000-0001-9747-041X; Costantini, David/0000-0002-8140-8790 NERC [NE/G013888/1]; National Science Foundation [IOS-0746364]; Natural Environment Research Council [NE/G013888/1] During manuscript preparation, DC was supported by a postdoctoral NERC research fellowship (NE/G013888/1). KJM, MR, and MWB were supported by the National Science Foundation (IOS-0746364). AGARWAL A, 2005, REPROD BIOL ENDOCRIN, V3, P1477; Ahmadi MR, 2006, J APPL ICHTHYOL, V22, P388, DOI 10.1111/j.1439-0426.2006.00440.x; Aitken RJ, 2001, REPRODUCTION, V122, P497, DOI 10.1530/rep.0.1220497; AITKEN RJ, 1989, BIOL REPROD, V41, P183, DOI 10.1095/biolreprod41.1.183; Aksoy Y, 2004, UROL RES, V32, P93, DOI 10.1007/s00240-003-0382-6; ALESSIO HM, 1993, MED SCI SPORT EXER, V25, P218; Alonso-Alvarez C, 2004, AM NAT, V164, P651, DOI 10.1086/424971; Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; Bailly C, 2008, CR BIOL, V331, P806, DOI 10.1016/j.crvi.2008.07.022; Banowetz GM, 2007, J THERM BIOL, V32, P12, DOI 10.1016/j.jtherbio.2006.09.001; Baumber J, 2000, J ANDROL, V21, P895; Beckman KB, 1998, PHYSIOL REV, V78, P547; BERNTHSEN A, 1942, TXB ORGANIC CHEM; Bertrand S, 2006, OECOLOGIA, V147, P576, DOI 10.1007/s00442-005-0317-8; Biard C, 2005, OECOLOGIA, V144, P32, DOI 10.1007/s00442-005-0048-x; Bickler PE, 2007, ANNU REV PHYSIOL, V69, P145, DOI 10.1146/annurev.physiol.69.031905.162529; Bilodeau JF, 2002, THERIOGENOLOGY, V57, P1105, DOI 10.1016/S0093-691X(01)00702-6; BIRKHEAD TR, 1993, BIOL J LINN SOC, V50, P295, DOI 10.1111/j.1095-8312.1993.tb00933.x; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Blount JD, 2003, SCIENCE, V300, P125, DOI 10.1126/science.1082142; Blount JD, 2001, ECOL LETT, V4, P393, DOI 10.1046/j.1461-0248.2001.00255.x; Brand MD, 2000, EXP GERONTOL, V35, P811, DOI 10.1016/S0531-5565(00)00135-2; Breque C, 2003, MOL REPROD DEV, V66, P314, DOI 10.1002/mrd.10347; Buttemer WA, 2010, FUNCT ECOL, V24, P971, DOI 10.1111/j.1365-2435.2010.01740.x; Cadet J, 2003, MUTAT RES-FUND MOL M, V531, P5, DOI 10.1016/j.mrfmmm.2003.09.001; Chakravarti B, 2007, GERONTOLOGY, V53, P128, DOI 10.1159/000097865; Clotfelter ED, 2007, BEHAV ECOL, V18, P1139, DOI 10.1093/beheco/arm090; Cohen AA, 2008, AM NAT, V172, P178, DOI 10.1086/589456; Collins AM, 2004, INSECT MOL BIOL, V13, P141, DOI 10.1111/j.0962-1075.2004.00469.x; COMMONER B, 1954, NATURE, V174, P689, DOI 10.1038/174689a0; Costantini D, 2008, FUNCT ECOL, V22, P367, DOI 10.1111/j.1365-2435.2007.01366.x; Costantini D, 2006, J COMP PHYSIOL B, V176, P329, DOI 10.1007/s00360-005-0055-6; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2006, COMP BIOCHEM PHYS A, V145, P137, DOI 10.1016/j.cbpa.2006.06.002; Costantini D, 2009, COMP BIOCHEM PHYS A, V153, P339, DOI 10.1016/j.cbpa.2009.03.010; Criscuolo F, 2005, AM NAT, V166, P686, DOI 10.1086/497439; DAVIES KJA, 1982, BIOCHEM BIOPH RES CO, V107, P1198, DOI 10.1016/S0006-291X(82)80124-1; de Almeida EA, 2007, COMP BIOCHEM PHYS A, V146, P588, DOI 10.1016/j.cbpa.2006.02.040; Dean R, 2007, SCIENCE, V316, P383, DOI 10.1126/science.1142201; DELAMIRANDE E, 1992, J ANDROL, V13, P368; DELAMIRANDE E, 1993, FREE RADICAL BIO MED, V14, P157, DOI 10.1016/0891-5849(93)90006-G; Di Meo S, 2001, BIOL SIGNAL RECEPT, V10, P125; Dotan Y, 2004, PROG LIPID RES, V43, P200, DOI 10.1016/j.plipres.2003.10.001; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Droge W, 2002, PHYSIOL REV, V82, P47; Faivre B, 2003, ANIM BEHAV, V65, P1125, DOI 10.1006/anbe.2003.2142; Filho D, 2007, COMP BIOCH PHYSL C, V146, P214; FRIDOVICH I, 1978, SCIENCE, V201, P875, DOI 10.1126/science.210504; FUJIHARA N, 1978, POULTRY SCI, V57, P1766, DOI 10.3382/ps.0571766; GALVAN I, 2008, PLOS ONE, V3; GERSCHMAN R, 1954, SCIENCE, V119, P623, DOI 10.1126/science.119.3097.623; Gomez-Cabrera MC, 2008, FREE RADICAL BIO MED, V44, P126, DOI 10.1016/j.freeradbiomed.2007.02.001; Gumber S, 2009, VET MICROBIOL, V133, P344, DOI 10.1016/j.vetmic.2008.07.021; Gupta Narmada P., 2002, International Urology and Nephrology, V34, P369, DOI 10.1023/A:1024483520560; Halliwell B., 2007, FREE RADICALS BIOL M; HARMAN D, 1972, J AM GERIATR SOC, V20, P145, DOI 10.1111/j.1532-5415.1972.tb00787.x; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Helfenstein F, 2008, BEHAV ECOL, V19, P108, DOI 10.1093/beheco/arm103; Helfenstein F, 2010, ECOL LETT, V13, P213, DOI 10.1111/j.1461-0248.2009.01419.x; Heller KG, 2000, P ROY SOC B-BIOL SCI, V267, P1905, DOI 10.1098/rspb.2000.1228; Hermes-Lima M, 1998, COMP BIOCHEM PHYS B, V120, P437, DOI 10.1016/S0305-0491(98)10053-6; Herrero A, 1997, J BIOENERG BIOMEMBR, V29, P241, DOI 10.1023/A:1022458010266; Herzberg G, 1971, SPECTRA STRUCTURES S; Hirayama A, 2005, AM J PHYSIOL-RENAL, V288, pF597, DOI 10.1152/ajprenal.00020.2004; Horak P, 2007, AM NAT, V170, P625, DOI 10.1086/521232; Horak P, 2006, J EXP BIOL, V209, P4329, DOI 10.1242/jeb.02502; Horak P, 2010, FUNCT ECOL, V24, P960, DOI 10.1111/j.1365-2435.2010.01755.x; Houben JMJ, 2008, FREE RADICAL BIO MED, V44, P235, DOI 10.1016/j.freeradbiomed.2007.10.001; Hudson NJ, 2006, AM J PHYSIOL-REG I, V290, pR836, DOI 10.1152/ajpregu.00380.2005; Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006; Hulbert AJ, 2005, J THEOR BIOL, V234, P277, DOI 10.1016/j.jtbi.2004.11.024; Hulbert AJ, 2003, J EXP BIOL, V206, P2303, DOI 10.1242/jeb.00399; Isaksson C, 2008, P R SOC B, V275, P309, DOI 10.1098/rspb.2007.1474; Issartel J, 2009, J COMP PHYSIOL B, V179, P543, DOI 10.1007/s00360-008-0338-9; Joyner-Matos J, 2007, FUNCT ECOL, V21, P344, DOI 10.1111/j.1365-2435.2007.01230.x; Krinsky NI, 2001, NUTRITION, V17, P815, DOI 10.1016/S0899-9007(01)00651-7; Laguerre M, 2007, PROG LIPID RES, V46, P244, DOI 10.1016/j.plipres.2007.05.002; Lanner RM, 2001, EXP GERONTOL, V36, P675, DOI 10.1016/S0531-5565(00)00234-5; LOSCHEN G, 1971, FEBS LETT, V18, P261, DOI 10.1016/0014-5793(71)80459-3; LOZANO GA, 1994, OIKOS, V70, P309, DOI 10.2307/3545643; Mattson MP, 2010, HORMESIS: A REVOLUTION IN BIOLOGY, TOXICOLOGY AND MEDICINE, P1, DOI 10.1007/978-1-60761-495-1; MCCORD JM, 1968, J BIOL CHEM, V243, P5753; MCGRAW KJ, 2006, MECH CAROTENOID BASE, P177; Moe B, 2009, BIOL LETTERS, V5, P86, DOI 10.1098/rsbl.2008.0481; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Munro D, 2005, J ANIM ECOL, V74, P692, DOI 10.1111/j.1365-2656.2005.00968.x; Olson VA, 1998, TRENDS ECOL EVOL, V13, P510, DOI 10.1016/S0169-5347(98)01484-0; Ovechkin Alexander V., 2007, Archives of Physiology and Biochemistry, V113, P1, DOI 10.1080/13813450601118976; PAMILO P, 1991, INSECT SOC, V38, P111, DOI 10.1007/BF01240961; Petes LE, 2008, ECOL MONOGR, V78, P387, DOI 10.1890/07-0605.1; Pike TW, 2007, BEHAV ECOL, V18, P1100, DOI 10.1093/beheco/arm084; Pizzari T, 2008, TRENDS ECOL EVOL, V23, P131, DOI 10.1016/j.tree.2007.12.003; Powers SK, 2004, J SPORT SCI, V22, P81, DOI 10.1080/0264041031000140563; Ramos-Vasconcelos GR, 2005, COMP BIOCHEM PHYS C, V140, P165, DOI 10.1016/j.cca.2005.01.015; Robert KA, 2007, AGING CELL, V6, P395, DOI 10.1111/j.1474-9726.2007.00287.x; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Rowe M, 2008, CONDOR, V110, P694, DOI 10.1525/cond.2008.8604; Ruggiero C, 2008, J GERONTOL A-BIOL, V63, P698, DOI 10.1093/gerona/63.7.698; Rush B, 2007, AGING CELL, V6, P723, DOI 10.1111/j.1474-9726.2007.00322.x; Safran RJ, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009420; Selman C, 2008, P ROY SOC B-BIOL SCI, V275, P1907, DOI 10.1098/rspb.2008.0355; Selman C, 2006, MECH AGEING DEV, V127, P897, DOI 10.1016/j.mad.2006.09.008; SESSIONS A.L., 2009, CURR BIOL, V19, P567; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SIES H, 1991, OXIDATIVE STRESS OXI; Siva-Jothy MT, 2000, ECOL LETT, V3, P172; Slos S, 2008, FUNCT ECOL, V22, P637, DOI 10.1111/j.1365-2435.2008.01424.x; Sohal RS, 2002, FREE RADICAL BIO MED, V33, P575, DOI 10.1016/S0891-5849(02)00886-9; Song L, 2009, NEUROCHEM RES, V34, P739, DOI 10.1007/s11064-008-9838-y; Sorci G, 2009, PHILOS T R SOC B, V364, P71, DOI 10.1098/rstb.2008.0151; Speakman JR, 2002, J NUTR, V132, p1583S, DOI 10.1093/jn/132.6.1583S; Storey KB, 1996, BRAZ J MED BIOL RES, V29, P1715; Surai PF, 2001, ASIAN AUSTRAL J ANIM, V14, P1024, DOI 10.5713/ajas.2001.1024; Suzuki M, 2009, CHEM PHYS LETT, V480, P113, DOI 10.1016/j.cplett.2009.08.052; Tarin J J, 1996, Mol Hum Reprod, V2, P717, DOI 10.1093/molehr/2.10.717; Tarin JJ, 2000, HUM REPROD UPDATE, V6, P532, DOI 10.1093/humupd/6.6.532; Thannickal VJ, 2000, AM J PHYSIOL-LUNG C, V279, pL1005; Torres R, 2007, J ANIM ECOL, V76, P1161, DOI 10.1111/j.1365-2656.2007.01282.x; Vaanholt LM, 2010, PHYSIOL BIOCHEM ZOOL, V83, P239, DOI 10.1086/648434; Veasey JS, 1998, ANIM BEHAV, V56, P883, DOI 10.1006/anbe.1998.0880; Velando A, 2008, BIOESSAYS, V30, P1212, DOI 10.1002/bies.20838; von Schantz T, 1999, P ROY SOC B-BIOL SCI, V266, P1; Wagner RH, 2004, P ROY SOC B-BIOL SCI, V271, pS134, DOI 10.1098/rsbl.2003/0142; Weirich GF, 2002, APIDOLOGIE, V33, P3, DOI 10.1051/apido:2001001; Wickens AP, 2001, RESP PHYSIOL, V128, P379, DOI 10.1016/S0034-5687(01)00313-9; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; Willmore WG, 1997, MOL CELL BIOCHEM, V170, P177, DOI 10.1023/A:1006817806010; WISHART GJ, 1984, J REPROD FERTIL, V71, P113; WU SH, 1973, BIOL REPROD, V8, P625, DOI 10.1093/biolreprod/8.5.625; Yu BP, 1996, ANN NY ACAD SCI, V786, P1, DOI 10.1111/j.1749-6632.1996.tb39047.x; Zhao L, 2008, J PLANT PHYSIOL, V165, P182, DOI 10.1016/j.jplph.2007.03.002; ZINI A, 1995, J ANDROL, V16, P424 133 91 92 2 59 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0269-8463 FUNCT ECOL Funct. Ecol. OCT 2010 24 5 950 959 10.1111/j.1365-2435.2010.01746.x 10 Ecology Environmental Sciences & Ecology 651AA WOS:000281895800002 Bronze 2018-11-12 J Bulled, NL; Sosis, R Bulled, Nicola L.; Sosis, Richard Examining the Relationship between Life Expectancy, Reproduction, and Educational Attainment HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article Demographic factors; Educational status; Fertility; Life cycle; Mortality; Reproductive behaviors TEENAGE CHILDBEARING; FERTILITY DECLINE; INEQUALITY; MORTALITY; HEALTH; AGE; ENVIRONMENTS; EVOLUTION; COUNTRIES; CHILDREN Life history theory aims to explain the relationship between life events, recognizing that the fertility and growth schedules of organisms are dependent on environmental conditions and an organism's ability to extract resources from its environment. Using models from life history theory, we predict life expectancy to be positively correlated with educational investments and negatively correlated with adolescent reproduction and total fertility rates. Analyses of UN data from 193 countries support these predictions and demonstrate that, although variation is evident across world regions, strong interactions exist among life expectancy, reproductive investments, and educational attainment, and these relationships occur independently of economic pressures and disease burdens. The interactions are strongest, however, in countries with a life expectancy of a parts per thousand yen60 years as these countries tend to have stable economies and a limited HIV/AIDS burden. These findings suggest that policies aimed at influencing education and reproductive decisions should consider environmental characteristics that drive people's expectations about their longevity. [Bulled, Nicola L.; Sosis, Richard] Univ Connecticut, Dept Anthropol, Storrs, CT 06269 USA Bulled, NL (reprint author), Univ Connecticut, Dept Anthropol, U-2176, Storrs, CT 06269 USA. Nicola.Bulled@uconn.edu Anderson KG, 2010, HUM NATURE-INT BIOS, V21, P103, DOI 10.1007/s12110-010-9087-z; Appiah EN, 2002, J DEV STUD, V38, P27, DOI 10.1080/00220380412331322411; CALDWELL JC, 1980, POPUL DEV REV, V6, P225, DOI 10.2307/1972729; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Dorling D, 2006, BRIT MED J, V332, P662, DOI 10.1136/bmj.332.7542.662; Eisenberg JF, 1981, MAMMALIAN RAD; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Gant L, 2009, SOC WORK PUBLIC HLTH, V24, P39, DOI 10.1080/19371910802569435; Geronimus AT, 1997, POLIT SCI QUART, V112, P405, DOI 10.2307/2657564; Geronimus AT, 1996, SOC SCI MED, V42, P589, DOI 10.1016/0277-9536(95)00159-X; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; Geronimus AT, 2004, BRIT MED BULL, V69, P155, DOI 10.1093/bmb/ldh019; Geronimus AT, 2001, DEMOGRAPHY, V38, P227, DOI 10.1353/dem.2001.0015; Gould S.J., 1977, ONTOGENY PHYLOGENY; HANDWERKER WP, 1986, AM ANTHROPOL, V88, P400, DOI 10.1525/aa.1986.88.2.02a00070; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan HS, 2009, PHILOS T R SOC B, V364, P3289, DOI 10.1098/rstb.2009.0115; Kaplan HS, 2003, OFFSPRING, P170; KNODEL J, 1990, POPUL DEV REV, V16, P31, DOI 10.2307/1972528; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; Lam D, 1999, J HUM RESOUR, V34, P160, DOI 10.2307/146306; Lamptey PR, 2006, POPUL BULL, V61, P3; LERNER R, 1984, HUMAN PLASTICITY; LOW BL, 2000, WHY SEX MATTERS DARW; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Low BS, 2005, EVOL HUM BEHAV, V26, P64, DOI 10.1016/j.evolhumbehav.23004.08.011; LOW BS, 2000, ADAPTATION HUMAN BEH, P323; Mackenbach JP, 1997, LANCET, V349, P1655, DOI 10.1016/S0140-6736(96)07226-1; Mamdani M., 1972, MYTH POPULATION CONT; Maternowska M. Catherine, 2006, REPROD INEQUITIES PO; Meara ER, 2008, HEALTH AFFAIR, V27, P350, DOI 10.1377/hlthaff.272.350; PRESTON SH, 1975, POP STUD-J DEMOG, V29, P231, DOI 10.2307/2173509; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; RODGERS GB, 1979, POP STUD-J DEMOG, V33, P343, DOI 10.2307/2173539; Roff D. A., 2002, LIFE HIST EVOLUTION; Camargos MCS, 2007, J BIOSOC SCI, V39, P455, DOI 10.1017/S0021932006001428; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCHULTZ TP, 1993, WOMENS ED DEV COUNTR; SEN A, 1993, SCI AM, V268, P40, DOI 10.1038/scientificamerican0593-40; Silventoinen K, 2002, J EPIDEMIOL COMMUN H, V56, P253, DOI 10.1136/jech.56.4.253; Stearns S. C., 1992, EVOLUTION LIFE HIST; UN, 1999, WORLD 6 BILL; *UN DEV PROGR, 2007, HUM DEV REP 2007 200; Valkonen T, 1997, SOC SCI MED, V44, P801, DOI 10.1016/S0277-9536(96)00190-6; Wilson E.O., 1975, P1; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; World Health Organization, 2008, WORLD HLTH REP 2008; World Health Organization (WHO), 2009, WORLD HLTH STAT IND 52 18 18 0 8 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. OCT 2010 21 3 269 289 10.1007/s12110-010-9092-2 21 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 678JZ WOS:000284071200003 2018-11-12 J Jonason, PK; Tost, J Jonason, Peter K.; Tost, Jeremy I just cannot control myself: The Dark Triad and self-control PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life History Strategy; Attention deficit; Future consequences; Self-control; Dark Triad LIFE-HISTORY STRATEGY; INDIVIDUAL-DIFFERENCES; REPRODUCTIVE STRATEGY; EVOLUTIONARY-THEORY; K-FACTOR; PERSONALITY; MACHIAVELLIANISM; INTELLIGENCE; PSYCHOPATHY; NARCISSISM Despite the recent flurry of research on the Dark Triad, this work has been atheoretical. In two studies, totaling 358 participants, we attempt to situate the Dark Triad within the larger framework of Life History Theory by correlating them with three measures of self-control. Both psychopathy (Study 1 and Study 2) and Machiavellianism (Study 2 only) were correlated with low self-control, a tendency to discount future consequences, and high rates of attention deficit disorder. Narcissism was not correlated with measures of self-control in either study. Results are consistent with Life History Theory in that these two sets of psychological traits are expected to be part of a fast life strategy. (C) 2010 Elsevier Ltd. All rights reserved. [Jonason, Peter K.] Univ W Florida, Dept Psychol, Pensacola, FL 32514 USA; [Tost, Jeremy] New Mexico State Univ, Dept Psychol, Las Cruces, NM 88003 USA Jonason, PK (reprint author), Univ W Florida, Dept Psychol, Bldg 41, Pensacola, FL 32514 USA. peterkarljonason@yahoo.com BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; CHRISTIE R, 1970, STUDIES MACHIAVELLIA; ELLIS L, 1988, PERS INDIV DIFFER, V9, P697, DOI 10.1016/0191-8869(88)90059-1; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; FIGUEREDO AJ, BIOPSYCHOSO IN PRESS; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; Jakobwitz S, 2006, PERS INDIV DIFFER, V40, P331, DOI 10.1016/j.paid.2005.07.006; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; JONASON PK, INDIVIDUAL IN PRESS; JONASON PK, PSYCHOL ASS IN PRESS; Kessler RC, 2005, PSYCHOL MED, V35, P245, DOI 10.1017/S0033291704002892; Lee KB, 2005, PERS INDIV DIFFER, V38, P1571, DOI 10.1016/j.paid.2004.09.016; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Metcalfe J, 1999, PSYCHOL REV, V106, P3, DOI 10.1037/0033-295X.106.1.3; Paulhus D. L., MANUAL SELF IN PRESS; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; RASKIN R, 1988, J PERS SOC PSYCHOL, V54, P890, DOI 10.1037//0022-3514.54.5.890; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; STRATHMAN A, 1994, J PERS SOC PSYCHOL, V66, P742, DOI 10.1037/0022-3514.66.4.742; Tangney JP, 2004, J PERS, V72, P271, DOI 10.1111/j.0022-3506.2004.00263.x; Vernon PA, 2008, PERS INDIV DIFFER, V44, P445, DOI 10.1016/j.paid.2007.09.007; Wilson E.O., 1975, P1; Zeller RA, 1979, QUANTITATIVE APPL SO, V17 28 107 110 1 52 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. OCT 2010 49 6 611 615 10.1016/j.paid.2010.05.031 5 Psychology, Social Psychology 640XL WOS:000281087400010 2018-11-12 J Kochin, BF; Bull, JJ; Antia, R Kochin, Beth F.; Bull, James J.; Antia, Rustom Parasite Evolution and Life History Theory PLOS BIOLOGY English Editorial Material REACTION NORMS; VIRULENCE; CRITIQUE; MATURITY; TRAITS; SIZE; MICE; AGE [Kochin, Beth F.] Emory Univ, Dept Biol, Atlanta, GA 30322 USA; [Bull, James J.] Univ Texas Austin, Sect Integrat Biol, Austin, TX 78712 USA; [Bull, James J.] Univ Texas Austin, Inst Cellular & Mol Biol, Austin, TX 78712 USA; [Antia, Rustom] Emory Univ, Dept Biol, Atlanta, GA 30322 USA Kochin, BF (reprint author), Emory Univ, Dept Biol, Atlanta, GA 30322 USA. rantia@emory.edu National Institutes of Health; Fannie and John Hertz Foundation This work is supported by the National Institutes of Health and the Fannie and John Hertz Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. AMIRI P, 1992, NATURE, V356, P604, DOI 10.1038/356604a0; Babayan SA, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000525; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; Buckling A, 1999, PARASITOLOGY, V118, P339, DOI 10.1017/S0031182099003960; Buckling AGJ, 1999, INT J PARASITOL, V29, P619, DOI 10.1016/S0020-7519(98)00230-6; Davies SJ, 2001, SCIENCE, V294, P1358, DOI 10.1126/science.1064462; Ebert D, 2003, TRENDS MICROBIOL, V11, P15, DOI 10.1016/S0966-842X(02)00003-3; FINLAND M, 1946, JAMA-J AM MED ASSOC, V132, P16, DOI 10.1001/jama.1946.02870360018005; Gemmill AW, 1999, J EVOLUTION BIOL, V12, P1148, DOI 10.1046/j.1420-9101.1999.00117.x; Gothar K, 1995, OIKOS, V74, P3; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; Kaper JB, 2004, NAT REV MICROBIOL, V2, P123, DOI 10.1038/nrmicro818; KOELLA JC, 1995, THEOR POPUL BIOL, V47, P277, DOI 10.1006/tpbi.1995.1012; Levin Bruce R., 1994, Trends in Microbiology, V2, P76, DOI 10.1016/0966-842X(94)90538-X; Martin C, 2000, INFECT IMMUN, V68, P3651, DOI 10.1128/IAI.68.6.3651-3656.2000; Mideo N, 2008, P ROY SOC B-BIOL SCI, V275, P1217, DOI 10.1098/rspb.2007.1545; Peatey CL, 2009, J INFECT DIS, V200, P1518, DOI 10.1086/644645; REECE S, 2010, STRESS DRUGS EVOLUTI, DOI DOI 10.1098/RSPB.2010.0564; Roff D. A., 2002, LIFE HIST EVOLUTION; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Stearns Stephen C., 2008, EVOLUTION HLTH DIS 23 13 15 0 24 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA 1544-9173 PLOS BIOL PLoS. Biol. OCT 2010 8 10 e1000524 10.1371/journal.pbio.1000524 4 Biochemistry & Molecular Biology; Biology Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics 671IQ WOS:000283495100020 20976100 DOAJ Gold, Green Published 2018-11-12 J Peron, G; Gimenez, O; Charmantier, A; Gaillard, JM; Crochet, PA Peron, Guillaume; Gimenez, Olivier; Charmantier, Anne; Gaillard, Jean-Michel; Crochet, Pierre-Andre Age at the onset of senescence in birds and mammals is predicted by early-life performance PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article actuarial senescence; comparative analysis; life-history variation; scaling relationship NATURAL-SELECTION; HISTORY VARIATION; SLOW LIFE; EVOLUTION; POPULATIONS; REPRODUCTION; COVARIATION; PHYLOGENIES; HYPOTHESES; SURVIVAL Life-history theory predicts that traits involved in maturity, reproduction and survival correlate along a fast-slow continuum of life histories. Evolutionary theories and empirical results indicate that senescence-related traits vary along this continuum, with slow species senescing later and at a slower pace than fast species. Because senescence patterns are typically difficult to estimate from studies in the wild, here we propose to predict the associated trait values in the frame of life-history theory. From a comparative analysis based on 81 free-ranging populations of 72 species of birds and mammals, we find that a nonlinear combination of fecundity, age at first reproduction and survival over the immature stage can account for ca two-thirds of the variance in the age at the onset of actuarial senescence. Our life-history model performs better than a model predicting the onset based on generation time, and it only includes life-history traits during early life as explanatory variables, i.e. parameters that are both theoretically expected to shape senescence and are measurable within relatively short studies. We discuss the goodfit of our life-history model to the available data in the light of current evolutionary theories of senescence. We further use it to evaluate whether studies that provided no evidence for senescence lasted long enough to include the onset of senescence. [Peron, Guillaume; Gimenez, Olivier; Charmantier, Anne; Crochet, Pierre-Andre] CNRS, UMR 5175, Ctr Ecol Fonct & Evolut, F-34293 Montpellier 5, France; [Gaillard, Jean-Michel] UCB Lyon, CNRS, Biometrie & Biol Evolut UMR 5558, LBBE, F-69622 Villeurbanne, France Peron, G (reprint author), CNRS, UMR 5175, Ctr Ecol Fonct & Evolut, 1919 Route Mende, F-34293 Montpellier 5, France. peron_guillaume@yahoo.fr PERON, Guillaume/C-5379-2013; Gimenez, Olivier/G-4281-2010 PERON, Guillaume/0000-0002-6311-4377 Bryant MJ, 2004, AM NAT, V163, P55, DOI 10.1086/380650; BURNHAM KP, 1987, AM FISHERIES SOC MON, V5; Cailliet GM, 2001, EXP GERONTOL, V36, P739, DOI 10.1016/S0531-5565(00)00239-4; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CONGER AJ, 1980, PSYCHOL BULL, V88, P322, DOI 10.1037//0033-2909.88.2.322; Davison AC, 1997, BOOTSTRAP METHODS TH; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FINCH C, 1990, LONGEVITY SENESCENCE; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; GAILLARD JM, 1994, EVOLUTION, V48, P509, DOI 10.1111/j.1558-5646.1994.tb01329.x; Gimenez O, 2008, AM NAT, V172, P441, DOI 10.1086/589520; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Holmes D. J., 1995, J GERONTOL, V50, P59; Ives AR, 2006, ECOL APPL, V16, P20, DOI 10.1890/04-0702; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Kirkwood TBL, 2002, MECH AGEING DEV, V123, P737, DOI 10.1016/S0047-6374(01)00419-5; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LESLIE PH, 1966, J ANIM ECOL, V35, P291, DOI 10.2307/2396; Martins EP, 2000, TRENDS ECOL EVOL, V15, P296, DOI 10.1016/S0169-5347(00)01880-2; Miller JK, 2001, EXP GERONTOL, V36, P829, DOI 10.1016/S0531-5565(00)00243-6; Nee S, 2005, SCIENCE, V309, P1236, DOI 10.1126/science.1114488; Nichols JD, 1997, ECOLOGY, V78, P1009, DOI 10.2307/2265854; Nilsen EB, 2009, J ANIM ECOL, V78, P585, DOI 10.1111/j.1365-2656.2009.01523.x; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; PINHEIRO J, 2006, NLME LINEAR NONLINEA; Price T, 1997, PHILOS T ROY SOC B, V352, P519, DOI 10.1098/rstb.1997.0036; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Ricklefs RE, 1998, AM NAT, V152, P24, DOI 10.1086/286147; Ronce O, 1998, P NATL ACAD SCI USA, V95, P600, DOI 10.1073/pnas.95.2.600; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; SIBLEY CG, 1990, DISTRIBUTION TAXONOM; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; Vaupel JW, 2004, THEOR POPUL BIOL, V65, P339, DOI 10.1016/j.tpb.2003.12.003; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILLIAMS GC, 1992, NATURAL SELECTION DO; Wilson DE, 2005, MAMMAL SPECIES WORLD 41 38 38 1 45 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. SEP 22 2010 277 1695 2849 2856 10.1098/rspb.2010.0530 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 636YE WOS:000280779700013 20427343 Green Published, Bronze 2018-11-12 J Matsuura, K; Kobayashi, N Matsuura, Kenji; Kobayashi, Norimasa Termite queens adjust egg size according to colony development BEHAVIORAL ECOLOGY English Article egg size; eusocial insects; maternal investment; sociogenesis; termites RETICULITERMES-SPERATUS ISOPTERA; SCLEROTIUM-FORMING FUNGUS; RHINOTERMITIDAE; FOUNDATION; NUMBER; ANT; PLASTICITY; DROSOPHILA; PAIRS The trade-off between egg size and number is one of the most discussed concepts of the life-history theory. However, little is known about social factors influencing this trade-off in eusocial insects, where queens and workers share energy investment in the brood. During the colony-founding stage, the founder queen produces eggs and also rears the first-brood offspring independently in the absence of workers. The larger colonies have more labor force for brood care, as workers feed larvae until independence, whereas queens need to increase oviposition rates as the colony develops. Thus, social factors, especially the number of workers, should influence the trade-off between egg size and number. The adaptive investment hypothesis predicts that queens allocate more resources to individual eggs in the colony-founding stage and reduce egg size with increasing worker number. We showed that queens produce smaller eggs in larger colonies in the termite Reticulitermes speratus. We found a highly significant negative correlation between egg-laying order and egg size in the colony-founding stage. The first-brood eggs in earlier laying order exhibited shorter hatching periods and developed into larger larvae. Production of remarkably large eggs in the early founding stage likely has great adaptive significance, as the timing of the appearance of the first-brood worker is critical to the survivorship of incipient colonies. [Matsuura, Kenji; Kobayashi, Norimasa] Okayama Univ, Lab Insect Ecol, Grad Sch Environm Sci, Kita Ku, Okayama 7008530, Japan Matsuura, K (reprint author), Okayama Univ, Lab Insect Ecol, Grad Sch Environm Sci, Kita Ku, 1-1-1 Tsushima Naka, Okayama 7008530, Japan. kenjijpn@cc.okayama-u.ac.jp Matsuura, Kenji/B-1573-2011 Matsuura, Kenji/0000-0002-9099-6694 Japan Society for the Promotion of Science [09001407]; Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN) [07051747] Japan Society for the Promotion of Science (grant no. 09001407 to K. M.); The Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN) (grant no. 07051747 to K. M.). Azevedo RBR, 1997, AM NAT, V150, P250, DOI 10.1086/286065; Bernasconi G, 1999, TRENDS ECOL EVOL, V14, P477, DOI 10.1016/S0169-5347(99)01722-X; Brian M. V., 1964, Insectes Sociaux Paris, V11, P223, DOI 10.1007/BF02222675; BRIAN M. V., 1957, INSECTES SOCIAUX, V4, P177, DOI 10.1007/BF02222152; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; EBERHARD WG, 1991, EVOLUTION, V45, P18, DOI [10.1111/j.1558-5646.1991.tb05262.x, 10.2307/2409478]; Fischer K, 2003, ECOLOGY, V84, P3138, DOI 10.1890/02-0733; FLETCHER DJC, 1983, J COMP PHYSIOL, V153, P467, DOI 10.1007/BF00612601; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; KAWECKI TJ, 1995, OECOLOGIA, V102, P81, DOI 10.1007/BF00333313; Kayaalp P, 2007, AUST J ZOOL, V55, P357, DOI 10.1071/ZO07022; Matsuura K, 2004, INSECT SOC, V51, P325, DOI 10.1007/s00040-004-0746-0; Matsuura K, 2002, BEHAV ECOL SOCIOBIOL, V51, P172, DOI 10.1007/s00265-001-0426-2; Matsuura K, 2002, ANIM BEHAV, V64, P167, DOI 10.1006/anbe.2002.3062; Matsuura K, 2001, POPUL ECOL, V43, P119, DOI 10.1007/PL00012022; Matsuura K, 2000, ECOL RES, V15, P405, DOI 10.1046/j.1440-1703.2000.00361.x; Matsuura K, 2009, CURR BIOL, V19, P30, DOI 10.1016/j.cub.2008.11.030; Matsuura K, 2007, APPL ENTOMOL ZOOL, V42, P241, DOI 10.1303/aez.2007.241; Matsuura K, 2007, POPUL ECOL, V49, P179, DOI 10.1007/s10144-006-0030-4; Matsuura K, 2006, P ROY SOC B-BIOL SCI, V273, P1203, DOI 10.1098/rspb.2005.3434; Matsuura K, 2009, SCIENCE, V323, P1687, DOI 10.1126/science.1169702; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; NONACS P, 1991, J INSECT PHYSIOL, V37, P891, DOI 10.1016/0022-1910(91)90004-J; Oster GF, 1978, CASTE ECOLOGY SOCIAL; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PARKER GA, 2006, J BIOL, V5, P15; Roff Derek A., 1992; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Solemdal P, 1997, J SEA RES, V37, P213, DOI 10.1016/S1385-1101(97)00029-4; Taborsky B, 2007, BEHAV ECOL, V18, P652, DOI 10.1093/beheco/arm026; TSCHINKEL WR, 1988, PHYSIOL ENTOMOL, V13, P327, DOI 10.1111/j.1365-3032.1988.tb00484.x; Tsunoda K, 1999, J ECON ENTOMOL, V92, P604, DOI 10.1093/jee/92.3.604; Vijendravarma RK, 2010, BIOL LETTERS, V6, P238, DOI 10.1098/rsbl.2009.0754; Wilson E., 1971, INSECT SOC; WILSON EO, 1985, SCIENCE, V228, P1489, DOI 10.1126/science.228.4707.1489; Wilson EO, 1990, ANTS 36 7 7 0 24 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. SEP-OCT 2010 21 5 1018 1023 10.1093/beheco/arq101 6 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 638OJ WOS:000280903900020 Bronze 2018-11-12 J Lafaille, M; Bimbard, G; Greenfield, MD Lafaille, Marie; Bimbard, Gaelle; Greenfield, Michael D. Risk trading in mating behavior: forgoing anti-predator responses reduces the likelihood of missing terminal mating opportunities BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Acoustic communication; Life history trade-off; Phonotaxis; Reproductive value; Sexual selection; Terminal investment ACHROIA-GRISELLA LEPIDOPTERA; LESSER WAX MOTH; PREDATION RISK; REPRODUCTIVE EFFORT; SEXUAL SELECTION; FEMALE CHOICE; ACOUSTIC MOTH; MATE CHOICE; QUANTITATIVE GENETICS; LIFE EXPECTANCY Life history theory predicts that organisms make certain adjustments to their current and future reproductive effort such that fitness is maximized. Moreover, these adjustments may be fine tuned in response to risks of attack by natural enemies. Thus, we may predict that as an organism ages it will accept increasing levels of exposure to predators during mating activities, effectively trading the risk of losing terminal mating opportunities for the risk of predation. We tested this prediction in an acoustic moth, Achroia grisella, in which females orient toward and evaluate males based on their ultrasonic calling song, and both sexes may be vulnerable to predation by insectivorous bats while in flight as well as on the substrate. In the latter situation, singing males and orienting females show silence and arrestment responses, respectively, when presented with synthetic bat echolocation signals broadcast above a threshold amplitude. We found that both males and females become less sensitive to these broadcasts over the course of their brief reproductive periods, 7 and 5 days, respectively. Over the same periods, sensitivity to male song in both males and females remains constant, and relatively little senescence in sexual behavior is observed. These results support the risk trading hypothesis, and they indicate that life history principles may apply over a very short lifespan. [Lafaille, Marie; Bimbard, Gaelle; Greenfield, Michael D.] Univ Tours, Inst Rech Biol Insecte, CNRS, UMR 6035, F-37200 Tours, France Greenfield, MD (reprint author), Univ Tours, Inst Rech Biol Insecte, CNRS, UMR 6035, F-37200 Tours, France. michael.greenfield@univ-tours.fr Greenfield, Michael/0000-0003-1935-3423 Agence Nationale de la Recherche [ANR-07-BLAN-0113-01]; Centre National de la Recherche Scientifique (CNRS); Universite Francois Rabelais de Tours; U.S. National Science Foundation [IOB-0516634] We thank Guy Bourdais, Bruno Brizard, and Fabrice Vannier (I. R. B. I., Tours, France) for technical assistance in the laboratory, Bob Danka and Robin Cargell (U.S. Department of Agriculture, Baton Rouge, LA) for helping us to collect our Louisiana population of A. grisella, Bethany Harris and Yihong Zhou (University of Kansas) for helping to breed and rear the population, and the Agence Nationale de la Recherche (contrat ANR-07-BLAN-0113-01), the Centre National de la Recherche Scientifique (CNRS), the Universite Francois Rabelais de Tours, and the U.S. National Science Foundation (IOB-0516634) for their financial support. We also thank Marlene Goubault, Severine Ligout, Nathan Morehouse, Toomas Tammaru, and an anonymous referee for valuable criticisms of an earlier version of this manuscript. Acharya L, 1998, BEHAV ECOL, V9, P552, DOI 10.1093/beheco/9.6.552; Alem S, 2010, BEHAV ECOL, V21, P615, DOI [10.1093/beheco/arg028, 10.1093/beheco/arq028]; Arlettaz R, 2001, NATURE, V414, P742, DOI 10.1038/414742a; Bercovitch FB, 2009, J MAMMAL, V90, P40, DOI 10.1644/08-MAMM-A-124.1; BERNAL XE, 2009, P ROY SOC LOND B BIO, V273, P1323; Bonduriansky R, 2002, NATURE, V420, P377, DOI 10.1038/420377a; Brandt LSE, 2005, ETHOLOGY, V111, P609, DOI 10.1111/j.1439-0310.2005.01085.x; Brandt LSE, 2004, J EVOLUTION BIOL, V17, P821, DOI 10.1111/j.1420-9101.2004.00716.x; Brinklov S, 2009, J EXP BIOL, V212, P11, DOI 10.1242/jeb.023226; Candolin U, 1998, P ROY SOC B-BIOL SCI, V265, P1171, DOI 10.1098/rspb.1998.0415; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Collins RD, 1999, HEREDITY, V83, P644, DOI 10.1046/j.1365-2540.1999.00554.x; Descamps S, 2007, J ANIM ECOL, V76, P1192, DOI 10.1111/j.1365-2656.2007.01301.x; Ericsson G, 2001, ECOLOGY, V82, P1613, DOI 10.1890/0012-9658(2001)082[1613:ARREAS]2.0.CO;2; FLETCHER JP, 1994, P ROY SOC B-BIOL SCI, V258, P163, DOI 10.1098/rspb.1994.0157; Fuller R, 1996, BEHAV ECOL, V7, P69, DOI 10.1093/beheco/7.1.69; Greenfield MD, 2003, ETHOLOGY, V109, P427, DOI 10.1046/j.1439-0310.2003.00886.x; GREENFIELD MD, 1983, BEHAVIOUR, V84, P287, DOI 10.1163/156853983X00534; Greenfield MD, 2000, ETHOL ECOL EVOL, V12, P259; Greenfield MD, 2009, ETHOLOGY, V115, P1137, DOI 10.1111/j.1439-0310.2009.01700.x; Greig EI, 2004, BEHAVIOUR, V141, P799, DOI 10.1163/1568539042265626; HEDRICK AV, 1993, ANIM BEHAV, V46, P193, DOI 10.1006/anbe.1993.1176; Hobel G, 2007, J COMP PHYSIOL A, V193, P917, DOI 10.1007/s00359-007-0245-7; HOLM S, 1979, SCAND J STAT, V6, P65; Isaac JL, 2005, BIOL LETT-UK, V1, P271, DOI 10.1098/rsbl.2005.0326; Jang Y, 1997, J INSECT BEHAV, V10, P87, DOI 10.1007/BF02765476; Jang YW, 2000, HEREDITY, V84, P73, DOI 10.1046/j.1365-2540.2000.00631.x; Jang YW, 1996, ANIM BEHAV, V51, P1095, DOI 10.1006/anbe.1996.0111; Jang YW, 1998, EVOLUTION, V52, P1383, DOI 10.1111/j.1558-5646.1998.tb02020.x; Javois J, 2004, ANIM BEHAV, V68, P249, DOI 10.1016/j.anbehav.2003.10.022; Jia FY, 2001, J INSECT BEHAV, V14, P19, DOI 10.1023/A:1007893411662; Jones G, 2002, BEHAV ECOL, V13, P375, DOI 10.1093/beheco/13.3.375; Koga T, 1998, P ROY SOC B-BIOL SCI, V265, P1385, DOI 10.1098/rspb.1998.0446; Limousin D, 2009, J EXP BIOL, V212, P4091, DOI 10.1242/jeb.035345; MAGNHAGEN C, 1990, BEHAV ECOL SOCIOBIOL, V26, P331; Neuweiler G., 2000, BIOL BATS; REAL L, 1990, AM NAT, V136, P376, DOI 10.1086/285103; Rodriguez RL, 2005, J EXP BIOL, V208, P4159, DOI 10.1242/jeb.01893; Rodriguez RL, 2004, PHYSIOL ENTOMOL, V29, P159, DOI 10.1111/j.1365-3032.2004.00380.x; Roff Derek A., 1992; Schul J, 2006, NEUROSCIENCE, V138, P1, DOI 10.1016/j.neuroscience.2005.11.023; Sirot E, 1997, BEHAV ECOL, V8, P226, DOI 10.1093/beheco/8.2.226; SPANGLER HG, 1984, PHYSIOL ENTOMOL, V9, P87, DOI 10.1111/j.1365-3032.1984.tb00684.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Waters DA, 2003, PHYSIOL ENTOMOL, V28, P237, DOI 10.1111/j.1365-3032.2003.00355.x; WATERS DA, 1995, J EXP BIOL, V198, P475; Zar J.H, 1999, BIOSTATISTICAL ANAL; Zuk M, 1998, Q REV BIOL, V73, P415, DOI 10.1086/420412 48 23 23 0 28 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. SEP 2010 64 9 1485 1494 10.1007/s00265-010-0963-7 10 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology 637TW WOS:000280842600012 2018-11-12 J Dobson, FS; Jouventin, P Dobson, F. Stephen; Jouventin, Pierre Testing Williams' prediction: reproductive effort versus residual reproductive value (RRV) CANADIAN JOURNAL OF ZOOLOGY English Article LIFE-HISTORY; NATURAL-SELECTION; CONFIDENCE-INTERVALS; GENERATION TIME; STRATEGIES; REGRESSION; PHYLOGENY; EVOLUTION; PATTERNS; MAMMALS Williams (1966; Am. Nat. 100(916): 687-690) furthered R. A. Fisher's concept of reproductive value by breaking it into two components: (1) current reproduction and (2) residual reproductive value (RRV, the summed product of survival and reproduction over the rest of the lifespan). He predicted a negative correlation of measures of these two components among species, and this prediction led in part to the idea of trade-offs in life-history theory. We tested Williams' prediction with 24 species of albatrosses and petrels (order Procellariiformes), species with a great range of body sizes and all laying only one egg at a time (like humans, highly iteroparous). Two measures of reproductive investment were not negatively correlated with RRV. Adjusting data for body mass and phylogeny resulted in significant positive associations. In addition, any measure of annual parental allocation to reproduction (once adjusted for body size) should give a positive association with RRV as shown by a simple simulation model that assumes a highly iteroparous life cycle. Under such life cycles, Williams' prediction confounds the positive influence of reproduction on both current investment and RRV. Principles of life-history theory, however, do not require re-evaluation, as this particular prediction can in at least some cases be internally inconsistent. [Dobson, F. Stephen; Jouventin, Pierre] Ctr Ecol Fonct & Evolut, CNRS, UMR 5175, F-34293 Montpellier 5, France; [Dobson, F. Stephen] Auburn Univ, Dept Biol Sci, Auburn, AL 36849 USA Dobson, FS (reprint author), Ctr Ecol Fonct & Evolut, CNRS, UMR 5175, 1919 Route Mende, F-34293 Montpellier 5, France. fsdobson@msn.com Institut polaire francais Paul Emile Victor (IPEV); CNRS Field support and funding for many of the studies of albatrosses and petrels were provided by the Institut polaire francais Paul Emile Victor (IPEV). Our special thanks go to the over 200 field workers involved in capturing and ringing birds in the French Austral and Antarctic territories during the long-term research. D.N. Reznick and anonymous kindly provided comments on an earlier draft of the manuscript. F S. Dobson was supported by a Poste Rouge award from CNRS. Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Caswell H, 2001, MATRIX POPULATION MO; Charnov EL, 2005, EVOL ECOL RES, V7, P1221; CHEVERUD JM, 1985, EVOLUTION, V39, P1335, DOI 10.1111/j.1558-5646.1985.tb05699.x; Dobson FS, 2007, ECOSCIENCE, V14, P292, DOI 10.2980/1195-6860(2007)14[292:FASLHO]2.0.CO;2; Dobson FS, 2007, P ROY SOC B-BIOL SCI, V274, P275, DOI 10.1098/rspb.2006.3724; Dobson FS, 2010, CAN J ZOOL, V88, P889, DOI 10.1139/Z10-054; DOBSON FS, 1985, EVOLUTION, V39, P1384, DOI 10.1111/j.1558-5646.1985.tb05703.x; DOBSON FS, 2007, SOCIAL BIOL RODENTS, P99; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FISHER R. A., 1930, GENETICAL THEORY NAT; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; Garland T, 2000, AM NAT, V155, P346, DOI 10.1086/303327; Garland T, 1999, AM ZOOL, V39, P374; GOODMAN D, 1982, AM NAT, V119, P803, DOI 10.1086/283956; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Harvey P. H., 1991, COMP METHOD EVOLUTIO; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; Jouventin P, 2002, P ROY SOC B-BIOL SCI, V269, P1955, DOI 10.1098/rspb.2002.2080; JOUVENTIN P, 1981, TERRE VIE-REV ECOL A, V35, P217; Kennedy M, 2002, AUK, V119, P88, DOI 10.1642/0004-8038(2002)119[0088:SSCPEO]2.0.CO;2; MILES DB, 1992, AM NAT, V139, P848, DOI 10.1086/285361; Oli MK, 2005, AM NAT, V166, P124, DOI 10.1086/430332; Oli MK, 2003, AM NAT, V161, P422, DOI 10.1086/367591; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; POPPER KR, 1958, LOGIC SCI DISCOVERY; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff D. A., 2001, LIFE HIST EVOLUTION; Roff Derek A., 1992; *SAS I INC, 1990, SAS US GUID STAT; Schulte-Hostedde AI, 2005, ECOLOGY, V86, P155, DOI 10.1890/04-0232; Sibly RM, 2009, AM NAT, V173, pE185, DOI 10.1086/598680; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tickell W.L.N., 2000, ALBATROSSES; Warham J, 1990, PETRELS THEIR ECOLOG; WEIMERSKIRCH H, 1987, OIKOS, V49, P315, DOI 10.2307/3565767; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 38 0 0 0 13 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0008-4301 1480-3283 CAN J ZOOL Can. J. Zool. SEP 2010 88 9 900 904 10.1139/Z10-055 5 Zoology Zoology 659SN WOS:000282587300008 2018-11-12 J Cho, I; Horn, L; Felix, TM; Foster, L; Gregory, G; Starz-Gaiano, M; Chambers, MM; De Luca, M; Leips, J Cho, Irene; Horn, Lucas; Felix, Tashauna M.; Foster, Leanne; Gregory, Gwendolyn; Starz-Gaiano, Michelle; Chambers, Michelle M.; De Luca, Maria; Leips, Jeff Age- and Diet-Specific Effects of Variation at S6 Kinase on Life History, Metabolic, and Immune Response Traits in Drosophila melanogaster DNA AND CELL BIOLOGY English Article LOCI AFFECTING LONGEVITY; S6 KINASE; NATURAL-SELECTION; P70S6 KINASE; CELL-SIZE; FAT-BODY; SPAN; STORAGE; ACTIVATION; PATHWAY Life history theory hypothesizes that genetically based variation in life history traits results from alleles that alter age-specific patterns of energy allocation among the competing demands of reproduction, storage, and maintenance. Despite the important role that alleles with age-specific effects must play in life history evolution, few naturally occurring alleles with age-specific effects on life history traits have been identified. A recent mapping study identified S6 kinase (S6k) as a candidate gene affecting lipid storage in Drosophila. S6k is in the target of rapamycin pathway, which regulates cell growth in response to nutrient availability and has also been implicated to influence many life history traits from fecundity to life span. In this article, we used quantitative complementation tests to examine the effect of allelic variation at S6k on a range of phenotypes associated with metabolism and fitness in an age-, diet-, and sex-specific manner. We found that alleles of S6k have pleiotropic effects on total protein levels, glycogen storage, life span, and the immune response and demonstrate that these allelic effects are age, diet, and sex specific. As many of the genes in the target of rapamycin pathway are evolutionarily conserved, our data suggest that genes in this pathway could play a pivotal role in life history evolution in a wide range of taxa. [Chambers, Michelle M.; De Luca, Maria] Univ Alabama, Dept Nutr Sci, Birmingham, AL 35294 USA; [Cho, Irene; Horn, Lucas; Felix, Tashauna M.; Foster, Leanne; Gregory, Gwendolyn; Starz-Gaiano, Michelle; Leips, Jeff] Univ Maryland Baltimore Cty, Dept Biol Sci, Baltimore, MD 21250 USA De Luca, M (reprint author), Univ Alabama, Dept Nutr Sci, Birmingham, AL 35294 USA. mdeluca2@uab.edu; leips@umbc.edu De Luca, Maria/0000-0001-6345-7508 NIH [5R01HL80812]; NSF [DEB-0349856] Thanks to Allen Mosenkis and Ankita Tandon, who helped with life span assay. We also thank two anonymous reviewers, whose suggestions significantly improved the article. This work was supported by an NIH Grant 5R01HL80812 and NSF Grant DEB-0349856. Arsham AM, 2006, CURR OPIN CELL BIOL, V18, P589, DOI 10.1016/j.ceb.2006.09.005; Arsic D, 2008, J INSECT PHYSIOL, V54, P1226, DOI 10.1016/j.jinsphys.2008.06.003; Berven LA, 2004, EXP CELL RES, V296, P183, DOI 10.1016/j.yexer.2003.12.032; Bonneaud C, 2003, AM NAT, V161, P367, DOI 10.1086/346134; Brakefield PM, 2005, MECH AGEING DEV, V126, P431, DOI 10.1016/j.mad.2004.07.013; Brennan CA, 2004, ANNU REV IMMUNOL, V22, P457, DOI 10.1146/annurev.immunol.22.012703.104626; Charmantier A, 2005, P ROY SOC B-BIOL SCI, V272, P1415, DOI 10.1098/rspb.2005.3117; CLARK AG, 1988, GENETICS, V119, P595; Crozatier M, 2007, CELL MICROBIOL, V9, P1117, DOI 10.1111/j.1462-5822.2007.00930.x; De Luca M, 2005, OBES RES, V13, P1596, DOI 10.1038/oby.2005.196; De Luca Maria, 2007, Methods Mol Biol, V371, P307; Demas GE, 1997, AM J PHYSIOL-REG I, V273, pR1631; DiAngelo JR, 2009, P NATL ACAD SCI USA, V106, P20853, DOI 10.1073/pnas.0906749106; Elrod-Erickson M, 2000, CURR BIOL, V10, P781, DOI 10.1016/S0960-9822(00)00569-8; Ganesan LP, 2004, J BIOL CHEM, V279, P54416, DOI 10.1074/jbc.M408188200; Grewal SS, 2009, INT J BIOCHEM CELL B, V41, P1006, DOI 10.1016/j.biocel.2008.10.010; GUTZEIT HO, 1994, EUR J CELL BIOL, V63, P52; Haine ER, 2008, SCIENCE, V322, P1257, DOI 10.1126/science.1165265; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hansen IA, 2005, J BIOL CHEM, V280, P20565, DOI 10.1074/jbc.M500712200; Harada H, 2001, P NATL ACAD SCI USA, V98, P9666, DOI 10.1073/pnas.171301998; Hoffmann AA, 1999, TRENDS ECOL EVOL, V14, P96, DOI 10.1016/S0169-5347(99)01595-5; Hughes KA, 2006, EVOLUTION, V60, P1427, DOI 10.1554/05-706.1; JOHNSON MB, 1985, J MORPHOL, V184, P51, DOI 10.1002/jmor.1051840106; Kapahi P, 2004, CURR BIOL, V14, P885, DOI 10.1016/j.cub.2004.03.059; Kong APS, 2006, CURR DIABETES REV, V2, P397, DOI 10.2174/1573399810602040397; Leips J, 2000, GENETICS, V155, P1773; Lemaitre B, 2007, ANNU REV IMMUNOL, V25, P697, DOI 10.1146/annurev.immunol.25.022106.141615; Long X, 2004, Curr Top Microbiol Immunol, V279, P115; Ma XJM, 2009, NAT REV MOL CELL BIO, V10, P307, DOI 10.1038/nrm2672; Manning BD, 2004, J CELL BIOL, V167, P399, DOI 10.1083/jcb.200408161; Martinet W, 2009, FEBS J, V276, P2227, DOI 10.1111/j.1742-4658.2009.06951.x; Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012; McKean KA, 2001, P NATL ACAD SCI USA, V98, P7904, DOI 10.1073/pnas.131216398; McManus MG, 1998, OECOLOGIA, V114, P317, DOI 10.1007/s004420050453; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; Meex RCR, 2009, AM J PHYSIOL-REG I, V297, pR913, DOI 10.1152/ajpregu.91053.2008; Minakhina S, 2010, DEVELOPMENT, V137, P27, DOI 10.1242/dev.043943; Montagne J, 1999, SCIENCE, V285, P2126, DOI 10.1126/science.285.5436.2126; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; Nuzhdin SV, 1997, P NATL ACAD SCI USA, V94, P9734, DOI 10.1073/pnas.94.18.9734; Pasyukova EG, 2004, AGING CELL, V3, P297, DOI 10.1111/j.1474-9728.2004.00114.x; Pasyukova EG, 2000, GENETICS, V156, P1129; Penninx BWJH, 2009, J GERONTOL A-BIOL, V64, P96, DOI 10.1093/gerona/gln005; Petschnigg J, 2009, J BIOL CHEM, V284, P30981, DOI 10.1074/jbc.M109.024752; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Ruvinsky I, 2006, TRENDS BIOCHEM SCI, V31, P342, DOI 10.1016/j.tibs.2006.04.003; Scott RC, 2004, DEV CELL, V7, P167, DOI 10.1016/j.devcel.2004.07.009; Shima H, 1998, EMBO J, V17, P6649, DOI 10.1093/emboj/17.22.6649; Skorupa DA, 2008, AGING CELL, V7, P478, DOI 10.1111/j.1474-9726.2008.00400.x; Snedecor G. W., 1980, STAT METHODS; STEARNS S, 1991, EVOLUTION LIFE HIST; Stroschein-Stevenson SL, 2006, PLOS BIOL, V4, P87, DOI 10.1371/journal.pbio.0040004; TANKSLEY SD, 1993, ANNU REV GENET, V27, P205, DOI 10.1146/annurev.ge.27.120193.001225; Terashima J, 2005, CELL DEATH DIFFER, V12, P429, DOI 10.1038/sj.cdd.4401587; Thibault ST, 2004, NAT GENET, V36, P283, DOI 10.1038/ng1314; Tucker MZ, 2003, AM J PHYSIOL-ENDOC M, V285, pE827, DOI 10.1152/ajpendo.00222.2002; Valenzano DR, 2006, AGING CELL, V5, P275, DOI 10.1111/j.1474-9726.2006.00212.x; Vieira C, 2000, GENETICS, V154, P213; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wu Q, 2005, P NATL ACAD SCI USA, V102, P13289, DOI 10.1073/pnas.0501914102; Yang LH, 2008, ECOLOGY, V89, P621, DOI 10.1890/07-0175.1; Zeyda M, 2009, GERONTOLOGY, V55, P379, DOI 10.1159/000212758 63 7 7 0 10 MARY ANN LIEBERT INC NEW ROCHELLE 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA 1044-5498 DNA CELL BIOL DNA Cell Biol. SEP 2010 29 9 473 485 10.1089/dna.2009.0997 13 Biochemistry & Molecular Biology; Cell Biology; Genetics & Heredity Biochemistry & Molecular Biology; Cell Biology; Genetics & Heredity 646BP WOS:000281510200003 20491566 Green Published 2018-11-12 J Buoro, M; Prevost, E; Gimenez, O Buoro, Mathieu; Prevost, Etienne; Gimenez, Olivier INVESTIGATING EVOLUTIONARY TRADE-OFFS IN WILD POPULATIONS OF ATLANTIC SALMON (SALMO SALAR): INCORPORATING DETECTION PROBABILITIES AND INDIVIDUAL HETEROGENEITY EVOLUTION English Article Bayesian inference; cost of reproduction; life-history theory; selective survival; state-space model LIFE-HISTORY VARIATION; MARK-RECAPTURE DATA; CAPTURE-RECAPTURE; REPRODUCTIVE COSTS; SMOLT RECRUITMENT; TAG RETENTION; ENERGY STORES; VAN-NOORDWIJK; JONG MODEL; RED DEER Evolutionary trade-offs among demographic parameters are important determinants of life-history evolution. Investigating such trade-offs under natural conditions has been limited by inappropriate analytical methods that fail to address the bias in demographic estimates that can result when issues of detection (uncertain detection of individual) are ignored. We propose a new statistical approach to quantify evolutionary trade-offs in wild populations. Our method is based on a state-space modeling framework that focuses on both the demographic process of interest as well as the observation process. As a case study, we used individual mark-recapture data for stream-dwelling Atlantic salmon juveniles in the Scorff River (Southern Brittany, France). In freshwater, juveniles face two life-history choices: migration to the ocean and sexual maturation (for males). Trade-offs may appear with these life-history choices and survival, because all are energy dependent. We found a cost of reproduction on survival for fish staying in freshwater and a survival advantage associated with the "decision" to migrate. Our modeling framework opens up promising prospects for the study of evolutionary trade-offs when some life-history traits are not, or only partially, observable. [Buoro, Mathieu; Gimenez, Olivier] Ctr Ecol Fonct & Evolut, UMR 5175, F-34293 Montpellier 5, France; [Buoro, Mathieu; Prevost, Etienne] INRA, UMR Ecobiop, F-64310 St Pees Nivelle, France; [Prevost, Etienne] Univ Pau & Pays Adour, UMR Ecobiop, F-64600 Anglet, France Buoro, M (reprint author), Ctr Ecol Fonct & Evolut, UMR 5175, Campus CNRS,1919 Route Mende, F-34293 Montpellier 5, France. mathieu.buoro@cefe.cnrs.fr; eprevost@st-pee.inra.fr; olivier.gimenez@cefe.cnrs.fr Gimenez, Olivier/G-4281-2010 Buoro, Mathieu/0000-0001-7053-3767 French Research National Agency (ANR) [ANR-08-JCJC-0028-01] We thank N. Jeannot (INRA, U3E, Pont-Scorff), J. Rives, F. Lange, and F. Gueraud (INRA, Ecobiop, St Pee sur Nivelle), Y. Guilloux (Federation de peche du Morbihan, Pont-Scorff) and other technical staff members for their help in collecting field data. We also thank P. Doherty for critical readings of earlier versions of the manuscript and G. Tavecchia and an anonymous referee for their helpful comments that significantly improved the manuscript. M. Buoro and O. Gimenez's work was partly supported by a grant from the French Research National Agency (ANR), reference ANR-08-JCJC-0028-01. Acolas ML, 2007, FISH RES, V86, P280, DOI 10.1016/j.fishres.2007.05.011; Arndt SKA, 2000, J FISH BIOL, V57, P589, DOI 10.1006/jfbi.2000.1335; Bagliniere J.-L., 1994, Ecology of Freshwater Fish, V3, P25, DOI 10.1111/j.1600-0633.1994.tb00104.x; BAGLINIERE JL, 1993, NATURAL WATERS, P189; Blums P, 2005, OECOLOGIA, V143, P365, DOI 10.1007/s00442-004-1794-x; Bonenfant C, 2003, BEHAV ECOL, V14, P862, DOI 10.1093/beheco/arg077; Brooks SP, 1998, J COMPUT GRAPH STAT, V7, P434, DOI 10.2307/1390675; Brown C. R., 2004, Animal Biodiversity and Conservation, V27, P21; Brown CA, 2003, EVOLUTION, V57, P2184, DOI 10.1111/j.0014-3820.2003.tb00397.x; Buckland ST, 2004, ECOL MODEL, V171, P157, DOI 10.1016/j.ecolmodel.2003.08.002; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Cam E, 2009, ENVIRON ECOL STAT SE, V3, P83, DOI 10.1007/978-0-387-78151-8_5; Catchpole EA, 2008, J ROY STAT SOC B, V70, P445, DOI 10.1111/j.1467-9868.2007.00644.x; Clark JS, 2003, ECOLOGY, V84, P1349, DOI 10.1890/0012-9658(2003)084[1349:UIEIAF]2.0.CO;2; Clark JS, 2007, MODELS ECOLOGICAL DA; Clark ME, 2007, ECOL MODEL, V209, P110, DOI 10.1016/j.ecolmodel.2007.06.008; Clobert J, 1995, J APPL STAT, V22, P989, DOI 10.1080/02664769524757; Clutton-Brock TH, 1998, OIKOS, V83, P421, DOI 10.2307/3546669; Conroy MJ, 2002, J APPL STAT, V29, P125, DOI 10.1080/02664760120108674; CONROY MJ, 2009, SERIES ENV ECOLOGICA, V3, P131; Cooch EG, 2002, J APPL STAT, V29, P19, DOI 10.1080/02664760120108421; Crespi BJ, 2002, EVOLUTION, V56, P1008; Doughty P, 1997, OECOLOGIA, V110, P508, DOI 10.1007/s004420050187; Duston J, 1997, ENVIRON BIOL FISH, V50, P149, DOI 10.1023/A:1007373016067; Ellison AM, 2004, ECOL LETT, V7, P509, DOI 10.1111/j.1461-0248.2004.00603.x; Finstad AG, 2007, FUNCT ECOL, V21, P905, DOI 10.1111/j.1365-2435.2007.01291.x; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Fleming Ian A., 2004, P264; Gelman A, 2004, BAYESIAN DATA ANAL; Gimenez O, 2006, EVOLUTION, V60, P460; Gimenez O, 2010, ECOLOGY, V91, P951, DOI 10.1890/09-1903.1; Gimenez O, 2008, AM NAT, V172, P441, DOI 10.1086/589520; Gimenez O, 2007, ECOL MODEL, V206, P431, DOI 10.1016/j.ecolmodel.2007.03.040; Gimenez O, 2009, EVOLUTION, V63, P3097, DOI 10.1111/j.1558-5646.2009.00783.x; Glazier DS, 1999, EVOL ECOL, V13, P539, DOI 10.1023/A:1006793600600; Gries G, 2002, N AM J FISH MANAGE, V22, P219, DOI 10.1577/1548-8675(2002)022<0219:TRASOA>2.0.CO;2; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; GUEGUEN J, 1994, SAUMON ATLANTIQUE; Hadfield JD, 2008, P ROY SOC B-BIOL SCI, V275, P723, DOI 10.1098/rspb.2007.1013; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Harvey A., 2004, STATE SPACE UNOBSERV; Harwood AJ, 2003, ANIM BEHAV, V65, P1141, DOI 10.1006/anbe.2003.2125; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Hendry AP, 1999, CAN J ZOOL, V77, P1663, DOI 10.1139/cjz-77-11-1663; Hendry AP, 2004, EVOLUTION ILLUMINATE; HUTCHINGS JA, 1987, CAN J ZOOL, V65, P766, DOI 10.1139/z87-120; Jonsson B, 2005, ECOL FRESHW FISH, V14, P296, DOI 10.1111/j.1600-0633.2005.00098.x; Jonsson N, 1997, J ANIM ECOL, V66, P425, DOI 10.2307/5987; JONSSON N, 1991, J FISH BIOL, V39, P739, DOI 10.1111/j.1095-8649.1991.tb04403.x; King R, 2008, BIOMETRICS, V64, P1187, DOI 10.1111/j.1541-0420.2008.00991.x; LARSSON PO, 1985, J FISH BIOL, V26, P391, DOI 10.1111/j.1095-8649.1985.tb04279.x; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Letcher BH, 2003, J FISH BIOL, V62, P97, DOI [10.1046/j.1095-8649.2003.00009.x, 10.1046/j.0022-1112.2003.00009.x]; McCarthy MA, 2005, J APPL ECOL, V42, P1012, DOI 10.1111/j.1365-2664.2005.01101.x; McCarthy MA, 2007, BAYESIAN METHODS FOR ECOLOGY, P1, DOI 10.1017/CBO9780511802454; McCormick SD, 1998, CAN J FISH AQUAT SCI, V55, P77, DOI 10.1139/d98-011; Metcalf CJE, 2007, P R SOC B, V274, P2153, DOI 10.1098/rspb.2007.0561; Metcalfe NB, 1998, CAN J FISH AQUAT SCI, V55, P93, DOI 10.1139/cjfas-55-S1-93; METCALFE NB, 1992, J ANIM ECOL, V61, P175, DOI 10.2307/5520; MOORE A, 1995, CAN J FISH AQUAT SCI, V52, P1923, DOI 10.1139/f95-784; Morita K, 2006, EVOLUTION, V60, P1516, DOI 10.1554/06-007.1; Moyes K, 2006, OIKOS, V115, P241, DOI 10.1111/j.2006.0030-1299.15200.x; Nakagawa S, 2008, TRENDS ECOL EVOL, V23, P592, DOI 10.1016/j.tree.2008.06.014; NICHOLS JD, 1994, ECOLOGY, V75, P2052, DOI 10.2307/1941610; NICIEZA AG, 1991, J FISH BIOL, V38, P509, DOI 10.1111/j.1095-8649.1991.tb03138.x; Nicieza AG, 1999, FUNCT ECOL, V13, P793, DOI 10.1046/j.1365-2435.1999.00371.x; PICKERING AD, 1988, J FISH BIOL, V32, P689, DOI 10.1111/j.1095-8649.1988.tb05409.x; PREVOST E, 1992, J FISH BIOL, V41, P1013, DOI 10.1111/j.1095-8649.1992.tb02728.x; Proaktor G, 2008, ECOLOGY, V89, P2604, DOI 10.1890/07-0833.1; Rivot E, 2004, ECOL MODEL, V179, P463, DOI 10.1016/j.ecolmodel.2004.05.011; Rivot E, 2002, CAN J FISH AQUAT SCI, V59, P1768, DOI 10.1139/F02-145; RIVOT E, 2003, THESIS ECOLE NATL SU; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Roff DA, 2006, J EVOLUTION BIOL, V19, P1920, DOI 10.1111/j.1420-9101.2006.01155.x; Roff Derek A., 1992; ROWE DK, 1991, CAN J FISH AQUAT SCI, V48, P405, DOI 10.1139/f91-052; ROWE DK, 1990, AQUACULTURE, V86, P291, DOI 10.1016/0044-8486(90)90121-3; ROWE DK, 1990, J FISH BIOL, V36, P643, DOI 10.1111/j.1095-8649.1990.tb04319.x; Royle JA, 2008, BIOMETRICS, V64, P364, DOI 10.1111/j.1541-0420.2007.00891.x; Service PM, 2000, AM NAT, V156, P1, DOI 10.1086/303371; SPIEGELHALTER D, 2003, BAYESIAN INFERENCE U; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tavecchia G, 2001, ECOLOGY, V82, P165, DOI 10.1890/0012-9658(2001)082[0165:SAARVI]2.0.CO;2; THORPE JE, 1992, ENVIRON BIOL FISH, V33, P331, DOI 10.1007/BF00010944; Thorpe JE, 1998, AQUACULTURE, V168, P95, DOI 10.1016/S0044-8486(98)00342-1; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; Townsend HM, 2007, EVOLUTION, V61, P1956, DOI 10.1111/j.1558-5646.2007.00169.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Viallefont A, 1995, J APPL STAT, V22, P847, DOI 10.1080/02664769524667; Weladji RB, 2008, OECOLOGIA, V156, P237, DOI 10.1007/s00442-008-0961-x; Whalen KG, 2000, CAN J FISH AQUAT SCI, V57, P1607, DOI 10.1139/cjfas-57-8-1607; Whalen KG, 1999, CAN J FISH AQUAT SCI, V56, P79, DOI 10.1139/cjfas-56-1-79; Wintrebert CMA, 2005, ECOL MODEL, V181, P203, DOI 10.1016/j.ecolmodel.2004.02.021; Yoccoz NG, 2002, J APPL STAT, V29, P57, DOI 10.1080/02664760120108458; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 96 15 16 1 45 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution SEP 2010 64 9 2629 2642 10.1111/j.1558-5646.2010.01029.x 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 647RN WOS:000281636400011 20482614 Bronze 2018-11-12 J Czarnoleski, M; Olejniczak, P; Mikolajczak, P; Lembicz, M; Kozlowski, J Czarnoleski, Marcin; Olejniczak, Pawel; Mikolajczak, Paulina; Lembicz, Marlena; Kozlowski, Jan Fungal endophytes protect grass seedlings against herbivory and allow economical seed production EVOLUTIONARY ECOLOGY RESEARCH English Article fungal endophytes; herbivory; life history; resource allocation; seedlings; seed mass; seed quality; snails TALL FESCUE; PERENNIAL RYEGRASS; NEOTYPHODIUM ENDOPHYTES; FESTUCA-ARUNDINACEA; LOLIUM-PERENNE; GROWTH; ALKALOIDS; REPRODUCTION; PLANTS; SIZE Background: When infected with seed-transmitted fungal endophytes, some grasses produce a larger quantity of seeds, although these seeds are smaller than normal. The principles of life-history theory suggest that this size reduction could evolve if the infection reduces predation pressure. Question: Does the endophyte protect grass seedlings against herbivory? Hypothesis: Herbivores consume more seedlings that develop from endophyte-free grass seeds than from endophyte-infected grass seeds. Organisms: Epichloe typhina is the seed-transmitted endophytic fungus, the weeping alkaligrass (Puccinellia distans) seedlings are the hosts, and the grove snail (Cepaea nemoralis) is the herbivore. Methods: Our experiment consisted of two 66-h food-choice tests. The tests were performed consecutively and on the same individual snails. We offered snails freshly harvested weeping alkaligrass seedlings with and without the endophyte. Results: Starved snails consumed approximately 20% less biomass of infected seedlings than uninfected seedlings. When the same snails were tested again shortly after their first contact with the endophyte, they exhibited an approximately 40% reduction in seedling consumption, and food discrimination became undetectable. Conclusions: Toxins produced by endophytic fungi reduce the vulnerability of grass seedlings to snail herbivory [Mikolajczak, Paulina; Lembicz, Marlena] Adam Mickiewicz Univ Poznan, Dept Plant Taxon, PL-61614 Poznan, Poland; [Olejniczak, Pawel] Polish Acad Sci, Inst Nat Conservat, Krakow, Poland; [Czarnoleski, Marcin; Kozlowski, Jan] Jagiellonian Univ, Inst Environm Sci, Krakow, Poland Lembicz, M (reprint author), Adam Mickiewicz Univ Poznan, Dept Plant Taxon, Umultowska 89, PL-61614 Poznan, Poland. lembicz@amu.edu.pl Kozlowski, Jan/K-5549-2012 Kozlowski, Jan/0000-0002-7084-2030 Polish Ministry of Science and Higher Education [2P04F01530] We thank A. Leuchtmann (Institute of Integrative Biology (IBZ), Zurich, Switzerland), E. Obarska (Department of Plant Taxonomy, A. Mickiewicz University), and C.L. Schardl (Department of Plant Pathology, University of Kentucky) for comments on the manuscript. K. Gorzynska helped with seed collection. The work was supported by grant #2P04F01530 from the Polish Ministry of Science and Higher Education. ARMSTRONG DP, 1993, ECOLOGY, V74, P1092, DOI 10.2307/1940479; Brem D, 2001, OECOLOGIA, V126, P522, DOI 10.1007/s004420000551; Bush LP, 1997, PLANT PHYSIOL, V114, P1, DOI 10.1104/pp.114.1.1; Cheplick GP, 2009, ECOLOGY EVOLUTION GR; CLAY K, 1987, OECOLOGIA, V73, P358, DOI 10.1007/BF00385251; Clay K, 2004, NATURE, V427, P401, DOI 10.1038/427401a; Conover MR, 2003, AGR ECOSYST ENVIRON, V97, P199, DOI 10.1016/S0167-8809(03)00037-9; de Aldana BRV, 2003, J SCI FOOD AGR, V83, P347, DOI 10.1002/jsfa.1319; de Aldana BRV, 2001, ANIM FEED SCI TECH, V93, P169; Doss RP, 1998, PLANT DIS, V82, P738, DOI 10.1094/PDIS.1998.82.7.738; Durham WF, 1998, CAN J ZOOL, V76, P960, DOI 10.1139/cjz-76-5-960; Ejsmond MJ, 2010, AM NAT, V175, P551, DOI 10.1086/651589; Faeth SH, 2009, AM NAT, V173, P554, DOI 10.1086/597376; Fenner M, 2006, ECOLOGY SEEDS; Groppe K, 1999, MOL ECOL, V8, P1827, DOI 10.1046/j.1365-294x.1999.00772.x; Hanley ME, 2003, FUNCT ECOL, V17, P673, DOI 10.1046/j.1365-2435.2003.00779.x; Hawkes CV, 2001, ECOLOGY, V82, P2045, DOI 10.2307/2680068; Jallow MFA, 2004, BASIC APPL ECOL, V5, P183, DOI 10.1078/1439-1791-00224; Jensen AMD, 2005, EUR J AGRON, V23, P68, DOI 10.1016/j.eja.2004.09.005; Jones TA, 2000, J RANGE MANAGE, V53, P427, DOI 10.2307/4003755; Kotanen PM, 2000, EVOL ECOL, V14, P537, DOI 10.1023/A:1010862201331; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Lembicz M., 1998, PHYTOCOENOSIS, V10, P1; Leuchtmann A, 2000, J CHEM ECOL, V26, P1025, DOI 10.1023/A:1005489032025; Malinowski DP, 1999, J AGRON CROP SCI, V183, P91, DOI 10.1046/j.1439-037x.1999.00322.x; Massey FP, 2007, J ECOL, V95, P414, DOI 10.1111/j.1365-2745.2007.01223.x; Meister B, 2006, BASIC APPL ECOL, V7, P244, DOI 10.1016/j.baae.2005.06.002; Motheral SM, 2010, AM MIDL NAT, V163, P106, DOI 10.1674/0003-0031-163.1.106; Olejniczak P, 2007, OECOLOGIA, V152, P485, DOI 10.1007/s00442-007-0660-z; OSBORN TG, 1992, J ANIM SCI, V70, P2501; PETROSKI RJ, 1990, J AGR FOOD CHEM, V38, P1716, DOI 10.1021/jf00098a019; READ JC, 1986, AGRON J, V78, P848, DOI 10.2134/agronj1986.00021962007800050021x; Saikkonen K, 2004, TRENDS PLANT SCI, V9, P275, DOI 10.1016/j.tplants.2004.04.005; Schardl CL, 2001, FUNGAL GENET BIOL, V33, P69, DOI 10.1006/fgbi.2001.1275; Siegel MR, 1996, RECENT ADV PHYTOCHEM, V30, P81; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Spiering MJ, 2005, PHYTOCHEMISTRY, V66, P195, DOI 10.1016/j.phytochem.2004.11.021; Spiers DE, 2005, J ANIM SCI, V83, P1423; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tibbets TM, 1999, OECOLOGIA, V118, P297, DOI 10.1007/s004420050730; VARNEY DR, 1991, J DAIRY SCI, V74, P460, DOI 10.3168/jds.S0022-0302(91)78192-7; Vazquez de Aldana BR, 2007, GRASS FORAGE SCI, V62, P364; Wang JH, 2004, FUNGAL GENET BIOL, V41, P189, DOI 10.1016/j.fgb.2003.10.002; WEST CP, 1993, AGRON J, V85, P264, DOI 10.2134/agronj1993.00021962008500020019x; WOLOCK-MADEJ C, 1991, Oecologia (Berlin), V88, P296; Zhang DX, 2009, PLANT PHYSIOL, V150, P1072, DOI 10.1104/pp.109.138222 46 6 6 1 22 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 EVOL ECOL RES Evol. Ecol. Res. SEP 2010 12 6 769 777 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 741BR WOS:000288838600006 2018-11-12 J Satterthwaite, WH; Kitaysky, AS; Hatch, SA; Piatt, JF; Mangel, M Satterthwaite, William H.; Kitaysky, Alexander S.; Hatch, Scott A.; Piatt, John F.; Mangel, Marc Unifying quantitative life-history theory and field endocrinology to assess prudent parenthood in a long-lived seabird EVOLUTIONARY ECOLOGY RESEARCH English Article black-legged kittiwake; CORT-fitness hypothesis; corticosterone; endocrinology; life history; prudent parent BLACK-LEGGED KITTIWAKES; REPRODUCTIVE-PERFORMANCE; STRESS-RESPONSE; FOOD AVAILABILITY; SURVIVAL; AGE; BIRD; CORTICOSTERONE; EXPERIENCE; SENESCENCE Question: Can field measurements of stress hormones help us to assess the prudent parent hypothesis in a long-lived seabird? Organism: Black-legged kittiwake, Rissa tridactyla. Location: Duck and Gull Islands, Cook Inlet, Alaska, USA. Methods: We examined the statistical relationship between the stress hormone corticosterone and mortality in black-legged kittiwakes. We built a demographic model of the kittiwake life cycle to determine whether the mortality rates associated with persisting in a breeding attempt despite high corticosterone caused the birds to sacrifice more lifetime reproductive output than they gain from one year's breeding. Results: The probability of apparent mortality increased with corticosterone, suggesting some birds incurred increased mortality risk for the sake of breeding. For Duck Island (low reproductive success), it appears birds sacrificed more lifetime reproductive success than a prudent parent would. On Gull Island, it appears most but possibly not all birds were behaving in ways consistent with theory, although definitive statements require larger samples of highly stressed birds. [Satterthwaite, William H.; Mangel, Marc] Univ Calif Santa Cruz, Dept Appl Math & Stat, Ctr Stock Assessment Res, Santa Cruz, CA 95064 USA; [Satterthwaite, William H.] MRAG Amer, Capitola, CA USA; [Kitaysky, Alexander S.] Univ Alaska Fairbanks, Dept Biol & Wildlife, Inst Arctic Biol, Fairbanks, AK USA; [Hatch, Scott A.; Piatt, John F.] US Geol Survey, Alaska Sci Ctr, Anchorage, AK USA Satterthwaite, WH (reprint author), Univ Calif Santa Cruz, Dept Appl Math & Stat, Ctr Stock Assessment Res, Santa Cruz, CA 95064 USA. satterth@darwin.ucsc.edu Satterthwaite, William/0000-0002-0436-7390; Piatt, John/0000-0002-4417-5748 North Pacific Research Board [320, B74, B67, B77]; USGS Alaska Science Center This work was supported by funding from the North Pacific Research Board (Project #320 for fieldwork, BEST-BSIERP projects B74, B67, and B77 for 'modelling and manuscript preparation) and the USGS Alaska Science Center. We thank S. Carlson, H. Satterthwaite, A. Shelton, the Mangel-Wilmers-Kilpatrick lab group, and the BSIERP patch dynamics team for helpful comments. Mention of trade names is for descriptive purposes only and does not imply endorsement by the US Government. This study was conducted under the University of Washington and the University of Alaska IACUC protocols and all necessary government and state permits. This paper is BEST-BSIERP Publication #2 and NPR B Publication #282. Angelier F, 2007, BEHAV ECOL SOCIOBIOL, V61, P611, DOI 10.1007/s00265-006-0290-1; Angelier F, 2006, GEN COMP ENDOCR, V149, P1, DOI 10.1016/j.ygcen.2006.04.006; Angelier F, 2009, P R SOC B, V276, P3545, DOI 10.1098/rspb.2009.0868; Blas J, 2007, P NATL ACAD SCI USA, V104, P8880, DOI 10.1073/pnas.0700232104; Bokony V, 2009, AM NAT, V173, P589, DOI 10.1086/597610; Bonier F, 2010, TRENDS ECOL EVOL, V25, P262, DOI 10.1016/j.tree.2010.01.009; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Brown CR, 2005, ECOLOGY, V86, P1034, DOI 10.1890/04-0740; Burnham K. P., 2002, MODEL SELECTION MULT; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; Coulson JC, 2001, J AVIAN BIOL, V32, P146, DOI 10.1034/j.1600-048X.2001.320207.x; Dingemanse NJ, 2010, TRENDS ECOL EVOL, V25, P261, DOI 10.1016/j.tree.2010.01.008; DRENT RH, 1980, ARDEA, V68, P225; Golet GH, 2004, ECOL MONOGR, V74, P353, DOI 10.1890/02-4029; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; Goutte A, 2010, FUNCT ECOL, V24, P1007, DOI 10.1111/j.1365-2435.2010.01712.x; Goutte A, 2010, GEN COMP ENDOCR, V167, P246, DOI 10.1016/j.ygcen.2010.03.018; HATCH SA, 1993, IBIS, V135, P247, DOI 10.1111/j.1474-919X.1993.tb02841.x; Heidinger BJ, 2006, P ROY SOC B-BIOL SCI, V273, P2227, DOI 10.1098/rspb.2006.3557; Jodice PGR, 2006, MAR ECOL PROG SER, V306, P283, DOI 10.3354/meps306283; Kitaysky AS, 2010, FUNCT ECOL, V24, P625, DOI 10.1111/j.1365-2435.2009.01679.x; Kitaysky AS, 2001, BEHAV ECOL, V12, P619, DOI 10.1093/beheco/12.5.619; Oro D, 2002, ECOLOGY, V83, P2516; Piatt JF, 2004, SURVIVAL ADULT MURRE; *R DEV COR, 2009, R LANG ENV STAT COMP; Schoech SJ, 2009, GEN COMP ENDOCR, V163, P201, DOI 10.1016/j.ygcen.2008.09.009; Shultz MT, 2009, MAR ECOL PROG SER, V393, P247, DOI 10.3354/meps08136 27 20 20 0 21 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 EVOL ECOL RES Evol. Ecol. Res. SEP 2010 12 6 779 792 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 741BR WOS:000288838600007 2018-11-12 J Leong, W; Pawlik, JR Leong, Wai; Pawlik, Joseph R. Fragments or propagules? Reproductive tradeoffs among Callyspongia spp. from Florida coral reefs OIKOS English Article ASEXUAL REPRODUCTION; SEXUAL REPRODUCTION; CHEMICAL DEFENSE; SPONGES; DISPERSAL; PORIFERA; PLANTS; DEMOSPONGIAE; PROPAGATION; STRATEGIES Fragmentation and propagule formation are alternative reproductive strategies found in both plants and animals, with the latter generally providing greater dispersal capability. When both strategies occur, life history theory predicts that resources should be divided between the two. On coral reefs, both strategies are exhibited by branching corals and sponges, which are broken-up after storm events and rapidly recolonize. In this study, we compared two congeneric Caribbean reef sponges, Callyspongia armigera, which is branched and easily fragmented, and C. vaginalis, which is not, to test whether there is a tradeoff in growth and propagule formation for C. armigera relative to C. vaginalis. Both species were equally abundant on coral reefs off Key Largo, Florida (10.1 +/- 3.7 vs 11.9 +/- 3.0 per 100 m(2), respectively), suggesting that they are equally successful relative to two other non-fragmenting congeneric species (C. fallax and C. plicifera) that are much less common. The number of substratum attachment points per sponge was significantly higher for C. armigera compared to C. vaginalis (2.31 +/- 1.47 vs 1.03 +/- 0.18 sponge(-1)), providing further evidence of the reliance of C. armigera on fragmentation, and of C. vaginalis on recruitment from larval settlement and subsequent growth. Growth rates in predator-exclusion experiments were similar to 4-fold higher for C. armigera compared to C. vaginalis (0.36 +/- 0.31 vs 0.08 +/- 0.11 % initial mass day(-1)), but C. armigera produced similar to 13-fold fewer propagules than C. vaginalis (0.04 +/- 0.22 vs 0.53 +/- 1.08 % tissue area). Our results support a tradeoff between growth and propagule output for C. armigera relative to C. vaginalis, suggesting that these closely related sponge species took different evolutionary trajectories in reconciling their resource constraints. [Leong, Wai] Univ N Carolina, Dept Biol & Marine Biol, Wilmington, NC 28409 USA; Univ N Carolina, Ctr Marine Sci, Wilmington, NC 28409 USA Leong, W (reprint author), Univ N Carolina, Dept Biol & Marine Biol, 5600 Marvin Moss Lane, Wilmington, NC 28409 USA. pawlikj@uncw.edu Pawlik, Joseph/0000-0002-8559-8456 National Science Foundation [OCE-0095724, 0550468]; NOAA's Undersea Research Center at the Univ. of North Carolina Wilmington [NA 96RU-0260] Funding was provided by the National Science Foundation, Biological Oceanography Program (OCE-0095724, 0550468) and by NOAA's Undersea Research Center at the Univ. of North Carolina Wilmington (NA 96RU-0260). Sponge collections in Key Largo, Florida, were conducted under National Marine Sanctuary Permit FKNMS-2001-021 in compliance with the laws of the State of Florida and the USA. We thank H. Feddern, T. Henkel, S. McMurray, T.-L. Loh, D. Hines and S. Lopez-Legentil, and a long list of diving helpers who worked on the growth experiments for assistance in the field and the laboratory. Richard Dillaman and Mark Gay provided assistance with histological procedures and resources. ABRAHAMSON WG, 1975, ECOLOGY, V56, P721, DOI 10.2307/1935508; Aronson RB, 2002, MAR BIOL, V141, P435, DOI 10.1007/s00227-002-0842-5; Ayre DJ, 2000, EVOLUTION, V54, P1590; Barrat-Segretain MH, 1998, AQUAT BOT, V60, P201, DOI 10.1016/S0304-3770(97)00091-0; BarratSegretain MH, 1996, VEGETATIO, V123, P13, DOI 10.1007/BF00044885; BAZZAZ FA, 1987, BIOSCIENCE, V37, P58, DOI 10.2307/1310178; Charlesworth B, 2007, GENET RES, V89, P451, DOI 10.1017/S0016672308009658; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Coffroth MA, 1998, EVOLUTION, V52, P379, DOI 10.1111/j.1558-5646.1998.tb01639.x; COLEY PD, 1985, SCIENCE, V230, P895, DOI 10.1126/science.230.4728.895; Corriero G, 1996, MAR BIOL, V126, P175, DOI 10.1007/BF00347442; Di Carlo G, 2005, MAR BIOL, V147, P1261, DOI 10.1007/s00227-005-0035-0; FELL PE, 1989, REPROD BIOL INVERT A, V4, P1; Gaylord B, 2002, ECOLOGY, V83, P1239, DOI 10.1890/0012-9658(2002)083[1239:APBMOM]2.0.CO;2; Hall LM, 2006, MAR ECOL PROG SER, V310, P109, DOI 10.3354/meps310109; Hay MJM, 2008, EVOL ECOL, V22, P461, DOI 10.1007/s10682-007-9193-5; HIGHSMITH RC, 1982, MAR ECOL PROG SER, V7, P207, DOI 10.3354/meps007207; Hoekstra RF, 2005, NATURE, V434, P571, DOI 10.1038/434571a; ILAN M, 1990, BIOL BULL, V179, P279, DOI 10.2307/1542319; LASKER HR, 1984, MAR ECOL PROG SER, V19, P261, DOI 10.3354/meps019261; Lindquist N, 1997, MAR ECOL PROG SER, V155, P309, DOI 10.3354/meps155309; Lindquist N, 1996, ECOL MONOGR, V66, P431, DOI 10.2307/2963489; Maldonado M, 1999, NATURE, V398, P476, DOI 10.1038/19007; Maliao RJ, 2008, MAR BIOL, V154, P841, DOI 10.1007/s00227-008-0977-0; Mercurio M, 2007, MAR BIOL, V151, P1491, DOI 10.1007/s00227-006-0584-x; Pawlik JR, 2008, MAR ECOL PROG SER, V368, P137, DOI 10.3354/meps07615; Pawlik JR, 1998, LIMNOL OCEANOGR, V43, P1396, DOI 10.4319/lo.1998.43.6.1396; PAWLIK JR, 1995, MAR ECOL PROG SER, V127, P183, DOI 10.3354/meps127183; PAWLIK JR, 1997, P 8 INT COR REEF S, V2, P1255; Rasband W. S., 1997, IMAGEJ; Riesgo A, 2008, INVERTEBR BIOL, V127, P357, DOI 10.1111/j.1744-7410.2008.00128.x; Shafir S., 2001, AQUARIUM SCI CONSERV, V3, P183; Sherman CDH, 2006, CORAL REEFS, V25, P7, DOI 10.1007/s00338-005-0053-x; Silvertown J, 2008, INT J PLANT SCI, V169, P157, DOI 10.1086/523357; Smith CM, 1999, MAR ECOL-P S Z N I, V20, P307, DOI 10.1046/j.1439-0485.1999.2034079.x; SMITH JM, 1978, EVOLUTION SEX; Stearns S. C., 1992, EVOLUTION LIFE HIST; TARGETT NM, 1984, OARNURP129 NOAA; Thomsen E, 1995, PALEOBIOLOGY, V21, P496; Truscott AM, 2006, J ECOL, V94, P1080, DOI 10.1111/j.1365-2745.2006.01171.x; Tsurumi M, 1997, INVERTEBR REPROD DEV, V32, P1, DOI 10.1080/07924259.1997.9672598; TUNNICLIFFE V, 1981, P NATL ACAD SCI-BIOL, V78, P2427, DOI 10.1073/pnas.78.4.2427; Walters KD, 2005, INTEGR COMP BIOL, V45, P352, DOI 10.1093/icb/45.2.352; Whalan S, 2007, CORAL REEFS, V26, P655, DOI 10.1007/s00338-007-0236-8; Williams G. C., 1975, SEX EVOLUTION; WULFF JL, 1995, CORAL REEFS, V14, P55, DOI 10.1007/BF00304073; WULFF JL, 1991, J EXP MAR BIOL ECOL, V149, P227, DOI 10.1016/0022-0981(91)90047-Z 47 13 13 1 24 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0030-1299 OIKOS Oikos SEP 2010 119 9 1417 1422 10.1111/j.1600-0706.2010.18092.x 6 Ecology Environmental Sciences & Ecology 642JJ WOS:000281208200007 2018-11-12 J Graf, M; Cellerino, A; Englert, C Graf, Michael; Cellerino, Alessandro; Englert, Christoph Gender Separation Increases Somatic Growth in Females but Does Not Affect Lifespan in Nothobranchius furzeri PLOS ONE English Article CALLOSOBRUCHUS-MACULATUS; HISTORY EVOLUTION; AGING RESEARCH; MODEL SYSTEM; FRUIT-FLIES; REPRODUCTION; COST; LONGEVITY; MORTALITY; VERTEBRATE According to life history theory, physiological and ecological traits and parameters influence an individual's life history and thus, ultimately, its lifespan. Mating and reproduction are costly activities, and in a variety of model organisms, a negative correlation of longevity and reproductive effort has been demonstrated. We are employing the annual killifish Nothobranchius furzeri as a vertebrate model for ageing. N. furzeri is the vertebrate displaying the shortest known lifespan in captivity with particular strains living only three to four months under optimal laboratory conditions. The animals show explosive growth, early sexual maturation and age-dependent physiological and behavioural decline. Here, we have used N. furzeri to investigate a potential reproduction-longevity trade-off in both sexes by means of gender separation. Though female reproductive effort and offspring investment were significantly reduced after separation, as investigated by analysis of clutch size, eggs in the ovaries and ovary mass, the energetic surplus was not reallocated towards somatic maintenance. In fact, a significant extension of lifespan could not be observed in either sex. This is despite the fact that separated females, but not males, grew significantly larger and heavier than the respective controls. Therefore, it remains elusive whether lifespan of an annual species evolved in periodically vanishing habitats can be prolonged on the cost of reproduction at all. [Graf, Michael; Cellerino, Alessandro; Englert, Christoph] FLI, Leibniz Inst Age Res, Jena, Germany Englert, C (reprint author), FLI, Leibniz Inst Age Res, Jena, Germany. cenglert@fli-leibniz.de Cellerino, Alessandro/M-9380-2013 Cellerino, Alessandro/0000-0003-3834-0097; Englert, Christoph/0000-0002-5931-3189 Leibniz Institute for Age Research This work was supported by the host institution, namely the Leibniz Institute for Age Research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Barnes AI, 2003, ANIM BEHAV, V66, P199, DOI 10.1006/anbe.2003.2122; Borski RJ, 1996, ENDOCRINOLOGY, V137, P3253, DOI 10.1210/en.137.8.3253; Carey JR, 2002, EXP GERONTOL, V37, P507, DOI 10.1016/S0531-5565(01)00230-3; Dammann P, 2006, CURR BIOL, V16, pR117, DOI 10.1016/j.cub.2006.02.012; Erdfelder E., 2004, ALLGEMEINE PSYCHOL D, P148; FOWLER K, 1989, NATURE, V338, P760, DOI 10.1038/338760a0; Genade T, 2005, AGING CELL, V4, P223, DOI 10.1111/j.1474-9726.2005.00165.x; Grandison RC, 2009, NATURE, V462, P1061, DOI 10.1038/nature08619; HIRSHFIELD MF, 1980, ECOLOGY, V61, P282, DOI 10.2307/1935187; Holmes DJ, 2001, EXP GERONTOL, V36, P869, DOI 10.1016/S0531-5565(00)00247-3; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Mukhopadhyay A, 2007, TRENDS CELL BIOL, V17, P65, DOI 10.1016/j.tcb.2006.12.004; NEUMANN W, 2008, PRACHTGRUNDKARPFLING, P16; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Partridge L, 2005, CELL, V120, P461, DOI 10.1016/j.cell.2005.01.026; Paukku S, 2005, J INSECT PHYSIOL, V51, P1220, DOI 10.1016/j.jinsphys.2005.06.012; RAGLAND SS, 1973, EXP GERONTOL, V8, P135, DOI 10.1016/0531-5565(73)90003-X; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; Reichwald K, 2009, GENOME BIOL, V10, DOI 10.1186/gb-2009-10-2-r16; Reinhardt K, 1999, J INSECT BEHAV, V12, P283, DOI 10.1023/A:1020854403805; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Ricklefs RE, 2007, ECOL LETT, V10, P867, DOI 10.1111/j.1461-0248.2007.01085.x; Roff Derek A., 1992; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TATAR M, 1993, EVOLUTION, V47, P1302, DOI 10.1111/j.1558-5646.1993.tb02156.x; Terzibasi E, 2007, EXP GERONTOL, V42, P81, DOI 10.1016/j.exger.2006.06.039; Terzibasi E, 2009, AGING CELL, V8, P88, DOI 10.1111/j.1474-9726.2009.00455.x; Terzibasi E, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003866; Valdesalicil S, 2003, P ROY SOC B-BIOL SCI, V270, pS189, DOI 10.1098/rsbl.2003.0048; Valenzano DR, 2006, AGING CELL, V5, P275, DOI 10.1111/j.1474-9726.2006.00212.x; Valenzano DR, 2006, CURR BIOL, V16, P296, DOI 10.1016/j.cub.2005.12.038; Vezina F, 2005, J EXP BIOL, V208, P2533, DOI 10.1242/jeb.01675; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 35 18 18 0 9 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One AUG 3 2010 5 8 e11958 10.1371/journal.pone.0011958 6 Multidisciplinary Sciences Science & Technology - Other Topics 633RB WOS:000280520500012 20689818 DOAJ Gold, Green Published 2018-11-12 J Gilbert, JDJ; Manica, A Gilbert, James D. J.; Manica, Andrea Parental Care Trade-Offs and Life-History Relationships in Insects AMERICAN NATURALIST English Article reproductive allocation; parental investment; clutch size; phylogenetic-comparative method; information theory; density dependence SAFE-HARBOR HYPOTHESIS; EGG-SIZE; BODY-SIZE; PATERNAL CARE; CLUTCH SIZE; REPRODUCTIVE EFFORT; MATERNAL-CARE; LITTER SIZE; NEOTROPICAL HARVESTMAN; PHYLOGENETIC ANALYSIS Insect parental care is extensive and varied, but its life-history implications have never been comparatively tested. Using original and literature data, we tested predictions about egg size, egg number (lifetime fecundity), and body size under different parental care modes across a phylogeny of 287 insect species. Life-history theory and both comparative and intraspecific evidence from ectotherms suggest parental care should select for bigger, fewer eggs, but that allometric scaling of egg size and lifetime fecundity may depend on whether care consists of provisioning (density-dependent offspring survival) or merely guarding (density-independent offspring survival). Against expectation, egg size was indistinguishable among parental care modes, covarying only with body size. This refutes most theory of egg size evolution under parental care. Lifetime fecundity scaled differently depending on parental investment-positively under no care and guarding, as in most ectotherms, but negatively under provisioning. Reproductive allocation in provisioning insects resembled that in mammals and birds, also groups with obligate provisioning. We propose that the metabolic demands of multiple offspring must scale with species body size more steeply than the parent's provisioning capacity, resulting in larger females laying fewer eggs. These patterns lay the groundwork for a more general understanding of parental care and life history. [Gilbert, James D. J.; Manica, Andrea] Univ Cambridge, Dept Zool, Cambridge CB2 3EJ, England; [Gilbert, James D. J.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA Gilbert, JDJ (reprint author), Univ Cambridge, Dept Zool, Downing St, Cambridge CB2 3EJ, England. james.gilbert@cantab.net Manica, Andrea/B-5497-2008; Gilbert, James/A-8965-2010 Manica, Andrea/0000-0003-1895-450X; Gilbert, James/0000-0001-7014-2803 Biotechnology and Biological Sciences Research Council [02/A1/S/8091]; Balfour-Browne Fund; Chibnall Fund; Cambridge Philosophical Society We wish to thank K. Isvaran, S. Qader, and members of the Large Animal Research Group, University of Cambridge, for statistical advice; L. Browning, F. Gilbert, and three anonymous reviewers for comments on the manuscript; and J. Hill for help weighing museum specimens. This work was funded by Biotechnology and Biological Sciences Research Council studentship 02/A1/S/8091 to J. D. J. G. and by scholarships from the Balfour-Browne Fund, the Chibnall Fund, and the Cambridge Philosophical Society. Agrawal AF, 2005, BEHAV ECOL SOCIOBIOL, V57, P566, DOI 10.1007/s00265-004-0899-x; ALLAINE D, 1987, OECOLOGIA, V73, P478, DOI 10.1007/BF00385268; BARTLETT J, 1987, BEHAV ECOL SOCIOBIOL, V21, P179, DOI 10.1007/BF00303208; Beck CW, 2005, EVOL ECOL RES, V7, P1077; Berger D, 2006, EVOL ECOL, V20, P575, DOI 10.1007/s10682-006-9118-8; BERRIGAN D, 1991, OIKOS, V60, P313, DOI 10.2307/3545073; BLACKBURN TM, 1991, J ANIM ECOL, V60, P151, DOI 10.2307/5451; BLACKBURN TM, 1991, AUK, V108, P973; Borrell BJ, 2007, AM NAT, V169, P569, DOI 10.1086/512689; BRISTOW CM, 1983, SCIENCE, V220, P532, DOI 10.1126/science.220.4596.532; BRISTOW CM, 1984, J KANSAS ENTOMOL SOC, V57, P632; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; Burnham K. P., 2002, MODEL SELECTION MULT; Buzatto BA, 2007, J ANIM ECOL, V76, P937, DOI 10.1111/j.1365-2656.2007.01273.x; Choe JC, 1997, EVOLUTION SOCIAL BEH; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CORNELL HV, 1995, AM NAT, V145, P563, DOI 10.1086/285756; Costa JT, 2006, OTHER INSECT SOC; Dixon A., 1998, APHID ECOLOGY; EICKWORT GC, 1981, SOCIAL INSECTS, V2, P199; Einum S, 2002, P ROY SOC B-BIOL SCI, V269, P2325, DOI 10.1098/rspb.2002.2150; Elkin CM, 2005, FUNCT ECOL, V19, P102, DOI 10.1111/j.0269-8463.2005.00935.x; ENDERS F, 1975, AM NAT, V109, P737, DOI 10.1086/283040; Field J, 2005, BEHAV ECOL, V16, P770, DOI 10.1093/beheco/ari054; Fisher DO, 2001, ECOLOGY, V82, P3531, DOI 10.1890/0012-9658(2001)082[3531:TEBOLH]2.0.CO;2; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Freckleton RP, 2009, J EVOLUTION BIOL, V22, P1367, DOI 10.1111/j.1420-9101.2009.01757.x; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; GEORGIADIS N, 1985, AFR J ECOL, V23, P75, DOI 10.1111/j.1365-2028.1985.tb00718.x; Gilbert J, 2009, ECOL ENTOMOL, V34, P176, DOI 10.1111/j.1365-2311.2008.01057.x; GILBERT JDJ, 2007, THESIS U CAMBRIDGE; Gillooly JF, 2000, LIMNOL OCEANOGR, V45, P22, DOI 10.4319/lo.2000.45.1.0022; GODFRAY HCJ, 1991, PHILOS T ROY SOC B, V332, P67, DOI 10.1098/rstb.1991.0034; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.ecolsys.22.1.409; Goodwin NB, 1998, P ROY SOC B-BIOL SCI, V265, P2265, DOI 10.1098/rspb.1998.0569; Goodwin NB, 2002, PHILOS T R SOC B, V357, P259, DOI 10.1098/rstb.2001.0958; GORDON IJ, 1989, FUNCT ECOL, V3, P285, DOI 10.2307/2389367; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; HALFFTER G, 1966, FOLIA ENTOMOL MEX, V12, P14; Hendriks AJ, 2008, OECOLOGIA, V155, P705, DOI 10.1007/s00442-007-0952-3; Hendry AP, 2003, EVOL ECOL RES, V5, P421; Hendry AP, 2001, AM NAT, V157, P387, DOI 10.1086/319316; Hinton H. E., 1981, BIOL INSECT EGGS; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Hunt James H., 1994, P1; ICHIKAWA N, 1988, J ETHOL, V6, P121, DOI 10.1007/BF02350877; Ikeda H, 2008, EVOLUTION, V62, P2065, DOI 10.1111/j.1558-5646.2008.00432.x; IWATA KUNIO, 1966, JAP J ECOL, V16, P4; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; KIGHT SL, 1992, BEHAV ECOL SOCIOBIOL, V30, P409; Kolm N, 2006, J EVOLUTION BIOL, V19, P66, DOI 10.1111/j.1420-9101.2005.00984.x; Kolm N, 2006, J EVOLUTION BIOL, V19, P76, DOI 10.1111/j.1420-9101.2005.00987; Kolm N, 2005, J FISH BIOL, V66, P1499, DOI 10.1111/j.0022-1112.2005.00777.x; Kudo S, 2001, OIKOS, V92, P208, DOI 10.1034/j.1600-0706.2001.920202.x; Kutschera U, 2001, THEOR BIOSCI, V120, P115, DOI 10.1007/s12064-001-0012-1; LUNDBERG S, 1993, J THEOR BIOL, V164, P163, DOI 10.1006/jtbi.1993.1146; Machado G, 2004, SOCIOBIOLOGY, V44, P577; Machado G, 2001, ETHOL ECOL EVOL, V13, P133; Manica A, 2004, AM NAT, V164, P517, DOI 10.1086/423792; MAPPES J, 1994, BEHAV ECOL, V5, P314, DOI 10.1093/beheco/5.3.314; Martins EP, 1997, AM NAT, V149, P646, DOI 10.1086/286013; MCARDLE BH, 1979, ECOL ENTOMOL, V4, P267, DOI 10.1111/j.1365-2311.1979.tb00584.x; MITTELBACH GG, 1981, ECOLOGY, V62, P1370, DOI 10.2307/1937300; Molumby A, 1997, BEHAV ECOL, V8, P279, DOI 10.1093/beheco/8.3.279; MORA G, 1990, ANIM BEHAV, V39, P582, DOI 10.1016/S0003-3472(05)80425-7; Nakagawa S, 2008, TRENDS ECOL EVOL, V23, P592, DOI 10.1016/j.tree.2008.06.014; NUSSBAUM R. A., 1985, MISC PUBL MUSEUM ZOO, V169, P1; NUSSBAUM RA, 1987, RES POPUL ECOL, V29, P27, DOI 10.1007/BF02515423; NUSSBAUM RA, 1989, AM NAT, V133, P591, DOI 10.1086/284939; Outeda-Jorge S, 2009, ZOOLOGIA, V26, P43, DOI 10.1590/S1984-46702009000100008; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; Peters R.H., 1983, P1; PURVIS A, 1995, J ZOOL, V237, P259, DOI 10.1111/j.1469-7998.1995.tb02762.x; R Core Development Team, 2008, R LANG ENV STAT COMP; Rawlinson KA, 2008, J NAT HIST, V42, P2173, DOI 10.1080/00222930802262758; Ruber L, 2004, EVOLUTION, V58, P799; SALTHE SN, 1969, AM MIDL NAT, V81, P467, DOI 10.2307/2423983; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; Scott MP, 1997, BEHAV ECOL SOCIOBIOL, V40, P313, DOI 10.1007/s002650050347; Shik JZ, 2008, FUNCT ECOL, V22, P674, DOI 10.1111/j.1365-2435.2008.01428.x; SHINE R, 1989, AM NAT, V134, P311, DOI 10.1086/284982; SHINE R, 1978, J THEOR BIOL, V75, P417, DOI 10.1016/0022-5193(78)90353-3; SHINE R, 1988, BIOL REPTILIA, V16, P288; SIBLY R, 1983, J THEOR BIOL, V102, P527, DOI 10.1016/0022-5193(83)90389-2; Sikes RS, 1998, OIKOS, V83, P452, DOI 10.2307/3546673; Simmons LW, 2008, J EVOLUTION BIOL, V21, P1227, DOI 10.1111/j.1420-9101.2008.01575.x; SIMPSON MR, 1995, ECOLOGY, V76, P795, DOI 10.2307/1939345; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Smith Robert L., 1997, P116; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stegmann UE, 2002, ETHOLOGY, V108, P857, DOI 10.1046/j.1439-0310.2002.00818.x; STRATHMANN RR, 1982, AM NAT, V119, P91, DOI 10.1086/283892; Summers K, 2006, P ROY SOC B-BIOL SCI, V273, P687, DOI 10.1098/rspb.2005.3368; TALLAMY DW, 1986, ANNU REV ENTOMOL, V31, P369, DOI 10.1146/annurev.en.31.010186.002101; Tallamy DW, 2001, ANNU REV ENTOMOL, V46, P139, DOI 10.1146/annurev.ento.46.1.139; Tallamy DW, 1999, ANIM BEHAV, V57, P727, DOI 10.1006/anbe.1998.1008; TAYLOR PD, 1984, CAN J ZOOL, V62, P2264, DOI 10.1139/z84-329; Thomas LK, 2005, ANIM BEHAV, V69, P275, DOI 10.1016/j.anbehav.2004.03.009; TRILLMICH F, 1986, OECOLOGIA, V69, P631, DOI 10.1007/BF00410375; TUOMI J, 1980, OECOLOGIA, V45, P39, DOI 10.1007/BF00346705; TUOMI J, 1983, AM ZOOL, V23, P25; TYNDALEBISCOE M, 1984, B ENTOMOL RES, V74, P453, DOI 10.1017/S0007485300015704; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667; WOOD TK, 1984, AM MIDL NAT, V112, P58, DOI 10.2307/2425457; Woods HA, 2004, J EXP BIOL, V207, P2267, DOI 10.1242/jeb.00991; Yang ZH, 1996, J MOL EVOL, V42, P294, DOI 10.1007/BF02198856; ZEH DW, 1989, Q REV BIOL, V64, P147, DOI 10.1086/416238; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zink AG, 2003, BEHAV ECOL, V14, P687, DOI 10.1093/beheco/arg044 115 35 38 0 52 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. AUG 2010 176 2 212 226 10.1086/653661 15 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 621SJ WOS:000279602900013 20528469 2018-11-12 J Torriani, MVG; Mazzi, D; Hein, S; Dorn, S Torriani, Marco V. G.; Mazzi, Dominique; Hein, Silke; Dorn, Silvia Direct and correlated responses to artificial selection on flight activity in the oriental fruit moth (Lepidoptera: Tortricidae) BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article dispersal evolution; Grapholita (= Cydia) molesta; invasive species; life-history; theory trade-off LIFE-HISTORY TRAITS; BUTTERFLY PARARGE-AEGERIA; QUANTITATIVE GENETIC-ANALYSIS; CYDIA-POMONELLA LEPIDOPTERA; JUVENILE-HORMONE ESTERASE; TRADE-OFFS; EPIPHYAS-POSTVITTANA; DISPERSAL EVOLUTION; POPULATION BIOLOGY; GRYLLUS-ASSIMILIS The ability of a sufficient number of individuals to disperse is crucial for long-term survival of populations. However, dispersal is often energetically costly, and thus is expected to trade-off against other life-history traits. In insect pest species, the occurrence of individuals with high flight activity challenges management practices. We performed artificial selection on flight activity and measured correlated responses to selection in the oriental fruit moth, Grapholita (= Cydia) molesta, a widely distributed and expanding lepidopteran pest of fruit crops. Both sexes rapidly responded to the imposed regime of divergent selection, indicating an adaptive potential of flight activity in this species. Upward-selected moths died sooner than downward-selected ones, providing evidence for a cost of flight activity to adult survival, reputedly associated with enhanced metabolic rates. Oppositely-selected females had similar total reproductive output, disproving a trade-off between dispersal and reproduction, although females with higher flight activity laid their eggs sooner. The ratio of body weight to forewing surface (forewing loading) did not significantly differ between selected lines. The present study contributes to the understanding of dispersal evolution, and also provides new insights into life-history theory as well as important baseline data for the improvement of pest management practices. (C) 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 879-889. [Torriani, Marco V. G.; Mazzi, Dominique; Hein, Silke; Dorn, Silvia] ETH, Inst Plant Anim & Agroecosyst Sci, CH-8092 Zurich, Switzerland Mazzi, D (reprint author), ETH, Inst Plant Anim & Agroecosyst Sci, Schmelzbergstr 9, CH-8092 Zurich, Switzerland. dominique.mazzi@ipw.agrl.ethz.ch Beeke H., 1991, TORTRICID PESTS THEI, P65; BERRIGAN D, 1991, OIKOS, V60, P313, DOI 10.2307/3545073; Berwaerts K, 2002, FUNCT ECOL, V16, P484, DOI 10.1046/j.1365-2435.2002.00650.x; Berwaerts K, 2004, OECOLOGIA, V141, P536, DOI 10.1007/s00442-004-1661-9; Berwaerts K, 2008, EVOLUTION, V62, P2525, DOI 10.1111/j.1558-5646.2008.00456.x; Berwaerts K, 2006, BIOL J LINN SOC, V89, P675, DOI 10.1111/j.1095-8312.2006.00699.x; Bloem S, 2006, J ECON ENTOMOL, V99, P707; Bloem S, 2006, J ECON ENTOMOL, V99, P699; Bonte D, 2007, EVOL ECOL RES, V9, P817; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Brakefield PM, 2003, ECOLOGY, V84, P1661, DOI 10.1890/0012-9658(2003)084[1661:ASATDO]2.0.CO;2; BULLOCK JM, 2002, DISPERSAL ECOLOGY; Clobert J, 2009, ECOL LETT, V12, P197, DOI 10.1111/j.1461-0248.2008.01267.x; COATS SA, 1987, ANN ENTOMOL SOC AM, V80, P697, DOI 10.1093/aesa/80.5.697; Crawley M. J., 2007, R BOOK; Dillon ME, 2006, J EXP BIOL, V209, P364, DOI 10.1242/jeb.01999; Doak P, 2006, ECOLOGY, V87, P395, DOI 10.1890/05-0647; Dorn S, 1999, AGR ECOSYST ENVIRON, V73, P111, DOI 10.1016/S0167-8809(99)00020-1; Fairbairn DJ, 1997, J EVOLUTION BIOL, V10, P495, DOI 10.1007/s000360050038; Falconer DS, 1996, INTRO QUANTITATIVE G; Gandon S, 1999, J THEOR BIOL, V200, P345, DOI 10.1006/jtbi.1999.0994; Gu HN, 2006, ECOL ENTOMOL, V31, P68, DOI 10.1111/j.0307-6946.2006.00761.x; GU HN, 1992, HEREDITY, V68, P53, DOI 10.1038/hdy.1992.7; GU HN, 1992, HEREDITY, V68, P61, DOI 10.1038/hdy.1992.8; Haag CR, 2005, P ROY SOC B-BIOL SCI, V272, P2449, DOI 10.1098/rspb.2005.3235; Hanski I, 2006, J ANIM ECOL, V75, P91, DOI 10.1111/j.1365-2656.2005.01024.x; Hanski I, 2004, ECOL LETT, V7, P958, DOI 10.1111/j.1461-0248.2004.00654.x; Hastings A, 2005, ECOL LETT, V8, P91, DOI 10.1111/j.1461-0248.2004.00687.x; Hopper KR, 1999, ANNU REV ENTOMOL, V44, P535, DOI 10.1146/annurev.ento.44.1.535; HUBER J, 1972, EXPERIENTIA, V28, P1260, DOI 10.1007/BF01946212; Hughes CL, 2003, P ROY SOC B-BIOL SCI, V270, pS147, DOI 10.1098/rsbl.2003.0049; Hughes J, 2004, ENVIRON ENTOMOL, V33, P1155, DOI 10.1603/0046-225X-33.5.1155; Hughes J, 2002, ENTOMOL EXP APPL, V103, P171, DOI 10.1023/A:1020351800534; Hunt J, 2006, AM NAT, V168, pE72, DOI 10.1086/506918; Karl I, 2008, OIKOS, V117, P778, DOI 10.1111/j.2008.0030-1299.16522.x; Karlsson B, 2008, P ROY SOC B-BIOL SCI, V275, P2131, DOI 10.1098/rspb.2008.0404; Keena MA, 2007, ENVIRON ENTOMOL, V36, P484, DOI 10.1603/0046-225X(2007)36[484:IOFFIL]2.0.CO;2; Keil S, 2001, PHYSIOL ENTOMOL, V26, P306, DOI 10.1046/j.0307-6962.2001.00247.x; Keil S, 2001, ECOL ENTOMOL, V26, P495, DOI 10.1046/j.1365-2311.2001.00346.x; Kirkwood TBL, 2001, EXP GERONTOL, V36, P413, DOI 10.1016/S0531-5565(00)00255-2; Kisdi E, 2002, AM NAT, V159, P579, DOI 10.1086/339989; Kokko H, 2006, SCIENCE, V313, P789, DOI 10.1126/science.1128566; Langellotto GA, 2001, ECOLOGY, V82, P1870, DOI 10.1890/0012-9658(2001)082[1870:BODIPE]2.0.CO;2; Lenormand T, 2002, TRENDS ECOL EVOL, V17, P183, DOI 10.1016/S0169-5347(02)02497-7; LYNCH M, 1997, GENETICS ANAL QUANTI; Marden JH, 2000, ANNU REV PHYSIOL, V62, P157, DOI 10.1146/annurev.physiol.62.1.157; Morrow EH, 2001, HEREDITY, V87, P356, DOI 10.1046/j.1365-2540.2001.00921.x; Myers CT, 2007, J ECON ENTOMOL, V100, P421, DOI 10.1603/0022-0493(2007)100[421:EOOHPA]2.0.CO;2; PALMER JO, 1986, EVOLUTION, V40, P767, DOI 10.1111/j.1558-5646.1986.tb00536.x; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; RANKIN MA, 1992, ANNU REV ENTOMOL, V37, P533; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Roff Derek A., 2001, P191; Ronce O, 2007, ANNU REV ECOL EVOL S, V38, P231, DOI 10.1146/annurev.ecolsys.38.091206.095611; Rothschild G H L, 1991, TORTRICID PESTS THEI, P389; Saastamoinen M, 2008, HEREDITY, V100, P39, DOI 10.1038/sj.hdy.6801056; Saastamoinen M, 2007, ECOL ENTOMOL, V32, P235, DOI 10.1111/j.1365-2311.2007.00865.x; Saastamoinen M, 2009, P ROY SOC B-BIOL SCI, V276, P1313, DOI 10.1098/rspb.2008.1464; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; Schumacher P, 1997, ENTOMOL EXP APPL, V85, P169, DOI 10.1046/j.1570-7458.1997.00247.x; SMITH LESLIE M., 1948, HILGARDIA, V18, P369; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Stelinski LL, 2005, J ECON ENTOMOL, V98, P1267, DOI 10.1603/0022-0493-98.4.1267; Sutherland WJ, 2004, TRENDS ECOL EVOL, V19, P305, DOI 10.1016/j.tree.2004.03.018; Tanaka K, 2009, ENVIRON ENTOMOL, V38, P266, DOI 10.1603/022.038.0133; Travis JMJ, 2002, EVOL ECOL RES, V4, P1119; Van Dyck H, 2005, BASIC APPL ECOL, V6, P535, DOI 10.1016/j.baae.2005.03.005; Van Voorhies WA, 2001, EXP GERONTOL, V36, P55, DOI 10.1016/S0531-5565(00)00208-4; Wiklund C, 2003, P ROY SOC B-BIOL SCI, V270, P1823, DOI 10.1098/rspb.2003.2437; ZERA AJ, 1995, GENETICS, V141, P1125; Zera AJ, 1998, AM NAT, V152, P7, DOI 10.1086/286146; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207 72 4 4 0 11 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0024-4066 BIOL J LINN SOC Biol. J. Linnean Soc. AUG 2010 100 4 879 889 10.1111/j.1095-8312.2010.01466.x 11 Evolutionary Biology Evolutionary Biology 640PA WOS:000281062500012 Bronze 2018-11-12 J Del Giudice, M; Belsky, J Del Giudice, Marco; Belsky, Jay Sex Differences in Attachment Emerge in Middle Childhood: An Evolutionary Hypothesis CHILD DEVELOPMENT PERSPECTIVES English Article attachment; evolution; sex differences; middle childhood; romantic attachment LIFE-HISTORY THEORY; REPRODUCTIVE STRATEGIES; ROMANTIC ATTACHMENT; GENDER-DIFFERENCES; SELF-REPORTS; MOTHER; ASSOCIATIONS; ADRENARCHE; REPRESENTATIONS; PERSONALITIES J. Bowlby's (1969/1982) theory of attachment, focused as it was on the survival function of attachment behaviors that the ethology of the time emphasized, led to the expectation that there would be no sex differences in patterns of attachment. Modern evolutionary thinking, however, building on insights of life history theory, parental investment theory, and sexual selection, yields an alternative prediction-that adaptive sex differences in attachment should emerge in middle childhood and be present in adults, consistent with sexual differentiation of reproductive strategies. This article reviews the theoretical basis of this expectation, including the recent proposal that a hormonally driven reorganization of attachment occurs at the beginning of middle childhood. Available data and various methodological issues involved in empirically testing the proposed model are discussed. It argues that life history theory offers a powerful organizing principle for understanding the emergence of individual differences, providing developmental researchers with exciting opportunities for empirical discovery and theoretical synthesis. [Del Giudice, Marco] Univ Turin, Ctr Cognit Sci, Dept Psychol, I-10123 Turin, Italy; [Belsky, Jay] Univ London, London WC1E 7HU, England Del Giudice, M (reprint author), Univ Turin, Ctr Cognit Sci, Dept Psychol, Via 14, I-10123 Turin, Italy. marco.delgiudice@unito.it Del Giudice, Marco/F-7007-2010 Del Giudice, Marco/0000-0001-8526-1573; Belsky, Jay/0000-0003-2191-2503 Adkins-Regan E, 2005, HORMONES ANIMAL SOCI; Ammaniti M, 2000, Attach Hum Dev, V2, P328, DOI 10.1080/14616730010001587; Andersson M., 1994, SEXUAL SELECTION; Auchus RJ, 2004, CLIN ENDOCRINOL, V60, P288, DOI 10.1046/j.1365-2265.2003.01858.x; Bakermans-Kranenburg MJ, 2009, BEHAV BRAIN SCI, V32, P22, DOI 10.1017/S0140525X0900003X; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, HUM NATURE-INT BIOS, V8, P361, DOI 10.1007/BF02913039; BELSKY J, 2005, ORIGINS SOCIAL MIND, P139; Belsky J, 1999, HDB ATTACHMENT THEOR, P141; BELSKY J, 1997, PSYCHOL INQ, V8, P82; Belsky J, 2009, PERSPECT PSYCHOL SCI, V4, P345, DOI 10.1111/j.1745-6924.2009.01136.x; Bernier Annie, 2002, Attach Hum Dev, V4, P171, DOI 10.1080/14616730210157457; Bjorklund DF, 1997, PSYCHOL BULL, V122, P153, DOI 10.1037/0033-2909.122.2.153; Bogin B, 1999, ANNU REV ANTHROPOL, V28, P109, DOI 10.1146/annurev.anthro.28.1.109; Bowlby J., 1973, ATTACHMENT LOSS, V2; Bowlby J, 1980, ATTACHMENT LOSS, V3; Bowlby J., 1982, ATTACHMENT AND LOSS, V1; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Brennan K. A., 1998, ATTACHMENT THEORY CL, P46; Brussoni MJ, 2000, PERS RELATIONSHIP, V7, P283, DOI 10.1111/j.1475-6811.2000.tb00017.x; Campbell A, 2009, BEHAV BRAIN SCI, V32, P24, DOI 10.1017/S0140525X09000053; Card NA, 2003, NEW DIR CHILD ADOLES, V102, P23, DOI 10.1002/cd.87; Carnelley Katherine B, 2002, Attach Hum Dev, V4, P189, DOI 10.1080/14616730210157466; Carter CS, 1998, PSYCHONEUROENDOCRINO, V23, P779; CASPERS K, 2008, DEV PSYCHOL, V45, P64; CASSIDY J, 1988, CHILD DEV, V59, P121, DOI 10.2307/1130394; CASSIDY J, 2008, HDB ATTACHMENT THEOR; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Corby B. C., 2006, THESIS FLORIDA ATLAN; Crowell J. A, 1999, HDB ATTACHMENT THEOR, P434; David DH, 2005, INF MENTAL HLTH J, V26, P1, DOI 10.1002/imhj.20033; Del Giudice M, 2008, BRIT J DEV PSYCHOL, V26, P369, DOI 10.1348/026151007X243289; Del Giudice M, 2009, EVOL PSYCHOL, V7, P264, DOI 10.1177/147470490900700209; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P45, DOI 10.1017/S0140525X09000272; Del Giudice M, 2009, DEV REV, V29, P1, DOI 10.1016/j.dr.2008.09.001; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; DELGIUDICE M, 2010, SEX DIFFERENCE UNPUB; DELGIUDICE M, 2009, BIENN M SOC RES CHIL; Ellis B. J., 2005, ORIGINS SOCIAL MIND; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Feeney J. A., 1999, HDB ATTACHMENT THEOR, P355; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Finnegan RA, 1996, CHILD DEV, V67, P1318, DOI 10.2307/1131702; Geary D. C., 1998, MALE FEMALE EVOLUTIO; Geary D. C., 2005, EVOLUTIONARY PSYCHOL, P483; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Gilissen R, 2008, DEV PSYCHOBIOL, V50, P615, DOI 10.1002/dev.20314; Gloger-Tippelt G, 2007, SCHOOL PSYCHOL INT, V28, P313, DOI 10.1177/0143034307078540; Granot D, 2001, INT J BEHAV DEV, V25, P530, DOI 10.1080/01650250042000366; HAZAN C, 1999, HDB ATTACHMENT THEOR, P336; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hrdy S. B, 2005, ATTACHMENT BONDING N, P9, DOI DOI 10.1016/J.GLOENVCHA.2013.12.001; Ibanez L, 2000, ENDOCR REV, V21, P671, DOI 10.1210/er.21.6.671; Insel TR, 2001, NAT REV NEUROSCI, V2, P129, DOI 10.1038/35053579; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Karavasilis L, 2003, INT J BEHAV DEV, V27, P153, DOI 10.1080/01650250244000155; Kerns KA, 2007, ATTACH HUM DEV, V9, P33, DOI 10.1080/14616730601151441; KIRKPATRICK LA, 1998, ATTACHMENT THEORY CL, P353; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Labrie F, 2005, J ENDOCRINOL, V187, P169, DOI 10.1677/joe.1.06264; MAIN M, 1990, HUM DEV, V33, P48, DOI 10.1159/000276502; McClintock MK, 1996, CURR DIR PSYCHOL SCI, V5, P178, DOI 10.1111/1467-8721.ep11512422; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; PANNEBAKKER F, 2007, THESIS LEIDEN U NETH; Parent AS, 2003, ENDOCR REV, V24, P668, DOI 10.1210/er.2002-0019; PEDERSEN CA, 2005, ATTACHMENT BONDING N, P385; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Roisman GI, 2007, J PERS SOC PSYCHOL, V92, P678, DOI 10.1037/0022-3514.92.4.678; Schmitt DP, 2003, PERS RELATIONSHIP, V10, P307, DOI 10.1111/1475-6811.00052; Shaver Phillip R, 2002, Attach Hum Dev, V4, P133, DOI 10.1080/14616730210154171; Shaver PR, 2000, PERS RELATIONSHIP, V7, P25, DOI 10.1111/j.1475-6811.2000.tb00002.x; Simpson Jeffry A., 2008, HDB ATTACHMENT THEOR, P131; Solomon J., 1999, HDB ATTACHMENT THEOR, P287; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TROY M, 1987, J AM ACAD CHILD PSY, V26, P166, DOI 10.1097/00004583-198703000-00007; van IJzendoorn M.H., 2009, ATTACHMENT HUMAN DEV, V11, P223; van IJzendoorn MH, 2000, CHILD DEV, V71, P1086, DOI 10.1111/1467-8624.00211; van Ijzendoorn MH, 1996, J CONSULT CLIN PSYCH, V64, P8, DOI 10.1037/0022-006X.64.1.8; Weisfeld GE., 1999, EVOLUTIONARY PRINCIP; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wolf M, 2008, P NATL ACAD SCI USA, V105, P15825, DOI 10.1073/pnas.0805473105; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835 84 32 32 1 25 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1750-8592 CHILD DEV PERSPECT Child Develop. Perspect. AUG 2010 4 2 97 105 10.1111/j.1750-8606.2010.00125.x 9 Psychology, Developmental Psychology 625YJ WOS:000279932500006 2018-11-12 J Thompson, RA Thompson, Ross A. Attachment and Life History Theory: A Rejoinder CHILD DEVELOPMENT PERSPECTIVES English Editorial Material attachment; life history theory; sex differences INFANT ATTACHMENT; REPRESENTATIONS; METAANALYSIS M. Del Giudice and J. Belsky (this issue) derive several provocative hypotheses from the application of life history theory to attachment, especially concerning the emergence of sex differences in insecurity in middle childhood. This commentary highlights the significant gaps in research knowledge that must be addressed before the merits of their proposals can be evaluated. It also examines the multiple meanings and functions of "attachment" as this term applies to child-parent and adult affectional relationships, and their association. Their ideas certainly deserve further exploration, especially in the broader context of elucidating the life-span implications of early attachment within the framework of life history theory. Univ Calif Davis, Davis, CA 95616 USA Thompson, RA (reprint author), Univ Calif Davis, Davis, CA 95616 USA. rathompson@ucdavis.edu AINSWORTH MDS, 1989, AM PSYCHOL, V44, P709, DOI 10.1037/0003-066X.44.4.709; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bernier Annie, 2002, Attach Hum Dev, V4, P171, DOI 10.1080/14616730210157457; Bjorklund DF, 1997, PSYCHOL BULL, V122, P153, DOI 10.1037/0033-2909.122.2.153; Bowlby J., 1982, ATTACHMENT AND LOSS, V1; CHISHOLM J, 1996, HUMAN NATURE, V1, P1; Del Giudice M, 2010, CHILD DEV PERSPECT, V4, P97, DOI 10.1111/j.1750-8606.2010.00125.x; DeWolff MS, 1997, CHILD DEV, V68, P571, DOI 10.2307/1132107; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Hesse E., 2008, HDB ATTACHMENT THEOR, V2, P552; Simpson Jeffry A., 2008, HDB ATTACHMENT THEOR, P131; Sroufe L. A., 2005, DEV PERSON MINNESOTA; Thompson R., 2008, HDB ATTACHMENT THEOR, P348, DOI DOI 10.2304/GSCH.2012.2.2.158; THOMPSON RA, 2006, HDB CHILD PSYCHOL, V3, P24, DOI DOI 10.1002/9780470147658.CHPSY0302; VAN IJZENDOORN MH, 1995, PSYCHOL BULL, V117, P387, DOI 10.1037/0033-2909.117.3.387; van Ijzendoorn MH, 1996, J CONSULT CLIN PSYCH, V64, P8, DOI 10.1037/0022-006X.64.1.8; Waters E, 2000, CHILD DEV, V71, P703, DOI 10.1111/1467-8624.00179 17 1 1 0 6 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1750-8592 CHILD DEV PERSPECT Child Develop. Perspect. AUG 2010 4 2 106 108 10.1111/j.1750-8606.2010.00126.x 3 Psychology, Developmental Psychology 625YJ WOS:000279932500007 2018-11-12 J Nevoux, M; Forcada, J; Barbraud, C; Croxall, J; Weimerskirch, H Nevoux, Marie; Forcada, Jaume; Barbraud, Christophe; Croxall, John; Weimerskirch, Henri Bet-hedging response to environmental variability, an intraspecific comparison ECOLOGY English Article bet-hedging strategy; Black-browed Albatross; environmental variability; evolutionary strategy; life history traits BLACK-BROWED ALBATROSS; RECENT CLIMATE-CHANGE; LIFE-HISTORY; DIOMEDEA-MELANOPHRIS; VARIABLE ENVIRONMENTS; ECOLOGICAL RESPONSES; BREEDING PERFORMANCE; POPULATION-DYNAMICS; ANTARCTIC KRILL; FEEDING ECOLOGY A major challenge in ecology is to understand the impact of increased environmental variability on populations and ecosystems. To maximize their fitness in a variable environment, life history theory states that individuals should favor a bet-hedging strategy, involving a reduction of annual breeding performance and an increase in adult survival so that reproduction can be attempted over more years. As a result, evolution toward longer life span is expected to reduce the deleterious effects of extra variability on population growth, and consequently on the trait contributing the most to it (e. g., adult survival in long-lived species). To investigate this, we compared the life histories of two Black-browed Albatross (Thalassarche melanophrys) populations breeding at South Georgia (Atlantic Ocean) and Kerguelen (Indian Ocean), the former in an environment nearly three times more variable climatically (e. g., in sea surface temperature) than the latter. As predicted, individuals from South Georgia (in the more variable environment) showed significantly higher annual adult survival (0.959, SE = 0.003) but lower annual reproductive success (0.285 chick per pair, SE = 0.039) than birds from Kerguelen (survival = 0.925, SE = 0.004; breeding success = 0.694, SE = 0.027). In both populations, climatic conditions affected the breeding success and the survival of inexperienced breeders, whereas the survival of experienced breeders was unaffected. The strength of the climatic impact on survival of inexperienced breeders was very similar between the two populations, but the effect on breeding success was positively related to environmental variability. These results provide rare and compelling evidence to support bet-hedging underlying changes in life history traits as an adaptive response to environmental variability. [Nevoux, Marie; Barbraud, Christophe; Weimerskirch, Henri] CNRS, Ctr Etud Biol Chize, UPR 1934, F-79360 Villiers En Bois, France; [Forcada, Jaume; Croxall, John] British Antarctic Survey, Nat Environm Res Council, Cambridge CB3 0ET, England Nevoux, M (reprint author), Univ Reading, Sch Agr, Ctr Agri Environm Res, POB 237, Reading RG6 6AR, Berks, England. m.nevoux@reading.ac.uk Barbraud, Christophe/A-5870-2012 British Antarctic Survey; Institut Polaire Francais IPEV [109]; Terres Australes et Antarctiques Francaises; ANR REMIGE; Natural Environment Research Council [bas0100025] We are grateful to all the field workers involved in the longterm monitoring studies at South Georgia and Kerguelen. We thank D. Besson for data management, and H. Sandvik and an anonymous reviewer for helpful comments on the manuscript. At South Georgia the study was supported by the British Antarctic Survey contributing to the PSPE program. At Kerguelen the study was supported by Institut Polaire Francais IPEV (Programme 109 to H. Weimerskirch) and by Terres Australes et Antarctiques Francaises, and was part of the programme ANR REMIGE (ANR 2005 Biodiversite-11). We are also grateful to the Region Poitou-Charentes (grant M. Nevoux). Boyce MS, 2006, TRENDS ECOL EVOL, V21, P141, DOI 10.1016/j.tree.2005.11.018; BULMER MG, 1985, AM NAT, V126, P63, DOI 10.1086/284396; Burnham K. P., 1998, MODEL SELECTION INFE; CHASTEL O, 1995, ECOLOGY, V76, P2240, DOI 10.2307/1941698; CHAURAND T, 1994, IBIS, V136, P285, DOI 10.1111/j.1474-919X.1994.tb01097.x; Cherel Y, 2000, OECOLOGIA, V122, P155, DOI 10.1007/PL00008843; Cherel Y, 2000, MAR ECOL PROG SER, V207, P183, DOI 10.3354/meps207183; CHOQUET R, 2003, USERS MANUAL U CARE; CHOQUET R, 2004, USERS MANUAL M SURGE; Church DR, 2007, ECOLOGY, V88, P891, DOI 10.1890/06-0896; COOCH EG, 1994, OIKOS, V69, P447, DOI 10.2307/3545857; Coulson JC, 2002, J AVIAN BIOL, V33, P111, DOI 10.1034/j.1600-048X.2002.t01-1-330201.x; Croxall JP, 2006, CONSERV BIOL SER, P157, DOI 10.1017/CBO9780511541964.012; Drake JM, 2005, P ROY SOC B-BIOL SCI, V272, P1823, DOI 10.1098/rspb.2005.3148; Durant JM, 2007, CLIM RES, V33, P271, DOI 10.3354/cr033271; Forcada J, 2005, ECOLOGY, V86, P2408, DOI 10.1890/04-1153; Forcada J, 2008, GLOBAL CHANGE BIOL, V14, P2473, DOI 10.1111/j.1365-2486.2008.01678.x; Forcada J, 2009, GLOBAL CHANGE BIOL, V15, P1618, DOI 10.1111/j.1365-2486.2009.01909.x; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; Grether G. F., 2005, AM NAT, V166, P115; Grosbois V, 2008, BIOL REV, V83, P357, DOI 10.1111/j.1469-185X.2008.00047.x; Harrington R, 1999, TRENDS ECOL EVOL, V14, P146, DOI 10.1016/S0169-5347(99)01604-3; Hughes L, 2000, TRENDS ECOL EVOL, V15, P56, DOI 10.1016/S0169-5347(99)01764-4; IPCC, 2007, CLIM CHANG 2007 PHYS; Lebreton JD, 2002, J APPL STAT, V29, P353, DOI 10.1080/02664760120108638; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; MARCHANT S, 1990, HDB AUSTR NZ ANTARCT, P263; Murphy EJ, 2007, P ROY SOC B-BIOL SCI, V274, P3057, DOI 10.1098/rspb.2007.1180; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; Nevoux M, 2007, J ANIM ECOL, V76, P159, DOI 10.1111/j.1365-2656.2006.01191.x; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Phillips RA, 2005, ECOLOGY, V86, P2386, DOI 10.1890/04-1885; Phillips RA, 2004, MAR ECOL PROG SER, V266, P265, DOI 10.3354/meps266265; Pinaud D, 2002, OIKOS, V99, P141, DOI 10.1034/j.1600-0706.2002.990114.x; Pradel R, 2003, BIOMETRICS, V59, P43, DOI 10.1111/1541-0420.00006; PRINCE PA, 1994, IBIS, V136, P50, DOI 10.1111/j.1474-919X.1994.tb08131.x; PRINCE PA, 1980, IBIS, V122, P476, DOI 10.1111/j.1474-919X.1980.tb00902.x; Quetin LB, 2007, ANTARCT SCI, V19, P253, DOI 10.1017/S0954102007000363; R Development Core Team, 2004, R LANG ENV STAT COMP; Reid K, 2001, P ROY SOC B-BIOL SCI, V268, P377, DOI 10.1098/rspb.2000.1371; REYNOLDS RW, 1994, J CLIMATE, V7, P929, DOI 10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2; Roff D. A., 2002, LIFE HIST EVOLUTION; Rolland V, 2009, ECOL APPL, V19, P1336, DOI 10.1890/08-1060.1; Root TL, 2003, NATURE, V421, P57, DOI 10.1038/nature01333; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Sandvik H, 2008, ECOGRAPHY, V31, P73, DOI 10.1111/j.2007.0906-7590.05090.x; Smith FA, 2001, EVOL ECOL RES, V3, P595; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1994, EVOLUTION, V48, P1438, DOI 10.1111/j.1558-5646.1994.tb02186.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stenseth NC, 2002, SCIENCE, V297, P1292, DOI 10.1126/science.1071281; STENSETH NC, 2004, MARINE ECOSYSTEMS CL; TRATHAN PN, 2003, J GEOPHYS RES, V108; Veit RR, 1997, ARDEA, V85, P129; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; Warham J, 1990, PETRELS THEIR ECOLOG; WEIMERSKIRCH H, 1987, J ANIM ECOL, V56, P1043, DOI 10.2307/4965; WEIMERSKIRCH H, 1985, EMU, V85, P22, DOI 10.1071/MU9850022; Weimerskirch H, 1997, BEHAV ECOL, V8, P635, DOI 10.1093/beheco/8.6.635; Weimerskirch H, 1997, ALBATROSS BIOL CONSE, P84; WEIMERSKIRCH H, 2002, BIOL MARINE BIRDS, P113; Xavier JC, 2003, IBIS, V145, P593, DOI 10.1046/j.1474-919X.2003.00196.x 65 43 44 2 35 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 ECOLOGY Ecology AUG 2010 91 8 2416 2427 10.1890/09-0143.1 12 Ecology Environmental Sciences & Ecology 628WA WOS:000280153500025 20836463 Bronze 2018-11-12 J Loewen, TN; Gillis, D; Tallman, RF Loewen, Tracey N.; Gillis, Darren; Tallman, Ross F. Maturation, growth and fecundity of Arctic charr, Salvelinus alpinus (L.), life-history variants co-existing in lake systems of Southern Baffin Island, Nunavut, Canada HYDROBIOLOGIA English Article Von Bertalanffy; Lake-resident; Anadromy; Fecundity; Growth models; Age at maturity; Size at maturity AT-AGE DATA; NORTH NORWAY; BROOK TROUT; BROWN TROUT; SEA-RUN; SIZE; PATTERNS; SVALBARD; MODELS; FISHES Two life-history variants of Arctic charr (Salvelinus alpinus), anadromous and lake-resident, have been previously identified in lakes of Southern Baffin Island, Nunavut, Canada. In accordance with classical life-history theory, it is hypothesised that anadromous charr will delay maturation in both size and age, and have increased fecundity (per spawning event) in comparison with lake-resident charr. Sagittal otoliths and biological data were collected for both life-history variants within the three studied lakes: Iqalugaarjuit, Qasigiat and Qinngu. Sagittal otoliths were embedded in epoxy resin, cross-sectioned for age determination, and imaged for back-calculation (size and age). Back-calculated data in each lake were fit to von Bertalanffy growth models for each life-history variant and compared via analysis of residual sums of squares. Anadromous charr had greater mean size at maturity and experienced a delay in mean age at maturity in comparison with lake-residents. The relationship between size and fecundity or egg diameter did not differ between the two life-history variants. Growth models indicate that the overall growth coefficients of lake-resident and anadromous charr were different in all three studied lakes. The Brody growth coefficient for all lake-resident charr populations was greater than anadromous individuals indicating that maximum length was reached at a rapid rate, resulting in a smaller asymptotic length. Indirect evidence suggests that anadromous and lake-resident charr belong to one reproductive population. Future genetic analysis is necessary to further determine the degree of divergence between the life-history variants. [Loewen, Tracey N.; Tallman, Ross F.] Fisheries & Oceans Canada, Winnipeg, MB R3T 2N6, Canada; [Loewen, Tracey N.; Gillis, Darren] Univ Manitoba, Dept Biol Sci, Winnipeg, MB R3T 2N2, Canada Loewen, TN (reprint author), Fisheries & Oceans Canada, 501 Univ Crescent, Winnipeg, MB R3T 2N6, Canada. tracey.loewen@dfo-mpo.gc.ca Nunavut Wildlife Management Board, Government of Nunavut (Fisheries and Sealing Sector); Baffin Fisheries Coalition; Indian and Northern Affairs Canada; Nunavut Implementation Funds This research was done in coordination with Fisheries and Oceans Canada stock assessment surveys of Arctic charr on Baffin Island. The Nunavut Wildlife Management Board, Government of Nunavut (Fisheries and Sealing Sector), Baffin Fisheries Coalition, Indian and Northern Affairs Canada and Nunavut Implementation Funds provided financial support for the study. Pangnirtung Fisheries Limited, Mayukalik Hunters and Trappers Organisation and Pangnirtung Hunters and Trappers Organisation provided logistic support and/or traditional knowledge that greatly aided in the advancement of our research. Thanks to all the Pangnirtung and Kimmirut community members who participated in field data collection over several years of data collection. Thank you to Jim Reist for his reviews of this article prior to publication. In memory of Davidee Evic, a fisherman who was great help in the collection of Arctic charr data in Cumberland Sound. Thanks to the two anonymous reviewers whose comments helped to substantially improve this article. Box G, 1994, TIME SERIES ANAL FOR; Campana SE, 2001, J FISH BIOL, V59, P197, DOI 10.1006/jfbi.2001.1668; CHEN Y, 1992, CAN J FISH AQUAT SCI, V49, P1228, DOI 10.1139/f92-138; Chilton D.E., 1982, CAN SPEC PUBL FISH A, V60, P102; Damsgard B, 1999, AQUACULTURE, V171, P149, DOI 10.1016/S0044-8486(98)00418-9; Gross M.R., 1987, AM FISH SOC S, V1, P14; Gulseth OA, 2001, ARCTIC, V54, P1; Haddon M, 2001, MODELLING QUANTITATI; Hendry Andrew P., 2004, P92; Hutchings JA, 1999, J FISH BIOL, V55, P1020, DOI 10.1006/jfbi.1999.1106; JENKE J, 2002, 141 GOV W AUSTR DEP; Jones CM, 2000, FISH RES, V46, P123, DOI 10.1016/S0165-7836(00)00139-9; JONSSON B, 1993, REV FISH BIOL FISHER, V3, P348, DOI 10.1007/BF00043384; JONSSON B, 1985, T AM FISH SOC, V114, P182, DOI 10.1577/1548-8659(1985)114<182:LHPOFR>2.0.CO;2; Klemetsen A, 2003, ECOL FRESHW FISH, V12, P1, DOI 10.1034/j.1600-0633.2003.00010.x; LINDSTROM MJ, 1990, BIOMETRICS, V46, P673, DOI 10.2307/2532087; Loewen TN, 2009, J FISH BIOL, V75, P1473, DOI 10.1111/j.1095-8649.2009.02394.x; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Morinville GR, 2003, CAN J FISH AQUAT SCI, V60, P401, DOI 10.1139/F03-036; Neter J., 1996, APPL LINEAR STAT MOD; NORDENG H, 1983, CAN J FISH AQUAT SCI, V40, P1372, DOI 10.1139/f83-159; PAPST MH, 1994, THESIS U MANITOBA; Parker HH, 2001, J ANIM ECOL, V70, P260, DOI 10.1046/j.1365-2656.2001.00488.x; Pinheiro JC, 1996, STAT COMPUT, V6, P289, DOI 10.1007/BF00140873; Quinn T. J., 2005, BEHAV ECOLOGY PACIFI; Quinn TJ, 1999, QUANTITATIVE FISH DY; *R DEV COR TEAM, 2006, R LANG ENV STAT COMP; Ricker W. E., 1975, FISHERIES RES BOARD, V191, P382; Rikardsen AH, 2000, J FISH BIOL, V56, P328, DOI 10.1111/j.1095-8649.2000.tb02110.x; Rikardsen AH, 2000, J FISH BIOL, V57, P1172, DOI 10.1006/jfbi.2000.1380; Rikardsen AH, 1997, J FISH BIOL, V51, P447, DOI 10.1006/jfbi.1997.0440; ROFF DA, 1988, ENVIRON BIOL FISH, V22, P133, DOI 10.1007/BF00001543; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Schaalje GB, 2002, CAN J FISH AQUAT SCI, V59, P1524, DOI [10.1139/f02-120, 10.1139/F02-120]; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SVEDANG H, 1992, ENVIRON BIOL FISH, V33, P293, DOI 10.1007/BF00005873; Svenning MA, 2002, ENVIRON BIOL FISH, V64, P165, DOI 10.1023/A:1016002102945; SVENNING MA, 1992, NORD J FRESHWATER RE, V67, P18; Thorpe J.E., 1999, Bulletin of Tohoku National Fisheries Research Institute, V62, P151; THORPE JE, 1989, J FISH BIOL, V35, P295; Valdimarsson SK, 2002, ENVIRON BIOL FISH, V65, P463, DOI 10.1023/A:1021107712866; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 43 6 7 0 41 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 1573-5117 HYDROBIOLOGIA Hydrobiologia AUG 2010 650 1 193 202 10.1007/s10750-010-0242-7 10 Marine & Freshwater Biology Marine & Freshwater Biology 612XH WOS:000278938600016 2018-11-12 J Tarkan, AS; Cucherousset, J; Zieba, G; Godard, MJ; Copp, GH Tarkan, A. S.; Cucherousset, J.; Zieba, G.; Godard, M. J.; Copp, G. H. Growth and reproduction of introduced goldfish Carassius auratus in small ponds of southeast England with and without native crucian carp Carassius carassius JOURNAL OF APPLIED ICHTHYOLOGY English Article; Proceedings Paper International Conference and Workshop on Managing Alien Species for Sustainable Development of Aquaculture and Fisheis NOV 05-07, 2008 Univ Florence, Florence, ITALY Univ Florence FRESH-WATER FISHES; FERAL GOLDFISH; RIVER; TEMPERATURE; PARAMETERS; DANUBE; LAKES; AGE; L. The ornamental Asiatic species, goldfish Carassius auratus, was introduced to open waters of the UK in the late 17th century. The species reproduces readily in small ponds and threatens native species, in particular crucian carp Carassius carassius, but surprisingly there are no known published studies on the growth and reproduction of feral pond populations of this species in the UK and relatively few elsewhere. The aim of the present study was to assess the growth (back-calculated length at age), body condition and reproduction (fecundity, egg size, length and age at maturity) of goldfish living in small ponds of Epping Forest (northeast London, England), either alone (allopatry) or with (sympatry) native crucian carp, in order to provide the necessary background information to inform the risk assessment of this non-native fish species. Growth increments in the allopatric goldfish populations were similar, with progressively declining growth increments with increasing age. This contrasts with goldfish living in sympatry with crucian carp Carassius carassius, where growth increments remained high for ages 1-2, 2-3 and 3-4. Body condition values varied little, but goldfish living in allopatry had significantly greater condition than those living in sympatry with crucian carp. Sexual maturity was achieved by at least some age 1+ fish in all populations, with young mean ages (1.0-1.7 years) and short mean standard lengths (50.0-63.4 mm SL) at maturity in females relative to an introduced population in Italy (2.1 years and 139.2 mm SL, respectively). The results are discussed within the context of life-history theory. [Tarkan, A. S.; Cucherousset, J.; Zieba, G.; Godard, M. J.; Copp, G. H.] Ctr Environm Fisheries & Aquaculture Sci, Salmon & Freshwater Team, Lowestoft NR33 0HT, Suffolk, England; [Cucherousset, J.] Univ Toulouse 3, EcoLab Lab Ecol Fonct, UMR 5245, F-31062 Toulouse, France; [Cucherousset, J.; Copp, G. H.] Bournemouth Univ, Sch Conservat Sci, Poole BH12 5BB, Dorset, England Copp, GH (reprint author), Ctr Environm Fisheries & Aquaculture Sci, Salmon & Freshwater Team, Pakefield Rd, Lowestoft NR33 0HT, Suffolk, England. gordon.copp@cefas.co.uk Cucherousset, Julien/B-5709-2011 Zieba, Grzegorz/0000-0003-4443-6802; Cucherousset, Julien/0000-0003-0533-9479 ANDREWS C, 1990, J FISH BIOL, V37, P53, DOI 10.1111/j.1095-8649.1990.tb05020.x; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Bagenal T. B., 1978, ASPECTS FISH FECUNDI, P75; Bagenal T.B., 1978, IBP HDB, V3, P101; Baumgartner LJ, 2008, J FISH BIOL, V72, P218, DOI 10.1111/j.1095-8649.2007.01696.x; CERNY J, 1994, BIOLOGIA, V49, P247; *CONS EPP FOR, 2002, EPP FOR ANN REP SUP; Copp GH, 2007, J FISH BIOL, V71, P148, DOI 10.1111/j.1095-8649.2007.01680.x; Copp GH, 2005, J APPL ICHTHYOL, V21, P263, DOI 10.1111/j.1439-0426.2005.00673.x; Copp GH, 2005, J APPL ICHTHYOL, V21, P242, DOI 10.1111/j.1439-0426.2005.00690.x; Copp GH, 2003, J FISH BIOL, V63, P263, DOI 10.1046/j.1095-8649.2003.00145.x; COPP GH, 2010, AQUAT INVAS IN PRESS; Copp Gordon H., 2006, Aquatic Invasions, V1, P72; DAVIES CE, 2004, FRESHWATER FISHES BR, P176; DEMASTER DP, 1978, J FISH RES BOARD CAN, V35, P912, DOI 10.1139/f78-148; FRANCIS RICC, 1990, J FISH BIOL, V36, P883, DOI 10.1111/j.1095-8649.1990.tb05636.x; Gaygusuz Ozcan, 2007, Aquatic Invasions, V2, P117; Hanfling B, 2005, FRESHWATER BIOL, V50, P403, DOI 10.1111/j.1365-2427.2004.01330.x; Hickley P, 2004, FISHERIES MANAG ECOL, V11, P203, DOI 10.1111/j.1365-2400.2004.00395.x; HOLOPAINEN IJ, 1991, VERH INT VER LIMNOL, V24, P2412; Izci L, 2004, TURK J VET ANIM SCI, V28, P23; Kottelat M, 1997, BIOLOGIA, V52, P1; LECREN ED, 1951, J ANIM ECOL, V20, P201; Lever C, 2009, NATURALISED ANIMALS; LORENZONI M, 2007, FRESHWATER BIOINVADE, P259; MAITLAND PS, 2004, SCI PUBL FRESHWATER, V62; MITCHELL B D, 1979, Transactions of the Royal Society of South Australia, V103, P137; Morgan D. L., 2007, Journal of the Royal Society of Western Australia, V90, P151; MUNKITTRICK KR, 1984, J FISH BIOL, V24, P75, DOI 10.1111/j.1095-8649.1984.tb04778.x; Navodaru I, 2002, INT REV HYDROBIOL, V87, P329, DOI 10.1002/1522-2632(200205)87:2/3<329::AID-IROH329>3.0.CO;2-J; Patimar R, 2009, IRAN J FISH SCI, V8, P163; PENTTINEN OP, 1992, ENVIRON BIOL FISH, V33, P215, DOI 10.1007/BF00002566; RICKER WE, 1979, FISH PHYSIOL, V8, P678; RICKER WE, 1975, B FISH RES BOARD CAN, V191; Rowe DK, 2007, HYDROBIOLOGIA, V583, P345, DOI 10.1007/s10750-007-0646-1; SCOTT WB, 1973, FISH RES BD CAN B, V184, P1; Smartt Joseph, 2007, Aquatic Invasions, V2, P59; SPOTILA JR, 1979, ENVIRON BIOL FISH, V4, P281, DOI 10.1007/BF00005485; STEINMETZ B, 1991, ATLAS FISH SCALES OT; Tarkan AS, 2009, AQUAT CONSERV, V19, P797, DOI 10.1002/aqc.1028; TRIPPEL EA, 1987, CAN J FISH AQUAT SCI, V44, P1018, DOI 10.1139/f87-119; Vetemaa M, 2005, J APPL ICHTHYOL, V21, P287, DOI 10.1111/j.1439-0426.2005.00680.x; West GS, 1910, P ROY SOC EDINB, V30, P65; Wheeler A, 2000, FISHERIES MANAG ECOL, V7, P315, DOI 10.1046/j.1365-2400.2000.00205.x; WHEELER A, 1977, J BIOGEOGR, V4, P1, DOI 10.2307/3038124; Wheeler Alwyne, 1998, London Naturalist, V77, P107; Williams P, 2004, BIOL CONSERV, V115, P329, DOI 10.1016/S0006-3207(03)00153-8; Wootton R. J., 1990, ECOLOGY TELEOST FISH; Zar J.H, 1999, BIOSTATISTICAL ANAL 49 12 12 0 21 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0175-8659 J APPL ICHTHYOL J. Appl. Ichthyol. AUG 2010 26 2 102 108 10.1111/j.1439-0426.2010.01506.x 7 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 639MS WOS:000280979500016 2018-11-12 J English, S; Nakagawa, S; Clutton-Brock, TH English, S.; Nakagawa, S.; Clutton-Brock, T. H. Consistent individual differences in cooperative behaviour in meerkats (Suricata suricatta) JOURNAL OF EVOLUTIONARY BIOLOGY English Article consistency; cooperation; cooperative breeding; individual variation; intra-class correlation coefficient (ICC); personality; repeatability PARENTAL CARE; PERSONALITY-TRAITS; ANIMAL PERSONALITY; NATURAL-SELECTION; ZEBRA FINCH; TRADE-OFFS; REPEATABILITY; EVOLUTION; HELPERS; FEMALES Although recent models for the evolution of personality, using game theory and life-history theory, predict that individuals should differ consistently in their cooperative behaviour, consistent individual differences in cooperative behaviour have rarely been documented. In this study, we used a long-term data set on wild meerkats to quantify the repeatability of two types of cooperative care (babysitting and provisioning) within individuals and examined how repeatability varied across age, sex and status categories. Contributions to babysitting and provisioning were significantly repeatable and positively correlated within individuals, with provisioning more repeatable than babysitting. While repeatability of provisioning was relatively invariant across categories of individuals, repeatability of babysitting increased with age and was higher for subordinates than dominants. These results provide support for theoretical predictions that life-history trade-offs favour the evolution of consistent individual differences in cooperative behaviour and raise questions about why some individuals consistently help more than others across a suite of cooperative behaviours. [English, S.] Univ Cambridge, Dept Zool, Large Anim Res Grp, Cambridge CB2 3EJ, England; [Nakagawa, S.] Univ Otago, Dept Zool, Dunedin, New Zealand English, S (reprint author), Univ Cambridge, Dept Zool, Large Anim Res Grp, Downing St, Cambridge CB2 3EJ, England. se238@cam.ac.uk English, Sinead/N-6348-2014; Nakagawa, Shinichi/B-5571-2011 English, Sinead/0000-0003-2898-2301; Nakagawa, Shinichi/0000-0002-7765-5182 NERC [NER/S/A/2005/13275] We thank Andrew Bateman, Lucy Browning, Nichola Raihani, Stuart Sharp, Alastair Wilson and one anonymous reviewer for valuable comments on earlier drafts of this manuscript. We are also grateful to Northern Cape Conservation and the Kotze family for permission to conduct work in the Kalahari and to the many volunteers, PhD students, post-doctoral researchers and field staff members who have contributed to the long-term database of the Kalahari Meerkat Project. SE was funded by NERC grant NER/S/A/2005/13275. Arnold KE, 2005, BEHAVIOUR, V142, P1577, DOI 10.1163/156853905774831927; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Bergmuller Ralph, 2007, BMC Ecology, V7, P12, DOI 10.1186/1472-6785-7-12; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; BOAKE CRB, 1989, EVOL ECOL, V3, P173, DOI 10.1007/BF02270919; Bourke A. F. G., 1995, SOCIAL EVOLUTION ANT; Brotherton PNM, 2001, BEHAV ECOL, V12, P590, DOI 10.1093/beheco/12.5.590; Browne WJ, 2005, J ROY STAT SOC A STA, V168, P599, DOI 10.1111/j.1467-985X.2004.00365.x; Carrasco JL, 2005, STAT MED, V24, P4021, DOI 10.1002/sim.2397; CARRASCO JL, 2009, BIOMETRICS, DOI DOI 10.1111/J.1541-0420.2009.1335.X; Charmantier A, 2006, P ROY SOC B-BIOL SCI, V273, P225, DOI 10.1098/rspb.2005.3294; Charmantier A, 2007, P R SOC B, V274, P1757, DOI 10.1098/rspb.2007.0012; CLARK DC, 1995, ANIM BEHAV, V50, P719, DOI 10.1016/0003-3472(95)80132-4; Clutton-Brock TH, 2003, ANIM BEHAV, V66, P531, DOI 10.1006/anbe.2003.2209; Clutton-Brock TH, 1998, P ROY SOC B-BIOL SCI, V265, P185, DOI 10.1098/rspb.1998.0281; Clutton-Brock TH, 2002, SCIENCE, V297, P253, DOI 10.1126/science.1071412; Clutton-Brock TH, 2004, ANIM BEHAV, V68, P1029, DOI 10.1016/j.anbehav.2003.10.024; Clutton-Brock TH, 2001, ANIM BEHAV, V61, P705, DOI 10.1006/anbe.2000.1631; Dall SRX, 2004, ECOL LETT, V7, P734, DOI 10.1111/j.1461-0248.2004.00618.x; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Dohm MR, 2002, FUNCT ECOL, V16, P273; Doolan SP, 1999, ETHOLOGY, V105, P851, DOI 10.1046/j.1439-0310.1999.00461.x; EMLEN ST, 1982, AM NAT, V119, P29, DOI 10.1086/283888; Forstmeier W, 2004, ANIM BEHAV, V68, P1017, DOI 10.1016/j.anbehav.2004.02.007; Freeman-Gallant CR, 1998, BEHAV ECOL, V9, P486, DOI 10.1093/beheco/9.5.486; Garamszegi LZ, 2006, J EVOLUTION BIOL, V19, P2052, DOI 10.1111/j.1420-9101.2006.01135.x; Garamszegi LZ, 2006, BEHAV ECOL, V17, P682, DOI 10.1093/beheco/ark005; Gelman A., 2007, DATA ANAL USING REGR; Hayes JP, 1997, J MAMMAL, V78, P274, DOI 10.2307/1382882; Heinsohn R, 1999, TRENDS ECOL EVOL, V14, P53, DOI 10.1016/S0169-5347(98)01545-6; Hodge SJ, 2007, ANIM BEHAV, V74, P911, DOI 10.1016/j.anbehav.2006.09.024; Holveck MJ, 2007, ANIM BEHAV, V74, P297, DOI 10.1016/j.anbehav.2006.08.016; Komdeur J, 2006, ETHOLOGY, V112, P729, DOI 10.1111/j.1439-0310.2006.01243.x; Legge S, 2000, ANIM BEHAV, V59, P1009, DOI 10.1006/anbe.2000.1382; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; MacColl ADC, 2003, EVOLUTION, V57, P2191; McGraw KO, 1996, PSYCHOL METHODS, V1, P30, DOI 10.1037/1082-989X.1.4.390; McNamara JM, 2009, P R SOC B, V276, P605, DOI 10.1098/rspb.2008.1182; Nakagawa S, 2007, J EVOLUTION BIOL, V20, P1674, DOI 10.1111/j.1420-9101.2007.01403.x; Nakagawa S, 2004, BEHAV ECOL, V15, P1044, DOI 10.1093/beheco/arh107; NAKAGAWA S, 2010, BIOL REV IN PRESS; Nakagawa S, 2007, BIOL REV, V82, P591, DOI 10.1111/j.1469-185X.2007.00027.x; Nussey DH, 2007, J EVOLUTION BIOL, V20, P831, DOI 10.1111/j.1420-9101.2007.01300.x; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; R Development Core Team, 2009, R LANG ENV STAT COMP; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Russell AF, 2007, P R SOC B, V274, P513, DOI 10.1098/rspb.2006.3698; Russell AF, 2003, P NATL ACAD SCI USA, V100, P3333, DOI 10.1073/pnas.0636503100; Santiago E, 1998, GENET RES, V71, P161, DOI 10.1017/S0016672398003231; Schwagmeyer PL, 2003, ETHOLOGY, V109, P303, DOI 10.1046/j.1439-0310.2003.00868.x; Sharp SP, 2010, J ANIM ECOL, V79, P176, DOI 10.1111/j.1365-2656.2009.01616.x; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Venables W. N., 2002, MODERN APPL STAT S; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson AJ, 2008, J EVOLUTION BIOL, V21, P647, DOI 10.1111/j.1420-9101.2008.01500.x; Wilson AJ, 2007, EVOL ECOL, V21, P337, DOI 10.1007/s10682-006-9106-z; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Young AJ, 2005, ANIM BEHAV, V70, P829, DOI 10.1016/j.anbehav.2005.01.019 59 32 32 3 73 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. AUG 2010 23 8 1597 1604 10.1111/j.1420-9101.2010.02025.x 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 625NF WOS:000279901400002 20492087 Bronze 2018-11-12 J Honer, OP; Wachter, B; Hofer, H; Wilhelm, K; Thierer, D; Trillmich, F; Burke, T; East, ML Hoener, Oliver P.; Wachter, Bettina; Hofer, Heribert; Wilhelm, Kerstin; Thierer, Dagmar; Trillmich, Fritz; Burke, Terry; East, Marion L. The fitness of dispersing spotted hyaena sons is influenced by maternal social status NATURE COMMUNICATIONS English Article DOMINATED MAMMALIAN SOCIETY; CROCUTA-CROCUTA; LONG-TERM; SEX-RATIOS; POPULATION; SURVIVAL; SUCCESS; REPRODUCTION; PATERNITY; BABOONS Life history theory predicts that mothers should provide their offspring with a privileged upbringing if this enhances their offspring's and their own fitness. In many mammals, high-ranking mothers provide their offspring with a privileged upbringing. Whether dispersing sons gain fitness benefits during adulthood from such privileges (a 'silver spoon' effect) has rarely been examined. In this paper, we show that in the complex, female-dominated society of spotted hyaenas, high-born sons grew at higher rates, were more likely to disperse to clans offering the best fitness prospects, started reproducing earlier and had a higher reproductive value than did lower-born sons. This illustrates the evolutionary importance of maternal effects even in societies in which male size or fighting ability does not influence fitness. By demonstrating for the first time in a non-human mammal that maternal status influences immigration patterns, the study also advances our understanding of two key ecological and evolutionary processes, dispersal and habitat selection. [Hoener, Oliver P.; Wachter, Bettina; Hofer, Heribert; Wilhelm, Kerstin; Thierer, Dagmar; East, Marion L.] Leibniz Inst Zoo & Wildlife Res, Res Grp Evolutionary Ecol, D-10315 Berlin, Germany; [Trillmich, Fritz] Univ Bielefeld, Dept Anim Behav, D-33501 Bielefeld, Germany; [Burke, Terry] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England Honer, OP (reprint author), Leibniz Inst Zoo & Wildlife Res, Res Grp Evolutionary Ecol, D-10315 Berlin, Germany. Hoener@izw-berlin.de Honer, Oliver/N-3224-2014; Burke, Terry/B-3196-2011 Honer, Oliver/0000-0002-0658-3417; Burke, Terry/0000-0003-3848-1244; Hofer, Heribert/0000-0002-2813-7442 Leibniz Institute for Zoo and Wildlife Research; Fritz-Thyssen-Stiftung; Stifterverband der deutschen Wissenschaft; Max Planck Society; German Academic Exchange Service DAAD; Messerli Foundation; Deutsche Forschungsgemeinschaft [HO 2498/3-1] We thank the Tanzania Commission for Science and Technology for permission to conduct the study, the Tanzania Wildlife Research Institute, the Ngorongoro Conservation Area Authority, and A. Francis, L. Kimaay, T. Ndooto, T. Karya, L. Oltumo and G. Orio for their assistance. This study was funded by the Leibniz Institute for Zoo and Wildlife Research, the Fritz-Thyssen-Stiftung, the Stifterverband der deutschen Wissenschaft, the Max Planck Society, the German Academic Exchange Service DAAD, the Messerli Foundation and the Deutsche Forschungsgemeinschaft (Grant HO 2498/3-1). ALBERT R, 2002, THESIS FREIE U BERLI; ALBERTS SC, 1995, AM NAT, V145, P279, DOI 10.1086/285740; Alberts SC, 2006, ANIM BEHAV, V72, P1177, DOI 10.1016/j.anbehav.2006.05.001; Altmann J, 2005, BEHAV ECOL SOCIOBIOL, V57, P490, DOI 10.1007/s00265-004-0870-x; Blomquist GE, 2009, BIOL LETTERS, V5, P339, DOI 10.1098/rsbl.2009.0009; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CLUTTONBROCK TH, 1984, NATURE, V308, P358, DOI 10.1038/308358a0; Coulson T, 2006, P ROY SOC B-BIOL SCI, V273, P547, DOI 10.1098/rspb.2005.3357; Danchin Etienne, 2008, P363; DeKogel CH, 1997, J ANIM ECOL, V66, P167; Di Fiore A, 2003, YEARB PHYS ANTHROPOL, V46, P62, DOI 10.1002/ajpa.10382; EAST M, 1989, J ZOOL, V219, P690, DOI 10.1111/j.1469-7998.1989.tb02614.x; East ML, 2009, BEHAV ECOL, V20, P478, DOI 10.1093/beheco/arp020; EAST ML, 1991, ANIM BEHAV, V42, P651, DOI 10.1016/S0003-3472(05)80247-7; EAST ML, 1993, BEHAV ECOL SOCIOBIOL, V33, P355; East ML, 2003, P ROY SOC B-BIOL SCI, V270, P1247, DOI 10.1098/rspb.2003.2363; East ML, 2001, BEHAV ECOL, V12, P558, DOI 10.1093/beheco/12.5.558; Engh AL, 2002, BEHAV ECOL, V13, P193, DOI 10.1093/beheco/13.2.193; FISHER R. A., 1930, GENETICAL THEORY NAT; FRANK LG, 1990, J ZOOL, V221, P308, DOI 10.1111/j.1469-7998.1990.tb04001.x; FRANK LG, 1986, ANIM BEHAV, V34, P1500, DOI 10.1016/S0003-3472(86)80220-2; Grafen A., 1988, REPROD SUCCESS, P454; HAMILTON WJ, 1986, ETHOLOGY, V71, P63; HAUSFATER G, 1982, SCIENCE, V217, P752, DOI 10.1126/science.217.4561.752; Hoelzel AR, 1999, BEHAV ECOL SOCIOBIOL, V46, P298; Honer OP, 2007, NATURE, V448, P798, DOI 10.1038/nature06040; HOFER H, 1993, ANIM BEHAV, V46, P575, DOI 10.1006/anbe.1993.1224; Hofer H, 2003, EVOL ECOL, V17, P315, DOI 10.1023/A:1027352517231; Hofer H., 1995, SERENGETI, P332; Hofer H, 2008, BEHAV ECOL SOCIOBIOL, V62, P341, DOI 10.1007/s00265-007-0421-3; HOLEKAMP KE, 1991, AM ZOOL, V31, P306; Holekamp KE, 2003, HORM BEHAV, V44, P385, DOI 10.1016/j.yhbeh.2003.06.003; Honer OP, 2005, OIKOS, V108, P544, DOI 10.1111/j.0030-1299.2005.13533.x; HORROCKS J, 1983, ANIM BEHAV, V31, P772, DOI 10.1016/S0003-3472(83)80234-6; Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x; Kerr TD, 2007, BIOLOGY LETT, V3, P289, DOI 10.1098/rsbl.2006.0615; Kruuk H, 1972, SPOTTED HYENA STUDY; Leimar O, 1996, BEHAV ECOL, V7, P316, DOI 10.1093/beheco/7.3.316; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Manly B.F.J., 1993, RESOURCE SELECTION A; Marshall DJ, 2007, OIKOS, V116, P1957, DOI 10.1111/j.2007.0030-1299.16203.x; Mateo J. M., 2009, MATERNAL EFFECTS MAM; MATTHEWS L. HARRISON, 1939, PHIL TRANS ROY SOC LONDON SER B BIOL SCI, V230, P1, DOI 10.1098/rstb.1939.0004; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; PARMAR MKB, 1995, SURVIVAL ANAL PRACTI; Pournelle G. H., 1965, Journal of Mammalogy, V46, P503, DOI 10.2307/1377649; Reinhold K, 2002, J HERED, V93, P400, DOI 10.1093/jhered/93.6.400; Schradin C, 2009, FUNCT ECOL, V23, P1004, DOI 10.1111/j.1365-2435.2009.01569.x; SLOBODKIN LAWRENCE B., 1961; SMUTS BB, 1986, PRIMATE SOC; Stamps JA, 2006, ECOL LETT, V9, P1179, DOI 10.1111/j.1461-0248.2006.00972.x; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; van Noordwijk MA, 1999, PRIMATES, V40, P105, DOI 10.1007/BF02557705; VANJAARSVELD AS, 1998, J ZOOL LOND, V216, P45; Verhulst S, 1997, ECOLOGY, V78, P864; Wachter B, 2002, BEHAV ECOL SOCIOBIOL, V52, P348, DOI 10.1007/s00265-002-0522-y; Wilhelm K, 2003, MOL ECOL NOTES, V3, P360, DOI 10.1046/j.1471-8286.2003.00450.x; Wilkin TA, 2009, CURR BIOL, V19, P1998, DOI 10.1016/j.cub.2009.09.065; Ylonen H, 2004, EVOL ECOL RES, V6, P433 60 16 16 0 30 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2041-1723 NAT COMMUN Nat. Commun. AUG 2010 1 60 10.1038/ncomms1059 7 Multidisciplinary Sciences Science & Technology - Other Topics 673FV WOS:000283645400011 20975715 DOAJ Gold, Green Published 2018-11-12 J Proffitt, KM; Rotella, JJ; Garrott, RA Proffitt, Kelly M.; Rotella, Jay J.; Garrott, Robert A. Effects of pup age, maternal age, and birth date on pre-weaning survival rates of Weddell seals in Erebus Bay, Antarctica OIKOS English Article LIFE-HISTORY CONSEQUENCES; LONG-TERM EVALUATION; MCMURDO-SOUND; FUR SEALS; POPULATION-DYNAMICS; INTERANNUAL VARIATION; LARGE HERBIVORES; REPRODUCTIVE-PERFORMANCE; ARCTOCEPHALUS-TROPICALIS; OCEANOGRAPHIC CONDITIONS Identifying factors affecting juvenile survival is important to understanding the dynamics of populations and may also provide insights into life history theory and the selective forces shaping evolution. Quantifying the relative influence of the various potential selective forces for the post-birth, maternal dependency, and independent periods is difficult and often limits investigators to estimating a single juvenile survival rate for the first year of life, or from birth to recruitment. We examined survival of individually marked Weddell seal Leptonychotes weddellii pups during the maternal dependency period in Erebus Bay, Antarctica from 2005-2007. We used mark-recapture models to evaluate competing a priori hypotheses regarding variation in daily pre-weaning survival rates (phi) during the first 42 days of age. The a priori model receiving the most support from the data supported several of our predictions: (phi) over cap increased with pup age and was higher for pups born later in the season and to older mothers. Increases in (phi) over cap with increasing pup age may have been due to improved resilience to the environment, phenotypic selection against the frailest pups, or both. Maternal age was more important to (phi) over cap than was maternal experience or age of primiparity, potentially indicating that age-related increases in body mass allow greater offspring provisioning, or age-related improvements in competitive abilities benefit offspring during the period of maternal care. Depending on the timing of birth and the age of the mother, (phi) over cap (42 days) ranged from 0.79 ( SE = 0.05) to 0.98 ( SE = 0.01). These exceptionally high pre-weaning survival rates contrast with estimates from other large terrestrial and marine mammal species where neonate survival is considerably lower and suggest that in species with similar life histories, pre-weaning survival probability may be buffered from both predators and environmental fluctuations during the period of maternal nutritional dependency. Climatic changes affecting stability of ice used for pupping substrate or extent of fast-ice buffering pupping colonies from predators have the potential to reduce pre-weaning survival and may have important implications for population growth rates. [Proffitt, Kelly M.; Rotella, Jay J.; Garrott, Robert A.] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA Proffitt, KM (reprint author), Montana Dept Fish Wildlife & Pk, 1400 S 19th St, Bozeman, MT 59718 USA. kproffitt@mt.gov National Science Foundation, Division of Polar Programs [OPP-0635739] This work was supported by the National Science Foundation, Division of Polar Programs (grant no. OPP-0635739 to R. A. Garrott, J. J. Rotella and D. B. Siniff). Prior NSF grants to R. A. Garrott, J. J. Rotella, D. B. Siniff and J. W. Testa supported collection of data used in this paper. Animal handling protocols were approved by Montana State Univ.'s Animal Care and Use Committee. We thank J. D. Nichols for discussions that led to this work and many helpful suggestions during the analysis. We also thank the many individuals that have worked on the Erebus Bay Weddell seal project since the 1960s, and we thank D. B. Siniff for providing comments that improved this manuscript. We thank Subject Editor J. Vucetich for providing comments that improved the manuscript. BARBERMEYER SM, 2008, WILDIFE MONOGR, V169; Beauplet G, 2005, J ANIM ECOL, V74, P1160, DOI 10.1111/j.1365-2656.2005.01016.x; Bowyer RT, 1998, J MAMMAL, V79, P1332, DOI 10.2307/1383025; Boyd IL, 1996, J MAMMAL, V77, P124, DOI 10.2307/1382714; BOYD IL, 1989, BEHAV ECOL SOCIOBIOL, V24, P377, DOI 10.1007/BF00293265; Burnham K. P., 2002, MODEL SELECTION MULT; BURNHAM KP, 1987, AM FISH SOC MONOGR, V5, P1; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Cameron MF, 2004, CAN J ZOOL, V82, P601, DOI 10.1139/Z04-025; Cameron MF, 2007, ANTARCT SCI, V19, P149, DOI 10.1017/S0954102007000223; Chambellant M, 2003, CAN J ZOOL, V81, P1222, DOI 10.1139/Z03-114; Chilvers BL, 2007, POLAR BIOL, V30, P459, DOI 10.1007/s00300-006-0203-9; Clutton-Brock T. H, 1982, RED DEER BEHAV ECOLO; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; DOIDGE DW, 1984, J ZOOL, V202, P449, DOI 10.1111/j.1469-7998.1984.tb05095.x; EBERHARDT L L, 1977, Environmental Conservation, V4, P205; Eberhardt LL, 2002, ECOLOGY, V83, P2841, DOI 10.2307/3072020; EINUM S, 2007, EVOLUTION, V54, P628; FESTABIANCHET M, 1988, J ZOOL, V214, P653, DOI 10.1111/j.1469-7998.1988.tb03764.x; FESTABIANCHET M, 1995, ECOLOGY, V76, P871, DOI 10.2307/1939352; Forcada J, 2008, GLOBAL CHANGE BIOL, V14, P2473, DOI 10.1111/j.1365-2486.2008.01678.x; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Georges JY, 2000, J ZOOL, V251, P277, DOI 10.1017/S0952836900007019; Gregg MA, 2001, J WILDLIFE MANAGE, V65, P19, DOI 10.2307/3803271; Hadley GL, 2007, OIKOS, V116, P601, DOI 10.1111/j.2007.0030-1299.15528.x; Hadley GL, 2006, J ANIM ECOL, V75, P1058, DOI 10.1111/j.1365-2656.2006.01118.x; HARCOURT R, 1992, J ZOOL, V226, P259, DOI 10.1111/j.1469-7998.1992.tb03838.x; Hastings KK, 1998, J ANIM ECOL, V67, P722, DOI 10.1046/j.1365-2656.1998.00242.x; Hastings KK, 1999, J ZOOL, V248, P307, DOI 10.1017/S0952836999007049; Hind AT, 1998, CAN J ZOOL, V76, P2245, DOI 10.1139/cjz-76-12-2245; IMS RA, 1990, AM NAT, V136, P485, DOI 10.1086/285109; IMS RA, 1990, TRENDS ECOL EVOL, V5, P135, DOI 10.1016/0169-5347(90)90218-3; Jenouvrier S, 2005, ECOLOGY, V86, P2889, DOI 10.1890/05-0514; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LEWONTIN RC, 1969, P NATL ACAD SCI USA, V62, P1056, DOI 10.1073/pnas.62.4.1056; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Linnell JDC, 1998, J ZOOL, V244, P497, DOI 10.1111/j.1469-7998.1998.tb00055.x; Linnell JDC, 1995, WILDLIFE BIOL, V1, P209; Lummaa V, 2002, TRENDS ECOL EVOL, V17, P141, DOI 10.1016/S0169-5347(01)02414-4; Lunn N.J., 1993, Symposia of the Zoological Society of London, V66, P115; LUNN NJ, 1994, J ANIM ECOL, V63, P827, DOI 10.2307/5260; McMahon CR, 2005, P ROY SOC B-BIOL SCI, V272, P923, DOI 10.1098/rspb.2004.3038; MONSON DH, 1995, CAN J ZOOL, V73, P1161, DOI 10.1139/z95-138; OZOGA JJ, 1986, J WILDLIFE MANAGE, V50, P480, DOI 10.2307/3801110; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Pollock K.H., 1990, WILDLIFE MONOGR, V107; Proffitt KM, 2008, MAR MAMMAL SCI, V24, P677, DOI 10.1111/j.1748-7692.2008.00207.x; Proffitt KM, 2007, OIKOS, V116, P1683, DOI 10.1111/j.2007.0030-1299.16139.x; Pusey A, 1996, TRENDS ECOL EVOL, V11, P201, DOI 10.1016/0169-5347(96)10028-8; RACHLOW JL, 1991, J MAMMAL, V72, P487, DOI 10.2307/1382131; RALLS K, 1988, Conservation Biology, V2, P185, DOI 10.1111/j.1523-1739.1988.tb00169.x; REITER J, 1991, BEHAV ECOL SOCIOBIOL, V28, P153, DOI 10.1007/BF00172166; RIEDMAN ML, 1994, J WILDLIFE MANAGE, V58, P391, DOI 10.2307/3809308; Rotella JJ, 2009, ECOLOGY, V90, P975, DOI 10.1890/08-0971.1; Royle JA, 2008, HIERARCHICAL MODELIN; Saether BE, 1997, TRENDS ECOL EVOL, V12, P143, DOI 10.1016/S0169-5347(96)10068-9; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Seber GAF, 1982, ESTIMATION ANIMAL AB; SINIFF DB, 1977, ECOL MONOGR, V47, P319, DOI 10.2307/1942520; Soto KH, 2004, J ZOOL, V264, P419, DOI 10.1017/s0952836904005965; STIRLING I, 1974, AUST J ZOOL, V22, P39, DOI 10.1071/ZO9740039; STIRLING I, 1969, ECOLOGY, V50, P573, DOI 10.2307/1936247; Talbot L.M., 1963, WILDLIFE MONOGR, V12, P1; TEDMAN RA, 1979, AUST WILDLIFE RES, V6, P19; THOMAS JA, 1983, CAN J ZOOL, V61, P2084, DOI 10.1139/z83-273; TRILLMICH F, 1985, OECOLOGIA, V67, P19, DOI 10.1007/BF00378445; Trites AW, 2003, MAMMAL REV, V33, P3, DOI 10.1046/j.1365-2907.2003.00009.x; WEIMERSKIRCH H, 1990, J ANIM ECOL, V59, P867, DOI 10.2307/5019; Wheatley KE, 2006, J ANIM ECOL, V75, P724, DOI 10.1111/j.1365-2656.01093.x; White GC, 1999, BIRD STUDY, V46, P120; Wickens P, 1997, MAR MAMMAL SCI, V13, P241, DOI 10.1111/j.1748-7692.1997.tb00631.x; Williams B. K., 2002, ANAL MANAGEMENT ANIM 76 12 12 1 38 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos AUG 2010 119 8 1255 1264 10.1111/j.1600-0706.2009.18098.x 10 Ecology Environmental Sciences & Ecology 631OE WOS:000280356200006 2018-11-12 J Restif, O; Amos, W Restif, Olivier; Amos, William The evolution of sex-specific immune defences PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article adaptive dynamics; evolutionarily stable strategies; pathogens; coevolution; sexual reproduction; immunocompetence HOST-PARASITE INTERACTIONS; MATE CHOICE; RESISTANCE; DIMORPHISM; IMMUNOCOMPETENCE; STRATEGIES; INFECTION; SUSCEPTIBILITY; TESTOSTERONE; TRANSMISSION Why do males and females often differ in their ability to cope with infection? Beyond physiological mechanisms, it has recently been proposed that life-history theory could explain immune differences from an adaptive point of view in relation to sex-specific reproductive strategies. However, a point often overlooked is that the benefits of immunity, and possibly the costs, depend not only on the host genotype but also on the presence and the phenotype of pathogens. To address this issue we developed an adaptive dynamic model that includes host-pathogen population dynamics and host sexual reproduction. Our model predicts that, although different reproductive strategies, following Bateman's principle, are not enough to select for different levels of immunity, males and females respond differently to further changes in the characteristics of either sex. For example, if males are more exposed to infection than females (e. g. for behavioural reasons), it is possible to see them evolve lower immunocompetence than females. This and other counterintuitive results highlight the importance of ecological feedbacks in the evolution of immune defences. While this study focuses on sex-specific natural selection, it could easily be extended to include sexual selection and thus help to understand the interplay between the two processes. [Restif, Olivier] Univ Cambridge, Dept Vet Med, Cambridge CB3 0ES, England; [Amos, William] Univ Cambridge, Dept Zool, Cambridge CB2 3EJ, England Restif, O (reprint author), Univ Cambridge, Dept Vet Med, Madingley Rd, Cambridge CB3 0ES, England. or226@cam.ac.uk Restif, Olivier/0000-0001-9158-853X Royal Society We thank C. Russell for stimulating discussion and two anonymous reviewers for their helpful comments. O.R. is supported by a Royal Society University Research Fellowship. Adamo SA, 2005, BEHAV ECOL, V16, P871, DOI 10.1093/beheco/ari068; Adamo SA, 2009, ANIM BEHAV, V77, P67, DOI 10.1016/j.anbehav.2008.09.011; Adler FR, 2008, AM NAT, V172, P855, DOI 10.1086/592405; [Anonymous], 2008, MATH VERS 7 0; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Best A, 2009, AM NAT, V173, P779, DOI 10.1086/598494; Boots M, 1999, AM NAT, V153, P359, DOI 10.1086/303181; Boots M, 2009, PHILOS T R SOC B, V364, P27, DOI 10.1098/rstb.2008.0160; Caillaud D, 2006, MICROBES INFECT, V8, P2477, DOI 10.1016/j.micinf.2006.06.003; Cernetich A, 2006, INFECT IMMUN, V74, P3190, DOI 10.1128/IAI.00008-06; Clutton-Brock T, 2009, Q REV BIOL, V84, P3, DOI 10.1086/596461; Cornet S, 2009, P ROY SOC B-BIOL SCI, V276, P4229, DOI 10.1098/rspb.2009.1299; Fellous S, 2009, J EVOLUTION BIOL, V22, P582, DOI 10.1111/j.1420-9101.2008.01665.x; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Fraser C, 2007, P NATL ACAD SCI USA, V104, P17441, DOI 10.1073/pnas.0708559104; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; Grear DA, 2009, ECOL LETT, V12, P528, DOI 10.1111/j.1461-0248.2009.01306.x; Green DM, 2006, OIKOS, V115, P495, DOI 10.1111/j.2006.0030-1299.15155.x; Guilbault C, 2002, IMMUNOLOGY, V107, P297, DOI 10.1046/j.1365-2567.2002.01508.x; Howard RS, 2003, J EVOLUTION BIOL, V16, P681, DOI 10.1046/j.1420-9101.2003.00571.x; Klein Sabra, 2005, Gend Med, V2, P197, DOI 10.1016/S1550-8579(05)80050-6; Kokko H, 2006, ANNU REV ECOL EVOL S, V37, P43, DOI 10.1146/annurev.ecolsys.37.091305.110259; Leman JC, 2009, J EVOLUTION BIOL, V22, P163, DOI 10.1111/j.1420-9101.2008.01636.x; Lin YC, 2006, MICROBES INFECT, V8, P2082, DOI 10.1016/j.micinf.2006.03.019; Lindsey E, 2009, EVOL ECOL, V23, P607, DOI 10.1007/s10682-008-9258-0; Malo AF, 2009, P R SOC B, V276, P971, DOI 10.1098/rspb.2008.1367; May RC, 2007, BIOESSAYS, V29, P795, DOI 10.1002/bies.20614; Meier A, 2009, NAT MED, V15, P955, DOI 10.1038/nm.2004; Moller AP, 1998, AM NAT, V152, P605, DOI 10.1086/286193; Moore SL, 2002, SCIENCE, V297, P2015, DOI 10.1126/science.1074196; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; Pasche B, 2005, INFECT IMMUN, V73, P5952, DOI 10.1128/IAI.73.9.5952-5960.2005; Restif O, 2004, AM NAT, V164, pE90, DOI 10.1086/423713; Restif O, 2003, AM NAT, V161, P827, DOI 10.1086/375171; Roy BA, 2000, EVOLUTION, V54, P51, DOI 10.1111/j.0014-3820.2000.tb00007.x; Salvaudon L, 2008, BIOL LETTERS, V4, P526, DOI 10.1098/rsbl.2008.0332; Semple S, 2002, P ROY SOC B-BIOL SCI, V269, P1031, DOI 10.1098/rspb.2001.1950; SHINE R, 1989, Q REV BIOL, V64, P419, DOI 10.1086/416458; SMITH JM, 1979, PROC R SOC SER B-BIO, V205, P475, DOI 10.1098/rspb.1979.0080; Sorci G, 1995, J EVOLUTION BIOL, V8, P711, DOI 10.1046/j.1420-9101.1995.8060711.x; Stoehr AM, 2006, BEHAV ECOL, V17, P751, DOI 10.1093/beheco/ark018; Strachan NJC, 2008, EPIDEMIOL INFECT, V136, P1492, DOI 10.1017/S0950268807009934; van Baalen M, 1998, P ROY SOC B-BIOL SCI, V265, P317; ZUK M, 1990, PARASITOL TODAY, V6, P231, DOI 10.1016/0169-4758(90)90202-F; Zuk M, 2009, PLOS PATHOG, V5, DOI 10.1371/journal.ppat.1000267 46 39 39 4 41 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUL 22 2010 277 1691 2247 2255 10.1098/rspb.2010.0188 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 608FX WOS:000278569700019 20335214 Green Published, Other Gold 2018-11-12 J Herring, G; Gawlik, DE; Cook, MI; Beerens, JM Herring, Garth; Gawlik, Dale E.; Cook, Mark. I.; Beerens, James M. SENSITIVITY OF NESTING GREAT EGRETS (ARDEA ALBA) AND WHITE IBISES (EUDOCIMUS ALBUS) TO REDUCED PREY AVAILABILITY AUK English Article Ardea alba; clutch size; Eudocimus albus; Florida Everglades; Great Egret; nesting ecology; nest survival; White Ibis WADING BIRDS; FLORIDA EVERGLADES; REPRODUCTIVE PHASES; BROOD REDUCTION; BREEDING BIRDS; FOOD; POPULATION; PATTERNS; HISTORY; SUCCESS Life-history theory suggests that long-lived bird species will adjust their nesting effort according to current conditions to balance the costs and benefits of current reproduction with their long-term needs for survival and future reproduction. However, responses to the same habitat conditions may differ between species, even within the same ecosystem, to produce different nesting and population patterns. We examined differences in the nesting ecology of two sympatric wading species, Great Egret (Ardea alba) and White Ibis (Eudocimus albus), between years with high (2006) and below-average (2007) prey availability in the Florida Everglades. Clutch size of White Ibises decreased by similar to 19% from 2006 to 2007, whereas Great Egret clutch size remained constant. Model selection identified rain, water depth, Julian date, year, and prey biomass as parameters that most influenced daily survival rates (DSR) of White Ibis nests, whereas nest stage, region, Julian date, water depth, and the quadratic form of water recession rate most influenced Great Egret nest DSR. Daily survival for both Great Egret and Whites Ibis nests was higher in 2006 (DSR = 0.992 and 0.999, respectively) than in 2007 (DSR = 0.981 and 0.979). Our results support the hypothesis that prey availability and hydrological factors play crucial roles in regulating populations of wading birds in the Florida Everglades. Results also demonstrated that White Ibis reproduction was more sensitive to changes in hydrological conditions and prey availability than Great Egret reproduction. Received 21 August 2009, accepted 23 January 2010. [Herring, Garth; Gawlik, Dale E.; Beerens, James M.] Florida Atlantic Univ, Dept Biol Sci, Boca Raton, FL 33431 USA; [Cook, Mark. I.] S Florida Water Management Dist, Everglades Div, W Palm Beach, FL 33406 USA Herring, G (reprint author), Univ Calif Davis, US Geol Survey, Western Ecol Res Ctr, Davis Field Stn, 1 Shields Ave, Davis, CA 95616 USA. gherring@ucdavis.edu U.S. Fish and Wildlife Service; South Florida Water Management District; Arthur R. Marshall Loxahatchee National Wildlife Refuge Funding for research was provided by the U.S. Fish and Wildlife Service and South Florida Water Management District. We thank T. Dean for his support in implementing this study. We appreciate the support and cooperation of the Arthur R. Marshall Loxahatchee National Wildlife Refuge staff. P. Dixon, H. Herring, S. Milton, A. Rodewald, J. Volin, and three anonymous reviewers provided valuable comments on drafts of the manuscript. We thank our field research crews and fellow researchers that assisted in collection of field data: T. Anderson, T. Beck, E. Call, H. Herring, N. Hill, A. Horton, B. Imdieke, M. Kobza, and S. Lantz. Research techniques were approved by the Florida Atlantic University Institutional Animal Care and Use Committee (Protocol A0534) and conducted under U.S. Fish and Wildlife Service Research Permit 23354 and Florida Fish and Wildlife Conservation Commission Scientific Research Permit WX04487. AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705; Bancroft G. Thomas, 1994, P615; Bancroft GT, 2002, WATERBIRDS, V25, P265, DOI 10.1675/1524-4695(2002)025[0265:DOWBRT]2.0.CO;2; Beerens J. M., 2008, THESIS FLORIDA ATLAN; Blem C.R., 1990, Current Ornithology, V7, P59; BOLTON M, 1993, CAN J ZOOL, V71, P273, DOI 10.1139/z93-039; Burnham K. P., 2002, MODEL SELECTION MULT; Crozier GE, 2003, WATERBIRDS, V26, P303, DOI 10.1675/1524-4695(2003)026[0303:WBNEAA]2.0.CO;2; Cuthill IC, 2000, BEHAV ECOL, V11, P189, DOI 10.1093/beheco/11.2.189; Dorn NJ, 2005, J N AM BENTHOL SOC, V24, P346, DOI 10.1899/04-037.1; DRENT RH, 1980, ARDEA, V68, P225; EDWARDS TC, 1983, AUK, V100, P630; Elliott KH, 2009, AUK, V126, P613, DOI 10.1525/auk.2009.08245; Erikstad KE, 1998, ECOLOGY, V79, P1781; FLEMING DM, 1994, ENVIRON MANAGE, V18, P743, DOI 10.1007/BF02394637; FREDERICK PC, 1989, AUK, V106, P625; Frederick Peter C., 1994, P659; FREYROOS F, 1995, BEHAV ECOL, V6, P287, DOI 10.1093/beheco/6.3.287; Gawlik D. E., 2008, S FLORIDA WADING BIR, V14; Gawlik DE, 2007, AUK, V124, P1075, DOI 10.1642/0004-8038(2007)124[1075:ATOCAH]2.0.CO;2; Gawlik DE, 2002, ECOL MONOGR, V72, P329, DOI 10.1890/0012-9615(2002)072[0329:TEOPAO]2.0.CO;2; Hahn TP, 1998, ECOLOGY, V79, P2365, DOI 10.1890/0012-9658(1998)079[2365:RSIAOB]2.0.CO;2; Heaney V, 1996, P ROY SOC B-BIOL SCI, V263, P1719, DOI 10.1098/rspb.1996.0251; Herring G., 2008, THESIS FLORIDA ATLAN; Houston DC, 1997, P NUTR SOC, V56, P1057, DOI 10.1079/PNS19970110; KACELNIK A, 1984, J ANIM ECOL, V53, P283, DOI 10.2307/4357; KAHL MP, 1964, ECOL MONOGR, V34, P97, DOI 10.2307/1948449; Krebs EA, 2002, EVOLUTION OF BEGGING: COMPETITION, COOPERATION AND COMMUNICATION, P319, DOI 10.1007/0-306-47660-6_17; KUSHLAN J A, 1986, Colonial Waterbirds, V9, P155, DOI 10.2307/1521208; KUSHLAN JA, 1981, T AM FISH SOC, V110, P557, DOI 10.1577/1548-8659(1981)110<557:SCOEFT>2.0.CO;2; KUSHLAN JA, 1977, AUK, V94, P114; KUSHLAN JA, 1986, WILSON BULL, V98, P368; KUSHLAN JA, 1976, AUK, V93, P464; KUSHLAN JA, 1975, 75434 US GEOL SURV; KUSHLAN JA, 1992, BIRDS N AM, V570; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; Lack D., 1954, NATURAL REGULATION A; LITTELL RC, 1996, SYSTEM MIXED MODELS; Liu ZW, 2009, ECOHYDROLOGY, V2, P182, DOI 10.1002/eco.56; Mainwaring MC, 2009, BEHAV PROCESS, V81, P144, DOI 10.1016/j.beproc.2009.02.001; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MCCRIMMON DA, 2001, BIRDS N AM, V570; Mock D. W., 1997, EVOLUTION SIBLING RI; MOCK DW, 1986, EVOLUTION, V40, P459, DOI 10.1111/j.1558-5646.1986.tb00499.x; Ogden John C., 1994, P533; PERRINS CM, 1991, IBIS, V133, P49, DOI 10.1111/j.1474-919X.1991.tb07668.x; Petrik R, 2000, ENVIRON BIOL FISH, V58, P461, DOI 10.1023/A:1007604314576; POWELL GVN, 1989, WILSON BULL, V101, P436; Reid JM, 2000, P ROY SOC B-BIOL SCI, V267, P37, DOI 10.1098/rspb.2000.0963; RICKLEFS RE, 1968, P NATL ACAD SCI USA, V61, P847, DOI 10.1073/pnas.61.3.847; Rotella J. J., 2004, Animal Biodiversity and Conservation, V27, P187; Rotella Jay, 2007, Studies in Avian Biology, V34, P145; Rubolini D, 2008, AUK, V125, P374, DOI 10.1525/auk.2008.07018; Russell GJ, 2002, ANIM CONSERV, V5, P185, DOI 10.1017/S136794300200224X; Shaffer TL, 2004, AUK, V121, P526, DOI 10.1642/0004-8038(2004)121[0526:AUATAN]2.0.CO;2; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Strong AM, 1997, CONDOR, V99, P894, DOI 10.2307/1370140; STUEBE MM, 1982, AUK, V99, P299; TELIS PA, 2006, 20063087 US GEOL SUR; Thomas DW, 2001, SCIENCE, V291, P2598, DOI 10.1126/science.1057487; Trexler JC, 2009, ECOL INDIC, V9, pS108, DOI 10.1016/j.ecolind.2008.11.001; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WINGFIELD JC, 2004, ALLOSTASIS HOMEOSTAS, P303 64 26 26 1 25 AMER ORNITHOLOGISTS UNION LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0004-8038 AUK AUK JUL 2010 127 3 660 670 10.1525/auk.2010.09144 11 Ornithology Zoology 637ZM WOS:000280858300020 2018-11-12 J Scott, LE; Johnson, JB Scott, Laura E.; Johnson, Jerald B. Does sympatry predict life history and morphological diversification in the Mexican livebearing fish Poeciliopsis baenschi? BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article geometric morphometrics; life-history theory; Poeciliidae; resource competition; sympatry ECOLOGICAL CHARACTER DISPLACEMENT; BRACHYRHAPHIS-RHABDOPHORA; ADAPTIVE RADIATION; SEXUAL DIMORPHISM; GAMBUSIA-AFFINIS; EVOLUTION; GUPPIES; PREDATION; OVERLAP; SIZE Understanding why some species coexist and others do not remains one of the fundamental challenges of ecology. Although there is evidence to suggest that closely-related species are unlikely to occupy the same habitat because of competitive exclusion, there are many cases where closely-related species do co-occur. Research comparing sympatric and allopatric populations of co-occurring species provides a framework for understanding the role of phenotypic diversification in species coexistence. In the present study, we compare phenotypic divergence between sympatric and allopatric populations of the livebearing fish, Poeciliopsis baenschi. We focus on life-history traits and body shape, comprising two sets of integrated traits likely to diverge in response to varying selective pressures. Given that males and females can express different phenotypic traits, we also test for patterns of divergence among sexes by comparing size at maturity and sexual dimorphism in body shape between males and females in each population type. We take advantage of a natural experiment in western Mexico where, in some locations, P. baenschi co-occur with a closely-related species, Poeciliopsis turneri (sympatric populations) and, in other locations, they occur in isolation (allopatric populations). The results obtained in the present study show that sympatric populations of P. baenschi differed significantly in life-history traits and in body shape compared to their allopatric counterparts. Additionally, males and females showed different responses for size at maturity in sympatric conditions versus allopatric conditions. However, the amount of sexual dimorphism did not differ between sympatric and allopatric populations of P. baenschi. Hence, we conclude that not all traits show similar levels of phenotypic divergence in response to sympatric conditions. (C) 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 608-618. [Scott, Laura E.; Johnson, Jerald B.] Brigham Young Univ, Dept Biol, Evolutionary Ecol Labs, Provo, UT 84602 USA; [Johnson, Jerald B.] Brigham Young Univ, Monte L Bean Life Sci Museum, Provo, UT 84602 USA Scott, LE (reprint author), Brigham Young Univ, Dept Biol, Evolutionary Ecol Labs, 401 WIDB, Provo, UT 84602 USA. laurascott.byu@gmail.com BYU Department of Biology; BYU Office of Graduate Studies; Roger Sant Endowment We thank M. Belk, R. Rader, and B. Adams for providing constructive comments on the manuscript. J. Rasmussen and E. Billman provided input on geometric morphometric analysis. UNAM and J. J. Zuniga-Vega helped secure permits and provided logistical support during fieldwork. This study was supported by grants from BYU Department of Biology, BYU Office of Graduate Studies, and the Roger Sant Endowment. We thank E. Schott, A. Camargo, and K. Stilson for field and laboratory help. Ackerly DD, 2006, ECOLOGY, V87, pS50, DOI 10.1890/0012-9658(2006)87[50:NEAART]2.0.CO;2; Adams DC, 2000, P NATL ACAD SCI USA, V97, P4106, DOI 10.1073/pnas.97.8.4106; Adams DC, 2007, J ANIM ECOL, V76, P289, DOI 10.1111/j.1365-2656.2007.01210.x; Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; BENEDIX JH, 1991, EVOLUTION, V45, P1751, DOI 10.1111/j.1558-5646.1991.tb02685.x; Bisazza A, 1997, J FISH BIOL, V50, P397, DOI 10.1006/jfbi.1996.0303; BOAG PT, 1984, BIOL J LINN SOC, V22, P243, DOI 10.1111/j.1095-8312.1984.tb01679.x; Chase JM, 2003, ECOLOGICAL NICHES LI; Collyer ML, 2007, ECOLOGY, V88, P683, DOI 10.1890/06-0727; COLWELL RK, 1971, ECOLOGY, V52, P567, DOI 10.2307/1934144; Constantz G.D., 1989, P33; Croft DP, 2004, ENVIRON BIOL FISH, V71, P127, DOI 10.1007/s10641-003-0092-5; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; Farr J.A., 1989, P91; Gause GF, 1932, J EXP BIOL, V9, P389; Gomagano D, 2008, ANN ZOOL FENN, V45, P55, DOI 10.5735/086.045.0105; HAYNES JL, 1995, COPEIA, P147; Hendry AP, 2006, J EVOLUTION BIOL, V19, P741, DOI 10.1111/j.1420-9101.2005.01061.x; HUTCHINSON GE, 1959, AM NAT, V93, P145, DOI 10.1086/282070; Johnson JB, 2002, OIKOS, V96, P82, DOI 10.1034/j.1600-0706.2002.960109.x; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Langerhans RB, 2004, AM NAT, V164, P335, DOI 10.1086/422857; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; Lemmon EM, 2009, EVOLUTION, V63, P1155, DOI 10.1111/j.1558-5646.2009.00650.x; Littell RC, 1996, SAS SYSTEM MIXED MOD; Mateos M, 2002, EVOLUTION, V56, P972; Miller R.R., 2005, FRESHWATER FISHES ME; Pianka E. R., 1988, EVOLUTIONARY ECOLOGY; PIANKA ER, 1974, P NATL ACAD SCI USA, V71, P2141, DOI 10.1073/pnas.71.5.2141; Reznick D, 1996, AM ZOOL, V36, P147; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; ROBINSON BW, 1994, AM NAT, V144, P596, DOI 10.1086/285696; Roff Derek A., 2001, P99; Rohlf F., 2004, TPSDIG VERSION 1 39; ROHLF FJ, 2002, TPSRELW; Ruehl CB, 2005, EVOL ECOL RES, V7, P801; SCHLUTER D, 1992, AM NAT, V140, P85, DOI 10.1086/285404; Schluter D, 2000, AM NAT, V156, pS4, DOI 10.1086/303412; SCHLUTER D, 1996, AM NAT, V148, P40, DOI DOI 10.1086/285901); SELANDER RK, 1966, CONDOR, V68, P113, DOI 10.2307/1365712; SHINE R, 1989, Q REV BIOL, V64, P419, DOI 10.1086/416458; Snelson F.F. Jr, 1989, P149; Streelman JT, 2003, TRENDS ECOL EVOL, V18, P126; THIBAULT RE, 1978, EVOLUTION, V32, P320, DOI 10.1111/j.1558-5646.1978.tb00648.x; Zelditch M. L., 2004, GEOMETRIC MORPHOMETR; Zuniga-Vega JJ, 2007, OIKOS, V116, P995, DOI 10.1111/j.2007.0030-1299.15763.x 47 14 14 0 20 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0024-4066 BIOL J LINN SOC Biol. J. Linnean Soc. JUL 2010 100 3 608 618 10.1111/j.1095-8312.2010.01452.x 11 Evolutionary Biology Evolutionary Biology 619BH WOS:000279401800011 Bronze 2018-11-12 J Monticelli, D; Ceia, R; Heleno, R; Laborda, H; Timoteo, S; Jareno, D; Hilton, GM; Ramos, JA Monticelli, David; Ceia, Ricardo; Heleno, Ruben; Laborda, Hugo; Timoteo, Sergio; Jareno, Daniel; Hilton, Geoff M.; Ramos, Jaime A. High survival rate of a critically endangered species, the Azores Bullfinch Pyrrhula murina, as a contribution to population recovery JOURNAL OF ORNITHOLOGY English Article Individual covariates; Mark-recapture; Population management; Pyrrhula murina; Azores; Survival MARKED ANIMALS; BIRDS; PASSERINE; ISLANDS; TRENDS; SEX; EVOLUTION; SELECTION; LATITUDE; ECOLOGY This paper reports analyses of a capture-mark-recapture (CMR) dataset of 149 Azores Bullfinches ringed on So Miguel island (Azores) between 2005 and 2007, and recaptured-resighted on a monthly basis over a 4-year period (2005-2008) throughout their breeding range. We examined the effect of time, age (adults vs. juveniles), gender (adult males and females), and environmental covariates (temperature, rainfall, NAO index) on survival probabilities. The modelling found a high and constant monthly survival probability (mean +/- A SE) estimated at 0.96 +/- A 0.01, similar between both adults and juveniles and independent of environmental conditions and gender. These findings agree with expectations from island-based life-history theory where relatively mild conditions and lack of predators should favour high survival rates to compensate for the low reproductive output. The annual survival rate was estimated at 0.62, which was also consistent with this pattern when compared with survival estimates of mainland bullfinch and passerine species on other subtropical islands obtained in similar CMR studies. Based on a canonical estimator, the size of the studied population (mean +/- A SE) was estimated at 1608 +/- A 326 individuals. Given that the population size was only around 120-400 individuals in the early 1990s, we suggest that the high survival probabilities currently applying to this critically endangered species may have substantially contributed to the recent recovery of this population. Future research studies on the species' demography should continue to monitor survival in order to measure the effect of management interventions currently taking place within the range of the Azores Bullfinch, including the restoration of the biodiversity rich laurel forest, but also focusing on nest success, which is important for understanding population dynamics. [Monticelli, David] Gembloux Agr Univ, Lab Trop & Subtrop Forestry, Unit Forest & Nat Management, B-5030 Gembloux, Belgium; [Ceia, Ricardo; Laborda, Hugo; Timoteo, Sergio; Jareno, Daniel] Soc Portuguesa Estudo Aves, P-1250140 Lisbon, Portugal; [Heleno, Ruben] Univ Bristol, Sch Biol Sci, Bristol BS8 1UG, Avon, England; [Hilton, Geoff M.] Wildfowl & Wetlands Trust, Slimbridge GL2 7BT, Glos, England; [Heleno, Ruben; Ramos, Jaime A.] Univ Coimbra, Inst Marine Res IMAR CMA, Dept Life Sci, P-3001401 Coimbra, Portugal Monticelli, D (reprint author), Gembloux Agr Univ, Lab Trop & Subtrop Forestry, Unit Forest & Nat Management, 2 Passage Deportes, B-5030 Gembloux, Belgium. monticelli.david@gmail.com Ramos, Jaime/B-6616-2018; Timoteo, Sergio/R-1885-2017; Heleno, Ruben/A-5778-2011; Hilton, Geoff/H-3086-2017 Ramos, Jaime/0000-0002-9533-987X; Timoteo, Sergio/0000-0003-2417-3259; Heleno, Ruben/0000-0002-4808-4907; Hilton, Geoff/0000-0001-9062-3030; Monticelli, David/0000-0002-6566-7346 Akaike H, 1973, INT S INF THEOR, P267, DOI DOI 10.2307/2334537; Arosa ML, 2009, ARDEOLA, V56, P71; Bannerman D. A., 1966, BIRDS ATLANTIC ISLAN; Bibby Colin J., 1991, Acoreana, V7, P297; *BIRDLIFE INT, 2008, SPEC FACTSH PYRRH MU; Blondel J, 2000, VIE MILIEU, V50, P205; *BRIT TRSUT ORN, 2009, BIRDF BULLF PYRRH PY; Brouwer L, 2006, J ANIM ECOL, V75, P1321, DOI 10.1111/j.1365-2656.2006.01155.x; Burnham K. P., 2002, MODEL SELECTION MULT; Caswell H., 2004, Animal Biodiversity and Conservation, V27, P471; Ceia R., 2008, MONITORIZACAO POPULA; Ceia R, 2009, ARDEOLA, V56, P25; Choquet R, 2005, U CARE 2 2 USERS MAN; Clark ME, 2007, ECOL MODEL, V209, P110, DOI 10.1016/j.ecolmodel.2007.06.008; CLOBERT J, 1988, J ANIM ECOL, V57, P287, DOI 10.2307/4779; COOCH EG, 2006, MARK INTRO GUIDE; Covas R, 2004, AUK, V121, P1199, DOI 10.1642/0004-8038(2004)121[1199:JAASIT]2.0.CO;2; DEAN T, 1999, THESIS U NEW BRUNSWI; Faaborg J, 1995, AUK, V112, P503, DOI 10.2307/4088741; FRUCTUOSO G, 1561, SAUDADES TERRA; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; HAGGAR JP, 1988, BIOL CONSERV, V46, P7, DOI 10.1016/0006-3207(88)90106-1; Hartert E., 1905, NOV ZOOL, V12, P80; HELENO RH, 2010, ECOL APPL IN PRESS; HURRELL JW, 1995, SCIENCE, V269, P676, DOI 10.1126/science.269.5224.676; KOMDEUR J, 1994, BIOL CONSERV, V67, P143, DOI 10.1016/0006-3207(94)90360-3; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LEGRAND G, 1983, WIR VOGEL, V15, P37; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; McNamara JM, 2008, AM NAT, V172, P331, DOI 10.1086/589886; Moller AP, 2007, J EVOLUTION BIOL, V20, P750, DOI 10.1111/j.1420-9101.2006.01236.x; Peach WJ, 2001, OIKOS, V93, P235, DOI 10.1034/j.1600-0706.2001.930207.x; Perkins DW, 2001, WILSON BULL, V113, P211, DOI 10.1676/0043-5643(2001)113[0211:ASOAEP]2.0.CO;2; Post P, 2006, J AVIAN BIOL, V37, P158, DOI 10.1111/j.0908-8857.2006.03338.x; RAMOS JA, 1995, BIOL CONSERV, V71, P237, DOI 10.1016/0006-3207(94)00033-M; Ramos JA, 1996, J APPL ECOL, V33, P710, DOI 10.2307/2404942; Ramos JA, 1996, J ZOOL, V238, P415, DOI 10.1111/j.1469-7998.1996.tb05403.x; RAMOS JA, 1994, LIFE MARINE SCI A, V12, P101; Ramos Jaime A., 1998, Ringing and Migration, V19, P17; Robinson RA, 2007, IBIS, V149, P357, DOI 10.1111/j.1474-919X.2006.00648.x; Saether BE, 2002, SCIENCE, V295, P2070; Schaefer HC, 2006, IBIS, V148, P411, DOI 10.1111/j.1474-919X.2006.00544.x; Silva L.D, 2001, THESIS U AZORES PONT; Siriwardena GM, 1999, IBIS, V141, P621, DOI 10.1111/j.1474-919X.1999.tb07370.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steifetten O, 2006, BIOL CONSERV, V132, P88, DOI 10.1016/j.biocon.2006.03.016; White GC, 1999, BIRD STUDY, V46, P120; Williams B. K., 2002, ANAL MANAGEMENT ANIM 48 9 9 1 17 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0021-8375 J ORNITHOL J. Ornithol. JUL 2010 151 3 627 636 10.1007/s10336-010-0501-4 10 Ornithology Zoology 611QW WOS:000278836600010 2018-11-12 J Jennings, DJ; Carlin, CM; Hayden, TJ; Gammell, MP Jennings, Domhnall J.; Carlin, Caitriona M.; Hayden, Thomas J.; Gammell, Martin P. Investment in fighting in relation to body condition, age and dominance rank in the male fallow deer, Dama dama ANIMAL BEHAVIOUR English Article body condition; contest structure; Dama dama; fallow deer; fighting; life history; reproductive effort DEPENDENT REPRODUCTIVE EFFORT; MATING STRATEGIES; ANIMAL CONTESTS; DECISION RULES; ENERGETIC COST; ANTLER LENGTH; BIGHORN RAMS; BEHAVIOR; UNGULATE; SUCCESS According to life history theory, males of iteroparous species are expected to trade off investment between current and future reproduction based on age ( mating strategy or terminal investment hypotheses) or body condition ( individual quality hypothesis). However, although central to this latter model, the question concerning whether and to what extent condition regulates competitive investment in polygynous species is unknown. Consequently, we investigated this issue with reference to fight structure in fallow deer contests. Support for the individual quality hypothesis was limited: males with larger necks as determined by prerut neck girth fought for longer than males with smaller necks. However, prime-aged males had higher investment in fighting than preprime- or postprime-aged males indicating that investment in fighting might be age related. Other aspects of our results also failed to support condition-related predictions; although we found that jump clashing and vocal rate were related to weight loss and decline in neck girth, respectively, there was no relationship between investment in fighting and prerut measures of body size. Moreover, we also found that rank was predicted by investment in fighting ( backward pushing) rather than body condition. Our results show that, in addition to body condition and age, variation in competitive investment between individuals also influences reproductive effort in the fallow deer. (C) 2010 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Jennings, Domhnall J.] Newcastle Univ, Inst Neurosci, Ctr Behav & Evolut, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England; [Carlin, Caitriona M.] Natl Univ Ireland Galway, Ctr Environm Sci, Galway, Ireland; [Hayden, Thomas J.] Univ Coll Dublin, Sch Biol & Environm Sci, Dublin 2, Ireland; [Gammell, Martin P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland Jennings, DJ (reprint author), Newcastle Univ, Inst Neurosci, Ctr Behav & Evolut, Framlington Pl, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England. domhnall.jennings@ncl.ac.uk Gammell, Martin/0000-0001-9663-8989 Centre for Behaviour and Evolution at Newcastle University We extend our thanks to our colleagues at the Mammal Research Group for their help in the field. We also thank Clare Cunningham, Daniel Nettle, Ben Brilot and three anonymous referees for their comments on the manuscript. M. P. G. and C. M. C. received financial support from Enterprise Ireland. This work was also supported by an academic visit grant from the Centre for Behaviour and Evolution at Newcastle University to M. P. G. ALTMANN J, 1974, BEHAVIOUR, V49, P227, DOI 10.1163/156853974X00534; ALVAREZ F, 1993, CAN J ZOOL, V71, P376, DOI 10.1139/z93-052; APOLLONIO M, 1992, BEHAV ECOL, V3, P25, DOI 10.1093/beheco/3.1.25; Arnott G, 2009, ANIM BEHAV, V77, P991, DOI 10.1016/j.anbehav.2009.02.010; Bartos L, 2007, AGGRESSIVE BEHAV, V33, P7, DOI 10.1002/ab.20162; Briffa M, 2007, FUNCT ECOL, V21, P627, DOI 10.1111/j.1365-2435.2006.01188.x; Briffa M, 2001, P ROY SOC B-BIOL SCI, V268, P1841, DOI 10.1098/rspb.2001.1752; Charnov EL, 2007, AM NAT, V170, pE129, DOI 10.1086/522840; Costello CM, 2009, BEHAV ECOL SOCIOBIOL, V64, P125, DOI 10.1007/s00265-009-0828-0; DeCarvalho TN, 2004, ANIM BEHAV, V68, P473, DOI 10.1016/j.anbehav.2003.08.033; Dissanayake A, 2009, J EXP MAR BIOL ECOL, V375, P57, DOI 10.1016/j.jembe.2009.05.007; Doughty P, 1997, OECOLOGIA, V110, P508, DOI 10.1007/s004420050187; ENQUIST M, 1983, J THEOR BIOL, V102, P387, DOI 10.1016/0022-5193(83)90376-4; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; Forsyth DM, 2005, ECOLOGY, V86, P2154, DOI 10.1890/03-0738; Fricova B, 2007, FOLIA ZOOL, V56, P253; Gammell MP, 2003, ANIM BEHAV, V66, P601, DOI 10.1006/anbe.2003.2226; Hack MA, 1997, BEHAV ECOL, V8, P28, DOI 10.1093/beheco/8.1.28; Jennings D.J., ANIMAL CONT IN PRESS; Jennings DJ, 2006, ETHOLOGY, V112, P258, DOI 10.1111/j.1439-0310.2006.01154.x; Jennings DJ, 2004, ANIM BEHAV, V68, P213, DOI 10.1016/j.anbehav.2003.11.005; Jennings DJ, 2005, ETHOLOGY, V111, P511, DOI 10.1111/j.1439-0310.2005.01068.x; Jennings DJ, 2003, ANIM BEHAV, V65, P1005, DOI 10.1006/anbe.2003.2124; Jennings DJ, 2002, ETHOLOGY, V108, P389, DOI 10.1046/j.1439-0310.2002.00785.x; Jennings DJ, 2005, BEHAVIOUR, V142, P423, DOI 10.1163/1568539054012001; Jennings DJ, 2007, ANIM BEHAV, V74, P1107, DOI 10.1016/j.anbehav.2007.01.011; Jennings DJ, 2009, ANIM BEHAV, V77, P343, DOI 10.1016/j.anbehav.2008.10.006; KOJOLA I, 1991, J MAMMAL, V72, P208, DOI 10.2307/1382001; Komers PE, 1997, BEHAV ECOL, V8, P456, DOI 10.1093/beheco/8.4.456; MAHER CR, 1987, BEHAV ECOL SOCIOBIOL, V21, P91, DOI 10.1007/BF02395436; Mainguy J, 2008, BEHAV ECOL SOCIOBIOL, V62, P935, DOI 10.1007/s00265-007-0517-9; MARTIN P, 2000, MEASURING BEHAV; Matsumasa M, 2005, ANIM BEHAV, V69, P569, DOI 10.1016/j.anbehav.2004.06.017; McElligott AG, 2003, EVOL ECOL RES, V5, P1239; MestertonGibbons M, 1996, J THEOR BIOL, V181, P65, DOI 10.1006/jtbi.1996.0115; MOORE NP, 1995, BEHAV ECOL SOCIOBIOL, V36, P91, DOI 10.1007/BF00170713; Mysterud A, 2005, J ANIM ECOL, V74, P742, DOI 10.1111/j.1365-2656.2005.00965.x; Pelletier F, 2006, ANIM BEHAV, V71, P649, DOI 10.1016/j.anbehav.2005.07.008; Pelletier F, 2005, BEHAV ECOL, V16, P280, DOI 10.1093/beheco/arh162; Pelletier F, 2006, BEHAV ECOL SOCIOBIOL, V60, P645, DOI 10.1007/s00265-006-0208-y; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Riechert Susan E., 1998, P64; Siegel S, 1988, NONPARAMETRIC STAT B; Stevenson IR, 1995, P ROY SOC B-BIOL SCI, V262, P267, DOI 10.1098/rspb.1995.0205; Taylor PW, 2003, ANIM BEHAV, V65, P1195, DOI 10.1006/anbe.2003.2169; Thorpe KE, 1995, ANIM BEHAV, V50, P1657; VEHRENCAMP SL, 1989, ANIM BEHAV, V38, P885, DOI 10.1016/S0003-3472(89)80120-4; Vervust B, 2009, FUNCT ECOL, V23, P996, DOI 10.1111/j.1365-2435.2009.01580.x; Yoccoz NG, 2002, P ROY SOC B-BIOL SCI, V269, P1523, DOI 10.1098/rspb.2002.2047 49 20 20 3 40 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 ANIM BEHAV Anim. Behav. JUN 2010 79 6 1293 1300 10.1016/j.anbehav.2010.02.031 8 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 599SM WOS:000277933400016 2018-11-12 J Dunkel, CS; Weber, JL Dunkel, Curtis S.; Weber, Jennifer L. Using Three Levels of Personality to Predict Time Perspective CURRENT PSYCHOLOGY English Article Time perspective; Life history; Big Five; Identity LIFE-HISTORY THEORY; INDIVIDUAL-DIFFERENCES; REPRODUCTIVE STRATEGY; GENERAL FACTOR While there is accumulating evidence that individual differences in time perspective are important predictors of a diverse set of psychosocial outcomes, there is little understanding concerning the possible origins of these individual differences. To begin to examine the possible predictors of individual differences in time perspectives, three levels of personality (life history strategy, the Big Five personality traits, and identity) were used to predict the five time perspectives identified by Zimbardo and Boyd (Journal of Personality and Social Psychology, 77, 1271-1288, 1999). The results are discussed in terms of the ability of the three levels of personality, in combination and individually, to predict the time perspectives. [Dunkel, Curtis S.; Weber, Jennifer L.] Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA Dunkel, CS (reprint author), Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA. c-dunkel@wiu.edu Adelabu DH, 2007, ADOLESCENCE, V42, P525; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BERZONSKY M. D., 2007, IDENTITY STYLE UNPUB; Diaz-Morales JF, 2008, J GEN PSYCHOL, V135, P228, DOI 10.3200/GENP.135.3.228-240; Dunkel C, 2006, POSSIBLE SELVES THEO; DUNKEL C, 2003, ADV PSYCHOL RES; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Dunkel CS, 2009, REV GEN PSYCHOL, V13, P13, DOI 10.1037/a0013687; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Harber KD, 2003, BASIC APPL SOC PSYCH, V25, P255, DOI 10.1207/S15324834BASP2503_08; Holman EA, 2005, MOTIV EMOTION, V29, P389, DOI 10.1007/s11031-006-9018-9; Horstmanshof L, 2007, BRIT J EDUC PSYCHOL, V77, P703, DOI 10.1348/000709906X160778; John O. P., 2008, HDB PERSONALITY THEO, P114, DOI DOI 10.1037/0021-9010.87.3.530; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Lounsbury JW, 2007, IDENTITY, V7, P51, DOI 10.1080/15283480701319641; McAdams D. P., 2008, HDB PERSONALITY THEO; McAdams DP, 2006, AM PSYCHOL, V61, P204, DOI 10.1037/0003-066X.61.3.204; Packard BWL, 2006, IDENTITY, V6, P251, DOI 10.1207/s1532706xid0603_3; Padawer EA, 2007, CURR PSYCHOL, V26, P102, DOI 10.1007/s12144-007-9008-4; Rushton JP, 2008, PERS INDIV DIFFER, V45, P679, DOI 10.1016/j.paid.2008.07.015; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; Rushton JP, 2009, PERS INDIV DIFFER, V46, P437, DOI 10.1016/j.paid.2008.11.015; Thornhill R, 2007, EVOL HUM BEHAV, V28, P215, DOI 10.1016/j.evolhumbehav.2007.01.005; Zimbardo PG, 1999, J PERS SOC PSYCHOL, V77, P1271, DOI 10.1037//0022-3514.77.6.1271 24 15 16 0 15 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1046-1310 CURR PSYCHOL Curr. Psychol. JUN 2010 29 2 95 103 10.1007/s12144-010-9074-x 9 Psychology, Multidisciplinary Psychology 593EL WOS:000277435300002 2018-11-12 J Kitaysky, AS; Piatt, JF; Hatch, SA; Kitaiskaia, EV; Benowitz-Fredericks, ZM; Shultz, MT; Wingfield, JC Kitaysky, Alexander S.; Piatt, John F.; Hatch, Scott A.; Kitaiskaia, Evgenia V.; Benowitz-Fredericks, Z. Morgan; Shultz, Michael T.; Wingfield, John C. Food availability and population processes: severity of nutritional stress during reproduction predicts survival of long-lived seabirds FUNCTIONAL ECOLOGY English Article corticosterone; disturbance; kittiwake; life-history theory; stress hormone; trade-off BLACK-LEGGED KITTIWAKES; CORTICOSTERONE BINDING GLOBULIN; BASE-LINE CORTICOSTERONE; MURRE URIA-AALGE; LOWER COOK INLET; PHYSIOLOGICAL STRESS; PISCIVOROUS SEABIRDS; RESOURCE-ALLOCATION; FORAGING CONDITIONS; RISSA-TRIDACTYLA P>1. Life-history theory predicts a trade-off between costs of current reproduction and future survival of individuals. Studies of short-lived animals in general support this prediction. However, the effect of nutritional stress during reproduction on survival of long-lived animals is poorly understood. 2. We examined the link between nutritional stress, fecundity and return to a breeding colony (hereafter 'survival') of black-legged kittiwakes (Rissa tridactyla) at two colonies with contrasting patterns in adult survival, fecundity, and numerical trends. 3. We tested the observational (at Duck and Gull Is., Cook Inlet, Northern Gulf of Alaska) and experimental (at Middleton I., Gulf of Alaska) relationships between variations in the secretion of the stress hormone corticosterone (CORT) and food abundance. Then, we examined the relationships between nutritional stress (as reflected in CORT), reproduction, and survival of individuals. 4. On average, CORT was higher in kittiwakes breeding on Duck I. (declining, low fecundity, high survival) compared to those breeding on Gull I. (increasing, high fecundity, low survival). 5. At both colonies, CORT was directly negatively correlated with food abundance quantified at sea. Experimental feeding of individuals ad libitum resulted in a reduction of CORT in birds breeding on Middleton I. These results suggest that CORT is a reliable measure of food availability and defines nutritional stress (stress) in kittiwakes. 6. On Gull I., where survival is low (86%), production of young declined as stress increased. On Duck I., where survival is high (93%), parents always failed in raising young, though they experienced a wide range of stress levels. 7. Survival of individuals is linked to their CORT levels during reproduction. High levels of CORT predicted disappearance of individuals from both colonies. 8. The results support the hypothesis that nutritional stress during reproduction affects both survival and reproduction in long-lived animals. However, even within a species the ways in which survival and reproduction trade-off against each other may vary among populations. Results suggest that reproductive consequences of nutritional stress might differ between declining and increasing populations, which should be tested. We conclude that severity of nutritional stress during reproduction is one of the major factors defining population processes in kittiwakes. [Kitaysky, Alexander S.; Kitaiskaia, Evgenia V.; Benowitz-Fredericks, Z. Morgan; Shultz, Michael T.] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK 99775 USA; [Piatt, John F.; Hatch, Scott A.] US Geol Survey, Alaska Sci Ctr, Anchorage, AK 99503 USA; [Benowitz-Fredericks, Z. Morgan] Bucknell Univ, Dept Biol, Lewisburg, PA 17837 USA; [Wingfield, John C.] Univ Washington, Dept Biol, Seattle, WA 98195 USA Kitaysky, AS (reprint author), Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK 99775 USA. ffask@uaf.edu Piatt, John/0000-0002-4417-5748; Benowitz-Fredericks, Z Morgan/0000-0002-9265-3169 EVOS Trustees Council; North Pacific Research Board; NPRB; NSF EPSCoR; USGS; Institute of Arctic Biology University of Alaska Fairbanks This study was supported by grants from the EVOS Trustees Council and North Pacific Research Board; financial support during manuscript preparation was also provided by NPRB, NSF EPSCoR, USGS, and the Institute of Arctic Biology University of Alaska Fairbanks. We are grateful to Sandy Talbot for expertly conducting genetic sexing. Thank you to A. Abookire, M. Arumitsu, J. Benson, D. Black, L. Ochikubo, A. Chapman, J. Figurski, M. Gray, A. Harding, G. Hoffman, C. Hovnanian, B. Keitt, R. Kitaysky, M. Litzow, K. Mangel, A. Nielsen, R. Papish, M. Post, M. Schultz, G. Snegden, B. Smith, T. Van Pelt, M. Wada, S. Wang, J. Wetzel, S. Wright, S. Zador, and S. Zuniga for their great field work. G. Hunt, M. Romero, R. Young, J. Welcker, two anonymous reviewers and FE editors provided useful comments and constructive critiques on earlier drafts of manuscript. This study was conducted under the University of Washington and the University of Alaska IACUC protocols and all required government and state permits. Abookire AA, 2005, MAR ECOL PROG SER, V287, P229, DOI 10.3354/meps287229; Abookire AA, 2000, ESTUAR COAST SHELF S, V51, P45, DOI 10.1006/ecss.1999.0615; AEBISCHER NJ, 1990, J ANIM ECOL, V59, P1063, DOI 10.2307/5031; AKANA SF, 1992, ENDOCRINOLOGY, V131, P57, DOI 10.1210/en.131.1.57; Anderson DR, 2000, J WILDLIFE MANAGE, V64, P912, DOI 10.2307/3803199; Angelier F, 2007, HORM BEHAV, V52, P482, DOI 10.1016/j.yhbeh.2007.07.003; Angelier F, 2007, J ANIM ECOL, V76, P1181, DOI 10.1111/j.1365-2656.2007.01295.x; Angelier F, 2009, FUNCT ECOL, V23, P784, DOI 10.1111/j.1365-2435.2009.01545.x; Benowitz-Fredericks ZM, 2008, DEEP-SEA RES PT II, V55, P1868, DOI 10.1016/j.dsr2.2008.04.007; Blas J, 2007, P NATL ACAD SCI USA, V104, P8880, DOI 10.1073/pnas.0700232104; BOKONY V, 2008, AM NAT, V173, P589; Brown CR, 2005, ECOLOGY, V86, P1034, DOI 10.1890/04-0740; Buck CL, 2007, GEN COMP ENDOCR, V150, P430, DOI 10.1016/j.ygcen.2006.10.011; Burnham K. P., 1998, MODEL SELECTION INFE; Byrd GV, 2008, DEEP-SEA RES PT II, V55, P1846, DOI 10.1016/j.dsr2.2008.04.004; Cailliet GML, 1986, FISHES FIELD LAB MAN; CAIRNS D K, 1987, Biological Oceanography, V5, P261; Clinchy M, 2004, P ROY SOC B-BIOL SCI, V271, P2473, DOI 10.1098/rspb.2004.2913; Cockrem JF, 2005, HORM BEHAV, V48, P492, DOI 10.1016/j.yhbeh.2005.03.008; Cockrem JF, 2002, GEN COMP ENDOCR, V125, P197, DOI 10.1006/gcen.2001.7750; Criscuolo F, 2005, J AVIAN BIOL, V36, P306, DOI 10.1111/j.0908-8857.2005.03371.x; Dallman MF, 2004, ANN NY ACAD SCI, V1018, P141, DOI 10.1196/annals.1296.017; Doody LM, 2008, HORM BEHAV, V53, P140, DOI 10.1016/j.yhbeh.2007.09.009; DRENT RH, 1980, ARDEA, V68, P225; EDWARDS AE, 2004, THESIS U WASHINGTON; Erikstad KE, 1998, ECOLOGY, V79, P1781; Frederiksen M, 2005, OIKOS, V111, P209, DOI 10.1111/j.0030-1299.2005.13746.x; Gill VA, 2002, J AVIAN BIOL, V33, P113, DOI 10.1034/j.1600-048X.2002.330201.x; Golet GH, 2004, ECOL MONOGR, V74, P353, DOI 10.1890/02-4029; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; Grosbois V, 2005, OIKOS, V109, P273, DOI 10.1111/j.0030-1299.2005.13774.x; Harding AMA, 2007, MAR ECOL PROG SER, V352, P269, DOI 10.3354/meps07072; Harding AMA, 2007, ECOLOGY, V88, P2024, DOI 10.1890/06-1695.1; HATCH SA, 1993, IBIS, V135, P247, DOI 10.1111/j.1474-919X.1993.tb02841.x; Hunt GL, 2008, DEEP-SEA RES PT II, V55, P1919, DOI 10.1016/j.dsr2.2008.04.032; Kitaysky AS, 2007, MAR ECOL PROG SER, V352, P245, DOI 10.3354/meps07074; Kitaysky AS, 1999, J COMP PHYSIOL B, V169, P303, DOI 10.1007/s003600050225; Kitaysky AS, 2000, MAR ECOL PROG SER, V206, P283, DOI 10.3354/meps206283; Kitaysky AS, 1999, FUNCT ECOL, V13, P577, DOI 10.1046/j.1365-2435.1999.00352.x; Kitaysky AS, 2001, BEHAV ECOL, V12, P619, DOI 10.1093/beheco/12.5.619; Lack D., 1966, POPULATION STUDIES B; Lanctot RB, 2003, HORM BEHAV, V43, P489, DOI 10.1016/S0018-506X(03)00030-8; Landys MM, 2006, GEN COMP ENDOCR, V148, P132, DOI 10.1016/j.ygcen.2006.02.013; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lormee H, 2003, IBIS, V145, P212, DOI 10.1046/j.1474-919X.2003.00106.x; Love OP, 2004, HORM BEHAV, V46, P59, DOI 10.1016/j.yhbeh.2004.02.001; Lynn SE, 2003, HORM BEHAV, V43, P150, DOI 10.1016/S0018-506X(02)00023-5; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; MEDRANO JF, 1990, BIOTECHNIQUES, V8, P43; MERRICK RL, 1987, FISH B-NOAA, V85, P351; Oro D, 2004, P ROY SOC B-BIOL SCI, V271, P387, DOI 10.1098/rspb.2003.2609; Oro D, 2002, ECOLOGY, V83, P2516; Oro D, 1999, OECOLOGIA, V118, P438, DOI 10.1007/s004420050746; Piatt J. F., 2002, RESPONSE SEABIRDS FL; Piatt JF, 2004, SURVIVAL ADULT MURRE; PIATT JF, 1996, EXXON VALDEZ OIL SPI, V18, P720; Piatt JF, 2007, MAR ECOL PROG SER, V352, P221, DOI 10.3354/meps07078; Piatt John F., 2007, P335; PONS JM, 1995, J ANIM ECOL, V64, P592, DOI 10.2307/5802; Pravosudov VV, 2006, GEN COMP ENDOCR, V145, P25, DOI 10.1016/j.ygcen.2005.06.011; Pravosudov VV, 2001, GEN COMP ENDOCR, V123, P324, DOI 10.1006/gcen.2001.7684; PUGESEK BH, 1990, BEHAV ECOL SOCIOBIOL, V27, P211; Robards MD, 2002, ENVIRON BIOL FISH, V64, P429, DOI 10.1023/A:1016151224357; Robards MD, 1999, FISH B-NOAA, V97, P962; Romero LM, 2009, HORM BEHAV, V55, P375, DOI 10.1016/j.yhbeh.2008.12.009; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Romero LM, 2001, P NATL ACAD SCI USA, V98, P7366, DOI 10.1073/pnas.131091498; Romero LM, 2005, COMP BIOCHEM PHYS A, V140, P73, DOI 10.1016/j.cbpb.2004.11.004; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Romero LM, 1997, COMP BIOCHEM PHYS C, V116, P171, DOI 10.1016/S0742-8413(96)00208-3; Sandvik H, 2005, J ANIM ECOL, V74, P817, DOI 10.1111/j.1365-2656.2005.00981.x; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Shultz MT, 2009, MAR ECOL PROG SER, V393, P247, DOI 10.3354/meps08136; Shultz MT, 2008, GEN COMP ENDOCR, V155, P717, DOI 10.1016/j.ygcen.2007.11.002; SILVERIN B, 1986, GEN COMP ENDOCR, V64, P67, DOI 10.1016/0016-6480(86)90029-8; Sonsthagen SA, 2004, CONDOR, V106, P826, DOI 10.1650/7448; Stearns S. C., 1992, EVOLUTION LIFE HIST; Suryan RM, 2009, PROG OCEANOGR, V81, P214, DOI 10.1016/j.pocean.2009.04.012; Welcker J, 2009, FUNCT ECOL, V23, P1081, DOI 10.1111/j.1365-2435.2009.01585.x; Wingfield J.C., 1997, P267; WINGFIELD JC, 1992, J EXP ZOOL, V264, P419, DOI 10.1002/jez.1402640407; Wingfield JC, 2002, INTEGR COMP BIOL, V42, P600, DOI 10.1093/icb/42.3.600; WINGFIELD JC, 1975, STEROIDS, V26, P311, DOI 10.1016/0039-128X(75)90077-X; WINGFIELD JC, 1994, PERSPECTIVES IN COMPARATIVE ENDOCRINOLOGY, P520 84 84 87 2 79 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0269-8463 FUNCT ECOL Funct. Ecol. JUN 2010 24 3 625 637 10.1111/j.1365-2435.2009.01679.x 13 Ecology Environmental Sciences & Ecology 581FW WOS:000276508000015 Bronze 2018-11-12 J Neill, DB Neill, Dawn B. Extrinsic Risk HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Editorial Material Extrinsic risk; Parental investment; Life history theory; Life expectancy; Time preference Calif Polytech State Univ San Luis Obispo, Dept Social Sci, San Luis Obispo, CA 93407 USA Neill, DB (reprint author), Calif Polytech State Univ San Luis Obispo, Dept Social Sci, 1 Grand Ave, San Luis Obispo, CA 93407 USA. dbneill@calpoly.edu Anderson KG, 2010, HUM NATURE-INT BIOS, V21, P103, DOI 10.1007/s12110-010-9087-z; BORGERHOFF MM, 1992, EVOLUTIONARY ECOLOGY, P339; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; NEILL DB, 2010, HUMAN NATURE, V21; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; Quinn J, 2006, METH MOLEC MED, V121, P125; Schechter DE, 2010, HUM NATURE-INT BIOS, V21, P140, DOI 10.1007/s12110-010-9084-2; Stearns S. C., 1992, EVOLUTION LIFE HIST 12 1 1 0 1 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. JUN 2010 21 2 99 102 10.1007/s12110-010-9083-3 4 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 615JB WOS:000279129700001 2018-11-12 J Anderson, KG Anderson, Kermyt G. Life Expectancy and the Timing of Life History Events in Developing Countries HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article Life history theory; Life expectancy; Fertility; HIV/AIDS risk behaviors; Demographic and Health Surveys MORTALITY-RATES; 1ST BIRTH; AGE; RISK; HIV; MARRIAGE; AFRICA; SEX Life history theory predicts that greater extrinsic mortality will lead to earlier and higher fertility. To test this prediction, I examine the relationship between life expectancy at birth and several proxies for life history traits (ages at first sex and first marriage, total fertility rate, and ideal number of children), measured for both men and women. Data on sexual behaviors come from the Demographic and Health Surveys (DHS). Two separate samples are analyzed: a cross-sectional sample of 62 countries and a panel sample that includes multiple cross-sectional panels from 48 countries. Multivariate regression analysis is used to control for potential confounding variables. The results provide only partial support for the predictions, with greater support among women than men. However, the prediction is not supported in sub-Saharan African countries, most likely owing to the nonequilibrium conditions observed in sub-Saharan Africa with respect to life expectancy. The applicability of the model to understanding HIV/AIDS risk behaviors is discussed. Univ Oklahoma, Dept Anthropol, Norman, OK 73019 USA Anderson, KG (reprint author), Univ Oklahoma, Dept Anthropol, 521 Dale Hall Tower,455 W Lindsey, Norman, OK 73019 USA. kganders@ou.edu Anderson KG, 2007, INT FAM PLAN PERSPEC, V33, P98, DOI 10.1363/3309807; Ashford L. S., 2006, HIV AIDS AFFECT POPU; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BURGER O, 2010, P ROYAL SOC B, V27, P773; Burton L M, 1990, Hum Nat, V1, P123, DOI 10.1007/BF02692149; CATANIA J, 1990, HLTH ED Q, V17, P121; *CENTR INT AG, 2007, WORLD FACTB 2007; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Clark S, 2004, STUD FAMILY PLANN, V35, P149, DOI 10.1111/j.1728-4465.2004.00019.x; Daly M., 1988, HOMICIDE; DEROSE LF, 2005, 25 INT POP C IUSSP T; DEROSE LF, 2006, POP ASS AM ANN M LOS; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; GANT LM, 2009, J SOCIAL WORK PUBLIC, V24, P39; Geronimus AT, 1996, SOC SCI MED, V42, P589, DOI 10.1016/0277-9536(95)00159-X; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; HEATH KM, 2004, HUM BEH EV SOC M BER; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; Kruger DJ, 2006, HUM NATURE-INT BIOS, V17, P74, DOI 10.1007/s12110-006-1021-z; Lamptey PR, 2006, POPUL BULL, V61, P3; LANCASTER JB, 1991, YEARB PHYS ANTHROPOL, V34, P1; LANCASTER JB, 1997, FEMINISM EVOLUTIONAR, P466; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Low BS, 2002, AM J HUM BIOL, V14, P149, DOI 10.1002/ajhb.10043; Mirowsky J, 2005, J HEALTH SOC BEHAV, V46, P32, DOI 10.1177/002214650504600104; Neff J A, 1998, Ethn Health, V3, P283; *POP REF BUR, 2001, 2001 WORLD POP DAT S; *POP REF BUR, 2007, 2007 WORLD POP DAT S; *POP REF BUR, 2000, 2000 WORLD POP DAT S; Population Reference Bureau, 2004, 2004 WORLD POP DAT S; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; ROSENSTOCK IM, 1994, PREVENTING AIDS THEO, P5; StataCorp, 2007, STAT STAT SOFTW REL; Stearns S. C., 1992, EVOLUTION LIFE HIST; Ueyama M, 2009, DEMOGRAPHY, V46, P43, DOI 10.1353/dem.0.0039; *UN, 2005, POP HIV AIDS 2005; *UN, 2008, WORLD FERT PATT 2007; *UNAIDS, 2008, 2008 REP GLOB AIDS E; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; WOJCICKI JM, 2004, J BIOSOC SCI, V37, P1 45 17 17 0 8 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. JUN 2010 21 2 103 123 10.1007/s12110-010-9087-z 21 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 615JB WOS:000279129700002 2018-11-12 J Schechter, DE; Francis, CM Schechter, Deborah E.; Francis, Cyrilla M. A Life History Approach to Understanding Youth Time Preference HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article Life history theory; Time preference; Attachment; Cortisol; Risk behavior; Adolescence SUBSTANCE-USE DISORDERS; FAMILY ENVIRONMENT; SALIVARY CORTISOL; REPRODUCTIVE STRATEGY; TEENAGE CHILDBEARING; ACADEMIC-ACHIEVEMENT; STRESS REACTIVITY; SOCIAL SUPPORT; FATHER ABSENCE; PARENTAL LOSS Following from life history and attachment theory, individuals are predicted to be sensitive to variation in environmental conditions such that risk and uncertainty are internalized by cognitive, affective, and psychobiological mechanisms. In turn, internalizing of environmental uncertainty is expected to be associated with attitudes toward risk behaviors and investments in education. Native American youth aged 10-19 years (n = 89) from reservation communities participated in a study examining this pathway. Measures included family environmental risk and uncertainty, present and future time perspective, adolescent attachment, attitudes toward risk, investments in education, and salivary cortisol. Results support the idea that environmental risk and uncertainty are internalized during development. In addition, internalizing mechanisms significantly predicted attitudes toward risk and education: (1) lower scores on future time perspective and higher cortisol predicted higher scores on risk attitudes, and (2) higher scores on future time perspective and lower scores on problems with attachment predicted higher self-reported school performance. Gender differences were seen, with males anticipating a shorter lifespan than females, which predicted higher scores on risk attitudes and lower school performance. Implications for research on adolescent problem behavior and academic achievement are discussed. [Schechter, Deborah E.] Univ Washington, Dept Anthropol, Seattle, WA 98195 USA; [Francis, Cyrilla M.] Pleasant Point, Perry, ME USA Schechter, DE (reprint author), Univ Washington, Dept Anthropol, Seattle, WA 98195 USA. dschecht@u.washington.edu; cyril@nsppp.nashville.ihs.gov ABELABU DH, 2007, ADOLESCENCE, V42, P525; Andersen S, 2008, ECONOMETRICA, V76, P583, DOI 10.1111/j.1468-0262.2008.00848.x; [Anonymous], 2004, J WOMEN HEALTH GEN-B, V10, P433, DOI [10.1089/152460901300233902, DOI 10.1089/152460901300233902]; Apostolidis T, 2006, ADDICT BEHAV, V31, P2339, DOI 10.1016/j.addbeh.2006.03.008; Baker F, 2003, J ABNORM PSYCHOL, V112, P382, DOI 10.1037/0021-843X.112.3.382; Beauvais F, 2004, J ADOLESCENT HEALTH, V34, P493; Beauvais F, 2007, SUBST USE MISUSE, V42, P591, DOI 10.1080/10826080701202171; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, HUM NATURE-INT BIOS, V8, P361, DOI 10.1007/BF02913039; Bereczkei T, 2001, INT J BEHAV DEV, V25, P501, DOI 10.1080/01650250042000573; Bickel WK, 2001, ADDICTION, V96, P73, DOI 10.1046/j.1360-0443.2001.961736.x; Borowsky IW, 2009, PEDIATRICS, V124, pE81, DOI 10.1542/peds.2008-3425; BOWLBY J, 1969, ATTACHMENT, V1; Bowlby J., 1973, ATTACHMENT LOSS, V1; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Boyd JN, 2005, UNDERSTANDING BEHAVIOR IN THE CONTEXT OF TIME: THEORY , RESEARCH AND APPLICATION, P85; Caspers KM, 2005, ADDICT BEHAV, V30, P1007, DOI 10.1016/j.addbeh.2004.09.001; Chasiotis A, 1998, HUM NATURE-INT BIOS, V9, P321, DOI 10.1007/s12110-998-1008-z; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 1999, DEATH HOPE SEX STEPS; CHISHOLM JS, 1988, SOCIOBIOLOGICAL PERS, P78, DOI DOI 10.1007/978-1-4612-3760-0_3; Cook PA, 2001, PUBLIC HEALTH, V115, P54, DOI 10.1016/S0033-3506(01)00414-0; CUTRONA CE, 1994, J PERS SOC PSYCHOL, V66, P369, DOI 10.1037/0022-3514.66.2.369; DeCaro JA, 2008, DEV PSYCHOBIOL, V50, P183, DOI 10.1002/dev.20255; Decker SA, 2000, HORM BEHAV, V38, P29, DOI 10.1006/hbeh.2000.1597; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Elgar FJ, 2003, CHILD PSYCHIAT HUM D, V34, P35, DOI 10.1023/A:1025349908855; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Elzinga BM, 2008, PSYCHONEUROENDOCRINO, V33, P227, DOI 10.1016/j.psyneuen.2007.11.004; Finkelstein DM, 2007, J ADOLESCENT HEALTH, V40, P127, DOI 10.1016/j.jadohealth.2006.10.006; FLINN MV, 1995, CURR ANTHROPOL, V36, P854, DOI 10.1086/204444; Frederick S, 2002, J ECON LIT, V40, P351, DOI 10.1257/002205102320161311; Geronimus AT, 1999, SOC SCI MED, V49, P1623, DOI 10.1016/S0277-9536(99)00246-4; GERONIMUS AT, 1987, POPUL DEV REV, V13, P245, DOI 10.2307/1973193; Gordon CP, 1996, ADOLESCENCE, V31, P561; Gunnar MR, 1996, DEV PSYCHOBIOL, V29, P191, DOI 10.1002/(SICI)1098-2302(199604)29:3<191::AID-DEV1>3.0.CO;2-M; Gunnar MR, 2002, PSYCHONEUROENDOCRINO, V27, P199, DOI 10.1016/S0306-4530(01)00045-2; Hall PA, 2003, PSYCHOL HEALTH, V18, P685, DOI 10.1080/0887044031000110447; HAMMOND WA, 2000, CANADIAN NATIV UNPUB; Henson JM, 2006, J BEHAV MED, V29, P127, DOI 10.1007/s10865-005-9027-2; HERTSGAARD L, 1995, CHILD DEV, V66, P1100, DOI 10.1111/j.1467-8624.1995.tb00925.x; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Horstmanshof L, 2007, BRIT J EDUC PSYCHOL, V77, P703, DOI 10.1348/000709906X160778; Ivan Z, 2006, J CULTURAL EVOLUTION, V4, P267, DOI DOI 10.1556/JCEP.4.2006.3-4.5; Jacobsen T, 1997, DEV PSYCHOL, V33, P703, DOI 10.1037/0012-1649.33.4.703; Keough KA, 1999, BASIC APPL SOC PSYCH, V21, P149, DOI 10.1207/S15324834BA210207; KIESS W, 1995, PEDIATR RES, V37, P502, DOI 10.1203/00006450-199504000-00020; KIRSCHBAUM C, 1993, NEUROPSYCHOBIOLOGY, V28, P76, DOI 10.1159/000119004; Kostelecky KL, 2005, J ADOLESCENCE, V28, P665, DOI 10.1016/j.adolescence.2004.12.006; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Kudielka BM, 2009, PSYCHONEUROENDOCRINO, V34, P2, DOI 10.1016/j.psyneuen.2008.10.004; Leonetti DL, 2007, HUM NATURE-INT BIOS, V18, P225, DOI 10.1007/s12110-007-9010-4; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Luecken LJ, 2006, DEV PSYCHOPATHOL, V18, P295, DOI 10.1017/S0954579406060160; Lupien SJ, 2000, BIOL PSYCHIAT, V48, P976, DOI 10.1016/S0006-3223(00)00965-3; MacKillop J, 2007, J STUD ALCOHOL DRUGS, V68, P785, DOI 10.15288/jsad.2007.68.785; MAIN M, 1985, MONOGR SOC RES CHILD, V50, P66, DOI 10.2307/3333827; Meinlschmidt G, 2005, PSYCHONEUROENDOCRINO, V30, P568, DOI 10.1016/j.psyneuen.2005.01.006; MUNRO C, 1985, CLIN CHEM, V31, P956; Neill DB, 2010, HUM NATURE-INT BIOS, V21, P165, DOI 10.1007/s12110-010-9086-0; Nicolson NA, 2004, PSYCHONEUROENDOCRINO, V29, P1012, DOI 10.1016/j.psyneuen.2003.09.005; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Reynolds B, 2004, BEHAV PROCESS, V65, P35, DOI 10.1016/S0376-6357(03)00109-8; RODBARD D, 1974, CLIN CHEM, V20, P1255; Schindler A, 2005, ATTACH HUM DEV, V7, P207, DOI 10.1080/14616730500173918; *SPSS INC, 2006, SPSS 15 0 WIND; Stearns S. C., 1992, EVOLUTION LIFE HIST; Unger JB, 2000, J ADOLESCENT HEALTH, V26, P205, DOI 10.1016/S1054-139X(99)00067-1; *US DEP HHS, 2003, NAT HOUS SURV DRUG A; Verdejo-Garcia A, 2008, NEUROSCI BIOBEHAV R, V32, P777, DOI 10.1016/j.neubiorev.2007.11.003; Wall S., 1978, PATTERNS ATTACHMENT; Wang XT, 2009, EVOL HUM BEHAV, V30, P77, DOI 10.1016/j.evolhumbehav.2008.09.006; West M, 1998, J YOUTH ADOLESCENCE, V27, P661, DOI 10.1023/A:1022891225542; Wills TA, 2001, PSYCHOL ADDICT BEHAV, V15, P118, DOI 10.1037//0893-164X.15.2.118; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Wilson M, 1996, POPUL ENVIRON, V18, P143, DOI 10.1007/BF02208408 81 15 15 0 18 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. JUN 2010 21 2 140 164 10.1007/s12110-010-9084-2 25 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 615JB WOS:000279129700004 2018-11-12 J Gotthard, K; Berger, D Gotthard, K.; Berger, D. The diapause decision as a cascade switch for adaptive developmental plasticity in body mass in a butterfly JOURNAL OF EVOLUTIONARY BIOLOGY English Article Lepidoptera; life history theory; modularity; Pararge aegeria; phenotypic plasticity; threshold trait PARARGE-AEGERIA; PHENOTYPIC PLASTICITY; SEASONAL POLYPHENISM; EVOLUTION; FLIGHT; SIZE; SEX; CONSEQUENCES; OVIPOSITION; TEMPERATURE Switch-induced developmental plasticity, such as the diapause decision in insects, is a major form of adaptation to variable environments. As individuals that follow alternative developmental pathways will experience different selective environments the diapause decision may evolve to a cascade switch that induces additional adaptive developmental differences downstream of the diapause decision. Here, we show that individuals following alternative developmental pathways in a Swedish population of the butterfly, Pararge aegeria, display differential optimization of adult body mass as a likely response to predictable differences in thermal conditions during reproduction. In a more northern population where this type of selection is absent no similar difference in adult mass among pathways was found. We conclude that the diapause decision in the southern population appears to act as a cascade switch, coordinating development downstream of the diapause decision, to produce adult phenotypes adapted to the typical thermal conditions of their expected reproductive period. [Gotthard, K.; Berger, D.] Stockholm Univ, Dept Zool, S-10691 Stockholm, Sweden; [Berger, D.] Univ Zurich Irchel, Zool Museum, CH-8057 Zurich, Switzerland Gotthard, K (reprint author), Stockholm Univ, Dept Zool, S-10691 Stockholm, Sweden. karl.gotthard@zoologi.su.se Gotthard, Karl/F-1163-2011 Swedish Research Council We thank C. Wiklund, M. Friberg and two anonymous reviewers for comments on this manuscript, and in particular we thank C. Wiklund for sharing unpublished data on the phenology of P. aegeria in southern Sweden. This study was supported by a grant from the Swedish Research Council (VR) to KG. Andersson M., 1994, SEXUAL SELECTION; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Berger D, 2008, FUNCT ECOL, V22, P523, DOI 10.1111/j.1365-2435.2008.01392.x; Bergman M, 2007, P R SOC B, V274, P1659, DOI 10.1098/rspb.2007.0311; Berwaerts K, 2001, J ZOOL, V255, P261, DOI 10.1017/S0952836901001327; Brakefield PM, 2003, ANNU REV ECOL EVOL S, V34, P633, DOI 10.1146/annurev.ecolsys.34.011802.132425; Bull J. J., 1983, EVOLUTION SEX DETERM; DANILEVSKII AS, 1965, PHOTOPERIODISM SEASO; DAVIES NB, 1978, ANIM BEHAV, V26, P138, DOI 10.1016/0003-3472(78)90013-1; Denlinger DL, 2002, ANNU REV ENTOMOL, V47, P93, DOI 10.1146/annurev.ento.47.091201.145137; Eliasson C.U., 2005, NATIONALNYCKLEN SVER; Fisher R. A., 1958, GENETICAL THEORY NAT; FRIBERG M, 2007, BEHAV ECOL, V22, P758; FRIC Z, 2006, EVOL ECOL RES, V8, P121; Gotthard K, 2000, OECOLOGIA, V122, P36, DOI 10.1007/PL00008833; GOTTHARD K, 1995, OIKOS, V74, P3, DOI 10.2307/3545669; Gotthard K, 2008, BIOSCIENCE, V58, P222, DOI 10.1641/B580308; Gotthard K, 2007, AM NAT, V169, P768, DOI 10.1086/516651; GREENE E, 1989, SCIENCE, V243, P643, DOI 10.1126/science.243.4891.643; HAZEL WN, 1990, P ROY SOC B-BIOL SCI, V242, P181, DOI 10.1098/rspb.1990.0122; Janzen FJ, 2006, J EVOLUTION BIOL, V19, P1775, DOI 10.1111/j.1420-9101.2006.01138.x; Karlsson B, 2008, P ROY SOC B-BIOL SCI, V275, P2131, DOI 10.1098/rspb.2008.0404; Karlsson B, 2008, FUNCT ECOL, V22, P121, DOI 10.1111/j.1365-2435.2007.01334.x; Kemp DJ, 2006, BEHAV ECOL SOCIOBIOL, V59, P403, DOI 10.1007/s00265-005-0064-1; KINGSOLVER JG, 1995, EVOLUTION, V49, P942, DOI 10.1111/j.1558-5646.1995.tb02329.x; LANDE R, 1980, EVOLUTION, V34, P292, DOI 10.1111/j.1558-5646.1980.tb04817.x; Leimar O, 2006, AM NAT, V167, P367, DOI 10.1086/499566; Moczek AP, 2003, BEHAV ECOL, V14, P841, DOI 10.1093/beheco/arg062; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; Nijhout HF, 2003, EVOL DEV, V5, P9, DOI 10.1046/j.1525-142X.2003.03003.x; Nijhout HF, 2002, BIOESSAYS, V24, P553, DOI 10.1002/bies.10093; Nordstrom F., 1955, DISTRIBUTION FENNOSC; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; R Development Core Team, 2005, R LANG ENV STAT COMP; Roff DA, 1996, Q REV BIOL, V71, P3, DOI 10.1086/419266; Shapiro A. M., 1976, EVOL BIOL, V9, P259; SHREEVE TG, 1986, ECOL ENTOMOL, V11, P325, DOI 10.1111/j.1365-2311.1986.tb00309.x; Snell-Rood EC, 2010, BIOESSAYS, V32, P71, DOI 10.1002/bies.200900132; StataCorp, 2005, STAT STAT SOFTW REL; Tauber M.J., 1986, SEASONAL ADAPTATIONS; Teder T, 2010, OECOLOGIA, V162, P117, DOI 10.1007/s00442-009-1439-1; Van Dyck H, 2002, J EVOLUTION BIOL, V15, P216, DOI 10.1046/j.1420-9101.2002.00384.x; Van Dyck H, 1998, OECOLOGIA, V114, P326, DOI 10.1007/s004420050454; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WICKMAN PO, 1983, ANIM BEHAV, V31, P1206, DOI 10.1016/S0003-3472(83)80027-X; WIKLUND C, 1983, ECOL ENTOMOL, V8, P233, DOI 10.1111/j.1365-2311.1983.tb00503.x 46 16 17 1 20 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. JUN 2010 23 6 1129 1137 10.1111/j.1420-9101.2010.01994.x 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 596UD WOS:000277710100002 20456570 Bronze 2018-11-12 J Nasution, S; Roberts, D; Farnsworth, K; Parker, GA; Elwood, RW Nasution, S.; Roberts, D.; Farnsworth, K.; Parker, G. A.; Elwood, R. W. Maternal effects on offspring size and packaging constraints in the whelk JOURNAL OF ZOOLOGY English Article egg size; egg number; offspring size; offspring number; egg capsules; sibling competition NEOGASTROPOD BUCCINUM-UNDATUM; EGG-SIZE; REPRODUCTIVE-CYCLE; FEMALE SIZE; NUMBER; PROSOBRANCHIA; CAPSULES Life-history theory predicts an optimal offspring size, irrespective of reproductive effort; however, in some species offspring size correlates positively with maternal size. We examine hypotheses for why this latter situation should occur in the whelk Buccinum undatum. The trade-offs between aspects of reproduction in whelks are complicated due to the provision of protective egg capsules. Many eggs are placed within each capsule but c. 99% of these eggs are consumed by the remaining developing young. Large maternal size results in more eggs, larger eggs, more eggs consumed per hatchling, more capsules, larger capsules, more eggs per capsule, a larger number of hatchlings per capsule and larger hatchlings. Increased intra-capsule and post-hatch sibling competition may decrease the marginal value for additional young and select for larger young, however, our data do not support this explanation. Instead, packaging constraints within each capsule limit the size of hatchlings but this constraint is relaxed for medium to large females because they produce large capsules. Small females appear to produce young below optimum size because of the space constraint thus explaining the correlation between maternal size and offspring size. [Nasution, S.; Roberts, D.; Farnsworth, K.; Elwood, R. W.] Queens Univ Belfast, Sch Biol Sci, Belfast BT9 7BL, Antrim, North Ireland; [Parker, G. A.] Univ Liverpool, Sch Biol Sci, Liverpool L69 3BX, Merseyside, England Elwood, RW (reprint author), Queens Univ Belfast, Sch Biol Sci, Belfast BT9 7BL, Antrim, North Ireland. r.elwood@qub.ac.uk Parker, Geoff/C-4337-2008; Mavoa, Suzanne/B-5372-2010; Farnsworth, Keith/B-5546-2008 Parker, Geoff/0000-0003-4795-6352; Government of the Republic of Indonesia; Department of Education and Culture, Development for Undergraduate Education (DUE); Local Project Implementation Unit (LPIU) Universitas Riau [IBRD-Loan 4043-IND] We express our sincere gratitude to the Government of the Republic of Indonesia which provided postgraduate funding to S. Nasution through the Department of Education and Culture, Development for Undergraduate Education (DUE) Project, Local Project Implementation Unit (LPIU) Universitas Riau (IBRD-Loan 4043-IND). Our thanks also go to the staff of the Centre for Marine Resources and Mariculture (C-Mar), Portaferry, where the study was carried out, for technical support and to Virginia Hayssen and two anonymous referees for their helpful comments on an earlier version of the work. Baur Bruno, 1992, P102; Bernardo J, 1996, AM ZOOL, V36, P216; Bernardo J, 1996, AM ZOOL, V36, P83; Einum S, 2002, P ROY SOC B-BIOL SCI, V269, P2325, DOI 10.1098/rspb.2002.2150; FRETTER V, 1994, BRIT PROSOBRANCH MOL; Glazier DS, 2000, ECOL LETT, V3, P142, DOI 10.1046/j.1461-0248.2000.00132.x; Hendry AP, 2003, EVOL ECOL RES, V5, P421; Hendry AP, 2001, AM NAT, V157, P387, DOI 10.1086/319316; Ilano AS, 2004, J MOLLUS STUD, V70, P277, DOI 10.1093/mollus/70.3.277; KIDEYS AE, 1993, J MAR BIOL ASSOC UK, V73, P391, DOI 10.1017/S002531540003294X; MARTEL A, 1986, J EXP MAR BIOL ECOL, V96, P27, DOI 10.1016/0022-0981(86)90011-0; NASUTION S, 2000, THESIS QUEENS U BELF; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PECHENIK JA, 1983, J EXP MAR BIOL ECOL, V71, P165, DOI 10.1016/0022-0981(93)90071-U; Penchaszadeh PE, 1996, VELIGER, V39, P83; Roff Derek A., 1992; ROLLER RA, 1988, AM MALACOL BULL, V6, P189; Sakai S, 2001, AM NAT, V157, P348, DOI 10.1086/319194; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STOCKMANNBOSBAC.R, 1999, MAR BIOL, V102, P283; Thygesen UH, 2005, P ROY SOC B-BIOL SCI, V272, P1323, DOI 10.1098/rspb.2005.3094; Valentinsson D, 2002, MAR BIOL, V140, P1139, DOI 10.1007/s00227-002-0793-x 22 4 4 0 9 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. JUN 2010 281 2 112 117 10.1111/j.1469-7998.2009.00681.x 6 Zoology Zoology 599NN WOS:000277920100006 2018-11-12 J Himuro, C; Fujisaki, K Himuro, Chihiro; Fujisaki, Kenji Mating experience weakens starvation tolerance in the seed bug Togo hemipterus (Heteroptera: Lygaeidae) PHYSIOLOGICAL ENTOMOLOGY English Article Mating effort; mating experience; seminal fluid; sexual difference; starvation tolerance; Togo hemipterus DROSOPHILA-MELANOGASTER; FOOD LIMITATION; REPRODUCTION; COSTS; SPERM; POPULATIONS; RESPONSES; SELECTION; SPIDER; SEXES Organisms are exposed to various stresses caused by environmental fluctuations. One of the most common stresses is the shortage of food. Individuals of many species must survive periods of starvation. There appears to be a trade-off between reproduction and survival. When residual reproductive value declines for an individual, life-history theory predicts an increase in current reproductive investment. Current reproductive investment differs between virgin and mated individuals. It is likely that mating experience influences starvation tolerance. However, few studies have investigated sex differences in the effect of mating experience on starvation tolerance or clarified the causes of reductions in starvation tolerance in both sexes. In the present study, these questions are investigated using the seed bug Togo hemipterus (Heteroptera: Lygaeidae).The results of the present study demonstrate that mating is costly for both sexes. Mated males show very short survival times and a daily reduction in weight, and daily energy expenditures are significantly greater in mated males than in virgin males. It is possible that starvation increases the mating effort of males, such as behavioural activities and the amount of time spent searching for females. A trade-off between survival duration and lifetime fecundity is found in virgin females. However, there is no trade-off in mated females, which have very short survival times. Whether male seminal substances contribute to the short survival times of mated females is considered. This is the first report demonstrating the influence of sex and mating experience on starvation tolerance. Sex-specific causes for reductions in starvation tolerance are discussed. [Himuro, Chihiro] Kyoto Univ, Grad Sch Agr, Lab Insect Ecol, Sakyo Ku, Kyoto 6068502, Japan Himuro, C (reprint author), Kyoto Univ, Grad Sch Agr, Lab Insect Ecol, Sakyo Ku, Kyoto 6068502, Japan. chimuro@kais.kyoto-u.ac.jp HIMURO, Chihiro/B-1581-2011 HIMURO, Chihiro/0000-0002-0081-3998 Ministry of Education, Culture, Sports, Science, and Technology of Japan (JSPS) [19-54183] The authors thank Dr T. Nishida and the members of the Laboratory of Insect Ecology, Kyoto University, for valuable advice and discussions regarding the experiments. The authors thank Professor Goldsworthy and the two referees for their helpful comments. This work was supported in part by the 21st Century COE Program for Innovative Food and Environmental Studies Pioneered by Entomomimetic Sciences, from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (JSPS Grant-in-Aid no. 19-54183). The experiments conducted for this study comply with the current laws of Japan. ANDERSON JF, 1974, ECOLOGY, V55, P576, DOI 10.2307/1935148; Andersson M., 1994, SEXUAL SELECTION; Arnqvist G, 2005, SEXUAL CONFLICT; Blanckenhorn WU, 2002, BEHAV ECOL, V13, P353, DOI 10.1093/beheco/13.3.353; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; Civetta A, 2000, P NATL ACAD SCI USA, V97, P13162, DOI 10.1073/pnas.230305397; Cordts R, 1996, ANIM BEHAV, V52, P269, DOI 10.1006/anbe.1996.0172; Crudgington HS, 2000, NATURE, V407, P855, DOI 10.1038/35038154; DEWSBURY DA, 1982, AM NAT, V119, P601, DOI 10.1086/283938; Djawdan M, 1997, ECOLOGY, V78, P828; Eberhard W. G., 1996, FEMALE CONTROL SEXUA; ENGQVIST LE, 2002, P ROY SOC LOND B BIO, V268, P729; HIMURO C, 2008, J INSECT PHYSL, V54, P1583; Himuro C, 2009, THESIS U KYOTO; HOFFMAN AA, 1991, EVOLUTIONARY GENETIC; HOLIDAY R, 1989, BIOESSAYS, V10, P125; JULIANO SA, 1986, ECOLOGY, V67, P1036, DOI 10.2307/1939826; Karan D, 1998, EVOLUTION, V52, P825, DOI 10.1111/j.1558-5646.1998.tb03706.x; Kirk KL, 1997, ECOLOGY, V78, P434, DOI 10.1890/0012-9658(1997)078[0434:LHRTVE]2.0.CO;2; KOEHN RK, 1989, BIOL J LINN SOC, V37, P157, DOI 10.1111/j.1095-8312.1989.tb02100.x; Molina Y, 2008, ANIM BEHAV, V76, P1327, DOI 10.1016/j.anbehav.2008.04.021; Moran MD, 1997, ECOLOGY, V78, P1266, DOI 10.1890/0012-9658(1997)078[1266:RFLRSO]2.0.CO;2; Olsson M, 1997, P ROY SOC B-BIOL SCI, V264, P455, DOI 10.1098/rspb.1997.0065; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Poiani A, 2006, BEHAV ECOL SOCIOBIOL, V60, P289, DOI 10.1007/s00265-006-0178-0; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Roff D. A., 2002, LIFE HIST EVOLUTION; Rolff J, 2002, P NATL ACAD SCI USA, V99, P9916, DOI 10.1073/pnas.152271999; ROWE L, 1994, TRENDS ECOL EVOL, V9, P289, DOI 10.1016/0169-5347(94)90032-9; SAS Institute Inc, 2004, JMP START STAT; SLATER J A, 1975, Journal of the Australian Entomological Society, V14, P47; SLATER JA, 1977, BIOTROPICA, V9, P217, DOI 10.2307/2388139; Solbreck C., 1990, P197; SOLBRECK C, 1979, OECOLOGIA, V43, P51, DOI 10.1007/BF00346672; Solbreck C., 1978, P195; South SH, 2009, P R SOC B, V276, P3671, DOI 10.1098/rspb.2009.0991; Stearns S. C., 1992, EVOLUTION LIFE HIST; TANAKA K, 1985, COMP BIOCHEM PHYS A, V80, P415; Teal PEA, 2000, P NATL ACAD SCI USA, V97, P3708, DOI 10.1073/pnas.060034397; Thornhill R., 1983, EVOLUTION INSECT MAT; TOMOKUNI M, 1993, ZENKOKU NOSON KYOIKU; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 42 14 14 2 8 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0307-6962 PHYSIOL ENTOMOL Physiol. Entomol. JUN 2010 35 2 128 133 10.1111/j.1365-3032.2009.00719.x 6 Entomology Entomology 598BJ WOS:000277806900003 2018-11-12 J Ejsmond, MJ; Czarnoleski, M; Kapustka, F; Kozlowski, J Ejsmond, Maciej Jan; Czarnoleski, Marcin; Kapustka, Filip; Kozlowski, Jan How to Time Growth and Reproduction during the Vegetative Season: An Evolutionary Choice for Indeterminate Growers in Seasonal Environments AMERICAN NATURALIST English Article life history; optimal allocation models; capital breeding; income breeding; reproductive phenology OPTIMAL RESOURCE-ALLOCATION; LIFE-HISTORY; DEPENDENT MORTALITY; FISH POPULATIONS; LOWLAND RIVERS; CLASS STRENGTH; BODY-SIZE; FITNESS; ENERGY; AGE Indeterminate growers such as plants, mollusks, fish, amphibians, and reptiles are highly diversified with respect to the seasonal timing of growth and reproduction. Current life-history theory does not offer a consistent view on the origin of this diversity. We use dynamic optimization to examine resource allocation in seasonal environments, considering that offspring produced at different times of the season have unequal future prospects. Reduction of these prospects during the season produced indeterminate growers that grew mostly after maturation, achieving large final body sizes. It also changed the optimal timing of growth and reproduction during a season, from grow-first-reproduce-later, as usually predicted by life-history theory, to the reproduce-first-grow-later tactic; other tactics were produced by the interactive effects of winter survival and unequal offspring prospects. The results suggest that devaluation of offspring production provides conditions for the evolution of capital breeding, even in fully predictable seasonal environments. Thus, the unequal fate of newborns from different parts of a season may explain the origin of diversity of reproductive phenologies, growth patterns, and capital breeding in nature. [Ejsmond, Maciej Jan; Czarnoleski, Marcin; Kapustka, Filip; Kozlowski, Jan] Jagiellonian Univ, Inst Environm Sci, PL-30387 Krakow, Poland Ejsmond, MJ (reprint author), Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland. maciek.ejsmond@uj.edu.pl Kozlowski, Jan/K-5549-2012; Ejsmond, Maciej/H-8751-2018 Kozlowski, Jan/0000-0002-7084-2030; Ejsmond, Maciej/0000-0002-3598-4578; Czarnoleski, Marcin/0000-0003-2645-0360 Polish Ministry of Science and Higher Education [N N304 044237]; Jagiellonian University funds [DS/WBiNoZ/INoS/757/08] The work was supported by the Polish Ministry of Science and Higher Education (grant N N304 044237) and partly by Jagiellonian University funds (grant DS/WBiNoZ/INoS/757/08). We thank K. Argasinski and T. Muller for comments on earlier versions of the manuscript; M. Jacobs helped to edit it. Angilletta MJ, 2004, INTEGR COMP BIOL, V44, P498, DOI 10.1093/icb/44.6.498; Angilletta MJ, 2004, AM NAT, V164, pE168, DOI 10.1086/425222; BALLINGER RE, 1981, J NAT HIST, V15, P213, DOI 10.1080/00222938100770171; Begg GA, 2000, MAR ECOL PROG SER, V202, P193, DOI 10.3354/meps202193; BELLMAN R, 1957, DYNAMIC PROGRAMMING; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Boyd IL, 1998, AM NAT, V152, P717, DOI 10.1086/286202; Briffa KR, 2008, PHILOS T R SOC B, V363, P2271, DOI 10.1098/rstb.2007.2199; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; Bronson EH, 2004, J BIOL RHYTHM, V19, P180, DOI 10.1177/0748730404264658; Brown GP, 2006, ECOLOGY, V87, P133, DOI 10.1890/04-1882; Cichon M, 1997, P ROY SOC B-BIOL SCI, V264, P1383, DOI 10.1098/rspb.1997.0192; Cichon M, 1999, ACTA OECOL, V20, P25, DOI 10.1016/S1146-609X(99)80012-5; Cichon M, 2001, J EVOLUTION BIOL, V14, P180, DOI 10.1046/j.1420-9101.2001.00243.x; Clark C.W, 2000, OXFORD SERIES ECOLOG; CUSHING DH, 1990, ADV MAR BIOL, V26, P249, DOI 10.1016/S0065-2881(08)60202-3; Czarnoleski M, 2005, EVOL ECOL RES, V7, P821; Czarnoleski M, 1998, ECOL LETT, V1, P5, DOI 10.1046/j.1461-0248.1998.0007b.x; Czarnoleski M, 2003, EVOL ECOL RES, V5, P571; Dillon R. T., 2000, ECOLOGY FRESHWATER M; DRENT RH, 1980, ARDEA, V68, P225; Drummond H, 2006, Q REV BIOL, V81, P3, DOI 10.1086/503922; Einum S, 2000, EVOLUTION, V54, P628, DOI 10.1111/j.0014-3820.2000.tb00064.x; Gibbs JP, 2001, CONSERV BIOL, V15, P1175, DOI 10.1046/j.1523-1739.2001.0150041175.x; Glazier DS, 2005, BIOL REV, V80, P611, DOI 10.1017/S1464793105006834; GODFRAY HCJ, 1995, NATURE, V376, P133, DOI 10.1038/376133a0; Heino M, 1996, FUNCT ECOL, V10, P245, DOI 10.2307/2389849; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Houston AI, 2007, BEHAV ECOL, V18, P241, DOI 10.1093/beheco/arl080; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Jorgensen C, 2008, ECOLOGY, V89, P3436, DOI 10.1890/07-1469.1; Kinoshita M, 1998, OECOLOGIA, V114, P31, DOI 10.1007/s004420050416; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kozlowski J, 2004, INTEGR COMP BIOL, V44, P480, DOI 10.1093/icb/44.6.480; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; Kozlowski J, 1999, EVOL ECOL RES, V1, P423; Kozlowski J, 2006, POL J ECOL, V54, P585; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; Lima SL, 1998, ADV STUD BEHAV, V27, P215; Mann R.H.K., 1984, P171; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Nunn AD, 2007, J FISH BIOL, V70, P1254, DOI 10.1111/j.1095-8649.2007.01415.x; Nunn AD, 2003, FRESHWATER BIOL, V48, P579, DOI 10.1046/j.1365-2427.2003.01033.x; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; Peters R.H., 1983, P1; PUGLIESE A, 1990, EVOL ECOL, V4, P75, DOI 10.1007/BF02270717; Reale D, 2003, P ROY SOC B-BIOL SCI, V270, P591, DOI 10.1098/rspb.2002.2224; Remmel T, 2009, ECOL ENTOMOL, V34, P98, DOI 10.1111/j.1365-2311.2008.01044.x; Reznick D, 2006, OIKOS, V114, P135, DOI 10.1111/j.2006.0030-1299.14446.x; Roff Derek A., 1992; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; Ryan TJ, 2004, OECOLOGIA, V140, P46, DOI 10.1007/s00442-004-1563-x; Sibly RM, 2009, AM NAT, V173, pE185, DOI 10.1086/598680; Stearns S. C., 1992, EVOLUTION LIFE HIST; Taborsky B, 2003, P ROY SOC B-BIOL SCI, V270, P713, DOI 10.1098/rspb.2002.2255; Trillmich F, 2006, BEHAV ECOL SOCIOBIOL, V60, P137, DOI 10.1007/s00265-005-0150-4; Tryjanowski P, 2003, ANN ZOOL FENN, V40, P459; Varpe O, 2007, OIKOS, V116, P1331, DOI 10.1111/j.2007.0030-1299.15893.x; Varpe O, 2009, OIKOS, V118, P363, DOI 10.1111/j.1600-0706.2008.17036.x; Wada S, 2000, J CRUSTACEAN BIOL, V20, P474, DOI 10.1651/0278-0372(2000)020[0474:ROTHCP]2.0.CO;2; Warner DA, 2007, OECOLOGIA, V154, P65, DOI 10.1007/s00442-007-0809-9; Weinberg JR, 1996, MAR BIOL, V126, P663, DOI 10.1007/BF00351333 62 21 21 1 35 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. MAY 2010 175 5 551 563 10.1086/651589 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 575XM WOS:000276104400006 20331361 2018-11-12 J Gruebler, MU; Naef-Daenzer, B Grueebler, Martin U.; Naef-Daenzer, Beat Brood overlap and male ornamentation in the double-brooded barn swallow BEHAVIORAL ECOLOGY English Article Hirundo rustica; interbrood interval; intraseasonal trade-off between broods; life history; optimal timing of reproduction; postfledging care MIXED REPRODUCTIVE STRATEGIES; HIRUNDO-RUSTICA; SEXUAL ORNAMENTATION; POSTFLEDGING CARE; COOPERATIVE BIRD; IMMUNE-RESPONSE; PARENTAL EFFORT; MARKED ANIMALS; CLUTCH OVERLAP; TRADE-OFF Brood overlap can be an optimal solution to the intraseasonal trade-off in the allocation of time between successive broods. In line with life-history theory, the extent of brood overlap should be adjusted according to the individual costs and benefits of the simultaneous investment into 2 broods. Phenotypic quality can affect these costs and benefits. In barn swallows (Hirundo rustica), male tail streamer length is a phenotypic quality trait, which is related to reproductive decisions, resulting in pairs with long-tailed males showing higher annual output than those with short-tailed males. We predict that the extent of brood overlap in barn swallows is positively associated with the male's tail ornamentation. Using radiotelemetry, we assessed the duration of postfledging care and juvenile survival and quantified brood overlap with unprecedented accuracy. Broods of pairs with highly ornamented males overlapped to a larger extent than those of pairs with short-tailed males. Brood overlap depended on the reproductive value of the previous brood and on female phenotypic quality. Clutch initiation after a short interbrood interval was associated with a great brood overlap. Short. duration of postfledging care but not brood overlap reduced fledgling survival in first broods, and earlier second broods were associated with enlarged clutches. Thus, pairs with long-tailed males managed to increase clutch size and survival of the second brood by an early onset without: incurring survival costs in the first brood. This is in line with the hypothesis that brood overlap enforces differential annual reproductive output among individuals varying in phenotypic quality. [Grueebler, Martin U.; Naef-Daenzer, Beat] Swiss Ornithol Inst, CH-6204 Sempach, Switzerland Gruebler, MU (reprint author), Swiss Ornithol Inst, Seerose 1, CH-6204 Sempach, Switzerland. martin.gruebler@vogelwarte.ch Swiss National Science Foundation [3100-65382.01] Swiss National Science Foundation (Grant 3100-65382.01 to B.N.). ANDERSON DR, 1994, ECOLOGY, V75, P1780, DOI 10.2307/1939637; BURLEY N, 1986, AM NAT, V127, P415, DOI 10.1086/284493; BURLEY N, 1980, AM NAT, V115, P223, DOI 10.1086/283556; Burnham Kenneth P, 1998, MODEL SELECTION MULT; CRICK HQP, 1993, J ANIM ECOL, V62, P263, DOI 10.2307/5357; Cuervo JJ, 1996, BEHAV ECOL, V7, P132, DOI 10.1093/beheco/7.2.132; DUNN P, 2004, EFFECTS CLIMATIC CHA, P69; Gruebler MU, 2008, ECOLOGY, V89, P2736, DOI 10.1890/07-0786.1; Gruebler MU, 2007, THESIS U ZURICH ZURI; Gruebler MU, 2008, AGR ECOSYST ENVIRON, V123, P75, DOI 10.1016/j.agee.2007.05.001; Gruebler MU, 2008, ANIM BEHAV, V75, P1877, DOI 10.1016/j.anbehav.2007.12.002; Gruebler MU, 2010, J ANIM ECOL, V79, P334, DOI 10.1111/j.1365-2656.2009.01650.x; Kokko H, 2005, BEHAV ECOL, V16, P724, DOI 10.1093/beheco/ari050; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Moller AP, 2007, BEHAV ECOL, V18, P62, DOI 10.1093/beheco/ar1051; MOLLER AP, 1991, ANIM BEHAV, V42, P671, DOI 10.1016/S0003-3472(05)80248-9; MOLLER AP, 1992, J EVOLUTION BIOL, V5, P603, DOI 10.1046/j.1420-9101.1992.5040603.x; MOLLER AP, 1988, NATURE, V332, P640, DOI 10.1038/332640a0; Moller AP, 1997, BEHAV ECOL SOCIOBIOL, V41, P353, DOI 10.1007/s002650050395; Moller AP, 2002, ECOLOGY, V83, P2220, DOI 10.2307/3072053; Moller AP, 2003, BEHAV ECOL, V14, P707, DOI 10.1093/beheco/arg051; MOLLER AP, 1994, SEXUAL SELECTION BAR; Naef-Daenzer B, 2005, J EXP BIOL, V208, P4063, DOI 10.1242/jeb.01870; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Naef-Daenzer B, 2007, J AVIAN BIOL, V38, P404, DOI 10.1111/j.2007.0908-8857.03863.x; Naef-Daenzer Beat, 2001, Avian Science, V1, P15; NAEFDAENZER B, 1993, J WILDLIFE MANAGE, V57, P680, DOI 10.2307/3809066; Powell LA, 1999, AUK, V116, P1001, DOI 10.2307/4089680; RAPPOLE JH, 1991, J FIELD ORNITHOL, V62, P335; Ridley AR, 2008, BEHAV ECOL, V19, P1136, DOI 10.1093/beheco/arn097; Ridley AR, 2007, BEHAV ECOL, V18, P994, DOI 10.1093/beheco/arm074; Saino N, 1997, P NATL ACAD SCI USA, V94, P549, DOI 10.1073/pnas.94.2.549; Saino N, 1995, BEHAV ECOL, V6, P397, DOI 10.1093/beheco/6.4.397; Saino N, 2003, J EVOLUTION BIOL, V16, P1127, DOI 10.1046/j.1420-9101.2003.00616.x; Saino N, 2002, P ROY SOC B-BIOL SCI, V269, P1005, DOI 10.1098/rspb.2002.1992; Saino N, 2002, BEHAV ECOL, V13, P169, DOI 10.1093/beheco/13.2.169; Sheldon BC, 2000, TRENDS ECOL EVOL, V15, P397, DOI 10.1016/S0169-5347(00)01953-4; SMITH HG, 1989, IBIS, V131, P589, DOI 10.1111/j.1474-919X.1989.tb04794.x; Turner A., 2006, BARN SWALLOW; Verhulst S, 1997, FUNCT ECOL, V11, P714, DOI 10.1046/j.1365-2435.1997.00145.x; Verhulst S, 1996, ANIM BEHAV, V51, P957, DOI 10.1006/anbe.1996.0099; Ward S, 2006, J AVIAN BIOL, V37, P179, DOI 10.1111/j.2006.0908-8857.03262.x; WEATHERHEAD PJ, 1990, ANIM BEHAV, V39, P1179, DOI 10.1016/S0003-3472(05)80790-0; Wheelwright NT, 2003, ANIM BEHAV, V65, P435, DOI 10.1006/anbe.2003.2086; White GC, 1999, BIRD STUDY, V46, P120; WITH KA, 1990, CAN J ZOOL, V68, P733, DOI 10.1139/z90-106; ZAIAS J, 1989, ETHOLOGY, V80, P94 47 6 6 1 23 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 BEHAV ECOL Behav. Ecol. MAY-JUN 2010 21 3 513 519 10.1093/beheco/arq017 7 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 593KH WOS:000277452800012 Bronze 2018-11-12 J Cox, RM; Calsbeek, R Cox, Robert M.; Calsbeek, Ryan SEVERE COSTS OF REPRODUCTION PERSIST IN ANOLIS LIZARDS DESPITE THE EVOLUTION OF A SINGLE-EGG CLUTCH EVOLUTION English Article Growth; life history; locomotor performance; phenotypic manipulation; reproductive investment; survival; trade-off LIFE-HISTORY EVOLUTION; SEXUAL SIZE DIMORPHISM; NATURAL-SELECTION; TRADE-OFFS; IMMUNE FUNCTION; HIDDEN COST; PERFORMANCE; POPULATIONS; FITNESS; DENSITY A central tenet of life-history theory is that investment in reproduction compromises survival. We tested for costs of reproduction in wild brown anoles (Anolis sagrei) by eliminating reproductive investment via surgical ovariectomy and/or removal of oviductal eggs Anoles are unusual among lizards in that females lay single-egg clutches at frequent intervals throughout a lengthy reproductive season. This evolutionary reduction in clutch size is thought to decrease the physical burden of reproduction, but our results show that even a single egg significantly impairs stamina and sprint speed. Reproductive females also suffered a reduction in growth, suggesting that the cumulative energetic cost of successive clutches constrains the allocation of energy to other important functions. Finally, in each of two separate years, elimination of reproductive investment increased breeding-season survival by 56%, overwinter survival by 96%, and interannual survival by 200% relative to reproductive controls. This extreme fitness cost of reproduction may reflect a combination of intrinsic (i.e., reduced allocation of energy to maintenance) and extrinsic (i.e., increased susceptibility to predators) sources of mortality. Our results provide clear experimental support for a central tenet of life-history theory and show that costs of reproduction persist in anoles despite the evolution of a single-egg clutch. [Cox, Robert M.; Calsbeek, Ryan] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA Cox, RM (reprint author), Dartmouth Coll, Dept Biol Sci, 401 Gilman Hall, Hanover, NH 03755 USA. Calsbeek, Ryan/0000-0002-9236-4092 National Science Foundation [DAB 0816862]; Dartmouth College We thank L Bonvini for assistance with surgical manipulations, D Cheney for help recapturing lizards. and L Cheek for digitizing sprint trials We thank M Ayres. A Badyaev. L Bonvini, M C Duryea, J Garnas, R Holmes, R Irwin. H John-Alder, NI McPeek, L Symes. and B Taylor for constructive criticism We thank N Bottomley of Regatta Point and R Hart of February Point Resort Estates tor permission to work on their property Research was conducted under permits from the Bahamas Department of Agriculture and the Institutional Animal Care and Use Committee at Dartmouth College (protocol 07-02-03) An award from the National Science Foundation (DAB 0816862 to RC) and funding from Dartmouth College provided financial support ANDREWS R, 1974, ECOLOGY, V55, P1317, DOI 10.2307/1935459; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; BAILEY RC, 1992, OIKOS, V65, P349, DOI 10.2307/3545031; Bronikowski AM, 2008, AGE, V30, P169, DOI 10.1007/s11357-008-9060-5; Calsbeek R, 2008, EVOL ECOL RES, V10, P197; Calsbeek R, 2008, EVOLUTION, V62, P1137, DOI 10.1111/j.1558-5646.2008.00356.x; Calsbeek R, 2008, EVOLUTION, V62, P478, DOI 10.1111/j.1558-5646.2007.00282.x; Calsbeek R, 2008, J ANIM ECOL, V77, P103, DOI 10.1111/j.1365-2656.2007.01320.x; Calsbeek R, 2007, EVOLUTION, V61, P2493, DOI 10.1111/j.1558-5646.2007.00206.x; Calsbeek R, 2007, EVOLUTION, V61, P1052, DOI 10.1111/j.1558-5646.2007.00093.x; Clobert J, 1998, J EVOLUTION BIOL, V11, P329; COOPER WE, 1990, BEHAV ECOL SOCIOBIOL, V27, P153; Cox RM, 2006, J ANIM ECOL, V75, P1361, DOI 10.1111/j.1365-2656.2006.01160.x; Cox RM, 2009, J EVOLUTION BIOL, V22, P1586, DOI 10.1111/j.1420-9101.2009.01772.x; COX RM, 2009, EVOLUTION; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; Ford J. J., 1989, ANIMAL GROWTH REGULA, P317; French SS, 2007, AM NAT, V170, P79, DOI 10.1086/518569; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gasser M, 2000, EVOLUTION, V54, P1260; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Harshman LG, 2000, TRENDS ECOL EVOL, V15, P32, DOI 10.1016/S0169-5347(99)01756-5; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis MA, 2007, BIOL J LINN SOC, V90, P293, DOI 10.1111/j.1095-8312.2007.00721.x; KETTERSON ED, 1992, AM NAT, V140, P980, DOI 10.1086/285451; Kratochvil L, 2007, FUNCT ECOL, V21, P171, DOI 10.1111/j.1365-2435.2006.01202.x; LANDWER AJ, 1994, OECOLOGIA, V100, P243, DOI 10.1007/BF00316951; LEE JC, 1989, COPEIA, P930, DOI 10.2307/1445979; Lee SJ, 1996, P ROY SOC B-BIOL SCI, V263, P619, DOI 10.1098/rspb.1996.0093; Lerner DT, 2001, GEN COMP ENDOCR, V124, P218, DOI 10.1006/gcen.2001.7695; Losos JB, 2004, NATURE, V432, P505, DOI 10.1038/nature03039; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martinez MC, 2006, EDUC POLICY, V20, P299, DOI 10.1177/0895904805285017; Miles DB, 2000, EVOLUTION, V54, P1386; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; Roff D. A., 2002, LIFE HIST EVOLUTION; ROSE MR, 1981, GENETICS, V97, P187; Rubenstein DR, 2005, HORM BEHAV, V48, P329, DOI 10.1016/j.yhbeh.2005.04.006; SCHWARZKOPF L, 1993, ECOLOGY, V74, P1970, DOI 10.2307/1940840; SCHWARZKOPF L, 1994, LIZARD ECOLOGY, P7; SEIGEL RA, 1987, OECOLOGIA, V73, P481, DOI 10.1007/BF00379404; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; Sinervo B, 1999, AM NAT, V154, pS26, DOI 10.1086/303281; Sinervo B, 1996, EVOLUTION, V50, P1299, DOI 10.1111/j.1558-5646.1996.tb02370.x; SINERVO B, 1991, J EXP BIOL, V155, P323; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; Sinervo B, 2000, NATURE, V406, P985, DOI 10.1038/35023149; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC., 1992, EVOLUTION LIFE HISTO; TINKLE DW, 1969, AM NAT, V103, P501, DOI 10.1086/282617; Veasey JS, 2001, J ANIM ECOL, V70, P20, DOI 10.1046/j.1365-2656.2001.00476.x; Weeks SC, 1996, OIKOS, V75, P345, DOI 10.2307/3546263; White GC, 1999, BIRD STUDY, V46, P120; WHITTIER JM, 1992, BIOL REPTILIA, V18, P24; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008; Woodley SK, 1999, HORM BEHAV, V35, P205, DOI 10.1006/hbeh.1999.1514 61 59 62 1 48 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0014-3820 EVOLUTION Evolution MAY 2010 64 5 1321 1330 10.1111/j.1558-5646.2009.00906.x 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 588TI WOS:000277096400013 19930451 Bronze 2018-11-12 J Metz, J; Liancourt, P; Kigel, J; Harel, D; Sternberg, M; Tielborger, K Metz, Johannes; Liancourt, Pierre; Kigel, Jaime; Harel, Danny; Sternberg, Marcelo; Tielboerger, Katja Plant survival in relation to seed size along environmental gradients: a long-term study from semi-arid and Mediterranean annual plant communities JOURNAL OF ECOLOGY English Article annuals; bet-hedging; dormancy; grasses; legumes; seed size; seedlings; survival RANDOMLY VARYING ENVIRONMENT; FUNCTIONAL-GROUPS; OPTIMIZING REPRODUCTION; VARIABLE ENVIRONMENTS; GRASSLAND RESPONSES; ARIDITY GRADIENT; DESERT ANNUALS; DEEP SHADE; LIFE-CYCLE; TRADE-OFF P>1. A positive relationship between seed size and subsequent offspring survival is a key assumption in ecological theory concerning life-history strategies. Yet, this relationship is uncertain in respect to lifetime survival because sound evidence only exists for early seedling stages. Furthermore, the effect of environmental variation in space and time, and of contrasting plant functional groups, on this relationship has been scarcely examined. 2. Here, we investigated survival and between-year variation therein. We tested for both whether their relationship to seed size (i) is maintained up until reproduction, (ii) changes along environmental gradients and (iii) differs between functional groups (grasses, legumes, forbs). 3. Survival was monitored from established seedlings to reproductive plants in 49 annual species under natural conditions during 7 years in three sites along a steep rainfall gradient. We then related average survival per species and between-year variation in survival to seed size, site along the gradient and functional group. 4. Larger seed size was associated with higher survival and lower between-year variation. Across the rainfall gradient, we detected no difference in the seed size-survival relationships; however, variation between years was lowest in the most mesic site where no relationship for between-year variation with seed size was observed. Legumes showed lower survival and higher between-year variation than grasses. 5. Our findings indicate that larger seed size provides survival advantages beyond seedling establishment up until reproduction among annual species. Larger seed size also provides a bet-hedging strategy in temporally unpredictable environments. Increased abiotic favourability along environmental gradients may have little effect on survival rates but reduces survival variation between years and thus reduces the bet-hedging benefit of larger seed size. We suggest that the contrasting response of legumes and grasses may partly result from their disparity in seed dormancy. 6. Synthesis. Current plant life-history theory can be refined by accounting for both benefits of larger seed size, higher survival rates and bet-hedging. Studies along environmental gradients are needed to generalize findings across ecosystems and to predict patterns of plant traits and plant performance under changing environmental conditions. [Metz, Johannes; Liancourt, Pierre; Tielboerger, Katja] Univ Tubingen, Dept Plant Ecol, D-72076 Tubingen, Germany; [Liancourt, Pierre] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA; [Kigel, Jaime] Hebrew Univ Jerusalem, Robert Smith Fac Agr Food & Environm, IL-76100 Rehovot, Israel; [Harel, Danny; Sternberg, Marcelo] Tel Aviv Univ, Dept Plant Sci, IL-69978 Tel Aviv, Israel Tielborger, K (reprint author), Univ Tubingen, Dept Plant Ecol, Morgenstelle 3, D-72076 Tubingen, Germany. katja.tielboerger@uni-tuebingen.de Liancourt, Pierre/H-1605-2014 German Ministry of Education and Research (BMBF) We are grateful to Hadas Parag, Yiftach Talmon, Martina Petru, Efrat Elazar and Ifat Granat for their great help with the field work. Christian Lampei provided stimulating discussion and Merav Seifan statistical advice. The Handling Editor and two anonymous referees improved the article with valuable comments. This study is part of the GLOWA Jordan River Project, funded by the German Ministry of Education and Research (BMBF). ARONSON J, 1992, J ARID ENVIRON, V23, P235, DOI 10.1016/S0140-1963(18)30513-5; BAKER HG, 1972, ECOLOGY, V53, P997, DOI 10.2307/1935413; Baraloto C, 2005, J ECOL, V93, P1156, DOI 10.1111/j.1365-2745.2005.01041.x; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; COHEN D, 1967, J THEOR BIOL, V16, P1, DOI 10.1016/0022-5193(67)90050-1; Coomes DA, 2003, TRENDS ECOL EVOL, V18, P283, DOI 10.1016/S0169-5347(03)00072-7; Falster DS, 2008, AM NAT, V172, P299, DOI 10.1086/589889; GRIME JP, 1965, J ECOL, V53, P621, DOI 10.2307/2257624; GRIME JP, 1974, NATURE, V250, P26, DOI 10.1038/250026a0; GROSS KL, 1984, J ECOL, V72, P369, DOI 10.2307/2260053; Grunzweig JM, 2003, FUNCT ECOL, V17, P766, DOI 10.1111/j.1365-2435.2003.00797.x; GULMON SL, 1992, OECOLOGIA, V89, P27, DOI 10.1007/BF00319011; Hodgson JG, 1999, OIKOS, V85, P282, DOI 10.2307/3546494; Hodkinson DJ, 1998, FUNCT ECOL, V12, P762, DOI 10.1046/j.1365-2435.1998.00256.x; Holzapfel C, 2006, BASIC APPL ECOL, V7, P268, DOI 10.1016/j.baae.2005.08.003; JAIN SK, 1982, BOT GAZ, V143, P101, DOI 10.1086/337276; Jakobsson A, 2000, OIKOS, V88, P494, DOI 10.1034/j.1600-0706.2000.880304.x; KELLY D, 1989, J ECOL, V77, P747, DOI 10.2307/2260983; Kigel J, 1995, SEED DEV GERMINATION, V1995, P645; Leishman M. R., 2000, Seeds: the ecology of regeneration in plant communities, P31, DOI 10.1079/9780851994321.0031; Leishman MR, 2001, OIKOS, V93, P294, DOI 10.1034/j.1600-0706.2001.930212.x; Liancourt P, 2009, BASIC APPL ECOL, V10, P707, DOI 10.1016/j.baae.2009.05.003; Liancourt P, 2009, FUNCT ECOL, V23, P397, DOI 10.1111/j.1365-2435.2008.01497.x; Lloret F, 1999, FUNCT ECOL, V13, P210, DOI 10.1046/j.1365-2435.1999.00309.x; LORIA M, 1980, ISRAEL J BOT, V28, P211; MAZER SJ, 1989, ECOL MONOGR, V59, P153, DOI 10.2307/2937284; McIntyre S, 2001, J ECOL, V89, P209, DOI 10.1046/j.1365-2745.2001.00535.x; Moles AT, 2006, OIKOS, V113, P91, DOI 10.1111/j.0030-1299.2006.14194.x; Moles AT, 2004, J ECOL, V92, P372, DOI 10.1111/j.0022-0477.2004.00884.x; Moles AT, 2004, ECOL LETT, V7, P911, DOI 10.1111/j.1461-0248.2004.00647.x; MOTT JJ, 1974, J ECOL, V62, P115, DOI 10.2307/2258884; Osem Y, 2006, ECOGRAPHY, V29, P11, DOI 10.1111/j.2006.0906-7590.04283.x; Pake CE, 1996, ECOLOGY, V77, P1427, DOI 10.2307/2265540; Petru M, 2006, ECOGRAPHY, V29, P66, DOI 10.1111/j.2005.0906-7590.04310.x; Petru M, 2008, OECOLOGIA, V155, P717, DOI 10.1007/s00442-007-0955-0; Pluess AR, 2005, OECOLOGIA, V144, P55, DOI 10.1007/s00442-005-0047-y; Rees M, 2007, J ECOL, V95, P926, DOI 10.1111/j.1365-2745.2007.01277.x; *SAS I, 2002, JMP 5 0 1; Saverimuttu T, 1996, J ECOL, V84, P681, DOI 10.2307/2261331; Schiffers K, 2006, J ECOL, V94, P336, DOI 10.1111/j.1365-2745.2006.01097.x; SOKAL RR, 1995, BIOMETRY PRINCIPLES; Sternberg M, 2003, J VEG SCI, V14, P375, DOI 10.1658/1100-9233(2003)014[0375:EOGOSS]2.0.CO;2; Suttle KB, 2007, SCIENCE, V315, P640, DOI 10.1126/science.1136401; TEVIS L, 1958, ECOLOGY, V39, P688, DOI 10.2307/1931609; Thompson K, 1998, J ECOL, V86, P163, DOI 10.1046/j.1365-2745.1998.00240.x; Traba J, 2006, J VEG SCI, V17, P5, DOI 10.1658/1100-9233(2006)017[0005:TFOSIM]2.0.CO;2; Turnbull LA, 1999, J ECOL, V87, P899, DOI 10.1046/j.1365-2745.1999.00405.x; Valleriani A, 2005, THEOR POPUL BIOL, V68, P197, DOI 10.1016/j.tpb.2005.01.006; Venable DL, 2007, ECOLOGY, V88, P1086, DOI 10.1890/06-1495; Venable DL, 2009, J ECOL, V97, P27, DOI 10.1111/j.1365-2745.2008.01461.x; VENABLE DL, 1988, AM NAT, V131, P360, DOI 10.1086/284795; VERKAAR HJ, 1984, NEW PHYTOL, V98, P659, DOI 10.1111/j.1469-8137.1984.tb04155.x; Voigt W, 2007, GLOBAL CHANGE BIOL, V13, P1710, DOI 10.1111/j.1365-2486.2007.01398.x; Walters MB, 2000, ECOLOGY, V81, P1887; Xia JY, 2008, NEW PHYTOL, V179, P428, DOI 10.1111/j.1469-8137.2008.02488.x; YOUNG JA, 1981, HILGARDIA, V49, P1; Zavaleta ES, 2003, ECOL MONOGR, V73, P585, DOI 10.1890/02-4053 57 68 70 2 85 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0022-0477 J ECOL J. Ecol. MAY 2010 98 3 697 704 10.1111/j.1365-2745.2010.01652.x 8 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology 584ZB WOS:000276792400017 Bronze 2018-11-12 J Griebeler, EM; Caprano, T; Bohning-Gaese, K Griebeler, E. M.; Caprano, T.; Boehning-Gaese, K. Evolution of avian clutch size along latitudinal gradients: do seasonality, nest predation or breeding season length matter? JOURNAL OF EVOLUTIONARY BIOLOGY English Article Ashmole's hypothesis; avian life histories; bet-hedging strategy; ecogenetic link; individual-based model LIFE-HISTORY EVOLUTION; BROOD-MANIPULATION EXPERIMENTS; AFRICAN SYLVIA WARBLERS; TITS PARUS-CAERULEUS; DENSITY-DEPENDENCE; ANNUAL FECUNDITY; ASHMOLES HYPOTHESIS; REPRODUCTIVE EFFORT; GEOGRAPHIC-VARIATION; POPULATION-GROWTH Birds display a latitudinal gradient in clutch size with smaller clutches in the tropics and larger in the temperate region. Three factors have been proposed to affect this pattern: seasonality of resources (SR), nest predation and length of the breeding season (LBS). Here, we test the importance of these factors by modelling clutch size evolution within bird populations under different environmental settings. We use an individual-based ecogenetic simulation model that combines principles from population ecology and life history theory. Results suggest that increasing SR from the tropics to the poles by itself or in combination with a decreasing predation rate and LBS can generate the latitudinal gradient in clutch size. Annual fecundity increases and annual adult survival rate decreases from the tropics to the poles. We further show that the annual number of breeding attempts that (together with clutch size) determines total annual egg production is an important trait to understand latitudinal patterns in these life history characteristics. Field experiments that manipulate environmental factors have to record effects not only on clutch size, but also on annual number of breeding attempts. We use our model to predict the outcome of such experiments under different environmental settings. [Griebeler, E. M.; Caprano, T.; Boehning-Gaese, K.] Johannes Gutenberg Univ Mainz, Inst Zool, Dept Ecol, D-55099 Mainz, Germany Griebeler, EM (reprint author), Johannes Gutenberg Univ Mainz, Inst Zool, Dept Ecol, POB 3980, D-55099 Mainz, Germany. em.griebeler@uni-mainz.de ARCESE P, 1988, J ANIM ECOL, V57, P119, DOI 10.2307/4768; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Badyaev AV, 1997, OECOLOGIA, V111, P365, DOI 10.1007/s004420050247; Bell CP, 1996, BIRD STUDY, V43, P333, DOI 10.1080/00063659609461026; Bohning-Gaese K, 2000, EVOL ECOL RES, V2, P823; Both C, 1998, J ANIM ECOL, V67, P659, DOI 10.1046/j.1365-2656.1998.00227.x; Brommer J, 2000, AM NAT, V155, P454, DOI 10.1086/303335; Cardillo M, 2002, J ANIM ECOL, V71, P79, DOI 10.1046/j.0021-8790.2001.00577.x; Clark ME, 2007, ECOL MODEL, V209, P110, DOI 10.1016/j.ecolmodel.2007.06.008; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Conway CJ, 2000, EVOLUTION, V54, P670; DeAngelis D.L., 1992, INDIVIDUAL BASED MOD; DeAngelis DL, 2005, ANNU REV ECOL EVOL S, V36, P147, DOI 10.1146/annurev.ecolsys.36.102003.152644; DHINDSA MS, 1990, IBIS, V132, P595, DOI 10.1111/j.1474-919X.1990.tb00283.x; Dieckmann U, 2006, THEOR POPUL BIOL, V69, P263, DOI 10.1016/j.tpb.2005.12.001; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Doligez B, 2003, ECOLOGY, V84, P2582, DOI 10.1890/02-3116; Evans KL, 2005, FUNCT ECOL, V19, P616, DOI 10.1111/j.1365-2435.2005.01016.x; Farnsworth GL, 2001, AUK, V118, P973, DOI 10.1642/0004-8038(2001)118[0973:HMBCST]2.0.CO;2; Fitze PS, 2004, J ANIM ECOL, V73, P216, DOI 10.1111/j.0021-8790.2004.00799.x; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Geffen E, 2000, J ANIM ECOL, V69, P59, DOI 10.1046/j.1365-2656.2000.00370.x; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; GILLESPIE JH, 1974, GENETICS, V76, P601; Griebeler EM, 2004, EVOL ECOL RES, V6, P679; Grimm V, 2005, INDIVIDUAL BASED MOD; Grzybowski JA, 2005, AUK, V122, P280, DOI 10.1642/0004-8038(2005)122[0280:RDSFIS]2.0.CO;2; Hawkins BA, 2005, ECOLOGY, V86, P2261, DOI 10.1890/05-0004; HORNFELDT B, 1990, IBIS, V132, P395, DOI 10.1111/j.1474-919X.1990.tb01058.x; Hurlbert AH, 2003, AM NAT, V161, P83, DOI 10.1086/345459; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Johnston JP, 1997, AM NAT, V150, P771, DOI 10.1086/286093; Jorgensen SE, 2008, ECOL MODEL, V215, P3, DOI 10.1016/j.ecolmodel.2008.02.041; KAISER H, 1979, FORTS ZOOL, V25, P109; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; Kokko H, 1999, J ANIM ECOL, V68, P940, DOI 10.1046/j.1365-2656.1999.00343.x; Kokko H, 2007, ECOL LETT, V10, P773, DOI 10.1111/j.1461-0248.2007.01086.x; KONIG WD, 1984, AUK, V101, P698; Korpimaki E, 1998, OIKOS, V83, P259, DOI 10.2307/3546837; Kozlowski J, 2006, POL J ECOL, V54, P585; KREMENTZ DG, 1989, ECOLOGY, V70, P646, DOI 10.2307/1940216; LACK D, 1948, EVOLUTION, V2, P95, DOI 10.2307/2405371; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D., 1954, NATURAL REGULATION A; LATTO J, 1992, FUNCT ECOL, V6, P386, DOI 10.2307/2389276; Lee KA, 2008, J ANIM ECOL, V77, P356, DOI 10.1111/j.1365-2656.2007.01347.x; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; MAY RM, 1986, THEORETICAL ECOLOGY; McNamara JM, 2008, AM NAT, V172, P331, DOI 10.1086/589886; Moller AP, 1998, OIKOS, V82, P265, DOI 10.2307/3546966; Monkkonen M, 2009, BIOL LETTERS, V5, P176, DOI 10.1098/rsbl.2008.0631; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; NAGER RG, 1997, J ANIM ECOL, V66, P270; Orzack SH, 2001, ECOLOGY, V82, P2659, DOI 10.2307/2679944; Pearl R, 1935, Q REV BIOL, V10, P60, DOI 10.1086/394476; PETTIFOR RA, 1993, J ANIM ECOL, V62, P131, DOI 10.2307/5488; PETTIFOR RA, 1993, J ANIM ECOL, V62, P145, DOI 10.2307/5489; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Powell LA, 2000, J WILDLIFE MANAGE, V64, P11, DOI 10.2307/3802970; Powell LA, 1999, AUK, V116, P1001, DOI 10.2307/4089680; Preston KL, 2006, ECOLOGY, V87, P160, DOI 10.1890/05-0344; Ricklefs R.E., 1973, P366; RICKLEFS RE, 1980, AUK, V97, P38; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; RICKLEFS RE, 1977, AUK, V94, P86; RICKLEFS RE, 1991, ECOLOGY CONSERVATION, P537; RICKLEFS RE, 1997, ECOL MONOGR, V67, P22; Rodenhouse NL, 2003, P ROY SOC B-BIOL SCI, V270, P2105, DOI 10.1098/rspb.2003.2438; Schaefer HC, 2005, J ORNITHOL, V146, P167, DOI 10.1007/s10336-005-0076-7; Schaefer HC, 2004, IBIS, V146, P427, DOI 10.1111/j.1474-919X.2004.00276.x; Sibly RM, 2007, ECOL LETT, V10, P970, DOI 10.1111/j.1461-0248.2007.01092.x; Sillett TS, 2000, SCIENCE, V288, P2040, DOI 10.1126/science.288.5473.2040; SILLETT TS, 2002, J ANIM ECOL, V71, P295; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SKUTCH AF, 1985, NEOTROPICAL ORNITHOL, P575; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; Sol D, 2000, CAN J ZOOL, V78, P144, DOI 10.1139/cjz-78-1-144; Sol D, 1998, CONDOR, V100, P298, DOI 10.2307/1370270; Stearns S. C., 1992, EVOLUTION LIFE HIST; STUBBS M, 1977, J ANIM ECOL, V46, P677, DOI 10.2307/3837; Styrsky JN, 2005, ECOLOGY, V86, P3238, DOI 10.1890/04-1613; SULLIVAN KA, 1989, J ANIM ECOL, V58, P275, DOI 10.2307/5000; SWIHART RK, 1984, OIKOS, V43, P282, DOI 10.2307/3544145; vanBaalen M, 1995, OIKOS, V74, P391, DOI 10.2307/3545984; Virgos E, 2006, BIOL J LINN SOC, V88, P603, DOI 10.1111/j.1095-8312.2006.00646.x; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; Yom-Tov Y, 2002, EVOL ECOL RES, V4, P673; Zanette L, 2006, ECOLOGY, V87, P2459, DOI 10.1890/0012-9658(2006)87[2459:FAPAEP]2.0.CO;2 95 31 32 1 71 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. MAY 2010 23 5 888 901 10.1111/j.1420-9101.2010.01958.x 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 585WU WOS:000276861900002 20210827 Bronze 2018-11-12 J Kenrick, DT; Griskevicius, V; Neuberg, SL; Schaller, M Kenrick, Douglas T.; Griskevicius, Vladas; Neuberg, Steven L.; Schaller, Mark Renovating the Pyramid of Needs: Contemporary Extensions Built Upon Ancient Foundations PERSPECTIVES ON PSYCHOLOGICAL SCIENCE English Article motivation; evolutionary psychology; development; life-history theory; humanistic psychology; positive psychology SEX-DIFFERENCES; SOCIAL-LIFE; MATE PREFERENCES; EVOLUTIONARY PERSPECTIVE; REPRODUCTIVE STRATEGIES; PARENTAL INVESTMENT; GENDER-DIFFERENCES; ROMANTIC MOTIVES; HUMAN-MOTIVATION; OVULATORY CYCLE Maslow's pyramid of human needs, proposed in 1943, has been one of the most cognitively contagious ideas in the behavioral sciences. Anticipating later evolutionary views of human motivation and cognition, Maslow viewed human motives as based in innate and universal predispositions. We revisit the idea of a motivational hierarchy in light of theoretical developments at the interface of evolutionary biology, anthropology, and psychology. After considering motives at three different levels of analysis, we argue that the basic foundational structure of the pyramid is worth preserving, but that it should be buttressed with a few architectural extensions. By adding a contemporary design feature, connections between fundamental motives and immediate situational threats and opportunities should be highlighted. By incorporating a classical element, these connections can be strengthened by anchoring the hierarchy of human motives more firmly in the bedrock of modern evolutionary theory. We propose a renovated hierarchy of fundamental motives that serves as both an integrative framework and a generative foundation for future empirical research. [Kenrick, Douglas T.; Neuberg, Steven L.] Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA; [Griskevicius, Vladas] Univ Minnesota, Carlson Sch Management, Minneapolis, MN 55455 USA; [Schaller, Mark] Univ British Columbia, Dept Psychol, Vancouver, BC, Canada Kenrick, DT (reprint author), Arizona State Univ, Dept Psychol, Box 871104, Tempe, AZ 85287 USA. douglas.kenrick@asu.edu NIMH NIH HHS [R01 MH064734-07, R01 MH064734] Aarts H., 2005, SOCIAL MOTIVATION CO, P153; Ackerman JM, 2008, PERS SOC PSYCHOL REV, V12, P118, DOI 10.1177/1088868308315700; Ackerman JM, 2007, EVOL HUM BEHAV, V28, P365, DOI 10.1016/j.evolhumbehav.2007.04.004; Ackerman JM, 2006, PSYCHOL SCI, V17, P836, DOI 10.1111/j.1467-9280.2006.01790.x; Ackerman JM, 2009, PERS SOC PSYCHOL B, V35, P1285, DOI 10.1177/0146167209335640; Ackerman JM, 2009, J EXP SOC PSYCHOL, V45, P478, DOI 10.1016/j.jesp.2008.12.008; Alexander R. D., 1987, BIOL MORAL SYSTEMS; [Anonymous], 2004, P ROYAL SOC LON B S4, V271, P177, DOI DOI 10.1098/RSBL.2003.013; Atran S, 2004, BEHAV BRAIN SCI, V27, P713; Bargh JA, 2006, CURR DIR PSYCHOL SCI, V15, P1, DOI 10.1111/j.0963-7214.2006.00395.x; Bargh JA, 2008, PERSPECT PSYCHOL SCI, V3, P73, DOI 10.1111/j.1745-6916.2008.00064.x; Barrett HC, 2006, PSYCHOL REV, V113, P628, DOI 10.1037/0033-295X.113.3.628; BAUMEISTER RF, 1995, PSYCHOL BULL, V117, P497, DOI 10.1037/0033-2909.117.3.497; Becker DV, 2007, J PERS SOC PSYCHOL, V92, P179, DOI 10.1037/0022-3514.92.2.179; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Ben Hamida S, 1998, J PERS SOC PSYCHOL, V75, P953, DOI 10.1037//0022-3514.75.4.953; BETZIG L, 1992, ETHOL SOCIOBIOL, V13, P309, DOI 10.1016/0162-3095(92)90008-R; Biswas-Diener R., 2008, HAPPINESS UNLOCKING; Boyd R., 1985, CULTURE EVOLUTIONARY; Boyer P, 2003, TRENDS COGN SCI, V7, P119, DOI 10.1016/S1364-6613(03)00031-7; Brown SL, 2006, PSYCHOL INQ, V17, P1, DOI 10.1207/s15327965pli1701_01; Bugental DB, 2000, PSYCHOL BULL, V126, P187, DOI 10.1037/0033-2909.126.2.187; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Buss DM, 2000, AM PSYCHOL, V55, P15, DOI 10.1037//0003-066X.55.1.15; BUSS DM, 1992, PSYCHOL SCI, V2, P204; CARTER CS, 1992, NEUROSCI BIOBEHAV R, V16, P131, DOI 10.1016/S0149-7634(05)80176-9; Carver C. S., 1998, SELF REGULATION BEHA; Cheng CM, 2003, J PERS SOC PSYCHOL, V85, P1170, DOI 10.1037/0022-3514.85.6.1170; Clark R. D., 1989, J PSYCHOL HUMAN SEXU, V2, P39, DOI DOI 10.1300/J056V02N01_; Crawford C., 2008, FDN EVOLUTIONARY PSY; CRAWFORD CB, 1989, AM PSYCHOL, V44, P1449, DOI 10.1037/0003-066X.44.12.1449; Daly M., 1988, HOMICIDE; DAVIS MR, 1990, J NEUROBIOL, V21, P1180, DOI 10.1002/neu.480210804; Deci EL, 2000, PSYCHOL INQ, V11, P227, DOI 10.1207/S15327965PLI1104_01; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Diamond LM, 2004, CURR DIR PSYCHOL SCI, V13, P116, DOI 10.1111/j.0963-7214.2004.00287.x; Diener E, 2000, AM PSYCHOL, V55, P34, DOI 10.1037/0003-066X.55.1.34; Dunbar R., 2007, OXFORD HDB EVOLUTION; Dunbar RIM, 2007, SCIENCE, V317, P1344, DOI 10.1126/science.1145463; Duncan LA, 2007, EVOL HUM BEHAV, V28, P359, DOI 10.1016/j.evolhumbehav.2007.05.001; Durante KM, 2008, PERS SOC PSYCHOL B, V34, P1451, DOI 10.1177/0146167208323103; Eisenberger NI, 2003, SCIENCE, V302, P290, DOI 10.1126/science.1089134; Fessler DMT, 2005, EVOL HUM BEHAV, V26, P344, DOI 10.1016/j.evolhumbehav.2004.12.001; Fincher CL, 2008, P R SOC B, V275, P1279, DOI 10.1098/rspb.2008.0094; FISKE AP, 1992, PSYCHOL REV, V99, P689, DOI 10.1037/0033-295X.99.4.689; Flaxman SM, 2008, AM NAT, V172, P54, DOI 10.1086/588081; Funder DC, 2006, J RES PERS, V40, P21, DOI 10.1016/j.jrp.2005.08.003; Gangestad SW, 2007, J PERS SOC PSYCHOL, V92, P151, DOI 10.1037/0022-3514.92.1.151; Gangestad SW, 2006, PSYCHOL INQ, V17, P75, DOI 10.1207/s15327965pli1702_1; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; GARCIA J, 1966, PSYCHON SCI, V4, P123, DOI DOI 10.3758/BF03342209; Garver-Apgar CE, 2008, EVOL HUM BEHAV, V29, P223, DOI 10.1016/j.evolhumbehav.2007.12.007; Geary D. C., 1998, MALE FEMALE EVOLUTIO; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; Geary DC, 2002, PSYCHOL REV, V109, P745, DOI 10.1037//0033-295X.109.4.745; Grillon C, 1997, BIOL PSYCHIAT, V42, P453, DOI 10.1016/S0006-3223(96)00466-0; Griskevicius V, 2007, J PERS SOC PSYCHOL, V93, P85, DOI 10.1037/0022-3514.93.1.85; Griskevicius V, 2006, J PERS SOC PSYCHOL, V91, P281, DOI 10.1037/0022-3514.91.2.281; Griskevicius V, 2006, J PERS SOC PSYCHOL, V91, P63, DOI 10.1037/0022-3514.91.1.63; Griskevicius V, 2009, J MARKETING RES, V46, P384, DOI 10.1509/jmkr.46.3.384; Griskevicius V, 2009, J PERS SOC PSYCHOL, V96, P980, DOI 10.1037/a0013907; Gross M. R., 1984, Fish reproduction: strategies and tactics., P55; Gutierres SE, 1999, PERS SOC PSYCHOL B, V25, P1126, DOI 10.1177/01461672992512006; HARLOW HF, 1959, SCIENCE, V130, P421, DOI 10.1126/science.130.3373.421; Haselton MG, 2006, PERS SOC PSYCHOL REV, V10, P47, DOI 10.1207/s15327957pspr1001_3; Haselton MG, 2000, J PERS SOC PSYCHOL, V78, P81, DOI 10.1037//0022-3514.78.1.81; HAZAN C, 1999, HDB ATTACHMENT THEOR, P336; Heine SJ, 2006, PERS SOC PSYCHOL REV, V10, P88, DOI 10.1207/s15327957pspr1002_1; Henrich J, 1998, EVOL HUM BEHAV, V19, P215, DOI 10.1016/S1090-5138(98)00018-X; Henrich J, 2001, EVOL HUM BEHAV, V22, P165, DOI 10.1016/S1090-5138(00)00071-4; HILL J, 1984, ETHOL SOCIOBIOL, V5, P77, DOI 10.1016/0162-3095(84)90011-6; Hill K, 1989, AM SCI, V77, P437; HUGHES BO, 1971, BRIT POULTRY SCI, V12, P255, DOI 10.1080/00071667108415878; HUGHES BO, 1971, PHYSIOL BEHAV, V6, P331, DOI 10.1016/0031-9384(71)90164-8; James W., 1890, PRINCIPLES PSYCHOL; Kameda T., 2006, EVOLUTION SOCIAL PSY, P317; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; KATZ SH, 1974, SCIENCE, V184, P765, DOI 10.1126/science.184.4138.765; Keltner D., 2006, EVOLUTION SOCIAL PSY, P115; Kenrick D. T., 2005, HDB EVOLUTIONARY PSY, P803; Kenrick DT, 2010, EVOLUTION, CULTURE, AND THE HUMAN MIND, P257; Kenrick DT, 1998, HANDBOOK OF EVOLUTIONARY PSYCHOLOGY, P485; KENRICK DT, 1992, BEHAV BRAIN SCI, V15, P75, DOI 10.1017/S0140525X00067595; Kenrick DT, 2003, PSYCHOL REV, V110, P3, DOI 10.1037/0033-295X.110.1.3; KENRICK DT, 1990, J PERS, V58, P97, DOI 10.1111/j.1467-6494.1990.tb00909.x; KENRICK DT, 1993, J PERS SOC PSYCHOL, V64, P951, DOI 10.1037//0022-3514.64.6.951; KENRICK DT, 1979, J PERS SOC PSYCHOL, V37, P572, DOI 10.1037//0022-3514.37.4.572; Kenrick DT, 2000, DEVELOPMENTAL SOCIAL PSYCHOLOGY OF GENDER, P35; Kirkpatrick LA, 2002, J PERS SOC PSYCHOL, V82, P756, DOI 10.1037//0022-3514.82.5.756; KIRKPATRICK LA, 1998, ATTACHMENT THEORY CL, P353; Koole SL, 2006, CURR DIR PSYCHOL SCI, V15, P212, DOI 10.1111/j.1467-8721.2006.00438.x; Krebs D. L., 1994, DEV REV, V14, P1, DOI [10.1006/drev.1994.1006, DOI 10.1006/DREV.1994.1006]; Krebs DL, 2008, PERSPECT PSYCHOL SCI, V3, P149, DOI 10.1111/j.1745-6924.2008.00072.x; Kreitner Robert, 2008, ORG BEHAV; Kurzban R, 2007, PERS SOC PSYCHOL REV, V11, P131, DOI 10.1177/1088868306294906; LACK DAVID, 1957, PROC ZOOL SOC LONDON, V128, P313; Laham SM, 2005, PERS SOC PSYCHOL B, V31, P63, DOI 10.1177/0146167204271318; LANCASTER JB, 1976, PRIMATE BEHAV EMERGE; LEARY MR, 1995, J PERS SOC PSYCHOL, V68, P518, DOI 10.1037/0022-3514.68.3.518; Li NP, 2006, J PERS SOC PSYCHOL, V90, P468, DOI 10.1037/0022-3514.90.3.468; Li NP, 2002, J PERS SOC PSYCHOL, V82, P947, DOI 10.1037//0022-3514.82.6.947; Lieberman D, 2003, P ROY SOC B-BIOL SCI, V270, P819, DOI 10.1098/rspb.2002.2290; Little AC, 2008, PERS INDIV DIFFER, V45, P478, DOI 10.1016/j.paid.2008.05.024; Lyubomirsky S, 2005, PSYCHOL BULL, V131, P803, DOI 10.1037/0033-2909.131.6.803; Lyubomirsky S., 2008, HAPPINESS; MacDonald G, 2005, PSYCHOL BULL, V131, P202, DOI 10.1037/0033-2909.131.2.202; Maner JK, 2005, J PERS SOC PSYCHOL, V88, P63, DOI [10.1037/0022-3514.88.1.63, 10.1037/0022-3514.1.63]; Maner JK, 2008, EVOL HUM BEHAV, V29, P343, DOI 10.1016/j.evolhumbehav.2008.04.003; Maner JK, 2007, J PERS SOC PSYCHOL, V92, P42, DOI 10.1037/0022-3514.92.1.42; Martindale C., 1980, REV PERSONALITY SOCI, P193; Maslow AH, 1943, PSYCHOL REV, V50, P370, DOI 10.1037/h0054346; Maslow AH, 1970, MOTIVATION PERSONALI; Mayes LC, 2005, CLIN NEUROSCI RES, V4, P301, DOI 10.1016/j.cnr.2005.03.009; MCDOUGALL W, 1908, INTRO SOCIAL PSYCHOL; McIntyre M, 2006, J PERS SOC PSYCHOL, V91, P642, DOI 10.1037/0022-3514.91.4.642; Miller G. F., 2000, MATING MIND SEXUAL C; Myers D. G., 2009, PSYCHOL EVERYDAY LIF; Myers DG, 2000, AM PSYCHOL, V55, P56, DOI 10.1037/0003-066X.55.1.56; Nairne J. S., 2003, PSYCHOL ADAPTIVE MIN; NAKAO K, 1987, J SOC BEHAV PERS, V2, P523; Nesse RM, 2005, EVOL HUM BEHAV, V26, P88, DOI 10.1016/j.evolhumbehav.2004.08.002; Neuberg S. L., 2010, HDB SOCIAL PSYCHOL, V2, P761, DOI DOI 10.1002/9780470561119.S0CPSY002021; Neuberg S. L., 2004, SOCIAL MOTIVATION CO, P133, DOI [DOI 10.1017/CB09780511735066.010, 10.1017/CBO9780511735066.010]; Ohman A, 2001, PSYCHOL REV, V108, P483, DOI 10.1037//0033-295X.108.3.483; ORIANS GH, 1969, AM NAT, V103, P589, DOI 10.1086/282628; Park J. H., 2007, EVOLUTIONARY PSYCHOL, V5, P47, DOI DOI 10.1017/S0140525X00081061; PARK JH, FRONTIERS S IN PRESS; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Pinker s, 1994, LANGUAGE INSTINCT; PLUTCHIK R, 1980, EMOTION THEORY RES E, V1, P3; PROFET M, 1992, ADAPTED MIND EVOLUTI, P327; Roney JR, 2003, PERS SOC PSYCHOL B, V29, P393, DOI 10.1177/0146167202250221; ROZIN P, 1971, PSYCHOL REV, V78, P459, DOI 10.1037/h0031878; Rozin P, 2001, PERS SOC PSYCHOL REV, V5, P296, DOI 10.1207/S15327957PSPR0504_2; Rozin P., 2007, HDB CULTURAL PSYCHOL, P391; Rozin P, 2007, AM PSYCHOL, V62, P754, DOI 10.1037/0003-066X.62.8.754; RYFF CD, 1995, CURR DIR PSYCHOL SCI, V4, P99, DOI 10.1111/1467-8721.ep10772395; SADALLA EK, 1987, J PERS SOC PSYCHOL, V52, P730, DOI 10.1037//0022-3514.52.4.730; Sapolsky RM, 2005, SCIENCE, V308, P648, DOI 10.1126/science.1106477; Schaller M, 2003, PERS SOC PSYCHOL B, V29, P637, DOI 10.1177/0146167203251526; SCHALLER M, 2003, EUROPEAN REV SOCIAL, V14, P105, DOI DOI 10.1080/10463280340000036; Schaller M., 2007, OXFORD HDB EVOLUTION, P491, DOI DOI 10.1093/OXFORDHB/9780198568308.013.0033; Schaller M, 2008, J PERS SOC PSYCHOL, V95, P212, DOI 10.1037/0022-3514.95.1.212; Schmitt DP, 2005, BEHAV BRAIN SCI, V28, P247, DOI 10.1017/S0140525X05000051; Schmitt DP, 2003, J PERS SOC PSYCHOL, V85, P85, DOI 10.1037/0022-3514.85.1.85; SCHNEIDER W, 1977, PSYCHOL REV, V84, P1, DOI 10.1037/0033-295X.84.1.1; SCOTT JP, 1980, EMOTION THEORY RES E, V1, P35; Sear R, 2002, DEMOGRAPHY, V39, P43, DOI 10.1353/dem.2002.0010; Sedekides C, 1997, Pers Soc Psychol Rev, V1, P80; Seligman MEP, 2000, AM PSYCHOL, V55, P5, DOI 10.1037/0003-066X.56.1.89; SHERMAN PW, 1988, ANIM BEHAV, V36, P616, DOI 10.1016/S0003-3472(88)80039-3; Sherman PW, 2001, EVOL HUM BEHAV, V22, P147, DOI 10.1016/S1090-5138(00)00068-4; SHERRY DF, 1987, PSYCHOL REV, V94, P439, DOI 10.1037/0033-295X.94.4.439; Shiota Michelle N., 2008, HDB APPROACH AVOIDAN, P271; Simpson JA, 2001, PERS RELATIONSHIP, V8, P341, DOI 10.1111/j.1475-6811.2001.tb00044.x; SINGH D, 1993, J PERS SOC PSYCHOL, V65, P293, DOI 10.1037/0022-3514.65.2.293; Soltis J, 2004, BEHAV BRAIN SCI, V27, P443; Stearns S. C., 2008, FDN EVOLUTIONARY PSY, P47; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Sternberg R. J., 2006, PSYCHOL LOVE, P15; Stevens LE, 1995, SOC COGNITION, V13, P189, DOI 10.1521/soco.1995.13.3.189; Taylor SE, 2000, PSYCHOL REV, V107, P411, DOI 10.1037/0033-295X.107.3.411; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; Tooby J., 1992, ADAPTED MIND EVOLUTI, V163, P163, DOI DOI 10.1098/RSTB.2006.1991; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; TURKE PW, 1985, ETHOL SOCIOBIOL, V6, P79, DOI 10.1016/0162-3095(85)90001-9; Tybur JM, 2009, J PERS SOC PSYCHOL, V97, P103, DOI 10.1037/a0015474; Van Vugt M., 2006, EVOLUTION SOCIAL PSY, P237; Van Vugt M, 2008, PSYCHOL SCI, V19, P854, DOI 10.1111/j.1467-9280.2008.02168.x; Van Vugt M, 2007, PSYCHOL SCI, V18, P19, DOI 10.1111/j.1467-9280.2007.01842.x; VanLange PAM, 1997, J PERS SOC PSYCHOL, V73, P733, DOI 10.1037/0022-3514.73.6.1330; WARNER RR, 1984, AM SCI, V72, P128; WILCOXON HC, 1971, SCIENCE, V171, P826, DOI 10.1126/science.171.3973.826; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; Wisman A, 2003, J PERS SOC PSYCHOL, V84, P511, DOI 10.1037/0022-3514.84.3.511; ZAADSTRA BM, 1993, BRIT MED J, V306, P484, DOI 10.1136/bmj.306.6876.484 176 268 282 31 243 SAGE PUBLICATIONS LTD LONDON 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND 1745-6916 PERSPECT PSYCHOL SCI Perspect. Psychol. Sci. MAY 2010 5 3 292 314 10.1177/1745691610369469 23 Psychology, Multidisciplinary Psychology 605SJ WOS:000278367000007 21874133 Green Accepted Y N 2018-11-12 J Amigo, S; Caselles, A; Mico, JC Amigo, Salvador; Caselles, Antonio; Mico, Joan C. General Factor of Personality Questionnaire (GFPQ): Only one Factor to Understand Personality? SPANISH JOURNAL OF PSYCHOLOGY English Article general factor of personality; unique trait; personality traits; assessment; introversion; extraversion HIGHER-ORDER FACTORS; LIFE-HISTORY THEORY; BEHAVIORAL ACTIVATION; BIG 5; SENSATION-SEEKING; 5-FACTOR MODEL; BIS/BAS SCALES; DIMENSIONS; IMPULSIVITY; INHIBITION This study proposes a psychometric approach to assess the General Factor of Personality (GFP) to explain the whole personality. This approach defends the existence of one basic factor that represents the overall personality. The General Factor of Personality Questionnaire (GFPQ) is presented to measure the basic, combined trait of the complete personality. The questionnaire includes 20 items and is constituted by two scales with 10 items each one: the Extraversion Scale (ES) and the Introversion Scale (IS). The GFPQ shows adequate internal consistency and construct validity, while the relationships with the personality factors of other models and with psychopathology are as expected. It correlates positively and significantly with Extraversion (E) and Psychoticism (P), and negatively with Neuroticism (N) of Eysenck's EPQ (Eysenck Personality Questionnaire); it correlates positively and significantly with the Sensation Seeking Scaled (SSS) of Zuckerman, and is inside the expected direction with Sensitivity to Reward (SR) and Sensitivity to Punishment (SP) of the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ), which represent the approach and avoidance trends of behavior, respectively. It not only relates negatively with the personality disorders of the anxiety spectrum, but also with the emotional disorders in relation to anxiety and depression, and it relates positively with the antisocial personality disorder. [Amigo, Salvador] Univ Valencia, Dept Personalidad Evaluac & Tratamientos Psicolol, Valencia 46010, Spain; [Mico, Joan C.] Univ Politecn Valencia, Valencia, Spain Amigo, S (reprint author), Univ Valencia, Dept Personalidad Evaluac & Tratamientos Psicolol, Av Blasco Ibanez 21, Valencia 46010, Spain. Salvador.Amigo@uv.es Mico, Joan C./K-5683-2014 Mico, Joan C./0000-0001-7120-5458 Amigo S., 2005, TEORIA RASGO UNICO P; Amigo S, 2008, BRIT J MATH STAT PSY, V61, P211, DOI 10.1348/000711007X185514; BALL S, 1990, PERSONALITY INDIVIDU, V34, P343; Becker P, 1999, PERS INDIV DIFFER, V26, P511, DOI 10.1016/S0191-8869(98)00168-8; Blackburn R, 2005, J PERS DISORD, V19, P597, DOI 10.1521/pedi.2005.19.6.597; Blackburn R, 2004, PERS INDIV DIFFER, V37, P957, DOI 10.1016/j.paid.2003.10.017; BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; BRIM OG, 1996, NATL SURVEY MIDLIFE; Buckingham RM, 2001, PERS INDIV DIFFER, V31, P769, DOI 10.1016/S0191-8869(00)00177-X; Carver CS, 2000, PERS SOC PSYCHOL B, V26, P741, DOI 10.1177/0146167200268008; CARVER CS, 1994, J PERS SOC PSYCHOL, V67, P319, DOI 10.1037/0022-3514.67.2.319; CASELLES A, BRIT J MATH IN PRESS; Caseras X, 2003, PERS INDIV DIFFER, V34, P999, DOI 10.1016/S0191-8869(02)00084-3; Corr PJ, 2002, PERS INDIV DIFFER, V33, P511, DOI 10.1016/S0191-8869(01)00170-2; Costa P. T., 1992, REV NEO PERSONALITY; Derogatis L. R., 1994, SCL 90 R SYMPTOM CHE; DeYoung CG, 2002, PERS INDIV DIFFER, V33, P533, DOI 10.1016/S0191-8869(01)00171-4; Digman JM, 1997, J PERS SOC PSYCHOL, V73, P1246, DOI 10.1037/0022-3514.73.6.1246; Elliot AJ, 2002, J PERS SOC PSYCHOL, V82, P804, DOI 10.1037/0022-3514.82.5.804; ERDLE S, 2010, PERSONALITY INDIVIDU, V48; EYSENCK HJ, 1992, PERS INDIV DIFFER, V13, P667, DOI 10.1016/0191-8869(92)90237-J; EYSENCK HJ, 1992, PERS INDIV DIFFER, V13, P867, DOI 10.1016/0191-8869(92)90003-8; EYSENCK HJ, 1991, PERS INDIV DIFFER, V12, P773, DOI 10.1016/0191-8869(91)90144-Z; Eysenck HJ, 1985, EYSENCK PERSONALITY; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2009, TWIN RES HUM GENET, V12, P555, DOI 10.1375/twin.12.6.555; FOWLES DC, 1987, J RES PERS, V21, P417, DOI 10.1016/0092-6566(87)90030-4; Gray J.A, 1987, COGNITIVE NEUROCHEMI, P171; Harary K., 1994, WHO YOU THINK YOU AR; Heubeck BG, 1998, PERS INDIV DIFFER, V25, P785, DOI 10.1016/S0191-8869(98)00124-X; Jackson CJ, 2004, PERS INDIV DIFFER, V36, P1627, DOI 10.1016/j.paid.2003.06.010; Jorm AF, 1999, PERS INDIV DIFFER, V26, P49; KASSEBAUM GG, 1959, J CONSULT PSYCHOL, V23, P226, DOI 10.1037/h0041330; LARSEN RJ, 2005, PERSONALITY PSYCHOL; LIEBERT RM, 1999, PERSONALITY STRATEGI; LORANGER AW, 1994, ARCH GEN PSYCHIAT, V51, P215; LYKKEN DT, 1982, PSYCHOL TODAY SEP, P23; MACANDREW C, 1991, PERS INDIV DIFFER, V12, P157, DOI 10.1016/0191-8869(91)90099-W; Markon KE, 2005, J PERS SOC PSYCHOL, V88, P139, DOI 10.1037/0022-3514.88.1.139; MUSEK J, 2006, HIGHER ORDER F UNPUB; Musek J, 2007, J RES PERS, V41, P1213, DOI 10.1016/j.jrp.2007.02.003; ORTET G, 1997, CUESTIONARIO REVISAD; PEREZ J, 1986, REV LAT AM PSICOL, V18, P7; Quilty LC, 2004, PERS INDIV DIFFER, V37, P429, DOI 10.1016/j.paid.2003.09.014; Rushton JP, 2008, PERS INDIV DIFFER, V45, P679, DOI 10.1016/j.paid.2008.07.015; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; Rushton JP, 2007, BIOL LETT-UK, V3, P157, DOI 10.1098/rsbl.2006.0586; Rushton JP, 2009, J RES PERS, V43, P1091, DOI 10.1016/j.jrp.2009.06.002; Rushton JP, 2009, TWIN RES HUM GENET, V12, P356, DOI 10.1375/twin.12.4.356; Rushton JP, 2009, PERS INDIV DIFFER, V47, P571, DOI 10.1016/j.paid.2009.05.011; Rushton JP, 2009, PERS INDIV DIFFER, V47, P558, DOI 10.1016/j.paid.2009.05.009; Rushton JP, 2009, PERS INDIV DIFFER, V46, P437, DOI 10.1016/j.paid.2008.11.015; RUSHTON JP, 1990, J PERS, V58, P117, DOI 10.1111/j.1467-6494.1990.tb00910.x; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Saucier G, 2003, PERSONALITY WORK REC, P1; Schermer JA, 2010, PERS INDIV DIFFER, V48, P187, DOI 10.1016/j.paid.2009.10.003; Smits DJM, 2006, EUR J PERSONALITY, V20, P255, DOI 10.1002/per.583; SPSS Inc., 2007, SPSS 16 0 BAS US GUI; Torrubia R, 2001, PERS INDIV DIFFER, V31, P837, DOI 10.1016/S0191-8869(00)00183-5; Veselka L, 2009, TWIN RES HUM GENET, V12, P420, DOI 10.1375/twin.12.5.420; Veselka L, 2009, TWIN RES HUM GENET, V12, P254, DOI 10.1375/twin.12.3.254; Zelenski JM, 1999, J PERS, V67, P761, DOI 10.1111/1467-6494.00072; ZUCKERMAN M, 1988, J PERS SOC PSYCHOL, V54, P96, DOI 10.1037/0022-3514.54.1.96; ZUCKERMAN M, 1978, J CONSULT CLIN PSYCH, V46, P139, DOI 10.1037//0022-006X.46.1.139; ZUCKERMAN M, 1991, PERS INDIV DIFFER, V12, P929, DOI 10.1016/0191-8869(91)90182-B; Zuckerman M, 1979, SENSATION SEEKING OP 67 10 10 1 8 UNIV COMPLUTENSE MADRID, SERVICIO PUBLICACIONES MADRID DEP FILOLOGIA ESPANOLA, FAC CIENC INFORM, CIUDAD UNIV, OBISPO TREJO 2, MADRID, 28040, SPAIN 1138-7416 SPAN J PSYCHOL Span. J. Psychol. MAY 2010 13 1 5 17 10.1017/S1138741600003644 13 Psychology; Psychology, Multidisciplinary Psychology 595UB WOS:000277637600001 20480675 2018-11-12 J Pelosse, P; Amat, I; Bernstein, C; Desouhant, E Pelosse, Perrine; Amat, Isabelle; Bernstein, Carlos; Desouhant, Emmanuel The dynamics of energy allocation in adult arrhenotokous and thelytokous Venturia canescens ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA English Article reproductive mode; parasitoid; Hymenoptera; longevity; sex maintenance; life-history theory; carbohydrates; nutrient dynamics; Ichneumonidae PARASITIC WASP; EGG LIMITATION; EVOLUTIONARY ARGUMENT; DIFFERENT HABITATS; TIME LIMITATION; HOST; STRATEGIES; REPRODUCTION; OVIPOSITION; CARBOHYDRATE The ability to adjust resource allocation to the quality of the environment has broad implications for animal reproductive success. Organisms with complex life cycles that may experience various selection pressures during their lifetime are expected to evolve mechanisms to modulate the resource allocation strategies adopted during ontogeny to the conditions encountered by the adult. In the parasitoid Venturia canescens Gravenhorst (Hymenoptera: Ichneumonidae), thelytoky appears to have been selected for in anthropogenic habitats, where hosts are relatively numerous and food is absent, and arrhenotoky in natural habitats where hosts are more scarce and food is present. A previous study postulated that during their juvenile stage, females of both reproductive modes adopt strategies of energy allocation in accordance with these conditions, possibly providing a direct short-term advantage to arrhenotokous forms, which partially co-occur with thelytokous forms under natural conditions. To test this assumption, we provided daily adult thelytokous and arrhenotokous females with a small number of hosts together with food. To compare their lifetime resource allocation strategies, we recorded wasp longevities, egg loads, and carbohydrate reserves in wasps of different ages. Our analysis indicates that thelytokous females are able, to a certain extent, to cope with these conditions, because they reached the same longevity as arrhenotokous females. Nevertheless, thelytokous females suffered from a higher degree of time limitation compared with arrhenotokous ones, and arrhenotokous wasps appeared to maintain their energetic advantage over the adult stage. These results provide new insights, and point to the consideration of other activities, such as flight performance and/or ability to reach food and hosts, in the understanding of the role of resource allocation strategies in the maintenance of sex in this species. [Pelosse, Perrine] CNRS, UMR5558, Lab Biometrie & Biol Evolut, F-69622 Villeurbanne, France; Univ Lyon 1, F-69622 Villeurbanne, France; Univ Lyon, F-69000 Lyon, France Pelosse, P (reprint author), CNRS, UMR5558, Lab Biometrie & Biol Evolut, F-69622 Villeurbanne, France. pelosse@biomserv.univ-lyon1.fr DESOUHANT, Emmanuel/A-9537-2013 DESOUHANT, Emmanuel/0000-0003-0317-4463 Amat I, 2006, OECOLOGIA, V148, P153, DOI 10.1007/s00442-005-0332-9; Amat I., 2004, THESIS U C BERNARD L; Amat I, 2009, BEHAV ECOL SOCIOBIOL, V63, P563, DOI 10.1007/s00265-008-0691-4; Bernstein C, 2002, ECOL ENTOMOL, V27, P415, DOI 10.1046/j.1365-2311.2002.00432.x; BEUKEBOOM LW, 1999, P 8 M EXP APPL ENT N, V10, P23; BOGGS CL, 1981, AM NAT, V117, P692, DOI 10.1086/283753; Boggs CL, 1997, ECOLOGY, V78, P181; Casas J, 2005, ECOLOGY, V86, P545, DOI 10.1890/04-0812; Casas J, 2003, J ANIM ECOL, V72, P691, DOI 10.1046/j.1365-2656.2003.00740.x; Casas J, 2009, ECOLOGY, V90, P537, DOI 10.1890/08-0507.1; COX DR, 1972, J R STAT SOC B, V34, P187; Desouhant E, 2005, ANIM BEHAV, V70, P145, DOI 10.1016/j.anbehav.2004.10.015; Desouhant E, 2010, ECOL RES, V25, P419, DOI 10.1007/s11284-009-0671-9; Eliopoulos PA, 2003, PHYSIOL ENTOMOL, V28, P268, DOI 10.1111/j.1365-3032.2003.00341.x; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; FLANDERS STANLEY E., 1950, CANADIAN ENT, V82, P134; Harvey JA, 1997, ENTOMOL EXP APPL, V84, P93, DOI 10.1046/j.1570-7458.1997.00202.x; Harvey JA, 2001, J INSECT BEHAV, V14, P573, DOI 10.1023/A:1012219116341; Heimpel George E., 2008, P51; JERVIS MA, 1986, BIOL REV, V61, P395, DOI 10.1111/j.1469-185X.1986.tb00660.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; KING PE, 1968, J ZOOL, V154, P495; Lee JC, 2008, J ANIM ECOL, V77, P565, DOI 10.1111/j.1365-2656.2008.01355.x; Liu YQ, 2009, BEHAV ECOL SOCIOBIOL, V63, P1459, DOI 10.1007/s00265-009-0800-z; Liu YQ, 2009, ENTOMOL EXP APPL, V132, P110, DOI 10.1111/j.1570-7458.2009.00878.x; Lucchetta P, 2007, BEHAV ECOL SOCIOBIOL, V61, P1409, DOI 10.1007/s00265-007-0372-8; Metzger M, 2008, ECOL ENTOMOL, V33, P167, DOI 10.1111/j.1365-2311.2007.00953.x; NATION JL, 2002, INSECT PHYSL BIOCH; Olson DM, 2000, PHYSIOL ENTOMOL, V25, P17, DOI 10.1046/j.1365-3032.2000.00155.x; PELOSSE P, 2008, THESIS U C BERNARD L; Pelosse P, 2007, EVOL ECOL, V21, P669, DOI 10.1007/s10682-006-9145-5; R Development Core Team, 2008, R LANG ENV STAT COMP; Richard R, 2009, ECOL MONOGR, V79, P465, DOI 10.1890/08-1566.1; Rivero A, 1999, RES POPUL ECOL, V41, P39, DOI 10.1007/PL00011981; Roberts HLS, 2004, J INSECT PHYSIOL, V50, P195, DOI 10.1016/j.jinsphys.2003.11.007; Rosenheim JA, 1996, EVOLUTION, V50, P2089, DOI 10.1111/j.1558-5646.1996.tb03595.x; Rosenheim JA, 2008, AM NAT, V172, P486, DOI 10.1086/591677; SALT G, 1976, ECOL ENTOMOL, V1, P63, DOI 10.1111/j.1365-2311.1976.tb01205.x; Schneider MV, 2002, J EVOLUTION BIOL, V15, P191, DOI 10.1046/j.1420-9101.2002.00394.x; SCHNEIDER MV, 2003, THESIS LEIDEN U LEID; Sevenster JG, 1998, EVOLUTION, V52, P1241, DOI 10.1111/j.1558-5646.1998.tb01853.x; SIBLY R, 1984, J THEOR BIOL, V111, P463, DOI 10.1016/S0022-5193(84)80234-9; SMITH JM, 1978, EVOLUTION SEX; Strand Michael R., 2008, P113, DOI 10.1002/9780470696200.ch6; Suarez RK, 2005, J EXP BIOL, V208, P3573, DOI 10.1242/jeb.01775; Thiel A, 2006, BEHAV ECOL SOCIOBIOL, V59, P614, DOI 10.1007/s00265-005-0088-6; TRUDEAU D, 1989, ENTOMOL EXP APPL, V50, P3, DOI 10.1111/j.1570-7458.1989.tb02306.x; VANHANDEL E, 1985, J AM MOSQUITO CONTR, V1, P299; VANHANDEL E, 1990, J AM MOSQUITO CONTR, V6, P270; Vogt JT, 2000, J INSECT PHYSIOL, V46, P697, DOI 10.1016/S0022-1910(99)00158-4; Wheeler D, 1996, ANNU REV ENTOMOL, V41, P407, DOI 10.1146/annurev.en.41.010196.002203 53 13 13 0 19 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0013-8703 ENTOMOL EXP APPL Entomol. Exp. Appl. APR 2010 135 1 68 76 10.1111/j.1570-7458.2009.00965.x 9 Entomology Entomology 567KE WOS:000275444700006 2018-11-12 J Hall, ME; Blount, JD; Forbes, S; Royle, NJ Hall, Margaret E.; Blount, Jonathan D.; Forbes, Scott; Royle, Nick J. Does oxidative stress mediate the trade-off between growth and self-maintenance in structured families? FUNCTIONAL ECOLOGY English Article Agelaius phoeniceus; antioxidants; growth rate; hatching asynchrony; malondialdehyde; oxidative damage; red-winged blackbird; vitamin supplementation RED-WINGED BLACKBIRDS; ZEBRA FINCHES; VITAMIN-E; CAROTENOID AVAILABILITY; SEXUAL ATTRACTIVENESS; AGELAIUS-PHOENICEUS; PARENTAL OPTIMISM; NESTLING GROWTH; SUPPLEMENTATION; ANTIOXIDANTS P> Life-history theory predicts a trade-off between growth and self-maintenance. However, little is known about the underlying mechanisms. Oxidative stress, the imbalance between the production of reactive oxygen species (ROS) during normal metabolic processes and the level of antioxidant defences, is a potential mechanism. In many altricial birds asynchronous hatching creates different castes of progeny as a hedge against developmental and environmental uncertainty (a 'structured' family). Older, 'core' offspring and later hatched 'marginal' offspring consequently experience contrasting levels of resource availability during development. To be adaptive the phenotypic handicap incurred by marginal offspring must be reversible when conditions allow. Dietary-derived antioxidants are an important component of antioxidant defences, which modulate oxidative damage arising from normal metabolic processes such as growth. Dietary antioxidants could therefore be important determinants of trade-offs during growth, with the balance of these trade-offs differing between core and marginal offspring. To investigate this, we manipulated brood size and structure as well as antioxidant availability (by vitamin and mineral supplementation), then measured growth and oxidative damage in nestling red-winged blackbirds Agelaius phoeniceus. We found that individuals supplemented with dietary antioxidants allocated these extra resources to increasing growth rate, rather than reducing oxidative damage. Irrespective of hatch rank, nestlings that received supplementary antioxidants grew faster than controls, despite no difference in their begging behaviour or parental provisioning rates. There was no overall difference in the level of lipid peroxidation (malondialdehyde; MDA) in the blood plasma of supplemented and control chicks, but among marginal offspring those that received an antioxidant supplement had lower plasma MDA. Antioxidant supplementation did not affect nestling survival to fledging age. These novel results support the idea that oxidative stress may play a central role in the trade-off between growth and self-maintenance. Moreover, they further highlight the importance of physiological costs in the evolution of life-histories and propose a role for oxidative stress in the adaptive basis of the structured family. [Hall, Margaret E.; Blount, Jonathan D.; Royle, Nick J.] Univ Exeter, Ctr Ecol & Conservat, Sch Biosci, Penryn TR10 9EZ, Cornwall, England; [Forbes, Scott] Univ Winnipeg, Dept Biol, Winnipeg, MB R3B 2E9, Canada Royle, NJ (reprint author), Univ Exeter, Ctr Ecol & Conservat, Sch Biosci, Cornwall Campus, Penryn TR10 9EZ, Cornwall, England. N.J.Royle@exeter.ac.uk Royle, Nick/H-2802-2015; Blount, Jonathan/K-7695-2012 Royle, Nick/0000-0002-1617-3884; Blount, Jonathan/0000-0002-0016-0130 NERC New Investigator [NE/E001351/1]; Royal Society University Research; Natural Environment Research Council [NE/E001351/1] We would like to thank our excellent field crew: Jessie Cameron, Meghan Chatwin, Jodi Griffiths, Laura Groening, Carrie Ross, and Aaron Trachtenberg. Thanks also to Malcolm Green of the BirdCare Company, who provided information on the constituents of Daily Essentials 2 and made dosage recommendations, and to the anonymous reviewers whose comments helped to improve the manuscript. Our field methodology received prior approval from the Senate Animal Care Committee (SACC) of the University of Winnipeg (AE100, AE101). This research was funded by a NERC New Investigator grant to NJR (NE/E001351/1), and JDB was supported by a Royal Society University Research Fellowship. Agarwal R, 2002, J CHROMATOGR B, V775, P121, DOI 10.1016/S1570-0232(02)00273-8; Alonso-Alvarez C, 2007, FUNCT ECOL, V21, P873, DOI 10.1111/j.1365-2435.2007.01300.x; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Blount JD, 2003, SCIENCE, V300, P125, DOI 10.1126/science.1082142; Blount JD, 2004, ARCH BIOCHEM BIOPHYS, V430, P10, DOI 10.1016/j.abb.2004.03.039; Blount JD, 2003, P ROY SOC B-BIOL SCI, V270, P1691, DOI 10.1098/rspb.2003.2411; Bortolotti GR, 2003, PHYSIOL BIOCHEM ZOOL, V76, P367, DOI 10.1086/375432; Catoni C, 2008, ANIM BEHAV, V76, P1107, DOI 10.1016/j.anbehav.2008.05.027; Costantini D, 2006, J COMP PHYSIOL B, V176, P329, DOI 10.1007/s00360-005-0055-6; Crawley M. J., 2007, R BOOK; Cucco M, 2006, BEHAV PROCESS, V73, P325, DOI 10.1016/j.beproc.2006.08.002; de Ayala RM, 2006, BEHAV ECOL SOCIOBIOL, V60, P619, DOI 10.1007/s00265-006-0206-0; De Block M, 2008, P R SOC B, V275, P781, DOI 10.1098/rspb.2007.1515; Fiala K.L., 1981, P198; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fischer K, 2004, EVOL ECOL, V18, P343, DOI 10.1007/s10682-004-2004-3; Forbes S, 1997, NATURE, V390, P351, DOI 10.1038/37025; Forbes S, 2002, ECOLOGY, V83, P2529, DOI 10.1890/0012-9658(2002)083[2529:MIFPOA]2.0.CO;2; Forbes S, 2001, BEHAV ECOL SOCIOBIOL, V50, P37, DOI 10.1007/s002650100332; Forbes S, 2000, CONDOR, V102, P23, DOI 10.1650/0010-5422(2000)102[0023:ATOTSL]2.0.CO;2; Forbes S, 2000, BEHAV ECOL SOCIOBIOL, V48, P413, DOI 10.1007/s002650000239; GLASSEY B., 2000, THESIS U MANITOBA WI; GOODWIN TW, 1984, BIOCH CAROTENOIDS; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Helfenstein F, 2008, BEHAV ECOL, V19, P108, DOI 10.1093/beheco/arm103; Hermans N, 2005, J CHROMATOGR B, V822, P33, DOI 10.1016/j.jchromb.2005.05.040; HILL RW, 1982, PHYSIOL ZOOL, V55, P250, DOI 10.1086/physzool.55.3.30157889; HOLCOMB LC, 1970, WILSON BULL, V82, P294; HOWARTH RW, 1988, ANNU REV ECOL SYST, V19, P89, DOI 10.1146/annurev.es.19.110188.000513; Klasing K.C., 1998, COMP AVIAN NUTR; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lapenna D, 2001, FREE RADICAL BIO MED, V31, P331, DOI 10.1016/S0891-5849(01)00584-6; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Lin YF, 2005, J NUTR, V135, P2457; LOFT S, 1994, FASEB J, V8, P534; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Mock D. W., 1997, EVOLUTION SIBLING RI; MOCK DW, 1995, TRENDS ECOL EVOL, V10, P130, DOI 10.1016/S0169-5347(00)89014-X; Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011; Mougeot F, 2009, P R SOC B, V276, P1093, DOI 10.1098/rspb.2008.1570; Nilsson JA, 1996, J ANIM ECOL, V65, P825, DOI 10.2307/5680; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; O'Brien EL, 2008, J ANIM ECOL, V77, P127, DOI 10.1111/j.1365-2656.2007.01315.x; Parker GA, 2002, PHILOS T R SOC B, V357, P295, DOI 10.1098/rstb.2001.0950; PARSONS J, 1975, IBIS, V117, P517, DOI 10.1111/j.1474-919X.1975.tb04247.x; Pike TW, 2007, BEHAV ECOL, V18, P1100, DOI 10.1093/beheco/arm084; Pike TW, 2007, BIOLOGY LETT, V3, P353, DOI 10.1098/rsbl.2007.0072; Pike TW, 2007, P ROY SOC B-BIOL SCI, V274, P1591, DOI 10.1098/rspb.2007.0317; Remes V, 2002, EVOLUTION, V56, P2505; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roff D. A., 2002, LIFE HIST EVOLUTION; Royle N, 2000, J AVIAN BIOL, V31, P335, DOI 10.1111/j.0908-8857.2000.310309.x; Royle NJ, 2006, ANIM BEHAV, V72, P123, DOI 10.1016/j.anbehav.2005.09.023; Royle NJ, 2002, TRENDS ECOL EVOL, V17, P434, DOI 10.1016/S0169-5347(02)02565-X; Royle NJ, 2003, FUNCT ECOL, V17, P472, DOI 10.1046/j.1365-2435.2003.00752.x; STARCK JM, 1998, AVIAN GROWTH DEV EVO, P412; Surai P. F., 2002, NATURAL ANTIOXIDANTS; Surai PF, 2001, BRIT POULTRY SCI, V42, P252, DOI 10.1080/00071660120048519; von Schantz T, 1999, P ROY SOC B-BIOL SCI, V266, P1; Weatherhead PJ, 2007, J FIELD ORNITHOL, V78, P428, DOI 10.1111/j.1557-9263.2007.00135.x; Weatherhead PJ, 2000, AUK, V117, P627, DOI 10.1642/0004-8038(2000)117[0627:FSAAIO]2.0.CO;2; Wolf JB, 1998, EVOLUTION, V52, P299, DOI 10.1111/j.1558-5646.1998.tb01632.x 62 53 54 2 31 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0269-8463 FUNCT ECOL Funct. Ecol. APR 2010 24 2 365 373 10.1111/j.1365-2435.2009.01635.x 9 Ecology Environmental Sciences & Ecology 561CI WOS:000274952600014 Bronze 2018-11-12 J Dawidowicz, P; Predki, P; Pietrzak, B Dawidowicz, Piotr; Predki, Piotr; Pietrzak, Barbara Shortened lifespan: another cost of fish-predator avoidance in cladocerans? HYDROBIOLOGIA English Article; Proceedings Paper 8th International Symposium on Cladocera OCT 19-25, 2008 Autonomous Univ Aguascalientes, Aguascalientes, MEXICO Autonomous Univ Aguascalientes Daphnia; Diaphanosoma; Life-history; Induced defenses; Longevity DEPTH SELECTION BEHAVIOR; ANTIPREDATOR DEFENSES; PLANKTIVOROUS FISH; DAPHNIA; HISTORIES; REPRODUCTION; POPULATIONS; PLANKTON; GALEATA; CLONES Life-history theory predicts adaptive shifts in response to size-selective predation, namely earlier reproduction, smaller age/size at maturity, and higher relative investment into reproduction. Such shifts should bring about reduced lifespan of potential prey. We tested this prediction in life-table experiments with clones of Daphnia hyalina and Diaphanosoma brachyurum, two species of contrasting anti-predatory strategies. The clones were derived from seven lakes of different trophy and held in water with and without fish kairomone, under standard laboratory conditions. Exposure to the kairomone caused a decrease in age of first reproduction and an increase in early-life reproductive effort but also an about 20% decrease of longevity in both species. Although shortened lifespan did not result in significant decrease in fitness of the tested species (in terms of lifetime reproductive output) it should be taken into account in considerations of costs and benefits of inducible defenses in cladocerans. [Dawidowicz, Piotr; Predki, Piotr; Pietrzak, Barbara] Univ Warsaw, Dept Hydrobiol, PL-02097 Warsaw, Poland Dawidowicz, P (reprint author), Univ Warsaw, Dept Hydrobiol, Banacha 2, PL-02097 Warsaw, Poland. p.dawidowicz@uw.edu.pl Pietrzak, Barbara/C-3421-2013 Pietrzak, Barbara/0000-0001-5446-6277 BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; CARLSON RE, 1977, LIMNOL OCEANOGR, V22, P361, DOI 10.4319/lo.1977.22.2.0361; DAWIDOWICZ P, 1992, LIMNOL OCEANOGR, V37, P665, DOI 10.4319/lo.1992.37.3.0665; De Meester L, 1999, LIMNOL OCEANOGR, V44, P1248, DOI 10.4319/lo.1999.44.5.1248; DEMEESTER L, 1994, OECOLOGIA, V97, P333, DOI 10.1007/BF00317323; DRENNER RW, 1978, J FISH RES BOARD CAN, V35, P1370, DOI 10.1139/f78-215; GLIWICZ ZM, 1990, NATURE, V321, P330; Lass S, 2003, HYDROBIOLOGIA, V491, P221, DOI 10.1023/A:1024487804497; LYNCH M, 1992, ECOLOGY, V73, P1620, DOI 10.2307/1940015; MACHACEK J, 1991, HYDROBIOLOGIA, V225, P193, DOI 10.1007/BF00028397; McEdward LR, 2003, MAR ECOL PROG SER, V256, P111, DOI 10.3354/meps256111; Pijanowska Joanna, 1993, Advances in Limnology, V39, P89; Rinke K, 2008, OIKOS, V117, P273, DOI 10.1111/j.2007.0030-1299.16099.x; Roff D. A., 2002, LIFE HIST EVOLUTION, P527; Sakwinska O, 2005, LIMNOL OCEANOGR, V50, P1284, DOI 10.4319/lo.2005.50.4.1284; Sarma SSS, 2002, HYDROBIOLOGIA, V481, P89, DOI 10.1023/A:1021265104165; Stearns SC, 1992, EVOLUTION LIFE HIST, P249; Tessier AJ, 1997, OECOLOGIA, V109, P561, DOI 10.1007/s004420050117; Tollrian Ralph, 1999, P177; WEIDER LJ, 1993, OIKOS, V67, P385, DOI 10.2307/3545351; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 21 9 10 1 25 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 HYDROBIOLOGIA Hydrobiologia APR 2010 643 27 32 10.1007/s10750-010-0132-z 6 Marine & Freshwater Biology Marine & Freshwater Biology 577XE WOS:000276256500004 2018-11-12 J Roper, JJ; Sullivan, KA; Ricklefs, RE Roper, James J.; Sullivan, Kimberly A.; Ricklefs, Robert E. Avoid nest predation when predation rates are low, and other lessons: testing the tropical-temperate nest predation paradigm OIKOS English Article LIFE-HISTORY EVOLUTION; CLUTCH-SIZE; REPRODUCTIVE SUCCESS; GEOGRAPHIC-VARIATION; BREEDING BIOLOGY; PASSERINE BIRDS; SITE SELECTION; HABITAT; FOREST; RISK Nest predation is the most important cause of nest failure in most birds and latitudinal differences in nest predation rates and life histories suggest that nest predation has been influential in life history evolution. All else equal, natural selection should favor reduction of nest predation, yet evidence is equivocal. We used Monte Carlo simulations to examine the combined effects of variation in nest predation rates, breeding season length and renesting intervals on the annual number of young fledged. Simulations suggest that selection most strongly favors a reduction in nest predation when breeding seasons are short and predation rates are low (temperate characteristics). Conversely, selection favors shorter renesting intervals when breeding seasons are long and nest predation rates are high (tropical characteristics). Reducing already low rates provides a proportionately greater increase in annual nesting success than does the same reduction when nest predation rates are higher. In some tropical species, individuals increase reproductive success not by avoiding predation in subsequent nesting attempts, which is largely beyond their control, but rather by reducing renesting intervals. We suggest that the emphasis on nest predation avoidance has biased our perspectives for alternative hypotheses of how birds should respond to nest predation and the consequences of those alternatives for life history theory. Similarly to the need to control for phylogenetics in examining life history strategies, future studies must also control for differences in breeding season lengths and renesting intervals to better understand the influence of nest predation on avian life histories. [Roper, James J.] Univ Fed Parana, Grad Program Ecol & Conservat, Ctr Politecn, BR-81531990 Curitiba, Parana, Brazil; [Sullivan, Kimberly A.] Utah State Univ, Dept Biol, Logan, UT 84322 USA; [Ricklefs, Robert E.] Univ Missouri, Dept Biol, St Louis, MO 63121 USA Roper, JJ (reprint author), Univ Fed Parana, Grad Program Ecol & Conservat, Ctr Politecn, CP 19034, BR-81531990 Curitiba, Parana, Brazil. jjroper@gmail.com Roper, James/H-7986-2012 Roper, James/0000-0002-2947-5136 Auer SK, 2007, CONDOR, V109, P321, DOI 10.1650/0010-5422(2007)109[321:BBOPIA]2.0.CO;2; Bears H, 2009, J ANIM ECOL, V78, P365, DOI 10.1111/j.1365-2656.2008.01491.x; BRAWN JD, 1995, ECOLOGY, V76, P41, DOI 10.2307/1940630; Chalfoun AD, 2009, J ANIM ECOL, V78, P497, DOI 10.1111/j.1365-2656.2008.01506.x; CONAWAY CH, 1974, J WILDLIFE MANAGE, V38, P473, DOI 10.2307/3800878; Conway CJ, 2000, EVOLUTION, V54, P670; DUNHAM AE, 1988, BIOL REPTILIA, V16, P659; DYRCZ A, 1983, IBIS, V125, P287, DOI 10.1111/j.1474-919X.1983.tb03115.x; Eisenberg J. F, 1989, MAMMALS NEOTROPICS, V1; FILLIATER TS, 1994, CONDOR, V96, P761, DOI 10.2307/1369479; Fitzpatrick J.W., 1989, P201; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; GAWLIK DE, 1990, WILSON BULL, V102, P37; GIBBS JP, 1991, OIKOS, V60, P155, DOI 10.2307/3544861; HOLWAY DA, 1991, CONDOR, V93, P575, DOI 10.2307/1368189; HOTKER H, 1988, J ANIM ECOL, V57, P109, DOI 10.2307/4767; Howell S. N., 1995, GUIDE BIRDS MEXICO N; Isler M. L., 1987, TANAGERS NATURAL HIS; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; KULESZA G, 1990, IBIS, V132, P407, DOI 10.1111/j.1474-919X.1990.tb01059.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LAWTON MF, 1985, CONDOR, V87, P192, DOI 10.2307/1366883; Lima SL, 2009, BIOL REV, V84, P485, DOI 10.1111/j.1469-185X.2009.00085.x; Martin T.E., 1995, BIRDS N AM; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Martin TE, 2006, EVOLUTION, V60, P390; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1988, CONDOR, V90, P51, DOI 10.2307/1368432; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; MASON P, 1985, NEOTROPICAL ORNITHOL, V36; MORTON ML, 1993, CONDOR, V95, P72, DOI 10.2307/1369388; Nagy LR, 2005, AUK, V122, P902, DOI 10.1642/0004-8038(2005)122[0902:TDONIV]2.0.CO;2; NETER, 1985, APPL LINEAR STAT MOD; NORMENT CJ, 1993, AUK, V110, P769, DOI 10.2307/4088632; ONIKI Y, 1979, BIOTROPICA, V11, P60, DOI 10.2307/2388174; ONIKI Y, 1975, AN ACAD BRAS CIENC, V47, P471; Payne R.B., 1989, P153; Perrins C.M., 1977, P181; PHILLIPS PC, 1989, EVOLUTION, V43, P1209, DOI 10.1111/j.1558-5646.1989.tb02569.x; Podolsky AL, 2007, AUK, V124, P1359, DOI 10.1642/0004-8038(2007)124[1359:MPGOTO]2.0.CO;2; RICKLEFS R E, 1969, Living Bird, V8, P165; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; RICKLEFS RE, 1970, SCIENCE, V168, P599, DOI 10.1126/science.168.3931.599; RICKLEFS RE, 1968, P NATL ACAD SCI USA, V61, P847, DOI 10.1073/pnas.61.3.847; RICKLEFS RE, 1977, AUK, V94, P86; Ridgley R.S., 1994, BIRDS S AM, VII; Robinson WD, 2000, J AVIAN BIOL, V31, P151, DOI 10.1034/j.1600-048X.2000.310207.x; Roper James J., 2000, Ararajuba, V8, P85; Roper James J., 2003, Ornitologia Neotropical, V14, P1; Roper JJ, 2005, ORNITOL NEOTROP, V16, P253; Roper JJ, 1997, J AVIAN BIOL, V28, P111, DOI 10.2307/3677304; Schmidt KA, 1999, CONDOR, V101, P916, DOI 10.2307/1370089; SCOTT DM, 1987, WILSON BULL, V99, P708; Skutch A. F, 1985, NEOTROPICAL ORNITHOL, V36, P575; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SKUTCH AF, 1950, IBIS, V92, P185, DOI 10.1111/j.1474-919X.1950.tb01749.x; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SNOW D. W., 1964, ZOOLOGICA [NEW YORK], V49, P1; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STILES FG, 1989, GUIDE BIRDS COSTA RI; SULLIVAN KA, 1999, P 22 INT ORN C JOH S, P401; Thompson BC, 2001, J FIELD ORNITHOL, V72, P527, DOI 10.1648/0273-8570-72.4.527; Tieleman BI, 2009, J ANIM ECOL, V78, P293, DOI 10.1111/j.1365-2656.2008.01522.x; WEATHERS WW, 1989, ECOL MONOGR, V59, P223, DOI 10.2307/1942600; Wikelski M, 2003, CONDOR, V105, P683, DOI 10.1650/7251; WYNDHAM E, 1986, AM NAT, V128, P155, DOI 10.1086/284551; YOMTOV Y, 1994, CONDOR, V96, P170, DOI 10.2307/1369074; YOUNG BE, 1994, CONDOR, V96, P341, DOI 10.2307/1369319; ZIMMERMAN JL, 1984, CONDOR, V86, P68, DOI 10.2307/1367348 70 21 22 0 26 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0030-1299 OIKOS Oikos APR 2010 119 4 719 729 10.1111/j.1600-0706.2009.18047.x 11 Ecology Environmental Sciences & Ecology 582SA WOS:000276617800016 2018-11-12 J Dunkel, CS; Decker, M Dunkel, Curtis S.; Decker, Michelle Convergent validity of measures of life-history strategy PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life-history theory; General factor of personality; Sociosexually; Time perspective REPRODUCTIVE STRATEGY; INDIVIDUAL-DIFFERENCES; FATHER ABSENCE; GENERAL FACTOR; PERSONALITY; PERSPECTIVE Using a sample of 236 young and middle adulthood participants, the convergent validity of five measures of life-history strategy was examined. The results suggest that the two measures designed to quantify life-history strategy are strongly correlated, have the strongest associations with a general factor of personality, and have the strongest loadings on a common factor. (C) 2009 Elsevier Ltd. All rights reserved. [Dunkel, Curtis S.] Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA; [Decker, Michelle] Illinois Cent Coll, Dept Social Sci, E Peoria, IL 61635 USA Dunkel, CS (reprint author), Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA. c-dunkel@wiu.edu BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; Campbell Benjamin, 2007, EVOLUTIONARY PSYCHOL, V5, P696; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4, P394, DOI DOI 10.1177/147470490600400131; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; Gladden PR, 2008, EVOL HUM BEHAV, V29, P319, DOI 10.1016/j.evolhumbehav.2008.03.003; HETHERINGTON EM, 1972, DEV PSYCHOL, V7, P313, DOI 10.1037/h0033339; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Jackson JJ, 2007, EVOL HUM BEHAV, V28, P382, DOI 10.1016/j.evolhumbehav.2007.04.005; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Rushton JP, 2008, PERS INDIV DIFFER, V45, P679, DOI 10.1016/j.paid.2008.07.015; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; Rushton JP, 2009, PERS INDIV DIFFER, V46, P437, DOI 10.1016/j.paid.2008.11.015; SALMON C, 2009, EVOLUTIONARY PSYCHOL, V7, P560; SAUCIER G, 1994, J PERS ASSESS, V63, P506, DOI 10.1207/s15327752jpa6303_8; Schmidt FL, 1999, INTELLIGENCE, V27, P183, DOI 10.1016/S0160-2896(99)00024-0; Thornhill R, 2007, EVOL HUM BEHAV, V28, P215, DOI 10.1016/j.evolhumbehav.2007.01.005; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Zimbardo PG, 1999, J PERS SOC PSYCHOL, V77, P1271, DOI 10.1037//0022-3514.77.6.1271 25 39 40 1 9 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. APR 2010 48 5 681 684 10.1016/j.paid.2009.12.014 4 Psychology, Social Psychology 574KA WOS:000275986800033 2018-11-12 J Burger, O; Walker, R; Hamilton, MJ Burger, Oskar; Walker, Robert; Hamilton, Marcus J. Lifetime reproductive effort in humans PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article life-history theory; reproductive effort; human reproduction HISTORY EVOLUTION; SIZE; LONGEVITY; GROWTH; NUMBER; DIET Lifetime reproductive effort (LRE) measures the total amount of metabolized energy diverted to reproduction during the lifespan. LRE captures key components of the life history and is particularly useful for describing and comparing the life histories of different organisms. Given a simple energetic production constraint, LRE is predicted to be similar in value for very different life histories. However, humans have some unique ecological characteristics that may alter LRE, such as the long post-reproductive lifespan, lengthy juvenile period and the cooperative nature of human foraging and reproduction. We calculate LRE for natural fertility human populations, compare the findings to other mammals and discuss the implications for human life-history evolution. We find that human life-history traits combine to yield the theoretically predicted value (approx. 1.4). Thus, even with the subsidized energy budget and uniqueness of the adult lifespan, human reproductive strategies converge on the same optimal value of LRE. This suggests that the fundamental demographic variables contained in LRE trade-off against one another in a predictable and highly constrained manner. [Burger, Oskar] Stanford Univ, Dept Biol, Stanford, CA 94305 USA; [Walker, Robert] Univ Missouri, Dept Anthropol, Columbia, MO 65211 USA; [Hamilton, Marcus J.] Univ New Mexico, Dept Anthropol, Albuquerque, NM 87131 USA; [Hamilton, Marcus J.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA Burger, O (reprint author), Stanford Univ, Dept Biol, Gilbert Hall, Stanford, CA 94305 USA. oburger@stanford.edu Burger, Oskar/0000-0002-7552-5851 Alvarez HP, 2000, AM J PHYS ANTHROPOL, V113, P435, DOI 10.1002/1096-8644(200011)113:3<435::AID-AJPA11>3.0.CO;2-O; Calder W. A., 1984, SIZE FUNCTION LIFE H; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov EL, 2002, EVOL ECOL RES, V4, P749; Charnov EL, 2001, EVOL ECOL RES, V3, P521; Charnov EL, 2007, AM NAT, V170, pE129, DOI 10.1086/522840; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; FOWLER CW, 1981, ECOLOGY, V62, P602, DOI 10.2307/1937727; Gurven M, 2004, BEHAV BRAIN SCI, V27, P543; Gurven M, 2007, POPUL DEV REV, V33, P321, DOI 10.1111/j.1728-4457.2007.00171.x; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hawkes K, 2001, EVOL HUM BEHAV, V22, P113, DOI 10.1016/S1090-5138(00)00066-0; HAWKES K, 2000, ADAPTATION HUMAN BEH, P237; Hawkes K, 2006, SCH AM RES, P95; Hrdy S.B., 2006, ATTACHMENT BONDING N, P9; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kleiber M., 1961, FIRE LIFE INTRO ANIM; Kuzawa CW, 2007, AM J HUM BIOL, V19, P654, DOI 10.1002/ajhb.20659; Marlowe FW, 2001, CURR ANTHROPOL, V42, P755, DOI 10.1086/323820; PURVIS A, 1995, J ZOOL, V237, P259, DOI 10.1111/j.1469-7998.1995.tb02762.x; Roff D. A., 2002, LIFE HIST EVOLUTION; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Walker R, 2006, AM J PHYS ANTHROPOL, V129, P577, DOI 10.1002/ajpa.20306; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 27 6 6 0 12 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P R SOC B Proc. R. Soc. B-Biol. Sci. MAR 7 2010 277 1682 773 777 10.1098/rspb.2009.1450 5 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 547JG WOS:000273882800015 19889696 Other Gold, Green Published 2018-11-12 J Coall, DA; Chisholm, JS Coall, David A.; Chisholm, James S. Reproductive Development and Parental Investment During Pregnancy: Moderating Influence of Mother's Early Environment AMERICAN JOURNAL OF HUMAN BIOLOGY English Article BODY-MASS-INDEX; FETAL ORIGINS HYPOTHESIS; BRITISH BIRTH COHORT; LIFE-HISTORY; GESTATIONAL-AGE; EVOLUTIONARY PERSPECTIVES; FATHER ABSENCE; MATERNAL AGE; CHILDHOOD EXPERIENCE; PUBERTAL MATURATION The association between a woman's age at menarche and the birth weight of her children is highly variable across human populations. Life history theory proposes that a woman's early environment may moderate this association and thus account for some of the variation between populations. According to one life history theory model, for individuals who develop in a childhood environment of high local mortality rates (experienced subjectively as psychosocial stress), it can be adaptive to mature earlier, have more offspring during their reproductive lifetime, and reduce investment in each offspring. In an environment of low psychosocial stress, however, it may be adaptive to mature later, have fewer offspring, and invest more in each. In this study, birth weight and proportionate birth weight (neonate's birth weight as a percentage of its mother's prepregnancy weight) were used as measures of parental investment during pregnancy. In a sample of 580 first-time mothers, we tested the hypothesis that the psychosocial stress experienced as a child would moderate the association between age at menarche and investment during pregnancy. We found that earlier menarche in those women who experienced stressful life events before 15 years of age was associated with a lower birth weight and proportionate birth weight. Conversely, in those who reported no childhood stressors, earlier menarche was associated with increased birth weight and proportionate birth weight. Our data suggest that the moderating influence of the childhood psychosocial environment on the association between age at menarche and parental investment throughout gestation operates in a dose-dependent manner. Am. J. Hum. Biol. 22:143-153, 2010. (C) 2009 Wiley-Liss, Inc. [Coall, David A.] Univ Basel, Dept Psychol, CH-4003 Basel, Switzerland; [Chisholm, James S.] Univ Western Australia, Sch Anat & Human Biol, Perth, WA 6009, Australia Coall, DA (reprint author), Univ Western Australia, Community Culture & Mental Hlth Unit, Sch Psychiat & Clin Neurosci, Fremantle Hosp, W Block,L6,1 Alma St, Fremantle, WA 6160, Australia. David.Coall@uwa.edu.au Coall, David/0000-0002-0488-2683 Department of Education, Employment and Workplace Relations, Australian Government; Swiss National Science Foundation (SNSF) [51A240-104890]; University of Basel; F. Hoffmann-La Roche Corp.; Freie Akademische Gesellschaft Contract grant sponsor: Department of Education, Employment and Workplace Relations, Australian Government (Australian Postgraduate Award).; We thank the women who generously participated in this study and the Osborne Park Hospital and St John of God Hospital staff. This work is part of the National Centre of Competence in Research (NCCR) Swiss Etiological Study of Adjustment and Mental Health (sesam). The Swiss National Science Foundation (SNSF) (project no. 51A240-104890), the University of Basel, the F. Hoffmann-La Roche Corp. and the Freie Akademische Gesellschaft provided core support for the NCCR sesam. Adair LS, 2001, PEDIATRICS, V107, DOI 10.1542/peds.107.4.e59; Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; Austin CP, 2004, ANNU REV MED, V55, P1, DOI 10.1146/annurev.med.55.091902.104426; Barker DJP, 2004, ACTA PAEDIATR, V93, P26, DOI 10.1080/08035320410022730; BARKER DJP, 1993, LANCET, V341, P938, DOI 10.1016/0140-6736(93)91224-A; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Biro FM, 2001, J PEDIATR-US, V138, P636, DOI 10.1067/mpd.2001.114476; Bogaert AF, 2008, J BIOSOC SCI, V40, P623, DOI 10.1017/S0021932007002386; Bogin B, 2007, AM J HUM BIOL, V19, P631, DOI 10.1002/ajhb.20666; Bronte-Tinkew J, 2007, J NUTR, V137, P2160; Brown J, 2004, J DEV BEHAV PEDIATR, V25, P77, DOI 10.1097/00004703-200404000-00001; BRUDEVOLL JE, 1979, ANN HUM BIOL, V6, P407, DOI 10.1080/03014467900003801; Cameron NM, 2005, NEUROSCI BIOBEHAV R, V29, P843, DOI 10.1016/j.neubiorev.2005.03.022; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 1999, DEATH HOPE AND SEX; Chisholm JS, 2008, EVOLUTIONARY MED HLT, P134; Coall DA, 2003, SOC SCI MED, V57, P1771, DOI 10.1016/S0277-9536(03)00022-4; COALL DA, PEDIAT DEV PATHOL, V12, P200; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; COX JL, 1987, BRIT J PSYCHIAT, V150, P782, DOI 10.1192/bjp.150.6.782; DAVANZO J, 1984, SOC SCI MED, V18, P387; Demerath EW, 2004, AM J CLIN NUTR, V80, P441; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; DREIZEN S, 1967, J PEDIATR-US, V70, P256, DOI 10.1016/S0022-3476(67)80420-7; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; Ellison PT, 2005, AM J HUM BIOL, V17, P113, DOI 10.1002/ajhb.20097; ELLISON PT, 1994, HUM NATURE-INT BIOS, V5, P155, DOI 10.1007/BF02692159; FIewlett Barry S., 1992, FATHER CHILD RELATIO, P153; Frazier PA, 2004, J COUNS PSYCHOL, V51, P115, DOI 10.1037/0022-0167.51.1.115; Freedman David S, 2003, BMC Pediatr, V3, P3, DOI 10.1186/1471-2431-3-3; FRISCH RE, 1971, SCIENCE, V174, P1148; GARN SM, 1987, J NUTR, V117, P817; GAULIN SJC, 1991, AM J PHYS ANTHROPOL, V85, P61, DOI 10.1002/ajpa.1330850108; Gee V., 1994, VALIDATION STUDY W A; GEE V, 1999, 15 ANN W AUSTR MIDW; Geronimus AT, 1999, SOC SCI MED, V49, P1623, DOI 10.1016/S0277-9536(99)00246-4; Gluckman PD, 2005, EARLY HUM DEV, V81, P51, DOI 10.1016/j.earlhumdev.2004.10.003; Gluckman PD, 2007, AM J HUM BIOL, V19, P1, DOI 10.1002/ajhb.20590; Gunnell DJ, 1998, PAEDIATR PERINAT EP, V12, P96, DOI 10.1046/j.1365-3016.1998.0120s1096.x; Harding JE, 2001, INT J EPIDEMIOL, V30, P15, DOI 10.1093/ije/30.1.15; Harris HE, 1998, J NURSE-MIDWIFERY, V43, P97, DOI 10.1016/S0091-2182(97)00159-6; Hennessy E, 1998, PAEDIATR PERINAT EP, V12, P45, DOI 10.1046/j.1365-3016.1998.0120s1045.x; HILL K, 1996, ACHE LIFE HIST ECOLO, P341; Hulanicka B, 2001, AM J HUM BIOL, V13, P771, DOI 10.1002/ajhb.1123; Jones JH, 2005, AM J HUM BIOL, V17, P22, DOI 10.1002/ajhb.20099; Kirchengast S, 2000, SOC BIOL, V47, P114; Kramer KL, 2008, AM J PHYS ANTHROPOL, V136, P338, DOI 10.1002/ajpa.20817; KRAMER MS, 1987, B WORLD HEALTH ORGAN, V65, P663; Kuzawa CW, 2007, AM J HUM BIOL, V19, P654, DOI 10.1002/ajhb.20659; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; Kuzawa CW, 2004, J NUTR, V134, P194; Laitinen J, 2001, AM J CLIN NUTR, V74, P287; LAND RB, 1985, REPROD MAMMALS REPRO, V4, P62; Lao TT, 2001, GYNECOL OBSTET INVES, V52, P34, DOI 10.1159/000052937; Leeners B, 2006, EARLY HUM DEV, V82, P441, DOI 10.1016/j.earthumdev.2005.11.007; Leiteh I., 1959, Proceedings of the Zoological Society of London, V133, P11; LIESTOL K, 1995, ANN HUM BIOL, V22, P199, DOI 10.1080/03014469500003862; LISSAU I, 1994, LANCET, V343, P324, DOI 10.1016/S0140-6736(94)91163-0; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Malina RM, 1997, MED SCI SPORT EXER, V29, P99, DOI 10.1097/00005768-199701000-00014; Mamun AA, 2009, OBESITY, V17, P761, DOI 10.1038/oby.2008.594; May R. M., 1985, REPRODUCTION MAMMALS, V4, P1; MELLBIN T, 1989, ACTA PAEDIATR SCAND, V78, P576, DOI 10.1111/j.1651-2227.1989.tb17939.x; *MIMS AUSTR, 2001, MIMS BIM AUG SEPT 20; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; Mousseau TA, 1998, MATERNAL EFFECTS ADA; Mulder M Borgerhoff, 1992, EVOLUTIONARY ECOLOGY, P339; Must A, 2002, AM J EPIDEMIOL, V155, P672, DOI 10.1093/aje/155.7.672; Naguib M, 2006, P R SOC B, V273, P1901, DOI 10.1098/rspb.2006.3526; Oakes JM, 2003, SOC SCI MED, V56, P769, DOI 10.1016/S0277-9536(02)00073-4; Pasch KE, 2008, J ADOLESCENT HEALTH, V43, P387, DOI 10.1016/j.jadohealth.2008.02.009; Pawlowski B, 2005, HUM NATURE-INT BIOS, V16, P164, DOI 10.1007/s12110-005-1002-7; Pesonen AK, 2008, AM J HUM BIOL, V20, P345, DOI 10.1002/ajhb.20735; Petridou E, 1996, CHILD CARE HLTH DEV, V22, P37, DOI 10.1111/j.1365-2214.1996.tb00421.x; Pike IL, 2005, AM J HUM BIOL, V17, P55, DOI 10.1002/ajhb.20093; POPPITT SD, 1994, AM J OBSTET GYNECOL, V171, P118, DOI 10.1016/S0002-9378(94)70087-7; Power C, 1997, AM J CLIN NUTR, V66, P1094; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; REVILL SI, 1978, ARCH DIS CHILD, V53, P66, DOI 10.1136/adc.53.1.66; Sanderson M, 1998, AM J EPIDEMIOL, V147, P136; SanJose C, 1997, PERCEPT MOTOR SKILL, V85, P917; SCHOLL TO, 1989, ANN HUM BIOL, V16, P335, DOI 10.1080/03014468900000462; SHERMAN B, 1981, J CLIN ENDOCR METAB, V52, P488, DOI 10.1210/jcem-52-3-488; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STROBINO DM, 1995, AM J EPIDEMIOL, V142, P504, DOI 10.1093/oxfordjournals.aje.a117668; SURBEY MK, 1990, MG PRIMATOL, V13, P11; TANNER JM, 1968, SCI AM, V218, P21, DOI 10.1038/scientificamerican0168-21; TENNANT C, 1976, AUST NZ J PSYCHIAT, V10, P27, DOI 10.3109/00048677609159482; Thame M, 2004, EUR J CLIN NUTR, V58, P894, DOI 10.1038/sj.ejcn.1601909; Turrell G, 2001, INT J EPIDEMIOL, V30, P231, DOI 10.1093/ije/30.2.231; Vigil JM, 2005, DEV PSYCHOL, V41, P553, DOI 10.1037/0012-1649.41.3.553; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; WOLFF OH, 1995, Q J MED, V24, P109; Worthman CM, 2005, AM J HUM BIOL, V17, P95, DOI 10.1002/ajhb.20096; Worthman CM, 1999, EVOLUTIONARY MEDICI NE, P135; Xu BZ, 1997, EARLY HUM DEV, V49, P183, DOI 10.1016/S0378-3782(97)00031-5; Xu BZ, 1995, SOC BIOL, V42, P175, DOI 10.1080/19485565.1995.9988899; Zaslow M, 2009, MATERN CHILD HLTH J, V13, P66, DOI 10.1007/s10995-008-0329-1; Zubrick S, 2000, INDICATORS SOCIAL FA 112 18 18 1 11 WILEY-LISS HOBOKEN DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA 1042-0533 AM J HUM BIOL Am. J. Hum. Biol. MAR-APR 2010 22 2 143 153 10.1002/ajhb.20965 11 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 561KX WOS:000274977100001 19536836 2018-11-12 J Ricklefs, RE Ricklefs, Robert E. Parental Investment and Avian Reproductive Rate: Williams's Principle Reconsidered AMERICAN NATURALIST English Review optimality theory; life-history theory; adaptation; demography; bird; clutch size LIFE-HISTORY EVOLUTION; NEW-WORLD POPULATIONS; AGE-SPECIFIC MORTALITY; CLUTCH-SIZE; NEST PREDATION; SURVIVAL RATES; COMPARATIVE DEMOGRAPHY; THRUSHES TURDUS; BROOD SIZE; POSTFLEDGING SURVIVAL Beginning with George Williams's concept of present and residual (future) reproductive value, life-history theory has considered that the optimized level of parental investment (i.e., assumed risk) should increase in proportion to the annual mortality rate of parent individuals. However, when the survival of young from independence to maturity is separated from parental reproductive success, optimized parental investment is proportional, instead, to prereproductive survival when reproductive and nonreproductive components of adult mortality are additive (simultaneous risk) or to the ratio of prereproductive survival to adult nonreproductive survival when the adult mortality components are multiplicative (independent risk). Applied to the lower, and largely nonoverlapping, brood sizes of tropical compared to temperate and boreal birds, estimates of both adult and prereproductive survival do not predict different levels of reproductive investment. Accordingly, the pervasive increase in clutch size with latitude would appear to reflect increasing availability of food resources to provision offspring. Univ Missouri, Dept Biol, St Louis, MO 63121 USA Ricklefs, RE (reprint author), Univ Missouri, Dept Biol, 8001 Nat Bridge Rd, St Louis, MO 63121 USA. ricklefs@umsl.edu National Science Foundation [IBN-0212587]; University of Missouri; Alexander von Humboldt Foundation I am grateful to J. Brawn and D. Robinson for comments and discussion and to two anonymous reviewers for helpful suggestions on the manuscript. I am also grateful for generous support from the National Science Foundation (IBN-0212587), the curators of the University of Missouri, and the Alexander von Humboldt Foundation. Adams AAY, 2006, ECOLOGY, V87, P178, DOI 10.1890/04-1922; Anders AD, 1997, CONSERV BIOL, V11, P698, DOI 10.1046/j.1523-1739.1997.95526.x; ANDERSSON M, 1980, ANIM BEHAV, V87, P367; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; ASKENMO C, 1979, AM NAT, V114, P748, DOI 10.1086/283523; Bennett P. M., 2002, EVOLUTIONARY ECOLOGY; Blake JG, 2008, BIOTROPICA, V40, P485, DOI 10.1111/j.1744-7429.2007.00395.x; Bokony V, 2009, AM NAT, V173, P589, DOI 10.1086/597610; BOTKIN DB, 1974, AM NAT, V108, P181, DOI 10.1086/282898; Briskie JV, 1999, P ROY SOC B-BIOL SCI, V266, P2153, DOI 10.1098/rspb.1999.0902; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Charnov Eric L., 1993, P1; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Cody M. L., 1971, P461; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Cohen EB, 2004, AUK, V121, P404, DOI 10.1642/0004-8038(2004)121[0404:SHUAMO]2.0.CO;2; Conn PB, 2005, ECOLOGY, V86, P2536, DOI 10.1890/04-1799; CONRAD KF, 1993, OECOLOGIA, V96, P290, DOI 10.1007/BF00317744; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; DAVIES NB, 1986, J ANIM ECOL, V55, P123, DOI 10.2307/4697; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; ERPINO MJ, 1968, CONDOR, V70, P154, DOI 10.2307/1365958; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Fontaine JJ, 2007, OIKOS, V116, P1887, DOI 10.1111/j.2007.0030-1299.16043.x; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Ghalambor CK, 2000, ANIM BEHAV, V60, P263, DOI 10.1006/anbe.2000.1472; Ghalambor CK, 2002, BEHAV ECOL, V13, P101, DOI 10.1093/beheco/13.1.101; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; GOTTFRIED BM, 1979, CONDOR, V81, P251, DOI 10.2307/1367626; Graveland J, 1997, J ANIM ECOL, V66, P279, DOI 10.2307/6028; Graveland J, 1996, CAN J ZOOL, V74, P1035, DOI 10.1139/z96-115; Green DJ, 2001, J ANIM ECOL, V70, P505, DOI 10.1046/j.1365-2656.2001.00503.x; GREIGSMITH PW, 1980, ANIM BEHAV, V28, P604, DOI 10.1016/S0003-3472(80)80069-8; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HANN HW, 1937, WILSON B, V49, P145; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Johnston JP, 1997, AM NAT, V150, P771, DOI 10.1086/286093; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; Kershner EL, 2004, AUK, V121, P1146, DOI 10.1642/0004-8038(2004)121[1146:PMASOJ]2.0.CO;2; KULESZA G, 1990, IBIS, V132, P407, DOI 10.1111/j.1474-919X.1990.tb01059.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D., 1966, POPULATION STUDIES B; Lack D., 1968, ECOLOGICAL ADAPTATIO; Lack D, 1949, IBIS, V91, P455, DOI [DOI 10.1111/J.1474-919X.1949.TB02294.X, 10.1111/j.1474-919X.1949.tb02294.x]; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Liker A, 2005, EVOLUTION, V59, P890, DOI 10.1554/04-560; Luck GW, 2003, BIOL CONSERV, V109, P1, DOI 10.1016/S0006-3207(02)00085-X; Magrath RD, 1997, J ANIM ECOL, V66, P658, DOI 10.2307/5919; Magrath RD, 2000, AUK, V117, P479, DOI 10.1642/0004-8038(2000)117[0479:LITSLR]2.0.CO;2; Martin T.E., 1992, Current Ornithology, V9, P163; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; McNamara JM, 2008, AM NAT, V172, P331, DOI 10.1086/589886; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Moore RP, 2008, ECOL LETT, V11, P960, DOI 10.1111/j.1461-0248.2008.01196.x; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; Murphy MT, 2000, ECOL MONOGR, V70, P1, DOI 10.1890/0012-9615(2000)070[0001:EOCSIT]2.0.CO;2; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; Pavel V, 2000, ETHOLOGY, V106, P1007, DOI 10.1046/j.1439-0310.2000.00617.x; PERRINS CM, 1970, IBIS, V112, P242, DOI 10.1111/j.1474-919X.1970.tb00096.x; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; PETTIFOR RA, 1993, J ANIM ECOL, V62, P131, DOI 10.2307/5488; Redmond LJ, 2009, WILSON J ORNITHOL, V121, P1, DOI 10.1676/07-166.1; Ricklefs R.E., 1977, P193; Ricklefs R.E., 1983, Current Ornithology, V1, P1; RICKLEFS R E, 1969, Living Bird, V8, P165; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; RICKLEFS RE, 1980, AUK, V97, P38; Ricklefs RE, 2005, ECOLOGY, V86, P2541, DOI 10.1890/05-0066; Ricklefs RE, 1997, ECOL MONOGR, V67, P23, DOI 10.1890/0012-9615(1997)067[0023:CDONWP]2.0.CO;2; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; Ricklefs RE, 1998, AM NAT, V152, P24, DOI 10.1086/286147; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; RICKLEFS RE, 1971, AUK, V88, P635; RICKLEFS RE, 1977, AUK, V94, P86; Ricklefs RE, 2007, ECOLOGY, V88, P1408, DOI 10.1890/06-1035; Ricklefs Robert E., 1993, Current Ornithology, V11, P199; Robles H, 2007, ECOGRAPHY, V30, P685, DOI 10.1111/j.2007.0906-7590.05179.x; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; SAETHER BE, 1994, EVOLUTION, V48, P1397, DOI 10.1111/j.1558-5646.1994.tb05324.x; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.1890/0012-9658(2000)081[1351:SROANP]2.0.CO;2; Schaub M, 2009, J ANIM ECOL, V78, P625, DOI 10.1111/j.1365-2656.2008.01508.x; Skalski J. R., 2005, WILDLIFE DEMOGRAPHY; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SNOW D. W., 1958, IBIS, V100, P1, DOI 10.1111/j.1474-919X.1958.tb00362.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STROMBORG KL, 1988, ECOLOGY, V69, P590, DOI 10.2307/1941008; Stutchbury B. J. M., 2001, BEHAV ECOLOGY TROPIC; Styrsky JN, 2005, ECOLOGY, V86, P3238, DOI 10.1890/04-1613; SULLIVAN KA, 1989, J ANIM ECOL, V58, P275, DOI 10.2307/5000; Tershy BR, 2000, AUK, V117, P817, DOI 10.1642/0004-8038(2000)117[0817:IEVAED]2.0.CO;2; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Wells KMS, 2007, CONDOR, V109, P781, DOI 10.1650/0010-5422(2007)109[781:SOPGBI]2.0.CO;2; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; Young BE, 1996, ECOLOGY, V77, P472, DOI 10.2307/2265623; Zanette L, 2000, J ANIM ECOL, V69, P458, DOI 10.1046/j.1365-2656.2000.00408.x 107 20 20 2 49 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. MAR 2010 175 3 350 361 10.1086/650371 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 552JH WOS:000274285400008 20109060 2018-11-12 J Nettle, D Nettle, Daniel Dying young and living fast: variation in life history across English neighborhoods BEHAVIORAL ECOLOGY English Article birthweight; breastfeeding; grandmothering; humans; life-history theory; parental investment; reproductive strategies PARENTAL INVESTMENT; ENVIRONMENTAL RISK; BIRTH-WEIGHT; POPULATION; INTELLIGENCE; INEQUALITIES; EXPECTANCY; FERTILITY; MORTALITY; COHORT Where the expected reproductive life span is short, theory predicts that individuals should follow a "fast" life-history strategy of early reproduction, reduced investment in each offspring, and high reproductive rate. I apply this prediction to different neighborhood environments in contemporary England. There are substantial differences in the expectation of healthy life between the most deprived and most affluent neighborhoods. Using data from the Millennium Cohort Study (n = 8660 families), I show that in deprived neighborhoods compared with affluent ones, age at first birth is younger, birthweights are lower, and breastfeeding duration is shorter. There is also indirect evidence that reproductive rates are higher. Coresidence of a father figure is less common, and contact with maternal grandmothers is less frequent, though grandmaternal contact shows a curvilinear relationship with neighborhood quality. Children from deprived neighborhoods perform less well on a verbal cognitive assessment at age 5 years, and this deficit is partly mediated by parental age and investment variables. I suggest that fast life history is a comprehensible response, produced through phenotypic plasticity, to the ecological context of poverty, but one that entails specific costs to children. Newcastle Univ, Inst Neurosci, Ctr Behav & Evolut, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England Nettle, D (reprint author), Newcastle Univ, Inst Neurosci, Ctr Behav & Evolut, Henry Wellcome Bldg,Framlington Pl, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England. daniel.nettle@ncl.ac.uk Nettle, Daniel/B-2259-2008 Nettle, Daniel/0000-0001-9089-2599 Andersen AMN, 2004, INT J EPIDEMIOL, V33, P92, DOI 10.1093/ije/dyg195; Bajekal Madhavi, 2005, Health Stat Q, P18; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Borja JB, 2003, AM J HUM BIOL, V15, P733, DOI 10.1002/ajhb.10220; Bradley RH, 2002, ANNU REV PSYCHOL, V53, P371, DOI 10.1146/annurev.psych.53.100901.135233; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Conger RD, 2007, ANNU REV PSYCHOL, V58, P175, DOI 10.1146/annurev.psych.58.110405.085551; Downey DB, 2001, AM PSYCHOL, V56, P497, DOI 10.1037//0003-066X.56.6-7.497; DOWNEY DB, 1995, AM SOCIOL REV, V60, P746, DOI 10.2307/2096320; Dubois L, 2006, PEDIATR INT, V48, P470, DOI 10.1111/j.1442-200X.2006.02256.x; Duncan S, 2007, CRIT SOC POLICY, V27, P307, DOI 10.1177/0261018307078845; ELLIOTT CD, 1996, BRIT ABILITY SCALES, V2; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Evans GW, 2009, P NATL ACAD SCI USA, V106, P6545, DOI 10.1073/pnas.0811910106; Geronimus AT, 2003, SOC SCI MED, V57, P881, DOI 10.1016/S0277-9536(02)00456-2; Geronimus AT, 1999, SOC SCI MED, V49, P1623, DOI 10.1016/S0277-9536(99)00246-4; GREEN A, 1988, BMJ-BRIT MED J, V297, P391, DOI 10.1136/bmj.297.6645.391; Guegan JF, 2001, EVOLUTION, V55, P1308; GUO G, 2000, DEMOGRAPHY, V37, P432; Hansen K, 2008, MILLENNIUM COHORT ST; Hansen K, 2009, J SOC POLICY, V38, P211, DOI 10.1017/S004727940800281X; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; Kaplan HS, 1998, MEN IN FAMILIES, P55; Kaptijn R, 2010, EVOL HUM BEHAV, V31, P59, DOI 10.1016/j.evolhumbehav.2009.07.007; Keller MC, 2001, EVOL HUM BEHAV, V22, P343, DOI 10.1016/S1090-5138(01)00075-7; Kohlhuber M, 2008, BRIT J NUTR, V99, P1127, DOI 10.1017/S0007114508864835; Lawson DW, 2009, EVOL HUM BEHAV, V30, P170, DOI 10.1016/j.evolhumbehav.2008.12.001; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Mortensen EL, 2002, JAMA-J AM MED ASSOC, V287, P2365, DOI 10.1001/jama.287.18.2365; Mortensen LH, 2008, J EPIDEMIOL COMMUN H, V62, P325, DOI 10.1136/jech.2007.061473; Nettle D, 2003, BRIT J PSYCHOL, V94, P551, DOI 10.1348/000712603322503097; NETTLE D, 2009, AM J HUM BIOL, DOI DOI 10.1002/AJHB.20970; Nettle D, 2008, EVOL HUM BEHAV, V29, P416, DOI 10.1016/j.evolhumbehav.2008.06.002; Nettle D, 2009, TRENDS ECOL EVOL, V24, P618, DOI 10.1016/j.tree.2009.05.013; *NICHD EARL CHILD, 2005, CHILD DEV, V0076; Office of the Deputy Prime Minister (ODPM), 2004, ENGL IND DEPR 2004; Petrou S, 2006, PAEDIATR PERINAT EP, V20, P14, DOI 10.1111/j.1365-3016.2006.00688.x; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2008, HUM NATURE-INT BIOS, V19, P87, DOI 10.1007/s12110-007-9026-9; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Robson AJ, 2003, AM ECON REV, V93, P150, DOI 10.1257/000282803321455205; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Stearns S. C., 1992, EVOLUTION LIFE HIST; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Wood R, 2006, J EPIDEMIOL COMMUN H, V60, P1089, DOI 10.1136/jech.2005.044941 47 109 115 1 43 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 BEHAV ECOL Behav. Ecol. MAR-APR 2010 21 2 387 395 10.1093/beheco/arp202 9 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 555BZ WOS:000274483400025 Bronze 2018-11-12 J Millon, A; Petty, SJ; Lambin, X Millon, A.; Petty, S. J.; Lambin, X. Pulsed resources affect the timing of first breeding and lifetime reproductive success of tawny owls JOURNAL OF ANIMAL ECOLOGY English Article age at first breeding; cost of reproduction; information-theoretic approach; population cycles; survival INDIVIDUAL FITNESS; CAPTURE-RECAPTURE; NATAL DISPERSAL; FOOD CONDITIONS; UNCERTAIN ENVIRONMENTS; DELAYED REPRODUCTION; VARIABLE ENVIRONMENT; HATCHING DATE; STRIX-ALUCO; BROOD SIZE P>1. According to life-history theory, environmental variability and costs of reproduction account for the prevalence of delayed reproduction in many taxa. Empirical estimates of the fitness consequences of different ages at first breeding in a variable environment are few however such that the contributions of environmental and individual variability remains poorly known. 2. Our objectives were to elucidate processes that underpin variation in delayed reproduction and to assess lifetime consequences of the age of first breeding in a site-faithful predator, the tawny owl Strix aluco L. subjected to fluctuating selection linked to cyclical variation in vole density (typically 3-year cycles with low, increasing and decreasing vole densities in successive years). 3. A multistate capture-recapture model revealed that owl cohorts had strikingly different juvenile survival prospects, with estimates ranging from 0 center dot 08 to 0 center dot 33 respectively for birds born in Decrease and Increase phases of the vole cycle. This resulted in a highly skewed population structure with > 75% of local recruits being reared during Increase years. In contrast, adult survival remained constant throughout a vole cycle. The probability of commencing reproduction was lower at age 1 than at older ages, and especially so for females. From age 2 onwards, pre-breeders had high probabilities of entering the breeding population. 4. Variation in lifetime reproductive success was driven by the phase of the vole cycle in which female owls started their breeding career (26-47% of variance explained, whether based on the number of local recruits or fledglings), more than by age at first breeding or by conditions experienced at birth. Females who postponed reproduction to breed for the first time at age 3 during an Increase phase, produced more recruits, even when accounting for birds that may have died before reproduction. No such effects were detected for males. 5. Sex-specific costs of early reproduction may have accounted for females being more prone to delay reproduction. Contrary to expectations from a best-of-a-bad job strategy, early-hatched, hence potentially higher-quality females were more likely to breed at age 1, but then experienced rapidly declining food resources and so seemed caught in a life-history trap set by the multiannual vole cycle. [Millon, A.; Petty, S. J.; Lambin, X.] Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen AB24 2TZ, Scotland; [Petty, S. J.] Forestry Commiss Roslin, No Res Stn, Ctr Human & Ecol Sci, Roslin EH25 9SY, Midlothian, Scotland Lambin, X (reprint author), Univ Aberdeen, Inst Biol & Environm Sci, Zool Bldg,Tillydrone Ave, Aberdeen AB24 2TZ, Scotland. x.lambin@abdn.ac.uk Millon, Alexandre/R-6464-2017; Lambin, Xavier/E-8284-2011 Millon, Alexandre/0000-0002-9475-4123; Lambin, Xavier/0000-0003-4643-2653 NERC [NE/E010660/1, NE/F021402/1]; Natural Environment Research Council [NE/F021402/1, NE/E010660/1] This analysis was supported by NERC grants NE/E010660/1 and NE/F021402/1. We are grateful to Forest Enterprise, Kielder Forest District for giving us unrestricted access to the forest for this study. B.M. Appleby, C. Coles and D. Anderson helped with some of the field work. We also thank J.M. Reid, T. Cornulier, S. Jouaire, C. Sutherland, together with three anonymous referees for helpful comments. A. Douglas and C. Putois provided useful statistical advice. Appleby BM, 1997, P ROY SOC B-BIOL SCI, V264, P1111, DOI 10.1098/rspb.1997.0153; Barbraud C, 2005, ECOLOGY, V86, P682, DOI 10.1890/04-0075; Benton TG, 1996, AM NAT, V147, P115, DOI 10.1086/285843; Bierman SM, 2006, AM NAT, V167, P583, DOI 10.1086/501076; Bouwhuis S, 2009, P R SOC B, V276, P2769, DOI 10.1098/rspb.2009.0457; BRADFORD MJ, 1993, ECOLOGY, V74, P1129, DOI 10.2307/1940482; Brommer J, 2000, AM NAT, V155, P454, DOI 10.1086/303335; Brommer JE, 2004, AM NAT, V163, P505, DOI 10.1086/382547; Brommer JE, 2002, AUK, V119, P544, DOI 10.1642/0004-8038(2002)119[0544:RASIAV]2.0.CO;2; Brommer JE, 2002, ECOL LETT, V5, P802, DOI 10.1046/j.1461-0248.2002.00369.x; Brommer JE, 1998, J ANIM ECOL, V67, P359, DOI 10.1046/j.1365-2656.1998.00201.x; Burnham K. P., 2002, MODEL SELECTION MULT; Cam E, 2000, J ANIM ECOL, V69, P380, DOI 10.1046/j.1365-2656.2000.00400.x; Charmantier A, 2006, P NATL ACAD SCI USA, V103, P6587, DOI 10.1073/pnas.0511123103; CHOQUET R, 2003, USERS MANUAL U CARE; CHOQUET R, 2009, MODELING DEMOGRAPHIC, V3, P845; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; Dawson A, 2000, P ROY SOC B-BIOL SCI, V267, P2093, DOI 10.1098/rspb.2000.1254; Descamps S, 2006, P R SOC B, V273, P2369, DOI 10.1098/rspb.2006.3588; ENS BJ, 1995, AM NAT, V146, P625, DOI 10.1086/285818; Francis C. M., 2004, Animal Biodiversity and Conservation, V27, P489; GRAFEN A, 1988, REPROD SUCCESS, P538; Hadley GL, 2007, J ANIM ECOL, V76, P448, DOI 10.1111/j.1365-2656.2007.01219.x; Hakkarainen H, 2002, OECOLOGIA, V131, P83, DOI 10.1007/s00442-001-0865-5; Hawn AT, 2007, CURR BIOL, V17, P844, DOI 10.1016/j.cub.2007.03.036; Houston AI, 1999, MODELS ADAPTIVE BEHA; Ims RA, 2008, TRENDS ECOL EVOL, V23, P79, DOI 10.1016/j.tree.2007.10.010; Julliard R, 1996, ACTA OECOL, V17, P487; Karell P, 2009, J ANIM ECOL, V78, P1050, DOI 10.1111/j.1365-2656.2009.01563.x; Kokko H, 2003, TRENDS ECOL EVOL, V18, P103, DOI 10.1016/S0169-5347(03)00009-0; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; KORPIMAKI E, 1988, J ANIM ECOL, V57, P433, DOI 10.2307/4915; Lambin X, 2000, J ANIM ECOL, V69, P106, DOI 10.1046/j.1365-2656.2000.00380.x; Lambin X, 2001, J ANIM ECOL, V70, P191, DOI 10.1046/j.1365-2656.2001.00494.x; Lebreton JD, 2003, OIKOS, V101, P253, DOI 10.1034/j.1600-0706.2003.11848.x; McGraw JB, 1996, AM NAT, V147, P47, DOI 10.1086/285839; Nevoux M, 2008, J ANIM ECOL, V77, P1143, DOI 10.1111/j.1365-2656.2008.01435.x; Nichols JD, 2004, ECOLOGY, V85, P3192, DOI 10.1890/03-0578; Pasinelli G, 2002, ECOLOGY, V83, P2229, DOI 10.2307/3072054; Petty S.J., 1994, P521; Petty S. J., 1992, ECOLOGY TAWNY OWL ST; PETTY SJ, 1994, J RAPTOR RES, V28, P134; Petty SJ, 1999, J ZOOL, V248, P451; PETTY SJ, 1992, ECOLOGY CONSERVATION, P89; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Pradel R, 2003, BIOMETRICS, V59, P43, DOI 10.1111/1541-0420.00006; Pradel Roger, 1999, Bird Study, V46, pS74; *R DEV COR TEAM, 2006, R LANG ENV STAT COMP; Reid JM, 2003, J ANIM ECOL, V72, P36, DOI 10.1046/j.1365-2656.2003.00673.x; Ruf T, 2006, ECOLOGY, V87, P372, DOI 10.1890/05-0672; SPEAR L, 1994, J ANIM ECOL, V63, P283, DOI 10.2307/5547; Tavecchia G, 2001, ECOLOGY, V82, P165, DOI 10.1890/0012-9658(2001)082[0165:SAARVI]2.0.CO;2; Tinbergen JM, 2005, J ANIM ECOL, V74, P1112, DOI 10.1111/j.1365-2656.2005.01010.x; TULJAPURKAR S, 1990, P NATL ACAD SCI USA, V87, P1139, DOI 10.1073/pnas.87.3.1139; Viallefont A, 1995, AUK, V112, P67, DOI 10.2307/4088767; Wilbur HM, 2006, AM NAT, V168, P398, DOI 10.1086/506258; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 57 24 25 5 46 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0021-8790 J ANIM ECOL J. Anim. Ecol. MAR 2010 79 2 426 435 10.1111/j.1365-2656.2009.01637.x 10 Ecology; Zoology Environmental Sciences & Ecology; Zoology 552VH WOS:000274321200015 19912425 Bronze 2018-11-12 J Burns, JH; Blomberg, SP; Crone, EE; Ehrlen, J; Knight, TM; Pichancourt, JB; Ramula, S; Wardle, GM; Buckley, YM Burns, Jean H.; Blomberg, Simon P.; Crone, Elizabeth E.; Ehrlen, Johan; Knight, Tiffany M.; Pichancourt, Jean-Baptiste; Ramula, Satu; Wardle, Glenda M.; Buckley, Yvonne M. Empirical tests of life-history evolution theory using phylogenetic analysis of plant demography JOURNAL OF ECOLOGY English Article buffering; delayed reproduction; evolution; life history; matrix population models; phylogenetic signal; phylogeny; plant demography; projection matrices STAGE-STRUCTURED POPULATIONS; TRADE-OFFS; UNCERTAIN ENVIRONMENTS; VARIABLE ENVIRONMENTS; DELAYED REPRODUCTION; VITAL-RATES; GROWTH RATE; ELASTICITIES; PERENNIALS; FITNESS 1. A primary goal of evolutionary ecology is to understand factors selecting for the diversity of life histories. Life-history components, such as time-to-reproduction, adult survivorship and fecundity, might differ among species because of variation in direct and indirect benefits of these life histories in different environments or might have lower-than-expected variability because of phylogenetic constraints. Here, we present a phylogenetic examination of demography and life histories using a data base of 204 terrestrial plant species. 2. Overall, statistical models without phylogeny were preferred to models with phylogeny for vital rates and elasticities, suggesting that they lacked phylogenetic signal and are evolutionarily labile. However, the effect of phylogeny was significant in models including sensitivities, suggesting that sensitivities exhibit greater phylogenetic signal than vital rates or elasticities. 3. Species with a greater age at first reproduction had lower fecundity, consistent with a cost of delayed reproduction, but only in some habitats (e.g. grassland). We found no evidence for an indirect benefit of delayed reproduction via a decrease in variation in fecundity with age to first reproduction. 4. The greater sensitivity and lower variation in survival than in fecundity was consistent with buffering of more important vital rates, as others have also found. This suggests that studies of life-history evolution should include survival, rather than only fecundity, for the majority of species. 5. Synthesis. Demographic matrix models can provide informative tests of life-history theory because of their shared construction and outputs and their widespread use among plant ecologists. Our comparative analysis suggested that there is a cost of delayed reproduction and that more important vital rates exhibit lower variability. The absolute importance of vital rates to population growth rates (sensitivities) exhibited phylogenetic signal, suggesting that a thorough understanding of life-history evolution might require an understanding of the importance of vital rates, not just their means, and the role of phylogenetic history. [Burns, Jean H.] Univ Calif Davis, Ctr Populat Biol, Davis, CA 95616 USA; [Blomberg, Simon P.; Buckley, Yvonne M.] Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia; [Crone, Elizabeth E.] Univ Montana, Coll Forestry & Conservat, Dept Ecosyst & Conservat Sci, Missoula, MT 59812 USA; [Ehrlen, Johan] Stockholm Univ, Dept Bot, SE-10691 Stockholm, Sweden; [Knight, Tiffany M.] Washington Univ, Dept Biol, St Louis, MO 63130 USA; [Pichancourt, Jean-Baptiste] CSIRO Entomol, Indooroopilly, Qld 4068, Australia; [Ramula, Satu] Univ Turku, Sect Ecol, Turku 20014, Finland; [Wardle, Glenda M.] Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia; [Buckley, Yvonne M.] CSIRO Sustainable Ecosyst, St Lucia, Qld 4067, Australia Burns, JH (reprint author), Univ Calif Davis, Ctr Populat Biol, Davis, CA 95616 USA. burns@ucdavis.edu Pichancourt, Jean-Baptiste/C-1370-2009; Ehrlen, Johan/H-6286-2013; Wardle, Glenda/D-6533-2016; Wardle, Glenda/D-9332-2012; Blomberg, Simon/B-7613-2008; Buckley, Yvonne/B-1281-2008 Wardle, Glenda/0000-0003-0189-1899; Blomberg, Simon/0000-0003-1062-0839; Buckley, Yvonne/0000-0001-7599-3201; Ehrlen, Johan/0000-0001-8539-8967 ARC-NZ Research Network for Vegetation Function; Tyson Research Center at Washington University in St. Louis; American Association of University Women; Center for Population Biology, University of California; Australian Research Council [DP0771387] We are grateful to the authors who generously donated unpublished demographic matrices: C. Gustafsson, M. Hutchings, M. Milden, F. Nicole and B. Tenhumberg. Thanks to K. S. Moriuchi, S. Price, T. P. Young, the Handling Editor and two anonymous referees for helpful comments on the manuscript, and H. Quested and P. Aronsson for Matlab codes. We also thank the ARC-NZ Research Network for Vegetation Function for funding to the 'Plant Population Syndromes' working group. J. H. B. thanks Tyson Research Center at Washington University in St. Louis, the American Association of University Women, and the Center for Population Biology, University of California, Davis, for funding during the course of this project. Y. M. B. is funded by an Australian Research Fellowship from the Australian Research Council (DP0771387). Ackerly DD, 2000, EVOLUTION, V54, P1480, DOI 10.1111/j.0014-3820.2000.tb00694.x; Baker JA, 2008, BEHAVIOUR, V145, P579, DOI 10.1163/156853908792451539; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BROWN JS, 1986, AM NAT, V127, P31, DOI 10.1086/284465; Burnham KP, 2002, MODEL SELECTION INFE; Caswell H, 2001, MATRIX POPULATION MO; COCHRAN ME, 1992, ECOL MONOGR, V62, P345, DOI 10.2307/2937115; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Crone EE, 2001, EVOLUTION, V55, P2611; Datson PM, 2008, PLANT SYST EVOL, V270, P39, DOI 10.1007/s00606-007-0612-4; Davies TJ, 2004, P NATL ACAD SCI USA, V101, P1904, DOI 10.1073/pnas.0308127100; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; Ehrlen J, 2002, OIKOS, V98, P308, DOI 10.1034/j.1600-0706.2002.980212.x; ENRIGHT NJ, 1995, OECOLOGIA, V104, P79, DOI 10.1007/BF00365565; Franco M, 2004, ECOLOGY, V85, P531, DOI 10.1890/02-0651; Franco Miguel, 1997, P210; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Harper JL, 1996, PHILOS T ROY SOC B, V351, P1227, DOI 10.1098/rstb.1996.0105; Jongejans E, 2010, J ECOL, V98, P279, DOI 10.1111/j.1365-2745.2009.01612.x; Kaye TN, 2003, ECOLOGY, V84, P1464, DOI 10.1890/0012-9658(2003)084[1464:TEOSTO]2.0.CO;2; KLINKHAMER PGL, 1987, NEW PHYTOL, V106, P773, DOI 10.1111/j.1469-8137.1987.tb00178.x; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; Lesica P, 2005, FUNCT ECOL, V19, P471, DOI 10.1111/j.1365-2435.2005.00972.x; Lesica P, 2007, J ECOL, V95, P1360, DOI 10.1111/j.1365-2745.2007.01291.x; Martinez JA, 2000, J PHYSIOL BIOCHEM, V56, P1, DOI 10.1007/BF03179770; Martins EP, 1997, AM NAT, V149, P646, DOI 10.1086/286013; MESTERTONGIBBONS M, 1993, ECOLOGY, V74, P2467, DOI 10.2307/1939599; Metcalf CJE, 2008, P NATL ACAD SCI USA, V105, P10466, DOI 10.1073/pnas.0800777105; Metcalf JC, 2003, TRENDS ECOL EVOL, V18, P471, DOI 10.1016/S0169-5347(03)00162-9; Metcalf JC, 2006, TRENDS ECOL EVOL, V22, P205; Morris WF, 2005, ECOL MONOGR, V75, P119, DOI 10.1890/03-4116; Morris WF, 2004, AM NAT, V163, P579, DOI 10.1086/382550; Morris WF, 2008, ECOLOGY, V89, P19, DOI 10.1890/07-0774.1; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; PARADIS E, 2006, ANAL PHYLOGENETICS E; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; *R FDN STAT COMP, 2004, R 2 8 1; Ramula S, 2008, J APPL ECOL, V45, P1124, DOI 10.1111/j.1365-2664.2008.01502.x; Reekie E, 2005, REPROD ALLOCATION PL; Rees M, 2006, AM NAT, V168, pE53, DOI 10.1086/505762; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff D. A., 2002, LIFE HIST EVOLUTION; Salguero-Gomez R, 2010, J ECOL, V98, P312, DOI 10.1111/j.1365-2745.2009.01616.x; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SHEA K, 1994, J ECOL, V82, P951, DOI 10.2307/2261457; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; Silvertown J, 1996, EVOL ECOL, V10, P77, DOI 10.1007/BF01239348; Sokal R.R., 1995, BIOMETRY; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stevens PF, 2009, ANGIOSPERM PHYLOGENY; Stokes KE, 2004, J VEG SCI, V15, P505, DOI 10.1658/1100-9233(2004)015[0505:PROUST]2.0.CO;2; Stott I, 2010, J ECOL, V98, P302, DOI 10.1111/j.1365-2745.2009.01632.x; Tank DC, 2008, AM J BOT, V95, P608, DOI 10.3732/ajb.2007346; Treier UA, 2009, ECOLOGY, V90, P1366, DOI 10.1890/08-0420.1; TULJAPURKAR S, 1990, P NATL ACAD SCI USA, V87, P1139, DOI 10.1073/pnas.87.3.1139; van Tienderen PH, 2000, ECOLOGY, V81, P666, DOI 10.1890/0012-9658(2000)081[0666:EATLBD]2.0.CO;2; VANTIENDEREN PH, 1995, ECOLOGY, V76, P2482, DOI 10.2307/2265822; Wardle GM, 1998, ECOLOGY, V79, P2539, DOI 10.2307/176842; Webb CO, 2008, BIOINFORMATICS, V24, P2098, DOI 10.1093/bioinformatics/btn358; Webb CO, 2005, MOL ECOL NOTES, V5, P181, DOI 10.1111/j.1471-8286.2004.00829.x; Wikstrom N, 2001, P ROY SOC B-BIOL SCI, V268, P2211, DOI 10.1098/rspb.2001.1782; Wilbur HM, 2006, AM NAT, V168, P398, DOI 10.1086/506258; YOUNG TP, 1990, EVOL ECOL, V4, P157, DOI 10.1007/BF02270913 69 29 30 4 48 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0022-0477 J ECOL J. Ecol. MAR 2010 98 2 334 344 10.1111/j.1365-2745.2009.01634.x 11 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology 548HF WOS:000273950400009 Bronze 2018-11-12 J van IJzendoorn, MH; Bakermans-Kranenburg, MJ van IJzendoorn, Marinus H.; Bakermans-Kranenburg, Marian J. Invariance of adult attachment across gender, age, culture, and socioeconomic status? JOURNAL OF SOCIAL AND PERSONAL RELATIONSHIPS English Article attachment; evolution; gender; intercultural/interracial; language; love; meta analysis REPRESENTATIONS; SECURITY Is attachment in adulthood associated with gender, age, culture, or socioeconomic context? There is a widely held belief that males and younger individuals exhibit a more avoidant or dismissive stance toward attachment experiences, as would subjects from individualized, Western societies and from poorer socio-economic environments. Distributions of Adult Attachment Interview (AAI) classifications in various gender, cultural, socioeconomic, and age groups were compared with the normative distribution of North American non-clinical Caucasian mothers (23% dismissing, 58% secure, 19% preoccupied) through analysis of correspondence. Indeed, adolescent and student samples contained a higher proportion of dismissing attachment classifications than the normative group. No gender differences were found in the use of dismissing versus preoccupied attachment strategies in relatively affluent social environments, and the AAI distributions were largely independent of language and country of origin. Most strikingly, low SES adolescent mothers showed the strongest over-representation of dismissing attachments, which supports the life history theory prediction that in harsh environments individuals adopt a quantity-oriented reproductive strategy in tandem with a dismissing view of attachment. [van IJzendoorn, Marinus H.] Leiden Univ, Ctr Child & Family Studies, NL-2300 RB Leiden, Netherlands van IJzendoorn, MH (reprint author), Leiden Univ, Ctr Child & Family Studies, POB 9555, NL-2300 RB Leiden, Netherlands. vanijzen@fsw.leidenuniv.nl van IJzendoorn, Marinus/I-1379-2012 van IJzendoorn, Marinus/0000-0003-1144-454X; , marian/0000-0001-7763-0711 Allen J. P., 2008, HDB ATTACHMENT THEOR, P419; Bakermans-Kranenburg MJ, 2009, ATTACH HUM DEV, V11, P223, DOI 10.1080/14616730902814762; Bakermans-Kranenburg MJ, 2009, BEHAV BRAIN SCI, V32, P22, DOI 10.1017/S0140525X0900003X; Bakermans-Kranenburg MJ, 2004, INFANT BEHAV DEV, V27, P417, DOI 10.1016/j.infbeh.2004.02.002; Bowlby J., 1984, ATTACHMENT LOSS, V1; CASSIDY J, 2008, HDB ATTACHMENT THEOR; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; George C., 1985, ADULT ATTACHME UNPUB; GREENACRE MJ, 1985, THEORY APPL CORRESPO; Grice H. P., 1975, SYNTAX SEMANTICS, V3, P41, DOI DOI 10.1017/S0022226700005296; Hesse E., 2008, HDB ATTACHMENT THEOR, V2, P552; Mikulincer M., 2007, ATTACHMENT ADULTHOOD; Rothbaum F, 2000, AM PSYCHOL, V55, P1093, DOI 10.1037//0003-066X.55.10.1093; Schmitt DP, 2004, J CROSS CULT PSYCHOL, V35, P367, DOI 10.1177/0022022104266105; Simpson Jeffry A., 2008, HDB ATTACHMENT THEOR, P131; van IJzendoorn M. H., 2008, HDB ATTACHMENT THEOR, P880; VAN IJZENDOORN MH, 1995, PSYCHOL BULL, V117, P387, DOI 10.1037/0033-2909.117.3.387; VANIJZENDOORN MH, 2010, CHILD DEV P IN PRESS; Wall S., 1978, PATTERNS ATTACHMENT 20 36 36 1 30 SAGE PUBLICATIONS LTD LONDON 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND 0265-4075 J SOC PERS RELAT J. Soc. Pers. Relatsh. MAR 2010 27 2 200 208 10.1177/0265407509360908 9 Communication; Family Studies; Psychology, Social Communication; Family Studies; Psychology 574YJ WOS:000276029800005 2018-11-12 J Beauchamp, G Beauchamp, Guy Group-foraging is not associated with longevity in North American birds BIOLOGY LETTERS English Article body mass; group size; foraging; independent contrasts; maximum longevity; passerine versus non-passerine bird BODY-SIZE; LIFE-SPAN; SENESCENCE; EVOLUTION; FLOCKING; METABOLISM; SOCIALITY; AVES Group-foraging is common in many animal taxa and is thought to offer protection against predators and greater foraging efficiency. Such benefits may have driven evolutionary transitions from solitary to group-foraging. Greater protection against predators and greater access to resources should reduce extrinsic sources of mortality and thus select for higher longevity according to life-history theory. I assessed the association between group-foraging and longevity in a sample of 421 North American birds. Taking into account known correlates of longevity, such as age at first reproduction and body mass, foraging group size was not correlated with maximum longevity, with and without phylogenetic correction. However, longevity increased with body mass in non-passerine birds. The results suggest that the hypothesized changes in predation risk with group size may not correlate with mortality rate in foraging birds. Univ Montreal, Fac Vet Med, St Hyacinthe, PQ J2S 7C6, Canada Beauchamp, G (reprint author), Univ Montreal, Fac Vet Med, POB 5000, St Hyacinthe, PQ J2S 7C6, Canada. guy.beauchamp@umontreal.ca Alexander R.D., 1974, Annual Rev Ecol Syst, V5, P325, DOI 10.1146/annurev.es.05.110174.001545; ARNOLD TW, 1988, CAN J ZOOL, V66, P1906, DOI 10.1139/z88-279; Beauchamp G, 2004, P ROY SOC B-BIOL SCI, V271, P1039, DOI 10.1098/rspb.2004.2703; Beauchamp G, 2002, BEHAV ECOL SOCIOBIOL, V51, P480, DOI 10.1007/s00265-002-0461-7; Blumstein DT, 2008, BIOL LETTERS, V4, P146, DOI 10.1098/rsbl.2007.0606; de Magalhaes JP, 2007, J GERONTOL A-BIOL, V62, P149; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Jonsson KA, 2006, ZOOL SCR, V35, P149, DOI 10.1111/j.1463-6409.2006.00221.x; Jullien M, 2000, ECOLOGY, V81, P3416, DOI 10.1890/0012-9658(2000)081[3416:TSVOFI]2.0.CO;2; Krause J, 2002, LIVING GROUPS; Lind J, 2005, BEHAV ECOL, V16, P945, DOI 10.1093/beheco/ari075; LINDSTEDT SL, 1976, CONDOR, V78, P91, DOI 10.2307/1366920; Livezey BC, 2007, ZOOL J LINN SOC-LOND, V149, P1, DOI 10.1111/j.1096-3642.2006.00293.x; MADDISON WP, 2009, MESQUITE MODULAR SYS; McKechnie AE, 2004, PHYSIOL BIOCHEM ZOOL, V77, P502, DOI 10.1086/383511; METCALFE NB, 1984, ANIM BEHAV, V32, P986, DOI 10.1016/S0003-3472(84)80211-0; Midford P, 2008, PDAP MESQUITE TRANSL; Moller AP, 2007, J EVOLUTION BIOL, V20, P750, DOI 10.1111/j.1420-9101.2006.01236.x; Moller AP, 2006, J EVOLUTION BIOL, V19, P682, DOI 10.1111/j.1420-9101.2005.01065.x; Munshi-South J, 2006, AUK, V123, P108, DOI 10.1642/0004-8038(2006)123[0108:DILSIP]2.0.CO;2; Ricklefs RE, 2008, FUNCT ECOL, V22, P379, DOI 10.1111/j.1365-2435.2008.01420.x; Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 23 5 5 1 11 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 BIOL LETTERS Biol. Lett. FEB 23 2010 6 1 42 44 10.1098/rsbl.2009.0691 3 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 542NR WOS:000273501700012 19776065 Green Published, Bronze 2018-11-12 J Robert, KA; Bronikowski, AM Robert, Kylie A.; Bronikowski, Anne M. Evolution of Senescence in Nature: Physiological Evolution in Populations of Garter Snake with Divergent Life Histories AMERICAN NATURALIST English Article DNA damage; free radical; oxidative stress; reptile; senescence; stress response FREE-RADICAL PRODUCTION; THAMNOPHIS-ELEGANS; OXIDATIVE STRESS; AGING RESEARCH; CAENORHABDITIS-ELEGANS; HEART-MITOCHONDRIA; METABOLIC-RATE; DNA-REPAIR; LONGEVITY; MORTALITY Evolutionary theories of aging are linked to life-history theory in that age-specific schedules of reproduction and survival determine the trajectory of age-specific mutation/selection balances across the life span and thus the rate of senescence. This is predicted to manifest at the organismal level in the evolution of energy allocation strategies of investing in somatic maintenance and robust stress responses in less hazardous envirnments in exchange for energy spent on growth and reproduction. Here we report experiments from long-studied populations of western terrestrial garter snakes (Thamnophis elegans) that reside in low and high extrinsic mortality environments, with evolved long and short life spans, respectively. Laboratory common-environment colonies of these two ecotypes were tested for a suite of physiological traits after control and stressed gestations. In offspring derived from control and corticosterone-treated dams, we measured resting metabolism; mitochondrial oxygen consumption, ATP and free radical production rates; and erythrocyte DNA damage and repair ability. We evaluated whether these aging biomarkers mirrored the evolution of life span and whether they were sensitive to stress. Neonates from the long-lived ecotype (1) were smaller, (2) consumed equal amounts of oxygen when corrected for body mass, (3) had DNA that damaged more readily but repaired more efficiently, and (4) had more efficient mitochondria and more efficient cellular antioxidant defenses than short-lived snakes. Many ecotype differences were enhanced in offspring derived from stress-treated dams, which supports the conclusion that non-genetic maternal effects may further impact the cellular stress defenses of offspring. Our findings reveal that physiological evolution underpins reptilian life histories and sheds light on the connectedness between stress response and aging pathways in wild-dwelling organisms. [Robert, Kylie A.; Bronikowski, Anne M.] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA Bronikowski, AM (reprint author), Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA. abroniko@iastate.edu Robert, Kylie/C-5181-2009 Robert, Kylie/0000-0002-8554-8440; Bronikowski, Anne/0000-0001-6432-298X Iowa State University Center for Integrated Animal Genomics; National Science Foundation (NSF) [DEB-0323379, IOS-0922528]; California Department of Fish and Game [803021-03]; Iowa State Institutional Animal Care and Use Committee [8-06-6198-J, 3-2-5125-J] We are grateful to A. Cannon, M. Morrill, and A. Sparkman, who assisted with the capture of females in the field, and to S. J. Arnold for continued collaboration and discussion. We thank D. Vleck for use of his oxygen analyzer and H. Gao for help collecting comet data. DNA damage assays and visualization were performed with support from the Iowa State University Center for Integrated Animal Genomics and the National Science Foundation (NSF) Integrative Graduate Education and Research Traineeship Program in molecular computational biology. Garter snakes were collected with the permission of the California Department of Fish and Game (803021-03). The project was approved by Iowa State Institutional Animal Care and Use Committee (approvals 8-06-6198-J and 3-2-5125-J) and supported by NSF grants DEB-0323379 to A. M. B. and S. J. Arnold and IOS-0922528 to A.M.B. ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; Arnold SJ, 2002, AM NAT, V160, P306, DOI 10.1086/341522; Austad SN, 1997, EXP GERONTOL, V32, P23, DOI 10.1016/S0531-5565(96)00059-9; Austad SN, 1996, EXP GERONTOL, V31, P453, DOI 10.1016/0531-5565(95)02068-3; AUSTAD SN, 1993, J ZOOL, V229, P695, DOI 10.1111/j.1469-7998.1993.tb02665.x; AUSTAD SN, 1991, J GERONTOL, V46, P47; Barja G., 1998, METHODS AGING RES, P533; Baudisch A, 2005, P NATL ACAD SCI USA, V102, P8263, DOI 10.1073/pnas.0502155102; Bergeron P, 2008, OIKOS, V117, P77, DOI 10.1111/j.2007.0030-1299.16158.x; Bouwhuis S, 2009, P R SOC B, V276, P2769, DOI 10.1098/rspb.2009.0457; BRAND MD, 1993, BIOCHEM J, V291, P739, DOI 10.1042/bj2910739; Brand MD, 2000, EXP GERONTOL, V35, P811, DOI 10.1016/S0531-5565(00)00135-2; Bronikowski AM, 1999, ECOLOGY, V80, P2314, DOI 10.1890/0012-9658(1999)080[2314:TEEOLH]2.0.CO;2; Bronikowski AM, 2000, EVOLUTION, V54, P1760; Bronikowski AM, 2005, TRENDS ECOL EVOL, V20, P271, DOI 10.1016/j.tree.2005.03.011; Bronikowski AM, 2002, P NATL ACAD SCI USA, V99, P9591, DOI 10.1073/pnas.142675599; Bronikowski AM, 2008, AGE, V30, P169, DOI 10.1007/s11357-008-9060-5; Brunet-Rossinni AK, 2004, BIOGERONTOLOGY, V5, P211, DOI 10.1023/B:BGEN.0000038022.65024.d8; Bryant MJ, 2004, AM NAT, V163, P55, DOI 10.1086/380650; Buffenstein R, 2008, AGE, V30, P99, DOI 10.1007/s11357-008-9058-z; Butov A, 2001, EXP GERONTOL, V37, P57, DOI 10.1016/S0531-5565(01)00161-9; Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001; Campisi J, 2009, AGING CELL, V8, P221, DOI 10.1111/j.1474-9726.2009.00475.x; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Greer EL, 2008, J CELL SCI, V121, P407, DOI 10.1242/jcs.021519; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hare KM, 2004, COMP BIOCHEM PHYS A, V139, P245, DOI 10.1016/cbpb.2004.09.009; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Harper JM, 2008, AGE, V30, P135, DOI 10.1007/s11357-008-9057-0; Harper JM, 2006, J GERONTOL A-BIOL, V61, P1019, DOI 10.1093/gerona/61.10.1019; Herrero A, 1997, MECH AGEING DEV, V98, P95, DOI 10.1016/S0047-6374(97)00076-6; HOLLOSZY JO, 1986, J APPL PHYSIOL, V61, P1656; Kawasaki N, 2008, AM NAT, V172, P346, DOI 10.1086/589519; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Klaude M, 1996, MUTAT RES-DNA REPAIR, V363, P89, DOI 10.1016/0921-8777(95)00063-1; KLEIBER M, 1975, J THEOR BIOL, V53, P199, DOI 10.1016/0022-5193(75)90110-1; Lambert AJ, 2007, AGING CELL, V6, P607, DOI 10.1111/j.1474-9726.2007.00312.x; Landys MM, 2006, GEN COMP ENDOCR, V148, P132, DOI 10.1016/j.ygcen.2006.02.013; LEBOURG E, 2008, MILD STRESS HLTH AGI; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Love OP, 2008, AM NAT, V172, pE135, DOI 10.1086/590959; Love OP, 2008, HORM BEHAV, V54, P496, DOI 10.1016/j.yhbeh.2008.01.006; MACKAY CM, 1935, J NUTR, V10, P63; Mair W, 2003, SCIENCE, V301, P1731, DOI 10.1126/science.1086016; Mangel M, 2008, FUNCT ECOL, V22, P422, DOI 10.1111/j.1365-2435.2008.01410.x; Manier MK, 2007, J EVOLUTION BIOL, V20, P1705, DOI 10.1111/j.1420-9101.2007.01401.x; Manier MK, 2005, MOL ECOL, V14, P3965, DOI 10.1111/j.1365-294X.2005.02734.x; Martin LB, 2006, INTEGR COMP BIOL, V46, P1030, DOI 10.1093/icb/icl039; Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012; MASORO EJ, 1991, ANN NY ACAD SCI, V621, P337; Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007; Miller RA, 1999, NEUROBIOL AGING, V20, P217; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; OLSSON M, 2008, BIOL LETT, V5, P345; Olsson M, 2008, BIOL LETTERS, V4, P186, DOI 10.1098/rsbl.2007.0611; ORDY JM, 1967, P SOC EXP BIOL MED, V126, P184; Pallotti Francesco, 2001, V65, P1; Pearl R, 1928, RATE LIVING; Perez VI, 2009, P NATL ACAD SCI USA, V106, P3059, DOI 10.1073/pnas.0809620106; Perez-Campo R, 1998, J COMP PHYSIOL B, V168, P149, DOI 10.1007/s003600050131; Promislow Daniel E.L., 2006, P464; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; PROMISLOW DEL, 1994, J THEOR BIOL, V170, P291, DOI 10.1006/jtbi.1994.1190; PROMISLOW DEL, 1993, J GERONTOL, V48, pB115, DOI 10.1093/geronj/48.4.B115; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; Ricklefs RE, 2008, FUNCT ECOL, V22, P379, DOI 10.1111/j.1365-2435.2008.01420.x; Roach DA, 2004, AM NAT, V164, P60, DOI 10.1086/421301; Roach DA, 2009, ECOLOGY, V90, P1427, DOI 10.1890/08-0981.1; Robert KA, 2007, AGING CELL, V6, P395, DOI 10.1111/j.1474-9726.2007.00287.x; Robert KA, 2009, HORM BEHAV, V55, P24, DOI 10.1016/j.yhbeh.2008.07.008; RUBNER M, 2008, PROBLEM LEBENSDAUR S; Scannapieco AC, 2007, BIOGERONTOLOGY, V8, P315, DOI 10.1007/s10522-006-9075-1; SCHWARTZ TS, 2010, MECH LIFE H IN PRESS; SINGH NP, 1988, EXP CELL RES, V175, P184, DOI 10.1016/0014-4827(88)90265-0; Sparkman AM, 2007, P ROY SOC B-BIOL SCI, V274, P943, DOI 10.1098/rspb.2006.0072; Sparkman AM, 2009, ECOLOGY, V90, P720, DOI 10.1890/08-0850.1; Sparkman AM, 2009, J ANIM ECOL, V78, P1242, DOI 10.1111/j.1365-2656.2009.01587.x; Speakman JR, 2005, AGING CELL, V4, P167, DOI 10.1111/j.1474-9726.2005.00162.x; Speakman JR, 2004, AGING CELL, V3, P87, DOI 10.1111/j.1474-9728.2004.00097.x; Ungvari Z, 2008, AGE, V30, P121, DOI 10.1007/s11357-008-9059-y; VLECK D, 1987, J APPL PHYSIOL, V62, P2103; Weindruch R, 1988, RETARDATION AGING DI; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008; Williams PD, 2003, EVOLUTION, V57, P1478 89 53 53 1 59 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 AM NAT Am. Nat. FEB 2010 175 2 147 159 10.1086/649595 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 544IV WOS:000273650200004 20050804 Green Published 2018-11-12 J Becker, NSA; Verdu, P; Hewlett, B; Pavard, S Becker, Noemie S. A.; Verdu, Paul; Hewlett, Barry; Pavard, Samuel Can Life History Trade-Offs Explain the Evolution of Short Stature in Human Pygmies? A Response to Migliano et al. (2007) HUMAN BIOLOGY English Article PYGMIES; HEIGHT; LIFE HISTORY; DEMOGRAPHY; MORTALITY; FERTILITY REPRODUCTIVE SUCCESS; HUNTER-GATHERERS; GAMBIAN WOMEN; AGE; FERTILITY; GROWTH; BIRTH; POPULATIONS Walker et al. ["Growth rates and life histories in twenty-two small-scale societies," Am. J. Hum. Biol. 18:295-311 (2006)] used life history theory to develop an innovative explanation for human diversity in stature. Short stature could have been selected for in some human populations as a result of the advantage of an earlier growth cessation and earlier reproduction in a context of high mortality. Migliano et al ["Life history trade-offs explain the evolution of human pygmies," Proc. Natl. Acad. Sci. USA 104:20,216-20,219 (2007)] recently published an important article that tested this hypothesis to explain short stature in human pygmy populations. However innovative this work may be, we believe that some of the data and results presented are controversial if not questionable. As problematic points we note (1) the use of an arbitrary threshold of height (155 cm) to categorize populations into pygmies and nonpygmies; (2) the use of demographic data from Philippine pygmy groups that have experienced dramatic cultural and environmental changes in the last 20 years, and (3) the use of demographic data concerning African pygmy groups because good systematic data on these groups are not available. Finally, we report here mathematical errors and loopholes in the optimization model developed by Migliano and colleagues. In this paper we suggest alternative trade-offs that can be used to explain Migliano's results on more reliable bases. [Becker, Noemie S. A.; Verdu, Paul; Pavard, Samuel] Musee Homme Paris, UMR 7206, F-75016 Paris, France; [Hewlett, Barry] Washington State Univ, Dept Anthropol, Vancouver, WA 98686 USA Becker, NSA (reprint author), Musee Homme Paris, UMR 7206, 17 Pl Trocadero, F-75016 Paris, France. Pavard, Samuel/0000-0002-6803-8123 Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; Bahuchet S., 1992, Mobility and territoriality: social and spatial boundaries among foragers, fishers, pastoralists and peripatetics., P205; BAHUCHET S, 1991, HUM ECOL, V19, P213, DOI 10.1007/BF00888746; Bahuchet S., 1993, CAH ETUD AFR, V33, P153; Bahuchet S., 1992, FORET AFRIQUE CENTRA; Bahuchet Serge, 1993, RENCONTRE AGR PYGMEE; BAILEY RC, 1991, ANN HUM BIOL, V18, P113, DOI 10.1080/03014469100001452; BAILEY RC, 1985, THESIS HARVARD U CAM; Cavalli-Sforza LL., 1986, AFRICAN PYGMIES; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov Eric L., 1993, P1; EARLY JD, 1998, POPULATION DYNAMICS; EDER JF, 1987, ROAD TRIBAL EXTINCTI; Euler L, 1760, MEMOIRES ACAD ROYALE, V16, P144; FRIEDE A, 1987, PUBLIC HEALTH REP, V102, P192; Froment A, 2001, BIOSOCIAL S, V13, P239; Froment Alain, 1993, Bulletins et Memoires de la Societe d'Anthropologie de Paris, V5, P417, DOI 10.3406/bmsap.1993.2371; HEADLAND T N, 1989, American Journal of Human Biology, V1, P59, DOI 10.1002/ajhb.1310010111; HEWLETT BS, 1996, CULTURAL DIVERSITY 2, V1, P215; HIERNAUX J, 1974, PEOPLE AFRICA; HILL A, 1996, ACHE LIFE HIST ECOLO; Hladik C. M., 1989, SE NOURRIR FORET EQU; Howell N., 1979, DEMOGRAPHY DOBE KUNG; Joiris DV., 2003, AFRICAN STUDY MONOGR, V28, P57; KAZADI N, 1981, AFRICA, V51, P837; KOPPERT GJA, 1993, MAN BIOSPH, V13, P295; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LOTKA AJ, 1925, ELEMENTS PHYS BIOL; Mace R, 1998, PHILOS T R SOC B, V353, P389, DOI 10.1098/rstb.1998.0217; MAKINSON C, 1985, FAM PLANN PERSPECT, V17, P132, DOI 10.2307/2135024; Migliano AB, 2007, P NATL ACAD SCI USA, V104, P20216, DOI 10.1073/pnas.0708024105; PAGEZY H, 1988, COPING UNCERTAINTY F, V1, P175; Perry GH, 2009, TRENDS ECOL EVOL, V24, P218, DOI 10.1016/j.tree.2008.11.008; Rush D, 2000, AM J CLIN NUTR, V72, p212S; SCHEBESTA P, 1938, BAMBUTI PYGMAEN ITUR, V1; Schmidt E, 1905, GLOBUS, V87, P121; SCHREIDER E, 1968, LANCET, V1, P92; Sear R, 2004, AM J HUM BIOL, V16, P223; Shanley DP, 2001, BIOESSAYS, V23, P282, DOI 10.1002/1521-1878(200103)23:3<282::AID-BIES1038>3.3.CO;2-0; TURNBULL CM, 1965, WAYWARD SERVANT 2 WO; Turnbull CM, 1986, AFRICAN PYGMIES, P103; van de Koppel JMH, 1986, AFRICAN PYGMIES, P95; VERDU P, 2009, ANTHR GENETIQUE POPU; Verdu P, 2009, CURR BIOL, V19, P312, DOI 10.1016/j.cub.2008.12.049; VOLTERRA VITO, 1926, MEM R ACCAD NAZ LINCEI CL FIS MAT E NAT, V2, P31; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; WEISS KM, 1973, HUM BIOL, V45, P195; Weiss KM, 1973, MEMOIRS SOC AM ARCHA, V27; ZABIN LS, 1998, STUD FAMILY PLANN, V29, P21 49 19 21 2 27 WAYNE STATE UNIV PRESS DETROIT 4809 WOODWARD AVE, DETROIT, MI 48201-1309 USA 0018-7143 HUM BIOL Hum. Biol. FEB 2010 82 1 17 27 10.3378/027.082.0101 11 Anthropology; Biology; Genetics & Heredity Anthropology; Life Sciences & Biomedicine - Other Topics; Genetics & Heredity 647UB WOS:000281643800002 20504169 2018-11-12 J McKinnon, L; Smith, PA; Nol, E; Martin, JL; Doyle, FI; Abraham, KF; Gilchrist, HG; Morrison, RIG; Bety, J McKinnon, L.; Smith, P. A.; Nol, E.; Martin, J. L.; Doyle, F. I.; Abraham, K. F.; Gilchrist, H. G.; Morrison, R. I. G.; Bety, J. Lower Predation Risk for Migratory Birds at High Latitudes SCIENCE English Article LONG-DISTANCE MIGRATION; RED KNOTS; NEST PREDATION; SHOREBIRDS; NORTH; CIRCUMPOLAR; SONGBIRDS; EVOLUTION; PRESSURE; PATTERNS Quantifying the costs and benefits of migration distance is critical to understanding the evolution of long-distance migration. In migratory birds, life history theory predicts that the potential survival costs of migrating longer distances should be balanced by benefits to lifetime reproductive success, yet quantification of these reproductive benefits in a controlled manner along a large geographical gradient is challenging. We measured a controlled effect of predation risk along a 3350-kilometer south-north gradient in the Arctic and found that nest predation risk declined more than twofold along the latitudinal gradient. These results provide evidence that birds migrating farther north may acquire reproductive benefits in the form of lower nest predation risk. [McKinnon, L.; Bety, J.] Univ Quebec, Dept Biol, Rimouski, PQ G5L 3A1, Canada; [McKinnon, L.; Bety, J.] Univ Quebec, Ctr Etud Nord, Rimouski, PQ G5L 3A1, Canada; [Smith, P. A.; Morrison, R. I. G.] Environm Canada, Natl Wildlife Res Ctr, Ottawa, ON K1A 0H3, Canada; [Nol, E.] Trent Univ, Environm & Life Sci Grad Program, Ecol & Conservat Grp, Peterborough, ON K9J 7B8, Canada; [Nol, E.] Trent Univ, Dept Biol, Peterborough, ON K9J 7B8, Canada; [Martin, J. L.] CNRS, Ctr Ecol Fonct & Evolut, Dept Dynam Syst Ecol, F-34033 Montpellier, France; [Doyle, F. I.] Wildlife Dynam Consulting, Telkwa, BC V0J 2X0, Canada; [Abraham, K. F.] Ontario Minist Nat Resources, Wildlife Res & Dev Sect, Peterborough, ON K9J 7B8, Canada; [Gilchrist, H. G.] Carleton Univ, Dept Biol, Ottawa, ON K1S 5B6, Canada; [Gilchrist, H. G.] Carleton Univ, Natl Wildlife Res Ctr, Environm Canada, Ottawa, ON K1S 5B6, Canada McKinnon, L (reprint author), Univ Quebec, Dept Biol, Rimouski, PQ G5L 3A1, Canada. laura.mckinnon3@gmail.com Martin, Jean-Louis/E-5059-2010 Bety, Joel/0000-0002-8775-6411 ArcticNet; Environment Canada; Fonds Quebecois de Recherche sur la Nature et les Technologies; Garfield Weston Foundation; Institut Paul Emile Victor; International Polar Year (IPY) Project ArcticWOLVES; Natural Sciences and Engineering Research Council of Canada; Northern Ecosystem Initiatives; Northern Scientific Training Program; Ontario Ministry of Natural Resources Funded by ArcticNet, Environment Canada, Fonds Quebecois de Recherche sur la Nature et les Technologies, a Garfield Weston Foundation Award for Northern Research, Institut Paul Emile Victor (formerly Institut Francais de Recherches et Technologies Polaires), International Polar Year (IPY) Project ArcticWOLVES, Natural Sciences and Engineering Research Council of Canada (Northern Internship Program and Discovery Grant), Northern Ecosystem Initiatives, Northern Scientific Training Program, and the Ontario Ministry of Natural Resources. Logistical support was provided by the Ontario Ministry of Natural Resources, the Polar Continental Shelf Project, Parks Canada, and D. Leclerc. We also thank the Department of National Defense and staff of the Environment Canada weather station for logistic support at Alert; Vicky Johnston and crew for support on Prince Charles Island; the many field assistants who monitored artificial nests: A. Blachford, A. Bechet, J. Carrier, M. Cloutier, A.-M. d'Aoust-Messier, E. d'Astous, T. Daufresne, S. Gan, D. Hogan, L. Jolicoeur, C. Juillet, J.-R. Julien, B. Laliberte, P. Y. l'Herault, R. Lopez, P. Meister, M. Nelligan, D. Ootoova, L. Qangug, D. C. Rabouam, G. Reid, N. Ward, and S. Williams; G. Gauthier and D. Berteaux, leaders of the IPY ArcticWOLVES project, for fostering collaboration between the authors; and O. Gilg, C. Juillet, L. P. Nguyen, T. Piersma, D. Reid, and two anonymous reviewers for helpful discussions or comments on early versions of the manuscript. Alerstam T, 2003, OIKOS, V103, P247, DOI 10.1034/j.1600-0706.2003.12559.x; Baker AJ, 2004, P ROY SOC B-BIOL SCI, V271, P875, DOI 10.1098/rspb.2003.2663; BOLAND JM, 1990, CONDOR, V92, P284, DOI 10.2307/1368226; Butler RW, 2000, AUK, V117, P518, DOI 10.1642/0004-8038(2000)117[0518:SSFSNA]2.0.CO;2; COX DR, 1972, J R STAT SOC B, V34, P187; Ganter B, 2000, ARCTIC, V53, P289; Kis J, 2000, ARDEA, V88, P155; Kvist A, 2001, NATURE, V413, P730, DOI 10.1038/35099556; LAIRD M, 1961, CAN J ZOOLOG, V39, P209, DOI 10.1139/z61-025; LEVEY DJ, 1992, AM NAT, V140, P447, DOI 10.1086/285421; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Morrison RIG, 2007, J AVIAN BIOL, V38, P479, DOI 10.1111/j.2007.0908-8857.03934.x; Morrison RIG, 2006, ARDEA, V94, P607; Piersma T, 2003, FUNCT ECOL, V17, P356, DOI 10.1046/j.1365-2435.2003.00741.x; Piersma T, 1997, OIKOS, V80, P623, DOI 10.2307/3546640; Schekkerman H, 2003, OECOLOGIA, V134, P332, DOI 10.1007/s00442-002-1124-0; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; van de Kam J., 2004, SHOREBIRDS ILLUSTRAT; Wikelski M, 2003, NATURE, V423, P704, DOI 10.1038/423704a; Ydenberg RC, 2004, P ROY SOC B-BIOL SCI, V271, P1263, DOI 10.1098/rspb.2004.2713 22 108 115 3 109 AMER ASSOC ADVANCEMENT SCIENCE WASHINGTON 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA 0036-8075 SCIENCE Science JAN 15 2010 327 5963 326 327 10.1126/science.1183010 2 Multidisciplinary Sciences Science & Technology - Other Topics 544CM WOS:000273629700041 20075251 2018-11-12 S Olden, JD; Kennard, MJ Gido, KB; Jackson, DA Olden, Julian D.; Kennard, Mark J. Intercontinental Comparison of Fish Life History Strategies along a Gradient of Hydrologic Variability COMMUNITY ECOLOGY OF STREAM FISHES: CONCEPTS, APPROACHES, AND TECHNIQUES American Fisheries Society Symposium English Proceedings Paper Symposium on Community Ecology of Stream Fishes: Concepts, Approaches, and Techniques AUG 19-20, 2008 Ottawa, CANADA NATURAL FLOW REGIME; FRESH-WATER FISH; POPULATION REGULATION; ASSEMBLAGE STRUCTURE; AMERICAN FISHES; RIVER SYSTEMS; HABITAT; PATTERNS; COMMUNITIES; TRAITS The flow regime is considered the primary driver of physical processes in riverine ecosystems; thus we expect that the trait composition of fish assemblages might respond similarly to hydrologic variability, even at broad spatial scales. Here, we test the hypothesis that freshwater fish life history strategies on two continents (southern United States and eastern Australia) converge along gradients of hydrologic variability and primary productivity at the drainage scale. Our results show that the fishes of the United States and Australia conform to the three-dimensional adaptive space arising from the trade-offs among three basic demographic parameters of survival, fecundity; and onset and duration of reproductive life. Species from both continents represent the endpoints in adaptive space defining the periodic (19% versus 33% for the United States and Australia, respectively), opportunistic (69% versus 52%), and equilibrium life history strategies (12% versus 15%). We found evidence that fish life history composition of drainage basins in the two continents have converged across similar gradients of hydrologic variability and productivity despite phylogenetic and historical differences. Moreover, these relationships were largely consistent with predictions from life history theory. Increasing hydrologic variability has promoted the greater prevalence of opportunistic strategists (a strategy that should maximize fitness in environmental settings dominated by unpredictable environmental change) while concurrently minimizing the persistence of periodic-type species (a strategy typically inhabits seasonal, periodically suitable environments). Our study provides a conceptual framework of management options for species in regulated rivers because life history strategies are the underlying determinants for population responses to environmental change and therefore can be used to classify typical population responses to flow alteration or mitigation via environmental flow prescriptions. [Olden, Julian D.] Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA; [Kennard, Mark J.] Griffith Univ, Australian Rivers Inst, Nathan, Qld 4111, Australia Olden, JD (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA. olden@u.washington.edu USGS Lower Colorado River Basin Aquatic GAP Program; Australian Rivers Institute, Griffith University We gratefully acknowledge Meryl Mims and two anonymous reviewers for helpful comments, Zachary Shattuck for helping populate the fish trait database, Janet Stein for provision of environmental data, and Tarmo Raadik and Tom Raynor for providing unpublished fish distributional data. Funding support was provided by the USGS Lower Colorado River Basin Aquatic GAP Program (JDO) and a post-doctoral fellowship from the Australian Rivers Institute, Griffith University (MJK). JDO and MJK conceived and developed the idea for the manuscript and assembled the data sets, JDO conducted the data analysis, and JDO and MJK wrote the manuscript. BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Dewson ZS, 2007, J N AM BENTHOL SOC, V26, P401, DOI 10.1899/06-110.1; Diniz JAF, 1998, EVOLUTION, V52, P1247, DOI 10.1111/j.1558-5646.1998.tb02006.x; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Fisher DO, 2004, TRENDS ECOL EVOL, V19, P391, DOI 10.1016/j.tree.2004.05.004.; Frimpong E. A., 2010, COMMUNITY ECOLOGY ST, V73, P109; Guegan JF, 1998, NATURE, V391, P382, DOI 10.1038/34899; Hoeinghaus DJ, 2007, J BIOGEOGR, V34, P324, DOI 10.1111/j.1365-2699.2006.01587.x; HORWITZ RJ, 1978, ECOL MONOGR, V48, P307, DOI 10.2307/2937233; Hutchinson M. F., 2004, GROWEST VERSION 2 0; Imhoff M. L., 2004, GLOBAL PATTERNS NET; Imhoff ML, 2006, J GEOPHYS RES-ATMOS, V111, DOI 10.1029/2006JD007377; Kennard M. J., FRESHWATER IN PRESS, DOI [10.1111/j.1365-2427.2009.02307.x, DOI 10.1111/J.1365-2427.2009.02307.X]; Kennard MJ, 2007, CAN J FISH AQUAT SCI, V64, P1346, DOI 10.1139/F07-108; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; Krug W. R., 1987, 87353 US GEOL SURV, P414; Lake P. S., 2008, HYDROECOLOGY AND ECO, P75; Lambeets K., 2008, J ANIM ECOL, V10, P1365; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.2307/3071765; Legendre P., 1998, NUMERICAL ECOLOGY; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; McCann K, 1998, ECOLOGY, V79, P2957, DOI 10.2307/176529; Moyle P.B., 1987, P25; Naiman RJ, 1997, ANNU REV ECOL SYST, V28, P621, DOI 10.1146/annurev.ecolsys.28.1.621; Naiman RJ, 2008, CR GEOSCI, V340, P629, DOI 10.1016/j.crte.2008.01.002; NatureServe, 2004, DOWNL AN DAT; Nilsson C., 1993, CURR TOP BOT RES, V1, P419; Oberdorff T, 1997, J BIOGEOGR, V24, P461, DOI 10.1111/j.1365-2699.1997.00113.x; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olden JD, 2003, RIVER RES APPL, V19, P101, DOI 10.1002/rra.700; Peel MC, 2007, HYDROL EARTH SYST SC, V11, P1633, DOI 10.5194/hess-11-1633-2007; Pettit NE, 2001, REGUL RIVER, V17, P201, DOI 10.1002/rrr.624; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; POFF NL, 1990, ENVIRON MANAGE, V14, P629, DOI 10.1007/BF02394714; POFF NL, 1995, ECOLOGY, V76, P606, DOI 10.2307/1941217; POFF NL, 1989, CAN J FISH AQUAT SCI, V46, P1805, DOI 10.1139/f89-228; Pusey B., 2004, FRESHWATER FISHES N; SCHLUTER D, 1986, ECOLOGY, V67, P1073, DOI 10.2307/1939830; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stein J. L., 2008, GRU36 LAND WAT AUSTR; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Tedesco P, 2006, OIKOS, V115, P117, DOI 10.1111/j.2006.0030-1299.14847.x; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Vieira NKM, 2004, FRESHWATER BIOL, V49, P1243, DOI 10.1111/j.1365-2427.2004.01261.x; Vila-Gispert A, 2002, REV FISH BIOL FISHER, V12, P417, DOI 10.1023/A:1025352026974; Vila-Gispert A, 2002, ENVIRON BIOL FISH, V65, P387, DOI 10.1023/A:1021181022360; WARNER RR, 1985, AM NAT, V125, P769, DOI 10.1086/284379; WEBB PW, 1984, SCI AM, V251, P72, DOI 10.1038/scientificamerican0784-72; Wenninger EJ, 2000, J ARACHNOL, V28, P115, DOI 10.1636/0161-8202(2000)028[0115:EORFMO]2.0.CO;2; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; Winemiller KO, 1995, B FR PECHE PISCIC, P23, DOI 10.1051/kmae:1995007; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 60 41 42 0 11 AMER FISHERIES SOC BETHESDA 5410 GROSVENOR LANE, STE 110, BETHESDA, MD 20814-2199 USA 0892-2284 978-1-934874-14-1 AM FISH S S Am. Fish. Soc. Symp. 2010 73 83 107 25 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology BG9QO WOS:000393626300005 2018-11-12 S Jones, NE; Scrimgeour, GJ; Tonn, WM Gido, KB; Jackson, DA Jones, Nicholas E.; Scrimgeour, Garry J.; Tonn, William M. Fish Species Traits and Communities in Relation to a Habitat Template for Arctic Rivers and Streams COMMUNITY ECOLOGY OF STREAM FISHES: CONCEPTS, APPROACHES, AND TECHNIQUES American Fisheries Society Symposium English Proceedings Paper Symposium on Community Ecology of Stream Fishes: Concepts, Approaches, and Techniques AUG 19-20, 2008 Ottawa, CANADA ATLANTIC SALMON PARR; ICE BREAK-UP; CORNWALLIS ISLAND; WINTER MOVEMENTS; DIATOM ASSEMBLAGES; HEADWATER STREAMS; CLIMATE-CHANGE; WATER-QUALITY; LAKE OUTLETS; BROWN TROUT We develop a conceptual model of habitat factors, operating as filters at multiple spatial and temporal scales that structure local fish assemblages in flowing waters of Arctic North America. Following the habitat template approach, we classify streams into six types based on environmental gradients, including ice formation, flow and temperature regimes, sediment dynamics, and edaphic factors. We discuss likely mechanisms influencing Arctic stream fish assemblages among the six stream types and consider this habitat template in the context of regional and local filters. There is a general increase in species richness from the eastern Arctic to Alaska that is inversely proportional to the distance from the Beringian glacial refugium. The fish fauna of Arctic streams comprises nine different families, although 14 of 24 species (58%) are members of Salmonidae. Certain life history traits are predicted to be advantageous in a periglacial environment known for cold, impoverished environments with highly variable yet generally predictable ice conditions. Examples of adaptive traits displayed by Arctic fishes include fall spawning, relatively large egg size, longevity, habitat and diet generalists, and efficient metabolism. Life history theory predicts that periodic strategists should dominate in the Arctic environment. Nevertheless, in the face of a rapidly changing climate and increasing resource development, there is much need for additional research on relationships between the traits of Arctic stream fishes and their habitat. [Jones, Nicholas E.] Trent Univ, River & Stream Ecol Lab, Ontario Minist Nat Resources, DNA Bldg 2140 East Bank Dr, Peterborough, ON K9J 7B8, Canada; [Scrimgeour, Garry J.] Parks Canada Agcy, Western & Northern Serv Ctr, Calgary, AB T2P 3M3, Canada; [Tonn, William M.] Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada Jones, NE (reprint author), Trent Univ, River & Stream Ecol Lab, Ontario Minist Nat Resources, DNA Bldg 2140 East Bank Dr, Peterborough, ON K9J 7B8, Canada. nicholas.jones@ontario.ca Antoniades D, 2002, CAN J BOT, V80, P50, DOI 10.1139/b01-133; Beltaos S, 2003, CAN J CIVIL ENG, V30, P145, DOI 10.1139/L02-042; Beltaos S., 1993, ENV IMPACTS RIVER IC, P12; Benke A. C., 2005, RIVERS N AM; Biggs BJF, 1998, ARCH HYDROBIOL, V143, P21; Bouchard G, 2004, J BIOGEOGR, V31, P1955, DOI 10.1111/j.1365-2699.2004.01143.x; Braun C, 2000, ARCT ANTARCT ALP RES, V32, P456, DOI 10.2307/1552395; Briggs D., 1993, FUNDAMENTALS PHYS GE; Brown RS, 2001, J FISH BIOL, V59, P1126, DOI 10.1006/jfbi.2001.1725; Brown RS, 2000, J FISH BIOL, V57, P1150, DOI 10.1006/jfbi.2000.1378; CEC Commission for Environmental Cooperation, 1997, EC REG N AM COMM PER; Chetelat J, 1999, CAN J FISH AQUAT SCI, V56, P560, DOI 10.1139/cjfas-56-4-560; Clarke A, 1996, TRENDS ECOL EVOL, V11, P212, DOI 10.1016/0169-5347(96)10029-X; Coker G. A., 2001, 2554 FISH AQ SCI; CRAIG P C, 1975, Arctic and Alpine Research, V7, P183, DOI 10.2307/1550320; CRAIG PC, 1989, BIOL PAPERS U ALASKA, V24, P27; Crossman E.J., 1986, P53; Cunjak R. A., 1998, Fisheries Management and Ecology, V5, P209, DOI 10.1046/j.1365-2400.1998.00094.x; CUNJAK RA, 1986, J FISH BIOL, V29, P279, DOI 10.1111/j.1095-8649.1986.tb04945.x; Cunjak RA, 1998, CAN J FISH AQUAT SCI, V55, P161, DOI 10.1139/cjfas-55-S1-161; CUNJAK RA, 1987, J FISH BIOL, V31, P493, DOI 10.1111/j.1095-8649.1987.tb05254.x; De March L., 1978, LIMNOLOGICAL FISHERI; DECICCO AL, 1992, ARCTIC, V45, P120; Department of Energy Mines and Resources and Information Canada, 1974, NAT ATL CAN; Department of Energy Mines and Resources Canada, 1981, CAN GROW DEGR DAYS N; Dorava JM, 2000, HYDROL PROCESS, V14, P3149, DOI 10.1002/1099-1085(200011/12)14:16/17<3149::AID-HYP139>3.0.CO;2-Y; Dugan HA, 2009, HYDROL PROCESS, V23, P1514, DOI 10.1002/hyp.7285; Evans C. E., 2002, 2614 FISH AQ SCI; HARALDSTAD O, 1987, ARCH HYDROBIOL, V109, P39; Hart D.D., 1983, P99; Hieber M, 2002, ARCH HYDROBIOL, V154, P199; Hildrew A.G., 1987, P347; Hugueny B., 2010, COMMUNITY ECOLOGY ST, P29; Huryn AD, 2005, CAN J FISH AQUAT SCI, V62, P1905, DOI 10.1139/F05-100; Huusko A, 2007, RIVER RES APPL, V23, P469, DOI 10.1002/rra.999; IRONS JG, 1992, HYDROBIOLOGIA, V237, P147, DOI 10.1007/BF00005847; Jakober MJ, 1998, T AM FISH SOC, V127, P223, DOI 10.1577/1548-8659(1998)127<0223:ROSIOF>2.0.CO;2; Jones NE, 2003, ARCTIC, V56, P249, DOI 10.14430/arctic620; Joynt EH, 2001, CAN J FISH AQUAT SCI, V58, P1222, DOI 10.1139/cjfas-58-6-1222; Kling GW, 2000, FRESHWATER BIOL, V43, P477, DOI 10.1046/j.1365-2427.2000.00515.x; Koskinen MT, 2002, NATURE, V419, P826, DOI 10.1038/nature01029; KRUEGER CC, 1983, ECOLOGY, V64, P840, DOI 10.2307/1937207; Kwak TJ, 1997, T AM FISH SOC, V126, P35, DOI 10.1577/1548-8659(1997)126<0035:TPDAWQ>2.3.CO;2; Lim DSS, 2005, HYDROBIOLOGIA, V545, P11, DOI 10.1007/s10750-005-1824-7; Luecke C, 2008, T AM FISH SOC, V137, P236, DOI 10.1577/T05-039.1; MATTHEWS W. J., 1998, PATTERNS FRESHWATER; MCCANN SB, 1972, CAN J EARTH SCI, V9, P361, DOI 10.1139/e72-029; Mecklenburg C. W., 2002, FISHES ALASKA; MILLER MC, 1989, HYDROBIOLOGIA, V172, P111, DOI 10.1007/BF00031616; MILNER AM, 1994, FRESHWATER BIOL, V32, P295, DOI 10.1111/j.1365-2427.1994.tb01127.x; Milner AM, 2001, ARCH HYDROBIOL, V151, P627; Morrow J. E., 1980, FRESHWATER FISHES AL; OSWOOD MW, 1989, HYDROBIOLOGIA, V172, P97, DOI 10.1007/BF00031615; Pielou EC, 1991, ICE AGE RETURN LIFE; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; POFF NL, 1995, ECOLOGY, V76, P606, DOI 10.2307/1941217; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; POFF NL, 1989, CAN J FISH AQUAT SCI, V46, P1805, DOI 10.1139/f89-228; Power G, 2002, ENVIRON BIOL FISH, V64, P17, DOI 10.1023/A:1016066519418; POWER G, 1995, HYDROBIOLOGIA, V303, P111, DOI 10.1007/BF00034049; PROWSE TD, 1994, FRESHWATER BIOL, V32, P241, DOI 10.1111/j.1365-2427.1994.tb01124.x; Prowse TD, 2001, J COLD REG ENG, V15, P1, DOI 10.1061/(ASCE)0887-381X(2001)15:1(1); Prowse TD, 2001, J COLD REG ENG, V15, P17, DOI 10.1061/(ASCE)0887-381X(2001)15:1(17); Reist J. D., 1997, FISH ECOLOGY ARCTIC, P4; Reist JD, 2006, AMBIO, V35, P370, DOI 10.1579/0044-7447(2006)35[370:GEOCCO]2.0.CO;2; RICHARDSON JS, 1991, OIKOS, V62, P370, DOI 10.2307/3545503; Roussel JM, 2004, FRESHWATER BIOL, V49, P1026, DOI 10.1111/j.1365-2427.2004.01246.x; RYDER R. A., 1964, TRANS AMER FISH SOC, V93, P260, DOI 10.1577/1548-8659(1964)93[260:CCOOLA]2.0.CO;2; RYDER RA, 1965, T AM FISH SOC, V94, P214, DOI 10.1577/1548-8659(1965)94[214:AMFETP]2.0.CO;2; Sawatzky C. D., 2007, 2793 FISH AQ SCI; SCARNECCHIA D L, 1987, North American Journal of Fisheries Management, V7, P315, DOI 10.1577/1548-8659(1987)7<315:TPASCI>2.0.CO;2; Scott WB, 1973, FISHERIES RES BOARD, V184; SCRIMGEOUR GJ, 1994, FRESHWATER BIOL, V32, P261, DOI 10.1111/j.1365-2427.1994.tb01125.x; Sheath RG, 1997, ARCTIC, V50, P355; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; STOCKER ZSJ, 1976, HYDROBIOLOGIA, V49, P97, DOI 10.1007/BF00772678; Thompson JN, 1998, TRENDS ECOL EVOL, V13, P329, DOI 10.1016/S0169-5347(98)01378-0; Thurow RF, 1997, ECOL FRESHW FISH, V6, P1, DOI 10.1111/j.1600-0633.1997.tb00136.x; TONN WM, 1990, T AM FISH SOC, V119, P337, DOI 10.1577/1548-8659(1990)119<0337:CCAFCA>2.3.CO;2; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Wedel J. H., 1979, HYDROLOGIC INVESTIGA; WEST RL, 1992, T AM FISH SOC, V121, P709, DOI 10.1577/1548-8659(1992)121<0709:AMAOOA>2.3.CO;2; Whalen KG, 1999, CAN J FISH AQUAT SCI, V56, P87, DOI 10.1139/cjfas-56-1-87; Wiley E. O., 1986, ZOOGEOGRAPHY N AM FR; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WOO MK, 1983, ANN ASSOC AM GEOGR, V73, P577, DOI 10.1111/j.1467-8306.1983.tb01860.x; WOTTON RS, 1995, J THERM BIOL, V20, P121, DOI 10.1016/0306-4565(94)00042-H 88 3 3 1 1 AMER FISHERIES SOC BETHESDA 5410 GROSVENOR LANE, STE 110, BETHESDA, MD 20814-2199 USA 0892-2284 978-1-934874-14-1 AM FISH S S Am. Fish. Soc. Symp. 2010 73 137 156 20 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology BG9QO WOS:000393626300007 2018-11-12 J Neberich, W; Penke, L; Lehnart, J; Asendorpf, JB Neberich, Wiebke; Penke, Lars; Lehnart, Judith; Asendorpf, Jens B. Family of origin, age at menarche, and reproductive strategies: A test of four evolutionary-developmental models EUROPEAN JOURNAL OF DEVELOPMENTAL PSYCHOLOGY English Article Family of origin; Menarche; Reproductive strategies; Sociosexuality; Education ANDROGEN RECEPTOR GENE; FATHER ABSENCE; INDIVIDUAL-DIFFERENCES; CHILDHOOD EXPERIENCE; PUBERTAL MATURATION; SEXUAL INTERCOURSE; BODY-SIZE; GIRLS; HISTORY; ANTECEDENTS Four evolutionary-developmental models within a life history theory framework were compared as to their predictions of the influences of family of origin on age at menarche and differences in reproductive strategies. Predictions of paternal investment theory (Draper Harpending, 1982), psychosocial acceleration theory (Belsky, Steinberg, Draper, 1991), polygyny indication model (Kanazawa, 2001), and child development theory (Ellis, 2004) were tested by structural equation modelling in an internet study of 439 women between the ages of 18 and 30. Results show that the existence of a father figure has an impact on the age at menarche, which influences the age at first sexual intercourse. The directions of influences confirm the predictions of paternal investment theory (Draper Harpending, 1982), psychosocial acceleration theory (Belsky et al., 1991), and child development theory (Ellis, 2004), but not the predictions of the polygyny indication model (Kanazawa, 2001). No significant associations could be found between age at menarche and other reproductive strategy markers; this supports one of the central assumptions of child development theory (Ellis, 2004). Instead, it was the age at first sexual intercourse, influenced by the age at menarche, the existence of a father figure, and participant's educational level, that was most critical for the future reproductive strategies. [Neberich, Wiebke] Humboldt Univ, Inst Psychol, D-12489 Berlin, Germany; [Neberich, Wiebke; Penke, Lars] Int Max Planck Res Sch LIFE, Berlin, Germany; [Lehnart, Judith] Univ Vechta, Vechta, Germany Neberich, W (reprint author), Humboldt Univ, Inst Psychol, Rudower Chaussee 18, D-12489 Berlin, Germany. wiebke.neberich@staff.hu-berlin.de Penke, Lars/F-6918-2014 Medical Research Council [G0700704B] BAGOZZI RP, 1990, J APPL PSYCHOL, V75, P547, DOI 10.1037/0021-9010.75.5.547; Barber N, 1998, SEX ROLES, V38, P313, DOI 10.1023/A:1018745419124; BARKOW JH, 1984, J ANTHROPOL RES, V40, P367, DOI 10.1086/jar.40.3.3629760; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bingham C R, 1990, J Adolesc Res, V5, P18, DOI 10.1177/074355489051004; Bogaert AF, 2005, J ADOLESCENCE, V28, P541, DOI 10.1016/j.adolescence.2004.10.008; CASEY VA, 1991, ANN HUM BIOL, V18, P155, DOI 10.1080/03014469100001492; CASPI A, 1991, J PERS SOC PSYCHOL, V61, P157, DOI 10.1037//0022-3514.61.1.157; CHASIOTIS A, 1999, KINDHEIT LEBENSLAUF; Comings DE, 2002, CHILD DEV, V73, P1046, DOI 10.1111/1467-8624.00456; DAMON A, 1969, HUM BIOL, V41, P161; Doughty D, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P169; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; GANGESTAD SW, 1990, J PERS, V58, P69, DOI 10.1111/j.1467-6494.1990.tb00908.x; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; *GERM I EC RES DIW, 2004, EL REF GERM SOC PAN; HELM P, 1989, SCAND J PRIM HEALTH, V8, P59; Hoier S, 2003, HUM NATURE-INT BIOS, V14, P209, DOI 10.1007/s12110-003-1004-2; HOIER S, 2003, FRUHE ERSTE MAL FAMI; HOLLINGSHEAD AB, 1958, SOCIAL CLASS MENTAL; HOOGLAND JL, 1982, SCIENCE, V215, P1639, DOI 10.1126/science.215.4540.1639; JORESKOG KG, 1996, PRELIS USERS REFEREN; Joreskog KG, 1996, LISREL 8 USERS REFER; Jorm AF, 2004, AM J MED GENET B, V125B, P105, DOI 10.1002/ajmg.b.20114; Kanazawa S, 2001, EVOL HUM BEHAV, V22, P329, DOI 10.1016/S1090-5138(01)00073-3; Kanazawa S, 1999, SOC FORCES, V78, P25, DOI 10.2307/3005789; Kim K, 1998, INT J BEHAV DEV, V22, P729, DOI 10.1080/016502598384144; Kim K, 1997, EVOL HUM BEHAV, V18, P109, DOI 10.1016/S1090-5138(96)00114-6; LIVSON N, 1962, HUM BIOL, V34, P218; MEKOS D, 1992, PSYCHOSOCIAL ANTECED; Mendle J, 2006, DEV PSYCHOL, V42, P533, DOI 10.1037/0012-1649.42.3.233; Mikach SM, 1999, EVOL HUM BEHAV, V20, P141, DOI 10.1016/S1090-5138(98)00045-2; Miller BC, 1997, YOUTH SOC, V29, P54, DOI 10.1177/0044118X97029001003; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; Must A, 2002, AM J EPIDEMIOL, V155, P672, DOI 10.1093/aje/155.7.672; Penke L., 2007, MATING INTELLIGENCE, P37; PENKE L, 2007, GLOBAL SOCIOSEXUAL O; PHINNEY VG, 1990, ADOLESCENCE, V25, P321; PLOMIN R, 2001, BEHAV GENETICS; REESE A, 2000, Z ENTWICKLUNGSPSYCHO, V32, P261; Rowe DC, 2002, EVOL HUM BEHAV, V23, P365, DOI 10.1016/S1090-5138(02)00102-2; Rowe DC, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P147; SIMPSON JA, 1991, J PERS SOC PSYCHOL, V60, P870, DOI 10.1037/0022-3514.60.6.870; SURBEY MK, 1990, SOCIOENDOCRINOLOGY P, V13, P11; WIDAMAN KF, 1985, APPL PSYCH MEAS, V9, P1, DOI 10.1177/014662168500900101 49 13 13 0 8 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 1740-5629 1740-5610 EUR J DEV PSYCHOL Eur. J. Dev. Psychol. 2010 7 2 153 177 PII 792104325 10.1080/17405620801928029 25 Psychology, Developmental Psychology 560NH WOS:000274908900001 2018-11-12 J Lewis, Z; Brakefield, PM; Wedell, N Lewis, Zenobia; Brakefield, Paul M.; Wedell, Nina Speed or sperm: A potential trade-off between development and reproduction in the butterfly, Bicyclus anynana (Lepidoptera: Nymphalidae) EUROPEAN JOURNAL OF ENTOMOLOGY English Article Lepidoptera; Nymphalidae; Bicyclus anynana; reproduction; trade-off; development time; polymorphic sperm APYRENE SPERM; ARTIFICIAL SELECTION; PIERIS-NAPI; GROWTH-RATE; SIZE; PROTANDRY; FEMALES; HISTORY; SUCCESS; CONSEQUENCES Life-history theory predicts trade-offs between resources invested in reproduction and other fitness-related traits. To date, most studies have focused on potential reproductive trade-offs in females. However, it is now generally accepted that reproduction is also costly for males, and thus males too may be subject to trade-offs. We examined the relationship between development time and the production of both fertile and non-fertile sperm in males of the African bush brown butterfly (Bicyclus anynana) selected for short or long pre-adult development time. Fast developing males ejaculated fewer non-fertile sperm on their first mating, suggesting that there could be a trade-off between ejaculate production and development time in this species. Contrary to predictions, slow developing males were smaller, produced fewer fertile sperm and took longer to mate. We discuss why this might be the case, and suggest that there may be a cost to the production of non-fertile sperm in the Lepidoptera. [Lewis, Zenobia] Okayama Univ, Grad Sch Environm Sci, Okayama 7000084, Japan; [Brakefield, Paul M.] Leiden Univ, Inst Biol, NL-2300 RA Leiden, Netherlands; [Wedell, Nina] Univ Exeter, Ctr Ecol & Conservat, Penryn TR10 9EZ, Cornwall, England Lewis, Z (reprint author), Okayama Univ, Grad Sch Environm Sci, Okayama 7000084, Japan. zen.lewis@gmail.com; p.m.brakefield@biology.leidenuniv.nl; n.wedell@exeter.ac.uk Lewis, Zenobia/0000-0001-9464-7638 JSPS; Leverhulme Trust; Royal Society The authors wish to thank J. Pijpe for technical advice. They also thank the JSPS, the Leverhulme Trust and the Royal Society for funding, and two anonymous reviewers for helpful comments on the manuscript. BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Benrey B, 1997, ECOLOGY, V78, P987, DOI 10.1890/0012-9658(1997)078[0987:TSGHMH]2.0.CO;2; Bissoondath CJ, 1996, FUNCT ECOL, V10, P457, DOI 10.2307/2389938; Brakefield PM, 2001, J EVOLUTION BIOL, V14, P148, DOI 10.1046/j.1420-9101.2001.00248.x; BRAKEFIELD PM, 1991, ECOL ENTOMOL, V16, P291, DOI 10.1111/j.1365-2311.1991.tb00220.x; Breuker CJ, 2002, P ROY SOC B-BIOL SCI, V269, P1233, DOI 10.1098/rspb.2002.2005; Chapman T, 1998, P ROY SOC B-BIOL SCI, V265, P1879, DOI 10.1098/rspb.1998.0516; Cook PA, 1996, P ROY SOC B-BIOL SCI, V263, P1047, DOI 10.1098/rspb.1996.0154; Cook PA, 1999, NATURE, V397, P486, DOI 10.1038/17257; Drummmond B.A. III, 1984, P291; Fischer K, 2007, HEREDITY, V98, P157, DOI 10.1038/sj.hdy.6800919; Friedlander M, 1997, J INSECT PHYSIOL, V43, P1085, DOI 10.1016/S0022-1910(97)00044-9; GAGE MJG, 1994, FUNCT ECOL, V8, P594, DOI 10.2307/2389920; GIEBULTOWICZ JM, 1988, J INSECT PHYSIOL, V34, P527, DOI 10.1016/0022-1910(88)90194-1; Gotthard K, 2000, J ANIM ECOL, V69, P896, DOI 10.1046/j.1365-2656.2000.00432.x; GOTTHARD K, 1994, OECOLOGIA, V99, P281, DOI 10.1007/BF00627740; GURDON GB, 1991, METHOD CELL BIOL, P299; Jervis MA, 2005, ECOL ENTOMOL, V30, P359, DOI 10.1111/j.0307-6946.2005.00712.x; Joron M, 2003, NATURE, V424, P191, DOI 10.1038/nature01713; KAITALA A, 1995, J INSECT BEHAV, V8, P355; Lewis Z, 2007, J INSECT BEHAV, V20, P201, DOI 10.1007/s10905-007-9075-2; Meves F, 1903, ARCH MIKRO ANAT ENTW, V61, P1; MUKAI T, 1971, GENETICS, V69, P385; Pijpe J, 2006, MECH AGEING DEV, V127, P802, DOI 10.1016/j.mad.2006.07.006; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Saccheri IJ, 2005, P ROY SOC B-BIOL SCI, V272, P39, DOI 10.1098/rspb.2004.2903; SILBERGLIED RE, 1984, AM NAT, V123, P255, DOI 10.1086/284200; Wedell N, 2005, J EXP BIOL, V208, P3433, DOI 10.1242/jeb.01774; Wedell N, 1998, P ROY SOC B-BIOL SCI, V265, P625, DOI 10.1098/rspb.1998.0340; Wedell N, 2002, TRENDS ECOL EVOL, V17, P313, DOI 10.1016/S0169-5347(02)02533-8; WIKLUND C, 1977, OECOLOGIA, V31, P153, DOI 10.1007/BF00346917; Zijlstra WG, 2002, EVOL ECOL RES, V4, P1229; Zijlstra Wilte G., 2001, Proceedings of the Section Experimental and Applied Entomology of the Netherlands Entomological Society (N.E.V.), V12, P19; Zwaan BJ, 2008, J GENET, V87, P395, DOI 10.1007/s12041-008-0062-y 35 6 6 0 17 CZECH ACAD SCI, INST ENTOMOLOGY CESKE BUDEJOVICE BRANISOVSKA 31, CESKE BUDEJOVICE 370 05, CZECH REPUBLIC 1802-8829 EUR J ENTOMOL Eur. J. Entomol. 2010 107 1 55 59 10.14411/eje.2010.006 5 Entomology Entomology 565DS WOS:000275270000006 Bronze 2018-11-12 J Kaptijn, R; Thomese, F; van Tilburg, TG; Liefbroer, AC; Dorly, JHD Kaptijn, Ralf; Thomese, Fleur; van Tilburg, Theo G.; Liefbroer, Aart C.; Deeg, Dorly J. H. Low fertility in contemporary humans and the mate value of their children: sex-specific effects on social status indicators EVOLUTION AND HUMAN BEHAVIOR English Article Life history theory; Fertility; Parental investment; Mate value; Social status; Reproductive success FAMILY-SIZE; PARENTAL INVESTMENT; BIRTH-ORDER; TRADE-OFF; EVOLUTIONARY PERSPECTIVE; EDUCATIONAL-ATTAINMENT; REPRODUCTIVE SUCCESS; SIBSHIP SIZE; QUALITY; FITNESS Evolutionary explanations of low fertility in modem affluent societies commonly state that low fertility is the outcome of high parental investments in the quality of their children. Although the empirical evidence that modern parents do face a quantity-quality trade-off is strong, two issues that are relevant from an evolutionary perspective have not received much attention. First, sex differences in the proximate aspects of quality have been largely ignored. Second, the relationship between the quantity of children and their reproductive success in contemporary low-fertility societies remains unclear. In this article, we study the quantity-quality trade-off as a trade-off between the number of children and the mate value and reproductive success of those children. We examine the trade-off in two steps. First, a lower number of children is expected to increase the mate value of these children. Second, greater mate value is expected to lead to greater reproductive success. Using sex-specific indicators of mate value, we test these hypotheses in a representative sample of the Dutch population aged 55-85 in 1992 (n=3229). This sample contains information on three successive generations in which the middle generation has completed fertility. We find support for the first hypothesis, but only partial support for the second hypothesis. A higher number of children is traded off against the mate value of the children, but not against their reproductive success. We conclude that the conditions under which the quantity of children is traded off against their reproductive success depend on the social environment. (C) 2010 Elsevier Inc. All rights reserved. [Kaptijn, Ralf] Vrije Univ Amsterdam, Fac Social Sci, NL-1081 HV Amsterdam, Netherlands; [Liefbroer, Aart C.] Netherlands Interdisciplinary Demog Inst, The Hague, Netherlands Kaptijn, R (reprint author), Vrije Univ Amsterdam, Fac Social Sci, De Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands. rwj.skaptijn@fsw.vu.nl van Tilburg, Theo/F-1269-2010; Thomese, Fleur/F-4803-2013 van Tilburg, Theo/0000-0002-1005-6732; BEAUCHAMP G, 1994, ETHOL SOCIOBIOL, V15, P31, DOI 10.1016/0162-3095(94)90026-4; Becker G. S., 1993, TREATISE FAMILY; Black SE, 2005, Q J ECON, V120, P669, DOI 10.1093/qje/120.2.669; BLAKE J, 1981, DEMOGRAPHY, V18, P421, DOI 10.2307/2060941; Boone JL, 1999, EVOL HUM BEHAV, V20, P257, DOI 10.1016/S1090-5138(99)00011-2; BORGERHOFF M, 2000, EVOL HUM BEHAV, V21, P391, DOI DOI 10.1016/S1090-5138(00)00054-4); Brame R, 1998, J QUANT CRIMINOL, V14, P245, DOI 10.1023/A:1023030312801; Buss D. M., 1994, EVOLUTION DESIRE STR; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Caceres-Delpiano J, 2006, J HUM RESOUR, V41, P738; Conley D, 2006, J HUM RESOUR, V41, P722, DOI 10.3368/jhr.XLI.4.722; Den Dulk C J, 1992, Maandstat Bevolking, V40, P14; DOWNEY DB, 1995, AM SOCIOL REV, V60, P746, DOI 10.2307/2096320; Fieder M, 2005, ETHOLOGY, V111, P940, DOI 10.1111/j.1439-0310.2005.01129.x; Fieder M, 2007, EVOL HUM BEHAV, V28, P392, DOI 10.1016/j.evolhumbehav.2007.05.004; Geary D. C., 1998, MALE FEMALE EVOLUTIO; Geary DC, 2004, J SEX RES, V41, P27, DOI 10.1080/00224490409552211; Gillespie DOS, 2008, P R SOC B, V275, P713, DOI 10.1098/rspb.2007.1000; HANUSHEK EA, 1992, J POLIT ECON, V100, P84, DOI 10.1086/261808; HARPENDING H, 1990, ETHOL SOCIOBIOL, V11, P497, DOI 10.1016/0162-3095(90)90023-Y; Hertwig R, 2002, PSYCHOL BULL, V128, P728, DOI 10.1037//0033-2909.128.5.728; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill SE, 2005, BEHAV ECOL, V16, P398, DOI 10.1093/beheco/ari001; Hill SE, 2004, BEHAV ECOL, V15, P748, DOI 10.1093/beheco/arh073; Hoperoft R. L., 2006, EVOL HUM BEHAV, V27, P104; Jeon J, 2008, BEHAV ECOL, V19, P344, DOI 10.1093/beheco/arm136; Kanazawa S, 2003, SOCIOL QUART, V44, P291; Kantarevic J, 2006, J HUM RESOUR, V41, P755, DOI 10.3368/jhr.XLI.4.755; Kaplan H, 2002, AM J HUM BIOL, V14, P233, DOI 10.1002/ajhb.10041; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; KAPLAN H, 1956, HUMAN REPROD DECISIO, P96; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; KNIPSCHEER CPM, 1995, LIVING ARRANGEMENTS; Lawson DW, 2009, EVOL HUM BEHAV, V30, P170, DOI 10.1016/j.evolhumbehav.2008.12.001; Li NP, 2002, J PERS SOC PSYCHOL, V82, P947, DOI 10.1037//0022-3514.82.6.947; MacDonald K, 1999, POPUL ENVIRON, V21, P223; Mace R, 1998, PHILOS T R SOC B, V353, P389, DOI 10.1098/rstb.1998.0217; Mueller U, 2001, POPUL DEV REV, V27, P469, DOI 10.1111/j.1728-4457.2001.00469.x; Nettle D, 2008, EVOL HUM BEHAV, V29, P416, DOI 10.1016/j.evolhumbehav.2008.06.002; Nettle D, 2008, AM NAT, V172, P658, DOI 10.1086/591690; Patrinos HA, 1997, J POPUL ECON, V10, P387, DOI 10.1007/s001480050050; Pawlowski B, 1999, P ROY SOC B-BIOL SCI, V266, P281, DOI 10.1098/rspb.1999.0634; Penn DJ, 2007, P NATL ACAD SCI USA, V104, P553, DOI 10.1073/pnas.0609301103; PERUSSE D, 1993, BEHAV BRAIN SCI, V16, P267, DOI 10.1017/S0140525X00029939; POWELL B, 1990, SOC FORCES, V69, P181, DOI 10.2307/2579613; ROGERS AR, 1990, ETHOL SOCIOBIOL, V11, P479, DOI 10.1016/0162-3095(90)90022-X; Sandefur GD, 1999, SOC SCI RES, V28, P331, DOI 10.1006/ssre.1999.0648; SIXMA H, 1983, MENS MAATSCHAPPIJ, V58, P360; Stearns S. C., 1992, EVOLUTION LIFE HIST; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TURKE PW, 1989, POPUL DEV REV, V15, P61, DOI 10.2307/1973405; Van Bavel J, 2006, J BIOSOC SCI, V38, P553, DOI 10.1017/S0021932005026994; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; van Poppel F, 2001, J BIOSOC SCI, V33, P279, DOI 10.1017/S0021932001002796; WAYNFORTH D, 1995, BEHAVIOUR, V132, P755, DOI 10.1163/156853995X00135; Weeden J, 2006, HUM NATURE-INT BIOS, V17, P377, DOI 10.1007/s12110-006-1001-3 57 13 13 0 12 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 EVOL HUM BEHAV Evol. Hum. Behav. JAN 2010 31 1 59 68 10.1016/j.evolhumbehav.2009.07.007 10 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences 592KQ WOS:000277378200008 2018-11-12 J Vaughn, JE; Bradley, KI; Byrd-Craven, J; Kennison, SM Vaughn, James E.; Bradley, Kristopher I.; Byrd-Craven, Jennifer; Kennison, Shelia M. The Effect of Mortality Salience on Women's Judgments of Male Faces EVOLUTIONARY PSYCHOLOGY English Article facial preference; mate selection; mortality salience; terror management theory; life history theory TERROR MANAGEMENT THEORY; MENSTRUAL-CYCLE; EVOLUTIONARY PSYCHOLOGY; FACIAL ATTRACTIVENESS; PREFERENCES; DEATH; MASCULINITY; BEAUTY; BEHAVIOR; CHOICE Previous research has shown that individuals who are reminded of their death exhibited a greater desire for offspring than those who were not reminded of their death. The present research investigated whether being reminded of mortality affects mate selection behaviors, such as facial preference judgments. Prior research has shown that women prefer more masculine faces when they are at the high versus low fertility phase of their menstrual cycles. We report an experiment in which women were tested either at their high or fertility phase. They were randomly assigned to either a mortality salience (MS) or control condition and then asked to judge faces ranging from extreme masculine to extreme feminine. The results showed that women's choice of the attractive male face was determined by an interaction between fertility phase and condition. In control conditions, high fertility phase women preferred a significantly more masculine face than women who were in a lower fertility phase of their menstrual cycles. In MS conditions, high fertility phase women preferred a significantly less masculine (i.e., more average) face than women who were in a low fertility phase. The results indicate that biological processes, such as fertility phase, involved in mate selection are sensitive to current environmental factors, such as death reminders. This sensitivity may serve as an adaptive compromise when choosing a mate in potentially adverse environmental conditions. [Vaughn, James E.; Bradley, Kristopher I.; Byrd-Craven, Jennifer; Kennison, Shelia M.] Oklahoma State Univ, Dept Psychol, Stillwater, OK 74078 USA Byrd-Craven, J (reprint author), Oklahoma State Univ, Dept Psychol, Stillwater, OK 74078 USA. jennifer.byrd.craven@okstate.edu Kennison, Shelia/0000-0001-9298-3152 Andersson M., 1994, SEXUAL SELECTION; Becker E., 1973, DENIAL DEATH; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Boothroyd LG, 2007, PERS INDIV DIFFER, V43, P1161, DOI 10.1016/j.paid.03.008; Borgerhoff Mulder Monique, 1992, EVOLUTIONARY ECOLOGY; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Charnov Eric L., 1993, P1; Cohen C. L., 2002, J FAMILY PSYCHOL, V16, P14; Daly M., 1988, HOMICIDE; DRAPER P, 1982, J ANTHROPOLOGICAL RE, V38, P235; Dunson DB, 1999, HUM REPROD, V14, P1835, DOI 10.1093/humrep/14.7.1835; Durante KM, 2008, PERS SOC PSYCHOL B, V34, P1451, DOI 10.1177/0146167208323103; Etcoff N., 1999, SURVIVAL PRETTIEST; Fink B, 2002, CURR DIR PSYCHOL SCI, V11, P154, DOI 10.1111/1467-8721.00190; FLUHMANN C F, 1957, West J Surg Obstet Gynecol, V65, P265; Fritsche I, 2007, J EXP SOC PSYCHOL, V43, P753, DOI 10.1016/j.jesp.2006.10.003; Geary DC, 2004, J SEX RES, V41, P27, DOI 10.1080/00224490409552211; Goldenberg JL, 1999, J PERS SOC PSYCHOL, V77, P1173, DOI 10.1037/0022-3514.77.6.1173; GRAMMER K, 1998, FACIAL EXPLORER VERS; Greenberg J, 2000, PERS SOC PSYCHOL B, V26, P91, DOI 10.1177/0146167200261009; GREENBERG J, 1994, J PERS SOC PSYCHOL, V67, P627, DOI 10.1037/0022-3514.67.4.627; GREENBERG J, 1990, J PERS SOC PSYCHOL, V58, P308, DOI 10.1037//0022-3514.58.2.308; Greenberg J, 2008, HDB MOTIVATION SCI, P114; Greenberg J., 1986, PUBLIC SELF PRIVATE, P189, DOI [DOI 10.1007/978-1-4613-9564-5_10, 10.1007/978-1-4613-9564-5_10 10. 1007/978-1-4613-9564-5_10]; Harmon-Jones E, 1997, J PERS SOC PSYCHOL, V72, P24, DOI 10.1037/0022-3514.72.1.24; Hirschberger G, 2002, DEATH STUD, V26, P117, DOI 10.1080/074811802753455244; Johnston V.S, 1994, US Patent, Patent No. [5,375,195, 5375195]; Johnston V.S., 1999, WHY WE FEEL SCI HUMA; JOHNSTON VS, 1993, ETHOL SOCIOBIOL, V14, P183, DOI 10.1016/0162-3095(93)90005-3; Johnston VS, 1997, J SEX RES, V34, P188, DOI 10.1080/00224499709551884; Johnston VS, 2001, EVOL HUM BEHAV, V22, P251, DOI 10.1016/S1090-5138(01)00066-6; Jones BC, 2008, ARCH SEX BEHAV, V37, P78, DOI 10.1007/s10508-007-9268-y; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Landau MJ, 2006, J PERS SOC PSYCHOL, V90, P129, DOI 10.1037/0022-3514.90.1.129; LEIN A, 1979, GUMMA J MED SCI, V11, P297; Little AC, 2008, PERS INDIV DIFFER, V45, P478, DOI 10.1016/j.paid.2008.05.024; Little AC, 2007, BIOL PSYCHOL, V76, P209, DOI 10.1016/j.biopsycho.2007.08.003; Little AC, 2007, HORM BEHAV, V51, P633, DOI 10.1016/j.yhbeh.2007.03.006; Penton-Voak IS, 1999, NATURE, V399, P741, DOI 10.1038/21557; Penton-Voak IS, 2000, EVOL HUM BEHAV, V21, P39, DOI 10.1016/S1090-5138(99)00033-1; Rhodes G, 2006, ANNU REV PSYCHOL, V57, P199, DOI 10.1146/annurev.psych.57.102904.190208; Rodgers JL, 2005, DEMOGRAPHY, V42, P675, DOI 10.1353/dem.2005.0034; ROSENBLATT A, 1989, J PERS SOC PSYCHOL, V57, P681, DOI 10.1037/0022-3514.57.4.681; Scarbrough PS, 2005, EVOL HUM BEHAV, V26, P509, DOI 10.1016/j.evolhumbehav.2005.03.002; Schaefer Katrin, 2009, Biological Theory, V4, P98, DOI 10.1162/biot.2009.4.1.98; Solomon S., 1991, ADV EXPT SOCIAL PSYC, P91; Stearns S.C., 1992, LIFE HIST EVOLUTION; Taubman-Ben-Ari O, 2004, DEATH STUD, V28, P865, DOI 10.1080/07481180490490988; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; WATSON D, 1988, J PERS SOC PSYCHOL, V54, P1063, DOI 10.1037//0022-3514.54.6.1063; Whissell C, 1996, HUM NATURE-INT BIOS, V7, P427, DOI 10.1007/BF02732902; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Wisman A, 2005, J PERS SOC PSYCHOL, V89, P46, DOI 10.1037/0022-3514.89.1.46; Zhou XY, 2008, SCAND J PSYCHOL, V49, P413, DOI 10.1111/j.1467-9450.2008.00665.x; Zhou XY, 2009, ASIAN J SOC PSYCHOL, V12, P40, DOI 10.1111/j.1467-839X.2008.01268.x 55 11 11 0 14 EVOLUTIONARY PSYCHOL DAVIE C/O TOOD K SHACKELFORD, DIR, FLORIDA ATLANTIC UNIV, DEPT PSYCHOL, 2912 COLLEGE AVE, DAVIE, FL 33314 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2010 8 3 477 491 15 Psychology, Experimental Psychology 674FM WOS:000283720400013 22947814 DOAJ Gold 2018-11-12 J Dunkel, CS; Mathes, E; Papini, DR Dunkel, Curtis S.; Mathes, Eugene; Papini, Dennis R. The Effect of Life Expectancy on Aggression and Generativity: A Life History Perspective EVOLUTIONARY PSYCHOLOGY English Article Life-history theory; aggression; generativity FATHER ABSENCE; REPRODUCTIVE STRATEGIES; INDIVIDUAL-DIFFERENCES; EVOLUTIONARY PERSPECTIVE; CHILDHOOD EXPERIENCE; MORTALITY-RATES; GENERAL FACTOR; TRADE-OFFS; K-FACTOR; PERSONALITY Following a model that is inclusive of both dispositional and situational influences on life-history behaviors and attitudes, the effect of life expectancies on aggression and generativity was examined. Consistent with the hypotheses it was found that shorter life expectancies led to an increase in the desire to aggress and a decrease in the desire to engage in generative behaviors. The results are discussed in terms of how life history theory can be used to frame research on person-situation interactions. [Dunkel, Curtis S.; Mathes, Eugene] Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA; [Papini, Dennis R.] Middle Tennessee State Univ, Dept Psychol, Murfreesboro, TN 37132 USA Dunkel, CS (reprint author), Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA. C-Dunkel@wiu.edu Barber N, 2000, CROSS-CULT RES, V34, P26, DOI 10.1177/106939710003400102; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Belsky J, 2009, PERSPECT PSYCHOL SCI, V4, P345, DOI 10.1111/j.1745-6924.2009.01136.x; Bogaert AF, 2005, J ADOLESCENCE, V28, P541, DOI 10.1016/j.adolescence.2004.10.008; BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; BUSS AH, 1992, J PERS SOC PSYCHOL, V63, P452, DOI 10.1037/0022-3514.63.3.452; Buss DM, 2009, J RES PERS, V43, P241, DOI 10.1016/j.jrp.2008.12.019; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; BUSS DM, 1995, PSYCHOL INQ, V6, P1, DOI 10.1207/s15327965pli0601_1; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Campbell Benjamin, 2007, EVOLUTIONARY PSYCHOL, V5, P696; CARLSMITH L, 1964, HARVARD EDUC REV, V34, P3, DOI 10.17763/haer.34.1.t23173u451jhu637; Champagne FA, 2009, CURR DIR PSYCHOL SCI, V18, P127, DOI 10.1111/j.1467-8721.2009.01622.x; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cohen D. L., 2008, J EVOLUTIONARY PSYCH, V6, P25, DOI DOI 10.1556/1EP; Comings DE, 2002, CHILD DEV, V73, P1046, DOI 10.1111/1467-8624.00456; Davis J, 2007, EVOL HUM BEHAV, V28, P228, DOI 10.1016/j.evolhumbehav.2007.02.003; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Dunkel C., 2010, J SOCIAL EVOLUTIONAR, V4, P51, DOI DOI 10.1037/H0099301; Dunkel CS, 2009, REV GEN PSYCHOL, V13, P13, DOI 10.1037/a0013687; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2008, CURR DIR PSYCHOL SCI, V17, P183, DOI 10.1111/j.1467-8721.2008.00571.x; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Erikson E. H, 1968, IDENTITY YOUTH CRISI; FIGUEREDO AJ, 2009, BEHAV BRAIN SCI, V32, P30; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2009, TWIN RES HUM GENET, V12, P555, DOI 10.1375/twin.12.6.555; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; HETHERINGTON EM, 1972, DEV PSYCHOL, V7, P313, DOI 10.1037/h0033339; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hoier S, 2003, HUM NATURE-INT BIOS, V14, P209, DOI 10.1007/s12110-003-1004-2; Jackson JJ, 2009, BEHAV BRAIN SCI, V32, P31, DOI 10.1017/S0140525X09000132; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Kruger D. J., 2009, J SOCIAL EVOLUTIONAR, V3, P93; Kruger DJ, 2006, HUM NATURE-INT BIOS, V17, P74, DOI 10.1007/s12110-006-1021-z; KRUGER DJ, 2004, EVOL PSYCHOL, V2, P66, DOI DOI 10.1177/147470490400200112; MACDONALD K, 1988, SOCIAL PERSONALITY D; Maestripieri D, 2004, DEVELOPMENTAL SCI, V7, P560, DOI 10.1111/j.1467-7687.2004.00380.x; MCADAMS DP, 1992, J PERS SOC PSYCHOL, V62, P1003, DOI 10.1037//0022-3514.62.6.1003; Michalski RL, 2010, PERS INDIV DIFFER, V48, P509, DOI 10.1016/j.paid.2009.10.027; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Rowe DC, 2002, EVOL HUM BEHAV, V23, P365, DOI 10.1016/S1090-5138(02)00102-2; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Schmitt DP, 2005, BEHAV BRAIN SCI, V28, P247, DOI 10.1017/S0140525X05000051; SURBEY M, 1990, SOCIOENDOCRINOLOGY P, P71; Thomas MSC, 2009, J SPEECH LANG HEAR R, V52, P336, DOI 10.1044/1092-4388(2009/07-0144); Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Voland E, 1998, ANNU REV ANTHROPOL, V27, P347, DOI 10.1146/annurev.anthro.27.1.347; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Winterhalder B, 2000, EVOL ANTHROPOL, V9, P51; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835 60 8 8 3 10 EVOLUTIONARY PSYCHOL DAVIE C/O TOOD K SHACKELFORD, DIR, FLORIDA ATLANTIC UNIV, DEPT PSYCHOL, 2912 COLLEGE AVE, DAVIE, FL 33314 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2010 8 3 492 505 14 Psychology, Experimental Psychology 674FM WOS:000283720400014 22947815 DOAJ Gold 2018-11-12 J Frick, WF; Reynolds, DS; Kunz, TH Frick, Winifred F.; Reynolds, D. Scott; Kunz, Thomas H. Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus JOURNAL OF ANIMAL ECOLOGY English Article breeding probability; capture-recapture; climate change; robust design POPULATION DYNAMICAL CONSEQUENCES; CAPTURE-RECAPTURE DATA; LIFE-HISTORY; TEMPORARY EMIGRATION; SOUTHEASTERN ONTARIO; POSTNATAL-GROWTH; EPTESICUS-FUSCUS; SURVIVAL RATES; ROBUST DESIGN; UNITED-STATES 1. Estimating variation in demographic rates, such as survival and fecundity, is important for testing life-history theory and identifying conservation and management goals. 2. We used 16 years (1993-2008) of mark-recapture data to estimate age-specific survival and breeding probabilities of the little brown myotis Myotis lucifugus LeConte in southern New Hampshire, USA. Using Kendall & Nichols' (1995) full-likelihood approach of the robust design to account for temporary emigration, we tested whether survival and breeding propensity is influenced by regional weather patterns and timing of reproduction. 3. Our results demonstrate that adult female survival of M. lucifugus ranged from 0.63 (95% CL = 0.56, 0.68) to 0.90 (95% CL = 0.77, 0.94), and was highest in wet years with high cumulative summer precipitation. First-year survival [range: 0.23 (95% CL = 0.14, 0.35) to 0.46 (95% CL = 0.34, 0.57)] was considerably lower than adult survival and depended on pup date of birth, such that young born earlier in the summer (c. late May) had a significantly higher probability of surviving their first year than young born later in the summer (c. mid-July). Similarly, the probability of young females returning to the maternity colony to breed in the summer following their birth year was higher for individuals born earlier in the summer [range: 0.23 (95% CL = 0.08, 0.50) to 0.53 (95% CL = 0.30, 0.75)]. 4. The positive influence of early parturition on 1st-year survival and breeding propensity demonstrates significant fitness benefits to reproductive timing in this temperate insectivorous bat. 5. Climatic factors can have important consequences for population dynamics of temperate bats, which may be negatively affected by summer drying patterns associated with global climate change. 6. Understanding long-term demographic trends will be important in the face of a novel disease phenomenon (White-Nose Syndrome) that is associated with massive mortalities in hibernating bat species, including M. lucifugus, in the northeastern United States. [Frick, Winifred F.; Kunz, Thomas H.] Boston Univ, Dept Biol, CECB, Boston, MA 02215 USA; [Reynolds, D. Scott] St Pauls Sch, Concord, NH 03301 USA Frick, WF (reprint author), Boston Univ, Dept Biol, CECB, 5 Cummington St, Boston, MA 02215 USA. wfrick@batresearch.org USFWS; Theodore Roosevelt Fund; Sigma Xi; American Society of Mammalogists; National Science Foundation [IIS-0326483] We thank B. Fenton, M. Garel, T. Hallam and P. Cryan for thoughtful reviews of our manuscript. We especially wish to thank the Francis Carr family for allowing us to study the bats that occupy the barn on their property in Peterborough, New Hampshire. We also wish to thank Jeff Laake for sharing RMark and for his assistance. We thank Bill Kendall and Gary White for answering questions about the robust design in Program MARK. This project was funded by a USFWS White-Nose Syndrome grant to W.F.F., D.S.R. and T.H.K., graduate research grants to D.S.R. from the Theodore Roosevelt Fund, Sigma Xi, and the American Society of Mammalogists, and a National Science Foundation Grant to THK (IIS-0326483). ANTHONY ELP, 1981, OECOLOGIA, V51, P151, DOI 10.1007/BF00540593; ANTHONY ELP, 1977, ECOLOGY, V58, P775, DOI 10.2307/1936213; Arlettaz R, 2001, OIKOS, V95, P105, DOI 10.1034/j.1600-0706.2001.950112.x; Barclay RMR, 2004, CAN J ZOOL, V82, P688, DOI 10.1139/Z04-057; Barclay RMR, 2003, BAT ECOLOGY, P209; Blehert D. S., 2008, SCIENCE, V323, P227, DOI [10.1126/science.1163874, DOI 10.1126/SCIENCE.1163874]; Boyles JG, 2007, ACTA CHIROPTEROL, V9, P127, DOI 10.3161/1733-5329(2007)9[127:AROASR]2.0.CO;2; Brunet-Rossinni Anja K., 2009, P315; Burles DW, 2009, CAN J ZOOL, V87, P132, DOI 10.1139/Z08-146; Burnham K. P., 2002, MODEL SELECTION MULT; Ciechanowski M, 2007, CAN J ZOOL, V85, P1249, DOI 10.1139/Z07-090; Ellison LE, 2007, ACTA CHIROPTEROL, V9, P149, DOI 10.3161/1733-5329(2007)9[149:ACOCCV]2.0.CO;2; Federico P, 2008, MATH BIOSCI ENG, V5, P743, DOI 10.3934/mbe.2008.5.743; Frick WF, 2007, ECOL APPL, V17, P1213, DOI 10.1890/06-1021; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Gargas A, 2009, MYCOTAXON, V108, P147, DOI 10.5248/108.147; GRINDAL SD, 1992, AM MIDL NAT, V128, P339, DOI 10.2307/2426468; Grosbois V, 2008, BIOL REV, V83, P357, DOI 10.1111/j.1469-185X.2008.00047.x; Hayhoe K, 2008, MITIG ADAPT STRAT GL, V13, P425, DOI 10.1007/s11027-007-9133-2; Hayhoe K, 2007, CLIM DYNAM, V28, P381, DOI 10.1007/s00382-006-0187-8; Hayssen V, 1996, J MAMMAL, V77, P476, DOI 10.2307/1382823; Hines J. E., 1996, RDSURVIV USERS MANUA; HITCHCOCK HB, 1984, J MAMMAL, V65, P126, DOI 10.2307/1381210; Hoying KM, 1998, J ZOOL, V245, P15, DOI 10.1111/j.1469-7998.1998.tb00067.x; Hoyle SD, 2001, AUSTRAL ECOL, V26, P80, DOI 10.1111/j.1442-9993.2001.01092.pp.x; Huntington TG, 2009, CAN J FOREST RES, V39, P199, DOI 10.1139/X08-116; Hutson AM, 2001, MICROCHIROPTERAN BAT; Jenouvrier S, 2009, P NATL ACAD SCI USA, V106, P1844, DOI 10.1073/pnas.0806638106; Jones Gareth, 2009, Endangered Species Research, V8, P93, DOI 10.3354/esr00182; Jones J, 2003, ECOLOGY, V84, P3024, DOI 10.1890/02-0639; Keen R., 1988, P157; KEEN R, 1980, J MAMMAL, V61, P1, DOI 10.2307/1379951; Kendall W.L, 2008, PROGRAM MARK GENTLE; Kendall WL, 1997, ECOLOGY, V78, P563; Kendall WL, 1995, J APPL STAT, V22, P751, DOI 10.1080/02664769524595; Kunz TH, 1998, ECOSCIENCE, V5, P8, DOI 10.1080/11956860.1998.11682443; KUNZ TH, 1982, J MAMMAL, V63, P23, DOI 10.2307/1380667; Kunz Thomas H., 2009, P36; LAAKE J, 2008, PROGRAM MARK GENTLE; Landesman WJ, 2007, VECTOR-BORNE ZOONOT, V7, P337, DOI 10.1089/vbz.2006.0590; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LEWIS SE, 1995, J MAMMAL, V76, P481, DOI 10.2307/1382357; Ludwig GX, 2006, P R SOC B, V273, P2009, DOI 10.1098/rspb.2006.3538; Morris WF, 2002, QUANTITATIVE CONSERV; O'Donnell Colin F.J., 2009, P158; O'Shea Thomas J., 2004, P297; POLLOCK KH, 1982, J WILDLIFE MANAGE, V46, P757, DOI DOI 10.2307/3808568; POMEROY D, 1990, BIOL J LINN SOC, V40, P53, DOI 10.1111/j.1095-8312.1990.tb00534.x; Pryde MA, 2005, BIOL CONSERV, V126, P175, DOI 10.1016/j.biocon.2005.05.006; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; Racey P.A., 1973, Journal Reprod Fert, V19, P175; Racey PA, 2003, BAT ECOLOGY, P680; Racey Paul A., 2009, P249; RANSOME RD, 1989, BIOL J LINN SOC, V38, P71, DOI 10.1111/j.1095-8312.1989.tb01564.x; RANSOME RD, 1994, ZOOL J LINN SOC-LOND, V112, P337, DOI 10.1111/j.1096-3642.1994.tb00324.x; REYNOLDS DS, 1999, MYOTIS LUCIFUGUS CHI, P337; Rodenhouse NL, 2009, CAN J FOREST RES, V39, P249, DOI 10.1139/X08-160; Saether BE, 2000, SCIENCE, V287, P854, DOI 10.1126/science.287.5454.854; Sandercock BK, 2006, J WILDLIFE MANAGE, V70, P1504, DOI 10.2193/0022-541X(2006)70[1504:EODPFL]2.0.CO;2; Schwarz CJ, 1997, BIOMETRICS, V53, P178, DOI 10.2307/2533106; Sedinger JS, 2001, J ANIM ECOL, V70, P798, DOI 10.1046/j.0021-8790.2001.00535.x; Sendor T, 2003, J ANIM ECOL, V72, P308, DOI 10.1046/j.1365-2656.2003.00702.x; Sillett TS, 2000, SCIENCE, V288, P2040, DOI 10.1126/science.288.5473.2040; Stanley TR, 1999, ENVIRON ECOL STAT, V6, P197, DOI 10.1023/A:1009674322348; Stenseth NC, 2002, P NATL ACAD SCI USA, V99, P13379, DOI 10.1073/pnas.212519399; Syme DM, 2001, ECOSCIENCE, V8, P18, DOI 10.1080/11956860.2001.11682626; THOMAS DW, 1990, J MAMMAL, V71, P475, DOI 10.2307/1381967; Tuttle M.D., 1982, P105; Visser ME, 1998, P ROY SOC B-BIOL SCI, V265, P1867, DOI 10.1098/rspb.1998.0514; White Gary C., 1999, Bird Study, V46, pS120; Wilkinson GS, 2002, AGING CELL, V1, P124, DOI 10.1046/j.1474-9728.2002.00020.x; WILLIAMS CB, 1951, PROC R SOC SER B-BIO, V138, P130, DOI 10.1098/rspb.1951.0011; Winkler DW, 2002, P NATL ACAD SCI USA, V99, P13595, DOI 10.1073/pnas.212251999 73 90 92 2 104 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0021-8790 J ANIM ECOL J. Anim. Ecol. JAN 2010 79 1 128 136 10.1111/j.1365-2656.2009.01615.x 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology 531HY WOS:000272656600015 19747346 Bronze 2018-11-12 J Hussey, NE; Wintner, SP; Dudley, SFJ; Cliff, G; Cocks, DT; MacNeil, MA Hussey, Nigel E.; Wintner, Sabine P.; Dudley, Sheldon F. J.; Cliff, Geremy; Cocks, David T.; MacNeil, M. Aaron Maternal investment and size-specific reproductive output in carcharhinid sharks JOURNAL OF ANIMAL ECOLOGY English Article Carcharhinus brevipinna; Carcharhinus obscurus; maternal investment; maternal resource allocation; morphometric condition; reproductive trade-off; somatic condition; variable reproductive output SCALLOPED HAMMERHEAD SHARKS; PROTECTIVE GILL NETS; COD GADUS-MORHUA; LIFE-HISTORY; SOUTH-AFRICA; SPHYRNA-LEWINI; EGG SIZE; EMBRYONIC-DEVELOPMENT; PARENTAL INVESTMENT; NORTHWEST ATLANTIC P>1. Life-history theory predicts that organisms will provide an optimal level of parental investment for offspring survival balanced against the effects on their own survival and future reproductive potential. 2. Optimal resource allocation models also predict an increase in reproductive output with age as expected future reproductive effort decreases. To date, maternal investment in sharks has received limited attention. 3. We found that neonatal dusky sharks (Carcharhinus obscurus) are not independent from maternal resource allocation at the point of parturition but instead are provisioned with energy reserves in the form of an enlarged liver that constitutes approximately 20% of total body mass. 4. Analysis of long-term archived data sets showed that a large proportion of this enlarged liver is utilized during the first weeks or months of life suggesting that the reported weight loss of newborn sharks signifies a natural orientation process and is not necessarily related to prey abundance and/or indicative of high mortality rates. 5. Interrogation of near-term pup mass in two carcharhinids, the dusky and spinner shark (Carcharhinus brevipinna), further revealed an increase in reproductive output with maternal size, with evidence for a moderate decline in the largest mothers. 6. For the dusky shark, there was a trade-off between increasing litter size and near-term pup mass in support of optimal offspring size theory. 7. For both the dusky and spinner shark, there was a linear increase in near-term pup mass with month, which may indicate variable parturition strategies and/or that carcharhinids are able to adjust the length of the gestation period. 8. The identification of optimal size-specific reproductive output has direct implications for improving the reproductive potential of exploited shark populations and for structuring future management strategies. [Hussey, Nigel E.; Cocks, David T.] Bangor Univ, Coll Nat Sci, Sch Ocean Sci, Menai Bridge LL59 5AB, Anglesey, Wales; [Wintner, Sabine P.; Dudley, Sheldon F. J.; Cliff, Geremy] KwaZulu Natal Sharks Board, ZA-4320 Umhlanga Rocks, South Africa; [Wintner, Sabine P.; Dudley, Sheldon F. J.; Cliff, Geremy] Univ KwaZulu Natal, Biomed Resource Unit, ZA-4056 Durban, South Africa; [MacNeil, M. Aaron] Australian Inst Marine Sci, Townsville, Qld 4810, Australia Hussey, NE (reprint author), Bangor Univ, Coll Nat Sci, Sch Ocean Sci, Menai Bridge LL59 5AB, Anglesey, Wales. nigel.hussey@bangor.ac.uk MacNeil, M Aaron/F-4680-2010; Hussey, Nigel/F-9699-2015; Cocks, David/B-2921-2010; MacNeil, M. Aaron/E-8196-2017 MacNeil, M. Aaron/0000-0001-8406-325X NERC [NER/S/A/2005/13426] We express our gratitude to the KwaZulu-Natal Sharks Board laboratory staff for their vigilant dissection work and recording of data which enabled this study to be undertaken. We thank our colleagues, John R. Turner, Lewis Le Vay, I.D. McCarthy and Aaron T. Fisk and two anonymous referees for their valuable and constructive comments on earlier drafts. NEH would like to express thanks to Anna J. and Alina J. Hussey for their continued support. NEH was funded by a NERC PhD studentship (NER/S/A/2005/13426). Allen BR, 2000, S AFR J MARINE SCI, V22, P199, DOI 10.2989/025776100784125654; ARMSTRONG MJ, 1991, S AFR J MARINE SCI, V11, P227, DOI 10.2989/025776191784287790; ASHER GW, 2007, REPROD DOMESTIC RUMI, V6, P255; BASS AJ, 1973, INVEST REP OCEANOGR, V33, P168; Baum JK, 2003, SCIENCE, V299, P389, DOI 10.1126/science.1079777; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Bernardo J, 1996, AM ZOOL, V36, P83; Boltnev AI, 2001, J ZOOL, V254, P219, DOI 10.1017/S0952836901000735; Bowen WD, 2001, FUNCT ECOL, V15, P325, DOI 10.1046/j.1365-2435.2001.00530.x; Broderick AC, 2003, J EXP MAR BIOL ECOL, V288, P95, DOI 10.1016/S0022-0981(03)00003-0; Bush A, 2003, ENVIRON BIOL FISH, V67, P1, DOI 10.1023/A:1024438706814; Bush A, 2002, J EXP MAR BIOL ECOL, V278, P157, DOI 10.1016/S0022-0981(02)00332-5; Carr JP, 2009, BIOL CONSERV, V142, P477, DOI 10.1016/j.biocon.2008.10.004; Carrier JC, 2004, CRC MAR BIOL SER, P269; Castro LR, 2009, MAR ECOL PROG SER, V381, P237, DOI 10.3354/meps07922; Chambers RC, 1996, AM ZOOL, V36, P180; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; CHARNOV E L, 1982; CLIFF G, 1988, S AFR J MARINE SCI, V7, P255, DOI 10.2989/025776188784379035; Cliff G, 1996, GREAT WHITE SHARKS, P351, DOI 10.1016/B978-012415031-7/50033-1; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CLUTTONBROCK TH, 1989, PROC R SOC SER B-BIO, V236, P339, DOI 10.1098/rspb.1989.0027; Cockburn A, 2002, SEX RATIOS: CONCEPTS AND RESEARCH METHODS, P266, DOI 10.1017/CBO9780511542053.014; CONGDON JD, 1989, PHYSIOL ZOOL, V62, P356, DOI 10.1086/physzool.62.2.30156175; Cote SD, 2001, ANIM BEHAV, V62, P173, DOI 10.1006/anbe.2001.1719; Crespi B, 2004, AM NAT, V163, P635, DOI 10.1086/382734; Dibattista JD, 2007, J EVOLUTION BIOL, V20, P201, DOI 10.1111/j.1420-9101.2006.01210.x; Donelson JM, 2008, J EXP MAR BIOL ECOL, V360, P109, DOI 10.1016/j.jembe.2008.04.007; Dudley SFJ, 2006, MAR FRESHWATER RES, V57, P225, DOI 10.1071/MF05156; Dudley SFJ, 2005, AFR J MAR SCI, V27, P107, DOI 10.2989/18142320509504072; Duncan KM, 2006, MAR ECOL PROG SER, V312, P211, DOI 10.3354/meps312211; EVANS RM, 1990, ANIM BEHAV, V39, P797, DOI 10.1016/S0003-3472(05)80391-4; Francis MP, 1996, GREAT WHITE SHARKS, P157, DOI 10.1016/B978-012415031-7/50016-1; Francis MP, 2000, FISH B-NOAA, V98, P41; Gagliano M, 2007, J ANIM ECOL, V76, P174, DOI 10.1111/j.1365-2656.2006.01187.x; GILMORE RG, 1983, COPEIA, P375; GILMORE RG, 1983, FISH B-NOAA, V81, P201; Green BS, 2005, MAR ECOL PROG SER, V289, P263, DOI 10.3354/meps289263; Hare JA, 1997, ECOLOGY, V78, P2415; Heupel MR, 2007, MAR ECOL PROG SER, V337, P287, DOI 10.3354/meps337287; Hjort J., 1914, CONSEIL INT EXPLORAT, V20, P1; Hoffmayer ER, 2006, J FISH BIOL, V68, P645, DOI 10.1111/j.1095-8649.2006.00942.x; Houde E.D, 1987, AM FISH SOC S, V2, P17; Hussey NE, 2009, MAR ECOL PROG SER, V380, P199, DOI 10.3354/meps07918; HUTCHINGS JA, 1993, CAN J FISH AQUAT SCI, V50, P2468, DOI 10.1139/f93-271; Jonsson KI, 1998, OIKOS, V83, P424, DOI 10.2307/3546670; Jordan MA, 2002, OECOLOGIA, V130, P44, DOI 10.1007/s004420100776; KILTIE RA, 1982, J MAMMAL, V63, P646, DOI 10.2307/1380270; Kinney MJ, 2009, CONSERV LETT, V2, P53, DOI 10.1111/j.1755-263X.2008.00046.x; Koskela E, 2009, J ANIM ECOL, V78, P1007, DOI 10.1111/j.1365-2656.2009.01574.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Leimar O, 1996, BEHAV ECOL, V7, P316, DOI 10.1093/beheco/7.3.316; Lowe CG, 2002, J EXP MAR BIOL ECOL, V278, P141, DOI 10.1016/S0022-0981(02)00331-3; Mann J, 1999, BEHAVIOUR, V136, P529; MAPPES T, 1995, P ROY SOC B-BIOL SCI, V261, P19, DOI 10.1098/rspb.1995.0111; Marteinsdottir G, 1998, J FISH BIOL, V52, P1241, DOI 10.1111/j.1095-8649.1998.tb00969.x; MATTINGLY DK, 1982, ECOLOGY, V63, P183, DOI 10.2307/1937043; Morris DW, 1996, J ANIM ECOL, V65, P43, DOI 10.2307/5698; MOUSSEAU TA, 1991, ANNU REV ENTOMOL, V36, P511, DOI 10.1146/annurev.en.36.010191.002455; Mousseau TA, 1998, MATERNAL EFFECTS ADA; Myers RA, 2005, PHILOS T ROY SOC B, V360, P13, DOI 10.1098/rstb.2004.1573; Mysterud A, 2009, J ANIM ECOL, V78, P1002, DOI 10.1111/j.1365-2656.2009.01553.x; Nagle RD, 1998, COMP BIOCHEM PHYS B, V120, P145, DOI 10.1016/S0305-0491(98)10003-2; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Pinheiro JC, 2000, MIXED EFFECTS MODELS; PRATT HL, 1993, ENVIRON BIOL FISH, V38, P139, DOI 10.1007/BF00842910; R Development Core Team, 2009, R LANG ENV STAT COMP; Rasanen K, 2008, ECOLOGY, V89, P2553, DOI 10.1890/07-0168.1; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Reznick D, 1996, AM ZOOL, V36, P147; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Rose KA, 2001, FISH FISH, V2, P293, DOI 10.1046/j.1467-2960.2001.00056.x; Schulte-Hostedde AI, 2002, EVOLUTION, V56, P2519; Scott B, 1999, CAN J FISH AQUAT SCI, V56, P1882, DOI 10.1139/cjfas-56-10-1882; Sikes RS, 1998, OIKOS, V83, P452, DOI 10.2307/3546673; Skibiel AL, 2009, ECOL MONOGR, V79, P325, DOI 10.1890/08-0718.1; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Sogard SM, 2008, MAR ECOL PROG SER, V360, P227, DOI 10.3354/meps07468; SPRINGATE JRC, 1985, AQUACULTURE, V47, P163, DOI 10.1016/0044-8486(85)90062-6; Springer S., 1967, SHARKS SKATES RAYS, P149, DOI DOI 10.1111/J.1095-8649.2012.03244.X; Stearns S. C., 1992, EVOLUTION LIFE HIST; Szabo A, 2008, ANIM BEHAV, V75, P1085, DOI 10.1016/j.anbehav.2007.08.019; Tedesco PA, 2008, FRESHWATER BIOL, V53, P865, DOI 10.1111/j.1365-2427.2007.01942.x; Trippel E.A., 1997, EARLY LIFE HIST RECR, P31; VANDERELST RP, 1979, ENVIRON BIOL FISH, V4, P349, DOI 10.1007/BF00005524; Wallace BP, 2007, OECOLOGIA, V152, P37, DOI 10.1007/s00442-006-0641-7; WALLACE JC, 1984, J FISH BIOL, V24, P427, DOI 10.1111/j.1095-8649.1984.tb04813.x; WALTERS CJ, 2004, FISHERIES ECOLOGY MA; Weckerly FW, 1998, J MAMMAL, V79, P33, DOI 10.2307/1382840; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson AJ, 2009, J ANIM ECOL, V78, P354, DOI 10.1111/j.1365-2656.2008.01489.x; Wootton R. J., 1990, ECOLOGY TELEOST FISH; WOURMS JP, 1977, AM ZOOL, V17, P379; Zeh DW, 2000, BIOESSAYS, V22, P938, DOI 10.1002/1521-1878(200010)22:10<938::AID-BIES9>3.0.CO;2-9 97 39 39 2 38 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 2010 79 1 184 193 10.1111/j.1365-2656.2009.01623.x 10 Ecology; Zoology Environmental Sciences & Ecology; Zoology 531HY WOS:000272656600021 19845812 2018-11-12 J Frank, SA Frank, S. A. Demography and the tragedy of the commons JOURNAL OF EVOLUTIONARY BIOLOGY English Article group selection; kin selection; life history; social evolution SEX-RATIO; KIN SELECTION; EVOLUTIONARY BIOLOGY; HAYSTACK MODEL; VIRULENCE; MICROORGANISMS; PERSPECTIVE; COMPETITION; POPULATION; REPRESSION Individual success in group-structured populations has two components. First, an individual gains by outcompeting its neighbours for local resources. Second, an individual's share of group success must be weighted by the total productivity of the group. The essence of sociality arises from the tension between selfish gains against neighbours and the associated loss that selfishness imposes by degrading the efficiency of the group. Without some force to modulate selfishness, the natural tendencies of self interest typically degrade group performance to the detriment of all. This is the tragedy of the commons. Kin selection provides the most widely discussed way in which the tragedy is overcome in biology. Kin selection arises from behavioural associations within groups caused either by genetical kinship or by other processes that correlate the behaviours of group members. Here, I emphasize demography as a second factor that may also modulate the tragedy of the commons and favour cooperative integration of groups. Each act of selfishness or cooperation in a group often influences group survival and fecundity over many subsequent generations. For example, a cooperative act early in the growth cycle of a colony may enhance the future size and survival of the colony. This time-dependent benefit can greatly increase the degree of cooperation favoured by natural selection, providing another way in which to overcome the tragedy of the commons and enhance the integration of group behaviour. I conclude that analyses of sociality must account for both the behavioural associations of kin selection theory and the demographic consequences of life history theory. [Frank, S. A.] Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92697 USA; [Frank, S. A.] Santa Fe Inst, Santa Fe, NM 87501 USA Frank, SA (reprint author), Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92697 USA. safrank@uci.edu Frank, Steven/0000-0001-7348-7794 National Science Foundation [EF-0822399]; National Institute of General Medical Sciences [U01-GM-76499]; James S. McDonnell Foundation Parts of this paper were modified from Frank (1987, 1998, pp. 238-242). My research is supported by National Science Foundation grant EF-0822399, National Institute of General Medical Sciences MIDAS Program grant U01-GM-76499, and a grant from the James S. McDonnell Foundation. Alexander R. D., 1987, BIOL MORAL SYSTEMS; Alexander R. D., 1979, DARWINISM HUMAN AFFA; Alizon S, 2008, EVOLUTION, V62, P1335, DOI 10.1111/j.1558-5646.2008.00369.x; AVILES L, 1993, AM NAT, V142, P320, DOI 10.1086/285540; BULMER MG, 1980, J THEOR BIOL, V86, P83, DOI 10.1016/0022-5193(80)90066-1; BUSS L, 1987, EVOLUTION INDIVIDUAL; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Crespi BJ, 2001, TRENDS ECOL EVOL, V16, P178, DOI 10.1016/S0169-5347(01)02115-2; Dionisio F, 2006, EVOL ECOL RES, V8, P321; Frank S. A., 1998, FDN SOCIAL EVOLUTION; FRANK SA, 1986, THEOR POPUL BIOL, V29, P312, DOI 10.1016/0040-5809(86)90013-4; Frank SA, 1996, Q REV BIOL, V71, P37, DOI 10.1086/419267; FRANK SA, 1987, EVOLUTION, V41, P1267, DOI 10.1111/j.1558-5646.1987.tb02465.x; Frank SA, 2003, EVOLUTION, V57, P693; Frank SA, 1997, J THEOR BIOL, V189, P307, DOI 10.1006/jtbi.1997.0516; FRANK SA, 1995, NATURE, V377, P520, DOI 10.1038/377520a0; FRANK SA, 1994, P ROY SOC B-BIOL SCI, V258, P153, DOI 10.1098/rspb.1994.0156; Frank SA, 1996, ANIM BEHAV, V52, P1163, DOI 10.1006/anbe.1996.0263; Frank Steven A., 2006, P350; Gardner A, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000752; GRAFEN A, 1984, BEHAV ECOLOGY EVOLUT, P62; HAMILTON WD, 1967, SCIENCE, V156, P477, DOI 10.1126/science.156.3774.477; HAMILTON WD, 1970, NATURE, V228, P1218, DOI 10.1038/2281218a0; HAMILTON WD, 1964, J THEOR BIOL, V7, P17, DOI 10.1016/0022-5193(64)90039-6; HAMILTON WD, 1975, BIOSOCIAL ANTHR, P133; HARDIN G, 1968, SCIENCE, V162, P1248; Johnstone RA, 2008, AM NAT, V172, P318, DOI 10.1086/589899; Kokko H, 2001, P ROY SOC B-BIOL SCI, V268, P187, DOI 10.1098/rspb.2000.1349; Lehmann L, 2007, J EVOLUTION BIOL, V20, P181, DOI 10.1111/j.1420-9101.2006.01202.x; LEIGH EG, 1977, P NATL ACAD SCI USA, V74, P4542, DOI 10.1073/pnas.74.10.4542; Levin Bruce R., 1994, Trends in Microbiology, V2, P76, DOI 10.1016/0966-842X(94)90538-X; Lion S, 2009, J EVOLUTION BIOL, V22, P1487, DOI 10.1111/j.1420-9101.2009.01769.x; Maynard Smith J, 1995, MAJOR TRANSITIONS EV; Maynard-Smith J, 1988, EVOLUTIONARY PROGR, P219; Nadell CD, 2009, FEMS MICROBIOL REV, V33, P206, DOI 10.1111/j.1574-6976.2008.00150.x; Nagelkerke CJ, 1996, AM NAT, V148, P16, DOI 10.1086/285909; NUNNEY L, 1985, EVOLUTION, V39, P349, DOI 10.1111/j.1558-5646.1985.tb05672.x; Oster GF, 1978, CASTE ECOLOGY SOCIAL; Rankin DJ, 2007, J EVOLUTION BIOL, V20, P173, DOI 10.1111/j.1420-9101.2006.01211.x; Rankin DJ, 2007, TRENDS ECOL EVOL, V22, P643, DOI 10.1016/j.tree.2007.07.009; Reece SE, 2005, P ROY SOC B-BIOL SCI, V272, P511, DOI 10.1098/rspb.2004.2972; SZATHMARY E, 1987, J THEOR BIOL, V128, P463, DOI 10.1016/S0022-5193(87)80191-1; Szathmary E., 1989, Oxford Surveys in Evolutionary Biology, V6, P169; Taylor PD, 1996, J THEOR BIOL, V180, P27, DOI 10.1006/jtbi.1996.0075; TAYLOR PD, 1990, AM NAT, V135, P95, DOI 10.1086/285034; *THUC, 1914, HIST PEL WAR DON ENG; VANTIENDEREN PH, 1986, J THEOR BIOL, V122, P69, DOI 10.1016/S0022-5193(86)80225-9; West SA, 2007, ANNU REV ECOL EVOL S, V38, P53, DOI 10.1146/annurev.ecolsys.38.091206.095740; WILSON DS, 1981, EVOLUTION, V35, P882, DOI 10.1111/j.1558-5646.1981.tb04952.x 49 18 19 1 24 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. JAN 2010 23 1 32 39 10.1111/j.1420-9101.2009.01893.x 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 532UC WOS:000272774400004 19912449 Green Accepted, Bronze 2018-11-12 J Gonzalez-Medina, E; Castillo-Guerrero, JA; Mellink, E Gonzalez-Medina, Erick; Castillo-Guerrero, Jose Alfredo; Mellink, Eric Parental and chick responses of Laughing Gulls (Leucophaeus atricilla) to increase of flight costs and brood size JOURNAL OF ORNITHOLOGY English Article Breeding optimization; Chick body condition; Chick survival; Life history theory INSURANCE-EGG HYPOTHESIS; BLUE-FOOTED BOOBY; EXPERIMENTAL MANIPULATION; REPRODUCTIVE COSTS; NATURAL-SELECTION; PELAGIC SEABIRD; PETREL; CARE; STRATEGIES; EVOLUTION One main line of thought in life history theory is that investment in offspring must be balanced to minimize negative impacts on adult survival and future breeding. Seabirds have been regarded as fixed investors, although they exhibit a whole gradient of life history traits. We studied the consequences of brood size (one and three chicks) and of increased flight costs to one mate of a pair (3- and 5-cm trimming of the edge of the primary feathers) on parental response and on survival and body condition of chicks of Laughing Gulls (Leucophaeus atricilla). Parent gulls modified their nest attendance when their mate was handicapped, in a pattern dependent on the sex of the latter. Trimming of males affected chicks more severely than that of females. On its part, brood size affected amount of feeding sessions. Both chick body condition and survival were negatively affected by larger broods and by increased flight costs of one of their parents, especially when it was the male. Overall, parental inversion exhibited adjustments depending on the requirements of the brood and the fact that males compensated better the increased flying costs of their mates than vice versa. Despite a certain capacity by the males to compensate for the increased flight costs of the females, compensation was insufficient, and much less so in females, especially in larger broods, affecting chicks' body condition and survival. [Gonzalez-Medina, Erick; Castillo-Guerrero, Jose Alfredo; Mellink, Eric] Ctr Invest Cientifica & Educ Super Ensenada, Ensenada 22860, Baja California, Mexico Mellink, E (reprint author), Ctr Invest Cientifica & Educ Super Ensenada, BC Km 107 Carretera Tijuana Ensenada,Apdo Postal, Ensenada 22860, Baja California, Mexico. emellink@cicese.mx GONZALEZ-MEDINA, ERICK/0000-0002-9748-8641 Consejo Nacional de Ciencia y Tecnologia from Mexico (CONACyT) We thank Raul Santos, Carolina Gonzalez, Marco Ornelas, Ulises Angulo and Miguel Guevara for assistance during field work. Tamaz Szekely and Clemens Kupper helped to define the experimental design. Two anonymous reviewers helped to improve this article. This work was financed by the Consejo Nacional de Ciencia y Tecnologia from Mexico (CONACyT), which also supported E. G.-M. and J. A. C.-G. through scholarships. The fieldwork carried out for this study complies with the Mexican laws. ANDERSON DJ, 1990, AM NAT, V135, P334, DOI 10.1086/285049; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; BART J, 1998, SAMPLING STAT METHOD; BEST LB, 1977, AUK, V94, P308; BURGER J, 1996, BIRDS N AM, V225; Castillo-Guerrero JA, 2006, WILSON J ORNITHOL, V118, P527, DOI 10.1676/05-088.1; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHAURAND T, 1994, IBIS, V136, P285, DOI 10.1111/j.1474-919X.1994.tb01097.x; Clifford LD, 2001, BEHAV ECOL, V12, P340, DOI 10.1093/beheco/12.3.340; CROXALL JP, 1982, J ANIM ECOL, V63, P275; Engilis A, 1998, WILSON BULL, V110, P332; Erikstad KE, 1998, ECOLOGY, V79, P1781; EVANS DR, 1993, J FIELD ORNITHOL, V64, P472; FREED LA, 1981, ECOLOGY, V62, P1179, DOI 10.2307/1937282; GOODMAN D, 1974, AM NAT, V108, P247, DOI 10.1086/282906; Hamer Keith C., 2002, P217; Harding AMA, 2002, CONDOR, V104, P842, DOI 10.1650/0010-5422(2002)104[0842:ROPEIR]2.0.CO;2; Hunt JD, 1997, COLON WATERBIRD, V20, P485, DOI 10.2307/1521599; JOHNSEN I, 1994, ECOLOGY, V76, P1636; Lack D., 1968, ECOLOGICAL ADAPTATIO; LITTELL RD, 1991, SAS SYSTEM LINEAR MO; MARKMAN S, 1995, ANIM BEHAV, V50, P655, DOI 10.1016/0003-3472(95)80127-8; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; Navarro J, 2007, OECOLOGIA, V151, P150, DOI 10.1007/s00442-006-0559-0; Paredes R, 2005, ANIM BEHAV, V69, P197, DOI 10.1016/j.anbehav.2003.12.029; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Pennycuick C.J, 1989, BIRD FLIGHT PERFORMA; REID WV, 1987, OECOLOGIA, V74, P458, DOI 10.1007/BF00378945; RICKLEFS RE, 1992, ANIM BEHAV, V43, P895, DOI 10.1016/0003-3472(92)90003-R; RICKLEFS RE, 1987, AUK, V104, P750; SAETHER BE, 1993, BEHAV ECOL SOCIOBIOL, V33, P147, DOI 10.1007/BF00216594; SCHAFFER WM, 1977, ECOLOGY, V58, P60, DOI 10.2307/1935108; Schulte-Hostedde AI, 2005, ECOLOGY, V86, P155, DOI 10.1890/04-0232; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Velando A, 2002, BEHAV ECOL, V13, P443, DOI 10.1093/beheco/13.4.443; Velando A, 2003, J ANIM ECOL, V72, P846, DOI 10.1046/j.1365-2656.2003.00756.x; WALSH H, 1978, WILSON BULL, V90, P248; Weimerskirch H, 1997, BEHAV ECOL, V8, P635, DOI 10.1093/beheco/8.6.635; WEIMERSKIRCH H, 1995, BEHAV ECOL SOCIOBIOL, V36, P11; Wernham CV, 1998, J ANIM ECOL, V67, P25, DOI 10.1046/j.1365-2656.1998.00166.x; WHITTINGHAM LA, 1994, ETHOLOGY, V96, P260; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WRIGHT J, 1990, ANIM BEHAV, V40, P462, DOI 10.1016/S0003-3472(05)80526-3 44 2 2 1 18 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0021-8375 J ORNITHOL J. Ornithol. JAN 2010 151 1 219 225 10.1007/s10336-009-0448-5 7 Ornithology Zoology 536GY WOS:000273034100026 2018-11-12 J Rushton, JP Rushton, J. Philippe Brain size as an explanation of national differences in IQ, longevity, and other life-history variables PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Brain size; National IQ; Longevity; Life-history theory INTELLIGENCE; EVOLUTION Brain size provides a causal mechanism for why national differences in intelligence correlate with life-history variables such as longevity, health, parental care, and fecundity. Brain size correlates .40 with general intelligence within human populations, .91 with IQ across ten human population groups, and .60-90 with longevity, fecundity, and infant mortality in non-human animals Oust as IQ does within and across nations, albeit often with lower values). Brain size is central to a suite of life-history variables arising during the course of evolution. Traits need to be harmonized, not work independently of each other. The question Wicherts et al. do not ask is - what causes national differences in their preferred theory of "developmental status?" Heritable brain-power is the answer. A life-history theory perspective on heritable brain-power also explains the social-class/longevity paradox within nations. Any theory which explains differences at the individual, national, and cross-national level deserves to be taken very seriously. (C) 2009 Elsevier Ltd. All rights reserved. Univ Western Ontario, Dept Psychol, London, ON N6A 5C2, Canada Rushton, JP (reprint author), Univ Western Ontario, Dept Psychol, London, ON N6A 5C2, Canada. rushton@uwo.ca Bailey DH, 2009, HUM NATURE-INT BIOS, V20, P67, DOI 10.1007/s12110-008-9054-0; BEALS KL, 1984, CURR ANTHROPOL, V25, P301, DOI 10.1086/203138; Cvorovic J, 2008, PERS INDIV DIFFER, V44, P1604, DOI 10.1016/j.paid.2008.01.019; Deary IJ, 2009, LIFETIME INTELLIGENC; JENSEN AR, 1998, G FACTOR; Kanazawa S, 2008, INTELLIGENCE, V36, P99, DOI 10.1016/j.intell.2007.04.001; Lynn R, 2006, IQ GLOBAL INEQUALITY; Lynn R., 2006, RACE DIFFERENCES INT; Rushton J. P., 1995, RACE EVOLUTION BEHAV; Rushton JP, 2009, INTELLIGENCE, V37, P341, DOI 10.1016/j.intell.2009.04.003; Rushton JP, 2009, INT J NEUROSCI, V119, P691, DOI 10.1080/00207450802325843; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; Templer DI, 2008, PERS INDIV DIFFER, V45, P440, DOI 10.1016/j.paid.2008.05.010; WICHERTS JM, 2009, PERSONALITY INDIVIDU, V48, P91; Wilson E.O., 1975, P1 15 14 14 0 19 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JAN 2010 48 2 97 99 10.1016/j.paid.2009.07.029 3 Psychology, Social Psychology 535MT WOS:000272974000002 2018-11-12 J Templer, DI Templer, Donald I. Can't see the forest because of the trees PERSONALITY AND INDIVIDUAL DIFFERENCES English Article National IQs; Life history theory; Rushton; Lynn; HIV/AIDS SKIN COLOR; INTELLIGENCE; TEMPERATURE; EVOLUTION; IQ The critique by Wicherts, Borsboom, and Dolan misses the Big Picture provided by Richard Lynn in assembling national IQs and by J. Philippe Rushton in developing an evolutionary life history theory of race differences in brain size and intelligence. Their perspectives seem correct in essentials although may prove wrong in particulars. I provide evidence in their favor and also defend my own research on the importance of skin color as a correlate of IQ. (C) 2009 Elsevier Ltd. All rights reserved. Alliant Int Univ, Fresno, CA USA Templer, DI (reprint author), Alliant Int Univ, Fresno, CA USA. donaldtempler@sbcglobal.net Clark G, 2007, PRINC ECON HIST W WO, P1; Cochran G, 2009, 10000 YEAR EXPLOSION; Jensen AR, 2006, INTELLIGENCE, V34, P128, DOI 10.1016/j.intell.2005.04.003; Kanazawa S, 2008, INTELLIGENCE, V36, P99, DOI 10.1016/j.intell.2007.04.001; LYNN R, 1991, MANKIND QUART, V32, P99; Lynn R, 2006, IQ GLOBAL INEQUALITY; Lynn R, 2002, IQ WEALTH NATIONS; LYNN R, INTELLIGENC IN PRESS; Lynn R, 2007, INTELLIGENCE, V35, P115, DOI 10.1016/j.intell.2006.06.001; Manning JT, 2002, DIGIT RATIO POINTER; Meisenberg G, 2008, MANKIND QUART, V48, P407; Rushton J., 2000, RACE EVOLUTION BEHAV; Rushton J. P., 1995, RACE EVOLUTION BEHAV; Rushton JP, 2009, INTELLIGENCE, V37, P341, DOI 10.1016/j.intell.2009.04.003; Templer DI, 2006, INTELLIGENCE, V34, P121, DOI 10.1016/j.intell.2005.04.002; Templer DI, 2008, PERS INDIV DIFFER, V45, P440, DOI 10.1016/j.paid.2008.05.010; WICHERTS JM, INTELLIGENC IN PRESS; WICHERTS JM, PERSONALITY IN PRESS, V48, P91 18 7 7 0 3 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JAN 2010 48 2 102 103 10.1016/j.paid.2009.08.011 2 Psychology, Social Psychology 535MT WOS:000272974000004 2018-11-12 J Phillips, BL Phillips, Ben L. The evolution of growth rates on an expanding range edge BIOLOGY LETTERS English Article Bufo marinus; invasive species; Rhinella marina; r-selection SEXUAL SELECTION; DISPERSAL; TOADS; INVASIONS Individuals in the vanguard of a species invasion face altered selective conditions when compared with conspecifics behind the invasion front. Assortment by dispersal ability on the expanding front, for example, drives the evolution of increased dispersal, which, in turn, leads to accelerated rates of invasion. Here I propose an additional evolutionary mechanism to explain accelerating invasions: shifts in population growth rate (r). Because individuals in the vanguard face lower population density than those in established populations, they should ( relative to individuals in established populations) experience greater r-selection. To test this possibility, I used the ongoing invasion of cane toads ( Bufo marinus) across northern Australia. Life-history theory shows that the most efficient way to increase the rate of population growth is to reproduce earlier. Thus, I predict that toads on the invasion front will exhibit faster individual growth rates ( and thus will reach breeding size earlier) than those from older populations. Using a common garden design, I show that this is indeed the case: both tadpoles and juvenile toads from frontal populations grow around 30 per cent faster than those from older, long established populations. These results support theoretical predictions that r increases during range advance and highlight the importance of understanding the evolution of life history during range advance. Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia Phillips, BL (reprint author), Univ Sydney, Sch Biol Sci, A08, Sydney, NSW 2006, Australia. whatbeard@gmail.com Phillips, Ben/C-7957-2009 Phillips, Ben/0000-0003-2580-2336 ARC I thank Matthew Greenlees, Taegan Calnan and James Smith for assistance in the field. Michelle Franklin provided unstinting assistance with the husbandry, and Rick Shine, Greg Brown, Stuart Baird and Justin Travis provided valuable discussion. Funding was provided by the ARC. ARNOLD SJ, 1984, EVOLUTION, V38, P720, DOI 10.1111/j.1558-5646.1984.tb00345.x; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Crawley M. J., 2007, R BOOK; Hastings A, 2005, ECOL LETT, V8, P91, DOI 10.1111/j.1461-0248.2004.00687.x; HOLT RD, 2006, SPECIES INVASIONS IN, P259; HOWARD RD, 1994, EVOLUTION, V48, P1286, DOI 10.1111/j.1558-5646.1994.tb05313.x; Hughes CL, 2007, ECOL ENTOMOL, V32, P437, DOI 10.1111/j.1365-2311.2007.00890.x; Lewontin R.C., 1965, GENETICS COLONIZING, P79; MAC ARTHUR ROBERT H., 1967; Phillips BL, 2008, AM NAT, V172, pS34, DOI 10.1086/588255; Phillips BL, 2006, NATURE, V439, P803, DOI 10.1038/439803a; Roff D., 1993, EVOLUTION LIFE HIST; Simmons AD, 2004, AM NAT, V164, P378, DOI 10.1086/423430; SKELLAM JG, 1951, BIOMETRIKA, V38, P196, DOI 10.1093/biomet/38.1-2.196; Travis JMJ, 2002, EVOL ECOL RES, V4, P1119; Urban MC, 2008, AM NAT, V171, pE134, DOI 10.1086/527494; ZUG GR, 1979, SMITHSON CONTRIB ZOO, V284, P1, DOI DOI 10.5479/SI.00810282.284 17 78 78 1 60 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 BIOL LETTERS Biol. Lett. DEC 23 2009 5 6 802 804 10.1098/rsbl.2009.0367 3 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 517QM WOS:000271632000026 19605384 Green Published, Bronze 2018-11-12 J Swillen, I; De Block, M; Stoks, R Swillen, Ine; De Block, Marjan; Stoks, Robby Morphological and physiological sexual selection targets in a territorial damselfly ECOLOGICAL ENTOMOLOGY English Article Energy reserves; flight ability; fluctuating asymmetry; functional approach; mating success; performance; territoriality BUTTERFLY PARARGE-AEGERIA; FLUCTUATING ASYMMETRY; TIME CONSTRAINTS; MATING SUCCESS; LIFE-HISTORY; FLIGHT PERFORMANCE; AMERICAN RUBYSPOT; IMMUNE FUNCTION; BODY-SIZE; TRAITS Several morphological and physiological traits may shape fitness through the same performance measure. In such cases, differentiating between a scenario of many-to-one mapping, where phenotypic traits independently shape fitness leading to functional redundancy, and a scenario where traits strongly covary among each other and fitness, is needed. A multivariate approach was used, including morphological and physiological traits related to flight ability, a crucial performance measure in flying insects, to identify independent correlates of short-term mating success (mated versus unmated males) in the territorial damselfly Lestes viridis. Males with higher flight muscle mass, higher relative thorax mass, and more symmetrical hindwings, all traits presumably linked to manoeuvrability, were more likely to be mated. Unexpectedly, although relative thorax mass is often used as a proxy for flight muscle mass, both traits were selected for independently. Mated males had a higher thorax fat content than unmated males, possibly because of enhanced flight endurance. The finding of several independent targets of sexual selection linked to flight ability is consistent with a scenario of many-to-one mapping between phenotype and performance. Identifying such a scenario is important, because it may clarify situations where animals may show suboptimal values for some phenotypic traits shaping a performance measure, while still having high performance and fitness. We argue in the discussion that the functional approach of sexual selection provides a potent tool for examining unresolved issues in both sexual selection theory, as well as life-history theory. [Swillen, Ine; De Block, Marjan; Stoks, Robby] Univ Leuven, Katholieke Univ Leuven, Dept Biol, Lab Aquat Ecol & Evolutionary Biol, B-3000 Louvain, Belgium Swillen, I (reprint author), Univ Leuven, Katholieke Univ Leuven, Dept Biol, Lab Aquat Ecol & Evolutionary Biol, Deberjotstr 32, B-3000 Louvain, Belgium. Ine.swillen@bio.kuleuven.be FWO; KULeuven Research Fund We would like to thank Hannes Rengle for field assistance, Sarah Vandevelde for laboratory assistance, and three anonymous reviewers for valuable comments on the manuscript. MDB is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO). Financial support came from research grants of FWO and the KULeuven Research Fund. Alfaro ME, 2005, AM NAT, V165, pE140, DOI 10.1086/429564; Beck ML, 2002, ETHOLOGY, V108, P779, DOI 10.1046/j.1439-0310.2002.00814.x; Bertin A, 2003, J EVOLUTION BIOL, V16, P698, DOI 10.1046/j.1420-9101.2003.00565.x; Berwaerts K, 2002, FUNCT ECOL, V16, P484, DOI 10.1046/j.1365-2435.2002.00650.x; Berwaerts K, 2004, OECOLOGIA, V141, P536, DOI 10.1007/s00442-004-1661-9; Blanckenhorn WU, 2003, J EVOLUTION BIOL, V16, P903, DOI 10.1046/j.1420-9101.2003.00587.x; Blanckenhorn WU, 2004, J EVOLUTION BIOL, V17, P629, DOI 10.1111/j.1420-9101.2004.00693.x; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Carchini G, 2000, ANIM BEHAV, V59, P177, DOI 10.1006/anbe.1999.1286; CLUTTONBROCK TH, 1988, REPROD SUCCESS; Coelho JR, 2001, J INSECT BEHAV, V14, P345, DOI 10.1023/A:1011119312500; Contreras-Garduno J, 2006, J ETHOL, V24, P165, DOI 10.1007/s10164-005-0177-z; Cordero A., 1988, LIMNETICA, V4, P1; De Block M, 2005, ECOLOGY, V86, P185, DOI 10.1890/04-0116; De Block M, 2007, ANIM BEHAV, V74, P1093, DOI 10.1016/j.anbehav.2007.01.023; Dial KP, 2008, TRENDS ECOL EVOL, V23, P394, DOI 10.1016/j.tree.2008.03.005; Dmitriew C, 2007, J EVOLUTION BIOL, V20, P1298, DOI 10.1111/j.1420-9101.2007.01349.x; DRYER W, 1978, ODONATOLOGICA, V7, P309; Dudley R, 2002, BIOMECHANICS INSECT; Endler JA, 1986, NATURAL SELECTION WI; FRAZIER MR, 2008, J EXP BIOL, V211, P2118; Gervasi SS, 2008, FUNCT ECOL, V22, P100, DOI 10.1111/j.1365-2435.2007.01340.x; Gosden TP, 2008, EVOLUTION, V62, P845, DOI 10.1111/j.1558-5646.2008.00323.x; Irschick DJ, 2007, FUNCT ECOL, V21, P621, DOI 10.1111/j.1365-2435.2007.01281.x; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Lailvaux SP, 2006, ANIM BEHAV, V72, P263, DOI 10.1016/j.anbehav.2006.02.003; Lailvaux SP, 2007, AM NAT, V170, P573, DOI 10.1086/521234; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; MARDEN JH, 1990, ANIM BEHAV, V39, P954, DOI 10.1016/S0003-3472(05)80960-1; MARDEN JH, 1994, ANIM BEHAV, V48, P1023, DOI 10.1006/anbe.1994.1335; MARDEN JH, 1989, PHYSIOL ZOOL, V62, P505, DOI 10.1086/physzool.62.2.30156182; MARDEN JH, 1987, J EXP BIOL, V130, P235; Mikolajewski DJ, 2008, FUNCT ECOL, V22, P114, DOI 10.1111/j.1365-2435.2007.01357.x; Palmer RA, 1994, DEV INSTABILITY ITS; Plaistow S, 1996, P ROY SOC B-BIOL SCI, V263, P1233, DOI 10.1098/rspb.1996.0181; Raihani G, 2008, ANIM BEHAV, V75, P1851, DOI 10.1016/j.anbehav.2007.11.002; Rolff J, 2004, AM NAT, V164, P559, DOI 10.1086/423715; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Schilder RJ, 2004, J EXP BIOL, V207, P767, DOI 10.1242/jeb.00817; Schilder RJ, 2006, P NATL ACAD SCI USA, V103, P18805, DOI 10.1073/pnas.0603156103; SCHLUTER D, 1988, EVOLUTION, V42, P849, DOI 10.1111/j.1558-5646.1988.tb02507.x; Serrano-Meneses MA, 2007, ANIM BEHAV, V73, P987, DOI 10.1016/j.anbehav.2006.08.012; Stevens DJ, 1999, P ROY SOC B-BIOL SCI, V266, P1049, DOI 10.1098/rspb.1999.0742; Stoks R, 2006, ECOLOGY, V87, P809, DOI 10.1890/0012-9658(2006)87[809:TCMPPI]2.0.CO;2; Strobbe F, 2009, J EVOLUTION BIOL, V22, P1172, DOI 10.1111/j.1420-9101.2009.01733.x; Voigt CC, 2005, BEHAV ECOL SOCIOBIOL, V57, P457, DOI 10.1007/s00265-004-0874-6; Wainwright PC, 2005, INTEGR COMP BIOL, V45, P256, DOI 10.1093/icb/45.2.256 47 15 15 0 21 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0307-6946 ECOL ENTOMOL Ecol. Entomol. DEC 2009 34 6 677 683 10.1111/j.1365-2311.2009.01114.x 7 Entomology Entomology 515TL WOS:000271495700002 Bronze 2018-11-12 J Carvalho, CD; da Silva, JP; Mendonca, CLF; Bessa, ECD; D'Avila, S Carvalho, Camilla de Medeiros; da Silva, Jairo Pinheiro; Furtado Mendonca, Cristiane Lafeta; de Almeida Bessa, Elisabeth Cristina; D'Avila, Sthefane Life history strategy of Leptinaria unilamellata (d'Orbigny, 1835) (Mollusca, Pulmonata, Subulinidae) INVERTEBRATE REPRODUCTION & DEVELOPMENT English Article Embryonic development; indeterminate growth; galactogen; glycogen land snail; long-term investment; ovoviviparity; trade-off FRESH-WATER SNAIL; HERMAPHRODITIC LAND SNAIL; ARIANTA-ARBUSTORUM; REPRODUCTIVE-BIOLOGY; ELECTRON-MICROSCOPY; HELIX-ASPERSA; EGG RETENTION; GASTROPODA; GROWTH; OVOVIVIPARITY Life history theory predicts that the patterns of resource allocation in animals are associated with different strategies, selected in the course of evolution. In the present study, the life history of Leptinaria unilamellata was characterized under laboratory conditions. We determined the growth, reproduction, and longevity patterns of this species and elucidated the strategy related to the development of embryos, through direct observations and examination of the morphology of the gravid Uterus. Furthermore, we attempted to analyze the glycogen and galactogen contents of the albumen gland, digestive gland and cephalopedal mass in order to understand energy allocation to life history traits, for three life stages. Leptinaria unilamellata's life history is characterized by great longevity, a short juvenile phase, early sexual maturity, and repeated reproductive events, with little reproductive effort at each event and some mortality shortly after the first reproduction. In the terraria, We found juveniles but no eggs. However, the results of the anatomical study showed no morphological connection between the embryos and the parental organism. Thus, this species should be described as ovoviviparous rather than viviparous. Egg retention in the parent organism is the primary cause of the release of juveniles, instead of eggs, enabling the offspring to withstand environmental stress. The higher quantity of galactogen found in the adults' albumen gland, as compared to Juveniles and senescent individuals, as well as the ratio of glycogen to galactogen, reveal the allocation of energy to reproduction rather than to growth. The remaining energy is directed to the maintenance of homeostasis. Such pattern was confirmed by the low levels of glycogen and galactogen observed in the senescent stage, compared to the juvenile and adult stages. In the life strategy of L. unilamellata, the distribution of the reproductive effort among many events associated with ovoviviparity indicates a long-term investment in reproductive success. [Carvalho, Camilla de Medeiros; de Almeida Bessa, Elisabeth Cristina; D'Avila, Sthefane] Univ Fed Juiz de Fora, Inst Ciencias Biol, Programa Posgrad Ciencias Biol Comportamento & Bi, BR-36036330 Juiz De Fora, MG, Brazil; [de Almeida Bessa, Elisabeth Cristina; D'Avila, Sthefane] Univ Fed Juiz de Fora, Inst Ciencias Biol, Dept Zool, BR-36036330 Juiz De Fora, MG, Brazil; [Carvalho, Camilla de Medeiros; de Almeida Bessa, Elisabeth Cristina; D'Avila, Sthefane] Univ Fed Juiz de Fora, Inst Ciencias Biol, Nucleo Malacol Prof Maury Pinto de Oliveira, BR-36036330 Juiz De Fora, MG, Brazil; [da Silva, Jairo Pinheiro] Univ Fed Rural Rio de Janeiro, Inst Biol, Dept Ciencias Fisiol, Seropedica, RJ, Brazil; [Furtado Mendonca, Cristiane Lafeta] Ctr Pesquisas Rene Rachou Fiocruz, Lab Helmintoses Intestinais, Belo Horizonte, MG, Brazil Carvalho, CD (reprint author), Univ Fed Juiz de Fora, Inst Ciencias Biol, Programa Posgrad Ciencias Biol Comportamento & Bi, BR-36036330 Juiz De Fora, MG, Brazil. k_milla_medeiros@yahoo.com.br D`avila, Sthefane/F-6926-2014 D`avila, Sthefane/0000-0001-6494-309X National Research Council (CNPq); FAPEMIG The authors are grateful to Dr. Juliane Floriano S. Lopes, Department of Zoology of Juiz de Fora Federal University, for her invaluable help in statistical analysis, and to Lidiane Cristina da Silva, Malacology Museum, and Prof. Maury Pinto de Oliveira of Juiz de Fora Federal University, for their significant assistance during the biochemical analysis. This work was partially supported by the National Research Council (CNPq) and FAPEMIG. Almeida M. N., 2001, REV BRAS ZOOL, V18, P1115; Anderson TK, 2007, J MOLLUS STUD, V73, P129, DOI 10.1093/mollus/eym006; Antkowiak T, 2003, J EXP BIOL, V206, P3913, DOI 10.1242/jeb.00625; ARAUJO JLB, 1982, THESIS RIO JANEIRO R; BAUR B, 1994, EXPERIENTIA, V50, P5, DOI 10.1007/BF01992042; Baur B, 2000, OIKOS, V88, P612, DOI 10.1034/j.1600-0706.2000.880318.x; BAUR B, 1998, INVERTEBRATE REPROD, V14, P197; Baur B, 2007, AM MALACOL BULL, V23, P157, DOI 10.4003/0740-2783-23.1.157; Beese K, 2006, J EVOLUTION BIOL, V19, P410, DOI 10.1111/j.1420-9101.2005.01022.x; Beese K, 2006, INVERTEBR REPROD DEV, V49, P93, DOI 10.1080/07924259.2006.9652198; Bessa Elisabeth C. De Almeida, 1995, Revista Brasileira de Zoologia, V12, P719; Bojat NC, 2001, INVERTEBR BIOL, V120, P217, DOI 10.1111/j.1744-7410.2001.tb00032.x; Brandolini S. V. P. B., 2002, REV BRASILEIRA ZOOCI, V4, P169; BROWN D, 1988, REPROD SUCCESS, P439; CARSON FL, 1973, AM J CLIN PATHOL, V59, P365; Carvalho CD, 2008, MOLLUSCAN RES, V28, P171; Cichon M, 1999, ACTA OECOL, V20, P25, DOI 10.1016/S1146-609X(99)80012-5; D'ávila Sthefane, 2005, Rev. Bras. Zool., V22, P205, DOI 10.1590/S0101-81752005000100025; DUTRA A V C, 1988, Revista Brasileira de Zoologia, V5, P581; Egonmwan RI, 2007, REV BRAS ZOOL, V24, P436, DOI 10.1590/S0101-81752007000200022; Evanno G, 2005, MOL ECOL, V14, P805, DOI 10.1111/j.1365-294X.2005.02449.x; Gow JL, 2005, J MOLLUS STUD, V71, P175, DOI 10.1093/mollus/eyi020; HELLER J, 1993, BIOL J LINN SOC, V48, P19, DOI 10.1006/bijl.1993.1003; Heller J, 1997, J ZOOL, V243, P263, DOI 10.1111/j.1469-7998.1997.tb02781.x; HELLER J, 2001, BIOL TERRESTRIAL MOL, V1, P413; Hommay G, 2001, J MOLLUS STUD, V67, P191, DOI 10.1093/mollus/67.2.191; Jordaens K, 2000, HEREDITY, V85, P571, DOI 10.1046/j.1365-2540.2000.00793.x; Krebs C. J., 1994, ECOLOGY EXPT ANAL DI; MACKIE GL, 1978, NAUTILUS, V92, P145; Norton CG, 2006, J MOLLUS STUD, V72, P143, DOI 10.1093/mollus/eyi057; Ocana TMJ, 2003, J MOLLUS STUD, V69, P162, DOI 10.1093/mollus/69.2.162; PINHEIRO J, 1994, ARQ BIOL TECNOL, V37, P569; PLUMMER J M, 1975, Proceedings of the Malacological Society of London, V41, P395; RAUT S K, 1988, Malacological Review, V21, P101; REISE H, 1995, J MOLLUS STUD, V61, P325, DOI 10.1093/mollus/61.3.325; Silva LC, 2008, REV BRAS ZOOL, V25, P220, DOI 10.1590/S0101-81752008000200009; Simone LRL, 2006, LAND FRESHWATER MOLL; Sulikowska-Drozd A, 2009, J MOLLUS STUD, V75, P351, DOI 10.1093/mollus/eyp028; SUMNER JB, 1924, J BIOL CHEM, V133, P593; Tomiyama Koyonori, 1993, Venus the Japanese Journal of Malacology, V52, P87; TOMPA AS, 1979, J MOLLUS STUD, V45, P155, DOI 10.1093/oxfordjournals.mollus.a065489; TRYON GW, 1906, MANUAL CONCHOLOGY 3, V18, P289; VianeyLiaud M, 1996, J MOLLUS STUD, V62, P451, DOI 10.1093/mollus/62.4.451; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 44 12 14 0 7 INT SCIENCE SERVICES/BALABAN PUBLISHERS REHOVOT PO BOX 2039, REHOVOT 76120, ISRAEL 0792-4259 INVERTEBR REPROD DEV Invertebr. Reprod. Dev. DEC 2009 53 4 211 222 12 Reproductive Biology; Zoology Reproductive Biology; Zoology 561CS WOS:000274953700004 2018-11-12 J McNamara, JM; Houston, AI; Barta, Z; Scheuerlein, A; Fromhage, L McNamara, John M.; Houston, Alasdair I.; Barta, Zoltan; Scheuerlein, Alexander; Fromhage, Lutz Deterioration, death and the evolution of reproductive restraint in late life PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article life history; reproduction; terminal investment; ageing; senescence TERMINAL INVESTMENT; MORTALITY TRAJECTORIES; OXIDATIVE STRESS; AGE; SENESCENCE; HYPOTHESIS; ALLOCATION; MECHANISMS; MODELS; SIZE Explaining why organisms schedule reproduction over their lifetimes in the various ways that they do is an enduring challenge in biology. An influential theoretical prediction states that organisms should increasingly invest in reproduction as they approach the end of their life. An apparent mismatch of empirical data with this prediction has been attributed to age-related constraints on the ability to reproduce. Here we present a general framework for the evolution of age-related reproductive trajectories. Instead of characterizing an organism by its age, we characterize it by its physiological condition. We develop a common currency that if maximized at each time guarantees the whole life history is optimal. This currency integrates reproduction, mortality and changes in condition. We predict that under broad conditions it will be optimal for organisms to invest less in reproduction as they age, thus challenging traditional interpretations of age-related traits and renewing debate about the extent to which observed life histories are shaped by constraint versus adaptation. Our analysis gives a striking illustration of the differences between an age-based and a condition-based approach to life-history theory. It also provides a unified account of not only standard life-history models but of related models involving the allocation of limited resources. [Fromhage, Lutz] Zool Inst & Museum, D-20146 Hamburg, Germany; [McNamara, John M.] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England; [Houston, Alasdair I.] Univ Bristol, Sch Biol Sci, Bristol BS8 1UG, Avon, England; [Barta, Zoltan] Univ Debrecen, Dept Evolutionary Zool, H-4010 Debrecen, Hungary; [Scheuerlein, Alexander] Max Planck Inst Demog Res, D-18057 Rostock, Germany Fromhage, L (reprint author), Zool Inst & Museum, Martin Luther King Pl 3, D-20146 Hamburg, Germany. lutzfromhage@web.de Fromhage, Lutz/B-2936-2009 Fromhage, Lutz/0000-0001-5560-6673 Deutsche Forschungsgemeinschaft; BBSRC We thank A. Baudisch and J. Vaupel for comments on a previous version of this article. L. F. was funded by the Deutsche Forschungsgemeinschaft and ZB was funded by a BBSRC grant to A. I. H. and J. M. Mc. Baudisch A, 2008, DEMOGR RES MONOGR, P1, DOI 10.1007/978-3-540-76656-8; Beckman KB, 1998, PHYSIOL REV, V78, P547; Billing AM, 2007, BEHAV ECOL, V18, P535, DOI 10.1093/beheco/arm007; Cameron EZ, 2000, BEHAV ECOL SOCIOBIOL, V47, P243, DOI 10.1007/s002650050661; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Cichon M, 2001, J EVOLUTION BIOL, V14, P180, DOI 10.1046/j.1420-9101.2001.00243.x; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; HOUSTON AI, 1989, ANIM BEHAV, V37, P546, DOI 10.1016/0003-3472(89)90034-1; Houston AI, 1999, MODELS ADAPTIVE BEHA; Isaac JL, 2005, BIOL LETT-UK, V1, P271, DOI 10.1098/rsbl.2005.0326; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; Mangel M, 2004, THEOR POPUL BIOL, V65, P353, DOI 10.1016/j.tpb.2003.07.005; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Moe B, 2009, BIOL LETTERS, V5, P86, DOI 10.1098/rsbl.2008.0481; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Munch SB, 2006, P NATL ACAD SCI USA, V103, P16604, DOI 10.1073/pnas.0601735103; PARKER GA, 1984, THEOR POPUL BIOL, V26, P27, DOI 10.1016/0040-5809(84)90022-4; Reinhold K, 2002, J EVOLUTION BIOL, V15, P201, DOI 10.1046/j.1420-9101.2002.00390.x; Roff Derek A., 1992; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Sohal RS, 2002, FREE RADICAL BIO MED, V33, P575, DOI 10.1016/S0891-5849(02)00886-9; Stearns S. C., 1992, EVOLUTION LIFE HIST; Vaupel JW, 2004, THEOR POPUL BIOL, V65, P339, DOI 10.1016/j.tpb.2003.12.003; Velando A, 2006, P R SOC B, V273, P1443, DOI 10.1098/rspb.2006.3480; Weladji RB, 2002, OECOLOGIA, V131, P79, DOI 10.1007/s00442-001-0864-6; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Williams GC, 1966, ADAPTATION NATURAL S; Yearsley JM, 2005, J THEOR BIOL, V235, P305, DOI 10.1016/j.jtbi.2005.01.009 31 78 79 3 42 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. NOV 22 2009 276 1675 4061 4066 10.1098/rspb.2009.0959 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 505CF WOS:000270665100019 19726476 Bronze, Green Published 2018-11-12 J Whitten, PL; Turner, TR Whitten, Patricia L.; Turner, Trudy R. Endocrine Mechanisms of Primate Life History Trade-Offs: Growth and Reproductive Maturation in Vervet Monkeys AMERICAN JOURNAL OF HUMAN BIOLOGY English Article CERCOPITHECUS-AETHIOPS; BABOONS PAPIO; SERUM LEPTIN; WILD; EVOLUTION; ESTROGEN; DETERMINANTS; POPULATIONS; PHYSIOLOGY; PATTERNS Life history theory predicts that the timing of maturation will result from a trade-off between growth and the age of first reproduction. This trade-off and its mechanisms of action are still poorly understood in many species and have not been well studied at the individual level. This study examined hypothesized trade-offs between growth and reproductive maturation in wild populations of vervet monkeys (Cercopithecus aethiops) from Kenya, East Africa. Individuals were sampled from four populations in widely separated sites differing in temperature, altitude, and rainfall. Biological samples and morphometric measures were collected from 50 adult males, 83 adult females, and 225 juveniles. Gonadal steroids and leptin levels were analyzed by radioimmunoassay of sera from 136 juvenile males and 90 juvenile females. Cross-sectional profiles of morphometric and endocrine data were used to assess the onset and cessation of growth in relation to sexual maturation. Gonadal steroids were used to assess sexual maturation and breeding onset. Leptin was used as an index of nutritional state. Estimates of mortality were derived from population age-structure. Across populations, higher resource productivity and nutrient status were associated with more rapid growth. Shorter growth duration was associated with earlier reproductive onset. These findings provide support for models of trade-offs between the timing of growth completion and reproductive onset, but they are contradicted by the evidence that reproduction precedes the cessation of growth in these populations. The biphasic actions of estradiol provide an alternative model and mechanism for the growth-reproduction trade-off. Am. J. Hum. Biol. 21:754-761, 2009. (C) 2009 Wiley-Liss, Inc. [Whitten, Patricia L.] Emory Univ, Dept Anthropol, Atlanta, GA 30322 USA; [Turner, Trudy R.] Univ Wisconsin, Dept Anthropol, Milwaukee, WI 53201 USA; [Turner, Trudy R.] Univ Pretoria, Mammal Res Inst, Dept Zool & Entomol, ZA-0002 Pretoria, South Africa Whitten, PL (reprint author), Emory Univ, Dept Anthropol, 1557 Dickey Dr, Atlanta, GA 30322 USA. antpw@emory.edu National Science Foundation [BCS0116465, BNS7703322, BCS0115993] Contract grant sponsor: National Science Foundation; Contract grant numbers: BCS0116465, BNS7703322 and BCS0115993 Ahima RS, 2004, PHYSIOL BEHAV, V81, P223, DOI 10.1016/j.physbeh.2004.02.014; Alberts Susan C., 2003, P66; Banks WA, 2001, J CLIN ENDOCR METAB, V86, P4315, DOI 10.1210/jc.86.9.4315; Barker DJP, 1997, NUTRITION, V13, P807, DOI 10.1016/S0899-9007(97)00193-7; Bernstein RM, 2008, AM J PHYS ANTHROPOL, V136, P156, DOI 10.1002/ajpa.20791; Bogin B, 2007, AM J HUM BIOL, V19, P631, DOI 10.1002/ajhb.20666; Bolter DR, 2003, J ZOOL, V260, P99, DOI 10.1017/S0952836903003522; Bourgarel M, 2002, AFR J ECOL, V40, P186, DOI 10.1046/j.1365-2028.2002.00377.x; BRADY AG, 1985, J MED PRIMATOL, V14, P293; BRETT FL, 1982, J WILDLIFE MANAGE, V46, P164, DOI 10.2307/3808419; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; Cutler GB, 1997, J STEROID BIOCHEM, V61, P141; Diano S, 2003, ENDOCRINOLOGY, V144, P3774, DOI 10.1210/en.2003-0274; DUNBAR RIM, 1990, J ZOOL, V220, P157, DOI 10.1111/j.1469-7998.1990.tb04300.x; FAIRBANKS LA, 1984, AM J PRIMATOL, V7, P27, DOI 10.1002/ajp.1350070106; *FAO, 1996, RAINF VAR DROUGHT SU; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Frank GR, 2003, MED PEDIATR ONCOL, V41, P217, DOI 10.1002/mpo.10340; Gluckman PD, 2007, AM J HUM BIOL, V19, P1, DOI 10.1002/ajhb.20590; Godfrey Laurie R., 2003, P177; HILLMAN J C, 1977, East African Wildlife Journal, V15, P1; Janson Charles H., 1993, P57; Karperien M, 2005, PEDIATR NEPHROL, V20, P323, DOI 10.1007/s00467-004-1710-y; KETTERSON ED, 1992, AM NAT, V140, P533; Kramer KL, 2008, AM J PHYS ANTHROPOL, V136, P338, DOI 10.1002/ajpa.20817; Leigh SR, 1996, AM J PHYS ANTHROPOL, V101, P455, DOI 10.1002/(SICI)1096-8644(199612)101:4<455::AID-AJPA2>3.0.CO;2-V; LEIGH SR, 1992, J HUM EVOL, V23, P27, DOI 10.1016/0047-2484(92)90042-8; Leigh SR, 1998, AM J PHYS ANTHROPOL, V107, P331; Pereira Michael E., 2003, P149; Plant TM, 1997, ENDOCRINOLOGY, V138, P4505, DOI 10.1210/en.138.10.4505; Richard AF, 2002, J ZOOL, V256, P421, DOI 10.1017/S0952836902000468; Rissman EF, 2008, J NEUROENDOCRINOL, V20, P873, DOI 10.1111/j.1365-2826.2008.01738.x; ROWELL TE, 1979, J MAMMAL, V60, P58, DOI 10.2307/1379758; Setchell JM, 2002, AM J PRIMATOL, V56, P9, DOI 10.1002/ajp.1060; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEKEL D, 2003, MICROARRAY BIOINFORM; TURNER TR, 1981, AM J PHYS ANTHROPOL, V55, P225, DOI 10.1002/ajpa.1330550211; TURNER TR, 1997, AM J PHYS ANTHROPOL, V103, P37; van der Eerden BCJ, 2003, ENDOCR REV, V24, P782, DOI 10.1210/er.2002-0033; Vitzthum VJ, 2008, ANNU REV ANTHROPOL, V37, P53, DOI 10.1146/annurev.anthro.37.081407.085112; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; WATTS ES, 1990, MG PRIMATOL, V14, P89; Whitten PL, 2008, AM J PHYS ANTHROPOL, V137, P441, DOI 10.1002/ajpa.20885; Whitten PL, 2004, BEHAV ECOL SOCIOBIOL, V56, P565, DOI 10.1007/s00265-004-0817-2; Whitten PL, 1996, AM J PRIMATOL, V40, P67, DOI 10.1002/(SICI)1098-2345(1996)40:1<67::AID-AJP5>3.3.CO;2-F; Worthman CM, 1997, AM J PHYS ANTHROPOL, V104, P1; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 48 13 13 0 11 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 AM J HUM BIOL Am. J. Hum. Biol. NOV-DEC 2009 21 6 754 761 10.1002/ajhb.20939 8 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 517BZ WOS:000271589100006 19402037 2018-11-12 J Vitzthum, VJ; Worthman, CM; Beall, CM; Thornburg, J; Vargas, E; Villena, M; Soria, R; Caceres, E; Spielvogel, H Vitzthum, Virginia J.; Worthman, Carol M.; Beall, Cynthia M.; Thornburg, Jonathan; Vargas, Enrique; Villena, Mercedes; Soria, Rudy; Caceres, Esperanza; Spielvogel, Hilde Seasonal and Circadian Variation in Salivary Testosterone in Rural Bolivian Men AMERICAN JOURNAL OF HUMAN BIOLOGY English Article FOLLICLE-STIMULATING-HORMONE; EARLY-PREGNANCY LOSS; MALE GONADAL AXIS; MIDDLE-AGED MEN; PLASMA TESTOSTERONE; LUTEINIZING-HORMONE; REPRODUCTIVE FUNCTION; POPULATION VARIATION; BINDING GLOBULIN; ITURI FOREST Testosterone (T) plays a key role in the increase and maintenance of muscle mass and bone density in adult men. Life history theory predicts that environmental stress may prompt a reallocation of such investments to those functions critical to survival. We tested this hypothesis in two studies of rural Bolivian adult men by comparing free T levels and circadian rhythms during late winter, which is especially severe, to those in less arduous seasons. For each pair of salivary T(AM)/T(PM) samples (collected in a similar to 12-h period), circadian rhythm was considered classic (C(CLASSIC)) if T(AM) > 110%T(PM), reverse (C(REVERSE)) if T(PM) > 110%T(AM), and flat (C(FLAT)) otherwise. We tested the hypotheses that mean T(AM) > mean T(PM) and that mean T(LW) < mean T(OTHER) (LW = late winter, OTHER = other seasons). In Study A, of 115 T(PM)-T(AM) pairs, 51% = C(CLASSIC), 39% = C(REVERSE), 10% = C(FLAT); in Study B, of 184 T(AM)-T(PM) pairs, 55% = C(CLASSIC), 33% = C(REVERSE), 12% = C(FLAT). Based on fitting linear mixed models, in both studies T(OTHER-AM) > T(OTHER-PM) (A: P = 0.035, B: P = 0.0005) and T(OTHER-AM) > T(LW-AM) (A: P = 0.054, B: P = 0.007); T(PM) did not vary seasonally, and T diurnality was not significant during late winter. T diurnality varied substantially between days within an individual, between individuals and between seasons, but neither T levels nor diurnality varied with age. These patterns may reflect the seasonally varying but unscheduled, life-long, strenuous physical labor that typifies many non-industrialized economies. These results also suggest that single morning samples may substantially underestimate peak circulating T for an individual and, most importantly, that exogenous signals may moderate diurnality and the trajectory of age-related change in the male gonadal axis. Am. J. Hum. Biol. 21:762-768, 2009. (C) 2009 Wiley-Liss, Inc. [Vitzthum, Virginia J.] Indiana Univ, Dept Anthropol, Bloomington, IN 47405 USA; [Worthman, Carol M.] Indiana Univ, Kinsey Inst Res Sex Gender & Reprod, Bloomington, IN 47405 USA; [Beall, Cynthia M.] Emory Univ, Dept Anthropol, Atlanta, GA 30322 USA; [Beall, Cynthia M.] Case Western Reserve Univ, Dept Anthropol, Cleveland, OH 44106 USA; [Thornburg, Jonathan] Indiana Univ, Dept Astron, Bloomington, IN 47405 USA; [Vargas, Enrique; Villena, Mercedes; Soria, Rudy; Caceres, Esperanza; Spielvogel, Hilde] Univ Mayor San Andres, Fac Med, Inst Boliviano Biol Altura, La Paz, Bolivia Vitzthum, VJ (reprint author), Indiana Univ, Dept Anthropol, Student Bldg 130,701 Kirkwood Ave, Bloomington, IN 47405 USA. Vitzthum@Indiana.edu Worthman, Carol M/0000-0002-5397-2298; Beall, Cynthia/0000-0003-1462-8299 U.S. National Science Foundation [SBR 9221724, SBR 9506107]; U.S. National Institutes of Mental Health [MH57761]; University of California Regents Contract grant sponsor: U.S. National Science Foundation; Contract grant numbers: SBR 9221724, SBR 9506107; Contract grant sponsor: U.S. National Institutes of Mental Health; Contract grant number: MH57761; Contract grant sponsor: University of California Regents. ABBATICCHIO G, 1987, ANDROLOGIA, V19, P353; Andersson AM, 2003, J CLIN ENDOCR METAB, V88, P932, DOI 10.1210/jc.2002-020838; Axelsson J, 2005, J CLIN ENDOCR METAB, V90, P4530, DOI 10.1210/jc.2005-0520; BAKER HWG, 1976, CLIN ENDOCRINOL, V5, P349, DOI 10.1111/j.1365-2265.1976.tb01964.x; BEALL CM, 1992, ANN HUM BIOL, V19, P67, DOI 10.1080/03014469200001932; Beall CM, 1999, AM J PHYS ANTHROPOL, V108, P41, DOI 10.1002/(SICI)1096-8644(199901)108:1<41::AID-AJPA2>3.3.CO;2-B; BELLASTELLA A, 1982, CHRONOBIOLOGIA, V9, P123; BENTLEY GR, 1993, AM J HUM BIOL, V5, P711, DOI 10.1002/ajhb.1310050614; Bogdan A, 2001, LIFE SCI, V68, P1607, DOI 10.1016/S0024-3205(01)00966-3; Brambilla DJ, 2007, J CLIN ENDOCR METAB, V92, P4224, DOI 10.1210/jc.2007-1303; Bribiescas RG, 1996, HUM NATURE-INT BIOS, V7, P163, DOI 10.1007/BF02692109; BRIBIESCAS RG, 2001, AM J PHYS ANTHR S, V33, P148; Campbell B, 2003, AM J HUM BIOL, V15, P697, DOI 10.1002/ajhb.10203; DABBS JM, 1990, CHRONOBIOL INT, V7, P245, DOI 10.3109/07420529009056982; DABBS JM, 1995, CLIN CHEM, V41, P1581; DAI WS, 1981, AM J EPIDEMIOL, V114, P804, DOI 10.1093/oxfordjournals.aje.a113251; Diver MJ, 2003, CLIN ENDOCRINOL, V58, P710, DOI 10.1046/j.1365-2265.2003.01772.x; El-Migdadi F, 2000, ENDOCR RES, V26, P41, DOI 10.1080/07435800009040144; ELLISON P T, 1989, American Journal of Human Biology, V1, P21, DOI 10.1002/ajhb.1310010106; Ellison PT, 2002, HUM REPROD, V17, P3251, DOI 10.1093/humrep/17.12.3251; Ellison PT, 1996, HUM BIOL, V68, P955; ELLISON PT, 1989, AM J PHYS ANTHROPOL, V78, P519, DOI 10.1002/ajpa.1330780407; Gray PB, 2003, AM J PHYS ANTHROPOL, V122, P279, DOI 10.1002/ajpa.10293; JASIENSKA G, 1998, P BIOL SCI, V265, P1747; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; Keenan DM, 2006, ENDOCRINOLOGY, V147, P2817, DOI 10.1210/en.2005-1356; Keenan DM, 2001, AM J PHYSIOL-REG I, V280, pR1755; KERN W, 1995, J APPL PHYSIOL, V79, P1461; LEONARD WR, 1989, HUM BIOL, V61, P65; Liu PY, 2005, ENDOCRIN METAB CLIN, V34, P935, DOI 10.1016/j.ecl.2005.07.008; Luboshitzky R, 2001, J CLIN ENDOCR METAB, V86, P1134, DOI 10.1210/jc.86.3.1134; Maes M, 1997, CLIN ENDOCRINOL, V46, P587, DOI 10.1046/j.1365-2265.1997.1881002.x; MARTIKAINEN H, 1985, ACTA ENDOCRINOL-COP, V109, P446, DOI 10.1530/acta.0.1090446; Meriggiola MC, 1996, HUM REPROD, V11, P248, DOI 10.1093/HUMREP/11.2.248; Mesbahzadeh B., 2005, Eastern Mediterranean Health Journal, V11, P1120; Muehlenbein MP, 2005, AM J HUM BIOL, V17, P527, DOI 10.1002/ajhb.20419; Muller MN, 2009, P ROY SOC B-BIOL SCI, V276, P347, DOI 10.1098/rspb.2008.1028; Nepomnaschy PA, 2006, P NATL ACAD SCI USA, V103, P3938, DOI 10.1073/pnas.0511183103; Nepomnaschy PA, 2004, AM J HUM BIOL, V16, P523, DOI 10.1002/ajhb.20057; NICOLAU G Y, 1984, Chronobiology International, V1, P301, DOI 10.3109/07420528409063911; Nicolau G Y, 1985, Endocrinologie, V23, P223; PANTERBRICK C, 1993, HUM REPROD, V8, P684, DOI 10.1093/oxfordjournals.humrep.a138120; Perry HM, 2000, METABOLISM, V49, P1085, DOI 10.1053/meta.2000.7710; PRIOR JC, 1987, BAILLIERE CLIN ENDOC, V1, P299, DOI 10.1016/S0950-351X(87)80065-4; REINBERG A, 1988, FERTIL STERIL, V49, P309; REINBERG A, 1975, ACTA ENDOCRINOL-COP, V80, P732, DOI 10.1530/acta.0.0800732; SMALS AGH, 1976, J CLIN ENDOCR METAB, V42, P979, DOI 10.1210/jcem-42-5-979; SPRATT DI, 1988, AM J PHYSIOL, V254, pE658; Stearns S. C., 1992, EVOLUTION LIFE HIST; STRAUSS RH, 1985, JAMA-J AM MED ASSOC, V254, P3337, DOI 10.1001/jama.254.23.3337; SVAARTBERG J, 2004, AGING MALE, V7, P205; SVAARTBERG J, 2003, J CLIN ENDOCR METAB, V88, P3099; Valero-Politi J, 1998, CLIN CHIM ACTA, V271, P57, DOI 10.1016/S0009-8981(97)00239-8; van Anders SM, 2006, PSYCHONEUROENDOCRINO, V31, P895, DOI 10.1016/j.psyneuen.2006.03.002; Vitzthum VJ, 2008, ANNU REV ANTHROPOL, V37, P53, DOI 10.1146/annurev.anthro.37.081407.085112; Vitzthum VJ, 2006, FERTIL STERIL, V86, P373, DOI 10.1016/j.fertnstert.2006.01.021; Vitzthum VJ, 2004, P NATL ACAD SCI USA, V101, P1443, DOI 10.1073/pnas.0302640101; VITZTHUM VJ, 1993, AM J PHYS ANTHROPOL, V92, P539, DOI 10.1002/ajpa.1330920410; VITZTHUM VJ, 2009, AM J HUM BI IN PRESS; West B. T., 2007, LINEAR MIXED MODELS; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; WORTHMAN CM, 1987, PSYCHONEUROENDOCRINO, V12, P449, DOI 10.1016/0306-4530(87)90079-5; Worthman CM, 2002, ADOLESCENT SLEEP PAT, P69 63 17 17 1 4 WILEY-LISS HOBOKEN DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA 1042-0533 AM J HUM BIOL Am. J. Hum. Biol. NOV-DEC 2009 21 6 762 768 10.1002/ajhb.20927 7 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 517BZ WOS:000271589100007 19367574 Green Accepted 2018-11-12 J Worthman, CM Worthman, Carol M. Habits of the Heart: Life History and the Developmental Neuroendocrinology of Emotion AMERICAN JOURNAL OF HUMAN BIOLOGY English Article SEROTONIN TRANSPORTER; COGNITIVE NEUROSCIENCE; EPIGENETIC REGULATION; INDIVIDUAL VARIATION; STRESS REACTIVITY; MONOAMINE-OXIDASE; GENE; BEHAVIOR; BRAIN; PERSONALITY The centrality of emotion in cognition and social intelligence as well as its impact on health has intensified investigation into the causes and consequences of individual variation in emotion regulation. Central processing of experience directly informs regulation of endocrine axes, essentially forming a neuro-endocrine continuum integrating information intake, processing, and physiological and behavioral response. Two major elements of life history-resource allocation and niche partitioning-are served by linking cognitive-affective with physiological and behavioral processes. Scarce cognitive resources (attention, memory, and time) are allocated under guidance from affective co-processing. Affective-cognitive processing, in turn, regulates physiologic activity through neuro-endocrine outflow and thereby orchestrates energetic resource allocation and trade-offs, both acutely and through time. Reciprocally, peripheral activity (e.g., immunologic, metabolic, or energetic markers) influences affective-cognitive processing. By guiding attention, memory, and behavior, affective-cognitive processing also informs individual stances toward, patterns of activity in, and relationships with the world. As such, it mediates processes of niche partitioning that adaptively exploit social and material resources. Developmental behavioral neurobiology has identified multiple factors that influence the ontogeny of emotion regulation to form affective and behavioral styles. Evidence is reviewed documenting roles for genetic, epigenetic, and experiential factors in the development of emotion regulation, social cognition, and behavior with important implications for understanding mechanisms that underlie life history construction and the sources of differential health. Overall, this dynamic arena for research promises to link the biological bases of life history theory with the psychobehavioral phenomena that figure so centrally in quotidian experience and adaptation, particularly, for humans. Am. J. Hum. Biol. 21:772-781,2009. (C) 2009 Wiley-Liss, Inc. Emory Univ, Dept Anthropol, Atlanta, GA 30322 USA Worthman, CM (reprint author), Emory Univ, Dept Anthropol, 1557 Dickey Dr, Atlanta, GA 30322 USA. worthman@emory.edu Worthman, Carol M/0000-0002-5397-2298 National Institute of Drug Addiction [DA011301]; National Institutes of Mental Health [MH57761, MH083964-01] Contract grant sponsor: National Institute of Drug Addiction; Contract grant number: DA011301; Contract grant sponsor: National Institutes of Mental Health; Contract grant number: MH57761; Contract grant sponsor: National Institutes of Mental Health; Contract grant number: MH083964-01. Adolphs R, 2003, NAT REV NEUROSCI, V4, P165, DOI 10.1038/nrn1056; Akiskal KK, 2005, J AFFECT DISORDERS, V85, P231, DOI 10.1016/j.jad.2004.08.002; Baars BJ, 2002, TRENDS COGN SCI, V6, P47, DOI 10.1016/S1364-6613(00)01819-2; Barr CS, 2004, BIOL PSYCHIAT, V55, P733, DOI 10.1016/j.biopsych.2003.12.008; Bechara A, 2005, GAME ECON BEHAV, V52, P336, DOI 10.1016/j.geb.2004.06.010; Bolnick DI, 2003, AM NAT, V161, P1, DOI 10.1086/343878; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; BOYCE WT, 1995, PSYCHOSOM MED, V57, P411, DOI 10.1097/00006842-199509000-00001; Caldu X, 2007, ANN NY ACAD SCI, V1118, P43, DOI 10.1196/annals.1412.007; Canli T, 2007, NAT NEUROSCI, V10, P1103, DOI 10.1038/nn1964; Canli T, 2006, P NATL ACAD SCI USA, V103, P16033, DOI 10.1073/pnas.0601674103; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Caspi A, 2002, SCIENCE, V297, P851, DOI 10.1126/science.1072290; CHAGNON NA, 1988, HUMAN REPROD BEHAV D; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Cole PM, 2004, CHILD DEV, V75, P317, DOI 10.1111/j.1467-8624.2004.00673.x; COMPAS JJ, 2004, CHILD DEV, V75, P377; Corballis MC, 1999, DESCENT MIND PSYCHOL; Costa GC, 2008, AM NAT, V172, P868, DOI 10.1086/592998; Costello EJ, 2007, ARCH GEN PSYCHIAT, V64, P338, DOI 10.1001/archpsyc.64.3.338; Craig AD, 2002, NAT REV NEUROSCI, V3, P655, DOI 10.1038/nrn894; Damasio A.R., 1994, DESCARTES ERROR EMOT; Davidson RJ, 2000, AM PSYCHOL, V55, P1196, DOI 10.1037//0003-066X.55.11.1196; Deacon Terrence, 1997, SYMBOLIC SPECIES COE; Dickerson SS, 2004, PSYCHOL BULL, V130, P355, DOI 10.1037/0033-2909.130.3.355; Dunbar RIM, 2008, GROUP DYN-THEOR RES, V12, P7, DOI 10.1037/1089-2699.12.1.7; Erickson K, 2003, BRAIN COGNITION, V52, P52, DOI 10.1016/S0278-2626(03)00008-3; Fanous AH, 2004, NEUROTOX RES, V6, P43, DOI 10.1007/BF03033295; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; Fox N.A., 2000, HDB PSYCHOPHYSIOLOGY, P665; Fox NA, 2003, MOTIV EMOTION, V27, P7, DOI 10.1023/A:1023622324898; Gelernter J, 1999, AM J MED GENET, V88, P61, DOI 10.1002/(SICI)1096-8628(19990205)88:1<61::AID-AJMG11>3.0.CO;2-K; Gelernter J, 1997, HUM GENET, V101, P243, DOI 10.1007/s004390050624; Glatz K, 2003, J NEUROCHEM, V86, P1072, DOI 10.1046/j.1471-4159.2003.01944.x; Goodman A., 1999, BUILDING NEW BIOCULT; Gunnar MR, 2000, MINN SYM CHILD PSYCH, V31, P163; Joels M, 2008, EUR J PHARMACOL, V583, P173, DOI 10.1016/j.ejphar.2008.01.002; Kagan J, 2007, MONOGR SOC RES CHILD, V72, P1; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kim-Cohen J, 2006, MOL PSYCHIATR, V11, P903, DOI 10.1038/sj.mp.4001851; Krieger N, 2004, EPIDEMIOL REV, V26, P92, DOI 10.1093/epirev/mxh009; Krug A, 2008, EUR PSYCHIAT, V23, P344, DOI 10.1016/j.eurpsy.2008.03.004; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; LaBar KS, 2006, NAT REV NEUROSCI, V7, P54, DOI 10.1038/nrn1825; Lewis MD, 2004, CHILD DEV, V75, P371, DOI 10.1111/j.1467-8624.2004.00680.x; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; Meaney MJ, 2001, ANNU REV NEUROSCI, V24, P1161, DOI 10.1146/annurev.neuro.24.1.1161; Most SB, 2005, PSYCHOL REV, V112, P217, DOI 10.1037/0033-295X.112.1.217; Murray C. J. L., 1996, GLOBAL BURDEN DIS CO; Pachepsky E, 2007, ECOL MODEL, V207, P277, DOI 10.1016/j.ecolmodel.2007.05.005; Panter-Brick C, 1999, HORMONES HLTH BEHAV; PANTERBRICK C, 1999, HORMONES HLTH BEHAV, P1; Perez-Barberia FJ, 2007, EVOLUTION, V61, P2811, DOI 10.1111/j.1558-5646.2007.00229.x; Pollak SD, 2005, DEV PSYCHOPATHOL, V17, P735, DOI 10.1017/S0954579405050352; PORGES SW, 1995, PSYCHOPHYSIOLOGY, V32, P301, DOI 10.1111/j.1469-8986.1995.tb01213.x; Posner MI, 2000, DEV PSYCHOPATHOL, V12, P427, DOI 10.1017/S0954579400003096; Raz A, 2006, NAT REV NEUROSCI, V7, P367, DOI 10.1038/nrn1903; Robinson GE, 2004, SCIENCE, V304, P397, DOI 10.1126/science.1095766; Sabol SZ, 1998, HUM GENET, V103, P273, DOI 10.1007/s004390050816; Sapolsky R.M., 1998, WHY ZEBRAS DONT GET; Simons DJ, 2000, VIS COGN, V7, P1, DOI 10.1080/135062800394658; Sjoberg RL, 2008, NEUROPSYCHOPHARMACOL, V33, P425, DOI 10.1038/sj.npp.1301417; Slotkin RK, 2007, NAT REV GENET, V8, P272, DOI 10.1038/nrg2072; STOCKING GW, 1989, HIST ANTHR SERIES; Sulloway F., 2001, CONCEPTUAL CHALLENGE, P39; SUOMI SJ, 1991, CIBA F SYMP, V156, P171; Taylor SE, 2006, BIOL PSYCHIAT, V60, P671, DOI 10.1016/j.biopsych.2006.04.019; Tomasello M, 1999, ANNU REV ANTHROPOL, V28, P509, DOI 10.1146/annurev.anthro.28.1.509; Tsankova N, 2007, NAT REV NEUROSCI, V8, P355, DOI 10.1038/nrn2132; Van de Vijver G, 2002, ANN NY ACAD SCI, V981, P1; VANIJZENDOORN MH, 1999, HDB ATTACHMENT THEOR, P713; Weaver ICG, 2007, EPIGENETICS, V2, P22, DOI 10.4161/epi.2.1.3881; Weber BJ, 2008, BRAIN RES, V1234, P104, DOI 10.1016/j.brainres.2008.07.105; Wendland JR, 2006, BEHAV GENET, V36, P163, DOI 10.1007/s10519-005-9017-8; Williams TD, 2008, PHILOS T R SOC B, V363, P1687, DOI 10.1098/rstb.2007.0003; Worthman C., 1999, HORMONES HLTH BEHAV, P47; Worthman CM, 2003, OFFSPRING, P289; Worthman CM, 2005, DEV PSYCHOBIOLOGY AG, P187 79 16 16 1 11 WILEY-LISS HOBOKEN DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA 1042-0533 AM J HUM BIOL Am. J. Hum. Biol. NOV-DEC 2009 21 6 772 781 10.1002/ajhb.20966 10 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 517BZ WOS:000271589100009 19621433 Green Accepted 2018-11-12 J Williams, JL Williams, Jennifer L. Flowering Life-History Strategies Differ between the Native and Introduced Ranges of a Monocarpic Perennial AMERICAN NATURALIST English Article demography; exotic plant; integral projection model; iteroparity; life-history evolution; semelparity INTEGRAL PROJECTION MODEL; BELOW-GROUND HERBIVORE; CYNOGLOSSUM-OFFICINALE; BIOLOGICAL-CONTROL; EVOLUTIONARY DEMOGRAPHY; VARIABLE ENVIRONMENT; CYTISUS-SCOPARIUS; EXOTIC HABITATS; INVASIVE PLANTS; THRESHOLD SIZE Life-history theory makes several key predictions about reproductive strategies on the basis of demographic vital rates, particularly the relationship between juvenile and adult survival. Two such predictions concern the optimal time to begin reproducing and whether semelparity or iteroparity is favored. I tested these life-history predictions and explored how they might differ between the native and introduced ranges of the monocarpic perennial Cynoglossum officinale. I first compared vital rates between ranges. I then used these vital rates to parameterize integral projection models to calculate the population growth rate (lambda) and net reproductive rate (R-0) as surrogates for fitness to compare strategies within and between ranges. I found that both survival and growth were higher in the introduced range, where size at flowering was larger and iteroparity was much more common than in the native range. The observed and predicted strategies for size at flowering were similar in the native range. In the introduced range, however, even though plants flowered at a larger size, the observed size was not as large as the optimum predicted by lambda or the higher optimum predicted by R-0. Iteroparity conferred higher fitness in both ranges, as measured by both fitness metrics, suggesting that severe constraints, potentially specialist herbivores, prevent this strategy from becoming more common in the native range. [Williams, Jennifer L.] Natl Ctr Ecol Anal & Synth, Santa Barbara, CA 93101 USA; [Williams, Jennifer L.] Univ Montana, Div Biol Sci, Missoula, MT 59812 USA Williams, JL (reprint author), Natl Ctr Ecol Anal & Synth, Santa Barbara, CA 93101 USA. jwilliams@nceas.ucsb.edu Williams, Jennifer/H-1717-2011 Williams, Jennifer/0000-0002-4497-4961 National Science Foundation (NSF) Graduate Research Fellowship [EF-0553768]; NSF Doctoral Dissertation Improvement [DEB 05-08102]; Sigma Xi Grant-in-Aid of Research; University of Montana Graduate Council Award; Besancon and Bertha Morton Fellowships; National Center for Ecological Analysis and Synthesis; University of California; Santa Barbara; State of California I thank M. Bricker, C. Craig, and L. Williams for assistance with collecting demographic data on both continents. I also thank J. Maron, who helped with the development of this project, and H. Auge, who made fieldwork in Germany both possible and enjoyable. E. Crone and S. Ellner assisted with developing the population models, and D. Barton and T. Martin offered insightful discussions about lifehistory theory. Access to one field site in Montana was graciously provided by the Richardson family. R. Callaway, E. Crone, D. Emlen, M. Johnson, J. Maron, T. Martin, A. Sala, and R. Wesselingh provided helpful comments on earlier versions of this manuscript. Support for this study was provided by a National Science Foundation (NSF) Graduate Research Fellowship; NSF Doctoral Dissertation Improvement grant DEB 05-08102; a Sigma Xi Grant-in-Aid of Research; a University of Montana Graduate Council Award and Besancon and Bertha Morton Fellowships; and the National Center for Ecological Analysis and Synthesis, a center funded by the NSF (grant EF-0553768), the University of California, Santa Barbara, and the State of California. The Helmholtz Center for Environmental Research in Halle kindly provided space and field equipment. BLOSSEY B, 1995, J ECOL, V83, P887, DOI 10.2307/2261425; BOORMAN LA, 1984, NEW PHYTOL, V96, P609, DOI 10.1111/j.1469-8137.1984.tb03596.x; Bossdorf O, 2005, OECOLOGIA, V144, P1, DOI 10.1007/s00442-005-0070-z; BULMER MG, 1985, AM NAT, V126, P63, DOI 10.1086/284396; Caswell H, 2001, MATRIX POPULATION MO; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Childs DZ, 2004, P ROY SOC B-BIOL SCI, V271, P425, DOI 10.1098/rspb.2003.2597; COCHRAN ME, 1992, ECOL MONOGR, V62, P345, DOI 10.2307/2937115; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Crawley MJ, 1987, COLONIZATION SUCCESS, P429; De Jong TJ, 1998, NEW PHYTOL, V138, P489, DOI 10.1046/j.1469-8137.1998.00118.x; DEJONG TJ, 1988, J ECOL, V76, P366; DEJONG TJ, 1990, J ECOL, V78, P1123, DOI 10.2307/2260956; DeWalt SJ, 2004, ECOLOGY, V85, P471, DOI 10.1890/02-0728; Easterling MR, 2000, ECOLOGY, V81, P694, DOI 10.2307/177370; Ellner SP, 2006, AM NAT, V167, P410, DOI 10.1086/499438; ELTON CS, 1958, ECOLOGY INVASIONS PL; Grigulis K, 2001, J APPL ECOL, V38, P281, DOI 10.1046/j.1365-2664.2001.00587.x; Grosholz ED, 2003, ECOL LETT, V6, P700, DOI 10.1046/j.1461-0248.2003.00495.x; HART R, 1977, AM NAT, V111, P792, DOI 10.1086/283209; Hesse E, 2008, AM NAT, V172, pE196, DOI 10.1086/591683; Hyatt LA, 2006, BIOL INVASIONS, V8, P261, DOI 10.1007/s10530-004-5572-9; Jakobs G, 2004, DIVERS DISTRIB, V10, P11, DOI 10.1111/j.1472-4642.2004.00052.x; Johnson MTJ, 2007, J EVOLUTION BIOL, V20, P190, DOI 10.1111/j.1420-9101.2006.01201.x; Keane RM, 2002, TRENDS ECOL EVOL, V17, P164, DOI 10.1016/S0169-5347(02)02499-0; Klinkhamer PGL, 1997, J EVOLUTION BIOL, V10, P529; Kuss P, 2008, J ECOL, V96, P821, DOI 10.1111/j.1365-2745.2008.01374.x; LAW R, 1977, EVOLUTION, V31, P233, DOI 10.1111/j.1558-5646.1977.tb01004.x; Lesica P, 2005, FUNCT ECOL, V19, P471, DOI 10.1111/j.1365-2435.2005.00972.x; Maron JL, 2001, OIKOS, V95, P361, DOI 10.1034/j.1600-0706.2001.950301.x; Memmott J, 2000, ACTA OECOL, V21, P213, DOI 10.1016/S1146-609X(00)00124-7; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Metcalf JC, 2003, TRENDS ECOL EVOL, V18, P471, DOI 10.1016/S0169-5347(03)00162-9; Mitchell CE, 2003, NATURE, V421, P625, DOI 10.1038/nature01317; Morris WF, 2002, QUANTITATIVE CONSERV; Muller-Scharer H, 2004, Genetics, Evolution and Biological Control, P137, DOI 10.1079/9780851997353.0137; Muller-Scharer H, 2004, TRENDS ECOL EVOL, V19, P417, DOI 10.1016/j.tree.2004.05.010; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Paynter Q, 2003, J APPL ECOL, V40, P470, DOI 10.1046/j.1365-2664.2003.00817.x; PRICE T, 1988, SCIENCE, V240, P798, DOI 10.1126/science.3363360; PRINS AH, 1992, OIKOS, V65, P409, DOI 10.2307/3545556; Ranta E, 2002, J THEOR BIOL, V217, P391, DOI 10.1006/yjtbi.3029; Rees M, 2002, P ROY SOC B-BIOL SCI, V269, P1509, DOI 10.1098/rspb.2002.2037; Rees M, 2006, AM NAT, V168, pE53, DOI 10.1086/505762; Reinhart KO, 2003, ECOL LETT, V6, P1046, DOI 10.1046/j.1461-0248.2003.00539.x; Roff Derek A., 1992; Roff DA, 2008, J GENET, V87, P339, DOI 10.1007/s12041-008-0056-9; Rose KE, 2005, ECOLOGY, V86, P453, DOI 10.1890/03-0697; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Schaffer WM, 1975, ECOLOGY EVOLUTION CO, P142; Schwarzlaender M, 1997, ENVIRON ENTOMOL, V26, P357, DOI 10.1093/ee/26.2.357; Schwarzlander M, 2000, BIOL CONTROL, V18, P18, DOI 10.1006/bcon.2000.0812; Sletvold N, 2007, OIKOS, V116, P473, DOI 10.1111/j.2006.0030-1299.15263.x; Thebaud C, 2001, AM NAT, V157, P231, DOI 10.1086/318635; Torchin ME, 2003, NATURE, V421, P628, DOI 10.1038/nature01346; UPADHYAYA MK, 1988, CAN J PLANT SCI, V68, P763, DOI 10.4141/cjps88-089; van Tienderen PH, 2000, ECOLOGY, V81, P666, DOI 10.1890/0012-9658(2000)081[0666:EATLBD]2.0.CO;2; VANBREEMEN AMM, 1984, ACTA BOT NEERL, V33, P283, DOI 10.1111/j.1438-8677.1984.tb01821.x; Wesselingh RA, 1997, ECOLOGY, V78, P2118, DOI 10.1890/0012-9658(1997)078[2118:TSFFID]2.0.CO;2; Wilbur HM, 2006, AM NAT, V168, P398, DOI 10.1086/506258; Williams JL, 2008, OECOLOGIA, V157, P239, DOI 10.1007/s00442-008-1075-1; WILLIAMS JL, 2008, THESIS U MONTANA MIS; WILLIAMS JL, ECOLOGY IN PRESS; Wolfe LM, 2002, AM NAT, V160, P705, DOI 10.1086/343872 64 17 17 3 36 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. NOV 2009 174 5 660 672 10.1086/605999 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 509MM WOS:000271021900008 19778167 2018-11-12 J Ward, RJS; Cotter, SC; Kilner, RM Ward, Richard J. S.; Cotter, Sheena C.; Kilner, Rebecca M. Current brood size and residual reproductive value predict offspring desertion in the burying beetle Nicrophorus vespilloides BEHAVIORAL ECOLOGY English Article alternative reproductive tactics; biparental care; negotiation; reproductive skew; senescence; sexual conflict PARENTAL CARE DECISIONS; EVOLUTIONARY-THEORY; SEXUAL CONFLICT; PATERNAL CARE; LIFE-SPAN; COSTS; INVESTMENT; BENEFITS; SKEW; COLEOPTERA Life-history theory suggests that offspring desertion can be an adaptive reproductive strategy, in which parents forgo the costly care of an unprofitable current brood to save resources for future reproduction. In the burying beetle, Nicrophorus vespilloides, parents commonly abandon their offspring to the care of others, resulting in female-only care, male-only care, brood parasitism, and the care of offspring sired by satellite males. Furthermore, when there is biparental care, males routinely desert the brood before larval development is complete, leaving females behind to tend their young. We attempted to understand these patterns of offspring desertion by using laboratory experiments to compare the fitness costs associated with parental care for each sex and the residual reproductive value of the 2 sexes. We also tested whether current brood size and residual reproductive value together predicted the incidence of brood desertion. We found that males and females each sustained fecundity costs as a consequence of caring for larvae and that these costs were of comparable magnitude. Nevertheless, males had greater residual reproductive value than females and were more likely than females to desert experimental broods. Our results can explain why males desert the brood earlier than females in nature and why female-only care is more common than male-only care. They also suggest that the tipping point from brood parasitism or satellite male behavior to communal breeding (and vice versa) depends on the value of the current brood relative to residual reproductive value. [Ward, Richard J. S.; Cotter, Sheena C.; Kilner, Rebecca M.] Univ Cambridge, Dept Zool, Cambridge CB2 3EJ, England Kilner, RM (reprint author), Univ Cambridge, Dept Zool, Downing St, Cambridge CB2 3EJ, England. rmk1002@hermes.cam.ac.uk Cotter, Sheena/C-2312-2009; Kilner, Rebecca/B-2867-2012 Cotter, Sheena/0000-0002-3801-8316; Natural Environment Research Council [NER/S/A/2004/12242]; Leverhulme Trust [PLP/2006/0033]; Royal Society; Department of Zoology, University of Cambridge, UK Natural Environment Research Council (NER/S/A/2004/12242 to R.J.S.W.); The Leverhulme Trust (PLP/2006/0033 to R. M. K.); The Royal Society; and the Department of Zoology, University of Cambridge, UK. Balshine-Earn S, 1998, P ROY SOC B-BIOL SCI, V265, P2217, DOI 10.1098/rspb.1998.0562; Barta ZN, 2002, AM NAT, V159, P687, DOI 10.1086/339995; BARTLETT J, 1988, BEHAV ECOL SOCIOBIOL, V22, P429, DOI 10.1007/BF00294981; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; BOUCHER DH, 1977, AM NAT, V111, P786, DOI 10.1086/283207; Bourke AFG, 2007, ANNU REV ECOL EVOL S, V38, P103, DOI 10.1146/annurev.ecolsys.38.091206.095528; Broom M, 2008, BEHAV ECOL, V19, P22, DOI 10.1093/beheco/arm096; Buzatto BA, 2007, J ANIM ECOL, V76, P937, DOI 10.1111/j.1365-2656.2007.01273.x; CARLISLE TR, 1982, ANIM BEHAV, V30, P824, DOI 10.1016/S0003-3472(82)80156-5; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Cotter SC, 2010, J ANIM ECOL, V79, P35, DOI 10.1111/j.1365-2656.2009.01593.x; DAWKINS R, 1976, NATURE, V262, P131, DOI 10.1038/262131a0; EGGERT AK, 1992, BEHAV ECOL SOCIOBIOL, V31, P237; Eggert AK, 2000, BEHAV ECOL, V11, P357, DOI 10.1093/beheco/11.4.357; EGGERT AK, 1998, ANIM BEHAV, V55, P99; Eggert AK, 2008, P ROY SOC B-BIOL SCI, V275, P2521, DOI 10.1098/rspb.2008.0661; Eggert Anne-Katrin, 1997, P216; Field J, 2007, P ROY SOC B-BIOL SCI, V274, P445, DOI 10.1098/rspb.2006.3745; Gilg MR, 2003, AM MIDL NAT, V149, P306, DOI 10.1674/0003-0031(2003)149[0306:RDLSIT]2.0.CO;2; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; HRDY S, 1999, MOTHER NATURE; Hunt J, 2004, BEHAV ECOL SOCIOBIOL, V55, P302, DOI 10.1007/s00265-003-0705-1; Jenkins EV, 2000, ANIM BEHAV, V60, P443, DOI 10.1006/anbe.2000.1487; Johnstone RA, 2000, ETHOLOGY, V106, P5, DOI 10.1046/j.1439-0310.2000.00529.x; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Kolliker M, 2007, BEHAV ECOL SOCIOBIOL, V61, P1489, DOI 10.1007/s00265-007-0381-7; Lee RD, 2003, P NATL ACAD SCI USA, V100, P9637, DOI 10.1073/pnas.1530303100; Lessells C.M., 1991, P32; Lock JE, 2007, AM NAT, V170, P709, DOI 10.1086/521963; MAYNARDSMITH J, 1977, ANIM BEHAV, V25, P1, DOI DOI 10.1016/0003-3472(77)90062-8); McNamara JM, 2003, BEHAV ECOL, V14, P301, DOI 10.1093/beheco/14.3.301; McNamara JM, 2000, J THEOR BIOL, V205, P605, DOI 10.1006/jtbi.2000.2093; Muller JK, 2007, BEHAV ECOL, V18, P196, DOI 10.1093/beheco/arl073; MULLER JK, 1990, ANIM BEHAV, V40, P491, DOI 10.1016/S0003-3472(05)80529-9; MULLER JK, 1990, BEHAV ECOL SOCIOBIOL, V27, P11; Nagano M, 2007, ENTOMOL SCI, V10, P245, DOI 10.1111/j.1479-8298.2007.00220.x; NALEPA CA, 1988, BEHAV ECOL SOCIOBIOL, V23, P135, DOI 10.1007/BF00300348; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; PIANKA ER, 1975, AM NAT, V16, P775; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Reid JM, 2003, J ANIM ECOL, V72, P765, DOI 10.1046/j.1365-2656.2003.00750.x; Reznick D, 2006, PLOS BIOL, V4, P136, DOI 10.1371/journal.pbio.0040007; ROHWER S, 1978, AM NAT, V112, P429, DOI 10.1086/283284; Rozen DE, 2008, P NATL ACAD SCI USA, V105, P17890, DOI 10.1073/pnas.0805403105; Satou A, 2001, ZOOL SCI, V18, P975, DOI 10.2108/zsj.18.975; Scott MP, 1998, ANNU REV ENTOMOL, V43, P595, DOI 10.1146/annurev.ento.43.1.595; SCOTT MP, 1987, J INSECT PHYSIOL, V33, P693; Seno H, 2007, J THEOR BIOL, V246, P555, DOI 10.1016/j.jtbi.2007.01.015; Servedio MR, 2006, J EVOLUTION BIOL, V19, P1585, DOI 10.1111/j.1420-9101.2006.01124.x; Smiseth PT, 2005, ANIM BEHAV, V69, P551, DOI 10.1016/j.anbehav.2004.06.004; Steiger S, 2007, ZOOLOGY, V110, P360, DOI 10.1016/j.zool.2007.06.001; Steinhart GB, 2008, EVOL ECOL RES, V10, P351; Szekely Tamas, 1996, Current Ornithology, V13, P271; TALLAMY DW, 1982, ECOLOGY, V63, P616, DOI 10.2307/1936779; Trivers RR, 1972, SEXUAL SELECTION DES; TRUMBO ST, 1995, J INSECT PHYSIOL, V41, P535, DOI 10.1016/0022-1910(94)00127-3; TRUMBO ST, 1991, BEHAVIOUR, V117, P82, DOI 10.1163/156853991X00139; Trumbo ST, 2007, BEHAV ECOL SOCIOBIOL, V61, P1717, DOI 10.1007/s00265-007-0403-5; Trumbo ST, 2007, ETHOLOGY, V113, P386, DOI 10.1111/j.1439-0310.2006.01326.x; Trumbo ST, 2009, BEHAV ECOL, V20, P951, DOI 10.1093/beheco/arp082; Vehrencamp SL, 2000, BEHAV ECOL, V11, P334, DOI 10.1093/beheco/11.3.334; VEHRENCAMP SL, 1983, AM ZOOL, V23, P327; WARD RJS, 2007, THESIS U CAMBRIDGE C, P249; Webb JN, 2002, PHILOS T R SOC B, V357, P331, DOI 10.1098/rstb.2001.0934; Webb JN, 1999, ANIM BEHAV, V58, P983, DOI 10.1006/anbe.1999.1215; Wigby S, 2005, CURR BIOL, V15, P316, DOI 10.1016/j.cub.2005.01.051; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zajitschek F, 2009, AM NAT, V173, P792, DOI 10.1086/598486; Zink AG, 2003, BEHAV ECOL, V14, P687, DOI 10.1093/beheco/arg044 70 42 42 0 39 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 BEHAV ECOL Behav. Ecol. NOV-DEC 2009 20 6 1274 1281 10.1093/beheco/arp132 8 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 520BB WOS:000271813600017 Bronze 2018-11-12 J Driscoll, C Driscoll, Catherine Grandmothers, hunters and human life history BIOLOGY & PHILOSOPHY English Article Philosophy of biology; Life history theory; Grandmother hypothesis; Embodied capital theory; Group selection DENTAL DEVELOPMENT; HOMO-ERECTUS; INTERGENERATIONAL TRANSFERS; CONFORMIST TRANSMISSION; REPRODUCTIVE SUCCESS; WILD CHIMPANZEES; SEXUAL DIVISION; TIME ALLOCATION; HUNTING ABILITY; FOOD TRANSFERS This paper critiques the competing "Grandmother Hypothesis'' and "Embodied Capital Theory'' as evolutionary explanations of the peculiarities of human life history traits. Instead, I argue that the correct explanation for human life history probably involves elements of both hypotheses: long male developmental periods and lives probably evolved due to group selection for male hunting via increased female fertility, and female long lives due to the differential contribution women's complex foraging skills made to their children and grandchildren's nutritional status within groups provisioned by male hunting. N Carolina State Univ, Dept Philosophy, Raleigh, NC 27695 USA Driscoll, C (reprint author), N Carolina State Univ, Dept Philosophy, Campus Box 8103, Raleigh, NC 27695 USA. catherine_driscoll@ncsu.edu AIELLO LC, 1995, CURR ANTHROPOL, V36, P199, DOI 10.1086/204350; Alvard MS, 2002, CURR ANTHROPOL, V43, P533, DOI 10.1086/341653; Alvarez HP, 2000, AM J PHYS ANTHROPOL, V113, P435, DOI 10.1002/1096-8644(200011)113:3<435::AID-AJPA11>3.0.CO;2-O; Backwell LR, 2001, P NATL ACAD SCI USA, V98, P1358, DOI 10.1073/pnas.021551598; Behrensmeyer AK, 1997, SCIENCE, V278, P1589, DOI 10.1126/science.278.5343.1589; BELLOMO RV, 1994, J HUM EVOL, V27, P173, DOI 10.1006/jhev.1994.1041; BLIEGEBIRD RL, 1997, CURR ANTHROPOL, V38, P49; BLUMENSCHINE RJ, 1987, CURR ANTHROPOL, V28, P383, DOI 10.1086/203544; Boyd R, 2003, P NATL ACAD SCI USA, V100, P3531, DOI 10.1073/pnas.0630443100; BRAIN CK, 1988, NATURE, V336, P464, DOI 10.1038/336464a0; CARO TM, 1995, INT J PRIMATOL, V16, P205, DOI 10.1007/BF02735478; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; Clegg M, 1999, AM J PHYS ANTHROPOL, V110, P81, DOI 10.1002/(SICI)1096-8644(199909)110:1<81::AID-AJPA7>3.3.CO;2-K; Dean C, 2001, NATURE, V414, P628, DOI 10.1038/414628a; DEMENOCAL PB, 1995, SCIENCE, V270, P53, DOI 10.1126/science.270.5233.53; Dominguez-Rodrigo M, 2002, J WORLD PREHIST, V16, P1, DOI 10.1023/A:1014507129795; EMBER CR, 1978, ETHNOLOGY, V17, P439, DOI 10.2307/3773193; Foley R, 2003, EVOL ANTHROPOL, V12, P109, DOI 10.1002/evan.10108; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gage TB, 1998, ANNU REV ANTHROPOL, V27, P197, DOI 10.1146/annurev.anthro.27.1.197; Gomes CM, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005116; Gurven M, 2006, P ROY SOC B-BIOL SCI, V273, P835, DOI 10.1098/rspb.2005.3380; Gurven M, 2000, EVOL HUM BEHAV, V21, P263, DOI 10.1016/S1090-5138(00)00032-5; Gurven M, 2004, BEHAV BRAIN SCI, V27, P543; Gurven M, 2000, HUM ECOL, V28, P171, DOI 10.1023/A:1007067919982; Gurven M, 2006, J HUM EVOL, V51, P454, DOI 10.1016/j.jhevol.2006.05.003; Gurven M, 2006, HUM NATURE-INT BIOS, V17, P1, DOI 10.1007/s12110-006-1019-6; HAWKES K, 1995, CURR ANTHROPOL, V36, P688, DOI 10.1086/204420; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Hawkes K, 2003, AM J HUM BIOL, V15, P380, DOI 10.1002/ajhb.10156; HAWKES K, 1991, ETHOL SOCIOBIOL, V12, P29, DOI 10.1016/0162-3095(91)90011-E; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hawkes K, 2001, EVOL HUM BEHAV, V22, P113, DOI 10.1016/S1090-5138(00)00066-0; HAWKES K, 1989, COMP SOCIOECOLOGY BE, P341; HAWKES K, 2000, ADAPTATION HUMAN BEH, P237; Hawkes K., 2005, GRANDMOTHERHOOD EVOL, P118, DOI DOI 10.1007/S12110-010-9098-9; Henrich J, 1998, EVOL HUM BEHAV, V19, P215, DOI 10.1016/S1090-5138(98)00018-X; Henrich J, 2001, J THEOR BIOL, V208, P79, DOI 10.1006/jtbi.2000.2202; Henrich J, 2006, SCIENCE, V312, P1767, DOI 10.1126/science.1127333; Hill K, 2001, J HUM EVOL, V40, P437, DOI 10.1006/jhev.2001.0469; HILL K, 1988, HUMAN REPROD BEHAV 1; Howell N., 1979, DEMOGRAPHY DOBE KUNG; HURTADO AM, 1990, J ANTHROPOL RES, V46, P293, DOI 10.1086/jar.46.3.3630428; Hurtado AM, 1996, ACHE LIFE HIST; Jones NB, 2002, HUM NATURE-INT BIOS, V13, P199, DOI 10.1007/s12110-002-1008-3; JONES NGB, 1992, AM J PHYS ANTHROPOL, V89, P159, DOI 10.1002/ajpa.1330890204; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; KAPLAN H, 1985, CURR ANTHROPOL, V26, P131, DOI 10.1086/203235; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; KAPLAN H, 1992, EVOLUTIONARY ECOLOGY; KAPLAN H, 2003, EMBODIED CAPITAL EVO; Kaplan HS, 2002, P NATL ACAD SCI USA, V99, P10221, DOI 10.1073/pnas.152502899; KAPLAN HS, 2003, BRAIN LONGEVITY; KENT S, 1993, MAN, V28, P479, DOI 10.2307/2804236; Lee R, 2008, P NATL ACAD SCI USA, V105, P7124, DOI 10.1073/pnas.0710234105; Marlowe FW, 2007, CROSS-CULT RES, V41, P170, DOI 10.1177/1069397106297529; Marlowe FW, 2000, HUM NATURE-INT BIOS, V11, P27, DOI 10.1007/s12110-000-1001-7; Marshall L., 1976, KUNG NYAE NYAE; MILLER G, 2008, MORAL PSYCHOL, V1, P209; Nishida T, 1996, INT J PRIMATOL, V17, P947, DOI 10.1007/BF02735296; O'Connell JF, 2002, J HUM EVOL, V43, P831, DOI 10.1006/jhev.2002.0604; O'Connell JF, 1999, J HUM EVOL, V36, P461, DOI 10.1006/jhev.1998.0285; Peccei JS, 2001, AM J HUM BIOL, V13, P434, DOI 10.1002/ajhb.1076; PUSEY AE, 1990, BEHAVIOUR, V115, P203, DOI 10.1163/156853990X00581; Reed KE, 1997, J HUM EVOL, V32, P289, DOI 10.1006/jhev.1996.0106; RICHERSON PJ, 2000, EVOLUTION COGNITION; Roff Derek A., 1992; Schoeninger MJ, 2001, J FOOD COMPOS ANAL, V14, P15, DOI 10.1006/jfca.2000.0961; SMITH BH, 1994, AM J PHYS ANTHROPOL, V94, P307, DOI 10.1002/ajpa.1330940303; Smith E. A., 1991, INUJJUAMIUT FORAGING; Smith EA, 2003, BEHAV ECOL, V14, P116, DOI 10.1093/beheco/14.1.116; SMITH EA, 1992, EVOLUTIONARY ECOLOGY, P25; SMITH JM, 1978, ANNU REV ECOL SYST, V9, P31, DOI 10.1146/annurev.es.09.110178.000335; Smith TM, 2009, AM J PHYS ANTHROPOL, V138, P112, DOI 10.1002/ajpa.20898; Smith TM, 2007, P NATL ACAD SCI USA, V104, P20220, DOI 10.1073/pnas.0707051104; Smith TM, 2007, P NATL ACAD SCI USA, V104, P6128, DOI 10.1073/pnas.0700747104; SOBER E, 1998, OTHERS EVOLUTION PSY; STEARMAN AM, 1989, J ANTHROPOL RES, V45, P219, DOI 10.1086/jar.45.2.3630335; Stearns S. C., 1992, EVOLUTION LIFE HIST; SUGIYAMA Y, 1994, AM J PRIMATOL, V32, P311, DOI 10.1002/ajp.1350320408; TRIVERS RL, 1971, Q REV BIOL, V46, P35, DOI 10.1086/406755; Tuljapurkar SD, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000785; TUTIN CEG, 1994, CHIMPANZEE CULTURES; Uehara S, 1997, PRIMATES, V38, P193, DOI 10.1007/BF02382009; Walker R, 2002, J HUM EVOL, V42, P639, DOI 10.1006/jhev.2001.0541; Wallis J, 1997, J REPROD FERTIL, V109, P297; Wandsnider L, 1997, J ANTHROPOL ARCHAEOL, V16, P1, DOI 10.1006/jaar.1997.0303; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams GC, 1966, ADAPTATION NATURAL S; WOOD JW, 2001, 014 U WASH CTR STUD; Woodburn J., 1998, PROPERTY RELATIONS R, P48; Wrangham RW, 1998, INT J PRIMATOL, V19, P949, DOI 10.1023/A:1020318102257 94 2 2 2 12 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0169-3867 1572-8404 BIOL PHILOS Biol. Philos. NOV 2009 24 5 665 686 10.1007/s10539-009-9166-x 22 History & Philosophy Of Science History & Philosophy of Science 500WT WOS:000270337400006 2018-11-12 J Potvin, DA; MacDougall-Shackleton, EA Potvin, Dominique A.; MacDougall-Shackleton, Elizabeth A. Parental investment amplifies effects of genetic complementarity on growth rates in song sparrows, Melospiza melodia ANIMAL BEHAVIOUR English Article compatible gene; complementary gene; cross-fostering experiment; differential allocation; growth; Melospiza melodia; parental investment; song sparrow FEMALE MATE CHOICE; SEXUAL SELECTION; REPERTOIRE SIZE; MICROSATELLITE LOCI; REPRODUCTIVE EFFORT; NUTRITIONAL STRESS; MALE QUALITY; INDICATOR; PREDICTS; FITNESS Life history theory predicts that individuals paired with attractive mates may invest more in offspring. Such differential investment may amplify the effects of genetic quality on fitness. Attractiveness can include 'good gene' and 'complementary gene' components, but how the latter affects parental investment remains unknown. We found that nestling song sparrows with genetically dissimilar parents grew faster than did nestlings whose parents were genetically more similar to one another. A cross-fostering experiment revealed complementary gene effects on growth; nestlings produced by genetically dissimilar parents grew faster than their adoptive 'siblings' reared in the same nest but produced by parents that were more genetically similar. To explore whether parental investment exaggerates these complementary gene effects on growth, we monitored parental nest visits. Maternal visits were negatively related to genetic similarity between mates. The novel finding that females adjust levels of care according to the genetic diversity of their offspring suggests that parental investment can amplify complementary gene effects on fitness. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Potvin, Dominique A.; MacDougall-Shackleton, Elizabeth A.] Univ Western Ontario, Dept Biol, London, ON N6A 5B7, Canada MacDougall-Shackleton, EA (reprint author), Univ Western Ontario, Dept Biol, London, ON N6A 5B7, Canada. emacdoug@uwo.ca Natural Science and Engineering Research Council (NSERC) Canada; Canada Foundation for Innovation; Ontario Innovation Trust; Graduate Thesis Research Award; University of Western Ontario We thank Scott MacDougall-Shackleton, Bryan Neff and Liana Zanette for valuable comments on experimental design, Lukas Keller for sharing unpublished primer sequences, Kathryn Stewart, Janet Lapierre, Steve Russell, Laura Morton, Yani Sarquis-Adamson and Erica Tennenhouse for field assistance, Peter Dunn and two anonymous referees for helpful comments on the manuscript and the Queen's University Biological Station for logistic support. Research was supported by grants to E. A. M.-S. from the Natural Science and Engineering Research Council (NSERC) Canada, the Canada Foundation for Innovation, and the Ontario Innovation Trust; and by a Graduate Thesis Research Award to D. A. P. from the University of Western Ontario. Andersson M., 1994, SEXUAL SELECTION; Buchanan KL, 2000, P ROY SOC B-BIOL SCI, V267, P321, DOI 10.1098/rspb.2000.1003; BURLEY N, 1986, AM NAT, V127, P415, DOI 10.1086/284493; DELOPE F, 1993, EVOLUTION, V47, P1152, DOI 10.1111/j.1558-5646.1993.tb02142.x; Drickamer LC, 2000, ANIM BEHAV, V59, P371, DOI 10.1006/anbe.1999.1316; Freeman-Gallant CR, 2003, MOL ECOL, V12, P3077, DOI 10.1046/j.1365-294X.2003.01968.x; Gil D, 1999, SCIENCE, V286, P126, DOI 10.1126/science.286.5437.126; GLASSEY B, 2002, EVOLUTION BEGGING CO, P245; Griffith SC, 1999, BIOL J LINN SOC, V68, P303, DOI 10.1006/bijl.1999.0343; HANOTTE O, 1994, MOL ECOL, V3, P529, DOI 10.1111/j.1365-294X.1994.tb00133.x; Hawkins AJS, 1999, AM ZOOL, V39, P401; HILL GE, 1991, NATURE, V350, P337, DOI 10.1038/350337a0; HOCHACHKA W, 1991, J ANIM ECOL, V60, P995, DOI 10.2307/5427; Jeffery KJ, 2001, MOL ECOL NOTES, V1, P11, DOI 10.1046/j.1471-8278 .2000.00005.x; Keller LF, 2002, TRENDS ECOL EVOL, V17, P230, DOI 10.1016/S0169-5347(02)02489-8; Keller LF, 1998, EVOLUTION, V52, P240, DOI 10.1111/j.1558-5646.1998.tb05157.x; Kempster B, 2007, OECOLOGIA, V151, P365, DOI 10.1007/s00442-006-0597-7; Kotiaho JS, 2003, AM NAT, V161, P852, DOI 10.1086/375173; Leitner S, 2006, ETHOLOGY, V112, P554, DOI 10.1111/j.1439-0310.2006.01195.x; Linville SU, 1998, ANIM BEHAV, V55, P119, DOI 10.1006/anbe.1997.0595; MacDonald IF, 2006, P R SOC B, V273, P2559, DOI 10.1098/rspb.2006.3547; MacDougall-Shackleton EA, 2009, ANIM BEHAV, V78, P141, DOI 10.1016/j.anbehav.2009.04.004; Marshall RC, 2003, P ROY SOC B-BIOL SCI, V270, pS248, DOI 10.1098/rsbl.2003.0081; Mays HL, 2008, GENETICA, V134, P147, DOI 10.1007/s10709-007-9219-5; Mays HL, 2004, TRENDS ECOL EVOL, V19, P554, DOI 10.1016/j.tree.2004.07.018; McCarty JP, 2002, J FIELD ORNITHOL, V73, P9, DOI 10.1648/0273-8570-73.1.9; Michl G, 2005, BEHAV ECOL, V16, P383, DOI 10.1093/beheco/ari002; Neff BD, 2005, MOL ECOL, V14, P19, DOI 10.1111/j.1365-294X.2004.02395.x; Nolan PM, 2001, CONDOR, V103, P851, DOI 10.1650/0010-5422(2001)103[0851:TNOPVB]2.0.CO;2; Nowicki S, 1998, AM ZOOL, V38, P179; Pfaff JA, 2007, P R SOC B, V274, P2035, DOI 10.1098/rspb.2007.0170; Puurtinen M, 2005, TRENDS ECOL EVOL, V20, P157, DOI 10.1016/j.tree.2005.02.005; RAYMOND M, 1995, J HERED, V86, P248, DOI 10.1093/oxfordjournals.jhered.a111573; Reid JM, 2007, P R SOC B, V274, P1395, DOI 10.1098/rspb.2007.0063; Reid JM, 2004, ANIM BEHAV, V68, P1055, DOI 10.1016/j.anbehav.2004.07.003; Reid JM, 2005, P ROY SOC B-BIOL SCI, V272, P481, DOI 10.1098/rspb.2004.2983; Reid JM, 2005, AM NAT, V165, P299, DOI 10.1086/428299; Reyer HU, 1999, P ROY SOC B-BIOL SCI, V266, P2101, DOI 10.1098/rspb.1999.0894; Saino N, 2002, EVOLUTION OF BEGGING: COMPETITION, COOPERATION AND COMMUNICATION, P245, DOI 10.1007/0-306-47660-6_13; Schwagmeyer PL, 2008, ANIM BEHAV, V75, P291, DOI 10.1016/j.anbehav.2007.05.023; Sheldon BC, 2000, TRENDS ECOL EVOL, V15, P397, DOI 10.1016/S0169-5347(00)01953-4; TRIVERS RL, 1972, SEXUAL SELECTION DES, P139; Wang JL, 2002, GENETICS, V160, P1203; Wedell N, 1996, AM NAT, V148, P1075, DOI 10.1086/285972 44 12 12 0 12 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 ANIM BEHAV Anim. Behav. OCT 2009 78 4 943 948 10.1016/j.anbehav.2009.07.023 6 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 496ZY WOS:000270021800022 2018-11-12 J Stock, JT; Migliano, AB Stock, J. T.; Migliano, A. B. Stature, Mortality, and Life History among Indigenous Populations of the Andaman Islands, 1871-1986 CURRENT ANTHROPOLOGY English Article NEGATIVE SECULAR TREND; TRADE-OFFS; EVOLUTION; PYGMIES; GROWTH; AGE; PROPORTIONS; ADAPTATION; MAMMALS; BIRTH Despite considerable interest in the evolution of small body size, there is little evidence for changes in body size within small-bodied human populations. This study combines anthropometric data from a number of studies of the body size of Andaman Islanders from 1871 to 1986. The colonial history of the Andaman Islands is characterized by high rates of mortality among the indigenous populations. However, long-term conflicts between tribal groups of the Andaman Islands and British and Indian settlers led to some groups being relatively isolated and sheltered from infectious disease and the high rates of mortality that affected other groups. When temporal trends in stature are compared in this context, there is evidence for a reduction in stature among the Great Andamanese who had close contact with the British during the period of highest mortality. Adult stature among the Onge appears to have increased as government involvement diminished following Indian independence. The Jarawa, who had lower rates of mortality throughout the past century, have significantly higher stature than the other groups. These results are interpreted in the context of life-history theory, adaptation, and plasticity. They provide the first long-term diachronic evidence for a relationship between mortality and stature among small-bodied humans. [Stock, J. T.; Migliano, A. B.] Univ Cambridge, Dept Biol Anthropol, Leverhulme Ctr Human Evolutionary Studies, Cambridge CB2 3DZ, England Stock, JT (reprint author), Univ Cambridge, Dept Biol Anthropol, Leverhulme Ctr Human Evolutionary Studies, Downing St, Cambridge CB2 3DZ, England. j.stock@human-evol.cam.ac.uk Stock, Jay/B-6453-2011 Stock, Jay/0000-0003-0147-8631 Natural Environment Research Council [NER/M/S/2003/00069] Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; Berger LR, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001780; Bogin B, 1999, ANN HUM BIOL, V26, P333; BOGIN B, 1996, AM J HUM BIOL, V8, P110; Bogin B, 2007, AM J HUM BIOL, V19, P631, DOI 10.1002/ajhb.20666; Brander E. S., 1880, P R SOC EDINBURGH, V10, P415; Brown P, 2004, NATURE, V431, P1055, DOI 10.1038/nature02999; Cappieri M, 1967, Eugen Rev, V59, P251; CAPPIERI M, 1974, ANDAMANESE CULTURAL; CAPPIERI M, 1953, J ANTHR SOC BOMBAY, V7, P1; Castilho LV, 2001, ANN HUM BIOL, V28, P564, DOI 10.1080/03014460110045146; CAVALLISFORZA LL, 1995, GREAT HUMAN DIASPORA; CHAKRAVARTI A, 1994, ANDAMAN NICOBAR ISLA, P20; Charnov EL, 2002, EVOL ECOL RES, V4, P749; CHATTERJEE BK, 1955, ANTHROPOLOGIST, V2, P5; CIPRIANI L, 1966, ANDAMAN ISLANDERS; Coall DA, 2003, SOC SCI MED, V57, P1771, DOI 10.1016/S0277-9536(03)00022-4; COMUZZIE AG, 1995, HUM BIOL, V67, P459; DE DC, 1970, B ANTHR SURVEY INDIA, V19, P111; DIAMOND JM, 1991, NATURE, V354, P111, DOI 10.1038/354111a0; Endicott P, 2003, AM J HUM GENET, V72, P178, DOI 10.1086/345487; Eveleth P. B., 1990, WORLDWIDE VARIATION; FOSTER JB, 1964, NATURE, V202, P234, DOI 10.1038/202234a0; FRISANCHO AR, 1977, HUM BIOL, V49, P51; GUHA BS, 1952, B DEP ANTHR, V1; GUPTA AD, 1994, ANDAMAN NICOBAR ISLA, P37; Hawks J, 2007, P NATL ACAD SCI USA, V104, P20753, DOI 10.1073/pnas.0707650104; HEADLAND TN, 1987, ETHNOLOGY, V26, P261, DOI 10.2307/3773591; HELMUTH H, 1983, Zeitschrift fuer Morphologie und Anthropologie, V74, P75; Kailash, 1997, INDIAN J SOC WORK, V58, P382; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Katzmarzyk PT, 1998, AM J PHYS ANTHROPOL, V106, P483, DOI 10.1002/(SICI)1096-8644(199808)106:4<483::AID-AJPA4>3.0.CO;2-K; Kimura M., 1983, NEUTRAL THEORY MOL E; MALHOTRA R, 1989, INDIAN ISLAND ANTHR; Man E. H., 1883, J R ANTHR I, V12, P69; Man E. H., 1885, J R ANTHR I, V14, P253; Man E. H., 1878, J ROYAL ANTHR I, V7, P105; Martorell R, 1985, NUTRITIONAL ADAPTATI, P13; MERIMEE TJ, 1987, NEW ENGL J MED, V316, P906, DOI 10.1056/NEJM198704093161503; Migliano AB, 2007, P NATL ACAD SCI USA, V104, P20216, DOI 10.1073/pnas.0708024105; Millien V, 2006, PLOS BIOL, V4, P1863, DOI 10.1371/journal.pbio.0040321; Mukerjee Madhusree., 2003, LAND NAKED PEOPLE EN; Myka F., 1993, DECLINE INDIGENOUS P; Palanichamy Malliya Gounder, 2006, Science, V311, P470; PORTMAN MV, 1899, HIST OUR RELATIONS A; Pretty GL, 1998, AM J PHYS ANTHROPOL, V106, P505, DOI 10.1002/(SICI)1096-8644(199808)106:4<505::AID-AJPA5>3.0.CO;2-H; PRICE BJ, 1985, S AFR J SCI, V81, P386; Radcliffe-Brown A. R, 1964, ANDAMAN ISLANDERS; SANYAL S, 1976, J SOCIAL RES, V19, P98; SARKAR BN, 1989, J INDIAN ANTHR SOC, V24, P79; SEN PK, 1957, GEOGRAPHICAL REV IND, V19, P44; Shea BT, 1996, AM J PHYS ANTHROPOL, V100, P311; Stearns CS, 1992, EVOLUTION LIFE HIST; Steckel RH, 1995, J ECON LIT, V33, P1903; Steckel RH, 2002, EVOL ANTHROPOL, V11, P142, DOI 10.1002/evan.10030; STINI WA, 1975, BIOSOCIAL INTERRELAT, P19; SUDARSEN V, 1994, ANDAMAN NICOBAR ISLA, P82; SUSANNE C, 1985, J HUM EVOL, V14, P357, DOI 10.1016/S0047-2484(85)80042-7; Thangaraj K, 2005, SCIENCE, V308, P996, DOI 10.1126/science.1109987; Thangaraj K, 2003, CURR BIOL, V13, P86, DOI 10.1016/S0960-9822(02)01336-2; Tobias P V, 1975, S Afr J Med Sci, V40, P145; TOBIAS PV, 1978, J ANAT, V126, P668; TOBIAS PV, 1985, J HUM EVOL, V14, P347, DOI 10.1016/S0047-2484(85)80041-5; TORRETTA O, 1994, AM J HUM BIOL, V6, P693, DOI 10.1002/ajhb.1310060603; TREXLER JC, 1993, ECOLOGY, V74, P1629, DOI 10.2307/1939921; von Eickstedt EF, 1934, RASSENKUNDE RASSENGE; VONEICKSTEDT E, 1928, ANTHROPOL ANZ, V5, P259; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Wolanski N., 1978, COLLEGIUM ANTROPOL, V2, P69 69 15 15 0 19 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0011-3204 CURR ANTHROPOL Curr. Anthropol. OCT 2009 50 5 713 725 10.1086/605429 13 Anthropology Anthropology 493TC WOS:000269759900027 Green Published 2018-11-12 J Dunlop, ES; Heino, M; Dieckmann, U Dunlop, Erin S.; Heino, Mikko; Dieckmann, Ulf Eco-genetic modeling of contemporary life-history evolution ECOLOGICAL APPLICATIONS English Review Atlantic cod, Gadus morhua; density-dependent growth; eco-evolutionary dynamics; evolution; fisheries-induced evolution; fishing-induced adaptive change; harvest; life-history theory; phenotypic plasticity; probabilistic maturation reaction norm; quantitative genetics; reproductive investment COD GADUS-MORHUA; NORTH-SEA PLAICE; DEPENDENT INDIVIDUAL GROWTH; FISHERIES-INDUCED EVOLUTION; MATURATION REACTION NORMS; EVOLVING FISH STOCKS; PHENOTYPIC PLASTICITY; NATURAL-SELECTION; STRUCTURED POPULATIONS; QUANTITATIVE GENETICS We present eco-genetic modeling as a flexible tool for exploring the course and rates of multi-trait life-history evolution in natural populations. We build on existing modeling approaches by combining features that facilitate studying the ecological and evolutionary dynamics of realistically structured populations. In particular, the joint consideration of age and size structure enables the analysis of phenotypically plastic populations with more than a single growth trajectory, and ecological feedback is readily included in the form of density dependence and frequency dependence. Stochasticity and life-history trade-offs can also be implemented. Critically, eco-genetic models permit the incorporation of salient genetic detail such as a population's genetic variances and covariances and the corresponding heritabilities, as well as the probabilistic inheritance and phenotypic expression of quantitative traits. These inclusions are crucial for predicting rates of evolutionary change on both contemporary and longer timescales. An eco-genetic model can be tightly coupled with empirical data and therefore may have considerable practical relevance, in terms of generating testable predictions and evaluating alternative management measures. To illustrate the utility of these models, we present as an example an eco-genetic model used to study harvest-induced evolution of multiple traits in Atlantic cod. The predictions of our model (most notably that harvesting induces a genetic reduction in age and size at maturation, an increase or decrease in growth capacity depending on the minimum-length limit, and an increase in reproductive investment) are corroborated by patterns observed in wild populations. The predicted genetic changes occur together with plastic changes that could phenotypically mask the former. Importantly, our analysis predicts that evolutionary changes show little signs of reversal following a harvest moratorium. This illustrates how predictions offered by eco-genetic models can enable and guide evolutionarily sustainable resource management. [Dunlop, Erin S.; Heino, Mikko; Dieckmann, Ulf] Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria; [Dunlop, Erin S.; Heino, Mikko] Inst Marine Res, N-5817 Bergen, Norway; [Dunlop, Erin S.; Heino, Mikko] Univ Bergen, Dept Biol, N-5020 Bergen, Norway; [Dunlop, Erin S.; Heino, Mikko] Ontario Minist Nat Resources, Aquat Res & Dev Sect, Peterborough, ON K9J 7B8, Canada Dunlop, ES (reprint author), Int Inst Appl Syst Anal, Evolut & Ecol Program, Schlosspl 1, A-2361 Laxenburg, Austria. erin.dunlop@ontario.ca Dieckmann, Ulf/E-1424-2011; Heino, Mikko/C-7241-2009 Dieckmann, Ulf/0000-0001-7089-0393; Heino, Mikko/0000-0003-2928-3940 Marie Curie Research Training Network FishACE; Specific Targeted Research Project FinE; European Community's; Norwegian Research Council [173417/S40]; Vienna Science and Technology Fund (WWTF) The authors greatly appreciate helpful discussions with, and feedback provided by, A. Brannstrom, A. M. Eikeset, K. Enberg, C. Jorgensen, N. Lester, F. Mollet, K. Okamoto, H. Pardoe, B. Shuter, D. Urbach, and R. Whitlock. Comments offered by three anonymous reviewers helped us to improve the paper. Earlier contributions by A. Salthaug toward implementing eco-genetic modeling are gratefully acknowledged. Financial support was provided by the Marie Curie Research Training Network FishACE (Fisheries-induced Adaptive Changes in Exploited Stocks) and by the Specific Targeted Research Project FinE (Fisheries-induced Evolution), both funded by the European Community's Sixth Framework Programme. Funding for M. Heino and E. Dunlop was also provided by the Norwegian Research Council (project 173417/S40) and the Bergen Research Foundation. U. Dieckmann has been supported by the Vienna Science and Technology Fund (WWTF). Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Barot S, 2004, ECOL APPL, V14, P1257, DOI 10.1890/03-5066; BART J, 1995, ECOL APPL, V5, P411, DOI 10.2307/1942032; Baskett ML, 2005, ECOL APPL, V15, P882, DOI 10.1890/04-0723; BEVERTON RJH, 1957, DYNAMICS EXPLOITED P; Billerbeck JM, 2001, EVOLUTION, V55, P1863; BRANDER K, 2005, 274 ICES COOP RES; BROMLEY PJ, 1989, J FISH BIOL, V35, P117; Browman HI, 2008, SCIENCE, V320, P47, DOI 10.1126/science.320.5872.47b; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Bull JJ, 2004, TRENDS ECOL EVOL, V19, P76, DOI 10.1016/j.tree.2003.10.008; Carlson SM, 2004, EVOL ECOL RES, V6, P955; CAVALLISFORZA LL, 1976, P NATL ACAD SCI USA, V73, P1689, DOI 10.1073/pnas.73.5.1689; Claessen D, 2002, EVOL ECOL RES, V4, P189; Clark AG, 2007, PRINCIPLES POPULATIO; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Coltman DW, 2003, NATURE, V426, P655, DOI 10.1038/nature02177; Conner JK, 2004, PRIMER ECOLOGICAL GE; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; de Roos AM, 2006, P R SOC B, V273, P1873, DOI 10.1098/rspb.2006.3518; DeAngelis DL, 2005, ANNU REV ECOL EVOL S, V36, P147, DOI 10.1146/annurev.ecolsys.36.102003.152644; Dieckmann U, 1996, J MATH BIOL, V34, P579, DOI 10.1007/BF02409751; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Doebeli M, 1997, EVOLUTION, V51, P1730, DOI 10.1111/j.1558-5646.1997.tb05097.x; Drechsler M, 1998, BIOL CONSERV, V86, P401, DOI 10.1016/S0006-3207(98)00021-4; Dunlop ES, 2007, T AM FISH SOC, V136, P749, DOI 10.1577/T06-126.1; DUNLOP ES, EVOLUTIONAR IN PRESS; ENBERG K, EVOLUTIONAR IN PRESS; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Falconer DS, 1996, INTRO QUANTITATIVE G; Fenberg PB, 2008, MOL ECOL, V17, P209, DOI 10.1111/j.1365-294X.2007.03522.x; Fischer B, 2009, AM NAT, V173, pE108, DOI 10.1086/596536; Fogarty MJ, 2001, ICES J MAR SCI, V58, P952, DOI 10.1006/jmsc.2001.1108; Froysa KG, 2002, FISH RES, V55, P87; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; GETZ WM, 1993, EXPLOITATION EVOLVIN, P187; GOMULKIEWICZ R, 1992, EVOLUTION, V46, P390, DOI 10.1111/j.1558-5646.1992.tb02047.x; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Grimm V, 2005, SCIENCE, V310, P987, DOI 10.1126/science.1116681; Grimm V, 2005, INDIVIDUAL BASED MOD; Gunderson DR, 1997, CAN J FISH AQUAT SCI, V54, P990, DOI 10.1139/cjfas-54-5-990; Halley JM, 1996, TRENDS ECOL EVOL, V11, P33, DOI 10.1016/0169-5347(96)81067-6; HASSELL MP, 1975, J ANIM ECOL, V44, P283, DOI 10.2307/3863; Haugen TO, 2001, GENETICA, V112, P475, DOI 10.1023/A:1013315116795; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Heino M, 1996, FUNCT ECOL, V10, P245, DOI 10.2307/2389849; Heino M, 1998, TRENDS ECOL EVOL, V13, P367, DOI 10.1016/S0169-5347(98)01380-9; HEINO M, 2002, 2002Y14 ICES CM; Heino M, 2008, B MAR SCI, V83, P69; Heino M, 2008, P R SOC B, V275, P1111, DOI 10.1098/rspb.2007.1429; Hilborn R, 2006, FISHERIES, V31, P554; HOULE D, 1992, GENETICS, V130, P195; Hutchings JA, 2000, NATURE, V406, P882, DOI 10.1038/35022565; Hutchings JA, 2008, MOL ECOL, V17, P294, DOI 10.1111/j.1365-294X.2007.03485.x; *ICES, 2007, REP ICES STUD GROUP; *ICES, 2007, REP ARCT FISH WORK G; ILES TC, 1994, NETH J SEA RES, V32, P399, DOI 10.1016/0077-7579(94)90017-5; Jones AG, 2003, EVOLUTION, V57, P1747; Jorgensen C, 2008, SCIENCE, V320, P48; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; KIRKPATRICK M, 1993, EXPLOITATION EVOLVIN, P145; Kjesbu OS, 1996, CAN J FISH AQUAT SCI, V53, P610, DOI 10.1139/cjfas-53-3-610; Kuparinen A, 2008, SCIENCE, V320, P47; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; LEVIN SA, 1984, THEOR POPUL BIOL, V26, P165, DOI 10.1016/0040-5809(84)90028-5; Lloret J, 2000, FISH RES, V48, P79, DOI 10.1016/S0165-7836(00)00111-9; Lorenzen K, 2002, P ROY SOC B-BIOL SCI, V269, P49, DOI 10.1098/rspb.2001.1853; Lynch M, 1998, GENETICS ANAL QUANTI; Mangel M., 1988, DYNAMIC MODELING BEH; Marshall CT, 2007, MAR ECOL PROG SER, V335, P249, DOI 10.3354/meps335249; Marshall CT, 2004, CAN J FISH AQUAT SCI, V61, P1900, DOI 10.1139/F04-128; Marshall CT, 2000, CAN J FISH AQUAT SCI, V57, P2433, DOI 10.1139/cjfas-57-12-2433; Maynard-Smith J. M., 1973, ECOLOGY, V54, P384, DOI DOI 10.2307/1934346; MCEVOY LA, 1992, J FISH BIOL, V41, P125, DOI 10.1111/j.1095-8649.1992.tb03874.x; McIntyre TM, 2003, CAN J FISH AQUAT SCI, V60, P1111, DOI 10.1139/F03-090; Metz J. A. J., 1986, DYNAMICS PHYSL STRUC; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Mollet FM, 2007, MAR ECOL PROG SER, V351, P189, DOI 10.3354/meps07138; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; Needle CL, 2001, REV FISH BIOL FISHER, V11, P95, DOI 10.1023/A:1015208017674; Nicieza AG, 1999, FUNCT ECOL, V13, P793, DOI 10.1046/j.1365-2435.1999.00371.x; Nowak MA, 2004, SCIENCE, V303, P793, DOI 10.1126/science.1093411; OKAMOTO K, EVOLUTIONAR IN PRESS; Olsen E, 2005, CAN J FISH AQUAT SCI, V62, P811, DOI 10.1139/F05-065; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; ORZACK SH, 1994, AM NAT, V143, P361, DOI 10.1086/285608; Ottersen G, 2001, LIMNOL OCEANOGR, V46, P1774, DOI 10.4319/lo.2001.46.7.1774; Persson L, 2006, J FISH BIOL, V69, P1, DOI 10.1111/j.1095-8649.2006.01269.x; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; Planque B, 1999, CAN J FISH AQUAT SCI, V56, P2069, DOI 10.1139/cjfas-56-11-2069; Post JR, 1999, ECOL MONOGR, V69, P155, DOI 10.1890/0012-9615(1999)069[0155:DDPISF]2.0.CO;2; Quince C, 2008, J THEOR BIOL, V254, P207, DOI 10.1016/j.jtbi.2008.05.030; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; Ray C, 1996, J ANIM ECOL, V65, P556, DOI 10.2307/5736; RICKER W. E., 1954, JOUR FISH RES BD CANADA, V11, P559; RIJNSDORP AD, 1992, MAR ECOL PROG SER, V88, P19, DOI 10.3354/meps088019; Rijnsdorp AD, 2005, CAN J FISH AQUAT SCI, V62, P833, DOI 10.1139/F05-039; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; Roff Derek A., 1992; Rose GA, 2002, ICES J MAR SCI, V59, P1018, DOI 10.1006/jmsc.2002.1252; ROUGHGARDEN J, 1975, AM NAT, V109, P713, DOI 10.1086/283039; ROUGHGARDEN J, 1979, THEORY POPULATION GE; SAILA SB, 1988, BASIC FISHERY SCI PR; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; SHEPHERD JG, 1982, J CONSEIL, V40, P67; SMITH JM, 1978, ANNU REV ECOL SYST, V9, P31, DOI 10.1146/annurev.es.09.110178.000335; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; STEELE JH, 1985, NATURE, V313, P355, DOI 10.1038/313355a0; Steppan SJ, 2002, TRENDS ECOL EVOL, V17, P320, DOI 10.1016/S0169-5347(02)02505-3; Taborsky B, 2003, P ROY SOC B-BIOL SCI, V270, P713, DOI 10.1098/rspb.2002.2255; Tenhumberg B, 2004, ECOLOGY, V85, P2003, DOI 10.1890/03-4111; Theriault V, 2008, EVOL APPL, V1, P409, DOI 10.1111/j.1752-4571.2008.00022.x; Thorsen A, 2001, J SEA RES, V46, P295, DOI 10.1016/S1385-1101(01)00090-9; vanTienderen PH, 1997, EVOLUTION, V51, P1372, DOI 10.1111/j.1558-5646.1997.tb01460.x; VENABLE DL, 1988, AM NAT, V131, P360, DOI 10.1086/284795; WALTERS CJ, 1993, CAN J FISH AQUAT SCI, V50, P2058, DOI 10.1139/f93-229; WANG HY, EVOLUTIONAR IN PRESS; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; Ylikarjula J, 1999, EVOL ECOL, V13, P433, DOI 10.1023/A:1006755702230; Ylikarjula J, 2002, ANN ZOOL FENN, V39, P99 128 88 88 2 77 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1051-0761 1939-5582 ECOL APPL Ecol. Appl. OCT 2009 19 7 1815 1834 10.1890/08-1404.1 20 Ecology; Environmental Sciences Environmental Sciences & Ecology 496BH WOS:000269942500011 19831072 2018-11-12 J Brown, EA; Gay, L; Vasudev, R; Tregenza, T; Eady, PE; Hosken, DJ Brown, E. A.; Gay, L.; Vasudev, R.; Tregenza, T.; Eady, P. E.; Hosken, D. J. Negative phenotypic and genetic associations between copulation duration and longevity in male seed beetles HEREDITY English Article mating costs; Callosobruchus; heritability; genetic correlation CALLOSOBRUCHUS-MACULATUS COLEOPTERA; FLY SEPSIS-CYNIPSEA; YELLOW DUNG FLY; DROSOPHILA-MELANOGASTER; SPERM COMPETITION; LIFE-SPAN; PATERNAL INVESTMENT; FEMALE LONGEVITY; TRADE-OFF; ENERGETIC COSTS Reproduction can be costly and is predicted to trade-off against other characters. However, while these trade-offs are well documented for females, there has been less focus on aspects of male reproduction. Furthermore, those studies that have looked at males typically only investigate phenotypic associations, with the underlying genetics often ignored. Here, we report on phenotypic and genetic tradeoffs in male reproductive effort in the seed beetle, Callosobruchus maculatus. We find that the duration of a male's first copulation is negatively associated with subsequent male survival, phenotypically and genetically. Our results are consistent with life-history theory and suggest that like females, males trade-off reproductive effort against longevity. Heredity (2009) 103, 340-345; doi: 10.1038/hdy.2009.80; published online 29 July 2009 [Vasudev, R.; Eady, P. E.] Lincoln Univ, Dept Biol Sci, Lincoln, England d.j.hosken@exeter.ac.uk Tregenza, Tom/B-1078-2014; Gay, Laurene/K-6644-2014 Tregenza, Tom/0000-0003-4182-2222; Vasudeva, Ramakrishnan/0000-0002-3831-0384 NERC; Leverhulme Trust; Royal Society; Natural Environment Research Council [NE/D011183/1] This project was funded by NERC and the Leverhulme Trust. T Tregenza is supported by the Royal Society. We thank John Hunt for discussion, and Takahisa Miyatake, Kensuke Okada and two anonymous referees who kindly commented on previous versions of this article. Ackermann M, 2001, J EVOLUTION BIOL, V14, P199, DOI 10.1046/j.1420-9101.2001.00281.x; Arnqvist G, 2005, SEXUAL CONFLICT; BAILEY WJ, 1993, J EXP BIOL, V178, P21; BECKER WA, 1985, MANUAL QUANTITATIVE; Blanckenhorn WU, 2002, BEHAV ECOL, V13, P353, DOI 10.1093/beheco/13.3.353; BURK T, 1982, FLA ENTOMOL, V65, P90, DOI 10.2307/3494148; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; CluttonBrock T, 1997, BEHAV ECOL, V8, P392, DOI 10.1093/beheco/8.4.392; Crudgington HS, 2000, NATURE, V407, P855, DOI 10.1038/35038154; Czesak ME, 2003, EVOLUTION, V57, P1121; DEWSBURY DA, 1982, AM NAT, V119, P601, DOI 10.1086/283938; EADY P, 1994, BEHAV ECOL SOCIOBIOL, V35, P123, DOI 10.1007/BF00171502; Eady PE, 2007, P ROY SOC B-BIOL SCI, V274, P247, DOI 10.1098/rspb.2006.3710; EADY PE, 1991, THESIS U SHEFFIELD S; Edvardsson M, 2006, BEHAV ECOL, V17, P430, DOI 10.1093/beheco/arj045; Edvardsson M, 2005, BEHAV ECOL, V16, P788, DOI 10.1093/beheco/ari055; FALCONER DS, 1989, INTRO QUANTITATIVE G; Fox CW, 2004, HEREDITY, V92, P170, DOI 10.1038/sj.hdy.6800383; GAGE MJG, 1991, ANIM BEHAV, V42, P1036, DOI 10.1016/S0003-3472(05)80162-9; GAGE MJG, 1991, ECOL ENTOMOL, V16, P331, DOI 10.1111/j.1365-2311.1991.tb00224.x; Gasser M, 2000, EVOLUTION, V54, P1260; GROMKO MH, 1991, EVOLUTION, V45, P69, DOI 10.1111/j.1558-5646.1991.tb05267.x; HILL WG, 1970, BIOMETRICS, V26, P566, DOI 10.2307/2529110; Hodgson DJ, 2006, J THEOR BIOL, V243, P230, DOI 10.1016/j.jtbi.2006.06.024; Hoffmann AA, 1999, HEREDITY, V82, P158, DOI 10.1038/sj.hdy.6884640; Horng SB, 1997, ANIM BEHAV, V53, P1, DOI 10.1006/anbe.1996.9999; HOSKEN DJ, 1994, AUST J ZOOL, V42, P177, DOI 10.1071/ZO9940177; Hosken DJ, 2001, CURR BIOL, V11, pR379, DOI 10.1016/S0960-9822(01)00211-1; HOULE D, 1992, GENETICS, V130, P195; Hunt J, 2002, J EVOLUTION BIOL, V15, P57, DOI 10.1046/j.1420-9101.2002.00374.x; Hunt J, 2006, AM NAT, V168, pE72, DOI 10.1086/506918; KENAGY GJ, 1986, J MAMMAL, V67, P1, DOI 10.2307/1380997; Kotiaho JS, 1998, P ROY SOC B-BIOL SCI, V265, P2203, DOI 10.1098/rspb.1998.0560; Lynch M, 1998, GENETICS ANAL QUANTI; MACBEAN IT, 1967, GENETICS, V56, P233; Martin OY, 2004, J EVOLUTION BIOL, V17, P357, DOI 10.1046/j.1420-9101.2003.00668.x; Martin OY, 2002, ANIM BEHAV, V63, P541, DOI 10.1006/anbe.2001.1929; Messina FJ, 2003, J EVOLUTION BIOL, V16, P501, DOI 10.1046/j.1420-9101.2003.00535.x; Miyatake T, 1997, HEREDITY, V78, P93; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Muhlhauser C, 1996, ANIM BEHAV, V51, P1401, DOI 10.1006/anbe.1996.0143; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; Paukku S, 2005, J INSECT PHYSIOL, V51, P1220, DOI 10.1016/j.jinsphys.2005.06.012; PITNICK S, 1995, P NATL ACAD SCI USA, V92, P10614, DOI 10.1073/pnas.92.23.10614; Prasad NG, 2003, J GENET, V82, P45, DOI 10.1007/BF02715881; PRICE T, 1991, EVOLUTION, V45, P853, DOI 10.1111/j.1558-5646.1991.tb04354.x; QI YT, 1982, J CHEM ECOL, V8, P527, DOI 10.1007/BF00987800; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff DA, 2008, HEREDITY, V100, P32, DOI 10.1038/sj.hdy.6801048; Roff D. A., 2002, LIFE HIST EVOLUTION; ROSE MR, 1981, GENETICS, V97, P172; Savalli UM, 2000, ANN ENTOMOL SOC AM, V93, P1173, DOI 10.1603/0013-8746(2000)093[1173:PIITSB]2.0.CO;2; Savalli UM, 1998, ANIM BEHAV, V56, P953, DOI 10.1006/anbe.1998.0853; Savalli UM, 1999, FUNCT ECOL, V13, P169, DOI 10.1046/j.1365-2435.1999.00287.x; Schwarzenbach GA, 2005, J EVOLUTION BIOL, V18, P455, DOI 10.1111/j.1420-9101.2004.00820.x; SIMMONS LW, 1993, P ROY SOC B-BIOL SCI, V251, P183, DOI 10.1098/rspb.1993.0027; Simmons LW, 1996, BEHAV ECOL SOCIOBIOL, V38, P199, DOI 10.1007/s002650050233; Siva-Jothy MT, 1998, PHYSIOL ENTOMOL, V23, P274, DOI 10.1046/j.1365-3032.1998.233090.x; TATAR M, 1993, EVOLUTION, V47, P1302, DOI 10.1111/j.1558-5646.1993.tb02156.x; Thornhill R., 1983, EVOLUTION INSECT MAT; TUTTLE MD, 1981, SCIENCE, V214, P677, DOI 10.1126/science.214.4521.677; VANVOORHIES WA, 1992, NATURE, V360, P456, DOI 10.1038/360456a0; Wedell N, 2002, TRENDS ECOL EVOL, V17, P313, DOI 10.1016/S0169-5347(02)02533-8; Wigby S, 2005, CURR BIOL, V15, P316, DOI 10.1016/j.cub.2005.01.051; ZWAAN B, 1995, EVOLUTION, V49, P649, DOI 10.1111/j.1558-5646.1995.tb02301.x 65 18 18 0 14 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 0018-067X 1365-2540 HEREDITY Heredity OCT 2009 103 4 340 345 10.1038/hdy.2009.80 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 497UG WOS:000270087700010 19639006 Green Published, Bronze 2018-11-12 J Jennings, S; Wilson, RW Jennings, Simon; Wilson, Rod W. Fishing impacts on the marine inorganic carbon cycle JOURNAL OF APPLIED ECOLOGY English Article community; ecosystem approach; ecosystem services; fish carbonate; fisheries; management; population INTESTINAL BICARBONATE SECRETION; ACID-BASE-BALANCE; TELEOST FISH; METABOLIC-RATE; FRESH-WATER; SIZE; TEMPERATURE; OSMOREGULATION; COMMUNITIES; PARAMETERS 1. Teleost fish excrete precipitated carbonate and make significant contributions to the marine inorganic carbon cycle at regional and global scales. As total carbonate production is linked to fish size and abundance, fishing is predicted to affect carbonate production by modifying fish abundance and size-structure. 2. We draw on concepts from physiology, metabolic ecology, life history theory, population dynamics and community ecology to develop, validate and apply analytical tools to assess fishing impacts on carbonate production. Outputs suggest that population and community carbonate production fall rapidly at lower rates of fishing than those used as management targets for sustainable yield. 3. Theoretical predictions are corroborated by estimated trends in carbonate production by a herring population and a coral reef fish community subject to fishing. Our analytical results build on widely applicable relationships between life history parameters and metabolic rates, and can be generalized to most fished ecosystems. 4. Synthesis and applications. If the maintenance of chemical processes as well as biological process were adopted as a management objective for fisheries then the methods we have developed can be applied to assess the effects of fishing on carbonate production and to advise on acceptable rates of fishing. Maintenance of this ecosystem service would require lower rates of fishing mortality than those recommended to achieve sustainable yield. [Jennings, Simon] Ctr Environm Fisheries & Aquaculture Sci, Lowestoft NR33 0HT, Suffolk, England; [Jennings, Simon] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England; [Wilson, Rod W.] Univ Exeter, Sch Biosci, Hatherly Labs, Exeter EX4 4PS, Devon, England Jennings, S (reprint author), Ctr Environm Fisheries & Aquaculture Sci, Pakefield Rd, Lowestoft NR33 0HT, Suffolk, England. simon.jennings@cefas.co.uk Jennings, Simon/F-5085-2012 Jennings, Simon/0000-0002-2390-7225 UK DFID; NERC; EC; Defra; BBSRC; Royal Society We thank Andrew Clarke for providing the compilation of teleost oxygen consumption data from Clarke & Johnston (1999) and John Pope for allowing us to modify the size-based model of Pope et al. (2006) for this analysis. S. J. thanks UK DFID (formerly ODA) and NERC for funding the collection of the. sh community data used in this analysis, and the EC and Defra for funding this research. R. W. thanks BBSRC and The Royal Society for funding fundamental studies on intestinal carbonate production inmarine fish. BEVERTON RJH, 1992, J FISH BIOL, V41, P137, DOI 10.1111/j.1095-8649.1992.tb03875.x; Bianchi G, 2000, ICES J MAR SCI, V57, P558, DOI 10.1006/jmsc.2000.0727; Clarke A, 1999, J ANIM ECOL, V68, P893, DOI 10.1046/j.1365-2656.1999.00337.x; Gillooly JF, 2002, NATURE, V417, P70, DOI 10.1038/417070a; Glazier DS, 2005, BIOL REV, V80, P611, DOI 10.1017/S1464793105006834; GONZALEZ RJ, 1992, J EXP BIOL, V163, P317; Grosell M, 2006, J EXP BIOL, V209, P2813, DOI 10.1242/jeb.02345; *ICES, 2007, CM2007ACFM11 ICES; Jennings S, 1997, CORAL REEFS, V16, P71, DOI 10.1007/s003380050061; Jennings S, 2008, P ROY SOC B-BIOL SCI, V275, P1375, DOI 10.1098/rspb.2008.0192; Jennings S, 2007, FISH FISH, V8, P269, DOI 10.1111/j.1467-2679.2007.00250.x; KERR SR, 1982, CAN J FISH AQUAT SCI, V39, P371, DOI 10.1139/f82-054; Nilsson S, 1986, FISH PHYSL RECENT AD, VXX, P87; *NOAA, 2007, COR REEF WATCH PROGR; Pope JG, 2006, ICES J MAR SCI, V63, P1029, DOI 10.1016/j.icesjms.2006.04.015; Quinn TJ, 1999, QUANTITATIVE FISH DY; Shin YJ, 2005, ICES J MAR SCI, V62, P384, DOI 10.1016/j.icesjms.2005.01.004; Sinclair M., 2003, RESPONSIBLE FISHERIE; Stevens JD, 2000, ICES J MAR SCI, V57, P476, DOI 10.1006/jmsc.2000.0724; Takei Y, 2001, ZOOL SCI, V18, P963, DOI 10.2108/zsj.18.963; Taylor JR, 2007, J COMP PHYSIOL B, V177, P597, DOI 10.1007/s00360-007-0158-3; Taylor JR, 2006, J EXP BIOL, V209, P2939, DOI 10.1242/jeb.02342; WALSH PJ, 1991, LIMNOL OCEANOGR, V36, P1227, DOI 10.4319/lo.1991.36.6.1227; Wilson RW, 2009, SCIENCE, V323, P359, DOI 10.1126/science.1157972; Wilson RW, 2003, BBA-BIOMEMBRANES, V1618, P163, DOI 10.1016/j.bbamem.2003.09.014; Wilson RW, 2002, BBA-BIOMEMBRANES, V1566, P182, DOI 10.1016/S0005-2736(02)00600-4; Wilson RW, 1996, J EXP BIOL, V199, P2331 27 9 9 1 16 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0021-8901 J APPL ECOL J. Appl. Ecol. OCT 2009 46 5 976 982 10.1111/j.1365-2664.2009.01682.x 7 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 502AB WOS:000270425100008 Bronze 2018-11-12 J von Biela, VR; Gill, VA; Bodkin, JL; Burns, JM von Biela, Vanessa R.; Gill, Verena A.; Bodkin, James L.; Burns, Jennifer M. PHENOTYPIC PLASTICITY IN AGE AT FIRST REPRODUCTION OF FEMALE NORTHERN SEA OTTERS (ENHYDRA LUTRIS KENYONI) JOURNAL OF MAMMALOGY English Article age at 1st reproduction; Alaska; demography; Enhydra lutris; life history; phenotypic plasticity; reproduction; sea otter LIFE-HISTORY CONSEQUENCES; ELEPHANT SEALS; SEXUAL MATURITY; POPULATION-DYNAMICS; MARINE MAMMALS; BODY CONDITION; CEMENTUM; GROWTH; PATTERNS; PRIMIPARITY Life-history theory predicts that within a species, reproduction and survival rates will differ among populations that differ in resource availability or predation rates through phenotypic plasticity. When populations are near carrying capacity (K) or when they are declining due to reduced prey resources, the average age at 1st reproduction (average AFR) is predicted to be older than in populations below K. Differences between the trajectories of northern sea otter (Enhydra lutris kenyoni) populations in Alaska provides an opportunity to examine phenotypic plasticity. Using premolar teeth or reproductive tracts, we estimated average AFR from demographically distinct populations of sea otters in Alaska. We obtained samples from 2 populations near K, Prince William Sound (PWS) and the Aleutian Archipelago (archived samples), and from 2 populations below K, the Kodiak Archipelago and Sitka. The average AFR was lower in populations below K (3.60 years +/- 0.16 SD) compared to those near K (4.21 +/- 0.13 years, P < 0.001), and differed among all populations, with the Aleutian population possessing the oldest average AFR (4.29 +/- 0.09 years) followed by PWS (4.05 +/- 0.24 years), Sitka (3.80 +/- 0.21 years), and Kodiak (3.19 +/- 0.37 years). The difference in average AFR among populations supports life-history theory and provides evidence of phenotypic plasticity in sea otters. Our findings highlight the value of using average AFR as a tool for monitoring mammalian populations. [von Biela, Vanessa R.; Burns, Jennifer M.] Univ Alaska, Dept Biol Sci, Anchorage, AK 99508 USA; [Gill, Verena A.] US Fish & Wildlife Serv, Anchorage, AK 99503 USA; [Bodkin, James L.] US Geol Survey, Alaska Sci Ctr, Anchorage, AK 99508 USA von Biela, VR (reprint author), Univ Alaska, Dept Biol Sci, 3211 Providence Dr, Anchorage, AK 99508 USA. vvonbiela@usgs.gov Burns, Jennifer/C-4159-2013 von Biela, Vanessa/0000-0002-7139-5981; Burns, Jennifer/0000-0001-9652-2943 National Oceanic and Atmospheric Administration; North Pacific Marine Science Foundation; North Pacific Universities Marine Mammal Research Consortium We thank the many sample collectors from the Alaska Sea Otter and Steller Sea Lion Commission and the Alaska Marine Mammal Stranding Network. K. Schneider of the Alaska Department of Fish and Game provided reproductive data collected in Southwestern Alaska (1967-1971). J. W. Testa, D. H. Monson, D. Pfeiffer, and J. Prewitt provided support and useful comments that improved this manuscript. All protocols were approved by the Institutional Animal Care and Use Committee at the University of Alaska Anchorage (IACUC 2006Burns8). Financial support was provided by National Oceanic and Atmospheric Administration and the North Pacific Marine Science Foundation through the North Pacific Universities Marine Mammal Research Consortium. Any use of trade names is for descriptive purposes only and does not imply endorsement by the United States Government. ANGLISS RP, 2004, NMFSAFSC144 US DEP C, P1; BENGTSON JL, 1981, CAN J ZOOL, V59, P92, DOI 10.1139/z81-015; Bodkin JL, 1997, J WILDLIFE MANAGE, V61, P967, DOI 10.2307/3802207; Bodkin JL, 2004, MAR MAMMAL SCI, V20, P305, DOI 10.1111/j.1748-7692.2004.tb01159.x; Bodkin JL, 2002, MAR ECOL PROG SER, V241, P237, DOI 10.3354/meps241237; BODKIN JL, 1993, CAN J ZOOL, V71, P1811, DOI 10.1139/z93-258; Bodkin JL, 2007, P 4 GLAC BAY SCI S O, P133; BODKIN JL, 1999, CONSERV BIOL, V13, P1376; BOUTIN S, 1990, CAN J ZOOL, V68, P203, DOI 10.1139/z90-031; BOYCE MS, 1981, J APPL ECOL, V18, P749, DOI 10.2307/2402366; CHOQUENOT D, 1991, ECOLOGY, V72, P805, DOI 10.2307/1940583; Clutton-Brock T.H., 1988, REPROD SUCCESS STUDI; CLUTTONBROCK TH, 1983, J ANIM ECOL, V52, P367, DOI 10.2307/4560; COY PL, 1992, CAN J ZOOL, V70, P2150, DOI 10.1139/z92-290; Creel S, 2007, SCIENCE, V315, P960, DOI 10.1126/science.1135918; DEMASTER DP, 1978, J FISH RES BOARD CAN, V35, P912, DOI 10.1139/f78-148; Dzikowski R, 2004, J EXP ZOOL PART A, V301A, P776, DOI 10.1002/jez.a.61; EBERHARDT LL, 1994, MAR MAMMAL SCI, V10, P31, DOI 10.1111/j.1748-7692.1994.tb00387.x; Eberhardt LL, 2002, ECOLOGY, V83, P2841, DOI 10.2307/3072020; EBERHARDT LL, 1977, J FISH RES BOARD CAN, V34, P183, DOI 10.1139/f77-028; Esslinger G. G., 2009, 20095045 US GEOL SUR, P1; ESTES JA, 1990, J ANIM ECOL, V59, P385, DOI 10.2307/4870; FESTABIANCHET M, 1995, ECOLOGY, V76, P871, DOI 10.2307/1939352; FOWLER C. W., 1988, CURRENT MAMMALOGY, V1, P401; FOWLER CW, 1981, ECOLOGY, V62, P602, DOI 10.2307/1937727; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gorbics CS, 2001, MAR MAMMAL SCI, V17, P632, DOI 10.1111/j.1748-7692.2001.tb01009.x; JAMESON R J, 1982, Wildlife Society Bulletin, V10, P100; JAMESON RJ, 1993, MAR MAMMAL SCI, V9, P156, DOI 10.1111/j.1748-7692.1993.tb00440.x; Kenyon K.W., 1969, SEA OTTER E PACIFIC; Klevezal G.A., 1996, RECORDING STRUCTURES; KLEVEZAL GA, 1994, J MAMMAL, V75, P483, DOI 10.2307/1382571; Laidre KL, 2006, J ANIM ECOL, V75, P978, DOI 10.1111/j.1365-2656.2006.01117.x; Langvatn R, 1996, J ANIM ECOL, V65, P653, DOI 10.2307/5744; LARSON DA, 1992, AM STAT, V46, P151, DOI 10.2307/2684186; LAWS RM, 1956, NATURE, V178, P193, DOI 10.1038/178193a0; McMahon CR, 2003, J ANIM ECOL, V72, P61, DOI 10.1046/j.1365-2656.2003.00685.x; Messier F, 1985, OECOLOGIA, V65, P503, DOI 10.1007/BF00379664; Monson DH, 2000, OIKOS, V90, P457, DOI 10.1034/j.1600-0706.2000.900304.x; Pistorius PA, 2001, POLAR BIOL, V24, P343, DOI 10.1007/s003000000217; REITER J, 1981, ANIM BEHAV, V29, P670, DOI 10.1016/S0003-3472(81)80002-4; REITER J, 1991, BEHAV ECOL SOCIOBIOL, V28, P153, DOI 10.1007/BF00172166; SCHNEIDER KB, 1973, AGE DETERMINATION SE; SCHNEIDER KB, 1975, REPROD FEMALE SEA OT; Sinclair A.R.E., 2006, WILDLIFE ECOLOGY CON; SODERBERG S, 1978, FINNISH GAME RES, V37, P27; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Von Biela VR, 2008, J WILDLIFE MANAGE, V72, P618, DOI 10.2193/2007-218; VONBIELA VR, 2007, THESIS U ALASKA ANCH; Wirsing AJ, 2008, MAR MAMMAL SCI, V24, P1, DOI 10.1111/j.1748-7692.2007.00167.x 51 8 8 0 35 ALLIANCE COMMUNICATIONS GROUP DIVISION ALLEN PRESS LAWRENCE 810 EAST 10TH STREET, LAWRENCE, KS 66044 USA 0022-2372 J MAMMAL J. Mammal. OCT 2009 90 5 1224 1231 10.1644/08-MAMM-A-379.1 8 Zoology Zoology 509GG WOS:000271002400020 Bronze 2018-11-12 J Rushton, JP; Irwing, P Rushton, J. Philippe; Irwing, Paul A General Factor of Personality (GFP) from the Multidimensional Personality Questionnaire PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Big One; Big Two; Big Five; General Factor of Personality; Personality structure; Multidimensional Personality Questionnaire; Life-history theory HIGHER-ORDER FACTORS; LIFE-HISTORY THEORY; FIT INDEXES; K-FACTOR; BIG 5; COVITALITY; SAMPLE; MODEL The hypothesis that a General Factor of Personality (GFP) occupies the apex of the hierarchical structure of personality was examined in the validation sample of the Multidimensional Personality Questionnaire. A maximum likelihood estimation model that went from the 11 primary traits to five higher-order traits resembling the Big Five, and from there to the Big Two (Plasticity, Stability), and from there to the Big One, provided a good fit to the data, explaining 25% of the variance in the two second-order factors. We consider the GFP from the perspective of evolutionary life-history theory. (C) 2009 Elsevier Ltd. All rights reserved. [Rushton, J. Philippe] Univ Western Ontario, Dept Psychol, London, ON N6A 5C2, Canada; [Irwing, Paul] Univ Manchester, Manchester Business Sch, Manchester M13 9PL, Lancs, England Rushton, JP (reprint author), Univ Western Ontario, Dept Psychol, London, ON N6A 5C2, Canada. rushton@uwo.ca BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; Costa PT, 1992, NEO PI R PROFESSIONA; DeYoung CG, 2002, PERS INDIV DIFFER, V33, P533, DOI 10.1016/S0191-8869(01)00171-4; DeYoung CG, 2006, J PERS SOC PSYCHOL, V91, P1138, DOI 10.1037/0022-3514.91.6.1138; Digman JM, 1997, J PERS SOC PSYCHOL, V73, P1246, DOI 10.1037/0022-3514.73.6.1246; Embretson SE, 2000, ITEM RESPONSE THEORY; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Hofstee W. K. B., 2003, HDB PSYCHOL, V5, P231; Hofstee WKB, 2001, INTELLIGENCE AND PERSONALITY: BRIDGING THE GAP IN THEORY AND MEASUREMENT, P43; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Hu LT, 1998, PSYCHOL METHODS, V3, P424, DOI 10.1037/1082-989X.3.4.424; Joreskog K.G., 2001, LISREL 8 USERS REFER; Joreskog KG, 1993, TESTING STRUCTURAL E, V154, P294; Marsh HW, 2005, MULTIVAR APPL SER, P275; Mount MK, 2005, PERS PSYCHOL, V58, P447, DOI 10.1111/j.1744-6570.2005.00468.x; Musek J, 2007, J RES PERS, V41, P1213, DOI 10.1016/j.jrp.2007.02.003; Rushton JP, 2008, PERS INDIV DIFFER, V45, P679, DOI 10.1016/j.paid.2008.07.015; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; Rushton JP, 2009, PERS INDIV DIFFER, V46, P437, DOI 10.1016/j.paid.2008.11.015; RUSHTON JP, 1990, J PERS, V58, P117, DOI 10.1111/j.1467-6494.1990.tb00910.x; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Schermelleh-Engel K., 2003, METHODS PSYCHOL RES, V8, P23, DOI DOI 10.1002/0470010940; Sijtsma K, 2009, PSYCHOMETRIKA, V74, P107, DOI 10.1007/s11336-008-9101-0; SMITH JM, 2005, TESTING PEOPLE WORK; Tellegen A, 1982, BRIEF MANUAL D UNPUB; Tellegen A., 2008, SAGE HDB PERSONALITY, VII, P261, DOI DOI 10.4135/9781849200479; Templer DI, 2008, PERS INDIV DIFFER, V45, P440, DOI 10.1016/j.paid.2008.05.010; Wilson E.O., 1975, P1; Yuan KH, 2005, MULTIVAR BEHAV RES, V40, P115, DOI 10.1207/s15327906mbr4001_5 30 44 46 0 6 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. OCT 2009 47 6 571 576 10.1016/j.paid.2009.05.011 6 Psychology, Social Psychology 481WC WOS:000268842100007 2018-11-12 J Scobell, SK; Fudickar, AM; Knapp, R Scobell, Sunny K.; Fudickar, Adam M.; Knapp, Rosemary Potential reproductive rate of a sex-role reversed pipefish over several bouts of mating ANIMAL BEHAVIOUR English Article gulf pipefish; life-history theory; ovarian morphology; pipefish; potential reproductive rate; sex-role reversal; sexual selection; Syngnathidae; Syngnathus scovelli MALE MATE CHOICE; SYNGNATHUS-SCOVELLI; MONOGAMOUS PIPEFISH; MALE PREGNANCY; LIFE-HISTORY; SEAHORSES; SELECTION; FEMALES; MALES; COMPETITION The potential reproductive rate (PRR, the rate at which each sex could reproduce if given unlimited mates) has proven to be a useful tool in predicting the direction and strength of sexual selection. We conducted a 2-month study of the PRR in the polyandrous gulf pipefish, Syngnathus scovelli, a year-round breeder. In this sex-role reversed species, the female transfers eggs to a male's brood pouch during mating and thus renders him unavailable to mate for 2 weeks. We predicted females would have a higher PRR than males and that the rates in both sexes would change over successive breeding bouts in relationship to previous reproductive output. Females did have a higher overall PRR than males for the entire study period. However, PRR was not constant across individual breeding bouts. For each sex, the PRRs from the first and third bouts of mating were significantly higher than the PRR of second mating bout. Our results are consistent with individuals making trade-offs between current and future reproductive investment. We also discuss how ovarian morphology may contribute to elevated female PRR in this species. To our knowledge, this is the first study of PRR in a North American pipefish. The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. [Scobell, Sunny K.; Fudickar, Adam M.; Knapp, Rosemary] Univ Oklahoma, Dept Zool, Norman, OK 73019 USA Scobell, SK (reprint author), Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA. sscobell@bio.tamu.edu Knapp, Rosemary/0000-0001-6923-8410 University of Oklahoma's Graduate Student Senate; Department of Zoology's Adams Memorial Scholarship, Sigma Xi; PADI Foundation; University of Oklahoma Research Council We thank P. L. Schwagmeyer and Edith Marsh-Matthews for their help with the analysis and comments on the manuscript. We also thank Ingo Schlupp, Celeste Wirsig and Debra Bemben for help with many aspects of this research, and Adam Jones, Anders Berglund and an anonymous referee for helpful comments on an earlier version of the manuscript. Navin Chowhudry, Joe Kelly, Claire Lukeman, Amber Mielke and Lori Deunk Garman provided much assistance with animal husbandry. We also thank Leila Wright for assistance in the field. We are especially grateful to John Stanley and Dave Jenkins at the Mote Marine Laboratory for assistance with animal collection and aquaculture techniques. Funding to S. K. S. from the University of Oklahoma's Graduate Student Senate, the Department of Zoology's Adams Memorial Scholarship, Sigma Xi and the PADI Foundation supported this study. This study also benefited from the funds awarded to R. K. from the University of Oklahoma Research Council. AHNESJO I, 1995, BEHAV ECOL, V6, P229, DOI 10.1093/beheco/6.2.229; Ahnesjo I, 2001, BEHAV ECOL, V12, P397, DOI 10.1093/beheco/12.4.397; Andersson M., 1994, SEXUAL SELECTION; BEGOVAC PC, 1988, J MORPHOL, V197, P353, DOI 10.1002/jmor.1051970309; BEGOVAC PC, 1987, J MORPHOL, V193, P117, DOI 10.1002/jmor.1051930202; Berglund A, 2003, ADV STUD BEHAV, V32, P131, DOI 10.1016/S0065-3454(03)01003-9; BERGLUND A, 1989, AM NAT, V133, P506, DOI 10.1086/284932; BERGLUND A, 1988, OIKOS, V51, P184, DOI 10.2307/3565641; BROWN HK, 1999, APPL MIXED MODELS ME; BROWN J, 1972, THESIS U FLORIDA GAI; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Clutton-Brock T, 2009, ANIM BEHAV, V77, P3, DOI 10.1016/j.anbehav.2008.08.026; CLUTTONBROCK TH, 1992, Q REV BIOL, V67, P437, DOI 10.1086/417793; CLUTTONBROCK TH, 1991, NATURE, V351, P58; Dearborn DC, 2001, BEHAV ECOL, V12, P746, DOI 10.1093/beheco/12.6.746; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; EVERMANN BW, 1896, P US NATL MUS, V18, P113; Forsgren E, 2004, NATURE, V429, P551, DOI 10.1038/nature02562; Foster SJ, 2004, J FISH BIOL, V65, P1, DOI 10.1111/j.1095-8649.2004.00429.x; Heubel KU, 2008, BIOL LETTERS, V4, P224, DOI 10.1098/rsbl.2007.0630; Jones AG, 2003, P NATL ACAD SCI USA, V100, P6598, DOI 10.1073/pnas.1131969100; Jones AG, 1997, MOL ECOL, V6, P203, DOI 10.1046/j.1365-294X.1997.00173.x; Jones AG, 2001, P ROY SOC B-BIOL SCI, V268, P2531, DOI 10.1098/rspb.2001.1841; JOSEPH EB, 1957, THESIS FLORIDA STATE; Kokko H, 2001, ECOL LETT, V4, P159, DOI 10.1046/j.1461-0248.2001.00212.x; Kvarnemo C, 1998, ANIM BEHAV, V55, P1499, DOI 10.1006/anbe.1998.0732; KVARNEMO C, 1994, P ROY SOC B-BIOL SCI, V256, P151, DOI 10.1098/rspb.1994.0063; Kvarnemo C, 1996, TRENDS ECOL EVOL, V11, P404, DOI 10.1016/0169-5347(96)10056-2; Masonjones HD, 2000, ANIM BEHAV, V59, P11, DOI 10.1006/anbe.1999.1269; Preston BT, 2005, P ROY SOC B-BIOL SCI, V272, P365, DOI 10.1098/rspb.2004.2977; REID GEORGE K., 1954, BULL MARINE SCI GULF AND CARIBBEAN, V4, P1; Roff D. A., 2002, LIFE HIST EVOLUTION; ROSENQVIST G, 1990, ANIM BEHAV, V39, P1110, DOI 10.1016/S0003-3472(05)80783-3; SELMAN K, 1991, J MORPHOL, V209, P285, DOI 10.1002/jmor.1052090305; Silva K, 2008, J ANIM ECOL, V77, P390, DOI 10.1111/j.1365-2656.2007.01346.x; Sogabe A, 2008, BIOL LETTERS, V4, P362, DOI 10.1098/rsbl.2008.0157; Sogabe A, 2007, P ROY SOC B-BIOL SCI, V274, P2959, DOI 10.1098/rspb.2007.1041; Sogabe A, 2007, ETHOLOGY, V113, P764, DOI 10.1111/j.1439-0310.2007.01370.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; VINCENT A, 1994, BEHAV ECOL SOCIOBIOL, V34, P435, DOI 10.1007/s002650050060; VINCENT A, 1992, TRENDS ECOL EVOL, V7, P237, DOI 10.1016/0169-5347(92)90052-D; Vincent ACJ, 1995, ANIM BEHAV, V50, P1557, DOI 10.1016/0003-3472(95)80011-5; WALLACE RA, 1981, AM ZOOL, V21, P325; Watanabe S, 2000, ZOOL SCI, V17, P759, DOI 10.2108/zsj.17.759; Wiklund C, 1998, BEHAV ECOL, V9, P20, DOI 10.1093/beheco/9.1.20; Wilson AB, 2009, MOL ECOL, V18, P1263, DOI 10.1111/j.1365-294X.2009.04084.x; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 48 9 9 0 15 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 ANIM BEHAV Anim. Behav. SEP 2009 78 3 747 753 10.1016/j.anbehav.2009.05.036 7 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 488OX WOS:000269360400022 2018-11-12 J Abrams, M Abrams, Marshall Fitness "kinematics": biological function, altruism, and organism-environment development BIOLOGY & PHILOSOPHY English Article Altruism; Development systems theory; Fitness; Function; Life history theory; Probability EVOLUTIONARY-THEORY; PLUMAGE COLORATION; NATURAL-SELECTION; MATE CHOICE; CHARACTER; PIGMENTS It's recently been argued that biological fitness can't change over the course of an organism's life as a result of organisms' behaviors. However, some characterizations of biological function and biological altruism tacitly or explicitly assume that an effect of a trait can change an organism's fitness. In the first part of the paper, I explain that the core idea of changing fitness can be understood in terms of conditional probabilities defined over sequences of events in an organism's life. The result is a notion of "conditional fitness" which is static but which captures intuitions about apparent behavioral effects on fitness. The second part of the paper investigates the possibility of providing a systematic foundation for conditional fitness in terms of spaces of sequences of states of an organism and its environment. I argue that the resulting "organism-environment history conception" helps unify diverse biological perspectives, and may provide part of a metaphysics of natural selection. Univ Alabama, Dept Philosophy, Birmingham, AL 35294 USA Abrams, M (reprint author), Univ Alabama, Dept Philosophy, 900 13th S St,HB 414A, Birmingham, AL 35294 USA. mabrams@uab.edu Abrams M, 2005, BIOL PHILOS, V20, P97, DOI 10.1007/s10539-005-0359-7; Abrams M., 2009, PHILOS SCI, V76; Abrams M, 2007, BIOL PHILOS, V22, P115, DOI 10.1007/s10539-005-9010-x; Abrams M, 2006, STUD HIST PHI PART C, V37, P256, DOI 10.1016/j.shpsc.2006.03.004; Abrams M, 2009, SYNTHESE, V166, P21, DOI 10.1007/s11229-007-9255-9; Ariew A, 2004, BRIT J PHILOS SCI, V55, P347, DOI 10.1093/bjps/55.2.347; Beatty J, 1989, WHAT PHILOS BIOL IS, P17; BRANDON RN, 1978, STUD HIST PHILOS SCI, V9, P181, DOI 10.1016/0039-3681(78)90005-5; Brandon RN, 1996, PHILOS SCI, V63, P315, DOI 10.1086/289915; BRANDON RN, 1990, ADAPTATION ENV; COOPER WS, 1984, J THEOR BIOL, V107, P603, DOI 10.1016/S0022-5193(84)80135-6; COOPER WS, 2001, EVOLUTION REASON; *CORN LAB ORN, 2003, ALL BIRDS AM GOLDF; Ewens W. J., 2004, MATH POPULATION GENE; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; GODFREYSMITH P, 1994, NOUS, V28, P344, DOI 10.2307/2216063; Graves L, 1999, PHILOS SCI, V66, P140, DOI 10.1086/392680; Griffiths P. E., 2001, CYCLES CONTINGENCY D; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Hill GE, 2004, ANIM BEHAV, V67, P27, DOI 10.1016/j.anbehav.2003.02.002; HUTCHINSON GE, 1957, COLD SPRING HARB SYM, V22, P415, DOI 10.1101/SQB.1957.022.01.039; Krimbas CB, 2004, BIOL PHILOS, V19, P185, DOI 10.1023/B:BIPH.0000024402.80835.a7; LALAND KN, 2001, CYCLES CONTINGENCY D, P117; Lewis David, 1973, COUNTERFACTUALS; MICHOD RE, 1982, ANNU REV ECOL SYST, V13, P23, DOI 10.1146/annurev.es.13.110182.000323; Millikan R., 2002, FUNCTIONS NEW ESSAYS, P113; MILLS SK, 1979, PHILOS SCI, V46, P263, DOI 10.1086/288865; Morales J, 2009, BEHAV ECOL, V20, P117, DOI 10.1093/beheco/arn122; Navara KJ, 2003, BEHAV ECOL, V14, P909, DOI 10.1093/beheco/arg085; NEANDER K, 1991, PHILOS SCI, V58, P168, DOI 10.1086/289610; Olson VA, 1998, TRENDS ECOL EVOL, V13, P510, DOI 10.1016/S0169-5347(98)01484-0; Ramsey G, 2006, STUD HIST PHI PART C, V37, P484, DOI 10.1016/j.shpsc.2006.06.009; Rosenberg A., 2008, STANFORD ENCY PHILOS; Schwartz P., 2002, FUNCTIONS NEW ESSAYS, P244; SCRIVEN M, 1959, SCIENCE, V130, P477, DOI 10.1126/science.130.3374.477; Sober E, 2001, THINKING ABOUT EVOLUTION, VOL 2, P309; Sober E., 1998, UNTO OTHERS; Sober Elliott, 1984, NATURE SELECTION; Stearns S.C., 1989, EVOLUTION LIFE HIST; Sterelny K, 1996, PHILOS SCI, V63, P562, DOI 10.1086/289977; Waddington C.H, 1957, STRATEGY GENES; Walsh DM, 2007, PHILOS SCI, V74, P281, DOI 10.1086/520777; WIMSAT WC, 2007, REENGINEERING PHILOS; Wimsatt W., 2002, FUNCTIONS NEW ESSAYS, P173; Wimsatt W, 1972, STUD HIST PHILOS M P, V3, P1, DOI 10.1016/0039-3681(72)90014-3; ZUK M, 1990, AM ZOOL, V30, P235 46 8 9 0 4 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0169-3867 BIOL PHILOS Biol. Philos. SEP 2009 24 4 487 504 10.1007/s10539-009-9153-2 18 History & Philosophy Of Science History & Philosophy of Science 482EW WOS:000268868200005 2018-11-12 J Nespolo, RF; Halkett, F; Figueroa, CC; Plantegenest, M; Simon, JC Nespolo, Roberto F.; Halkett, Fabien; Figueroa, Christian C.; Plantegenest, Manuel; Simon, Jean-Christophe EVOLUTION OF TRADE-OFFS BETWEEN SEXUAL AND ASEXUAL PHASES AND THE ROLE OF REPRODUCTIVE PLASTICITY IN THE GENETIC ARCHITECTURE OF APHID LIFE HISTORIES EVOLUTION English Article Adaptive landscape; aphids; cyclic parthenogenesis; G-matrix; life histories RHOPALOSIPHUM-PADI HOMOPTERA; CHERRY-OAT APHID; G-MATRIX; QUANTITATIVE GENETICS; ALLIUM-VINEALE; GRYLLUS-FIRMUS; MATING SITES; LINEAGES; TRAITS; MAINTENANCE Life-history theory postulates that evolution is constrained by trade-offs (i.e., negative genetic correlations) among traits that contribute to fitness. However, in organisms with complex life cycles, trade-offs may drastically differ between phases, putatively leading to different evolutionary trajectories. Here, we tested this possibility by examining changes in life-history traits in an aphid species that alternates asexual and sexual reproduction in its life cycle. The quantitative genetics of reproductive and dispersal traits was studied in 23 lineages (genotypes) of the bird cherry-oat aphid Rhopalosiphum padi, during both the sexual and asexual phases, which were induced experimentally under specific environmental conditions. We found large and significant heritabilities (broad-sense) for all traits and several negative genetic correlations between traits (trade-offs), which are related to reproduction (i.e., numbers of the various sexual or asexual morphs) or dispersal (i.e., numbers of winged or wingless morphs). These results suggest that R. padi exhibits lineage specialization both in reproductive and dispersal strategies. In addition, we found important differences in the structure of genetic variance-covariance matrices (G) between phases. These differences were due to two large, negative genetic correlations detected during the asexual phase only: (1) between fecundity and age at maturity and (2) between the production of wingless and winged parthenogenetic females. We propose that this differential expression in genetic architecture results from a reallocation scheme during the asexual phase, when sexual morphs are not produced. We also found significant G x E interaction and nonsignificant genetic correlations across phases, indicating that genotypes could respond independently to selection in each phase. Our results reveal a rather unique situation in which the same population and even the same genotypes express different genetic (co)variation under different environmental conditions, driven by optimal resource allocation criteria. [Nespolo, Roberto F.; Figueroa, Christian C.] Univ Austral Chile, Fac Ciencias, Inst Ecol & Evoluc, Valdivia, Chile; [Halkett, Fabien] INRA, UMR Interact Arbre Microorganismes 1136, F-54280 Seichamps, France; [Plantegenest, Manuel] Agrocampus Ouest, UMR Biol Organismes & Populat Appl Protect Plante, F-35653 Le Rheu, France; [Simon, Jean-Christophe] INRA, UMR Biol Organismes & Populat Appl Protect Plante, F-35653 Le Rheu, France Nespolo, RF (reprint author), Univ Austral Chile, Fac Ciencias, Inst Ecol & Evoluc, Valdivia, Chile. robertonespolo@uach.cl martel, celine/M-9779-2014; Figueroa, Christian/A-1170-2008; Simon, Jean-Christophe/I-2700-2014; Nespolo, Roberto/D-5601-2015 martel, celine/0000-0002-1800-4558; Figueroa, Christian/0000-0001-9218-5564; Nespolo, Roberto/0000-0001-9337-0606; Nespolo, Roberto/0000-0003-0825-9618 ECOS-CONICYT; Proyecto CONICYT-World Bank-PBCT Anillos [ACT-38] This work was funded by ECOS-CONICYT grant to JCS and CCF. RFN and CCF thank Proyecto CONICYT-World Bank-PBCT Anillos ACT-38. We thank Leonardo Bacigalupe for assessment with the Jacknife-MANOVA method. Arnold SJ, 2008, EVOLUTION, V62, P2451, DOI 10.1111/j.1558-5646.2008.00472.x; ASKERS S, 1992, APOMIXIS PLANTS; BOLDMAN K. G., 1995, MANUAL USE MTDFREML; Braendle C, 2005, P ROY SOC B-BIOL SCI, V272, P657, DOI 10.1098/rspb.2004.2995; Ceplitis A, 2004, J EVOLUTION BIOL, V17, P302, DOI 10.1046/j.1420-9101.2003.00678.x; COOK RE, 1983, AM SCI, V71, P244; Crnokrak P, 2002, J EVOLUTION BIOL, V15, P388, DOI 10.1046/j.1420-9101.2002.00401.x; DEJONG G, 1992, AM NAT, V139, P760; Delmotte F, 2003, EVOLUTION, V57, P1291; Deng HW, 1996, GENETICS, V143, P203; Dixon A., 1998, APHID ECOLOGY; DIXON AFG, 1971, ANN APPL BIOL, V68, P11, DOI 10.1111/j.1744-7348.1971.tb04633.x; Flury B, 1988, COMMON PRINCIPAL COM; FRY JD, 1993, EVOLUTION, V47, P327, DOI 10.1111/j.1558-5646.1993.tb01224.x; Halkett F, 2008, MOL ECOL, V17, P2998, DOI 10.1111/j.1365-294X.2008.03798.x; Halkett F, 2006, J EVOLUTION BIOL, V19, P809, DOI 10.1111/j.1420-9101.2005.01055.x; Halkett F, 2005, MOL ECOL, V14, P325, DOI 10.1111/j.1365-294X.2004.02358.x; Halkett F, 2004, AM NAT, V163, pE112, DOI 10.1086/383618; Harada Y, 1999, J THEOR BIOL, V201, P171, DOI 10.1006/jtbi.1999.1022; LOWLES A, 1995, ENTOMOL EXP APPL, V74, P95, DOI 10.1111/j.1570-7458.1995.tb01879.x; Loxdale HD, 2003, BIOL J LINN SOC, V79, P3, DOI 10.1046/j.1095-8312.2003.00177.x; LYNCH M, 1994, AM NAT, V144, P242, DOI 10.1086/285673; Lynch M, 1999, EVOLUTION, V53, P100, DOI 10.1111/j.1558-5646.1999.tb05336.x; Nespolo RF, 2008, FUNCT ECOL, V22, P624, DOI 10.1111/j.1365-2435.2008.01394.x; Nespolo RF, 2008, HEREDITY, V100, P374, DOI 10.1038/sj.hdy.6801085; NEWTON C, 1988, ENTOMOL EXP APPL, V47, P283, DOI 10.1111/j.1570-7458.1988.tb01147.x; Nunney L, 1999, MG BEH ECOL, P238; Parvinen K, 2008, THEOR POPUL BIOL, V73, P517, DOI 10.1016/j.tpb.2008.01.002; Phillips PC, 1999, EVOLUTION, V53, P1506, DOI 10.1111/j.1558-5646.1999.tb05414.x; Prati D, 2000, OIKOS, V90, P442, DOI 10.1034/j.1600-0706.2000.900303.x; Revell LJ, 2007, EVOLUTION, V61, P1857, DOI 10.1111/j.1558-5646.2007.00161.x; Rispe C, 1999, OIKOS, V86, P254, DOI 10.2307/3546443; Roff D, 2002, EVOLUTION, V56, P1286; Roff D. A., 2006, COMPUTER INTENSIVE M; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; Roff DA, 2007, EVOLUTION, V61, P1017, DOI 10.1111/j.1558-5646.2007.00100.x; Roff DA, 2007, BIOSCIENCE, V57, P155, DOI 10.1641/B570210; Roff DA, 2007, NAT REV GENET, V8, P116, DOI 10.1038/nrg2040; Ronsheim ML, 1997, AM J BOT, V84, P1279, DOI 10.2307/2446053; Schlichting C. D., 1998, PHENOTYPIC EVOLUTION; Silvertown J, 2008, INT J PLANT SCI, V169, P157, DOI 10.1086/523357; SIMON JC, 1991, B ENTOMOL RES, V81, P315, DOI 10.1017/S0007485300033599; Simon JC, 2002, TRENDS ECOL EVOL, V17, P34, DOI 10.1016/S0169-5347(01)02331-X; SMITH JM, 1978, EVOLUTION SEX; SPITZE K, 1991, EVOLUTION, V45, P1081, DOI 10.1111/j.1558-5646.1991.tb04376.x; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; Steppan SJ, 2002, TRENDS ECOL EVOL, V17, P320, DOI 10.1016/S0169-5347(02)02505-3; Thompson FL, 2004, J EVOLUTION BIOL, V17, P581, DOI 10.1111/j.1420-9101.2004.00701.x; Trail F, 2007, FEMS MICROBIOL LETT, V276, P12, DOI 10.1111/j.1574-6968.2007.00900.x; Via S, 1996, EVOLUTION, V50, P163, DOI 10.1111/j.1558-5646.1996.tb04483.x; Vorburger C, 2005, EVOLUTION, V59, P1006; Wegener G, 1996, EXPERIENTIA, V52, P404, DOI 10.1007/BF01919307; Weisser WW, 2001, ENTOMOL EXP APPL, V99, P217, DOI 10.1023/A:1018993000281; Winkler E, 2002, EVOL ECOL, V15, P281 54 18 18 3 42 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution SEP 2009 63 9 2402 2412 10.1111/j.1558-5646.2009.00706.x 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 488RJ WOS:000269367200018 19473379 Bronze 2018-11-12 J Jones, JH Jones, James Holland The force of selection on the human life cycle EVOLUTION AND HUMAN BEHAVIOR English Article Demography; Life history theory; Natural selection; Human evolution REPRODUCTIVE SUCCESS; HISTORY EVOLUTION; NATURAL-SELECTION; POPULATION; LONGEVITY; ENVIRONMENTS; INTELLIGENCE; TRANSFERS; HADZA In this article, I present evidence for a robust and quite general force of selection on the human life cycle. The force of selection acts in remarkably invariant ways on human life histories, despite a great abundance of demographic diversity. Human life histories are highly structured, with mortality and fertility changing substantially through the life cycle. This structure necessitates the use of structured population models to understand human life history evolution. Using such structured models, I find that the vital rates to which fitness is most sensitive are prereproductive survival probabilities, particularly the survival of children ages 0 to 4 years. The fact that the preponderance of selection falls on transitions related to recruitment combined with the late age at first reproduction characteristic of the human life cycle creates a fitness bottleneck out of recruitment. Because of this, antagonistic pleiotropy with any trait that detracts from the constituent transitions to recruitment is expected. I explore the predictors of variation in the force of selection on early survival. High fertility increases the selective premium placed on early survivorship, whereas high life expectancy at birth decreases it. (C) 2009 Elsevier Inc. All rights reserved. Stanford Univ, Dept Anthropol, Stanford, CA 94305 USA Jones, JH (reprint author), Stanford Univ, Dept Anthropol, Stanford, CA 94305 USA. jhj1@stanford.edu Jones, James/0000-0003-1680-6757 NICHD NIH HHS [K01 HD051494-04, K01 HD051494-03, K01 HD051494] Baudisch A, 2005, P NATL ACAD SCI USA, V102, P8263, DOI 10.1073/pnas.0502155102; Benton TG, 1996, AM NAT, V147, P115, DOI 10.1086/285843; Caldwell J. C., 1982, THEORY FERTILITY DEC; Cant MA, 2008, P NATL ACAD SCI USA, V105, P5332, DOI 10.1073/pnas.0711911105; CASWELL H, 1978, THEOR POPUL BIOL, V14, P215, DOI 10.1016/0040-5809(78)90025-4; Caswell H, 2001, MATRIX POPULATION MO; CHAGNON NA, 1988, SCIENCE, V239, P985, DOI 10.1126/science.239.4843.985; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov EL, 1997, NATURE, V387, P393, DOI 10.1038/387393a0; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Coale A.J., 1986, DECLINE FERTILITY EU; Coale A. J., 1983, REGIONAL MODEL LIFE; COALE AJ, 1974, POPUL INDEX, V40, P185, DOI 10.2307/2733910; COALE AJ, 1978, POPUL INDEX, V44, P203, DOI 10.2307/2735537; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; EARLY JD, 1990, POPULATION DYNAMICS; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Goodall J., 1986, CHIMPANZEES GOMBE PA; Gurven M, 2007, POPUL DEV REV, V33, P321, DOI 10.1111/j.1728-4457.2007.00171.x; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hawkes K, 2001, CURR ANTHROPOL, V42, P681, DOI 10.1086/322559; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Howell N., 1979, DEMOGRAPHY DOBE KUNG; Hurtado AM, 1996, ACHE LIFE HIST; Jones JH, 2007, J STAT SOFTW, V22, P1; Jones JH, 2005, AM J HUM BIOL, V17, P22, DOI 10.1002/ajhb.20099; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan HS, 2002, P NATL ACAD SCI USA, V99, P10221, DOI 10.1073/pnas.152502899; Keyfitz N., 1977, INTRO MATH POPULATIO; Keyfitz N., 1990, WORLD POPULATION GRO; Kohler H. P, 2006, BABY BUST WHO WILL D, P48; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lee RD, 2003, P NATL ACAD SCI USA, V100, P9637, DOI 10.1073/pnas.1530303100; Lee RD, 2002, POPUL DEV REV, V28, P475, DOI 10.1111/j.1728-4457.2002.00475.x; Livi- Bacci M., 1997, CONCISE HIST WORLD P; MAC ARTHUR ROBERT H., 1967; Marlowe FW, 2003, EVOL HUM BEHAV, V24, P217, DOI 10.1016/S1090-5138(03)00014-X; MARTIN JA, 2005, 542 CDCP; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; NEE S, 1995, PHILOS T ROY SOC B, V349, P25, DOI 10.1098/rstb.1995.0087; Nee Sean, 1996, P66; Notestein F, 1953, P 8 INT C AGR EC, P13; PERUSSE D, 1993, BEHAV BRAIN SCI, V16, P267, DOI 10.1017/S0140525X00029939; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; R Development Core Team, 2008, R LANG ENV STAT COMP; Robinson RS, 2008, POP STUD-J DEMOG, V62, P25, DOI 10.1080/00324720701788590; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; THOMPSON W, 1931, B ENTOMOLOGICAL RES; TOOBY J, 1990, ETHOL SOCIOBIOL, V11, P375, DOI 10.1016/0162-3095(90)90017-Z; Tuljapurkar S., 1990, LECT NOTES BIOMATHEM, V85; TURKE PW, 1985, ETHOL SOCIOBIOL, V6, P79, DOI 10.1016/0162-3095(85)90001-9; VANGROENENDAEL J, 1994, ECOLOGY, V75, P2410, DOI 10.2307/1940894; VINING DR, 1986, BEHAV BRAIN SCI, V9, P167, DOI 10.1017/S0140525X00021968; VOLAND E, 1990, BEHAV ECOL SOCIOBIOL, V26, P65; WILMOTH J, 2007, HUMAN MORTALITY DATA; WOOD JW, 1994, DYNAMICS HUMAN REPRO 60 34 35 3 29 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. SEP 2009 30 5 305 314 10.1016/j.evolhumbehav.2009.01.005 10 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences 486GZ WOS:000269185600001 22003281 Green Accepted 2018-11-12 J Krist, M Krist, Milos Short- and long-term effects of egg size and feeding frequency on offspring quality in the collared flycatcher (Ficedula albicollis) JOURNAL OF ANIMAL ECOLOGY English Article altricial chick; parental effort; parental investment; propagule; provisioning behaviour PARENTAL QUALITY; NATURAL-SELECTION; PIED FLYCATCHER; BROOD-SIZE; EXPERIMENTAL MANIPULATION; REPRODUCTIVE TRAITS; NESTLING GROWTH; PARUS-MAJOR; CLUTCH SIZE; GREAT TITS P>Despite the central importance for life-history theory, egg-size effects on offspring fitness are still considered ambiguous. Most previous studies were only observational and consequently might suffer from uncontrolled correlations between egg size and parental/territory quality. Even after cross-fostering is performed, direct genetic effects and parental adjustment of post-natal care might confound our estimates of egg-size effects per se. I performed a full cross-fostering experiment in the collared flycatcher (Ficedula albicollis) exchanging the whole clutches between pairs of nests. I statistically controlled for direct genetic effects and parental feeding frequencies. I followed young until recruitment to estimate the long-term effects of egg size and parental provisioning. In addition, I compared the effects obtained in the cross-fostering experiment with those obtained from a set of unmanipulated nests. Egg size per se affected offspring morphology in both the short and long term, while having no effect on offspring survival and immunity. Egg-size effects were not confounded by parental post-natal care and direct genetic effects. The number of care-givers was an influential predictor of nestling performance. Apart from the variation caused by this factor, feeding frequencies had no consistent effect on offspring performance. Fitness benefits of large eggs may be difficult to establish due to variation of egg-size effects between years and habitats. Feeding frequency may affect offspring state but offspring state may also affect feeding frequency. Varying causality between feeding rate and offspring state may preclude the detection of a positive effect of the former on the latter. [Krist, Milos] Museum Nat Hist, Olomouc 77173, Czech Republic; [Krist, Milos] Palacky Univ, Fac Sci, Dept Zool, Olomouc 77146, Czech Republic; [Krist, Milos] Palacky Univ, Fac Sci, Ornithol Lab, Olomouc 77146, Czech Republic Krist, M (reprint author), Museum Nat Hist, Nam Republiky 5, Olomouc 77173, Czech Republic. milos.krist@volny.cz Czech Ministry of Education [MSM 6198959212]; Agency of the Czech Republic [206/07/P485] I am grateful to Peter Adamik, Tomas Grim, Milica Pozgayova, Vladimir Remes, Andrew Russell, Ben Sheldon, Emil Tkadlec, Karel Weidinger, and anonymous referees for valuable comments or discussion on the manuscript. I owe Jan Stritesky and forest enterprise Prostejov for providing the nest-boxes. Tomas Koutny analysed video-recordings. I thank Dana Campbell for correcting English of the paper. Kacenka supported me everyday. This study was supported by grants from the Czech Ministry of Education (MSM 6198959212) and from the Grant Agency of the Czech Republic ( No. 206/07/P485). This study was approved by the Ethical Committee of Palacky University and complied with the current law of the Czech Republic. AMUNDSEN T, 1990, AUK, V107, P410, DOI 10.2307/4087629; [Anonymous], 1995, JMP STAT GRAPH GUID; Ardia DR, 2007, CAN J ZOOL, V85, P847, DOI 10.1139/Z07-070; Blount JD, 2000, TRENDS ECOL EVOL, V15, P47, DOI 10.1016/S0169-5347(99)01774-7; BOLTON M, 1991, J ANIM ECOL, V60, P949, DOI 10.2307/5424; Bonisoli-Alquati A, 2007, FUNCT ECOL, V21, P310, DOI 10.1111/j.1365-2435.2006.01226.x; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; Clutton-Brock TH, 1988, REPROD SUCCESS, P472; Cohen J, 1988, STAT POWER ANAL BEHA; Cordero PJ, 2000, BEHAV ECOL SOCIOBIOL, V48, P353, DOI 10.1007/s002650000252; Ferrari RP, 2006, J EVOLUTION BIOL, V19, P981, DOI 10.1111/j.1420-9101.2005.01030.x; Finkler MS, 1998, J COMP PHYSIOL B, V168, P17, DOI 10.1007/s003600050116; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Fox CW, 1997, CAN J ZOOL, V75, P1465, DOI 10.1139/z97-769; FOX CW, 1994, HEREDITY, V73, P509, DOI 10.1038/hdy.1994.149; Garant D, 2007, EVOLUTION, V61, P1546, DOI 10.1111/j.1558-5646.2007.00128.x; GEBHARDTHENRICH S, 1998, AVIAN GROWTH DEV, P324; Gil D, 2003, ARDEOLA, V50, P281; Griggio M, 2007, ANIM BEHAV, V74, P779, DOI 10.1016/j.anbehav.2007.01.007; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; Hails R, 2002, MODERN STAT LIFE SCI; Hargitai R, 2005, AUK, V122, P509, DOI 10.1642/0004-8038(2005)122[0509:EOECAP]2.0.CO;2; HILL WL, 1993, DEV PSYCHOBIOL, V26, P237, DOI 10.1002/dev.420260502; Horak P, 1997, OIKOS, V78, P592, DOI 10.2307/3545622; HOWE HF, 1976, ECOLOGY, V57, P1195, DOI 10.2307/1935044; HOYT DF, 1979, AUK, V96, P73; Huk T, 2006, P R SOC B, V273, P1681, DOI 10.1098/rspb.2006.3485; Krist M, 2005, BEHAV ECOL SOCIOBIOL, V59, P6, DOI 10.1007/s00265-005-0002-2; Krist M, 2004, OECOLOGIA, V140, P52, DOI 10.1007/s00442-004-1568-5; Krist M, 2004, OIKOS, V106, P422, DOI 10.1111/j.0030-1299.2004.13373.x; Krist M, 2007, BEHAV ECOL SOCIOBIOL, V61, P863, DOI 10.1007/s00265-006-0315-9; Kruuk LEB, 2001, AM NAT, V158, P557, DOI 10.1086/323585; Lock JE, 2007, AM NAT, V170, P709, DOI 10.1086/521963; MacColl ADC, 2003, EVOLUTION, V57, P2191; MAGRATH RD, 1992, J ZOOL, V227, P639, DOI 10.1111/j.1469-7998.1992.tb04420.x; Markman S, 1996, ANIM BEHAV, V52, P437, DOI 10.1006/anbe.1996.0188; Mattsson BJ, 2007, AUK, V124, P1186, DOI 10.1642/0004-8038(2007)124[1186:WLCDBP]2.0.CO;2; McAdam AG, 2002, EVOLUTION, V56, P846; McNamara JM, 2003, BEHAV ECOL, V14, P301, DOI 10.1093/beheco/14.3.301; Merila J, 2001, CURR ORNITHOL, V16, P179; Merila J, 2001, NATURE, V412, P76, DOI 10.1038/35083580; Moreno J, 2005, J AVIAN BIOL, V36, P251, DOI 10.1111/j.0908-8857.2005.03413.x; Moreno J, 2004, J AVIAN BIOL, V35, P300, DOI 10.1111/j.0908-8857.2004.03407.x; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Nakagawa S, 2007, BIOL REV, V82, P591, DOI 10.1111/j.1469-185X.2007.00027.x; Nakagawa S, 2007, OECOLOGIA, V153, P749, DOI 10.1007/s00442-007-0765-4; NUR N, 1984, OECOLOGIA, V65, P125, DOI 10.1007/BF00384475; Oksanen TA, 2001, P ROY SOC B-BIOL SCI, V268, P661, DOI 10.1098/rspb.2000.1409; Olsson M, 2002, FUNCT ECOL, V16, P135, DOI 10.1046/j.0269-8463.2001.00600.x; Ottosson U, 1997, BEHAV ECOL SOCIOBIOL, V41, P381, DOI 10.1007/s002650050399; POTTI J, 1993, CAN J ZOOL, V71, P1534, DOI 10.1139/z93-217; Przybylo R, 2000, BIOL J LINN SOC, V69, P213, DOI 10.1111/j.1095-8312.2000.tb01199.x; Qvarnstrom A, 2007, P R SOC B, V274, P1003, DOI 10.1098/rspb.2006.0255; REID WV, 1990, EVOLUTION, V44, P1780, DOI 10.1111/j.1558-5646.1990.tb05248.x; Remes V, 2007, FUNCT ECOL, V21, P776, DOI 10.1111/j.1365-2435.2007.01277.x; RISKA B, 1985, GENET RES, V45, P287, DOI 10.1017/S0016672300022278; Roff Derek A., 1992; Rosenthal R., 1994, HDB RES SYNTHESIS, P231; ROYAMA T, 1966, IBIS, V108, P313, DOI 10.1111/j.1474-919X.1966.tb07348.x; Russell AF, 2007, SCIENCE, V317, P941, DOI 10.1126/science.1146037; Russell AF, 2007, P R SOC B, V274, P513, DOI 10.1098/rspb.2006.3698; Saino N, 1997, J ANIM ECOL, V66, P827, DOI 10.2307/5998; *SAS I INC, 2003, 91 SAS I INC; Schwagmeyer PL, 2008, ANIM BEHAV, V75, P291, DOI 10.1016/j.anbehav.2007.05.023; Sheldon BC, 2003, EVOLUTION, V57, P406; Sheldon BC, 2002, PHILOS T R SOC B, V357, P341, DOI 10.1098/rstb.2001.0931; Silva MC, 2007, ANIM BEHAV, V74, P1403, DOI 10.1016/j.anbehav.2007.01.008; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; SLAGSVOLD T, 1984, AUK, V101, P685, DOI 10.2307/4086895; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Smith HG, 1998, OECOLOGIA, V115, P59, DOI 10.1007/s004420050491; SMITH HG, 1995, ECOLOGY, V76, P1, DOI 10.2307/1940626; SOKAL RR, 1995, BIOMETRY PRINCIPLES; VANDERWERF E, 1992, ECOLOGY, V73, P1699, DOI 10.2307/1940021; Wagner EC, 2007, PHYSIOL BIOCHEM ZOOL, V80, P293, DOI 10.1086/512586; WILLIAMS TD, 1994, BIOL REV, V69, P35, DOI 10.1111/j.1469-185X.1994.tb01485.x 76 23 23 2 44 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. SEP 2009 78 5 907 918 10.1111/j.1365-2656.2009.01536.x 12 Ecology; Zoology Environmental Sciences & Ecology; Zoology 477PT WOS:000268531700003 19298615 Bronze 2018-11-12 J Angelier, F; Moe, B; Blanc, S; Chastel, O Angelier, Frederic; Moe, Borge; Blanc, Samuel; Chastel, Olivier What Factors Drive Prolactin and Corticosterone Responses to Stress in a Long-Lived Bird Species (Snow Petrel Pagodroma nivea)? PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY English Article PITUITARY-ADRENAL AXIS; VASOACTIVE-INTESTINAL-PEPTIDE; BASE-LINE CORTICOSTERONE; SEX-SPECIFIC PATTERNS; BREEDING SONG BIRD; REPRODUCTIVE SUCCESS; BODY CONDITION; ADRENOCORTICAL-RESPONSE; PARENTAL BEHAVIOR; CLUTCH SIZE Life-history theory predicts that individuals should adapt their parental investment to the costs and benefits of the current reproductive effort. This could be achieved by modulating the hormonal stress response, which may shift energy investment away from reproduction and redirect it toward survival. In birds, this stress response consists of a release of corticosterone that may be accompanied by a decrease in circulating prolactin, a hormone involved in the regulation of parental care. We lack data on the modulation of the prolactin stress response. In this study, we tested the hypothesis that individuals should modulate their prolactin stress response according to the fitness value of the current reproductive effort relative to the fitness value of future reproduction. Specifically, we examined the influence of breeding status (failed breeders vs. incubating birds) and body condition on prolactin and corticosterone stress responses in a long-lived species, the snow petrel Pagodroma nivea. When facing stressors, incubating birds had higher prolactin levels than failed breeders. However, we found no effect of body condition on the prolactin stress response. The corticosterone stress response was modulated according to body condition but was not affected by breeding status. We also performed an experiment using injections of adrenocorticotropic hormone (ACTH) and found that the modulation of the corticosterone stress response was probably associated with a reduction in ACTH release by the pituitary and a decrease in adrenal sensitivity to ACTH. In addition, we examined whether prolactin and corticosterone secretion were functionally linked. We found that these two hormonal stress responses were not correlated. Moreover, injection of ACTH did not affect prolactin levels, demonstrating that short-term variations in prolactin levels are not governed directly or indirectly by ACTH release. Thus, we suggest that the corticosterone and prolactin responses to short-term stressors are independent and may therefore mediate some specific components of parental investment in breeding birds. With mounting evidence, we suggest that examining both corticosterone and prolactin stress responses could be relevant to parental investment in vertebrates. [Angelier, Frederic] Smithsonian Inst, Smithsonian Migratory Bird Ctr, Washington, DC 20008 USA; [Angelier, Frederic; Blanc, Samuel; Chastel, Olivier] CNRS, Ctr Etudes Biol Chize, F-79360 Villiers En Bois, Deux Serves, France; [Moe, Borge] Norwegian Univ Sci & Technol, Dept Biol, NO-7491 Trondheim, Norway; [Moe, Borge] Norwegian Inst Nat Res, Div Arctic Ecol, NO-9296 Tromso, Norway Angelier, F (reprint author), Smithsonian Inst, Smithsonian Migratory Bird Ctr, Natl Zool Pk,3001 Connecticut Ave NW, Washington, DC 20008 USA. angelierf@si.edu Moe, Borge/P-2946-2015 Moe, Borge/0000-0002-2306-1899 Institut Paul Emile Victor; Centre National de la Recherche Scientifique/Region Poitou-Charentes This study was supported financially by the Institut Paul Emile Victor (IPEV Programme 109). F. A. was supported by a grant from the Centre National de la Recherche Scientifique/Region Poitou-Charentes. We are grateful to Dr. A. F. Parlow for kindly providing us with a chicken kit (bAFP 4444BQ) for prolactin assays. We are indebted to G. Bouteloup and S. Jenouvrier for their assistance in the field and to R. L. Holberton for advice on methodology. We thank B. Ballentine, who gave helpful comments and improved the English of the original version of this manuscript. At the Centre d'Etudes Biologiques de Chize, we thank S. Dano, A. Lacroix, and C. Trouve for their excellent technical assistance in corticosterone and prolactin assays. Adams NJ, 2005, PHYSIOL BIOCHEM ZOOL, V78, P69, DOI 10.1086/423740; Angelier F, 2006, J EXP BIOL, V209, P1413, DOI 10.1242/jeb.02138; Angelier F, 2007, J ANIM ECOL, V76, P1181, DOI 10.1111/j.1365-2656.2007.01295.x; Angelier F, 2007, BEHAV ECOL SOCIOBIOL, V61, P611, DOI 10.1007/s00265-006-0290-1; Angelier F, 2009, FUNCT ECOL, V23, P784, DOI 10.1111/j.1365-2435.2009.01545.x; Badyaev AV, 2007, J EVOLUTION BIOL, V20, P1277, DOI 10.1111/j.1420-9101.2007.01354.x; Barbraud C, 1999, POLAR BIOL, V21, P1, DOI 10.1007/s003000050326; Barbraud C, 1998, J AVIAN BIOL, V29, P161, DOI 10.2307/3677194; BOOK CM, 1991, PHYSIOL BEHAV, V50, P281, DOI 10.1016/0031-9384(91)90067-X; BRATUSCHMARRAIN P, 1982, ACTA ENDOCRINOL-COP, V99, P352, DOI 10.1530/acta.0.0990352; Buntin John D., 1996, Advances in the Study of Behavior, V25, P161; CADIOU B, 1994, ANIM BEHAV, V47, P847, DOI 10.1006/anbe.1994.1116; CHASTEL O, 1993, OECOLOGIA, V94, P278, DOI 10.1007/BF00341328; Chastel O, 2005, HORM BEHAV, V47, P459, DOI 10.1016/j.yhbeh.2004.10.009; Chastel O, 2002, CONDOR, V104, P873, DOI 10.1650/0010-5422(2002)104[0873:POPSIR]2.0.CO;2; CHAURAND T, 1994, IBIS, V136, P285, DOI 10.1111/j.1474-919X.1994.tb01097.x; CHEREL Y, 1994, PHYSIOL ZOOL, V67, P1154, DOI 10.1086/physzool.67.5.30163887; CHEREL Y, 1988, AM J PHYSIOL, V254, pR170; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Criscuolo F, 2006, PHYSIOL BIOCHEM ZOOL, V79, P514, DOI 10.1086/501065; Dawson A., 2001, J BIOL RHYTHM, V16, P366; Deviche P, 2001, GEN COMP ENDOCR, V123, P268, DOI 10.1006/gcen.2001.7675; DRENT RH, 1980, ARDEA, V68, P225; Duckworth RA, 2003, BEHAV ECOL SOCIOBIOL, V55, P176, DOI 10.1007/s00265-003-0671-7; Dufty AM, 2008, AUK, V125, P225, DOI 10.1525/auk.2008.125.1.225; ELHALAWANI ME, 1991, GEN COMP ENDOCR, V84, P360, DOI 10.1016/0016-6480(91)90082-H; ELHALAWANI ME, 1980, BIOL REPROD, V23, P815, DOI 10.1095/biolreprod23.4.815; FEKETE MIK, 1984, J ENDOCRINOL, V101, P169, DOI 10.1677/joe.0.1010169; Freeman ME, 2000, PHYSIOL REV, V80, P1523; Green AJ, 2001, ECOLOGY, V82, P1473, DOI 10.2307/2680003; Groscolas R, 2008, HORM BEHAV, V53, P51, DOI 10.1016/j.yhbeh.2007.08.010; HALL MR, 1987, HORM BEHAV, V21, P269, DOI 10.1016/0018-506X(87)90015-8; HECTOR JAL, 1985, GEN COMP ENDOCR, V60, P236, DOI 10.1016/0016-6480(85)90319-3; HECTOR JAL, 1986, GEN COMP ENDOCR, V62, P349, DOI 10.1016/0016-6480(86)90043-2; Heidinger BJ, 2006, P ROY SOC B-BIOL SCI, V273, P2227, DOI 10.1098/rspb.2006.3557; Holberton RL, 2008, GEN COMP ENDOCR, V155, P641, DOI 10.1016/j.ygcen.2007.11.001; Holberton RL, 2000, P ROY SOC B-BIOL SCI, V267, P1889, DOI 10.1098/rspb.2000.1226; Holberton RL, 2003, AUK, V120, P1140, DOI 10.1642/0004-8038(2003)120[1140:MTCSRA]2.0.CO;2; Horton BM, 2007, GEN COMP ENDOCR, V152, P8, DOI 10.1016/j.ygcen.2007.02.030; Hubina E, 2002, ENDOCRINE, V18, P215, DOI 10.1385/ENDO:18:3:215; Jenouvrier S, 2005, ECOLOGY, V86, P2889, DOI 10.1890/05-0514; KANYICSKA B, 1983, LIFE SCI, V33, P55, DOI 10.1016/0024-3205(83)90711-7; Khan MZ, 2001, HORM BEHAV, V40, P1, DOI 10.1006/hbeh.2001.1658; Koch KA, 2004, HORM BEHAV, V46, P498, DOI 10.1016/j.yhbeh.2004.02.012; Koch KA, 2002, HORM BEHAV, V41, P9, DOI 10.1006/hbeh.2001.1726; Landys MM, 2006, GEN COMP ENDOCR, V148, P132, DOI 10.1016/j.ygcen.2006.02.013; Lendvai AZ, 2007, P R SOC B, V274, P391, DOI 10.1098/rspb.2006.3735; Long JA, 2004, AUK, V121, P1094, DOI 10.1642/0004-8038(2004)121[1094:CSECAA]2.0.CO;2; Lormee H, 2003, IBIS, V145, P212, DOI 10.1046/j.1474-919X.2003.00106.x; Lormee H, 2000, GEN COMP ENDOCR, V117, P413, DOI 10.1006/gcen.1999.7434; Lormee H, 1999, HORM BEHAV, V35, P9, DOI 10.1006/hbeh.1998.1491; Lynn SE, 2003, PHYSIOL BIOCHEM ZOOL, V76, P566, DOI 10.1086/375435; Maney DL, 1999, GEN COMP ENDOCR, V113, P323, DOI 10.1006/gcen.1998.7220; Massaro M, 2007, GEN COMP ENDOCR, V151, P220, DOI 10.1016/j.ygcen.2007.01.034; Meddle SL, 2003, P ROY SOC B-BIOL SCI, V270, P1849, DOI 10.1098/rspb.2003.2455; Moore IT, 2003, HORM BEHAV, V43, P39, DOI 10.1016/S0018-506X(02)00038-7; O'Dwyer TW, 2006, FUNCT ECOL, V20, P806, DOI 10.1111/j.1365-2435.2006.01168.x; O'Reilly KM, 2001, GEN COMP ENDOCR, V124, P1, DOI 10.1006/gcen.2001.7676; Olson CR, 2006, PHYSIOL BIOCHEM ZOOL, V79, P927, DOI 10.1086/506003; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Romero LM, 2006, GEN COMP ENDOCR, V149, P66, DOI 10.1016/j.ygcen.2006.05.011; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Romero LM, 2001, P NATL ACAD SCI USA, V98, P7366, DOI 10.1073/pnas.131091498; Romero LM, 2005, COMP BIOCHEM PHYS A, V140, P73, DOI 10.1016/j.cbpb.2004.11.004; Romero LM, 1998, AM J PHYSIOL-REG I, V274, pR1338, DOI 10.1152/ajpregu.1998.274.5.R1338; Romero LM, 1998, GEN COMP ENDOCR, V109, P347, DOI 10.1006/gcen.1997.7048; Romero LM, 1998, J COMP PHYSIOL B, V168, P353, DOI 10.1007/s003600050154; Romero LM, 1998, COMP BIOCHEM PHYS C, V119, P31, DOI 10.1016/S0742-8413(97)00167-9; Schoech SJ, 1996, ANIM BEHAV, V52, P445, DOI 10.1006/anbe.1996.0189; SHARP PJ, 1989, J ENDOCRINOL, V122, P5, DOI 10.1677/joe.0.1220005; Sharp PJ, 1998, COMP BIOCHEM PHYS C, V119, P275, DOI 10.1016/S0742-8413(98)00016-4; SILVERIN B, 1986, GEN COMP ENDOCR, V64, P67, DOI 10.1016/0016-6480(86)90029-8; Sims CG, 2000, GEN COMP ENDOCR, V119, P193, DOI 10.1006/gcen.2000.7506; Sockman KW, 2006, BIOL REV, V81, P629, DOI 10.1017/S1464793106007147; Stearns S. C., 1992, EVOLUTION LIFE HIST; VANDERSCHOOT P, 1990, J ENDOCRINOL, V124, P425, DOI 10.1677/joe.0.1240425; Verreault J, 2008, GEN COMP ENDOCR, V156, P569, DOI 10.1016/j.ygcen.2008.02.013; Vleck CM, 1999, GEN COMP ENDOCR, V113, P146, DOI 10.1006/gcen.1998.7191; VLECK CM, 1991, AUK, V108, P638, DOI 10.2307/4088104; Vleck CM, 2000, HORM BEHAV, V38, P149, DOI 10.1006/hbeh.2000.1589; Vleck CM, 1998, P WSPA 10 EUR POULTR, P163; Wang Q, 1999, HORM BEHAV, V35, P241, DOI 10.1006/hbeh.1999.1517; Warham J, 1990, PETRELS THEIR ECOLOG; Weimerskirch H, 2005, J ANIM ECOL, V74, P285, DOI 10.1111/j.1365-2656.2004.00922.x; Weimerskirch H, 1998, MAR ECOL PROG SER, V167, P261, DOI 10.3354/meps167261; Williams GC, 1966, ADAPTATION NATURAL S; Wilson CM, 2004, AUK, V121, P1238, DOI 10.1642/0004-8038(2004)121[1238:IRVIRS]2.0.CO;2; Wilson CM, 2001, GEN COMP ENDOCR, V122, P349, DOI 10.1006/gcen.2001.7648; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; Wingfield JC, 1998, AM ZOOL, V38, P191; WINGFIELD JC, 1994, PERSPECTIVES IN COMPARATIVE ENDOCRINOLOGY, P520; Wingfield JC, 1999, GEN COMP ENDOCR, V114, P163, DOI 10.1006/gcen.1998.7243; WINGFIELD JC, 1995, AM ZOOL, V35, P285; YELVINGTON DB, 1984, LIFE SCI, V35, P1705, DOI 10.1016/0024-3205(84)90183-8; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 95 25 25 2 15 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1522-2152 PHYSIOL BIOCHEM ZOOL Physiol. Biochem. Zool. SEP-OCT 2009 82 5 590 602 10.1086/603634 13 Physiology; Zoology Physiology; Zoology 493MS WOS:000269741700018 19642948 2018-11-12 J Olofsson, H; Ripa, J; Jonzen, N Olofsson, Helen; Ripa, Jorgen; Jonzen, Niclas Bet-hedging as an evolutionary game: the trade-off between egg size and number PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article bet-hedging; adaptive coin flipping; life-history theory; clutch size; environmental stochasticity PROPAGULE SIZE; OFFSPRING SIZE; ENVIRONMENT; SELECTION; VARIABILITY; ECOLOGY; TREE Bet-hedging theory addresses how individuals should optimize fitness in varying and unpredictable environments by sacrificing mean fitness to decrease variation in fitness. So far, three main bet-hedging strategies have been described: conservative bet-hedging (play it safe), diversified bet-hedging (don't put all eggs in one basket) and adaptive coin flipping (choose a strategy at random from a fixed distribution). Within this context, we analyse the trade-off between many small eggs (or seeds) and few large, given an unpredictable environment. Our model is an extension of previous models and allows for any combination of the bet-hedging strategies mentioned above. In our individual-based model (accounting for both ecological and evolutionary forces), the optimal bet-hedging strategy is a combination of conservative and diversified bet-hedging and adaptive coin flipping, which means a variation in egg size both within clutches and between years. Hence, we show how phenotypic variation within a population, often assumed to be due to non-adaptive variation, instead can be the result of females having this mixed strategy. Our results provide a new perspective on bet-hedging and stress the importance of extreme events in life history evolution. [Olofsson, Helen; Ripa, Jorgen; Jonzen, Niclas] Lund Univ, Dept Ecol, Sect Theoret Ecol, S-22362 Lund, Sweden Ripa, J (reprint author), Lund Univ, Dept Ecol, Sect Theoret Ecol, Ecol Bldg, S-22362 Lund, Sweden. jorgen.ripa@teorekol.lu.se Swedish Research Council We thank Per Lundberg, Maria Servedio, Amanda Chunco, Sumit Dhole, Sarah Diamond, Alicia Frame, Jonathan Rowell and an anonymous reviewer, whose comments significantly improved the manuscript. N. J. and J. R. were financially supported by the Swedish Research Council. BROWN JS, 1986, AM NAT, V127, P31, DOI 10.1086/284465; CHARLESWORTH B, 1971, ECOLOGY, V52, P469, DOI 10.2307/1937629; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; COOPER WS, 1982, J THEOR BIOL, V94, P135, DOI 10.1016/0022-5193(82)90336-8; CRUMP ML, 1981, AM NAT, V117, P724, DOI 10.1086/283755; Einum S, 2004, EVOL ECOL RES, V6, P443; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Einum S, 2007, EVOLUTION, V61, P232, DOI 10.1111/j.1558-5646.2007.00020.x; FORBES LS, 1991, J THEOR BIOL, V150, P299, DOI 10.1016/S0022-5193(05)80429-1; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; Hopper KR, 1999, ANNU REV ENTOMOL, V44, P535, DOI 10.1146/annurev.ento.44.1.535; Ivarsson H, 2005, EVOL ECOL RES, V7, P1125; JANZEN DH, 1977, AM J BOT, V64, P347, DOI 10.2307/2441978; KAPLAN RH, 1984, AM NAT, V123, P393, DOI 10.1086/284211; Koops MA, 2003, EVOL ECOL RES, V5, P29; Kudo SI, 2006, CAN J ZOOL, V84, P1540, DOI 10.1139/Z06-163; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; MCLAIN D K, 1991, Psyche (Cambridge), V98, P135, DOI 10.1155/1991/10123; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Poulin R, 2000, CAN J ZOOL, V78, P564, DOI 10.1139/cjz-78-4-564; Roff Derek A., 1992; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; TURELLI M, 1980, P NATL ACAD SCI-BIOL, V77, P7501, DOI 10.1073/pnas.77.12.7501 25 91 94 4 85 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. AUG 22 2009 276 1669 2963 2969 10.1098/rspb.2009.0500 7 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 469FO WOS:000267881500013 19474039 Green Published, Other Gold 2018-11-12 J Arrow, KJ; Levin, SA Arrow, Kenneth J.; Levin, Simon A. Intergenerational resource transfers with random offspring numbers PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article allocation; intergenerational transfers; life history theory; uncertainty A problem common to biology and economics is the transfer of resources from parents to children. We consider the issue under the assumption that the number of offspring is unknown and can be represented as a random variable. There are 3 basic assumptions. The first assumption is that a given body of resources can be divided into consumption (yielding satisfaction) and transfer to children. The second assumption is that the parents' welfare includes a concern for the welfare of their children; this is recursive in the sense that the children's welfares include concern for their children and so forth. However, the welfare of a child from a given consumption is counted somewhat differently (generally less) than that of the parent (the welfare of a child is "discounted''). The third assumption is that resources transferred may grow (or decline). In economic language, investment, including that in education or nutrition, is productive. Under suitable restrictions, precise formulas for the resulting allocation of resources are found, demonstrating that, depending on the shape of the utility curve, uncertainty regarding the number of offspring may or may not favor increased consumption. The results imply that wealth (stock of resources) will ultimately have a log-normal distribution. [Levin, Simon A.] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA; [Arrow, Kenneth J.] Stanford Univ, Dept Econ, Stanford, CA 94305 USA Levin, SA (reprint author), Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA. slevin@princeton.edu William and Flora Hewlett Foundation; Cornell University, New York State; National Science Foundation We thank Marc Mangel and Rajiv Sethi for very helpful comments on the earlier versions of this article, Richard Durrett for illuminating conversations, and Linda Woodard for computational efforts in producing Fig. 1. This work was supported by the William and Flora Hewlett Foundation (K.J.A.). This research was conducted using the resources of the Cornell University Center for Advanced Computing, which receives funding from Cornell University, New York State, the National Science Foundation, and other public agencies, foundations, and corporations. K.J.A. and S.A.L. are Beijer Institute of Ecological Economics Fellows, and S.A.L. is a University Fellow of Resources for the Future. ARROW KJ, 1980, PUBLIC INVESTMENT RA; BECKER GS, 1976, J ECON LIT, V14, P817; BECKER GS, 1988, Q J ECON, V103, P1, DOI 10.2307/1882640; Bellmann R, 1957, DYNAMIC PROGRAMMING, p[11, 64, 70]; CHARNOV EL, 1976, THEOR POPUL BIOL, V9, P129, DOI 10.1016/0040-5809(76)90040-X; Chu CYC, 2006, THEOR POPUL BIOL, V69, P193, DOI 10.1016/j.tpb.2005.11.004; CLARK CW, 2000, DYNAMIC STATE VARIAB; COHEN D, 1976, AM NAT, V110, P801, DOI 10.1086/283103; Dasgupta P, 2005, AM ECON REV, V95, P1290, DOI 10.1257/0002828054825637; DUFFIE JD, 2001, DYNAMIC ASSET PRICIN, P62; Einum S, 2000, EVOLUTION, V54, P628, DOI 10.1111/j.0014-3820.2000.tb00064.x; Gibrat R., 1931, INEGALITES EC; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Livnat A, 2005, AM NAT, V165, P311, DOI 10.1086/428294; Mangel M., 1988, DYNAMIC MODELING BEH; MEADE JE, 1955, TRADE WELFARE, P1301; Schoener T. W., 1971, A Rev Ecol Syst, V2, P369, DOI 10.1146/annurev.es.02.110171.002101; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; Stephens D. W, 1987, FORAGING THEORY 20 7 7 0 10 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. AUG 18 2009 106 33 13702 13706 10.1073/pnas.0905613106 5 Multidisciplinary Sciences Science & Technology - Other Topics 484WE WOS:000269078700016 19617553 Bronze, Green Published 2018-11-12 J Vance, JT; Williams, JB; Elekonich, MM; Roberts, SP Vance, Jason T.; Williams, Jason B.; Elekonich, Michelle M.; Roberts, Stephen P. The effects of age and behavioral development on honey bee (Apis mellifera) flight performance JOURNAL OF EXPERIMENTAL BIOLOGY English Article flight; development; senescence; Apis mellifera ADULT DROSOPHILA-MELANOGASTER; DIVISION-OF-LABOR; LIFE-SPAN; OXIDATIVE DAMAGE; TROPONIN-T; MUSCA-DOMESTICA; WING WEAR; STRESS; KINEMATICS; AERODYNAMICS A critical but seldom-studied component of life history theory is how behavior and age affect whole-organism performance. To address this issue we compared the flight performance of honey bees (whose behavioral development and age can be assessed independently via simple manipulations of colony demographics) between distinct behavioral castes (in-hive nurse bees vs out-of-hive foragers) and across lifespan. Variable-density gases and high-speed video were used to determine the maximum hovering flight capacity and wing kinematics of age-matched nurse bees and foragers sampled from a single-cohort colony over a period of 34 days. The transition from hive work to foraging was accompanied by a 42% decrease in body mass and a proportional increase in flight capacity (defined as the minimum gas density allowing hovering flight). The lower flight capacity of hive bees was primarily due to the fact that in air they were functioning at a near-maximal wing angular velocity due to their high body masses. Foragers were lighter and when hovering in air required a much lower wing angular velocity, which they were able to increase by 32% during maximal flight performance. Flight performance of hive bees was independent of age, but in foragers the maximal wingbeat frequency and maximal average angular velocity were lowest in precocious (7-14 day old) foragers, highest in normal-aged (15-28 day old) foragers and intermediate in foragers older than 29 days. This pattern coincides with previously described age-dependent biochemical and metabolic properties of honey bee flight muscle. [Vance, Jason T.; Williams, Jason B.; Elekonich, Michelle M.; Roberts, Stephen P.] Univ Nevada, Sch Life Sci, Las Vegas, NV 89154 USA Roberts, SP (reprint author), Cent Michigan Univ, Dept Biol, Mt Pleasant, MI 48859 USA. stephen.roberts@cmich.edu Nevada NASA Space Grant Fellowship; National Institutes of Health [1F32AR055033-01]; National Science Foundation [IOS-0725030] Funding was provided by Nevada NASA Space Grant Fellowship to J. T. V, National Institutes of Health Grant 1F32AR055033-01 to J. B. W. and National Science Foundation IOS-0725030 to M. M. E. and S. P. R. Deposited in PMC for release after 12 months. AGARWAL S, 1994, MECH AGEING DEV, V75, P11, DOI 10.1016/0047-6374(94)90024-8; Alcock J, 1996, ECOL ENTOMOL, V21, P309, DOI 10.1046/j.1365-2311.1996.00007.x; Altshuler DL, 2005, P NATL ACAD SCI USA, V102, P18213, DOI 10.1073/pnas.0506590102; Altshuler DL, 2003, J EXP BIOL, V206, P3139, DOI 10.1242/jeb.00540; Amdam GV, 2002, J THEOR BIOL, V216, P209, DOI 10.1006/jtbi.2002.2545; CALDERONE NW, 1988, BEHAV ECOL SOCIOBIOL, V22, P17, DOI 10.1007/BF00395694; Carey JR, 2006, EXP GERONTOL, V41, P93, DOI 10.1055/s-2005-858730; CARTAR RV, 1992, J ANIM ECOL, V61, P225, DOI 10.2307/5525; Chai P, 1997, J EXP BIOL, V200, P921; Dillon ME, 2004, J EXP BIOL, V207, P417, DOI 10.1242/jeb.00777; Domingo A, 1998, J MUSCLE RES CELL M, V19, P393, DOI 10.1023/A:1005349704790; Dudley R, 2000, ANNU REV PHYSIOL, V62, P135, DOI 10.1146/annurev.physiol.62.1.135; DUDLEY R, 1995, J EXP BIOL, V198, P1065; Dukas R, 2008, INSECT SOC, V55, P252, DOI 10.1007/s00040-008-0995-4; ELLINGTON CP, 1984, PHILOS T ROY SOC B, V305, P41, DOI 10.1098/rstb.1984.0051; Ferguson M, 2005, BIOCHEM J, V390, P501, DOI 10.1042/BJ20042130; FEWELL JH, 1992, BEHAV ECOL SOCIOBIOL, V30, P387; FEWELL JH, 2001, P 2 INT C AFR HON BE; Fitzhugh GH, 1997, J EXP BIOL, V200, P1473; Fitzhugh GH, 1999, AM ZOOL, V39, p72A; GIRAY T, 1994, BEHAV ECOL SOCIOBIOL, V35, P13, DOI 10.1007/s002650050064; Golden TR, 2002, AGING CELL, V1, P117, DOI 10.1046/j.1474-9728.2002.00015.x; Grotewiel MS, 2005, AGEING RES REV, V4, P372, DOI 10.1016/j.arr.2005.04.001; Harrison JF, 2002, COMP BIOCHEM PHYS A, V133, P323, DOI 10.1016/S1095-6433(02)00163-0; HARRISON JM, 1986, PHYSIOL ZOOL, V59, P175, DOI 10.1086/physzool.59.2.30156031; Hedenstrom A, 2001, FUNCT ECOL, V15, P417, DOI 10.1046/j.0269-8463.2001.00531.x; HEROLD RC, 1963, DEV BIOL, V8, P67, DOI 10.1016/0012-1606(63)90026-5; Higginson AD, 2004, ECOL ENTOMOL, V29, P52, DOI 10.1111/j.0307-6946.2004.00573.x; HUANG ZY, 1992, P NATL ACAD SCI USA, V89, P11726, DOI 10.1073/pnas.89.24.11726; Labuhn M, 1997, GERONTOLOGY, V43, P261; LEFFELAAR D, 1984, DEV GENET, V4, P211; Lehmann FO, 1998, J EXP BIOL, V201, P385; Marden JH, 1999, P NATL ACAD SCI USA, V96, P15304, DOI 10.1073/pnas.96.26.15304; Marden JH, 2001, J EXP BIOL, V204, P3457; Marden JH, 1998, AM ZOOL, V38, P528; Martin I, 2006, MECH AGEING DEV, V127, P411, DOI 10.1016/j.mad.2006.01.008; Miller MS, 2008, BIOPHYS J, V95, P2391, DOI [10.1529/biophysj.108.130005, 10.1529/hiophysj.108.130005]; RAYNER JMV, 1991, PHILOS T ROY SOC B, V334, P107, DOI 10.1098/rstb.1991.0100; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roberts SP, 2005, J EXP BIOL, V208, P4193, DOI 10.1242/jeb.01862; Roberts SP, 2004, J EXP BIOL, V207, P993, DOI 10.1242/jeb.00850; Roberts SP, 1999, J EXP BIOL, V202, P1523; ROBINSON GE, 1989, SCIENCE, V246, P109, DOI 10.1126/science.246.4926.109; Roff DA, 2007, NAT REV GENET, V8, P116, DOI 10.1038/nrg2040; Rose MR, 2007, EVOLUTION, V61, P1265, DOI 10.1111/j.1558-5646.2007.00120.x; Rueppell O, 2007, EXP GERONTOL, V42, P1020, DOI 10.1016/j.exger.2007.06.002; Schippers MP, 2006, J EXP BIOL, V209, P3828, DOI 10.1242/jeb.02450; SCHMIDHEMPEL P, 1985, BEHAV ECOL SOCIOBIOL, V17, P61, DOI 10.1007/BF00299430; Seehuus SC, 2006, P NATL ACAD SCI USA, V103, P962, DOI 10.1073/pnas.0502681103; SOHAL RS, 1981, EXP GERONTOL, V16, P157, DOI 10.1016/0531-5565(81)90040-1; SOHAL RS, 1994, FREE RADICAL BIO MED, V16, P621, DOI 10.1016/0891-5849(94)90062-0; Sun JT, 1999, MOL CELL BIOL, V19, P216; Vieira C, 2000, GENETICS, V154, P213; Williams JB, 2008, EXP GERONTOL, V43, P538, DOI 10.1016/j.exger.2008.02.001; Wolschin F, 2007, PROTEOME SCI, V5, DOI 10.1186/1477-5956-5-10; Yan LJ, 2000, FREE RADICAL BIO MED, V29, P1143, DOI 10.1016/S0891-5849(00)00423-8; Yan LJ, 1997, P NATL ACAD SCI USA, V94, P11168, DOI 10.1073/pnas.94.21.11168; Yan LJ, 1998, P NATL ACAD SCI USA, V95, P12896, DOI 10.1073/pnas.95.22.12896; Yarian CS, 2005, J BIOENERG BIOMEMBR, V37, P91, DOI 10.1007/s10863-005-4132-z; Yoon SO, 2002, MECH AGEING DEV, V123, P1597, DOI 10.1016/S0047-6374(02)00095-7; Yu BP, 2006, MECH AGEING DEV, V127, P436, DOI 10.1016/j.mad.2006.01.023 61 45 45 1 30 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 J EXP BIOL J. Exp. Biol. AUG 15 2009 212 16 2604 2611 10.1242/jeb.028100 8 Biology Life Sciences & Biomedicine - Other Topics 477ZA WOS:000268556300016 19648405 Bronze, Green Published 2018-11-12 J Sanz-Aguilar, A; Massa, B; Lo Valvo, F; Oro, D; Minguez, E; Tavecchia, G Sanz-Aguilar, Ana; Massa, Bruno; Lo Valvo, Fabio; Oro, Daniel; Minguez, Eduardo; Tavecchia, Giacomo Contrasting age-specific recruitment and survival at different spatial scales: a case study with the European storm petrel ECOGRAPHY English Article POPULATION-DYNAMICS; LOCAL-POPULATION; LIFE-HISTORIES; REPRODUCTION; DEMOGRAPHY; BIRDS; COST; PROBABILITIES; HYPOTHESES; PREDATION Evolutionary studies on optimal decisions or conservation guidelines are often derived by generalising patterns from a single population, while inter-population variability in life-history traits is seldom considered. We investigated here how survival and recruitment probabilities changed with age at different geographical scales using the encounter histories of 5523 European storm petrels from three Mediterranean colonies, and also how our estimates of these parameters might be expected to affect population growth rates using population matrix models. We recorded similar patterns among colonies, but also important biological differences. Local survival, recruitment and breeding success increased with age at all colonies; the most distant of three colonies (Marettimo Is.) showed the largest differences. Strikingly, differences in recruitment were also found between two adjacent colonies (two caves from Benidorm Is.). Birds marked as adults from Marettimo and Benidorm colonies had a different survival, whereas we found no differences within Benidorm. Differences in survival were no longer apparent between the two islands at the end of the study following a reduction in predation by specialist gulls at Benidorm. Since birds marked as fledglings mostly recruited near the end of the study, their overall survival was high and in turn similar among colonies. Results from our population matrix models suggested that different age-dependent patterns of demographic parameters can lead to similar population growth rates. Variability appeared to be greater for recruitment and the most sensitive parameter was adult survival. Thus conservation actions targeting this vulnerable species should focus on factors influencing adult survival. Differences in survival and recruitment among colonies could reflect the spatial heterogeneity in mortality due to predation and colony-specific density dependent processes. Results highlight the importance of taking into account the potential spatio-temporal heterogeneity among populations in vital rates, even in those traits that life-history theory considers less important in driving population dynamics. [Sanz-Aguilar, Ana; Oro, Daniel; Tavecchia, Giacomo] UIB, CSIC, Inst Mediterrani Estudis Avancats IMEDEA, ES-07190 Esporles, Mallorca, Spain; [Massa, Bruno; Lo Valvo, Fabio] Univ Palermo, Dipartimento SENFIMIZO, IT-90128 Palermo, Italy Sanz-Aguilar, A (reprint author), UIB, CSIC, Inst Mediterrani Estudis Avancats IMEDEA, Miquel Marques 21, ES-07190 Esporles, Mallorca, Spain. ana.sanz@uib.es Oro, Daniel/H-4208-2012; Tavecchia, Giacomo/N-3961-2014; Sanz-Aguilar, Ana/D-3778-2014 Oro, Daniel/0000-0003-4782-3007; Tavecchia, Giacomo/0000-0001-5435-2691; Sanz-Aguilar, Ana/0000-0002-4177-9749 Spanish Ministry of Science [AP2004-1128, BOS2003-01960, CGL2006-04325/BOS] We would like to formally acknowledge the many people who participated in the field work over the years. We are indebted to the ward and Environmental Monitoring Service of Benidorm Island (Serra Gelada Natural Park - Generalitat Valenciana) and Leonardo Parisi (Marettimo). Santiago Garcia and Maria Marin sexed the birds. Alejandro Martinez-Abrain helped with Bayesian analysis. Roger Pradel, Howard Townsend and three anonymous referees made very constructive comments on this manuscript. A.S. was supported by a postgraduate grant (Ref. AP2004-1128) of the Spanish Ministry of Science, which also funded the study through several grants (refs. BOS2003-01960, CGL2006-04325/BOS). Amstrup SC, 2005, HANDBOOK OF CAPTURE-RECAPTURE ANALYSIS, P1; Breton AR, 2006, ECOL MONOGR, V76, P133, DOI 10.1890/05-0704; Burnham KP, 2002, MODEL SELECTION INFE; Cam E, 2005, ECOL MONOGR, V75, P419, DOI 10.1890/04-1551; Caswell H, 2001, MATRIX POPULATION MO; Choquet R., 2004, Animal Biodiversity and Conservation, V27, P207; CHOQUET R, 2006, M SURGE 1 8 USER MAN; Choquet R., 2005, U CARE 2 2 USER MANU; CLOBERT J, 1994, BIOMETRICS, V50, P375, DOI 10.2307/2533381; Coulson T, 1999, J ANIM ECOL, V68, P658, DOI 10.1046/j.1365-2656.1999.00298.x; De Leon A, 2003, SCI MAR, V67, P109; Ferrer M, 2004, ECOL APPL, V14, P616, DOI 10.1890/02-5361; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Frederiksen M, 2005, OIKOS, V111, P209, DOI 10.1111/j.0030-1299.2005.13746.x; Frederiksen M, 2001, P ROY SOC B-BIOL SCI, V268, P1519, DOI 10.1098/rspb.2001.1701; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; Grimm V, 2005, CONSERV BIOL, V19, P578, DOI 10.1111/j.1523-1739.2005.000163.x; Hanski I, 1997, METAPOPULATION BIOL; Hilton B, 2003, CONDOR, V105, P54, DOI 10.1650/0010-5422(2003)105[54:ASARIR]2.0.CO;2; LANDE R, 1988, OECOLOGIA, V75, P601, DOI 10.1007/BF00776426; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LEVIN SA, 1981, AM ZOOL, V21, P865; Martin JL, 2000, CONSERV BIOL, V14, P1452, DOI 10.1046/j.1523-1739.2000.99190.x; McCulloch C. E., 2001, GEN LINEAR MIXED MOD; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Morgan B. J. T., 2000, APPL STOCHASTIC MODE; Morris WF, 2002, QUANTITATIVE CONSERV; NEWTON I, 1989, LIFETIME REPROD BIRD; Oro D, 2005, J ZOOL, V265, P421, DOI 10.1017/S0952836905006515; Oro D, 2000, J ANIM ECOL, V69, P119, DOI 10.1046/j.1365-2656.2000.00379.x; Oro D, 2004, BIOL CONSERV, V116, P93, DOI 10.1016/S0006-3207(03)00180-0; Oro D, 2004, P ROY SOC B-BIOL SCI, V271, P387, DOI 10.1098/rspb.2003.2609; Oro D, 2008, ECOLOGY, V89, P838, DOI 10.1890/06-1936.1; Pradel R., 1997, BIOMETRICS, V53, P88; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Rodd FH, 1997, ECOLOGY, V78, P405; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; SANZ A, 2005, ECOL MEDIT, V31, P104; Sanz-Aguilar A, 2009, BIOL CONSERV, V142, P424, DOI 10.1016/j.biocon.2008.11.004; Sanz-Aguilar A, 2008, ECOLOGY, V89, P3195, DOI 10.1890/08-0431.1; Tavecchia G, 2005, J ANIM ECOL, V74, P201, DOI 10.1111/j.1365-2656.2005.00916.x; Tavecchia G, 2001, ECOLOGY, V82, P165, DOI 10.1890/0012-9658(2001)082[0165:SAARVI]2.0.CO;2; Tavecchia G, 2008, ECOLOGY, V89, P77, DOI 10.1890/06-0326.1; VALVO FL, 2000, RINGING MIGR, V20, P125; WARHAM J, 1990, PETRELS; Weimerskirch Henri, 2002, P115 47 32 33 1 21 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-7590 1600-0587 ECOGRAPHY Ecography AUG 2009 32 4 637 646 10.1111/j.1600-0587.2009.05596.x 10 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 492ZA WOS:000269700700008 2018-11-12 J Johnson, JB; Zuniga-Vega, JJ Johnson, Jerald B.; Jaime Zuniga-Vega, J. Differential mortality drives life-history evolution and population dynamics in the fish Brachyrhaphis rhabdophora ECOLOGY English Article age-specific mortality hypothesis; Brachyrhaphis rhabdophora; Costa Rica; elasticity analysis; live-bearer; Poeciliidae; population growth rate; population matrix modeling; predation GUPPIES POECILIA-RETICULATA; PREDATION; AGE; SELECTION; SIZE; ELASTICITIES; GROWTH; PREY; MATURITY; SURVIVAL Life-history theory predicts that populations experiencing different levels of extrinsic mortality will evolve divergent reproductive strategies. Previous work in the live-bearing fish Brachyrhaphis rhabdophora shows that individuals from populations that occur with piscivorous fish mature earlier and at smaller sizes and have more and smaller offspring than fish from populations without predators. However, until now, there have been no data to demonstrate that differences in mortality rates actually exist between predator and predator-free sites. Here we present the results of a serial mark-recapture field study designed to estimate mortality rates in natural populations of B. rhabodophora from Costa Rica. We found that fish from predator environments experience higher overall mortality rates and proportionally higher adult mortality rates than fish from predator-free environments. We then ask what impact differences in mortality rates have on B. rhabdophora population dynamics. Using a population matrix modeling approach, we found that B. rhabdophora that co-occur with predators have population growth rates similar to those without predators and both have confidence intervals that span lambda = 1.0. However, elasticity analysis revealed that the most important life-history stages for population growth in predator environments are found early in life and include growth through early ontogenetic stages and survival as small adults; in contrast, the most important life-history stages for population growth in predator-free environments occur late in life, including survival once large juvenile and adult stages are reached. Hence, we demonstrate two important links between predation and population demography, one ecological due to the direct impacts of predator-induced mortality and the other expressed through predator-mediated reproductive adaptation. [Johnson, Jerald B.] Brigham Young Univ, Dept Biol, Evolutionary Ecol Labs, Provo, UT 84602 USA; [Johnson, Jerald B.] Brigham Young Univ, Monte L Bean Life Sci Museum, Provo, UT 84602 USA; [Jaime Zuniga-Vega, J.] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Ecol & Recursos Nat, Mexico City 04510, DF, Mexico Johnson, JB (reprint author), Brigham Young Univ, Dept Biol, Evolutionary Ecol Labs, Provo, UT 84602 USA. jerry.johnson@byu.edu Zuniga-Vega, Jose Jaime/B-9423-2013 The Bakal Family Foundation; Roger and Victoria Sant Endowment; Brigham Young University We thank K. Sachs, A. Theriault, and M. Baker for excellent help with field mark-recapture experiments and members of the Zuniga-Vega laboratory who helped execute the randomization tests. Petty thieves Tilapia and Brinca Brinca taught us an important lesson about where not to keep your field notes. We are especially grateful to the Alvarez family who has repeatedly provided access to their property outside of Tilaran, Costa Rica; we dedicate this paper to the memory of Edwin Alvarez. The Bakal Family Foundation, the Roger and Victoria Sant Endowment, and Brigham Young University provided funding for this project. Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; ALVAREZBUYLLA ER, 1991, TRENDS ECOL EVOL, V6, P221, DOI 10.1016/0169-5347(91)90026-T; Benton TG, 1999, TRENDS ECOL EVOL, V14, P467, DOI 10.1016/S0169-5347(99)01724-3; Bronikowski AM, 2002, ECOLOGY, V83, P2194, DOI 10.1890/0012-9658(2002)083[2194:PDCOPI]2.0.CO;2; Burnham K. P., 2002, MODEL SELECTION MULT; Caswell H, 2001, MATRIX POPULATION MO; CHARLESWORTH B, 1994, EVOLUTIONARY AGE STR; Day T, 2002, EVOLUTION, V56, P877; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; Ellis JC, 2007, ECOLOGY, V88, P853, DOI 10.1890/06-0593; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Hrbek T, 2007, MOL PHYLOGENET EVOL, V43, P986, DOI 10.1016/j.ympev.2006.06.009; Johnson JB, 2002, OIKOS, V96, P82, DOI 10.1034/j.1600-0706.2002.960109.x; Johnson JB, 2001, BIOL J LINN SOC, V72, P519, DOI 10.1006/bijl.2000.0513; Johnson JB, 2001, EVOLUTION, V55, P1486; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Kaliszewicz A, 2005, AM NAT, V166, P409, DOI 10.1086/432037; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; MESTERTONGIBBONS M, 1993, ECOLOGY, V74, P2467, DOI 10.2307/1939599; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick D, 2007, ANN ZOOL FENN, V44, P152; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Rodd FH, 1997, ECOLOGY, V78, P405; Roff D. A., 2002, LIFE HIST EVOLUTION; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; Stearns S. C., 1992, EVOLUTION LIFE HIST; van Tienderen PH, 2000, ECOLOGY, V81, P666, DOI 10.1890/0012-9658(2000)081[0666:EATLBD]2.0.CO;2; VANGROENENDAEL J, 1994, ECOLOGY, V75, P2410, DOI 10.2307/1940894; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; White GC, 1999, BIRD STUDY, V46, P120; Williams B. K., 2002, ANAL MANAGEMENT ANIM 38 27 27 1 25 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 ECOLOGY Ecology AUG 2009 90 8 2243 2252 10.1890/07-1672.1 10 Ecology Environmental Sciences & Ecology 474OE WOS:000268293000023 19739386 2018-11-12 J Dunlop, ES; Enberg, K; Jorgensen, C; Heino, M Dunlop, Erin S.; Enberg, Katja; Jorgensen, Christian; Heino, Mikko Toward Darwinian fisheries management EVOLUTIONARY APPLICATIONS English Editorial Material LIFE-HISTORY EVOLUTION; MATURATION REACTION NORMS; COD GADUS-MORHUA; NORTH-SEA PLAICE; WHITEFISH COREGONUS-CLUPEAFORMIS; GUPPIES POECILIA-RETICULATA; ENERGY ACQUISITION RATES; EXPLOITED FISH STOCKS; ECO-GENETIC MODEL; ST-LAWRENCE COD There is increasing evidence that fishing may cause rapid contemporary evolution in freshwater and marine fish populations. This has led to growing concern about the possible consequences such evolutionary change might have for aquatic ecosystems and the utility of those ecosystems to society. This special issue contains contributions from a symposium on fisheries-induced evolution held at the American Fisheries Society Annual Meeting in August 2008. Contributions include primary studies and reviews of field-based and experimental evidence, and several theoretical modeling studies advancing life-history theory and investigating potential management options. In this introduction we review the state of research in the field, discuss current controversies, and identify contributions made by the papers in this issue to the knowledge of fisheries-induced evolution. We end by suggesting directions for future research. [Dunlop, Erin S.] Ontario Minist Nat Resources, Aquat Res & Dev Sect, Peterborough, ON K9J 7B8, Canada; [Dunlop, Erin S.; Enberg, Katja; Jorgensen, Christian; Heino, Mikko] Univ Bergen, Dept Biol, Bergen, Norway; [Dunlop, Erin S.; Heino, Mikko] Inst Marine Res, N-5024 Bergen, Norway; [Heino, Mikko] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria Dunlop, ES (reprint author), Ontario Minist Nat Resources, Aquat Res & Dev Sect, 2140 E Bank Dr, Peterborough, ON K9J 7B8, Canada. erin.dunlop@ontario.ca Heino, Mikko/C-7241-2009; Jorgensen, Christian/B-4453-2009; Enberg, Katja/C-8630-2009 Heino, Mikko/0000-0003-2928-3940; Jorgensen, Christian/0000-0001-7087-4625; Enberg, Katja/0000-0002-0045-7604 Allendorf FW, 2008, TRENDS ECOL EVOL, V23, P327, DOI 10.1016/j.tree.2008.02.008; Andersen KH, 2007, ECOL MODEL, V204, P246, DOI 10.1016/j.ecolmodel.2007.01.002; Arlinghaus R, 2009, EVOL APPL, V2, P335, DOI 10.1111/j.1752-4571.2009.00081.x; Arnason E, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005529; Barot S, 2005, ICES J MAR SCI, V62, P56, DOI 10.1016/j.icesjms.2004.10.004; Barot S, 2004, EVOL ECOL RES, V6, P659; Baskett ML, 2005, ECOL APPL, V15, P882, DOI 10.1890/04-0723; BEACHAM TD, 1987, ENVIRON BIOL FISH, V19, P149, DOI 10.1007/BF00001885; Bigler BS, 1996, CAN J FISH AQUAT SCI, V53, P455, DOI 10.1139/cjfas-53-2-455; Billerbeck JM, 2001, EVOLUTION, V55, P1863; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Biro PA, 2008, P NATL ACAD SCI USA, V105, P2919, DOI 10.1073/pnas.0708159105; Browman HI, 2000, MAR ECOL PROG SER, V208, P299, DOI 10.3354/meps208299; Browman HI, 2008, SCIENCE, V320, P47, DOI 10.1126/science.320.5872.47b; Brown CJ, 2008, MAR ECOL PROG SER, V369, P257, DOI 10.3354/meps07601; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV E L, 1982; Clark CW, 2006, WORLDWIDE CRISIS FIS; Conover DO, 2007, FISHERIES, V32, P90; Conover DO, 2009, EVOL APPL, V2, P276, DOI 10.1111/j.1752-4571.2009.00079.x; Conover DO, 2009, P ROY SOC B-BIOL SCI, V276, P2015, DOI 10.1098/rspb.2009.0003; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Conover DO, 2000, MAR ECOL PROG SER, V208, P303; Cooke SJ, 2007, PHYSIOL BIOCHEM ZOOL, V80, P480, DOI 10.1086/520618; Cooke SJ, 2009, EVOL APPL, V2, P299, DOI 10.1111/j.1752-4571.2009.00076.x; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Darwin C., 1859, ORIGIN SPECIES MEANS; de Roos AM, 2006, P R SOC B, V273, P1873, DOI 10.1098/rspb.2006.3518; DeAngelis D, 2003, MODELS IN ECOSYSTEM SCIENCE, P63; Derome N, 2006, MOL ECOL, V15, P1239, DOI 10.1111/j.1365-294X.2005.02968.x; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dunlop ES, 2007, T AM FISH SOC, V136, P749, DOI 10.1577/T06-126.1; Dunlop ES, 2009, EVOL APPL, V2, P371, DOI 10.1111/j.1752-4571.2009.00089.x; Edeline E, 2007, P NATL ACAD SCI USA, V104, P15799, DOI 10.1073/pnas.0705908104; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; *FAO, 2009, STAT WORLD FISH AQ 2; FAVRO LD, 1980, CAN J FISH AQUAT SCI, V37, P873, DOI 10.1139/f80-116; FAVRO LD, 1979, J FISH RES BOARD CAN, V36, P552, DOI 10.1139/f79-079; FAVRO LD, 1982, CAN J FISH AQUAT SCI, V39, P1540, DOI 10.1139/f82-207; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gardmark A, 2003, EVOL ECOL RES, V5, P239; Gardmark A, 2006, P ROY SOC B-BIOL SCI, V273, P2185, DOI 10.1098/rspb.2006.3562; GETZ WM, 1993, EXPLOITATION EVOLVIN, P187; Grift RE, 2007, MAR ECOL PROG SER, V334, P213, DOI 10.3354/meps334213; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; HAMLEY JM, 1975, J FISH RES BOARD CAN, V32, P1943, DOI 10.1139/f75-233; Hammerstein P, 1996, J MATH BIOL, V34, P511; HANDFORD P, 1977, J FISH RES BOARD CAN, V34, P954, DOI 10.1139/f77-148; Hauser L, 2002, P NATL ACAD SCI USA, V99, P11742, DOI 10.1073/pnas.172242899; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Heino M, 2002, B MAR SCI, V70, P639; Heino M, 2008, B MAR SCI, V83, P69; Heino M, 2008, P R SOC B, V275, P1111, DOI 10.1098/rspb.2007.1429; Hilborn R, 2008, B MAR SCI, V83, P95; Hilborn R, 2007, FISHERIES, V32, P91; Hilborn R, 2007, MAR POLICY, V31, P153, DOI 10.1016/j.marpol.2006.05.014; HUTCHINGS JA, 1993, EXPLOITATION EVOLVIN, P107; Hutchings JA, 2008, MOL ECOL, V17, P294, DOI 10.1111/j.1365-294X.2007.03485.x; Hutchings JA, 2009, EVOL APPL, V2, P324, DOI 10.1111/j.1752-4571.2009.00085.x; Hutchings JA, 2008, EVOL APPL, V1, P129, DOI 10.1111/j.1752-4571.2007.00009.x; Hutchings JA, 2008, EVOL APPL, V1, P650, DOI 10.1111/j.1752-4571.2008.00043.x; *ICES, 2007, REP STUD GROUP FISH; ICES, 2008, REP ICES ADV COMM 20; Jones MW, 2001, CONSERV GENET, V2, P245, DOI 10.1023/A:1012215826057; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P186, DOI 10.1139/F05-209; Jorgensen C, 2008, SCIENCE, V320, P48; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; Jorgensen C, 2008, ECOLOGY, V89, P3436, DOI 10.1890/07-1469.1; Kraak SBM, 2007, MAR ECOL PROG SER, V335, P295, DOI 10.3354/meps335295; Kuparinen A, 2008, SCIENCE, V320, P47; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Lankford TE, 2001, EVOLUTION, V55, P1873, DOI 10.1111/j.0014-3820.2001.tb00836.x; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Law R., 1993, EXPLOITATION EVOLVIN, P155; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Marshall CT, 2007, MAR ECOL PROG SER, V335, P249, DOI 10.3354/meps335249; Matsuda H, 2004, CAN J FISH AQUAT SCI, V61, P175, DOI 10.1139/F03-147; Merila J, 2009, J ANIM BREED GENET, V126, P1, DOI 10.1111/j.1439-0388.2008.00795.x; Miethe T., 2009, J NW ATLANTIC FISHER, V41, P151; Mollet FM, 2007, MAR ECOL PROG SER, V351, P189, DOI 10.3354/meps07138; Nussle S, 2009, EVOL APPL, V2, P200, DOI 10.1111/j.1752-4571.2008.00054.x; Okamoto KW, 2009, EVOL APPL, V2, P415, DOI 10.1111/j.1752-4571.2009.00095.x; Olsen E, 2005, CAN J FISH AQUAT SCI, V62, P811, DOI 10.1139/F05-065; Olsen EM, 2008, EVOL APPL, V1, P524, DOI 10.1111/j.1752-4571.2008.00024.x; Palkovacs EP, 2009, PHILOS T R SOC B, V364, P1617, DOI 10.1098/rstb.2009.0016; Perez-Rodriguez A, 2009, EVOL APPL, V2, P291, DOI 10.1111/j.1752-4571.2009.00084.x; Philipp DP, 2009, T AM FISH SOC, V138, P189, DOI 10.1577/T06-243.1; Ratner S, 2001, ECOLOGY, V82, P3093, DOI 10.2307/2679837; Redpath TD, 2009, EVOL APPL, V2, P312, DOI 10.1111/j.1752-4571.2009.00078.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Reznick DN, 2005, CAN J FISH AQUAT SCI, V62, P791, DOI 10.1139/F05-079; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; Rijnsdorp AD, 2005, CAN J FISH AQUAT SCI, V62, P833, DOI 10.1139/F05-039; Roberge C, 2006, MOL ECOL, V15, P9, DOI 10.1111/j.1365-294X.2005.02807.x; Rockman MV, 2008, NATURE, V456, P738, DOI 10.1038/nature07633; Roff Derek A., 1992; Rogers SM, 2007, MOL BIOL EVOL, V24, P1423, DOI 10.1093/molbev/msm066; RUTTER C, 2002, B US FISHERIES COMMI, V22; SATTAR SA, 2006, B MAR SCI, V83, P235; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; SILLIMAN RP, 1975, FISH B-NOAA, V73, P495; SMITH PJ, 1991, FISH RES, V10, P309, DOI 10.1016/0165-7836(91)90082-Q; SMITH PJ, 1994, GENETIC DIVERSITY MA; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; Stenseth NC, 2009, NATURE, V457, P803, DOI 10.1038/457803a; Stokes K, 2000, MAR ECOL PROG SER, V208, P307; STOKES TK, 1993, EXPLOITATION EVOLVIN; Swain DP, 2008, P R SOC B, V275, P1113, DOI 10.1098/rspb.2007.1727; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Tenhumberg B, 2004, ECOLOGY, V85, P2003, DOI 10.1890/03-4111; Theriault V, 2008, EVOL APPL, V1, P409, DOI 10.1111/j.1752-4571.2008.00022.x; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Urbach D, 2008, EVOL APPL, V1, P645, DOI 10.1111/j.1752-4571.2008.00041.x; Uusi-Heikkila S, 2008, TRENDS ECOL EVOL, V23, P419, DOI 10.1016/j.tree.2008.04.006; Vainikka A, 2009, ICES J MAR SCI, V66, P248, DOI 10.1093/icesjms/fsn199; Venturelli PA, 2009, P ROY SOC B-BIOL SCI, V276, P919, DOI 10.1098/rspb.2008.1507; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; Wang HY, 2008, CAN J FISH AQUAT SCI, V65, P2157, DOI 10.1139/F08-124; Wang HY, 2009, EVOL APPL, V2, P438, DOI 10.1111/j.1752-4571.2009.00088.x; Whiteley AR, 2008, GENETICS, V180, P147, DOI 10.1534/genetics.108.089938; Wright P.J., 2005, 2005Q07 ICES CM; Yoneda M, 2004, MAR ECOL PROG SER, V276, P237, DOI 10.3354/meps276237 130 49 50 2 44 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. AUG 2009 2 3 246 259 10.1111/j.1752-4571.2009.00087.x 14 Evolutionary Biology Evolutionary Biology 505DR WOS:000270669700001 25567878 DOAJ Gold, Green Published 2018-11-12 J Arlinghaus, R; Matsumura, S; Dieckmann, U Arlinghaus, Robert; Matsumura, Shuichi; Dieckmann, Ulf Quantifying selection differentials caused by recreational fishing: development of modeling framework and application to reproductive investment in pike (Esox lucius) EVOLUTIONARY APPLICATIONS English Review angling; fisheries-induced evolution; life history; minimum-size limit; size-selective exploitation WHITEFISH COREGONUS-LAVARETUS; FISHERIES-INDUCED EVOLUTION; LIFE-HISTORY EVOLUTION; CATCH-AND-RELEASE; NORTH-SEA PLAICE; COD GADUS-MORHUA; PLEURONECTES-PLATESSA; SIMULATION ANALYSIS; DENSITY-DEPENDENCE; LENGTH LIMITS Methods for quantifying selection pressures on adaptive traits affected by size-selective fishing are still scarce, and none have as yet been developed for recreational fishing. We present an ecologically realistic age-structured model specifically tailored to recreational fishing that allows estimating selection differentials on adaptive life-history traits. The model accounts for multiple ecological feedbacks, which result in density-dependent and frequency-dependent selection. We study selection differentials on annual reproductive investment under size-selective exploitation in a highly demanded freshwater recreational fish species, northern pike (Esox lucius L.). We find that recreational angling mortality exerts positive selection differentials on annual reproductive investment, in agreement with predictions from life-history theory. The strength of selection increases with the intensity of harvesting. We also find that selection on reproductive investment can be reduced by implementing simple harvest regulations such as minimum-size limits. The general, yet computationally simple, methods introduced here allow evaluating and comparing selection pressures on adaptive traits in other fish populations and species, and thus have the potential to become a tool for evolutionary impact assessment of harvesting. [Arlinghaus, Robert; Matsumura, Shuichi] Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Biol & Ecol Fishes, D-12587 Berlin, Germany; [Arlinghaus, Robert] Humboldt Univ, Inst Anim Sci, Fac Agr & Hort, Inland Fisheries Management Lab, Berlin, Germany; [Matsumura, Shuichi; Dieckmann, Ulf] Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria Arlinghaus, R (reprint author), Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Biol & Ecol Fishes, Muggelseedamm 310, D-12587 Berlin, Germany. arlinghaus@igb-berlin.de Dieckmann, Ulf/E-1424-2011; Matsumura, Shuichi/C-7986-2013 Dieckmann, Ulf/0000-0001-7089-0393; Matsumura, Shuichi/0000-0002-0368-006X; Arlinghaus, Robert/0000-0003-2861-527X European Community's Sixth Framework Program; Marie Curie Research Training Network on Fisheries-induced Adaptive Changes in Exploited Stocks (FishACE); Specific Targeted Research Project on Fisheries-induced Evolution (FinE); European Science Foundation; Austrian Science Fund; Vienna Science and Technology Fund. We gratefully acknowledge helpful discussions with members of the Evolution and Ecology Program at IIASA in general, and with Erin S. Dunlop in particular. Michael Raghib Moreno provided technical help in an early phase of the project, and Martin Bork helped with editorial work. We thank Thrond Haugen for his insights into pike biology and helpful comments. We also acknowledge the helpful reviews by Ken Andersen, one anonymous reviewer, and the Guest Editors. This study was initiated during IIASA's Young Scientists Summer Program (YSSP) of 2004, for which RA was financially supported by the German National Member Organization of IIASA. Financial support for the finalization of this study was provided within the ADAPTFISH project funded by the Gottfried-WilhelmLeibniz Community (http://www.adaptfish.igb-berlin.de). UD acknowledges financial support by the European Community's Sixth Framework Program, through the Marie Curie Research Training Network on Fisheries-induced Adaptive Changes in Exploited Stocks (FishACE) and the Specific Targeted Research Project on Fisheries-induced Evolution (FinE), as well as by the European Science Foundation, the Austrian Science Fund, and the Vienna Science and Technology Fund. Allendorf FW, 2008, TRENDS ECOL EVOL, V23, P327, DOI 10.1016/j.tree.2008.02.008; Andersen KH, 2007, ECOL MODEL, V204, P246, DOI 10.1016/j.ecolmodel.2007.01.002; ANWAND K, 1968, THESIS HUMBOLDT U BE; Arlinghaus R, 2007, FISHERIES MANAG ECOL, V14, P161, DOI 10.1111/j.1365-2400.2007.00537.x; Arlinghaus R, 2004, ENVIRON MANAGE, V33, P331, DOI 10.1007/s00267-004-0025-x; Arlinghaus R, 2005, LIMNOLOGICA, V35, P2, DOI 10.1016/j.limno.2004.10.001; Arlinghaus R, 2008, N AM J FISH MANAGE, V28, P123, DOI 10.1577/M06-263.1; Arlinghaus R, 2007, REV FISH SCI, V15, P75, DOI 10.1080/10641260601149432; Arlinghaus R, 2006, N AM J FISH MANAGE, V26, P592, DOI 10.1577/MO4-220.1; Arlinghaus R, 2002, FISH FISH, V3, P261, DOI 10.1046/j.1467-2979.2002.00102.x; Baskett ML, 2005, ECOL APPL, V15, P882, DOI 10.1890/04-0723; Begon M, 1996, ECOLOGY INDIVIDUALS; BEUKEMA JJ, 1970, J FISH BIOL, V2, P155, DOI 10.1111/j.1095-8649.1970.tb03268.x; Brown CJ, 2008, MAR ECOL PROG SER, V369, P257, DOI 10.3354/meps07601; Caswell H, 2001, MATRIX POPULATION MO; Coggins LG, 2007, FISH FISH, V8, P196, DOI 10.1111/j.1467-2679.2007.00247.x; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Conover DO, 2005, CAN J FISH AQUAT SCI, V62, P730, DOI 10.1139/F05-069; Cooke SJ, 2006, BIOL CONSERV, V128, P93, DOI 10.1016/j.biocon.2005.09.019; COX S, 2002, RECREATIONAL FISHERI, P107; Cox SP, 2003, N AM J FISH MANAGE, V23, P1294, DOI 10.1577/M01-228AM; CRAIG JF, 1983, J FISH BIOL, V22, P713, DOI 10.1111/j.1095-8649.1983.tb04231.x; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; DIANA JS, 1983, T AM FISH SOC, V112, P38, DOI 10.1577/1548-8659(1983)112<38:GMAPON>2.0.CO;2; DIANA JS, 1979, J FISH RES BOARD CAN, V36, P481, DOI 10.1139/f79-071; Dieckmann Ulf, 2004, P188, DOI 10.1017/CBO9780511542022.015; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dunlop ES, 2007, T AM FISH SOC, V136, P749, DOI 10.1577/T06-126.1; DUNLOP ES, 2009, ECOLOGICAL IN PRESS; Edeline E, 2007, P NATL ACAD SCI USA, V104, P15799, DOI 10.1073/pnas.0705908104; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Falconer DS, 1996, INTRO QUANTITATIVE G; FRANKLIN DONALD R., 1963, TRANS AMER FISH SOC, V92, P91, DOI 10.1577/1548-8659(1963)92[91:ELHOTN]2.0.CO;2; FROST WE, 1967, J ANIM ECOL, V36, P651, DOI 10.2307/2820; Gedamke T, 2007, N AM J FISH MANAGE, V27, P605, DOI 10.1577/M05-157.1; GOEDMAKERS A, 1974, AQUACULTURE, V4, P3, DOI 10.1016/0044-8486(74)90014-3; Hard JJ, 2008, EVOL APPL, V1, P388, DOI 10.1111/j.1752-4571.2008.00020.x; Haugen TO, 2007, ECOL MONOGR, V77, P483, DOI 10.1890/06-0163.1; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Heino M, 2002, B MAR SCI, V70, P639; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Heino M, 1998, TRENDS ECOL EVOL, V13, P367, DOI 10.1016/S0169-5347(98)01380-9; Heino M, 2008, P R SOC B, V275, P1111, DOI 10.1098/rspb.2007.1429; Hereford J, 2004, EVOLUTION, V58, P2133; Hilborn R., 1992, QUANTITATIVE FISHERI; Hilborn R, 2008, B MAR SCI, V83, P95; HIRSHFIELD MF, 1980, ECOLOGY, V61, P282, DOI 10.2307/1935187; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Hutchings JA, 2005, CAN J FISH AQUAT SCI, V62, P824, DOI 10.1139/F05-081; HUTCHINGS JA, 1993, EXPLOITATION EVOLVIN, P107; HUTCHINGS JA, 2007, MOL ECOL, V17, P295; Hutchings JA, 2008, EVOL APPL, V1, P129, DOI 10.1111/j.1752-4571.2007.00009.x; JOHNSON BM, 1994, ECOL APPL, V4, P808, DOI 10.2307/1942010; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; KEMPINGER JJ, 1978, AM FISHERIES SOC SPE, V11, P382; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; KIPLING C, 1983, J ANIM ECOL, V52, P647, DOI 10.2307/4578; KIPLING C, 1970, J ANIM ECOL, V39, P115, DOI 10.2307/2892; KIPLING C, 1983, J ANIM ECOL, V52, P989, DOI 10.2307/4469; Kristiansen TS, 1998, J FISH BIOL, V52, P688; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Lewin WC, 2006, REV FISH SCI, V14, P305, DOI 10.1080/10641260600886455; Lorenzen K, 2002, P ROY SOC B-BIOL SCI, V269, P49, DOI 10.1098/rspb.2001.1853; MANN RHK, 1976, J FISH BIOL, V8, P179, DOI 10.1111/j.1095-8649.1976.tb03930.x; Margenau TL, 2003, N AM J FISH MANAGE, V23, P307, DOI 10.1577/1548-8675(2003)023<0307:ACAHON>2.0.CO;2; Martinez-Garmendia J, 1998, ECOL MODEL, V111, P37, DOI 10.1016/S0304-3800(98)00093-3; Meszena G, 2001, SELECTION, V2, P193, DOI DOI 10.1556/SELECT.2.2001.1-2.14; MILLER LM, 1994, CAN J FISH AQUAT SCI, V51, P774, DOI 10.1139/f94-075; Minns CK, 1996, CAN J FISH AQUAT SCI, V53, P20, DOI 10.1139/f95-258; MUNOEKE MI, 1994, REV FISH SCI, V2, P123; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Nussle S, 2009, EVOL APPL, V2, P200, DOI 10.1111/j.1752-4571.2008.00054.x; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Paukert CP, 2001, FISHERIES, V26, P6, DOI 10.1577/1548-8446(2001)026<0006:AOONPR>2.0.CO;2; Philipp DP, 2009, T AM FISH SOC, V138, P189, DOI 10.1577/T06-243.1; Pierce RB, 2003, T AM FISH SOC, V132, P771, DOI 10.1577/T02-105; Pierce Rodney B., 1995, North American Journal of Fisheries Management, V15, P601, DOI 10.1577/1548-8675(1995)015<0601:EONPIS>2.3.CO;2; Pierce Rodney B., 2000, North American Journal of Fisheries Management, V20, P239, DOI 10.1577/1548-8675(2000)020<0239:RDSFNP>2.0.CO;2; POLICANSKY D, 1993, EXPLOITATION EVOLVIN, P2; Post JR, 2003, N AM J FISH MANAGE, V23, P22, DOI 10.1577/1548-8675(2003)023<0022:AOAHRF>2.0.CO;2; Post JR, 2002, FISHERIES, V27, P6, DOI 10.1577/1548-8446(2002)027<0006:CRF>2.0.CO;2; Raat AJP, 1988, FAO FISHERIES SYNOPS, V30; Radomski PJ, 1996, FISHERIES, V21, P14, DOI 10.1577/1548-8446(1996)021<0014:DMAMIF>2.0.CO;2; Redpath TD, 2009, EVOL APPL, V2, P312, DOI 10.1111/j.1752-4571.2009.00078.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RIJNSDORP AD, 1993, OECOLOGIA, V96, P391, DOI 10.1007/BF00317510; Rijnsdorp AD, 2005, CAN J FISH AQUAT SCI, V62, P833, DOI 10.1139/F05-039; RIJNSDORP AD, 1993, EXPLOITATION EVOLVIN, P19; Rochet MJ, 2000, OIKOS, V91, P255, DOI 10.1034/j.1600-0706.2000.910206.x; Roff D. A., 2002, LIFE HIST EVOLUTION; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; Roff Derek A., 1992; ROWELL C, 1989, J FISH BIOL, V35, P335; ROWELL CA, 1993, EXPLOITATION EVOLVIN, P44; SCHAPERCLAUS W, 1940, VERHANDLUNGEN INT VE, V9, P215; Sinclair AF, 2002, CAN J FISH AQUAT SCI, V59, P372, DOI 10.1139/F02-014; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stinchcombe JR, 2005, EVOL ECOL, V19, P363, DOI 10.1007/s10682-005-7550-9; Stokes T. K., 1993, LECT NOTES BIOMATHEM, V99; Sullivan MG, 2002, N AM J FISH MANAGE, V22, P1053, DOI 10.1577/1548-8675(2002)022<1053:IAHOWP>2.0.CO;2; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Theriault V, 2008, EVOL APPL, V1, P409, DOI 10.1111/j.1752-4571.2008.00022.x; Thomas G, 2009, J EVOLUTION BIOL, V22, P88, DOI 10.1111/j.1420-9101.2008.01622.x; Thomas G, 2007, CAN J FISH AQUAT SCI, V64, P402, DOI 10.1139/F07-019; Uusi-Heikkila S, 2008, TRENDS ECOL EVOL, V23, P419, DOI 10.1016/j.tree.2008.04.006; Wang HY, 2009, EVOL APPL, V2, P438, DOI 10.1111/j.1752-4571.2009.00088.x; Williams EH, 2005, FISH B-NOAA, V103, P392; Willis D.W., 1989, North American Journal of Fisheries Management, V9, P203, DOI 10.1577/1548-8675(1989)009<0203:PSLWEF>2.3.CO;2; Wootton R.J., 1998, ECOLOGY TELEOST FISH; WRIGHT RM, 1988, J FISH BIOL, V33, P623, DOI 10.1111/j.1095-8649.1988.tb05505.x; Yoneda M, 2004, MAR ECOL PROG SER, V276, P237, DOI 10.3354/meps276237 119 45 46 0 34 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. AUG 2009 2 3 335 355 10.1111/j.1752-4571.2009.00081.x 21 Evolutionary Biology Evolutionary Biology 505DR WOS:000270669700008 25567885 DOAJ Gold, Green Published 2018-11-12 J Nussey, DH; Pemberton, JM; Pilkington, JG; Blount, JD Nussey, Daniel H.; Pemberton, Josephine M.; Pilkington, Jill G.; Blount, Jonathan D. Life history correlates of oxidative damage in a free-living mammal population FUNCTIONAL ECOLOGY English Article ageing; oxidative stress; reactive oxygen species; mammal; wild population; life history theory NESTLINGS FALCO-TINNUNCULUS; TOTAL ANTIOXIDANT STATUS; FREE-RADICAL THEORY; SOAY SHEEP; RED DEER; INCREASED SUSCEPTIBILITY; SEXUAL ATTRACTIVENESS; CALORIC RESTRICTION; COHORT VARIATION; ZEBRA FINCHES P>Reactive oxygen species, produced as a by-product of normal metabolism, can cause intracellular damage and negatively impact on cell function. Such oxidative damage has been proposed as an evolutionarily important cost of growth and reproduction and as a mechanistic explanation for organismal senescence, although few tests of these ideas have occurred outside the laboratory. Here, we examined correlations between a measure of phospholipid oxidative damage in plasma samples and age, growth rates, parasite burden and investment in reproduction in a population of wild Soay sheep on St. Kilda, Scotland. We found that, amongst females of different ages, lambs had significantly elevated levels of oxidative damage compared to all other age classes and there was no evidence of increasing damage with age amongst adult sheep. Amongst lambs, levels of oxidative damage increased significantly with increasing growth rates over the first 4 months of life. Neither mean damage nor the effect of growth rate on damage differed between male and female lambs. Amongst adult female sheep, there was no evidence that body mass, current parasite burden or metrics of recent and past reproductive effort significantly predicted oxidative damage levels. This study is the first to examine age variation in an assay of oxidative damage and correlations between oxidative damage, growth and reproduction in a wild mammal. Our results suggest strong links between early conditions and oxidative damage in lambs, but also serve to highlight the limitations of cross-sectional data for studies examining associations between oxidative stress, ageing and life history in free-living populations. [Nussey, Daniel H.; Pemberton, Josephine M.; Pilkington, Jill G.] Univ Edinburgh, Inst Evolutionary Biol, Edinburgh, Midlothian, Scotland; [Blount, Jonathan D.] Univ Exeter, Ctr Ecol & Conservat, Sch Biosci, Penryn, Cornwall, England Nussey, DH (reprint author), Univ Edinburgh, Inst Evolutionary Biol, Edinburgh, Midlothian, Scotland. dan.nussey@ed.ac.uk Nussey, Daniel/F-4155-2010; Blount, Jonathan/K-7695-2012; Pemberton, Josephine/F-3100-2010 Blount, Jonathan/0000-0002-0016-0130; Natural Environment Research Council (NERC); Royal Society University Research Fellowship; Natural Environment Research Council [NER/A/S/2003/00461, NE/E01237X/1] We are grateful to Colin Selman, Andrea Graham, Lea Harrington, Adam Hayward and three anonymous referees for comments earlier drafts of the manuscript and discussion. We thank all members of the spring and summer 2007 field teams on St. Kilda. We also thank the National Trust for Scotland for permission to work on St. Kilda and QinetiQ, Amey and HSS staff on the island for logistic support. The Soay Sheep Project is supported by the Natural Environment Research Council (NERC). DHN was supported by a NERC postdoctoral fellowship and JDB by a Royal Society University Research Fellowship. Agarwal R, 2002, J CHROMATOGR B, V775, P121, DOI 10.1016/S1570-0232(02)00273-8; ALBON SD, 1987, J ANIM ECOL, V56, P69, DOI 10.2307/4800; Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Alvarez C, 2007, FUNCT ECOL, V21, P873, DOI 10.1111/j.1365-2435.2007.01300.x; Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; Barja G, 2004, BIOL REV, V79, P235, DOI 10.1017/S1464793103006213; Beckman KB, 1998, PHYSIOL REV, V78, P547; Bertrand S, 2006, FUNCT ECOL, V20, P1022, DOI 10.1111/j.1365-2435.2006.01191.x; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Blount JD, 2003, P ROY SOC B-BIOL SCI, V270, P1691, DOI 10.1098/rspb.2003.2411; Brand MD, 2000, EXP GERONTOL, V35, P811, DOI 10.1016/S0531-5565(00)00135-2; Catchpole EA, 2000, J R STAT SOC C-APPL, V49, P453, DOI 10.1111/1467-9876.00205; Clutton-Brock T. H., 2004, SOAY SHEEP DYNAMICS; CLUTTONBROCK TH, 1992, J ANIM ECOL, V61, P381, DOI 10.2307/5330; CLUTTONBROCK TH, 1989, NATURE, V337, P260, DOI 10.1038/337260a0; Costantini D, 2006, J COMP PHYSIOL B, V176, P329, DOI 10.1007/s00360-005-0055-6; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2006, COMP BIOCHEM PHYS A, V145, P137, DOI 10.1016/j.cbpa.2006.06.002; Costantini D, 2006, J COMP PHYSIOL B, V176, P575, DOI 10.1007/s00360-006-0080-0; Coulson T, 2001, SCIENCE, V292, P1528, DOI 10.1126/science.292.5521.1528; Craig BH, 2006, PARASITOLOGY, V133, P485, DOI 10.1017/S003118200618; Crawley MJ, 2002, STAT COMPUTING INTRO; De Block M, 2008, P R SOC B, V275, P781, DOI 10.1098/rspb.2007.1515; Doonan R, 2008, GENE DEV, V22, P3236, DOI 10.1101/gad.504808; Drury JA, 1998, CLIN SCI, V94, P197, DOI 10.1042/cs0940197; Festa-Bianchet M, 2000, BEHAV ECOL, V11, P633, DOI 10.1093/beheco/11.6.633; FESTABIANCHET M, 1989, J ANIM ECOL, V58, P785, DOI 10.2307/5124; Forchhammer MC, 2001, J ANIM ECOL, V70, P721, DOI 10.1046/j.0021-8790.2001.00532.x; Gaal T, 2006, COMP BIOCHEM PHYS B, V143, P391, DOI 10.1016/j.cbpb.2005.12.014; Gaal T, 1996, COMP HAEMATOL INT, V6, P208, DOI 10.1007/BF00378112; Golden TR, 2002, AGING CELL, V1, P117, DOI 10.1046/j.1474-9728.2002.00015.x; GULLAND FMD, 1992, PARASITOLOGY, V105, P481, DOI 10.1017/S0031182000074667; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Lombard DB, 2005, CELL, V120, P497, DOI 10.1016/j.cell.2005.01.028; Magwere T, 2006, J GERONTOL A-BIOL, V61, P136, DOI 10.1093/gerona/61.2.136; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Moyes K, 2006, OIKOS, V115, P241, DOI 10.1111/j.2006.0030-1299.15200.x; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Nussey DH, 2006, ECOL LETT, V9, P1342, DOI 10.1111/j.1461-0248.2006.00989.x; Olsson M, 2008, BIOL LETTERS, V4, P186, DOI 10.1098/rsbl.2007.0611; Overall ADJ, 2005, MOL ECOL, V14, P3383, DOI 10.1111/j.1365-294X.2005.02682.x; Partridge L, 2002, NAT REV GENET, V3, P165, DOI 10.1038/nrg753; Pelletier F, 2007, SCIENCE, V315, P1571, DOI 10.1126/science.1139024; Przybylska J, 2007, REPROD DOMEST ANIM, V42, P402, DOI 10.1111/j.1439-0531.2006.00799.x; Rao DV, 2003, MECH AGEING DEV, V124, P55, DOI 10.1016/S0047-6374(02)00170-7; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK DN, 2005, SCI AGING KNOWLEDGE, V11, pPE7; Roff Derek A., 1992; Rubolini D, 2006, J EVOLUTION BIOL, V19, P1571, DOI 10.1111/j.1420-9101.2006.01121.x; Sanz A, 2006, ANTIOXID REDOX SIGN, V8, P582, DOI 10.1089/ars.2006.8.582; Selman C, 2008, P ROY SOC B-BIOL SCI, V275, P1907, DOI 10.1098/rspb.2008.0355; SOHAL RS, 1994, MECH AGEING DEV, V74, P121, DOI 10.1016/0047-6374(94)90104-X; SOHAL RS, 1993, P NATL ACAD SCI USA, V90, P7255, DOI 10.1073/pnas.90.15.7255; SOHAL RS, 1994, MECH AGEING DEV, V76, P215, DOI 10.1016/0047-6374(94)91595-4; SOHAL RS, 1995, MECH AGEING DEV, V81, P15, DOI 10.1016/0047-6374(94)01578-A; Speakman JR, 2004, AGING CELL, V3, P87, DOI 10.1111/j.1474-9728.2004.00097.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Torres R, 2007, J ANIM ECOL, V76, P1161, DOI 10.1111/j.1365-2656.2007.01282.x; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; von Schantz T, 1999, P ROY SOC B-BIOL SCI, V266, P1; Wang Y, 2001, EXP GERONTOL, V36, P1349, DOI 10.1016/S0531-5565(01)00095-X; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wilson AJ, 2005, J EVOLUTION BIOL, V18, P405, DOI 10.1111/j.1420-9101.2004.00824.x; Wilson AJ, 2007, CURR BIOL, V17, P2136, DOI 10.1016/j.cub.2007.11.043 71 109 112 4 52 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. AUG 2009 23 4 809 817 10.1111/j.1365-2435.2009.01555.x 9 Ecology Environmental Sciences & Ecology 464WD WOS:000267539000017 Bronze 2018-11-12 J Bourgeon, S; Le Maho, Y; Raclot, T Bourgeon, Sophie; Le Maho, Yvon; Raclot, Thierry Proximate and ultimate mechanisms underlying immunosuppression during the incubation fast in female eiders: Roles of triiodothyronine and corticosterone GENERAL AND COMPARATIVE ENDOCRINOLOGY English Article; Proceedings Paper 9th International Symposium on Avian Endocrinology JUL 11-15, 2008 Leuven, BELGIUM Acquired immunity; Cost of reproduction; Immunopathology-avoidance hypothesis; Resource-limitation hypothesis; Trade-offs GREENFINCHES CARDUELIS-CHLORIS; IMMUNE-RESPONSE; REPRODUCTIVE EFFORT; TRADE-OFFS; ENERGY-EXPENDITURE; OXIDATIVE STRESS; COMMON EIDERS; ECOLOGICAL IMMUNOLOGY; SOMATERIA-MOLLISSIMA; HUMORAL IMMUNITY Available resources being limited, life-history theory predicts that natural selection favours the evolution of physiological mechanisms that ensure their optimal allocation between competing activities. Accordingly, to maximize their selective value, long-lived species face a trade-off between survival and reproduction. Immunity is hypothesized to share limited resources with other physiological functions and this may partly account for the fitness costs of reproduction. However, both ultimate and proximate factors underlying the observed trade-off between reproductive effort and immunocompetence remain poorly documented. Using female common eiders (Somateria mollissima) as a model, it was earlier shown that acquired immunity is negatively affected during the incubation fast, while its activation has a negative impact on females' fitness. The current paper reports data on corticosterone and triiodothyronine manipulations designed to shed more light onto both ultimate and proximate mechanisms involved in the control of immunosuppression in breeding female eiders. It was found that corticosterone is not the main proximate factor responsible for immunosuppression and that the immunosuppressive effects of both hormones may be mediated by their negative effects on body mass. These observations are consistent with the proposed link between the immune system and body fat reserves and, with the resource-limitation hypothesis for stress-induced immunosuppression. However the alternative hypothesis, the immunopathology-avoidance hypothesis cannot be discarded and the two hypotheses are not mutually exclusive in breeding female eiders. (C) 2008 Elsevier Inc. All rights reserved. [Bourgeon, Sophie] Norwegian Inst Nat Res NINA, Polar Environm Ctr, NO-9296 Tromso, Norway; [Bourgeon, Sophie; Le Maho, Yvon; Raclot, Thierry] ULP, CNR, IPHC, DEPE,UMR 7178, F-67087 Strasbourg, France Bourgeon, S (reprint author), Norwegian Inst Nat Res NINA, Polar Environm Ctr, NO-9296 Tromso, Norway. sophie.bourgeon@nina.no Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Amat JA, 2007, ECOL RES, V22, P282, DOI 10.1007/s11284-006-0022-z; Apanius V, 1998, ADV STUD BEHAV, V27, P133; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; Bertile F, 2006, CURR NUTR FOOD SCI, V2, P127, DOI 10.2174/157340106776818862; Bertrand S, 2006, FUNCT ECOL, V20, P1022, DOI 10.1111/j.1365-2435.2006.01191.x; Bonneaud C, 2003, AM NAT, V161, P367, DOI 10.1086/346134; Bourgeon S, 2006, GEN COMP ENDOCR, V147, P336, DOI 10.1016/j.ygcen.2006.02.006; Bourgeon S, 2007, DEV COMP IMMUNOL, V31, P720, DOI 10.1016/j.dci.2006.11.009; Bourgeon S, 2007, GEN COMP ENDOCR, V151, P188, DOI 10.1016/j.ygcen.2007.01.020; Bourgeon S, 2006, J EXP BIOL, V209, P4957, DOI 10.1242/jeb.02610; Bourgeon S, 2006, PHYSIOL BIOCHEM ZOOL, V79, P793, DOI 10.1086/504609; CHEREL Y, 1988, AM J PHYSIOL, V254, pR170; Cichon M, 1998, IBIS, V140, P128, DOI 10.1111/j.1474-919X.1998.tb04549.x; Costantini D, 2006, J COMP PHYSIOL B, V176, P575, DOI 10.1007/s00360-006-0080-0; Criscuolo F, 2003, PHYSIOL BIOCHEM ZOOL, V76, P196, DOI 10.1086/374280; Day T, 2007, P R SOC B, V274, P2685, DOI 10.1098/rspb.2007.0809; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; Demas GE, 2005, P ROY SOC B-BIOL SCI, V272, P1845, DOI 10.1098/rspb.2005.3126; Graham AL, 2005, ANNU REV ECOL EVOL S, V36, P373, DOI 10.1146/annurev.ecolsys.36.102003.152622; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Hanssen SA, 2004, P ROY SOC B-BIOL SCI, V271, P925, DOI 10.1098/rspb.2004.2678; HARVEY S, 1983, J ENDOCRINOL, V98, P129, DOI 10.1677/joe.0.0980129; He X, 2007, ANIM FEED SCI TECH, V139, P186, DOI 10.1016/j.anifeedsci.2007.01.009; Herring G, 2007, THESCIENTIFICWORLDJO, V7, P1596, DOI 10.1100/tsw.2007.242; Hollmen T, 2001, PHYSIOL BIOCHEM ZOOL, V74, P333, DOI 10.1086/320421; Horak P, 2003, CAN J ZOOL, V81, P371, DOI 10.1139/Z03-020; KORSCHGEN CE, 1977, J WILDLIFE MANAGE, V41, P360, DOI 10.2307/3800505; LAMB JR, 1989, J AUTOIMMUN, V2, P93, DOI 10.1016/0896-8411(89)90120-0; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Lord GM, 1998, NATURE, V394, P897, DOI 10.1038/29795; Martin LB, 2003, P ROY SOC B-BIOL SCI, V270, P153, DOI 10.1098/rspb.2002.2185; Martin LB, 2005, GEN COMP ENDOCR, V140, P126, DOI 10.1016/j.ygcen.2004.10.010; Martin LB, 2008, PHILOS T R SOC B, V363, P321, DOI 10.1098/rstb.2007.2142; McEwen BS, 1997, BRAIN RES REV, V23, P79, DOI 10.1016/S0165-0173(96)00012-4; MCNABB FMA, 1995, J NUTR, V125, pS1773, DOI 10.1093/jn/125.suppl_6.1773S; Morales J, 2006, FUNCT ECOL, V20, P647, DOI 10.1111/j.1365-2435.2006.01139.x; Moreno J, 1999, P ROY SOC B-BIOL SCI, V266, P1105, DOI 10.1098/rspb.1999.0750; Moreno J, 2001, OECOLOGIA, V129, P492, DOI 10.1007/s004420100767; Nilsson JA, 2007, J AVIAN BIOL, V38, P488, DOI 10.1111/j.2007.0908-8857.03919.x; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; PARKER H, 1990, AUK, V107, P660, DOI 10.2307/4087996; Raberg L, 1998, P ROY SOC B-BIOL SCI, V265, P1637, DOI 10.1098/rspb.1998.0482; Raberg L, 2000, ECOL LETT, V3, P382, DOI 10.1046/j.1461-0248.2000.00154.x; ROITT IM, 1998, IMMUNOLOGY; Rubolini D, 2005, HORM BEHAV, V47, P592, DOI 10.1016/j.yhbeh.2005.01.006; Saino N, 2002, BEHAV ECOL, V13, P169, DOI 10.1093/beheco/13.2.169; Sharp PJ, 2008, GEN COMP ENDOCR, V158, P2, DOI 10.1016/j.ygcen.2008.05.018; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SMITH JM, 1978, ANNU REV ECOL SYST, V9, P31, DOI 10.1146/annurev.es.09.110178.000335; Sorensen JG, 2003, ECOL LETT, V6, P1025, DOI 10.1046/j.1461-0248.2003.00528.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stjernman M, 2004, P ROY SOC B-BIOL SCI, V271, P2387, DOI 10.1098/rspb.2004.2883; Surai P., 2002, NATURAL ANTIOXIDANT; Svensson E, 1998, FUNCT ECOL, V12, P912, DOI 10.1046/j.1365-2435.1998.00271.x; Tschirren B, 2006, P R SOC B, V273, P1773, DOI 10.1098/rspb.2006.3524; Verhulst S, 2005, J AVIAN BIOL, V36, P22, DOI 10.1111/j.0908-8857.2005.03342.x; von Schantz T, 1999, P ROY SOC B-BIOL SCI, V266, P1; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams TD, 1999, P ROY SOC B-BIOL SCI, V266, P753, DOI 10.1098/rspb.1999.0701; Wingfield JC, 1998, AM ZOOL, V38, P191; Zuk M, 1996, ECOLOGY, V77, P1037, DOI 10.2307/2265574 64 12 12 0 17 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0016-6480 GEN COMP ENDOCR Gen. Comp. Endocrinol. AUG-SEP 2009 163 1-2 77 82 10.1016/j.ygcen.2008.11.015 6 Endocrinology & Metabolism Endocrinology & Metabolism 473NG WOS:000268213200014 19063892 2018-11-12 J Andersen, KH; Brander, K Andersen, Ken H.; Brander, Keith Expected rate of fisheries-induced evolution is slow PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article evolutionary impact assessment; life-history theory; quantitative genetics COD GADUS-MORHUA; EVOLVING FISH STOCKS; NORTHERN COD; LIFE-HISTORIES; GROWTH-RATES; MATURATION; SIZE; POPULATIONS; DENSITY; AGE Commercial fisheries exert high mortalities on the stocks they exploit, and the consequent selection pressure leads to fisheries-induced evolution of growth rate, age and size at maturation, and reproductive output. Productivity and yields may decline as a result, but little is known about the rate at which such changes are likely to occur. Fisheries-induced evolution of exploited populations has recently become a subject of concern for policy makers, fisheries managers, and the general public, with prominent calls for mitigating management action. We make a general evolutionary impact assessment of fisheries by calculating the expected rate of fisheries-induced evolution and the consequent changes in yield. Rates of evolution are expected to be approximate to 0.1-0.6% per year, and the consequent reductions in fisheries yield are <0.7% per year. These rates are at least a factor of 5 lower than published values based on experiments and analyses of population time series, and we explain why the published rates may be overestimates. Dealing with evolutionary effects of fishing is less urgent than reducing the direct detrimental effects of overfishing on exploited stocks and on their marine ecosystems. [Andersen, Ken H.; Brander, Keith] Tech Univ Denmark, Natl Inst Aquat Resources, DK-2920 Charlottenlund, Denmark Andersen, KH (reprint author), Tech Univ Denmark, Natl Inst Aquat Resources, DK-2920 Charlottenlund, Denmark. kha@aqua.dtu.dk Andersen, Ken Haste/0000-0002-8478-3430 EU [022717] We thank Martin Pedersen for comments on the manuscript and Uffe H. Thygesen for discussions on life history theory. The analysis is a contribution to the EU FP6 Specific Targeted Research Projects 022717 (UNCOVER). Andersen KH, 2007, ECOL MODEL, V204, P246, DOI 10.1016/j.ecolmodel.2007.01.002; Andersen KH, 2006, AM NAT, V168, P54, DOI 10.1086/504849; Andersen KH, 2009, ICES J MAR SCI, V66, P1978, DOI 10.1093/icesjms/fsp161; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Barot S, 2005, ICES J MAR SCI, V62, P56, DOI 10.1016/j.icesjms.2004.10.004; Barot S, 2004, ECOL APPL, V14, P1257, DOI 10.1890/03-5066; Beverton R. J. H., 1959, CIBA FDN C AGEING, V5, P142, DOI DOI 10.1002/9780470715253.CH10; BEVERTON RJH, 1992, J FISH BIOL, V41, P137, DOI 10.1111/j.1095-8649.1992.tb03875.x; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; Charnov Eric L., 1993, P1; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Dutil JD, 2003, FISH OCEANOGR, V12, P502, DOI 10.1046/j.1365-2419.2003.00243.x; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Hilborn R, 2008, B MAR SCI, V83, P95; Hutchings JA, 1996, CAN J FISH AQUAT SCI, V53, P943, DOI 10.1139/cjfas-53-5-943; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; LAW R, 1993, EVOLUTION EXPLOITED, P151; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Lilly GR, 2008, LOW WAKE FI, V24, P39, DOI 10.4027/rgsfcc.2008.03; MYERS RA, 1993, CAN J FISH AQUAT SCI, V50, P1576, DOI 10.1139/f93-179; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Olsen E, 2005, CAN J FISH AQUAT SCI, V62, P811, DOI 10.1139/F05-065; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Pope JG, 1996, ICES J MAR SCI, V53, P1157, DOI 10.1006/jmsc.1996.0141; Rose GA, 2000, CAN J FISH AQUAT SCI, V57, P644, DOI 10.1139/f00-004; Stenseth NC, 2009, NATURE, V457, P803, DOI 10.1038/457803a; Warren WG, 1997, CAN J FISH AQUAT SCI, V54, P139, DOI 10.1139/cjfas-54-S1-139 32 72 72 2 45 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. JUL 14 2009 106 28 11657 11660 10.1073/pnas.0901690106 4 Multidisciplinary Sciences Science & Technology - Other Topics 470KD WOS:000267972700043 19564596 Bronze, Green Published 2018-11-12 J Reiches, MW; Ellison, PT; Lipson, SF; Sharrock, KC; Gardiner, E; Duncan, LG Reiches, Meredith W.; Ellison, Peter T.; Lipson, Susan F.; Sharrock, Katherine C.; Gardiner, Eliza; Duncan, Laura G. Pooled Energy Budget and Human Life History AMERICAN JOURNAL OF HUMAN BIOLOGY English Article SENEGALESE ADOLESCENT GIRLS; HABITUAL PHYSICAL-ACTIVITY; BODY-FAT DISTRIBUTION; LOW-BIRTH-WEIGHT; MENSTRUAL CYCLES; HUMAN-PREGNANCY; LACTATIONAL AMENORRHEA; MOVEMENT REGISTRATION; POSTREPRODUCTIVE LIFE; NUTRITIONAL-STATUS Human life history contains a series of paradoxes not easily explained by classical life history theory. Although overall reproductive output is higher than in related primates, juvenile growth is slower and age-specific reproductive rates decline faster with age. A simple energetic model would predict that growth and reproductive rates should be positively correlated and that reproductive effort should not decelerate with age. The pattern of negative correlations in humans suggest the presence of trade-offs among peak reproductive rate, childhood growth, and reproductive rate at older ages. To address this puzzle, we propose a synthesis of reproductive ecology and behavioral ecology focused on intra- and inter-somatic energy transfers. This integration includes three concepts: the mother as final common pathway through which energy must pass to result in offspring; a distinction between direct and indirect reproductive effort, proposing the latter as a novel net energy allocation category relative to growth and direct reproductive effort; and a pooled energy budget representing the energetic contributions and withdrawals of all members of a breeding community. Individuals at all reproductive life stages are considered in light of their contributions to the pooled energy budget. Am. J. Hum. Biol. 21:421-429, 2009. (C) 2009 Wiley-Liss, Inc. [Reiches, Meredith W.; Ellison, Peter T.; Lipson, Susan F.; Sharrock, Katherine C.; Gardiner, Eliza] Harvard Univ, Dept Anthropol, Cambridge, MA 02138 USA; [Duncan, Laura G.] NYU, Gallatin Sch Individualized Study, New York, NY 10003 USA Reiches, MW (reprint author), Harvard Univ, Dept Anthropol, 11 Divin Ave, Cambridge, MA 02138 USA. mreiches@fas.harvard.edu AIELLO LC, 1995, CURR ANTHROPOL, V36, P199, DOI 10.1086/204350; Alvarez HP, 2000, AM J PHYS ANTHROPOL, V113, P435, DOI 10.1002/1096-8644(200011)113:3<435::AID-AJPA11>3.0.CO;2-O; Apicella CL, 2007, BIOLOGY LETT, V3, P682, DOI 10.1098/rsbl.2007.0410; APTER D, 1978, J CLIN ENDOCR METAB, V47, P944, DOI 10.1210/jcem-47-5-944; Benefice E, 2001, J ADOLESCENT HEALTH, V28, P319, DOI 10.1016/S1054-139X(00)00201-9; Benefice E, 2001, AM J HUM BIOL, V13, P808, DOI 10.1002/ajhb.1126; Benefice E, 1999, EUR J CLIN NUTR, V53, P636, DOI 10.1038/sj.ejcn.1600826; Bogin B, 1999, ANNU REV ANTHROPOL, V28, P109, DOI 10.1146/annurev.anthro.28.1.109; Bogin B., 1999, PATTERNS HUMAN GROWT; Bribiescas RG, 2001, YEARB PHYS ANTHROPOL, V44, P148, DOI 10.1002/ajpa.10025; Del Prado M, 2000, ADV EXP MED BIOL, V478, P407; DeMenocal PB, 2004, EARTH PLANET SC LETT, V220, P3, DOI 10.1016/S0012-821X(04)00003-2; Demmelmair H, 1998, J LIPID RES, V39, P1389; DRAPER P, 1987, PARENTING LIFESPAN B; Dufour DL, 2002, AM J HUM BIOL, V14, P584, DOI 10.1002/ajhb.10071; Ellison P.T., 1995, BREASTFEEDING BIOCUL, P305; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Ellison PT, 2003, FERTIL STERIL, V80, P1279, DOI 10.1016/S0015-0282(03)02158-7; ELLISON PT, 1994, ANNU REV ANTHROPOL, V23, P255, DOI 10.1146/annurev.anthro.23.1.255; ELLISON PT, 1996, VARIABILITY HUMAN FE, P69; Fidler N, 2000, J LIPID RES, V41, P1376; Fredriks AM, 2005, EUR J PEDIATR, V164, P216, DOI 10.1007/s00431-004-1586-7; FREINKEL N, 1980, DIABETES, V29, P1023, DOI 10.2337/diabetes.29.12.1023; Froehle AW, 2006, AM J PHYS ANTHROPOL, V131, P552, DOI 10.1002/ajpa.20475; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Garnier D, 2005, AM J HUM BIOL, V17, P718, DOI 10.1002/ajhb.20435; Garnier D, 2001, ANN HUM BIOL, V28, P79; Gurven M, 2006, P ROY SOC B-BIOL SCI, V273, P835, DOI 10.1098/rspb.2005.3380; HACHEY DL, 1987, J LIPID RES, V28, P1185; HAMMER LD, 1991, J PEDIATR-US, V118, P975, DOI 10.1016/S0022-3476(05)82223-1; Hawkes K, 2003, AM J HUM BIOL, V15, P380, DOI 10.1002/ajhb.10156; Hawkes K, 2004, NATURE, V428, P128, DOI 10.1038/428128a; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Herrera E, 2002, ENDOCRINE, V19, P43, DOI 10.1385/ENDO:19:1:43; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill K, 1991, Hum Nat, V2, P313, DOI 10.1007/BF02692196; Homko CJ, 1999, SEMIN REPROD ENDOCR, V17, P119, DOI 10.1055/s-2007-1016219; HOWIE PW, 1982, J REPROD FERTIL, V65, P545; Hrdy Sarah Blaffer, 2000, MOTHER NATURE MATERN; HRDY SB, 2007, FAM RELAT, V31, P29; ISAAC G, 1978, SCI AM, V238, P90, DOI 10.1038/scientificamerican0478-90; Ivey PK, 2000, CURR ANTHROPOL, V41, P856, DOI 10.1086/317414; Janson Charles H., 1993, P57; Jasienska G, 2006, P NATL ACAD SCI USA, V103, P12759, DOI 10.1073/pnas.0605488103; Jones NGB, 2002, AM J HUM BIOL, V14, P184, DOI 10.1002/ajhb.10038; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; KAPLAN H, 1985, CURR ANTHROPOL, V26, P223, DOI 10.1086/203251; Kaplan HS, 2005, MORAL SENTIMENTS MAT, P75; KNOTT CD, 2001, REPROD ECOLOGY HUMAN, P429; Kokko H, 2002, BEHAV ECOL, V13, P291, DOI 10.1093/beheco/13.3.291; Kramer KL, 2005, EVOL ANTHROPOL, V14, P224, DOI 10.1002/evan.20082; Kramer KL, 2002, HUM NATURE-INT BIOS, V13, P299, DOI 10.1007/s12110-002-1011-8; Kuzawa CW, 1998, YEARB PHYS ANTHROPOL, V41, P177; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; Lancaster J., 1983, HUMANS ADAPT BIOCULT; LARSEN CS, 1995, ANNU REV ANTHROPOL, V24, P185, DOI 10.1146/annurev.an.24.100195.001153; Lassek WD, 2006, AM J PHYS ANTHROPOL, V131, P295, DOI 10.1002/ajpa.20394; Lee RD, 2002, POPUL DEV REV, V28, P475, DOI 10.1111/j.1728-4457.2002.00475.x; Leonard WR, 2003, COMP BIOCHEM PHYS A, V136, P5, DOI 10.1016/S1095-6433(03)00132-6; Lipson SF, 1996, HUM REPROD, V11, P2090; LOVEJOY CO, 1981, SCIENCE, V211, P341, DOI 10.1126/science.211.4480.341; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; Marlowe FW, 2003, EVOL HUM BEHAV, V24, P217, DOI 10.1016/S1090-5138(03)00014-X; Marlowe FW, 1999, EVOL HUM BEHAV, V20, P391, DOI 10.1016/S1090-5138(99)00021-5; Marlowe FW, 2000, BEHAV PROCESS, V51, P45, DOI 10.1016/S0376-6357(00)00118-2; Marlowe FW, 2000, HUM NATURE-INT BIOS, V11, P27, DOI 10.1007/s12110-000-1001-7; MCCORMICK MC, 1985, NEW ENGL J MED, V312, P82, DOI 10.1056/NEJM198501103120204; McNeilly A S, 2001, Prog Brain Res, V133, P207; MCNEILLY AS, 2001, DEV READINESS NORAMA, P27; POPPITT SD, 1993, AM J CLIN NUTR, V57, P353; Prentice AM, 1995, HUM REPROD UPDATE, V1, P149, DOI 10.1093/humupd/1.2.149; PRENTICE AM, 1993, LANCET, V341, P52, DOI 10.1016/0140-6736(93)92528-2; Prentice AM, 2000, AM J CLIN NUTR, V71, p1226S, DOI 10.1093/ajcn/71.5.1226s; PRENTICE AM, 1996, BIBL NUTR DIET, V53, P1; RAO KV, 1995, J BIOSOC SCI, V27, P135; RODSETH L, 1991, CURR ANTHROPOL, V32, P221, DOI 10.1086/203952; Sear R, 2000, P ROY SOC B-BIOL SCI, V267, P1641, DOI 10.1098/rspb.2000.1190; Skinner JD, 1997, J AM COLL NUTR, V16, P209, DOI 10.1080/07315724.1997.10718676; Solomon N.G., 1997, COOPERATIVE BREEDING; Tanner J, 1976, WORLDWIDE VARIATION; te Velde ER, 2002, HUM REPROD UPDATE, V8, P141, DOI DOI 10.1093/HUMUPD/8.2.141; Thomas F, 2001, HUM BIOL, V73, P271, DOI 10.1353/hub.2001.0029; Thompson ME, 2005, AM J PRIMATOL, V67, P137, DOI 10.1002/ajp.20174; Thompson ME, 2007, CURR BIOL, V17, P2150, DOI 10.1016/j.cub.2007.11.033; Valeggia C, 2004, J BIOSOC SCI, V36, P573, DOI 10.1017/S0021932003006382; Venners SA, 2006, HUM REPROD, V21, P2272, DOI 10.1093/humrep/del187; VERLOOVEVANHORICK SP, 1986, LANCET, V1, P55; VIHKO R, 1984, J STEROID BIOCHEM, V20, P231, DOI 10.1016/0022-4731(84)90209-7; WASHBURN SL, 1968, MAN HUNTER, P293; WEISNER TS, 1987, PARENTING LIFESPAN B; WICH SA, 2006, FEEDING ECOLOGY APES; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wrangham RW, 1999, CURR ANTHROPOL, V40, P567, DOI 10.1086/300083 93 36 36 3 20 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 1520-6300 AM J HUM BIOL Am. J. Hum. Biol. JUL-AUG 2009 21 4 SI 421 429 10.1002/ajhb.20906 9 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 460QR WOS:000267202700002 19367579 2018-11-12 J Kramer, KL; Greaves, RD; Ellison, PT Kramer, Karen L.; Greaves, Russell D.; Ellison, Peter T. Early Reproductive Maturity Among Pume Foragers: Implications of a Pooled Energy Model to Fast Life Histories AMERICAN JOURNAL OF HUMAN BIOLOGY English Article BIRTH-WEIGHT; HUNTER-GATHERERS; EVOLUTION; GROWTH; MENARCHE; GIRLS; AGE; MAINTENANCE; MATURATION; FERTILITY Life history theory places central importance on relationships between ontogeny, reproduction, and mortality. Fast human life histories have been theoretically and empirically associated with high mortality regimes. This relationship, however, poses an unanswered question about energy allocation. In epidemiologically stressful environments, a greater proportion of energy is allocated to immune function. If growth and maintenance are competing energetic expenditures, less energy should be available for growth, and the mechanism to sustain rapid maturation remains unclear. The human pattern of extended juvenile provisioning and resource sharing may provide an important source of variation in energy availability not predicted by tradeoff models that assume independence at weaning. We consider a group of South American foragers to evaluate the effects that pooled energy budgets may have on early reproduction. Despite growing up in an environment with distinct seasonal under-nutrition, harsh epidemiological conditions, and no health care, Pume girls mature quickly and initiate childbearing in their midteens. Pooled energy budgets compensate for the low productivity of girls not only through direct food transfers but importantly by reducing energy they would otherwise expend in foraging activities to meet metabolic requirements. We suggest that pooled energy budgets affect energy availability at both extrinsic and intrinsic levels. Because energy budgets are pooled, Pume girls and young women are buffered from environmental downturns and can maximize energy allocated to growth completion and initiate reproduction earlier than a traditional bound-energy model would predict. Am. J. Hum. Biol. 21:430-437, 2009. (C) 2009 Wiley-Liss, Inc. [Kramer, Karen L.; Ellison, Peter T.] Harvard Univ, Dept Anthropol & Biol, Cambridge, MA 02138 USA; [Greaves, Russell D.] Harvard Univ, Peabody Museum Archaeol & Ethnol, Cambridge, MA 02138 USA Kramer, KL (reprint author), Harvard Univ, Dept Anthropol & Biol, Cambridge, MA 02138 USA. kkramer@fas.harvard.edu Adair L.S., 2001, PEDIATRICS, V107, P59; BARRETO D, 2007, SALUD INDIGENA VENEZ, V2, P247; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov EL, 2001, EVOL ECOL RES, V3, P873; Charnov Eric L., 1993, P1; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Coale A. J., 1983, REGIONAL MODEL LIFE; Coall DA, 2003, SOC SCI MED, V57, P1771, DOI 10.1016/S0277-9536(03)00022-4; Cooper C, 1996, BRIT J OBSTET GYNAEC, V103, P814, DOI 10.1111/j.1471-0528.1996.tb09879.x; *CTR DIS CONTR, 2008, NAT CTR HLTH STAT 20; Derting TL, 2003, PHYSIOL BIOCHEM ZOOL, V76, P744, DOI 10.1086/375662; ELLISON PT, 1981, AM J PHYS ANTHROPOL, V56, P71, DOI 10.1002/ajpa.1330560108; ELLISON PT, 2001, FERTILE GROUND NATUR; Geronimus Arline T., 1992, Ethnicity and Disease, V2, P207; Geronimus AT, 2003, SOC SCI MED, V57, P881, DOI 10.1016/S0277-9536(02)00456-2; Gibson MA, 2005, EVOL HUM BEHAV, V26, P469, DOI 10.1016/j.evolhumbehav.2005.03.004; Gillett-Netting R, 2004, AM J HUM BIOL, V16, P658, DOI 10.1002/ajhb.20081; GOODMAN MJ, 1985, SEX ROLES, V12, P1199, DOI 10.1007/BF00287829; GRAGSON TL, 1989, THESIS PITTSBURGH PE; Greaves R. D., 2006, ARCHAEOLOGY ETHNOARC, P127; Greaves RD, 1997, INTERD CONT, P287; GREAVES RD, 1997, THESIS ALBUQUERQUE U; Gurven M, 2007, POPUL DEV REV, V33, P321, DOI 10.1111/j.1728-4457.2007.00171.x; Hames R, 2004, HUM NATURE-INT BIOS, V15, P319, DOI 10.1007/s12110-004-1012-x; Hames R, 1988, HUMAN REPROD BEHAV, P237; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hawkes K, 2006, EVOLUTION HUMAN LIFE; HOWELL N, 2000, DEMOGRAPHY KUNG; Hrdy S., 2005, HUNTER GATHERER CHIL, P65, DOI DOI 10.1177/1754073911430141; Hurtado AM, 1996, ACHE LIFE HIST; Hurtado M., 1992, HUM NATURE, V3, P1; Ibanez L, 2000, PEDIATRICS, V106, DOI 10.1542/peds.106.5.e72; Jasienska G, 1998, P ROY SOC B-BIOL SCI, V265, P1847, DOI 10.1098/rspb.1998.0511; Johnson SE, 2003, AM J PHYS ANTHROPOL, V120, P83, DOI 10.1002/ajpa.10139; Jones Nicholas Blurton, 1999, P140, DOI 10.1017/CBO9780511542466.009; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; KAPLAN HS, 2000, ADAPTATION HUMAN BEH, P283; Koziel S, 2002, J PAEDIATR CHILD H, V38, P268, DOI 10.1046/j.1440-1754.2002.00793.x; KRAMER K, 2008, MIDDLE CHILDHOOD PUM; Kramer KL, 2007, AM ANTHROPOL, V109, P713, DOI [10.1525/aa.2007.109.4.713, 10.1525/AA.2007.109.4.713]; Kramer KL, 2008, AM J PHYS ANTHROPOL, V136, P338, DOI 10.1002/ajpa.20817; Kramer KL, 2005, EVOL ANTHROPOL, V14, P224, DOI 10.1002/evan.20082; Kramer KL, 2006, CURR ANTHROPOL, V47, P165, DOI 10.1086/499550; Kramer KL, 2005, MAYA CHILDREN HELPER; Leigh SR, 1996, AM J PHYS ANTHROPOL, V101, P455, DOI 10.1002/(SICI)1096-8644(199612)101:4<455::AID-AJPA2>3.0.CO;2-V; Leigh SR, 1996, AM J PHYS ANTHROPOL, V99, P43, DOI 10.1002/(SICI)1096-8644(199601)99:1<43::AID-AJPA3>3.0.CO;2-0; Leonard WR, 2003, AM J HUM BIOL, V15, P479, DOI 10.1002/ajhb.10187; Leonetti DL, 2007, CURR ANTHROPOL, V48, P861, DOI 10.1086/520976; MARTIN II, 2003, P ROY SOC LOND B BIO, V270, P153; McDade TW, 2008, AM J PHYS ANTHROPOL, V136, P478, DOI 10.1002/ajpa.20831; Migliano AB, 2007, P NATL ACAD SCI USA, V104, P20216, DOI 10.1073/pnas.0708024105; MITRANI P, 1988, LOS ABORIGENES VENEZ, V3; Ots I, 2001, P ROY SOC B-BIOL SCI, V268, P1175, DOI 10.1098/rspb.2001.1636; PURVIS A, 1995, J ZOOL, V237, P259, DOI 10.1111/j.1469-7998.1995.tb02762.x; Robinson RS, 2008, POP STUD-J DEMOG, V62, P25, DOI 10.1080/00324720701788590; Salzano FM, 1988, S AM INDIANS CASE ST; SCHLEGEL A, 1995, ETHOS, V23, P15, DOI 10.1525/eth.1995.23.1.02a00020; Stearns S. C., 1992, EVOLUTION LIFE HIST; Turke P., 1988, HUMAN REPROD BEHAV D, P173; UNGRIA AGD, 1966, ESTUDIO COMP LAS CAR; VALEGGIA CR, 2009, STUDIES BIOSOCIAL SO, V3; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Whiting JW, 1986, SCH AGE PREGNANCY PA, P273; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 67 27 28 0 13 WILEY-LISS HOBOKEN DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA 1042-0533 AM J HUM BIOL Am. J. Hum. Biol. JUL-AUG 2009 21 4 430 437 10.1002/ajhb.20930 8 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 460QR WOS:000267202700003 19402033 2018-11-12 J Vitzthum, VJ; Thornburg, J; Spielvogel, H Vitzthum, Virginia J.; Thornburg, Jonathan; Spielvogel, Hilde Seasonal Modulation of Reproductive Effort During Early Pregnancy in Humans AMERICAN JOURNAL OF HUMAN BIOLOGY English Article; Proceedings Paper Seminar on Trade-Offs in Female Life Histories - Raising New Questions in an Integrative Framework JUL 23-25, 2008 Bristol, ENGLAND PROGESTERONE LEVELS; OVARIAN-FUNCTION; BOLIVIAN WOMEN; PATTERNS; ECOLOGY; CONCEPTION; FERTILITY; ABNORMALITIES; ANOVULATION; SUBSISTENCE Life history theory predicts that early pregnancy presents a relatively low cost, uncontested opportunity for a woman to terminate investment in a current reproductive opportunity if a conceptus is of poor quality and/or maternal status or environmental conditions are not propitious for a successful birth. We tested this hypothesis in rural Bolivian women experiencing substantial seasonal variation in workload and food resources. Significant risk factors for early pregnancy loss (EPL) included agropastoralism versus other economic strategies, conception during the most arduous seasons versus other seasons, and increasing maternal age. Anovulation rate (AR) was higher during the most arduous seasons and in older women. Breastfeeding and indicators of social status and living conditions did not significantly influence either risk of EPL or AR. Averaged over the year, anovulation occurred in about 1/4 of the cycles and EPL occurred in about 1/3 of the conceptions. This is the first evidence of seasonality of EPL in a non-industrialized population, and the first to demonstrate a relationship between economic activities and EPL. These findings suggest that both anovulation and EPL are potential mechanisms for modulating reproductive effort; such "failures" may also be nonadaptive consequences of conditions hostile to a successful pregnancy. In either case, variation in EPL risk associated with different subsistence activities can be expected to influence fertility levels and birth seasonality in both contemporary and past human populations. These consequences of variability in the risk of EPL can impact efforts to understand the sources of variation in reproductive success. Am. J. Hum. Biol. 21:548-558, 2009. (C) 2009 Wiley-Liss, Inc. [Vitzthum, Virginia J.] Indiana Univ, Dept Anthropol, Bloomington, IN 47405 USA; [Vitzthum, Virginia J.] Indiana Univ, Kinsey Inst Res Sex Gender & Reprod, Bloomington, IN 47405 USA; [Thornburg, Jonathan] Indiana Univ, Dept Astron, Bloomington, IN 47405 USA; [Spielvogel, Hilde] Univ Mayor San Marcos, Fac Med, Dept Bioenerget, Inst Boliviano Biol Altura, La Paz, Bolivia Vitzthum, VJ (reprint author), Indiana Univ, Dept Anthropol, Student Bldg 130,701 Kirkwood Ave, Bloomington, IN 47405 USA. Vitzthum@Indiana.edu BAILEY RC, 1992, J BIOSOC SCI, V24, P393; BAIRD DD, 1991, J CLIN ENDOCR METAB, V72, P793, DOI 10.1210/jcem-72-4-793; BOKLAGE CE, 1990, INT J FERTIL, V35, P75; Cameron J L, 1996, Rev Reprod, V1, P117; DELUCA M, 1997, THESIS BINGHAMTON NY; Dufour DL, 2002, AM J HUM BIOL, V14, P584, DOI 10.1002/ajhb.10071; EFRON B, 1983, AM STAT, V37, P36, DOI 10.2307/2685844; Efron B., 1986, STAT SCI, V1, P54, DOI DOI 10.1214/SS/1177013815; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; ELLISON PT, 1994, ANNU REV ANTHROPOL, V23, P255, DOI 10.1146/annurev.anthro.23.1.255; ELLISON PT, 1989, AM J PHYS ANTHROPOL, V78, P519, DOI 10.1002/ajpa.1330780407; FRISCH RE, 1970, SCIENCE, V169, P397, DOI 10.1126/science.169.3943.397; HAIG D, 1990, AM NAT, V136, P550, DOI 10.1086/285113; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; Hjollund NHI, 1999, FERTIL STERIL, V72, P47, DOI 10.1016/S0015-0282(99)00186-7; HOLMAN DJ, 2001, REPROD ECOLOGY HUMAN, P15; Hosmer DW, 1989, APPL LOGISTIC REGRES; JASIENSKA G, 1998, P BIOL SCI, V265, P1747; JASIENSKA G, 2001, REPROD ECOLOGY HUMAN, P59; KAPLAN SD, 1973, PROFESSIONAL ACTIVIT, V11, P1; LAM DA, 1994, ANN NY ACAD SCI, V709, P9, DOI 10.1111/j.1749-6632.1994.tb30385.x; LENTON EA, 1988, IMPLANTATION, V17, P17; LESLIE PW, 1993, HUM BIOL, V65, P237; LESLIE PW, 1989, AM J PHYS ANTHROPOL, V79, P103, DOI 10.1002/ajpa.1330790111; LITTLE MA, 1999, TURKANA HERDERS DRY; Macklon NS, 2002, HUM REPROD UPDATE, V8, P333, DOI 10.1093/humupd/8.4.333; MCDONALD AD, 1971, BRIT J PREV SOC MED, V25, P222; Nepomnaschy PA, 2006, P NATL ACAD SCI USA, V103, P3938, DOI 10.1073/pnas.0511183103; Nepomnaschy PA, 2004, AM J HUM BIOL, V16, P523, DOI 10.1002/ajhb.20057; PANTERBRICK C, 1993, HUM REPROD, V8, P684, DOI 10.1093/oxfordjournals.humrep.a138120; Peacock N, 1991, Hum Nat, V2, P351, DOI 10.1007/BF02692197; PEACOCK NR, 1990, MG PRIMATOL, V14, P195; Pellestor F, 2005, CYTOGENET GENOME RES, V111, P206, DOI 10.1159/000086891; PETRIE A, 2005, MED STAT GLANCE; PRIOR JC, 1987, BAILLIERE CLIN ENDOC, V1, P299, DOI 10.1016/S0950-351X(87)80065-4; PRIOR JC, 1985, SEMIN REPROD ENDOCR, V3, P27, DOI 10.1055/s-2007-1022601; PRIOR JC, 1985, MENSTRUAL CYCLE PHYS, P63; PURIFOY FE, 1981, ANNU REV ANTHROPOL, V10, P141, DOI 10.1146/annurev.an.10.100181.001041; Regan L, 2000, BEST PRACT RES CL OB, V14, P839, DOI 10.1053/beog.2000.0123; ROBERTS CJ, 1975, LANCET, V1, P498; Sellen DW, 2001, HUM NATURE-INT BIOS, V12, P47, DOI 10.1007/s12110-001-1013-y; Sellen DW, 1997, CURR ANTHROPOL, V38, P878, DOI 10.1086/204677; Stearns S. C., 1992, EVOLUTION LIFE HIST; Templado C, 2005, CYTOGENET GENOME RES, V111, P199, DOI 10.1159/000086890; VANDERWALT LA, 1978, J CLIN ENDOCR METAB, V46, P658, DOI 10.1210/jcem-46-4-658; Vitzthum V J, 2000, High Alt Med Biol, V1, P39, DOI 10.1089/152702900320676; Vitzthum VJ, 2008, SOC ST HUM, V48, P99; Vitzthum VJ, 2008, ANNU REV ANTHROPOL, V37, P53, DOI 10.1146/annurev.anthro.37.081407.085112; Vitzthum VJ, 2006, FERTIL STERIL, V86, P373, DOI 10.1016/j.fertnstert.2006.01.021; Vitzthum VJ, 2004, P NATL ACAD SCI USA, V101, P1443, DOI 10.1073/pnas.0302640101; VITZTHUM VJ, 1989, AM J PHYS ANTHROPOL, V78, P318; Vitzthum VJ, 2002, HUM REPROD, V17, P1906, DOI 10.1093/humrep/17.7.1906; Vitzthum VJ, 2001, CONTRACEPTION, V64, P319, DOI 10.1016/S0010-7824(01)00260-8; Vitzthum VJ, 2000, CONTRACEPTION, V62, P181, DOI 10.1016/S0010-7824(00)00164-5; VITZTHUM VJ, 2001, REPROD ECOLOGY HUMAN, P179; VITZTHUM VJ, 2006, AM ASS PHYS ANTH S42, V129, P183; VITZTHUM VJ, 1997, EVOLVING FEMALE LIFE, P242; VITZTHUM VJ, 1990, 90200 U MICH POP STU; VUORENTO T, 1989, SCAND J CLIN LAB INV, V49, P395, DOI 10.3109/00365518909089113; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; WEINBERG CR, 1994, EPIDEMIOLOGY, V5, P484; Wilcox A J, 1990, Epidemiology, V1, P382, DOI 10.1097/00001648-199009000-00008; WILCOX AJ, 1988, NEW ENGL J MED, V319, P189, DOI 10.1056/NEJM198807283190401; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WOOD JW, 1994, DYNAMICS HUMAN REPRO 66 16 16 2 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 1520-6300 AM J HUM BIOL Am. J. Hum. Biol. JUL-AUG 2009 21 4 SI 548 558 10.1002/ajhb.20936 11 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 460QR WOS:000267202700017 19402035 2018-11-12 J Bijleveld, AI; Mullers, RHE Bijleveld, Allert I.; Mullers, Ralf H. E. Reproductive effort in biparental care: an experimental study in long-lived Cape gannets BEHAVIORAL ECOLOGY English Article chick provisioning; foraging behavior; life-history trade-off; long-lived seabird; parental conflict; reproductive investment YELLOW-NOSED ALBATROSS; THIN-BILLED PRION; BLUE-FOOTED BOOBY; MORUS-CAPENSIS; PARENTAL EFFORT; EXPERIMENTAL MANIPULATION; THALASSOICA-ANTARCTICA; NATURAL-SELECTION; PELAGIC SEABIRD; BROOD SIZE Life-history theory predicts a trade-off between current and future reproduction, such that long-lived species should not increase their reproductive effort (RE) at a cost to their own survival. In species with long-term pair bonds and biparental care, each parent must balance its reproductive investment against that of its partner. Although the effects of "handicapping" studies on the focal individual are sometimes difficult to interpret, they are a powerful approach for investigating compensatory responses of the partner. In the present experiment, we manipulated flying ability of one parent in long-lived Cape gannets (Morus capensis), thereby indirectly increasing the demands on RE of the unmanipulated partner. Handicapped birds doubled their foraging trip duration and reduced nest attendance. Their partners showed behavioral compensation via increased nest attendance for chicks younger than 30 days and increased foraging trip frequency for older chicks. The behavioral responses of partners did not fully compensate for the reduced care of handicapped adults. For manipulated nests, overall foraging trip frequency was 21% lower, chicks were left unattended at 5 days younger, and their growth and survival was reduced compared with control nests. Handicapped adults lost 10% of their body mass during the experiment, but their partners showed no decrease in body mass. Our results show that long-lived Cape gannets can increase current RE when needed, without negative effects on body condition or survival. The reduced care of one parent was partly compensated for by its partner, and remaining costs were borne by the chick. [Bijleveld, Allert I.; Mullers, Ralf H. E.] Univ Groningen, Dept Behav Biol, NL-9751 NN Haren, Netherlands; [Bijleveld, Allert I.] Univ Amsterdam, Dept Populat Biol, Inst Biodivers & Ecosyst Dynam, NL-1090 GB Amsterdam, Netherlands; [Mullers, Ralf H. E.] Univ Cape Town, Dept Zool, Anim Demog Unit, ZA-7701 Rondebosch, South Africa Mullers, RHE (reprint author), Univ Groningen, Dept Behav Biol, Kerklaan 30, NL-9751 NN Haren, Netherlands. r.h.e.mullers@rug.nl Bijleveld, Allert/J-4134-2017; Bijleveld, Allert/D-7143-2011 Bijleveld, Allert/0000-0002-3159-8944; Bijleveld, Allert/0000-0002-3159-8944 The Netherlands Foundation; Amsterdam Universiteits Vereniging The Netherlands Foundation for the Advancement of Tropical Research (WOTRO) to Prof. G. H. Visser and R. H. E. M.; Amsterdam Universiteits Vereniging partly funded A. I. B. CHAURAND T, 1994, IBIS, V136, P285, DOI 10.1111/j.1474-919X.1994.tb01097.x; Crawford RJM, 2007, ICES J MAR SCI, V64, P169, DOI 10.1093/icesjms/fsl011; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; DRENT RH, 1980, ARDEA, V68, P225; Duriez O, 2000, CAN J ZOOL, V78, P1275, DOI 10.1139/cjz-78-7-1275; FISHER R. A., 1930, GENETICAL THEORY NAT; Fridolfsson AK, 1999, J AVIAN BIOL, V30, P116, DOI 10.2307/3677252; GOODMAN D, 1974, AM NAT, V108, P247, DOI 10.1086/282906; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Houston A.I., 1985, P471; IUCN, 2008, IUCN RED LIST THREAT; JARVIS MJF, 1974, J ANIM ECOL, V43, P1, DOI 10.2307/3154; Jones KM, 2002, BEHAV ECOL, V13, P838, DOI 10.1093/beheco/13.6.838; KLAGES NTW, 1994, OSTRICH, V65, P218, DOI 10.1080/00306525.1994.9639685; Lack D., 1968, ECOLOGICAL ADAPTATIO; Lewis S, 2006, OECOLOGIA, V147, P606, DOI 10.1007/s00442-005-0321-z; Lind J, 2001, P ROY SOC B-BIOL SCI, V268, P1915, DOI 10.1098/rspb.2001.1740; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; MARKMAN S, 1995, ANIM BEHAV, V50, P655, DOI 10.1016/0003-3472(95)80127-8; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; MILLER RG, 1986, ANOVA BASICS APPL ST; MONAGHAN P, 1992, ARDEA, V80, P70; Mullers RHE, 2009, ARDEA, V97, P89, DOI 10.5253/078.097.0111; Navarro J, 2007, OECOLOGIA, V151, P150, DOI 10.1007/s00442-006-0559-0; NAVARRO RA, 1991, COLON WATERBIRD, V14, P92, DOI 10.2307/1521496; Nelson JB, 1978, SULIDAE GANNETS BOOB, P231; Nisbet ICT, 2004, WATERBIRDS, V27, P13, DOI 10.1675/1524-4695(2004)027[0013:ROKCTT]2.0.CO;2; NORBERG RA, 1981, AM NAT, V118, P838, DOI 10.1086/283874; Olsson O, 1997, J AVIAN BIOL, V28, P264, DOI 10.2307/3676979; Paredes R, 2005, ANIM BEHAV, V69, P197, DOI 10.1016/j.anbehav.2003.12.029; Pennycuick C.J, 1989, BIRD FLIGHT PERFORMA; Pichegru L, 2007, MAR ECOL PROG SER, V350, P127, DOI 10.3354/meps07128; Roff D. A., 2002, LIFE HIST EVOLUTION; Ropert-Coudert Y, 2004, IBIS, V146, P281, DOI 10.1111/j.1474-919x.2003.00250.x; SAETHER BE, 1993, BEHAV ECOL SOCIOBIOL, V33, P147, DOI 10.1007/BF00216594; Sanz JJ, 2000, J ANIM ECOL, V69, P74, DOI 10.1046/j.1365-2656.2000.00373.x; Trivers R. L., 1972, SEXUAL SELECTION DES, P1871; Tveraa T, 1997, BEHAV ECOL, V8, P465, DOI 10.1093/beheco/8.5.465; Velando A, 2002, BEHAV ECOL, V13, P443, DOI 10.1093/beheco/13.4.443; Velando A, 2003, J ANIM ECOL, V72, P846, DOI 10.1046/j.1365-2656.2003.00756.x; Weimerskirch H, 2000, IBIS, V142, P103, DOI 10.1111/j.1474-919X.2000.tb07689.x; Weimerskirch H, 1999, J AVIAN BIOL, V30, P165, DOI 10.2307/3677126; WEIMERSKIRCH H, 1995, BEHAV ECOL SOCIOBIOL, V36, P11; Weimerskirch H, 2001, BEHAV ECOL, V12, P22, DOI 10.1093/oxfordjournals.beheco.a000374; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WRIGHT J, 1989, BEHAV ECOL SOCIOBIOL, V25, P171, DOI 10.1007/BF00302916 46 22 23 1 40 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 BEHAV ECOL Behav. Ecol. JUL-AUG 2009 20 4 736 744 10.1093/beheco/arp054 9 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 472CM WOS:000268106800008 Bronze 2018-11-12 J Rushton, JP; Templer, DI Rushton, J. Philippe; Templer, Donald I. National differences in intelligence, crime, income, and skin color INTELLIGENCE English Article IQ; National IQ; Crime rates; Skin color; Life expectancy; Reproductive strategies; Life-history theory COGNITIVE-ABILITY; K-THEORY; IQ; RACE; BEHAVIOR; TEMPERATURE; ACHIEVEMENT; HYPOTHESIS; GEOGRAPHY; RATES National differences in murder, rape, and serious assault were examined in 113 countries in relation to national IQ, income, skin color, birth rate, life expectancy, infant mortality, and HIV/AIDS. Data were collated from the 1993-1996 International Crime Statistics published by INTERPOL Violent crime was found to be lower in countries with higher IQs, higher life expectancies, lighter skin color, and lower rates of HIV/AIDS, although not with higher national incomes or higher rates of infant mortality. A principal components analysis found the first general factor accounted for 52% of the variance. Moreover, the correlations were significantly higher with skin color, a more biologically influenced variable, than with measures of national income, a more culturally influenced variable. When the 19 sub-Saharan African countries were excluded from analysis the crime/IQ relation held but the crime/skin color relation did not. (C) 2009 Elsevier Inc. All rights reserved. [Rushton, J. Philippe] Univ Western Ontario, Dept Psychol, London, ON N6A 5C2, Canada; [Templer, Donald I.] Alliant Univ, Fresno, CA USA Rushton, JP (reprint author), Univ Western Ontario, Dept Psychol, London, ON N6A 5C2, Canada. rushton@uwo.ca; donaldtempler@sbcglobal.net Barnett SM, 2004, CONTEMP PSYCHOL, V49, P389; BIASUTTI R, 1967, RAZZE POPOLI TERRA; BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; Central Intelligence Agency CIA, 2008, CIA WORLD FACTB; ELLIS L, 1988, PERS INDIV DIFFER, V9, P697, DOI 10.1016/0191-8869(88)90059-1; Gelade GA, 2008, INTELLIGENCE, V36, P495, DOI 10.1016/j.intell.2008.01.004; Gelade GA, 2008, INTELLIGENCE, V36, P711, DOI 10.1016/j.intell.2008.04.003; Hama A, 1999, MANKIND QUART, V40, P41; *HOM OFF, 1999, STAT RACE CRIMINAL J; HUNT E, 2006, INTELLIGENCE, V34, P137; *INTERPOL, 1993, INT CRIM STAT 1993 1; Jensen AR, 2006, INTELLIGENCE, V34, P128, DOI 10.1016/j.intell.2005.04.003; JENSEN AR, 1998, FACTOR; Kanazawa S, 2008, INTELLIGENCE, V36, P99, DOI 10.1016/j.intell.2007.04.001; Lynn R, 2002, PERS INDIV DIFFER, V32, P273, DOI 10.1016/S0191-8869(01)00029-0; Lynn R, 2006, IQ GLOBAL INEQUALITY; Lynn R, 2002, IQ WEALTH NATIONS; Lynn R, 2007, J BIOSOC SCI, V39, P861, DOI 10.1017/S0021932007001964; Lynn R, 2007, INTELLIGENCE, V35, P115, DOI 10.1016/j.intell.2006.06.001; Lynn R, 2009, INTELLIGENCE, V37, P11, DOI 10.1016/j.intell.2008.03.004; Meisenberg G, 2004, MANKIND QUART, V45, P123; *MIN SOL GEN CORR, 1996, REP COMM SYST RAC ON; Morse S, 2008, GEOGR J, V174, P195, DOI 10.1111/j.1475-4959.2008.00296.x; Rindermann H, 2007, EUR J PERSONALITY, V21, P767, DOI 10.1002/per.658; Rindermann H, 2007, EUR J PERSONALITY, V21, P667, DOI 10.1002/per.634; Rowe DC, 1997, PERS INDIV DIFFER, V23, P105, DOI 10.1016/S0191-8869(97)00005-6; ROWE DC, 1989, DEV PSYCHOL, V25, P61, DOI 10.1037//0012-1649.25.1.61; ROWE DC, 1994, J RES CRIME DELINQ, V31, P364; Rushton J., 2000, RACE EVOLUTION BEHAV; Rushton JP, 2008, MED HYPOTHESES, V71, P629, DOI 10.1016/j.mehy.2008.05.031; Rushton JP, 2008, PERS INDIV DIFFER, V44, P768, DOI 10.1016/j.paid.2007.10.011; RUSHTON JP, 1995, PSYCHOL REP, V76, P307, DOI 10.2466/pr0.1995.76.1.307; Rushton JP, 2005, PSYCHOL PUBLIC POL L, V11, P235, DOI 10.1037/1076-8971.11.2.235; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; RUSHTON JP, 1990, CAN J CRIMINOL, V32, P315; Rushton JP, 2002, POPUL ENVIRON, V23, P501, DOI 10.1023/A:1016335501805; RUSHTON JP, 1989, SOC SCI MED, V28, P1211, DOI 10.1016/0277-9536(89)90339-0; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; TAYLOR J, 1999, J SOCIAL POLITICAL E, V0024; Templer DI, 2006, INTELLIGENCE, V34, P121, DOI 10.1016/j.intell.2005.04.002; Templer DI, 2008, PERS INDIV DIFFER, V45, P440, DOI 10.1016/j.paid.2008.05.010; WHITNEY G, 1995, MANKIND QUART, V35, P327 42 42 42 1 19 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 0160-2896 INTELLIGENCE Intelligence JUL-AUG 2009 37 4 341 346 10.1016/j.intell.2009.04.003 6 Psychology, Multidisciplinary Psychology 466EO WOS:000267643800003 2018-11-12 J Low, M; Part, T Low, Matthew; Part, Tomas Patterns of mortality for each life-history stage in a population of the endangered New Zealand stitchbird JOURNAL OF ANIMAL ECOLOGY English Article mark-recapture; inbreeding; nest-box; translocation; temperature-dependent mortality POSTFLEDGING SURVIVAL; REPRODUCTIVE SUCCESS; NOTIOMYSTIS-CINCTA; SEASONAL DECLINE; HATCHING SUCCESS; PARUS-MAJOR; GREAT TITS; BIRDS; GROWTH; HIHI Using data from 396 breeding attempts over an 8-year period, we investigated age- and stage-specific survival rates and their modifying factors in a closed island population of the New Zealand stitchbird (or hihi, Notiomystis cincta Du Bus). Survival probability generally increased over time; however, at each life-history transition, survival in the new stage started lower than at the end of the previous stage, creating a 'saw-tooth' function of age-related survival. The probability of an egg hatching was low (0.73 +/- 0.01): most likely a consequence of genetic bottlenecks previously endured by this population. There was strong support for a positive relationship between hatching rate and the subsequent survival of the female parent, and hatching success declining for females > 4 years old. Nestling survival probability increased as a function of brood size and days since hatching, and decreased relative to daily maximum ambient temperature and hatching date. Support for models including ambient temperature was greater than for other covariates, with the majority of this temperature-mediated survival effect being restricted to the early nestling stage. Fledglings had low survival rates in the first two weeks after leaving the nest, with post-fledging survival related to the fledgling's mass. Two months after fledging, juvenile survival probability plateaued and remained relatively constant for the following autumn, winter and spring/summer breeding season. There was no effect of sex or season on adult survival probability. However, there was strong support for age-specific variation in adult survival, with survival likelihood increasing during the first four years before showing evidence of a senescence decline. Within-stage survival increases were likely related to stage-specific selection pressures initially weeding out individuals of poorer phenotypes for the environment specific to each life-history stage. Such a mechanism explains the initial high mortality at life-history transitions; a well-adapted phenotype for one stage may not necessarily be so well adapted for subsequent stages. These patterns are not only valuable for examining life-history theory, but also for understanding the regulation of vital rates in an endangered species and providing a basis from which better population management models and harvesting regimes can be derived. [Low, Matthew; Part, Tomas] Swedish Univ Agr Sci, Dept Ecol, S-75007 Uppsala, Sweden Low, M (reprint author), Swedish Univ Agr Sci, Dept Ecol, Box 7044, S-75007 Uppsala, Sweden. matt.low@ekol.slu.se Low, Matthew/D-2292-2013 Part, Tomas/0000-0001-7388-6672; Low, Matthew/0000-0002-7345-6063 Swedish Research Council For help in data collection, data access and field logistics we thank: Tamara Henry, Su Sinclair, Jason Taylor, Rosalie Stamp, Ian Fraser, Sandra Jack, John Ewen, Rose Thorogood, Troy Makan, Becky Lewis, Barbara Walter, Ray Walter, Ian Price, Ian McLeod, Thomas Helmig-Christensen, Rachel Curtis, angstrom sa Berggren, Isabel Castro, Doug Armstrong, Ed Minot, Rory Renwick, Richard Griffiths and the Supporters of Tiritiri Matangi. Thanks also to PAr Forslund for statistical advice and to Beat Naef-Daenzer, David Green and the associate editor for their helpful comments on the manuscript. Data were collected under permits from the New Zealand Department of Conservation and Massey University. M. Low was supported by the Swedish Research Council (FORMAS) and T. PArt was partly supported by the Swedish Research Council (VR). Anders AD, 1997, CONSERV BIOL, V11, P698, DOI 10.1046/j.1523-1739.1997.95526.x; Ardia DR, 2006, J FIELD ORNITHOL, V77, P339, DOI 10.1111/j.1557-9263.2006.00064.x; Armstrong Doug P., 2001, Pacific Conservation Biology, V7, P87; Armstrong DP, 2002, J BIOGEOGR, V29, P609, DOI 10.1046/j.1365-2699.2002.00710.x; Bell BD, 2006, J ORNITHOL, V147, P136; Both C, 1999, P ROY SOC B-BIOL SCI, V266, P465, DOI 10.1098/rspb.1999.0660; Briskie JV, 2004, P NATL ACAD SCI USA, V101, P558, DOI 10.1073/pnas.0305103101; Burnham K. P., 2002, MODEL SELECTION MULT; Burton NHK, 2006, J AVIAN BIOL, V37, P312, DOI 10.1111/j.2006.0908-8857.03822.x; Castro I, 1997, NEW ZEAL J ECOL, V21, P169; Castro I, 2003, BIOL CONSERV, V114, P271, DOI 10.1016/S0006-3207(03)00046-6; CASTRO I, 2004, HIHI STITCHBIRD MANA; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Dawson RD, 2005, OECOLOGIA, V144, P499, DOI 10.1007/s00442-005-0075-7; Doligez B, 2008, J ANIM ECOL, V77, P1199, DOI 10.1111/j.1365-2656.2008.01446.x; Ewen JG, 2006, COMP BIOCHEM PHYS A, V143, P149, DOI 10.1016/j.cbpa.2005.11.006; Ewen JG, 2007, EMERG INFECT DIS, V13, P788, DOI 10.3201/eid1305.060824; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Geraert PA, 1996, BRIT J NUTR, V75, P195, DOI 10.1079/BJN19960124; Greno JL, 2008, J AVIAN BIOL, V39, P41, DOI 10.1111/j.2007.0908-8857.04120.x; Higgins P. J, 2001, HDB AUSTR NZ ANTARCT, P954; ISSAC JL, 2008, WILDLIFE RES, V35, P441; JARVINEN A, 1983, ANN ZOOL FENN, V20, P129; Krebs EA, 1999, J ANIM ECOL, V68, P266, DOI 10.1046/j.1365-2656.1999.00284.x; Low M, 2007, J ANIM ECOL, V76, P459, DOI 10.1111/j.1365-2656.2007.01234.x; Low M, 2006, ANIM BEHAV, V71, P1057, DOI 10.1016/j.anbehav.2005.07.021; MARCHETTI K, 1989, BIOL REV, V64, P51, DOI 10.1111/j.1469-185X.1989.tb00638.x; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MERTENS JAL, 1977, OECOLOGIA, V28, P1, DOI 10.1007/BF00346834; Morrison JL, 2007, CONDOR, V109, P648, DOI 10.1650/8374.1; Mousseau TA, 1998, MATERNAL EFFECTS ADA; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Newton I, 1997, IBIS, V139, P25, DOI 10.1111/j.1474-919X.1997.tb04500.x; Newton I., 1998, POPULATION LIMITATIO; NORRIS K, 1993, J ANIM ECOL, V62, P287, DOI 10.2307/5360; PARKER K, 2002, SHORT INVESTIGATION; Partridge L, 1996, P ROY SOC B-BIOL SCI, V263, P1365, DOI 10.1098/rspb.1996.0200; Pollock KH, 2002, J APPL STAT, V29, P85, DOI 10.1080/02664760120108430; Ricklefs RE, 1997, ECOL MONOGR, V67, P23, DOI 10.1890/0012-9615(1997)067[0023:CDONWP]2.0.CO;2; Robinson RA, 2004, J ANIM ECOL, V73, P670, DOI 10.1111/j.0021-8790.2004.00841.x; Ropert-Coudert Y, 2004, WILDLIFE SOC B, V32, P177, DOI 10.2193/0091-7648(2004)32[177:TINBOL]2.0.CO;2; Rush SA, 2008, AUK, V125, P183, DOI 10.1525/auk.2008.125.1.183; Ruthrauff DR, 2005, CONDOR, V107, P597, DOI 10.1650/0010-5422(2005)107[0597:SOWSBO]2.0.CO;2; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Salinas-Melgoza A, 2007, J WILDLIFE MANAGE, V71, P43, DOI 10.2193/2005-646; Sillett TS, 2002, J ANIM ECOL, V71, P296, DOI 10.1046/j.1365-2656.2002.00599.x; Smith BD, 2005, ECOL APPL, V15, P281, DOI 10.1890/03-5339; Spottiswoode C, 2004, P ROY SOC B-BIOL SCI, V271, P267, DOI 10.1098/rspb.2003.2605; SULLIVAN KA, 1989, J ANIM ECOL, V58, P275, DOI 10.2307/5000; Sunde P, 2005, OIKOS, V110, P461, DOI 10.1111/j.0030-1299.2005.14069.x; THOROGOOD R, 2004, THESIS U AUCKLAND AU; VERHULST S, 1995, ECOLOGY, V76, P2392, DOI 10.2307/2265815; White GC, 1999, BIRD STUDY, V46, P120; Wiens JD, 2006, ECOL APPL, V16, P406, DOI 10.1890/04-1915; WIGGINS DA, 1994, OIKOS, V70, P359, DOI 10.2307/3545773; WUNDERLE JM, 1991, CURR ORNITHOL, V8, P273 56 42 42 1 28 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0021-8790 J ANIM ECOL J. Anim. Ecol. JUL 2009 78 4 761 771 10.1111/j.1365-2656.2009.01543.x 11 Ecology; Zoology Environmental Sciences & Ecology; Zoology 454UF WOS:000266707500008 19302320 Bronze 2018-11-12 J Buss, DM Buss, David M. How Can Evolutionary Psychology Successfully Explain Personality and Individual Differences? PERSPECTIVES ON PSYCHOLOGICAL SCIENCE English Article ROMANTIC RELATIONSHIPS; SEXUAL SELECTION; 5-FACTOR MODEL; PERSPECTIVE; GENETICS; MEN; ADAPTATION; HISTORY Although evolutionary psychology has been successful in explaining some species-typical and sex-differentiated adaptations, a large question that has largely eluded the field is this: How can the field successfully explain personality and individual differences? This article highlights some promising theoretical directions for tackling this question. These include life-history theory, costly signaling theory, environmental variability in fitness optima, frequency-dependent selection, mutation load, and flexibly contingent shifts in strategy according to environmental conditions. Tackling the explanatory question also requires progress on three fronts: (a) reframing some personality traits as forms of strategic individual differences; (b) providing a nonarbitrary, evolutionary-based formulation of environments as distributions and salience profiles of adaptive problems; and (c) identifying which strategies thrive and which falter in these differing problem-defined environments. Univ Texas Austin, Dept Psychol, Austin, TX 78731 USA Buss, DM (reprint author), Univ Texas Austin, Dept Psychol, Austin, TX 78731 USA. dbuss@psy.utexas.edu Belsky J, 1999, HDB ATTACHMENT THEOR, P141; Burnham TC, 2003, HORM BEHAV, V44, P119, DOI 10.1016/S0018-506X(03)00125-9; Buss D. M., 2008, EVOLUTIONARY PSYCHOL; Buss D. M., 1996, 5 FACTOR MODEL PERSO, P180; Buss DM, 2008, GROUP DYN-THEOR RES, V12, P53, DOI 10.1037/1089-2699.12.1.53; Buss DM, 2006, BEHAV BRAIN SCI, V29, P409; Buss DM, 2009, AM PSYCHOL, V64, P140, DOI 10.1037/a0013207; Buss DM, 2009, J RES PERS, V43, P241, DOI 10.1016/j.jrp.2008.12.019; BUSS DM, 1992, J PERS, V60, P477, DOI 10.1111/j.1467-6494.1992.tb00981.x; BUSS DM, 1991, ANNU REV PSYCHOL, V42, P459, DOI 10.1146/annurev.ps.42.020191.002331; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Buss DM, 1999, J PERS, V67, P209, DOI 10.1111/1467-6494.00053; BUSS DM, 1995, AM PSYCHOL, V50, P164, DOI 10.1037//0003-066X.50.3.164; Chen CS, 1999, EVOL HUM BEHAV, V20, P309, DOI 10.1016/S1090-5138(99)00015-X; Ciani ASC, 2007, EUR J PERSONALITY, V21, P3, DOI 10.1002/per.595; COSMIDES L, 2005, HDB EVOLUTIONARY PSY, P584; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; Denissen JJA, 2008, EUR J PERSONALITY, V22, P497, DOI 10.1002/per.682; Denissen JJA, 2008, J RES PERS, V42, P1285, DOI 10.1016/j.jrp.2008.04.002; Ebstein RP, 2006, MOL PSYCHIATR, V11, P427, DOI 10.1038/sj.mp.4001814; Eisenberg DTA, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-173; Ekman P., 1999, PSYCHOL SCI, V10, P363; Figueredo AJ, 2005, HDB EVOLUTIONARY PSY, P851; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gangestad S. W., 2008, EVOLUTIONARY BIOL HU; Gangestad SW, 2006, PSYCHOL INQ, V17, P75, DOI 10.1207/s15327965pli1702_1; GANGESTAD SW, 1990, J PERS, V58, P69, DOI 10.1111/j.1467-6494.1990.tb00908.x; Geary D. C., 1998, MALE FEMALE EVOLUTIO; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; Haselton M. G., 2005, HDB EVOLUTIONARY PSY, P724; Haselton MG, 2000, J PERS SOC PSYCHOL, V78, P81, DOI 10.1037//0022-3514.78.1.81; Hawley P., 2006, HDB PERSONALITY DEV, P147; Hawley PH, 1999, DEV REV, V19, P97, DOI 10.1006/drev.1998.0470; Ishikawa SS, 2001, PSYCHIAT RES, V105, P211, DOI 10.1016/S0165-1781(01)00344-4; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Keller MC, 2006, BEHAV BRAIN SCI, V29, P385, DOI 10.1017/S0140525X06009095; Keller MC, 2007, MATING INTELLIGENCE, P173; Lund OCH, 2007, J RES PERS, V41, P25, DOI 10.1016/j.jrp.2006.01.002; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; McAndrew FT, 2002, CURR DIR PSYCHOL SCI, V11, P79, DOI 10.1111/1467-8721.00173; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Miller G., 2000, MATING MIND; Miller GF, 2007, Q REV BIOL, V82, P97, DOI 10.1086/517857; MISCHEL W, 1994, ANNU REV PSYCHOL, V55, P1; Nettle D, 2006, AM PSYCHOL, V61, P622, DOI 10.1037/0003-066X.61.6.622; Ozer DJ, 2006, ANNU REV PSYCHOL, V57, P401, DOI 10.1146/annurev.psych.57.102904.190127; Penke L, 2007, EUR J PERSONALITY, V21, P549, DOI 10.1002/per.629; Perilloux C, 2008, EVOL PSYCHOL, V6, P164; PLOMIN R, 2008, BEHAV GENETICS; Schmitt DP, 2000, J RES PERS, V34, P141, DOI 10.1006/jrpe.1999.2267; Sugiyama L. S., 2005, HDB EVOLUTIONARY PSY, P292; TOOBY J, 1990, J PERS, V58, P17, DOI 10.1111/j.1467-6494.1990.tb00907.x; Williams GC, 1966, ADAPTATION NATURAL S; Wilson DS, 1996, PSYCHOL BULL, V119, P285, DOI 10.1037/0033-2909.119.2.285; Wilson DS, 1998, PHILOS T ROY SOC B, V353, P199, DOI 10.1098/rstb.1998.0202; WILSON DS, 1994, ETHOL SOCIOBIOL, V15, P219; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3; ZAHAVI A, 2006, REPROD BIOL PHYLOGEN, P143 59 159 164 3 59 SAGE PUBLICATIONS LTD LONDON 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND 1745-6916 PERSPECT PSYCHOL SCI Perspect. Psychol. Sci. JUL 2009 4 4 359 366 10.1111/j.1745-6924.2009.01138.x 8 Psychology, Multidisciplinary Psychology 467QB WOS:000267755400006 26158983 Bronze 2018-11-12 J Blomquist, GE Blomquist, Gregory E. Trade-off between age of first reproduction and survival in a female primate BIOLOGY LETTERS English Article life history; quantitative genetics; genetic correlation; maturation; senescence; primate RHESUS MACAQUES; INTERGENERATIONAL TRANSFERS; NATURAL-SELECTION; LIFE-HISTORIES; EVOLUTION; LONGEVITY; HERITABILITY; POPULATION; PATTERNS; FITNESS Trade-offs are central to life-history theory but difficult to document. Patterns of phenotypic and genetic correlations in rhesus macaques, Macaca mulatta-a long-lived, slow-reproducing primate-are used to test for a trade-off between female age of first reproduction and adult survival. A strong positive genetic correlation indicates that female macaques suffer reduced adult survival when they mature relatively early and implies primate senescence can be explained, in part, by antagonistic pleiotropy. Contrasts with a similar human study implicate the extension of parental effects to later ages as a potential mechanism for circumventing female life-history trade-offs in human evolution. Univ Missouri, Dept Anthropol, Columbia, MO 65211 USA Blomquist, GE (reprint author), Univ Missouri, Dept Anthropol, 200 Swallow Hall, Columbia, MO 65211 USA. blomquistg@missouri.edu Altmann J, 2005, BEHAV ECOL SOCIOBIOL, V57, P490, DOI 10.1007/s00265-004-0870-x; BERCOVITCH FB, 1993, BEHAV ECOL SOCIOBIOL, V32, P103, DOI 10.1007/BF00164042; Blomquist GE, 2009, GENETICA, V135, P209, DOI 10.1007/s10709-008-9270-x; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Cheverud James M., 1994, P67; GROENEVELD E, 1990, J DAIRY SCI, V73, P513, DOI 10.3168/jds.S0022-0302(90)78699-7; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hawkes K, 2006, EVOLUTION HUMAN LIFE; Heppell SS, 2000, ECOLOGY, V81, P654, DOI 10.1890/0012-9658(2000)081[0654:LHAEPP]2.0.CO;2; Hughes KA, 2002, P NATL ACAD SCI USA, V99, P14286, DOI 10.1073/pnas.222326199; Kaplan HS, 2002, P NATL ACAD SCI USA, V99, P10221, DOI 10.1073/pnas.152502899; Kirk KM, 2001, EVOLUTION, V55, P423; Kruuk LEB, 2004, PHILOS T ROY SOC B, V359, P873, DOI 10.1098/rstb.2003.1437; Kruuk LEB, 2000, P NATL ACAD SCI USA, V97, P698, DOI 10.1073/pnas.97.2.698; Le Bourg E, 2007, AGEING RES REV, V6, P141, DOI 10.1016/j.arr.2007.04.002; Lee R, 2008, P NATL ACAD SCI USA, V105, P7124, DOI 10.1073/pnas.0710234105; Marlowe FW, 2005, EVOL ANTHROPOL, V14, P54, DOI 10.1002/evan.20046; Martin R. D., 1990, PRIMATE ORIGINS EVOL; Nurnberg P, 1998, AM J PRIMATOL, V44, P1; Pettay JE, 2005, P NATL ACAD SCI USA, V102, P2838, DOI 10.1073/pnas.0406709102; Quinlan RJ, 2008, EVOL ANTHROPOL, V17, P227, DOI 10.1002/evan.20191; *R DEV COR TEAM, 2007, R LANG ENV STAT COMP; Rawlins RG, 1986, CAYO SANTIAGO MACAQU; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Roff D. A., 2002, LIFE HIST EVOLUTION; ROSE MR, 1981, GENETICS, V97, P172; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Westendorp RGJ, 1998, NATURE, V396, P743, DOI 10.1038/25519; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 32 42 44 1 30 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 1744-957X BIOL LETTERS Biol. Lett. JUN 23 2009 5 3 339 342 10.1098/rsbl.2009.0009 4 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 446TO WOS:000266144300014 19324637 Green Published, Bronze 2018-11-12 J Tuljapurkar, S; Gaillard, JM; Coulson, T Tuljapurkar, Shripad; Gaillard, Jean-Michel; Coulson, Tim From stochastic environments to life histories and back PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article generation time; demographic dispersion; stochastic growth rate; reproduction; survival; life history POPULATION-DYNAMICS; EVOLUTIONARY DYNAMICS; VARIABLE ENVIRONMENTS; REPRODUCTIVE EFFORT; ANIMAL POPULATIONS; TEMPORAL VARIATION; INTRINSIC RATE; SELECTION; MAMMALS; GROWTH Environmental stochasticity is known to play an important role in life-history evolution, but most general theory assumes a constant environment. In this paper, we examine life-history evolution in a variable environment, by decomposing average individual fitness (measured by the long-run stochastic growth rate) into contributions from average vital rates and their temporal variation. We examine how generation time, demographic dispersion (measured by the dispersion of reproductive events across the lifespan), demographic resilience (measured by damping time), within-year variances in vital rates, within- year correlations between vital rates and between-year correlations in vital rates combine to determine average individual fitness of stylized life histories. In a fluctuating environment, we show that there is often a range of cohort generation times at which the fitness is at a maximum. Thus, we expect 'optimal' phenotypes in fluctuating environments to differ from optimal phenotypes in constant environments. We show that stochastic growth rates are strongly affected by demographic dispersion, even when deterministic growth rates are not, and that demographic dispersion also determines the response of life-history-specific average fitness to within- and between-year correlations. Serial correlations can have a strong effect on fitness, and, depending on the structure of the life history, may act to increase or decrease fitness. The approach we outline takes a useful first step in developing general life-history theory for non-constant environments. [Tuljapurkar, Shripad] Stanford Univ, Dept Biol, Stanford, CA 94305 USA; [Gaillard, Jean-Michel] Univ Lyon, CNRS, UMR Biomet & Biol Evolut 5558, F-69622 Villeurbanne, France; [Coulson, Tim] Univ London Imperial Coll Sci Technol & Med, Dept Life Sci, Ascot SL5 7PY, Berks, England Tuljapurkar, S (reprint author), Stanford Univ, Dept Biol, Stanford, CA 94305 USA. tulja@stanford.edu Coulson, Tim/0000-0001-9371-9003 NIA; NSF; CNRS; NERC; Natural Environment Research Council [NE/E015921/1, cpb010001] We thank Fanie Pelletier, Dany Garant and Andrew Hendry for their unceasing patience in awaiting submission of this manuscript to their special symposium, and their subsequent rapid handling of the manuscript. We also thank Marco Festa-Bianchet, an anonymous referee, and Fanie Pelletier for their many and useful criticisms. S. T. was funded by the NIA and NSF, J-.M. G. by CNRS and T. C. by NERC. ATHREYA KB, 1971, ANN MATH STAT, V42, P1499, DOI 10.1214/aoms/1177693150; Boyce MS, 2006, TRENDS ECOL EVOL, V21, P141, DOI 10.1016/j.tree.2005.11.018; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; Calder III W. A., 1996, SIZE FUNCTION LIFE H; Caswell H, 2001, MATRIX POPULATION MO; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Charnov Eric L., 1993, P1; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Coulson T, 2006, EVOL ECOL RES, V8, P1155; Ezard THG, 2009, PHILOS T R SOC B, V364, P1491, DOI 10.1098/rstb.2009.0006; FISHER R. A., 1930, GENETICAL THEORY NAT; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; HENNEMANN WW, 1983, OECOLOGIA, V56, P104, DOI 10.1007/BF00378224; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Keyfitz N, 2005, STAT BIOL HEALTH, P1, DOI 10.1007/b139042; Keyfitz N., 1977, INTRO MATH POPULATIO; Knops JMH, 2007, P NATL ACAD SCI USA, V104, P16982, DOI 10.1073/pnas.0704251104; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; Kruuk LEB, 2008, ANNU REV ECOL EVOL S, V39, P525, DOI 10.1146/annurev.ecolsys.39.110707.173542; LACEY EP, 1983, AM NAT, V122, P114, DOI 10.1086/284122; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lande R., 2003, STOCHASTIC POPULATIO; Lande R, 2007, EVOLUTION, V61, P1835, DOI 10.1111/j.1558-5646.2007.00170.x; Lande R, 2009, PHILOS T R SOC B, V364, P1511, DOI 10.1098/rstb.2009.0017; LESLIE PH, 1966, J ANIM ECOL, V35, P291, DOI 10.2307/2396; Levins R., 1968, EVOLUTION CHANGING E; LINDSTEDT SL, 1981, Q REV BIOL, V56, P1, DOI 10.1086/412080; MILLAR JS, 1983, ECOLOGY, V64, P631, DOI 10.2307/1937181; Morris WF, 2006, ECOL LETT, V9, P1331, DOI 10.1111/j.1461-0248.2006.00988.x; Morris WF, 2002, QUANTITATIVE CONSERV; Morris WF, 2008, ECOLOGY, V89, P19, DOI 10.1890/07-0774.1; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; Orzack Steven Hecht, 1993, Lecture Notes in Biomathematics, V98, P63; Ostfeld RS, 2000, TRENDS ECOL EVOL, V15, P232, DOI 10.1016/S0169-5347(00)01862-0; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Ruzzante DE, 2008, MOL ECOL, V17, P2234, DOI 10.1111/j.1365-294X.2008.03738.x; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Tavecchia G, 2005, J ANIM ECOL, V74, P201, DOI 10.1111/j.1365-2656.2005.00916.x; Tuljapurkar S, 2003, AM NAT, V162, P489, DOI 10.1086/378648; Tuljapurkar S, 2000, ECOL MODEL, V133, P143, DOI 10.1016/S0304-3800(00)00288-X; Tuljapurkar S., 1990, LECT NOTES BIOMATHEM, V85; TULJAPURKAR SD, 1982, THEOR POPUL BIOL, V21, P141, DOI 10.1016/0040-5809(82)90010-7; Williams G.C., 1996, ADAPTATION NATURAL S; Williams GC, 1966, ADAPTATION NATURAL S; Zheng CZ, 2009, PHILOS T R SOC B, V364, P1519, DOI 10.1098/rstb.2009.0005 53 68 68 4 58 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 1471-2970 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. JUN 12 2009 364 1523 1499 1509 10.1098/rstb.2009.0021 11 Biology Life Sciences & Biomedicine - Other Topics 440XE WOS:000265732200003 19414465 Bronze, Green Published 2018-11-12 J Sibly, RM; Brown, JH Sibly, Richard M.; Brown, James H. Mammal Reproductive Strategies Driven by Offspring Mortality-Size Relationships AMERICAN NATURALIST English Article life-history theory; trade-off; litter size; offspring size; litter frequency; litter mass LIFE-HISTORY EVOLUTION; FAST-SLOW CONTINUUM; BODY-SIZE; STYLE; BIRDS; VIEW Trade-offs have long been a major theme in life-history theory, but they have been hard to document. We introduce a new method that reveals patterns of divergent trade-offs after adjusting for the pervasive variation in rate of resource allocation to offspring as a function of body size and lifestyle. Results suggest that preweaning vulnerability to predation has been the major factor determining how female placental mammals allocate production between a few large and many small offspring within a litter and between a few large litters and many small ones within a reproductive season. Artiodactyls, perissodactyls, cetaceans, and pinnipeds, which give birth in the open on land or in the sea, produce a few large offspring, at infrequent intervals, because this increases their chances of escaping predation. Insectivores, fissiped carnivores, lagomorphs, and rodents, whose offspring are protected in burrows or nests, produce large litters of small newborns. Primates, bats, sloths, and anteaters, which carry their young from birth until weaning, produce litters of one or a few offspring because of the need to transport and care for them. [Sibly, Richard M.] Univ Reading, Sch Biol Sci, Reading RG6 6AS, Berks, England; [Sibly, Richard M.] Roskilde Univ Ctr, Dept Environm Social & Spatial Change, Ctr Integrated Populat Ecol, DK-4000 Roskilde, Denmark; [Brown, James H.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA; [Brown, James H.] Santa Fe Inst, Santa Fe, NM 87501 USA Sibly, RM (reprint author), Univ Reading, Sch Biol Sci, Reading RG6 6AS, Berks, England. r.m.sibly@reading.ac.uk Sibly, Richard/0000-0001-6828-3543 Royal Society Travel Grant; NSF [DEB-0541625, DEB-0083422] We thank K. E. Jones for supplying the bat data, E. L. Charnov and members of the University of New Mexico/Santa Fe Institute Scaling Group and the Integrating Macroecological Pattern and Processes across Scales (IMPPS)/National Science Foundation (NSF)-funded Research Coordination Network (RCN; DEB-0541625) for helpful discussions, and S. Beissinger and two reviewers for comments. This is IMPPS RCN publication 2 and was supported by a Royal Society Travel Grant to R. M. S. and an NSF grant (DEB-0083422) and a Packard Interdisciplinary Science Grant to J.H.B. Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV E L, 1982; Charnov EL, 2006, AM NAT, V167, P578, DOI 10.1086/501141; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov EL, 2001, EVOL ECOL RES, V3, P521; Charnov EL, 2007, AM NAT, V170, pE129, DOI 10.1086/522840; Charnov Eric L., 1993, P1; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; DERRICKSON EM, 1992, FUNCT ECOL, V6, P57, DOI 10.2307/2389771; Dobson FS, 2007, P NATL ACAD SCI USA, V104, P17565, DOI 10.1073/pnas.0708868104; Ernest SKM, 2003, ECOLOGY, V84, P3402, DOI 10.1890/02-9002; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; HARVEY P. H., 1988, EVOLUTION LIFE HIST, P213; Jones KE, 2001, EVOL ECOL RES, V3, P465; Kozlowski J, 1997, AM NAT, V149, P352; MACARTHUR RH, 1962, P NATL ACAD SCI USA, V48, P1893, DOI 10.1073/pnas.48.11.1893; MARTIN RD, 1985, NATURE, V313, P220, DOI 10.1038/313220a0; MARTIN RD, 1984, S ZOOL SOC LOND, V51, P81; Oli MK, 2004, BASIC APPL ECOL, V5, P449, DOI 10.1016/j.baae.2004.06.002; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PURVIS A, 1995, J ZOOL, V237, P259, DOI 10.1111/j.1469-7998.1995.tb02762.x; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; SIBLY R, 1987, J THEOR BIOL, V125, P177, DOI 10.1016/S0022-5193(87)80039-5; Sibly RM, 2007, P NATL ACAD SCI USA, V104, P17707, DOI 10.1073/pnas.0707725104; SIBLY RM, 1993, J THEOR BIOL, V160, P533, DOI 10.1006/jtbi.1993.1034; Sibly RM, 1997, J ZOOL, V243, P1, DOI 10.1111/j.1469-7998.1997.tb05751.x; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; SINERVO B, 1990, SCIENCE, V248, P1106, DOI 10.1126/science.248.4959.1106; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0 33 23 23 4 54 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 AM NAT Am. Nat. JUN 2009 173 6 E185 E199 10.1086/598680 15 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 439KJ WOS:000265625700002 19374555 Green Accepted 2018-11-12 J Ellis, BJ; Figueredo, AJ; Brumbach, BH; Schlomer, GL Ellis, Bruce J.; Figueredo, Aurelio Jose; Brumbach, Barbara H.; Schlomer, Gabriel L. Fundamental Dimensions of Environmental Risk HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Review Life history theory; Reproductive strategies; Puberty; Sexual maturation; Sexual behavior; Parenting; Evolutionary psychology; Human development; Bet-hedging; Adaptive individual differences; Extrinsic mortality; Animal behavior LIFE-HISTORY EVOLUTION; FAST-SLOW CONTINUUM; CORTICOTROPIN-RELEASING-FACTOR; GUPPIES POECILIA-RETICULATA; ADOLESCENT SEXUAL-ACTIVITY; REPRODUCTIVE TRADE-OFFS; OFFSPRING SIZE; INDIVIDUAL-DIFFERENCES; GENETIC-POLYMORPHISM; NATURAL-POPULATIONS The current paper synthesizes theory and data from the field of life history (LH) evolution to advance a new developmental theory of variation in human LH strategies. The theory posits that clusters of correlated LH traits (e.g., timing of puberty, age at sexual debut and first birth, parental investment strategies) lie on a slow-to-fast continuum; that harshness (externally caused levels of morbidity-mortality) and unpredictability (spatial-temporal variation in harshness) are the most fundamental environmental influences on the evolution and development of LH strategies; and that these influences depend on population densities and related levels of intraspecific competition and resource scarcity, on age schedules of mortality, on the sensitivity of morbidity-mortality to the organism's resource-allocation decisions, and on the extent to which environmental fluctuations affect individuals versus populations over short versus long timescales. These interrelated factors operate at evolutionary and developmental levels and should be distinguished because they exert distinctive effects on LH traits and are hierarchically operative in terms of primacy of influence. Although converging lines of evidence support core assumptions of the theory, many questions remain unanswered. This review demonstrates the value of applying a multilevel evolutionary-developmental approach to the analysis of a central feature of human phenotypic variation: LH strategy. [Ellis, Bruce J.; Schlomer, Gabriel L.] Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, Tucson, AZ 85721 USA; [Figueredo, Aurelio Jose] Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA; [Brumbach, Barbara H.] No Arizona Univ, Dept Psychol, Flagstaff, AZ 86011 USA Ellis, BJ (reprint author), Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, McClelland Pk,650 N Pk Ave, Tucson, AZ 85721 USA. bjellis@email.arizona.edu Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; ADLER GH, 1994, Q REV BIOL, V69, P473, DOI 10.1086/418744; ADLER NE, 1993, JAMA-J AM MED ASSOC, V269, P3140, DOI 10.1001/jama.269.24.3140; Albrecht C, 2003, J FAM ISSUES, V24, P867, DOI 10.1177/0192513X03252731; Alexander R. D, 1990, SPECIAL PUBLICATION, VI; ALEXANDER RD, 1989, HUMAN REVOLUTION, P455; Allen RM, 2008, AM NAT, V171, P225, DOI 10.1086/524952; ANDREWS MW, 1994, CHILD DEV, V65, P1398, DOI 10.1111/j.1467-8624.1994.tb00824.x; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; AUSTAD SN, 1993, J ZOOL, V229, P695, DOI 10.1111/j.1469-7998.1993.tb02665.x; Badyaev AV, 2005, P ROY SOC B-BIOL SCI, V272, P877, DOI 10.1098/rspb.2004.3045; BADYAEV AV, 2004, AM NAT, V163, P869; BAILEY RC, 1992, J BIOSOC SCI, V24, P393; Bashey F, 2006, EVOLUTION, V60, P348, DOI 10.1554/05-087.1; Baumer EP, 2001, J MARRIAGE FAM, V63, P540, DOI 10.1111/j.1741-3737.2001.00540.x; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1999, HDB ATTACHMENT THEOR, P141; Bereczkei T, 2001, INT J BEHAV DEV, V25, P501, DOI 10.1080/01650250042000573; BERECZKEI T, 2007, OXFORD HDB EVOLUTION, P255; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; BLACK C, 1985, ADOLESCENCE, V20, P281; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; BOAG PT, 1983, EVOLUTION, V37, P877, DOI 10.1111/j.1558-5646.1983.tb05618.x; Bogin B, 2007, AM J HUM BIOL, V19, P631, DOI 10.1002/ajhb.20666; Booth DT, 1998, J HERPETOL, V32, P592, DOI 10.2307/1565218; BORGERHOFF M, 2000, EVOL HUM BEHAV, V21, P391, DOI DOI 10.1016/S1090-5138(00)00054-4); BOROWSKY RL, 1987, COPEIA, P792, DOI 10.2307/1445679; BOROWSKY RL, 1987, COPEIA, P782, DOI 10.2307/1445674; BOYCE MS, 1981, J APPL ECOL, V18, P749, DOI 10.2307/2402366; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; BREDEN F, 1987, ANIM BEHAV, V35, P618, DOI 10.1016/S0003-3472(87)80297-X; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; BURGER R, 1989, EVOLUTION, V43, P1748, DOI 10.1111/j.1558-5646.1989.tb02624.x; Byrne R. W., 1988, MACHIAVELLIAN INTELL; Calvin W.H., 2002, BRAIN ALL SEASONS HU; Cameron NM, 2005, NEUROSCI BIOBEHAV R, V29, P843, DOI 10.1016/j.neubiorev.2005.03.022; Capaldi DM, 1996, CHILD DEV, V67, P344, DOI 10.2307/1131818; CARRIERE Y, 1995, OECOLOGIA, V102, P389, DOI 10.1007/BF00329806; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; Chakravarthy MV, 2004, J APPL PHYSIOL, V96, P3, DOI 10.1152/japplphysiol.00757.2003; Chamberlain P, 2007, J CONSULT CLIN PSYCH, V75, P187, DOI 10.1037/0022-006X.75.1.187; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Charnov Eric L., 1993, P1; Chen CS, 1999, EVOL HUM BEHAV, V20, P309, DOI 10.1016/S1090-5138(99)00015-X; Chen E, 2002, PSYCHOL BULL, V128, P295, DOI 10.1037/0033-2909.128.2.295; Chiappe D, 2005, J GEN PSYCHOL, V132, P5, DOI 10.3200/GENP.132.1.5-40; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 1999, DEATH HOPE SEX STEPS; CLARKE A, 1993, FUNCT ECOL, V7, P411, DOI 10.2307/2390028; Clobert J, 1998, J EVOLUTION BIOL, V11, P329; Clutton-Brock T. H, 1982, RED DEER BEHAV ECOLO; CLUTTONBROCK TH, 1980, J ZOOL, V190, P309; Coall DA, 2003, SOC SCI MED, V57, P1771, DOI 10.1016/S0277-9536(03)00022-4; Cohen D, 2000, AM J PUBLIC HEALTH, V90, P230, DOI 10.2105/AJPH.90.2.230; Coltman DW, 2003, NATURE, V426, P655, DOI 10.1038/nature02177; Coplan JD, 2001, BIOL PSYCHIAT, V50, P200, DOI 10.1016/S0006-3223(01)01175-1; Coplan JD, 1996, P NATL ACAD SCI USA, V93, P1619, DOI 10.1073/pnas.93.4.1619; Costello EJ, 2003, JAMA-J AM MED ASSOC, V290, P2023, DOI 10.1001/jama.290.15.2023; CRISTESCU M, 1975, HUMAN EVOLUTION, V4, P521; Crognier E, 1998, ANN HUM BIOL, V25, P479, DOI 10.1080/03014469800006712; Cronon William, 1991, ECOLOGICAL IMPERIALI; Crowder K, 2004, J MARRIAGE FAM, V66, P721, DOI 10.1111/j.0022-2445.2004.00049.x; Cunningham MJ, 2004, J CLIN ENDOCR METAB, V89, P1760, DOI 10.1210/jc.2003-031628; Cunnington DC, 1996, CAN J ZOOL, V74, P291, DOI 10.1139/z96-036; D'Onofrio BM, 2006, DEV PSYCHOL, V42, P486, DOI 10.1037/0012-1649.42.3.486; DALY M, 1997, CRIME JUSTICE, V22, P251; Davis J, 2008, HUM NATURE-INT BIOS, V19, P426, DOI 10.1007/s12110-008-9052-2; De Miguel C, 2001, HOMO, V52, P3, DOI 10.1078/0018-442X-00019; Deaner Robert O., 2003, P233; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; DERIDDER CM, 1991, AM J CLIN NUTR, V54, P805; Ding YC, 2002, P NATL ACAD SCI USA, V99, P309, DOI 10.1073/pnas.012464099; Dingemanse NJ, 2004, P ROY SOC B-BIOL SCI, V271, P847, DOI 10.1098/rspb.2004.2680; Doblhammer G, 2003, P ROY SOC B-BIOL SCI, V270, P1541, DOI 10.1098/rspb.2003.2400; Donaldson-Matasci MC, 2008, EVOL ECOL RES, V10, P493; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; Dunbar RIM, 1998, EVOL ANTHROPOL, V6, P178, DOI 10.1002/(SICI)1520-6505(1998)6:5<178::AID-EVAN5>3.0.CO;2-8; Dunbar RIM, 2003, ANNU REV ANTHROPOL, V32, P163, DOI 10.1146/annurev.anthro.32.061002.093158; Dzikowski R, 2004, J EXP ZOOL PART A, V301A, P776, DOI 10.1002/jez.a.61; Ebstein RP, 2006, MOL PSYCHIATR, V11, P427, DOI 10.1038/sj.mp.4001814; Einum S, 2004, EVOL ECOL RES, V6, P443; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; ELLIS BJ, 2009, BIENN M SOC RES CHIL; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; ELLIS L, 1988, PERS INDIV DIFFER, V9, P697, DOI 10.1016/0191-8869(88)90059-1; ELLISON PT, 1989, AM J PHYS ANTHROPOL, V78, P519, DOI 10.1002/ajpa.1330780407; ELLISON PT, 2001, FERTILE GROUND NATUR; Elton S, 2008, J ANAT, V212, P377, DOI 10.1111/j.1469-7580.2008.00872.x; Erikstad KE, 1998, ECOLOGY, V79, P1781; Eveleth PB, 1990, WORLD WIDE VARIATION; Fergusson DM, 2000, J CHILD PSYCHOL PSYC, V41, P779, DOI 10.1111/1469-7610.00665; Fernandez-Fernandez R, 2006, MOL CELL ENDOCRINOL, V254, P127, DOI 10.1016/j.mce.2006.04.026; FESTABIANCHET M, 2002, ANIMAL BEHAV WILDLIF, P191; Figueredo AJ, 2006, INTELLIGENCE, V34, P211, DOI 10.1016/j.intell.2005.03.006; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Flinn MV, 2005, EVOL HUM BEHAV, V26, P10, DOI 10.1016/j.evolhumbehav.2004.08.005; Fonseca VF, 2007, REV FISH BIOL FISHER, V17, P545, DOI 10.1007/s11160-007-9054-x; Foster H, 2008, J HEALTH SOC BEHAV, V49, P162, DOI 10.1177/002214650804900204; Fox CW, 2003, EVOL ECOL RES, V5, P273; FURSTENBERG FF, 1989, AM PSYCHOL, V44, P313, DOI 10.1037/0003-066X.44.2.313; FUTUYMA DJ, 1988, ANNU REV ECOL SYST, V19, P207, DOI 10.1146/annurev.es.19.110188.001231; Gamba M, 2006, MOL CELL ENDOCRINOL, V254, P133, DOI 10.1016/j.mce.2006.04.023; Gardmark A, 2003, EVOL ECOL RES, V5, P239; GARN SM, 1986, SCH AGE PREGNANCY PA, P77; Gasser M, 2000, EVOLUTION, V54, P1260; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; GEARY DC, 2005, ORIGIN MIND EVOLUTIO; GENOUD M, 1994, J ANIM ECOL, V63, P328, DOI 10.2307/5551; Geronimus Arline T., 1992, Ethnicity and Disease, V2, P207; GERONIMUS AT, 1987, POPUL DEV REV, V13, P245, DOI 10.2307/1973193; Gibbs J. T., 1986, J SOCIAL WORK HUMAN, V5, P81; Gillespie DOS, 2008, P R SOC B, V275, P713, DOI 10.1098/rspb.2007.1000; GILLESPIE J, 1973, THEOR POPUL BIOL, V4, P193, DOI 10.1016/0040-5809(73)90028-2; GLIWICZ J, 1980, BIOL REV, V55, P109, DOI 10.1111/j.1469-185X.1980.tb00690.x; Gosselin LA, 2007, MAR ECOL PROG SER, V339, P143, DOI 10.3354/meps339143; GRIBBIN J, 1990, CHILDREN ICE CLIMATE; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Hagen EH, 2006, AM J PHYS ANTHROPOL, V130, P405, DOI 10.1002/ajpa.20272; Harpending H, 2002, P NATL ACAD SCI USA, V99, P10, DOI 10.1073/pnas.012612799; HARVEY PH, 1990, SCIENCE, V249, P140, DOI 10.1126/science.2196673; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; HASSELL MP, 1975, J ANIM ECOL, V44, P283, DOI 10.2307/3863; Hawkes K, 2006, SCH AM RES, P95; Hawkes Kristen, 2003, P204; HEDRICK PW, 1986, ANNU REV ECOL SYST, V17, P535; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill K, 2007, J HUM EVOL, V52, P443, DOI 10.1016/j.jhevol.2006.11.003; HOGAN DP, 1985, AM J SOCIOL, V90, P825, DOI 10.1086/228146; HOLLIDAY R, 1995, UNDERSTANDING AGEING; Hopper KR, 1999, ANNU REV ENTOMOL, V44, P535, DOI 10.1146/annurev.ento.44.1.535; Hurt LS, 2006, POP STUD-J DEMOG, V60, P55, DOI 10.1080/00324720500436011; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; HURTADO AM, 1990, J ANTHROPOL RES, V46, P293, DOI 10.1086/jar.46.3.3630428; in den Bosch H. A. J., 1998, J HERPETOL, V32, P410; Jablonka E., 2005, EVOLUTION 4 DIMENSIO; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kaplan HS, 2003, OFFSPRING, P170; Kaplan HS, 2002, P NATL ACAD SCI USA, V99, P10221, DOI 10.1073/pnas.152502899; Kappeler Peter M., 2003, P1; KAWECKI TJ, 1993, OIKOS, V66, P309, DOI 10.2307/3544819; Keizer-Schrama SMPFD, 2001, HUM REPROD UPDATE, V7, P287; KERR DCR, 2009, J CONSULTIN IN PRESS; Kirk KM, 2001, EVOLUTION, V55, P423; Koops MA, 2003, EVOL ECOL RES, V5, P29; Korpimaki E, 1996, BIOSCIENCE, V46, P754, DOI 10.2307/1312851; Kotchick BA, 2001, CLIN PSYCHOL REV, V21, P493, DOI 10.1016/S0272-7358(99)00070-7; Kraus C, 2005, J ANIM ECOL, V74, P171, DOI 10.1111/j.1365-2656.2004.00910.x; KUNSTADTER P, 1992, HUM BIOL, V64, P821; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; Kuzawa CW, 2008, EVOLUTIONARY MED HLT, P325; LAURITSEN JL, 1994, SOC FORCES, V72, P859, DOI 10.2307/2579784; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Leimar O, 2005, AM NAT, V165, P669, DOI 10.1086/429566; LEPRINCE DJ, 1993, J MED ENTOMOL, V30, P865, DOI 10.1093/jmedent/30.5.865; Leve L., 2004, J CHILD FAM STUD, V13, P439, DOI DOI 10.1023/B:JCFS.0000044726.07272.B5; Leve LD, 2005, J CONSULT CLIN PSYCH, V73, P1181, DOI 10.1037/0055-006X.73.6.1181; Levins R., 1993, Coenoses, V8, P131; Lips KR, 2001, OECOLOGIA, V128, P509, DOI 10.1007/s004420100687; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Low BS, 2002, AM J HUM BIOL, V14, P149, DOI 10.1002/ajhb.10043; Lumsden C. J, 1981, GENES MIND CULTURE C; LUSTER T, 1993, PARENTING ECOLOGICAL, P69; LYNN R, 1991, MANKIND QUART, V32, P99; MAC ARTHUR ROBERT H., 1967; MacDonald K, 1999, POPUL ENVIRON, V21, P223; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; MacDonald Kevin, 2005, EVOLUTIONARY PERSPEC, P21; Marlowe FW, 2003, CROSS-CULT RES, V37, P282, DOI 10.1177/1069397103254008; MCLLOYD V, 1988, AM PSYCHOL, V53, P185; Mendle J, 2006, DEV PSYCHOL, V42, P533, DOI 10.1037/0012-1649.42.3.233; Meyer F, 1990, Epidemiology, V1, P377, DOI 10.1097/00001648-199009000-00007; Migliano AB, 2007, P NATL ACAD SCI USA, V104, P20216, DOI 10.1073/pnas.0708024105; Miller BC, 2001, DEV REV, V21, P1, DOI 10.1006/drev.2000.0513; Mueller LD, 1997, ANNU REV ECOL SYST, V28, P269, DOI 10.1146/annurev.ecolsys.28.1.269; Mul D, 2002, HORM RES, V57, P1, DOI 10.1159/000057939; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; Nepomnaschy PA, 2006, P NATL ACAD SCI USA, V103, P3938, DOI 10.1073/pnas.0511183103; NICHOLSON AJ, 1954, AUST J ZOOL, V2, P9, DOI 10.1071/ZO9540009; Oli MK, 2004, BASIC APPL ECOL, V5, P449, DOI 10.1016/j.baae.2004.06.002; Palkovacs EP, 2003, OIKOS, V103, P37, DOI 10.1034/j.1600-0706.2003.12502.x; Parent AS, 2003, ENDOCR REV, V24, P668, DOI 10.1210/er.2002-0019; Parker S. T., 1999, EVOLUTION COGNITIVE; Penke L, 2007, EUR J PERSONALITY, V21, P549, DOI 10.1002/per.629; Petit JR, 1999, NATURE, V399, P429, DOI 10.1038/20859; Pettay JE, 2005, P NATL ACAD SCI USA, V102, P2838, DOI 10.1073/pnas.0406709102; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Potts R, 1998, EVOL ANTHROPOL, V7, P81, DOI 10.1002/(SICI)1520-6505(1998)7:3<81::AID-EVAN3>3.0.CO;2-A; PRATT H, 1993, HERONS EGRETS AUDUBO; PRENTICE AM, 1987, AM J CLIN NUTR, V46, P912; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Raia P, 2003, EVOL ECOL, V17, P293, DOI 10.1023/A:1025577414005; Raia P, 2006, EVOLUTION, V60, P1731; Raley RK, 2004, J MARRIAGE FAM, V66, P210; Ramirez-Valles J, 1998, J HEALTH SOC BEHAV, V39, P237, DOI 10.2307/2676315; Remes V, 2002, EVOLUTION, V56, P2505; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.2307/3071970; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 2005, INTEGR COMP BIOL, V45, P456, DOI 10.1093/icb/45.3.456; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Rhen T, 2002, J NEUROENDOCRINOL, V14, P517, DOI 10.1046/j.1365-2826.2002.00820.x; Rocha EPC, 2002, NUCLEIC ACIDS RES, V30, P1886, DOI 10.1093/nar/30.9.1886; Rodd FH, 1997, ECOLOGY, V78, P419; Rodgers JL, 2001, CURR DIR PSYCHOL SCI, V10, P184, DOI 10.1111/1467-8721.00145; Rodgers JL, 2001, DEMOGRAPHY, V38, P29, DOI 10.1353/dem.2001.0009; Rodseth L, 2000, HUM NATURE-INT BIOS, V11, P335, DOI 10.1007/s12110-000-1007-1; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; ROGERS AR, 1992, EVOLUTIONARY ECOLOGY, P375; ROSENBLUM LA, 1984, CHILD DEV, V55, P305, DOI 10.1111/j.1467-8624.1984.tb00293.x; ROSENBLUM LA, 1994, ACTA PAEDIATR, V83, P57, DOI 10.1111/j.1651-2227.1994.tb13266.x; ROSS C, 1988, J ZOOL, V214, P199, DOI 10.1111/j.1469-7998.1988.tb04717.x; Ross LT, 2002, SOC BEHAV PERSONAL, V30, P453, DOI 10.2224/sbp.2002.30.5.453; Rowe DC, 2002, EVOL HUM BEHAV, V23, P365, DOI 10.1016/S1090-5138(02)00102-2; Rushton J. P., 1995, RACE EVOLUTION BEHAV; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; RYAN MJ, 1992, AM NAT, V139, P21, DOI 10.1086/285311; RYAN MJ, 1989, BEHAV ECOL SOCIOBIOL, V24, P341, DOI 10.1007/BF00293262; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; SASAKI A, 1995, EVOLUTION, V49, P337, DOI 10.1111/j.1558-5646.1995.tb02246.x; Scaramella LV, 1998, DEV PSYCHOL, V34, P1233, DOI 10.1037/0012-1649.34.6.1233; SCHULTZ DL, 1989, EVOLUTION, V43, P473, DOI 10.1111/j.1558-5646.1989.tb04243.x; SERBIN LA, 1991, CAN J BEHAV SCI, V23, P318, DOI 10.1037/h0079014; Shanley DP, 2000, EVOLUTION, V54, P740, DOI 10.1111/j.0014-3820.2000.tb00076.x; SIMONS AM, 2007, J EVOLUTIONARY BIOL, V20, P2072; Sinervo B, 2000, NATURE, V406, P985, DOI 10.1038/35023149; South SJ, 2005, J MARRIAGE FAM, V67, P499, DOI 10.1111/j.0022-2445.2005.00131.x; STACK S, 1994, J MARRIAGE FAM, V56, P204, DOI 10.2307/352714; Stearns S. C., 1992, EVOLUTION LIFE HIST; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; Sucoff CA, 1998, AM SOCIOL REV, V63, P571, DOI 10.2307/2657268; Surbey MK, 1998, HUM NATURE-INT BIOS, V9, P67, DOI 10.1007/s12110-998-1012-3; Syamala T. S., 2001, Indian Journal of Pediatrics, V68, P1111, DOI 10.1007/BF02722920; Tainaka K, 2007, EVOL ECOL RES, V9, P1043; TANNER JM, 1990, FOETUS MAN; Teilmann G, 2006, PEDIATRICS, V118, pE391, DOI 10.1542/peds.2005-2939; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Underwood MK, 1996, J RES ADOLESCENCE, V6, P201; Upchurch DM, 1999, J MARRIAGE FAM, V61, P920, DOI 10.2307/354013; Vigil JM, 2005, DEV PSYCHOL, V41, P553, DOI 10.1037/0012-1649.41.3.553; VINING DR, 1986, BEHAV BRAIN SCI, V9, P167, DOI 10.1017/S0140525X00021968; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Walker R, 2006, J HUM EVOL, V51, P480, DOI 10.1016/j.jhevol.2006.06.002; Walker RS, 2008, CURR ANTHROPOL, V49, P115, DOI 10.1086/524763; WALLACE B, 1975, EVOLUTION, V29, P465, DOI 10.1111/j.1558-5646.1975.tb00836.x; WALLACE B, 1981, BASIC POPULATION GEN; Wang E, 2004, AM J HUM GENET, V74, P931, DOI 10.1086/420854; WARE DM, 1982, CAN J FISH AQUAT SCI, V39, P3, DOI 10.1139/f82-002; WARNER RR, 1984, EVOLUTION, V38, P148, DOI 10.1111/j.1558-5646.1984.tb00268.x; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Williamson M., 1981, ISLAND POPULATIONS; WILSON DS, 1994, ETHOL SOCIOBIOL, V15, P219; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Woodward L, 2001, J MARRIAGE FAM, V63, P1170, DOI 10.1111/j.1741-3737.2001.01170.x; Worthman CM, 2005, AM J HUM BIOL, V17, P95, DOI 10.1002/ajhb.20096; Worthman CM, 2003, OFFSPRING, P289; Worthman CM, 1999, EVOLUTIONARY MEDICI NE, P135; Wu LL, 1996, AM SOCIOL REV, V61, P386, DOI 10.2307/2096355; WU LL, 1993, AM SOCIOL REV, V58, P210, DOI 10.2307/2095967; Yasui Y, 2001, ECOL RES, V16, P605, DOI 10.1046/j.1440-1703.2001.00423.x 273 329 343 7 85 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. JUN 2009 20 2 204 268 10.1007/s12110-009-9063-7 65 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 446SD WOS:000266140500005 25526958 Y N 2018-11-12 J Scharf, I; Filin, I; Ovadia, O Scharf, Inon; Filin, Ido; Ovadia, Ofer A trade-off between growth and starvation endurance in a pit-building antlion OECOLOGIA English Article Feeding regime; Giving-up density; Growth rate; Myrmeleontidae; Sit-and-wait predators BODY-SIZE; PREY CONSUMPTION; LIFE-HISTORY; PHYSIOLOGICAL COSTS; PREDATION RISK; PATCH USE; REGRESSION; INSECTS; LARVAE; CONSEQUENCES Trade-offs have a central role in evolutionary ecology and life-history theory. Here, we present evidence for the existence of a rarely studied trade-off between growth rate and starvation endurance in larvae of a pit-building antlion. We first manipulated antlions' feeding regime and obtained a spectrum of growth rates. Next, we starved the antlions and documented their rate of mass loss. Antlions growing faster during the feeding phase also lost mass faster during the successive starvation period, implying the existence of an induced trade-off between fast growth and starvation endurance. Finally, we fed all antlions with prey items of similar mass and measured both the giving-up prey mass (i.e. the remaining body mass of the prey that was not converted into predator body mass), and growth efficiency of antlions (i.e. proportion of prey consumed, negatively correlated with giving-up prey mass). The giving-up mass was negatively correlated with the growth rate of the antlions during the feeding phase, and positively correlated with their growth rate during the starvation phase (the opposite pattern was evident when examining growth efficiency), incongruently with the common phenomenon of growth compensation (i.e. extracting more of the prey after a starvation period). We suggest that antlion larvae can adopt a physiological mode bounded by two extremes: one extreme is adapted to starvation, involving reduced metabolic rates but also reduced capability to exploit prey, while the other is adapted to fast growth, allowing an efficient exploitation of prey, but at the expense of lowered starvation endurance. [Scharf, Inon; Filin, Ido; Ovadia, Ofer] Ben Gurion Univ Negev, Dept Life Sci, IL-84105 Beer Sheva, Israel; [Filin, Ido] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland Scharf, I (reprint author), Ben Gurion Univ Negev, Dept Life Sci, POB 653, IL-84105 Beer Sheva, Israel. schari@bgu.ac.il; ido.filin@helsinki.fi; oferovad@bgu.ac.il Ovadia, Ofer/C-8292-2012 Israel Science Foundation [1084/05, 1399/05] We would like to thank Wolf Blanckenhorn, Karl Gotthard, Hanna Kokko, Ron Rotkopf, Ido Tsurim and Wouter Vahl for fruitful discussions, and Aziz Subach for helping in the laboratory. The research was supported by Israel Science Foundation Grants 1084/05 and 1399/05 (to O.O.). Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Arnett AE, 2003, ECOL ENTOMOL, V28, P645, DOI 10.1111/j.1365-2311.2003.00554.x; Barnett AG, 2005, INT J EPIDEMIOL, V34, P215, DOI 10.1093/ije/dyh299; Blanckenhorn WU, 2007, PHYSIOL ENTOMOL, V32, P372, DOI 10.1111/j.1365-3032.2007.00589.x; Blanckenhorn WU, 2005, ETHOLOGY, V111, P977, DOI 10.1111/j.1439-0310.2005.01147.x; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; BROWN JS, 1988, BEHAV ECOL SOCIOBIOL, V22, P37, DOI 10.1007/BF00395696; Cade BS, 2003, FRONT ECOL ENVIRON, V1, P412, DOI 10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2; CHAPMAN RF, 1998, INSECTS STRUCTURE FU, P18312; De Block M, 2004, OECOLOGIA, V140, P68, DOI 10.1007/s00442-004-1575-6; Engqvist L, 2007, ZOOLOGY, V110, P344, DOI 10.1016/j.zool.2007.07.004; Fischer K, 2004, EVOL ECOL, V18, P343, DOI 10.1007/s10682-004-2004-3; GOTELLI NJ, 1993, ECOLOGY, V74, P226, DOI 10.2307/1939517; Gotthard K, 2000, J ANIM ECOL, V69, P896, DOI 10.1046/j.1365-2656.2000.00432.x; Gotthard K, 2001, EXPTL BIOL REV, P287; GOTTHARD K, 1994, OECOLOGIA, V99, P281, DOI 10.1007/BF00627740; Gotthard K, 2007, AM NAT, V169, P768, DOI 10.1086/516651; GRIFFITHS D, 1992, ECOL ENTOMOL, V17, P219, DOI 10.1111/j.1365-2311.1992.tb01050.x; GRIFFITHS D, 1982, J ANIM ECOL, V51, P363, DOI 10.2307/3970; Harshman LG, 1998, EVOLUTION, V52, P1679, DOI 10.1111/j.1558-5646.1998.tb02247.x; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; IWASA Y, 1991, THEOR POPUL BIOL, V40, P246, DOI 10.1016/0040-5809(91)90055-K; Kelly C, 2005, AM NAT, V166, P700, DOI 10.1086/497402; LEATHER SR, 1988, OIKOS, V51, P386, DOI 10.2307/3565323; Lewis DB, 2001, ECOLOGY, V82, P758; LUCAS JR, 1985, J ANIM ECOL, V54, P295, DOI 10.2307/4639; Mand T, 2007, EVOL ECOL, V21, P485, DOI 10.1007/s10682-006-9130-z; MATSURA T, 1994, J INSECT BEHAV, V7, P873, DOI 10.1007/BF01997132; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Moya-Larano J, 2007, BIOLOGY LETT, V3, P475, DOI 10.1098/rsbl.2007.0300; POLLARD SD, 1989, OECOLOGIA, V81, P392, DOI 10.1007/BF00377089; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; SAMU F, 1993, OECOLOGIA, V94, P139, DOI 10.1007/BF00317315; Scharf FS, 1998, ECOLOGY, V79, P448, DOI 10.1890/0012-9658(1998)079[0448:IERFTE]2.0.CO;2; Scharf I, 2008, J EVOLUTION BIOL, V21, P162, DOI 10.1111/j.1420-9101.2007.01453.x; Scharf I, 2006, J INSECT BEHAV, V19, P197, DOI 10.1007/s10905-006-9017-4; Scharf I, 2009, ZOOLOGY, V112, P139, DOI 10.1016/j.zool.2008.05.004; SIBLY RM, 1986, PHYSL ECOLOGY ANIMAL, P18312; SOKAL R, 1995, BIOMETRY PRINCIPLES, P18312; Sokolovska N, 2000, ECOL ENTOMOL, V25, P239, DOI 10.1046/j.1365-2311.2000.00251.x; STEARNS SC, 1992, EVOLUTION LIFE HIST, P18312; STOCKHOFF BA, 1991, OECOLOGIA, V88, P422, DOI 10.1007/BF00317588; Stoks R, 2006, ECOLOGY, V87, P1566, DOI 10.1890/0012-9658(2006)87[1566:PCOCGI]2.0.CO;2; Tessier AJ, 2000, ECOLOGY, V81, P826, DOI 10.1890/0012-9658(2000)081[0826:AFTOIR]2.0.CO;2; Thompson DJ, 2002, ECOL ENTOMOL, V27, P378, DOI 10.1046/j.1365-2311.2002.00419.x; Ziv Y, 2003, EVOL ECOL, V17, P333, DOI 10.1023/A:1027385100393 48 24 25 0 19 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 OECOLOGIA Oecologia JUN 2009 160 3 453 460 10.1007/s00442-009-1316-y 8 Ecology Environmental Sciences & Ecology 444WJ WOS:000266010800005 19306022 2018-11-12 J Aragon, CF; Mendez, M; Escudero, A Aragon, Cristina F.; Mendez, Marcos; Escudero, Adrian SURVIVAL COSTS OF REPRODUCTION IN A SHORT-LIVED PERENNIAL PLANT: LIVE HARD, DIE YOUNG AMERICAN JOURNAL OF BOTANY English Article Cistaceae; cost of reproduction; Helianthemum squamatum; life-history theory; Mediterranean; reproductive phenology; semiarid; stress LIFE-HISTORY EVOLUTION; SOIL CRUSTS; TRADE-OFFS; ALLOCATION; STORAGE; STRESS; GROWTH; SHRUB; SEED; PHOTOINHIBITION According to life-history theory, reproductive investments involve costs in terms of growth, future fecundity, and/or survival. However, studies to date have often failed to detect costs of reproduction, with survival costs among the less documented. We investigated the cost of reproduction in Helianthemum squamatum (Cistaceae), a short-lived perennial of semiarid Mediterranean environments. After experimental flower removal, we evaluated next season's growth, reproduction, and survival of the plants. We also monitored an indicator of plant physiological status (F(v)/F(m)) and leaf nutrient concentration at key phenological stages during reproduction. Survival rate in deblossomed plants was significantly higher than in control plants. As far as we know, this is the first experimental evidence of a survival cost of reproduction in a perennial plant. In contrast, no cost to growth or reproduction was found during the next season, and no significant differences in F(v)/F(m) or leaf nutrients were found between control and deblosomed plants. Helianthemum squamatum's success in semiarid Mediterranean ecosystems seems to rely on a persistent seed bank, combined with a sustained high reproductive output at the expense of survival. We conclude that this strategy might be more common than previously thought among short-lived shrubby plants growing in stressful Mediterranean areas. [Aragon, Cristina F.; Mendez, Marcos; Escudero, Adrian] Univ Rey Juan Carlos, Dept Biol & Geol, ESCET, Area Biodiversidad & Conservac, E-28933 Madrid, Spain Aragon, CF (reprint author), Univ Rey Juan Carlos, Dept Biol & Geol, ESCET, Area Biodiversidad & Conservac, C Tulipan S-N, E-28933 Madrid, Spain. cristina.fernandez.aragon@urjc.es Escudero, Adrian/H-5046-2015; Mendez, Marcos/A-3745-2009 Escudero, Adrian/0000-0002-1427-5465; Mendez, Marcos/0000-0002-0144-643X EXTREM [CGL2006-09431]; REMEDINAL [S-0505/AMB/0335]; F.P.U. fellowship, MEC, Spain [AP2003-3662] Support of the research projects EXTREM (CGL2006-09431) and REMEDINAL (S-0505/AMB/0335) is gratefully acknowledged. C.F.A. held a F.P.U. fellowship (AP2003-3662, MEC, Spain). AGAMI M, 1987, OECOLOGIA, V71, P486, DOI 10.1007/BF00379286; Aragon CE, 2008, BOT HELV, V118, P129, DOI 10.1007/s00035-008-0855-x; Aragon CF, 2008, J ECOL, V96, P222, DOI 10.1111/j.1365-2745.2007.01320.x; Aragon CF, 2007, ANN BOT-LONDON, V99, P519, DOI 10.1093/aob/mcl280; Arroyo MTK, 2006, ANN BOT-LONDON, V98, P591, DOI 10.1093/aob/mcl134; ASHMAN TL, 1994, AM NAT, V144, P300, DOI 10.1086/285676; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BIERE A, 1995, J ECOL, V83, P629, DOI 10.2307/2261631; Bond WJ, 1999, EVOL ECOL, V13, P1, DOI 10.1023/A:1006581412580; Caballero I, 2005, SEED SCI RES, V15, P153, DOI 10.1079/SSR2005206; CABALLERO I, 2006, THESIS U PAIS VASCO; CASTRODIEZ P, 1998, PLANT ECOL, V139, P108; CHAPIN FS, 1990, ANNU REV ECOL SYST, V21, P423, DOI 10.1146/annurev.ecolsys.21.1.423; Cheplick G. P., 2005, REPROD ALLOCATION PL, P97; CHEPLICK GP, 1995, AM J BOT, V82, P621, DOI 10.2307/2445420; Cody ML, 2000, J VEG SCI, V11, P351, DOI 10.2307/3236627; Cornelissen JHC, 1997, OECOLOGIA, V111, P460, DOI 10.1007/s004420050259; Ehrlen J, 2002, OIKOS, V98, P308, DOI 10.1034/j.1600-0706.2002.980212.x; Ehrlen J, 2001, J ECOL, V89, P237, DOI 10.1046/j.1365-2745.2001.00546.x; Escos J, 2000, J ARID ENVIRON, V45, P325, DOI 10.1006/jare.2000.0641; Franco Miguel, 1997, P210; Garcia D, 2003, J VEG SCI, V14, P921; GILLMAN MP, 1990, FUNCT ECOL, V4, P585, DOI 10.2307/2389326; Hautekeete NC, 2001, J EVOLUTION BIOL, V14, P795, DOI 10.1046/j.1420-9101.2001.00322.x; Karlsson P. Staffan, 2005, P1, DOI 10.1016/B978-012088386-8/50001-6; KARLSSON PS, 1990, OIKOS, V59, P393, DOI 10.2307/3545151; KOZLOWSKI J, 1991, ACTA OECOL, V12, P11; KUTIEL P, 1992, ISRAEL J BOT, V41, P243; LAW R, 1979, AM NAT, V113, P3, DOI 10.1086/283361; LIANG KY, 1986, BIOMETRIKA, V73, P13, DOI 10.2307/2336267; Lopez-Gonzalez G., 1993, FLORA IBERICA, V3, P365; Martinez I, 2006, AUST J BOT, V54, P339, DOI 10.1071/BT05078; Maxwell K, 2000, J EXP BOT, V51, P659, DOI 10.1093/jexbot/51.345.659; Mooney H.A., 1991, RESPONSE PLANTS MULT, P67; MUCCULLAGH P, 1989, GEN LINEAR MODELS; OBESO JR, 2000, NEW PHYTOL, V15, P321; PAIGE KN, 1987, ECOLOGY, V68, P1691, DOI 10.2307/1939861; PAKONEN T, 1988, Acta Botanica Fennica, V136, P37; PINERO D, 1982, J ECOL, V70, P473, DOI 10.2307/2259916; PRIMACK RB, 1982, EVOLUTION, V36, P742, DOI 10.1111/j.1558-5646.1982.tb05440.x; Reekie E., 2005, REPROD ALLOCATION PL, P189, DOI 10. 1016/B978-012088386-8/50007-7; REEKIE EG, 1991, CAN J BOT, V69, P2678, DOI 10.1139/b91-336; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Romao RL, 2005, PLANT ECOL, V181, P127, DOI 10.1007/s11258-005-5321-x; Saikkonen K, 1998, ECOLOGY, V79, P1620, DOI 10.1890/0012-9658(1998)079[1620:IEOPAH]2.0.CO;2; Sandvik SM, 2001, OIKOS, V93, P303, DOI 10.1034/j.1600-0706.2001.930213.x; *SAS I, 1990, SAS STAT PACK VERS 9; SCHAR AP, 2003, HOT NEWS SUMMER, V432, P559; SMITH AP, 1982, OECOLOGIA, V55, P243, DOI 10.1007/BF00384494; SOHN JJ, 1977, ECOLOGY, V58, P1366, DOI 10.2307/1935088; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TUOMI J, 1983, AM ZOOL, V23, P25; Valladares F, 2002, PLANT CELL ENVIRON, V25, P749, DOI 10.1046/j.1365-3040.2002.00856.x; Valladares F, 1997, PLANT CELL ENVIRON, V20, P25, DOI 10.1046/j.1365-3040.1997.d01-8.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zotz G, 2006, ANN BOT-LONDON, V97, P745, DOI 10.1093/aob/mcl026 57 24 24 0 25 BOTANICAL SOC AMER INC ST LOUIS PO BOX 299, ST LOUIS, MO 63166-0299 USA 0002-9122 AM J BOT Am. J. Bot. MAY 2009 96 5 904 911 10.3732/ajb.0800223 8 Plant Sciences Plant Sciences 443HN WOS:000265900900005 21628243 Bronze 2018-11-12 J Bonato, M; Evans, MR; Cherry, MI Bonato, Maud; Evans, Matthew R.; Cherry, Michael I. Investment in eggs is influenced by male coloration in the ostrich, Struthio camelus ANIMAL BEHAVIOUR English Article courtship display; egg mass; maternal investment; microsatellite marker; ostrich; parentage determination; spectrophotometry; Struthio camelus MALE ATTRACTIVENESS; MATERNAL TRANSFER; SEXUAL SELECTION; PARENTAL QUALITY; VISUAL PIGMENTS; OIL DROPLETS; ZEBRA FINCH; BIRDS; SIZE; TESTOSTERONE Life history theory predicts that females should modify their investment in a particular breeding attempt according to the likelihood of its success, as the investment of females in reproduction is typically higher than that of males. The ostrich mating system is promiscuous, and is thus a particularly interesting one in which to investigate differential investment by the sexes. To date, there has been no evidence that female ostriches discriminate between males as potential mates, but the degree of dimorphism in this promiscuous species and the variation in chick size within clutches suggest that differential maternal investment is likely. We investigated the relationship between egg mass and coloration of the feathers, bill, neck and legs of 15 male ostriches, maintained in a breeding flock at an ostrich farm in South Africa. Paternity was determined using microsatellite markers. We found that the colour of the neck, white and black body feathers, and the brightness of black feathers, predicted egg mass. These traits are exposed during the male courtship display, so we suggest that these visual cues influence the degree of maternal investment in eggs through their influence on female perception of mate quality. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Bonato, Maud; Cherry, Michael I.] Univ Stellenbosch, Dept Bot & Zool, ZA-7602 Matieland, South Africa; [Evans, Matthew R.] Univ Exeter, Sch Biosci, Ctr Ecol & Conservat, Exeter EX4 4QJ, Devon, England Bonato, M (reprint author), Univ Stellenbosch, Dept Bot & Zool, Private Bag X1, ZA-7602 Matieland, South Africa. mbonato@sun.ac.za Bonato, Maud/0000-0002-0790-0859; Evans, Matthew/0000-0002-5630-7621 National Research Fund of South Africa We gratefully thank the National Research Fund of South Africa for financial support, the Oudtshoorn Experimental Farm, and especially Schalk Cloete, Zanell Brand, Stefan Engelbrecht and Basie P. ster for assistance in taking care of the birds and data collection, as well as Amanda Bretman, for valuable support and advice during the parentage determination. Andersson M., 1994, SEXUAL SELECTION; BENNETT ATD, 1994, VISION RES, V34, P1471, DOI 10.1016/0042-6989(94)90149-X; BENNETT ATD, 1994, AM NAT, V144, P848, DOI 10.1086/285711; BENNETT ATD, 1997, P NATL ACAD SCI USA, V97, P8616; BERTRAM BCR, 1992, OSTRICH COMMUNAL NES; Bize P, 2002, OECOLOGIA, V132, P231, DOI 10.1007/s00442-002-0980-y; Boulinier T, 2008, TRENDS ECOL EVOL, V23, P282, DOI 10.1016/j.tree.2007.12.006; BOWMAKER JK, 1980, NATURE, V284, P306, DOI 10.1038/284306a0; Bowmaker JK, 1997, VISION RES, V37, P2183, DOI 10.1016/S0042-6989(97)00026-6; Bubier NE, 1996, BRIT POULTRY SCI, V37, P547, DOI 10.1080/00071669608417884; BURLEY N, 1988, AM NAT, V132, P611, DOI 10.1086/284877; CHEN DM, 1986, J COMP PHYSIOL A, V159, P473, DOI 10.1007/BF00604167; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; CLOETE S.W.P., 2004, S AFRICAN J ANIMAL S, V34, P17, DOI DOI 10.4314/SAJAS.V34I6.3818; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; COOPER SM, 1994, OSTRICH, V66, P251; Cunningham EJA, 2000, NATURE, V404, P74, DOI 10.1038/35003565; Cuthill IC, 1999, AM NAT, V153, P183, DOI 10.1086/303160; Darwin C.R., 1871, DESCENT MAN SELECTIO; Deeming DC, 1999, OSTRICH BIOL PRODUCT; ENDLER JA, 1990, BIOL J LINN SOC, V41, P315, DOI 10.1111/j.1095-8312.1990.tb00839.x; Endler JA, 1996, AM NAT, V148, P421, DOI 10.1086/285934; Gil D, 1999, SCIENCE, V286, P126, DOI 10.1126/science.286.5437.126; Grindstaff JL, 2003, P ROY SOC B-BIOL SCI, V270, P2309, DOI 10.1098/rspb.2003.2485; Hasselquist D, 2009, PHILOS T R SOC B, V364, P51, DOI 10.1098/rstb.2008.0137; HEANEY V, 1995, P ROY SOC B-BIOL SCI, V261, P361, DOI 10.1098/rspb.1995.0160; Hunt S, 1998, P ROY SOC B-BIOL SCI, V265, P451, DOI 10.1098/rspb.1998.0316; JANE SD, 1988, J COMP PHYSIOL A, V162, P225, DOI 10.1007/BF00606087; Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x; Kimwele CN, 2003, MOL ECOL, V12, P229, DOI 10.1046/j.1365-294X.2003.01727.x; Kose M, 1999, BEHAV ECOL SOCIOBIOL, V45, P430, DOI 10.1007/s002650050581; Lipar JL, 1999, AUK, V116, P231, DOI 10.2307/4089471; Marshall TC, 1998, MOL ECOL, V7, P639, DOI 10.1046/j.1365-294x.1998.00374.x; Price T, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P202; REID WV, 1990, EVOLUTION, V44, P1780, DOI 10.1111/j.1558-5646.1990.tb05248.x; Rutstein AN, 2004, ANIM BEHAV, V68, P1087, DOI 10.1016/j.anbehav.2004.02.011; Saino N, 2002, BEHAV ECOL, V13, P169, DOI 10.1093/beheco/13.2.169; Sauer E. G. F., 1966, Living Bird, V5, P45; SCHWABL H, 1993, P NATL ACAD SCI USA, V90, P11446, DOI 10.1073/pnas.90.24.11446; Silva MC, 2007, ANIM BEHAV, V74, P1403, DOI 10.1016/j.anbehav.2007.01.008; Smith HG, 1998, OECOLOGIA, V115, P59, DOI 10.1007/s004420050491; Tang B, 2003, GENOME, V46, P833, DOI [10.1139/g03-059, 10.1139/G03-059]; Torok J, 2003, BEHAV ECOL, V14, P382, DOI 10.1093/beheco/14.3.382; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Wolf JB, 1998, EVOLUTION, V52, P299, DOI 10.1111/j.1558-5646.1998.tb01632.x; Wright MW, 2001, VISION RES, V41, P1, DOI 10.1016/S0042-6989(00)00227-3; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3 47 23 25 2 25 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 ANIM BEHAV Anim. Behav. MAY 2009 77 5 1027 1032 10.1016/j.anbehav.2008.12.019 6 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 434OL WOS:000265283900007 2018-11-12 J de la Hera, I; Perez-Tris, J; Telleria, JL de la Hera, Ivan; Perez-Tris, Javier; Telleria, Jose Luis Migratory behaviour affects the trade-off between feather growth rate and feather quality in a passerine bird BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article bird migration; individual quality; moult; ptilochronology; Sylvia atricapilla BLACKCAPS SYLVIA-ATRICAPILLA; SEDENTARY BLACKCAPS; REPRODUCTIVE EFFORT; MOLT STRATEGIES; SOUTHERN IBERIA; EVOLUTION; PTILOCHRONOLOGY; MECHANISM; KERATIN; COSTS Migratory birds have less time for moulting than sedentary birds, which may force them to produce their feathers faster at the expense of reducing feather quality. However, the effects of migration on the trade-off between moult speed and plumage quality remain to be studied in natural populations. We analysed the relationship between growth rate and quality of individual feathers, taking advantage of natural variation between migratory and sedentary populations of blackcaps Sylvia atricapilla. As predicted by life-history theory, individual blackcaps showed variable individual quality, which was revealed by positive correlations between feather growth rate and feather mass within populations. However, migrants grew up their feathers faster, producing lighter feathers than sedentary blackcaps. These results support the idea that feather growth rate and feather quality are traded against each other in blackcaps. Such a trade-off is apparently caused by different selection associated to migratory and sedentary life styles, which opens new insights into the diversification of moult patterns in birds. (C) 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 98-105. [de la Hera, Ivan; Perez-Tris, Javier; Telleria, Jose Luis] Univ Complutense Madrid, Dept Zool & Antropol Fis, Fac Biol, E-28040 Madrid, Spain de la Hera, I (reprint author), Univ Complutense Madrid, Dept Zool & Antropol Fis, Fac Biol, E-28040 Madrid, Spain. idelahera@bio.ucm.es Telleria, Jose Luis/K-2944-2013; Perez-Tris, Javier/D-4087-2012; Evolution and Conservation Biology, UCM Group/K-9382-2014; de la Hera, Ivan/C-3652-2011 Telleria, Jose Luis/0000-0001-6170-8860; Perez-Tris, Javier/0000-0001-5535-3100; Spanish Ministry of Science and Technology [CGL2004-02744/BOS]; Department of Education; Universities and Research of the Basque Government We thank R. Carbonell and A. Ramirez for help during fieldwork, and J. A. Diaz, A. Ramirez and two anonymous referees for insightful comments on an earlier draft. All birds were captured under license from Junta de Andalucia. This study was funded by the Spanish Ministry of Science and Technology (Project CGL2004-02744/BOS to J.L.T. and a Ramon y Cajal fellowship to J.P.) and the Department of Education, Universities and Research of the Basque Government (PhD studentship to I.H.). Aparicio JM, 2003, EVOLUTION, V57, P397; Bearhop S, 2005, SCIENCE, V310, P502, DOI 10.1126/science.1115661; Bennett P. M., 2002, EVOLUTIONARY ECOLOGY; BENSCH S, 1993, CONDOR, V95, P305, DOI 10.2307/1369353; BERTHOLD P, 1992, NATURE, V360, P668, DOI 10.1038/360668a0; Berthold P., 1996, CONTROL BIRD MIGRATI; Bonier F, 2007, ECOLOGY, V88, P2729, DOI 10.1890/07-0696.1; BONSER RHC, 1995, J EXP BIOL, V198, P1029; Bonser RHC, 1996, J ZOOL, V239, P477, DOI 10.1111/j.1469-7998.1996.tb05937.x; BRODIN A, 1993, ORNIS SCAND, V24, P167, DOI 10.2307/3676732; Carbonell R, 1999, BIRD STUDY, V46, P243, DOI 10.1080/00063659909461136; Corning WR, 1998, J EXP BIOL, V201, P3057; Cuthill Innes C., 1997, P97; Dawson A, 2000, P ROY SOC B-BIOL SCI, V267, P2093, DOI 10.1098/rspb.2000.1254; de la Hera I, 2007, ARDEOLA, V54, P81; Fiedler W, 2005, ANN NY ACAD SCI, V1046, P253, DOI 10.1196/annals.1343.022; Ginn H. B., 1983, MOULT IN BIRDS, V19; Grubb T., 2006, PTILOCHRONOLOGY FEAT; Hall KSS, 2004, EVOL ECOL, V18, P85, DOI 10.1023/B:EVEC.0000017848.20735.8b; Hall KSS, 2000, J AVIAN BIOL, V31, P583, DOI 10.1034/j.1600-048X.2000.310419.x; Hemborg C, 1998, BEHAV ECOL SOCIOBIOL, V43, P19, DOI 10.1007/s002650050462; Jenni L, 1994, MOULT AGEING EUROPEA; Kjellen Nils, 1994, Ornis Svecica, V4, P1; LINDSTROM A, 1994, ANIM BEHAV, V48, P1173, DOI 10.1006/anbe.1994.1349; Norris DR, 2004, SCIENCE, V306, P2249, DOI 10.1126/science.1103542; Perez-Tris J, 2004, EVOLUTION, V58, P1819, DOI 10.1554/03-731; Perez-Tris J, 1999, BIRD STUDY, V46, P299, DOI 10.1080/00063659909461142; Perez-Tris J, 2002, J ANIM ECOL, V71, P211, DOI 10.1046/j.1365-2656.2002.00590.x; Pulido F, 2004, ANIM BEHAV, V68, P167, DOI 10.1016/j.anbehav.2003.11.006; PULIDO F, 2005, ANN NY ACAD SCI, V1046, P1; Roff Derek A., 1992; Serra L, 2007, J EVOLUTION BIOL, V20, P2028, DOI 10.1111/j.1420-9101.2007.01360.x; Serra L, 2001, J AVIAN BIOL, V32, P377, DOI 10.1111/j.0908-8857.2001.320415.x; *STATS INC, 2002, STATISTICA DAT AN SO; Stearns S. C., 1992, EVOLUTION LIFE HIST; Svensson E, 1999, BIOL J LINN SOC, V67, P263, DOI 10.1111/j.1095-8312.1999.tb01864.x; Svensson L., 1992, IDENTIFICATION GUIDE; Telleria JL, 1999, J AVIAN BIOL, V30, P63, DOI 10.2307/3677244; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547 39 47 47 1 29 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. MAY 2009 97 1 98 105 10.1111/j.1095-8312.2008.01189.x 8 Evolutionary Biology Evolutionary Biology 436IK WOS:000265406800009 Bronze 2018-11-12 J Westneat, DF; Stewart, IRK; Hatch, MI Westneat, David F.; Stewart, Ian R. K.; Hatch, Margret I. Complex interactions among temporal variables affect the plasticity of clutch size in a multi-brooded bird ECOLOGY English Article developmental flexibility; gene x environment interaction; House Sparrow; life history; Passer domesticus; reaction norm; senescence IN-HOUSE SPARROWS; PHENOTYPIC PLASTICITY; REACTION NORMS; QUANTITATIVE GENETICS; NATURAL-SELECTION; REPRODUCTIVE SUCCESS; SEASONAL DECLINE; BREEDING BIOLOGY; EGG-PRODUCTION; GREAT TITS Phenotypic plasticity is a widespread phenomenon and may have important influences on evolutionary processes. Multidimensional plasticity, in which multiple environmental variables affect a phenotype, is especially interesting if there are interactions among these variables. We used a long-term data set from House Sparrows (Passer domesticus), a multi-brooded passerine bird, to test several predictions from life-history theory regarding the shape of optimal reaction norms for clutch size. The best-fit model for variation in clutch size included three temporal variables (the order of attempt within a season, the date of those attempts, and the age of the female). Clutch size was also sensitive to the quadratics of date and female age, both of which had negative coefficients. Finally, we found that the relationship between date and clutch size became more negative as attempt order increased. These results suggest that female sparrows have a multidimensional reaction norm for clutch size that matches predictions of life-history theory but also implicates more complexity than can be captured by any single model. Analysis of the sources of variation in reaction norm height and slope was complicated by the additional environmental dimensions. We found significant individual variation in mean clutch size in all analyses, indicating that individuals differed in the height of their clutch size reaction norm. By contrast, we found no evidence of significant individual heterogeneity in the slopes of several dimensions. We assess the possible mechanisms producing this reaction norm and discuss their implications for understanding complex plasticity. [Westneat, David F.] Univ Kentucky, Dept Biol, Lexington, KY 40506 USA; Univ Kentucky, Ctr Ecol Evolut & Behav, Lexington, KY 40506 USA Westneat, DF (reprint author), Univ Kentucky, Dept Biol, 101 Morgan Bldg, Lexington, KY 40506 USA. biodfw@uky.edu National Science Foundation [IBN 9816989, IOS-0073239, IOB 0542097]; NSF-Kentucky EPSCoR program; NIH KyBRIN program; University of Kentucky We thank the staff at the University of Kentucky's Agricultural Experiment Station, particularly the barn managers on Maine Chance, for their cooperation with this study. We are also deeply indebted to a large number of people who contributed to the fieldwork, especially the following who were involved in multiple seasons: K. Hopper, S. Sloane, R. Hanschu, J. Poston, T. Kinnard, and R. Edenfield. This study was funded by grants from the National Science Foundation (IBN 9816989, IOS-0073239, and IOB 0542097), by the NSF-Kentucky EPSCoR program, by the NIH KyBRIN program, and by the University of Kentucky. Comments on the manuscript were provided by J. Brommer, A. Ensminger, C. Fox, P. Hartman, S. Martin, L. Rowe, T. Sesterhenn, B. Sousa, D. Wetzel, and two anonymous reviewers. ANDERSON TR, 1994, WILSON BULL, V106, P537; Anderson TR, 2006, BIOL UBIQUITOUS HOUS; Bennett P. M., 2002, EVOLUTIONARY ECOLOGY; BOUTIN S, 1990, CAN J ZOOL, V68, P203, DOI 10.1139/z90-031; Brommer JE, 2005, EVOLUTION, V59, P1362; Brommer JE, 2003, EVOL ECOL RES, V5, P229; Burnham K. P., 2002, MODEL SELECTION MULT; Carey C, 1996, AVIAN ENERGETICS NUT; Challenger WO, 2001, PHYSIOL BIOCHEM ZOOL, V74, P356, DOI 10.1086/320427; Clifford LD, 2001, J ANIM ECOL, V70, P539, DOI 10.1046/j.1365-2656.2001.00521.x; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Crawley MJ, 2002, STAT COMPUTING INTRO; CRICK HQP, 1993, J ANIM ECOL, V62, P263, DOI 10.2307/5357; Czesak ME, 2006, AM NAT, V168, P323, DOI 10.1086/506919; DRENT RH, 1980, ARDEA, V68, P225; FRY JD, 1992, EVOLUTION, V46, P540, DOI 10.1111/j.1558-5646.1992.tb02057.x; Gil-Delgado JA, 2005, IBIS, V147, P206, DOI 10.1111/j.1474-919x.2004.00391; GOMULKIEWICZ R, 1992, EVOLUTION, V46, P390, DOI 10.1111/j.1558-5646.1992.tb02047.x; Grant PR, 2000, ECOLOGY, V81, P2442, DOI 10.2307/177466; Gresens SE, 1997, FRESHWATER BIOL, V38, P365, DOI 10.1046/j.1365-2427.1997.00248.x; Hatch MI, 2007, J AVIAN BIOL, V38, P603, DOI 10.1111/j.0908-8857.2007.04044.x; HAYWOOD S, 1992, P ROY SOC B-BIOL SCI, V249, P195, DOI 10.1098/rspb.1992.0103; HOCHACHKA W, 1990, ECOLOGY, V71, P1279, DOI 10.2307/1938265; Kingsolver JG, 2006, EVOL ECOL RES, V8, P703; KLOMP H, 1970, ARDEA, V58, P1; LACK D, 1947, ANIM BEHAV, V89, P302; LACK D, 1954, NATURAL REGULATION A; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MEIJER T, 1999, AUK, V141, P399; Merila J, 2000, AM NAT, V155, P301, DOI 10.1086/303330; Nager RG, 1997, J ANIM ECOL, V66, P495, DOI 10.2307/5944; Nakagawa S, 2007, OECOLOGIA, V153, P749, DOI 10.1007/s00442-007-0765-4; Nussey DH, 2007, J EVOLUTION BIOL, V20, P831, DOI 10.1111/j.1420-9101.2007.01300.x; Nussey DH, 2005, SCIENCE, V310, P304, DOI 10.1126/science.1117004; PERRINS CM, 1970, IBIS, V112, P242, DOI 10.1111/j.1474-919X.1970.tb00096.x; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; PERRINS CM, 1966, IBIS, V108, P132, DOI 10.1111/j.1474-919X.1966.tb07259.x; Petersen C, 2000, PHYSIOL ENTOMOL, V25, P35, DOI 10.1046/j.1365-3032.2000.00163.x; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PIGLIUCCI M, 1995, J EVOLUTION BIOL, V8, P421, DOI 10.1046/j.1420-9101.1995.8040421.x; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; Postma E, 2005, ECOLOGY, V86, P2344, DOI 10.1890/04-0348; PYLE P, 1999, IDENTIFICATION GUI 1; Relyea RA, 2004, ECOLOGY, V85, P172, DOI 10.1890/03-0169; Rice SH, 2002, P NATL ACAD SCI USA, V99, P15518, DOI 10.1073/pnas.202620999; Ris N, 2004, OIKOS, V106, P451, DOI 10.1111/j.0030-1299.2004.13274.x; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; Schlicting C.D., 1998, PHENOTYPIC EVOLUTION; SCHMAULHAUSEN II, 1949, FACTORS EVOLUTION; SOKAL RR, 1995, BIOMETRY PRINCIPLES; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; Stewart IRK, 2006, CONDOR, V108, P399, DOI 10.1650/0010-5422(2006)108[399:TOEPAG]2.0.CO;2; Stillwell RC, 2007, OECOLOGIA, V153, P309, DOI 10.1007/s00442-007-0748-5; Sultan Sonia E., 2005, P303, DOI 10.1016/B978-012088777-4/50016-8; SUMMERSSMITH D, 1963, HOUSE SPARROW; Thomas DW, 2001, SCIENCE, V291, P2598, DOI 10.1126/science.1057487; Valladares F, 2007, NEW PHYTOL, V176, P749, DOI 10.1111/j.1469-8137.2007.02275.x; VANNOORDWIJK AJ, 1989, BIOSCIENCE, V39, P453, DOI 10.2307/1311137; Verhulst S, 2008, PHILOS T R SOC B, V363, P399, DOI 10.1098/rstb.2007.2146; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Visser ME, 2006, OECOLOGIA, V147, P164, DOI 10.1007/s00442-005-0299-6; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Westneat DF, 2002, CONDOR, V104, P598, DOI 10.1650/0010-5422(2002)104[0598:POSRVI]2.0.CO;2; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams TD, 2005, BIOSCIENCE, V55, P39, DOI 10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2; Williams TD, 2004, FUNCT ECOL, V18, P330, DOI 10.1111/j.0269-8463.2004.00829.x; Woltereck R., 1909, VERH DTSCH ZOOL GES, P110 69 29 29 1 31 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 ECOLOGY Ecology MAY 2009 90 5 1162 1174 10.1890/08-0698.1 13 Ecology Environmental Sciences & Ecology 494YI WOS:000269855400001 19537538 2018-11-12 J Lawson, DW; Mace, R Lawson, David W.; Mace, Ruth Trade-offs in modern parenting: a longitudinal study of sibling competition for parental care EVOLUTION AND HUMAN BEHAVIOR English Article Parental investment; Sibling competition; Life history theory; Demographic transition; ALSPAC LIFE-HISTORY EVOLUTION; REPRODUCTIVE SUCCESS; NATURAL-SELECTION; BIRTH-ORDER; INTELLECTUAL-DEVELOPMENT; DEMOGRAPHIC-TRANSITION; FAMILY-STRUCTURE; ALBUQUERQUE MEN; CHILDREN; INVESTMENT Evolutionary and economic models of the family propose that parents face a fundamental trade-off between fertility and investment per offspring. However, tests of this hypothesis have focused primarily on offspring outcomes rather than direct measures of parental investment. Existing studies of parenting also suffer a number of methodological problems now recognized as common sources of error in sociodemographic studies. Here, we present a more definitive picture of the effects of family structure on parental care by analyzing an extensive longitudinal dataset of contemporary British families (the Avon Longitudinal Study of Parents and Children). Unlike other studies, we simultaneously track maternal and paternal behaviors within the same family and consider variation both across time and between distinct population subgroups. Parental investment was measured as frequency of engagement in key care activities over the first decade of life. For both parents, larger family size was traded off against investment per offspring, representing the strongest explanatory variable considered in our analysis. However, contrary to the predictions of traditional quantity-quality trade-off models, increasing family socioeconomic status did not alleviate this effect. In fact, for paternal care in particular, increases in wealth and education created stronger trade-offs. We also demonstrate that large sibships were particularly costly for later-born offspring. Sex of siblings did not influence parental care, however maternal investment was biased towards daughters and paternal investment biased towards sons. Unrelated father figures were also associated with lower investment from both parents. Results are discussed in relation to parental investment theory and evolutionary models of modem low fertility. (C) 2009 Elsevier Inc. All rights reserved. [Lawson, David W.; Mace, Ruth] UCL, Dept Anthropol, London WC1H 0BW, England Lawson, DW (reprint author), UCL, Dept Anthropol, London WC1H 0BW, England. d.lawson@ucl.ac.uk Mace, Ruth/0000-0002-6137-7739 UK Medical Resource Council; Wellcome Trust; University of Bristol; Economic and Social Research Council; Medical Research Council [G9815508] We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses. In particular, we thank Dr Jon Heron for his essential assistance with data management. The UK Medical Resource Council, the Wellcome Trust, and the University of Bristol provide core support for ALSPAC. This research was funded by an Economic and Social Research Council studentship to the first author. We thank Laura Fortunato, Kesson Magid and an anonymous reviewer for their constructive comments on an early version of this manuscript. Anderson KG, 2007, EVOL HUM BEHAV, V28, P1, DOI 10.1016/j.evolhumbehav.2006.06.004; Anderson KG, 1999, EVOL HUM BEHAV, V20, P405, DOI 10.1016/S1090-5138(99)00023-9; BARKOW JH, 1980, ETHOL SOCIOBIOL, V1, P163, DOI 10.1016/0162-3095(80)90006-0; Becker G.S, 1981, TREATISE FAMILY; Becker GS, 1973, EC FAMILY MARRIAGE C, P81; Bianchi SM, 2000, DEMOGRAPHY, V37, P401, DOI 10.2307/2648068; Bjerkedal T, 2007, INTELLIGENCE, V35, P503, DOI 10.1016/j.intell.2007.01.004; BOGIN B, 1997, J PHYS ANTHR, V104, P63; Bongaarts J, 1996, POPUL DEV REV, V22, P639, DOI 10.2307/2137804; BORGERHOFF M, 2000, EVOL HUM BEHAV, V21, P391, DOI DOI 10.1016/S1090-5138(00)00054-4); BORGERHOFFMULDE.M, 1998, HUM NATURE, V9, P119; Boyd R., 1985, CULTURE EVOLUTIONARY; Braveman PA, 2005, JAMA-J AM MED ASSOC, V294, P2879, DOI 10.1001/jama.294.22.2879; Ceballo R, 2002, CHILD DEV, V73, P1310, DOI 10.1111/1467-8624.00473; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Cooksey EC, 1996, J MARRIAGE FAM, V58, P693, DOI 10.2307/353729; Dahl G. B., 2004, W10281 NAT BUR EC RE; Daly M., 1981, NATURAL SELECTION SO, P405; Daly M., 1998, TRUTH CINDERELLA; DESAI S, 1995, POP STUD-J DEMOG, V49, P195, DOI 10.1080/0032472031000148466; Downey DB, 2001, AM PSYCHOL, V56, P497, DOI 10.1037//0003-066X.56.6-7.497; DOWNEY DB, 1995, AM SOCIOL REV, V60, P746, DOI 10.2307/2096320; FISHER R. A., 1930, GENETICAL THEORY NAT; Flouri E, 2004, BRIT J EDUC PSYCHOL, V74, P141, DOI 10.1348/000709904773839806; Gillespie DOS, 2008, P R SOC B, V275, P713, DOI 10.1098/rspb.2007.1000; Goldschmidt R, 2001, FOCUS BIOTECHNOL, V1, P15; GRAWE N, EC INQUIRY IN PRESS; Gregg P, 2005, ECON J, V115, pF48, DOI 10.1111/j.0013-0133.2005.00972.x; Guo G, 1999, AM SOCIOL REV, V64, P169, DOI 10.2307/2657524; Hagen EH, 2006, AM J PHYS ANTHROPOL, V130, P405, DOI 10.1002/ajpa.20272; Hagen EH, 2001, J BIOSOC SCI, V33, P503, DOI 10.1017/S002193200100503X; Hertwig R, 2002, PSYCHOL BULL, V128, P728, DOI 10.1037//0033-2909.128.5.728; HILL CR, 1980, J HUM RESOUR, V15, P219, DOI 10.2307/145332; Hopcroft RL, 2006, EVOL HUM BEHAV, V27, P104, DOI 10.1016/j.evolhumbehav.2005.07.004; Jeon J, 2008, BEHAV ECOL, V19, P344, DOI 10.1093/beheco/arm136; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H, 2002, AM J HUM BIOL, V14, P233, DOI 10.1002/ajhb.10041; KAPLAN HS, 1995, HUMAN REPROD DECISIO, P96; Keister LA, 2004, SOCIOL PERSPECT, V47, P161, DOI 10.1525/sop.2004.47.2.161; Keister LA, 2003, DEMOGRAPHY, V40, P521, DOI 10.2307/1515158; Keller MC, 2001, EVOL HUM BEHAV, V22, P343, DOI 10.1016/S1090-5138(01)00075-7; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lawson DW, 2008, INT J EPIDEMIOL, V37, P1408, DOI 10.1093/ije/dyn116; Little R. J. A., 1987, STAT ANAL MISSING DA; LOW BS, 1991, ETHOL SOCIOBIOL, V12, P411, DOI 10.1016/0162-3095(91)90024-K; Lundberg S, 2005, OXFORD REV ECON POL, V21, P340, DOI 10.1093/oxrep/gri020; Mace R, 1996, BEHAV ECOL SOCIOBIOL, V38, P75, DOI 10.1007/s002650050219; Mace R, 2007, OXFORD HDB EVOLUTION, P383; Mace R, 2008, SCIENCE, V319, P764, DOI 10.1126/science.1153960; MARSIGLIO W, 1991, J MARRIAGE FAM, V53, P973, DOI 10.2307/353001; McNamara JM, 2006, SOCIAL INFORM TRANSM, P59; Montgomery MR, 1996, POPUL DEV REV, V22, P151, DOI 10.2307/2808010; Nettle D, 2008, EVOL HUM BEHAV, V29, P416, DOI 10.1016/j.evolhumbehav.2008.06.002; Nettle D, 2008, AM NAT, V172, P658, DOI 10.1086/591690; Newson L, 2005, PERS SOC PSYCHOL REV, V9, P360, DOI 10.1207/s15327957pspr0904_5; Penn DJ, 2007, P NATL ACAD SCI USA, V104, P553, DOI 10.1073/pnas.0609301103; Price J, 2008, J HUM RESOUR, V43, P240; Rodgers JL, 2000, AM PSYCHOL, V55, P599, DOI 10.1037/0003-066X.55.6.599; RODGERS JL, 2001, AM PSYCHOL, V56, P6; Rogers L, 2008, BRIT J SPEC EDUC, V35, P16, DOI 10.1111/j.1467-8578.2008.00365.x; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Sear R, 2007, AM J PHYS ANTHROPOL, V132, P632, DOI 10.1002/ajpa.20558; Singer J. D., 2003, APPL LONGITUDINAL DA; Steelman LC, 2002, ANNU REV SOCIOL, V28, P243, DOI 10.1146/annurev.soc.28.111301.093304; Sterns S., 1992, EVOLUTION LIFE HIST; Stewart-Brown S, 2008, ARCH DIS CHILD, V93, P102, DOI 10.1136/adc.2006.113522; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; SZRETER S, 1996, FERTILITY CLASS GEND; Thorpe K.J., 1992, J REPROD INFANT PSYC, V10, P191, DOI DOI 10.1080/02646839208403953; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; TUOMI J, 1983, AM ZOOL, V23, P25; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VOLAND E, 1995, HUM NATURE-INT BIOS, V6, P33, DOI 10.1007/BF02734134; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zick CD, 1996, SOC SCI RES, V25, P260, DOI 10.1006/ssre.1996.0012 75 63 64 1 46 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 EVOL HUM BEHAV Evol. Hum. Behav. MAY 2009 30 3 170 183 10.1016/j.evolhumbehav.2008.12.001 14 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences 437HY WOS:000265478900003 2018-11-12 J Meij, JJ; Bodegom, D; Ziem, JB; Amankwa, J; Polderman, AM; Kirkwood, TBL; De Craen, AJM; Zwaan, BJ; Westendorp, RGJ Meij, J. J.; Van Bodegom, D.; Ziem, J. B.; Amankwa, J.; Polderman, A. M.; Kirkwood, T. B. L.; De Craen, A. J. M.; Zwaan, B. J.; Westendorp, R. G. J. Quality-quantity trade-off of human offspring under adverse environmental conditions JOURNAL OF EVOLUTIONARY BIOLOGY English Article Africa; fertility; life-history theory; offspring survival; quality-quantity trade-off; reproductive succes CHILD-MORTALITY; PARENTAL INVESTMENT; LIFE-HISTORIES; FERTILITY; SIZE; FITNESS; REPRODUCTION; EVOLUTION; FECUNDITY; INFANT A central paradigm in life-history theory is the trade-off between offspring number and quality. Several studies have investigated this trade-off in humans, but data are inconclusive, perhaps because prosperous socio-cultural factors mask the trade-off. Therefore, we studied 2461 offspring groups in an area under adverse conditions in northern Ghana with high fertility and mortality rates. In a linear mixed model controlling for differences in age and tribe of the mother and socioeconomic status, each additional child in the offspring group resulted in a 2.3% (95% CI 1.9-2.6%, P < 0.001) lower proportional survival of the offspring. Furthermore, we made use of the polygamous population structure and compared offspring of co-wives in 388 households, thus controlling for variation in resources between compounds. Here, offspring survival decreased 2.8% (95% CI 2.3-4.0%, P < 0.001) for each increase in offspring number. We interpret these data as an apparent quality-quantity trade-off in human offspring. [Meij, J. J.; Van Bodegom, D.; De Craen, A. J. M.; Westendorp, R. G. J.] Leiden Univ, Med Ctr, Dept Gerontol & Geriatr, NL-2300 RC Leiden, Netherlands; [Ziem, J. B.] Univ Dev Studies, Sch Med & Hlth Sci, Tamale, Ghana; [Amankwa, J.] Ghana Hlth Serv, Accra, Ghana; [Polderman, A. M.] Leiden Univ, Med Ctr, Dept Parasitol, NL-2300 RC Leiden, Netherlands; [Kirkwood, T. B. L.] Newcastle Univ, Inst Ageing & Hlth, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England; [Zwaan, B. J.] Leiden Univ, Inst Biol, NL-2300 RC Leiden, Netherlands Bodegom, D (reprint author), Leiden Univ, Med Ctr, Dept Gerontol & Geriatr, POB 9600, NL-2300 RC Leiden, Netherlands. d.van_bodegom@lumc.nl Zwaan, Bas/D-8721-2015 Zwaan, Bas/0000-0002-8221-4998; Ziem, Juventus/0000-0002-5130-8764 Netherlands Foundation for the advancements of Tropical Research [WOTRO 93-467]; Netherlands Organization for Scientific Research [NWO 051-14-050]; EU [FP6 036894]; Board of the Leiden University Medical Center; Stichting Dioraphte; Biotechnology and Biological Sciences Research Council [BB/C008200/1]; Medical Research Council [G0700718B] We have no conflict of interest. This research was supported by the Netherlands Foundation for the advancements of Tropical Research (grant number WOTRO 93-467), the Netherlands Organization for Scientific Research (NWO 051-14-050), the EU funded Network of Excellence LifeSpan (FP6 036894) an unrestricted grant of the Board of the Leiden University Medical Center and the Stichting Dioraphte. None of these organizations had any role in the design, analysis, interpretation or report of the study.; This research would also not have been possible without the dedication and hard work of all the fieldworkers from the Garu-Tempane district in the Upper East Region from Ghana. We especially thank Laar Baya Daniel, Konlan Nijagben Moses, Marleen van der Vorm, Yasha van den Berg, Diana Plug and Kombat Bakpen John for assisting in the fieldwork and Prof. J.P. Vandenbroucke and Dr R. Sear for their thoughtful comments. Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; BECKER GS, 1960, DEMOGRAPHIC EC CHANG, P209; Blake J., 1989, FAMILY SIZE ACHIEVEM; BORGERHOFF M, 2000, EVOL HUM BEHAV, V21, P391, DOI DOI 10.1016/S1090-5138(00)00054-4); Charnov EL, 2006, AM NAT, V167, P578, DOI 10.1086/501141; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Ghana Statistical Service (GSS) Noguchi Memorial Institute for Medical Research (NMIMR) ORC Macro, 2004, GHAN DEM HLTH SURV 2; Gibson MA, 2006, PLOS MED, V3, P476, DOI 10.1371/journal.pmed.0030087; Gillespie DOS, 2008, P R SOC B, V275, P713, DOI 10.1098/rspb.2007.1000; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; Hagen EH, 2006, AM J PHYS ANTHROPOL, V130, P405, DOI 10.1002/ajpa.20272; HARDY ICW, 1992, J ANIM ECOL, V61, P121, DOI 10.2307/5515; HARPER J. L., 1970, Annual review of ecology and systematics., V1, P327, DOI 10.1146/annurev.es.01.110170.001551; Hill JA, 1995, HUM REPROD, V10, P114, DOI 10.1093/humrep/10.suppl_2.114; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Johnson D. G., 1987, POPULATION GROWTH EC, P373; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; Kimani M, 2001, Afr J Reprod Health, V5, P63, DOI 10.2307/3583324; Koskela E, 1998, OECOLOGIA, V115, P379, DOI 10.1007/s004420050531; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; MAC ARTHUR ROBERT H., 1967; Mace R, 1996, ETHOL SOCIOBIOL, V17, P263, DOI 10.1016/0162-3095(96)00044-1; Makhseed M, 2001, HUM REPROD, V16, P2219, DOI 10.1093/humrep/16.10.2219; Morris SS, 2000, J EPIDEMIOL COMMUN H, V54, P381, DOI 10.1136/jech.54.5.381; Nesse RM, 2006, SCIENCE, V311, P1071, DOI 10.1126/science.1125956; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; PERRINS CM, 1975, J ANIM ECOL, V44, P695, DOI 10.2307/3712; Roff Derek A., 1992; Rutstein S. O, 2004, DHS WEALTH INDEX DHS; Salisbury EJ, 1942, REPROD CAPACITY PLAN; Sear R, 2003, BIODEMOGRAPHY OF HUMAN REPRODUCTION AND FERTILITY, P135; Sear R, 2007, AM J PHYS ANTHROPOL, V132, P632, DOI 10.1002/ajpa.20558; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SORENSEN TIA, 1988, NEW ENGL J MED, V318, P727, DOI 10.1056/NEJM198803243181202; Stearns S. C., 1992, EVOLUTION LIFE HIST; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; Strassmann BI, 1997, CURR ANTHROPOL, V38, P688, DOI 10.1086/204657; Van Bodegom D, 2007, ANN NY ACAD SCI, V1100, P84, DOI 10.1196/annals.1395.007; van Bodegom D, 2009, T ROY SOC TROP MED H, V103, P795, DOI 10.1016/j.trstmh.2008.12.003; van Dissel JT, 1998, LANCET, V351, P950, DOI 10.1016/S0140-6736(05)60606-X; VOLAND E, 2001, 2001026 WP M PLANCK; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; Westendorp RGJ, 1997, LANCET, V349, P1912, DOI 10.1016/S0140-6736(05)63910-4; Westendorp RGJ, 2001, NAT MED, V7, P873, DOI 10.1038/90868; WHO Collaborative Study Team on the Role of Breastfeeding on the Prevention of Infant Mortality, 2000, LANCET, V55, P451, DOI DOI 10.1016/S0140-6736(00)82011-5; Wilson W, 2006, AM J HUM BIOL, V18, P312, DOI 10.1002/ajhb.20500; *WORLD BANK, 2007, AFR DAT DOC NAV; Ziem JB, 2005, T ROY SOC TROP MED H, V99, P417, DOI 10.1016/j.trstmh.2004.07.008; 2008, WORLD EC OUTLOOK OCT 51 33 35 0 16 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. MAY 2009 22 5 1014 1023 10.1111/j.1420-9101.2009.01713.x 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 434CF WOS:000265252100010 19298492 Bronze 2018-11-12 J Wang, Y; Li, Y; Wu, Z; Murray, BR Wang, Y.; Li, Y.; Wu, Z.; Murray, B. R. Insular shifts and trade-offs in life-history traits in pond frogs in the Zhoushan Archipelago, China JOURNAL OF ZOOLOGY English Article body size; clutch size; egg size; insular shifts; life-history theory; trade-off; total reproductive effort EGG-SIZE; REPRODUCTIVE EFFORT; DIVERGENT SELECTION; BREEDING STRATEGIES; ISLAND POPULATIONS; RANA-TEMPORARIA; OFFSPRING SIZE; RESIDUALS VS.; SEED BEETLE; ECOLOGY Island and mainland populations of animal species often differ strikingly in life-history traits such as clutch size, egg size, total reproductive effort and body size. However, despite widespread recognition of insular shifts in these life-history traits in birds, mammals and reptiles, there have been no reports of such life-history shifts in amphibians. Furthermore, most studies have focused on one specific life-history trait without explicit consideration of coordinated evolution among these intimately linked life-history traits, and thus the relationships among these traits are poorly studied. Here we provide the first evidence of insular shifts and trade-offs in a coordinated suite of life-history traits for an amphibian species, the pond frog Rana nigromaculata. Life-history data were collected from eight islands in the Zhoushan Archipelago and neighboring mainland China. We found consistent, significant shifts in all life-history traits between mainland and island populations. Island populations had smaller clutch sizes, larger egg sizes, larger female body size and invested less in total reproductive effort than mainland populations. Significant negative relationships were found between egg size and clutch size and between egg size and total reproductive effort among frog populations after controlling for the effects of body size. Therefore, decreased reproductive effort and clutch size, larger egg size and body size in pond frogs on islands were selected through trade-offs as an overall life-history strategy. Our findings contribute to the formation of a broad, repeatable ecological generality for insular shifts in life-history traits across a range of terrestrial vertebrate taxa. [Wang, Y.; Li, Y.] Chinese Acad Sci, Inst Zool, Key Lab Anim Ecol & Conservat Biol, Beijing 100080, Peoples R China; [Wang, Y.] Chinese Acad Sci, Grad Sch, Beijing, Peoples R China; [Wang, Y.] Zhejiang Univ, Coll Life Sci, Hangzhou 310003, Zhejiang, Peoples R China; [Wu, Z.] Guangxi Normal Univ, Coll Life Sci, Guilin, Guangxi, Peoples R China; [Murray, B. R.] Univ Technol Sydney, Dept Environm Sci, Broadway, NSW, Australia Wang, Y (reprint author), Chinese Acad Sci, Inst Zool, Key Lab Anim Ecol & Conservat Biol, Datun Rd, Beijing 100080, Peoples R China. liym@ioz.ac.cn Murray, Brad/0000-0002-4734-5976 '973' program [2007CB411600] We thank Shai Meiri and Jon Loman for constructive comments on the paper. This study was supported by a grant from the '973' program (code: 2007CB411600). ADLER GH, 1994, Q REV BIOL, V69, P473, DOI 10.1086/418744; Andersson M., 1994, SEXUAL SELECTION; ANDREN C, 1983, Amphibia-Reptilia, V4, P63, DOI 10.1163/156853883X00274; ANDREWS R. M., 1979, BREVIORA, V454, P1; ANGERBJORN A, 1986, OIKOS, V47, P47, DOI 10.2307/3565918; BERVEN KA, 1988, OECOLOGIA, V75, P67, DOI 10.1007/BF00378815; BLONDEL J, 1985, J ANIM ECOL, V54, P531, DOI 10.2307/4497; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; Caley MJ, 2001, EVOLUTION, V55, P1245; Chen Q., 1989, ANN CURRENT HIST PLA; CROWELL KL, 1981, IBIS, V123, P42, DOI 10.1111/j.1474-919X.1981.tb00171.x; CUMMINS CP, 1986, J ANIM ECOL, V55, P303, DOI 10.2307/4710; Czesak ME, 2003, EVOLUTION, V57, P1121; Darlington RB, 2001, ANIM BEHAV, V62, P599, DOI 10.1006/anbe.2001.1806; Dziminski MA, 2006, J EVOLUTION BIOL, V19, P144, DOI 10.1111/j.1420-9101.2005.00978.x; Fei L., 1999, ATLAS AMPHIBIANS CHI; Fischer K, 2006, J EVOLUTION BIOL, V19, P380, DOI 10.1111/j.1420-9101.2005.01046.x; Fitch H.S., 1985, U KANSAS MUS NAT HIS, V76, P1; Fons R, 1997, CAN J ZOOL, V75, P954, DOI 10.1139/z97-115; Fox CW, 1997, CAN J ZOOL, V75, P1465, DOI 10.1139/z97-769; Freckleton RP, 2002, J ANIM ECOL, V71, P542, DOI 10.1046/j.1365-2656.2002.00618.x; Garcia-Berthou E, 2001, J ANIM ECOL, V70, P708, DOI 10.1046/j.1365-2656.2001.00524.x; GLIWICZ J, 1980, BIOL REV, V55, P109, DOI 10.1111/j.1469-185X.1980.tb00690.x; Gosner K. L., 1960, Herpetologica, V16, P183; Huang M, 1990, FAUNA ZHEJIANG AMPHI; JEWELL P. A., 1966, SYMP ZOOL SOC LONDON, V15, P89; KAPLAN RH, 1992, ECOLOGY, V73, P280, DOI 10.2307/1938739; Karl I, 2007, BIOL J LINN SOC, V91, P403, DOI 10.1111/j.1095-8312.2007.00806.x; Li YM, 2006, OECOLOGIA, V148, P129, DOI 10.1007/s00442-006-0355-x; Lips KR, 2001, OECOLOGIA, V128, P509, DOI 10.1007/s004420100687; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; NUSSBAUM RA, 1984, BIOGEOGRAPHY ECOLOGY, P379; Pough FH, 1998, HERPETOLOGY; RICKLEFS RE, 1980, AUK, V97, P38; Robinson-Wolrath SI, 2003, J EVOLUTION BIOL, V16, P1106, DOI 10.1046/j.1420-9101.2003.00615.x; Roff Derek A., 1992; RYSER J, 1989, OECOLOGIA, V78, P264, DOI 10.1007/BF00377165; Schwarzkopf L, 1999, AM NAT, V154, P333, DOI 10.1086/303242; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Smith RJ, 1999, J HUM EVOL, V36, P423, DOI 10.1006/jhev.1998.0281; *SPSS INC, 1998, SPSS PC 8 0; STAMPS JA, 1985, Q REV BIOL, V60, P155, DOI 10.1086/414314; Stearns S. C., 1992, EVOLUTION LIFE HIST; Wang J. T., 1980, CHIN J GEOGR, V16, P299; WANG YP, 2006, THESIS CHINESE ACAD; Warne RW, 2008, AM NAT, V172, pE80, DOI 10.1086/589880; WHARTON CH, 1966, COPEIA, P149; Wiggins DA, 1998, OECOLOGIA, V115, P478, DOI 10.1007/s004420050544; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667; Wu ZJ, 2006, J ANIM ECOL, V75, P1071, DOI 10.1111/j.1365-2656.2006.01126.x; Yiming L, 1998, OECOLOGIA, V113, P557, DOI 10.1007/s004420050409; YUAN CM, 1965, CHIN J ZOOL, V7, P114; Zhou J. L., 1987, COMPREHENSIVE AGR PR; ZHU X, 1990, J ZHEJIANG FORESTRY, V7, P153; Zhuge Y., 1990, FAUNA ZHEJIANG MAMMA 56 14 16 1 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. MAY 2009 278 1 65 73 10.1111/j.1469-7998.2009.00552.x 9 Zoology Zoology 435XU WOS:000265377400008 2018-11-12 J Satterthwaite, WH; Beakes, MP; Collins, EM; Swank, DR; Merz, JE; Titus, RG; Sogard, SM; Mangel, M Satterthwaite, William H.; Beakes, Michael P.; Collins, Erin M.; Swank, David R.; Merz, Joseph E.; Titus, Robert G.; Sogard, Susan M.; Mangel, Marc Steelhead Life History on California's Central Coast: Insights from a State-Dependent Model TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY English Article SALMON SALMO-SALAR; TROUT ONCORHYNCHUS-MYKISS; ATLANTIC SALMON; KEOGH RIVER; REPRODUCTIVE SUCCESS; GENETIC ARCHITECTURE; SEXUAL-MATURATION; RAINBOW-TROUT; SMOLT SIZE; GROWTH Steelhead Oncorhynchus mykiss display a dizzying array of lite history variation (including the purely resident form, rainbow trout), We developed a model for female steelhead in coastal California (close to the southern boundary of their range) in small coastal streams. We combined proximate (physiological) and ultimate (expected reproductive success) considerations to generalize the notion of a threshold size for emigration or maturity through the development of a state-dependent life history theory. The model involves strategies that depend on age, size or condition, and recent rates of change in size or condition during specific periods (decision windows) in advance of the actual smolting or spawning event. This is the first study in which such a model is fully parameterized based oil data collected entirely front California steelhead populations, the majority of data coming from two watersheds the rnouths of whose rivers are separated by less than 8 kin along the coast of Santa Cruz County. We predicted the occurrence of resident life histories and the distribution of sizes and ages at smolting for steelhead rearing in the upstream habitats of these streams. We compared these predictions with empirical results and show that the theory call explain the observed pattern and variation. [Satterthwaite, William H.; Beakes, Michael P.; Swank, David R.; Mangel, Marc] Univ Calif Santa Cruz, Dept Appl Math & Stat, Ctr Stock Assessment Res, Santa Cruz, CA 95064 USA; [Beakes, Michael P.; Swank, David R.; Sogard, Susan M.] Natl Marine Fisheries Serv, Santa Cruz, CA 95060 USA; [Collins, Erin M.; Titus, Robert G.] Calif Dept Fish & Game, Sacramento, CA 95826 USA; [Merz, Joseph E.] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95064 USA; [Merz, Joseph E.] Cramer Fish Sci, Auburn, CA 95603 USA Satterthwaite, WH (reprint author), Univ Calif Santa Cruz, Dept Appl Math & Stat, Ctr Stock Assessment Res, Santa Cruz, CA 95064 USA. satterth@darwin.ucsc.edu Satterthwaite, William/0000-0002-0436-7390 CALFED Science Program [SCI-05-140, U-05-SC-40] This material is based upon work Supported by the CALFED Science Program Under grant SCI-05-140, grantee agreement U-05-SC-40. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the CALFED Science Program. We also thank S. Hayes, M. Bond, and C. Hanson for sharing Unpublished data and ideas and B. Ward for helpful discussions. ADAMS BL, 1975, T AM FISH SOC, V104, P766, DOI 10.1577/1548-8659(1975)104<766:IOSWSA>2.0.CO;2; Allen G. H., 1960, Copeia, P260; ALLEN MA, 1986, THESIS HUMBOLDT STAT; BERGLUND I, 1992, CAN J ZOOL, V70, P205, DOI 10.1139/z92-032; Bley P. W., 1988, US FISH WILDLIFE SER, V88; Bond MH, 2008, CAN J FISH AQUAT SCI, V65, P2242, DOI 10.1139/F08-131; BURNS JW, 1971, CALIF FISH GAME, V57, P44; Busby P. J., 1996, NMFSNWFSC27 NOAA; Ciancio JE, 2008, J FISH BIOL, V72, P1708, DOI 10.1111/j.1095-8649.2008.01846.x; CLARK CW, 2000, DYNAMIC STATE VARIAB; CLARKE WC, 1989, PHYSL ECOL JPN, V1, P497; DUBOIS RB, 1989, T AM FISH SOC, V118, P311, DOI 10.1577/1548-8659(1989)118<0311:FOSAFS>2.3.CO;2; DUSTON J, 1992, CAN J FISH AQUAT SCI, V49, P2273, DOI 10.1139/f92-249; ELSON PF, 1957, CAN FISH CULT, V21, P1; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Gardner SN, 1997, AM NAT, V150, P462, DOI 10.1086/286076; Gotthard K, 2008, BIOSCIENCE, V58, P222, DOI 10.1641/B580308; GROSS MR, 1991, ECOLOGY, V72, P1180, DOI 10.2307/1941091; Hayes SA, 2008, T AM FISH SOC, V137, P114, DOI 10.1577/T07-043.1; HAZEL WN, 1990, P ROY SOC B-BIOL SCI, V242, P181, DOI 10.1098/rspb.1990.0122; Hendry Andrew P., 2004, P92; Hoar W.S., 1988, P275; Hogasen H.R., 1998, CANADIAN SPECIAL PUB, V127; HUTCHINGS JA, 1994, EVOL ECOL, V8, P256, DOI 10.1007/BF01238277; Jones MW, 2001, HEREDITY, V86, P675, DOI 10.1046/j.1365-2540.2001.00880.x; Keeley ER, 2001, ECOLOGY, V82, P1247, DOI 10.2307/2679986; LEIDER SA, 1986, CAN J FISH AQUAT SCI, V43, P1398, DOI 10.1139/f86-173; Mangel M, 1996, J FISH BIOL, V49, P877, DOI 10.1111/j.1095-8649.1996.tb00086.x; MANGEL M, 1994, DEEP-SEA RES PT II, V41, P75, DOI 10.1016/0967-0645(94)90063-9; Mangel M., 1988, DYNAMIC MODELING BEH; Mangel M, 2008, B MAR SCI, V83, P107; Martyniuk CJ, 2003, J FISH BIOL, V63, P746, DOI 10.1046/j.1095-8649.2003.00188.x; McCullough D. A, 1999, REV SYNTHESIS EFFECT; Metcalfe NB, 1998, CAN J FISH AQUAT SCI, V55, P93, DOI 10.1139/cjfas-55-S1-93; METCALFE NB, 1988, J ANIM ECOL, V57, P463, DOI 10.2307/4918; MYERS RA, 1984, J FISHERIES AQUATIC, V89, P53; Olsen JB, 2006, CONSERV GENET, V7, P613, DOI 10.1007/s10592-005-9099-0; Pascual M, 2001, T AM FISH SOC, V130, P53, DOI 10.1577/1548-8659(2001)130<0053:FDCOAI>2.0.CO;2; Pearson G. A., 1993, THESIS U WALES BANGO; Peven Charles M., 1994, North American Journal of Fisheries Management, V14, P77, DOI 10.1577/1548-8675(1994)014<0077:AALOSS>2.3.CO;2; Piche J, 2008, P ROY SOC B-BIOL SCI, V275, P1571, DOI 10.1098/rspb.2008.0251; *R DEV COR TEAM, 2007, R LANG ENV STAT COMP; Rikardsen AH, 2004, ECOL FRESHW FISH, V13, P305, DOI 10.1111/j.1600-0633.2004.00070.x; SAVVAITOVA KA, 2001, PACIFICA NOBLE SALMO, P138; Seamons TR, 2004, CAN J FISH AQUAT SCI, V61, P193, DOI 10.1139/F03-158; Shapovalov L., 1954, CALIFORNIA DEP FISH, V98, P1; SHAPOVALOV L, 1967, 677 CAL DEP FISH GAM; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; Snover ML, 2006, AM NAT, V167, pE140, DOI 10.1086/502804; Snover ML, 2005, CAN J FISH AQUAT SCI, V62, P1219, DOI 10.1139/F05-058; Sutherland D. F., 1973, US NATL MARINE FISHE, V71, P787; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; THORPE JE, 1994, ESTUARIES, V17, P76, DOI 10.2307/1352336; Thorpe JE, 2007, MAR ECOL PROG SER, V335, P285, DOI 10.3354/meps335285; Thrower FP, 2004, J FISH BIOL, V65, P286, DOI 10.1111/j.1095-8649.2004.00551.x; TIPPING J M, 1991, North American Journal of Fisheries Management, V11, P105, DOI 10.1577/1548-8675(1991)011<0105:MBHOAA>2.3.CO;2; Ward B.R., 1993, Canadian Special Publication of Fisheries and Aquatic Sciences, V118, P209; Ward B. R., 2008, AM FISH SOC S, V49, P587; WARD BR, 1990, T AM FISH SOC, V119, P492, DOI 10.1577/1548-8659(1990)119<0492:ROPSFR>2.3.CO;2; WARD BR, 1989, CAN J FISH AQUAT SCI, V46, P1853, DOI 10.1139/f89-233; Ward BR, 2000, CAN J FISH AQUAT SCI, V57, P298, DOI 10.1139/cjfas-57-2-298; WARD BR, 1988, CAN J FISH AQUAT SCI, V45, P1110, DOI 10.1139/f88-135; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; Zimmerman CE, 2000, CAN J FISH AQUAT SCI, V57, P2152, DOI 10.1139/cjfas-57-10-2152 64 48 50 0 20 AMER FISHERIES SOC BETHESDA 5410 GROSVENOR LANE SUITE 110, BETHESDA, MD 20814-2199 USA 0002-8487 T AM FISH SOC Trans. Am. Fish. Soc. MAY 2009 138 3 532 548 10.1577/T08-164.1 17 Fisheries Fisheries 477EJ WOS:000268501100008 2018-11-12 J Monkkonen, M; Forsman, JT; Kananoja, T; Ylonen, H Monkkonen, Mikko; Forsman, Jukka T.; Kananoja, Tiina; Ylonen, Hannu Indirect cues of nest predation risk and avian reproductive decisions BIOLOGY LETTERS English Article life-history variation; nest predation; information value CLUTCH SIZE; EVOLUTION; BIRDS; FOOD; SITE Current life-history theory predicts that increased mortality at early stages of life leads to reduced initial investment (e. g. clutch size) but increased subsequent investment during the reproduction attempt. In a field experiment, migratory pied flycatchers Ficedula hypoleuca perceived differences in mammalian nest predation risk and altered their reproductive strategies in two respects. First, birds avoided nest sites manipulated to reflect the presence of a predator. Second, birds breeding in risky areas nested 4 days earlier and laid 10 per cent larger clutches than those in safe areas, a result that runs counter to the prevailing life-history paradigm. We suggest that the overwhelming importance of nest predation to individual fitness reduces the value of collecting other information on habitat features leading to expedited onset of nesting, and, consequently, to larger clutch size. [Monkkonen, Mikko; Kananoja, Tiina] Univ Jyvaskyla, Dept Biol & Environm Sci, Jyvaskyla 40014, Finland; [Ylonen, Hannu] Univ Jyvaskyla, Konnevesi Res Stn, Jyvaskyla 40014, Finland; [Forsman, Jukka T.] Univ Oulu, Dept Biol, Oulu 90014, Finland Monkkonen, M (reprint author), Univ Jyvaskyla, Dept Biol & Environm Sci, POB 35, Jyvaskyla 40014, Finland. mikko.monkkonen@jyu.fi Monkkonen, Mikko/A-2821-2011; Forsman, Jukka/H-5345-2012 Finnish Biological Society, Vanamo; Academy of Finland [7115560] This study was financially supported by the Finnish Biological Society, Vanamo (to T. K.) and the Academy of Finland (project no. 7115560 to M. M.). We are grateful to H. Nisu for assistance in the field. J. J. Fontaine, J. Nocera, J.- T. Seppanen, J. O. Wolff and two anonymous referees provided suggestions to improve the manuscript. Amo L, 2008, FUNCT ECOL, V22, P289, DOI 10.1111/j.1365-2435.2007.01361.x; Caro T., 2005, ANTIPREDATOR DEFENCE; Dall SRX, 2005, TRENDS ECOL EVOL, V20, P187, DOI 10.1016/j.tree.2005.01.010; Doligez B, 2003, ECOLOGY, V84, P2582, DOI 10.1890/02-3116; Eggers S, 2006, P ROY SOC B-BIOL SCI, V273, P701, DOI 10.1098/rspb.2005.3373; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Lack D., 1968, ECOLOGICAL ADAPTATIO; Lundberg A, 1992, PIED FLYCATCHER; Manly BF, 1997, RANDOMIZATION BOOTST; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; Roff DA, 2005, J EVOLUTION BIOL, V18, P1425, DOI 10.1111/j.1420-9101.2005.00958.x; Siikamaki P, 1998, ECOLOGY, V79, P1789, DOI 10.1890/0012-9658(1998)079[1789:LORSBF]2.0.CO;2; Steiger SS, 2008, P ROY SOC B-BIOL SCI, V275, P2309, DOI 10.1098/rspb.2008.0607; Winnie J, 2006, BEHAV ECOL SOCIOBIOL, V61, P277, DOI 10.1007/s00265-006-0258-1 16 29 30 1 23 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 BIOL LETTERS Biol. Lett. APR 23 2009 5 2 176 178 10.1098/rsbl.2008.0631 3 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 421PX WOS:000264371900010 19126533 Green Published, Bronze 2018-11-12 J Medeiros, MC; Freed, LA Medeiros, Matthew C.; Freed, Leonard A. A FLEDGLING-MASS THRESHOLD GREATLY AFFECTS JUVENILE SURVIVAL IN THE HAWAII AKEPA (LOXOPS COCCINEUS COCCINEUS) AUK English Article fledgling quality; Hawaii Akepa; juvenile survival; life history; Loxops coccineus; recruitment TITS PARUS-MAJOR; EXTENDED PARENTAL CARE; NESTLING WEIGHT; CLUTCH SIZE; POSTFLEDGING SURVIVAL; REPRODUCTIVE SUCCESS; FLEDGING MASS; EGG SIZE; BIRDS; FOOD Offspring quality is all important issue in avian life-history theory, particularly with regard to birds that have low reproductive rates and extended parental care. Offspring mass has been identified as an indicator of quality in several bird species. These studies have shown that nestling mass is predictive Of Offspring survival outside the nest, but few studies have considered the role of fledgling mass. Mass during the fledgling period may change and influence juvenile Survival. Fledgling mass may be especially relevant for tropical birds that have very long fledgling periods during which food conditions randomly, or seasonally change. Here, we show that fledgling mass predicts juvenile survival in the Hawaii Akepa (Loxops coccineus coccineus), an endangered Hawaiian Honeycrceper with high annual adult survival and a two-egg Clutch. Juvenile survival of Hawaii Akepa approximated a trimodal pattern of no survival, low Survival, and high survival that corresponded to ascending mass classes. Fledglings in the highest mass class had an apparent juvenile survival probability that was more than double that of fledglings of the lower mass classes and that was statistically indistinguishable from Survival rates of adults. This mass-dependent juvenile survival has important implications for understanding the life-history evolution and population biology of the Hawaii Akepa and perhaps of other tropical birds. Received 16 January 2008,accepted,31 October 2008. [Medeiros, Matthew C.; Freed, Leonard A.] Univ Hawaii Manoa, Dept Zool, Honolulu, HI 96822 USA Medeiros, MC (reprint author), Univ Missouri, Dept Biol, 8001 Nat Bridge Rd, St Louis, MO 63121 USA. matthewmedeiros@umsl.edu Both C, 1999, P ROY SOC B-BIOL SCI, V266, P465, DOI 10.1098/rspb.1999.0660; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; Burnham K. P., 2002, MODEL SELECTION MULT; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; DAVIES NB, 1986, J ANIM ECOL, V55, P123, DOI 10.2307/4697; FREED LA, 1987, CONDOR, V89, P195, DOI 10.2307/1368780; Freed LA, 2001, STUD AVIAN BIOL-SER, P173; FREED LA, 1988, NATL GEOGR RES, V4, P395; Freed LA, 2007, EVOL ECOL RES, V9, P157; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Green DJ, 2001, J ANIM ECOL, V70, P505, DOI 10.1046/j.1365-2656.2001.00503.x; GREENBERG R, 1986, OECOLOGIA, V69, P618, DOI 10.1007/BF00410372; Hart PJ, 2003, AUK, V120, P82, DOI 10.1642/0004-8038(2003)120[0082:SADOMF]2.0.CO;2; Kirk KL, 1997, FRESHWATER BIOL, V37, P515, DOI 10.1046/j.1365-2427.1997.00177.x; Lack D., 1968, ECOLOGICAL ADAPTATIO; Lack D., 1954, NATURAL REGULATION A; LEPSON J. K., 1997, BIRDS N AM; Lepson JK, 1995, AUK, V112, P402, DOI 10.2307/4088727; Lewontin RC, 1966, SYST ZOOL, V15, P141, DOI DOI 10.2307/2411632; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Monros JS, 2002, OIKOS, V99, P481, DOI 10.1034/j.1600-0706.2002.11909.x; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; O'Connor RJ, 1978, LIVING BIRD, V16, P209; Perrins CM, 2001, ARDEA, V89, P135; Pollock K. H., 1990, WILDLIFE MONOGRAPHS, V107; RICKLEFS RE, 1968, AUK, V85, P30, DOI 10.2307/4083621; RICKLEFS RE, 1968, IBIS, V110, P419, DOI 10.1111/j.1474-919X.1968.tb00058.x; Roff Derek A., 1992; ROYAMA T, 1966, IBIS, V108, P313, DOI 10.1111/j.1474-919X.1966.tb07348.x; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; Russell EM, 2000, EMU, V100, P377, DOI 10.1071/MU0005S; SANDELL M, 1991, BEHAV ECOL SOCIOBIOL, V29, P147, DOI 10.1007/BF00166490; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SNOW D. W., 1962, ZOOLOGICA [NEW YORK], V47, P65; SNOW DW, 1974, CONDOR, V76, P262, DOI 10.2307/1366339; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stutchbury B. J. M., 2001, BEHAV ECOLOGY TROPIC; Styrsky JN, 2005, ECOLOGY, V86, P3238, DOI 10.1890/04-1613; TINBERGEN JM, 1990, J ANIM ECOL, V59, P1113, DOI 10.2307/5035; Vanderwerf EA, 2008, CONDOR, V110, P241, DOI 10.1525/cond.2008.8476; WEATHERS WW, 1991, CONDOR, V93, P346, DOI 10.2307/1368950; WEATHERS WW, 1989, ECOL MONOGR, V59, P223, DOI 10.2307/1942600; White GC, 1999, BIRD STUDY, V46, P120; White GC, 2001, WILDLIFE LAND PEOPLE, P368; Williams GC, 1966, ADAPTATION NATURAL S; WILLIAMS TD, 1994, BIOL REV, V69, P35, DOI 10.1111/j.1469-185X.1994.tb01485.x; WILLIS EO, 1974, ECOL MONOGR, V44, P153, DOI 10.2307/1942309 52 10 10 1 12 AMER ORNITHOLOGISTS UNION LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0004-8038 1938-4254 AUK AUK APR 2009 126 2 319 325 10.1525/auk.2009.08013 7 Ornithology Zoology 441FI WOS:000265754300009 2018-11-12 J Poykko, H Poykko, Heikki Egg maturation and oviposition strategy of a capital breeder, Cleorodes lichenaria, feeding on lichens at the larval stage ECOLOGICAL ENTOMOLOGY English Article Egg maturation; egg number and weight; fecundity function; life-history theory; ovigeny index; ovipositions BODY-SIZE; AMINO-ACIDS; POPULATION-DYNAMICS; PARASITOID WASPS; LIFE-HISTORY; TRADE-OFFS; REPRODUCTIVE STRATEGIES; RESOURCE-ALLOCATION; SATYRID BUTTERFLIES; FEMALE BUTTERFLIES 1. Capital breeders rely solely on resources acquired before breeding, whereas income breeders may obtain considerable amounts of resources following the commencement of reproduction. In income breeders oviposition occurs over a longer time period with a small number of eggs ready to be laid at the start of adult life, whereas capital breeders reproduce more rapidly and contain higher numbers of mature eggs at eclosion relative to potential fecundity. 2. This study explored egg maturation and oviposition strategy of a nocturnal geometrid moth, Cleorodes lichenaria. It was predicted, based on the long larval period of C. lichenaria and the known biology of other geometrids, that this lichen-feeding geometrid moth concentrates egg production at the beginning of its breeding period and that external nutrients have a limited role on its fecundity. 3. Approximately 46% of eggs were ready to be laid in newly hatched females and approximately 40% of their potential fecundity was realised during the first night, after which the number and the weight of eggs decreased steadily. Feeding or drinking did not increase the fecundity of females. Pupal mass correlated positively with realised fecundity and ovigeny index. 4. Reproduction of C. lichenaria is based solely on larval-derived resources. It is suggested that females are able to resorb thoracic tissues to increase fecundity and that this ability is probably linked to relatively long lifespan and low ovigeny index of this species, characteristics rarely observed in other geometrid moths. Univ Oulu, Dept Biol, Oulu 90014, Finland Poykko, H (reprint author), Univ Oulu, Dept Biol, POB 3000, Oulu 90014, Finland. heikki.poykko@oulu.fi Faculty of Natural Sciences University of Oulu; Ella and Georg Ehrnrooth's Foundation; Finnish Cultural Foundation This study was funded by the Faculty of Natural Sciences University of Oulu, Ella and Georg Ehrnrooth's Foundation and Finnish Cultural Foundation. I am indebted to all members of our research group for their invaluable comments and constructive suggestions on the manuscript. I'm also grateful to an anonymous referee and to Mark Jervis for his valuable comments and guidance on literature regarding insect egg maturation strategies. Arnqvist G, 2000, ANIM BEHAV, V60, P145, DOI 10.1006/anbe.2000.1446; Bauerfeind SS, 2005, J INSECT PHYSIOL, V51, P545, DOI 10.1016/j.jinsphys.2005.02.002; Beck J, 2007, OECOLOGIA, V151, P741, DOI 10.1007/s00442-006-0613-y; BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; Boggs CL, 1997, ECOLOGY, V78, P181; BOGGS CL, 1986, ECOL ENTOMOL, V11, P7, DOI 10.1111/j.1365-2311.1986.tb00274.x; Dixon AFG, 2002, ECOL ENTOMOL, V27, P433, DOI 10.1046/j.1365-2311.2002.00429.x; DIXON AFG, 1993, FUNCT ECOL, V7, P267, DOI 10.2307/2390204; Doak P, 2006, ECOLOGY, V87, P395, DOI 10.1890/05-0647; DUNLAPPIANKA H, 1977, SCIENCE, V197, P487, DOI 10.1126/science.197.4302.487; Ellers J, 2003, OIKOS, V102, P164, DOI 10.1034/j.1600-0706.2003.12183.x; Fischer K, 2004, FUNCT ECOL, V18, P656, DOI 10.1111/j.0269-8463.2004.00892.x; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Giron D, 2003, ECOL LETT, V6, P273, DOI 10.1046/j.1461-0248.2003.00429.x; Gwynne DT, 2008, ANNU REV ENTOMOL, V53, P83, DOI 10.1146/annurev.ento.53.103106.093423; HAUKIOJA E, 1985, ECOL ENTOMOL, V10, P267, DOI 10.1111/j.1365-2311.1985.tb00723.x; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Jervis MA, 2005, ECOL ENTOMOL, V30, P359, DOI 10.1111/j.0307-6946.2005.00712.x; JERVIS MA, 1986, BIOL REV, V61, P395, DOI 10.1111/j.1469-185X.1986.tb00660.x; Jervis MA, 2004, OIKOS, V107, P449, DOI 10.1111/j.0030-1299.2004.13453.x; Jervis MA, 2003, FUNCT ECOL, V17, P375, DOI 10.1046/j.1365-2435.2003.00742.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Jervis MA, 2007, EVOL ECOL, V21, P307, DOI 10.1007/s10682-006-9102-3; Jervis MA, 2007, BIOL J LINN SOC, V90, P293, DOI 10.1111/j.1095-8312.2007.00721.x; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; KAITALA A, 1994, BEHAV ECOL SOCIOBIOL, V35, P385, DOI 10.1007/s002650050110; KAITALA A, 1988, OIKOS, V53, P222, DOI 10.2307/3566066; Karlsson B, 1998, ECOLOGY, V79, P2931, DOI 10.1890/0012-9658(1998)079[2931:NGRBAR]2.0.CO;2; KARLSSON B, 1985, ECOL ENTOMOL, V10, P205, DOI 10.1111/j.1365-2311.1985.tb00549.x; Kindlmann P, 2001, J EVOLUTION BIOL, V14, P835, DOI 10.1046/j.1420-9101.2001.00323.x; LEAHY TC, 1994, ANN ENTOMOL SOC AM, V87, P342, DOI 10.1093/aesa/87.3.342; Leather SR, 1987, FUNCT ECOL, V1, P331, DOI 10.2307/2389789; Marden JH, 2000, ANNU REV PHYSIOL, V62, P157, DOI 10.1146/annurev.physiol.62.1.157; Mevi-Schutz J, 2005, AM NAT, V165, P411, DOI 10.1086/429150; Mevi-Schutz J, 2003, ECOLOGY, V84, P2788, DOI 10.1890/02-3108; Mevi-Schutz J, 2003, BASIC APPL ECOL, V4, P413, DOI 10.1078/1439-1791-00183; MIKKOLA K, 1989, SUOMEN PERHOSET MITT, P2; O'Brien DM, 2004, OIKOS, V105, P279, DOI 10.1111/j.0030-1299.2004.13012.x; O'Brien DM, 2003, P ROY SOC B-BIOL SCI, V270, P2631, DOI 10.1098/rspb.2003.2552; Poykko H, 2006, ENVIRON ENTOMOL, V35, P1669, DOI 10.1603/0046-225X(2006)35[1669:FALOAG]2.0.CO;2; ROBINSON GS, 2000, HOSTS DATABASE HOSTP; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Roff Derek A., 1992; Rosenheim JA, 2007, ANN ENTOMOL SOC AM, V100, P549, DOI 10.1603/0013-8746(2007)100[549:POAEAS]2.0.CO;2; Sakai S, 2004, J THEOR BIOL, V226, P253, DOI 10.1016/S0022-5193(03)00281-9; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stjernholm F, 2005, BIOL J LINN SOC, V86, P363, DOI 10.1111/j.1095-8312.2005.00542.x; Tammaru T, 1996, OIKOS, V77, P407, DOI 10.2307/3545931; Tammaru T, 2000, ENVIRON ENTOMOL, V29, P1002, DOI 10.1603/0046-225X-29.5.1002; Tammaru T, 1996, OIKOS, V77, P561, DOI 10.2307/3545946; Tammaru T, 2002, OECOLOGIA, V133, P430, DOI 10.1007/s00442-002-1057-7; Thorne AD, 2006, P R SOC B, V273, P1099, DOI 10.1098/rspb.2005.3416; Torres-Vila LM, 2004, BEHAV ECOL SOCIOBIOL, V55, P315, DOI 10.1007/s00265-003-0712-2; Torres-Vila LM, 2002, ANIM BEHAV, V64, P899, DOI [10.1006/anbe.2003.2000, 10.1006/anbe.2002.2000]; Torres-Vila LM, 2002, OIKOS, V99, P272, DOI 10.1034/j.1600-0706.2002.990207.x; Torres-Vila LM, 2005, BEHAV ECOL SOCIOBIOL, V57, P318, DOI 10.1007/s00265-004-0857-7; Vahed K, 1998, BIOL REV, V73, P43, DOI 10.1017/S0006323197005112; Van Dongen S, 1999, BEHAV ECOL, V10, P659, DOI 10.1093/beheco/10.6.659; WIKLUND C, 1984, OIKOS, V43, P391, DOI 10.2307/3544158 60 9 9 0 7 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0307-6946 1365-2311 ECOL ENTOMOL Ecol. Entomol. APR 2009 34 2 254 261 10.1111/j.1365-2311.2008.01064.x 8 Entomology Entomology 444YC WOS:000266015800011 2018-11-12 J Gurven, M; Fenelon, A Gurven, Michael; Fenelon, Andrew HAS ACTUARIAL AGING "SLOWED" OVER THE PAST 250 YEARS ? A COMPARISON OF SMALL-SCALE SUBSISTENCE POPULATIONS AND EUROPEAN COHORTS EVOLUTION English Article Biodemography of aging; England; hunter-gatherers; life-history theory; mortality; senescence; Sweden; Williams's hypothesis HUMAN LIFE-SPANS; EVOLUTIONARY-THEORIES; NATURAL-POPULATIONS; MORTALITY-RATE; RECENT TRENDS; OLDER MEN; SENESCENCE; LONGEVITY; DISEASE; HEALTH G.C. Williams's 1957 hypothesis famously argues that higher age-independent, or "extrinsic," mortality should select for faster rates of senescence. Long-lived species should therefore show relatively few deaths from extrinsic causes such as predation and starvation. Theoretical explorations and empirical tests of Williams's hypothesis have flourished in the past decade but it has not yet been tested empirically among humans. We test Williams's hypothesis using mortality data from subsistence populations and from historical cohorts from Sweden and England/Wales, and examine whether rates of actuarial aging declined over the past two centuries. We employ three aging measures: mortality rate doubling time (MRDT), Ricklefs's omega, and the slope of mortality hazard from ages 60-70, m'(60-70), and model mortality using both Weibull and Gompertz-Makeham hazard models. We find that (1) actuarial aging in subsistence societies is similar to that of early Europe, (2) actuarial senescence has slowed in later European cohorts, (3) reductions in extrinsic mortality associate with slower actuarial aging in longitudinal samples, and (4) men senesce more rapidly than women, especially in later cohorts. To interpret these results, we attempt to bridge population-based evolutionary analysis with individual-level proximate mechanisms. [Gurven, Michael] Univ Calif Santa Barbara, Dept Anthropol, Santa Barbara, CA 93106 USA; [Fenelon, Andrew] Univ Penn, Ctr Populat Studies, Philadelphia, PA 19104 USA Gurven, M (reprint author), Univ Calif Santa Barbara, Dept Anthropol, Santa Barbara, CA 93106 USA. gurven@anth.ucsb.edu; afenelon@sas.upenn.edu Gurven, Michael/0000-0002-5661-527X National Science Foundation [BCS-0422690]; National Institutes of Health/National Institute on Aging [R01AG024119-01] We are grateful to P. Abrams, D. Ewbank, T. Finch, K. Hill, R. Ricklefs, A. Veile, R. Walker, and two anonymous reviewers for helpful comments on an earlier version of this article. Research funding was provided by the National Science Foundation (BCS-0422690) and National Institutes of Health/National Institute on Aging (R01AG024119-01). ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; ABRAMS PA, 1991, EVOL ECOL, V5, P343, DOI 10.1007/BF02214152; AUSTAD SN, 1992, AM J PRIMATOL, V28, P251, DOI 10.1002/ajp.1350280403; AUSTAD SN, 1991, J GERONTOL, V46, P47; Barker DJP, 1994, MOTHERS BABIES DIS L; Bishop Y. M. M., 1975, DISCRETE MULTIVARIAT; Bronikowski AM, 2005, TRENDS ECOL EVOL, V20, P271, DOI 10.1016/j.tree.2005.03.011; Bryant MJ, 2004, AM NAT, V163, P55, DOI 10.1086/380650; Calder W. A., 1984, SIZE FUNCTION LIFE H; Carnes BA, 1997, EXP GERONTOL, V32, P615, DOI 10.1016/S0531-5565(97)00056-9; Carnes BA, 1996, POPUL DEV REV, V22, P231, DOI 10.2307/2137434; Carnes BA, 2007, POPUL DEV REV, V33, P367, DOI 10.1111/j.1728-4457.2007.00172.x; Carnes BA, 2006, BIOGERONTOLOGY, V7, P183, DOI 10.1007/s10522-006-9020-3; Case A, 2005, DEMOGRAPHY, V42, P189, DOI 10.1353/dem.2005.0011; CHARLESWORTH B, 1993, GENETICA, V91, P11, DOI 10.1007/BF01435984; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Cheung SLK, 2005, DEMOGRAPHY, V42, P243, DOI 10.1353/dem.2005.0012; Cichon M, 1997, P ROY SOC B-BIOL SCI, V264, P1383, DOI 10.1098/rspb.1997.0192; Costa DL, 2002, DEMOGRAPHY, V39, P119, DOI 10.2307/3088367; Costa DL, 2000, DEMOGRAPHY, V37, P53, DOI 10.2307/2648096; Costa DL, 1997, NAT BUR EC, P47; Crimmins EM, 2006, P NATL ACAD SCI USA, V103, P498, DOI 10.1073/pnas.0501470103; Crimmins EM, 2004, ANNU REV PUBL HEALTH, V25, P79, DOI 10.1146/annurev.publhealth.25.102802.124401; Crimmins EM, 2001, EXP GERONTOL, V36, P885, DOI 10.1016/S0531-5565(00)00248-5; Dudycha JL, 2001, ECOL LETT, V4, P102; EDNEY EB, 1968, NATURE, V220, P281, DOI 10.1038/220281a0; ELO IT, 1992, POPUL INDEX, V58, P186, DOI 10.2307/3644718; Finch C., 2007, BIOL HUMAN LONGEVITY; FINCH CE, 1990, SCIENCE, V249, P902, DOI 10.1126/science.2392680; Finch CE, 2004, SCIENCE, V305, P1736, DOI 10.1126/science.1092556; FINCH CE, 1990, BIOL HUMAN LONGEVITY; Fogel R. W., 1997, HDB POPULATION FAMIL, P435; Fogel RW, 1997, DEMOGRAPHY, V34, P49, DOI 10.2307/2061659; FOGEL RW, 1993, SECULAR TRENDS DISTR, P1860; Freedman VA, 2002, JAMA-J AM MED ASSOC, V288, P3137, DOI 10.1001/jama.288.24.3137; FRIES JF, 1989, MILBANK Q, V67, P208, DOI 10.2307/3350138; FRIES JF, 1980, NEW ENGL J MED, V303, P130, DOI 10.1056/NEJM198007173030304; Gage TB, 2005, YEARB PHYS ANTHROPOL, V48, P96, DOI 10.1002/ajpa.20353; GAGE TB, 1989, YEARB PHYS ANTHROPOL, V32, P185; Glei DA, 2007, MORTALITY DATA SWEDE; Gluckman P, 2006, DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE, P1, DOI 10.2277/ 0521847435; Godtfredsen NS, 2002, AM J EPIDEMIOL, V156, P994, DOI 10.1093/aje/kwf150; Greaves M, 2000, CANC EVOLUTIONARY LE; Gurven M, 2008, J GERONTOL A-BIOL, V63, P196, DOI 10.1093/gerona/63.2.196; Gurven M, 2007, POPUL DEV REV, V33, P321, DOI 10.1111/j.1728-4457.2007.00171.x; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hayflick L., 1994, WHY WE AGE; HAZZARD WR, 1986, J AM GERIATR SOC, V34, P455, DOI 10.1111/j.1532-5415.1986.tb03414.x; Hofsten E., 1976, SWEDISH POPULATION H; HOLMES DJ, 1995, AM ZOOL, V35, P307; Idler EL, 1997, J HEALTH SOC BEHAV, V38, P21, DOI 10.2307/2955359; JONES NBB, 2002, HUM BIOL, V14, P184; KANNISTO V, 1994, POPUL DEV REV, V20, P793, DOI 10.2307/2137662; Kannisto V., 1999, DEMOGRAPHIC RES, V1; Kannisto V., 2001, POPULATION, V13, P159; Kapahi P, 1999, FREE RADICAL BIO MED, V26, P495, DOI 10.1016/S0891-5849(98)00323-2; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; Kirkwood TBL, 2002, MECH AGEING DEV, V123, P737, DOI 10.1016/S0047-6374(01)00419-5; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; LOVEJOY CO, 1977, SCIENCE, V198, P291, DOI 10.1126/science.198.4314.291; Lynch J, 2005, ANNU REV PUBL HEALTH, V26, P1, DOI 10.1146/annurev.publhealth.26.021304.144505; Magee R, 1998, MED J AUSTRALIA, V169, P663; Manton KG, 1997, DEMOGRAPHY, V34, P135, DOI 10.2307/2061664; Martin GM, 1996, NAT GENET, V13, P25, DOI 10.1038/ng0596-25; McClearn GE, 1997, EXP GERONTOL, V32, P87, DOI 10.1016/S0531-5565(96)00067-8; McKeown T., 1976, MODERN RISE POPULATI; Milne EMG, 2006, MECH AGEING DEV, V127, P290, DOI 10.1016/j.mad.2005.11.003; Mitnitski A, 2005, J AM GERIATR SOC, V53, P2184, DOI 10.1111/j.1532-5415.2005.00506.x; Nemetz PN, 2008, ARCH INTERN MED, V168, P264, DOI 10.1001/archinternmed.2007.79; *NIA NIH, 2007, WHY POP AG MATT GLOB; Oeppen J, 2002, SCIENCE, V296, P1029, DOI 10.1126/science.1069675; Ogburn CE, 1998, J GERONTOL A-BIOL, V53, pB287, DOI 10.1093/gerona/53A.4.B287; Partridge L., 1989, P421; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; Pavard S, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001206; Pearce-Duvet JMC, 2006, BIOL REV, V81, P369, DOI 10.1017/S1464793106007020; Pearl R, 1935, Q REV BIOL, V10, P60, DOI 10.1086/394476; PLUTZKY J, 2001, AM J CARDIOL, V88, P10; Preston S. H., 1976, MORTALITY PATTERNS N; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; Promislow DEL, 1996, GENETICS, V143, P839; Ricklefs RE, 2002, J GERONTOL A-BIOL, V57, pB69, DOI 10.1093/gerona/57.2.B69; Ricklefs RE, 2001, EXP GERONTOL, V36, P845, DOI 10.1016/S0531-5565(00)00245-X; Ricklefs RE, 1998, AM NAT, V152, P24, DOI 10.1086/286147; Rose M. R, 1991, EVOLUTIONARY BIOL AG; SACHER GA, 1959, CIBA F COLLOQ AGEING, V5, P115; SOHAL RS, 1993, BIOCHEM BIOPH RES CO, V196, P7, DOI 10.1006/bbrc.1993.2208; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; *U CA BERK M PLANC, 2007, HUM MORT DAT; *US BUR CENS, 2001, US INT PROJ AG SEX R; Vallois HV, 1961, SOCIAL LIFE EARLY MA, P214; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; Weiss K., 1981, OTHER WAYS GROWING O, P25; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008; Yashin AI, 2002, SOC BIOL, V49, P206; Yashin AI, 2002, MECH AGEING DEV, V123, P637, DOI 10.1016/S0047-6374(01)00410-9 98 9 9 0 9 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0014-3820 EVOLUTION Evolution APR 2009 63 4 1017 1035 10.1111/j.1558-5646.2008.00592.x 19 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 421SS WOS:000264379200018 19220451 Green Accepted, Bronze 2018-11-12 J Eraud, C; Jacquet, A; Faivre, B Eraud, Cyril; Jacquet, Anne; Faivre, Bruno SURVIVAL COST OF AN EARLY IMMUNE SOLICITING IN NATURE EVOLUTION English Article Birds; fitness cost; free-ranging vertebrate; immune defenses; survival TRADE-OFFS; PREDATION RISK; STREPTOPELIA-DECAOCTO; POSTFLEDGING SURVIVAL; EVOLUTIONARY ECOLOGY; NESTLING WEIGHT; MARKED ANIMALS; GREAT; IMMUNOLOGY; BEHAVIOR If immune functions confer obvious benefits to hosts, life-history theory assumes that they also induce costs, leading to trade-offs between immunity and other fitness components. However, whether substantial fitness costs are associated with immune systems in the wild is debatable, as numerous factors may influence the costs and benefits associated with immune activation. Here, we explore the survival cost of immune deployment in postfledging birds. We injected Eurasian collared dove nestlings (Streptopelia decaocto) with antigens from Escherichia coli, and examined whether this immune challenge affected survival after fledging. To assess survival, birds were fitted with radiotags and the fate of each individual was monitored regularly. Our results show that mimicking a bacterial infection in nestlings lowered their survival prospects after fledging, in comparison to controls. The main identified cause of mortality (by examination of dead birds) was presumed to be predation. This study provides experimental evidence that immune activation may entail dramatic survival costs in a free-ranging vertebrate, and emphasizes the potential role that environmental factors such as predation may play in this interaction. [Eraud, Cyril] CNERA Avifaune Migratrice, Direct Etud Rech, Off Nat Chasse & Faune Sauvage, F-79360 Villiers En Bois, France; [Eraud, Cyril; Jacquet, Anne; Faivre, Bruno] Univ Bourgogne, CNRS, UMR 5561, Equipe Ecol Evolut, F-21000 Dijon, France Eraud, C (reprint author), CNERA Avifaune Migratrice, Direct Etud Rech, Off Nat Chasse & Faune Sauvage, F-79360 Villiers En Bois, France. cyril.eraud@oncfs.gouv.fr; anne.jacquet@u-bourgogne.fr; bruno.faivre@u-bourgogne.fr ONCFS, REgion Bourgogne, European Social Funding [ANR NT05-2_45491] Birds were caught under license from the Office National de la Chasse et de la Faune Sauvage (ONCFS, C. E. permit no.16) and experiments were carried out in compliance with European legal requirements and with the permission of the national conservation authority (European convention, ETS no. 123, B. F. permit no. 21-CAE-085). This study was funded by ONCFS, REgion Bourgogne, European Social Funding (Research grant to CE) and ANR NT05-2_45491 to BF. Many thanks are due to J-M. Boutin for help with logistic facilities. G. Sorci and M. Cherry provided helpful comments on an early draft. We are grateful to the associate Editor (P. Tiffin) and two anonymous referees for their valuable comments and suggestions. Alonso-Alvarez C, 2004, AM NAT, V164, P651, DOI 10.1086/424971; Aubert A, 1997, BRAIN BEHAV IMMUN, V11, P229, DOI 10.1006/brbi.1997.0503; Bonneaud C, 2003, AM NAT, V161, P367, DOI 10.1086/346134; Briskie JV, 1999, P ROY SOC B-BIOL SCI, V266, P2153, DOI 10.1098/rspb.1999.0902; CACCAMISE DF, 1985, WILSON BULL, V97, P306; Christe P, 1996, BEHAV ECOL, V7, P127, DOI 10.1093/beheco/7.2.127; Clayton D. H., 1997, HOST PARASITE EVOLUT; COOK ME, 1993, POULTRY SCI, V72, P1301, DOI 10.3382/ps.0721301; COOMBS CFB, 1981, J APPL ECOL, V18, P41, DOI 10.2307/2402478; CRAMPS S, 1985, HDB BIRDS EUROPE MID; Dantzer R, 1998, ANN NY ACAD SCI, V856, P132, DOI 10.1111/j.1749-6632.1998.tb08321.x; Eraud C, 2005, FUNCT ECOL, V19, P110, DOI 10.1111/j.0269-8463.2005.00934.x; Graham AL, 2002, Q REV BIOL, V77, P409, DOI 10.1086/344414; Grenfell BT, 1995, ECOLOGY INFECT DIS N; Hanssen SA, 2004, P ROY SOC B-BIOL SCI, V271, P925, DOI 10.1098/rspb.2004.2678; HART BL, 1988, NEUROSCI BIOBEHAV R, V12, P123, DOI 10.1016/S0149-7634(88)80004-6; Jacot A, 2004, EVOLUTION, V58, P2280; Johnson KP, 2001, AUK, V118, P874, DOI 10.1642/0004-8038(2001)118[0874:AMPOTD]2.0.CO;2; KAPLAN EL, 1958, J AM STAT ASSOC, V53, P457, DOI 10.2307/2281868; Keedwell RJ, 2003, J FIELD ORNITHOL, V74, P217, DOI 10.1648/0273-8570-74.3.217; Larson SJ, 2002, J GEN PSYCHOL, V129, P401, DOI 10.1080/00221300209602104; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; McFadzen ME, 1996, CONDOR, V98, P791, DOI 10.2307/1369859; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Navarro C, 2004, BEHAV ECOL, V15, P629, DOI 10.1093/beheco/arh054; Owens IPF, 1999, TRENDS ECOL EVOL, V14, P170, DOI 10.1016/S0169-5347(98)01580-8; POXTON IR, 1995, J IMMUNOL METHODS, V186, P1, DOI 10.1016/0022-1759(95)00123-R; Raberg L, 1998, P ROY SOC B-BIOL SCI, V265, P1637, DOI 10.1098/rspb.1998.0482; Read AF, 2000, SCIENCE, V290, P1104, DOI 10.1126/science.290.5494.1104; REDONDO T, 1992, IBIS, V134, P180, DOI 10.1111/j.1474-919X.1992.tb08395.x; Rigby MC, 2000, P ROY SOC B-BIOL SCI, V267, P171, DOI 10.1098/rspb.2000.0983; Robb Tonia, 2006, BMC Ecology, V6, P15, DOI 10.1186/1472-6785-6-15; Sandland GJ, 2003, TRENDS PARASITOL, V19, P571, DOI 10.1016/j.pt.2003.10.006; Schmid-Hempel P, 2003, P ROY SOC B-BIOL SCI, V270, P357, DOI 10.1098/rspb.2002.2265; Scholz NL, 1998, J NEUROBIOL, V34, P208, DOI 10.1002/(SICI)1097-4695(19980215)34:3<208::AID-NEU2>3.0.CO;2-6; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Stearns S. C., 1992, EVOLUTION LIFE HIST; Thompson J.N, 1994, COEVOLUTIONARY PROCE; TINBERGEN JM, 1990, J ANIM ECOL, V59, P1113, DOI 10.2307/5035; Tschirren B, 2003, J ANIM ECOL, V72, P839, DOI 10.1046/j.1365-2656.2003.00755.x; Uller T, 2006, FUNCT ECOL, V20, P873, DOI 10.1111/j.1365-2435.2006.01163.x; vanHeugten E, 1996, J ANIM SCI, V74, P2431; Veasey JS, 2000, FUNCT ECOL, V14, P115, DOI 10.1046/j.1365-2435.2000.00391.x; Viney ME, 2005, TRENDS ECOL EVOL, V20, P665, DOI 10.1016/j.tree.2005.10.003; White G. C., 1990, ANAL RADIOTRACKING D; White GC, 1999, BIRD STUDY, V46, P120; Wiens JD, 2006, ECOL APPL, V16, P406, DOI 10.1890/04-1915; WITTER MS, 1994, ANIM BEHAV, V48, P201, DOI 10.1006/anbe.1994.1227; Zuk M., 2002, AM NAT, V160, P9, DOI DOI 10.1086/342131 53 23 24 1 35 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0014-3820 EVOLUTION Evolution APR 2009 63 4 1036 1043 10.1111/j.1558-5646.2008.00540.x 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 421SS WOS:000264379200019 19055677 Bronze 2018-11-12 J Harding, AMA; Kitaysky, AS; Hall, ME; Welcker, J; Karnovsky, NJ; Talbot, SL; Hamer, KC; Gremillet, D Harding, Ann M. A.; Kitaysky, Alexander S.; Hall, Margaret E.; Welcker, Jorg; Karnovsky, Nina J.; Talbot, Sandra L.; Hamer, Keith C.; Gremillet, David Flexibility in the parental effort of an Arctic-breeding seabird FUNCTIONAL ECOLOGY English Article body mass; compensatory care; condition; corticosterone; little auk AUK ALLE-ALLE; PHYSIOLOGICAL STRESS-RESPONSE; BLACK-LEGGED KITTIWAKES; THICK-BILLED MURRES; LONG-LIVED SEABIRD; MASS-LOSS; BODY CONDITION; REPRODUCTIVE COSTS; FOOD AVAILABILITY; EXPERIMENTAL MANIPULATION 1. Parental investment strategies are considered to represent a trade-off between the benefits of investment in current offspring and costs to future reproduction. Due to their high residual reproductive value, long-lived organisms are predicted to be more reluctant to increase parental effort. 2. We tested the hypothesis that breeding little auks (Alle alle) have a fixed level of reproductive investment, and thus reduce parental effort when costs associated with reproduction increase. 3. To test this hypothesis we experimentally increased the flight costs of breeding little auks via feather clipping. In 2005 we examined changes in the condition of manipulated parents, of the mates of manipulated parents, and of their chick as direct measures of change in parental resource allocation between self-maintenance and current reproduction. In 2007 we increased sample sizes to determine whether there was a physiological cost ( elevated corticosterone, CORT) associated with the manipulation. 4. We found that: (i) clipped birds and their mates lost more body mass than controls, but there was no difference in mass loss between members of a pair; (ii) clipped birds had higher CORT levels than control birds; (iii) there were no inter-annual differences in body mass and CORT levels between clipped individuals and their mates at recapture, and (iv) chicks with a clipped parent had lower peak and fledging mass, and higher CORT levels than control chicks in both years. 5. Contrary to our hypothesis, the reduction in body mass of partners to clipped birds suggests that little auks can increase parental effort to some extent. Nonetheless, the lower fledging mass and higher CORT of chicks with a clipped parent indicates provisioning rates may not have been fully maintained. 6. As predicted by life-history theory, there may be a threshold to the additional reproductive costs breeders will accept, with parents prioritizing self-maintenance over increased provisioning effort when foraging costs become too high. [Harding, Ann M. A.] Alaska Pacific Univ, Dept Environm Sci, Anchorage, AK 99508 USA; [Kitaysky, Alexander S.] Univ Alaska Fairbanks, Inst Arctic Biol, Dept Biol & Wildlife, Fairbanks, AK 99775 USA; [Hall, Margaret E.] Univ Exeter, Sch Biosci, Ctr Ecol & Conservat, Penryn TR10 9EZ, Cornwall, England; [Welcker, Jorg] Norwegian Polar Res Inst, N-9296 Tromso, Norway; [Karnovsky, Nina J.] Pomona Coll, Dept Biol, Claremont, CA 91771 USA; [Talbot, Sandra L.] US Geol Survey, Alaska Sci Ctr, Anchorage, AK 99503 USA; [Hamer, Keith C.] Univ Leeds, Inst Integrat & Comparat Biol, Leeds LS2 9JT, W Yorkshire, England; [Gremillet, David] CNRS, CEFE, F-34293 Montpellier 5, France Harding, AMA (reprint author), Alaska Pacific Univ, Dept Environm Sci, 4101 Univ Dr, Anchorage, AK 99508 USA. aharding@usgs.gov Talbot, Sandra/C-9433-2011; Hall, Maggie/C-7906-2009 French Polar Institute Paul-Emile Victor [388]; National Science Foundation [0612504, 0346770]; USGS-Alaska Science Center; NPRB [RO320] Many thanks to H. Routti, J. Fort, R. Orben, E. Weston, M. Anne Pella-Donnelly, and K. Holser for their incredible energy and assistance in the field, and M. Munck, NANU Travel, C. Egevang, F. Delbart, T. and T. Fischbach, and R. and J. Harding for their essential logistical support. We thank Z. Kitaiskaia for her expertly performed hormonal assays, and J. Schmutz, and two anonymous reviewers for insightful comments on the manuscript. This project was funded by the French Polar Institute Paul-Emile Victor (Grant 388) to DG, and the National Science Foundation (grant 0612504 to AH and NJK), and was supported by USGS-Alaska Science Center. Additional funding was provided by NPRB grant #RO320 and NSF EPSCoR NSF #0346770 to ASK. All field work in East Greenland was conducted with the permission of the Greenland Home Rule Government, Ministry of Environment and Nature (Danish Polar Center Scientific Expedition Permit 512-240), and under permits of the Ethics Committee of the French Polar Institute (MP/12/24/05/05). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. BARRETT RT, 1992, COLON WATERBIRD, V15, P24, DOI 10.2307/1521351; Brown CR, 2005, ECOLOGY, V86, P1034, DOI 10.1890/04-0740; Burford JE, 1998, ANIM BEHAV, V56, P555, DOI 10.1006/anbe.1998.0830; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHAURAND T, 1994, IBIS, V136, P285, DOI 10.1111/j.1474-919X.1994.tb01097.x; Cockrem JF, 2002, GEN COMP ENDOCR, V125, P197, DOI 10.1006/gcen.2001.7750; CROLL DA, 1991, CONDOR, V93, P496, DOI 10.2307/1368181; Elliott KH, 2004, CAN J ZOOL, V82, P644, DOI 10.1139/Z04-031; Erikstad KE, 1998, ECOLOGY, V79, P1781; Erikstad KE, 1997, BEHAV ECOL SOCIOBIOL, V40, P95, DOI 10.1007/s002650050320; FREED LA, 1981, ECOLOGY, V62, P1179, DOI 10.2307/1937282; GABRIELSEN GW, 1991, AUK, V108, P71; Gaston AJ, 1997, IBIS, V139, P673, DOI 10.1111/j.1474-919X.1997.tb04690.x; GASTON AJ, 1989, AUK, V106, P653; Golet GH, 1999, OECOLOGIA, V120, P530, DOI 10.1007/s004420050887; Golet GH, 2004, ECOL MONOGR, V74, P353, DOI 10.1890/02-4029; Granadeiro JP, 2000, BEHAV ECOL, V11, P274, DOI 10.1093/beheco/11.3.274; Gray CM, 2001, ANIM BEHAV, V62, P705, DOI 10.1006/anbe.2001.1813; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; HAMER KC, 1994, J AVIAN BIOL, V25, P198, DOI 10.2307/3677075; Handel CM, 2006, WILDLIFE SOC B, V34, P1094, DOI 10.2193/0091-7648(2006)34[1094:UOBSFS]2.0.CO;2; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Harding AMA, 2004, IBIS, V146, P642, DOI 10.1111/j.1474-919x.2004.00297.x; HARRIS MP, 1985, IBIS, V121, P356; Holt S, 2002, J AVIAN BIOL, V33, P219, DOI 10.1034/j.1600-048X.2002.330303.x; Houston A.I., 1985, P471; Houston AI, 2005, TRENDS ECOL EVOL, V20, P33, DOI 10.1016/j.tree.2004.10.008; JACOBSEN KO, 1995, ECOLOGY, V76, P1636, DOI 10.2307/1938164; Jakubas D, 2007, WATERBIRDS, V30, P92, DOI 10.1675/1524-4695(2007)030[0092:PTSODB]2.0.CO;2; JOHNSEN I, 1994, OIKOS, V71, P273, DOI 10.2307/3546276; JONES IL, 1994, J ANIM ECOL, V63, P71, DOI 10.2307/5584; Kilner RM, 1999, NATURE, V397, P667, DOI 10.1038/17746; Kitaysky AS, 2007, MAR ECOL PROG SER, V352, P245, DOI 10.3354/meps07074; Kitaysky AS, 2006, P ROY SOC B-BIOL SCI, V273, P445, DOI 10.1098/rspb.2005.3351; Kitaysky AS, 2003, HORM BEHAV, V43, P140, DOI 10.1016/S0018-506X(02)00030-2; Kitaysky AS, 1999, J COMP PHYSIOL B, V169, P303, DOI 10.1007/s003600050225; Kitaysky AS, 1999, FUNCT ECOL, V13, P577, DOI 10.1046/j.1365-2435.1999.00352.x; Kitaysky AS, 2001, BEHAV ECOL, V12, P619, DOI 10.1093/beheco/12.5.619; KONARZEWSKI M, 1989, ORNIS SCAND, V20, P112, DOI 10.2307/3676877; Lifjeld JT, 2005, J AVIAN BIOL, V36, P484, DOI 10.1111/j.0908-8857.2005.03683.x; Love OP, 2003, GEN COMP ENDOCR, V130, P135, DOI 10.1016/S0016-6480(02)00587-7; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; McNamara JM, 1999, NATURE, V401, P368, DOI 10.1038/43872; MEDRANO JF, 1990, BIOTECHNIQUES, V8, P43; Merila J, 1997, J ANIM ECOL, V66, P452, DOI 10.2307/5940; Moreno J, 1999, BEHAV ECOL SOCIOBIOL, V46, P244, DOI 10.1007/s002650050616; MORENO J, 1989, BIOL J LINN SOC, V37, P297, DOI 10.1111/j.1095-8312.1989.tb01907.x; Nagy LR, 2007, CONDOR, V109, P304, DOI 10.1650/0010-5422(2007)109[304:MLBBFS]2.0.CO;2; Navarro J, 2007, OECOLOGIA, V151, P150, DOI 10.1007/s00442-006-0559-0; Nisbet ICT, 2004, WATERBIRDS, V27, P13, DOI 10.1675/1524-4695(2004)027[0013:ROKCTT]2.0.CO;2; NORDBERG RA, 1981, AM NAT, V118, P838; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; Paredes R, 2005, ANIM BEHAV, V69, P197, DOI 10.1016/j.anbehav.2003.12.029; Pedersen CE, 2001, POLAR BIOL, V24, P53, DOI 10.1007/s003000000173; PENNYCUICK CJ, 1987, J EXP BIOL, V128, P335; PENNYCUICK CJ, 2006, FLIGHT PROGRAM V1 18; Pravosudov VV, 2001, GEN COMP ENDOCR, V123, P324, DOI 10.1006/gcen.2001.7684; Quillfeldt P, 2006, POLAR BIOL, V29, P372, DOI 10.1007/s00300-005-0066-5; Raouf SA, 2006, ANIM BEHAV, V71, P39, DOI 10.1016/j.anbehav.2005.03.027; RICKLEFS RE, 1968, AUK, V85, P30, DOI 10.2307/4083621; RICKLEFS RE, 1992, ANIM BEHAV, V43, P895, DOI 10.1016/0003-3472(92)90003-R; RICKLEFS RE, 1987, AUK, V104, P750; Ricklefs RE, 1983, STUDIES AVIAN BIOL, V8, P336; Ritz MS, 2007, IBIS, V149, P156; Roff Derek A., 1992; Romero LM, 2001, P NATL ACAD SCI USA, V98, P7366, DOI 10.1073/pnas.131091498; Romero LM, 2005, COMP BIOCHEM PHYS A, V140, P73, DOI 10.1016/j.cbpb.2004.11.004; Romero LM, 2000, GEN COMP ENDOCR, V118, P113, DOI 10.1006/gcen.1999.7446; SAETHER BE, 1993, BEHAV ECOL SOCIOBIOL, V33, P147, DOI 10.1007/BF00216594; Saino N, 2003, BEHAV ECOL, V14, P318, DOI 10.1093/beheco/14.3.318; Sanz JJ, 2000, J ANIM ECOL, V69, P74, DOI 10.1046/j.1365-2656.2000.00373.x; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Sims CG, 2000, GEN COMP ENDOCR, V119, P193, DOI 10.1006/gcen.2000.7506; Slagsvold T, 1998, ARDEA, V86, P203; Sonsthagen SA, 2004, CONDOR, V106, P826, DOI 10.1650/7448; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stempniewicz L, 2001, J BIRDS W PALEARCTIC, V3, P175; Taylor Jan R. E., 1994, Polish Polar Research, V15, P147; Tombre IM, 1996, J ANIM ECOL, V65, P325, DOI 10.2307/5878; Tveraa T, 1998, J ANIM ECOL, V67, P699, DOI 10.1046/j.1365-2656.1998.00234.x; Veasey JS, 1998, ANIM BEHAV, V56, P883, DOI 10.1006/anbe.1998.0880; Velando A, 2003, J ANIM ECOL, V72, P846, DOI 10.1046/j.1365-2656.2003.00756.x; Wada H, 2007, GEN COMP ENDOCR, V150, P405, DOI 10.1016/j.ygcen.2006.10.002; WEIMERSKIRCH H, 1995, BEHAV ECOL SOCIOBIOL, V36, P11; Wingfield JC, 2002, INTEGR COMP BIOL, V42, P600, DOI 10.1093/icb/42.3.600; Wingfield JC, 1998, AM ZOOL, V38, P191; WINGFIELD JC, 1995, AM ZOOL, V35, P285; Wingfield JC, 2001, HDB PHYSL 7, P211, DOI DOI 10.1002/CPHY.CP070411; Winkler DW, 1995, AUK, V112, P737; WITTER MS, 1993, PHILOS T R SOC B, V340, P73, DOI 10.1098/rstb.1993.0050; WRIGHT J, 1989, BEHAV ECOL SOCIOBIOL, V25, P171, DOI 10.1007/BF00302916 91 44 44 1 41 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. APR 2009 23 2 348 358 10.1111/j.1365-2435.2008.01488.x 11 Ecology Environmental Sciences & Ecology 418YH WOS:000264185500015 Bronze 2018-11-12 J Shennan, S Shennan, Stephen Evolutionary Demography and the Population History of the European Early Neolithic HUMAN BIOLOGY English Article EVOLUTIONARY DEMOGRAPHY; NEOLITHIC; AGRICULTURAL SPREAD; EUROPE; ALDENHOVENER PLATTE; LINEAR POTTERY CULTURE (LBK); DEMIC DIFFUSION; IDEAL DESPOTIC DISTRIBUTION; SPATIAL POPULATION ECOLOGY; REPRODUCTIVE SKEW THEORY CONSTANT ENVIRONMENTS; ANCIENT DNA; TRANSITION; FARMERS; PERSPECTIVE; STRATEGIES; FERTILITY; ECOLOGY; HUMANS; DIET In this paper I propose that evolutionary demography and associated theory from human behavioral ecology provide a strong basis for explaining the available evidence for the patterns observed in the first agricultural settlement of Europe in the 7th-5th millennium cal. BC, linking together a variety of what have previously been disconnected observations and casting doubt on some long-standing existing models. An outline of relevant aspects of life history theory, which provides the foundation for understanding demography, is followed by a review of large-scale demographic patterns in the early Neolithic, which point to rapid population increase and a process of demic diffusion. More localized socioeconomic and demographic patterns suggesting rapid expansion to local carrying capacities and an associated growth of inequality in the earliest farming communities of central Europe (the Linear Pottery Culture, or LBK) are then outlined and shown to correspond to predictions of spatial population ecology and reproductive skew theory. Existing models of why it took so long for farming to spread to northern and northwest Europe, which explain the spread in terms of the gradual disruption of hunter-gatherer ways of life, are then questioned in light of evidence for population collapse at the end of the LBK. Finally, some broader implications of the study are presented, including the suggestion that the pattern of an initial agricultural boom followed by a bust may be relevant in other parts of the world. [Shennan, Stephen] UCL, Inst Archaeol, London WC1H 0PY, England; [Shennan, Stephen] UCL, AHRC Ctr Evolut Cultural Divers, London WC1H 0PY, England Shennan, S (reprint author), UCL, Inst Archaeol, 31-34 Gordon Sq, London WC1H 0PY, England. Shennan, Stephen/0000-0001-6605-064X Ammerman A. J., 1973, EXPLANATION CULTURE, P343; BANSALL C, 2001, BEFORE FARMING, V3, P1; Berger JF, 2009, QUATERN INT, V200, P31, DOI 10.1016/j.quaint.2008.05.013; Biagi P., 2005, PREHISTORIC ARCHAEOL, V6-7, P43; Bird RB, 2005, CURR ANTHROPOL, V46, P221; Bocquet-Appel JP, 2006, CURR ANTHROPOL, V47, P341, DOI 10.1086/498948; Bocquet-Appel JP, 2008, NEOLITHIC DEMOGRAPHIC TRANSITION AND ITS CONSEQUENCES, P35, DOI 10.1007/978-1-4020-8539-0_3; Bocquet-Appel JP, 2009, J ARCHAEOL SCI, V36, P807, DOI 10.1016/j.jas.2008.11.004; Bocquet-Appel JP, 2002, CURR ANTHROPOL, V43, P637, DOI 10.1086/342429; Bogucki P., 2003, WIDENING HARVEST NEO, P249; Bonsall C., 2001, EUROPEAN J ARCHAEOLO, V5, P7; Boone JL, 2002, WORLD ARCHAEOL, V34, P6, DOI 10.1080/00438240220134232; BRULAARD A, 2004, NEOLITHIC FARMING CE; Cappers RTJ, 2008, CURR ANTHROPOL, V49, P385, DOI 10.1086/588494; Charnov Eric L., 1993, P1; Coudart A., 1998, ARCHITECTURE SOC NEO; Diamond J, 2003, SCIENCE, V300, P597, DOI 10.1126/science.1078208; Dubouloz J, 2008, NEOLITHIC DEMOGRAPHIC TRANSITION AND ITS CONSEQUENCES, P207, DOI 10.1007/978-1-4020-8539-0_9; Ebersbach R, 2004, BAR INT SERIES, V1227, P337; Fischer A, 2007, J ARCHAEOL SCI, V34, P2125, DOI 10.1016/jjas.2007.02.028; Gamble C, 2005, CAMB ARCHAEOL J, V15, P193, DOI 10.1017/S0959774305000107; Gibson MA, 2006, PLOS MED, V3, P476, DOI 10.1371/journal.pmed.0030087; Gillespie DOS, 2008, P R SOC B, V275, P713, DOI 10.1098/rspb.2007.1000; Gregg S. A., 1988, FORAGER FARMERS POPU; Haak W, 2005, SCIENCE, V310, P1016, DOI 10.1126/science.1118725; Hachem L, 2000, ANTIQUITY, V74, P308; Hawkes K, 2006, EVOLUTION HUMAN LIFE; Jeunesse C, 1997, PRATIQUES FUNERAIRES; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Keeley Lawrence H., 1992, TRANSITIONS AGR PREH, P81; KERIG T, 2003, SPUREN BOTSCHAFTEN I, P225; Kneipp J., 1998, BANDKERAMIK ZWISCHEN; Kohler TA, 2008, AM ANTIQUITY, V73, P645, DOI 10.2307/25470522; Kramer KL, 2006, CURR ANTHROPOL, V47, P165, DOI 10.1086/499550; Kramer KL, 2002, CURR ANTHROPOL, V43, P511, DOI 10.1086/340239; Larson G, 2007, P NATL ACAD SCI USA, V104, P15276, DOI 10.1073/pnas.0703411104; Lee CT, 2008, THEOR POPUL BIOL, V73, P473, DOI 10.1016/j.tpb.2008.03.001; Luning J., 1994, BANDKERAMIK MERZBACH; NEIMAN FD, 1997, REDISCOVERING DARWIN, P267; Niekus MJL, 2009, J ARCHAEOL SCI, V36, P236, DOI 10.1016/j.jas.2008.09.004; PCTRASCH J, 2001, ARCHAEOL KORRESPOND, V31, P13; PETRASCH J, 2005, C NEOL MITT MAINZ GE; Puleston CO, 2008, THEOR POPUL BIOL, V74, P147, DOI 10.1016/j.tpb.2008.05.007; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Richards M, 2003, ANNU REV ANTHROPOL, V32, P135, DOI 10.1146/annurev.anthro.32.061002.093207; SATTENSPIEL L, 1983, AM ANTIQUITY, V48, P489, DOI 10.2307/280557; Schmidt B., 2004, ARCHAOL KORRESPONDEN, V34, P303; SMITH EA, 1992, EVOLUTIONARY ECOLOGY, P25; Smith MA, 2008, HOLOCENE, V18, P379, DOI 10.1177/0959683607087928; STRIEN HC, 2005, KLIMAVERANDERUNG KUL, P131; Summers K., 2006, EVOL HUM BEHAV, V26, P106, DOI DOI 10.1016/J.EVOLHUMBEHAV.2004.09.001; Sutherland W. J., 1996, INDIVIDUAL BEHAV POP; van de Velde P., 1990, GERMANIA, V68, P19; VANANDEL TH, 1995, ANTIQUITY, V69, P481, DOI 10.1017/S0003598X00081886; Vanmontfort B., 2008, J ANTHROPOL ARCHAEOL, V27, P149; VEHRENCAMP SL, 1983, ANIM BEHAV, V31, P667, DOI 10.1016/S0003-3472(83)80222-X; Voland E, 1998, ANNU REV ANTHROPOL, V27, P347, DOI 10.1146/annurev.anthro.27.1.347; Wahl Joachim, 1987, FUNDBERICHTE BADEN W, V12, P65; WENINGER B, RADIOCARBON DA UNPUB; Wild EM, 2004, RADIOCARBON, V46, P377; Winterhalder B, 2000, EVOL ANTHROPOL, V9, P51; Winterhalder B, 2006, ORIG HUM BEHAV, V1, P1; Wood JW, 1998, CURR ANTHROPOL, V39, P99, DOI 10.1086/204700; Zimmermann A., 2002, BERICHT ROMISCH GERM, P17; ZVELEBIL M, 1986, TRANSITION MESOLITHI, P67; ZVELEBIL N, 1996, ORIGINS SPREAD AGR P, P323 66 34 34 1 22 WAYNE STATE UNIV PRESS DETROIT 4809 WOODWARD AVE, DETROIT, MI 48201-1309 USA 0018-7143 HUM BIOL Hum. Biol. APR-JUN 2009 81 2-3 SI 339 355 10.3378/027.081.0312 17 Anthropology; Biology; Genetics & Heredity Anthropology; Life Sciences & Biomedicine - Other Topics; Genetics & Heredity 647TW WOS:000281643300012 19943750 Green Published 2018-11-12 J Lang, FR; Wagner, J; Neyer, FJ Lang, Frieder R.; Wagner, Jenny; Neyer, Franz J. Interpersonal functioning across the lifespan: Two principles of relationship regulation ADVANCES IN LIFE COURSE RESEARCH English Article Aging; Social exchange; Reciprocity; Kinship; Psychological closeness; Adulthood SOCIAL RELATIONSHIPS; OLDER-ADULTS; SOCIOEMOTIONAL SELECTIVITY; CLOSE RELATIONSHIPS; RECIPROCITY; SUPPORT; AGE; PERSONALITY; EVOLUTION; QUALITY What are the behavioral and cognitive mechanisms that constitute diversity in the fabric of social relationships across the lifespan? Interpersonal functioning across the lifespan reflects principles of life-course sociology, and evolutionary life history theory. Variability, elasticity and dynamics of interpersonal contexts across the lifespan reflect the capability of humans to adapt to challenges and constraints of their environment. We submit an integrative framework of relationship regulation across the lifespan that builds on two basic psychological principles of social behavior: the regulation of closeness and the monitoring of reciprocity. The two mechanisms are illustrated in relation to age-specific demands and challenges across the lifespan. We discuss the interplay, salience and functions of the two principles of relationship regulation with respect to specific adaptive effects of social relationships in different lifespan contexts. (C) 2009 Elsevier Ltd. All rights reserved. [Lang, Frieder R.; Wagner, Jenny] Univ Erlangen Nurnberg, Inst Psychogerontol, D-91052 Erlangen, Germany; [Neyer, Franz J.] Univ Jena, Inst Psychol, D-6900 Jena, Germany Lang, FR (reprint author), Univ Erlangen Nurnberg, Inst Psychogerontol, Naegelsbachstr 25, D-91052 Erlangen, Germany. flang@geronto.uni-erlangen.de; wagner@geronto.uni-erlangen.de; franz.neyer@uni-jena.de Lang, Frieder/A-9846-2012 Lang, Frieder/0000-0002-2660-1619 ACKERMAN JM, 2007, EVOL HUM BEHAV, V28, P274; Antonucci T. C., 2004, GROWING TOGETHER PER, P24; Antonucci TC, 2001, HDB PSYCHOL AGING, P427; ARON A, 1991, J PERS SOC PSYCHOL, V60, P241, DOI 10.1037/0022-3514.60.2.241; ASENDORPF J, ENCY HUMAN IN PRESS; AXELROD R, 1981, SCIENCE, V211, P1390, DOI 10.1126/science.7466396; Baltes PB, 1999, ANNU REV PSYCHOL, V50, P471, DOI 10.1146/annurev.psych.50.1.471; BAUMEISTER RF, 1995, PSYCHOL BULL, V117, P497, DOI 10.1037/0033-2909.117.3.497; Befu H., 1980, ADV THEORY RES, P197; Bourdieu P., 1986, HDB THEORY RES SOCIO, P241, DOI DOI 10.1002/9780470755679.CH15; Brown SL, 2006, PSYCHOL INQ, V17, P1, DOI 10.1207/s15327965pli1701_01; Bugental DB, 2000, PSYCHOL BULL, V126, P187, DOI 10.1037/0033-2909.126.2.187; BURNSTEIN E, 1994, J PERS SOC PSYCHOL, V67, P773, DOI 10.1037/0022-3514.67.5.773; Carstensen LL, 1998, CURR DIR PSYCHOL SCI, V7, P144, DOI 10.1111/1467-8721.ep10836825; Carstensen LL, 1999, AM PSYCHOL, V54, P165, DOI 10.1037//0003-066X.54.3.165; CLARK MS, 1984, BOUNDARY AREAS SOCIA, P241; Dannefer D, 2003, J GERONTOL B-PSYCHOL, V58, pS327, DOI 10.1093/geronb/58.6.S327; Diewald M., 2009, HDB PERSOENLICHE BEZ, P423; Elder Jr G, 2003, HDB LIFE COURSE, P3, DOI DOI 10.1007/978-0-306-48247-2_1; Fehr E, 2002, HUM NATURE-INT BIOS, V13, P1, DOI 10.1007/s12110-002-1012-7; Fingerman KL, 2004, J MARRIAGE FAM, V66, P792, DOI 10.1111/j.0022-2445.2004.00053.x; FISKE AP, 1992, PSYCHOL REV, V99, P689, DOI 10.1037/0033-295X.99.4.689; Fung HH, 2008, J GERONTOL B-PSYCHOL, V63, pP156, DOI 10.1093/geronb/63.3.P156; GOODMAN CC, 1985, SOC SERV REV, V59, P269, DOI 10.1086/644287; Gould Stephen Jay, 2002, STRUCTURE EVOLUTIONA; GOULDNER AW, 1960, AM SOCIOL REV, V25, P161, DOI 10.2307/2092623; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HARTUP WW, 1989, AM PSYCHOL, V44, P120, DOI 10.1037/0003-066X.44.2.120; Hawkes K., 2005, GRANDMOTHERHOOD EVOL, P118, DOI DOI 10.1007/S12110-010-9098-9; HECKHAUSEN J, 1999, DEV REGULATION ADULT; Heider F, 1958, PSYCHOL INTERPERSONA; Homans G., 1961, SOCIAL BEHAV ITS ELE; Hrdy S. B., 1999, MOTHER NATURE HIST M; Ikkink KK, 1998, J SOC PERS RELAT, V15, P59, DOI 10.1177/0265407598151004; Kaplan HS, 2002, P NATL ACAD SCI USA, V99, P10221, DOI 10.1073/pnas.152502899; Kelley H. H, 1978, INTERPERSONAL RELATI; Kemper S, 2003, PSYCHOL AGING, V18, P181, DOI 10.1037/0882-7974.18.2.181; KOHLI M, 1985, KOLNER Z SOZIOL SOZ, V37, P1; Krackhardt D, 1999, J PERS SOC PSYCHOL, V76, P770, DOI 10.1037//0022-3514.76.5.770; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; Lang F. R., 2004, GROWING TOGETHER PER, P341; Lang F. R., 2006, HDB PERSONALITY DEV, P445; Lang F. R., 2006, OXFORD HDB ADULT DEV, P149; Lang FR, 2001, J GERONTOL B-PSYCHOL, V56, pP321, DOI 10.1093/geronb/56.6.P321; LANG FR, 1994, PSYCHOL AGING, V9, P315, DOI 10.1037/0882-7974.9.2.315; Lang FR, 2002, PSYCHOL AGING, V17, P125, DOI 10.1037//0882-7974.17.1.125; LANG FR, 2000, J SOCIAL PERSONAL RE, V17, P157; Lopes PN, 2003, PERS INDIV DIFFER, V35, P641, DOI 10.1016/S0191-8869(02)00242-8; Lovden M, 2005, PSYCHOL AGING, V20, P423, DOI 10.1037/0882-7974.20.3.423; Mayer K. U., 2003, UNDERSTANDING HUMAN, P463; Mayr Ernst, 2001, WHAT EVOLUTION IS; MIDLARSKY E, 1994, ALTRUISM LATER LIFE; NEUGARTEN BL, 1965, AM J SOCIOL, V70, P710, DOI 10.1086/223965; Neyer FJ, 2003, J PERS SOC PSYCHOL, V84, P310, DOI 10.1037/002-3514.84.2.310; Neyer FJ, 2007, J PERS, V75, P535, DOI 10.1111/j.1467-6494.2007.00448.x; Park JH, 2008, REV GEN PSYCHOL, V12, P215, DOI 10.1037/1089-2680.12.3.215; ROBERTO KA, 1986, J GERONTOL, V41, P241, DOI 10.1093/geronj/41.2.241; Roberts BW, 2006, PSYCHOL BULL, V132, P1, DOI 10.1037/0033-2909.132.1.1; ROOK KS, 2000, PSYCHOL AGING REVOLU, P173; Schachter S., 1959, PSYCHOL AFFILIATION; Schwarz B, 2005, APPL PSYCHOL-INT REV, V54, P396, DOI 10.1111/j.1464-0597.2005.00217.x; SCHWARZER R, 1991, J SOC PERS RELAT, V8, P99, DOI 10.1177/0265407591081005; Settersten R. A., 1999, LIVES TIME PLACE PRO; Simpson JA, 2007, J PERS SOC PSYCHOL, V92, P355, DOI 10.1037/0022-3514.92.2.355; Smith J, 1999, PSYCHOL AGING, V14, P108, DOI 10.1037/0882-7974.14.1.108; TRIVERS RL, 1971, Q REV BIOL, V46, P35, DOI 10.1086/406755; VanLange PAM, 1997, J PERS SOC PSYCHOL, V73, P733, DOI 10.1037/0022-3514.73.6.1330; VOLAND E, 2005, GRANDMOTHERHOOD; Wahl H., 2002, VISUAL IMPAIRMENT RE, V4, P143, DOI [10.1076/vimr.4.3.143.15904, DOI 10.1076/VIMR.4.3.143.1590]; Warneken F, 2006, CHILD DEV, V77, P640, DOI 10.1111/j.1467-8624.2006.00895.x; WEISS R, 1969, TRANSACTION, V9, P36; Weiss RS, 1998, J SOC PERS RELAT, V15, P671, DOI 10.1177/0265407598155006; WENTOWSKI GJ, 1981, GERONTOLOGIST, V21, P600, DOI 10.1093/geront/21.6.600; WHITE RW, 1959, PSYCHOL REV, V66, P297, DOI 10.1037/h0040934; Widmer ED, 2006, J SOC PERS RELAT, V23, P979, DOI 10.1177/0265407506070482; YOUNISS J, 1980, PARENTS PEERS SOCIAL 76 21 21 1 11 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 1040-2608 ADV LIFE COURSE RES Adv. Life Course Res. MAR-JUN 2009 14 1-2 40 51 10.1016/j.alcr.2009.03.004 12 Social Sciences, Interdisciplinary Social Sciences - Other Topics V16JD WOS:000207865000005 2018-11-12 J Fischer, B; Taborsky, B; Dieckmann, U Fischer, Barbara; Taborsky, Barbara; Dieckmann, Ulf Unexpected Patterns of Plastic Energy Allocation in Stochastic Environments AMERICAN NATURALIST English Article phenotypic plasticity; stochastic environment; energy allocation; reproductive investment OPTIMAL REPRODUCTIVE EFFORT; PHENOTYPIC PLASTICITY; LIFE-HISTORY; ARABIDOPSIS-THALIANA; ADAPTIVE PLASTICITY; REACTION NORMS; FAT RESERVES; TRADE-OFFS; EVOLUTION; COSTS When environmental conditions vary stochastically, individuals accrue fitness benefits by exhibiting phenotypic plasticity. Here we analyze a general dynamic-programming model describing an individual's optimal energy allocation in a stochastic environment. After maturation, individuals repeatedly decide how to allocate incoming energy between reproduction and maintenance. We analyze the optimal fraction of energy invested in reproduction and the resultant degree of plasticity in dependence on environmental variability and predictability. Our analyses reveal unexpected patterns of optimal energy allocation. When energy availability is low, all energy is allocated to reproduction, although this implies that individuals will not survive after reproduction. Above a certain threshold of energy availability, the optimal reproductive investment decreases to a minimum and even vanishes entirely in highly variable environments. With further improving energy availability, optimal reproductive investment gradually increases again. Costs of plasticity affect this allocation pattern only quantitatively. Our results show that optimal reproductive investment does not increase monotonically with growing energy availability and that small changes in energy availability can lead to major variations in optimal energy allocation. Our results help to unify two apparently opposing predictions from life-history theory, that organisms should increase reproductive investment both with improved environmental conditions and when conditions deteriorate ("terminal investment"). [Fischer, Barbara; Taborsky, Barbara; Dieckmann, Ulf] Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria; [Fischer, Barbara; Taborsky, Barbara] Univ Bern, Inst Zool, Dept Behav Ecol, CH-3032 Hinterkappelen, Switzerland Fischer, B (reprint author), Int Inst Appl Syst Anal, Evolut & Ecol Program, Schlosspl 1, A-2361 Laxenburg, Austria. fischerb@iiasa.ac.at Dieckmann, Ulf/E-1424-2011 Dieckmann, Ulf/0000-0001-7089-0393; Taborsky, Barbara/0000-0003-1690-8155 Austrian Science Fund FWF [P 18647] Agrawal AA, 2001, SCIENCE, V294, P321, DOI 10.1126/science.1060701; Benton TG, 1999, EVOLUTION, V53, P677, DOI 10.1111/j.1558-5646.1999.tb05363.x; Brown GP, 2004, OIKOS, V104, P269, DOI 10.1111/j.0030-1299.2004.12712.x; BULL JJ, 1979, AM NAT, V114, P296, DOI 10.1086/283476; CLARK CW, 1992, AM NAT, V139, P521, DOI 10.1086/285342; CLARK CW, 2000, DYNAMIC STATE VARIAB; Dechaine JM, 2007, NEW PHYTOL, V176, P874, DOI 10.1111/j.1469-8137.2007.02210.x; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; DeWitt TJ, 1998, J EVOLUTION BIOL, V11, P465, DOI 10.1046/j.1420-9101.1998.11040465.x; Dorn LA, 2000, EVOLUTION, V54, P1982; DUTIL JD, 1986, COPEIA, P945, DOI 10.2307/1445291; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; Engelhard GH, 2005, BIOL LETT-UK, V1, P172, DOI 10.1098/rsbl.2004.0290; Erikstad KE, 1998, ECOLOGY, V79, P1781; Ernande B, 2004, J EVOLUTION BIOL, V17, P613, DOI 10.1111/j.1420-9101.2004.00691.x; GABRIEL W, 1992, J EVOLUTION BIOL, V5, P41, DOI 10.1046/j.1420-9101.1992.5010041.x; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GOMULKIEWICZ R, 1992, EVOLUTION, V46, P390, DOI 10.1111/j.1558-5646.1992.tb02047.x; Gurney WSC, 1996, FUNCT ECOL, V10, P602, DOI 10.2307/2390170; Harris RN, 2004, ECOLOGY, V85, P1585, DOI 10.1890/03-0492; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; Houston AI, 1999, MODELS ADAPTIVE BEHA; Illera JC, 2006, J AVIAN BIOL, V37, P447, DOI 10.1111/j.2006.0908-8857.03676.x; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P186, DOI 10.1139/F05-209; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P200, DOI 10.1139/F05-210; KAITALA A, 1991, FUNCT ECOL, V5, P12, DOI 10.2307/2389551; Kooi BW, 2006, THEOR POPUL BIOL, V70, P527, DOI 10.1016/j.tpb.2006.07.005; Levins R., 1968, EVOLUTION CHANGING E; Limpert E, 2001, BIOSCIENCE, V51, P341, DOI 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2; Lind MI, 2007, J EVOLUTION BIOL, V20, P1288, DOI 10.1111/j.1420-9101.2007.01353.x; LIVELY CM, 1986, EVOLUTION, V40, P232, DOI 10.1111/j.1558-5646.1986.tb00466.x; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; Relyea RA, 2002, AM NAT, V159, P272, DOI 10.1086/338540; Relyea RA, 2002, ECOL MONOGR, V72, P77, DOI 10.1890/0012-9615(2002)072[0077:LPDIPP]2.0.CO;2; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; ROGERS CM, 1993, ECOLOGY, V74, P419, DOI 10.2307/1939303; ROGERS CM, 1987, ECOLOGY, V68, P1051, DOI 10.2307/1938377; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; SCHLICHTING CD, 1986, ANNU REV ECOL SYST, V17, P667, DOI 10.1146/annurev.es.17.110186.003315; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stelzer CP, 2001, ECOLOGY, V82, P2521; Stinchcombe JR, 2004, J EVOLUTION BIOL, V17, P197, DOI 10.1046/j.1420-9101.2003.00641.x; Travis Joseph, 1994, P99; van Kleunen M, 2000, EVOLUTION, V54, P1947, DOI 10.1554/0014-3820(2000)054[1947:COPIFC]2.0.CO;2; VANTIENDEREN PH, 1991, EVOLUTION, V45, P1317, DOI 10.1111/j.1558-5646.1991.tb02638.x; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Weinig C, 2006, AM NAT, V167, P826, DOI 10.1086/503530; Zhivotovsky LA, 1996, EVOLUTION, V50, P547, DOI 10.1111/j.1558-5646.1996.tb03867.x 53 28 29 1 11 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 AM NAT Am. Nat. MAR 2009 173 3 E108 E120 10.1086/596536 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 404BX WOS:000263126800004 19196158 Green Accepted 2018-11-12 J Del Giudice, M; Angeleri, R; Manera, V Del Giudice, Marco; Angeleri, Romina; Manera, Valeria The juvenile transition: A developmental switch point in human life history DEVELOPMENTAL REVIEW English Review Middle childhood; Juvenility; Adrenarche; Life history theory; Reproductive strategies; Attachment; Aggression; Evolution; Hormones ANDROGEN RECEPTOR GENE; SERUM DEHYDROEPIANDROSTERONE-SULFATE; COMORBIDITY SURVEY REPLICATION; OPPOSITIONAL DEFIANT DISORDER; CHILDRENS PEER RELATIONSHIPS; PERIPHERAL TARGET TISSUES; REDUCED FETAL-GROWTH; FOR-GESTATIONAL-AGE; ANTISOCIAL-BEHAVIOR; MIDDLE CHILDHOOD This paper presents a new perspective on the transition from early to middle childhood (i.e., human juvenility), investigated in an integrative evolutionary framework. juvenility is a crucial life history stage, when social learning and interaction with peers become central developmental functions; here it is argued that the "juvenile transition" is a developmental switch point in the human life history, when both sex-related and individual differences in reproductive strategies are expressed after the assessment period provided by early childhood. Adrenarche, the secretion of adrenal androgens starting at the beginning of middle childhood, is proposed as the endocrine mechanism mediating the juvenile transition. It is argued that, in connection with the stress system, adrenal androgens enable adaptive plasticity in the development of reproductive strategies through integration of environmental and genetic factors. Finally, evidence is reviewed of both sex-related and individual differences arising during the juvenile transition, in the domains of attachment and aggression. juvenility plays a central role in the ontogeny of behavior and personality; this paper contributes to defining its place within an integrated model of human development. (C) 2008 Elsevier Inc. All rights reserved. [Del Giudice, Marco; Angeleri, Romina; Manera, Valeria] Univ Turin, Dept Psychol, Ctr Cognit Sci, I-10123 Turin, Italy Del Giudice, M (reprint author), Univ Turin, Dept Psychol, Ctr Cognit Sci, Via Po 14, I-10123 Turin, Italy. marco.delgiudice@unito.it Manera, Valeria/H-7551-2012; Del Giudice, Marco/F-7007-2010; Manera, Valeria/O-3498-2016 Del Giudice, Marco/0000-0001-8526-1573; Manera, Valeria/0000-0003-4490-4485 Aber JL, 2003, DEV PSYCHOL, V39, P324, DOI 10.1037/0012-1649-39.2.324; Achenbach T. M., 1991, MANUAL CHILD BEHAV C; ADAN RAH, 1992, PROG BRAIN RES, V92, P127, DOI 10.1016/S0079-6123(08)61169-3; Adkins-Regan E, 2005, HORMONES ANIMAL SOCI; ALEXANDER RD, 1989, HUMAN REVOLUTION, P455; ALEXANDER RD, 1990, DID HUMANS EVOLVE RE; ARNOLD AP, 1985, HORM BEHAV, V19, P469, DOI 10.1016/0018-506X(85)90042-X; Auchus RJ, 2004, CLIN ENDOCRINOL, V60, P288, DOI 10.1046/j.1365-2265.2003.01858.x; Badyaev AV, 2005, P ROY SOC B-BIOL SCI, V272, P877, DOI 10.1098/rspb.2004.3045; BARKER DJP, 1993, DIABETOLOGIA, V36, P62, DOI 10.1007/BF00399095; Bartels A, 2004, DEV PSYCHOL, V40, P852, DOI 10.1037/0012-1649.40.5.852; Bartholy J, 2003, RENEW SUST ENERG REV, V7, P175, DOI 10.1016/S1364-0321(03)00003-0; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, PSYCHOL INQ, V8, P182, DOI 10.1207/s15327965pli0803_3; BELSKY J, 2005, ORIGINS SOCIAL MIND, P139; Belsky J, 2007, CURR DIR PSYCHOL SCI, V16, P300, DOI 10.1111/j.1467-8721.2007.00525.x; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Bjorklund DF, 1997, PSYCHOL BULL, V122, P153, DOI 10.1037/0033-2909.122.2.153; Bock J, 2002, HUM NATURE-INT BIOS, V13, P161, DOI 10.1007/s12110-002-1007-4; Bogin B, 1996, AM J HUM BIOL, V8, P703, DOI 10.1002/(SICI)1520-6300(1996)8:6<703::AID-AJHB2>3.0.CO;2-U; Bogin B, 1999, ANNU REV ANTHROPOL, V28, P109, DOI 10.1146/annurev.anthro.28.1.109; Booth A, 2006, SOC FORCES, V85, P167, DOI 10.1353/sof.2006.0116; Bowlby J., 1973, ATTACHMENT LOSS, V2; BOWLBY J, 1980, ATTACHMENT LOSS LOSS, V3; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; BRAINERD CJ, 1978, BEHAV BRAIN SCI, V1, P173, DOI 10.1017/S0140525X00073842; Cameron NM, 2005, NEUROSCI BIOBEHAV R, V29, P843, DOI 10.1016/j.neubiorev.2005.03.022; CAMPBELL BC, 1995, J BIOSOC SCI, V27, P127; Carter CS, 1998, PSYCHONEUROENDOCRINO, V23, P779; Cashdan E, 2003, AGGRESSIVE BEHAV, V29, P107, DOI 10.1002/ab.10041; CASSIDY J, 2008, HDB ATTACHMENT THEOR; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 1999, DEATH HOPE SEX STEPS; COIE JD, 1997, HDB CHILD PSYCHOL SO, V3; COIE JD, 1998, HDB CHILD PSYCHOL, V3, P779, DOI DOI 10.1002/9780470147658.CHPSY0312; COLLINS WA, 1984, DEV DURING MIDDLE CH; Comings DE, 2002, CHILD DEV, V73, P1046, DOI 10.1111/1467-8624.00456; Connellan J, 2000, INFANT BEHAV DEV, V23, P113, DOI 10.1016/S0163-6383(00)00032-1; Costello EJ, 2003, ARCH GEN PSYCHIAT, V60, P837, DOI 10.1001/archpsyc.60.8.837; Cote S, 2001, J AM ACAD CHILD PSY, V40, P678, DOI 10.1097/00004583-200106000-00013; CUTLER GB, 1978, ENDOCRINOLOGY, V103, P2112, DOI 10.1210/endo-103-6-2112; Davis J, 2007, EVOL HUM BEHAV, V28, P228, DOI 10.1016/j.evolhumbehav.2007.02.003; de Zegher F, 1998, HORM RES, V50, P243, DOI 10.1159/000023284; Deater-Deckard K, 1999, CHILD DEV, V70, P144, DOI 10.1111/1467-8624.00011; Del Giudice M, 2008, BRIT J DEV PSYCHOL, V26, P369, DOI 10.1348/026151007X243289; DELGIUDICE M, BEHAV BRAIN IN PRESS; Denburg MR, 2002, J CLIN ENDOCR METAB, V87, P5604, DOI 10.1210/jc.2002-020896; DHOM G, 1973, BEITR PATHOL, V150, P357; Dingemanse NJ, 2002, ANIM BEHAV, V64, P929, DOI 10.1006/anbe.2002.2006; Dingemanse NJ, 2004, P ROY SOC B-BIOL SCI, V271, P847, DOI 10.1098/rspb.2004.2680; Dorn LD, 2004, WOMEN HEALTH ISS, V14, P177, DOI 10.1016/j.whi.2004.08.008; Dufty AM, 2002, TRENDS ECOL EVOL, V17, P190, DOI 10.1016/S0169-5347(02)02498-9; Dunbar RIM, 2007, SCIENCE, V317, P1344, DOI 10.1126/science.1145463; Dunbar RIM, 1998, EVOL ANTHROPOL, V6, P178, DOI 10.1002/(SICI)1520-6505(1998)6:5<178::AID-EVAN5>3.0.CO;2-8; Ellis B. J., 2005, ORIGINS SOCIAL MIND; Ellis BJ, 2005, DEV PSYCHOPATHOL, V17, P303, DOI 10.1017/S0954579405050157; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; ELLISON PT, 2002, HUMAN GROWTH DEV; ELLISON PT, 2001, FERTILE GROUND NATUR; Endoh A, 1996, J CLIN ENDOCR METAB, V81, P3558, DOI 10.1210/jc.81.10.3558; Evans DM, 2002, BIOL PSYCHOL, V61, P33, DOI 10.1016/S0301-0511(02)00051-0; FEENEY JA, 1999, HDB ATTACHMENT THEOR; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; FLAVELL JH, 1982, CHILD DEV, V53, P1; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; FLINN MV, 2005, ORIGINS SOCIAL MIND, P19; Francois I, 1997, PEDIATR RES, V41, P440, DOI 10.1203/00006450-199703000-00023; Geary DC, 2003, DEV REV, V23, P444, DOI 10.1016/j.dr.2003.08.001; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Gell JS, 1998, J CLIN ENDOCR METAB, V83, P3695, DOI 10.1210/jc.83.10.3695; Ghirri P, 2001, GYNECOL ENDOCRINOL, V15, P91, DOI 10.1080/713602799; Gimpl G, 2001, PHYSIOL REV, V81, P629; GOTTLIEB G, 1995, HUM DEV, V38, P131, DOI 10.1159/000278306; Goy R. W., 1980, SEXUAL DIFFERENTIATI; GRAY A, 1991, J CLIN ENDOCR METAB, V73, P1016, DOI 10.1210/jcem-73-5-1016; Groothuis TGG, 2005, NEUROSCI BIOBEHAV R, V29, P137, DOI 10.1016/j.neubiorev.2004.06.010; Guercio G, 2003, J CLIN ENDOCR METAB, V88, P1389, DOI 10.1210/jc.2002-020979; Guercio G, 2002, J CLIN ENDOCR METAB, V87, P1162, DOI 10.1210/jc.87.3.1162; Gurven M, 2006, P ROY SOC B-BIOL SCI, V273, P835, DOI 10.1098/rspb.2005.3380; HAAPASALO J, 1994, J CONSULT CLIN PSYCH, V62, P1044, DOI 10.1037/0022-006X.62.5.1044; Haselager GJT, 2002, DEV PSYCHOL, V38, P446, DOI 10.1037//0012-1649.38.3.446; HAUG M, 1989, PHYSIOL BEHAV, V46, P955, DOI 10.1016/0031-9384(89)90197-2; HAWKES K, 1995, CURR ANTHROPOL, V36, P688, DOI 10.1086/204420; Hawley PH, 1999, DEV REV, V19, P97, DOI 10.1006/drev.1998.0470; Hawley PH, 2003, MERRILL PALMER QUART, V49, P279, DOI 10.1353/mpq.2003.0013; HAWLEY PH, 2007, AGGRESSION ADAPTATIO; HAZAN C, 1999, HDB ATTACHMENT THEOR, P336; Henneberg M, 2001, AM J PHYS ANTHROPOL, V115, P62, DOI 10.1002/ajpa.1057; Heyland A, 2005, BIOESSAYS, V27, P64, DOI 10.1002/bies.20136; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Holekamp KE, 2007, TRENDS COGN SCI, V11, P65, DOI 10.1016/j.tics.2006.11.003; Hudziak JJ, 2003, BEHAV GENET, V33, P575, DOI 10.1023/A:1025782918793; HYMEL S, 1990, CHILD DEV, V61, P2004, DOI 10.2307/1130854; Ibanez L, 1999, J CLIN ENDOCR METAB, V84, P4739, DOI 10.1210/jc.84.12.4739; Ibanez L, 1998, J CLIN ENDOCR METAB, V83, P3558, DOI 10.1210/jc.83.10.3558; Ibanez L, 2000, ENDOCR REV, V21, P671, DOI 10.1210/er.21.6.671; Insel TR, 2001, NAT REV NEUROSCI, V2, P129, DOI 10.1038/35053579; Ivell R, 1999, MOL CELL ENDOCRINOL, V151, P95, DOI 10.1016/S0303-7207(99)00025-8; JABBAR M, 1991, J AM COLL NUTR, V10, P289; Janson Charles H., 1993, P57; Jay Belsky, 2007, [心理学报, Acta Psychologica Sinica], V39, P454; Jennings DH, 2000, GEN COMP ENDOCR, V120, P289, DOI 10.1006/gcen.2000.7564; Jezova D, 1996, ACTA NEUROBIOL EXP, V56, P779; Joffe TH, 1997, J HUM EVOL, V32, P593, DOI 10.1006/jhev.1997.0140; Jorm AF, 2004, AM J MED GENET B, V125B, P105, DOI 10.1002/ajmg.b.20114; Juul A, 2006, INT J ANDROL, V29, P247, DOI 10.1111/j.1365-2605.2005.00556.x; Juul A, 1997, J CLIN ENDOCR METAB, V82, P2497, DOI 10.1210/jc.82.8.2497; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kaplan HS, 2002, P NATL ACAD SCI USA, V99, P10221, DOI 10.1073/pnas.152502899; Keizer-Schrama SMPFD, 2001, HUM REPROD UPDATE, V7, P287; Kessler RC, 2005, ARCH GEN PSYCHIAT, V62, P593, DOI 10.1001/archpsyc.62.6.593; Kim SS, 2001, EUR J OBSTET GYN R B, V97, P96, DOI 10.1016/S0301-2115(00)00500-5; KINGSTON L, 1995, J AM ACAD CHILD PSY, V34, P348, DOI 10.1097/00004583-199503000-00021; KIRKPATRICK LA, 1998, ATTACHMENT THEORY CL, P353; Knapp R, 2003, INTEGR COMP BIOL, V43, P658, DOI 10.1093/icb/43.5.658; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; Kosfeld M, 2005, NATURE, V435, P673, DOI 10.1038/nature03701; KRAATZKEILEY M, 2000, J ABNORMAL CHILD PSY, V28, P161, DOI DOI 10.1023/A:1005122814723; Kramer KL, 2005, EVOL ANTHROPOL, V14, P224, DOI 10.1002/evan.20082; Labrie F, 2005, J ENDOCRINOL, V187, P169, DOI 10.1677/joe.1.06264; Labrie F, 1998, STEROIDS, V63, P322, DOI 10.1016/S0039-128X(98)00007-5; Labrie F, 2001, FRONT NEUROENDOCRIN, V22, P185, DOI 10.1006/frne.2001.0216; LABRIE F, 1991, ENDOCRIN METAB CLIN, V78, pC113; Lacourse E, 2002, DEV PSYCHOPATHOL, V14, P909, DOI 10.1017/S0954579402004121; Leimar O, 2006, AM NAT, V167, P367, DOI 10.1086/499566; LERNER JV, 1988, CHILD DEV, V59, P356, DOI 10.1111/j.1467-8624.1988.tb01471.x; Locke JL, 2006, BEHAV BRAIN SCI, V29, P259, DOI 10.1017/S0140525X0600906X; LOEBER R, 1991, J AM ACAD CHILD PSY, V30, P393, DOI 10.1097/00004583-199105000-00007; Loeber R, 1998, AM PSYCHOL, V53, P242, DOI 10.1037//0003-066X.53.2.242; Loeber R, 1997, ANNU REV PSYCHOL, V48, P371, DOI 10.1146/annurev.psych.48.1.371; MacDonald H, 2006, BONE, V39, P598, DOI 10.1016/j.bone.2006.02.057; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; MAJEWSKA MD, 1992, PROG NEUROBIOL, V38, P379, DOI 10.1016/0301-0082(92)90025-A; Manning JT, 2007, MED HYPOTHESES, V68, P802, DOI 10.1016/j.mehy.2006.09.014; Maurice T, 1998, NEUROSCIENCE, V83, P413, DOI 10.1016/S0306-4522(97)00405-3; McCarthy MM, 1996, PHYSIOL BEHAV, V60, P1209, DOI 10.1016/S0031-9384(96)00212-0; McCarthy MM, 1995, ADV EXP MED BIOL, V395, P235; McClintock MK, 1996, CURR DIR PSYCHOL SCI, V5, P178, DOI 10.1111/1467-8721.ep11512422; McFadyenKetchum SA, 1996, CHILD DEV, V67, P2417, DOI 10.2307/1131631; McIntyre MH, 2006, REPROD BIOL ENDOCRIN, V4, DOI 10.1186/1477-7827-4-10; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Melchior CL, 1996, PHARMACOL BIOCHEM BE, V53, P51, DOI 10.1016/0091-3057(95)00197-2; Miles DR, 1997, J PERS SOC PSYCHOL, V72, P207, DOI 10.1037/0022-3514.72.1.207; MILEWICH L, 1990, PLACENTA, V11, P95, DOI 10.1016/S0143-4004(05)80172-9; Miller G. F., 2000, MATING MIND SEXUAL C; MOFFITT TE, 1993, PSYCHOL REV, V100, P674, DOI 10.1037//0033-295X.100.4.674; Moore TM, 2002, AGGRESSIVE BEHAV, V28, P299, DOI 10.1002/ab.90027; MORRISON FJ, 1996, 5 7 YEAR SHIFT AGE R; MOSKOWITZ DS, 1985, J ABNORM PSYCHOL, V94, P30, DOI 10.1037/0021-843X.94.1.30; Nagin D, 1999, CHILD DEV, V70, P1181, DOI 10.1111/1467-8624.00086; Nagin DS, 2001, ARCH GEN PSYCHIAT, V58, P389, DOI 10.1001/archpsyc.58.4.389; Nagy TR, 1997, J CLIN ENDOCR METAB, V82, P2148, DOI 10.1210/jc.82.7.2148; NESTLER JE, 1994, J CLIN ENDOCR METAB, V78, P549, DOI 10.1210/jc.78.3.549; Nettle D, 2007, OXFORD HDB EVOLUTION, P479; Nettle D, 2006, AM PSYCHOL, V61, P622, DOI 10.1037/0003-066X.61.6.622; Nijhout HF, 2003, EVOL DEV, V5, P9, DOI 10.1046/j.1525-142X.2003.03003.x; Nock MK, 2007, J CHILD PSYCHOL PSYC, V48, P703, DOI 10.1111/j.1469-7610.2007.01733.x; OLWEUS D, 1977, CHILD DEV, V48, P1301, DOI 10.1111/j.1467-8624.1977.tb03935.x; OLWEUS D, 1979, PSYCHOL BULL, V86, P852, DOI 10.1037/0033-2909.86.4.852; Ong KK, 2004, J CLIN ENDOCR METAB, V89, P2647, DOI 10.1210/jc.2003-031848; OPPENHEIMER E, 1995, J CLIN ENDOCR METAB, V80, P614, DOI 10.1210/jc.80.2.614; ORENTREICH N, 1984, J CLIN ENDOCR METAB, V59, P551, DOI 10.1210/jcem-59-3-551; PAGEL MD, 1993, JUVENILE PRIMATES LI, P38; Palmert MR, 2001, J CLIN ENDOCR METAB, V86, P4536, DOI 10.1210/jc.86.9.4536; Parent AS, 2003, ENDOCR REV, V24, P668, DOI 10.1210/er.2002-0019; PARKER LN, 1991, ENDOCRIN METAB CLIN, V20, P401, DOI 10.1016/S0889-8529(18)30275-5; PEDERSEN CA, 2005, ATTACHMENT BONDING N, P385; Pellegrini AD, 2001, MERRILL PALMER QUART, V47, P142, DOI 10.1353/mpq.2001.0004; PELLEGRINI AD, 2005, ORIGINS SOCIAL MIND, P219; Pereira Michael E., 1993, P3; PINKER S, 1997, MIND WORKDS; Popma A, 2007, BIOL PSYCHIAT, V61, P405, DOI 10.1016/j.biopsych.2006.06.006; Potau N, 1999, HORM RES, V51, P238, DOI 10.1159/000023377; Prinstein MJ, 2003, MERRILL PALMER QUART, V49, P310, DOI 10.1353/mpq.2003.0015; Rainey WE, 2002, TRENDS ENDOCRIN MET, V13, P234, DOI 10.1016/S1043-2760(02)00609-4; REISS AJ, 1993, UNDERSTANDING PREVEN; Remer T, 1999, J CLIN ENDOCR METAB, V84, P3936, DOI 10.1210/jc.84.11.3936; Rhee SH, 2002, PSYCHOL BULL, V128, P490, DOI 10.1037//0033-2909.128.3.490; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; ROBEL P, 1995, J STEROID BIOCHEM, V53, P355, DOI 10.1016/0960-0760(95)00074-A; Rodkin PC, 2006, SOC DEV, V15, P175, DOI 10.1111/j.1467-9507.2006.00336.x; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 2005, P333, DOI 10.1016/B978-012088777-4/50017-X; ROLLANDCACHERA MF, 1993, HORM RES, V39, P25, DOI 10.1159/000182782; Romeo RD, 2003, J NEUROENDOCRINOL, V15, P1185, DOI 10.1111/j.1365-2826.2003.01106.x; Rowe DC, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P147; Ruff C, 2003, BONE, V33, P317, DOI 10.1016/S8756-3282(03)00161-3; Rutter M, 2006, J CHILD PSYCHOL PSYC, V47, P226, DOI 10.1111/j.1469-7610.2005.01557.x; Rutter M, 2001, PSYCHOL BULL, V127, P291, DOI 10.1037//0033-2909.127.3.291; Rutter M, 2007, DEVELOPMENTAL SCI, V10, P12, DOI 10.1111/j.1467-7687.2007.00557.x; Sameroff A. J., 1996, 5 7 YEAR SHIFT AGE R; SCARR S, 1995, HUM DEV, V38, P154, DOI 10.1159/000278308; Schmitt DP, 2004, PSYCHOL SCI, V15, P643, DOI 10.1111/j.0956-7976.2004.00734.x; Schmitz S, 1995, J CHILD PSYCHOL PSYC, V36, P1443, DOI 10.1111/j.1469-7610.1995.tb01674.x; Shapiro RA, 2000, ENDOCRINOLOGY, V141, P4056, DOI 10.1210/en.141.11.4056; Shaw DS, 2003, DEV PSYCHOL, V39, P189, DOI 10.1037/0012-1649.39.2.189; Shaw NJ, 2007, ARCH DIS CHILD, V92, P872, DOI 10.1136/adc.2007.117911; Silfen ME, 2002, J CLIN ENDOCR METAB, V87, P398, DOI 10.1210/jc.87.1.398; SILVERMAN SH, 1952, PEDIATRICS, V10, P426; Silverthorn P, 1999, DEV PSYCHOPATHOL, V11, P101, DOI 10.1017/S0954579499001972; SIMON NG, 1999, HFG REV RES, V3, P13; SIMON NG, 2006, BIOL AGGRESSION, P211; SIMPSON JA, 2008, HDB ATTACHMENT THEOR; SKLAR CA, 1980, J CLIN ENDOCR METAB, V51, P548, DOI 10.1210/jcem-51-3-548; SMITH PK, 2005, ORIGINS SOCIAL MIND, P271; Spear LP, 2000, NEUROSCI BIOBEHAV R, V24, P417, DOI 10.1016/S0149-7634(00)00014-2; Strous RD, 2001, INT J NEUROPSYCHOPH, V4, P259; Styne DM, 2002, HORMONES BRAIN BEHAV, P661; Tanner JM, 1955, GROWTH ADOLESCENCE; Taylor SE, 2000, PSYCHOL REV, V107, P411, DOI 10.1037/0033-295X.107.3.411; TELLER WM, 1986, ACTA ENDOCRINOL-COP, V113, P232; THAMDRUP E, 1955, ACTA ENDOCRINOL-COP, V18, P564, DOI 10.1530/acta.0.0180564; THOMAS JR, 1985, PSYCHOL BULL, V98, P260, DOI 10.1037//0033-2909.98.2.260; Tilbrook AJ, 2002, STRESS, V5, P83, DOI 10.1080/10253890290027912; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; TRELOAR SA, 1990, AM J HUM GENET, V47, P137; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TURKHEIMER E, 1995, HUM DEV, V38, P142, DOI 10.1159/000278307; Turkheimer E, 1996, DEV PSYCHOPATHOL, V8, P667, DOI 10.1017/S0954579400007355; Turkheimer E, 2000, PSYCHOL BULL, V126, P78, DOI 10.1037//0033-2909.126.1.78; TURKHEIMER E, 2004, BEHAV GENETICS PRINC; van Beijsterveldt CEM, 2003, BEHAV GENET, V33, P591, DOI 10.1023/A:1025735002864; van den Berg PM, 2006, BEHAV GENET, V36, P261, DOI 10.1007/s10519-005-9022-y; van der Valk JC, 2003, BEHAV GENET, V33, P409, DOI 10.1023/A:1025369525924; van Goozen SHM, 1998, BIOL PSYCHIAT, V43, P156, DOI 10.1016/S0006-3223(98)00360-6; van Goozen SHM, 2000, J AM ACAD CHILD PSY, V39, P1446, DOI 10.1097/00004583-200011000-00020; Van Ijzendoorn MH, 2006, ATTACH HUM DEV, V8, P291, DOI 10.1080/14616730601048159; vandenOord EJCG, 1997, DEV PSYCHOL, V33, P319; Viau V, 2002, J NEUROENDOCRINOL, V14, P506, DOI 10.1046/j.1365-2826.2002.00798.x; Viau V, 2005, ENDOCRINOLOGY, V146, P137, DOI 10.1210/en.2004-0846; Wagner GP, 1996, EVOLUTION, V50, P967, DOI 10.1111/j.1558-5646.1996.tb02339.x; Wagner W, 2005, EXP HEMATOL, V33, P49; Warman DM, 2000, AGGRESSIVE BEHAV, V26, P277, DOI 10.1002/1098-2337(2000)26:4<277::AID-AB1>3.0.CO;2-C; Weisfeld GE., 1999, EVOLUTIONARY PRINCIP; WEISNER TS, 1996, REASON RESPONSIBILIT, P295; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WHITE SH, 1965, ADV CHILD DEV BEHAV, V2, P187; Wilkins A., 2002, EVOLUTION DEV PATHWA; Wilson CA, 2007, REPRODUCTION, V133, P331, DOI 10.1530/REP-06-0078; WILSON DS, 1994, ETHOL SOCIOBIOL, V15, P219; WILSON DS, 1994, AM NAT, V144, P692, DOI 10.1086/285702; WILSON M, 2002, HORMONES BRAIN BEHAV, V5, P381, DOI DOI 10.1016/B978-012532104-4/50096-2; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf OT, 1999, BRAIN RES REV, V30, P264, DOI 10.1016/S0165-0173(99)00021-1; Wuyts FL, 2003, ANN OTO RHINOL LARYN, V112, P540, DOI 10.1177/000348940311200611; Zak PJ, 2005, HORM BEHAV, V48, P522, DOI 10.1016/j.yhbeh.2005.07.009 250 61 61 0 29 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0273-2297 1090-2406 DEV REV Dev. Rev. MAR 2009 29 1 1 31 10.1016/j.dr.2008.09.001 31 Psychology, Developmental Psychology 418SG WOS:000264168300001 2018-11-12 J Wang, XT; Kruger, DJ; Wilke, A Wang, X. T.; Kruger, Daniel J.; Wilke, Andreas Life history variables and risk-taking propensity EVOLUTION AND HUMAN BEHAVIOR English Article Risk perception; Risk-taking; Life-history theory; Life history-variables; Domain specificity of risk BIRTH-ORDER; EVOLUTIONARY PSYCHOLOGY; NATURAL-SELECTION; SPECIFICITY; PERSPECTIVE; EXPECTANCY; HOMICIDE; CHOICE; REBEL We examined the effects of life-history variables on risk-taking propensity, measured by subjective likelihoods of engaging in risky behaviors in five evolutionarily valid domains of fisk, including between-group competition, within-group competition, environmental challenge, mating and resource allocation, and fertility and reproduction. The effects of life-history variables on fisk-taking propensity were domain specific, except for the expected sex difference, where men predicted greater risk-taking than women in all domains. Males also perceived less inherent risk in actions than females across the five domains. Although the age range in the sample was limited, older respondents showed lower risk propensity in both between- and within-group competition. Parenthood reduced risk-taking propensity in within- and between-group competitions. Higher reproductive goal setting (desiring more offspring) was associated with lower risk-taking propensity. This effect was strongest in the risk domains of mating and reproduction. Having more siblings reduced risk-taking propensity (contrary to our initial prediction) in the domains of environmental challenge, reproduction, and between-group competition. Later-born children showed a higher propensity to engage in environmental and mating risks. Last, shorter subjective life expectancy was associated with increased willingness to take mating and reproductive risks. These results suggest that life-history variables regulate human risk-taking propensity in specific risk domains. (C) 2009 Elsevier Inc. All rights reserved. [Wang, X. T.] Univ S Dakota, Dept Psychol, Vermillion, SD 57069 USA; [Kruger, Daniel J.] Univ Michigan, Sch Publ Hlth, Ann Arbor, MI 48109 USA; [Wilke, Andreas] Univ Calif Los Angeles, Dept Anthropol, Ctr Behav Evolut & Culture, Los Angeles, CA 90095 USA; [Wilke, Andreas] Max Planck Inst Human Dev, Ctr Adapt Behav & Cognit, D-14195 Berlin, Germany Wang, XT (reprint author), Univ S Dakota, Dept Psychol, Vermillion, SD 57069 USA. xtwang@usd.edu Kruger, Daniel/0000-0002-2757-7016 Deutsche Forschungsgemeinschaft [WI 3215/1-1] We are grateful to Daniel Fessler and two anonymous referees for helpful comments and criticism of our work. We thank Daniel Fessler for suggesting the "mediation by reproductive goal" explanation of the sibship size effect. This article was prepared in part while the first author was a visiting professor at the Guanghua School of Management, Peking University in Beijing, China. We also thank Anita Todd for her editorial assistance and the Deutsche Forschungsgemeinschaft for a Research Scholarship to the third author (WI 3215/1-1). Allman J, 1998, P NATL ACAD SCI USA, V95, P6866, DOI 10.1073/pnas.95.12.6866; Blais A.-R., 2001, RISK DECISION POLICY, V6, P47; Bromiley P, 1992, RISK TAKING BEHAV, P87; Buss D., 2005, HDB EVOLUTIONARY PSY; Buss D. M, 2004, EVOLUTIONARY PSYCHOL; BUSS DM, 1995, PSYCHOL INQ, V6, P1, DOI 10.1207/s15327965pli0601_1; Campbell A, 1999, BEHAV BRAIN SCI, V22, P203; COSMIDES L, 1989, COGNITION, V31, P187, DOI 10.1016/0010-0277(89)90023-1; Cosmides L, 1996, COGNITION, V58, P1, DOI 10.1016/0010-0277(95)00664-8; Daly M, 1997, CRIME JUSTICE, V22, P51, DOI 10.1086/449260; Dunbar Robin, 2002, HUMAN EVOLUTIONARY P; Freese J, 1999, AM SOCIOL REV, V64, P207, DOI 10.2307/2657528; Gigerenzer Gerd, 2001, BOUNDED RATIONALITY; Hanoch Y, 2006, PSYCHOL SCI, V17, P300, DOI 10.1111/j.1467-9280.2006.01702.x; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hill EM, 2002, ADDICTION, V97, P401, DOI 10.1046/j.1360-0443.2002.00020.x; Kahneman D, 2000, CHOICES VALUES FRAME; KAPLAN HS, 2005, HDB EVOLUTIONARILY P, P528; Kruger D. J., 2007, EVOLUTIONARY PSYCHOL, V5, P555; LOW BL, 2000, WHY SEX MATTERS DARW; MELLERS BA, 1997, CHOICE DECISION MEAS, P59; Mock D. W., 1997, EVOLUTION SIBLING RI; Pinker S., 1997, MIND WORKS; ROGERS AR, 1994, AM ECON REV, V84, P460; Rohde PA, 2003, EVOL HUM BEHAV, V24, P261, DOI 10.1016/S1090-5138(03)00033-3; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; SLOVIC P, 1972, J PERS SOC PSYCHOL, V22, P128, DOI 10.1037/h0032370; STEAMS SC, 2004, EVOLUTION LIFE HIST; Sulloway F., 2002, TECHNICAL REPORT VOT; SULLOWAY FJ, 1995, PSYCHOL INQ, V6, P75, DOI 10.1207/s15327965pli0601_15; SULLOWAY FJ, 1996, BORN REBEL RADICAL T; TOLOR A, 1967, J CLIN PSYCHOL, V23, P21, DOI 10.1002/1097-4679(196701)23:1<21::AID-JCLP2270230105>3.0.CO;2-D; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; TVERSKY A, 1981, SCIENCE, V211, P453, DOI 10.1126/science.7455683; Wang X. T., 2007, ACTA PSYCHOL SINICA, V39, P406; Wang XT, 1996, COGNITION, V60, P31, DOI 10.1016/0010-0277(95)00700-8; Wang XT, 2002, EVOL HUM BEHAV, V23, P35, DOI 10.1016/S1090-5138(01)00091-5; Wang XT, 1996, ETHOL SOCIOBIOL, V17, P1, DOI 10.1016/0162-3095(95)00103-4; Weber EU, 2002, J BEHAV DECIS MAKING, V15, P263, DOI 10.1002/bdm.414; Wilke A., 2006, EVOLUTIONARY PSYCHOL, V4, P367; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 41 70 77 2 36 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 EVOL HUM BEHAV Evol. Hum. Behav. MAR 2009 30 2 77 84 10.1016/j.evolhumbehav.2008.09.006 8 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences 408SU WOS:000263456100001 2018-11-12 J Gosnell, JS; Rivera, G; Blob, RW Gosnell, J. Stephen; Rivera, Gabriel; Blob, Richard W. A PHYLOGENETIC ANALYSIS OF SEXUAL SIZE DIMORPHISM IN TURTLES HERPETOLOGICA English Review Egg size; Evolution; Fecundity; Phylogenetic comparative methods; Sexual dimorphism; Sexual selection; Turtles BODY-SIZE; NORTHERN POPULATION; SNAPPING TURTLE; INDEPENDENT CONTRASTS; CHELODINA TESTUDINES; GOPHER TORTOISES; CLEMMYS-GUTTATA; EGG-PRODUCTION; MAP TURTLE; GROWTH Sexual size dimorphism (SSD) is widespread in a variety of vertebrate taxa, and its presence has been associated with a range of evolutionary and ecological factors. Turtles, as a lineage, have been shown to include species that exhibit both forms of SSD-male-biased (male larger) and female-biased (female larger)-as well as species that do not exhibit SSD (male size congruent to female size). Previous work has suggested that factors affecting the direction and magnitude of SSD in turtles may include habitat preference and fecundity; these correlations, however, have not been tested in a phylogenetic context. To provide a framework for evaluating potential correlates with the magnitude and direction of SSD in turtles, we examined the phylogenetic distribution of SSD in this clade. Published sources were surveyed for data on the direction and magnitude of SSD, carapace length, clutch size, egg size, and preferred habitat (terrestrial vs. nonterrestrial). Phylogenies were compiled from multiple published sources to develop a phylogeny for all taxa (n = 82) for which SSD data were assembled. The phylogenetic distribution of SSD was then evaluated using parsimony-based methods. These analyses indicated that the ancestral condition for extant turtles was female-biased SSD. Phylogenetic analyses conducted on subsets of the data (concentrated-changes tests, independent contrasts) indicated that changes in SSD state were not correlated with changes in habitat preference. Both male and female carapace length were found to be correlated with traits related to fecundity, (egg size, clutch size), but the degree of dimorphism was not found to be correlated with these traits. A significant negative correlation between egg size and clutch size was also evident in turtles, as predicted by life-history theory. [Gosnell, J. Stephen; Rivera, Gabriel; Blob, Richard W.] Clemson Univ, Dept Biol Sci, Clemson, SC 29634 USA Gosnell, JS (reprint author), Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA. gosnell@lifesci.ucsb.edu Clemson University Department of Biological Sciences; University Calhoun Honors College We thank A. Rivera, S. DeWalt, 1). Weisrock, A. Zanne, and P. Marko for their assistance with this project and S. Vincent and an anonymous referee for their thoughtful reviews of the manuscript. Funding for the project was provided by the Clemson University Department of Biological Sciences and a Clemson University Calhoun Honors College undergraduate research award (JSG). Ataev Chary A., 1997, Chelonian Conservation and Biology, V2, P627; AUFFENBERG W, 1969, Bulletin of the Florida State Museum Biological Sciences, V13, P141; Averill-Murray Roy C., 2002, Chelonian Conservation and Biology, V4, P295; Bayley Jane R., 1996, Chelonian Conservation and Biology, V2, P36; Bayoff Nicolas, 1995, Chelonian Conservation and Biology, V1, P215; BERRY J F, 1984, Annals of Carnegie Museum, V53, P185; Berry James F., 1997, Chelonian Conservation and Biology, V2, P329; BERRY JF, 1980, OECOLOGIA, V44, P185, DOI 10.1007/BF00572678; BERTOLERO A, AMPHIBIA REPTILIA, V28, P77; Blob RW, 2000, J ZOOL, V250, P507, DOI 10.1017/S0952836900004088; BONNETT X, BIOL J LINNEAN SOC, V72, P357; Branch W.R., 1984, Amphibia-Reptilia, V5, P43, DOI 10.1163/156853884X00084; BROOKS RJ, 1992, CAN J ZOOL, V70, P462, DOI 10.1139/z92-070; BROWN WS, 1971, B FLORIDA STATE MUSE, V19, P1; BUSACK S D, 1980, Annals of Carnegie Museum, V49, P251; Butler MA, 2000, EVOLUTION, V54, P259, DOI 10.1111/j.0014-3820.2000.tb00026.x; Cahn A. R., 1937, ILLINOIS BIOL MONOGR, V35, P1; CARR ARCHIE, 1966, AMER MUS NOVITATES, V2248, P1; Chen TH, 1998, COPEIA, P944; Chen TH, 1999, HERPETOLOGICA, V55, P487; Clark PJ, 2001, FUNCT ECOL, V15, P70, DOI 10.1046/j.1365-2435.2001.00494.x; Conner CA, 2005, AM MIDL NAT, V153, P428, DOI 10.1674/0003-0031(2005)153[0428:DEOATA]2.0.CO;2; Cox RM, 2005, J EXP BIOL, V208, P4679, DOI 10.1242/jeb.01948; Cox RM, 2003, EVOLUTION, V57, P1653, DOI 10.1554/02-227; Darwin C. R., 1874, DESCENT MAN SELECTIO; Dobbs Kirstin A., 1999, Chelonian Conservation and Biology, V3, P344; DOBIE JL, 1971, COPEIA, P645; Dodd C. Kenneth Jr, 1997, Chelonian Conservation and Biology, V2, P370; Epperson DM, 2003, J HERPETOL, V37, P315, DOI 10.1670/0022-1511(2003)037[0315:NAHEOG]2.0.CO;2; Ernst C.H., 2007, TURTLES WORLD; Ewert MA, 2004, J HERPETOL, V38, P291, DOI 10.1670/149-03N; Fairbairn DJ, 1997, ANNU REV ECOL SYST, V28, P659, DOI 10.1146/annurev.ecolsys.28.1.659; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FERNANDEZ AC, 2001, CHELONIAN CONSERV BI, V4, P100; Flores-Villela Oscar A., 1995, Chelonian Conservation and Biology, V1, P181; Forsman A, 1995, COPEIA, P727, DOI 10.2307/1446770; FOWLER LE, 1979, ECOLOGY, V60, P946, DOI 10.2307/1936863; FRAZIER J, 1971, PHILOS T ROY SOC B, V260, P373, DOI 10.1098/rstb.1971.0019; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; GARLAND T, 1993, SYST BIOL, V42, P265, DOI 10.2307/2992464; GAYMER R, 1968, J ZOOL, V154, P341; Georges A, 2002, ZOOL J LINN SOC-LOND, V134, P401, DOI 10.1046/j.1096-3642.2002.00007.x; GEORGES A, 1992, AUST J ZOOL, V40, P453, DOI 10.1071/ZO9920453; GHISELIN MT, 1974, EC NATURE EVOLUTION; Gibbons J.W., 1990, HERPETOL MONOGR, V4, P1; GIBBONS JW, 2001, CHELONIAN CONSERV BI, V4, P65; GRAHAM TE, 1971, COPEIA, P353; Graham Terry E., 1997, Chelonian Conservation and Biology, V2, P363; HAMMER DA, 1969, J WILDLIFE MANAGE, V33, P995, DOI 10.2307/3799337; Harding J.H., 1979, Herp, V15, P9; Hofmeyr MD, 2004, J HERPETOL, V38, P172, DOI 10.1670/133-03A; HOFMEYR MD, 2005, CAN J ZOOL, V83, P343; IVERSON JB, 1991, J HERPETOL, V25, P64, DOI 10.2307/1564796; JUVIK JO, 1981, BIOL CONSERV, V19, P297, DOI 10.1016/0006-3207(81)90005-7; Kabigumila J, 2001, AFR J ECOL, V39, P223, DOI 10.1046/j.1365-2028.2000.00289.x; Le M, 2006, MOL PHYLOGENET EVOL, V40, P517, DOI 10.1016/j.ympev.2006.03.003; LEGLER JM, 1980, LOS ANGELES COUNTY, V324, P1; Lindeman PV, 2005, AM MIDL NAT, V153, P378, DOI 10.1674/0003-0031(2005)153[0378:AOTLHO]2.0.CO;2; Litzgus JD, 1998, J HERPETOL, V32, P252, DOI 10.2307/1565305; Litzgus JD, 1998, CAN J ZOOL, V76, P773, DOI 10.1139/cjz-76-5-773; Loehr VJT, 2004, HERPETOLOGICA, V60, P444, DOI 10.1655/03-59; Lovich JE, 1998, AM MIDL NAT, V139, P69, DOI 10.1674/0003-0031(1998)139[0069:GVIGAS]2.0.CO;2; Lovich JE, 1995, J HERPETOL, V29, P621, DOI 10.2307/1564750; Lynn W. G., 1940, Bulletin of the Institute of Jamaica Science Series, V1, P1; Maddison DR, 2006, MESQUITE MODULAR SYS; MADDISON DR, 2000, MACCLADE, V4; MADDISON WP, 1990, EVOLUTION, V44, P539, DOI 10.1111/j.1558-5646.1990.tb05937.x; MAHMOUD IY, 1967, COPEIA, P314, DOI 10.2307/1442119; MCBEE K, 1985, COPEIA, P445, DOI 10.2307/1444856; McCord William P., 1997, Chelonian Conservation and Biology, V2, P555; McCord WP, 2002, J HERPETOL, V36, P255, DOI 10.2307/1565998; MCRAE WA, 1981, AM MIDL NAT, V106, P165, DOI 10.2307/2425146; Midford PE, 2005, PDAP PACKAGE MESQUIT; MINTON SH, 1972, INDIANA ACAD SCI MON, V3; Moll E.O., 1980, Malaysian Journal of Science, V6, P23; MOLLER AP, 1988, NATURE, V332, P640, DOI 10.1038/332640a0; Moulis Robert A., 1997, Chelonian Conservation and Biology, V2, P433; Pilcher Nicolas J., 2000, Chelonian Conservation and Biology, V3, P730; Platt Steven G., 2003, Chelonian Conservation and Biology, V4, P691; Pritchard P. C. H., 1984, CONTRIBUTIONS HERPET, V2; Quader S, 2004, J EVOLUTION BIOL, V17, P709, DOI 10.1111/j.1420-9101.2004.00697.x; Reynoso VH, 2004, J VERTEBR PALEONTOL, V24, P822, DOI 10.1671/0272-4634(2004)024[0822:ANGTOT]2.0.CO;2; RHODIN AGJ, 1984, HERPETOLOGICA, V40, P38; RUCKDESCHEL C, 1982, BIOL CONSERV, V22, P323; Ryan KM, 2007, AM MIDL NAT, V158, P49, DOI 10.1674/0003-0031(2007)158[49:RAITCM]2.0.CO;2; Shaffer HB, 1997, SYST BIOL, V46, P235, DOI 10.1093/sysbio/46.2.235; SHINE R, 1989, Q REV BIOL, V64, P419, DOI 10.1086/416458; SPINKS PQ, 2004, MOL PHYLOGENET EVOL, V32, P64; St Clair RC, 1998, OECOLOGIA, V115, P501, DOI 10.1007/s004420050547; Stephens PR, 2003, BIOL J LINN SOC, V79, P577, DOI 10.1046/j.1095-8312.2003.00211.x; Thomson Scott, 2000, Chelonian Conservation and Biology, V3, P675; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Turkozan Oguz, 2000, Chelonian Conservation and Biology, V3, P686; van der Kuyl AC, 2002, MOL PHYLOGENET EVOL, V22, P174, DOI 10.1006/mpev.2001.1052; Vincent SE, 2007, INTEGR COMP BIOL, V47, P172, DOI 10.1093/icb/icm019; VOGT R C, 1980, Tulane Studies in Zoology and Botany, V22, P17; Walker D, 1998, CONSERV BIOL, V12, P639, DOI 10.1046/j.1523-1739.1998.97056.x; Wikelski M, 1997, EVOLUTION, V51, P922, DOI 10.1111/j.1558-5646.1997.tb03673.x; Wilkinson LR, 2005, COPEIA, P868, DOI 10.1643/0045-8511(2005)005[0868:PORACA]2.0.CO;2; Willemsen RE, 2003, J ZOOL, V260, P353, DOI 10.1017/S0952836903003820; WOODBURY AM, 1948, ECOL MONOGR, V18, P145, DOI 10.2307/1948638; YNTEMA CL, 1970, AM MIDL NAT, V84, P69, DOI 10.2307/2423727; YUICHIROU Y, 1996, ZOOL SCI, V13, P303 103 16 19 1 16 HERPETOLOGISTS LEAGUE EMPORIA EMPORIA STATE UNIV, DIVISION BIOLOGICAL SCIENCES, 1200 COMMERCIAL ST, EMPORIA, KS 66801-5087 USA 0018-0831 HERPETOLOGICA Herpetologica MAR 2009 65 1 70 81 10.1655/07-057R2.1 12 Zoology Zoology 449HH WOS:000266320900006 2018-11-12 J Brumbach, BH; Figueredo, AJ; Ellis, BJ Brumbach, Barbara Hagenah; Figueredo, Aurelio Jose; Ellis, Bruce J. Effects of Harsh and Unpredictable Environments in Adolescence on Development of Life History Strategies HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article Life history theory; Add Health; Adolescent health; Environmental harshness; Environmental unpredictability REPRODUCTIVE STRATEGY; K-FACTOR; RISK; PREGNANCY; SOCIALIZATION; AGGRESSION; PREDICTORS; INEQUALITY; SELECTION; HOMICIDE The National Longitudinal Study of Adolescent Health data were used to test predictions from life history theory. We hypothesized that (1) in young adulthood an emerging life history strategy would exist as a common factor underlying many life history traits (e.g., health, relationship stability, economic success), (2) both environmental harshness and unpredictability would account for unique variance in expression of adolescent and young adult life history strategies, and (3) adolescent life history traits would predict young adult life history strategy. These predictions were supported. The current findings suggest that the environmental parameters of harshness and unpredictability have concurrent effects on life history development in adolescence, as well as longitudinal effects into young adulthood. In addition, life history traits appear to be stable across developmental time from adolescence into young adulthood. [Brumbach, Barbara Hagenah] No Arizona Univ, Dept Psychol, Flagstaff, AZ 86011 USA; [Figueredo, Aurelio Jose] Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA; [Ellis, Bruce J.] Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, Tucson, AZ USA Brumbach, BH (reprint author), No Arizona Univ, Dept Psychol, POB 15106, Flagstaff, AZ 86011 USA. Barbara.Brumbach@nau.edu NICHD NIH HHS [P01 HD031921-050002, P01 HD031921] Barry TD, 2005, J AM ACAD CHILD PSY, V44, P265, DOI 10.1097/00004583-200503000-00011; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BENTLER PM, 1980, PSYCHOL BULL, V88, P588, DOI 10.1037/0033-2909.107.2.238; Bereczkei T, 2001, INT J BEHAV DEV, V25, P501, DOI 10.1080/01650250042000573; Brim OG, 2000, NATL SURVEY MIDLIFE; Browning CR, 2005, AM SOCIOL REV, V70, P758, DOI 10.1177/000312240507000502; BUSS DM, 1987, J PERS SOC PSYCHOL, V53, P1214, DOI 10.1037//0022-3514.53.6.1214; CAMPBELL DT, 1959, PSYCHOL BULL, V56, P81, DOI 10.1037/h0046016; Charnov Eric L., 1993, P1; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Cohen J., 1983, APPL MULTIPLE REGRES; Daly M, 2001, CAN J CRIMINOL, V43, P219; Einum S, 2004, EVOL ECOL RES, V6, P443; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; ELLIS BJ, 2009, HUMAN NATUR IN PRESS, P20; Fergusson DM, 2000, J CHILD PSYCHOL PSYC, V41, P779, DOI 10.1111/1469-7610.00665; Fick AC, 1995, YOUTH SOC, V27, P136, DOI 10.1177/0044118X95027002002; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2005, HDB EVOLUTIONARY PSY, P851; FIGUEREDO AJ, 2006, HUMAN NATURE, V18, P47; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Galliher RV, 2004, J YOUTH ADOLESCENCE, V33, P235, DOI 10.1023/B:JOYO.0000025322.11510.9d; Geary DC, 2001, PARENT-SCI PRACT, V1, P5, DOI 10.1207/S15327922PAR011&2_2; Gorsuch R. L., 1983, FACTOR ANAL; Harris Kathleen Mullan, 2003, NATL LONGITUDINAL ST; Hawkes Kristen, 2003, P204; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; HU L, 1995, STRUCTURAL EQUATION, P76, DOI DOI 10.1080/10705519909540118; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kappeler Peter M., 2003, P1; Kline RB, 2006, QUANT METH EDUC BEHA, P43; Kotchick BA, 2001, CLIN PSYCHOL REV, V21, P493, DOI 10.1016/S0272-7358(99)00070-7; LOEHLIN JC, 2004, LATENT VARIABLE MODE; Lumsden C. J, 1981, GENES MIND CULTURE C; Miller BC, 2001, DEV REV, V21, P1, DOI 10.1006/drev.2000.0513; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Rowe DC, 1997, PERS INDIV DIFFER, V23, P105, DOI 10.1016/S0191-8869(97)00005-6; ROWE DC, 1994, J RES CRIME DELINQ, V31, P374, DOI 10.1177/0022427894031004002; ROWE DC, 1989, ADV ADOLESCENT DEV, P38; Rutter M, 2005, J AM ACAD CHILD PSY, V44, P3, DOI 10.1097/01.chi.0000145374.45992.c9; SAS Institute Inc, 1999, SAS STAT US GUID VER; Schermelleh-Engel K., 2003, METHODS PSYCHOL RES, V8, P23, DOI DOI 10.1002/0470010940; SEFCEK JA, 2007, THESIS U ARIZONA TUC; Seligman MEP, 1971, AVERSIVE CONDITION, P347; SERBIN LA, 1991, CAN J BEHAV SCI, V23, P318, DOI 10.1037/h0079014; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steiger JH, 1989, EZPATH CAUSAL MODELI; Udry J. R., 2003, NATL LONGITUDINAL ST; Underwood MK, 1996, J RES ADOLESCENCE, V6, P201; Vigil JM, 2006, J FAM PSYCHOL, V20, P597, DOI 10.1037/0893-3200.20.4.597; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Winterhalder B, 2002, EVOL HUM BEHAV, V23, P59, DOI 10.1016/S1090-5138(01)00089-7; Worthman CM, 2003, OFFSPRING, P289; Zweig JM, 2001, J YOUTH ADOLESCENCE, V30, P707, DOI 10.1023/A:1012281628792 62 118 123 1 45 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. MAR 2009 20 1 25 51 10.1007/s12110-009-9059-3 27 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 408FX WOS:000263422000002 20634914 Green Accepted 2018-11-12 J Dunkel, CS; Sefcek, JA Dunkel, Curtis S.; Sefcek, Jon A. Eriksonian Lifespan Theory and Life History Theory: An Integration Using the Example of Identity Formation REVIEW OF GENERAL PSYCHOLOGY English Review Erikson; life history theory; identity; evolutionary psychology EGO-IDENTITY; FATHER ABSENCE; REPRODUCTIVE STRATEGY; ADOLESCENT IDENTITY; K-FACTOR; EVOLUTIONARY PERSPECTIVE; PSYCHOSOCIAL DEVELOPMENT; PERSONALITY-DEVELOPMENT; INDIVIDUAL-DIFFERENCES; CHILDHOOD EXPERIENCE Furthering the cause of consilience in the social sciences a model is proposed in which Eriksonian life span theory and life history theory are integrated. The model explains individual differences in the Eriksonian developmental stages as a function of the individual differences in developmental trajectories (if life. history theory as, conceptualized by Belsky, Steinberg, and Draper (1991). Erikson's fifth stage of identity formation is used to examine the model, with the results of three studies presented to illustrate the viability of the model. Future research should examine other aspects of the model and the relationship between the developmental trajectories in life history theory and the Eriksonian stages in greater detail. [Dunkel, Curtis S.] Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA; [Sefcek, Jon A.] Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA Dunkel, CS (reprint author), Western Illinois Univ, Dept Psychol, Waggoner Hall, Macomb, IL 61455 USA. c-dunkel@wiu.edu Adams GR, 2005, IDENTITY, V5, P57, DOI 10.1207/s1532706xid0501_4; Adams GR, 2000, J ADOLESCENT RES, V15, P99, DOI 10.1177/0743558400151006; ADAMS GR, 2001, IDENTITY INT J THEOR, V1, P307, DOI DOI 10.1207/S1532706XID0104_; Badcock CR, 1998, HANDBOOK OF EVOLUTIONARY PSYCHOLOGY, P457; BALISTRERI E, 1995, J ADOLESCENCE, V18, P179, DOI 10.1006/jado.1995.1012; Bartle-Haring S, 2002, J ADOLESCENT RES, V17, P439, DOI 10.1177/0743558402175001; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, HUM NATURE-INT BIOS, V8, P361, DOI 10.1007/BF02913039; Benson M. J., 1992, J RES ADOLESCENCE, V2, P187, DOI 10.1207/s15327795jra0203_1; Berzonsky M. D, 1989, J ADOLESCENT RES, V4, P268, DOI DOI 10.1177/074355488943002; Berzonsky MD, 2005, PERS INDIV DIFFER, V39, P235, DOI 10.1016/j.paid.2005.01.010; Berzonsky MD, 2004, J YOUTH ADOLESCENCE, V33, P213, DOI 10.1023/B:JOYO.0000025320.89778.29; Berzonsky MD, 1999, DEV REV, V19, P557, DOI 10.1006/drev.1999.0495; BERZONSKY MD, 2007, REVISED IDENTI UNPUB; Bjorklund D. F., 2002, ORIGINS HUMAN NATURE; BLOCK J, 1961, J CONSULT PSYCHOL, V25, P392, DOI 10.1037/h0042979; Bogaert AF, 2005, J ADOLESCENCE, V28, P541, DOI 10.1016/j.adolescence.2004.10.008; BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; BOYD RD, 1970, J EXPT ED, V381, P1; BURI JR, 1991, J PERS ASSESS, V57, P110, DOI 10.1207/s15327752jpa5701_13; BUSS DM, 1995, PSYCHOL INQ, V6, P1, DOI 10.1207/s15327965pli0601_1; CAMPBELL E, 1984, J YOUTH ADOLESCENCE, V13, P509, DOI 10.1007/BF02088596; Charles KE, 2005, PERS INDIV DIFFER, V38, P1035, DOI 10.1016/j.paid.2004.06.021; CHARLESWORTH WR, 1988, SOCIOBIOLOGICAL PERS, P24; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Clancy S. M., 1993, J RES ADOLESCENCE, V3, P227, DOI [10.1207/s15327795jra0303_2, DOI 10.1207/S15327795JRA0303_2]; Costa PT, 2006, PSYCHOL BULL, V132, P26, DOI 10.1037/0033-2909.132.1.26; Cramer P, 2001, J PERS, V69, P667, DOI 10.1111/1467-6494.695159; Crawford TN, 2004, J YOUTH ADOLESCENCE, V33, P373, DOI 10.1023/B:JOYO.0000037631.87018.9d; DIGNAN MH, 1965, J PERS SOC PSYCHOL, V1, P476, DOI 10.1037/h0021861; Dollinger SMC, 1995, J RES PERS, V29, P475, DOI 10.1006/jrpe.1995.1028; DRAPER P, 1990, J PERS, V58, P141, DOI 10.1111/j.1467-6494.1990.tb00911.x; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Dunkel CS, 2000, J ADOLESCENCE, V23, P519, DOI 10.1006/jado.2000.0340; Dunkel CS, 2005, ADOLESCENCE, V40, P489; DYK PH, 1990, J YOUTH ADOLESCENCE, V19, P91, DOI 10.1007/BF01538715; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Erikson E. H, 1968, IDENTITY YOUTH CRISI; Erikson E. H., 1950, CHILDHOOD SOC; Erikson EH, 1963, CHALLENGE YOUTH, P1; Faber AJ, 2003, AM J FAM THER, V31, P243, DOI 10.1080/01926180390201945; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; FITCH SA, 1983, DEV PSYCHOL, V19, P839, DOI DOI 10.1037/0012-1649.19.6.839; GROSSMAN SM, 1980, J DIVORCE, V3, P263, DOI 10.1300/J279v03n03_06; GROTEVANT HD, 1985, CHILD DEV, V56, P415, DOI 10.2307/1129730; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hoegh DG, 2002, YOUTH SOC, V33, P573, DOI 10.1177/0044118X02033004004; Hoier S, 2003, HUM NATURE-INT BIOS, V14, P209, DOI 10.1007/s12110-003-1004-2; HOWARD SM, 1964, J PSYCHOL, V58, P459, DOI 10.1080/00223980.1964.9916767; Hunsberger B., 2001, IDENTITY INT J THEOR, V1, P365, DOI [10.1207/S1532706XID0104_04, DOI 10.1207/S1532706XID0104_04]; Jones R.M., 1992, ADOLESCENT IDENTITY, P216; KACERGUIS MA, 1980, J YOUTH ADOLESCENCE, V9, P117, DOI 10.1007/BF02087930; Kerpelman J. L., 2004, IDENTITY INT J THEOR, V4, P187, DOI DOI 10.1207/S1532706XID0402_5; KING PK, 1993, THESIS UTAH STATE U; Knafo A, 2004, BRIT J DEV PSYCHOL, V22, P439, DOI 10.1348/0261510041552765; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; LAPSLEY DK, 1990, J COUNS DEV, V68, P561, DOI 10.1002/j.1556-6676.1990.tb01411.x; Lickliter R, 2003, PSYCHOL BULL, V129, P866, DOI 10.1037/0033-2909.129.6.866; LOGAN RD, 1986, HUM DEV, V29, P125, DOI 10.1159/000273036; Lumsden C. J, 1981, GENES MIND CULTURE C; MAC ARTHUR ROBERT H., 1967; MACDONALD K, 1988, SOCIAL PERSONALITY D; MacDonald Kevin, 2005, EVOLUTIONARY PERSPEC, P21; Maestripieri D, 2004, DEVELOPMENTAL SCI, V7, P560, DOI 10.1111/j.1467-7687.2004.00380.x; MARCIA JE, 1966, J PERS SOC PSYCHOL, V3, P551, DOI 10.1037/h0023281; Markstrom CA, 2003, J RES ADOLESCENCE, V13, P399, DOI 10.1046/j.1532-7795.2003.01304001.x; Markstrom CA, 1997, J YOUTH ADOLESCENCE, V26, P705, DOI 10.1023/A:1022348709532; Matos PM, 1999, J ADOLESCENCE, V22, P805, DOI 10.1006/jado.1999.0271; Mayseless O, 1998, J ADOLESCENT RES, V13, P101, DOI 10.1177/0743554898131006; MCADAMS DP, 1992, J PERS SOC PSYCHOL, V62, P1003, DOI 10.1037//0022-3514.62.6.1003; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; Mullis RL, 2003, J FAM ISSUES, V24, P966, DOI 10.1177/0192513X03256156; OCHSE R, 1986, J PERS SOC PSYCHOL, V50, P1240, DOI 10.1037/0022-3514.50.6.1240; Orlofsky J. L., 1993, EGO IDENTITY HDB PSY, P111; OSHMAN HP, 1976, DEV PSYCHOL, V12, P479, DOI 10.1037/0012-1649.12.5.479; Papini D.R., 1989, J ADOLESCENT RES, V4, P462, DOI 10.1177/074355488944005; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PODD MH, 1972, DEV PSYCHOL, V6, P497, DOI 10.1037/h0032611; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Quintana S., 1987, J ADOLESCENT RES, V2, P393, DOI DOI 10.1177/074355488724007; Reich WA, 2002, ASIAN J SOC PSYCHOL, V5, P125, DOI 10.1111/1467-839X.00099; Reis O, 2004, J ADOLESCENT RES, V19, P31, DOI 10.1177/0743558403258115; Roberts B. W., 2003, UNDERSTANDING HUMAN, P183, DOI DOI 10.1007/978-1-4615-0357-6_9; Robinson TN, 2003, J ADOLESCENT RES, V18, P3, DOI 10.1177/0743558402238274; ROSENTHAL DA, 1981, J YOUTH ADOLESCENCE, V10, P525, DOI 10.1007/BF02087944; ROTHMAN KM, 1978, J YOUTH ADOLESCENCE, V7, P93, DOI 10.1007/BF01538689; Rowe DC, 2002, EVOL HUM BEHAV, V23, P365, DOI 10.1016/S1090-5138(02)00102-2; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Samuolis J, 2001, J YOUTH ADOLESCENCE, V30, P373, DOI 10.1023/A:1010448313516; Sartor CE, 2002, ADOLESCENCE, V37, P221; SCHENKEL S, 1971, J PERS, V40, P472; Schmidt FL, 1999, INTELLIGENCE, V27, P183, DOI 10.1016/S0160-2896(99)00024-0; SCHULTHEISS DP, 1994, J COUNS DEV, V73, P159, DOI 10.1002/j.1556-6676.1994.tb01729.x; SCHWARTZ SJ, 2001, IDENTITY INT J THEOR, V1, P7, DOI DOI 10.1207/S1532706XSCHWARTZ; Sefcek J. A., 2005, ANN M HUM BEH EV SOC; Segerstrale Ullica, 2000, DEFENDERS TRUTH SOCI; SKOE EE, 1991, MERRILL PALMER QUART, V37, P289; Soenens B, 2005, J ADOLESCENCE, V28, P107, DOI 10.1016/j.adoleseence.2004.07.001; SOENENS B, 2005, EUROPEAN J PERSONALI, V18, P1; STCLAIR S, 1979, J YOUTH ADOLESCENCE, V8, P317, DOI 10.1007/BF02272797; Subrahmanyam K, 2006, DEV PSYCHOL, V42, P395, DOI 10.1037/0012-1649.42.3.395; SURBEY M, 1990, SOCIOENDOCRINOLOGY P, P71; Surbey MK, 1998, HUM NATURE-INT BIOS, V9, P67, DOI 10.1007/s12110-998-1012-3; Thornhill R, 2007, EVOL HUM BEHAV, V28, P215, DOI 10.1016/j.evolhumbehav.2007.01.005; van Hoof A, 2002, SCAND J PSYCHOL, V43, P201, DOI 10.1111/1467-9450.00288; Waterman A. S., 1993, EGO IDENTITY HDB PSY, P42; WATERMAN AS, 1982, DEV PSYCHOL, V18, P341, DOI 10.1037/0012-1649.18.3.341; WESTEN D, 1999, HDB PERSONALITY THEO, P57; White JM, 1996, CRIM JUSTICE BEHAV, V23, P490, DOI 10.1177/0093854896023003005; Wilson EO, 1998, CONSILIENCE UNITY KN; WIRES JW, 1994, ADOLESCENCE, V29, P361; Zimbardo PG, 1999, J PERS SOC PSYCHOL, V77, P1271, DOI 10.1037//0022-3514.77.6.1271; Zimmermann P, 2002, J ADOLESCENCE, V25, P107, DOI 10.1006/jado.2001.0452 117 11 11 2 54 EDUCATIONAL PUBLISHING FOUNDATION-AMERICAN PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST, NE, WASHINGTON, DC 20002-4242 USA 1089-2680 1939-1552 REV GEN PSYCHOL Rev. Gen. Psychol. MAR 2009 13 1 13 23 10.1037/a0013687 11 Psychology, Multidisciplinary Psychology 417AI WOS:000264046400002 2018-11-12 J Walker, SPW; McCormick, MI Walker, Stefan P. W.; McCormick, Mark I. Fish ears are sensitive to sex change BIOLOGY LETTERS English Article reef fish; sex change; otolith; hermaphroditism; life-history transition Many reef fishes change sex during their life. The testing of life-history theory and effective fisheries management therefore relies on our ability to detect when this fundamental transition occurs. This study experimentally illustrates the potential to glean such information from the otolithic bodies of the inner-ear apparatus in the sex-changing fish Parapercis cylindrica. It will now be possible to reconstruct the complete, often complex life history of hermaphroditic individuals from hatching through to terminal reproductive status. The validation of sex-change associated otolith growth also illustrates the potential for sex-specific sensory displacement. It is possible that sex-changing fishes alter otolith composition, and thus sensory-range specificity, to optimize life history in accordance with their new reproductive mode. [Walker, Stefan P. W.; McCormick, Mark I.] James Cook Univ, ARC Ctr Excellence Coral Reef Studies, Sch Marine & Trop Biol, Townsville, Qld 4810, Australia Walker, SPW (reprint author), James Cook Univ, ARC Ctr Excellence Coral Reef Studies, Sch Marine & Trop Biol, Townsville, Qld 4810, Australia. stefan.walker@jcu.edu.au Walker, Stefan/A-7238-2010 McCormick, Mark/0000-0001-9289-1645 Lizard Island Doctoral fellowship; Australian Research Council Centre of Excellence for Coral Reef Studies; James Cook University We thank C. Chustz for field assistance and two anonymous reviewers for their valuable comments on the manuscript. Research was funded by a Lizard Island Doctoral fellowship ( Australian Museum) to S. P. W. W. and the Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University. Alonzo SH, 2005, FISH B-NOAA, V103, P229; BUSTON PM, 2004, NATURE, V428, P783; Frisch AJ, 2007, HORM BEHAV, V52, P540, DOI 10.1016/j.yhbeh.2007.07.008; Munday PL, 2006, TRENDS ECOL EVOL, V21, P89, DOI 10.1016/j.tree.2005.10.020; PATINO R, 1995, ATLAS FISH HISTOLOGY, P129; Randall JE, 1997, FISHES GREAT BARRIER; THORROLD SR, 2003, CORAL REEF FISHES DY, P243; Walker SPW, 2004, MAR ECOL PROG SER, V266, P201, DOI 10.3354/meps266201; Wilson DT, 1997, MAR ECOL PROG SER, V153, P259, DOI 10.3354/meps153259; Wright KJ, 2005, MAR BIOL, V147, P1425, DOI 10.1007/s00227-005-0028-z; Zar J.H, 1999, BIOSTATISTICAL ANAL 11 8 8 1 10 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 BIOL LETTERS Biol. Lett. FEB 23 2009 5 1 73 76 10.1098/rsbl.2008.0555 4 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 396MV WOS:000262596700022 19033133 Green Published, Bronze 2018-11-12 J Del Giudice, M Del Giudice, Marco Sex, attachment, and the development of reproductive strategies BEHAVIORAL AND BRAIN SCIENCES English Review adrenarche; attachment; cooperative breeding; evolution; life history theory; mating; middle childhood; phenotypic plasticity; reproductive strategies; sexual selection; stress HUMAN LIFE-HISTORY; ANDROGEN RECEPTOR GENE; 62 CULTURAL-REGIONS; HIGH-RISK SAMPLE; ADULT ATTACHMENT; MIDDLE CHILDHOOD; INFANT ATTACHMENT; EVOLUTIONARY ECOLOGY; SPIEKER 2003; ROMANTIC RELATIONSHIPS This target article presents an integrated evolutionary model of the development of attachment and human reproductive strategies. It is argued that sex differences in attachment emerge in middle childhood, have adaptive significance in both children and adults, and are part of sex-specific life history strategies. Early psychosocial stress and insecure attachment act as cues of environmental risk, and tend to switch development towards reproductive strategies favoring current reproduction and higher mating effort. However, due to sex differences in life history trade-offs between mating and parenting, insecure males tend to adopt avoidant strategies, whereas insecure females tend to adopt anxious/ambivalent strategies, which maximize investment from kin and mates. Females are expected to shift to avoidant patterns when environmental risk is more severe. Avoidant and ambivalent attachment patterns also have different adaptive values for boys and girls, in the context of same-sex competition in the peer group: in particular, the competitive and aggressive traits related to avoidant attachment call be favored as a status-seeking strategy for males. Finally, adrenarche is proposed as the endocrine mechanism underlying the reorganization of attachment in middle childhood, and the implications for the relationship between attachment and sexual development are explored. Sex differences in the development of attachment can be fruitfully integrated within the broader framework of adaptive plasticity in life history strategies, thus contributing to a coherent evolutionary theory of human development. [Del Giudice, Marco] Univ Turin, Dept Psychol, Ctr Cognit Sci, I-10123 Turin, Italy Del Giudice, M (reprint author), Univ Turin, Dept Psychol, Ctr Cognit Sci, I-10123 Turin, Italy. marco.delgiudice@unito.it Del Giudice, Marco/F-7007-2010 Del Giudice, Marco/0000-0001-8526-1573 Ahnert L., 2005, ATTACHMENT BONDING N, P229; Allen ES, 2004, FAM PROCESS, V43, P467, DOI 10.1111/j.1545-5300.2004.00035.x; ALLEN JP, 1999, HDB ATTACHMENT THEOR; Andersson M., 1994, SEXUAL SELECTION; Archer J, 2000, BEHAV BRAIN SCI, V23, P588, DOI 10.1017/S0140525X00233372; Auchus RJ, 2004, CLIN ENDOCRINOL, V60, P288, DOI 10.1046/j.1365-2265.2003.01858.x; Aviezer O, 2002, INT J BEHAV DEV, V26, P397, DOI 10.1080/01650250143000328; Bakermans-Kranenburg MJ, 2004, J FAM PSYCHOL, V18, P545, DOI 10.1037/0893-3200.18.3.545; BALDWIN MW, 1995, PERS RELATIONSHIP, V2, P247, DOI 10.1111/j.1475-6811.1995.tb00090.x; Barber N, 2000, CROSS-CULT RES, V34, P26, DOI 10.1177/106939710003400102; BARTHOLOMEW K, 1991, J PERS SOC PSYCHOL, V61, P226, DOI 10.1037/0022-3514.61.2.226; BARTHOLOMEW K, 1990, J SOC PERS RELAT, V7, P147, DOI 10.1177/0265407590072001; Bateson P, 2005, J BIOSCIENCES, V30, P31, DOI 10.1007/BF02705148; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, HUM NATURE-INT BIOS, V8, P361, DOI 10.1007/BF02913039; Belsky J, 2000, BEHAV BRAIN SCI, V23, P591, DOI 10.1017/S0140525X00273378; Belsky J, 1997, PSYCHOL INQ, V8, P182, DOI 10.1207/s15327965pli0803_3; Belsky J., 2005, ATTACHMENT BONDING N, P169; BELSKY J, 1999, HDB ATTACHMENT THEOR; Belsky J, 2007, CURR DIR PSYCHOL SCI, V16, P300, DOI 10.1111/j.1467-8721.2007.00525.x; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Belsky Jay, 2002, Attach Hum Dev, V4, P166, DOI 10.1080/14616730210157510; BENOIT D, 1994, CHILD DEV, V65, P1444, DOI 10.2307/1131510; Bereczkei T, 2001, INT J BEHAV DEV, V25, P501, DOI 10.1080/01650250042000573; Bernier Annie, 2002, Attach Hum Dev, V4, P171, DOI 10.1080/14616730210157457; Bernroider G, 1996, HORM BEHAV, V30, P583, DOI 10.1006/hbeh.1996.0061; BETZIG L, 1989, CURR ANTHROPOL, V30, P654, DOI 10.1086/203798; Birnbaum GE, 2007, PERS RELATIONSHIP, V14, P321, DOI 10.1111/j.1475-6811.2007.00157.x; Bjorklund DF, 1997, PSYCHOL BULL, V122, P153, DOI 10.1037/0033-2909.122.2.153; BJORKLUND DF, 2005, ORIGINS SOCIAL MIND, P45; Blurton Jones NG, 2000, ADAPTATION HUMAN BEH, P69; Bogaert AF, 2002, PERS RELATIONSHIP, V9, P191, DOI 10.1111/1475-6811.00012; Bogin B, 1999, ANNU REV ANTHROPOL, V28, P109, DOI 10.1146/annurev.anthro.28.1.109; Bokhorst CL, 2003, CHILD DEV, V74, P1769, DOI 10.1046/j.1467-8624.2003.00637.x; Booth-LaForce C, 2006, ATTACH HUM DEV, V8, P309, DOI 10.1080/14616730601048209; Bowlby J., 1973, ATTACHMENT LOSS, V2; Bowlby J, 1980, ATTACHMENT LOSS, V3; Bowlby J., 1969, ATTACHMENT LOSS, V1; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Brassard A, 2007, PERS RELATIONSHIP, V14, P475, DOI 10.1111/j.1475-6811.2007.00166.x; Brennan K. A., 1998, ATTACHMENT THEORY CL, P46; Bretherton I., 1990, ATTACHMENT PRESCHOOL, P273; BRETHERTON I, 1999, HDB ATTACHMENT THEOR; Brussoni MJ, 2000, PERS RELATIONSHIP, V7, P283, DOI 10.1111/j.1475-6811.2000.tb00017.x; Bukowski WM, 2000, DEV PSYCHOL, V36, P147, DOI 10.1037//0012-1649.36.2.147; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Campbell A, 2000, BEHAV BRAIN SCI, V23, P596, DOI 10.1017/S0140525X00333374; CAMPBELL BC, 1995, J BIOSOC SCI, V27, P127; Card NA, 2003, NEW DIR CHILD ADOLES, V102, P23, DOI 10.1002/cd.87; CARLSON V, 1989, DEV PSYCHOL, V25, P525, DOI 10.1037/0012-1649.25.4.525; Carter CS, 1998, PSYCHONEUROENDOCRINO, V23, P779; Cashdan Elizabeth, 1996, Evolutionary Anthropology, V5, P134, DOI 10.1002/(SICI)1520-6505(1996)5:4<134::AID-EVAN3>3.0.CO;2-G; CASSIDY J, 1994, CHILD DEV, V65, P971, DOI 10.2307/1131298; CASSIDY J, 1988, CHILD DEV, V59, P121, DOI 10.2307/1130394; Cassidy J, 2003, DEV PSYCHOL, V39, P409, DOI 10.1037/0012-1649.39.3.409; Chasiotis A, 1998, HUM NATURE-INT BIOS, V9, P321, DOI 10.1007/s12110-998-1008-z; Chisholm J. S., 2005, ORIGINS SOCIAL MIND, P76; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Clark A, 2005, BEHAV BRAIN SCI, V28, P280; Clutton-Brock T, 2002, SCIENCE, V296, P69, DOI 10.1126/science.296.5565.69; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; COLLINS NL, 1990, J PERS SOC PSYCHOL, V58, P644, DOI 10.1037/0022-3514.58.4.644; Comings DE, 2002, CHILD DEV, V73, P1046, DOI 10.1111/1467-8624.00456; Cooper ML, 1998, J PERS SOC PSYCHOL, V74, P1380, DOI 10.1037//0022-3514.74.5.1380; CORBY BC, 2006, THESIS FLOR8IDA ATLA; Crowell JA, 2002, DEV PSYCHOL, V38, P467, DOI 10.1037//0012-1649.38.4.467; CROWELL JA, 1999, HDB ATTACHMENT THEOR; Cummings EM, 2003, DEV PSYCHOL, V39, P405, DOI 10.1037/0012-1649.39.3.405; David DH, 2005, INF MENTAL HLTH J, V26, P1, DOI 10.1002/imhj.20033; DEKLYEN M, 1999, CLIN CHILD FAM PSYCH, V1, P3; DELGIUDICE M, BRIT J DEV IN PRESS; Delton A. W., 2006, EVOLUTIONARY PSYCHOL, V4, P262; DRAPER P, 1989, ETHOL SOCIOBIOL, V10, P145, DOI 10.1016/0162-3095(89)90017-4; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; Ducharme J, 2002, J SOC PERS RELAT, V19, P203, DOI 10.1177/0265407502192003; Dunbar RIM, 2007, SCIENCE, V317, P1344, DOI 10.1126/science.1145463; Egan V, 2004, PERS INDIV DIFFER, V36, P575, DOI 10.1016/S0191-8869(03)00116-8; EiblEibesfeldt Irenaus, 1989, HUMAN ETHOLOGY; Ellis B.J., 2005, ORIGINS SOCIAL MIND, P164; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; ELLISON PT, 2001, FERTILE GROUND NATUR; Emlen DJ, 1997, BEHAV ECOL SOCIOBIOL, V41, P335, DOI 10.1007/s002650050393; ERICKSON MF, 1985, MONOGR SOC RES CHILD, V50, P147, DOI 10.2307/3333831; FEENEY JA, 1990, J PERS SOC PSYCHOL, V58, P281, DOI 10.1037/0022-3514.58.2.281; FEENEY JA, 1999, HDB ATTACHMENT THEOR; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Finkel D, 1998, BEHAV GENET, V28, P1, DOI 10.1023/A:1021448429653; Finnegan RA, 1996, CHILD DEV, V67, P1318, DOI 10.2307/1131702; FLINN MV, 2005, ORIGINS SOCIAL MIND, P19; Fraley RC, 2003, DEV PSYCHOL, V39, P387, DOI 10.1037/0012-1649.39.3.387; Fraley RC, 2002, PERS SOC PSYCHOL REV, V6, P123, DOI 10.1207/S15327957PSPR0602_03; FURSTENBERG FF, 1985, J MARRIAGE FAM, V47, P893, DOI 10.2307/352332; FURSTENBERG FF, 1983, AM SOCIOL REV, V48, P656, DOI 10.2307/2094925; GANGESTAD SW, 1990, J PERS, V58, P69, DOI 10.1111/j.1467-6494.1990.tb00908.x; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Geary D. C., 1998, MALE FEMALE EVOLUTIO; Geary D. C., 2005, EVOLUTIONARY PSYCHOL, P483; Geary DC, 2001, PARENT-SCI PRACT, V1, P5, DOI 10.1207/S15327922PAR011&2_2; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Geary DC, 2000, CHILD DEV, V71, P57, DOI 10.1111/1467-8624.00118; Gentzler AL, 2004, PERS RELATIONSHIP, V11, P249, DOI 10.1111/j.1475-6811.2004.00081.x; George C, 1999, BRIT J MED PSYCHOL, V72, P285, DOI 10.1348/000711299159998; GOTTESMAN II, 1966, J CHILD PSYCHOL PSYC, V7, P199, DOI 10.1111/j.1469-7610.1966.tb02246.x; Granot D, 2001, INT J BEHAV DEV, V25, P530, DOI 10.1080/01650250042000366; Green J, 2000, Attach Hum Dev, V2, P48; GREENBERG MT, 1999, HDB ATTACHMENT THEOR; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; GROSSMANN KE, 1999, HDB ATTACHMENT THEOR; GROSSMANN KE, 2005, ATTACHMENT INFANCY A; Gurven M, 2006, P ROY SOC B-BIOL SCI, V273, P835, DOI 10.1098/rspb.2005.3380; HAGEN EH, 2005, RES HUMAN DEV, V2, P87; Hamilton CE, 2000, CHILD DEV, V71, P690, DOI 10.1111/1467-8624.00177; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Harel J, 2003, INFANT BEHAV DEV, V26, P371, DOI 10.1016/S0163-6383(03)00036-5; HARRIS JR, 1995, PSYCHOL REV, V102, P458, DOI 10.1037//0033-295X.102.3.458; HARRIS JR, 2005, ORIGINS SOCIAL MIND, P245; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037//0022-3514.52.3.511; HAZAN C, 1999, HDB ATTACHMENT THEOR; Henderson AJZ, 1997, J FAM VIOLENCE, V12, P169, DOI 10.1023/A:1022836711637; Herdt G, 2000, ARCH SEX BEHAV, V29, P587, DOI 10.1023/A:1002006521067; Hesse E, 2006, DEV PSYCHOPATHOL, V18, P309, DOI 10.1017/S0954579406060172; HESSE E, 1999, HDB ATTACHMENT THEOR; Hewlett BS, 2000, ADAPTATION HUMAN BEH, P155; HILL K, 1988, HUMAN REPROD BEHAV D; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; HINDE RA, 1982, PLACE ATTACHMENT HUM, P60; Hoglund J, 1998, OIKOS, V83, P478, DOI 10.2307/3546675; Houston AI, 1999, MODELS ADAPTIVE BEHA; HRDY S, 1999, MOTHER NATURE; Hrdy S. B, 2005, ATTACHMENT BONDING N, P9, DOI DOI 10.1016/J.GLOENVCHA.2013.12.001; Hrdy SB, 2000, ANN NY ACAD SCI, V907, P75, DOI 10.1111/j.1749-6632.2000.tb06617.x; HRDY SB, 2005, HUNTER GATHERER CHIL; Ibanez L, 2000, ENDOCR REV, V21, P671, DOI 10.1210/er.21.6.671; Impett EA, 2002, PSYCHOL WOMEN QUART, V26, P360, DOI 10.1111/1471-6402.t01-1-00075; Insel TR, 2001, NAT REV NEUROSCI, V2, P129, DOI 10.1038/35053579; INSEL TR, 2000, REV GEN PSYCHOL, V4, P176, DOI DOI 10.1037/1089-2680.4.2.176); Jackson JJ, 2007, EVOL HUM BEHAV, V28, P382, DOI 10.1016/j.evolhumbehav.2007.04.005; Jang SA, 2002, COMMUN MONOGR, V69, P236, DOI 10.1080/03637750216543; Jezova D, 1996, ACTA NEUROBIOL EXP, V56, P779; JONES NB, 1989, SOCIOBIOLOGY SEXUAL; Jorm AF, 2004, AM J MED GENET B, V125B, P105, DOI 10.1002/ajmg.b.20114; Juvonen J, 2003, PEDIATRICS, V112, P1231, DOI 10.1542/peds.112.6.1231; Kanazawa S, 2001, EVOL HUM BEHAV, V22, P329, DOI 10.1016/S1090-5138(01)00073-3; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Kaplan HS, 2002, P NATL ACAD SCI USA, V99, P10221, DOI 10.1073/pnas.152502899; Karavasilis L, 2003, INT J BEHAV DEV, V27, P153, DOI 10.1080/01650250244000155; Kerns KA, 2005, ATTACHMENT IN MIDDLE CHILDHOOD, P46; Kerns KA, 2000, DEV PSYCHOL, V36, P614, DOI 10.1037//0012-1649.36.5.614; Kerns KA, 2007, ATTACH HUM DEV, V9, P33, DOI 10.1080/14616730601151441; Keverne Eric B., 1999, P263; Kirk KM, 2001, EVOLUTION, V55, P423; KIRKPATRICK LA, 1994, J PERS SOC PSYCHOL, V66, P502, DOI 10.1037//0022-3514.66.3.502; KIRKPATRICK LA, 1998, ATTACHMENT THEORY CL, P353; Kokko H, 1997, BEHAV ECOL SOCIOBIOL, V41, P99, DOI 10.1007/s002650050369; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; Kramer KL, 2005, EVOL ANTHROPOL, V14, P224, DOI 10.1002/evan.20082; Labrie F, 2005, J ENDOCRINOL, V187, P169, DOI 10.1677/joe.1.06264; Lamb Michael E, 1982, NONTRADITIONAL FAMIL, P117; LAMPERT A, 1992, SOC BIOL, V39, P65; LANCASTER JB, 1989, SOCIOBIOLOGY SOCIAL; LANDOLT MA, 1995, ETHOL SOCIOBIOL, V16, P3, DOI 10.1016/0162-3095(94)00012-V; Leckman J.F., 2005, ATTACHMENT BONDING N, P301; Lewis M, 2000, CHILD DEV, V71, P707, DOI 10.1111/1467-8624.00180; Lieberman M, 1999, CHILD DEV, V70, P202, DOI 10.1111/1467-8624.00015; Liu YL, 2008, J YOUTH ADOLESCENCE, V37, P941, DOI 10.1007/s10964-006-9147-1; LOW BS, 2000, ADAPTATION HUMAN BEH, P323; LYNCH M, 1987, P NATL ACAD SCI USA, V84, P8507, DOI 10.1073/pnas.84.23.8507; Lyons-Ruth K, 1999, MONOGR SOC RES CHILD, V64, P67, DOI 10.1111/1540-5834.00034; LYONSRUTH K, 1999, HDB ATTACHMENT THEOR; MACCOBY EE, 1991, CHILD DEV, V62, P676, DOI 10.2307/1131168; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; Mace R, 2005, GRANDMOTHERHOOD EVOL, P143; MACE R, 2000, ADAPTATION HUMAN BEH, P283; MAIN M, 1990, HUM DEV, V33, P48, DOI 10.1159/000276502; Main M., 1981, BEHAV DEV BIELEFELD, P651; Main M., 1998, ADULT ATTACHME UNPUB; MAIN M, 1990, ATTACHMENT PRESCHOOL; Marlowe FW, 2000, BEHAV PROCESS, V51, P45, DOI 10.1016/S0376-6357(00)00118-2; Marlowe FW, 2003, CROSS-CULT RES, V37, P282, DOI 10.1177/1069397103254008; McCarthy MM, 1996, PHYSIOL BEHAV, V60, P1209, DOI 10.1016/S0031-9384(96)00212-0; McCarthy MM, 1995, ADV EXP MED BIOL, V395, P235; McClintock MK, 1996, CURR DIR PSYCHOL SCI, V5, P178, DOI 10.1111/1467-8721.ep11512422; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MILLER EM, 1994, PERS INDIV DIFFER, V17, P227, DOI 10.1016/0191-8869(94)90029-9; Mock D. W., 1997, EVOLUTION SIBLING RI; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; MORISON P, 1991, CHILD DEV, V62, P991, DOI 10.2307/1131148; Moss E, 1998, CHILD DEV, V69, P1390, DOI 10.2307/1132273; MULDER MB, 1989, J BIOSOC SCI, V21, P179; Nettle D, 2007, OXFORD HDB EVOLUTION, P479; Nettle D, 2006, AM PSYCHOL, V61, P622, DOI 10.1037/0003-066X.61.6.622; O'Connor T G, 2000, Attach Hum Dev, V2, P107; O'Connor TG, 2001, CHILD DEV, V72, P1501, DOI 10.1111/1467-8624.00362; Palmert MR, 2001, J CLIN ENDOCR METAB, V86, P4536, DOI 10.1210/jc.86.9.4536; Panksepp J., 1998, AFFECTIVE NEUROSCIEN; Parker GA, 2002, PHILOS T R SOC B, V357, P295, DOI 10.1098/rstb.2001.0950; PEDERSEN CA, 2005, ATTACHMENT BONDING N, P385; PELLEGRINI AD, 1995, J APPL DEV PSYCHOL, V16, P77, DOI 10.1016/0193-3973(95)90017-9; Pellegrini AD, 2001, MERRILL PALMER QUART, V47, P142, DOI 10.1353/mpq.2001.0004; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; PICARDI A, 2002, ITALIAN J PSYCHOPATH, V8; Pinker S., 1997, MIND WORKS; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2007, CROSS-CULT RES, V41, P149, DOI 10.1177/1069397106298893; Quinlan RJ, 2007, AM ANTHROPOL, V109, P164, DOI 10.1525/AA.2007.109.1.164; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; RENKEN B, 1989, J PERS, V57, P257, DOI 10.1111/j.1467-6494.1989.tb00483.x; Rodkin PC, 2006, SOC DEV, V15, P175, DOI 10.1111/j.1467-9507.2006.00336.x; Roff D. A., 2002, LIFE HIST EVOLUTION; Roisman GI, 2007, J PERS SOC PSYCHOL, V92, P678, DOI 10.1037/0022-3514.92.4.678; Rowe DC, 1997, PERS INDIV DIFFER, V23, P105, DOI 10.1016/S0191-8869(97)00005-6; Rowe DC, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P147; SADALLA EK, 1987, J PERS SOC PSYCHOL, V52, P730, DOI 10.1037//0022-3514.52.4.730; SAGI A, 1985, MONOGR SOC RES CHILD, V50, P257, DOI 10.2307/3333837; SAGI A, 1994, CHILD DEV, V65, P992; Schachner D. A., 2002, NEW REV SOCIAL PSYCH, V1, P122; SCHARFE E, 1994, PERS RELATIONSHIP, V1, P23, DOI DOI 10.1111/J.1475-6811.1994.TB00053.X; Schmitt DP, 2003, PERS RELATIONSHIP, V10, P307, DOI 10.1111/1475-6811.00052; Schmitt DP, 2005, PERS SOC PSYCHOL B, V31, P747, DOI 10.1177/0146167204271843; Schmitt DP, 2004, J CROSS CULT PSYCHOL, V35, P367, DOI 10.1177/0022022104266105; Schmitt DP, 2003, J PERS SOC PSYCHOL, V85, P85, DOI 10.1037/0022-3514.85.1.85; SERBIN LA, 1993, MONOGRAPHS SOC RES C, V64, P1; Shaver P. R., 1999, HDB ATTACHMENT THEOR; Shaver Phillip R, 2002, Attach Hum Dev, V4, P133, DOI 10.1080/14616730210154171; Shaver PR, 2000, PERS RELATIONSHIP, V7, P25, DOI 10.1111/j.1475-6811.2000.tb00002.x; Sibley CG, 2008, PERS INDIV DIFFER, V44, P238, DOI 10.1016/j.paid.2007.08.003; SIMON NG, 2006, BIOL AGGRESSION, P211; SIMPSON JA, 1999, HDB ATTACHMENT THEOR; SIMPSON JA, 1994, PSYCHOL INQ, V5, P58; Simpson Jeffry A, 2002, Attach Hum Dev, V4, P223, DOI 10.1080/14616730210154207; SOLOMON J, 1999, HDB ATTACHMENT THEOR; Spear LP, 2000, NEUROSCI BIOBEHAV R, V24, P417, DOI 10.1016/S0149-7634(00)00014-2; Sroufe LA, 2003, DEV PSYCHOL, V39, P413, DOI 10.1037/0012-1649.39.3.413; SROUFE LA, 1993, CHILD DEV, V64, P455, DOI 10.1111/j.1467-8624.1993.tb02921.x; Strous RD, 2001, INT J NEUROPSYCHOPH, V4, P259; SUESS GJ, 1992, INT J BEHAV DEV, V15, P43, DOI 10.1177/016502549201500103; SUOMI SJ, 1999, HDB ATTACHMENT THEOR; Svensson E, 1998, OIKOS, V83, P466, DOI 10.2307/3546674; Taylor SE, 2000, PSYCHOL REV, V107, P411, DOI 10.1037/0033-295X.107.3.411; Taylor SE, 2006, CURR DIR PSYCHOL SCI, V15, P273, DOI 10.1111/j.1467-8721.2006.00451.x; THOMPSON RA, 1999, HDB ATTACHMENT THEOR; Tomaszycki ML, 2001, HORM BEHAV, V39, P267, DOI 10.1006/hbeh.2001.1659; Torgersen AM, 2007, ATTACH HUM DEV, V9, P127, DOI 10.1080/14616730701349705; TOTH I, 2006, INFANT MENT HEALTH J, V27, P343; Treboux D, 2004, DEV PSYCHOL, V40, P295, DOI 10.1037/0012-1649.40.2.295; TRELOAR SA, 1990, AM J HUM GENET, V47, P137; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Trivers R. L., 1985, SOCIAL EVOLUTION; TRIVERS RL, 1974, AM ZOOL, V14, P249; TROY M, 1987, J AM ACAD CHILD PSY, V26, P166, DOI 10.1097/00004583-198703000-00007; TURNER PJ, 1991, CHILD DEV, V62, P1475, DOI 10.1111/j.1467-8624.1991.tb01619.x; van Goozen SHM, 1998, BIOL PSYCHIAT, V43, P156, DOI 10.1016/S0006-3223(98)00360-6; van Goozen SHM, 2000, J AM ACAD CHILD PSY, V39, P1446, DOI 10.1097/00004583-200011000-00020; van IJzendoorn MH, 2000, CHILD DEV, V71, P1086, DOI 10.1111/1467-8624.00211; van Ijzendoorn MH, 1996, J CONSULT CLIN PSYCH, V64, P8, DOI 10.1037/0022-006X.64.1.8; VANIJZENDOORN MH, 1999, HDB ATTACHMENT THEOR; Verschueren K, 1999, CHILD DEV, V70, P183, DOI 10.1111/1467-8624.00014; Verschueren K, 2002, J SCHOOL PSYCHOL, V40, P501, DOI 10.1016/S0022-4405(02)00122-X; Viau V, 2002, J NEUROENDOCRINOL, V14, P506, DOI 10.1046/j.1365-2826.2002.00798.x; Voland E, 1998, ANNU REV ANTHROPOL, V27, P347, DOI 10.1146/annurev.anthro.27.1.347; Vondra JI, 1999, MONOGR SOC RES CHILD, V64, P119, DOI 10.1111/1540-5834.00036; Wall S., 1978, PATTERNS ATTACHMENT; Wallen K, 2005, FRONT NEUROENDOCRIN, V26, P7, DOI 10.1016/j.yfrne.2005.02.001; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; Waters E, 2000, CHILD DEV, V71, P684, DOI 10.1111/1467-8624.00176; Waters E, 2000, CHILD DEV, V71, P703, DOI 10.1111/1467-8624.00179; Waters E, 2003, DEV PSYCHOL, V39, P417, DOI 10.1037/0012-1649.39.3.417; Weinfield NS, 2000, CHILD DEV, V71, P695, DOI 10.1111/1467-8624.00178; WEINFIELD NS, 1999, HDB ATTACHMENT THEOR; WEISFELD GE, 1983, ADOLESCENCE, V18, P229; Weisfeld GE., 1999, EVOLUTIONARY PRINCIP; WEISFELD GE, 1987, INTERPERSONAL RELATI; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wilkins A., 2002, EVOLUTION DEV PATHWA; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; Winking J, 2007, P R SOC B, V274, P1643, DOI 10.1098/rspb.2006.0437; 1996, ACHE LIFE HIST ECOLO 287 190 191 4 80 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0140-525X 1469-1825 BEHAV BRAIN SCI Behav. Brain Sci. FEB 2009 32 1 1 + 10.1017/S0140525X09000016 33 Psychology, Biological; Behavioral Sciences; Neurosciences Psychology; Behavioral Sciences; Neurosciences & Neurology 413BU WOS:000263768700001 19210806 2018-11-12 J Ackerman, JM; Kenrick, DT Ackerman, Joshua M.; Kenrick, Douglas T. Selfishness and sex or cooperation and family values? BEHAVIORAL AND BRAIN SCIENCES English Editorial Material ATTACHMENT REPRESENTATIONS; MIDDLE CHILDHOOD; MOTHER; SECURITY; SCHOOL; PARENT; SELF; AGE Evolutionary models of behavior often encounter resistance due to an apparent focus on themes of sex, selfishness, and gender differences. The target article might seem ripe for such criticism. However, life history theory suggests that these themes, and their counterparts, including cooperation, generosity, and gender similarities represent two sides of the same coin - all are consequences of reproductive trade-offs made throughout development. [Ackerman, Joshua M.] Yale Univ, Dept Psychol, New Haven, CT 06520 USA; [Kenrick, Douglas T.] Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA Ackerman, JM (reprint author), Yale Univ, Dept Psychol, New Haven, CT 06520 USA. joshua.ackerman@yale.edu; douglas.kenrick@asu.edu Ackerman, Joshua/A-9315-2013 ACKERMAN JM, RAISING RAZING UNPUB; Ackerman JM, 2008, PERS SOC PSYCHOL REV, V12, P118, DOI 10.1177/1088868308315700; Ackerman JM, 2007, EVOL HUM BEHAV, V28, P365, DOI 10.1016/j.evolhumbehav.2007.04.004; Ammaniti M, 2000, Attach Hum Dev, V2, P328, DOI 10.1080/14616730010001587; BEIJERSBERGEN MD, CHILD DEV IN PRESS; BRETHERTON I, 1990, ATTACHMENT PRESCHOOL, P87; Bureau JF, 2006, CAN J BEHAV SCI, V38, P50, DOI 10.1037/h0087270; BURNSTEIN E, 1994, J PERS SOC PSYCHOL, V67, P773, DOI 10.1037/0022-3514.67.5.773; CASSIDY J, 1988, CHILD DEV, V59, P121, DOI 10.2307/1130394; Dawkins R., 2006, SELFISH GENE; DELGIUDICE M, BRIT J DEV IN PRESS; GILISSEN R, 2008, DEV PSYCHOBIOLOGY; Gloger-Tippelt G, 2007, SCHOOL PSYCHOL INT, V28, P313, DOI 10.1177/0143034307078540; Granot D, 2001, INT J BEHAV DEV, V25, P530, DOI 10.1080/01650250042000366; HESSE E, 1999, HDB ATTACHMENT THEOR, P395, DOI DOI 10.1016S0191-8869(02)00333-1; Kenrick D. T., 2003, HDB SOCIAL PSYCHOL, P103; Kenrick D. T., 2008, FDN EVOLUTIONARY PSY, P353; Kerns KA, 2007, ATTACH HUM DEV, V9, P33, DOI 10.1080/14616730601151441; Li NP, 2006, J PERS SOC PSYCHOL, V90, P468, DOI 10.1037/0022-3514.90.3.468; MAIN M, 1988, DEV PSYCHOL, V24, P415, DOI 10.1037/0012-1649.24.3.415; MAIN M, 1985, MONOGR SOC RES CHILD, V50, P66, DOI 10.2307/3333827; PANNEBAKKER F, 2007, THESIS LEIDEN UNPUB; Van IJzendoorn M. H., 2008, ADULT ATTACHMENT INT, P69; van Ijzendoorn MH, 2004, CHILD DEV, V75, P1188, DOI 10.1111/j.1467-8624.2004.00733.x; van Ijzendoorn MH, 1996, J CONSULT CLIN PSYCH, V64, P8, DOI 10.1037/0022-006X.64.1.8; VANIJZENDOORN MH, DISTRIBUTIONS UNPUB; Verschueren K, 1999, CHILD DEV, V70, P183, DOI 10.1111/1467-8624.00014; Weeden J, 2008, EVOL HUM BEHAV, V29, P327, DOI 10.1016/j.evolhumbehav.2008.03.004; Williams GC, 1966, ADAPTATION NATURAL S 29 0 0 0 13 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0140-525X BEHAV BRAIN SCI Behav. Brain Sci. FEB 2009 32 1 21 + 10.1017/S0140525X09000028 13 Psychology, Biological; Behavioral Sciences; Neurosciences Psychology; Behavioral Sciences; Neurosciences & Neurology 413BU WOS:000263768700002 2018-11-12 J Jackson, JJ; Ellis, BJ Jackson, Jenee James; Ellis, Bruce J. Synthesizing life history theory with sexual selection: Toward a comprehensive model of alternative reproductive strategies BEHAVIORAL AND BRAIN SCIENCES English Editorial Material PLURALISM; GIRLS Del Giudice's model of sex-specific attachment patterns demonstrates the usefulness of infusing life history theory with principles of sexual selection. We believe a full synthesis between the two theories provides of foundation for a comprehensive model of alternative reproductive strategies. We extend Del Giudice's ideas based on Our own program of research, focusing specifically on the importance of intrasexual competition and the individual phenotype during development. [Jackson, Jenee James; Ellis, Bruce J.] Univ Arizona, Div Family Studies & Human Dev, Tucson, AZ 85721 USA Jackson, JJ (reprint author), Univ Arizona, Div Family Studies & Human Dev, Tucson, AZ 85721 USA. jeneej@email.arizona.edu; bjellis@email.arizona.edu BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Figueredo AJ, 2000, BEHAV BRAIN SCI, V23, P603, DOI 10.1017/S0140525X00413373; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; JACKSON JJ, DEV HUMAN REPR UNPUB; JACKSON JJ, SEX DIFFERENCE UNPUB; THIESSEN D, 1994, HUM NATURE-INT BIOS, V5, P167, DOI 10.1007/BF02692160 9 6 7 1 12 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0140-525X BEHAV BRAIN SCI Behav. Brain Sci. FEB 2009 32 1 31 + 10.1017/S0140525X09000132 14 Psychology, Biological; Behavioral Sciences; Neurosciences Psychology; Behavioral Sciences; Neurosciences & Neurology 413BU WOS:000263768700013 2018-11-12 J Kruger, DJ Kruger, Daniel J. Life history as an integrative theoretical framework advancing the understanding of the attachment system BEHAVIORAL AND BRAIN SCIENCES English Editorial Material Evolutionary Life History Theory (LHT) is a powerful framework that can be used for understanding behavioral strategies as contingent adaptations to environmental conditions. Del Giudice uses LHT as a foundation for describing the attachment process as an evolved psychological system which evaluates life conditions and chooses reproductive strategies appropriate in the developmental environment, integrating findings across several literatures. [Kruger, Daniel J.] Univ Michigan, Ann Arbor, MI 48109 USA Kruger, DJ (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA. djk2012@gmail.com BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Cosmides L., 1994, MAPPING MIND DOMAIN, P85, DOI DOI 10.1017/CBO9780511752902.005; CRAWFORD CB, 1989, AM PSYCHOL, V44, P1449, DOI 10.1037/0003-066X.44.12.1449; Harlow H. F., 1964, UNFINISHED TASKS BEH, P154; Heath KM, 1998, CURR ANTHROPOL, V39, P369, DOI 10.1086/204748; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; Wilson E.O., 1975, P1 8 0 0 0 0 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0140-525X 1469-1825 BEHAV BRAIN SCI Behav. Brain Sci. FEB 2009 32 1 34 + 10.1017/S0140525X09000168 14 Psychology, Biological; Behavioral Sciences; Neurosciences Psychology; Behavioral Sciences; Neurosciences & Neurology 413BU WOS:000263768700016 2018-11-12 J Lewis, AJ; Tooley, G Lewis, Andrew J.; Tooley, Gregory Disorganized attachment and reproductive strategies BEHAVIORAL AND BRAIN SCIENCES English Editorial Material INFANT ATTACHMENT; METAANALYSIS; CHILDHOOD Del Giudice provides an extension of the life history theory of attachment that incorporates emerging data suggestive of sex differences in avoidant male and preoccupied female attachment patterns emerging in middle childhood. This commentary considers the place of disorganized attachment within this theory and why male children may be more prone to disorganized attachment by drawing on Trivers's parental investment theory. [Lewis, Andrew J.; Tooley, Gregory] Deakin Univ, Sch Psychol, Fac Hlth Med Nursing & Behav Sci, Burwood, Vic 3125, Australia Lewis, AJ (reprint author), Deakin Univ, Sch Psychol, Fac Hlth Med Nursing & Behav Sci, Burwood, Vic 3125, Australia. andrew.lewis@deakin.edu.au; greg.tooley@deakin.edu.au Lewis, Andrew/J-7764-2012 Lewis, Andrew/0000-0002-2519-7976 Bakermans-Kranenburg MJ, 2005, INF MENTAL HLTH J, V26, P191, DOI 10.1002/imhj.200046; DeWolff MS, 1997, CHILD DEV, V68, P571, DOI 10.2307/1132107; Green J, 2002, J CHILD PSYCHOL PSYC, V43, P835, DOI 10.1111/1469-7610.00102; Hesse E, 2000, J AM PSYCHOANAL ASS, V48, P1097, DOI 10.1177/00030651000480041101; LYONSRUTH K, 1999, HDB ATTACHMENT THEOR, P520; Main M., 1990, ATTACHMENT PRESCHOOL, P121; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; van Ijzendoorn MH, 1999, DEV PSYCHOPATHOL, V11, P225, DOI 10.1017/S0954579499002035; Wakefield J. C., 2005, HDB EVOLUTIONARY PSY 9 1 1 0 3 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0140-525X BEHAV BRAIN SCI Behav. Brain Sci. FEB 2009 32 1 35 + 10.1017/S0140525X0900017X 14 Psychology, Biological; Behavioral Sciences; Neurosciences Psychology; Behavioral Sciences; Neurosciences & Neurology 413BU WOS:000263768700017 2018-11-12 J Sasaki, K; Fox, SF; Duvall, D Sasaki, Kiyoshi; Fox, Stanley F.; Duvall, David Rapid Evolution in the Wild: Changes in Body Size, Life-History Traits, and Behavior in Hunted Populations of the Japanese Mamushi Snake CONSERVATION BIOLOGY English Article antipredator behavior; body size; Gloydius blomhoffii; hunting; Japan; life history; mamushi; rapid evolution; snakes; species exploitation; caceria COD GADUS-MORHUA; THAMNOPHIS-ELEGANS; GARTER SNAKE; MATURATION; SELECTION; AGE; HERITABILITY; CONSERVATION; IMPEDIMENTS; RESPONSES Rapid evolution caused by human exploitation of wildlife is not usually addressed in studies of the impacts of such exploitation despite its direct relevance to population persistence. Japanese mamushi (Gloydius blomhoffii), an endemic venomous snake of the Japanese archipelago, has been heavily hunted by humans, and many populations appear to be declining or are already extirpated. We compared local populations that have been hunted regularly with populations that have not been hunted. Mamushi in hunted populations were smaller, had fewer vertebrae, produced more and smaller offspring, had increased reproductive effort among smaller females, and in nature fled at greater distances from an approaching human and were less defensive than mamushi in unhunted populations, as predicted from life-history theory. Heritability estimates for body size, number of vertebrae, and antipredator behavior were statistically significant, and neonates from hunted sites showed the same distribution of altered characters (compared with those from unhunted sites) as adults. Thus, distribution of the divergent trait between hunted and unhunted sites appeared in part to be genetically based, which suggests rapid evolution to human predation pressures. Trait distributions in hunted populations probably deviate from naturally (as opposed to anthropogenically) selected optima and, therefore, may have long-term negative repercussions on population persistence. Because rapid evolution affects a suite of parameters that characterize exploited populations, accurate understanding of the impacts of exploitation and effective resource management and conservation can only be achieved if evolutionary consequences are considered explicitly. [Sasaki, Kiyoshi; Fox, Stanley F.; Duvall, David] Oklahoma State Univ, Dept Zool, Stillwater, OK 74078 USA Sasaki, K (reprint author), Loyola Coll, Dept Biol, 4501 N Charles St, Baltimore, MD 21210 USA. kiyoshisasaki@yahoo.com BECKER W. A., 1975, MANUAL QUANTITATIVE; BRODIE ED, 1989, AM NAT, V134, P225, DOI 10.1086/284977; BRODIE ED, 1993, ECOLOGY BEHAV, P315; Bronikowski AM, 2000, EVOLUTION, V54, P1760; Carlson SM, 2007, ECOL LETT, V10, P512, DOI 10.1111/j.1461-0248.2007.01046.x; Dieckmann Ulf, 2004, P188, DOI 10.1017/CBO9780511542022.015; Dohm MR, 2002, FUNCT ECOL, V16, P273; Endler JA, 1986, NATURAL SELECTION WI; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; FALCONER DS, 1981, INTRO QUANTITATIVE G; FARR DR, 1991, J HERPETOL, V25, P261, DOI 10.2307/1564582; Fitzgerald LA, 2000, WILDLIFE SOC B, V28, P235; Garland Theodore Jr., 1994, P251; GREGORY PT, 1992, HERPETOL J, V2, P145; Hikida T, 2002, NATURAL HIST REPTILE; Hutchings JA, 2005, CAN J FISH AQUAT SCI, V62, P824, DOI 10.1139/F05-081; *INS CORP, 2003, S PLUS AC SIT REL VE; King RB, 2004, J ZOOL, V264, P143, DOI 10.1017/S0952836904005655; Kinnison MT, 2007, ECOL RES, V22, P947, DOI 10.1007/s11284-007-0416-6; Kissner KJ, 2005, J ANIM ECOL, V74, P259, DOI 10.1111/j.1365-2656.2005.00919.x; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Lynch M, 1998, GENETICS ANAL QUANTI; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Mori A, 2004, HERPETOL J, V14, P79; MORIGUCHI H, 2007, B HERPETOLOGICAL SOC, P88; O'Steen S, 2002, EVOLUTION, V56, P776, DOI 10.1554/0014-3820(2002)056[0776:REOEAI]2.0.CO;2; Olsen E, 2005, CAN J FISH AQUAT SCI, V62, P811, DOI 10.1139/F05-065; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Perez-Tris J, 2004, ANIM BEHAV, V67, P511, DOI 10.1016/j.anbehav.2003.06.008; Proaktor G, 2007, J ANIM ECOL, V76, P669, DOI 10.1111/j.1365-2656.2007.01244.x; QUINN H, 1974, Herpetological Review, V5, P35; Rankin DJ, 2005, OIKOS, V111, P616; Relyea RA, 2005, J EVOLUTION BIOL, V18, P856, DOI 10.1111/j.1420-9101.2005.00882.x; Reznick DN, 2005, INTEGR COMP BIOL, V45, P456, DOI 10.1093/icb/45.3.456; Roff Derek A., 1992; SHINE R, 1992, AM NAT, V139, P1257, DOI 10.1086/285385; Sinervo B, 2003, INTEGR COMP BIOL, V43, P419, DOI 10.1093/icb/43.3.419; *SPSS, 2005, SPSS 14 0 WIND REL 1; Tenhumberg B, 2004, ECOLOGY, V85, P2003, DOI 10.1890/03-4111; TORIBA M, 1996, ENCY ANIMALS JAPAN 5, P101; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; ZAR JH, 1996, BIOSTATISTICAL ANAL; Zhou ZH, 2004, CONSERV BIOL, V18, P1386, DOI 10.1111/j.1523-1739.2004.00251.x 44 19 21 0 39 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0888-8892 1523-1739 CONSERV BIOL Conserv. Biol. FEB 2009 23 1 93 102 10.1111/j.1523-1739.2008.01067.x 10 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology 394RO WOS:000262465500014 18798855 Bronze 2018-11-12 J Wagner, I; Simons, AM Wagner, Ioan; Simons, Andrew M. Divergence among arctic and alpine populations of the annual, Koenigia islandica: morphology, life-history, and phenology ECOGRAPHY English Article COMPARATIVE PHYSIOLOGICAL ECOLOGY; 3 CONTRASTING HABITATS; PLANTAGO-LANCEOLATA L; FALSE DISCOVERY RATE; LOCAL ADAPTATION; GENETIC DIFFERENTIATION; LATITUDINAL VARIATION; ENERGY ALLOCATION; SEED-GERMINATION; GROWTH Arctic and alpine habitats occur along complex environmental gradients, and over an extensive geographical range. Despite some selective forces common to these habitats, evolutionary divergence among populations of arctic and alpine plants along this gradient is expected. Of particular significance, both in the context of life-history theory and for implications of climate change, are the few annual species that have adapted to the constraints of an unpredictable, short growing season. In this study, morphological, life-history and phenological characters were found to differ significantly among six widely distributed populations of the arctic-alpine annual Koenigia islandica. On the basis of morphology and life-history traits, populations from high latitudes, with the exception of Svalbard, performed better in simulated arctic conditions, whereas the low latitude alpine plants from Colorado showed enhanced performance under simulated alpine conditions. On the basis of phenology, the six populations can be clearly grouped into arctic, high latitude alpine and alpine populations: arctic plants were found to develop and flower earliest; alpine plants latest. Because these results were obtained using seeds harvested from plants first grown through a complete generation in growth chambers, they indicate strong genetic differentiation. We discuss possible adaptive explanations for observed differences among the six geographically divergent populations. [Wagner, Ioan; Simons, Andrew M.] Carleton Univ, Dept Biol, Ottawa, ON K1S 5B6, Canada Wagner, I (reprint author), Carleton Univ, Dept Biol, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada. jwagner@ccs.carleton.ca Simons, Andrew/A-7751-2012 Simons, Andrew/0000-0002-0198-465X Natural Sciences and Engineering Research Council (NSERC) of Canada The authors thank the following persons for collecting seeds: O. Heide (southern Norway); M. Vetter (Yukon); S. Aiken and M. Kotierk (Iqaluit); I. S. Jonsdottir (Svalbard). We would also like to thank S. Popovich for permission to collect seeds in the Mount Evans Wilderness; T. Terrell for permission to work in the Rocky Mountain National Park; R. Bray and S. Wagner for assistance with collecting seeds; B. Dobson for permission to work in Jasper National Park; L. Nilsen for help with climate data. This work was supported by a Natural Sciences and Engineering Research Council (NSERC) of Canada Discovery grant to A. M. Simons. *ACIA, 2004, IMP WAR ARCT ARCT CL; BARRY RG, 1973, ARCTIC ALPINE RES, V5, P89, DOI DOI 10.2307/1550251; Bell G, 2008, EVOL APPL, V1, P3, DOI 10.1111/j.1752-4571.2007.00011.x; BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289; BILLINGS WD, 1968, BIOL REV, V43, P481, DOI 10.1111/j.1469-185X.1968.tb00968.x; BILLINGS WD, 1974, ARCTIC ALPINE ENV, P371; Bliss L. C., 1971, ANNU REV ECOL SYST, V2, P405, DOI DOI 10.1146/ANNUREV.ES.02.110171.002201; BLISS LC, 1956, ECOL MONOGR, V26, P303, DOI 10.2307/1948544; CHAPIN FS, 1981, ECOLOGY, V62, P1000, DOI 10.2307/1936999; COHEN D, 1971, J THEOR BIOL, V33, P299, DOI 10.1016/0022-5193(71)90068-3; DAHL E, 1951, OIKOS, V3, P22, DOI 10.2307/3565129; DAHL E, 1963, OIKOS, V14, P190, DOI 10.2307/3564973; GALEN C, 1991, EVOLUTION, V45, P1218, DOI 10.1111/j.1558-5646.1991.tb04388.x; Garcia LV, 2003, TRENDS ECOL EVOL, V18, P553, DOI 10.1016/j.tree.2003.08.011; GREENLAND D, 1989, ARCTIC ALPINE RES, V21, P380, DOI 10.2307/1551647; GUREVITCH J, 1992, GENETICS, V130, P385; Hedberg O, 1997, BOT J LINN SOC, V124, P295, DOI 10.1006/bojl.1997.0103; Heide Ola M., 2002, Oikos, V99, P352, DOI 10.1034/j.1600-0706.2002.990217.x; Heide OM, 2005, ARCT ANTARCT ALP RES, V37, P233, DOI 10.1657/1523-0430(2005)037[0233:EVAEAA]2.0.CO;2; Heide OM, 1999, ECOGRAPHY, V22, P637, DOI 10.1111/j.1600-0587.1999.tb00512.x; HEIDE OM, 1982, ACTA AGR SCAND, V32, P241, DOI 10.1080/00015128209435320; HICKMAN JC, 1975, J ECOL, V63, P689, DOI 10.2307/2258745; HICKMAN JC, 1977, J ECOL, V65, P317, DOI 10.2307/2259080; Hulten E., 1971, CIRCUMPOLAR PLANTS; Joshi J, 2001, ECOL LETT, V4, P536, DOI 10.1046/j.1461-0248.2001.00262.x; Li B, 1998, OECOLOGIA, V115, P293, DOI 10.1007/s004420050519; LOVE ASKELL, 1957, BOT NOTISER, V110, P478; Macel M, 2007, ECOLOGY, V88, P424, DOI 10.1890/0012-9658(2007)88[424:CVSFIL]2.0.CO;2; MESICEK J, 1973, Folia Geobotanica and Phytotaxonomica, V8, P105; MOLAU U, 1993, ARCTIC ALPINE RES, V25, P391, DOI 10.2307/1551922; MOONEY HA, 1961, ECOL MONOGR, V31, P1, DOI 10.2307/1950744; MOONEY HA, 1965, ECOLOGY, V46, P721, DOI 10.2307/1935012; POTVIN C, 1986, J ECOL, V74, P915, DOI 10.2307/2260223; PRIMACK RB, 1981, EVOLUTION, V35, P1069, DOI 10.1111/j.1558-5646.1981.tb04975.x; PRIMACK RB, 1982, EVOLUTION, V36, P742, DOI 10.1111/j.1558-5646.1982.tb05440.x; QUINN JA, 1977, AM MIDL NAT, V97, P484, DOI 10.2307/2425113; REYNOLDS DN, 1984, ECOLOGY, V65, P759, DOI 10.2307/1938048; REYNOLDS DN, 1984, OECOLOGIA, V62, P250, DOI 10.1007/BF00379022; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.es.18.110187.001233; Saetersdal M, 1997, J BIOGEOGR, V24, P127, DOI 10.1046/j.1365-2699.1997.00096.x; Santamaria L, 2003, ECOLOGY, V84, P2454, DOI 10.1890/02-0431; Simons AM, 2003, J EVOLUTION BIOL, V16, P233, DOI 10.1046/j.1420-9101.2003.00530.x; Simons AM, 2006, EVOLUTION, V60, P2280, DOI 10.1554/05-396.1; Turesson G, 1922, HEREDITAS, V3, P211, DOI 10.1111/j.1601-5223.1922.tb02734.x; VANTIENDEREN PH, 1991, J ECOL, V79, P43, DOI 10.2307/2260783; VANTIENDEREN PH, 1991, J ECOL, V79, P27; Venable D. Lawrence, 1993, Plant Species Biology, V8, P207, DOI 10.1111/j.1442-1984.1993.tb00071.x; Wagner I, 2008, ARCT ANTARCT ALP RES, V40, P233, DOI 10.1657/1523-0430(07-003)[WAGNER]2.0.CO;2; WANGER I, 2007, THESIS CARLETON U OT; WASER NM, 1985, AM J BOT, V72, P1726, DOI 10.2307/2443730; WINN AA, 1993, OECOLOGIA, V93, P55, DOI 10.1007/BF00321191; Zuloaga F. O., 1999, MONOGR SYST BOT MISS, V64, P1 52 16 17 1 24 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0906-7590 ECOGRAPHY Ecography FEB 2009 32 1 114 122 10.1111/j.1600-0587.2008.05497.x 9 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 428VU WOS:000264880300014 2018-11-12 J Hochberg, Z Hochberg, Ze'ev Evo-devo of child growth II: human life history and transition between its phases EUROPEAN JOURNAL OF ENDOCRINOLOGY English Review DEVELOPMENTAL PLASTICITY; UNDERNUTRITION; CONSEQUENCES; ADRENARCHE; PATTERNS; STATURE; OBESITY; PUBERTY; BIRTH This review attempts to Use evolutionary life-history theory in understanding child growth in a broad evolutionary perspective. It uses the data and theory of evolutionary predictive adaptive strategies for transition from one life-history phase to the next. and the inherent adaptive plasticity in the timing of such transitions. Humans evolved to withstand energy crises by decreasing their body size, and evolutionary short-term adaptations to energy crises utilize a plasticity that modifies the timing of transition from infancy into childhood, culminating in short stature at the time of an energy crisis. Transition to juvenility is part of a strategy of conversion from a period of total dependence on the family and tribe for provision and security to self-supply, and a degree of adaptive plasticity is provided and determines body composition. Transition to adolescence entails plasticity in adapting to energy resources, other environmental cues, and the social needs of the maturing adolescent to determine lifespan and the period of fecundity and fertility. Conclusion: Life-history transitions Eire the times when the child adaptively responds to environmental cues in order to enhance growth-body composition-lifespan-fecundity schedules and behavioral strategies that yield the highest fitness in a given environment. [Hochberg, Ze'ev] Rambam Med Ctr, Meyer Childrens Hosp, IL-31096 Haifa, Israel; [Hochberg, Ze'ev] Technion Israel Inst Technol, IL-31096 Haifa, Israel Hochberg, Z (reprint author), Rambam Med Ctr, Meyer Childrens Hosp, POB 9602, IL-31096 Haifa, Israel. z_hochberg@rambam.health.gov.il Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; Barker DJP, 2006, CLIN OBSTET GYNECOL, V49, P270, DOI 10.1097/00003081-200606000-00009; Bogin B, 1999, ANNU REV ANTHROPOL, V28, P109, DOI 10.1146/annurev.anthro.28.1.109; Bogin B., 1999, PATTERNS HUMAN GROWT; Bogin B., 2002, HUMAN GROWTH DEV, P295; Bogin B, 2007, AM J HUM BIOL, V19, P631, DOI 10.1002/ajhb.20666; *CDC, 2000, CDC GROWTH CHARTS US; Crespi EJ, 2005, AM J HUM BIOL, V17, P44, DOI 10.1002/ajhb.20098; DeFranco E, 2007, SEMIN REPROD MED, V25, P40, DOI 10.1055/s-2006-956774; Drooger JC, 2005, ULTRASOUND OBST GYN, V26, P115, DOI 10.1002/uog.1962; Gluckman PD, 2007, J INTERN MED, V261, P461, DOI 10.1111/j.1365-2796.2007.01802.x; Gluckman P. D., 2005, FETAL MATRIX; Gluckman PD, 2006, TRENDS ENDOCRIN MET, V17, P7, DOI 10.1016/j.tem.2005.11.006; Guven A, 2005, J PEDIATR ENDOCR MET, V18, P785; HELM S, 1969, ARCH ORAL BIOL, V14, P1177, DOI 10.1016/0003-9969(69)90157-5; Hermanussen M, 2006, EUR J CLIN NUTR, V60, P25, DOI 10.1038/sj.ejcn.1602263; Hochberg Z, 2008, ARCH DIS CHILD, V93, P534, DOI 10.1136/adc.2008.137570; HOCHBERG Z, 2008, ARCH DIS CHILDHOOD; Hochberg Z, 2008, PEDIATR RES, V64, P2, DOI 10.1203/PDR.0b013e318177590f; KLEIN KO, 1994, J CLIN INVEST, V94, P2475, DOI 10.1172/JCI117616; LASKER GW, 1969, SCIENCE, V166, P1480, DOI 10.1126/science.166.3912.1480; LINDGREN CA, 2005, TESTOSTERONE 17BETA; Liu YX, 1998, J PEDIATR ENDOCR MET, V11, P247; Liu YX, 2000, PEDIATR RES, V47, P475, DOI 10.1203/00006450-200004000-00011; Muller GB, 2007, NAT REV GENET, V8, P943, DOI 10.1038/nrg2219; Pembrey ME, 2006, EUR J HUM GENET, V14, P159, DOI [10.1038/sj.ejhg.5201538, 10.1038/sj.ejhg.5204538]; PRATT JH, 1994, METABOLISM, V43, P186, DOI 10.1016/0026-0495(94)90243-7; SAUNDERS E, 1837, TEETH TEST AGE; Schneider JE, 2004, PHYSIOL BEHAV, V81, P289, DOI 10.1016/j.physbeh.2004.02.007; Simondon KB, 1998, INT J EPIDEMIOL, V27, P490, DOI 10.1093/ije/27.3.490; Sisk CL, 2004, NAT NEUROSCI, V7, P1040, DOI 10.1038/nn1326; SMITH BH, 1995, ANNU REV ANTHROPOL, V24, P257, DOI 10.1146/annurev.an.24.100195.001353; SMITH BH, 1994, AM J PHYS ANTHROPOL, V94, P307, DOI 10.1002/ajpa.1330940303; SMITH BH, 1992, EVOL ANTHROPOL, V1, P134, DOI DOI 10.1002/EVAN.1360010406; Stein AD, 2004, PEDIATRICS, V113, pE270, DOI 10.1542/peds.113.3.e270; Varela-Silva MI, 2007, COLLEGIUM ANTROPOL, V31, P39; WARREN MP, 1983, ENDOCR REV, V4, P363, DOI 10.1210/edrv-4-4-363 37 27 30 1 11 BIO SCIENTIFICA LTD BRISTOL EURO HOUSE, 22 APEX COURT WOODLANDS, BRADLEY STOKE, BRISTOL BS32 4JT, ENGLAND 0804-4643 EUR J ENDOCRINOL Eur. J. Endocrinol. FEB 2009 160 2 135 141 10.1530/EJE-08-0445 7 Endocrinology & Metabolism Endocrinology & Metabolism 407HV WOS:000263355100002 19022913 Bronze 2018-11-12 J Fevrier, Y; Russo, J; Madec, L Fevrier, Y.; Russo, J.; Madec, L. Intraspecific variation in life history traits of a land snail after a bacterial challenge JOURNAL OF ZOOLOGY English Article life history trade-off; bacterial stress; growth; reproduction; land snail HELIX-ASPERSA MOLLUSCA; TRADE-OFFS; IMMUNE DEFENSE; ECOLOGICAL IMMUNOLOGY; DROSOPHILA-MELANOGASTER; PHENOTYPIC PLASTICITY; EVOLUTIONARY ECOLOGY; GEOGRAPHIC-VARIATION; REPRODUCTIVE TRAITS; GRYLLUS-TEXENSIS Life history theory suggests that variation in individual body size is often the result of resource availability and is controlled by trade-offs between growth, reproductive features and subsequently, survival. In the land snail Cornu aspersum, body size and correlated life history traits vary strongly intraspecifically, leading to geographic patterns of life history tactics. This work investigates the potential role of repeated exposure to stress during the growth and reproduction stage on the life history responses of two subspecies. Cornu aspersum aspersa and Cornu aspersum maxima exhibit contrasting life history strategies, as shown morphologically by the giant size of maxima. In this study, we postulated that the two subspecies would respond differently when exposed to a similar, non-specific stress. Thus, snails were regularly challenged with injections of Gram-negative heat-killed bacteria Escherichia coli suspensions. As expected, we found that stress induced by bacterial challenges leads to a significant decrease in fecundity in the two subspecies. We also observed differences between the challenged and the control snails in terms of the (1) growth features for C. a. maxima and (2) timing of the first egg-laying for C. a. aspersa. Moreover, a delayed development of the reproductive organs in the post-challenged animals suggested a trade-off between growth and sexual maturity. [Fevrier, Y.; Russo, J.; Madec, L.] Univ Rennes 1, CNRS, ECOBIO UMR 6553, F-35042 Rennes, France Madec, L (reprint author), Univ Rennes 1, CNRS, ECOBIO UMR 6553, Campus Beaulieu,Batiment 14A, F-35042 Rennes, France. luc.madec@univ-rennes1.fr Adamo SA, 2001, ANIM BEHAV, V62, P417, DOI 10.1006/anbe.2001.1786; Armitage SAO, 2003, J EVOLUTION BIOL, V16, P1038, DOI 10.1046/j.1420-9101.2003.00551.x; Barker G.M., 2002, MOLLUSCS CROP PESTS; BAYNE C J, 1970, Malacological Review, V3, P103; BAYNE CJ, 1980, DEV COMP IMMUNOL, V4, P43, DOI 10.1016/S0145-305X(80)80007-3; Chadwick W, 2005, P ROY SOC B-BIOL SCI, V272, P505, DOI 10.1098/rspb.2004.2959; Coustau C, 2000, TRENDS ECOL EVOL, V15, P378, DOI 10.1016/S0169-5347(00)01929-7; Dybdahl MF, 2005, ECOLOGY, V86, P1592, DOI 10.1890/04-0898; Fedorka KM, 2004, EVOLUTION, V58, P2478; Fellowes MDE, 1999, J EVOLUTION BIOL, V12, P123, DOI 10.1046/j.1420-9101.1999.00018.x; GOMOT P, 1991, COMP BIOCHEM PHYS A, V100, P689, DOI 10.1016/0300-9629(91)90390-X; Guiller A, 2006, GENET RES, V88, P27, DOI 10.1017/S0016672306008305; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hosken DJ, 2001, CURR BIOL, V11, pR379, DOI 10.1016/S0960-9822(01)00211-1; Jacot A, 2005, J EVOLUTION BIOL, V18, P1060, DOI 10.1111/j.1420-9101.2005.00899.x; Jokela J, 1999, J EVOLUTION BIOL, V12, P350, DOI 10.1046/j.1420-9101.1999.00035.x; Langand J, 1998, HEREDITY, V80, P320, DOI 10.1046/j.1365-2540.1998.00291.x; Lawniczak MKN, 2007, TRENDS ECOL EVOL, V22, P48, DOI 10.1016/j.tree.2006.09.012; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Little TJ, 2007, J ANIM ECOL, V76, P1202, DOI 10.1111/j.1365-2656.2007.01290.x; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Loker ES, 2004, IMMUNOL REV, V198, P10, DOI 10.1111/j.0105-2896.2004.0117.x; MADEC L, 1994, J ZOOL, V233, P215, DOI 10.1111/j.1469-7998.1994.tb08585.x; Madec L, 2003, HEREDITY, V91, P224, DOI 10.1038/sj.hdy.6800301; Madec L, 1998, INVERTEBR REPROD DEV, V34, P83, DOI 10.1080/07924259.1998.9652356; Madec L, 2000, BIOL J LINN SOC, V69, P25, DOI 10.1006/bijl.1999.0324; MADEC L, 1993, MALACOLOGIA, V35, P99; Martin II LB, 2006, OECOLOGIA, V147, P565, DOI 10.1007/s00442-005-0314-y; McKean KA, 2001, P NATL ACAD SCI USA, V98, P7904, DOI 10.1073/pnas.131216398; Miller MR, 2007, EVOLUTION, V61, P2, DOI 10.1111/j.1558-5646.2007.00001.x; MINCHELLA DJ, 1985, PARASITOLOGY, V90, P205, DOI 10.1017/S0031182000049143; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Ottaviani E., 2006, ISJ, V3, P50; RENWRANTZ L, 1981, J COMP PHYSIOL, V141, P477, DOI 10.1007/BF01101470; Rigby MC, 2002, TRENDS PARASITOL, V18, P116, DOI 10.1016/S1471-4922(01)02203-6; Rigby MC, 2000, P ROY SOC B-BIOL SCI, V267, P171, DOI 10.1098/rspb.2000.0983; Rolff J, 2003, SCIENCE, V301, P472, DOI 10.1126/science.1080623; Sandland GJ, 2003, TRENDS PARASITOL, V19, P571, DOI 10.1016/j.pt.2003.10.006; Schmid-Hempel P, 2003, TRENDS ECOL EVOL, V18, P27, DOI 10.1016/S0169-5347(02)00013-7; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Shoemaker KL, 2007, PHYSIOL ENTOMOL, V32, P113, DOI 10.1111/j.1365-3032.2006.00552.x; Soler JJ, 2003, P ROY SOC B-BIOL SCI, V270, P241, DOI 10.1098/rspb.2002.2217; Zuk M., 2002, AM NAT, V160, P9, DOI DOI 10.1086/342131 43 7 7 0 3 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0952-8369 J ZOOL J. Zool. FEB 2009 277 2 149 156 10.1111/j.1469-7998.2008.00523.x 8 Zoology Zoology 397QW WOS:000262678200009 2018-11-12 J Schmid-Hempel, P Schmid-Hempel, Paul Immune defence, parasite evasion strategies and their relevance for 'macroscopic phenomena' such as virulence PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Review virulence; immune evasion; dose; transmission; pathogenesis CRYPTOSPORIDIUM DOSE-RESPONSE; HEPATITIS-C VIRUS; ANTIGENIC VARIATION; INNATE IMMUNITY; VIRAL EVASION; PATHOGENIC MICROORGANISMS; EXPERIMENTAL-INFECTION; EVOLUTIONARY ECOLOGY; MICROBIAL INFECTIONS; CELL-PROLIFERATION The discussion of host-parasite interactions, and of parasite virulence more specifically, has so far, with a few exceptions, not focused much attention on the accumulating evidence that immune evasion by parasites is not only almost universal but also often linked to pathogenesis, i.e. the appearance of virulence. Now, the immune evasion hypothesis offers a deeper insight into the evolution of virulence than previous hypotheses. Sensitivity analysis for parasite fitness and life-history theory shows promise to generate a more general evolutionary theory of virulence by including a major element, immune evasion to prevent parasite clearance from the host. Also, the study of dose-response relationships and multiple infections should be particularly illuminating to understand the evolution of virulence. Taking into account immune evasion brings immunological processes to the core of understanding the evolution of parasite virulence and for a range of related issues such as dose, host specificity or immunopathology. The aim of this review is to highlight the mechanism underlying immune evasion and to discuss possible consequences for the evolutionary ecology analysis of host-parasite interactions. [Schmid-Hempel, Paul] ETH, Inst Integrat Biol IBZ, CH-8092 Zurich, Switzerland; [Schmid-Hempel, Paul] Wissensch Kolleg Berlin, D-14193 Berlin, Germany Schmid-Hempel, P (reprint author), ETH, Inst Integrat Biol IBZ, Univ Str 16, CH-8092 Zurich, Switzerland. psh@env.ethz.ch Wissenschaftskolleg zu Berlin I thank Robin Bush, Steve Frank, Joachim Kurtz, Andrew Read, Regula Schmid-Hempel and Mike Siva-Jothy for their comments. The stimulating atmosphere and generous support by the Wissenschaftskolleg zu Berlin in the study year 2006-2007 is gratefully acknowledged. Abrami L, 2005, TRENDS MICROBIOL, V13, P72, DOI 10.1016/j.tim.2004.12.004; Alcami A, 2003, NAT REV IMMUNOL, V3, P36, DOI 10.1038/nri980; ANDERSON RM, 1979, NATURE, V280, P361, DOI 10.1038/280361a0; ANDERSON RM, 1982, PARASITOLOGY, V85, P411, DOI 10.1017/S0031182000055360; Andre JB, 2003, EVOLUTION, V57, P1489, DOI 10.1554/02-667; Andre JB, 2006, J THEOR BIOL, V241, P402, DOI 10.1016/j.jtbi.2005.12.011; ANTIA R, 1994, AM NAT, V144, P457, DOI 10.1086/285686; Antia R, 1997, PARASITOLOGY, V115, pS155; Atherton JC, 2006, ANNU REV PATHOL-MECH, V1, P63, DOI 10.1146/annurev.pathol.1.110304.100125; Barbour AG, 2006, P NATL ACAD SCI USA, V103, P18290, DOI 10.1073/pnas.0605302103; BARRY JD, 1997, PARASITOLOGY, V115, pS89, DOI DOI 10.1017/S0031182097001820; Beck MA, 2004, TRENDS MICROBIOL, V12, P417, DOI 10.1016/j.tim.2004.07.007; Bedhomme S, 2004, P ROY SOC B-BIOL SCI, V271, P739, DOI 10.1098/rspb.2003.2657; Beiter K, 2006, CURR BIOL, V16, P401, DOI 10.1016/j.cub.2006.01.056; Benedict CA, 2002, NAT IMMUNOL, V3, P1013, DOI 10.1038/ni1102-1013; Bergstrom CT, 2006, TRENDS ECOL EVOL, V21, P22, DOI 10.1016/j.tree.2005.11.008; Bhopale GM, 2003, COMP IMMUNOL MICROB, V26, P213, DOI 10.1016/S0147-9571(02)00058-9; Billinis C, 2004, VET MICROBIOL, V99, P187, DOI 10.1016/j.vetmic.2004.01.002; BLAXTER ML, 1992, PARASITOL TODAY, V8, P243, DOI 10.1016/0169-4758(92)90126-M; BLOOM BR, 1979, NATURE, V279, P21, DOI 10.1038/279021a0; BONHOEFFER S, 1994, P NATL ACAD SCI USA, V91, P8062, DOI 10.1073/pnas.91.17.8062; Bosio CM, 2005, J IMMUNOL, V175, P6792, DOI 10.4049/jimmunol.175.10.6792; Bray M, 2005, CURR OPIN IMMUNOL, V17, P399, DOI 10.1016/j.coi.2005.05.001; Brubaker RR, 2003, INFECT IMMUN, V71, P3673, DOI 10.1128/IAI.71.7.3673-3681.2003; Buchmeier M J, 1980, Adv Immunol, V30, P275, DOI 10.1016/S0065-2776(08)60197-2; BULL JJ, 1994, EVOLUTION, V48, P1423, DOI 10.1111/j.1558-5646.1994.tb02185.x; Cendrowski S, 2004, MOL MICROBIOL, V51, P407, DOI 10.1046/j.1365-2958.2003.03861.x; Chatterjee M, 2002, SCIENCE, V298, P1432, DOI 10.1126/science.1074883; Clarke D. D., 1984, PLANT DIS INFECT DAM, P119; Damian RT, 1997, PARASITOLOGY, V115, pS169; DAWKINS R, 1979, PROC R SOC SER B-BIO, V205, P489, DOI 10.1098/rspb.1979.0081; Day T, 2003, TRENDS ECOL EVOL, V18, P113, DOI 10.1016/S0169-5347(02)00049-6; Day T, 2007, P R SOC B, V274, P2685, DOI 10.1098/rspb.2007.0809; de Roode JC, 2005, AM NAT, V166, P531, DOI 10.1086/491659; Dean P, 2005, CURR OPIN MICROBIOL, V8, P28, DOI 10.1016/j.mib.2004.12.010; Deitsch KW, 2004, TRENDS PARASITOL, V20, P562, DOI 10.1016/j.pt.2004.09.002; Dematteis S, 2003, PARASITE IMMUNOL, V25, P189, DOI 10.1046/j.1365-3024.2003.00620.x; Diamond MS, 2003, J VIROL, V77, P2578, DOI 10.1128/JVI.77.4.2578-2586.2003; Donnenberg MS, 2000, NATURE, V406, P768, DOI 10.1038/35021212; Dussurget O, 2004, ANNU REV MICROBIOL, V58, P587, DOI 10.1146/annurev.micro.57.030502.090934; DUSTIN LB, 2006, ANNU REV IMMUNOL, V25, P71; Ebert D, 1996, PARASITOL TODAY, V12, P96, DOI 10.1016/0169-4758(96)80668-5; Ebert D, 1997, P ROY SOC B-BIOL SCI, V264, P985, DOI 10.1098/rspb.1997.0136; Ebert Dieter, 1996, Trends in Ecology and Evolution, V11, P79, DOI 10.1016/0169-5347(96)81047-0; Englehardt JD, 2004, J TOXICOL ENV HEAL A, V67, P651, DOI 10.1080/15287390490428080; ERCOLANI GL, 1984, ANNU REV PHYTOPATHOL, V22, P35; Fattorini L, 2002, MICROBIOL-SGM, V148, P3173, DOI 10.1099/00221287-148-10-3173; Ferguson HM, 2002, P ROY SOC B-BIOL SCI, V269, P1217, DOI 10.1098/rspb.2002.2023; Flynn JL, 2003, CURR OPIN IMMUNOL, V15, P450, DOI 10.1016/S0952-7915(03)00075-X; Frank S. A., 2002, IMMUNOLOGY EVOLUTION; Frank SA, 1996, Q REV BIOL, V71, P37, DOI 10.1086/419267; FRANK SA, 2007, J EVOLUTION BIOL, V21, P396, DOI DOI 10.1111/J.1420-9101.2007.01480.X; Fukao T, 2004, LANCET INFECT DIS, V4, P166, DOI 10.1016/S1473-3099(04)00940-5; Ganusov VV, 2003, THEOR POPUL BIOL, V64, P211, DOI 10.1016/S0040-5809(03)00063-7; GINSBERG HS, 1953, P SOC EXP BIOL MED, V84, P249; Godfray HCJ., 1994, PARASITOIDS BEHAV EV; Gohar M, 2005, PROTEOMICS, V5, P3696, DOI 10.1002/pmic.200401225; Graham AL, 2005, ANNU REV ECOL EVOL S, V36, P373, DOI 10.1146/annurev.ecolsys.36.102003.152622; Grencis RK, 1997, PARASITOLOGY, V115, pS101; Guidotti LG, 2001, ANNU REV IMMUNOL, V19, P65, DOI 10.1146/annurev.immunol.19.1.65; Guidotti LG, 2006, ANNU REV PATHOL-MECH, V1, P23, DOI 10.1146/annurev.pathol.1.110304.100230; Hahn YS, 2003, CURR OPIN IMMUNOL, V15, P443, DOI 10.1016/S0952-7915(03)00076-1; Haldar K, 2006, NAT REV MICROBIOL, V4, P922, DOI 10.1038/nrmicro1549; Heikkinen T, 2003, LANCET, V361, P51, DOI 10.1016/S0140-6736(03)12162-9; Hermann JR, 2005, VET MICROBIOL, V110, P7, DOI 10.1016/j.vetmic.2005.06.012; Hewitt EW, 2003, IMMUNOLOGY, V110, P163, DOI 10.1046/j.1365-2567.2003.01738.x; Hilbi H, 1997, PARASITOLOGY, V115, pS79; Hornef MW, 2002, NAT IMMUNOL, V3, P1033, DOI 10.1038/ni1102-1033; HOWELL MJ, 1985, INT J PARASITOL, V15, P597, DOI 10.1016/0020-7519(85)90003-7; Jaenike J, 1996, EVOLUTION, V50, P2241, DOI 10.1111/j.1558-5646.1996.tb03613.x; Jager I, 2006, EVOLUTION, V60, P616, DOI 10.1111/j.0014-3820.2006.tb01141.x; Kapadia SB, 2002, IMMUNITY, V17, P143, DOI 10.1016/S1074-7613(02)00369-2; Kaper JB, 2004, NAT REV MICROBIOL, V2, P123, DOI 10.1038/nrmicro818; Kent SJ, 2005, TRENDS MICROBIOL, V13, P243, DOI 10.1016/j.tim.2005.03.011; KHARAZMI A, 1991, IMMUNOL LETT, V30, P201, DOI 10.1016/0165-2478(91)90026-7; Kirchberger S, 2007, INT ARCH ALLERGY IMM, V142, P1, DOI 10.1159/000095993; Koella JC, 2003, AM NAT, V161, P698, DOI 10.1086/374202; KOTWAL GJ, 1988, NATURE, V335, P176, DOI 10.1038/335176a0; Kover PX, 2002, P NATL ACAD SCI USA, V99, P11270, DOI 10.1073/pnas.102288999; Lapaque N, 2005, CURR OPIN MICROBIOL, V8, P60, DOI 10.1016/j.mib.2004.12.003; LEVIN BR, 1990, PARASITOLOGY, V100, pS103, DOI 10.1017/S0031182000073054; Levin Bruce R., 1994, Trends in Microbiology, V2, P76, DOI 10.1016/0966-842X(94)90538-X; Lewis K, 2007, NAT REV MICROBIOL, V5, P48, DOI 10.1038/nrmicro1557; Lipsitch M, 1997, TRENDS MICROBIOL, V5, P31, DOI 10.1016/S0966-842X(97)81772-6; Locksley RM, 1997, PARASITOLOGY, V115, pS5, DOI 10.1017/S0031182097001984; Loukas A, 2000, PARASITOL TODAY, V16, P333, DOI 10.1016/S0169-4758(00)01704-X; Mahanty S, 2004, LANCET INFECT DIS, V4, P487, DOI 10.1016/S1473-3099(04)01103-X; Maillard I, 1997, PARASITOLOGY, V115, pS67, DOI 10.1017/S0031182097001807; Maurin M, 1999, CLIN MICROBIOL REV, V12, P518, DOI 10.1128/CMR.12.4.518; McKerrow JH, 2006, ANNU REV PATHOL-MECH, V1, P497, DOI 10.1146/annurev.pathol.1.110304.100151; Merrell DS, 2004, NATURE, V430, P250, DOI 10.1038/nature02760; Mitchell TJ, 2003, NAT REV MICROBIOL, V1, P219, DOI 10.1038/nrmicro771; Moayeri M, 2004, CURR OPIN MICROBIOL, V7, P19, DOI 10.1016/j.mib.2003.12.001; Mock M, 2001, ANNU REV MICROBIOL, V55, P647, DOI 10.1146/annurev.micro.55.1.647; Moore J, 2002, PARASITES BEHAV ANIM; Mosser DM, 1997, PARASITOLOGY, V115, pS9, DOI 10.1017/S0031182097001789; Muller V, 2003, TRENDS IMMUNOL, V24, P132, DOI 10.1016/S1471-4906(03)00028-0; MURPHY PM, 1993, CELL, V72, P823, DOI 10.1016/0092-8674(93)90571-7; Nomura K, 2006, SCIENCE, V313, P220, DOI 10.1126/science.1129523; Nunes AC, 1997, PARASITOLOGY, V115, P601, DOI 10.1017/S0031182097001704; O'Grady E, 2007, NAT REV MICROBIOL, V5, P337, DOI 10.1038/nrmicro1641; Orange JS, 2002, NAT IMMUNOL, V3, P1006, DOI 10.1038/ni1102-1006; Osnas EE, 2004, PARASITOLOGY, V128, P223, DOI 10.1017/S0031182003004360; Pawlotsky JM, 2004, TRENDS MICROBIOL, V12, P96, DOI 10.1016/j.tim.2003.12.005; Picker LJ, 2006, CURR OPIN IMMUNOL, V18, P399, DOI 10.1016/j.coi.2006.05.001; Pieters J, 2001, CURR OPIN IMMUNOL, V13, P37, DOI 10.1016/S0952-7915(00)00179-5; Ploegh HL, 1998, SCIENCE, V280, P248, DOI 10.1126/science.280.5361.248; Portnoy DA, 2002, J CELL BIOL, V126, P869; Portnoy DA, 2005, CURR OPIN IMMUNOL, V17, P1; Rall GF, 2003, ANNU REV MICROBIOL, V57, P343, DOI 10.1146/annurev.micro.57.030502.090843; Rappleye CA, 2006, ANNU REV MICROBIOL, V60, P281, DOI 10.1146/annurev.micro.59.030804.121055; Ratledge C, 2000, ANNU REV MICROBIOL, V54, P881, DOI 10.1146/annurev.micro.54.1.881; Reed P, 2002, MONOGENEAN PARASITES; REINER SL, 1995, ANNU REV IMMUNOL, V13, P151, DOI 10.1146/annurev.immunol.13.1.151; Reisen WK, 2004, J MED ENTOMOL, V41, P978, DOI 10.1603/0022-2585-41.5.978; Rooijakkers SHM, 2005, TRENDS MICROBIOL, V13, P596, DOI 10.1016/j.tim.2005.10.002; Sacks D, 2002, NAT IMMUNOL, V3, P1041, DOI 10.1038/ni1102-1041; Salyers A.A., 2002, BACTERIAL PATHOGENES; Sansonetti PJ, 2007, IMMUNITY, V26, P149, DOI 10.1016/j.immuni.2007.02.004; Schierack P, 2003, INFECT IMMUN, V71, P2422, DOI 10.1128/IAI.71.5.2422-2429.2003; Schijven J, 2005, RISK ANAL, V25, P13, DOI 10.1111/j.0272-4332.2005.00563.x; Schmid-Hempel P, 2003, TRENDS ECOL EVOL, V18, P27, DOI 10.1016/S0169-5347(02)00013-7; Schmid-Hempel P, 2003, P ROY SOC B-BIOL SCI, V270, P357, DOI 10.1098/rspb.2002.2265; Schmid-Hempel P, 2005, BIOESSAYS, V27, P1026, DOI 10.1002/bies.20282; Schmid-Hempel P, 2008, TRENDS ECOL EVOL, V23, P318, DOI 10.1016/j.tree.2008.02.011; Schmid-Hempel P, 2007, PLOS PATHOG, V3, P1372, DOI 10.1371/journal.ppat.0030147; SCHULMAN JL, 1967, J EXP MED, V125, P479, DOI 10.1084/jem.125.3.479; Seet BT, 2003, ANNU REV IMMUNOL, V21, P377, DOI 10.1146/annurev.immunol.21.120601.141049; Sikora S, 2005, TRENDS MICROBIOL, V13, P522, DOI 10.1016/j.tim.2005.08.010; Taylor PD, 2006, THEOR POPUL BIOL, V69, P323, DOI 10.1016/j.tpb.2005.09.004; Teunis P, 2004, RISK ANAL, V24, P401, DOI 10.1111/j.0272-4332.2004.00441.x; Teunis PFM, 2002, RISK ANAL, V22, P475, DOI 10.1111/0272-4332.00046; Teunis PFM, 2002, RISK ANAL, V22, P175, DOI 10.1111/0272-4332.00014; Tibbetts SA, 2003, J VIROL, V77, P7696, DOI 10.1128/JVI.77.13.7696-7701.2003; Tortorella D, 2000, ANNU REV IMMUNOL, V18, P861, DOI 10.1146/annurev.immunol.18.1.861; Turner CMR, 2002, PARASITOLOGY, V125, pS17, DOI 10.1017/S0031182002002470; Underhill DM, 2002, ANNU REV IMMUNOL, V20, P825, DOI 10.1146/annurev.immunol.20.103001.114744; UPTON C, 1991, VIROLOGY, V184, P370, DOI 10.1016/0042-6822(91)90853-4; Urban CF, 2006, CELL MICROBIOL, V8, P1687, DOI 10.1111/j.1462-5822.2006.00792.x; van Baarlen P, 2007, FEMS MICROBIOL REV, V31, P239, DOI 10.1111/j.1574-6976.2007.00065.x; van der Woude MW, 2004, CLIN MICROBIOL REV, V17, P581, DOI 10.1128/CMR.17.3.581-611.2004; Weiss RA, 2002, TRENDS MICROBIOL, V10, P314, DOI 10.1016/S0966-842X(02)02391-0; West SA, 2003, P ROY SOC B-BIOL SCI, V270, P37, DOI 10.1098/rspb.2002.2209; Wilson JW, 2002, POSTGRAD MED J, V78, P216, DOI 10.1136/pmj.78.918.216; Windsor DA, 1998, INT J PARASITOL, V28, P1939, DOI 10.1016/S0020-7519(98)00153-2; Woolard MD, 2007, J IMMUNOL, V178, P2065, DOI 10.4049/jimmunol.178.4.2065; Yewdell JW, 2002, NAT IMMUNOL, V3, P1019, DOI 10.1038/ni1102-1019; Young D, 2002, NAT IMMUNOL, V3, P1026, DOI 10.1038/ni1102-1026 148 80 82 3 54 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. JAN 12 2009 364 1513 85 98 10.1098/rstb.2008.0157 14 Biology Life Sciences & Biomedicine - Other Topics 375YV WOS:000261150600008 18930879 Bronze, Green Published 2018-11-12 J Garel, M; Solberg, EJ; Saether, BE; Grotan, V; Tufto, J; Heim, M Garel, Mathieu; Solberg, Erling Johan; Saether, Bernt-Erik; Grotan, Vidar; Tufto, Jarle; Heim, Morten Age, Size, and Spatiotemporal Variation in Ovulation Patterns of a Seasonal Breeder, the Norwegian Moose (Alces alces) AMERICAN NATURALIST English Review age; body mass; ecological modeling; life-history theory; reproduction; ungulates WHITE-TAILED DEER; LIFE-HISTORY CONSEQUENCES; ADULT SEX-RATIO; RED DEER; BODY-MASS; ROE DEER; POPULATION-DYNAMICS; CAPREOLUS-CAPREOLUS; REPRODUCTIVE EFFORT; LARGE HERBIVORES In seasonal environments, timing of reproduction is an important fitness component. However, in ungulates, our understanding of this biological process is limited. Here we analyze how age and body mass affect spatiotemporal variation in timing of ovulation of 6,178 Norwegian moose. We introduced a parametric statistical model to obtain inferences about the seasonal timing of ovulation peak, the degree of synchrony among individuals, and the proportion of individuals that ovulate. These components showed much more spatiotemporal variation than previously reported. Young ( primiparous) and old (>= 11.5 years of age) females ovulated later than prime-aged (2.5-10.5 years of age) females. In all age classes, ovulation was delayed with decreasing body mass. Ovulation rates were lower and more variable among primiparous females than among older females. Young females required higher body mass than older females did to ovulate. The body-mass-to-ovulation relationship varied with age, showed large regional variation, and differed among years within region. These results suggest that ( 1) environmental and population characteristics contribute to shape seasonal variation in the breeding pattern and ( 2) large regional variation exists in the size-dependent age at maturity in moose. Hence, the life-history trade-off between reproduction and body growth should differ regionally in moose. [Garel, Mathieu] Univ Lyon, Lab Biometrie & Biol Evolut, CNRS, UMR 5558, F-69622 Villeurbanne, France; [Garel, Mathieu; Saether, Bernt-Erik; Grotan, Vidar] Norwegian Univ Sci & Technol, Dept Biol, Ctr Conservat Biol, NO-7491 Trondheim, Norway; [Garel, Mathieu] Off Natl Chasse & Faune Sauvage, Ctr Natl Etud & Rech Appliquee Faune Montagne, F-34098 Montpellier 05, France; [Solberg, Erling Johan; Heim, Morten] Norwegian Inst Nat Res, NO-7485 Trondheim, Norway; [Tufto, Jarle] Norwegian Univ Sci & Technol, Dept Math Sci, Ctr Conservat Biol, NO-7491 Trondheim, Norway Garel, M (reprint author), Univ Lyon, Lab Biometrie & Biol Evolut, CNRS, UMR 5558, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France. mgarel@biomserv.univ-lyon1.fr; erling.solberg@nina.no; bernt-erik.sather@bio.ntnu.no; vidar.grotan@bio.ntnu.no; jarlet@math.ntnu.no; morten.heim@nina.no Tufto, Jarle/I-4817-2013; Grotan, Vidar/A-4056-2008 Grotan, Vidar/0000-0003-1222-0724 Adams LG, 1998, J MAMMAL, V79, P287, DOI 10.2307/1382865; Agresti A., 2002, CATEGORICAL DATA ANA; ALBON SD, 1992, OIKOS, V65, P502, DOI 10.2307/3545568; ALBON SD, 1987, J ANIM ECOL, V56, P69, DOI 10.2307/4800; ALBON SD, 1983, J ANIM ECOL, V52, P969, DOI 10.2307/4467; Andersen R, 1997, OECOLOGIA, V109, P74, DOI 10.1007/s004420050060; Ballard W. B. J., 1991, WILDLIFE MONOGR, V114, P5; BAUER JJ, 1987, Z SAUGETIERKD, V52, P116; BERGER J, 1992, ECOLOGY, V73, P323, DOI 10.2307/1938743; BERGER J, 1982, MAMMALIA, V46, P183, DOI 10.1515/mamm.1982.46.2.183; Bertouille SB, 2002, Z JAGDWISS, V48, P87, DOI 10.1007/BF02192396; Boer A. H., 1992, ALCES S, V1, P1; BON R, 1993, J MAMMAL, V74, P752, DOI 10.2307/1382298; BOWYER RT, 1991, J MAMMAL, V72, P138, DOI 10.2307/1381988; Bowyer RT, 1998, J MAMMAL, V79, P1332, DOI 10.2307/1383025; BUNNELL FL, 1982, CAN J ZOOL, V60, P1, DOI 10.1139/z82-001; BUNNELL FL, 1980, CAN J ZOOL, V58, P1027, DOI 10.1139/z80-144; Burnham K. P., 1998, MODEL SELECTION INFE; Burnham KP, 2001, WILDLIFE RES, V28, P111, DOI 10.1071/WR99107; CAMERON RD, 1994, J WILDLIFE MANAGE, V58, P674, DOI 10.2307/3809681; Clutton-Brock T. H, 1982, RED DEER BEHAV ECOLO; CLUTTONBROCK TH, 1987, J ANIM ECOL, V56, P53, DOI 10.2307/4799; CLUTTONBROCK TH, 1992, J ANIM ECOL, V61, P381, DOI 10.2307/5330; Coltman DW, 2003, NATURE, V426, P655, DOI 10.1038/nature02177; Cook JG, 2004, WILDLIFE MONOGR, P1; Cote SD, 2001, OECOLOGIA, V127, P230, DOI 10.1007/s004420000584; Coulson T, 2001, SCIENCE, V292, P1528, DOI 10.1126/science.292.5521.1528; Coulson T, 2003, EVOLUTION, V57, P2879; Crichton Vince, 1992, Alces, V28, P203; DAUPHINE TC, 1974, J WILDLIFE MANAGE, V38, P54, DOI 10.2307/3800200; EDWARDS RY, 1958, J WILDLIFE MANAGE, V22, P216; ENGEN S, 1994, THEOR POPUL BIOL, V46, P232, DOI 10.1006/tpbi.1994.1026; Ericsson G, 2001, ECOLOGY, V82, P1613, DOI 10.1890/0012-9658(2001)082[1613:ARREAS]2.0.CO;2; Ericsson G, 2001, ECOSCIENCE, V8, P157, DOI 10.1080/11956860.2001.11682641; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; FESTABIANCHET M, 1988, J MAMMAL, V69, P157, DOI 10.2307/1381764; FESTABIANCHET M, 1988, J ZOOL, V214, P653, DOI 10.1111/j.1469-7998.1988.tb03764.x; FESTABIANCHET M, 1995, ECOLOGY, V76, P871, DOI 10.2307/1939352; Franzmann A. W., 1998, ECOLOGY MANAGEMENT N; FRANZMANN AW, 1985, J WILDLIFE MANAGE, V49, P394, DOI 10.2307/3801540; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; GAILLARD JM, 1992, CAN J ZOOL, V70, P1541, DOI 10.1139/z92-212; Gaillard JM, 1996, J WILDLIFE MANAGE, V60, P29, DOI 10.2307/3802036; Garel M, 2006, ECOLOGY, V87, P745, DOI 10.1890/05-0584; Garel M, 2005, J ZOOL, V266, P65, DOI 10.1017/S0952836905006667; Garel M, 2007, ECOL APPL, V17, P1607, DOI 10.1890/06-0898.1; GEIST V, 1971, MOUNTAIN SHEEP STUDY; Gelman A., 2007, DATA ANAL USING REGR; HAAGENRUD H, 1978, J MAMMAL, V59, P857, DOI 10.2307/1380153; Herfindal I, 2006, OECOLOGIA, V150, P213, DOI 10.1007/s00442-006-0519-8; Herfindal I, 2006, J ANIM ECOL, V75, P1110, DOI 10.1111/j.1365-2656.2006.1138.x; Hewison AJM, 1996, ACTA THERIOL, V41, P187, DOI 10.4098/AT.arch.96-18; Hewison AJM, 2001, J ANIM ECOL, V70, P600, DOI 10.1046/j.1365-2656.2001.00528.x; Holand O, 2006, BEHAV ECOL SOCIOBIOL, V59, P682, DOI 10.1007/s00265-005-0097-5; Holand O, 2006, P ROY SOC B-BIOL SCI, V273, P293, DOI 10.1098/rspb.2005.3330; Holand O, 2003, J WILDLIFE MANAGE, V67, P25, DOI 10.2307/3803058; Keech MA, 2000, J WILDLIFE MANAGE, V64, P450, DOI 10.2307/3803243; Komers PE, 1999, AM NAT, V153, P431, DOI 10.1086/303185; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Langvatn R, 1996, J ANIM ECOL, V65, P653, DOI 10.2307/5744; Langvatn R, 2004, AM NAT, V163, P763, DOI 10.1086/383594; LANGVATN R, 1994, J WILDLIFE MANAGE, V58, P654, DOI 10.2307/3809678; LANGVATN R, 1992, Rangifer, V12, P67; Lavsund Sten, 2003, Alces, V39, P109; LENT P C, 1974, Naturaliste Canadien (Quebec), V101, P307; Liao JG, 2003, AM STAT, V57, P161, DOI 10.1198/0003130031964; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Linnell JDC, 1998, J ZOOL, V244, P497, DOI 10.1111/j.1469-7998.1998.tb00055.x; Loison A, 1999, ECOGRAPHY, V22, P20, DOI 10.1111/j.1600-0587.1999.tb00451.x; MARKGREN G, 1969, Viltrevy (Stockholm), V6, P127; Martinez M, 2005, BIOL LETT-UK, V1, P353, DOI 10.1098/rsbl.2005.0330; McCullagh P, 1989, GEN LINEAR MODELS; MCGINNES BS, 1977, J WILDLIFE MANAGE, V41, P715, DOI 10.2307/3799994; Milner-Gulland EJ, 2003, NATURE, V422, P135, DOI 10.1038/422135a; Morellet N, 2007, J APPL ECOL, V44, P634, DOI 10.1111/j.1365-2664.2007.01307.x; Nilsen EB, 2006, EUR J WILDLIFE RES, V52, P153, DOI 10.1007/s10344-005-0023-1; Noyes JH, 2002, J WILDLIFE MANAGE, V66, P1301, DOI 10.2307/3802963; Palumbi SR, 2001, SCIENCE, V293, P1786, DOI 10.1126/science.293.5536.1786; Peek J. M., 1962, Journal of Wildlife Management, V26, P360, DOI 10.2307/3798012; Perez-Barberia FJ, 1998, ACTA THERIOL, V43, P311, DOI 10.4098/AT.arch.98-26; PIMLOTT DOUGLAS H., 1959, JOUR WILDLIFE MANAGEMENT, V23, P381, DOI 10.2307/3796486; Pojar T.M., 1981, P241; POND CM, 1978, ANNU REV ECOL SYST, V9, P519, DOI 10.1146/annurev.es.09.110178.002511; Post E, 2003, CAN J ZOOL, V81, P1709, DOI 10.1139/Z03-172; Post E, 2003, TRENDS ECOL EVOL, V18, P551, DOI 10.1016/j.tree.2003.08.008; *R DEV COR TEAM, 2007, R LANG ENV STAT COMP; RACHLOW JL, 1991, J MAMMAL, V72, P487, DOI 10.2307/1382131; REIMERS E, 1983, CAN J ZOOL, V61, P211, DOI 10.1139/z83-026; RISENHOOVER KL, 1988, J MAMMAL, V69, P592, DOI 10.2307/1381351; Rose KE, 1998, J ANIM ECOL, V67, P979, DOI 10.1046/j.1365-2656.1998.6760979.x; RUTBERG AT, 1987, AM NAT, V130, P692, DOI 10.1086/284739; Sadleir R.M.F.S., 1987, P123; Sadleir R. M. F. S., 1969, Journal of Reproduction and Fertility Suppl, VNo. 6, P39; SAETHER BE, 1985, HOLARCTIC ECOL, V8, P100; Saether BE, 1997, TRENDS ECOL EVOL, V12, P143, DOI 10.1016/S0169-5347(96)10068-9; Saether BE, 1996, ECOLOGY, V77, P1493, DOI 10.2307/2265546; SAETHER BE, 1993, J ANIM ECOL, V62, P482, DOI 10.2307/5197; SAETHER BE, 1983, J MAMMAL, V64, P226, DOI 10.2307/1380552; Saether BE, 2003, J WILDLIFE MANAGE, V67, P455, DOI 10.2307/3802703; Sand H, 1996, OECOLOGIA, V106, P212, DOI 10.1007/BF00328601; Sand H, 1998, CAN J ZOOL, V76, P187, DOI 10.1139/cjz-76-1-187; SCHLADWE.P, 1973, J WILDLIFE MANAGE, V37, P535, DOI 10.2307/3800319; SCHWARTZ CC, 1993, J WILDLIFE MANAGE, V57, P454, DOI 10.2307/3809270; Sigouin D, 1997, ALCES N AM, V33, P85; Sigouin D, 1995, ALCES N AM, V31, P185; SIMKIN D. W., 1965, J WILDLIFE MANAGE, V29, P740, DOI 10.2307/3798551; SKOGLAND T, 1989, OIKOS, V55, P101, DOI 10.2307/3565879; SKOGLAND T, 1985, J ANIM ECOL, V54, P359, DOI 10.2307/4484; Solberg EJ, 2000, WILDLIFE BIOL, V6, P41; Solberg EJ, 2002, WILDLIFE BIOL, V8, P117; Solberg E, 2008, OECOLOGIA, V158, P485, DOI 10.1007/s00442-008-1158-z; Solberg EJ, 2007, OECOLOGIA, V154, P259, DOI 10.1007/s00442-007-0833-9; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P891; Testa JW, 2004, ECOLOGY, V85, P1439, DOI 10.1890/02-0671; Testa JW, 1998, J MAMMAL, V79, P1345, DOI 10.2307/1383026; THOMPSON RW, 1982, CAN J ZOOL, V60, P1781, DOI 10.1139/z82-231; Venables W. N., 2002, MODERN APPL STAT S; VERME LJ, 1987, J MAMMAL, V68, P107, DOI 10.2307/1381052; VERME LJ, 1985, J WILDLIFE MANAGE, V49, P962, DOI 10.2307/3801379; VERME LJ, 1987, J WILDLIFE MANAGE, V51, P54, DOI 10.2307/3801629; VERME LOUIS J., 1965, J WILDLIFE MANAGE, V29, P74, DOI 10.2307/3798633; Visser ME, 1998, P ROY SOC B-BIOL SCI, V265, P1867, DOI 10.1098/rspb.1998.0514; Wallin K, 1996, WILDLIFE BIOL, V2, P53 125 32 32 0 24 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. JAN 2009 173 1 89 104 10.1086/593359 16 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 385AM WOS:000261785300011 19072136 2018-11-12 J Durrant, R; Adamson, S; Todd, F; Sellman, D Durrant, Russil; Adamson, Simon; Todd, Fraser; Sellman, Doug Drug use and addiction: evolutionary perspective AUSTRALIAN AND NEW ZEALAND JOURNAL OF PSYCHIATRY English Article addiction; behavioural addictions; drug use; evolution; life history theory LIFE-HISTORY THEORY; RISK-TAKING; ORBITOFRONTAL CORTEX; ADOLESCENT BRAIN; REWARD SYSTEM; USE DISORDERS; ALCOHOL; BEHAVIOR; ABUSE; MODEL Drug use creates a significant amount of harm in modern societies. From an evolutionary perspective, the pervasive use of drugs and the ongoing risk of drug addiction can be explained in terms of the action of drugs on evolved motivational-emotional systems. Addiction arises through interaction of these evolutionarily ancient systems, designed to promote the pursuit of natural rewards, and contemporary environments where purified and potent forms of drugs are readily available. This evolutionary analysis is extended to account for developmental patterns in problem drug use, and to explain the existence of behavioural addictions, such as problem gambling. The paper concludes by considering some of the clinical and public policy implications of the evolutionary perspective presented. [Durrant, Russil] Victoria Univ Wellington, Sch Social & Cultural Studies, Inst Criminol, Wellington, New Zealand; [Adamson, Simon; Todd, Fraser; Sellman, Doug] Univ Otago, Dept Psychol Med, Natl Addict Ctr Aotearoa New Zealand, Christchurch, New Zealand Durrant, R (reprint author), Victoria Univ Wellington, Sch Social & Cultural Studies, Inst Criminol, POB 600, Wellington, New Zealand. russil.durrant@vuw.ac.nz Adamson SJ, 2006, AUST NZ J PSYCHIAT, V40, P164, DOI 10.1080/j.1440-1614.2006.01764.x; Alcaro A, 2007, BRAIN RES REV, V56, P283, DOI 10.1016/j.brainresrev.2007.07.014; American Psychiatric Association, 2000, DIAGN STAT MAN MENT; *AUSTR I HLTH WELF, 2007, STAT DRUG US AUSTR 2; BABOR TF, 2003, ALCOHOL NO ORDINARY; Berridge KC, 2008, PSYCHOPHARMACOLOGY, V199, P457, DOI 10.1007/s00213-008-1099-6; BOOTH M, 1996, OPIUM HIST; Cardinal RN, 2004, CURR OPIN NEUROBIOL, V14, P156, DOI 10.1016/j.conb.2004.03.004; Casey BJ, 2008, DEV REV, V28, P62, DOI 10.1016/j.dr.2007.08.003; Chambers RA, 2003, AM J PSYCHIAT, V160, P1041, DOI 10.1176/appi.ajp.160.6.1041; CHILDRESS AR, 2006, RETHINKING SUBSTANCE, P46; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Compton WM, 2007, ARCH GEN PSYCHIAT, V64, P566, DOI 10.1001/archpsyc.64.5.566; COURTWRIGHT DT, 2001, DRUGS MAKING MODERN; Crabbe JC, 2002, ANNU REV PSYCHOL, V53, P435, DOI 10.1146/annurev.psych.53.100901.135142; Dahl RE, 2004, ANN NY ACAD SCI, V1021, P1, DOI 10.1196/annals.1308.001; Dobkin de Rios M, 1990, HALLUCINOGENS CROSS; Dudley R, 2002, ADDICTION, V97, P381, DOI 10.1046/j.1360-0443.2002.00002.x; Dudley R, 2000, Q REV BIOL, V75, P3, DOI 10.1086/393255; Durrant R, 2003, SUBSTANCE USE ABUSE; Ernst M, 2006, PSYCHOL MED, V36, P299, DOI 10.1017/S0033291705005891; ERVIN FR, 1990, PHARMACOL BIOCHEM BE, V36, P367, DOI 10.1016/0091-3057(90)90417-G; Galvan A, 2006, J NEUROSCI, V26, P6885, DOI 10.1523/JNEUROSCI.1062-06.2006; GHODSE H, 2003, INT DRUG CONTROL 21; Glocker ML, 2009, P NATL ACAD SCI USA, V106, P9115, DOI 10.1073/pnas.0811620106; Grant J. E., 2008, IMPULSE CONTROL DISO; Grant JE, 2006, AM J PSYCHIAT, V163, P303, DOI 10.1176/appi.ajp.163.2.303; Hill EM, 2002, ADDICTION, V97, P401, DOI 10.1046/j.1360-0443.2002.00020.x; Holden C, 2001, SCIENCE, V294, P980, DOI 10.1126/science.294.5544.980; Kalivas PW, 2005, AM J PSYCHIAT, V162, P1403, DOI 10.1176/appi.ajp.162.8.1403; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Katz SG, 1998, J VASC SURG, V28, P23, DOI 10.1016/S0741-5214(98)70196-X; Kelley AE, 2004, NEURON, V44, P161, DOI 10.1016/j.neuron.2004.09.016; Kelley AE, 2002, J NEUROSCI, V22, P3306; Kenny PJ, 2007, TRENDS PHARMACOL SCI, V28, P135, DOI 10.1016/j.tips.2007.01.008; Kessler RC, 2005, ARCH GEN PSYCHIAT, V62, P593, DOI 10.1001/archpsyc.62.6.593; Khantzian EJ, 1997, HARVARD REV PSYCHIAT, V4, P231, DOI 10.3109/10673229709030550; Kim SW, 2001, BIOL PSYCHIAT, V49, P914, DOI 10.1016/S0006-3223(01)01079-4; Klingemann H. K., 2007, PROMOTING SELF CHANG; Koob GF, 2008, ANNU REV PSYCHOL, V59, P29, DOI 10.1146/annurev.psych.59.103006.093548; Lalumiere M. L., 2008, EVOLUTIONARY FORENSI, P139, DOI DOI 10.1093/ACPROF:OSO/9780195325; Lende DH, 2002, ADDICTION, V97, P447, DOI 10.1046/j.1360-0443.2002.00022.x; LENDE DH, 2008, EVOLUTIONARY MED HLT, P277; Miller William E., 1997, Journal of the Lepidopterists' Society, V51, P277; *MIN HLTH, 2007, DRUG US NZ AN 2003 N; MOOS R, 2006, RETHINKING SUBSTANCE, P182; Mueser K. T., 2006, RETHINKING SUBSTANCE, pp115; MUSTO DF, 1999, AM DIS ORIGINS NARCO; Nesse RM, 1997, SCIENCE, V278, P63, DOI 10.1126/science.278.5335.63; NESSE RM, 1994, ETHOL SOCIOBIOL, V15, P339, DOI 10.1016/0162-3095(94)90007-8; Nestler EJ, 2005, NAT NEUROSCI, V8, P1445, DOI 10.1038/nn1578; O'Doherty JP, 2004, CURR OPIN NEUROBIOL, V14, P769, DOI 10.1016/j.conb.2004.10.016; Orford J, 2001, ADDICTION, V96, P15, DOI 10.1046/j.1360-0443.2001.961152.x; Panksepp J, 2002, ADDICTION, V97, P459, DOI 10.1046/j.1360-0443.2002.00025.x; Phillips A. G., 1992, INT REV STUDIES EMOT, V2, P31; Picciotto MR, 1998, DRUG ALCOHOL DEPEN, V51, P165, DOI 10.1016/S0376-8716(98)00074-X; Pomerleau CS, 1997, ADDICTION, V92, P397; Potenza MN, 2006, ADDICTION, V101, P142, DOI 10.1111/j.1360-0443.2006.01591.x; Reuter J, 2005, NAT NEUROSCI, V8, P147, DOI 10.1038/nn1378; Reyna VF, 2006, PSYCHOL SCI, P1, DOI 10.1111/j.1529-1006.2006.00026.x; ROBINS LN, 1975, ARCH GEN PSYCHIAT, V32, P955; Robins LN, 2003, ADDICTION, V98, P1053, DOI 10.1046/j.1360-0443.2003.00436.x; Robinson TE, 2003, ANNU REV PSYCHOL, V54, P25, DOI 10.1146/annurev.psych.54.101601.145237; Rudgley R, 1993, ALCHEMY CULTURE INTO; SAAH T, 2005, HARM REDUCT J, V2, P1; Schmitz JM, 2005, SEX ADDICT COMPULS, V12, P149, DOI 10.1080/10720160500203641; Schoenbaum G, 2006, TRENDS NEUROSCI, V29, P116, DOI 10.1016/j.tins.2005.12.006; SIEGEL RK, 1984, B PSYCHONOMIC SOC, V22, P49; Spinella M, 2003, INT J NEUROSCI, V113, P503, DOI 10.1080/00207450390162254; Steinberg L, 2007, CURR DIR PSYCHOL SCI, V16, P55, DOI 10.1111/j.1467-8721.2007.00475.x; Sullivan RJ, 2002, ADDICTION, V97, P389, DOI 10.1046/j.1360-0443.2002.00024.x; Teesson M, 2000, AUST NZ J PSYCHIAT, V34, P206, DOI 10.1080/j.1440-1614.2000.00715.x; TURNER BL, 2008, EVOLUTIONARY MED HLT, P55; VONBIBRA E, 1855, PLANT INTOXICANTS; Wang XT, 2009, EVOL HUM BEHAV, V30, P77, DOI 10.1016/j.evolhumbehav.2008.09.006; Ward T, 2003, PSYCHOL CRIME LAW, V9, P125, DOI 10.1080/1068316031000116247; West R, 2001, ADDICTION, V96, P3, DOI 10.1046/j.1360-0443.2001.96131.x; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; Wise RA, 1998, DRUG ALCOHOL DEPEN, V51, P13, DOI 10.1016/S0376-8716(98)00063-5; Yucel M, 2007, AUST NZ J PSYCHIAT, V41, P957, DOI 10.1080/00048670701689444 80 13 13 1 39 SAGE PUBLICATIONS LTD LONDON 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND 0004-8674 1440-1614 AUST NZ J PSYCHIAT Aust. N. Z. J. Psych. 2009 43 11 1049 1056 10.3109/00048670903270449 8 Psychiatry Psychiatry 514PE WOS:000271406400007 20001400 2018-11-12 J Karell, P; Pietiainen, H; Siitari, H; Pihlaja, T; Kontiainen, P; Brommer, JE Karell, Patrik; Pietiainen, Hannu; Siitari, Heli; Pihlaja, Tuomo; Kontiainen, Pekka; Brommer, Jon E. Parental allocation of additional food to own health and offspring growth in a variable environment CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE English Article REPRODUCTIVE SUCCESS; STRIX-URALENSIS; ECOLOGICAL IMMUNOLOGY; VOLE POPULATIONS; BLOOD PARASITES; TENGMALMS OWL; BLACK FLIES; TAWNY OWLS; TRADE-OFFS; BIRDS Life-history theory predicts increased investment in current reproduction when future reproduction is uncertain and a more balanced investment in current and future reproduction when prospects for both are good. The outcome of the balance in parental allocation depends on which life-history component maximizes the fitness benefits. In our study system, a 3-year vole cycle generates good prospects of current and future reproduction for Ural owls (Strix uralensis Pallas, 1771) in increase vole phases and uncertain prospects in decrease vole phases. We supplementary-fed Ural owls during the nestling period in 2002 ( an increase phase) and 2003 ( a decrease phase), and measured offspring growth, parental effort, and physiological health by monitoring haematocrit, leucocyte profiles, intra- and inter-celluar blood parasites, and ( in 2003) humoral antibody responsiveness. Food supplementation reduced parental feeding rate in both years, but improved a female parent's health only in 2002 ( an increase phase) and had no effects on males in either year. Nevertheless, supplementary-fed offspring reached higher asymptotic mass and fledged earlier in both years. Furthermore, early fledging reduced offspring exposure to blood-sucking black flies ( Diptera, Simuliidae) in the nest. We discuss how parental allocation of resources to current and future reproduction may vary under variable food conditions. [Karell, Patrik; Pietiainen, Hannu; Kontiainen, Pekka; Brommer, Jon E.] Univ Helsinki, Dept Biol & Environm Sci, Bird Ecol Unit, FIN-00014 Helsinki, Finland; [Siitari, Heli; Pihlaja, Tuomo] Univ Jyvaskyla, Dept Biol & Environm Sci, Evolutionary Res Unit, Jyvaskyla 40014, Finland Karell, P (reprint author), Univ Helsinki, Dept Biol & Environm Sci, Bird Ecol Unit, POB 65 Viikinkaari 1, FIN-00014 Helsinki, Finland. Patrik.Karell@Helsinki.Fi Brommer, Jon/C-3613-2008 Brommer, Jon/0000-0002-2435-2612 Appleby BM, 1999, FUNCT ECOL, V13, P315, DOI 10.1046/j.1365-2435.1999.00319.x; ARCESE P, 1988, J ANIM ECOL, V57, P119, DOI 10.2307/4768; Atkinson CT, 1991, BIRD PARASITE INTERA, P19; Brommer J, 2000, AM NAT, V155, P454, DOI 10.1086/303335; Brommer JE, 2004, OECOLOGIA, V139, P354, DOI 10.1007/s00442-004-1528-0; Brommer JE, 2003, OECOLOGIA, V137, P140, DOI 10.1007/s00442-003-1317-1; Brommer JE, 2002, AUK, V119, P544, DOI 10.1642/0004-8038(2002)119[0544:RASIAV]2.0.CO;2; Brommer JE, 2002, P ROY SOC B-BIOL SCI, V269, P647, DOI 10.1098/rspb.2001.1929; Brommer JE, 1998, J ANIM ECOL, V67, P359, DOI 10.1046/j.1365-2656.1998.00201.x; Christensen P, 2003, J MAMMAL, V84, P1292, DOI 10.1644/BBa-014; Dawson RD, 2002, BEHAV ECOL SOCIOBIOL, V52, P43, DOI 10.1007/s00265-002-0486-y; Fair J, 2007, IBIS, V149, P535, DOI 10.1111/j.1474-919X.2007.00680.x; Fridolfsson AK, 1999, J AVIAN BIOL, V30, P116, DOI 10.2307/3677252; Hipkiss T, 2002, J ANIM ECOL, V71, P693, DOI 10.1046/j.1365-2656.2002.00635.x; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; Hornfeldt B, 2005, P ROY SOC B-BIOL SCI, V272, P2045, DOI 10.1098/rspb.2005.3141; Ilmonen P, 1999, OIKOS, V86, P79, DOI 10.2307/3546571; Karell P, 2007, J EVOLUTION BIOL, V20, P2248, DOI 10.1111/j.1420-9101.2007.01423.x; KORPIMAKI E, 1993, FUNCT ECOL, V7, P420, DOI 10.2307/2390029; Malmqvist B, 2004, ECOSCIENCE, V11, P187, DOI 10.1080/11956860.2004.11682824; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Marzal A, 2005, OECOLOGIA, V142, P541, DOI 10.1007/s00442-004-1757-2; Merino S, 2000, P ROY SOC B-BIOL SCI, V267, P2507, DOI 10.1098/rspb.2000.1312; MYLLYMAKI A, 1971, Annales Zoologici Fennici, V8, P177; NORRDAHL K, 1995, BIOL REV, V70, P621, DOI 10.1111/j.1469-185X.1995.tb01654.x; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Ojanen U, 2002, ENTOMOL FENNICA, V13, P153; Ots I, 1998, FUNCT ECOL, V12, P700, DOI 10.1046/j.1365-2435.1998.00219.x; Overskaug K, 1999, CONDOR, V101, P169, DOI 10.2307/1370460; PIETIAINEN H, 1993, FUNCT ECOL, V7, P726, DOI 10.2307/2390195; PIETIAINEN H, 1989, J ANIM ECOL, V58, P905, DOI 10.2307/5132; Pinheiro JC, 2000, MIXED EFFECTS MODELS; *R DEV COR TEAM, 2006, R LANG ENV STAT COMP; SAUROLA P, 1987, BIOL CONSERVATION NO, P81; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Shutler D, 1996, J WILDLIFE MANAGE, V60, P569, DOI 10.2307/3802074; Stearns S. C., 1992, EVOLUTION LIFE HIST; Sundell J, 2004, J ANIM ECOL, V73, P167, DOI 10.1111/j.1365-2656.2004.00795.x; Tomas G, 2007, FUNCT ECOL, V21, P125, DOI 10.1111/j.1365-2435.2006.01214.x; VERHULST S, 1994, AUK, V111, P714; Wernham CV, 1998, J ANIM ECOL, V67, P25, DOI 10.1046/j.1365-2656.1998.00166.x; Wiehn J, 1997, ECOLOGY, V78, P2043, DOI 10.1890/0012-9658(1997)078[2043:FLOBSE]2.0.CO;2; Wiehn J, 1998, P ROY SOC B-BIOL SCI, V265, P1197, DOI 10.1098/rspb.1998.0419; WOO PTK, 1969, CAN J ZOOLOG, V47, P921, DOI 10.1139/z69-150; Wood D.M., 2004, BLACK FLIES SIMULIID 45 12 12 2 21 NATL RESEARCH COUNCIL CANADA-N R C RESEARCH PRESS OTTAWA BUILDING M 55, OTTAWA, ON K1A 0R6, CANADA 0008-4301 CAN J ZOOL Can. J. Zool.-Rev. Can. Zool. JAN 2009 87 1 8 19 10.1139/Z08-133 12 Zoology Zoology 411HZ WOS:000263641700002 2018-11-12 J Cassey, P; Boulton, RL; Ewen, JG; Hauber, ME Cassey, Phillip; Boulton, Rebecca L.; Ewen, John G.; Hauber, Mark E. Reduced clutch-size is correlated with increased nest predation in exotic Turdus thrushes EMU English Article life-history theory; maternal effects; New Zealand NEW-ZEALAND; GEOGRAPHIC-VARIATION; PASSERINE BIRDS; EGG-PRODUCTION; LIFE-HISTORY; TRADE-OFFS; TITS PARUS; SURVIVAL; QUALITY; RISK A fundamental prediction of life-history theory is that individuals should reduce their reproductive investment per breeding attempt when the risk of nest predation is high. We tested this trade-off in two species of exotic Turdus thrushes in New Zealand (Common Blackbird (T. merula) and Song Thrush (T. philomelos)). Differences in nest survival were estimated between two habitats (horticultural and agricultural) and among four replicate horticultural sites. Overall, we identified shared patterns of nest survival within a habitat but a significant interaction with different habitats. Critically, as predicted by life-history theory, we found that clutch-size consistently and positively co-varied with site-specific rates of nest survival. Although site-specific difference in habitat and variation in female quality cannot be ruled out as explanations for this pattern, our results support the hypothesis that females can manipulate their reproductive effort across different predation regimes. Future experimental work is required to test these alternate hypotheses explicitly, and to demonstrate the behavioural cues that might lead to variable levels of reproductive effort and trade-offs of maternal resources. [Cassey, Phillip; Boulton, Rebecca L.] Univ Birmingham, Sch Biosci, Ctr Ornithol, Birmingham B15 2TT, W Midlands, England; [Ewen, John G.] Zool Soc London, Inst Zool, London NW1 4RY, England; [Hauber, Mark E.] Univ Auckland, Sch Biol Sci, Auckland 1, New Zealand Cassey, P (reprint author), Univ Birmingham, Sch Biosci, Ctr Ornithol, Birmingham B15 2TT, W Midlands, England. p.cassey@bham.ac.uk University of Auckland Research Council; Human Frontier Science Program For help with accommodation and field work, we thank the following individuals: R. Peacock, B. and G. Cassey, K. Mathews, G. and S. Cassey, M. Thompson, D. Armstrong, Y. Richard and N. MacArthur. We are also grateful for discussions with S. J. Reynolds, A. P. Moller, and T. Grim. Our study was conducted under licence number 0443 from the New Zealand Department of Conservation (NZ), and benefited from funding by the University of Auckland Research Council and the Human Frontier Science Program (to PC and MEH). AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705; Boulton RL, 2006, NEW ZEAL J ECOL, V30, P377; Burnham K. P., 2002, MODEL SELECTION MULT; Cassey P, 2005, FUNCT ECOL, V19, P719, DOI 10.1111/j.1365-2435.2005.00989.x; CASSEY P, 2006, NOTORNIS, V52, P243; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; Christians JK, 2001, J ANIM ECOL, V70, P1080, DOI 10.1046/j.0021-8790.2001.00566.x; COLLAR N., 2005, HDB BIRDS WORLD, V10, P514; Cramp S, 1988, HDB BIRDS EUROPE MID, VV; Dinsmore SJ, 2002, ECOLOGY, V83, P3476, DOI 10.1890/0012-9658(2002)083[3476:ATFMAN]2.0.CO;2; Doligez B, 2003, ECOLOGY, V84, P2582, DOI 10.1890/02-3116; Eggers S, 2006, P ROY SOC B-BIOL SCI, V273, P701, DOI 10.1098/rspb.2005.3373; Evans KL, 2005, FUNCT ECOL, V19, P616, DOI 10.1111/j.1365-2435.2005.01016.x; Faivre B, 2001, ANIM BEHAV, V61, P969, DOI 10.1006/anbe.2000.1669; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Grim T, 2001, BIOLOGIA, V56, P549; Hauber ME, 2003, EVOL ECOL RES, V5, P559; HOYT DF, 1979, AUK, V96, P73; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Martin TE, 2006, EVOLUTION, V60, P390; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Massaro M, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002331; Morgan D, 2006, NEW ZEAL J ZOOL, V33, P17, DOI 10.1080/03014223.2006.9518427; Nager RG, 2000, ECOLOGY, V81, P1339, DOI 10.2307/177212; Peluc SI, 2008, BEHAV ECOL, V19, P830, DOI 10.1093/beheco/arn033; Pilz KM, 2003, ANIM BEHAV, V65, P841, DOI 10.1006/anbe.2003.2094; Powell LA, 2007, CONDOR, V109, P949, DOI 10.1650/0010-5422(2007)109[949:AVODPU]2.0.CO;2; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; Russell AF, 2007, SCIENCE, V317, P941, DOI 10.1126/science.1146037; Schwabl H, 2007, AM NAT, V170, P196, DOI 10.1086/519397; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SLAGSVOLD T, 1990, ECOLOGY, V71, P1258, DOI 10.2307/1938263; Thomson DL, 1998, BIOL REV, V73, P293, DOI 10.1017/S0006323198005180; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; Wagner EC, 2007, PHYSIOL BIOCHEM ZOOL, V80, P293, DOI 10.1086/512586; Weidinger K, 2002, J ANIM ECOL, V71, P424, DOI 10.1046/j.1365-2656.2002.00611.x; White GC, 1999, BIRD STUDY, V46, P120; WILLIAMS TD, 1994, BIOL REV, V68, P35, DOI DOI 10.1111/J.1469-185X.1994.TB01485.X; Zanette L, 2006, ECOLOGY, V87, P2459, DOI 10.1890/0012-9658(2006)87[2459:FAPAEP]2.0.CO;2 40 4 4 1 7 CSIRO PUBLISHING COLLINGWOOD 150 OXFORD ST, PO BOX 1139, COLLINGWOOD, VICTORIA 3066, AUSTRALIA 0158-4197 EMU Emu 2009 109 4 294 299 10.1071/MU09017 6 Ornithology Zoology V17LG WOS:000207938100003 2018-11-12 J Giosan, C; Wyka, K Giosan, Cezar; Wyka, Katarzyna Is a Successful High-K Fitness Strategy Associated with Better Mental Health? EVOLUTIONARY PSYCHOLOGY English Article Fitness; adaptedness; high-K; r/K; life history theory; psychopathology; PTSD; anger; sleep disturbance; disability SLEEP QUALITY INDEX; SCHIZOPHRENIA; DISORDERS; HISTORY; WOMEN; FERTILITY; PSYCHOSIS; PATHOLOGY; ORIGINS This study examined the associations between a high-K fitness strategy and mental health. These associations were tested on a sample of 1400 disaster workers who had exposure to a singular traumatic event and who underwent psychological evaluations. The results showed that high-K was an important negative predictor of psychopathology, accounting for significant variance in PTSD, general psychopathology, functional disability, anger, and sleep disturbances. Implications of the results are discussed. [Giosan, Cezar; Wyka, Katarzyna] Cornell Univ, Weill Med Coll, Dept Psychiat, New York, NY 10021 USA Giosan, C (reprint author), Cornell Univ, Weill Med Coll, Dept Psychiat, New York, NY 10021 USA. cezar@giosan.com Giosan, Cezar/J-7426-2015 Giosan, Cezar/0000-0002-1260-6830 Andreasen N. C., 1984, BROKEN BRAIN BIOL RE; Avila M, 2001, SCHIZOPHR RES, V47, P233, DOI 10.1016/S0920-9964(00)00062-1; BLAKE DD, 1995, J TRAUMA STRESS, V8, P75, DOI 10.1007/BF02105408; BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; BUYSSE DJ, 1989, PSYCHIAT RES, V28, P193, DOI 10.1016/0165-1781(89)90047-4; CHESSON A, 2000, STANDARDS PRACTICE C, V23, P247; Cowling V., 2004, PSYCHIAT B, V28, P43, DOI DOI 10.1192/PB.28.2.43; CROW TJ, 1995, BRIT J PSYCHIAT, V167, P12, DOI 10.1192/bjp.167.1.12; CROW TJ, 1991, BRIT J PSYCHIAT, V159, P76, DOI 10.1192/S0007125000296530; Crow TJ, 1997, SCHIZOPHR RES, V28, P127, DOI 10.1016/S0920-9964(97)00110-2; Derogatis L. R., 1982, BRIEF SYMPTOM INVENT; Derogats LR, 1993, BRIEF SYMPTOM INVENT; Doi Y, 2000, PSYCHIAT RES, V97, P165, DOI 10.1016/S0165-1781(00)00232-8; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; First MB, 1997, STRUCTURED CLIN INTE; Fiske AP, 1997, J NERV MENT DIS, V185, P211, DOI 10.1097/00005053-199704000-00001; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4, P394, DOI DOI 10.1177/147470490600400131; GIOSAN C, 2007, NE EV PSYCH SOC C SU; Haukka J, 2003, AM J PSYCHIAT, V160, P460, DOI 10.1176/appi.ajp.160.3.460; Howard LM, 2002, AM J PSYCHIAT, V159, P991, DOI 10.1176/appi.ajp.159.6.991; Jablensky A, 1998, SCHIZOPHR RES, V29, P20, DOI 10.1016/S0920-9964(97)88338-7; Leith KP, 1996, J PERS SOC PSYCHOL, V71, P1250, DOI 10.1037/0022-3514.71.6.1250; MAC ARTHUR ROBERT H., 1967; Marks I, 1987, FEARS PHOBIAS RITUAL; MARKS IM, 1994, ETHOL SOCIOBIOL, V15, P247, DOI 10.1016/0162-3095(94)90002-7; McGrath J, 1998, SCHIZOPHR RES, V29, P20, DOI 10.1016/S0920-9964(97)88340-5; McGuire MT, 1997, MALADAPTED MIND CLAS, P255; Mealey L, 2000, HUM NATURE-INT BIOS, V11, P105, DOI 10.1007/s12110-000-1005-3; Nesse R, 1998, BRIT J MED PSYCHOL, V71, P397, DOI 10.1111/j.2044-8341.1998.tb01000.x; Nesse R, 2005, HDB EVOLUTIONARY PSY, P903; NESSE R, 1994, WHY WE GET SICK NEW; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; RUSHTON JP, 1990, J PERS, V58, P117, DOI 10.1111/j.1467-6494.1990.tb00910.x; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Sheehan D.V., 1983, ANXIETY DIS; Silove D, 1998, PSYCHIATRY, V61, P181, DOI 10.1080/00332747.1998.11024830; SPIELBERGER CD, 1988, DICT BEHAV ASSESSMEN, P446; VALENSTEIN ES, 1998, BLAMING BRAIN TRUTH; Wakefield JC, 1997, BEHAV RES THER, V35, P633, DOI 10.1016/S0005-7967(97)00018-1; Wakefield JC, 2003, ADVANCING DSM: DILEMMAS IN PSYCHIATRIC DIAGNOSIS, P23; Weathers F., 1993, ANN CONV INT SOC TRA; Wilson E.O., 1975, P1; WOLPERT L, 1999, MALIGNANT SADNESS AN 43 7 7 2 6 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2009 7 1 28 39 12 Psychology, Experimental Psychology 453UM WOS:000266638400004 DOAJ Gold 2018-11-12 J Kirsner, BR; Figueredo, AJ; Jacobs, WJ Kirsner, Beth Randi; Figueredo, Aurelio Jose; Jacobs, W. Jake Structural Relations among Negative Affect, Mate Value, and Mating Effort EVOLUTIONARY PSYCHOLOGY English Article negative affect; mate value; mating effort; Life History Theory; depression; anxiety BECK DEPRESSION INVENTORY; LIFE-HISTORY STRATEGY; K-FACTOR; PERSONALITY; COVITALITY; MOOD; RISK; SELF We compared the ability of models based on evolutionary economic theory and Life History (LH) Theory to explain relations among self-reported negative affect, mate value, and mating effort. Method: Two hundred thirty-eight undergraduates provided multiple measures of these latent constructs, permitting us to test a priori predictions based on Kirsner, Figueredo, and Jacobs (2003). We compared the fit of the initial model to the fit of five alternative theory-driven models using nested model comparisons of Structural Equations Models. Rejecting less parsimonious and explanatory models eliminated the original model. Two equally parsimonious models explained the data pattern well. The first, based on evolutionary economic theory, specified that Negative Affect increases both Personal Mate Value and Mating Effort via the direct effects specified in the original model. The second, based on LH Theory, specified that Negative Affect, Personal Mate Value, and Mating Effort relate spuriously through a common latent construct, the LH Factor. The primary limitation of the present study is generalizability. We used self-reports taken from a young, university-based sample that included a spectrum of affective states. We cannot know how well these models generalize to an older population or to actual behavior. Both models predict the presence of a rich pattern of mate acquisition and retention behaviors, including an alarming set of behavioral tactics often not considered or targeted during treatment. Moreover, each model suggests a unique set of problems may arise after an effective intervention. We describe several ways to distinguish these models empirically. [Kirsner, Beth Randi] Kennesaw State Univ, Dept Psychol, Kennesaw, GA USA; [Figueredo, Aurelio Jose; Jacobs, W. Jake] Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA Kirsner, BR (reprint author), Kennesaw State Univ, Dept Psychol, Kennesaw, GA USA. bkirsner@kennesaw.edu; ajf@u.arizona.edu; wjj@u.arizona.edu Beck A. T., 1996, MANUAL BECK DEPRESSI; BUSS DM, 1988, ETHOL SOCIOBIOL, V9, P291, DOI 10.1016/0162-3095(88)90010-6; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; CONVERSE J, 1993, RESOURCE THEORY EXPL, P31; Dozois DJA, 1998, PSYCHOL ASSESSMENT, V10, P83, DOI 10.1037//1040-3590.10.2.83; EIBLEIBESFELDT I, 1970, ETHOLOGY BIOL BEHAV; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo A. J., 2007, MATING INTELLIGENCE, P335; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; FIGUEREDO AJ, 2009, HUMAN NATUR IN PRESS; FIGUEREDO AJ, 2007, REV MEXICANA PSICOLO, V6; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, PERS INDIV DIFFER, V41, P431, DOI 10.1016/j.paid.2006.02.004; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; GANGESTAD SW, 2000, BEHAV BRAIN SCI, V23, P473; GROSSCUP SJ, 1980, J CLIN PSYCHOL, V36, P252, DOI 10.1002/1097-4679(198001)36:1<252::AID-JCLP2270360131>3.0.CO;2-S; HUSTON TL, 1979, SOCIAL EXCHANGE DEV, P3, DOI DOI 10.1016/B978-0-12-143550-9.50007-0; James L. R, 1982, CAUSAL ANAL ASSUMPTI; JOHNSON JE, 1995, J CLIN PSYCHOL, V51, P532, DOI 10.1002/1097-4679(199507)51:4<532::AID-JCLP2270510410>3.0.CO;2-K; Kelly H. H., 1978, INTERPERSONAL RELATI; KENRICK DT, 1990, J PERS, V58, P97, DOI 10.1111/j.1467-6494.1990.tb00909.x; Kessler RC, 2005, ARCH GEN PSYCHIAT, V62, P593, DOI 10.1001/archpsyc.62.6.593; Kirsner BR, 2003, J AFFECT DISORDERS, V75, P131, DOI 10.1016/S0165-0327(02)00048-4; Lesure-Lester GE, 2001, COLL STUDENT J, V35, P317; MAC ARTHUR ROBERT H., 1967; McNeill KF, 1996, PSYCHOL REP, V79, P745, DOI 10.2466/pr0.1996.79.3.745; Miller G. F., 2000, MATING MIND SEXUAL C; Rowe DC, 1997, PERS INDIV DIFFER, V23, P105, DOI 10.1016/S0191-8869(97)00005-6; Sanders SA, 1999, JAMA-J AM MED ASSOC, V281, P275, DOI 10.1001/jama.281.3.275; Sefcek J. A., 2007, THESIS U ARIZONA; Smith HM, 2000, J CAREER ASSESSMENT, V8, P283, DOI 10.1177/106907270000800306; SPIELBERGER CD, 1970, MANUAL STATE TRAIT A; Thibaut J., 1959, SOCIAL PSYCHOL GROUP; Tooby J., 1992, ADAPTED MIND EVOLUTI, V163, P163, DOI DOI 10.1098/RSTB.2006.1991; WENNER C, 2009, THESIS U ARIZONA; WIDAMAN KF, 1985, APPL PSYCH MEAS, V9, P1, DOI 10.1177/014662168500900101; Yuen KSL, 2003, J AFFECT DISORDERS, V75, P11, DOI 10.1016/S0165-0327(02)00022-8 38 6 6 0 2 EVOLUTIONARY PSYCHOL DAVIE C/O TOOD K SHACKELFORD, DIR, FLORIDA ATLANTIC UNIV, DEPT PSYCHOL, 2912 COLLEGE AVE, DAVIE, FL 33314 USA 1474-7049 EVOL PSYCHOL Evol. Psychol. 2009 7 3 374 397 24 Psychology, Experimental Psychology 515SD WOS:000271492300004 DOAJ Gold 2018-11-12 B Cao, ZJ; Ye, J Sohn, S; Kwack, KD; Um, K; Lee, GY; Ko, F Cao, Zengjie; Ye, Jing Attention Savings and emoticons usage in BBS ICCIT: 2009 FOURTH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND CONVERGENCE INFORMATION TECHNOLOGY, VOLS 1 AND 2 English Proceedings Paper 4th International Conference on Computer Sciences and Convergence Information Technology NOV 24-26, 2009 Seoul, SOUTH KOREA IEEE emoticons; evolutionary psychology; attention savings; BBS COMPUTER-MEDIATED COMMUNICATION; LIFE-HISTORY THEORY; MESSAGE INTERPRETATION; ONLINE There are a lot of studies on the usage of emoticons, most of which investigate the differences between men and women in usage, but they ignored the common features of emoticons users. The purpose of this article is to solve this problem: is there any psychological motivation when people using emoticons? Firstly, we find the habits and characteristics of emoticons used in Chinese BBS, according to the Sina Forum which is one of the top ten Chinese BBS. Secondly, we discuss this problem by combing the communicative means of BBS and the characteristic of information society with the evolutionary psychology perspective and semeiology in computer-mediated communication (CMC). The results showed that the use of emoticons in BBS has obvious relationship with access and decoding way of emoticons. The easier it was decoded and acquired, the more frequently it was used. We conclude that attention savings is an important psychological motivation in using emoticons. [Cao, Zengjie; Ye, Jing] Zhejiang Univ Technol, Inst Informat & Commun, Hangzhou 310023, Zhejiang, Peoples R China Cao, ZJ (reprint author), Zhejiang Univ Technol, Inst Informat & Commun, Hangzhou 310023, Zhejiang, Peoples R China. caozj@126.com; yejinglamei888@yahoo.com.cn Androutsopoulos J, 2006, J SOCIOLING, V10, P419, DOI 10.1111/j.1467-9841.2006.00286.x; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Berghel H, 2003, COMMUN ACM, V46, P15, DOI 10.1145/859670.859687; Bjorklund DF, 2006, DEV REV, V26, P213, DOI 10.1016/j.dr.2006.02.007; BROMMER JE, 2000, BIOL REV CAMBRIDGE P, V75, P2000; Derks D, 2008, SOC SCI COMPUT REV, V26, P379, DOI 10.1177/0894439307311611; Derks D, 2008, CYBERPSYCHOL BEHAV, V11, P99, DOI 10.1089/cpb.2007.9926; Huang AH, 2008, INFORM MANAGE-AMSTER, V45, P466, DOI 10.1016/j.im.2008.07.001; Huffaker D. A., 2005, J COMPUTER MEDIATED, V10; LEI Z, 2009, W ATTENTION EC RES; LEI Z, 2007, EVOLUTIONARY PSYCHOL; Lo SK, 2008, CYBERPSYCHOL BEHAV, V11, P595, DOI 10.1089/cpb.2007.0132; Mirzoeff Nicolas, 1998, VISUAL CULTURE READE, P7; Nicoll MAC, 2006, J APPL ECOL, V43, P567, DOI 10.1111/j.1365-2664.2006.01165.x; ROBERT R, 2007, J LANG SOC PSYCHOL, V26, P299; Roff DA, 2007, NAT REV GENET, V8, P116, DOI 10.1038/nrg2040; Simon Herbert A., 1971, COMPUTERS COMMUNICAT, P40; TAKEUCHI A, 1993, P ACM IFIP INTERCHI, P187; WAKE WH, 2003, LIFE HIST EVOLUTION; WALTHER JB, 1992, COMMUN RES, V19, P52, DOI 10.1177/009365092019001003; Walther JB, 2001, SOC SCI COMPUT REV, V19, P324, DOI 10.1177/089443930101900307; Wolf A, 2000, CYBERPSYCHOL BEHAV, V3, P827, DOI 10.1089/10949310050191809 22 4 4 0 4 IEEE NEW YORK 345 E 47TH ST, NEW YORK, NY 10017 USA 978-1-4244-5244-6 2009 416 419 4 Computer Science, Artificial Intelligence; Computer Science, Hardware & Architecture; Computer Science, Information Systems; Computer Science, Software Engineering Computer Science BQC70 WOS:000280705700082 2018-11-12 J Hamel, S; Cote, SD; Gaillard, JM; Festa-Bianchet, M Hamel, Sandra; Cote, Steeve D.; Gaillard, Jean-Michel; Festa-Bianchet, Marco Individual variation in reproductive costs of reproduction: high-quality females always do better JOURNAL OF ANIMAL ECOLOGY English Article annual reproductive success; bighorn sheep; mountain goat; roe deer; weaning LIFE-HISTORY CONSEQUENCES; MOOSE ALCES-ALCES; EUROPEAN ROE DEER; RED DEER; CAPITAL BREEDER; BIGHORN EWES; MATERNAL CHARACTERISTICS; POPULATION-DYNAMICS; MOUNTAIN GOATS; SOCIAL RANK Although life-history theory predicts substantial costs of reproduction, individuals often show positive correlations among life-history traits, rather than trade-offs. The apparent absence of reproductive costs may result from heterogeneity in individual quality. Using detailed longitudinal data from three contrasted ungulate populations (mountain goats, Oreamnos americanus; bighorn sheep, Ovis canadensis; and roe deer, Capreolus capreolus), we assessed how individual quality affects the probability of detecting a cost of current reproduction on future reproduction for females. We used a composite measure of individual quality based on variations in longevity (all species), success in the last breeding opportunity before death (goats and sheep), adult mass (all species), and social rank (goats only). In all species, high-quality females consistently had a higher probability of reproduction, irrespective of previous reproductive status. In mountain goats, we detected a cost of reproduction only after accounting for differences in individual quality. Only low-quality female goats were less likely to reproduce following years of breeding than of nonbreeding. Offspring survival was lower in bighorn ewes following years of successful breeding than after years when no lamb was produced, but only for low-quality females, suggesting that a cost of reproduction only occurred for low-quality females. Because costs of reproduction differ among females, studies of life-history evolution must account for heterogeneity in individual quality. [Hamel, Sandra; Cote, Steeve D.] Univ Laval, Dept Biol, Quebec City, PQ G1V 0A6, Canada; [Gaillard, Jean-Michel] Univ Lyon 1, UMR 5558, Lab Biometrie & Biol Evolut, F-69622 Villeurbanne, France; [Festa-Bianchet, Marco] Univ Sherbrooke, Dept Biol, Sherbrooke, PQ J1K 2R1, Canada; [Festa-Bianchet, Marco] Univ Laval, Ctr Etudes Nord, Quebec City, PQ G1V 0A6, Canada Hamel, S (reprint author), Univ Laval, Dept Biol, 1045 Ave Med, Quebec City, PQ G1V 0A6, Canada. sandra.hamel@bio.ulaval.ca Gaillard, Jean-Michel/0000-0003-0174-8451; Festa-Bianchet, Marco/0000-0002-2352-3379 Alberta Fish and Wildlife Division; Natural Sciences and Engineering Research Council of Canada (NSERC); Rocky Mountain Goat Foundation; Alberta Conservation Association; Alberta Sports, Recreation, Parks and Wildlife Foundation (ASRPW); Alberta Wildlife Enhancement Fund; Universite de Sherbrooke; Universite Laval; Foundation for North American Wild Sheep; Office National de la Chasse; Centre National de la Recherche Scientifique; GICC2 research program The mountain goat research was financed by the Alberta Fish and Wildlife Division, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Rocky Mountain Goat Foundation, the Alberta Conservation Association, the Alberta Sports, Recreation, Parks and Wildlife Foundation (ASRPW), the Alberta Wildlife Enhancement Fund, the Universite de Sherbrooke, and Universite Laval. The bighorn sheep research was financed by NSERC, ASRPW, the Foundation for North American Wild Sheep, and the Universite de Sherbrooke. The roe deer research was financed by the Office National de la Chasse, the Centre National de la Recherche Scientifique, and the GICC2 research program. We thank the many biologists who assisted with fieldwork and M. Garel for help with NDVI data. Valuable comments from J. Taillon and two anonymous reviewers improved earlier versions of the manuscript. Adams KP, 1995, ALCES N AM, V31, P53; Andersen R, 2000, J ANIM ECOL, V69, P672, DOI 10.1046/j.1365-2656.2000.00425.x; BARRETTE C, 1986, BEHAVIOUR, V97, P118, DOI 10.1163/156853986X00342; Beauplet G, 2006, OIKOS, V112, P430, DOI 10.1111/j.0030-1299.2006.14412.x; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.2307/177240; Berube CH, 1996, BEHAV ECOL, V7, P60, DOI 10.1093/beheco/7.1.60; Bonnet X, 2002, ECOLOGY, V83, P2124, DOI 10.2307/3072044; BOYD IL, 1995, J ANIM ECOL, V64, P505, DOI 10.2307/5653; Burnham K. P., 2002, MODEL SELECTION MULT; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; CAMERON RD, 1994, J MAMMAL, V75, P10, DOI 10.2307/1382230; CATTELL RB, 1966, MULTIVAR BEHAV RES, V1, P245, DOI 10.1207/s15327906mbr0102_10; CluttonBrock TH, 1996, J ANIM ECOL, V65, P675, DOI 10.2307/5667; CLUTTONBROCK TH, 1983, J ANIM ECOL, V52, P367, DOI 10.2307/4560; CLUTTONBROCK TH, 1984, NATURE, V308, P358, DOI 10.1038/308358a0; Cote SD, 2001, OECOLOGIA, V127, P230, DOI 10.1007/s004420000584; Cote SD, 2001, ANIM BEHAV, V62, P173, DOI 10.1006/anbe.2001.1719; Doughty P, 1997, OECOLOGIA, V110, P508, DOI 10.1007/s004420050187; Festa-Bianchet M, 2003, J ANIM ECOL, V72, P640, DOI 10.1046/j.1365-2656.2003.00735.x; Festa-Bianchet M, 2004, BEHAV ECOL, V15, P305, DOI 10.1093/beheco/arh014; Festa-Bianchet M, 2000, BEHAV ECOL, V11, P633, DOI 10.1093/beheco/11.6.633; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; FESTABIANCHET M, 1995, ECOLOGY, V76, P871, DOI 10.2307/1939352; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gaillard JM, 2003, J WILDLIFE MANAGE, V67, P767, DOI 10.2307/3802684; Gaillard JM, 1998, ECOLOGY, V79, P2878, DOI 10.2307/176523; Gaillard JM, 2000, P ROY SOC B-BIOL SCI, V267, P471, DOI 10.1098/rspb.2000.1024; GOMENDIO M, 1990, NATURE, V343, P261, DOI 10.1038/343261a0; Goodman BA, 2006, J ZOOL, V270, P236, DOI 10.1111/j.1469-7998.2006.00129.x; Huber S, 1999, OECOLOGIA, V121, P19, DOI 10.1007/s004420050902; JORGENSON JT, 1993, CAN J ZOOL, V71, P2509, DOI 10.1139/z93-344; Keech MA, 2000, J WILDLIFE MANAGE, V64, P450, DOI 10.2307/3803243; Kojola I, 1997, ETHOLOGY, V103, P809; Littell R., 2002, SAS LINEAR MODELS; MASTELLER MA, 1988, CAN J ZOOL, V66, P2585, DOI 10.1139/z88-381; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Moyes K, 2006, OIKOS, V115, P241, DOI 10.1111/j.2006.0030-1299.15200.x; Pan W, 2001, BIOMETRICS, V57, P120, DOI 10.1111/j.0006-341X.2001.00120.x; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; Pomeroy PP, 1999, J ANIM ECOL, V68, P235, DOI 10.1046/j.1365-2656.1999.00281.x; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Shutler D, 2006, ECOLOGY, V87, P2938, DOI 10.1890/0012-9658(2006)87[2938:TARCAC]2.0.CO;2; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stewart KM, 2005, OECOLOGIA, V143, P85, DOI 10.1007/s00442-004-1785-y; Tavecchia G, 2005, J ANIM ECOL, V74, P201, DOI 10.1111/j.1365-2656.2005.00916.x; Testa JW, 2004, ECOLOGY, V85, P1439, DOI 10.1890/02-0671; Testa JW, 1998, J MAMMAL, V79, P1345, DOI 10.2307/1383026; Thomson DL, 2009, ENVIRON ECOL STAT SE, V3, P1, DOI 10.1007/978-0-387-78151-8; THOULESS CR, 1990, ANIM BEHAV, V40, P105, DOI 10.1016/S0003-3472(05)80669-4; Toigo C, 2002, ECOSCIENCE, V9, P427; Torok J, 2004, OECOLOGIA, V141, P432, DOI 10.1007/s00442-004-1667-3; Tucker CJ, 2005, INT J REMOTE SENS, V26, P4485, DOI 10.1080/01431160500168686; TUOMI J, 1983, AM ZOOL, V23, P25; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vorburger C, 2005, EVOLUTION, V59, P1006; Weladji RB, 2008, OECOLOGIA, V156, P237, DOI 10.1007/s00442-008-0961-x; Weladji RB, 2006, P ROY SOC B-BIOL SCI, V273, P1239, DOI 10.1098/rspb.2005.3393; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 61 124 124 3 106 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 2009 78 1 143 151 10.1111/j.1365-2656.2008.01459.x 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology 382QP WOS:000261620800017 18700872 Bronze 2018-11-12 J Morse, DH Morse, Douglass H. Post-reproductive changes in female crab spiders (Misumena vatia) exposed to a rich prey source JOURNAL OF ARACHNOLOGY English Article Dispersal; gain in mass; nest-guarding; semelparity; senescence PATCH-CHOICE DECISIONS; THOMISIDAE; ARANEAE; SUCCESS; SELECTION; EVOLUTION; PATTERNS; INSECTS; CAPTURE; NESTS Life history theory predicts that the intensity of selection will decline as individuals age; thus, adaptive traits should decrease during post-reproductive stages. To test this prediction, I measured several potential fitness variables in adult female crab spiders [Misumena vatia (Clerck 1757): Thomisidae]: maximum mass before laying, mass after laying, mass at release into hunting site, carapace width, and days since egg-laying upon A) daily rate of loss in mass after egg-laying while guarding a brood and 13) daily rate of gain in mass after release into a rich hunting site. These individuals were members of a normally semelparous population guarding their nests without feeding for 1-26 days past egg-laying. Rate of decline in mass of the spiders slowed significantly over time (P < 0.01), and large individuals lost mass relatively faster than smaller ones (P < 0.05), but no other tested variables affected their rate of loss in mass. However, none of the above-noted variables significantly affected their rate of gain in mass after release into the hunting site. None of these individuals likely produced a second brood. The scarcity of relationships among variables measured, especially those following release into the rich hunting site, is consistent with these individuals experiencing little or no direct selection for fitness-enhancing traits subsequent to egg-laying. The exceptions noted for the guarding period probably resulted directly from success at an earlier life stage. Brown Univ, Dept Ecol & Evolutionary Biol, Providence, RI 02912 USA Morse, DH (reprint author), Brown Univ, Dept Ecol & Evolutionary Biol, Box G-W, Providence, RI 02912 USA. d_morse@brown.edu National Science Foundation [IBN98-16692] This study was partially supported by the National Science Foundation (IBN98-16692). I thank K. J. Eckelbarger, T. E. Miller, L. Healy, and other staff members of the Darling Marine Center of the University of Maine for facilitating work on the premises. M. Tatar contributed valuable discussion, and two reviewers provided helpful comments. ANDERSON JF, 1970, COMP BIOCHEM PHYSIOL, V33, P51, DOI 10.1016/0010-406X(70)90483-4; ANDERSON JF, 1974, ECOLOGY, V55, P576, DOI 10.2307/1935148; FISHER R. A., 1930, GENETICAL THEORY NAT; FRITZ RS, 1985, OECOLOGIA, V65, P194, DOI 10.1007/BF00379217; Futami K, 2005, ETHOLOGY, V111, P1126, DOI 10.1111/j.1439-0310.2005.01126.x; Morse DH, 1996, EVOL ECOL, V10, P361, DOI 10.1007/BF01237723; MORSE DH, 1979, OECOLOGIA, V39, P309, DOI 10.1007/BF00345442; MORSE DH, 1988, BEHAVIOUR, V107, P297, DOI 10.1163/156853988X00395; MORSE DH, 1988, ECOLOGY, V69, P1970, DOI 10.2307/1941174; MORSE DH, 1987, J ARACHNOL, V15, P193; MORSE DH, 1994, J ARACHNOL, V22, P195; MORSE DH, 1992, ECOLOGY, V73, P1814, DOI 10.2307/1940032; MORSE DH, 1985, J ARACHNOL, V13, P383; MORSE DH, 1982, ECOLOGY, V63, P172, DOI 10.2307/1937042; MORSE DH, 2007, PREDATOR FLOWER; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; Roff Derek A., 1992; Schneider JM, 2003, EVOL ECOL RES, V5, P731; Smithe F.B, 1975, NATURALISTS COLOR GU; Sokal R.R., 1995, BIOMETRY; Stearns S. C., 1992, EVOLUTION LIFE HIST; TALLAMY DW, 1986, ANNU REV ENTOMOL, V31, P369, DOI 10.1146/annurev.en.31.010186.002101; Tallamy DW, 1999, ANIM BEHAV, V57, P727, DOI 10.1006/anbe.1998.1008; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLSON MF, 1997, USDA FOREST SERVICE, V498, P1 25 2 2 0 5 AMER ARACHNOLOGICAL SOC COLLEGE PARK UNIV MARYLAND, DEPT ENTOMOLOGY, 4112 PLANT SCIENCES BLDG, COLLEGE PARK, MD 20742-4454 USA 0161-8202 1937-2396 J ARACHNOL J. Arachnol. 2009 37 1 72 77 10.1636/SH07-145.1 6 Entomology Entomology 425VH WOS:000264665100008 2018-11-12 J Venable, DL; Rees, M Venable, D. Lawrence; Rees, Mark The scaling of seed size JOURNAL OF ECOLOGY English Letter adult body size; juvenile period; life-history theory; scaling; seed size TRADE-OFFS; PLANTS; STRATEGIES; ALLOMETRY; EVOLUTION; ECOLOGY; MASS 1. Rees & Venable (2007; Journal of Ecology, 95, 926-936) critically evaluated ideas of Moles et al. to explain the cross-species positive correlation between offspring size and adult size, arguing that they had misinterpreted the theoretical literature, and used cross-species patterns to constrain the evolution of life-histories. 2. In a reply to Rees & Venable, Westoby et al. (2009; Journal of Ecology, 97, 23-26) claimed we had misrepresented their views. Here we try to clarify the arguments indicating points of agreement and disagreement. 3. Using simple models we then extend the current theory to allow (i) the time during which seedling survival is influenced by seed mass to scale with the duration of the juvenile period and (ii) the intensity of stress experienced by seedlings to scale with adult size. These new models predict that species with long juvenile periods or large adult size will have larger seeds. 4. We synthesize the new theoretical ideas with our current understanding of the evolution of seed mass, and suggest that much of the observed increase in seed mass with adult body size may be due to constraints correlated with adult body size. [Venable, D. Lawrence] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA; [Rees, Mark] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England Venable, DL (reprint author), Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. venable@email.arizona.edu Natural Environment Research Council [NER/A/S/2002/00940/2] Aarssen LW, 2005, OIKOS, V111, P199, DOI 10.1111/j.0030-1299.2005.14206.x; Brouat C, 1998, NEW PHYTOL, V139, P459, DOI 10.1046/j.1469-8137.1998.00209.x; Charnov Eric L., 1993, P1; Cornelissen JHC, 1999, OECOLOGIA, V118, P248, DOI 10.1007/s004420050725; FALSTER DS, 2008, AM NATURALIST, V172; Grime J. P., 2002, PLANT STRATEGIES VEG; Grubb PJ, 2005, SCIENCE, V310, p783A, DOI 10.1126/science.1116097; LEISHMAN MR, 1992, J ECOL, V80, P417, DOI 10.2307/2260687; Moles AT, 2004, J ECOL, V92, P384, DOI 10.1111/j.0022-0477.2004.00880.x; Moles AT, 2005, P NATL ACAD SCI USA, V102, P10540, DOI 10.1073/pnas.0501473102; Nee S, 2005, SCIENCE, V309, P1236, DOI 10.1126/science.1114488; Nee S, 2006, SCIENCE, V312, DOI 10.1126/science.1121675; REES M, 1994, AM NAT, V144, P43, DOI 10.1086/285660; Rees M, 1997, OIKOS, V78, P116, DOI 10.2307/3545807; REES M, 1993, NATURE, V366, P150, DOI 10.1038/366150a0; Rees M, 1996, PHILOS T ROY SOC B, V351, P1299, DOI 10.1098/rstb.1996.0113; Rees M, 2007, J ECOL, V95, P926, DOI 10.1111/j.1365-2745.2007.01277.x; Salisbury EJ, 1942, REPROD CAPACITY PLAN; Savage VM, 2006, SCIENCE, V312, p198B, DOI 10.1126/science.1123679; SHIPLEY B, 1989, J ECOL, V77, P1093, DOI 10.2307/2260825; VENABLE DL, 1992, AM NAT, V140, P287, DOI 10.1086/285413; Westoby M, 2009, J ECOL, V97, P23, DOI 10.1111/j.1365-2745.2008.01396.x 22 20 22 2 49 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-0477 1365-2745 J ECOL J. Ecol. JAN 2009 97 1 27 31 10.1111/j.1365-2745.2008.01461.x 5 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology 383PB WOS:000261684400006 Bronze 2018-11-12 J Koehler, N; Chisholm, JS Koehler, Nicole; Chisholm, James S. Early Psychosocial Stress Affects Men's Relationship Length JOURNAL OF SEX RESEARCH English Article ADVERSE CHILDHOOD EXPERIENCES; SEXUAL-ABUSE; HOUSEHOLD DYSFUNCTION; CASUAL SEX; EVOLUTIONARY PERSPECTIVE; REPRODUCTIVE DEVELOPMENT; GENDER DIFFERENCES; PARENTAL DIVORCE; GENETIC BENEFITS; PHYSICAL ABUSE Life history theory predicts that the optimal reproductive strategy for individuals in risky and uncertain environments (subjectively experienced as early psychosocial stress) is to maximize current reproduction to minimize the chances of lineage extinction. Having many short-term relationships and many lifetime sex partners are ways to maximize current reproduction, but they come at a cost (e.g., decreased resources for future reproduction, decreased desirability as a future mate, etc.). This study, therefore, examined whether sexually active individuals with high levels of early psychosocial stress report more terminated short-term relationships, a shorter relationship length with their current partner, and more lifetime sex partners than those with less early psychosocial stress. Early psychosocial stress in men was associated with more terminated short-term relationships and a greater number of lifetime sex partners, but not with current relationship length; in women, high early psychosocial stress was associated with shorter current relationship length but not with the number of terminated short-term relationships or number of lifetime sex partners. Results are discussed from the perspective of life history theory and gender differences in preferences for short- and long-term relationships. [Koehler, Nicole; Chisholm, James S.] Univ Western Australia, Sch Anat & Human Biol, Crawley, WA 6009, Australia Koehler, N (reprint author), Univ Western Australia, Sch Anat & Human Biol, Mail Bag Delivery Point M309,35 Stirling Highway, Crawley, WA 6009, Australia. Nicole.Koehler@uwa.edu.au Anda RF, 2002, OBSTET GYNECOL, V100, P37, DOI 10.1016/S0029-7844(02)02063-X; BAGLEY C, 1986, J SOCIAL WORK HUMAN, V4, P33, DOI DOI 10.1300/J291V04N01_; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bereczkei T, 1996, HUM NATURE-INT BIOS, V7, P257, DOI 10.1007/BF02733397; BOWLBY J, 1979, MAKING BREAKING AFFE; Bowlby J, 1980, ATTACHMENT LOSS, V3; BRIBIESCAS RG, 2001, REPROD ECOLOGY HUMAN, P107; Bumpass LL, 1972, AM SOCIOL REV, V37, P754, DOI DOI 10.2307/2093585; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; CHARA PJ, 1994, PSYCHOL REP, V74, P57, DOI 10.2466/pr0.1994.74.1.57; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Clark R. D., 1989, J PSYCHOL HUMAN SEXU, V2, P39, DOI DOI 10.1300/J056V02N01_; CLARK RD, 1990, J APPL SOC PSYCHOL, V20, P771, DOI 10.1111/j.1559-1816.1990.tb00437.x; CLUTTONBROCK TH, 1992, Q REV BIOL, V67, P437, DOI 10.1086/417793; DARLING CA, 1986, ADOLESCENCE, V21, P403; Dietz PH, 1999, JAMA-J AM MED ASSOC, V282, P1359, DOI 10.1001/jama.282.14.1359; Dong M, 2003, CHILD ABUSE NEGLECT, V27, P625, DOI 10.1016/S0145-2134(03)00105-4; Dong MX, 2004, CHILD ABUSE NEGLECT, V28, P771, DOI 10.1016/j.chiabu.2004.01.008; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; DUNCAN B, 1969, SOC PROBL, V16, P273, DOI 10.1525/sp.1969.16.3.03a00020; EINON D, 1994, ETHOL SOCIOBIOL, V15, P131, DOI 10.1016/0162-3095(94)90036-1; Felitti VJ, 1998, AM J PREV MED, V14, P245, DOI 10.1016/S0749-3797(98)00017-8; Fleming J, 1999, CHILD ABUSE NEGLECT, V23, P145, DOI 10.1016/S0145-2134(98)00118-5; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Geary DC, 2004, J SEX RES, V41, P27, DOI 10.1080/00224490409552211; GLENN ND, 1987, J MARRIAGE FAM, V49, P811, DOI 10.2307/351974; Henderson AJZ, 1997, J FAM VIOLENCE, V12, P169, DOI 10.1023/A:1022836711637; Hrdy S. B., 1981, WOMAN NEVER EVOLVED; Hrdy Sarah Blaffer, 2000, MOTHER NATURE MATERN; Jang SA, 2002, COMMUN MONOGR, V69, P236, DOI 10.1080/03637750216543; Jennions MD, 2000, BIOL REV, V75, P21, DOI 10.1017/S0006323199005423; KEITH VM, 1988, J MARRIAGE FAM, V50, P797, DOI 10.2307/352648; Kempenaers B, 1999, BEHAV ECOL, V10, P304, DOI 10.1093/beheco/10.3.304; KENDALLTACKETT KA, 1993, PSYCHOL BULL, V113, P164, DOI 10.1037/0033-2909.113.1.164; KENRICK DT, 1990, J PERS, V58, P97, DOI 10.1111/j.1467-6494.1990.tb00909.x; KENRICK DT, 1993, J PERS SOC PSYCHOL, V64, P951, DOI 10.1037//0022-3514.64.6.951; Kim K, 1998, INT J BEHAV DEV, V22, P729, DOI 10.1080/016502598384144; Kim K, 1998, J ADOLESCENCE, V21, P231, DOI 10.1006/jado.1998.0149; KIRKPATRICK LA, 1994, J PERS SOC PSYCHOL, V66, P502, DOI 10.1037//0022-3514.66.3.502; LANCASTER JB, 1997, FEMINISM EVOLUTIONAR, P466; Luster T, 1997, FAM PLANN PERSPECT, V29, P204, DOI 10.2307/2953396; Mason WA, 1998, CHILD ABUSE NEGLECT, V22, P987, DOI 10.1016/S0145-2134(98)00080-5; MCLANAHAN S, 1988, AM J SOCIOL, V94, P130, DOI 10.1086/228954; Mikach SM, 1999, EVOL HUM BEHAV, V20, P141, DOI 10.1016/S1090-5138(98)00045-2; MUELLER CW, 1977, J MARRIAGE FAM, V39, P83, DOI 10.2307/351064; MULLEN PE, 1988, LANCET, V1, P841; MULLEN PE, 1994, BRIT J PSYCHIAT, V165, P35, DOI 10.1192/bjp.165.1.35; OLIVER MB, 1993, PSYCHOL BULL, V114, P29, DOI 10.1037/0033-2909.114.1.29; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Siegel DM, 1999, J ADOLESCENT HEALTH, V25, P336, DOI 10.1016/S1054-139X(99)00054-3; Small M F, 1992, Hum Nat, V3, P133, DOI 10.1007/BF02692250; Smith RL, 1984, SPERM COMPETITION EV; SMUTS B, 1995, HUM NATURE-INT BIOS, V6, P1, DOI 10.1007/BF02734133; Smuts B, 1992, Hum Nat, V3, P1, DOI 10.1007/BF02692265; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stearns S. C., 2000, EVOLUTION INTRO; Surbey MK, 2000, HUM NATURE-INT BIOS, V11, P367, DOI 10.1007/s12110-000-1008-0; Symons D., 1979, EVOLUTION HUMAN SEXU; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Wiederman MW, 1998, EVOL HUM BEHAV, V19, P153, DOI 10.1016/S1090-5138(98)00006-3; Williams G. C., 1975, SEX EVOLUTION; Williams GC, 1966, ADAPTATION NATURAL S; Wolfinger NH, 2003, SOC SCI RES, V32, P80, DOI 10.1016/S0049-089X(02)00014-5; Yasui Y, 1998, TRENDS ECOL EVOL, V13, P246, DOI 10.1016/S0169-5347(98)01383-4 65 5 5 0 5 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND 0022-4499 J SEX RES J. Sex Res. 2009 46 4 366 374 PII 909140321 10.1080/00224490902773996 9 Psychology, Clinical; Social Sciences, Interdisciplinary Psychology; Social Sciences - Other Topics 480AR WOS:000268704500015 19253135 2018-11-12 S Vitzthum, VJ Sussman, RW Vitzthum, Virginia J. The Ecology and Evolutionary Endocrinology of Reproduction in the Human Female YEARBOOK OF PHYSICAL ANTHROPOLOGY, VOL 52 Yearbook of Physical Anthropology English Article; Book Chapter life history theory; reproductive ecology; ovarian functioning; fecundity; adaptation MENSTRUAL-CYCLE LENGTH; BREAST-CANCER RISK; FOLLICLE-STIMULATING-HORMONE; POLYCYSTIC-OVARY-SYNDROME; EARLY-PREGNANCY LOSS; DRIED BLOOD SPOTS; SALIVARY PROGESTERONE PROFILES; PROSPECTIVE-STUDY AGGREGATE; GENE CYP17 POLYMORPHISM; IN-VITRO FERTILIZATION Human reproductive ecology (HRE) is the study of the mechanisms that link variation in reproductive traits with variation in local habitats. Empirical and theoretical contributions from biological anthropology, physiology, and demography have established the foundation necessary for developing a comprehensive understanding, grounded in life history theory (LHT), of temporal, individual, and populational variation in women's reproductive functioning. LHT posits that natural selection leads to the evolution of mechanisms that tend to allocate resources to the competing demands of growth, reproduction, and survival such that fitness is locally maximized. (That is, among alternative allocation patterns exhibited in a population, those having the highest inclusive fitness will become more common over generational time.) Hence, strategic modulation of reproductive effort is potentially adaptive because investment in a new conception may risk one's own survival, future reproductive opportunities, and/or current offspring survival. The hypothalamic-pituitary-ovarian (HPO) axis is the principal neuroendocrine pathway by which the human female modulates reproductive functioning according to the changing conditions in her habitat. Adjustments of reproductive investment in a potential conception are manifested in temporal and individual variation in ovarian cycle length, ovulation, hormone levels, and the probability of conception. Understanding the extent and causes of adaptive and non-adaptive variation in ovarian functioning is fundamental to ascertaining the proximate and remote determinants of human reproductive patterns. In this review I consider what is known and what still needs to be learned of the ecology of women's reproductive biology, beginning with a discussion of the principal explanatory frameworks in HRE and the biometry of ovarian functioning. Turning next to empirical studies, it is evident that marked variation between cycles, women, and populations is the norm rather than an aberration. Other than woman's age, the determinants of these differences are not well characterized, although developmental conditions, dietary practices, genetic variation, and epigenetic mechanisms have all been hypothesized to play some role. It is also evident that the reproductive functioning of women born and living in arduous conditions is not analogous to that of athletes, dieters, or even the lower end of the "normal range" of HPO functioning in wealthier populations. Contrary to the presumption that humans have low fecundity and an inefficient reproductive system, both theory and present evidence suggest that we may actually have very high fecundity and a reproductive system that has evolved to be flexible, ruthlessly efficient and, most importantly, strategic. Yrbk Phys Anthropol 52:95-136, 2009. (C) 2009 Wiley-Liss, Inc. [Vitzthum, Virginia J.] Indiana Univ, Dept Anthropol, Bloomington, IN 47405 USA; [Vitzthum, Virginia J.] Indiana Univ, Kinsey Inst Res Sex Gender & Reprod, Bloomington, IN 47405 USA; [Vitzthum, Virginia J.] Indiana Univ, Ctr Integrat Study Anim Behav, Bloomington, IN 47405 USA; [Vitzthum, Virginia J.] Indiana Univ, Dept Gender Studies, Bloomington, IN 47405 USA Vitzthum, VJ (reprint author), Indiana Univ, Kinsey Inst, Morrison Hall 302,1165 E 3rd St, Bloomington, IN 47405 USA. vitzthum@indiana.edu Ahlgren M, 2004, NEW ENGL J MED, V351, P1619, DOI 10.1056/NEJMoa040576; Allen E, 1933, AM J OBSTET GYNECOL, V25, P705; Alliende ME, 2002, FERTIL STERIL, V78, P90, DOI 10.1016/S0015-0282(02)03167-9; Alvarado G, 1988, Ginecol Obstet Mex, V56, P127; ALVAREZSANCHEZ F, 1981, FERTIL STERIL, V36, P606; Anestis SF, 2009, AM J PRIMATOL, V71, P130, DOI 10.1002/ajp.20631; [Anonymous], 1981, Stud Fam Plann, V12, P3; [Anonymous], 1983, Fertil Steril, V40, P773; [Anonymous], 1983, Fertil Steril, V39, P647; [Anonymous], 1980, Am J Obstet Gynecol, V138, P383; APTER D, 1983, J CLIN ENDOCR METAB, V57, P82, DOI 10.1210/jcem-57-1-82; Apter D, 1997, ANN NY ACAD SCI, V816, P9, DOI 10.1111/j.1749-6632.1997.tb52125.x; APTER D, 1989, INT J CANCER, V44, P783, DOI 10.1002/ijc.2910440506; Arey LB, 1939, AM J OBSTET GYNECOL, V37, P12; ARMSTRONG B, 1975, INT J CANCER, V15, P617, DOI 10.1002/ijc.2910150411; BAGGA D, 1995, CANCER, V76, P2491, DOI 10.1002/1097-0142(19951215)76:12<2491::AID-CNCR2820761213>3.0.CO;2-R; Baghaei F, 2003, OBES RES, V11, P578, DOI 10.1038/oby.2003.81; BAILEY J, 1970, J BIOSOC SCI, V2, P123; BAILEY RC, 1992, J BIOSOC SCI, V24, P393; Baird DD, 2003, BIOL REPROD, V68, P448, DOI 10.1095/biolreprod.102.008425; BAIRD DD, 1991, STAT MED, V10, P255, DOI 10.1002/sim.4780100209; BAKER PT, 1978, 14 CAMBR U; BAKER PT, 1976, MAN ANDES MULTIDISCI; BarkerGibb ML, 1996, NEUROENDOCRINOLOGY, V64, P194, DOI 10.1159/000127118; BARR SI, 1994, AM J CLIN NUTR, V60, P887; Barron Mary Lee, 2005, MCN Am J Matern Child Nurs, V30, P290, DOI 10.1097/00005721-200509000-00004; Beall CM, 2004, P NATL ACAD SCI USA, V101, P14300, DOI 10.1073/pnas.0405949101; BELSEY E M, 1991, Advances in Contraception, V7, P257, DOI 10.1007/BF01849416; BELSEY EM, 1988, CONTRACEPTION, V38, P227, DOI 10.1016/0010-7824(88)90040-6; BELSEY EM, 1988, CONTRACEPTION, V38, P243, DOI 10.1016/0010-7824(88)90041-8; Belsey EM, 1997, CONTRACEPTION, V55, P57, DOI 10.1016/S0010-7824(96)00273-9; BELSEY MA, 1976, B WORLD HEALTH ORGAN, V54, P319; BERNSTEIN L, 1990, CANCER CAUSE CONTROL, V1, P51, DOI 10.1007/BF00053183; BERNSTEIN L, 1991, CANCER CAUSE CONTROL, V2, P221, DOI 10.1007/BF00052137; Bird A, 2007, NATURE, V447, P396, DOI 10.1038/nature05913; BISHOP MWH, 1964, J REPROD FERTIL, V7, P383; BOAS F, 1911, CHANGES BODILY FORM; BOGIN B, 1999, PATTERNS HUMAN GROWT, P455; BONGAARTS J, 1980, SCIENCE, V208, P564, DOI 10.1126/science.7367878; BONGAARTS J, 1979, NATURAL FERTILITY, P107; BONGAARTS J, 1983, FERTILITY BIOL BEHAV; BORGERHOFF M, 2000, EVOL HUM BEHAV, V21, P391, DOI DOI 10.1016/S1090-5138(00)00054-4); Bribiescas RG, 2001, AM J PHYS ANTHROPOL, V115, P297, DOI 10.1002/ajpa.1085; Brindle E, 2006, CLIN BIOCHEM, V39, P1071, DOI 10.1016/j.clinbiochem.2006.08.009; BROOKSGUNN J, 1985, PSYCHOSOM MED, V47, P363, DOI 10.1097/00006842-198507000-00006; BROOM TJ, 1981, FERTIL STERIL, V36, P194; Burkhart MC, 1999, CONTRACEPTION, V59, P271, DOI 10.1016/S0010-7824(99)00030-X; Cameron J L, 1996, Rev Reprod, V1, P117; CAMERON N, 1976, ANN HUM BIOL, V3, P279, DOI 10.1080/03014467600001451; Campbell KL, 2006, PAEDIATR PERINAT EP, V20, P13, DOI 10.1111/j.1365-3016.2006.00766.x; CAMPBELL KL, 1994, ANN NY ACAD SCI, V709, P312, DOI 10.1111/j.1749-6632.1994.tb30419.x; CAMPBELL KL, 1994, ANN NY ACAD SCI, V709; CAMPBELL KL, 1988, NATURAL HUMAN FERTIL, P39; CARO TM, 1987, ETHOL SOCIOBIOL, V8, P61, DOI 10.1016/0162-3095(87)90058-6; CAULEY JA, 1991, AM J EPIDEMIOL, V133, P50, DOI 10.1093/oxfordjournals.aje.a115801; Charnov EL, 2001, EVOL ECOL RES, V3, P521; Charnov Eric L., 1993, P1; Chatterton RT, 2006, FERTIL STERIL, V86, P723, DOI 10.1016/j.fertnstert.2006.01.034; CHIAZZE L, 1968, J AMER MED ASSOC, V203, P377, DOI 10.1001/jama.203.6.377; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Cho EY, 2003, JNCI-J NATL CANCER I, V95, P1079, DOI 10.1093/jnci/95.14.1079; CLUTTONBROCK TH, 1979, PROC R SOC SER B-BIO, V205, P547, DOI 10.1098/rspb.1979.0084; Cole TJ, 2003, ECON HUM BIOL, V1, P161, DOI 10.1016/S1570-677X(02)00033-3; COLLET M, 1988, INT J GYNECOL OBSTET, V26, P423, DOI 10.1016/0020-7292(88)90340-2; COLLETT ME, 1954, FERTIL STERIL, V5, P437; COLLINS W P, 1985, Advances in Contraception, V1, P279, DOI 10.1007/BF01849303; Cooper GS, 1996, EPIDEMIOLOGY, V7, P624, DOI 10.1097/00001648-199611000-00010; CREFF AF, 1982, FEMME SPORT, P41; Creinin MD, 2004, CONTRACEPTION, V70, P289, DOI 10.1016/j.contraception.2004.04.012; CSAPO AI, 1972, AM J OBSTET GYNECOL, V112, P1061, DOI 10.1016/0002-9378(72)90181-0; CSEMICZKY G, 1995, J ASSIST REPROD GEN, V12, P683, DOI 10.1007/BF02212893; CUMMING DC, 1994, ANN NY ACAD SCI, V709, P55, DOI 10.1111/j.1749-6632.1994.tb30388.x; DABBS JM, 1995, CLIN CHEM, V41, P1581; Daneshmand S, 2002, FERTIL STERIL, V77, P274, DOI 10.1016/S0015-0282(01)02999-5; DANUTRA V, 1989, J ENDOCRINOL, V121, P375, DOI 10.1677/joe.0.1210375; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; DATTA N, 1960, POPUL REV, V4, P46; DATTA N, 1957, J FAM WELFARE, V5, P14; DAVIS K, 1956, ECON DEV CULT CHANGE, V4, P211, DOI 10.1086/449714; De Souza MJ, 2003, MED SCI SPORT EXER, V35, P1553, DOI 10.1249/01.MSS.0000084530.31478.DF; DECHERNEY AH, 1982, FERTIL STERIL, V37, P323; deSantos JRRM, 1997, J PSYCHOSOM OBST GYN, V18, P175, DOI 10.3109/01674829709085584; DESCARTES R, 1647, DESCRIPTION HUMAN BO; DEWAARD F, 1988, INT J CANCER, V41, P666, DOI 10.1002/ijc.2910410505; Diamanti-Kandarakis E, 2000, FERTIL STERIL, V73, P735, DOI 10.1016/S0015-0282(99)00628-7; DICKINSON LE, 1974, NEW ENGL J MED, V291, P1211, DOI 10.1056/NEJM197412052912302; Dorgan JF, 2003, J NATL CANCER I, V95, P132, DOI 10.1093/jnci/95.2.132; DORING GK, 1969, J REPROD FERT S, V6, P77; Duncan Alison M, 2004, AACN Clin Issues, V15, P119, DOI 10.1097/00044067-200401000-00011; Dunson DB, 1999, HUM REPROD, V14, P1835, DOI 10.1093/humrep/14.7.1835; Dunson DB, 2002, HUM REPROD, V17, P1399, DOI 10.1093/humrep/17.5.1399; Ecochard R, 2001, BRIT J OBSTET GYNAEC, V108, P822, DOI 10.1111/j.1471-0528.2001.00194.x; Ecochard R, 2000, HUM REPROD, V15, P752, DOI 10.1093/humrep/15.4.752; EFRON B, 1983, AM STAT, V37, P36, DOI 10.2307/2685844; Efron B., 1986, STAT SCI, V1, P54, DOI DOI 10.1214/SS/1177013815; Egger G, 2004, NATURE, V429, P457, DOI 10.1038/nature02625; ELFORD J, 1994, HIMALAYAN BUDDHIST V, P331; Elias SG, 2005, HUM REPROD, V20, P2483, DOI 10.1093/humrep/dei090; Ellison PT, 2007, AM J PHYS ANTHROPOL, V134, P513, DOI 10.1002/ajpa.20698; ELLISON PT, 1986, AM J OBSTET GYNECOL, V154, P1000, DOI 10.1016/0002-9378(86)90737-4; ELLISON PT, 1982, HUM BIOL, V54, P269; ELLISON PT, 1988, YEARB PHYS ANTHROPOL, V31, P115; Ellison PT, 1996, AM J HUM BIOL, V8, P725, DOI 10.1002/(SICI)1520-6300(1996)8:6<725::AID-AJHB4>3.0.CO;2-S; ELLISON PT, 1993, LANCET, V342, P433, DOI 10.1016/0140-6736(93)92845-K; ELLISON PT, 1981, AM J PHYS ANTHROPOL, V54, P337, DOI 10.1002/ajpa.1330540306; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; ELLISON PT, 1993, HUM REPROD, V8, P2248, DOI 10.1093/oxfordjournals.humrep.a138015; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; ELLISON PT, 1994, ANNU REV ANTHROPOL, V23, P255, DOI 10.1146/annurev.anthro.23.1.255; ELLISON PT, 1989, AM J PHYS ANTHROPOL, V78, P519, DOI 10.1002/ajpa.1330780407; ELLISON PT, 1986, HUM BIOL, V58, P473; Ellison PT, 2001, REPROD ECOLOGY HUMAN; ELLISON PT, 1996, VARIABILITY HUMAN FE, P69; Ericksen K, 1996, SOC SCI MED, V42, P209, DOI 10.1016/0277-9536(95)00087-9; Escudero F, 1996, INT J GYNECOL OBSTET, V55, P49, DOI 10.1016/0020-7292(96)02697-5; EVELETH PB, 1990, WORLD VARIATION HUMA; Falk RT, 1999, CANCER EPIDEM BIOMAR, V8, P567; Falk RT, 2002, BRIT J CANCER, V87, P54, DOI 10.1038/sj.bjc.6600339; Fears TR, 2000, CANCER EPIDEM BIOMAR, V9, P403; Fehring RJ, 2006, JOGNN-J OBST GYN NEO, V35, P376, DOI 10.1111/j.1552-6909.2006.00051.x; Feigelson HS, 1999, CANCER RES, V59, P3908; Feigelson HS, 1998, CANCER RES, V58, P585; Ferin M, 1999, J CLIN ENDOCR METAB, V84, P1768, DOI 10.1210/jc.84.6.1768; Ferrell RJ, 2007, MENOPAUSE, V14, P29, DOI 10.1097/01.gme.0000227859.50473.20; Ferrell RJ, 2006, FERTIL STERIL, V86, P619, DOI 10.1016/j.fertnstert.2006.01.045; Ferrell RJ, 2005, MENOPAUSE, V12, P567, DOI 10.1097/01.gme.0000172265.40196.86; FISHER RA, 1930, GENETICAL THEORY NAT, P272; FITZGERALD CT, 1994, BRIT J OBSTET GYNAEC, V101, P229, DOI 10.1111/j.1471-0528.1994.tb13115.x; Fluhmann CF, 1934, AM J OBSTET GYNECOL, V27, P73, DOI 10.1016/S0002-9378(34)90900-5; Flynn A M, 1988, Int J Fertil, V33 Suppl, P17; FOSTER A, 1986, SOC BIOL, V33, P183; FOSTER FP, 1889, NEW YORK MJ, V49, P610; Fraga MF, 2005, P NATL ACAD SCI USA, V102, P10604, DOI 10.1073/pnas.0500398102; FRANCE JT, 1992, INT J FERTIL, V37, P244; FRISCH RE, 1971, ARCH DIS CHILD, V46, P695, DOI 10.1136/adc.46.249.695; FRISCH RE, 1974, SCIENCE, V185, P949, DOI 10.1126/science.185.4155.949; FRISCH RE, 1970, SCIENCE, V169, P397, DOI 10.1126/science.169.3943.397; FRISCH RE, 1978, SCIENCE, V199, P22, DOI 10.1126/science.199.4324.22; FRISCH RE, 1971, HUM BIOL, V43, P140; Gaasenbeek M, 2004, J CLIN ENDOCR METAB, V89, P2408, DOI 10.1210/jc.2003-031640; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gail MH, 1996, CANCER EPIDEM BIOMAR, V5, P835; Gann PH, 2003, CANCER-AM CANCER SOC, V98, P1870, DOI 10.1002/cncr.11735; Gann PH, 2001, CANCER EPIDEM BIOMAR, V10, P59; Garcia-Closas M, 2002, INT J CANCER, V102, P172, DOI 10.1002/ijc.10651; Geronimus AT, 2004, BRIT MED BULL, V69, P155, DOI 10.1093/bmb/ldh019; Geronimus AT, 1999, SOC SCI MED, V49, P1623, DOI 10.1016/S0277-9536(99)00246-4; GINSBURG F, 1991, ANNU REV ANTHROPOL, V20, P311; GOLDSTEIN MC, 1983, AM ANTHROPOL, V85, P28, DOI 10.1525/aa.1983.85.1.02a00020; GOLDSTEIN MC, 1984, AM ANTHROPOL, V86, P419, DOI 10.1525/aa.1984.86.2.02a00260; GOLDSTEIN MC, 1984, AM ANTHROPOL, V86, P703; GONEN Y, 1989, FERTIL STERIL, V52, P446; Gonzalez GF, 2002, J ENDOCRINOL, V173, P95, DOI 10.1677/joe.0.1730095; Goodman LR, 2005, CURR OPIN OBSTET GYN, V17, P466, DOI 10.1097/01.gco.0000179262.07720.ae; Gorrindo T, 2007, MENOPAUSE, V14, P74, DOI 10.1097/01.gme.0000227853.19979.7f; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; Groschl M, 2008, CLIN CHEM, V54, P1759, DOI 10.1373/clinchem.2008.108910; Groschl M, 2001, STEROIDS, V66, P737, DOI 10.1016/S0039-128X(01)00111-8; GUNN DL, 1937, J OBSTET GYN BR COMM, V44, P839; HAGERTY MA, 1988, AM J CLIN NUTR, V47, P653; HAIG D, 1990, AM NAT, V136, P550, DOI 10.1086/285113; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; HAIG D, 1999, EVOLUTION HLTH DIS; Haiman CA, 2000, INT J CANCER, V87, P204, DOI 10.1002/1097-0215(20000715)87:2<204::AID-IJC8>3.0.CO;2-3; Haiman CA, 2002, BRIT J CANCER, V86, P367, DOI 10.1038/sj/bjc/6600098; Haman JO, 1942, AM J OBSTET GYNECOL, V43, P870, DOI 10.1016/S0002-9378(42)90968-2; HANKINSON SE, 1994, CANCER EPIDEM BIOMAR, V3, P51; HARLOW SD, 1991, AM J EPIDEMIOL, V133, P38, DOI 10.1093/oxfordjournals.aje.a115800; Harlow SD, 2000, HUM REPROD, V15, P11, DOI 10.1093/humrep/15.1.11; HARVIE M, 2001, BMJ-BRIT MED J, P586; Heijmans BT, 2008, P NATL ACAD SCI USA, V105, P17046, DOI 10.1073/pnas.0806560105; Hellhammer J, 2007, PSYCHONEUROENDOCRINO, V32, P80, DOI 10.1016/j.psyneuen.2006.10.005; HENRY L, 1961, EUGEN QUART, V8, P81, DOI 10.1080/19485565.1961.9987465; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; HILL K, 1996, ACHE LIFE ESTORY ECO, P561; HILL PB, 1986, AM J CLIN NUTR, V43, P37; Holman D. J., 1996, THESIS PENNSYLVANIA; Holman DJ, 2000, STUD PROFERLIT, V9, P123; HOLMAN DJ, 2001, REPROD ECOLOGY HUMAN, P15; Holmes MD, 2004, BREAST CANCER RES, V6, P170, DOI 10.1186/bcr909; Hong CC, 2004, BREAST CANCER RES TR, V88, P217, DOI 10.1007/s10549-004-0780-7; Howell N., 1979, DEMOGRAPHY DOBE KUNG; HUFFMAN SL, 1978, SCIENCE, V200, P1155, DOI 10.1126/science.653359; HUFFMAN SL, 1978, POP STUD-J DEMOG, V32, P251, DOI 10.2307/2173560; Islam MM, 2004, J BIOSOC SCI, V36, P351; Jablonka E, 2002, ANN NY ACAD SCI, V981, P82; JACOB F, 1977, SCIENCE, V196, P1161, DOI 10.1126/science.860134; Jaenisch R, 2003, NAT GENET, V33, P245, DOI 10.1038/ng1089; Jasienska G, 2001, BRIT MED J, V322, P586, DOI 10.1136/bmj.322.7286.586; Jasienska G, 1998, P ROY SOC B-BIOL SCI, V265, P1847, DOI 10.1098/rspb.1998.0511; JASIENSKA G, 2001, REPROD ECOLOGY HUMAN, P59; Jasienska G, 2006, CANCER EPIDEM BIOMAR, V15, P2131, DOI 10.1158/1055-9965.EPI-06-0450; Jasienska G, 2006, P NATL ACAD SCI USA, V103, P12759, DOI 10.1073/pnas.0605488103; Jean D, 2005, HIGH ALT MED BIOL, V6, P22, DOI 10.1089/ham.2005.6.22; Jensen TK, 1999, EPIDEMIOLOGY, V10, P422, DOI 10.1097/00001648-199907000-00014; JERRI AJ, 1977, P IEEE, V65, P1565, DOI 10.1109/PROC.1977.10771; JEYASEELAN L, 1995, HUM BIOL, V67, P283; JEYASEELAN L, 1993, HUM BIOL, V65, P627; JOHNSON PL, 1987, HUM BIOL, V59, P837; Jukic AMZ, 2008, AM J EPIDEMIOL, V167, P25, DOI 10.1093/aje/kwm265; Julian CG, 2007, ARCH DIS CHILD-FETAL, V92, P372, DOI 10.1136/adc.2006.109579; Jurado K, 2009, AM J HUM BIOL, V21, P258; Kaaks R, 2005, J NATL CANCER I, V97, P755, DOI 10.1093/jnci.dji132; Kahsar-Miller M, 2004, FERTIL STERIL, V82, P973, DOI 10.1016/j.fertnstert.2004.05.068; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; KENNEDY W, 1933, BRIT J OBSTET GYNAEC, V40, P792; KERTZER DI, 1997, ANTHR DEMOGRAPHY; Key T, 2002, J Natl Cancer Inst, V94, P606; KEY TJA, 1990, BRIT J CANCER, V62, P631, DOI 10.1038/bjc.1990.344; KIRCHENGAST S, 1994, J BIOSOC SCI, V26, P207; KLETZKY OA, 1975, AM J OBSTET GYNECOL, V121, P688, DOI 10.1016/0002-9378(75)90474-3; Knott CD, 2005, AM J PRIMATOL, V67, P121, DOI 10.1002/ajp.20173; Kolstad HA, 1999, FERTIL STERIL, V71, P490, DOI 10.1016/S0015-0282(98)00474-9; KOMLOS J, 1994, STATURE LIVING STAND, P264; KONNER M, 1980, SCIENCE, V207, P788, DOI 10.1126/science.7352291; Krieg EF, 1999, COMPUT BIOL MED, V29, P229, DOI 10.1016/S0010-4825(99)00007-4; Kruger C, 1996, EUR J CLIN CHEM CLIN, V34, P927; Lai J, 2001, MOL GENET METAB, V74, P449, DOI 10.1006/mgme.2001.3260; LANDGREN BM, 1980, CONTRACEPTION, V21, P87, DOI 10.1016/0010-7824(80)90142-0; LANDGREN BM, 1980, ACTA ENDOCRINOL-COP, V94, P89, DOI 10.1530/acta.0.0940089; Langenberg CL, 2009, AM J HUM BIOL, V21, P258; LASKER GW, 1969, SCIENCE, V166, P1480, DOI 10.1126/science.166.3912.1480; LASLEY BL, 1994, ANN NY ACAD SCI, V709, P299, DOI 10.1111/j.1749-6632.1994.tb30418.x; LAURENSON IF, 1985, SOC BIOL, V32, P65; LaVoie HA, 2005, MOL CELL ENDOCRINOL, V243, P12, DOI 10.1016/j.mce.2005.09.005; LaVoie HA, 2009, EXP BIOL MED, V234, P880, DOI 10.3181/0903-MR-97; LENTON EA, 1984, BRIT J OBSTET GYNAEC, V91, P681, DOI 10.1111/j.1471-0528.1984.tb04830.x; LENTON EA, 1984, BRIT J OBSTET GYNAEC, V91, P685, DOI 10.1111/j.1471-0528.1984.tb04831.x; LESLIE PW, 1993, HUM BIOL, V65, P237; LESLIE PW, 1989, AM J PHYS ANTHROPOL, V79, P103, DOI 10.1002/ajpa.1330790111; Leslie PW, 2003, AM ANTHROPOL, V105, P28, DOI 10.1525/aa.2003.105.1.28; Lessells C.M., 1991, P32; LEWIS PJ, 2001, BMJ-BRIT MED J, P586; Li E, 2002, NAT REV GENET, V3, P662, DOI 10.1038/nrg887; LIPSON SF, 1994, FERTIL STERIL, V61, P448; LIPSON SF, 1992, J BIOSOC SCI, V24, P233; LIPSON SF, 2001, REPROD ECOLOGY HUMAN, P235; Little MA, 2000, HUM BIOL, V72, P179; Liu Y, 2004, AM J EPIDEMIOL, V160, P131, DOI 10.1093/aje/kwh188; Lock M, 2001, MED ANTHROPOL Q, V15, P478, DOI 10.1525/maq.2001.15.4.478; Lotka AJ, 1922, P NATL ACAD SCI USA, V8, P151, DOI 10.1073/pnas.8.6.151; Lotka AJ, 1922, P NATL ACAD SCI USA, V8, P147, DOI 10.1073/pnas.8.6.147; Loucks AB, 2003, J CLIN ENDOCR METAB, V88, P297, DOI 10.1210/jc.2002-020369; Low B S, 1993, Evol Anthropol, P177, DOI 10.1002/evan.1360010507; Lu LJW, 2001, J CLIN ENDOCR METAB, V86, P3045, DOI 10.1210/jc.86.7.3045; Lu YC, 1997, J IMMUNOASSAY, V18, P149, DOI 10.1080/01971529708005810; Lu YC, 1999, FERTIL STERIL, V71, P863, DOI 10.1016/S0015-0282(99)00093-X; Lunn P. G., 1985, Nestle Nutrition Workshop Series, V9, P41; LUNN PG, 1994, ANN NY ACAD SCI, V709, P77, DOI 10.1111/j.1749-6632.1994.tb30389.x; Lurie G, 2005, CANCER EPIDEM BIOMAR, V14, P1521, DOI 10.1158/1055-9965.EPI-04-0746; MACMAHON B, 1982, NEW ENGL J MED, V307, P1062, DOI 10.1056/NEJM198210213071707; MACMAHON B, 1974, INT J CANCER, V14, P161, DOI 10.1002/ijc.2910140204; MACMAHON B, 1982, INT J CANCER, V30, P427, DOI 10.1002/ijc.2910300408; MALINA RM, 1983, ANN HUM BIOL, V10, P1, DOI 10.1080/03014468300006141; Malthus T., 1798, ESSAY PRINCIPLE POPU; Mannisto S, 2005, CANCER CAUSE CONTROL, V16, P725, DOI 10.1007/s10552-005-1763-7; MANSFIELD MJ, 1984, J REPROD MED, V29, P399; Marcus MD, 2001, FERTIL STERIL, V76, P310, DOI 10.1016/S0015-0282(01)01921-5; Marszalek B, 2001, GYNECOL ENDOCRINOL, V15, P123, DOI 10.1080/713602803; Maskarinec G, 2004, CANCER EPIDEM BIOMAR, V13, P1736; MATSUMOTO SEIICHI, 1962, GUNMA JOUR MED SCI, V11, P294; MAYR E, 1983, AM NAT, V121, P324, DOI 10.1086/284064; MAZESS RB, 1975, BIOSOCIAL INTERRELAT, P9; Mcdade TW, 2007, DEMOGRAPHY, V44, P899, DOI 10.1353/dem.2007.0038; McDade TW, 1998, J DEV BEHAV PEDIATR, V19, P286, DOI 10.1097/00004703-199808000-00008; MCINTOSH JEA, 1980, FERTIL STERIL, V34, P125; McNeilly AS, 2001, REPROD FERT DEVELOP, V13, P583, DOI 10.1071/RD01056; MENKEN J, 1981, J INTERDISCIPL HIST, V11, P425, DOI 10.2307/203626; Messinis IE, 2006, HUM REPROD UPDATE, V12, P557, DOI 10.1093/humupd/dml020; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; METCALF MG, 1980, J BIOSOC SCI, V12, P345; METCALF MG, 1979, J BIOSOC SCI, V11, P39; METCALF MG, 1983, NEW ZEAL MED J, V96, P645; Meyer VF, 2001, INT J HEALTH SERV, V31, P769, DOI 10.2190/M77D-YV2Y-D5NU-FXNW; Micheli A, 2004, INT J CANCER, V112, P312, DOI 10.1002/ijc.20403; Michnovicz J J, 1988, Steroids, V52, P69, DOI 10.1016/0039-128X(88)90218-8; MICOZZI MS, 1987, AM J PHYS ANTHROPOL, V73, P525, DOI 10.1002/ajpa.1330730415; MICOZZI MS, 1985, YEARB PHYS ANTHROPOL, V28, P175; Migliano AB, 2007, P NATL ACAD SCI USA, V104, P20216, DOI 10.1073/pnas.0708024105; Miller A, 2002, AM J HUM BIOL, V14, P124; Miller RC, 2004, CLIN CHEM, V50, P924, DOI 10.1373/clinchem.2004.032292; Milman N, 1998, ANN HEMATOL, V77, P13, DOI 10.1007/s002770050405; MISHELL DR, 1971, AM J OBSTET GYNECOL, V111, P60, DOI 10.1016/0002-9378(71)90927-6; Missaghian E, 2009, J ENDOCRINOL, V202, P99, DOI 10.1677/JOE-08-0353; Monari Paola, 1998, Genus, V54, P95; MONGE C, 1948, ACCLIMATIZATION ANDE; Morange M, 2002, ANN NY ACAD SCI, V981, P50; MORBECK ME, 1997, EVOLVING FEMALE LIFE; Mulder M Borgerhoff, 1992, EVOLUTIONARY ECOLOGY, P339; MUNSTER K, 1992, BRIT J OBSTET GYNAEC, V99, P422, DOI 10.1111/j.1471-0528.1992.tb13762.x; Mylonas PG, 2006, STEROIDS, V71, P273, DOI 10.1016/j.steroids.2005.11.005; Nagata C, 2006, NUTR CANCER, V54, P166, DOI 10.1207/s15327914nc5402_2; NAKAGAWA J, 1931, JAP J OBST GYNEC, V14, P154; Nepomnaschy PA, 2009, AM J HUM BIOL, V21, P262; Nepomnaschy PA, 2006, P NATL ACAD SCI USA, V103, P3938, DOI 10.1073/pnas.0511183103; Nepomnaschy PA, 2004, AM J HUM BIOL, V16, P523, DOI 10.1002/ajhb.20057; Nepomnaschy PA, 2007, ANN NY ACAD SCI, V1113, P350, DOI 10.1196/annals.1391.028; Norwitz ER, 2001, NEW ENGL J MED, V345, P1400, DOI 10.1056/NEJMra000763; la Mora AND, 2008, AM J HUM BIOL, V20, P2, DOI 10.1002/ajhb.20698; Nunez-de la Mora A, 2007, PLOS MED, V4, P813, DOI 10.1371/journal.pmed.0040167; Nunez-de la Mora A, 2007, AM J PHYS ANTHROPOL, V132, P311, DOI 10.1002/ajpa.20513; O'Connor KA, 2006, HUM REPROD, V21, P1442, DOI 10.1093/humrep/dei497; O'Connor KA, 2004, J IMMUNOASS IMMUNOCH, V25, P259, DOI 10.1081/IAS-200028078; O'Connor KA, 2003, CLIN CHEM, V49, P1139, DOI 10.1373/49.7.1139; Olson SH, 2007, AM J EPIDEMIOL, V165, P235, DOI 10.1093/aje/kwk015; OROURKE MT, 1990, AM J PHYS ANTHROPOL, V81, P423, DOI 10.1002/ajpa.1330810311; PANTERBRICK C, 1993, HUM REPROD, V8, P684, DOI 10.1093/oxfordjournals.humrep.a138120; Peacock N, 1991, Hum Nat, V2, P351, DOI 10.1007/BF02692197; PEACOCK NR, 1990, MG PRIMATOL, V14, P195; Pinheiro SP, 2005, CANCER EPIDEM BIOMAR, V14, P2147, DOI 10.1158/1055-9965.EPI-04-0944; PIRKE KM, 1989, FERTIL STERIL, V51, P263; PIRKE KM, 1985, J CLIN ENDOCR METAB, V60, P1174, DOI 10.1210/jcem-60-6-1174; Pollard TM, 2009, AM J HUM BIOL, V21, P301, DOI 10.1002/ajhb.20859; POTISCHMAN N, 1994, CANCER RES, V54, P5363; POTTER RG, 1967, INT J FERTIL, V12, P127; PRESS WH, 1992, NUMERICAL RECIPES FO, V1, P77, DOI DOI 10.1016/0169-2607(87)90037-X; Prior J C, 1982, Can J Appl Sport Sci, V7, P148; PRIOR JC, 1987, BAILLIERE CLIN ENDOC, V1, P299, DOI 10.1016/S0950-351X(87)80065-4; PRIOR JC, 1985, SEMIN REPROD ENDOCR, V3, P27, DOI 10.1055/s-2007-1022601; PRIOR JC, 1985, MENSTRUAL CYCLE PHYS, P63; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Promislow JHE, 2007, HUM REPROD, V22, P853, DOI 10.1093/humrep/del417; Puder JJ, 2000, J CLIN ENDOCR METAB, V85, P2184, DOI 10.1210/jc.85.6.2184; PURIFOY FE, 1981, ANNU REV ANTHROPOL, V10, P141, DOI 10.1146/annurev.an.10.100181.001041; QUANDT SA, 1984, SOC SCI MED, V19, P177, DOI 10.1016/0277-9536(84)90285-5; Reame NE, 1996, J CLIN ENDOCR METAB, V81, P1512, DOI 10.1210/jc.81.4.1512; REICHMAN ME, 1992, J CLIN ENDOCR METAB, V74, P1171, DOI 10.1210/jc.74.5.1171; RENAUD RL, 1980, FERTIL STERIL, V33, P272; RIADFAHMY D, 1987, J REPROD MED, V32, P254; Rinaudo PF, 2008, SEMIN REPROD MED, V26, P436, DOI 10.1055/s-0028-1087109; Robinson WS, 1950, AM SOCIOL REV, V15, P351, DOI 10.2307/2087176; ROSE MR, 1996, ADAPTATION; Rosetta L, 1993, Oxf Rev Reprod Biol, V15, P113; ROTH EA, 2004, CULTURE BIOL ANTHR D; Rowland AS, 2002, EPIDEMIOLOGY, V13, P668, DOI 10.1097/01.EDE.0000024628.42288.8F; SANDERS SA, 1992, MENSTRUAL HLTH WOMEN, P131; SANES SI, 1916, AM J OBSTET DIS WOM, V73, P93; Schipper I, 1998, HUM REPROD, V13, P1442, DOI 10.1093/humrep/13.6.1442; SCHWEIGER U, 1987, FERTIL STERIL, V48, P746; SCOTT EC, 1985, CURR ANTHROPOL, V26, P463, DOI 10.1086/203309; Sear R, 2009, AM J HUM BIOL, V21, P417, DOI 10.1002/ajhb.20952; Sellen DW, 2007, ANNU REV NUTR, V27, P123, DOI 10.1146/annurev.nutr.25.050304.092557; SHANNON CE, 1949, P IRE, V37, P10, DOI 10.1109/JRPROC.1949.232969; Sharp L, 2004, AM J EPIDEMIOL, V160, P729, DOI 10.1093/aje/kwh287; SHERMAN BM, 1975, J CLIN INVEST, V55, P699, DOI 10.1172/JCI107979; SHIMIZU H, 1990, BRIT J CANCER, V62, P451, DOI 10.1038/bjc.1990.316; Shirtcliff EA, 2001, HORM BEHAV, V39, P258, DOI 10.1006/hbeh.2001.1657; SHORT RV, 1976, PROC R SOC SER B-BIO, V195, P3, DOI 10.1098/rspb.1976.0095; Sievert LL, 2003, COLLEGIUM ANTROPOL, V27, P67; Small CM, 2006, EPIDEMIOLOGY, V17, P52, DOI 10.1097/01.ede.0000190540.95748.e6; Small CM, 2005, HUM REPROD, V20, P2162, DOI 10.1093/humrep/dei054; SMITH SK, 1985, J REPROD FERTIL, V75, P363; SNOWDEN R, 1983, PATTERN PERCEPTIONS; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1987, EVOLUTION SEX ITS CO, P299; Steiner MJ, 2001, ANN EPIDEMIOL, V11, P428, DOI 10.1016/S1047-2797(01)00248-4; STEINKAMPF MP, 1990, OBSTET GYN CLIN N AM, V17, P311; Sternfeld B, 2002, AM J EPIDEMIOL, V156, P402, DOI 10.1093/aje/kwf060; Strassmann BI, 1997, CURR ANTHROPOL, V38, P123, DOI 10.1086/204592; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; SUNDARARAJ N, 1978, HUM BIOL, V50, P15; Sunder S, 2000, BEST PRACT RES CL OB, V14, P789, DOI 10.1053/beog.2000.0119; SVENSSON L, 1983, FERTIL STERIL, V40, P322; Symons JP, 1997, ANN HUM BIOL, V24, P107, DOI 10.1080/03014469700004852; TANNENBAUM A, 1953, ADV CANCER RES, V1, P451, DOI 10.1016/S0065-230X(08)60009-3; THOMAS RB, 1989, HUMAN POPULATION BIO, P296; THOMAS RB, 1976, MAN ANDES, P379, DOI DOI 10.1007/3-540-28909-7_; Thornburg J, 2008, AM J PHYS ANTHROPOL, P206; Thornburg J, 2009, AM J HUM BIOL, V21, P271; THORNBURG J, 2007, PLOS MED, V4, pE167, DOI DOI 10.1371/JOURNAL.PMED.0040167#R1795; THORNEYCROFT IH, 1974, J CLIN ENDOCR METAB, V39, P754, DOI 10.1210/jcem-39-4-754; THORNEYCROFT IH, 1971, AM J OBSTET GYNECOL, V111, P947, DOI 10.1016/0002-9378(71)90951-3; TIETZE C, 1956, FERTIL STERIL, V7, P88; Tilbrook AJ, 2002, STRESS, V5, P83, DOI 10.1080/10253890290027912; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; TONIOLO P, 1994, CANCER EPIDEM BIOMAR, V3, P47; Travis RC, 2004, CANCER EPIDEM BIOMAR, V13, P2282; TRELOAR AE, 1967, INT J FERTIL, V12, P77; Tretli S, 1996, CANCER CAUSE CONTROL, V7, P507, DOI 10.1007/BF00051882; TRICHOPOULOS D, 1984, CANCER, V53, P187, DOI 10.1002/1097-0142(19840101)53:1<187::AID-CNCR2820530133>3.0.CO;2-N; TRUSSELL J, 1980, HUM BIOL, V52, P711; USALA SJ, 1983, FERTIL STERIL, V39, P304; Valeggia CR, 2007, POPUL DEV REV, V33, P525, DOI 10.1111/j.1728-4457.2007.00183.x; VANDERWALT LA, 1978, J CLIN ENDOCR METAB, V46, P658, DOI 10.1210/jcem-46-4-658; Vercellini P, 1997, OBSTET GYNECOL, V90, P264, DOI 10.1016/S0029-7844(97)00235-4; VIHKO R, 1984, J STEROID BIOCHEM, V20, P231, DOI 10.1016/0022-4731(84)90209-7; Vitzthum VJ, 2007, AM J PHYS ANTHROPOL, P239; Vitzthum VJ, 2007, AM J HUM BIOL, V19, P286; Vitzthum V J, 2000, High Alt Med Biol, V1, P39, DOI 10.1089/152702900320676; Vitzthum VJ, 2008, SOC ST HUM, V48, P99; Vitzthum VJ, 2008, ANNU REV ANTHROPOL, V37, P53, DOI 10.1146/annurev.anthro.37.081407.085112; Vitzthum VJ, 2008, CANCER EPIDEM BIOMAR, V17, P1550, DOI 10.1158/1055-9965.EPI-08-0016; Vitzthum VJ, 2006, FERTIL STERIL, V86, P373, DOI 10.1016/j.fertnstert.2006.01.021; Vitzthum VJ, 2009, AM J HUM BIOL, V21, P762, DOI 10.1002/ajhb.20927; Vitzthum VJ, 2009, AM J HUM BIOL, V21, P548, DOI 10.1002/ajhb.20936; Vitzthum Virginia J., 1994, Yearbook of Physical Anthropology, V37, P307; Vitzthum VJ, 2004, P NATL ACAD SCI USA, V101, P1443, DOI 10.1073/pnas.0302640101; Vitzthum VJ, 2003, HIGH ALT MED BIOL, V4, P125, DOI 10.1089/152702903322022758; VITZTHUM VJ, 1993, AM J PHYS ANTHROPOL, V92, P539, DOI 10.1002/ajpa.1330920410; VITZTHUM VJ, 1989, AM J PHYS ANTHROPOL, V78, P318; Vitzthum VJ, 2002, HUM REPROD, V17, P1906, DOI 10.1093/humrep/17.7.1906; Vitzthum VJ, 2001, CONTRACEPTION, V64, P319, DOI 10.1016/S0010-7824(01)00260-8; VITZTHUM VJ, 1992, ECOL FOOD NUTR, V28, P45, DOI 10.1080/03670244.1992.9991259; Vitzthum VJ, 2000, CONTRACEPTION, V62, P181, DOI 10.1016/S0010-7824(00)00164-5; Vitzthum VJ, 2001, J EXP BIOL, V204, P3141; VITZTHUM VJ, 1994, ANN NY ACAD SCI, V709, P221, DOI 10.1111/j.1749-6632.1994.tb30408.x; VITZTHUM VJ, 1989, J BIOSOC SCI, V21, P145; VITZTHUM VJ, 2001, REPROD ECOLOGY HUMAN, P179; VITZTHUM VJ, 1992, 91 ANN M AM ANTHR AS, P334; VITZTHUM VJ, 2008, AM J HUM BIOL, V20, P238; VITZTHUM VJ, 2007, PLOS MED, V4, pE167, DOI DOI 10.1371/JOURNAL.PMED.0040167#R1795; VITZTHUM VJ, 1990, 90200 U MICH POP STU; VITZTHUM VJ, 1997, EVOLVING FEMALE LIFE, P242; Voland E, 1998, ANNU REV ANTHROPOL, V27, P347, DOI 10.1146/annurev.anthro.27.1.347; Vollman R F, 1977, Major Probl Obstet Gynecol, V7, P1; Wade GN, 2003, MED SCI SPORT EXER, V35, P1573, DOI 10.1249/01.MSS.0000084526.51285.D6; WALKER RF, 1978, LANCET, V2, P585; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; Waller K, 1998, AM J EPIDEMIOL, V147, P1071; WANG DY, 1991, BREAST CANCER RES TR, V18, pS41, DOI 10.1007/BF02633526; Warren M P, 1997, Curr Ther Endocrinol Metab, V6, P13; Warren MP, 2003, J ENDOCRINOL INVEST, V26, P873, DOI 10.1007/BF03345238; Wasalathanthri Sudharshani, 2003, Ceylon Medical Journal, V48, P4; WASHBURN SL, 1951, T NEW YORK ACAD SCI, V13, P298, DOI 10.1111/j.2164-0947.1951.tb01033.x; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; WEINBERG CR, 1994, EPIDEMIOLOGY, V5, P484; WEINER JS, 1964, CURR ANTHROPOL, V5, P191, DOI 10.1086/200481; West B. T., 2007, LINEAR MIXED MODELS; Westhoff C, 1996, AM J EPIDEMIOL, V144, P381; *WHO, 2001, DEF IND FAM PLANN MA; WHO, 1995, PHYS STAT US INT ANT; Wilcox AJ, 2001, INT J EPIDEMIOL, V30, P1233, DOI 10.1093/ije/30.6.1233; Wiley AS, 1998, J BIOSOC SCI, V30, P457, DOI 10.1017/S002193209800457X; WILEY AS, 1992, MED ANTHROPOL Q, V6, P216, DOI 10.1525/maq.1992.6.3.02a00030; WILLETT WC, 1987, AM J CLIN NUTR, V45, P354, DOI 10.1093/ajcn/45.1.354; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; Williams NI, 2003, MED SCI SPORT EXER, V35, P1564, DOI 10.1249/01.MSS.0000084528.13358.67; Williams V, 2006, SHOCK, V25, P85, DOI 10.1097/00024382-200606001-00256; Windham GC, 2002, EPIDEMIOLOGY, V13, P675, DOI 10.1097/01.EDE.0000032361.84313.F2; Winterhalder B, 2000, EVOL ANTHROPOL, V9, P51; WOOD JW, 1994, ANN NY ACAD SCI, V709, P101, DOI 10.1111/j.1749-6632.1994.tb30391.x; WOOD JW, 1990, ANNU REV ANTHROPOL, V19, P211; WOOD JW, 1985, J BIOSOC SCI, V17, P57; WOOD JW, 1988, POP STUD-J DEMOG, V42, P85, DOI 10.1080/0032472031000143136; WOOD JW, 1994, DYNAMICS HUMAN REPRO; WOOD P, 2009, ANN CLIN BI IN PRESS; Worthman CM, 1997, AM J PHYS ANTHROPOL, V104, P1; WORTHMAN CM, 1994, CLIN CHEM, V40, P448; Worthman CM, 2003, OFFSPRING, P289; WORTHMAN CM, 1993, J BIOSOC SCI, V25, P425; YALOW RS, 1960, J CLIN INVEST, V39, P1157, DOI 10.1172/JCI104130; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zhang XQ, 2005, FERTIL STERIL, V83, P336, DOI 10.1016/j.fernstert.2004.09.020 457 44 46 3 54 WILEY-LISS, INC NEW YORK 605 THIRD AVE, NEW YORK, NY 10158-0012 USA 0096-848X YEARB PHYS ANTHROPOL Yearb. Phys. Anthropol. 2009 52 95 136 10.1002/ajpa.21195 42 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology BPL86 WOS:000279182600004 19890865 Bronze 2018-11-12 J Franssen, CM; Tobler, M; Riesch, R; de Leon, FJG; Tiedemann, R; Schlupp, I; Plath, M Franssen, Courtney M.; Tobler, Michael; Riesch, Rudiger; Garcia de Leon, Francisco J.; Tiedemann, Ralph; Schlupp, Ingo; Plath, Martin Sperm production in an extremophile fish, the cave molly (Poecilia mexicana, Poeciliidae, Teleostei) AQUATIC ECOLOGY English Article Cave fish; Energy limitation; Hydrogen sulfide; Spermatogenesis; Testes weight DWELLING ATLANTIC MOLLIES; MATING PREFERENCES; SEXUAL-HARASSMENT; SULFIDE; TOLERANCE; BEHAVIOR; FEMALES; DETOXIFICATION; ADAPTATIONS; RESPONSES A prominent trade-off in life history theory and evolution balances the costs of reproduction with those of basic somatic needs. Hence, reproductive efforts may be reduced in environments where additional energy is required for somatic maintenance. Here, we investigated male sperm stores in Atlantic mollies (Poecilia mexicana) from a sulfidic cave and several sulfidic and non-sulfidic surface habitats. We found significant differences among populations in the number of sperm stripped per male, which was also correlated with differences in gonad weights. The largest sperm stores were detected in males from non-sulfidic surface creeks, while males from a partially sulfidic surface system had lower sperm counts, and males from completely sulfidic systems, surface as well as subterranean, had even fewer available sperm. We conclude that the extreme environmental conditions in sulfidic habitats appear to constrain male sperm production, since hydrogen sulfide as a naturally occurring toxin requires energy-demanding adaptations. Furthermore, we examined sperm counts of lab-reared cave and surface mollies in response to energy limitation. Males from stock populations were placed under high and low food treatments for a 2-week period and then stripped of sperm. Sperm counts of surface mollies tended to be reduced by low food availability, whereas sperm counts of cave mollies did not significantly vary between food treatments, which likely points towards a higher starvation resistance in cave mollies. [Franssen, Courtney M.; Tobler, Michael; Riesch, Rudiger; Schlupp, Ingo; Plath, Martin] Univ Oklahoma, Dept Zool, Norman, OK 73019 USA; [Tobler, Michael] Univ Zurich, Inst Zool, CH-8057 Zurich, Switzerland; [Garcia de Leon, Francisco J.] Ctr Invest Biol Noroeste, La Paz 23090, Baja California, Mexico; [Tiedemann, Ralph; Plath, Martin] Univ Potsdam, Inst Biochem & Biol, Unit Evolutionary Biol & Systemat Zool, D-14476 Potsdam, Germany Franssen, CM (reprint author), Univ Oklahoma, Dept Zool, 730 Van Vleet Oval, Norman, OK 73019 USA. cfranssen@ou.edu Riesch, Rudiger/A-5787-2008; TOBLER, Michael/A-9141-2008; Schlupp, Ingo/C-3913-2012 Riesch, Rudiger/0000-0002-0223-1254; Schlupp, Ingo/0000-0002-2460-5667; Garcia de Leon, Francisco Javier/0000-0003-2323-2560 University of Oklahoma; DFG [SCHL344/15-1, PL 470/1-1]; German Ichthyological Association; American Livebearer Association; Basler Foundation for Biological Research; Janggen-Poehn-Foundation; Roche Research Foundation; Wolfermann-Nageli-Foundation N. Franssen and L. Fromhage kindly provided valuable comments on the manuscript. We thank the Mexican Government for issuing research permits (Permiso de pesca de fomento numbers: 291002-613-1577, DGOPA/5864/260704/-2408, and DGOPA/16988/191205/-8101). Financial support came from the University of Oklahoma, the DFG (SCHL344/15-1; PL 470/1-1), the German Ichthyological Association (M.T. and M.P.), the American Livebearer Association, the Basler Foundation for Biological Research, the Janggen-Poehn-Foundation, the Roche Research Foundation, and the Wolfermann-Nageli-Foundation (M.T.). Aspbury AS, 2004, ETHOLOGY, V110, P193, DOI 10.1111/j.1439-0310.2003.00963.x; BAGARINAO T, 1992, AQUAT TOXICOL, V24, P21, DOI 10.1016/0166-445X(92)90015-F; BAGARINAO T, 1990, J COMP PHYSIOL B, V160, P519; BAGARINAO T, 1989, MAR BIOL, V103, P291, DOI 10.1007/BF00397262; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; Birkhead T. R., 1998, SPERM COMPETITION SE; BIRKHEAD TR, 1991, BEHAV ECOL, V2, P267, DOI 10.1093/beheco/2.4.267; Bozynski CC, 2003, ANIM BEHAV, V65, P53, DOI 10.1006/anbe.2002.2024; CARRICO RJ, 1978, J BIOL CHEM, V253, P7212; Celentano E, 2006, MAR BIOL, V149, P1453, DOI 10.1007/s00227-006-0309-1; EVANS CL, 1967, Q J EXP PHYSIOL CMS, V52, P231, DOI 10.1113/expphysiol.1967.sp001909; GORDON MS, 1962, COPEIA, P360, DOI DOI 10.2307/1440903; Grieshaber MK, 1998, ANNU REV PHYSIOL, V60, P33, DOI 10.1146/annurev.physiol.60.1.33; Hervant F, 2001, J EXP BIOL, V204, P269; Huppop K, 2000, ECOSY WORLD, V30, P159; KRAMER DL, 1987, ENVIRON BIOL FISH, V18, P81, DOI 10.1007/BF00002597; Langecker Thomas G., 1996, Memoires de Biospeologie, V23, P121; McMullin E R, 2000, Gravit Space Biol Bull, V13, P13; NAKATSURU K, 1982, SCIENCE, V216, P753, DOI 10.1126/science.216.4547.753; NICHOLLS P, 1975, BIOCHIM BIOPHYS ACTA, V396, P24, DOI 10.1016/0005-2728(75)90186-3; Parzefall J, 2001, ENVIRON BIOL FISH, V62, P263, DOI 10.1023/A:1011899817764; Plath M, 2007, MOL ECOL, V16, P967, DOI 10.1111/j.1365-294X.2006.03212.x; Plath M, 2006, NATURWISSENSCHAFTEN, V93, P103, DOI 10.1007/s00114-005-0072-z; Plath M, 2005, BEHAV ECOL SOCIOBIOL, V58, P144, DOI 10.1007/s00265-005-0918-6; Plath M, 2004, BEHAV ECOL SOCIOBIOL, V55, P596, DOI 10.1007/s00265-003-0750-9; Plath M, 2003, BEHAV ECOL SOCIOBIOL, V54, P303, DOI 10.1007/s00265-003-0625-0; PLATH M, NATURWISSEN IN PRESS; Plath M, 2006, ACTA ETHOL, V9, P15, DOI 10.1007/s10211-005-0008-9; POULSON TL, 1963, AM MID NAT, V79, P257; SIBLY RM, 1989, BIOL J LINN SOC, V37, P101, DOI 10.1111/j.1095-8312.1989.tb02007.x; Smith C, 2005, P ROY SOC B-BIOL SCI, V272, P1683, DOI 10.1098/rspb.2005.3140; SMITH L, 1977, BIOCHEM PHARMACOL, V26, P2247, DOI 10.1016/0006-2952(77)90287-8; SMITH LL, 1976, T AM FISH SOC, V105, P442, DOI 10.1577/1548-8659(1976)105<442:TOHSTV>2.0.CO;2; STALLONES RA, 1979, HYDROGEN SULFIDE; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; THEEDE H, 1973, NETHERLANDS J SEA RE, V7, P245; Tobler M, 2005, BIOL LETT-UK, V1, P166, DOI 10.1098/rsbl.2005.0305; Tobler M, 2006, EXTREMOPHILES, V10, P577, DOI 10.1007/s00792-006-0531-2; Toft G, 2005, ECOTOX ENVIRON SAFE, V60, P15, DOI 10.1016/j.ecoenv.2004.07.010; TOWNSEND C. R, 2003, ESSENTIALS ECOLOGY; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; WEBER JM, 1983, CAN J FISH AQUAT SCI, V40, P1583, DOI 10.1139/f83-183; Wedell N, 2002, TRENDS ECOL EVOL, V17, P313, DOI 10.1016/S0169-5347(02)02533-8 44 8 8 0 13 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 1386-2588 1573-5125 AQUAT ECOL Aquat. Ecol. DEC 2008 42 4 685 692 10.1007/s10452-007-9128-9 8 Ecology; Limnology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 371MH WOS:000260834900016 2018-11-12 J Vorburger, C; Ramsauer, N Vorburger, C.; Ramsauer, N. Genetic variation and covariation of aphid life-history traits across unrelated host plants BULLETIN OF ENTOMOLOGICAL RESEARCH English Article cost of acquisition; genetic correlations; host specialization; life-history evolution; Myzus persicae; trade-offs GREEN PEACH APHID; MYZUS-PERSICAE; TRADE-OFFS; QUANTITATIVE GENETICS; PHENOTYPIC PLASTICITY; SITOBION-AVENAE; NO EVIDENCE; REPRODUCTION; POPULATIONS; EVOLUTION A central paradigm of life-history theory is the existence of resource mediated trade-offs among different traits that contribute to fitness, yet observations inconsistent with this tenet are not uncommon. We previously found a clonal population of the aphid Myzus persicae to exhibit positive genetic correlations among major components of fitness, resulting in strong heritable fitness differences on a common host. This raises the question of how this genetic variation is maintained. One hypothesis states that variation for resource acquisition oil different hosts may override variation for allocation, predicting strong fitness differences within hosts as a rule, but changes in fitness hierarchies across hosts due to trade-offs. Therefore, we carried out a life-table experiment with 17 clones of M. persicae, reared on three unrelated host plants: radish, common lambsquarters and black nightshade. We estimated the broad-sense heritabilities of six life-history traits on each host, the genetic correlations an-long traits within hosts, and the genetic correlations among traits on different hosts (cross-environment genetic correlations). The three plants represented radically different environments with strong effects on performance of M. persicae, yet we detected little evidence for trade-offs. Fitness components were positively correlated within hosts but also between the two more benign hosts (radish and lambsquarters), as well as between those and another host tested earlier. The comparison with the most stressful host, nightshade, was hampered by low survival. Survival on nightshade also exhibited genetic variation but was unrelated to fitness on other hosts. Acknowledging that the number of environments was necessarily limited in a quantitative genetic experiment, we suggest that the rather consistent fitness hierarchies across very different plants provided little evidence to support the idea that the clonal variation for life-history traits and their covariance structure are maintained by strong genotype x environment interactions with respect to hosts. Alternative explanations are discussed. [Vorburger, C.; Ramsauer, N.] Univ Zurich, Inst Zool, CH-8057 Zurich, Switzerland Vorburger, C (reprint author), Univ Zurich, Inst Zool, Winterthurerstr 190, CH-8057 Zurich, Switzerland. chrisvor@zool.unizh.ch Vorburger, Christoph/A-1650-2008 Vorburger, Christoph/0000-0002-3627-0841 University of Zurich; Swiss National Science Foundation We thank Vanessa Kellermann and Christina Schmuki for maintaining the aphid lines in Australia and the Swiss Federal Office for Agriculture for the permit to translocate them to the University of Zfirich. Many thanks also to Antje Wissgott for providing a protocol to improve germination of Solanum nigrum seeds, to Paul Bienz for help with the Cultures and to two reviewers for helpful comments Oil all earlier version of the manuscript. This Study was supported by the 'Forschungskredit' of the University of Zurich and the Swiss National Science Foundation. BELL G, 1986, EVOLUTION, V40, P1344, DOI 10.1111/j.1558-5646.1986.tb05758.x; BELL G, 1984, EVOLUTION, V38, P300, DOI 10.1111/j.1558-5646.1984.tb00289.x; BELL G, 1984, EVOLUTION, V38, P314, DOI 10.1111/j.1558-5646.1984.tb00290.x; Blackman RL, 2000, APHIDS WORLDS CROPS; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charmantier A, 2005, P ROY SOC B-BIOL SCI, V272, P1415, DOI 10.1098/rspb.2005.3117; Dedryver CA, 2001, OECOLOGIA, V128, P379, DOI 10.1007/s004420100674; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; Edwards OR, 2001, ENTOMOL EXP APPL, V100, P21, DOI 10.1023/A:1019202917690; Falconer DS, 1996, INTRO QUANTITATIVE G; Fry JD, 1996, AM NAT, V148, pS84, DOI 10.1086/285904; Gwynn DM, 2005, P ROY SOC B-BIOL SCI, V272, P1803, DOI 10.1098/rspb.2005.3089; Hales DF, 1997, EUR J ENTOMOL, V94, P1; Herzog J, 2007, BIOLOGY LETT, V3, P667, DOI 10.1098/rsbl.2007.0362; Hoffmann A.A., 1991, EVOLUTIONARY GENETIC; Hoffmann AA, 1999, TRENDS ECOL EVOL, V14, P96, DOI 10.1016/S0169-5347(99)01595-5; Hoffmann AA, 1997, TRENDS ECOL EVOL, V12, P460, DOI 10.1016/S0169-5347(97)01214-7; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HOULE D, 1994, GENETICS, V138, P773; HOULE D, 1992, GENETICS, V130, P195; JAENIKE J, 1990, ANNU REV ECOL SYST, V21, P243, DOI 10.1146/annurev.es.21.110190.001331; JOSHI A, 1995, EVOL ECOL, V9, P82, DOI 10.1007/BF01237699; Klingenberg CP, 1997, ECOL ENTOMOL, V22, P55, DOI 10.1046/j.1365-2311.1997.00031.x; Lande R., 1976, Genetical Research, V26, P221; LENSKI RE, 1982, ECOLOGY, V63, P655, DOI 10.2307/1936785; Lynch M, 1998, GENETICS ANAL QUANTI; Mackenzie A, 1996, EVOLUTION, V50, P155, DOI 10.1111/j.1558-5646.1996.tb04482.x; Papura D, 2003, HEREDITY, V90, P397, DOI 10.1038/sj.hdy.6800262; Peppe FB, 2003, GENET MOL BIOL, V26, P189, DOI 10.1590/S1415-47572003000200012; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Rispe C, 1996, ENTOMOL EXP APPL, V80, P469, DOI 10.1111/j.1570-7458.1996.tb00961.x; ROBERTSON A, 1959, BIOMETRICS, V15, P469, DOI 10.2307/2527750; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; Schmidt DD, 2004, MOL ECOL, V13, P981, DOI 10.1111/j.1365-294X.2004.02111.x; Schmidt MH, 2003, P ROY SOC B-BIOL SCI, V270, P1905, DOI 10.1098/rspb.2003.2469; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; SERVICE PM, 1982, EVOLUTION, V36, P1276, DOI 10.1111/j.1558-5646.1982.tb05496.x; Simons AM, 1996, EVOLUTION, V50, P267, DOI 10.1111/j.1558-5646.1996.tb04490.x; SPITZE K, 1995, EXPERIENTIA, V51, P454, DOI 10.1007/BF02143198; Tessier AJ, 2000, ECOLOGY, V81, P826, DOI 10.1890/0012-9658(2000)081[0826:AFTOIR]2.0.CO;2; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VIA S, 1991, EVOLUTION, V45, P827, DOI 10.1111/j.1558-5646.1991.tb04353.x; von Burg S, 2008, P R SOC B, V275, P1089, DOI 10.1098/rspb.2008.0018; Vorburger C, 2006, J EVOLUTION BIOL, V19, P97, DOI 10.1111/j.1420-9101.2005.00985.x; Vorburger C, 2005, EVOLUTION, V59, P1006; Vorburger C, 2003, ECOL LETT, V6, P1091, DOI 10.1046/j.1461-0248.2003.00536.x; Vorburger C, 2003, MOL ECOL, V12, P3493, DOI 10.1046/j.1365-294X.2003.01998.x; WEBER G, 1986, ENTOMOL EXP APPL, V40, P161, DOI 10.1111/j.1570-7458.1986.tb00498.x; WEBER G, 1985, ENTOMOL EXP APPL, V38, P49, DOI 10.1111/j.1570-7458.1985.tb03497.x; Wilson ACC, 2002, HEREDITY, V88, P258, DOI [10.1038/sj.hdy.6800037, 10.1038/sj/hdy/6800037] 51 9 9 0 13 CAMBRIDGE UNIV PRESS CAMBRIDGE EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND 0007-4853 B ENTOMOL RES Bull. Entomol. Res. DEC 2008 98 6 543 553 10.1017/S0007485308005853 11 Entomology Entomology 382OW WOS:000261616300002 18590593 2018-11-12 J Lawson, DW; Mace, R Lawson, David W.; Mace, Ruth Sibling configuration and childhood growth in contemporary British families INTERNATIONAL JOURNAL OF EPIDEMIOLOGY English Article BIRTH-ORDER; INTELLECTUAL-DEVELOPMENT; EDUCATIONAL-ATTAINMENT; REPRODUCTIVE SUCCESS; PARENTAL INVESTMENT; HEIGHT; CHILDREN; SIZE; INTELLIGENCE; ASSOCIATIONS Background Life history theory and resource dilution models of the family suggest that siblings may present a threat to healthy development because they compete for resources that parents have available to invest in individual offspring. Using data from a large cohort study of contemporary British families (ALSPAC), we test this hypothesis using childhood growth trajectories as a biomarker for health status. Methods Incorporating time-varying measures of changing family structure and socio-economic environment, this study represents the first true longitudinal analysis of family configuration effects on human growth. Using separate multi-variate multi-level models we estimate the effect of sibling number and sibling age and sex on height from birth to 10 years. Results Adjusting for family level socio-economic factors, the presence of siblings is associated with deficits in height across the study period. At the largest comparison, we estimate that compared with only children, children with four siblings have a reduced birth length by 8.7 mm (95 confidence interval (CI): 14.8 to 2.6) and a reduced rate of growth by 2.3 mm per year (95 CI: 3.8 to 0.8), leading to a deficit of 31.5 mm by age 10. Older siblings are associated with larger lasting negative consequences on height than younger siblings. We find no difference in the height of children in relation to the sex of siblings. Conclusions Even in the relatively wealthy, well-nourished conditions of modern Western society, children are not buffered from the health costs of reduced parental investment. Later-born children appear worst affected by within family resource division. [Lawson, David W.; Mace, Ruth] UCL, Human Evolutionary Ecol Grp, Dept Anthropol, London WC1H 0BW, England Lawson, DW (reprint author), UCL, Human Evolutionary Ecol Grp, Dept Anthropol, 14 Taviton St, London WC1H 0BW, England. d.lawson@ucl.ac.uk Mace, Ruth/0000-0002-6137-7739 Economic and Social Research Council; Parkes Foundation; Medical Research Council [G9815508] We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses. In particular, we thank Dr Jon Heron for his essential assistance with data management. The UK Medical Resource Council, the Wellcome Trust and the University of Bristol provide core support for ALSPAC. We thank Laura Fortunato, Mhairi Gibson, Andy Ness, Rebecca Sear, and three anonymous reviewers for their constructive comments on the manuscript. This research was funded by an Economic and Social Research Council Studentship and Parkes Foundation Small Grant to the first author. Biblarz TJ, 1999, AM J SOCIOL, V105, P321, DOI 10.1086/210314; Bjerkedal T, 2007, INTELLIGENCE, V35, P503, DOI 10.1016/j.intell.2007.01.004; BORGERHOFFMULDE.M, 1998, HUM NATURE, V9, P119; Braveman PA, 2005, JAMA-J AM MED ASSOC, V294, P2879, DOI 10.1001/jama.294.22.2879; Case A, 2001, EVOL HUM BEHAV, V22, P269, DOI 10.1016/S1090-5138(01)00069-1; CASE A, 2006, 12466 NBER; Dahl Gordon B., 2004, 10281 NBER; Daly M., 1998, TRUTH CINDERELLA; Deaton A, 2007, P NATL ACAD SCI USA, V104, P13232, DOI 10.1073/pnas.0611500104; Downey DB, 2001, AM PSYCHOL, V56, P497, DOI 10.1037//0003-066X.56.6-7.497; DOWNEY DB, 1995, AM SOCIOL REV, V60, P746, DOI 10.2307/2096320; Golding J, 2001, PAEDIATR PERINAT EP, V15, P74; GOLDSTEIN H, 1971, HUM BIOL, V43, P92; Gunnell D., 2005, PEDIATRICS, V116, P681; Guo G, 1999, AM SOCIOL REV, V64, P169, DOI 10.2307/2657524; HAGEN EH, 2006, AM J PHYS ANTHROPOL, V128, P405; Hart CL, 2003, J EPIDEMIOL COMMUN H, V57, P385, DOI 10.1136/jech.57.5.385; Hay AD, 2005, FAM PRACT, V22, P367, DOI 10.1093/fampra/cmi-35; Hertwig R, 2002, PSYCHOL BULL, V128, P728, DOI 10.1037//0033-2909.128.5.728; KAPLAN BA, 1992, J BIOSOC SCI, V24, P25; Kristensen P, 2007, SCIENCE, V316, P1717, DOI 10.1126/science.1141493; KUH D, 1989, INT J EPIDEMIOL, V18, P663, DOI 10.1093/ije/18.3.663; Leary S, 2006, AM J HUM BIOL, V18, P502, DOI 10.1002/ajhb.20518; LI J, 1993, BRIT MED J, V307, P168, DOI 10.1136/bmj.307.6897.168; Li L, 2004, AM J CLIN NUTR, V80, P185; Little R. J. A., 1987, STAT ANAL MISSING DA; Loos RJF, 2001, LANCET, V358, P560, DOI 10.1016/S0140-6736(01)05716-6; LOW BS, 1991, ETHOL SOCIOBIOL, V12, P411, DOI 10.1016/0162-3095(91)90024-K; Lundberg S, 2005, OXFORD REV ECON POL, V21, P340, DOI 10.1093/oxrep/gri020; Lundberg S, 2002, REV ECON STAT, V84, P251, DOI 10.1162/003465302317411514; Mace R, 1998, PHILOS T R SOC B, V353, P389, DOI 10.1098/rstb.1998.0217; Mace R, 1996, BEHAV ECOL SOCIOBIOL, V38, P75, DOI 10.1007/s002650050219; Marsal K, 1996, ACTA PAEDIATR, V85, P843, DOI 10.1111/j.1651-2227.1996.tb14164.x; McNamara JM, 2006, SOCIAL INFORM TRANSM, P59; Nielsen HS, 2008, AM J EPIDEMIOL, V167, P480, DOI 10.1093/aje/kwm330; Northstone K, 2008, EUR J CLIN NUTR, V62, P471, DOI 10.1038/sj.ejcn.1602741; Northstone K, 2005, EUR J CLIN NUTR, V59, P751, DOI 10.1038/sj.ejcn.1602136; Penn DJ, 2007, P NATL ACAD SCI USA, V104, P553, DOI 10.1073/pnas.0609301103; Rodgers JL, 2000, AM PSYCHOL, V55, P599, DOI 10.1037/0003-066X.55.6.599; RODGERS JL, 2001, AM PSYCHOL, V56, P6; Roff D. A., 2002, LIFE HIST EVOLUTION; Singer J. D., 2003, APPL LONGITUDINAL DA; Smith GD, 2000, J EPIDEMIOL COMMUN H, V54, P97, DOI 10.1136/jech.54.2.97; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steelman LC, 2002, ANNU REV SOCIOL, V28, P243, DOI 10.1146/annurev.soc.28.111301.093304; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; Tamimi RM, 2003, BRIT MED J, V326, P1245, DOI 10.1136/bmj.326.7401.1245; Thorpe K.J., 1992, J REPROD INFANT PSYC, V10, P191, DOI DOI 10.1080/02646839208403953; VOLAND E, 1995, HUM NATURE-INT BIOS, V6, P33, DOI 10.1007/BF02734134; WAALER HT, 1984, ACTA MED SCAND, P1 50 55 58 1 14 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0300-5771 INT J EPIDEMIOL Int. J. Epidemiol. DEC 2008 37 6 1408 1421 10.1093/ije/dyn116 14 Public, Environmental & Occupational Health Public, Environmental & Occupational Health 380JJ WOS:000261461700033 18577530 Bronze 2018-11-12 J Crowley, PH Crowley, Philip H. Sex allocation in simultaneous hermaphrodites: Trade-offs between sex-specific costs and lifespan THEORETICAL ECOLOGY English Article ESS; Life history theory; Reproduction-survival trade-off; Reproductive success; Sperm competition; Sperm digestion NAVANAX-INERMIS OPISTHOBRANCHIA; MALE-FEMALE CONFLICT; SPERM COMPETITION; MATING SYSTEMS; REEF FISH; EVOLUTION; SELECTION; ANIMALS; SIZE; PRINCIPLE Fitness in self-incompatible simultaneous hermaphrodites incorporates gains and costs from both male and female reproductive function, and evolutionarily stable allocation of gonadal tissue to male or female function depends on these gains and costs. Paradoxically, despite the often equal expected gains but different costs associated with each sex, contributions to expected reproductive success through male and female function must be identical. Whenever allocation costs are unequal and limiting resources are energetically expensive or risky to acquire, these costs must ultimately be paid through reduced survival, resolving the paradox by equally diminishing expected reproductive success as male and as female. Maximizing fitness as lifetime reproductive success - not just reproductive rate alone, as in previous studies - maximizes the product of expected survival time and reproductive rate. The analysis shows how male-biased allocation can thereby arise and generate novel predictions on the relation between intensity of sperm competition and allocation to male function. [Crowley, Philip H.] Univ Kentucky, Dept Biol, Lexington, KY 40506 USA; [Crowley, Philip H.] Univ Kentucky, Ctr Ecol Evolut & Behav, Lexington, KY 40506 USA Crowley, PH (reprint author), Univ Kentucky, Dept Biol, Lexington, KY 40506 USA. pcrowley@uky.edu Angeloni L, 2002, BEHAV ECOL, V13, P419, DOI 10.1093/beheco/13.3.419; Anthes N, 2005, CURR BIOL, V15, pR792, DOI 10.1016/j.cub.2005.09.035; Anthes N, 2006, ANIM BEHAV, V72, P1, DOI 10.1016/j.anbehav.2005.09.017; Arnqvist G, 2005, SEXUAL CONFLICT; Baeza JA, 2007, EVOLUTION, V61, P2360, DOI 10.1111/j.1558-5646.2007.00199.x; CHARNOV E L, 1982; CHARNOV EL, 1976, NATURE, V263, P125, DOI 10.1038/263125a0; CHARNOV EL, 1980, MAR BIOL LETT, V1, P269; Charnov EL, 1996, EVOL ECOL, V10, P457, DOI 10.1007/BF01237878; FISCHER EA, 1984, Z TIERPSYCHOL, V66, P143; FISCHER EA, 1981, AM NAT, V117, P64, DOI 10.1086/283686; FISCHER EA, 1987, BIOSCIENCE, V37, P482, DOI 10.2307/1310420; FISHER R. A., 1930, GENETICAL THEORY NAT; GHISELIN MT, 1969, Q REV BIOL, V44, P189, DOI 10.1086/406066; Greeff JM, 2000, P ROY SOC B-BIOL SCI, V267, P1759; Greeff JM, 1999, P ROY SOC B-BIOL SCI, V266, P1671, DOI 10.1098/rspb.1999.0830; Greeff JM, 1999, AM NAT, V153, P421, DOI 10.1086/303184; Koene JM, 2005, ANIM BEHAV, V69, P845, DOI 10.1016/j.anbehav.2004.07.012; Leonard JL, 2005, INTEGR COMP BIOL, V45, P856, DOI 10.1093/icb/45.5.856; LEONARD JL, 1984, AM NAT, V124, P282, DOI 10.1086/284269; LEONARD JL, 1991, ANIM BEHAV, V41, P255, DOI 10.1016/S0003-3472(05)80477-4; LEONARD JL, 1985, CAN J ZOOL, V63, P2719, DOI 10.1139/z85-406; LEONARD JL, 1993, ENVIRON BIOL FISH, V36, P135, DOI 10.1007/BF00002793; Marconato A, 1996, ANIM BEHAV, V52, P971, DOI 10.1006/anbe.1996.0245; Michiels N. K., 1998, SPERM COMPETITION SE, P219, DOI 10.1016/B978-012100543-6/50032-5; Michiels NK, 2006, INTEGR COMP BIOL, V46, P473, DOI 10.1093/icb/icj043; Michiels NK, 1998, NATURE, V391, P647, DOI 10.1038/35527; MORGAN MT, 1994, AM NAT, V144, pS100, DOI 10.1086/285655; Pen I, 1999, EVOL ECOL RES, V1, P517; Petersen Christopher W., 2002, P103, DOI 10.1016/B978-012615185-5/50007-4; Petersen CW, 1996, EVOLUTION, V50, P636, DOI 10.1111/j.1558-5646.1996.tb03874.x; PETERSEN CW, 1990, OECOLOGIA, V83, P62, DOI 10.1007/BF00324635; Roff D. A., 2002, LIFE HIST EVOLUTION; Scharer L, 2004, BEHAV ECOL SOCIOBIOL, V56, P420, DOI 10.1007/s00265-004-0802-9; Scharer L, 1999, J FISH BIOL, V55, P329, DOI 10.1006/jfbi.1999.0997; Sella G, 1999, HYDROBIOLOGIA, V402, P203, DOI 10.1023/A:1003748710921; SELLA G, 1985, ANIM BEHAV, V33, P938, DOI 10.1016/S0003-3472(85)80028-2; Stearns S. C., 1992, EVOLUTION LIFE HIST; Warner RR, 1998, J FISH BIOL, V53, P82, DOI 10.1006/jfbi.1998.0825; Wedell N, 2002, TRENDS ECOL EVOL, V17, P313, DOI 10.1016/S0169-5347(02)02533-8; Williams G. C., 1975, SEX EVOLUTION 41 2 2 0 8 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 1874-1738 THEOR ECOL-NETH Theor. Ecol. DEC 2008 1 4 199 208 10.1007/s12080-008-0020-6 10 Ecology Environmental Sciences & Ecology 500UT WOS:000270331700002 2018-11-12 J Riou, S; Hamer, KC Riou, Samuel; Hamer, Keith C. Predation risk and reproductive effort: impacts of moonlight on food provisioning and chick growth in Manx shearwaters ANIMAL BEHAVIOUR English Article breeder; Manx shearwater; moonlight; parental care; parent-offspring conflict; Puffinus puffinus; risk taking PUFFINUS-PUFFINUS; NESTLING OBESITY; SEX-DIFFERENCES; STORM-PETRELS; BEHAVIOR; AVOIDANCE; SURVIVAL; FLYCATCHER; FECUNDITY; SEABIRDS According to life history theory, it is particularly important for long-lived iteroparous species to balance effort invested in reproduction against risks to future reproductive potential, leading to a conflict between investment in current versus potential future offspring. If providing care for offspring entails a risk of predation, parents must compromise between ensuring offspring growth and survival and ensuring their own survival. We addressed three hypotheses for the outcome of this conflict, which focus on different costs and benefits, and relate variation in parental effort to: ( 1) the parent's own risk of predation; ( 2) the reproductive value of the offspring; and ( 3) the harm that offspring would suffer in the absence of such care. We tested these hypotheses using Manx shearwaters, Puffinus puffinus, which, in common with many burrow-nesting seabirds, are active above ground only at night as a means of reducing attacks by diurnal avian predators. We found that parents were far less likely to return to the colony on moonlit nights, when they were vulnerable to such predators, and tended to delay their arrival until after moonset, which strongly supported hypothesis ( 1). Also, parents of chicks in good condition were more likely to attend the burrow on moonlit nights than those of chicks in poor condition, which supported hypothesis ( 2) but not hypothesis ( 3). Growth of chicks was suppressed on clear nights around the full moon, such that they experienced well-below average growth during one week in four. This could help explain the accumulation of fat stores by the chick that has evolved in some nocturnal seabirds. (C) 2008 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Riou, Samuel; Hamer, Keith C.] Univ Leeds, Inst Integrat & Comparat Biol, Leeds LS2 9JT, W Yorkshire, England Riou, S (reprint author), Univ Leeds, Inst Integrat & Comparat Biol, Leeds LS2 9JT, W Yorkshire, England. fbssr@leeds.ac.uk Marie Curie fellowship We thank the Countryside Council for Wales, the Wildlife Trust of South and West Wales and the Skomer and Skokholm Management Committee for permission to work on Skomer Island. We also thank Juan Brown, David Boyle and Chris Perrins for advice and help with logistics, and Annie Harrison and Saada Abdalla for help in the field. This study was funded by a Marie Curie fellowship to Samuel Riou. Bourgeois K, 2008, CR BIOL, V331, P88, DOI 10.1016/j.crvi.2007.10.008; BRETAGNOLLE V, 1990, CAN J ZOOL, V68, P1404, DOI 10.1139/z90-209; BROOKE MD, 1986, CONDOR, V88, P324; BROOKE ML, 1990, MANX SHEARWATER; Buckley YM, 2003, J APPL ECOL, V40, P481, DOI 10.1046/j.1365-2664.2003.00821.x; Bures S, 1997, ANIM BEHAV, V54, P1531, DOI 10.1006/anbe.1997.9999; Candolin U, 1998, P ROY SOC B-BIOL SCI, V265, P1171, DOI 10.1098/rspb.1998.0415; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Crawley M. J., 2007, R BOOK; Dale S, 1996, BEHAV ECOL SOCIOBIOL, V39, P31, DOI 10.1007/s002650050264; Gaston A.J., 1998, THE AUKS; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Gray CM, 2001, ANIM BEHAV, V62, P117, DOI 10.1006/anbe.2001.1717; HAMER KC, 1991, J ANIM ECOL, V60, P693, DOI 10.2307/5306; Hamer KC, 1998, FUNCT ECOL, V12, P625, DOI 10.1046/j.1365-2435.1998.00223.x; Hamer KC, 2006, BEHAV ECOL, V17, P132, DOI 10.1093/beheco/arj008; Hamer KC, 1997, FUNCT ECOL, V11, P489, DOI 10.1046/j.1365-2435.1997.00118.x; Harris M. P., 1965, Ibis, V107, P43, DOI 10.1111/j.1474-919X.1965.tb07280.x; HARRIS MP, 1966, IBIS, V108, P17, DOI 10.1111/j.1474-919X.1966.tb07249.x; HARRIS SW, 1974, CONDOR, V76, P249, DOI 10.2307/1366338; IMBER M J, 1975, Notornis, V22, P302; Keitt Bradford S., 2004, Marine Ornithology, V32, P173; KLOMP NI, 1992, COLON WATERBIRD, V15, P95, DOI 10.2307/1521358; Michl G, 2000, ANIM BEHAV, V59, P623, DOI 10.1006/anbe.1999.1352; Mitchell P. I, 2004, SEABIRD POPULATIONS; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; Mougeot F, 2000, J AVIAN BIOL, V31, P376, DOI 10.1034/j.1600-048X.2000.310314.x; Mougin JL, 1997, CR ACAD SCI III-VIE, V320, P825, DOI 10.1016/S0764-4469(97)85019-6; PERRINS CM, 1973, IBIS, V115, P535, DOI 10.1111/j.1474-919X.1973.tb01991.x; Phillips RA, 1999, P ROY SOC B-BIOL SCI, V266, P1329, DOI 10.1098/rspb.1999.0783; Pinheiro JC, 2000, MIXED EFFECTS MODELS; Quillfeldt P, 2004, ANIM BEHAV, V68, P613, DOI 10.1016/j.anbehav.2003.12.002; RICKLEFS RE, 1994, FUNCT ECOL, V8, P159, DOI 10.2307/2389899; Stearns S. C., 1992, EVOLUTION LIFE HIST; STOREY AE, 1986, BIRD BEHAV, V6, P85, DOI 10.3727/015613886792195252; Warham J, 1990, PETRELS THEIR ECOLOG; WATANUKI Y, 1986, AUK, V103, P14; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 38 23 23 1 22 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 ANIM BEHAV Anim. Behav. NOV 2008 76 5 1743 1748 10.1016/j.anbehav.2008.08.012 6 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 361HH WOS:000260118100032 2018-11-12 J Sanz-Aguilar, A; Tavecchia, G; Pradel, R; Minguez, E; Oro, D Sanz-Aguilar, Ana; Tavecchia, Giacomo; Pradel, Roger; Minguez, Eduardo; Oro, Daniel THE COST OF REPRODUCTION AND EXPERIENCE-DEPENDENT VITAL RATES IN A SMALL PETREL ECOLOGY English Article breeding experience; breeding success; demography; multistate capture-recapture analysis; Procellariiformes; reproductive cost; survival probability CAPTURE-RECAPTURE MODELS; SKUAS CATHARACTA-SKUA; BRITISH STORM-PETREL; LIFE-HISTORY; BREEDING EXPERIENCE; SOAY SHEEP; ENVIRONMENTAL VARIATION; PUFFINUS-TENUIROSTRIS; BODY CONDITION; BROOD SIZE Life history theory predicts that higher levels of reproductive investment entail higher reproductive costs especially among young and inexperienced individuals that might not optimize reproductive investment. Using a long-term individual and state-dependent capture-recapture data on Storm Petrels (Hydrobates pelagicus) we analyzed whether breeding experience and current breeding investment were associated with the expression of the cost of reproduction in terms of reduced survival and/or future breeding performance. We found a positive relationship between current breeding investment, breeding experience, and future survival and an improvement in breeding performance with individual experience independently of the previous breeding outcome. Our results suggest that the survival cost paid by first-time breeders and the positive correlation between reproduction and survival corresponds to selection against low quality birds unrelated to the breeding effort. Our work outlines the need to investigate the effect of multiple individual traits on different life history trade-offs simultaneously. [Sanz-Aguilar, Ana; Tavecchia, Giacomo; Pradel, Roger; Oro, Daniel] CSIC UIB, Inst Mediterrani Estudis Avancats IMEDEA, Esporles 07190, Mallorca, Spain; [Pradel, Roger] CNRS, Ctr Ecol Fonct & Evolut, F-34033 Montpellier, France; [Minguez, Eduardo] Parque Nat Serra Gelada & Entorno Litoral Gen Val, Alicante 03501, Spain Sanz-Aguilar, A (reprint author), CSIC UIB, Inst Mediterrani Estudis Avancats IMEDEA, Miquel Marques 21, Esporles 07190, Mallorca, Spain. ana.sanz@uib.es Tavecchia, Giacomo/N-3961-2014; Sanz-Aguilar, Ana/D-3778-2014; Pradel, Roger/A-8666-2008; Oro, Daniel/H-4208-2012 Tavecchia, Giacomo/0000-0001-5435-2691; Sanz-Aguilar, Ana/0000-0002-4177-9749; Pradel, Roger/0000-0002-2684-9251; Oro, Daniel/0000-0003-4782-3007 Spanish Ministry of Science [AP2004-1128, BOS2003-01960, CGL2006-04325/BOS, SAB-2006-0014] We acknowledge the many people who participated in the field work over the years. We are indebted to the ward and Environmental Monitoring Service of Benidorm Island (Parque Natural Serra Gelada y su entorno litoral-Generalitat Valenciana). We are also very grateful to Remi Choquet for his invaluable help with the software. Alejandro Martinez-Abrain and three anonymous referees made constructive comments on an early draft. Ana Sanz-Aguilar was supported by a postgraduate grant (AP2004-1128) of the Spanish Ministry of Science, which also funded the study through several grants (BOS2003-01960, CGL2006-04325/BOS, and SAB-2006-0014/Roger Pradel). Barbraud C, 2005, ECOLOGY, V86, P682, DOI 10.1890/04-0075; BARBRAUD C, 2006, ACTA ZOOL SINICA, V52, P101; Blums P, 2005, OECOLOGIA, V143, P365, DOI 10.1007/s00442-004-1794-x; Boulinier T, 1997, ECOLOGY, V78, P1284, DOI 10.2307/2265880; Bradley JS, 2000, J ANIM ECOL, V69, P639, DOI 10.1046/j.1365-2656.2000.00422.x; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; Burnham K. P., 2000, MODEL SELECTION INFE; Cam E, 2000, J ANIM ECOL, V69, P380, DOI 10.1046/j.1365-2656.2000.00400.x; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Choquet R., 2004, Animal Biodiversity and Conservation, V27, P207; CHOQUET R, 2005, U CARE 2 2 USE UNPUB; Coulson J.C., 1985, P489; Crone EE, 2001, EVOLUTION, V55, P2611; De Leon A, 2003, SCI MAR, V67, P109; Doligez B, 2002, J APPL STAT, V29, P407, DOI 10.1080/02664760120108845; Erikstad KE, 1998, ECOLOGY, V79, P1781; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Fox C.W., 2001, EVOLUTIONARY ECOLOGY; Grosbois V, 2003, ECOLOGY, V84, P1225, DOI 10.1890/0012-9658(2003)084[1225:MDWCDD]2.0.CO;2; Hadley GL, 2007, J ANIM ECOL, V76, P448, DOI 10.1111/j.1365-2656.2007.01219.x; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Jenouvrier S, 2005, OIKOS, V108, P511, DOI 10.1111/j.0030-1299.2005.13351.x; King R, 2006, BIOMETRICS, V62, P211, DOI 10.1111/j.1541-0420.2005.00404.x; Lebreton JD, 2002, J APPL STAT, V29, P353, DOI 10.1080/02664760120108638; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Mauck RA, 2004, EVOLUTION, V58, P880, DOI 10.1554/03-147; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; McCulloch C. E., 2001, GEN LINEAR MIXED MOD; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Minguez E, 1996, J ZOOL, V239, P633; Minguez E, 1998, J AVIAN BIOL, V29, P183, DOI 10.2307/3677197; Minguez Eduardo, 1994, Ardeola, V41, P3; Moyes K, 2006, OIKOS, V115, P241, DOI 10.1111/j.2006.0030-1299.15200.x; Navarro J, 2007, OECOLOGIA, V151, P150, DOI 10.1007/s00442-006-0559-0; Nevoux M, 2007, J ANIM ECOL, V76, P159, DOI 10.1111/j.1365-2656.2006.01191.x; NICHOLS JD, 1994, ECOLOGY, V75, P2052, DOI 10.2307/1941610; Nichols JD, 1995, J APPL STAT, V22, P835, DOI 10.1080/02664769524658; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; NUR N, 1984, OIKOS, V43, P407, DOI 10.2307/3544163; O'Dwyer TW, 2006, FUNCT ECOL, V20, P806, DOI 10.1111/j.1365-2435.2006.01168.x; OLLASON JC, 1988, STUDIES INDIVIDUAL V, P268; Orzack SH, 2001, ECOLOGY, V82, P2659, DOI 10.2307/2679944; Pradel R, 2003, BIOMETRICS, V59, P43, DOI 10.1111/1541-0420.00006; Pyle P, 1997, BEHAV ECOL, V8, P140, DOI 10.1093/beheco/8.2.140; Ratcliffe N, 2002, IBIS, V144, P384, DOI 10.1046/j.1474-919X.2002.00066.x; Ratcliffe N, 1998, J AVIAN BIOL, V29, P293, DOI 10.2307/3677111; Reid JM, 2003, J ANIM ECOL, V72, P765, DOI 10.1046/j.1365-2656.2003.00750.x; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; SCHWARZ CJ, 1993, BIOMETRICS, V49, P177, DOI 10.2307/2532612; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stevenson IR, 1995, P ROY SOC B-BIOL SCI, V262, P267, DOI 10.1098/rspb.1995.0205; Tavecchia G, 2005, J ANIM ECOL, V74, P201, DOI 10.1111/j.1365-2656.2005.00916.x; Tavecchia G, 2001, ECOLOGY, V82, P165, DOI 10.1890/0012-9658(2001)082[0165:SAARVI]2.0.CO;2; Tavecchia G, 2008, ECOLOGY, V89, P77, DOI 10.1890/06-0326.1; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Viallefont A, 1995, AUK, V112, P67, DOI 10.2307/4088767; Warham J, 1990, PETRELS THEIR ECOLOG; Warham J., 1996, BEHAV POPULATION BIO; WEIMERSKIRCH H, 1990, J ANIM ECOL, V59, P867, DOI 10.2307/5019; Wendeln H, 1999, J ANIM ECOL, V68, P205, DOI 10.1046/j.1365-2656.1999.00276.x; Wernham CV, 1998, J ANIM ECOL, V67, P25, DOI 10.1046/j.1365-2656.1998.00166.x; WOOLLER RD, 1990, J ANIM ECOL, V59, P161, DOI 10.2307/5165 66 45 46 3 21 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology NOV 2008 89 11 3195 3203 10.1890/08-0431.1 9 Ecology Environmental Sciences & Ecology 374OL WOS:000261053500023 2018-11-12 J Zani, PA Zani, Peter A. Climate Change Trade-Offs in the Side-Blotched Lizard (Uta stansburiana): Effects of Growing-Season Length and Mild Temperatures on Winter Survival PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY English Article DIAPAUSING AGLAIS-URTICAE; INACHIS-IO LEPIDOPTERA; GOLDENROD GALL FLY; POTENTIAL FECUNDITY; OVERWINTERING SURVIVAL; EUROSTA-SOLIDAGINIS; NATURAL-SELECTION; MIGRATORY BIRDS; UNITED-STATES; CLUTCH SIZE An expanding body of literature has demonstrated that global climate change continues to adversely affect many populations, species, and ecosystems. However, life-history theory also predicts possible benefits from longer growing seasons and less severe winters, particularly for ectotherms. To test the idea that climate change will have benefits as well as costs, I studied the impacts of growing-season length on growth and overwintering conditions on survival time using side-blotched lizards ( Uta stansburiana). Experiments in replicate field enclosures revealed that fall growing-season length has a direct effect on overwintering body size. Laboratory experiments revealed that both size and overwintering temperature have direct effects on winter survival time. Larger lizards are more likely to survive longer regardless of winter temperature. Furthermore, animals in colder (but still mild) winter microenvironments are more likely to survive longer than those in warmer winter environments. These results indicate that warmer winters caused by global climate change have the potential to negatively affect ectotherm populations. However, longer growing seasons may offset losses by allowing additional growth and energy storage. Thus, environmental alterations associated with climate change may be simultaneously beneficial and detrimental, and the long-term persistence of certain organisms may depend on the relative strength of their effects. [Zani, Peter A.] Hamilton Coll, Dept Biol, Clinton, NY 13323 USA Zani, PA (reprint author), Lafayette Coll, Dept Biol, Easton, PA 18042 USA. zanip@lafayette.edu Hamilton College Dean's Office I thank the many people who made this study possible. Jon Milgrom, Trevor Jones, and Ryan Neuhaus helped collect animals. Dave Ganskopp received overnight shipments and released experimental animals. Kathy Flannery allowed me to camp in her yard and provided lab space in her garage in Hines. Pat Reynolds and Bill Pfitsch agreed to alter their teaching schedules to allow me to conduct fall fieldwork. Dottie Kemp allowed me to use a car. Bill Bradshaw provided numerous discussions that led to this experiment. Christina Holzapfel and two anonymous reviewers provided useful comments on earlier drafts of this manuscript. The Hamilton College Biology Department provided space and student support for this project. Travel funding was provided by the Hamilton College Dean's Office. Adolph SC, 1996, OIKOS, V77, P267, DOI 10.2307/3546065; ADOLPH SC, 1993, AM NAT, V142, P273, DOI 10.1086/285538; Bearhop S, 2005, SCIENCE, V310, P502, DOI 10.1126/science.1115661; Beaumont LJ, 2006, GLOBAL CHANGE BIOL, V12, P1339, DOI 10.1111/j.1365-2486.2006.01171.x; Both C, 2006, NATURE, V441, P81, DOI 10.1038/nature04539; Bradshaw WE, 2006, SCIENCE, V312, P1477, DOI 10.1126/science.1127000; Bradshaw WE, 2004, EVOLUTION, V58, P1748; Bradshaw WE, 2001, P NATL ACAD SCI USA, V98, P14509, DOI 10.1073/pnas.241391498; Civantos E, 1999, COPEIA, P1112, DOI 10.2307/1447988; Cowles RB, 1941, ECOLOGY, V22, P125, DOI 10.2307/1932207; DeGaetano AT, 1996, J CLIMATE, V9, P1646, DOI 10.1175/1520-0442(1996)009<1646:RTIMAM>2.0.CO;2; DeGaetano AT, 2002, J CLIMATE, V15, P3188, DOI 10.1175/1520-0442(2002)015<3188:TITCTE>2.0.CO;2; Easterling DR, 2000, SCIENCE, V289, P2068, DOI 10.1126/science.289.5487.2068; Easterling DR, 1997, SCIENCE, V277, P364, DOI 10.1126/science.277.5324.364; Edwards M, 2004, NATURE, V430, P881, DOI 10.1038/nature02808; FERGUSON GW, 1984, EVOLUTION, V38, P342, DOI 10.1111/j.1558-5646.1984.tb00292.x; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gregory P.T., 1982, Biology of Reptilia, V13, P53; Groisman PY, 1999, CLIMATIC CHANGE, V42, P243, DOI 10.1023/A:1005432803188; HALPERN EA, 1968, PHYSIOL ZOOL, V41, P113, DOI 10.1086/physzool.41.1.30158489; Harrington R, 1999, TRENDS ECOL EVOL, V14, P146, DOI 10.1016/S0169-5347(99)01604-3; Hughes L, 2000, TRENDS ECOL EVOL, V15, P56, DOI 10.1016/S0169-5347(99)01764-4; Irwin JT, 2000, J INSECT PHYSIOL, V46, P655, DOI 10.1016/S0022-1910(99)00153-5; Irwin JT, 2003, OIKOS, V100, P71, DOI 10.1034/j.1600-0706.2003.11738.x; Jonzen N, 2006, SCIENCE, V312, P1959, DOI 10.1126/science.1126119; Kokko H, 2006, SCIENCE, V313, P789, DOI 10.1126/science.1128566; Lack D., 1954, NATURAL REGULATION A; LANDA K, 1992, EVOLUTION, V46, P121, DOI 10.1111/j.1558-5646.1992.tb01989.x; MANLY BFJ, 1991, RANDOMIZATION MONTE; Meehl GA, 2000, B AM METEOROL SOC, V81, P427, DOI 10.1175/1520-0477(2000)081<0427:TIEWAC>2.3.CO;2; Mousseau TA, 1998, MATERNAL EFFECTS ADA; NUSSBAUM R A, 1976, Northwest Science, V50, P243; Nussbaum R.A., 1983, AMPHIBIANS REPTILES; NUSSBAUM RA, 1981, OECOLOGIA, V49, P8, DOI 10.1007/BF00376891; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Parmesan C, 1999, NATURE, V399, P579, DOI 10.1038/21181; Pedhazur E. J., 1982, MULTIPLE REGRESSION; Porter W.P., 1983, P55; PULLIN AS, 1989, J INSECT PHYSIOL, V35, P277, DOI 10.1016/0022-1910(89)90075-9; PULLIN AS, 1989, J INSECT PHYSIOL, V35, P283, DOI 10.1016/0022-1910(89)90076-0; Reale D, 2003, EVOLUTION, V57, P2416; REZNICK DN, 1987, OECOLOGIA, V73, P401, DOI 10.1007/BF00385257; Roff D. A., 2002, LIFE HIST EVOLUTION; Root TL, 2005, P NATL ACAD SCI USA, V102, P7465, DOI 10.1073/pnas.0502286102; Root TL, 2003, NATURE, V421, P57, DOI 10.1038/nature01333; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; SAS Institute, 2003, JMP VERS 5 1; Schwartz MD, 2000, INT J CLIMATOL, V20, P929, DOI 10.1002/1097-0088(20000630)20:8<929::AID-JOC557>3.0.CO;2-5; Schwartz MD, 2006, GLOBAL CHANGE BIOL, V12, P343, DOI 10.1111/j.1365-2486.2005.01097.x; Sinervo B, 1996, EVOLUTION, V50, P1314, DOI 10.1111/j.1558-5646.1996.tb02371.x; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; Sinervo B, 2000, NATURE, V406, P985, DOI 10.1038/35023149; STRATTON DA, 1992, EVOLUTION, V46, P92, DOI 10.1111/j.1558-5646.1992.tb01987.x; Thomas CD, 2004, NATURE, V427, P145, DOI 10.1038/nature02121; Thomas DW, 2001, SCIENCE, V291, P2598, DOI 10.1126/science.1057487; TINKLE DW, 1962, ECOLOGY, V43, P223, DOI 10.2307/1931978; TSUJI JS, 1988, PHYSIOL ZOOL, V61, P241, DOI 10.1086/physzool.61.3.30161237; TURNER FB, 1982, ECOL MONOGR, V52, P243, DOI 10.2307/2937330; VANBERKUM FH, 1987, J ZOOL, V212, P511, DOI 10.1111/j.1469-7998.1987.tb02921.x; Visser ME, 2006, OECOLOGIA, V147, P164, DOI 10.1007/s00442-005-0299-6; Visser ME, 1998, P ROY SOC B-BIOL SCI, V265, P1867, DOI 10.1098/rspb.1998.0514; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P289, DOI 10.1098/rspb.2000.1363; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; Walther GR, 2005, TRENDS ECOL EVOL, V20, P648, DOI 10.1016/j.tree.2005.10.008; Warner DA, 2002, BIOL J LINN SOC, V76, P105, DOI 10.1111/j.1095-8312.2002.tb01718.x; Watt AD, 2002, ECOL ENTOMOL, V27, P254, DOI 10.1046/j.1365-2311.2002.00394.x; Wilbur H.M., 1988, Biology of Reptilia, V16, P387; WILLIAMS BK, 1984, AM NAT, V123, P1, DOI 10.1086/284182; Williams JB, 2003, J EXP ZOOL PART A, V298A, P23, DOI 10.1002/jez.a.10264; Wilson BS, 2004, ECOLOGY, V85, P3406, DOI 10.1890/03-4075; Zani PA, 2005, J HERPETOL, V39, P166, DOI 10.1670/0022-1511(2005)039[0166:LSNTLO]2.0.CO;2 71 22 22 0 29 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1522-2152 1537-5293 PHYSIOL BIOCHEM ZOOL Physiol. Biochem. Zool. NOV-DEC 2008 81 6 797 809 10.1086/588305 13 Physiology; Zoology Physiology; Zoology 367JD WOS:000260547400009 18826371 2018-11-12 J Yang, DM; Li, GY; Sun, SC Yang, Dongmei; Li, Guoyong; Sun, Shucun The generality of leaf size versus number trade-off in temperate woody species ANNALS OF BOTANY English Article allometry; trade-off; leafing intensity; leaf size; leaf habit; leaf form ECONOMICS SPECTRUM; SUPPORT COSTS; CORNERS RULES; LIFE-SPAN; PATTERNS; PLANTS; ALLOMETRY; BIOMASS; SHOOT; DIMENSIONS Background and Aims Trade-offs are fundamental to life-history theory, and the leaf size vs. number trade-off has recently been suggested to be of importance to our understanding leaf size evolution. The purpose of the present study was to test whether the isometric, negative relationship between leaf size and number found by Kleiman and Aarssen is conserved between plant functional types and between habitats. Methods Leaf mass, area and number, and stem mass and volume of current-year shoots were measured for 107 temperate broadleaved woody species at two altitudes on Gongga Mountain, south-west China. The scaling relationships of leaf size (leaf area and mass) vs. (mass-and volume-based) leafing intensity were analysed in relation to leaf habit, leaf form and habitat type. Trait relationships were determined with both a standardized major axis method and a phylogenetically independent comparative method. Key Results Significant negative, isometric scaling relationships between leaf size and leafing intensity were found to be consistently conserved across species independent of leaf habit, leaf form and habitat type. In particular, about 99% of the variation in leaf mass across species could be accounted for by proportional variation in mass-based leafing intensity. The negative correlations between leaf size and leafing intensity were also observed across correlated evolutionary divergences. However, evergreen species had a lower y-intercept in the scaling relationships of leaf area vs. leafing intensity than deciduous species. This indicated that leaf area was smaller in the evergreen species at a given leafing intensity than in the deciduous species. The compound-leaved deciduous species were observed usually to have significant upper shifts along the common slopes relative to the simple-leaved species, which suggested that the compound-leaved species were larger in leaf size but smaller in leafing intensity than their simple counterparts. No significant difference was found in the scaling relationships between altitudes. Conclusions The negative, isometric scaling relationship between leaf size and number is largely conserved in plants, while the leaf size vs. number trade-off can be mediated by leaf properties. The isometry of the leaf size vs. number relationship may simply result from a biomass allocation trade-off, although a twig size constraint may provide an alternative mechanism. [Sun, Shucun] Nanjing Univ, Dept Biol, Nanjing 210093, Peoples R China; [Yang, Dongmei; Li, Guoyong; Sun, Shucun] Chinese Acad Sci, Chengdu Inst Biol, Chengdu 610041, Peoples R China Sun, SC (reprint author), Nanjing Univ, Dept Biol, Nanjing 210093, Peoples R China. shcs@nju.edu National Science Foundation of China [30670333]; Chinese Academy of Sciences [KZCX2-XB2-02] We thank Dr David Ackerly for insightful suggestions regarding the manuscript, and Xiang Shuang, Guo Ruqing, Yanan Li, Yin Zhou, Wang Shuo and Shi Qin for assistance in the field. Thanks are also due to the staff of the biological station at Gongga Mountain for permitting this study to be conducted. This study was funded by National Science Foundation of China (30670333), the Chinese Academy of Sciences (KZCX2-XB2-02) and NCET to S. S. Aarssen LW, 2001, ECOSCIENCE, V8, P471, DOI 10.1080/11956860.2001.11682677; Bonsall MB, 2004, SCIENCE, V306, P111, DOI 10.1126/science.1100680; Bonser SP, 1996, OIKOS, V77, P347, DOI 10.2307/3546076; Brouat C, 1998, NEW PHYTOL, V139, P459, DOI 10.1046/j.1469-8137.1998.00209.x; Cavender-Bares J, 2005, NEW PHYTOL, V168, P597, DOI 10.1111/j.1469-8137.2005.01555.x; Cavender-Bares J, 2001, PLANT CELL ENVIRON, V24, P1243, DOI 10.1046/j.1365-3040.2001.00797.x; [程根伟 Cheng Genwei], 2002, [生态学报, Acta Ecologica Sinica], V22, P1049; CORNER EJH, 1949, ANN BOT-LONDON, V13, P367, DOI 10.1093/oxfordjournals.aob.a083225; *ECCAS, 1974, FLOR CHIN; Falster D., 2006, USERS GUIDE SMATR ST; Fonseca CR, 2000, J ECOL, V88, P964, DOI 10.1046/j.1365-2745.2000.00506.x; GIVNISH T J, 1978, P351; GIVNISH TJ, 1984, TASKS VEGETATION SCI, V12, P51; HORN H S, 1971, P144; Kleiman D, 2007, J ECOL, V95, P376, DOI 10.1111/j.1365-2745.2006.01205.x; Li GY, 2008, FUNCT ECOL, V22, P557, DOI 10.1111/j.1365-2435.2008.01407.x; Liu Z., 1985, VEGETATION GONGGA MO; Martins EP., 2004, COMPARE VERSION 4 6B; McDonald PG, 2003, FUNCT ECOL, V17, P50, DOI 10.1046/j.1365-2435.2003.00698.x; Niinemets U, 1998, PLANT ECOL, V134, P1, DOI 10.1023/A:1009773704558; Niinemets U, 2007, ANN BOT-LONDON, V100, P283, DOI 10.1093/aob/mcm107; Niinemets U, 2006, NEW PHYTOL, V171, P91, DOI 10.1111/j.1469-8137.2006.01741.x; Niklas KJ, 2002, AM J BOT, V89, P812, DOI 10.3732/ajb.89.5.812; Ogawa K, 2008, J ECOL, V96, P188, DOI 10.1111/j.1365-2745.2007.01311.x; Pitman EJG, 1939, BIOMETRIKA, V31, P9, DOI 10.2307/2334971; Preston KA, 2003, AM J BOT, V90, P1502, DOI 10.3732/ajb.90.10.1502; SHEN ZH, 2004, BIODIVERSITY SCI, V12, P89; Shipley B, 2006, ECOLOGY, V87, P535, DOI 10.1890/05-1051; *STATSOFT INC, 2000, STATISTICA WIND; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Sun SC, 2006, ANN BOT-LONDON, V97, P97, DOI 10.1093/aob/mcj004; Warton DI, 2006, BIOL REV, V81, P259, DOI 10.1017/S1464793106007007; Warton DI, 2002, BIOMETRICAL J, V44, P161, DOI 10.1002/1521-4036(200203)44:2<161::AID-BIMJ161>3.0.CO;2-N; WATSON MA, 1984, ANNU REV ECOL SYST, V15, P233, DOI 10.1146/annurev.es.15.110184.001313; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; Westoby M, 2003, OECOLOGIA, V135, P621, DOI [10.1007/s00442-003-1378-1, 10.1007/s00442-003-1231-6]; WHITE PS, 1983, NEW PHYTOL, V95, P139, DOI 10.1111/j.1469-8137.1983.tb03477.x; Wright IJ, 2007, ANN BOT-LONDON, V99, P1003, DOI 10.1093/aob/mcl066; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wright IJ, 2005, GLOBAL ECOL BIOGEOGR, V14, P411, DOI 10.1111/j.1466-822x.2005.00172.x; Wright IJ, 2002, J ECOL, V90, P534, DOI 10.1046/j.1365-2745.2002.00689.x; Yagi T, 2004, CAN J BOT, V82, P228, DOI [10.1139/B03-124, 10.1139/b03-124] 42 32 47 3 42 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0305-7364 1095-8290 ANN BOT-LONDON Ann. Bot. OCT 2008 102 4 623 629 10.1093/aob/mcn135 7 Plant Sciences Plant Sciences 350BB WOS:000259326300014 18682438 Green Published, Bronze 2018-11-12 J Flinks, H; Helm, B; Rothery, P Flinks, Heiner; Helm, Barbara; Rothery, Peter Plasticity of moult and breeding schedules in migratory European Stonechats Saxicola rubicola IBIS English Article migration; moult; phenology; reproduction; timing WHITE-CROWNED SPARROW; BULLFINCH PYRRHULA-PYRRHULA; CURRENT REPRODUCTIVE EFFORT; REDSHANK TRINGA-TOTANUS; AVIAN PRIMARY MOLT; CLIMATE-CHANGE; PIED FLYCATCHERS; POSTNUPTIAL MOLT; SEXUAL CONFLICT; FICEDULA-ALBICOLLIS Timing is crucial in seasonal environments. Passerine birds typically use a combination of physiological mechanisms and environmental cues to ensure that breeding, moult and migration occur without major temporal overlap and under the most favourable conditions. However, late in the breeding season some individuals initiate additional clutches , whereas others initiate moult. Such alternative strategies are thought to reflect trade-offs between reproductive benefits and timely investment in maintenance and survival. The degree of seasonal plasticity differs between species, depending on the mechanisms that govern their annual routine. Migrants are generally under pressure to complete breeding and moult before the autumn departure and often show little plasticity. We studied seasonal plasticity of breeding and moult schedules in the European Stonechat Saxicola rubicola. This species, an obligate short-distance migrant in Central Europe, sometimes initiates late clutches after typically at least two earlier breeding attempts. Based on life-history theory and on observations in captivity, which revealed photoperiodic regulation of breeding and moult, we predicted relatively little seasonal plasticity in Stonechats. We further predicted that reproductive gains of late breeders should be offset by reduced survival. These predictions were tested on long-term field data, using Underhill-Zucchini models to estimate moult. Late breeding occurred in c. 40% of pairs and increased their reproductive success by a third. Both sexes modified moult timing but in different ways. Late breeding females postponed moult approximately until chick independence without compensating for delay by faster moult. Males started moult on time and overlapped it with breeding, associated with markedly slowed plumage change. Sex differences in moult score increased with lay date, but due to their respective modifications, both sexes delayed moult completion. Nonetheless, we could not detect any evidence for survival costs of late breeding. Breeding and moult of European Stonechats appear relatively flexible, despite migratory schedules and photoperiodic programs for seasonal timing. Individuals can modify seasonal behaviour in late summer, presumably depending on their condition, and may profit considerably from extended breeding. [Flinks, Heiner; Helm, Barbara] Max Planck Inst Ornithol, D-82346 Andechs, Germany; [Rothery, Peter] Abbots Ripton, CEH Monks Wood, Ctr Ecol & Hydrol, Huntingdon PE28 2LS, Cambs, England Helm, B (reprint author), Max Planck Inst Ornithol, D-82346 Andechs, Germany. helm@orn.mpg.de Natural Environment Research Council [CEH010021] Berthold P., 2001, BIRD MIGRATION GEN S; Borras A, 2004, IBIS, V146, P14, DOI 10.1111/j.1474-919X.2004.00199.x; Both C, 2001, NATURE, V411, P296, DOI 10.1038/35077063; Daan S., 1989, ACT 19 C INT ORN OTT, V1, P392; Dawson A, 1998, IBIS, V140, P35, DOI 10.1111/j.1474-919X.1998.tb04538.x; Dawson A, 2000, P ROY SOC B-BIOL SCI, V267, P2093, DOI 10.1098/rspb.2000.1254; Dawson A, 2004, AUK, V121, P372, DOI 10.1642/0004-8038(2004)121[0372:UAVOAM]2.0.CO;2; DHONDT A A, 1973, Gerfaut, V63, P187; DHONDT AA, 1981, ORNIS SCAND, V12, P127, DOI 10.2307/3676039; DRENT RH, 1980, ARDEA, V68, P225; FLINKS H, 1987, Vogelwelt, V108, P41; Flinks H, 1987, CHARADRIUS, V23, P128; Flinks Heiner, 1999, Vogelwarte, V40, P11; Flinks Heiner, 1997, Vogelwelt, V118, P1; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Forstmeier W, 2001, ANIM BEHAV, V62, P1097, DOI 10.1006/anbe.2001.1859; FRANKEVOORT W, 1966, UNSERE WIESENSCHMATZ, P370; Gorman HE, 2003, ANIM BEHAV, V65, P745, DOI 10.1006/anbe.2003.2120; Gowaty PA, 1997, J AVIAN BIOL, V28, P95, DOI 10.2307/3677302; Gwinner E., 1999, P 22 INT ORN C DURB, P2366; Gwinner E, 1986, CIRCANNUAL RHYTHMS E; HAHN TP, 1992, ORNIS SCAND, V23, P314, DOI 10.2307/3676655; Hahn TP, 1997, CURR ORNITHOL, V14, P39; Hall S., 2000, J AVIAN BIOL, V31, P583; Hedenstrom A, 2007, CLIM RES, V35, P79, DOI 10.3354/cr00715; Helm B, 2006, ARDEA, V94, P33; Helm B, 2005, J ORNITHOL, V146, P348, DOI 10.1007/s10336-005-0009-5; Helm B, 2005, ANN NY ACAD SCI, V1046, P216, DOI 10.1196/annals.1343.019; Helm B, 2006, ANIM BEHAV, V72, P245, DOI 10.1016/j.anbehav.2005.12.007; Hemborg C, 1998, ANIM BEHAV, V56, P1221, DOI 10.1006/anbe.1998.0885; Hemborg C, 1998, P ROY SOC B-BIOL SCI, V265, P2003, DOI 10.1098/rspb.1998.0532; Hemborg C, 1999, J ANIM ECOL, V68, P429, DOI 10.1046/j.1365-2656.1999.00295.x; Hughes L, 2000, TRENDS ECOL EVOL, V15, P56, DOI 10.1016/S0169-5347(99)01764-4; HUMPHREY PHILIP S., 1959, AUK, V76, P1; Jenni L, 2003, P ROY SOC B-BIOL SCI, V270, P1467, DOI 10.1098/rspb.2003.2394; Jenni L, 1994, MOULT AGEING EUROPEA; Johannesen E, 2003, J AVIAN BIOL, V34, P198, DOI 10.1034/j.1600-048X.2003.03007.x; JOHNSON E D H, 1971, British Birds, V64, P267; JOHNSON E D H, 1971, British Birds, V64, P201; LACK D, 1950, IBIS, V92, P288, DOI 10.1111/j.1474-919X.1950.tb01753.x; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lessells C.M., 1991, P32; Lind J, 2001, FUNCT ECOL, V15, P29; Mccleery RH, 2007, IBIS, V149, P86; MORTON GA, 1990, CONDOR, V92, P813, DOI 10.2307/1368717; MORTON ML, 1992, ORNIS SCAND, V23, P322, DOI 10.2307/3676656; Morton ML, 2004, CONDOR, V106, P131, DOI 10.1650/7304; MORTON ML, 1994, CONDOR, V96, P1020, DOI 10.2307/1369111; Newton I, 2005, IBIS, V147, P667, DOI 10.1111/j.1474-919X.2005.00439.x; NEWTON I, 1966, IBIS, V108, P41, DOI 10.1111/j.1474-919X.1966.tb07251.x; Newton I, 2000, IBIS, V142, P65, DOI 10.1111/j.1474-919X.2000.tb07685.x; Newton I., 2008, ECOLOGY BIRD MIGRATI; NEWTON I, 1989, LIFETIME REPROD BIRD; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; NILSSON JA, 1999, P 22 INT ORN C JOH B, P224; Norris DR, 2004, SCIENCE, V306, P2249, DOI 10.1126/science.1103542; NOSKOV GA, 1999, P 22 INT ORN C DURB, P544; PART T, 1992, AM NAT, V140, P868, DOI 10.1086/285445; Payne RB, 1972, AVIAN BIOL, V2, P104; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; Pilz KM, 2003, ANIM BEHAV, V65, P841, DOI 10.1006/anbe.2003.2094; PIMM S, 1976, CONDOR, V78, P550, DOI 10.2307/1367104; Rodl T, 1999, ARDEA, V87, P247; SAMSON FB, 1976, CONDOR, V78, P505, DOI 10.2307/1367100; Sandercock BK, 2002, AUK, V119, P149, DOI 10.1642/0004-8038(2002)119[0149:ASROWS]2.0.CO;2; Serra L, 2001, J AVIAN BIOL, V32, P377, DOI 10.1111/j.0908-8857.2001.320415.x; Siikamaki P, 1998, ECOLOGY, V79, P1789, DOI 10.1890/0012-9658(1998)079[1789:LORSBF]2.0.CO;2; SIIKAMAKI P, 1994, FUNCT ECOL, V8, P587, DOI 10.2307/2389919; Slagsvold T, 1996, ECOLOGY, V77, P461, DOI 10.2307/2265622; SLAGSVOLD T, 1999, P 22 INT ORN C JOH B, P2622; SMITH JNM, 1981, EVOLUTION, V35, P1142, DOI 10.1111/j.1558-5646.1981.tb04985.x; SUMMERS RW, 1983, BIRD STUDY, V30, P149, DOI 10.1080/00063658309476790; Svensson E, 1997, BEHAV ECOL, V8, P92, DOI 10.1093/beheco/8.1.92; Underhill L. G., 1995, Ringing and Migration, V16, P109; UNDERHILL LG, 1990, IBIS, V132, P118, DOI 10.1111/j.1474-919X.1990.tb01024.x; UNDERHILL LG, 1988, IBIS, V130, P358, DOI 10.1111/j.1474-919X.1988.tb00993.x; Urquhart ED, 2002, STONECHATS; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Visser ME, 2003, P ROY SOC B-BIOL SCI, V270, P367, DOI 10.1098/rspb.2002.2244; VONBLOTZHEIM UNG, 1988, HDB VOGEL MITTELEURO, V11; Wesolowski T, 2000, J ORNITHOL, V141, P309, DOI 10.1007/BF02462240; WINGFIELD JC, 1979, GEN COMP ENDOCR, V38, P322, DOI 10.1016/0016-6480(79)90066-2; WINGFIELD JC, 1992, J EXP ZOOL, V261, P214, DOI 10.1002/jez.1402610212 83 19 23 0 47 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0019-1019 IBIS Ibis OCT 2008 150 4 687 697 10.1111/j.1474-919X.2008.00833.x 11 Ornithology Zoology 352VG WOS:000259524900003 2018-11-12 J Focardi, S; Gaillard, JM; Ronchi, F; Rossi, S Focardi, Stefano; Gaillard, Jean-Michel; Ronchi, Francesca; Rossi, Sophie SURVIVAL OF WILD BOARS IN A VARIABLE ENVIRONMENT: UNEXPECTED LIFE-HISTORY VARIATION IN AN UNUSUAL UNGULATE JOURNAL OF MAMMALOGY English Article capture-mark-recapture; life history; Mediterranean environments; sexual dimorphism; survival; Sus scrofa majori; wild boar SUS-SCROFA; POPULATION-DYNAMICS; BODY-MASS; ROE DEER; MEDITERRANEAN ECOSYSTEM; DEMOGRAPHIC TACTICS; TEMPORAL VARIATION; LARGE HERBIVORES; SOUTHERN FRANCE; FERAL PIGS The wild boar(Sus scrofa)is a large, sexually dimorphic ungulate exhibits a life-history tactic different from what would he predicted for a mammal of its size. In particular, litter size is larger and adult survival usually lower in wild boars than in other species of comparable size. We used capture-mark-recapture methods to model survival in a Mediterranean population (S. s. majori) of wild boars during ail 8-year period, using a large sample of individually tagged animals of known age, to investigate demographic patterns and the effects of variable environmental conditions (e.g,, summer droughts), which are believed to have a strong impact on the demography of this species. Contrary to the predictions based on Our Current knowledge of life-history theory, survival of wild boars differed less among age classes and between sexes than has been reported in other large mammals.. As predicted from current theories on sexual selection. the impact of environmental factors was stronger on males than on females. This study documents for wild boars a life-history tactic different from the accepted model for large ungulates but similar to the tactic observed in small terrestrial mammals. [Focardi, Stefano; Ronchi, Francesca] Ist Nazl Fauna Selvat, I-40064 Ozzano Dell Emilia, Italy; [Gaillard, Jean-Michel] Univ Lyon 1, Lab Biometrie Genet & Biol Populat, F-69622 Villeurbanne, France; [Rossi, Sophie] Direct Etudes & Rech, Off Natl Chasse & Faune Sauvage, F-75008 Paris, France Focardi, S (reprint author), Ist Nazl Fauna Selvat, Via Ca Fornacetta 9, I-40064 Ozzano Dell Emilia, Italy. stefano.focardi@infs.it Segretariato della Presideriza della Republica We thank the Segretariato della Presideriza della Republica for permission to work at Castelporziano and financial support. A. Demichelis and A. Tenelli encouraged the research. Preserve and National Forests rangers Contributed to counts and captures. F. Riga. P. Montanaro, P. Aragno, P. Bergamasco, P. Di Lusio, F. Flavoni, and R. Torchia assisted ill fieldwork. V. Guberti and coworkers provided veterinary assistance during, Captures. J. Mayer reviewed a 1 st draft of the manuscript and his suggestions improved the paper very much. ABAIGAR T, 1992, MAMMALIA, V56, P245; BARRETT RH, 1978, HILGARDIA, V46, P283, DOI 10.3733/hilg.v46n09p283; Baubet E, 2003, WILDLIFE RES, V30, P179, DOI 10.1071/WR00113; BEUERLE W, 1975, Zeitschrift fuer Tierpsychologie, V39, P211; Bieber C, 2005, J APPL ECOL, V42, P1203, DOI 10.1111/j.1365-2664.2005.01094.x; Boitani L, 1995, IBEX J MT ECOL, V3, P197; Burnham K. P., 1998, MODEL SELECTION INFE; Carranza J, 1996, AM NAT, V148, P81, DOI 10.1086/285912; CAUGHLEY G, 1966, ECOLOGY, V47, P906, DOI 10.2307/1935638; CAUGHLEY G, 1977, ANAL VERTEBRATE POPU; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Choquet R, 2005, U CARE 2 2 USERS MAN; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; COBLENTZ BE, 1987, J APPL ECOL, V24, P403, DOI 10.2307/2403883; COOCH EG, 1997, PRACTICAL GUIDE MARK; Coulson T, 2001, SCIENCE, V292, P1528, DOI 10.1126/science.292.5521.1528; DARDAILLON M, 1988, Z SAUGETIERKD, V53, P22; DEBEAUX O, 1927, MEMORIE SOC ITALIANA, V9, P263; DIONG C H, 1973, Malayan Nature Journal, V26, P120; DZIECIOLOWSKI RM, 1990, ACTA THERIOL, V35, P77; EBERHARDT LL, 1969, WILDLIFE MANAGEMENT, P457; Ernest SKM, 2003, ECOLOGY, V84, P3402, DOI 10.1890/02-9002; Fernandez-Llario P, 2000, ETHOL ECOL EVOL, V12, P335; Focardi S, 2002, J WILDLIFE MANAGE, V66, P48, DOI 10.2307/3802870; Focardi S, 1996, FOREST ECOL MANAG, V88, P7, DOI 10.1016/S0378-1127(96)03804-2; Focardi S, 2000, J ZOOL, V250, P329, DOI 10.1017/S095283690000306X; FOCARDI S, 2001, SCRITTI DOCUMENTI, V26, P187; GAILLARD J M, 1987, Gibier Faune Sauvage, V4, P31; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Gaillard JM, 1997, OECOLOGIA, V112, P502, DOI 10.1007/s004420050338; Gannon WL, 2007, J MAMMAL, V88, P809, DOI 10.1644/06-MAMM-F-185R1.1; Garel M, 2004, P ROY SOC B-BIOL SCI, V271, pS471, DOI 10.1098/rsbl.2004.0219; Harvey P. H., 1991, COMP METHOD EVOLUTIO; Hayssen V., 1993, ASDELLS PATTERNS MAM; HENRY VG, 1968, J WILDLIFE MANAGE, V32, P406, DOI 10.2307/3798986; JEZIERSKI W, 1977, ACTA THERIOL, V22, P337, DOI 10.4098/AT.arch.77-31; Larson G, 2005, SCIENCE, V307, P1618, DOI 10.1126/science.1106927; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Loison A, 1999, EVOL ECOL RES, V1, P611; Martin TE, 1995, J APPL STAT, V22, P863, DOI 10.1080/02664769524676; Massei G, 1996, ACTA THERIOL, V41, P307, DOI 10.4098/AT.arch.96-29; Massei G, 1997, J ZOOL, V242, P394; MATSCHKE GH, 1967, J WILDLIFE MANAGE, V31, P109, DOI 10.2307/3798365; Mattioli L, 2004, J ZOOL, V264, P249, DOI 10.1017/S095283690400576X; MURA G, 2001, SCRITTI DOCUMENTI, V26, P273; OKARMA H, 1995, ACTA THERIOL, V40, P197, DOI 10.4098/AT.arch.95-20; Pedone P., 1995, IBEX J MT ECOL, V3, P66; PIGNATTI S, 2001, ACCADEMIA NAZL SCI D, V26, P441; PONTIER D, 1993, OIKOS, V66, P424, DOI 10.2307/3544936; PRICE MV, 1994, CONSERV BIOL, V8, P810, DOI 10.1046/j.1523-1739.1994.08030810.x; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PURVIS A, 1995, J ZOOL, V237, P259, DOI 10.1111/j.1469-7998.1995.tb02762.x; Rivas-Martinez S., 1999, ITINERA GEOBOT, V12, P5; Rochet MJ, 2000, OIKOS, V91, P255, DOI 10.1034/j.1600-0706.2000.910206.x; Roff Derek A., 1992; SAEZROYUELA C, 1987, FOLIA ZOOL, V36, P21; SAS Institute Inc, 2000, SAS ONLINEDOC VERS 8; SCANDURA M, 2005, ITALIAN J MAMMALOG S, V1, P24; SCHEMPER M, 1990, BIOMETRIKA, V77, P216, DOI 10.1093/biomet/77.1.216; Seber GAF, 2002, J APPL STAT, V29, P5, DOI 10.1080/02664760120108700; Servanty S, 2007, BEHAV ECOL, V18, P427, DOI 10.1093/beheco/arl099; SHINE R, 1992, AM NAT, V139, P1257, DOI 10.1086/285385; Spitz F, 1998, J MAMMAL, V79, P251, DOI 10.2307/1382861; SPITZ F, 1991, B MENSUEL OFFICE NAT, V159, P28; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Toigo C, 2006, ECOGRAPHY, V29, P301, DOI 10.1111/j.2006.0906-7590.04394.x; Truve J, 2003, WILDLIFE BIOL, V9, P51; Volokh AM, 2002, ZOOL ZH, V81, P1506; VONSTUBBE C, 1998, S OK SCHW MAINZ 15 A, P45 74 28 29 1 34 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 0022-2372 1545-1542 J MAMMAL J. Mammal. OCT 2008 89 5 1113 1123 10.1644/07-MAMM-A-164.1 11 Zoology Zoology 364DQ WOS:000260316800005 2018-11-12 J Rushton, JP; Bons, TA; Hur, YM Rushton, J. Philippe; Bons, Trudy Ann; Hur, Yoon-Mi The genetics and evolution of the general factor of personality JOURNAL OF RESEARCH IN PERSONALITY English Review Emotional intelligence; Prosocial behavior; Evolutionary psychology; Life-history theory; Behavior genetics; Twins; Personality theory LIFE-HISTORY THEORY; JOB-PERFORMANCE; EMOTIONAL INTELLIGENCE; 5-FACTOR MODEL; ENVIRONMENTAL CONTRIBUTIONS; INDIVIDUAL-DIFFERENCES; SOCIAL-RESPONSIBILITY; INCREMENTAL VALIDITY; K-FACTOR; BIG 5 Three studies tested the hypothesis that a general factor of personality (GFP) underlies diverse individual differences including altruism, the Big Five factors of Openness, Conscientiousness, Extraversion, Agreeableness, and Emotional Stability, and the EAS temperament traits of Emotional Stability, Activity, and Sociability. In Study 1, 214 university students completed 36 personality scales. In Study 2, 322 pairs of monozygotic (MZ) and dizygotic (DZ) twins completed 29 5-point rating scales plus questionnaires. In Study 3, 575 pairs of 2- to 9-year-old Korean twins were rated by their mothers on 25 temperament scales. Factor analyses revealed a hierarchical organization with GFP at the apex and the Big Five and/or EAS temperament scales intermediate. The twin data show GFP has an early age of onset with 50% of the variance attributable to non-additive (dominance) genetic influence and 50% to unique, non-shared environmental influence. We discuss a life history matrix encompassing brain size, maturational speed, and longevity, plus emotional intelligence and the personality disorders, and suggest natural selection acted directionally to endow people with more cooperative and less contentious personalities than their archaic ancestors, or nearest living relatives, the chimpanzees. (C) 2008 Elsevier Inc. All rights reserved. [Rushton, J. Philippe; Bons, Trudy Ann] Univ Western Ontario, Dept Psychol, London, ON N6A 5C2, Canada; [Hur, Yoon-Mi] Chonnam Natl Univ, Kwangju, South Korea Rushton, JP (reprint author), Univ Western Ontario, Dept Psychol, London, ON N6A 5C2, Canada. Rushton@uwo.ca Ahn J., 2003, J KOREAN NEUROPSYCHI, V42, P141; Alexander R. D., 1979, DARWINISM HUMAN AFFA; American Psychiatry Association, 1994, DIAGN STAT MAN MENT; [Anonymous], 2006, STAT PACK SOC SCI SP; Ashton MC, 2001, EUR J PERSONALITY, V15, P327, DOI 10.1002/per.417; Ashton MC, 1998, J ORGAN BEHAV, V19, P289, DOI 10.1002/(SICI)1099-1379(199805)19:3<289::AID-JOB841>3.3.CO;2-3; Ashton MC, 1998, J RES PERS, V32, P243, DOI 10.1006/jrpe.1998.2214; BARON R, 2007, ED PEOPLE BE EMOTION; BARRICK MR, 1991, PERS PSYCHOL, V44, P1, DOI 10.1111/j.1744-6570.1991.tb00688.x; BERKOWITZ L, 1964, J ABNORM SOC PSYCH, V68, P275, DOI 10.1037/h0040164; Biesanz JC, 2004, J PERS, V72, P845, DOI 10.1111/j.0022-3506.2004.00282.x; BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; Bouchard TJ, 2003, J NEUROBIOL, V54, P4, DOI 10.1002/neu.10160; Brackett MA, 2003, PERS SOC PSYCHOL B, V29, P1147, DOI 10.1177/0146167203254596; Campbell A, 2007, EUR J PERSONALITY, V21, P591; Ciani ASC, 2007, EUR J PERSONALITY, V21, P3, DOI 10.1002/per.595; CLARK LA, 2002, PERSONALITY DISORDER, P161, DOI DOI 10.1037/10423-010; Costa P. T., 1992, REVISED NEO PERSONAL; COSTA PT, 2002, PERSONALITY DISORDER; Darwin C., 1872, EXPRESSION EMOTIONS; Darwin C. R., 1871, DESCENT MAN; Day AL, 2005, EUR J PERSONALITY, V19, P519, DOI 10.1002/per.552; De Raad B, 2008, J PERS SOC PSYCHOL, V94, P347, DOI 10.1037/0022-3514.94.2.347; Dunbar RIM, 2007, PHILOS T R SOC B, V362, P649, DOI 10.1098/rstb.2006.2001; Eysenck H., 1995, GENIUS NATURAL HIST; Eysenck HJ, 1975, MANUAL EYSENCK PERSO; FALCONER DS, 1989, INTRO QUANTITATIVE G; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2007, EUR J PERSONALITY, V21, P597; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fisher R. A., 1954, GENETICAL THEORY NAT; GEARY DC, 2005, ORIGIN MIND EVOLUTIO; GOLDBERG LR, 1990, J PERS SOC PSYCHOL, V59, P1216, DOI 10.1037/0022-3514.59.6.1216; Goleman D, 1995, EMOTIONAL INTELLIGEN; Harris J. R., 2006, NO 2 ALIKE HUMAN NAT; Hogan J, 2003, J APPL PSYCHOL, V88, P100, DOI 10.1037/0021-9010.88.1.100; Hough LM, 2000, ANNU REV PSYCHOL, V51, P631, DOI 10.1146/annurev.psych.51.1.631; Hur YM, 2005, TWIN RES HUM GENET, V8, P76, DOI 10.1375/1832427053435445; Hur YM, 2007, BIOLOGY LETT, V3, P664, DOI 10.1098/rsbl.2007.0365; Hur YM, 2006, TWIN RES HUM GENET, V9, P838, DOI 10.1375/183242706779462606; JACKSON DN, 1970, JACKSON PERSONALITY; JACKSON DN, 1984, PERSONALITY RES FORM; Jackson DN, 1994, JACKSON PERSONALITY; Jackson DN, 1967, PERSONALITY RES FORM; Jang KL, 2006, PERS INDIV DIFFER, V41, P261, DOI 10.1016/j.paid.2005.11.033; JENSEN AR, 1998, G FACTOR; Judge TA, 1998, HUM PERFORM, V11, P167, DOI 10.1207/s15327043hup1102&3_4; Judge TA, 2002, J PERS SOC PSYCHOL, V83, P693, DOI 10.1037//0022-3514.83.3.693; Jung RE, 2007, BEHAV BRAIN SCI, V30, P135, DOI 10.1017/S0140525X07001185; Kuncel NR, 2004, J PERS SOC PSYCHOL, V86, P148, DOI 10.1037/0022-3514.86.1.148; Lubinski D, 2004, J PERS SOC PSYCHOL, V86, P96, DOI 10.1037/0022-3514.86.1.96; Lubinski D., 1992, HDB IND ORG PSYCHOL, V3, P1; Lykken D.T., 1995, ANTISOCIAL PERSONALI; MacDonald Kevin, 2005, EVOLUTIONARY PERSPEC, P207; Mathiesen KS, 1999, J CHILD PSYCHOL PSYC, V40, P431, DOI 10.1017/S0021963098003680; Miller GF, 2007, Q REV BIOL, V82, P97, DOI 10.1086/517857; Mingroni MA, 2007, PSYCHOL REV, V114, P806, DOI 10.1037/0033-295X.114.3.806; Murray HA, 1938, EXPLORATIONS PERSONA; MURRAY HG, 1990, J EDUC PSYCHOL, V82, P250, DOI 10.1037//0022-0663.82.2.250; Musek J, 2007, J RES PERS, V41, P1213, DOI 10.1016/j.jrp.2007.02.003; Ones DS, 2005, HUM PERFORM, V18, P389, DOI 10.1207/s15327043hup1804_5; OSGOOD CE, 1957, MEASUREMENT MEANING; Paunonen SV, 1998, J PERS SOC PSYCHOL, V74, P538, DOI 10.1037/0022-3514.74.2.538; Paunonen SV, 2001, J PERS SOC PSYCHOL, V81, P524, DOI 10.1037/0022-3514.81.3.524; Penke L, 2007, EUR J PERSONALITY, V21, P549, DOI 10.1002/per.629; Plomin R, 2004, J PERS SOC PSYCHOL, V86, P112, DOI 10.1037/0022-3514.86.1.112; Plomin R., 1984, TEMPERAMENT EARLY DE; PLOMIN R, 2001, BEHAV GENETICS; POST F, 1994, BRIT J PSYCHIAT, V165, P22, DOI 10.1192/bjp.165.1.22; Rebollo I, 2007, EUR J PERSONALITY, V21, P621; Roberts BW, 2007, PERSPECT PSYCHOL SCI, V2, P313, DOI 10.1111/j.1745-6916.2007.00047.x; Rowe DC, 1997, PERS INDIV DIFFER, V23, P105, DOI 10.1016/S0191-8869(97)00005-6; ROWE DC, 1994, J RES CRIME DELINQ, V31, P374, DOI 10.1177/0022427894031004002; ROWE DC, 1989, DEV PSYCHOL, V25, P61, DOI 10.1037//0012-1649.25.1.61; Rushton J.P, 2007, EVOLUTIONARY COGNITI, P121; Rushton JP, 2007, BIOL LETT-UK, V3, P157, DOI 10.1098/rsbl.2006.0586; RUSHTON JP, 1983, SCIENTOMETRICS, V5, P93, DOI 10.1007/BF02072856; RUSHTON JP, 1983, PSYCHOL BULL, V94, P18, DOI 10.1037//0033-2909.94.1.18; Rushton JP, 2005, PSYCHOL SCI, V16, P555, DOI 10.1111/j.0956-7976.2005.01574.x; Rushton JP, 2004, P ROY SOC B-BIOL SCI, V271, P2583, DOI 10.1098/rspb.2004.2941; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; Rushton JP, 1996, PSYCHIATR GENET, V6, P87, DOI 10.1097/00041444-199622000-00009; RUSHTON JP, 1986, J PERS SOC PSYCHOL, V50, P1192, DOI 10.1037/0022-3514.50.6.1192; RUSHTON JP, 1990, J PERS, V58, P117, DOI 10.1111/j.1467-6494.1990.tb00910.x; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Sackett PR, 2008, ANNU REV PSYCHOL, V59, P419, DOI 10.1146/annurev.psych.59.103006.093716; Salovey P, 2005, CURR DIR PSYCHOL SCI, V14, P281, DOI 10.1111/j.0963-7214.2005.00381.x; Saucier G, 2001, J PERS, V69, P847, DOI 10.1111/1467-6494.696167; Saulsman LM, 2005, CLIN PSYCHOL REV, V25, P383, DOI 10.1016/j.cpr.2005.01.001; Saulsman LM, 2004, CLIN PSYCHOL REV, V23, P1055, DOI 10.1016/j.cpr.2002.09.001; Shaffer MA, 2006, J APPL PSYCHOL, V91, P109, DOI 10.1037/0021-9010.91.1.109; Spearman C, 1904, AM J PSYCHOL, V15, P201, DOI 10.2307/1412107; SPEARMAN C, 1927, ABILITIES MAN; TETT RP, 1991, PERS PSYCHOL, V44, P703; Thorndike E. L., 1920, HARPERS MAGAZINE, V140, P227, DOI DOI 10.1234/12345678; TOLSTOY L, 1875, A KARENINA; Viswesvaran C, 2005, J APPL PSYCHOL, V90, P108, DOI 10.1037/0021-9010.90.1.108; Weiss A, 2008, PSYCHOL SCI, V19, P205, DOI 10.1111/j.1467-9280.2008.02068.x; Widiger TA, 2007, J PERS ASSESS, V89, P16, DOI 10.1080/00223890701356953; Wilson E.O., 1975, P1 101 139 140 0 60 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0092-6566 1095-7251 J RES PERS J. Res. Pers. OCT 2008 42 5 1173 1185 10.1016/j.jrp.2008.03.002 13 Psychology, Social Psychology 363XU WOS:000260301600004 2018-11-12 J Becker, FG; de Carvalho, S; Hartz, SM Becker, Fernando Gertum; de Carvalho, Silene; Hartz, Sandra Maria Life-history of the South American darter, Characidium pterostictum (Crenuchidae): evidence for small scale spatial variation in a piedmont stream NEOTROPICAL ICHTHYOLOGY English Article Fish; Condition; Reproductive trade-off; Natural disturbance BROWN TROUT; MICROGEOGRAPHICAL VARIATION; REPRODUCTIVE-BIOLOGY; POPULATION-DYNAMICS; FISH ASSEMBLAGES; COASTAL STREAM; LOTIC SYSTEMS; SALMO-TRUTTA; BRAZIL; PATTERNS The present study compares the reproduction, condition and size of the small characiform fish, Characidium pterostictum, sampled at close sites differing in severity of flash flood effects. Data were obtained from seasonal samples in two sites situated 8 km apart in the same stream. In the upstream site, habitat is more severely affected by flash floods than in the downstream site, and this difference was hypothesized to produce differences in life history and individual reproduction trade-off patterns, as predicted by life-history theory. The results provided evidence for small-scale spatial variation in life-history and trade-off patterns within the studied population. At the most severely disturbed site, C. pterostictum displayed a trade-off pattern that favored reproductive life-span (e. g., larger size, higher and seasonally stable condition, larger mean size of mature females) over instantaneous reproductive output (lower gonadosomatic index), while the opposite pattern was observed in the less disturbed site. Because of the differences in disturbance effects between each sampling site, these results suggest that within-stream variability in the severity of hydrological disturbance can influence life-history patterns at small spatial scales. An implication of the results is that fish occupying areas that are hydrologically more variable within a stream are not necessarily at an energetic or reproductive disadvantage, but may be simply under environmental conditions that favor distinct patterns of energy allocation (or trade-offs) and population persistence, as predicted by life-history theory. Therefore, plasticity in life-history is expected to be common in stream fish populations that are widespread in a stream system with spatially variable or patchy habitat characteristics. [Becker, Fernando Gertum; de Carvalho, Silene; Hartz, Sandra Maria] Univ Fed Rio Grande do Sul, Dept Ecol, BR-91501970 Porto Alegre, RS, Brazil Becker, FG (reprint author), Univ Fed Rio Grande do Sul, Dept Ecol, Av Bento Goncalves 9500,Caixa Postal 15007, BR-91501970 Porto Alegre, RS, Brazil. sandra.hartz@ufrgs.br Becker, Fernando/B-4331-2012; Hartz, Sandra/A-8052-2012 Becker, Fernando/0000-0002-8295-2691; Hartz, Sandra/0000-0002-6536-1072 CAPES; WWF/USAID; PIBIC-CNPq/UFRGS; CNPq [304036/2007-2] We thank C. B. Fialho and M. P. Albrecht for suggestions to an earlier version of the manuscript, L. C. Kucharski for advice on data analysis and to two anonymous referees, whose contribution improved the manuscript. This work was partially supported by CAPES, WWF/USAID and PIBIC-CNPq/UFRGS (to SC) and a CNPq research grant to SMH (304036/2007-2). Alkins-Koo M, 2000, ENVIRON BIOL FISH, V57, P49, DOI 10.1023/A:1007566609881; Anderson Richard O., 1996, P447; Aranha JMR, 1998, REV BIOL TROP, V46, P951; Azevedo MA, 2000, COPEIA, P983, DOI 10.1643/0045-8511(2000)000[0983:RBOTIG]2.0.CO;2; Becker F. G., 2004, Braz. J. Biol., V64, P569, DOI 10.1590/S1519-69842004000400004; Becker F. G, 2002, THESIS U FEDERAL SAO; BECKER FG., 2002, BIOCIENCIAS PORTO AL, V9, P85; Bozzetti M, 2004, HYDROBIOLOGIA, V529, P133, DOI 10.1007/s10750-004-5738-6; BRAGA F M S, 2005, ACTA SCI-BIOL SCI, V27, P259; BUCKUP PA, 2003, CHECK LIST FRESHWATE, P87; Danylchuk AJ, 2006, J FISH BIOL, V68, P681, DOI 10.1111/j.1095-8649.2006.00946.x; Hartz Sandra Maria, 1999, Ichthyological Exploration of Freshwaters, V10, P247; HARVEY BC, 1987, T AM FISH SOC, V116, P851, DOI 10.1577/1548-8659(1987)116<851:SOYFTD>2.0.CO;2; Hasenack H., 1989, PESQUISAS, V22, P53, DOI DOI 10.2307/1936998; LECREN ED, 1951, J ANIM ECOL, V20, P201; Link JS, 2001, J FISH BIOL, V59, P783, DOI 10.1006/jfbi.2001.1687; Lobon-Cervia J, 2004, OIKOS, V105, P641, DOI 10.1111/j.0030-1299.2004.12989.x; LUKAS JA, 1995, T AM FISH SOC, V124, P726, DOI 10.1577/1548-8659(1995)124<0726:FANSOS>2.3.CO;2; Machado MD, 2002, ECOL FRESHW FISH, V11, P11, DOI 10.1034/j.1600-0633.2002.1o103.x; Magalhaes MF, 2003, J FISH BIOL, V63, P300, DOI 10.1046/j.1095-8649.2003.00148.x; MATTHEWS W. J., 1998, PATTERNS FRESHWATER; Mazzoni R, 2006, REV BRAS ZOOL, V23, P228, DOI 10.1590/S0101-81752006000100016; MAZZONI R., 2002, Braz. J. Biol., V62, P487, DOI 10.1590/S1519-69842002000300013; Mazzoni R, 1999, BRAZ ARCH BIOL TECHN, V42, P455; Olsen EM, 2003, OIKOS, V100, P483, DOI 10.1034/j.1600-0706.2003.11900.x; Olsen EM, 2005, ECOL FRESHW FISH, V14, P202, DOI 10.1111/j.1600-0633.2005.00094.x; Paugy D, 2002, AQUAT LIVING RESOUR, V15, P25, DOI 10.1016/S0990-7440(01)01144-5; POFF NL, 1990, ENVIRON MANAGE, V14, P629, DOI 10.1007/BF02394714; PRINGLE CM, 1988, J N AM BENTHOL SOC, V7, P503, DOI 10.2307/1467303; ROSS ST, 1985, AM NAT, V126, P24, DOI 10.1086/284393; SCHLOSSER IJ, 1990, ENVIRON MANAGE, V14, P621, DOI 10.1007/BF02394713; SCHLOSSER IJ, 1985, ECOLOGY, V66, P1484, DOI 10.2307/1938011; Spranza JJ, 2000, ENVIRON BIOL FISH, V59, P99, DOI 10.1023/A:1007630417266; Vazzoler A. E. A. M., 1996, BIOL REPROD PEIXES T; Vila-Gispert A, 2002, ENVIRON BIOL FISH, V65, P387, DOI 10.1023/A:1021181022360; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 2004, COASTAL MARINE CONSE, P106; Zar J.H, 1999, BIOSTATISTICAL ANAL 38 10 10 0 6 SOC BRASILEIRA ICTIOLOGIA SAO PAULO UNIV SAO PAULO, DEPT FISIOLOGIA-IB, RUA DO MATAO, TRAVESSA 14 N 321, SAO PAULO, SP 05508-900, BRAZIL 1679-6225 NEOTROP ICHTHYOL Neotrop. Ichthyol. OCT-DEC 2008 6 4 591 598 10.1590/S1679-62252008000400007 8 Zoology Zoology 402ET WOS:000262997700007 DOAJ Gold 2018-11-12 J Templer, DI Templer, Donald I. Correlational and factor analytic support for Rushton's differential K life history theory PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Rushton; IQ; skin color; life expectancy; infant mortality; reproductive strategies; r/K theory RACE DIFFERENCES; SKIN COLOR; IQ; INTELLIGENCE; STRATEGY; TEMPERATURE; PERSONALITY; PERSPECTIVE; COVITALITY; SELECTION The present study examines predictions from Rushton's differential K theory that diverse traits covary with intelligence, reproductive strategies, speed Of Maturation, parental care, and longevity. The predictions are tested by inter-correlating 129 cross-national differences in 10, birth rate, infant mortality, HIV/AIDS, and life expectancy. A K super-factor accounted for 75% of the variance. Moreover, the correlations were significantly higher with skin color, a biological variable, than they were with gross domestic product (GDP), a Culturally influenced variable. The median of the 2 1 inter-correlations among the seven variables was 0.68. (C) 2008 Elsevier Ltd. All rights reserved. Alliant Int Univ, Calif Sch Profess Psychol, Fresno, CA 93704 USA Templer, DI (reprint author), Alliant Int Univ, Calif Sch Profess Psychol, Fresno, CA 93704 USA. donaldtempler@sbcglobal.net BIASUTTI R, 1967, RAZZE POPOLI TERRA; BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; Cavalli-Scorza LL, 1994, HIST GEOGRAPHY HUMAN; Cvorovic J, 2008, PERS INDIV DIFFER, V44, P1604, DOI 10.1016/j.paid.2008.01.019; ELLIS L, 1988, PERS INDIV DIFFER, V9, P697, DOI 10.1016/0191-8869(88)90059-1; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Hunt E, 2006, INTELLIGENCE, V34, P131, DOI 10.1016/j.intell.2005.04.004; Jensen AR, 2006, INTELLIGENCE, V34, P128, DOI 10.1016/j.intell.2005.04.003; JENSEN AR, 1998, G FACTOR; Kanazawa S, 2008, INTELLIGENCE, V36, P99, DOI 10.1016/j.intell.2007.04.001; LYNN R, 1991, MANKIND QUART, V31, P255; Lynn R, 2006, IQ GLOBAL INEQUALITY; Lynn R, 2002, IQ WEALTH NATIONS; Lynn R., 2006, RACE DIFFERENCES INT; MAC ARTHUR ROBERT H., 1967; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Rowe DC, 1997, PERS INDIV DIFFER, V23, P105, DOI 10.1016/S0191-8869(97)00005-6; ROWE DC, 1994, J RES CRIME DELINQ, V31, P374, DOI 10.1177/0022427894031004002; ROWE DC, 1989, DEV PSYCHOL, V25, P61, DOI 10.1037//0012-1649.25.1.61; Rushton J. P., 1995, RACE EVOLUTION BEHAV; Rushton JP, 2008, PERS INDIV DIFFER, V44, P768, DOI 10.1016/j.paid.2007.10.011; Rushton JP, 2005, PSYCHOL PUBLIC POL L, V11, P235, DOI 10.1037/1076-8971.11.2.235; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; RUSHTON JP, 1990, J PERS, V58, P117, DOI 10.1111/j.1467-6494.1990.tb00910.x; RUSHTON JP, 1989, SOC SCI MED, V28, P1211, DOI 10.1016/0277-9536(89)90339-0; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; RUSHTON JP, J RES PERSO IN PRESS; Templer DI, 2006, INTELLIGENCE, V34, P121, DOI 10.1016/j.intell.2005.04.002; Wilson E.O., 1975, P1 31 40 40 0 7 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. OCT 2008 45 6 440 444 10.1016/j.paid.2008.05.010 5 Psychology, Social Psychology 353QF WOS:000259582600001 2018-11-12 J Rollinson, N; Brooks, RJ Rollinson, Njal; Brooks, Ronald J. Sources and significance of among-individual reproductive variation in a northern population of Painted Turtles (Chrysemys picta) COPEIA English Article OPTIMAL EGG SIZE; CLUTCH-SIZE; STERNOTHERUS-ODORATUS; PARENTAL INVESTMENT; OVARIAN CYCLE; MUSK TURTLE; PLASTICITY; NUMBER; OUTPUT; ENVIRONMENTS Painted Turtles (Chrysemys picta) are often used to test life-history theory. However, within populations, the factors that contribute to among-individual variation in egg size and clutch size are poorly understood, and an understanding of the biotic and abiotic parameters that contribute to this variation Is Important when framing patterns of maternal Investment in a life-history context. We examined proximate sources of reproductive variation in a northern population of Painted Turtles, we attempted to frame these sources of variation in a life-history context, and we evaluate which optimality model most adequately explains patterns of reproductive allocation in populations of small-bodied turtles. We used multiple linear regression on data from 168 first clutches of marked females that nested at a long-term study site In Algonquin Park, Ontario, Canada, in 2004. We found that mean egg mass was positively related to maximum plastron length (MPL) and female age, and negatively related to clutch size and water temperature prior to oviposition. Clutch size was positively related to MPL and carapace height, and negatively related to mean egg mass, and the number of clutches laid in the season. Body size (MPL) was the most Important predictor of each reproductive parameter, and residual analysis indicated that egg mass was more conserved than clutch size across the range of female body sizes sampled in this study. Thus, egg size may be optimized as a body size-specific function, and In light of this, we suggest that I phenotype-habitat matching' may occur in C. picta. If a female's phenotype (e.g., body size) influences the selective environment of her eggs and hatchlings (e.g., if larger females generally nest farther away from water), then the optimal strategy of maternal investment should vary among maternal phenotypes. The positive correlation between egg mass and body size that was observed in the present study can be explained in adaptive terms under hypotheses based on the concept of phenotype-habitat matching. [Rollinson, Njal; Brooks, Ronald J.] Univ Guelph, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada Rollinson, N (reprint author), Univ Guelph, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada. njal.rollinson@gmail.com; rjbrooks@uoguelph.ca Natural Sciences and Engineering Research Council We thank P. Tran, M. Carriere, T. Alkins, and H. Kitching for their work on the project in 2004. We also thank the management and staff at the Wildlife Research Station for providing accommodations, and both J. Porter and R. Farmer for editing earlier versions of this manuscript. Research was funded by Natural Sciences and Engineering Research Council grants to N. Rollinson, R. J. Brooks, and the Wildlife Research Station. Animal handling was authorized under protocol number 04R064 which was approved by the University of Guelph Animal Care Committee. BARNES H, 1962, LIMNOL OCEANOGR, V7, P462, DOI 10.4319/lo.1962.7.4.0462; BOBYN ML, 1994, CAN J ZOOL, V72, P28, DOI 10.1139/z94-005; Bowden RM, 2004, FUNCT ECOL, V18, P522, DOI 10.1111/j.0269-8463.2004.00861.x; CAGLE FRED R., 1939, COPEIA, V1939, P170, DOI 10.2307/1436818; CALLARD IP, 1978, GEN COMP ENDOCR, V35, P245, DOI 10.1016/0016-6480(78)90069-2; Clark PJ, 2001, FUNCT ECOL, V15, P70, DOI 10.1046/j.1365-2435.2001.00494.x; CONGDON JD, 1987, P NATL ACAD SCI USA, V84, P4145, DOI 10.1073/pnas.84.12.4145; Congdon JD, 2001, EXP GERONTOL, V36, P813, DOI 10.1016/S0531-5565(00)00242-4; Congdon JD, 2003, EXP GERONTOL, V38, P765, DOI 10.1016/S0531-5565(03)00106-2; CONGDON JD, 1982, HERPETOLOGICA, V38, P228; Einum S, 2002, AM NAT, V160, P756, DOI 10.1086/343876; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; ELGAR MA, 1989, J ZOOL, V219, P137, DOI 10.1111/j.1469-7998.1989.tb02572.x; Fox CW, 1997, AM NAT, V149, P149, DOI 10.1086/285983; GANZHORN D, 1983, COPEIA, P347; Gibbons J.W., 1990, P201; Glazier DS, 2000, ECOL LETT, V3, P142, DOI 10.1046/j.1461-0248.2000.00132.x; Harms HK, 2005, PHYSIOL BIOCHEM ZOOL, V78, P996, DOI 10.1086/432920; Hendry AP, 2003, EVOL ECOL RES, V5, P421; Hendry AP, 2001, AM NAT, V157, P387, DOI 10.1086/319316; IVERSON JB, 1993, COPEIA, P1; Kaplan RH, 2006, EVOLUTION, V60, P142; KAPLAN RH, 1984, AM NAT, V123, P393, DOI 10.1086/284211; Kolbe JJ, 2002, OIKOS, V99, P538, DOI 10.1034/j.1600-0706.2002.11853.x; Lovich J.E., 1994, TURTLES US CANADA; Marchand MN, 2004, BIOL CONSERV, V117, P243, DOI 10.1016/j.biocon.2003.07.003; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; MENDONCA MT, 1987, HERPETOLOGICA, V43, P82; MOLL E O, 1973, Herpetologica, V29, P307; Paitz RT, 2007, BIOL LETT-UK, V3, P44, DOI 10.1098/rsbl.2006.0573; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; Perrin N, 1988, FUNCT ECOL, V2, P283, DOI 10.2307/2389399; Quinn GP, 2002, EXPT DESIGN DATA ANA; Rollinson N, 2007, CAN J ZOOL, V85, P177, DOI 10.1139/Z07-002; ROLLINSON N, 2006, THESIS U GUELPH GUEL; Rollinson N, 2008, OIKOS, V117, P144, DOI 10.1111/j.2007.0030-1299.16088.x; Roosenburg WM, 1997, COPEIA, P290, DOI 10.2307/1447749; ROWE JW, 1994, OECOLOGIA, V99, P35, DOI 10.1007/BF00317081; Rowe JW, 2003, COPEIA, P326, DOI 10.1643/0045-8511(2003)003[0326:RCOFMP]2.0.CO;2; SAMSON J, 2003, THESIS U GUELPH GUEL; Sarkar S, 1996, J EXP ZOOL, V274, P41, DOI 10.1002/(SICI)1097-010X(19960101)274:1<41::AID-JEZ5>3.0.CO;2-F; SCHULTZ DL, 1991, EVOL ECOL, V5, P415, DOI 10.1007/BF02214158; SCHWARZKOPF L, 1986, CAN J ZOOL, V64, P1148, DOI 10.1139/z86-173; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Staub NL, 1997, GEN COMP ENDOCR, V108, P1, DOI 10.1006/gcen.1997.6962; STCLAIR RC, 1990, COPEIA, P1083; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tucker JK, 1998, J HERPETOL, V32, P294, DOI 10.2307/1565315; WARNER RR, 1984, EVOLUTION, V38, P148, DOI 10.1111/j.1558-5646.1984.tb00268.x; WILKINSON IR, 2005, COPEIA, P868; Yampolsky LY, 1996, AM NAT, V147, P86, DOI 10.1086/285841 51 10 10 0 16 AMER SOC ICHTHYOLOGISTS HERPETOLOGISTS CHARLESTON UNIV CHARLESTON, GRICE MARINE LABORATORY, 205 FORT JOHNSON RD, CHARLESTON, SC 29412 USA 0045-8511 COPEIA Copeia SEP 10 2008 3 533 541 10.1643/CE-06-203 9 Zoology Zoology 349SF WOS:000259302900006 2018-11-12 J Love, OP; Salvante, KG; Dale, J; Williams, TD Love, Oliver P.; Salvante, Katrina G.; Dale, James; Williams, Tony D. Specific variability in the immune system across life-history stages AMERICAN NATURALIST English Article cell-mediated immunity; life-history theory; sex-specific differences; individual variation; repeatability; zebra finch (Taeniopygia guttata) CELL-MEDIATED-IMMUNITY; STARLING STURNUS-VULGARIS; IN-FIELD CRICKETS; SPARROWS PASSER-DOMESTICUS; INTER-SEXUAL DIFFERENCES; TRADE-OFFS; HOUSE SPARROWS; EGG-PRODUCTION; TREE SWALLOWS; INDIVIDUAL VARIATION Organisms theoretically manage their immune systems optimally across their life spans to maximize fitness. However, we lack information on ( 1) how the immune system is managed across life-history stages, ( 2) whether the sexes manage immunity differentially, and ( 3) whether immunity is repeatable within an individual. We present a within-individual, repeated-measures experiment examining life-history stage variation in the inflammatory immune response in the zebra finch (Taeniopygia guttata). In juveniles, age-dependent variation in immune response differed in a sex-and context-specific manner, resulting in no repeatability across stages. In adults, females displayed little stage-dependent variation in immune response when laying while receiving a high-quality ( HQ) diet; however, laying while receiving a low-quality (LQ) diet significantly reduced both immune responses and reproductive outputs in amanner consistent with a facultative (resource-driven) effect of reproduction on immunity. Moreover, a reduced immune response in females who were raising offspring while receiving an HQ diet suggests a residual effect of the energetic costs of reproduction. Conversely, adult males displayed no variation in immune responses across stages, with high repeatability from the nonbreeding stage to the egg-laying stage, regardless of diet quality ( HQ diet,; LQ diet,). r = 0.51 r = 0.42 Females displayed high repeatability when laying while receiving the HQ diet (r = 0.53); however, repeatability disappeared when individuals received the LQ diet. High-response females receiving the HQ diet had greater immune flexibility than did low-response females who were laying while receiving the LQ diet. Data are consistent with immunity being a highly plastic trait that is sex-specifically modulated in a context-dependent manner and suggest that immunity at one stage may provide limited information about immunity at future stages. [Love, Oliver P.; Salvante, Katrina G.; Dale, James; Williams, Tony D.] Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada Love, OP (reprint author), Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada. olovea@sfu.ca; ksalvante@unc.edu; jamesdale68@yahoo.com; tdwillia@sfu.ca Dale, James/E-7203-2011 Dale, James/0000-0001-5950-5829 Natural Sciences and Engineering Research Council of Canada (NSERC) We wish to thank S. Poirier for her help with data collection. We also wish to thank C. Lessells for statistical help in calculating repeatability and E. Love, C. Semeniuk, E. Wagner, and two anonymous reviewers for helpful comments on previous drafts of this article. This research was funded by an operating Natural Sciences and Engineering Research Council of Canada (NSERC) grant to T. D. W. and postdoctoral NSERC awards to O.P.L., K.G.S, and J.D. Ardia DR, 2005, J ANIM ECOL, V74, P517, DOI 10.1111/j.1365-2656.2005.00950.x; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; Bertrand S, 2006, FUNCT ECOL, V20, P1022, DOI 10.1111/j.1365-2435.2006.01191.x; Birkhead TR, 1999, P ROY SOC B-BIOL SCI, V266, P385, DOI 10.1098/rspb.1999.0649; Bonneaud C, 2003, AM NAT, V161, P367, DOI 10.1086/346134; *CCAC, 1984, GUID CAR US EXPT AN, V2; Chin EH, 2005, J AVIAN BIOL, V36, P549, DOI 10.1111/j.0908-8857.2005.03496.x; Christe P, 1998, OIKOS, V83, P175, DOI 10.2307/3546559; Demas GE, 1998, J BIOL RHYTHM, V13, P253, DOI 10.1177/074873098129000093; Demas GE, 1997, AM J PHYSIOL-REG I, V273, pR1631; Dorshkind K, 2000, ENDOCR REV, V21, P292, DOI 10.1210/er.21.3.292; DRENT RH, 1980, ARDEA, V68, P225; Dubiec A, 2006, P R SOC B, V273, P1759, DOI 10.1098/rspb.2006.3510; Fargallo JA, 2002, ECOL LETT, V5, P95, DOI 10.1046/j.1461-0248.2002.00290.x; French SS, 2007, FUNCT ECOL, V21, P1115, DOI 10.1111/j.1365-2435.2007.01311.x; French SS, 2007, AM NAT, V170, P79, DOI 10.1086/518569; GRANBOM M, 2004, BEHAV ECOL, V16, P497; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Hanssen SA, 2004, P ROY SOC B-BIOL SCI, V271, P925, DOI 10.1098/rspb.2004.2678; Hasselquist D, 2001, BEHAV ECOL, V12, P93, DOI 10.1093/oxfordjournals.beheco.a000384; Hill GE, 1999, AM NAT, V154, P589, DOI 10.1086/303264; Houston AI, 2007, P ROY SOC B-BIOL SCI, V274, P2835, DOI 10.1098/rspb.2007.0934; Jacot A, 2005, J EVOLUTION BIOL, V18, P1060, DOI 10.1111/j.1420-9101.2005.00899.x; Jacot A, 2004, EVOLUTION, V58, P2280; Jacot A, 2005, P ROY SOC B-BIOL SCI, V272, P63, DOI 10.1098/rspc.2004.2919; Kilpimaa J, 2004, P ROY SOC B-BIOL SCI, V271, P245, DOI 10.1098/rspb.2003.2568; KLASING KC, 2002, P 23 INT ORN C, P6; KRAIJEVELD AR, 1997, NATURE, V389, P278; Krasnov BR, 2005, OECOLOGIA, V146, P209, DOI 10.1007/s00442-005-0189-y; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Lochmiller RL, 1996, OIKOS, V76, P594, DOI 10.2307/3546356; Love OP, 2005, AM NAT, V166, P751, DOI 10.1086/497440; Love OP, 2004, HORM BEHAV, V46, P59, DOI 10.1016/j.yhbeh.2004.02.001; LOVE OP, 2008, AM NATURALI IN PRESS; Martin II LB, 2006, OECOLOGIA, V147, P565, DOI 10.1007/s00442-005-0314-y; Martin LB, 2006, PHYSIOL BIOCHEM ZOOL, V79, P775, DOI 10.1086/504608; Martin LB, 2003, P ROY SOC B-BIOL SCI, V270, P153, DOI 10.1098/rspb.2002.2185; Martin LB, 2005, CAN J ZOOL, V83, P780, DOI 10.1139/Z05-062; Martin LB, 2006, INTEGR COMP BIOL, V46, P1030, DOI 10.1093/icb/icl039; Martinez MC, 2006, EDUC POLICY, V20, P299, DOI 10.1177/0895904805285017; McGraw KJ, 2003, AM NAT, V162, P704, DOI 10.1086/378904; Moller AP, 1998, AM NAT, V152, P605, DOI 10.1086/286193; Moller AP, 1999, Q REV BIOL, V74, P3, DOI 10.1086/392949; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; Moore SL, 2002, SCIENCE, V297, P2015, DOI 10.1126/science.1074196; Moreno J, 2001, ANN ZOOL FENN, V38, P111; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; Muller W, 2003, BEHAV ECOL SOCIOBIOL, V55, P80, DOI 10.1007/s00265-003-0681-5; Nelson R., 2002, SEASONAL PATTERNS ST; Nelson RJ, 1996, Q REV BIOL, V71, P511, DOI 10.1086/419555; Nilsson JA, 2001, OECOLOGIA, V128, P187, DOI 10.1007/s004420100653; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Ots I, 2001, P ROY SOC B-BIOL SCI, V268, P1175, DOI 10.1098/rspb.2001.1636; Payne RB, 1972, AVIAN BIOL, V2, P104; Perrins CM, 1996, IBIS, V138, P2, DOI 10.1111/j.1474-919X.1996.tb04308.x; Rantala MJ, 2007, BIOL J LINN SOC, V90, P509, DOI 10.1111/j.1095-8312.2007.00741.x; Rantala MJ, 2005, FUNCT ECOL, V19, P323, DOI 10.1111/j.1365-2435.2005.00979.x; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Rolff J, 2005, EVOLUTION, V59, P1844; Rowland E, 2007, J AVIAN BIOL, V38, P612, DOI 10.1111/j.2007.0908-8857.04082.x; Ryder JJ, 2000, P ROY SOC B-BIOL SCI, V267, P1171, DOI 10.1098/rspb.2000.1125; Salvante KG, 2006, AUK, V123, P575, DOI 10.1642/0004-8038(2006)123[575:TFSIIF]2.0.CO;2; Sandland GJ, 2003, TRENDS PARASITOL, V19, P571, DOI 10.1016/j.pt.2003.10.006; Sanz JJ, 2004, J ANIM ECOL, V73, P441, DOI 10.1111/j.0021-8790.2004.00815.x; Soler JJ, 2003, P ROY SOC B-BIOL SCI, V270, P241, DOI 10.1098/rspb.2002.2217; Svensson E, 1998, FUNCT ECOL, V12, P912, DOI 10.1046/j.1365-2435.1998.00271.x; Tella JL, 2002, P ROY SOC B-BIOL SCI, V269, P1059, DOI 10.1098/rspb.2001.1951; Tieleman BI, 2005, P ROY SOC B-BIOL SCI, V272, P1715, DOI 10.1098/rspb.2005.3155; Tschirren B, 2003, J ANIM ECOL, V72, P839, DOI 10.1046/j.1365-2656.2003.00755.x; Vainio L, 2004, EVOL ECOL, V18, P75, DOI 10.1023/B:EVEC.0000017726.73906.b2; Vezina F, 2003, PHYSIOL BIOCHEM ZOOL, V76, P716, DOI 10.1086/376425; Vezina F, 2002, PHYSIOL BIOCHEM ZOOL, V75, P377, DOI 10.1086/343137; Vezina F, 2006, ECOLOGY, V87, P2447, DOI 10.1890/0012-9658(2006)87[2447:IVEMSI]2.0.CO;2; Viney ME, 2005, TRENDS ECOL EVOL, V20, P665, DOI 10.1016/j.tree.2005.10.003; Wakelin Derek, 1997, P30; Westneat DF, 1998, P ROY SOC B-BIOL SCI, V265, P1065, DOI 10.1098/rspb.1998.0400; Williams TD, 2008, PHILOS T R SOC B, V363, P1687, DOI 10.1098/rstb.2007.0003; Zann RA, 1996, ZEBRA FINCH SYNTHESI; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 82 38 38 0 28 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 AM NAT Am. Nat. SEP 2008 172 3 E99 E112 10.1086/589521 14 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 338ST WOS:000258529700002 18665797 2018-11-12 J Warne, RW; Charnov, EL Warne, Robin W.; Charnov, Eric L. Reproductive allometry and the size-number trade-off for lizards AMERICAN NATURALIST English Review clutch size; offspring size; trade-off; reproductive allometry; life history; lizards LIFE-HISTORY TRAITS; IGUANAS AMBLYRHYNCHUS-CRISTATUS; RELATIVE CLUTCH MASS; FLORIDA SCRUB LIZARD; SCELOPORUS-UNDULATUS; POPULATION ECOLOGY; OFFSPRING SIZE; EGG SIZE; LACERTA-VIVIPARA; PHENOTYPIC PLASTICITY Fundamental to life-history theory is the assumed inverse proportionality between the number of offspring and the resource allocation per offspring. Lizards have been model organisms for empirical tests of this theory for decades; however, the expected negative relationship between clutch size and offspring size is often not detected. Here we use the approach developed by Charnov and Ernest to demonstrate that this often concealed trade-off can be made apparent in an interspecific comparison by correcting for size-dependent resource allocation. Our data set also shows a tight allometry for annual production that is consistent with life-history models for indeterminate growers. To account for nonindependence of species data we also compare the fit of nonphylogenetic and phylogenetic regression models to test for phylogenetic signal in these allometry and trade-off patterns. When combined, these results demonstrate that the offspring size/ clutch size trade-off is not isolated to a single clutch but is shaped by the resource investment made over an entire year. We conclude that, across diverse lizard species, there is strong evidence for the predicted trade-off between offspring size and the annual number of eggs produced. [Warne, Robin W.; Charnov, Eric L.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA Warne, RW (reprint author), Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. rwarne@unm.edu; rlc@unm.edu Warne, Robin/A-8978-2013 ABTS ML, 1987, ECOL MONOGR, V57, P215, DOI 10.2307/2937081; ALCALA AC, 1967, COPEIA, P596; BALLINGER RE, 1981, J NAT HIST, V15, P213, DOI 10.1080/00222938100770171; BALLINGER RE, 1973, ECOLOGY, V54, P269, DOI 10.2307/1934336; BALLINGER RE, 1977, ECOLOGY, V58, P628, DOI 10.2307/1939012; BALLINGER RE, 1985, COPEIA, P976; Bauwens D, 1997, AM NAT, V149, P91, DOI 10.1086/285980; BLAIR WF, 1960, RUSTY LIZARD POPULAT; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; Blomberg SP, 2001, AUSTRAL ECOL, V26, P349, DOI 10.1046/j.1442-9993.2001.01120.x; Bonnet X, 2001, OIKOS, V92, P297, DOI 10.1034/j.1600-0706.2001.920212.x; Bowden RM, 2004, FUNCT ECOL, V18, P522, DOI 10.1111/j.0269-8463.2004.00861.x; BROOKS GR, 1967, ECOL MONOGR, V37, P71, DOI 10.2307/2937336; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; BUSTARD HR, 1971, COPEIA, P658; Calder W. A., 1984, SIZE FUNCTION LIFE H; Carranza S., 2004, Systematics and Biodiversity, V2, P57, DOI 10.1017/S1477200004001355; Chapple DG, 2003, HERPETOL MONOGR, V17, P145, DOI 10.1655/0733-1347(2003)017[0145:ELABIT]2.0.CO;2; Charnov EL, 2006, AM NAT, V167, P578, DOI 10.1086/501141; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; Charnov Eric L., 1993, P1; Christiansen J. L., 1971, American Mus Novit, VNo. 2442, P1; Clobert J, 1998, J EVOLUTION BIOL, V11, P329; CONGDON JD, 1987, P NATL ACAD SCI USA, V84, P4145, DOI 10.1073/pnas.84.12.4145; Cruz FB, 1999, J HERPETOL, V33, P420, DOI 10.2307/1565638; Degenhardt W.G., 1996, AMPHIBIANS REPTILES; DEMARCO VG, 1989, OECOLOGIA, V80, P525, DOI 10.1007/BF00380077; Doughty P, 1997, OECOLOGIA, V110, P508, DOI 10.1007/s004420050187; Du WG, 2005, BIOL LETT-UK, V1, P98, DOI 10.1016/rsbl.2004.0268; Dunham A.E., 1988, Biology of Reptilia, V16, P441; DUNHAM AE, 1981, MISCELLANEOUS PUBLIC, V158; Etheridge R., 1988, P283; FERGUSON GW, 1984, EVOLUTION, V38, P342, DOI 10.1111/j.1558-5646.1984.tb00292.x; Fitch H. S., 1958, University of Kansas Publications of the Museum of Natural History, V11, P11; FITCH HS, 1970, MISCELLANEOUS PUBLIC, V52; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Garland T, 1999, SYST BIOL, V48, P547, DOI 10.1080/106351599260139; GENNARO A L, 1974, Herpetologica, V30, P85; Gillooly JF, 2002, NATURE, V417, P70, DOI 10.1038/417070a; GOLDBERG S R, 1977, Journal of Herpetology, V11, P31, DOI 10.2307/1563288; HALL RJ, 1971, U KANSAS PUBLICATION, V7, P357; Harvey MB, 2000, ZOOL J LINN SOC-LOND, V128, P189; HENLE K, 1991, OECOLOGIA, V88, P347, DOI 10.1007/BF00317577; HENLE K, 1990, HERPETOL MONOGR, V4, P30, DOI DOI 10.2307/1466967; HOWARD C W, 1974, Journal of the Arizona Academy of Science, V9, P108, DOI 10.2307/40023610; HULSE A C, 1981, Annals of Carnegie Museum, V50, P353; Iverson JB, 2004, HERPETOL MONOGR, V18, P1, DOI 10.1655/0733-1347(2004)018[0001:TNEOTA]2.0.CO;2; Jackman TR, 1999, SYST BIOL, V48, P254, DOI 10.1080/106351599260283; JACKSON JF, 1974, COPEIA, P689; JONES SM, 1987, ECOLOGY, V68, P1828, DOI 10.2307/1939874; Jordan MA, 2002, OECOLOGIA, V130, P44, DOI 10.1007/s004420100776; KITCHENER DJ, 1988, J HERPETOL, V22, P401, DOI 10.2307/1564335; KLUGE AG, 1987, MISCELLANEOUS PUBLIC; KNOPF GN, 1966, THESIS U COLORADO BO; KREKORIAN CO, 1984, HERPETOLOGICA, V40, P415; LABARBERA M, 1989, ANNU REV ECOL SYST, V20, P97, DOI 10.1146/annurev.es.20.110189.000525; Lack D., 1954, NATURAL REGULATION A; LAURIE WA, 1990, J ANIM ECOL, V59, P515, DOI 10.2307/4878; LAURIE WA, 1990, J ANIM ECOL, V59, P529, DOI 10.2307/4879; LAVIN SR, 2008, PHYSL BIOCH IN PRESS; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; LIN JY, 1982, COPEIA, P425; Macey JR, 2000, SYST BIOL, V49, P233, DOI 10.1093/sysbio/49.2.233; Maddison W. P., 2006, MESQUITE MODULAR SYS; MARTIN RF, 1977, COPEIA, P83, DOI 10.2307/1443508; MARTINS EP, 1991, EVOLUTION, V45, P534, DOI 10.1111/j.1558-5646.1991.tb04328.x; McCoy ED, 2004, HERPETOLOGICA, V60, P54, DOI 10.1655/01-66; MCGUIRE J, 1996, B CARNEGIE MUSEUM NA, V32; MEDICA P A, 1973, Journal of Herpetology, V7, P79, DOI 10.2307/1563204; Miles DB, 2002, HERPETOLOGICA, V58, P277, DOI 10.1655/0018-0831(2002)058[0277:GRAPOS]2.0.CO;2; MUNGER JC, 1986, COPEIA, P820; Niewiarowski PH, 2004, EVOLUTION, V58, P619, DOI 10.1111/j.0014-3820.2004.tb01684.x; NIEWIAROWSKI PH, 1993, ECOLOGY, V74, P1992, DOI 10.2307/1940842; O'Connor MP, 2007, AM NAT, V170, P431, DOI 10.1086/519459; Olsson M, 2002, FUNCT ECOL, V16, P135, DOI 10.1046/j.0269-8463.2001.00600.x; Oufiero CE, 2007, BIOL J LINN SOC, V91, P513, DOI 10.1111/j.1095-8312.2007.00816.x; Page RDM, 1996, COMPUT APPL BIOSCI, V12, P357; PARKER W S, 1971, Herpetologica, V27, P333; Perry G, 2002, ECOLOGY, V83, P1870, DOI 10.2307/3071771; PIANKA ER, 1975, COPEIA, P141; PIANKA ER, 1972, COPEIA, V3, P495; POUGH FH, 1980, AM NAT, V115, P92, DOI 10.1086/283547; *R DEV COR TEAM, 2007, R LANG ENV STAT COMP; Reeder Tod W., 1996, Herpetological Monographs, V10, P43, DOI 10.2307/1466980; Reeder TW, 2002, AM MUS NOVIT, P1, DOI 10.1206/0003-0082(2002)365<0001:PROWLO>2.0.CO;2; RICKER WE, 1973, J FISH RES BOARD CAN, V30, P409, DOI 10.1139/f73-072; Roff D. A., 2002, LIFE HIST EVOLUTION; ROSE B, 1981, ECOLOGY, V62, P706, DOI 10.2307/1937739; RUIBAL R, 1972, COPEIA, P509; RUIBAL R, 1974, ECOLOGY, V55, P525, DOI 10.2307/1935144; SCHALL JJ, 1978, COPEIA, P108; Schmitz A, 2005, MOL PHYLOGENET EVOL, V34, P118, DOI 10.1016/j.ympev.2004.08.016; SCHWARZKOPF L, 1992, HERPETOLOGICA, V48, P390; SCHWARZKOPF L, 1993, ECOLOGY, V74, P1970, DOI 10.2307/1940840; SHINE R, 1992, EVOLUTION, V46, P828, DOI 10.1111/j.1558-5646.1992.tb02088.x; Shine R, 2005, ANNU REV ECOL EVOL S, V36, P23, DOI 10.1146/annurev.ecolsys.36.102003.152631; SHINE R, 1992, AM NAT, V139, P1257, DOI 10.1086/285385; Shuter BJ, 2005, CAN J FISH AQUAT SCI, V62, P738, DOI 10.1139/F05-070; Sinervo B, 1996, EVOLUTION, V50, P1314, DOI 10.1111/j.1558-5646.1996.tb02371.x; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; Sites JW, 1996, MOL BIOL EVOL, V13, P1087, DOI 10.1093/oxfordjournals.molbev.a025671; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH DC, 1977, THESIS U MICHIGAN AN; Sokal R.R., 1995, BIOMETRY; Sorci G, 1996, J ANIM ECOL, V65, P781, DOI 10.2307/5676; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEWART JR, 1985, AM MIDL NAT, V113, P30, DOI 10.2307/2425345; SUGG DW, 1995, SOUTHWEST NAT, V40, P193; TELFORD SR, 1969, COPEIA, P548; TINKLE D W, 1976, Herpetologica, V32, P1; TINKLE DW, 1983, COPEIA, P585; TINKLE DW, 1993, ECOLOGY, V74, P2413, DOI 10.2307/1939592; TINKLE DW, 1986, COPEIA, P1; TINKLE DW, 1975, ECOLOGY, V56, P427, DOI 10.2307/1934973; TINKLE DW, 1967, MISCELLANEOUS PUBLIC, V132; Townsend TM, 2004, SYST BIOL, V53, P735, DOI 10.1080/10635150490522340; Turner F.B., 1977, P157; TURNER FB, 1974, REPROD SURVIVORSHIP, P117; Uller T, 2005, J ZOOL, V265, P295, DOI 10.1017/S0952836904006326; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VINEGAR MB, 1975, AM MIDL NAT, V93, P388, DOI 10.2307/2424171; VINEGAR MB, 1975, ECOLOGY, V56, P172, DOI 10.2307/1935309; VITT L J, 1974, Herpetologica, V30, P410; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; VITT LJ, 1991, COPEIA, P916, DOI 10.2307/1446087; WALKER JM, 1994, TEX J SCI, V46, P27; Wapstra E, 2001, J HERPETOL, V35, P194, DOI 10.2307/1566108; Wapstra E, 1999, AUST J ZOOL, V47, P539, DOI 10.1071/ZO99038; Warton DI, 2006, BIOL REV, V81, P259, DOI 10.1017/S1464793106007007; WERNER C, 1982, AM NAT, V121, P757; White CR, 2003, P NATL ACAD SCI USA, V100, P4046, DOI 10.1073/pnas.0436428100; Wiens John J., 1997, Herpetological Monographs, V11, P1, DOI 10.2307/1467007; WIEWANDT TA, 1982, IGUANAS WORLD THEIR; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; ZWEIFEL RICHARD G., 1966, AMER MUS NOVI TATES, V2247, P1 135 34 34 1 46 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. SEP 2008 172 3 E80 E98 10.1086/589880 19 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 338ST WOS:000258529700001 18673058 2018-11-12 J Tieleman, BI; Dijkstra, TH; Klasing, KC; Visser, GH; Williams, JB Tieleman, B. Irene; Dijkstra, Thomas H.; Klasing, Kirk C.; Visser, G. Henk; Williams, Joseph B. Effects of experimentally increased costs of activity during reproduction on parental investment and self-maintenance in tropical house wrens BEHAVIORAL ECOLOGY English Article cost of reproduction; handicap experiment; life-history evolution; physiological trade-offs SWALLOWS TACHYCINETA-BICOLOR; STARLINGS STURNUS-VULGARIS; EVAPORATIVE WATER-LOSS; ENERGY-EXPENDITURE; CLUTCH-SIZE; TREE SWALLOWS; BROOD SIZE; SAVANNAH SPARROWS; TROGLODYTES-AEDON; FOOD AVAILABILITY Life-history theory assumes that organisms trade-off current against future reproduction to maximize fitness. Experimental explorations of the costs of reproduction have not yielded a clear understanding of the nature of these costs but rather point to a complex set of allocation possibilities among several physiological functions and behaviors. We investigated how experimentally increased flight costs affected the trade-off between parental investment and self-maintenance in tropical house wrens, which have relatively high annual survival and multiple breeding opportunities per year. We predicted that handicapped wrens would not increase their energy expenditure but instead decrease their effort to rear young in order to maintain their own body condition. Our results largely supported these predictions: handicapped parents decreased their nestling feeding frequency but did neither alter their field metabolic rate (FMR) nor compromise their body condition as measured by basal metabolic rate (BMR) and several measures of innate immune function. Reduced feeding rates did not affect nestling body mass growth but resulted in decreased structural growth (length of tarsus). The latter result can be explained if parents shifted the type of prey brought to offspring or altered the amount of food brought per trip. The experiment-wide positive correlations among FMR, BMR, and feeding frequency are in agreement with the hypothesis that hard work requires elevated levels of BMR. These correlations, in combination with the absence of a handicap treatment effect on FMR or BMR, do not lend support for predictions from studies in the laboratory that birds compensate hard work during the day by lowering their BMR at night. Considering a complex set of allocation possibilities among several physiological functions and behaviors, we conclude that tropical wrens take out the costs of a handicap largely on their offspring quality not on self-maintenance processes. [Tieleman, B. Irene] Univ Missouri, Dept Biol, St Louis, MO 63121 USA; [Tieleman, B. Irene; Dijkstra, Thomas H.] Univ Groningen, Ctr Ecol & Evolutionary Studies, Anim Ecol Grp, NL-9750 AA Haren, Netherlands; [Klasing, Kirk C.] Univ Calif Davis, Dept Anim Sci, Davis, CA 95616 USA; [Visser, G. Henk] Univ Groningen, Ctr Isotope Res, NL-9747 AG Groningen, Netherlands; [Williams, Joseph B.] Ohio State Univ, Dept Ecol Evolut & Organismal Biol, Columbus, OH 43210 USA Tieleman, BI (reprint author), Univ Missouri, Dept Biol, 1 Univ Dr, St Louis, MO 63121 USA. B.I.Tieleman@rug.nl National Science Foundation IRCEB [0212587] National Science Foundation IRCEB (0212587). Ardia DR, 2005, ECOLOGY, V86, P2040, DOI 10.1890/04-1619; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; Bautista LM, 1998, AM NAT, V152, P543, DOI 10.1086/286189; Bryant DM, 1988, FUNCT ECOL, V2, P23, DOI 10.2307/2389456; CAMPBELL TW, 1995, AVIAN HEMATOLOGY CYT; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; DAAN S, 1990, AM J PHYSIOL, V259, pR333; Deerenberg C, 1996, J AVIAN BIOL, V27, P321, DOI 10.2307/3677263; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; Deerenberg C, 1998, J COMP PHYSIOL B, V168, P507, DOI 10.1007/s003600050171; DRENT RH, 1980, ARDEA, V68, P225; DRILLING NE, 1988, AUK, V105, P480; FINKE MA, 1987, J ANIM ECOL, V56, P99, DOI 10.2307/4802; FREED LA, 1987, AM NAT, V130, P507, DOI 10.1086/284728; GESSAMAN JA, 1988, PHYSIOL ZOOL, V61, P507, DOI 10.1086/physzool.61.6.30156159; HAILS CJ, 1979, J ANIM ECOL, V48, P471, DOI 10.2307/4173; Hasselquist D, 2001, BEHAV ECOL, V12, P93, DOI 10.1093/oxfordjournals.beheco.a000384; Hauber ME, 2002, BEHAV ECOL SOCIOBIOL, V51, P503, DOI 10.1007/s00265-001-0450-2; HILL RN, 1972, J APPL PHYSIOL, V33, P263; Johnson L. Scott, 1998, Birds of North America, V380, P1; KENDEIGH SC, 1937, ECOL MONOGR, V7, P19; LASIEWSKI RC, 1966, COMP BIOCHEM PHYSIOL, V19, P445, DOI 10.1016/0010-406X(66)90153-8; LEVY A, 1964, J SCI INSTRUM, V41, P449, DOI 10.1088/0950-7671/41/7/309; LIFSON N, 1966, J THEOR BIOL, V12, P46, DOI 10.1016/0022-5193(66)90185-8; Martin LB, 2004, ECOLOGY, V85, P2323, DOI 10.1890/03-0365; Matson KD, 2006, PHYSIOL BIOCHEM ZOOL, V79, P556, DOI 10.1086/501057; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; Millet S, 2007, DEV COMP IMMUNOL, V31, P188, DOI 10.1016/j.dci.2006.05.013; MOCK PJ, 1991, CONDOR, V93, P598, DOI 10.2307/1368192; Moreno J, 1999, BEHAV ECOL SOCIOBIOL, V46, P244, DOI 10.1007/s002650050616; MORENO J, 1995, J ANIM ECOL, V64, P721, DOI 10.2307/5851; Nagy K. A., 1988, SCALING WATER FLUX R; NAGY KA, 1980, AM J PHYSIOL, V238, pR466; NAGY KA, 1980, AM J PHYSIOL, V238, pR454; Nilsson JA, 2002, P ROY SOC B-BIOL SCI, V269, P1735, DOI 10.1098/rspb.2002.2071; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; NORRIS K, 1994, J ANIM ECOL, V63, P601, DOI 10.2307/5226; Nudds RL, 2001, FUNCT ECOL, V15, P458, DOI 10.1046/j.0269-8463.2001.00546.x; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PENNYCUICK CJ, 2004, PENNYCUICK FLIGHT PR; RICKLEFS RE, 1984, AUK, V101, P707, DOI 10.2307/4086898; Ricklefs RE, 1997, ECOL MONOGR, V67, P23, DOI 10.1890/0012-9615(1997)067[0023:CDONWP]2.0.CO;2; ROBINSON KD, 1991, AUK, V108, P277; SAETHER BE, 1993, BEHAV ECOL SOCIOBIOL, V33, P147, DOI 10.1007/BF00216594; Schmidt-Nielsen K, 1997, ANIMAL PHYSL ADAPTAT; SPEAKMAN JR, 1997, DOUBLY LABELLED WATE; Spencer KA, 2002, P ROY SOC B-BIOL SCI, V269, P403, DOI 10.1098/rspb.2001.1871; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tieleman BI, 2006, FUNCT ECOL, V20, P491, DOI 10.1111/j.1365-2435.2006.01126.x; Tieleman BI, 2005, P ROY SOC B-BIOL SCI, V272, P1715, DOI 10.1098/rspb.2005.3155; Tieleman BI, 2002, PHYSIOL BIOCHEM ZOOL, V75, P305, DOI 10.1086/341998; Tinbergen JM, 2000, J ANIM ECOL, V69, P323, DOI 10.1046/j.1365-2656.2000.00395.x; TINBERGEN JM, 1981, ARDEA, V69, P1; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Visser GH, 1999, PHYSIOL BIOCHEM ZOOL, V72, P740, DOI 10.1086/316713; Visser GH, 2000, AM J PHYSIOL-REG I, V279, pR1795; von Schantz T, 1999, P ROY SOC B-BIOL SCI, V266, P1; WEATHERS WW, 1989, ECOL MONOGR, V59, P223, DOI 10.2307/1942600; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; Wiersma P, 2003, NETH J ZOOL, V52, P263, DOI 10.1163/156854203764817715; Williams GC, 1966, ADAPTATION NATURAL S; WILLIAMS JB, 1987, AUK, V104, P277; WILLIAMS JB, 1984, PHYSIOL ZOOL, V57, P325, DOI 10.1086/physzool.57.3.30163721; Williams TD, 2001, CURR ORNITHOL, V16, P355; Winkler DW, 1995, AUK, V112, P737; WRIGHT J, 1990, ANIM BEHAV, V40, P462, DOI 10.1016/S0003-3472(05)80526-3; Wright J, 1998, J ANIM ECOL, V67, P620; YOUNG BE, 1994, AUK, V111, P545; Young BE, 1996, ECOLOGY, V77, P472, DOI 10.2307/2265623; ZAR JH, 1996, BIOSTATISTICAL ANAL 71 37 38 4 37 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 BEHAV ECOL Behav. Ecol. SEP-OCT 2008 19 5 949 959 10.1093/beheco/arn051 11 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 348HF WOS:000259200900003 Bronze 2018-11-12 J Rasanen, K; Soderman, F; Laurila, A; Merila, J Rasanen, Katja; Soderman, Fredrik; Laurila, Anssi; Merila, Juha Geographic variation in maternal investment: Acidity affects egg size and fecundity in Rana arvalis ECOLOGY English Article amphibians; egg size; environmental stress; fecundity; life history; pH; reproduction; trade-off MOOR FROG; NATURAL-SELECTION; STRESS TOLERANCE; CLUTCH SIZE; REPRODUCTIVE OUTPUT; LOCAL ADAPTATION; OFFSPRING SIZE; TRADE-OFF; NUMBER; AMPHIBIANS Environmental-stress-mediated geographic variation in reproductive parameters has been little studied in natural vertebrate populations outside the context of climatic variation. Based on life-history theory, an increase in the degree of environmental stress experienced by a population should lead to (1) a shift in reproductive allocation from fecundity to offspring quality, (2) stronger trade-offs between reproductive parameters, and (3) changes in the relationship between female phenotype and maternal investment. To test these predictions, we investigated geographic variation in maternal investment of moor frogs (Rana arvalis) in relation to breeding site acidity (pH 4-8). We found that mean egg size increased and clutch size and total reproductive output (TRO) decreased with increasing acidity among 19 Swedish moor frog populations. Tests for variation and co-variation in maternal investment and female size and age in 233 females from a subset of four acid origin (AO) and four neutral origin (NO) populations revealed that clutch size and TRO increased with female size in both acid and neutral environments. However, in AO populations, egg size also increased with female size, and clutch size and TRO with female age, whereas in NO populations, egg size increased with female age. The strength of the egg-size-clutch-size trade-off tended to be stronger in AO than in NO females as expected if the former experience stronger environmental constraints. All in all, these results suggest that environmental acidfication selects for investment in larger eggs at a cost to fecundity, imposes negative effects on reproductive output, and alters the relationship between female phenotype and maternal investment. [Rasanen, Katja; Soderman, Fredrik; Laurila, Anssi] Uppsala Univ, Evolutionary Biol Ctr, Dept Populat & Conservat Biol, SE-75236 Uppsala, Sweden; [Merila, Juha] Univ Helsinki, Dept Biol & Environm Sci, Ecol Genet Res Unit, FIN-00014 Helsinki, Finland Rasanen, K (reprint author), Swiss Fed Inst Technol, Inst Integrat Biol IBZ Eawag, Dept Aquat Ecol, Ueberlandstr 133, CH-8600 Dubendorf, Switzerland. katja.rasanen@eawag.ch Merila, Juha/A-4061-2008 Merila, Juha/0000-0001-9614-0072 Swedish Agriculture and Forestry Research Council; The Swedish Natural Science Research Council; Academy of Finland; Oscar and Lili Lamm Foundation We thank M. Svensson and P. Jacobsson for help with skeletochronological preparations; K. Varkonyi, E. Nettelbladt, and J.- K. Larsson for help in the field; J. Brommer, A. Hendry, J. Hoglund, N. Kolm, G.-P. Saetre, J. Jokela, and two anonymous referees for useful comments on earlier versions of this manuscript. The animals were collected and handled with the permissions from Swedish Environmental Protection Agency and the Ethical Committee of Uppsala University. This study was supported by grants from Swedish Agriculture and Forestry Research Council (Juha Merila), The Swedish Natural Science Research Council (Juha Merila), Academy of Finland (Juha Merila), and Oscar and Lili Lamm Foundation (Fredrik Soderman). ANDREN C, 1988, HOLARCTIC ECOL, V11, P127; Armbruster P, 2001, EVOLUTION, V55, P439; Bernardo J, 1996, AM ZOOL, V36, P216; BERVEN KA, 1990, ECOLOGY, V71, P1599, DOI 10.2307/1938295; CASTANET J, 1977, Bulletin Biologique de la France et de la Belgique, V111, P183; Castanet J, 1993, BONE, V7, P245; Charlesworth B., 1980, EVOLUTION AGE STRUCT; COLLIER KJ, 1990, OIKOS, V59, P33, DOI 10.2307/3545119; Czesak ME, 2003, EVOLUTION, V57, P1121; Dangles O, 2004, OIKOS, V104, P149, DOI 10.1111/j.0030-1299.2004.12360.x; Derry AM, 2007, ECOL APPL, V17, P1116, DOI 10.1890/06-1382; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; FORD NB, 1994, FUNCT ECOL, V8, P91, DOI 10.2307/2390116; Girish S, 2000, J EXP ZOOL, V286, P487, DOI 10.1002/(SICI)1097-010X(20000401)286:5<487::AID-JEZ6>3.0.CO;2-Z; Giron D, 2003, ECOL LETT, V6, P273, DOI 10.1046/j.1461-0248.2003.00429.x; GLANDT D, 2006, MOORFROSCH EINHEIT V; GLIWICZ ZM, 1992, OECOLOGIA, V91, P463, DOI 10.1007/BF00650317; Gosner KL, 1960, COPEIA, P183; Guhren M, 2007, J PALEOLIMNOL, V37, P247, DOI 10.1007/s10933-006-9014-9; HEMELAAR A, 1985, Amphibia-Reptilia, V6, P323, DOI 10.1163/156853885X00326; Hendry AP, 2001, AM NAT, V157, P387, DOI 10.1086/319316; Hoffmann AA, 1997, EXTREME ENV CHANGE E; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; Johnston TA, 2002, ECOLOGY, V83, P1777, DOI 10.1890/0012-9658(2002)083[1777:MAEGIT]2.0.CO;2; Kaplan RH, 2006, EVOLUTION, V60, P142; KAPLAN RH, 1979, AM NAT, V113, P671, DOI 10.1086/283425; Kisdi E, 1998, EVOL ECOL, V12, P211, DOI 10.1023/A:1006535829880; Komoroski MJ, 1998, PHYSIOL ZOOL, V71, P633, DOI 10.1086/515989; LEUVEN RSEW, 1986, EXPERIENTIA, V42, P495, DOI 10.1007/BF01946687; Littell R.C., 2006, SAS MIXED MODELS; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; Merila J, 2004, CONSERV GENET, V5, P513, DOI 10.1023/B:COGE.0000041026.71104.0a; Olsen EM, 2003, OIKOS, V100, P483, DOI 10.1034/j.1600-0706.2003.11900.x; Olsson M, 1997, AM NAT, V149, P179, DOI 10.1086/285985; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PIERCE BA, 1985, BIOSCIENCE, V35, P239, DOI 10.2307/1310132; POULIN R, 1995, EVOLUTION, V49, P325, DOI 10.1111/j.1558-5646.1995.tb02245.x; Rasanen K, 2005, OECOLOGIA, V142, P546, DOI 10.1007/s00442-004-1762-5; Rasanen K, 2003, EVOLUTION, V57, P352, DOI 10.1554/0014-3820(2003)057[0352:GVIAST]2.0.CO;2; Rasanen K, 2003, EVOLUTION, V57, P363, DOI 10.1554/0014-3820(2003)057[0363:GVIAST]2.0.CO;2; RASANEN K, AMPHIBIAN B IN PRESS, V8; RENBERG I, 1993, AMBIO, V22, P264; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Roff D. A., 2003, LIFE HIST EVOLUTION; Roff Derek A., 1992; Rusek J, 2000, ANNU REV ECOL SYST, V31, P395, DOI 10.1146/annurev.ecolsys.31.1.395; SCOTT DE, 1994, ECOLOGY, V75, P1383, DOI 10.2307/1937462; Sinervo B, 1999, AM NAT, V154, pS26, DOI 10.1086/303281; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH DC, 1987, ECOLOGY, V68, P344, DOI 10.2307/1939265; SODERMAN F, 2006, THESIS UPPSALA U UPP; Soderman F, 2007, OECOLOGIA, V151, P593, DOI 10.1007/s00442-006-0611-0; Stearns S. C., 1992, EVOLUTION LIFE HIST; TRIPPEL EA, 1987, CAN J FISH AQUAT SCI, V44, P1018, DOI 10.1139/f87-119; TUOMI J, 1990, OIKOS, V58, P387, DOI 10.2307/3545231; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547 61 28 30 1 27 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology SEP 2008 89 9 2553 2562 10.1890/07-0168.1 10 Ecology Environmental Sciences & Ecology 349DP WOS:000259259300021 18831176 2018-11-12 J Verberk, WCEP; Siepel, H; Esselink, H Verberk, Wilco C. E. P.; Siepel, Henk; Esselink, Hans Life-history strategies in freshwater macroinvertebrates FRESHWATER BIOLOGY English Review adaptations; functional groups; predictive framework; reproductive tactics; species traits DEVELOPED ECOLOGICAL THEORY; UPPER RHONE RIVER; SPECIES TRAITS; HABITAT TEMPLET; AQUATIC INSECTS; PARENTAL CARE; COMMUNITIES; OLIGOCHAETA; EVOLUTION; FUTURE 1. Explaining spatial and temporal differences in species assemblages is a central aim of ecology. It requires a sound understanding of the causal mechanisms underlying the relationship of species with their environment. A species trait is widely acknowledged to be the key that links pattern and process, although the enormous variety of traits hampers generalization about which combination of traits are adaptive in a particular environment. 2. In three steps, we used species traits to match species and environment, and chose lentic freshwater ecosystems to illustrate our approach. We first identified key environmental factors and selected the species traits that enable the organism to deal with them. Secondly, we investigated how investments in these traits are related (e.g. through trade-offs). Thirdly, we outlined 13 life-history strategies, based on biological species traits, their interrelations known from life-history theory and their functional implications. 3. Species traits and environmental conditions are connected through life-history strategies, with different strategies representing different solutions to particular ecological problems. In addition, strategies may present an integrated response to the environment as they are based on many different traits and their interrelationships. The presence and abundance of (species exhibiting) different life-history strategies in a location may therefore give direct information about how a particular environment is experienced by the species present. 4. Life-history strategies can be used to (i) explain differences in species assemblages either between locations or in different periods; (ii) compare waterbodies separated by large geographical distances, which may comprise different regional species pools or span species distribution areas and (iii) reduce often very complex, biodiverse assemblages into a few meaningful, easily interpretable relationships. [Verberk, Wilco C. E. P.; Siepel, Henk; Esselink, Hans] Radboud Univ Nijmegen, Inst Wetland & Water Res, Dept Anim Ecol & Ecophysiol, NL-6525 ED Nijmegen, Netherlands; [Verberk, Wilco C. E. P.; Esselink, Hans] Radboud Univ Nijmegen, Bargerveen Fdn, NL-6525 ED Nijmegen, Netherlands; [Siepel, Henk] Alterra Green World Res, Ctr Ecosyst Studies, Wageningen, Netherlands Verberk, WCEP (reprint author), Radboud Univ Nijmegen, Inst Wetland & Water Res, Dept Anim Ecol & Ecophysiol, Toernooiveld 1, NL-6525 ED Nijmegen, Netherlands. w.verberk@science.ru.nl Siepel, Henk/C-2579-2011; Verberk, Wilco/E-6337-2011 Siepel, Henk/0000-0003-4503-4485; Verberk, Wilco/0000-0002-0691-583X Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Aukema B., 2002, VERSPREIDINGSATLAS N, VI; Baldo L, 2005, J EXP ZOOL PART A, V303A, P168, DOI 10.1002/jez.a.144; Berendonk TU, 2002, ECOLOGY, V83, P116, DOI 10.1890/0012-9658(2002)083[0116:TPMAAC]2.0.CO;2; BERRIGAN D, 1991, OIKOS, V60, P313, DOI 10.2307/3545073; Bonada N, 2007, GLOBAL CHANGE BIOL, V13, P1658, DOI 10.1111/j.1365-2486.2007.01375.x; Braby M.F., 1995, OIKOS, V72, P89; Buchwald R., 1994, Advances in Odonatology, V6, P121; Calder W. A., 1984, SIZE FUNCTION LIFE H; CALOW P, 1977, J ANIM ECOL, V46, P765, DOI 10.2307/3639; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; COLLINSON NH, 1995, BIOL CONSERV, V74, P125, DOI 10.1016/0006-3207(95)00021-U; CRANSTON PS, 1987, FBA SCI PUBLICATION, V48; CUMMINS KW, 1973, ANNU REV ENTOMOL, V18, P183, DOI 10.1146/annurev.en.18.010173.001151; DOLEDEC S, 1994, FRESHWATER BIOL, V31, P277, DOI 10.1111/j.1365-2427.1994.tb01741.x; Doledec S, 1999, FRESHWATER BIOL, V42, P737, DOI 10.1046/j.1365-2427.1999.00509.x; DRESSCHER TGN, 1982, MEDEDELINGEN KNNV, V154; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Figuerola J, 2002, FRESHWATER BIOL, V47, P483, DOI 10.1046/j.1365-2427.2002.00829.x; Galewski K., 1971, Polskie Pismo Entomologiczne, V41, P487; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; Grabow K., 2000, FARBATLAS SUSSWASSER; HIGLER LWG, 2005, KOKERJUFFERLARVEN NE; HILEY PD, 1978, P 2 INT S TRICH, P297; Ilg C, 2006, FRESHWATER BIOL, V51, P840, DOI 10.1111/j.1365-2427.2006.01533.x; Jackson D. J., 1956, Journal of the Linnean Society London, V43, P18; Johnson C. G., 1969, MIGRATION DISPERSAL; KEDDY PA, 1992, FUNCT ECOL, V6, P621, DOI 10.2307/2389954; Koehl MAR, 1996, ANNU REV ECOL SYST, V27, P501, DOI 10.1146/annurev.ecolsys.27.1.501; Kutschera U, 2001, THEOR BIOSCI, V120, P115, DOI 10.1007/s12064-001-0012-1; Lavorel S, 1997, TRENDS ECOL EVOL, V12, P474, DOI 10.1016/S0169-5347(97)01219-6; Lawton JH, 1999, OIKOS, V84, P177, DOI 10.2307/3546712; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Merigoux S, 2001, FRESHWATER BIOL, V46, P1251, DOI 10.1046/j.1365-2427.2001.00744.x; MUNCHBERG PAUL, 1933, INTERNAT REV GES HYDROBIOL U HYDROGRAPH, V28, P141, DOI 10.1002/iroh.19330280302; Nilsson A.N., 1986, Entomologica Basiliensia, V11, P391; OTTOLENGHI C, 1987, Odonatologica, V16, P297; PARISH J, 1981, HYDROBIOLOGIA, V83, P115, DOI 10.1007/BF02187156; PARMA S, 1971, THESIS U GRONINGEN G; PODDUBNAYA TL, 1984, HYDROBIOLOGIA, V115, P97, DOI 10.1007/BF00027900; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; RESH VH, 1994, FRESHWATER BIOL, V31, P539, DOI 10.1111/j.1365-2427.1994.tb01756.x; REYNOLDSON TB, 1978, FBA SCI PUBLICATION, V23; Richards C, 1997, FRESHWATER BIOL, V37, P219, DOI 10.1046/j.1365-2427.1997.d01-540.x; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Saulich AK, 1996, EUR J ENTOMOL, V93, P507; Scheffer M, 2006, OIKOS, V112, P227, DOI 10.1111/j.0030-1299.2006.14145.x; SIEPEL H, 1994, BIOL FERT SOILS, V18, P263, DOI 10.1007/BF00570628; SOTA T, 1992, ENTOMOL EXP APPL, V63, P155, DOI 10.1111/j.1570-7458.1992.tb01570.x; SOUTHWOOD T. R. E, 1959, LAND WATER BUGS BRIT; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1998, OIKOS, V52, P3; SPELLING SM, 1987, J ANIM ECOL, V56, P131, DOI 10.2307/4804; SPENCE JR, 1989, CAN J ZOOL, V67, P2432, DOI 10.1139/z89-344; SPRINGETT JA, 1970, J ANIM ECOL, V39, P725, DOI 10.2307/2863; Statzner B, 2004, ECOGRAPHY, V27, P470, DOI 10.1111/j.0906-7590.2004.03836.x; Statzner B, 1997, FRESHWATER BIOL, V38, P109, DOI 10.1046/j.1365-2427.1997.00195.x; STATZNER B, 1994, FRESHWATER BIOL, V31, P253, DOI 10.1111/j.1365-2427.1994.tb01739.x; Statzner B, 2001, ANNU REV ENTOMOL, V46, P291, DOI 10.1146/annurev.ento.46.1.291; Statzner B, 2007, BIODIVERS CONSERV, V16, P3609, DOI 10.1007/s10531-007-9150-1; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STENECK RS, 1994, OIKOS, V69, P476, DOI 10.2307/3545860; STERNBERG K, 1995, J ZOOL, V235, P163, DOI 10.1111/j.1469-7998.1995.tb05135.x; STERNBERG K, 1999, LIBELLEN BADENWURTTE, V2; TAUBER CA, 1981, ANNU REV ECOL SYST, V12, P281, DOI 10.1146/annurev.es.12.110181.001433; Tessier AJ, 2002, ECOL LETT, V5, P685, DOI 10.1046/j.1461-0248.2002.00373.x; Thiel M, 1998, J EXP MAR BIOL ECOL, V227, P187, DOI 10.1016/S0022-0981(97)00268-2; Tonn WM, 2004, J N AM BENTHOL SOC, V23, P237, DOI 10.1899/0887-3593(2004)023<0237:WCIEOA>2.0.CO;2; Townsend CR, 1997, FRESHWATER BIOL, V37, P367, DOI 10.1046/j.1365-2427.1997.00166.x; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Usseglio-Polatera P, 2000, FRESHWATER BIOL, V43, P175, DOI 10.1046/j.1365-2427.2000.00535.x; van Kleef HH, 2006, HYDROBIOLOGIA, V565, P201, DOI 10.1007/s10750-005-1914-6; van Vondel B. J., 1997, SUSSWASSERFAUNA MITT, V20, P1; VEPSALAINEN K, 1978, EVOLUTION INSECT MIG, P254; Verberk W.C.E.P., 2005, Proceedings of the Section Experimental and Applied Entomology of the Netherlands Entomological Society (N.E.V.), V16, P51; VERBERK WCE, 2008, FRESHWATER IN PRESS; Verberk Wilco C. E. P., 2005, Insect Science, V12, P263, DOI 10.1111/j.1005-295X.2005.00033.x; WATT K E F, 1971, P568; WEINER J, 1995, J ECOL, V83, P153, DOI 10.2307/2261159; Wellborn GA, 1996, ANNU REV ECOL SYST, V27, P337, DOI 10.1146/annurev.ecolsys.27.1.337; WESTOBY M, 1995, J ECOL, V83, P531, DOI 10.2307/2261605; WIENS JA, 1989, FUNCT ECOL, V3, P385, DOI 10.2307/2389612; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207; ZILLESEN PGV, 1984, ENTOMOL GEN, V9, P143 84 92 95 3 78 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0046-5070 FRESHWATER BIOL Freshw. Biol. SEP 2008 53 9 1722 1738 10.1111/j.1365-2427.2008.02035.x 17 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 336YN WOS:000258402800002 Bronze 2018-11-12 J Sinervo, B; Clobert, J; Miles, DB; McAdam, A; Lancaster, LT Sinervo, B.; Clobert, J.; Miles, D. B.; McAdam, A.; Lancaster, L. T. The role of pleiotropy vs signaller-receiver gene epistasis in life history trade-offs: dissecting the genomic architecture of organismal design in social systems HEREDITY English Review life history trade-offs; social system; Price equation; epistasis; pleiotropy; selection CORRELATIONAL SELECTION; NATURAL-SELECTION; ONTOGENIC CONFLICT; SEXUAL SELECTION; IMMUNE FUNCTION; MATE CHOICE; BODY-SIZE; QUANTITATIVE GENETICS; MATING STRATEGIES; UTA-STANSBURIANA Traditional life history theory ignores trade-offs due to social interactions, yet social systems expand the set of possible trade-offs affecting a species evolution-by introducing asymmetric interactions between the sexes, age classes and invasion of alternative strategies. We outline principles for understanding gene epistasis due to signaller-receiver dynamics, gene interactions between individuals, and impacts on life history trade-offs. Signaller-receiver epistases create trade-offs among multiple correlated traits that affect fitness, and generate multiple fitness optima conditional on frequency of alternative strategies. In such cases, fitness epistasis generated by selection can maintain linkage disequilibrium, even among physically unlinked loci. In reviewing genetic methods for studying life history trade-offs, we conclude that current artificial selection or gene manipulation experiments focus on pleiotropy. Multi-trait selection experiments, multi-gene engineering methods or multiple endocrine manipulations can test for epistasis and circumvent these limitations. In nature, gene mapping in field pedigrees is required to study social gene epistases and associated trade-offs. Moreover, analyses of correlational selection and frequency-dependent selection are necessary to study epistatic social system trade-offs, which can be achieved with group-structured versions of Price's (1970) equation. [Sinervo, B.; Lancaster, L. T.] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95064 USA; [Sinervo, B.; Clobert, J.] Univ Toulouse 3, Lab Evolut & Diversite Biol, CNRS, UMR 5174, F-31062 Toulouse, France; [Sinervo, B.; Clobert, J.] Stn Ecol Expt CNRS Moulis, St Girons, France; [Miles, D. B.] Ohio Univ, Dept Biol, Athens, OH 45701 USA; [McAdam, A.] Michigan State Univ, Dept Fisheries & Wildlife, E Lansing, MI 48824 USA; [McAdam, A.] Michigan State Univ, Dept Zool, E Lansing, MI 48824 USA Sinervo, B (reprint author), Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Earth & Marine Sci Bldg, Santa Cruz, CA 95064 USA. sinervo@biology.ucsc.edu Toulouse University; NSF This paper was prepared in part during a visiting Professorship awarded by Toulouse University to BS. We also thank Etienne Danchin, Andy Gardner and Alexis Chaine for stimulating discussions on this topic, and especially Alexis Chaine and two anonymous reviewers for constructive comments on previous drafts of this paper. Research was supported by an NSF grant awarded to BS and AGM. Ahtiainen JJ, 2005, J EVOLUTION BIOL, V18, P985, DOI 10.1111/j.1420-9101.2005.00907.x; Alonzo SH, 2001, BEHAV ECOL SOCIOBIOL, V49, P176, DOI 10.1007/s002650000265; Alonzo SH, 2007, EVOL ECOL RES, V9, P145; ARNOLD SJ, 1983, AM ZOOL, V23, P347; AXELROD R, 1981, SCIENCE, V211, P1390, DOI 10.1126/science.7466396; BARTON NH, 1991, GENETICS, V127, P229; Beraldi D, 2006, GENETICS, V173, P1521, DOI 10.1534/genetics.106.057141; Blows MW, 2003, EVOLUTION, V57, P1622; BOCK WJ, 1977, VOGELWARTE, V29, P127; Bradshaw WE, 2005, GENETICS, V169, P485, DOI 10.1534/genetics.104.031971; BRANTLEY RK, 1993, HORM BEHAV, V27, P332, DOI 10.1006/hbeh.1993.1025; BRODIE ED, 1992, EVOLUTION, V46, P1284, DOI 10.1111/j.1558-5646.1992.tb01124.x; Calsbeek R, 2004, J EVOLUTION BIOL, V17, P464, DOI 10.1046/j.1420-9101.2003.00665.x; Charmantier A, 2006, P NATL ACAD SCI USA, V103, P6587, DOI 10.1073/pnas.0511123103; CHEVERUD JM, 1984, J THEOR BIOL, V110, P155, DOI 10.1016/S0022-5193(84)80050-8; Cordell HJ, 2002, HUM MOL GENET, V11, P2463, DOI 10.1093/hmg/11.20.2463; Dawkins R., 1976, SELFISH GENE; Ernande B, 2004, J EVOLUTION BIOL, V17, P342, DOI 10.1046/j.1420-9101.2003.00674.x; FERRIERE R, 1992, J THEOR BIOL, V157, P253, DOI 10.1016/S0022-5193(05)80624-1; Foerster K, 2007, NATURE, V447, P1107, DOI 10.1038/nature05912; FORSMAN A, 1995, J EVOLUTION BIOL, V12, P391; Frank SA, 1997, EVOLUTION, V51, P1712, DOI 10.1111/j.1558-5646.1997.tb05096.x; Frank SA, 2003, EVOLUTION, V57, P693; FREEDMAN LP, 1993, J CELL BIOCHEM, V51, P140, DOI 10.1002/jcb.240510205; Gardner A, 2007, AM NAT, V169, P207, DOI 10.1086/510602; Gibson JR, 2002, P ROY SOC B-BIOL SCI, V269, P499, DOI 10.1098/rspb.2001.1863; GOODNIGHT CJ, 1995, EVOLUTION, V49, P502, DOI 10.1111/j.1558-5646.1995.tb02282.x; Grafen A, 2006, J THEOR BIOL, V238, P541, DOI 10.1016/j.jtbi.2005.06.009; HAMILTON WD, 1977, NATURE, V269, P578, DOI 10.1038/269578a0; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Hochberg ME, 2003, EVOLUTION, V57, P154, DOI 10.1554/0014-3820(2003)057[0154:SMS]2.0.CO;2; HOUDE AE, 1994, P ROY SOC B-BIOL SCI, V256, P125, DOI 10.1098/rspb.1994.0059; KELLY JK, 2000, EPISTASIS EVOLUTIONA, P146; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Kirkpatrick M, 2002, GENETICS, V161, P1727; Kokko H, 2001, ECOL LETT, V4, P322, DOI 10.1046/j.1461-0248.2001.00224.x; Kokko H, 2006, ANNU REV ECOL EVOL S, V37, P43, DOI 10.1146/annurev.ecolsys.37.091305.110259; Komdeur J, 1999, TRENDS ECOL EVOL, V14, P237, DOI 10.1016/S0169-5347(98)01573-0; Koopman P, 2001, J EXP ZOOL, V290, P463, DOI 10.1002/jez.1089; Lancaster LT, 2008, J EVOLUTION BIOL, V21, P556, DOI 10.1111/j.1420-9101.2007.01478.x; Lancaster LT, 2007, ECOL LETT, V10, P798, DOI 10.1111/j.1461-0248.2007.01069.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDER ES, 1987, P NATL ACAD SCI USA, V84, P2363, DOI 10.1073/pnas.84.8.2363; LENSKI RE, 1988, EVOLUTION, V42, P433, DOI 10.1111/j.1558-5646.1988.tb04150.x; Leroi AM, 2001, TRENDS ECOL EVOL, V16, P24, DOI 10.1016/S0169-5347(00)02032-2; Lynch M, 1998, GENETICS ANAL QUANTI; Markianos K, 2001, AM J HUM GENET, V68, P963, DOI 10.1086/319507; McGlothlin JW, 2005, EVOLUTION, V59, P658; Miles DB, 2007, FUNCT ECOL, V21, P653, DOI 10.1111/j.1365-2435.2007.01304.x; Miller BLW, 2007, J EVOLUTION BIOL, V20, P1554, DOI 10.1111/j.1420-9101.2007.01331.x; Mills SC, 2008, AM NAT, V171, P339, DOI 10.1086/527520; PHILLIPS PC, 1989, EVOLUTION, V43, P1209, DOI 10.1111/j.1558-5646.1989.tb02569.x; Pischedda A, 2006, PLOS BIOL, V4, P2099, DOI 10.1371/journal.pbio.0040356; Queller DC, 2003, SCIENCE, V299, P105, DOI 10.1126/science.1077742; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Rice WR, 2001, J EVOLUTION BIOL, V14, P685, DOI 10.1046/j.1420-9101.2001.00319.x; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; ROSE MR, 1981, GENETICS, V97, P172; ROSE MR, 1981, GENETICS, V97, P187; Ross KG, 1996, EVOLUTION, V50, P2387, DOI 10.1111/j.1558-5646.1996.tb03626.x; Ryan TJ, 1998, P NATL ACAD SCI USA, V95, P5643, DOI 10.1073/pnas.95.10.5643; SAAL FSV, 1983, SCIENCE, V220, P1306, DOI 10.1126/science.6857252; Sanchez R, 2002, BIOESSAYS, V24, P244, DOI 10.1002/bies.10066; SCHWABL H, 1993, P NATL ACAD SCI USA, V90, P11446, DOI 10.1073/pnas.90.24.11446; SEMLITSCH RD, 1988, ECOLOGY, V69, P184, DOI 10.2307/1943173; Shuster S. M., 2003, MATING SYSTEMS STRAT; Sinervo B, 1999, AM NAT, V154, pS26, DOI 10.1086/303281; Sinervo B, 1996, NATURE, V380, P240, DOI 10.1038/380240a0; Sinervo B, 2002, HEREDITY, V89, P329, DOI 10.1038/sj.hdy.6800148; Sinervo B, 2000, HORM BEHAV, V38, P222, DOI 10.1006/hbeh.2000.1622; Sinervo B, 2003, INTEGR COMP BIOL, V43, P419, DOI 10.1093/icb/43.3.419; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; Sinervo B, 2003, SCIENCE, V300, P1949, DOI 10.1126/science.1083109; Sinervo B, 2001, EVOLUTION, V55, P2040; Sinervo B, 2000, NATURE, V406, P985, DOI 10.1038/35023149; Sinervo B, 2000, ADAPTIVE GENETIC VARIATION IN THE WILD, P41; Sinervo Barry, 2008, P135; Sinervo B, 2008, P R SOC B, V275, P629, DOI 10.1098/rspb.2007.1084; Sinervo B, 2007, AM NAT, V170, P663, DOI 10.1086/522092; Sinervo B, 2006, ANNU REV ECOL EVOL S, V37, P581, DOI 10.1146/annurev.ecolsys.37.091305.110128; Sinervo B, 2006, P NATL ACAD SCI USA, V103, P7372, DOI 10.1073/pnas.0510260103; Sinervo Barry, 1996, P149; Slate J, 2002, GENETICS, V162, P1863; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; Svensson E, 2001, P NATL ACAD SCI USA, V98, P12561, DOI 10.1073/pnas.211071298; Svensson EI, 2002, J EVOLUTION BIOL, V15, P1034, DOI 10.1046/j.1420-9101.2002.00452.x; Thompson J. N., 2005, GEOGRAPHIC MOSAIC CO; Voss SR, 1997, P NATL ACAD SCI USA, V94, P14185, DOI 10.1073/pnas.94.25.14185; Wade MJ, 2002, J EVOLUTION BIOL, V15, P337, DOI 10.1046/j.1420-9101.2002.00413.x; Wagner GP, 1996, EVOLUTION, V50, P967, DOI 10.1111/j.1558-5646.1996.tb02339.x; WHITLOCK MC, 1995, ANNU REV ECOL SYST, V26, P601, DOI 10.1146/annurev.ecolsys.26.1.601; Winchester S., 2001, MAP CHANGED WORLD W; Wolf JB, 1999, AM NAT, V153, P254, DOI 10.1086/303168; WRIGHT W, 1968, EVOLUTION GENETICS P; Zajac JD, 1995, CLIN EXP PHARMACOL P, V22, P935, DOI 10.1111/j.1440-1681.1995.tb02330.x; Zamudio KR, 2000, P NATL ACAD SCI USA, V97, P14427, DOI 10.1073/pnas.011544998; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 98 16 16 0 26 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 0018-067X 1365-2540 HEREDITY Heredity SEP 2008 101 3 197 211 10.1038/hdy.2008.64 15 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 339SU WOS:000258598400001 18685573 Bronze 2018-11-12 J Dearborn, DC; Anders, AD; Juola, FA Dearborn, D. C.; Anders, A. D.; Juola, F. A. Parent age differentially influences offspring size over the course of development in Laysan albatross JOURNAL OF ZOOLOGY English Article age; development; growth rate; life-history theory; parental care; Phoebastria immutabilis BREEDING PERFORMANCE; REPRODUCTIVE SUCCESS; FOOD AVAILABILITY; EXPERIENCE; GROWTH; SENESCENCE; INCREASES; SURVIVAL; SEABIRDS; CHICKS Offspring growth and survival are predicted to be higher for older parents, due to a variety of mechanisms, such as increased breeding experience or greater investment favored by low residual reproductive value. Yet the extent to which parent age affects offspring viability is likely to vary between different aspects of growth and survival, perhaps being most pronounced at the most stressful stages of reproduction. We studied the link between parent age and nestling growth and survival in the Laysan albatross, a long-lived seabird with a mean first breeding age of 8 years. Offspring of older parents were more likely to survive to fledging. Among those that did fledge, nestlings of older parents grew more rapidly. However, parent age did not influence the eventual asymptotic size that nestlings reached before fledging: fast-growing nestlings of older parents reached 90% of asymptotic size roughly 1 week sooner, but slow-growing nestlings of younger parents eventually caught up in size before fledging. Older parents bred c. 2 days earlier than younger parents, but hatch date did not explain observed variation in offspring success. The extent to which parent age accounted for variation in size of individual nestlings was not constant but peaked near the midpoint of development. This could reflect a time period when demands on parents reveal age-based differences in parental quality. Overall, growth and survival of offspring increased with parent age in this species, even though the late age of first breeding potentially provides a 7-year period for birds to hone their foraging skills or for selection to eliminate low-quality individuals. [Dearborn, D. C.; Juola, F. A.] Bucknell Univ, Dept Biol, Lewisburg, PA 17837 USA; [Dearborn, D. C.; Juola, F. A.] Bucknell Univ, Program Anim Behav, Lewisburg, PA 17837 USA; [Anders, A. D.] US Fish & Wildlife Serv, Honolulu, HI USA Dearborn, DC (reprint author), Bucknell Univ, Dept Biol, Lewisburg, PA 17837 USA. don.dearborn@bucknell.edu Auman H. J., 1997, ALBATROSS BIOL CONSE, P239; Berrow SD, 2000, IBIS, V142, P199, DOI 10.1111/j.1474-919X.2000.tb04859.x; Blight LK, 1997, MAR POLLUT BULL, V34, P323, DOI 10.1016/S0025-326X(96)00095-1; Bunce A, 2005, J ZOOL, V266, P163, DOI 10.1017/S0952836905006734; Cameron EZ, 2000, BEHAV ECOL SOCIOBIOL, V47, P243, DOI 10.1007/s002650050661; Cezilly F, 1996, TRENDS ECOL EVOL, V11, P27, DOI 10.1016/0169-5347(96)81065-2; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Daunt F, 2007, FUNCT ECOL, V21, P561, DOI 10.1111/j.1365-2435.2007.01260.x; Daunt F, 1999, P ROY SOC B-BIOL SCI, V266, P1489, DOI 10.1098/rspb.1999.0805; Ericsson G, 2001, ECOLOGY, V82, P1613, DOI 10.1890/0012-9658(2001)082[1613:ARREAS]2.0.CO;2; Espie RHM, 2004, IBIS, V146, P623, DOI 10.1111/j.1474-919x.2004.00294.x; Fernandez P, 2001, J ZOOL, V254, P391, DOI 10.1017/S0952836901000899; FISHER HI, 1975, AUK, V92, P433, DOI 10.2307/4084599; FISHER HI, 1976, WILSON BULL, V88, P121; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; GEBHARDTHENRICH S, 1998, AVIAN GROWTH DEV, P324; Hipfner JM, 2002, AUK, V119, P827, DOI 10.1642/0004-8038(2002)119[0827:GONTBM]2.0.CO;2; *IUCN, 2006, IUCN RED LIST THREAT; Keller LF, 2002, EVOLUTION, V56, P1229, DOI 10.1111/j.0014-3820.2002.tb01434.x; Kitaysky AS, 2006, P ROY SOC B-BIOL SCI, V273, P445, DOI 10.1098/rspb.2005.3351; Kitaysky AS, 2003, HORM BEHAV, V43, P140, DOI 10.1016/S0018-506X(02)00030-2; MAPPES J, 1994, BEHAV ECOL, V5, P314, DOI 10.1093/beheco/5.3.314; Mauck RA, 2004, EVOLUTION, V58, P880, DOI 10.1554/03-147; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Nussey DH, 2006, ECOL LETT, V9, P1342, DOI 10.1111/j.1461-0248.2006.00989.x; Paitz RT, 2007, BIOL LETT-UK, V3, P44, DOI 10.1098/rsbl.2006.0573; Saether B.-E., 1990, Current Ornithology, V7, P251; Smith RJ, 2005, BEHAV ECOL SOCIOBIOL, V57, P231, DOI 10.1007/s00265-004-0855-9; STARCK JM, 1998, AVIAN GROWTH DEV EVO; Stearns S. C., 1992, EVOLUTION LIFE HIST; SYDEMAN WJ, 1991, J ANIM ECOL, V60, P135, DOI 10.2307/5450; VANNOORDWIJK AJ, 1998, AVIAN GROWTH DEV EVO, P305; Weimerskirch H, 2000, ECOLOGY, V81, P309, DOI 10.1890/0012-9658(2000)081[0309:SDIPIA]2.0.CO;2; WHITTOW GC, 1993, BIRDS N AM, V66 34 2 2 0 12 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0952-8369 J ZOOL J. Zool. SEP 2008 276 1 14 20 10.1111/j.1469-7998.2008.00436.x 7 Zoology Zoology 342LC WOS:000258784600002 2018-11-12 J Selman, C; McLaren, JS; Collins, AR; Duthie, GG; Speakman, JR Selman, Colin; McLaren, Jane S.; Collins, Andrew R.; Duthie, Garry G.; Speakman, John R. The impact of experimentally elevated energy expenditure on oxidative stress and lifespan in the short-tailed field vole Microtus agrestis PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article lifespan; metabolic rate; oxidative stress; cold exposure; life-history trade-offs; antioxidant DOUBLY-LABELED WATER; ANTIOXIDANT ENZYME-ACTIVITIES; METABOLIC-RATE; LIPID-PEROXIDATION; COLD-EXPOSURE; REPRODUCTION; BIRDS; LONGEVITY; DAMAGE; LIMITS Life-history theory assumes that animal life histories are a consequence of trade-offs between current activities and future reproductive performance or survival, because resource supply is limited. Empirical evidence for such trade-offs in the wild are common, yet investigations of the underlying mechanisms are rare. Life-history trade-offs may have both physiological and ecological mediated costs. One hypothesized physiological mechanism is that elevated energy metabolism may increase reactive oxygen species production, leading to somatic damage and thus compromising future survival. We investigated the impact of experimentally elevated energy expenditure on oxidative damage, protection and lifespan in short-tailed field voles (Microtus agrestis) maintained in captivity to remove any confounding ecological factor effects. Energy expenditure was elevated via lifelong cold exposure (7 +/- 2 degrees C), relative to siblings in the warm (22 +/- 2 degrees C). No treatment effect on cumulative mortality risk was observed, with negligible effects on oxidative stress and antioxidant protection. These data suggest that in captive animals physiologically mediated costs on life history do not result from increased energy expenditure and consequent elevations in oxidative stress and reduced survival. [Selman, Colin; McLaren, Jane S.; Speakman, John R.] Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen AB24 2TZ, Scotland; [Duthie, Garry G.] Rowett Res Inst, Bucksburn AB21 9SB, Aberdeen, England Selman, C (reprint author), Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen AB24 2TZ, Scotland. c.selman@abdn.ac.uk John, Speakman/A-9494-2008 John, Speakman/0000-0002-2457-1823; Selman, Colin/0000-0002-8727-0593 Biotechnology and Biological Sciences Research Council Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; AUSTAD SN, 1991, J GERONTOL, V46, pB47, DOI 10.1093/geronj/46.2.B47; BARJA G, 1994, FREE RADICAL RES, V21, P317, DOI 10.3109/10715769409056584; Barja G, 2007, REJUV RES, V10, P215, DOI 10.1089/rej.2006.0516; Beckman KB, 1998, PHYSIOL REV, V78, P547; Berteaux D, 1996, FUNCT ECOL, V10, P751, DOI 10.2307/2390510; Bertrand S, 2006, OECOLOGIA, V147, P576, DOI 10.1007/s00442-005-0317-8; Brand MD, 2000, EXP GERONTOL, V35, P811, DOI 10.1016/S0531-5565(00)00135-2; Collins AR, 2004, MOL BIOTECHNOL, V26, P249, DOI 10.1385/MB:26:3:249; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; DEQUIROGA GB, 1991, BIOCHEM J, V277, P289, DOI 10.1042/bj2770289; Descamps S, 2006, P R SOC B, V273, P2369, DOI 10.1098/rspb.2006.3588; FISHER R. A., 1930, GENETICAL THEORY NAT; Hanssen SA, 2004, P ROY SOC B-BIOL SCI, V271, P925, DOI 10.1098/rspb.2004.2678; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; HAYES JP, 1992, PHYSIOL ZOOL, V65, P604, DOI 10.1086/physzool.65.3.30157972; HOFFMAN AA, 1991, EVOLUTIONARY GENETIC; HOLLOSZY JO, 1986, J APPL PHYSIOL, V61, P1656; JI LL, 1993, MED SCI SPORT EXER, V25, P225; Johnson MS, 2001, J EXP BIOL, V204, P1947; Johnston SL, 2006, P ROY SOC B-BIOL SCI, V273, P1369, DOI 10.1098/rspb.2005.3456; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Krol E, 2003, J EXP BIOL, V206, P4283, DOI 10.1242/jeb.00676; LIFSON N, 1955, J APPL PHYSIOL, V7, P704; LOPEZTORRES M, 1993, MECH AGEING DEV, V70, P177, DOI 10.1016/0047-6374(93)90047-U; MCDEVITT RM, 1994, J COMP PHYSIOL B, V164, P159, DOI 10.1007/BF00301659; Moe B, 2007, J EXP BIOL, V210, P3407, DOI 10.1242/jeb.005090; Nussey DH, 2006, ECOL LETT, V9, P1342, DOI 10.1111/j.1461-0248.2006.00989.x; Pamplona R, 1999, MECH AGEING DEV, V106, P283, DOI 10.1016/S0047-6374(98)00121-3; Partridge L, 2001, EXP GERONTOL, V36, P641, DOI 10.1016/S0531-5565(00)00232-1; Pearl R, 1928, RATE LIVING; Reid JM, 2003, J ANIM ECOL, V72, P765, DOI 10.1046/j.1365-2656.2003.00750.x; REZNICK DN, 2005, SCI AGING KNOWL ENV, pPE7, DOI DOI 10.1126/SAGEKE.2005.11.PE7; Ricklefs RE, 2007, ECOL LETT, V10, P867, DOI 10.1111/j.1461-0248.2007.01085.x; RUBNER M, 2008, PROBLEM LEBENSDAUER; Schmid-Hempel P, 1988, J ANIM ECOL, V57, P500; Selman C, 2002, ARCH BIOCHEM BIOPHYS, V401, P255, DOI 10.1016/S0003-9861(02)00050-4; Selman C, 2000, FREE RADICAL BIO MED, V28, P1279, DOI 10.1016/S0891-5849(00)00263-X; Selman C, 2002, FREE RADICAL BIO MED, V33, P259, DOI 10.1016/S0891-5849(02)00874-2; Selman C, 2006, MECH AGEING DEV, V127, P897, DOI 10.1016/j.mad.2006.09.008; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Speakman JR, 2005, J COMP PHYSIOL B, V175, P375, DOI 10.1007/s00360-005-0013-3; Speakman JR, 2005, PHYSIOL BIOCHEM ZOOL, V78, P650, DOI 10.1086/430234; Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556; Speakman JR, 2004, AGING CELL, V3, P87, DOI 10.1111/j.1474-9728.2004.00097.x; Speakman JR, 2002, J NUTR, V132, p1583S, DOI 10.1093/jn/132.6.1583S; SPEAKMAN JR, 1987, J THEOR BIOL, V127, P79, DOI 10.1016/S0022-5193(87)80162-5; SPEAKMAN JR, 1993, FUNCT ECOL, V7, P746; SPEAKMAN JR, 1994, FUNCT ECOL, V8, P336, DOI 10.2307/2389826; SPEAKMAN JR, 1997, DOUBLY LABELLED WATE; Stearns S. C., 1992, EVOLUTION LIFE HIST; TRAYHURN P, 1989, CAN J PHYSIOL PHARM, V67, P370, DOI 10.1139/y89-060; Van Voorhies WA, 2004, J APPL PHYSIOL, V97, P1915, DOI 10.1152/japplphysiol.00505.2004; Visser GH, 1999, PHYSIOL BIOCHEM ZOOL, V72, P740, DOI 10.1086/316713; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171 55 55 58 8 21 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. AUG 22 2008 275 1645 1907 1916 10.1098/rspb.2008.0355 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 320PH WOS:000257246900010 18467297 Green Published, Other Gold 2018-11-12 J McDade, TW; Reyes-Garcia, V; Tanner, S; Huanca, T; Leonard, WR McDade, T. W.; Reyes-Garcia, V.; Tanner, S.; Huanca, T.; Leonard, W. R. Maintenance versus growth: Investigating the costs of immune activation among children in lowland Bolivia AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article ecological immunology; human growth and development; acute phase response; life history theory; infectious disease; Amazonia C-REACTIVE PROTEIN; ACUTE-PHASE RESPONSE; DRIED BLOOD SPOTS; ECOLOGICAL IMMUNOLOGY; PHYSICAL GROWTH; TRADE-OFFS; MORBIDITY; CHILDHOOD Immune function is a central component of maintenance effort, and it provides critical protection against the potentially life threatening effects of pathogens. However, immune defenses are energetically expensive, and the resources they consume are not available to support other activities related to growth and/or reproduction. In our study we use a life history theory framework to investigate tradeoffs between maintenance effort and growth among children in a remote area of Amazonian Bolivia. Baseline concentrations of C-reactive protein (CRP) were measured in 309 2- to 10-year olds as an indicator of immune activation, and height was measured at baseline and three months later. Elevated CRP at baseline predicts smaller gains in height over the subsequent three months, with the costs to growth particularly high for 2- to 4-year olds and for those with low energy reserves (in the form of body fat) at the time of immunostimulation. These results provide evidence for a significant tradeoff between investment in immunity and growth in humans, and highlight an important physiological mechanism through which maintenance effort may have lasting effects on child growth and development. [McDade, T. W.; Leonard, W. R.] Northwestern Univ, Dept Anthropol, Evanston, IL 60208 USA; [McDade, T. W.] Northwestern Univ, C2S, Ctr Social Dispar & Hlth, Inst Policy Res, Evanston, IL 60208 USA; [Reyes-Garcia, V.] Univ Autonoma Barcelona, ICREA, E-08193 Barcelona, Spain; [Reyes-Garcia, V.] Univ Autonoma Barcelona, Inst Ciencia & Tecnol Ambientals, E-08193 Barcelona, Spain; [Reyes-Garcia, V.] Brandeis Univ, Heller Sch Social Policy & Management, Sustainable Int Dev Program, Waltham, MA 02454 USA; [Tanner, S.] Univ Georgia, Dept Anthropol, Athens, GA 30606 USA; [Huanca, T.] CBIDSI, San Borja, Beni, Bolivia McDade, TW (reprint author), Northwestern Univ, Dept Anthropol, 1810 Hinman Ave, Evanston, IL 60208 USA. t-mcdade@northwestern.edu Reyes-Garcia, Victoria/C-4552-2008; Tanner, Susan/F-6687-2012 Reyes-Garcia, Victoria/0000-0002-2914-8055; Leonard, William/0000-0002-6233-604X ICREA BALLOU SP, 1992, ADV INTERNAL MED, V37, P313; BAUMANN H, 1994, IMMUNOL TODAY, V15, P74, DOI 10.1016/0167-5699(94)90137-6; Bogin B., 1999, PATTERNS HUMAN GROWT; Buttgereit F, 2000, IMMUNOL TODAY, V21, P192; Campbell DI, 2003, J NUTR, V133, P1332; CASTILLO F, 1988, CHIMANES CAMBAS COLL; Charnov Eric L., 1993, P1; de Onis M, 2004, JAMA-J AM MED ASSOC, V291, P2600, DOI 10.1001/jama.291.21.2600; DOHERTY JF, 1993, CLIN SCI, V84, P169, DOI 10.1042/cs0840169; FILTEAU SM, 1995, AM J CLIN NUTR, V62, P434; Foster Z, 2005, AM J PHYS ANTHROPOL, V126, P343, DOI 10.1002/ajpa.20098; GERSHWIN ME, 2000, NUTR IMMUNOLOGY; Gibson RS, 2005, PRINCIPLES NUTR ASSE; GILLESPIE SH, 1991, J CLIN PATHOL, V44, P228, DOI 10.1136/jcp.44.3.228; Godoy R., 2001, INDIANS MARKETS RAIN; Gullison RE, 1996, BOT J LINN SOC, V122, P9; Hurtado AM, 1996, ACHE LIFE HIST; Kuzawa CW, 1998, YEARB PHYS ANTHROPOL, V41, P177; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; LOHMAN TG, 1988, ANTHR STANDARDIZATIO; Martin LB, 2003, P ROY SOC B-BIOL SCI, V270, P153, DOI 10.1098/rspb.2002.2185; MARTORELL R, 1975, AM J DIS CHILD, V129, P1296, DOI 10.1001/archpedi.1975.02120480022007; MARTORELL R, 1989, HUM ORGAN, V48, P15, DOI 10.17730/humo.48.1.x20u5450x51h5211; McDade TW, 2007, P NATL ACAD SCI USA, V104, P6134, DOI 10.1073/pnas.0609123104; Mcdade TW, 2007, DEMOGRAPHY, V44, P899, DOI 10.1353/dem.2007.0038; McDade TW, 2000, AM J HUM BIOL, V12, P792, DOI 10.1002/1520-6300(200011/12)12:6<792::AID-AJHB7>3.0.CO;2-F; McDade TW, 2005, AM J PHYS ANTHROPOL, V128, P906, DOI 10.1002/ajpa.20222; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; McDade TW, 2004, CLIN CHEM, V50, P652, DOI 10.1373/clinchem.2003.029488; MURRAY CJL, 1992, POPUL DEV REV, V18, P481, DOI 10.2307/1973655; PANTERBRICK C, 2000, BR J NUTR, V85, P1; Read AF, 2000, SCIENCE, V290, P1104, DOI 10.1126/science.290.5494.1104; Riester J., 1993, UNIVERSO MITICO CHIM; Rousham EK, 1998, BRIT J NUTR, V80, P451; Scrimshaw NS, 1981, TXB PEDIAT NUTR, P229; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SOLOMONS NW, 1993, NUTR REV, V51, P327; Stearns S. C., 1992, EVOLUTION LIFE HIST; *WHO, 1998, REP INF DIS REM OBST; *WHO WORK GROUP, 1986, B WORLD HEALTH ORGAN, V64, P929; Williams RL, 2000, BIOMETRICS, V56, P645, DOI 10.1111/j.0006-341X.2000.00645.x 41 56 62 0 15 WILEY-LISS HOBOKEN DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA 0002-9483 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. AUG 2008 136 4 478 484 10.1002/ajpa.20831 7 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 327ZF WOS:000257766300012 18383156 2018-11-12 J Berger, D; Gotthard, K Berger, David; Gotthard, Karl Time stress, predation risk and diurnal-nocturnal foraging trade-offs in larval prey BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article predation risk; growth rate; life history theory; body size; seasonal constraints DIEL ACTIVITY PATTERNS; LIFE-HISTORY; GROWTH-RATES; THERMAL SENSITIVITY; FOOD AVAILABILITY; REACTION NORMS; SIZE; SALMON; CONSTRAINTS; PLASTICITY Insect larvae increase in size with several orders of magnitude throughout development making them more conspicuous to visually hunting predators. This change in predation pressure is likely to impose selection on larval anti-predator behaviour and since the risk of detection is likely to decrease in darkness, the night may offer safer foraging opportunities to large individuals. However, forsaking day foraging reduces development rate and could be extra costly if prey are subjected to seasonal time stress. Here we test if size-dependent risk and time constraints on feeding affect the foraging-predation risk trade-off expressed by the use of the diurnal-nocturnal period. We exposed larvae of one seasonal and one non-seasonal butterfly to different levels of seasonal time stress and time for diurnal-nocturnal feeding by rearing them in two photoperiods. In both species, diurnal foraging ceased at large sizes while nocturnal foraging remained constant or increased, thus larvae showed ontogenetic shifts in behaviour. Short night lengths forced small individuals to take higher risks and forage more during daytime, postponing the shift to strict night foraging to later on in development. In the non-seasonal species, seasonal time stress had a small effect on development and the diurnal-nocturnal foraging mode. In contrast, in the seasonal species, time for pupation and the timing of the foraging shift were strongly affected. We argue that a large part of the observed variation in larval diurnal-nocturnal activity and resulting growth rates is explained by changes in the cost/benefit ratio of foraging mediated by size-dependent predation and time stress. [Berger, David; Gotthard, Karl] Stockholm Univ, Dept Zool, S-10691 Stockholm, Sweden Berger, D (reprint author), Stockholm Univ, Dept Zool, S-10691 Stockholm, Sweden. david.berger@zoologi.su.se; karl.gotthard@zoologi.su.se Gotthard, Karl/F-1163-2011 Gotthard, Karl/0000-0002-4560-6271 Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Angilletta MJ, 2003, TRENDS ECOL EVOL, V18, P234, DOI 10.1016/S0169-5347(03)00087-9; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Atkinson D, 1997, TRENDS ECOL EVOL, V12, P235, DOI 10.1016/S0169-5347(97)01058-6; ATLEGRIM O, 1992, ECOGRAPHY, V15, P19, DOI 10.1111/j.1600-0587.1992.tb00003.x; BAKER RL, 1995, FRESHWATER BIOL, V34, P101, DOI 10.1111/j.1365-2427.1995.tb00427.x; Berger D, 2006, EVOL ECOL, V20, P575, DOI 10.1007/s10682-006-9118-8; Bradford MJ, 2001, CAN J FISH AQUAT SCI, V58, P365, DOI 10.1139/cjfas-58-2-365; BUCKNER CH, 1966, ANNU REV ENTOMOL, V11, P449, DOI 10.1146/annurev.en.11.010166.002313; Casey Timothy M., 1993, P5; CLARK CW, 1994, BEHAV ECOL, V5, P159, DOI 10.1093/beheco/5.2.159; CULP JM, 1993, OIKOS, V68, P242, DOI 10.2307/3544836; D'Amico LJ, 2001, P ROY SOC B-BIOL SCI, V268, P1589, DOI 10.1098/rspb.2001.1698; Dempster J. P., 1984, The biology of butterflies. Symposium of the Royal Entomological Society of London Number 11., P97; Eliasson C. U., 2005, NATIONALNYCKELN TILL; ESPERK T, 2006, THESIS TARTU U TARTU; FEENY P, 1985, ECOL MONOGR, V55, P167, DOI 10.2307/1942556; Fraser DF, 2004, ECOLOGY, V85, P312, DOI 10.1890/03-3023; GILLIAM JF, 1987, ECOLOGY, V68, P1856, DOI 10.2307/1939877; Gotthard K., 2001, ANIMAL DEV ECOLOGY; HASSELL MP, 1978, ANNU REV ECOL SYST, V9, P75, DOI 10.1146/annurev.es.09.110178.000451; Heinrich Bernd, 1993, P224; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; Imre I, 2004, J FISH BIOL, V64, P1731, DOI 10.1111/j.1095-8649.2004.00417.x; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.1890/0012-9658(1999)080[1242:LHABRT]2.0.CO;2; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Kingsolver JG, 1997, PHYSIOL ZOOL, V70, P631, DOI 10.1086/515872; Kingsolver JG, 2004, EVOLUTION, V58, P1521; Koops MA, 1998, EVOL ECOL, V12, P601, DOI 10.1023/A:1006512927409; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; KRISTENSEN CO, 1994, J APPL ENTOMOL, V117, P92, DOI 10.1111/j.1439-0418.1994.tb00712.x; Krivan V, 2000, THEOR POPUL BIOL, V58, P329, DOI 10.1006/tpbi.2000.1492; Kronfeld-Schor N, 2003, ANNU REV ECOL EVOL S, V34, P153, DOI 10.1146/annurev.ecolsys.34.011802.132435; LAMPERT W, 1989, FUNCT ECOL, V3, P21, DOI 10.2307/2389671; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LIMA SL, 1999, AM NAT, V153, P549; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; MACCHIUSI F, 1992, FRESHWATER BIOL, V28, P207, DOI 10.1111/j.1365-2427.1992.tb00577.x; Metcalfe NB, 1999, J ANIM ECOL, V68, P371, DOI 10.1046/j.1365-2656.1999.00289.x; Metcalfe NB, 1998, P ROY SOC B-BIOL SCI, V265, P1503, DOI 10.1098/rspb.1998.0464; Montllor Clytia B., 1993, P170; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; PARK ORLANDO, 1940, ECOL MONOGR, V10, P485, DOI 10.2307/1948514; Quinn GP, 2002, EXPT DESIGN DATA ANA; Reavey Duncan, 1993, P248; Roff D. A., 2002, LIFE HIST EVOLUTION; SIBLY R, 1985, J THEOR BIOL, V112, P553, DOI 10.1016/S0022-5193(85)80022-9; Sih A, 2000, TRENDS ECOL EVOL, V15, P3, DOI 10.1016/S0169-5347(99)01766-8; Slansky Frank Jr., 1993, P29; Stamp Nancy E., 1993, P283; STAMP NE, 1990, ECOLOGY, V71, P1031, DOI 10.2307/1937371; Takeda M, 2005, ENTOMOL SCI, V8, P211, DOI 10.1111/j.1479-8298.2005.00117.x; TIKKANEN P, 1994, OECOLOGIA, V99, P252, DOI 10.1007/BF00627737; Tolman T., 1997, BUTTERFLIES EUROPE; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WICKMAN PO, 1990, HOLARCTIC ECOL, V13, P238; Zalucki MP, 2002, ANNU REV ENTOMOL, V47, P361, DOI 10.1146/annurev.ento.47.091201.145220 59 27 27 1 37 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. AUG 2008 62 10 1655 1663 10.1007/s00265-008-0594-4 9 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology 330AW WOS:000257912700013 2018-11-12 J Low, BS; Hazel, A; Parker, N; Welch, KB Low, Bobbi S.; Hazel, Ashley; Parker, Nicholas; Welch, Kathleen B. Influences on women's reproductive lives - Unexpected ecological underpinnings CROSS-CULTURAL RESEARCH English Article life history; demography; fertility; development LIFE-HISTORY; UNITED-STATES; AGE; POPULATIONS; EXPECTANCY; INEQUALITY; FERTILITY; MORTALITY; CHILDREN; BIRTH Modern women's reproductive lives vary considerably, in a patterned fashion. Although cultural factors are important, across societies - even across species there exist strong patterns predicted by life history theory. For example, the shorter life expectancy e(0) is at birth, the earlier it pays in biological terms to reproduce. Few factors analyzed in women's life patterns in more than 170 nations influence the divergence. Studies on other species assume that ( a) the variation is species specific and ( b) the conditions are at equilibrium; the relationship between life expectancy and age at first birth is strong, but varies across populations, and is frequently not at equilibrium. Human patterns, like those of other species, may have ecological or life history underpinnings. The answers we find may have policy implications for women's lives and fertility. [Low, Bobbi S.] Univ Michigan, Sch Nat Resources & Environm, Ann Arbor, MI 48109 USA; [Low, Bobbi S.] Univ Michigan, Inst Social Res, Fac Associate Populat Studies, Ann Arbor, MI 48109 USA; [Welch, Kathleen B.] Univ Michigan, Ctr Stat Consultat & Res, Ann Arbor, MI 48109 USA; [Welch, Kathleen B.] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA Low, BS (reprint author), Univ Michigan, Sch Nat Resources & Environm, Ann Arbor, MI 48109 USA. Hazel, Ashley/0000-0001-7680-5460 Anderson BA, 2004, POPUL ENVIRON, V25, P377; ANDERSON BA, 1997, 97409 U MICH POP STU; Becker G.S, 1981, TREATISE FAMILY; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; DASGUPTA M, 1987, POPUL DEV REV, V13, P77; DASGUPTA M, 1996, SEX PREFERENCE CHILD; EASTERLIN RA, 1985, FERTILITY REVOLUTION; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Flinn Mark V, 1999, HORMONES HLTH BEHAV, P105; Geronimus AT, 1996, SOC SCI MED, V42, P589, DOI 10.1016/0277-9536(95)00159-X; Geronimus AT, 1996, NEW ENGL J MED, V335, P1552, DOI 10.1056/NEJM199611213352102; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; Geronimus AT, 2001, DEMOGRAPHY, V38, P227, DOI 10.1353/dem.2001.0015; GERONIMUS AT, 1997, ANN M POP ASS AM WAS; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hitztaler S, 2004, POPUL ENVIRON, V25, P355; Hitztaler S, 2004, POPUL ENVIRON, V25, P335; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; KAPLAN HS, 2000, ADAPTATION HUMAN BEH, P283; KAPLAN HS, 1995, HUMAN REPROD DECISIO, P96; KNODEL J, 1990, POPUL DEV REV, V16, P31, DOI 10.2307/1972528; Low B., 2005, FAMILIES GLOBAL PERS, P14; Low B., 2007, OXFORD HDB EVOLUTION, P449; LOW BL, 2000, WHY SEX MATTERS DARW; Low BS, 2005, EVOL HUM BEHAV, V26, P64, DOI 10.1016/j.evolhumbehav.23004.08.011; Low BS, 2003, BIODEMOGRAPHY OF HUMAN REPRODUCTION AND FERTILITY, P105; Low BS, 2002, AM J HUM BIOL, V14, P149, DOI 10.1002/ajhb.10043; LOW BS, 1992, POPUL DEV REV, V18, P1, DOI 10.2307/1971857; LOW BS, 2000, ADAPTATION HUMAN BEH, P323; LOW BS, 1990, INT J CONT SOCIOLOGY, V27, P49; MAC ARTHUR ROBERT H., 1967; Mace R, 1998, PHILOS T R SOC B, V353, P389, DOI 10.1098/rstb.1998.0217; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; MACE R, 2000, ADAPTATION HUMAN BEH, P261; Mulder MB, 1998, TRENDS ECOL EVOL, V13, P266, DOI 10.1016/S0169-5347(98)01357-3; Murdock G. P., 1967, ETHNOGRAPHIC ATLAS; Murdock George, 1981, ATLAS WORLD CULTURES; MURDOCK GP, 1969, ETHNOLOGY, V8, P329, DOI 10.2307/3772907; MURDOCK GP, 1957, AM ANTHROPOL, V59, P195; Nepomnaschy PA, 2006, P NATL ACAD SCI USA, V103, P3938, DOI 10.1073/pnas.0511183103; RANJIT N, 2005, INT J EPIDEMIOL, V34, P227; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Ting TF, 2004, POPUL ENVIRON, V25, P299; Ting TF, 2004, POPUL ENVIRON, V25, P281; Whyte M. K., 1979, STATUS WOMEN PREINDU; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 50 71 72 0 8 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1069-3971 1552-3578 CROSS-CULT RES Cross-Cult. Res. AUG 2008 42 3 201 219 10.1177/1069397108317669 19 Social Sciences, Interdisciplinary Social Sciences - Other Topics 326PW WOS:000257672400002 2018-11-12 J Petes, LE; Menge, BA; Harris, AL Petes, Laura E.; Menge, Bruce A.; Harris, Alyssa L. Intertidal mussels exhibit energetic trade-offs between reproduction and stress resistance ECOLOGICAL MONOGRAPHS English Article carotenoid; energy trade-offs; Mytilus californianus; Oregon coast; USA; oxidative stress; reproduction; rocky intertidal zone MYTILUS-EDULIS-L; OXIDATIVE STRESS; LIPID-PEROXIDATION; CAROTENOID-PIGMENTS; ENVIRONMENTAL-STRESS; COMMUNITY REGULATION; WAVE EXPOSURE; CALIFORNIANUS; PATTERNS; TEMPERATURE Life- history theory suggests that trade- offs exist between. tness components, with organisms balancing investment in reproduction against survival and future reproduction. This study examined the in. uence of stress on physiological trade- offs in the dominant rocky intertidal mussel Mytilus californianus on the central Oregon coast, USA. The intertidal zone is a highly heterogeneous thermal environment that could lead to intrapopulation variation in stress responses. Stress increases along a vertical gradient, with higher physical stress occurring in the higher intertidal zone, both due to reduced feeding time and longer exposure to aerial conditions. Reproduction and carotenoid content were compared in mussels from the low and high vertical edges of the mussel bed. High- edge mussels invested less relative energy in reproduction and also spawned all of their gametes in the early summer, whereas low- edge mussels continuously spawned small batches of gametes throughout the year. Highedge mussels accumulated high concentrations of carotenoid pigments into their gonadal tissues, potentially to protect gametes from damaging oxidative stress experienced during aerial exposure. A reciprocal transplant experiment revealed plastic responses in growth and reproduction to increased stress. In contrast, carotenoid content did not increase in response to stress, suggesting that carotenoids may not change rapidly or may not be easily lost or gained. Our results indicate that mussels exhibit physiological trade- offs and, under increased stress predicted from climate change scenarios, may allocate energy away from reproduction toward costly physiological defenses. [Petes, Laura E.; Menge, Bruce A.; Harris, Alyssa L.] Oregon State Univ, Dept Zool, Corvallis, OR 97331 USA Petes, LE (reprint author), Florida State Univ, Coastal & Marine Lab, 3618,Highway 98, St Teresa, FL 32358 USA. lpetes@bio.fsu.edu Menge, Bruce/I-6571-2012 Abele D, 1998, COMP BIOCHEM PHYS B, V120, P425, DOI 10.1016/S0305-0491(98)10028-7; Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Barth JA, 2007, P NATL ACAD SCI USA, V104, P3719, DOI 10.1073/pnas.0700462104; BAYNE BL, 1970, HELGOLAND WISS MEER, V20, P526, DOI 10.1007/BF01609927; Becker BJ, 2007, P NATL ACAD SCI USA, V104, P3267, DOI 10.1073/pnas.0611651104; Blount JD, 2002, FUNCT ECOL, V16, P445, DOI 10.1046/j.1365-2435.2002.00648.x; BRETT JR, 1958, HR MACMILLAN LECT FI, P69; BRUSH AH, 1990, FASEB J, V4, P2969; Buchecker R., 1982, CAROTENOID CHEM BIOC, P175; CAMPBELL SA, 1970, COMP BIOCHEM PHYSIOL, V32, P97, DOI 10.1016/0010-406X(70)90159-3; CAMPBELL SA, 1969, MAR BIOL, V4, P227, DOI 10.1007/BF00393898; Connell J.H., 1972, Annual Rev Ecol Syst, V3, P169, DOI 10.1146/annurev.es.03.110172.001125; Connolly SR, 2001, ECOLOGY, V82, P1799, DOI 10.2307/2680048; Davenport J, 2005, MAR ECOL PROG SER, V292, P41, DOI 10.3354/meps292041; Denny MW, 1998, BIOL BULL, V194, P108, DOI 10.2307/1543040; DI MASCIO P, 1991, AM J CLIN NUTR, V53, pS194; Fitzhenry T, 2004, MAR BIOL, V145, P339, DOI 10.1007/s00227-004-1318-6; FOX DL, 1966, COMP BIOCHEM PHYSIOL, V17, P841, DOI 10.1016/0010-406X(66)90125-3; Halliwell B, 1996, ANNU REV NUTR, V16, P33, DOI 10.1146/annurev.nu.16.070196.000341; Halpin PM, 2004, MAR ECOL PROG SER, V276, P137, DOI 10.3354/meps276137; HARMAN D, 1981, P NATL ACAD SCI-BIOL, V78, P7124, DOI 10.1073/pnas.78.11.7124; Havaux M, 1999, P NATL ACAD SCI USA, V96, P8762, DOI 10.1073/pnas.96.15.8762; Helmuth B, 2002, SCIENCE, V298, P1015, DOI 10.1126/science.1076814; Helmuth BST, 2001, BIOL BULL, V201, P374, DOI 10.2307/1543615; Hill GE, 1996, ETHOL ECOL EVOL, V8, P157, DOI 10.1080/08927014.1996.9522926; Houghton JT, 2001, CLIMATE CHANGE 2001; Jeffrey S. W., 1997, PHYTOPLANKTON PIGMEN; JENSEN A, 1970, Journal of Experimental Marine Biology and Ecology, V5, P246, DOI 10.1016/0022-0981(70)90003-1; JORGENSEN CB, 1960, J CONSEIL PERMANENT, V25, P94; Lamare MD, 2004, J EXP MAR BIOL ECOL, V312, P215, DOI 10.1016/j.jembe.2004.02.016; Leslie HM, 2005, P NATL ACAD SCI USA, V102, P10534, DOI 10.1073/pnas.0503874102; LEVINTON JS, 1978, MAR BIOL, V49, P363, DOI 10.1007/BF00455031; LEVINTON JS, 1976, MARINE MUSSELS THEIR, P357; Linan-Cabello MA, 2004, AQUAC RES, V35, P905, DOI 10.1111/j.1365-2109.2004.01083.x; LIVINGSTONE DR, 1990, FUNCT ECOL, V4, P415, DOI 10.2307/2389604; Livingstone DR, 2003, REV MED VET-TOULOUSE, V154, P427; Loosanoff VL, 1942, ECOLOGY, V23, P231, DOI 10.2307/1931090; Lubchenco Jane, 1993, P147; LUNA LG, 1968, MANUAL HISTOLOGICAL; Menge BA, 2000, J EXP MAR BIOL ECOL, V250, P257, DOI 10.1016/S0022-0981(00)00200-8; Menge BA, 2004, ECOL MONOGR, V74, P663, DOI 10.1890/03-4060; Menge BA, 2002, ECOL RES, V17, P1, DOI 10.1046/j.1440-1703.2002.00458.x; MENGE BA, 1987, AM NAT, V130, P730, DOI 10.1086/284741; MIKI W, 1991, PURE APPL CHEM, V63, P141, DOI 10.1351/pac199163010141; MOBERG GP, 1991, J DAIRY SCI, V74, P304, DOI 10.3168/jds.S0022-0302(91)78174-5; Moeller SM, 2000, J AM COLL NUTR, V19, p522S, DOI 10.1080/07315724.2000.10718975; Moore IT, 2003, HORM BEHAV, V43, P39, DOI 10.1016/S0018-506X(02)00038-7; MUSGRAVE MA, 1987, J FOOD SCI, V52, P609, DOI 10.1111/j.1365-2621.1987.tb06685.x; Obermuller B, 2005, J EXP MAR BIOL ECOL, V323, P100, DOI 10.1016/j.jembe.2005.03.005; Ots I, 1996, P ROY SOC B-BIOL SCI, V263, P1443, DOI 10.1098/rspb.1996.0210; PAINE RT, 1966, AM NAT, V100, P65, DOI 10.1086/282400; Petes LE, 2007, J EXP MAR BIOL ECOL, V351, P83, DOI 10.1016/j.jembe.2007.06.025; Philippart CJM, 2003, LIMNOL OCEANOGR, V48, P2171, DOI 10.4319/lo.2003.48.6.2171; Quinn GP, 2002, EXPT DESIGN DATA ANA; RODHOUSE PG, 1985, J MAR BIOL ASSOC UK, V65, P55, DOI 10.1017/S0025315400060793; Roff Derek A., 1992; Sagarin RD, 2006, J BIOGEOGR, V33, P622, DOI 10.1111/j.1365-2699.2005.01403.x; Sastry A.N., 1979, P113; SASTRY AN, 1966, BIOL BULL, V130, P118, DOI 10.2307/1539958; Scheer BT, 1940, J BIOL CHEM, V136, P275; Schreck CB, 2001, AQUACULTURE, V197, P3, DOI 10.1016/S0044-8486(01)00580-4; SEED R, 1992, MUSSEL MYTILUS ECOLO, P87; Stearns S. C., 1992, EVOLUTION LIFE HIST; Sukhotin AA, 2002, MAR ECOL PROG SER, V226, P223, DOI 10.3354/meps226223; TSUCHIYA M, 1983, J EXP MAR BIOL ECOL, V66, P101, DOI 10.1016/0022-0981(83)90032-1; VIARENGO A, 1991, EXPERIENTIA, V47, P454, DOI 10.1007/BF01959942; VIDELA LA, 1987, CELL BIOCHEM FUNCT, V5, P273, DOI 10.1002/cbf.290050406; WELSCHMEYER NA, 1994, LIMNOL OCEANOGR, V39, P1985, DOI 10.4319/lo.1994.39.8.1985; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; Woodall AA, 1996, BRIT J NUTR, V76, P307, DOI 10.1079/BJN19960034 71 61 61 3 47 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9615 1557-7015 ECOL MONOGR Ecol. Monogr. AUG 2008 78 3 387 402 10.1890/07-0605.1 16 Ecology Environmental Sciences & Ecology 333IA WOS:000258145000005 2018-11-12 J Oli, MK; Armitage, KB Oli, Madan K.; Armitage, Kenneth B. Indirect fitness benefits do not compensate for the loss of direct fitness in yellow-bellied marmots JOURNAL OF MAMMALOGY English Article age of 1st reproduction; costs of reproduction; direct fitness; inclusive fitness; indirect fitness; life-history theory; Marmota flaviventris; reproductive strategy; reproductive suppression; yellow-bellied marmot LIFE-HISTORY DATA; REPRODUCTIVE SUPPRESSION; POPULATION-DYNAMICS; INDIVIDUAL FITNESS; INCLUSIVE FITNESS; DELAYED MATURITY; LONG-TERM; BAD JOB; EVOLUTION; CONSEQUENCES The contribution of indirect fitness to inclusive fitness is expected to increase as the reproductive skew increases, with indirect fitness being the only component Of Inclusive fitness of sterile individuals in eusocial species. However, the relative contribution of indirect fitness to inclusive fitness has rarely been evaluated empirically. Using data from a long-term study (1962-2003). we show that female yellow-bellied marmots that have a later age of 1st successful reproduction incur a substantial loss of direct fitness with no corresponding gain in indirect fitness. Additionally. although females that survive to reproductive age but do not successfully reproduce have a greater indirect fitness than those that reproduce at least once, indirect fitness benefits of foregoing reproduction are insufficient to compensate for the loss of direct fitness resulting from later reproduction. Although indirect fitness composed 22.2% of the inclusive fitness of females that reproduced at least once, females that reproduced Lit least once had 2.3 times higher inclusive fitness than those that survived to reproductive age but never reproduced. These results suggest that, in yellow-bellied marmots and other species with similar life histories, the contribution of indirect fitness to inclusive fitness does not compensate for loss of direct fitness. [Oli, Madan K.] Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL 32611 USA; [Armitage, Kenneth B.] Univ Kansas, Dept Ecol & Evolutionary Biol, Lawrence, KS 66045 USA Oli, MK (reprint author), Univ Florida, Dept Wildlife Ecol & Conservat, 110 Newins Ziegler Hall, Gainesville, FL 32611 USA. olim@ufl.edu National Science Foundation [DEB02-24953, G-16354, GB-1980, GB-6123, GB-32494, BMS74-21193, DEB78-07327, BSR-8121231, BSR-9614690, BSR-9006772]; Florida Agricultural Research Station This work was supported in pan by National Science Foundation grants DEB02-24953 (to MKO), G-16354, GB-1980, G13-6123. GB-32494 BMS74-21193, DEB78-07327. BSR-8121231, BSR-9614690, BSR-9006772 (to KBA). and by the Florida Agricultural Research Station. W. Koenig, J.. Murie, an anonymous reviewer, and especially J. Waterman provided many insightful comments and helpful suggests tons. We thank D. Blumstein, D. Van Vuren, A. Ozgul. and several graduate Student,, and technicians who contributed to data collection. ABBOTT DH, 1987, J ZOOL, V213, P455, DOI 10.1111/j.1469-7998.1987.tb03720.x; Allaine D, 2000, BEHAV PROCESS, V51, P21, DOI 10.1016/S0376-6357(00)00116-9; Armitage K. B., 2000, Oecologia Montana, V9, P1; Armitage K. B., 2003, OECOLOGIA MONTANA, V12, P21; Armitage K. B., 2002, HOLARCTIC MARMOTS FA, P9; Armitage K.B., 1996, BIODIVERSITY MARMOTS, P113; Armitage KB, 2000, P NATL ACAD SCI USA, V97, P12149, DOI 10.1073/pnas.200196097; Armitage KB, 1999, J MAMMAL, V80, P1, DOI 10.2307/1383202; Armitage KB, 1998, J MAMMAL, V79, P385, DOI 10.2307/1382969; ARMITAGE KB, 1965, ANIM BEHAV, V13, P59, DOI 10.1016/0003-3472(65)90072-2; ARMITAGE KB, 1991, ANNU REV ECOL SYST, V22, P379, DOI 10.1146/annurev.ecolsys.22.1.379; ARMITAGE KB, 1992, P 1 INT S ALP MARM M, P89; ARMITAGE KB, 1996, BIODIVERSITY MARMOTS, P129; Armitage KB, 2003, WILD MAMMALS N AM BI, P188; Armitage KB, 2003, ADAPTIVE STRATEGIES, P133; Armitage Kenneth B., 2007, P356; BENNETT NC, 1994, J ZOOL, V234, P25, DOI 10.1111/j.1469-7998.1994.tb06054.x; Blumstein DT, 1998, BEHAV ECOL, V9, P8; Blumstein DT, 1999, OIKOS, V84, P369, DOI 10.2307/3546418; Clutton-Brock TH, 1998, TRENDS ECOL EVOL, V13, P288, DOI 10.1016/S0169-5347(98)01402-5; CREEL SR, 1994, BEHAV ECOL, V5, P339, DOI 10.1093/beheco/5.3.339; Dickinson JL, 2004, BEHAV ECOL, V15, P233, DOI 10.1093/beheco/arh001; Dickinson JL, 1996, BEHAV ECOL, V7, P168, DOI 10.1093/beheco/7.2.168; Faulkes C.G., 1991, P426; FRASE BA, 1984, BEHAV ECOL SOCIOBIOL, V16, P1, DOI 10.1007/BF00293098; Gannon WL, 2007, J MAMMAL, V88, P809, DOI 10.1644/06-MAMM-F-185R1.1; GRAFEN A, 1984, BEHAV ECOLOGY EVOLUT, P62; Griffin AS, 2002, TRENDS ECOL EVOL, V17, P15, DOI 10.1016/S0169-5347(01)02355-2; Hacklander K, 2003, ANIM BEHAV, V65, P1133, DOI 10.1006/anbe.2003.2159; HAMILTON WD, 1963, AM NAT, V97, P354, DOI 10.1086/497114; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HAMILTON WD, 1972, ANNU REV ECOL SYST, V3, P193, DOI DOI 10.1146/ANNUREV.ES.03.110172.001205; Haydock J, 2002, P NATL ACAD SCI USA, V99, P7178, DOI 10.1073/pnas.102624199; KILGORE DL, 1978, ECOLOGY, V59, P78, DOI 10.2307/1936633; KOPROWSKI JL, 1993, BEHAV ECOL, V4, P165; Lee PLM, 2004, P NATL ACAD SCI USA, V101, P6530, DOI 10.1073/pnas.0307982101; Maccoll ADC, 2004, J ANIM ECOL, V73, P1137, DOI 10.1111/j.0021-8790.2004.00887.x; McGraw JB, 1996, AM NAT, V147, P47, DOI 10.1086/285839; Oli MK, 2003, OECOLOGIA, V136, P543, DOI 10.1007/s00442-003-1291-7; Oli MK, 2003, P ROY SOC B-BIOL SCI, V270, P307, DOI 10.1098/rspb.2002.2227; Oli MK, 2002, EVOL ECOL RES, V4, P563; SAS Institute Inc, 1999, SAS STAT US GUID VER; SCHWARTZ OA, 1980, SCIENCE, V207, P665, DOI 10.1126/science.207.4431.665; Solomon N.G., 1997, COOPERATIVE BREEDING; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; SVENDSEN GE, 1974, ECOLOGY, V55, P760, DOI 10.2307/1934412; VANVUREN D, 1994, OIKOS, V69, P179; VANVUREN D, 1991, CAN J ZOOL, V69, P1755, DOI 10.1139/z91-244; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; Waterman JM, 2002, J ZOOL, V256, P113, DOI 10.1017/S0952836902000146; Woods B. C., 2003, OECOLOGIA MONTANA, V12, P29; Wynne-Edwards K. E., 2002, HOLARCTIC MARMOTS FA, P41 53 10 10 0 7 ALLIANCE COMMUNICATIONS GROUP DIVISION ALLEN PRESS LAWRENCE 810 EAST 10TH STREET, LAWRENCE, KS 66044 USA 0022-2372 J MAMMAL J. Mammal. AUG 2008 89 4 874 881 10.1644/07-MAMM-A-146.1 8 Zoology Zoology 342DO WOS:000258765000007 Bronze 2018-11-12 J Pagan, I; Alonso-Blanco, C; Garcia-Arenal, F Pagan, Israel; Alonso-Blanco, Carlos; Garcia-arenal, Fernando Host responses in life-history traits and tolerance to virus infection in Arabidopsis thaliana PLOS PATHOGENS English Article CUCUMBER-MOSAIC-VIRUS; REPRODUCTIVE EFFORT; TRADE-OFFS; MICROBOTRYUM-VIOLACEUM; PHENOTYPIC INTEGRATION; REACTION NORMS; SCARLET-GILIA; PLANT-VIRUS; PARASITISM; EVOLUTION Knowing how hosts respond to parasite infection is paramount in understanding the effects of parasites on host populations and hence host-parasite co-evolution. Modification of life-history traits in response to parasitism has received less attention than other defence strategies. Life-history theory predicts that parasitised hosts will increase reproductive effort and accelerate reproduction. However, empirical analyses of these predictions are few and mostly limited to animal-parasite systems. We have analysed life-history trait responses in 18 accessions of Arabidopsis thaliana infected at two different developmental stages with three strains of Cucumber mosaic virus (CMV). Accessions were divided into two groups according to allometric relationships; these groups differed also in their tolerance to CMV infection. Life-history trait modification upon virus infection depended on the host genotype and the stage at infection. While all accessions delayed flowering, only the more tolerant allometric group modified resource allocation to increase the production of reproductive structures and progeny, and reduced the length of reproductive period. Our results are in agreement with modifications of life-history traits reported for parasitised animals and with predictions from life-history theory. Thus, we provide empirical support for the general validity of theoretical predictions. In addition, this experimental approach allowed us to quantitatively estimate the genetic determinism of life-history trait plasticity and to evaluate the role of life-history trait modification in defence against parasites, two largely unexplored issues. [Pagan, Israel] Univ Politecn Madrid, Dept Biotechnol, ETSI Agronomos, Madrid, Spain; Univ Politecn Madrid, Ctr Biotecnol & Genom Plantas, Madrid, Spain; [Alonso-Blanco, Carlos] CSIC, Ctr Nacl Biotecnol, Dept Genet Mol Plantas, Madrid, Spain Pagan, I (reprint author), Univ Politecn Madrid, Dept Biotechnol, ETSI Agronomos, Madrid, Spain. fernando.garciaarenal@upm.es Garcia-Arenal, Fernando/H-1603-2015; Pagan, Israel/H-1843-2015; Alonso-Blanco, Carlos/F-8864-2016 Pagan, Israel/0000-0001-8876-1194; Alonso-Blanco, Carlos/0000-0002-4738-5556; GARCIA-ARENAL RODRIGUEZ, FERNANDO/0000-0002-5327-3200 Plan Nacional de I+D [AGL2005-01122]; Universidad Polite cnica de Madrid/Comunidad Auto noma de Madrid, Spain [CAM-UPM CG06-UPM/AGR-429]; Ministerio de Educacion y Ciencia, Spain This work was supported in part by grants AGL2005-01122 from Plan Nacional de I+D and CAM-UPM CG06-UPM/AGR-429 from Universidad Polite cnica de Madrid/Comunidad Auto noma de Madrid, Spain, to FGA. IP was in receipt of a FPI fellowship from Ministerio de Educacion y Ciencia, Spain. Agnew P, 2000, MICROBES INFECT, V2, P891, DOI 10.1016/S1286-4579(00)00389-0; Agnew P, 1999, P ROY SOC B-BIOL SCI, V266, P947, DOI 10.1098/rspb.1999.0728; Arnott SA, 2000, P ROY SOC B-BIOL SCI, V267, P657, DOI 10.1098/rspb.2000.1052; Ausin I, 2005, INT J DEV BIOL, V49, P689, DOI 10.1387/ijdb.052022ia; Baker AM, 2005, EVOLUTION, V59, P970; Ballabeni P, 1995, FUNCT ECOL, V9, P887, DOI 10.2307/2389987; Becklin KM, 2006, CAN J BOT, V84, P1298, DOI 10.1139/B06-099; Blaser M, 2005, J INVERTEBR PATHOL, V89, P251, DOI 10.1016/j.jip.2005.04.004; Bonnet J, 2005, VIROLOGY, V332, P359, DOI 10.1016/j.virol.2004.11.017; Bonser SP, 2001, J ECOL, V89, P72, DOI 10.1046/j.1365-2745.2001.00516.x; Boyes DC, 2001, PLANT CELL, V13, P1499, DOI 10.1105/tpc.13.7.1499; Brody AK, 2007, OIKOS, V116, P975, DOI 10.1111/j.2007.0030-1299.15705.x; Chadwick W, 2005, P ROY SOC B-BIOL SCI, V272, P505, DOI 10.1098/rspb.2004.2959; Christe P, 1996, BEHAV ECOL, V7, P127, DOI 10.1093/beheco/7.2.127; Day TA, 1999, OECOLOGIA, V119, P24, DOI 10.1007/s004420050757; DIGGLE PK, 1995, ANNU REV ECOL SYST, V26, P531, DOI 10.1146/annurev.es.26.110195.002531; DOBSON AP, 1986, TRENDS ECOL EVOL, V1, P11, DOI 10.1016/0169-5347(86)90060-1; Dunoyer P, 2004, PLANT CELL, V16, P1235, DOI 10.1105/tpc.020719; Fagoaga C, 2005, MOL PLANT MICROBE IN, V18, P435, DOI 10.1094/MPMI-18-0435; FORBES MRL, 1993, OIKOS, V67, P444, DOI 10.2307/3545356; Fredensborg BL, 2006, J ANIM ECOL, V75, P44, DOI 10.1111/j.1365-2656.2005.01021.x; Gandon S, 2002, AM NAT, V160, P374, DOI 10.1086/341525; Geri C, 2004, PLANT MOL BIOL, V56, P111, DOI 10.1007/s11103-004-2649-x; HOCHBERG ME, 1992, J EVOLUTION BIOL, V5, P491, DOI 10.1046/j.1420-9101.1992.5030491.x; Hudson PJ, 2006, TRENDS ECOL EVOL, V21, P381, DOI 10.1016/j.tree.2006.04.007; Hurtrez-Bousses S, 1998, ECOL LETT, V1, P17, DOI 10.1046/j.1461-0248.1998.00017.x; Jeger MJ, 2006, ADV VIRUS RES, V67, P163, DOI 10.1016/S0065-3527(06)67005-X; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; Kasschau KD, 2003, DEV CELL, V4, P205, DOI 10.1016/S1534-5807(03)00025-X; Koella JC, 1999, J EVOLUTION BIOL, V12, P70, DOI 10.1046/j.1420-9101.1999.00010.x; Lambrechts L, 2006, TRENDS PARASITOL, V22, P12, DOI 10.1016/j.pt.2005.11.008; LOT H, 1972, Annales de Phytopathologie, V4, P25; MICHALAKIS Y, 1994, PARASITE, V1, P291, DOI 10.1051/parasite/1994014291; MINCHELLA DJ, 1985, PARASITOLOGY, V90, P205, DOI 10.1017/S0031182000049143; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; Mitchell C. E., 2004, AM NAT, V164, pS79; MITCHELL MJ, 1994, J ECON ENTOMOL, V87, P933, DOI 10.1093/jee/87.4.933; MitchellOlds T, 1996, EVOLUTION, V50, P1849, DOI 10.1111/j.1558-5646.1996.tb03571.x; Mysore KS, 2004, TRENDS PLANT SCI, V9, P97, DOI 10.1016/j.tplants.2003.12.005; Pagan I, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000786; Palukaitis P, 2003, ADV VIRUS RES, V62, P241, DOI 10.1016/S0065-3527(03)62005-1; PALUKAITIS P, 1992, ADV VIRUS RES, V41, P281, DOI 10.1016/S0065-3527(08)60039-1; Perrin N, 1996, OIKOS, V75, P317, DOI 10.2307/3546256; Pigliucci M, 2006, EVOL ECOL RES, V8, P415; Pigliucci M, 2002, EVOL ECOL, V16, P27, DOI 10.1023/A:1016073525567; Pigliucci M, 1998, J EVOLUTION BIOL, V11, P285; Polak M, 1998, P ROY SOC B-BIOL SCI, V265, P2197, DOI 10.1098/rspb.1998.0559; Read Andrew F., 1994, Trends in Microbiology, V2, P73, DOI 10.1016/0966-842X(94)90537-1; Relyea RA, 2007, OECOLOGIA, V152, P389, DOI 10.1007/s00442-007-0675-5; Restif O., 2004, AM NAT, V164, P90, DOI DOI 10.1086/423713; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; RICHNER H, 1995, P NATL ACAD SCI USA, V92, P1192, DOI 10.1073/pnas.92.4.1192; RIZZO TM, 1990, MOL GEN GENET, V222, P249, DOI 10.1007/BF00633825; Salvaudon L, 2005, EVOLUTION, V59, P2518; Sharbel TF, 2000, MOL ECOL, V9, P2109, DOI 10.1046/j.1365-294X.2000.01122.x; Shykoff JA, 1998, INT J PLANT SCI, V159, P236, DOI 10.1086/297544; Shykoff JA, 1997, INT J PLANT SCI, V158, P164, DOI 10.1086/297427; Somerville C, 2002, NAT REV GENET, V3, P883, DOI 10.1038/nrg927; Sorci G, 1997, P ROY SOC B-BIOL SCI, V264, P285, DOI 10.1098/rspb.1997.0040; Sorensen RE, 1998, OECOLOGIA, V115, P188, DOI 10.1007/s004420050507; Stanton ML, 2000, EVOLUTION, V54, P93, DOI 10.1111/j.0014-3820.2000.tb00011.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stenstrom A., 2006, Nordic Journal of Botany, V24, P355; STIBOR H, 1992, OECOLOGIA, V92, P162, DOI 10.1007/BF00317358; Strickland EH, 1911, BIOL BULL-US, V21, P302, DOI 10.2307/1536022; Testa JW, 2004, ECOLOGY, V85, P1439, DOI 10.1890/02-0671; THOMPSON K, 1981, AM NAT, V117, P205, DOI 10.1086/283700; Thompson SN, 2005, J EXP BIOL, V208, P611, DOI 10.1242/jcb.01404; Tompkins DM, 2000, J ANIM ECOL, V69, P829, DOI 10.1046/j.1365-2656.2000.00439.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams GC, 1966, ADAPTATION NATURAL S; ZHANG L, 1994, J GEN VIROL, V75, P3185, DOI 10.1099/0022-1317-75-11-3185; Zhang XR, 2006, GENE DEV, V20, P3255, DOI 10.1101/gad.1495506 75 34 34 1 28 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA 1553-7366 PLOS PATHOG PLoS Pathog. AUG 2008 4 8 e1000124 10.1371/journal.ppat.1000124 10 Microbiology; Parasitology; Virology Microbiology; Parasitology; Virology 356MU WOS:000259783100012 18704166 DOAJ Gold, Green Published 2018-11-12 J Ball, MA; Parker, GA; Chubb, JC Ball, M. A.; Parker, G. A.; Chubb, J. C. The evolution of complex life cycles when parasite mortality is size- or time-dependent JOURNAL OF THEORETICAL BIOLOGY English Article helminth evolution; life history strategies; growth arrest of larvae; upward incorporation; downward incorporation TROPHIC TRANSMISSION; INTERMEDIATE HOSTS; STRATEGIES In complex cycles, helminth larvae in their intermediate hosts typically grow to a fixed size. We define this cessation of growth before transmission to the next host as growth arrest at larval maturity (GALM). Where the larval parasite controls its own growth in the intermediate host, in order that growth eventually arrests, some form of size- or time-dependent increase in its death rate must apply. In contrast, the switch from growth to sexual reproduction in the definitive host can be regulated by constant (time-independent) mortality as in standard life history theory. We here develop a step-wise model for the evolution of complex helminth life cycles through trophic transmission, based on the approach of Parker et al. [2003a. Evolution of complex life cycles in helminth parasites. Nature London 425, 480-484], but which includes size- or time-dependent increase in mortality rate. We assume that the growing larval parasite has two components to its death rate: (i) a constant, size- or time-independent component, and (ii) a component that increases with size or time in the intermediate host. When growth stops at larval maturity, there is a discontinuous change in mortality to a constant (time-independent) rate. This model generates the same optimal size for the parasite larva at GALM in the intermediate host whether the evolutionary approach to the complex life cycle is by adding a new host above the original definitive host (upward incorporation), or below the original definitive host (downward incorporation). We discuss some unexplored problems for cases where complex life cycles evolve through trophic transmission. (c) 2008 Elsevier Ltd. All rights reserved. [Parker, G. A.; Chubb, J. C.] Univ Liverpool, Div Populat & Evolutionary Biol, Sch Biol Sci, Liverpool L69 7ZB, Merseyside, England; [Ball, M. A.] Univ Liverpool, Div Appl Math, Dept Math Sci, Liverpool L69 3BX, Merseyside, England Parker, GA (reprint author), Univ Liverpool, Div Populat & Evolutionary Biol, Sch Biol Sci, Liverpool L69 7ZB, Merseyside, England. gap@liv.ac.uk Parker, Geoff/C-4337-2008 Parker, Geoff/0000-0003-4795-6352 ANDERSON R. C., 2000, NEMATODE PARASITES V; ARME C, 1967, PARASITOLOGY, V57, P301, DOI 10.1017/S0031182000072103; Brown SP, 2001, J EVOLUTION BIOL, V14, P815, DOI 10.1046/j.1420-9101.2001.00318.x; BUSH AO, 2001, PARASITISM DIVERSITY; Choisy M, 2003, AM NAT, V162, P172, DOI 10.1086/375681; Combes C., 1991, P62; Dobson A.P., 1991, P83; DOGIEL V. A., 1964, GEN PARASITOLOGY; Gemmill AW, 1999, J EVOLUTION BIOL, V12, P1148, DOI 10.1046/j.1420-9101.1999.00117.x; Iwasa Y, 2006, EVOL ECOL RES, V8, P1427; Kennedy CR, 2006, ECOLOGY OF THE ACANTHOCEPHALA, P1, DOI 10.2277/ 0521850088; Lafferty KD, 1999, PARASITOL TODAY, V15, P111, DOI 10.1016/S0169-4758(99)01397-6; McClelland G, 1990, CAN B FISH AQUAT SCI, V222, P83; Miller MR, 2005, J THEOR BIOL, V236, P198, DOI 10.1016/j.jtbi.2005.03.005; Moore J, 2002, PARASITES BEHAV ANIM; MORAND S, 1995, J ANIM ECOL, V64, P256, DOI 10.2307/5760; MORAVEC F., 1994, PARASITIC NEMATODES; Parker GA, 2003, NATURE, V425, P480, DOI 10.1038/nature02012; Parker GA, 2003, J EVOLUTION BIOL, V16, P47, DOI 10.1046/j.1420-9101.2003.00504.x; PARKER GA, GROW NOT GROW UNPUB; Poulin R, 1995, INT J PARASITOL, V25, P1371, DOI 10.1016/0020-7519(95)00100-X; Poulin R, 2007, EVOLUTIONARY ECOLOGY; Roff Derek A., 1992; SMITHTRAIL DR, 1980, AM NAT, V116, P77; Viney M. E., 2002, P111, DOI 10.1079/9780851996158.0111 25 20 21 0 14 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0022-5193 1095-8541 J THEOR BIOL J. Theor. Biol. JUL 7 2008 253 1 202 214 10.1016/j.jtbi.2008.02.025 13 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology 321KB WOS:000257302400018 18397792 2018-11-12 J Fischer, K; Perlick, J; Galetz, T Fischer, Klaus; Perlick, Jana; Galetz, Tobias Residual reproductive value and male mating success: older males do better PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article lepidoptera; life-history theory; male reproduction; resource-holding potential; sexual selection; wars of attrition BUTTERFLY BICYCLUS-ANYNANA; PIERIS-NAPI BUTTERFLIES; SEXUAL SELECTION; LIFE-HISTORY; PHENOTYPIC PLASTICITY; FIGHTING BEHAVIOR; CONTEST BEHAVIOR; AGE; SIZE; EVOLUTION Evolution via sexual selection has traditionally been viewed as isolated from life-history constraints. As additionally reproductive resource allocation in males is underexplored, it is rather unclear how life-history factors have shaped lifetime investment into male sexually selected traits. Against this background, we here investigate male butterfly mating success in relation to age, nutritional status, assay condition and wing damage. As predicted, based on a low residual reproductive value, older males had a considerably higher mating success than younger males. Comparisons between virgin and once-mated males suggest that this pattern is related to age per se rather than differential ratings of the resource receptive female. We found no evidence for male body size or condition being important, supporting the notion that in weaponless animals intrinsic motivation is more important for mating success than the differences in physical properties (such as body size or condition). Flight cage experiments suggest that such differences in motivation may be masked under more natural conditions, where flight performance, having a clear impact on mating success (as evidenced by wing manipulation experiments), is likely to be crucial. We conclude that the life-history perspective is a fruitful one for gaining a better understanding of the evolution of sexually selected characters and the predictions derived from contest theory do also apply to male mating success. [Fischer, Klaus; Perlick, Jana; Galetz, Tobias] Univ Bayreuth, Dept Anim Ecol, D-95440 Bayreuth, Germany Fischer, K (reprint author), Ernst Moritz Arndt Univ Greifswald, Zool Inst & Museum, D-17489 Greifswald, Germany. klaus.fischer@uni-greifswald.de Barnes AI, 2003, ANIM BEHAV, V66, P199, DOI 10.1006/anbe.2003.2122; Bergman M, 2007, P R SOC B, V274, P1659, DOI 10.1098/rspb.2007.0311; Brakefield Paul M., 1997, V83, P65; Brakefield PM, 2001, J EVOLUTION BIOL, V14, P148, DOI 10.1046/j.1420-9101.2001.00248.x; BRAKEFIELD PM, 1991, ECOL ENTOMOL, V16, P291, DOI 10.1111/j.1365-2311.1991.tb00220.x; Breuker CJ, 2002, P ROY SOC B-BIOL SCI, V269, P1233, DOI 10.1098/rspb.2002.2005; Candolin U, 2000, ANIM BEHAV, V60, P417, DOI 10.1006/anbe.2000.1481; Chapman T, 1998, P ROY SOC B-BIOL SCI, V265, P1879, DOI 10.1098/rspb.1998.0516; DEINERT EI, 1994, NATURE, V370, P23, DOI 10.1038/370023a0; ENQUIST M, 1990, ANIM BEHAV, V39, P1, DOI 10.1016/S0003-3472(05)80721-3; Ferkau C, 2006, ETHOLOGY, V112, P1117, DOI 10.1111/j.1439-0310.2006.01266.x; Fischer K, 2003, ECOLOGY, V84, P3138, DOI 10.1890/02-0733; Fischer K, 2001, ANIM BEHAV, V61, P723, DOI 10.1006/anbe.2000.1662; Fischer K, 2006, J INSECT BEHAV, V19, P657, DOI 10.1007/s10905-006-9057-9; Fischer K, 2007, ECOL ENTOMOL, V32, P674, DOI 10.1111/j.1365-2311.2007.00922.x; Geister TL, 2007, BEHAV ECOL, V18, P658, DOI 10.1093/beheco/arm024; Hoglund J, 1998, OIKOS, V83, P478, DOI 10.2307/3546675; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; Joron M, 2003, NATURE, V424, P191, DOI 10.1038/nature01713; KARLSSON B, 1994, OIKOS, V69, P224, DOI 10.2307/3546142; Kemp DJ, 2006, BIOL J LINN SOC, V88, P565, DOI 10.1111/j.1095-8312.2006.00643.x; Kemp DJ, 2001, BEHAV ECOL SOCIOBIOL, V49, P429, DOI 10.1007/s002650100318; Kemp DJ, 2006, ETHOLOGY, V112, P471, DOI 10.1111/j.1439-0310.2005.01173.x; Kemp DJ, 2004, P ROY SOC B-BIOL SCI, V271, P1707, DOI 10.1098/rspb.2004.2775; Kemp DJ, 2003, BEHAV ECOL SOCIOBIOL, V54, P7, DOI 10.1007/s00265-003-0602-7; Kemp DJ, 2002, P ROY SOC B-BIOL SCI, V269, P1341, DOI 10.1098/rspb.2002.2000; Kemp DJ, 2002, BEHAV ECOL, V13, P456, DOI 10.1093/beheco/13.4.456; Kemp DJ, 2000, BEHAV ECOL, V11, P591, DOI 10.1093/beheco/11.6.591; KEMP DJ, 2000, ANIM BEHAV, V60, P44; Kokko H, 1998, EVOL ECOL, V12, P739, DOI 10.1023/A:1006541701002; Kokko H, 2002, P ROY SOC B-BIOL SCI, V269, P1331, DOI 10.1098/rspb.2002.2020; Kokko H, 1997, BEHAV ECOL SOCIOBIOL, V41, P99, DOI 10.1007/s002650050369; Kotiaho JS, 2003, J INSECT PHYSIOL, V49, P817, DOI 10.1016/S0022-1910(03)00117-3; Lappin AK, 2006, AM NAT, V168, P100, DOI 10.1086/505161; LARSEN TB, 1991, BUTTERFLIES KENYA; Lyytinen A, 2004, P ROY SOC B-BIOL SCI, V271, P279, DOI 10.1098/rspb.2003.2571; MARDEN JH, 1990, ANIM BEHAV, V39, P954, DOI 10.1016/S0003-3472(05)80960-1; Molleman F, 2007, EXP GERONTOL, V42, P472, DOI 10.1016/j.exger.2007.01.008; Olsson M, 1996, OECOLOGIA, V105, P175, DOI 10.1007/BF00328543; PARKER GA, 1974, J THEOR BIOL, V47, P223, DOI 10.1016/0022-5193(74)90111-8; Pijpe J, 2006, MECH AGEING DEV, V127, P802, DOI 10.1016/j.mad.2006.07.006; Poizat G, 1999, P ROY SOC B-BIOL SCI, V266, P1543, DOI 10.1098/rspb.1999.0813; Proulx SR, 2002, P ROY SOC B-BIOL SCI, V269, P2291, DOI 10.1098/rspb.2002.2129; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Robertson KA, 2005, P ROY SOC B-BIOL SCI, V272, P1541, DOI 10.1098/rspb.2005.3142; Roff D. A., 2002, LIFE HIST EVOLUTION; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stjernholm F, 2006, FUNCT ECOL, V20, P442, DOI 10.1111/j.1365-2435.2006.01120.x; Stjernholm F, 2005, BIOL J LINN SOC, V86, P363, DOI 10.1111/j.1095-8312.2005.00542.x; van't Hof AE, 2005, MOL ECOL NOTES, V5, P169, DOI 10.1111/j.1471-8268.2005.00870.x; Whitehouse MEA, 1997, ANIM BEHAV, V53, P913, DOI 10.1006/anbe.1996.0313; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WINDIG JJ, 1994, J EVOLUTION BIOL, V7, P665, DOI 10.1046/j.1420-9101.1994.7060665.x 54 44 44 0 24 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUL 7 2008 275 1642 1517 1524 10.1098/rspb.2007.1455 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 301NN WOS:000255903000006 18364315 Green Published, Other Gold 2018-11-12 J Rowe, CL Rowe, Christopher L. "The Calamity of So Long Life": Life histories, contaminants, and potential emerging threats to long-lived vertebrates BIOSCIENCE English Article birds of prey; marine mammals; persistent contaminants; reproductive fitness; reptiles BEARS URSUS-MARITIMUS; CHELYDRA-SERPENTINA-SERPENTINA; WHALES ORCINUS-ORCA; PERSISTENT ORGANIC POLLUTANTS; OSPREYS PANDION-HALIAETUS; DOUBLE-CRESTED CORMORANTS; FISH-EATING BIRDS; POLAR BEARS; ALLIGATOR-MISSISSIPPIENSIS; GREAT-LAKES Persistent contaminants are ubiquitous in the environment, often Present at concentrations that may jeopardize reproductive fitness only after long periods of exposure. As the duration of exposure is largely regulated by life span, long-lived species of high trophic status, such as many reptiles, birds, and mammals, may be at risk of reduced fitness and population decline. Delayed maturation and iteroparity confer the potential for cumulative effects to be expressed prior to reproduction, and large parental investments in yolk and milk may threaten offspring because of exposure during critical developmental periods, Long generation times may delay emergence of obvious effects on populations, perhaps eluding early intervention, while constraining rates at which populations may recover if conditions subsequently improve. Life history theory thus suggests that the suite of traits that optimized reproductive fitness throughout long-lived species, evolutionary histories may ultimately put them in peril in the modern, anthropogenically altered environment. Univ Maryland, Chesapeake Biol Lab, Ctr Environm Sci, Solomons, MD 20688 USA Rowe, CL (reprint author), Univ Maryland, Chesapeake Biol Lab, Ctr Environm Sci, Solomons, MD 20688 USA. rowe@cbl.umces.edu Rowe, Christopher/D-5271-2012 Rowe, Christopher/0000-0001-9502-9225 AGUILAR A, 1994, ARCH ENVIRON CON TOX, V27, P546; Andersen M, 2001, POLAR BIOL, V24, P231, DOI 10.1007/s003000000201; Beckmen KB, 2003, MAR POLLUT BULL, V46, P594, DOI 10.1016/S0025-326X(03)00039-0; Bishop CA, 1998, ENVIRON POLLUT, V101, P143, DOI 10.1016/S0269-7491(98)00005-0; BISHOP CA, 1991, J TOXICOL ENV HEALTH, V33, P521, DOI 10.1080/15287399109531539; BISHOP CA, 1994, ARCH ENVIRON CON TOX, V27, P82; Braune BM, 2001, ENVIRON POLLUT, V114, P39, DOI 10.1016/S0269-7491(00)00210-4; Calow P, 1997, ENVIRON TOXICOL CHEM, V16, P1983, DOI 10.1897/1551-5028(1997)016<1983:RAOTBO>2.3.CO;2; CHAPPELL WR, 1992, ENVIRON GEOCHEM HLTH, V14, P71, DOI 10.1007/BF01784017; CONGDON JD, 1993, CONSERV BIOL, V7, P826, DOI 10.1046/j.1523-1739.1993.740826.x; CONGDON JD, 1994, AM ZOOL, V34, P397; CONGDON JD, 1989, PHYSIOL ZOOL, V62, P356, DOI 10.1086/physzool.62.2.30156175; Congdon JD, 2001, ENVIRON TOXICOL CHEM, V20, P1698, DOI 10.1897/1551-5028(2001)020<1698:RABLHA>2.0.CO;2; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; CROWDER LB, 1994, ECOL APPL, V4, P437, DOI 10.2307/1941948; de Solla SR, 1998, ENVIRON HEALTH PERSP, V106, P253, DOI 10.1289/ehp.98106253; Debier C, 2006, AQUAT TOXICOL, V80, P149, DOI 10.1016/j.aquatox.2006.08.002; Derocher AE, 2003, SCI TOTAL ENVIRON, V301, P163, DOI 10.1016/S0048-9697(02)00303-0; DIRKSEN S, 1995, ENVIRON POLLUT, V88, P119, DOI 10.1016/0269-7491(95)91435-N; Escher BI, 2002, ENVIRON SCI TECHNOL, V36, P4201, DOI 10.1021/es015848h; Ewins PJ, 1999, ENVIRON POLLUT, V104, P295, DOI 10.1016/S0269-7491(98)00159-6; Forbes VE, 2006, ENVIRON TOXICOL CHEM, V25, P272, DOI 10.1897/05-257R.1; FOX GA, 1991, J GREAT LAKES RES, V17, P158, DOI 10.1016/S0380-1330(91)71353-1; FRY DM, 1995, ENVIRON HEALTH PERSP, V103, P165, DOI 10.2307/3432528; GIBBONS JW, 1987, BIOSCIENCE, V37, P262, DOI 10.2307/1310589; Gibbons JW, 2000, BIOSCIENCE, V50, P653, DOI 10.1641/0006-3568(2000)050[0653:TGDORD]2.0.CO;2; Glazier DS, 2005, BIOL REV, V80, P611, DOI 10.1017/S1464793105006834; GRIER JW, 1982, SCIENCE, V218, P1232, DOI 10.1126/science.7146905; GUILLETTE LJ, 1995, ENVIRON HEALTH PERSP, V103, P157, DOI 10.1289/ehp.95103s7157; Guillette LJ, 1999, GEN COMP ENDOCR, V116, P356, DOI 10.1006/gcen.1999.7375; GUILLETTE LJ, 1994, ENVIRON HEALTH PERSP, V102, P680, DOI 10.2307/3432198; Gunderson MP, 2004, CHEMOSPHERE, V56, P335, DOI 10.1016/j.chemosphere.2004.01.020; Guruge KS, 2001, ENVIRON POLLUT, V114, P389, DOI 10.1016/S0269-7491(00)00234-7; Harris ML, 2000, ARCH ENVIRON CON TOX, V39, P205, DOI 10.1007/s002440010098; Hebert CE, 2000, ENVIRON SCI TECHNOL, V34, P1609, DOI 10.1021/es990933z; Henriksen EO, 2001, J ENVIRON MONITOR, V3, P493, DOI 10.1039/b102683f; HICKEY JJ, 1968, SCIENCE, V162, P271, DOI 10.1126/science.162.3850.271; Hickie BE, 2007, ENVIRON SCI TECHNOL, V41, P6613, DOI 10.1021/es0702519; Jackson JBC, 2001, P NATL ACAD SCI USA, V98, P5411, DOI 10.1073/pnas.091092898; Kannan K, 2004, ENVIRON TOXICOL CHEM, V23, P49, DOI 10.1897/03-53; Kauffman MJ, 2003, ECOL APPL, V13, P1802, DOI 10.1890/01-5324; Kelly BC, 2007, SCIENCE, V317, P236, DOI 10.1126/science.1138275; Lie E, 2005, J TOXICOL ENV HEAL A, V68, P457, DOI 10.1080/15287390590903685; Lie E, 2003, SCI TOTAL ENVIRON, V306, P159, DOI 10.1016/S0048-9697(02)00490-4; Meijer T, 1999, IBIS, V141, P399, DOI 10.1111/j.1474-919X.1999.tb04409.x; Milnes MR, 2005, BIOL REPROD, V73, P1004, DOI 10.1095/biolreprod.105.041012; Muir D, 1999, SCI TOTAL ENVIRON, V230, P83, DOI 10.1016/S0048-9697(99)00037-6; Neale JCC, 2005, J TOXICOL ENV HEAL A, V68, P687, DOI 10.1080/15287390590925429; Norstrom RJ, 2002, ENVIRON SCI TECHNOL, V36, P4783, DOI 10.1021/es025831e; Oskam IC, 2003, J TOXICOL ENV HEAL A, V66, P2119, DOI 10.1080/15287390390211342; PAULY D, 1995, TRENDS ECOL EVOL, V10, P430, DOI 10.1016/S0169-5347(00)89171-5; PECHMANN JHK, 1991, SCIENCE, V253, P892, DOI 10.1126/science.253.5022.892; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Rauschenberger RH, 2007, ENVIRON SCI TECHNOL, V41, P5559, DOI 10.1021/es0628194; Rauschenberger RH, 2004, ENVIRON TOXICOL CHEM, V23, P2906, DOI 10.1897/03-584.1; Roe JH, 2004, ENVIRON TOXICOL CHEM, V23, P1969, DOI 10.1897/03-520; Ross PS, 2006, CAN J FISH AQUAT SCI, V63, P224, DOI 10.1139/F05-244; Schecter A, 2003, ENVIRON HEALTH PERSP, V111, P1723, DOI 10.1289/ehp.6466; Schwarzenbach RP, 2006, SCIENCE, V313, P1072, DOI 10.1126/science.1127291; Semenza JC, 1997, ENVIRON HEALTH PERSP, V105, P1030, DOI 10.2307/3433835; SIMONICH SL, 1995, SCIENCE, V269, P1851, DOI 10.1126/science.7569923; Skaare JU, 2002, TOXICOLOGY, V181, P193, DOI 10.1016/S0300-483X(02)00280-9; Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556; Stark JD, 2004, P NATL ACAD SCI USA, V101, P732, DOI 10.1073/pnas.0304903101; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Tanabe S, 2004, ENVIRON SCI TECHNOL, V38, P403, DOI 10.1021/es034966x; TILLITT DE, 1992, ENVIRON TOXICOL CHEM, V11, P1281, DOI 10.1897/1552-8618(1992)11[1281:PBRAEM]2.0.CO;2; Toschik PC, 2005, ENVIRON TOXICOL CHEM, V24, P617, DOI 10.1897/04-141R.1; Weissmann G, 2006, FASEB J, V20, P2427, DOI 10.1096/fj.06-1201ufm; West GB, 2002, P NATL ACAD SCI USA, V99, P2473, DOI 10.1073/pnas.012579799; Ylitalo GM, 2001, SCI TOTAL ENVIRON, V281, P183, DOI 10.1016/S0048-9697(01)00846-4 72 49 50 1 23 AMER INST BIOLOGICAL SCI WASHINGTON 1444 EYE ST, NW, STE 200, WASHINGTON, DC 20005 USA 0006-3568 BIOSCIENCE Bioscience JUL-AUG 2008 58 7 623 631 10.1641/B580709 9 Biology Life Sciences & Biomedicine - Other Topics 331LW WOS:000258014700009 Bronze 2018-11-12 J Heino, M; Dieckmann, U Heino, Mikko; Dieckmann, Ulf Detecting fisheries-induced life-history evolution: An overview of the reaction-norm approach BULLETIN OF MARINE SCIENCE English Article; Proceedings Paper 6th William R and Lenore Mote International Symposium in Fisheries Ecology NOV 14-16, 2006 Sarasota, FL MATURATION REACTION NORMS; GUPPIES POECILIA-RETICULATA; SIZE-SELECTIVE MORTALITY; EVOLVING FISH STOCKS; COD GADUS-MORHUA; SEA PLAICE; EXPERIMENTAL POPULATIONS; SALMON ONCORHYNCHUS; PACIFIC SALMON; ARCTIC COD Life-history theory unequivocally suggests that fishing acts as a powerful driver of life-history evolution in exploited fish populations. Because life-history traits are closely linked to the dynamics and productivity of fish populations, understanding and documenting the extent to which this expectation is borne out in reality is both scientifically and practically important. The primary empirical challenges are twofold: observing phenotypic change does not imply genetic change as life-history traits are phenotypically plastic, and fishing is but one potential driver of contemporary evolution. Here we focus on the first challenge by describing how to work toward disentangling genetic and plastic effects in the absence of genetic data. In particular, we explain how the consideration of maturation reaction norms helps to disentangle genetic and plastic changes in age and size at maturation. We first outline the logic and limitations of the maturation reaction-norm approach. We then review the most important statistical methods available for estimating maturation reaction norms from empirical data. For each of these methods, we discuss its domain of applicability together with its strengths and weaknesses. [Heino, Mikko] Inst Marine Res, N-5817 Bergen, Norway; [Dieckmann, Ulf] Univ Bergen, N-5020 Bergen, Norway; [Dieckmann, Ulf] Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria Heino, M (reprint author), Inst Marine Res, Box 1870, N-5817 Bergen, Norway. Mikko.heino@bio.uib.no Heino, Mikko/C-7241-2009; Dieckmann, Ulf/E-1424-2011 Heino, Mikko/0000-0003-2928-3940; Dieckmann, Ulf/0000-0001-7089-0393 Baranoff F. I., 1918, NAUCHN ISSLED IKHTIO, V1, P81; Barot S, 2005, ICES J MAR SCI, V62, P56, DOI 10.1016/j.icesjms.2004.10.004; Barot S, 2004, ECOL APPL, V14, P1257, DOI 10.1890/03-5066; Barot S, 2004, EVOL ECOL RES, V6, P659; Baulier L, 2006, 2006H19 ICES CM; BEACHAM TD, 1987, ENVIRON BIOL FISH, V19, P149, DOI 10.1007/BF00001885; BERNARDO J, 1993, TRENDS ECOL EVOL, V8, P166, DOI 10.1016/0169-5347(93)90142-C; Bigler BS, 1996, CAN J FISH AQUAT SCI, V53, P455, DOI 10.1139/cjfas-53-2-455; Collett D., 2003, MODELLING BINARY DAT; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dunlop ES, 2005, CAN J FISH AQUAT SCI, V62, P844, DOI 10.1139/F05-045; EDLEY MT, 1988, BIOL J LINN SOC, V34, P309, DOI 10.1111/j.1095-8312.1988.tb01966.x; ENBERG K, 2007, 2007E23 ICES CM; Engelhard GH, 2004, MAR ECOL PROG SER, V272, P245, DOI 10.3354/meps272245; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; FRIARS GW, FISHERIES I IN PRESS; Gardmark A, 2006, P ROY SOC B-BIOL SCI, V273, P2185, DOI 10.1098/rspb.2006.3562; Grift RE, 2007, MAR ECOL PROG SER, V334, P213, DOI 10.3354/meps334213; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; HAUGEN TO, FISHERIES I IN PRESS; Heino M, 2002, ICES J MAR SCI, V59, P562, DOI 10.1006/jmsc.2002.1192; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Heino M, 2002, B MAR SCI, V70, P639; HEINO M, 2002, 2002Y14 ICES CM; Hendry AP, 2008, MOL ECOL, V17, P20, DOI 10.1111/j.1365-294X.2007.03428.x; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; Hilborn R, 2008, B MAR SCI, V83, P95; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; JORGENSEN T, 1992, ICES J MAR SCI, V49, P263, DOI 10.1093/icesjms/49.3.263; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; LAW R, 1991, NEW SCI, V129, P35; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Marshall CT, 2007, MAR ECOL PROG SER, V335, P301, DOI 10.3354/meps335301; Marshall CT, 2007, MAR ECOL PROG SER, V335, P249, DOI 10.3354/meps335249; Mollet FM, 2007, MAR ECOL PROG SER, V351, P189, DOI 10.3354/meps07138; Morita K, 2005, CAN J FISH AQUAT SCI, V62, P2752, DOI 10.1139/F05-182; Morita K, 2006, EVOLUTION, V60, P1516, DOI 10.1554/06-007.1; NELSON K, 1987, POPULATION GENETICS, P345; Olsen E, 2005, CAN J FISH AQUAT SCI, V62, P811, DOI 10.1139/F05-065; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; PETERSON I, 1984, CAN J FISH AQUAT SCI, V41, P1117, DOI 10.1139/f84-131; POLICANSKY D, 1983, AM ZOOL, V23, P57; Reznick DN, 2005, CAN J FISH AQUAT SCI, V62, P791, DOI 10.1139/F05-079; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; REZNICK DN, 1993, EXPLOITATION EVOLVIN, P72; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; Ricker William E., 1995, Canadian Special Publication of Fisheries and Aquatic Sciences, V121, P593; RIJNSDORP AD, 1993, OECOLOGIA, V96, P391, DOI 10.1007/BF00317510; RIJNSDORP AD, 1993, EXPLOITATION EVOLVIN, P19; Roff Derek A., 1992; Rose CS, 2005, TRENDS ECOL EVOL, V20, P129, DOI 10.1016/j.tree.2005.01.005; SILLIMAN RP, 1975, FISH B-NOAA, V73, P495; Sogard SM, 1997, B MAR SCI, V60, P1129; Stearns S.C., 1984, P13; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1983, AM ZOOL, V23, P65; STOKES TK, 1993, EXPLOITATION EVOLVIN; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Van Dooren TJM, 2005, EVOLUTION, V59, P500, DOI 10.1554/04-356; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; WRIGHT PJ, 2005, 2005Q7 ICES CM 68 74 75 0 29 ROSENSTIEL SCH MAR ATMOS SCI MIAMI 4600 RICKENBACKER CAUSEWAY, MIAMI, FL 33149 USA 0007-4977 1553-6955 B MAR SCI Bull. Mar. Sci. JUL 2008 83 1 69 93 25 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography 347AD WOS:000259110100005 2018-11-12 J Poorter, L; Wright, SJ; Paz, H; Ackerly, DD; Condit, R; Ibarra-Manriques, G; Harms, KE; Licona, JC; Martinez-Ramos, M; Mazer, SJ; Muller-Landau, HC; Pena-Claros, M; Webb, CO; Wright, IJ Poorter, L.; Wright, S. J.; Paz, H.; Ackerly, D. D.; Condit, R.; Ibarra-Manriques, G.; Harms, K. E.; Licona, J. C.; Martinez-Ramos, M.; Mazer, S. J.; Muller-Landau, H. C.; Pena-Claros, M.; Webb, C. O.; Wright, I. J. Are functional traits good predictors of demographic rates? Evidence from five Neotropical forests ECOLOGY English Article demography; functional ecology; height; life-history theory; seed mass; shade tolerance; species coexistence; specific leaf area; trees; tropical rain forest; wood density TROPICAL RAIN-FOREST; MIXED DIPTEROCARP FOREST; SEED MASS; WOOD DENSITY; LOS-TUXTLAS; LEAF TRAITS; PHOTOSYNTHETIC TRAITS; RELATIVE IMPORTANCE; PIONEER TREES; PLANT TRAITS A central goal of comparative plant ecology is to understand how functional traits vary among species and to what extent this variation has adaptive value. Here we evaluate relationships between four functional traits (seed volume, specific leaf area, wood density, and adult stature) and two demographic attributes (diameter growth and tree mortality) for large trees of 240 tree species from five Neotropical forests. We evaluate how these key functional traits are related to survival and growth and whether similar relationships between traits and demography hold across different tropical forests. There was a tendency for a trade-off between growth and survival across rain forest tree species. Wood density, seed volume, and adult stature were significant predictors of growth and/or mortality. Both growth and mortality rates declined with an increase in wood density. This is consistent with greater construction costs and greater resistance to stem damage for denser wood. Growth and mortality rates also declined as seed volume increased. This is consistent with an adaptive syndrome in which species tolerant of low resource availability (in this case shade-tolerant species) have large seeds to establish successfully and low inherent growth and mortality rates. Growth increased and mortality decreased with an increase in adult stature, because taller species have a greater access to light and longer life spans. Specific leaf area was, surprisingly, only modestly informative for the performance of large trees and had ambiguous relationships with growth and survival. Single traits accounted for 9-55% of the interspecific variation in growth and mortality rates at individual sites. Significant correlations with demographic rates tended to be similar across forests and for phylogenetically independent contrasts as well as for cross-species analyses that treated each species as an independent observation. In combination, the morphological traits explained 41% of the variation in growth rate and 54% of the variation in mortality rate, with wood density being the best predictor of growth and mortality. Relationships between functional traits and demographic rates were statistically similar across a wide range of Neotropical forests. The consistency of these results strongly suggests that tropical rain forest species face similar trade-offs in different sites and converge on similar sets of solutions. [Poorter, L.] Univ Wageningen & Res Ctr, Ctr Ecosyst Studies, Forest Ecol & Forest Management Grp, NL-6700 AA Wageningen, Netherlands; [Poorter, L.] Univ Wageningen & Res Ctr, Ctr Ecosyst Studies, Resource Ecol Grp, NL-6700 AA Wageningen, Netherlands; [Poorter, L.; Licona, J. C.; Pena-Claros, M.] Inst Boliviano Invest Forestal, Casilla 6204, Santa Cruz, Bolivia; [Wright, S. J.; Condit, R.; Harms, K. E.; Muller-Landau, H. C.] Smithsonian Trop Res Inst, Balboa, Ancon, Panama; [Paz, H.; Ibarra-Manriques, G.; Martinez-Ramos, M.] Univ Nacl Autonoma Mexico, Ctr Invest Ecosistemas, Morelia 58190, Michoacan, Mexico; [Ackerly, D. D.] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA; [Harms, K. E.] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA; [Mazer, S. J.] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA USA; [Muller-Landau, H. C.] Dept Ecol, St Paul, MN 55108 USA; [Webb, C. O.] Harvard Univ Hebaria, Arnold Arboretum Harvard Univ, Cambridge, MA 02138 USA; [Wright, I. J.] Macquarie Univ, Dept Biol Sci, N Ryde, NSW 2109, Australia Poorter, L (reprint author), Univ Wageningen & Res Ctr, Ctr Ecosyst Studies, Forest Ecol & Forest Management Grp, POB 47, NL-6700 AA Wageningen, Netherlands. lourens.poorter@wur.nl Wright, Stuart/M-3311-2013; Ackerly, David/A-1247-2009; Wright, Ian/G-4979-2012 Wright, Stuart/0000-0003-4260-5676; Ackerly, David/0000-0002-1847-7398; Wright, Ian/0000-0001-8338-9143; Webb, Campbell/0000-0003-1031-3249 Ackerly DD, 2003, INT J PLANT SCI, V164, P165, DOI [10.1086/368401, DOI 10.1086/368401]; AUGSPURGER CK, 1986, AM J BOT, V73, P353, DOI 10.2307/2444078; AUGSPURGER CK, 1984, ECOLOGY, V65, P1705, DOI 10.2307/1937766; BARAJASMORALES J, 1985, IAWA B, V30, P559; Baraloto C, 2005, J ECOL, V93, P1156, DOI 10.1111/j.1365-2745.2005.01041.x; BONGERS F, 1990, BOT GAZ, V151, P354, DOI 10.1086/337836; BONGERS F, 1988, VEGETATIO, V74, P55, DOI 10.1007/BF00045614; Castro-Diez P, 1998, OECOLOGIA, V116, P57, DOI 10.1007/s004420050563; Chave J, 2006, ECOL APPL, V16, P2356, DOI 10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2; COLEY PD, 1983, ECOL MONOGR, V53, P209, DOI 10.2307/1942495; Condit R, 1996, J VEG SCI, V7, P405, DOI 10.2307/3236284; Condit R, 2004, J TROP ECOL, V20, P51, DOI 10.1017/S0266467403001081; Croat Thomas B, 1978, FLORA BARRO COLORADO; Dalling JW, 1998, J ECOL, V86, P674, DOI 10.1046/j.1365-2745.1998.00298.x; Diaz S, 2004, J VEG SCI, V15, P295, DOI 10.1111/j.1654-1103.2004.tb02266.x; Diaz S, 1997, J VEG SCI, V8, P463, DOI 10.2307/3237198; Grime JP, 1997, OIKOS, V79, P259, DOI 10.2307/3546011; Grime JP, 2001, PLANT STRATEGIES VEG; HAMMOND DS, 1995, ECOLOGY, V76, P2544, DOI 10.2307/2265827; Harms KE, 1997, J TROP ECOL, V13, P617, DOI 10.1017/S0266467400010750; Ibarra-Manriquez G, 2001, AM J BOT, V88, P1801, DOI 10.2307/3558356; IBARRAMANRIQUEZ G, 1995, REV BIOL TROP, V43, P75; King DA, 2006, FOREST ECOL MANAG, V223, P152, DOI 10.1016/j.foreco.2005.10.066; King DA, 2005, FUNCT ECOL, V19, P445, DOI 10.1111/j.1365-2435.2005.00982.x; Kitajima K, 2002, FUNCT ECOL, V16, P433, DOI 10.1046/j.1365-2435.2002.00641.x; KITAJIMA K, 1994, OECOLOGIA, V98, P419, DOI 10.1007/BF00324232; KITAJIMA K, 1992, THESIS U ILLINOIS UR; KITAJIMA K, TROPICAL FO IN PRESS; Kitajima Kaoru, 1996, P559; Kohyama T, 2003, J ECOL, V91, P797, DOI 10.1046/j.1365-2745.2003.00810.x; KORNING J, 1994, J TROP ECOL, V10, P151, DOI 10.1017/S026646740000780X; LAMBERS H, 1992, ADV ECOL RES, V23, P187, DOI 10.1016/S0065-2504(08)60148-8; Leigh Egbert Giles, 1982, ECOLOGY TROPICAL FOR; Loehle C, 2000, AM NAT, V156, P14, DOI 10.1086/303369; MAZER SJ, 1990, EVOL ECOL, V4, P326, DOI 10.1007/BF02270931; METCALFE DJ, 1995, CAN J BOT, V73, P817, DOI 10.1139/b95-090; Moles AT, 2004, J ECOL, V92, P384, DOI 10.1111/j.0022-0477.2004.00880.x; Muller-Landau HC, 2004, BIOTROPICA, V36, P20, DOI 10.1111/j.1744-7429.2004.tb00292.x; Nascimento HEM, 2005, J VEG SCI, V16, P625, DOI 10.1658/1100-9233(2005)016[0625:DALCFA]2.0.CO;2; OSUNKOYA OO, 1996, AUSTR J ECOLOGY, V21, P421; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; Paz H, 2005, FUNCT ECOL, V19, P707, DOI 10.1111/j.1365-2435.2005.00984.x; Pearson TRH, 2003, J ECOL, V91, P785, DOI 10.1046/j.1365-2745.2003.00803.x; Pena-Claros M, 2008, FOREST ECOL MANAG, V255, P1283, DOI 10.1016/j.foreco.2007.10.033; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Poorter H, 1998, INHERENT VARIATION IN PLANT GROWTH, P309; Poorter L, 2005, OECOLOGIA, V142, P378, DOI 10.1007/s00442-004-1732-y; Poorter L, 2005, J ECOL, V93, P256, DOI 10.1111/j.1365-2745.2004.00956.x; Poorter L, 1999, FUNCT ECOL, V13, P396, DOI 10.1046/j.1365-2435.1999.00332.x; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; Poorter L, 2006, ECOLOGY, V87, P1289, DOI 10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2; Powers JS, 2005, NEW PHYTOL, V165, P913, DOI 10.1111/j.1469-8137.2004.01279.x; PUTZ FE, 1983, CAN J FOREST RES, V13, P1011, DOI 10.1139/x83-133; Reich PB, 2003, INT J PLANT SCI, V164, pS143, DOI 10.1086/374368; REICH PB, 1992, ECOL MONOGR, V62, P365, DOI 10.2307/2937116; Rozendaal DMA, 2006, FUNCT ECOL, V20, P207, DOI [10.1111/j.1365-2435.2006.01105.x, 10.1111/j.1365-2435.01105.x]; Santiago LS, 2004, OECOLOGIA, V140, P543, DOI 10.1007/s00442-004-1624-1; Sheil D, 2006, J ECOL, V94, P494, DOI 10.1111/j.1365-2745.2006.01111.x; Sterck FJ, 2006, AM NAT, V167, P758, DOI 10.1086/503056; Sterck FJ, 2001, J ECOL, V89, P1, DOI 10.1046/j.1365-2745.2001.00525.x; Ter Steege H, 2001, ECOLOGY, V82, P3197, DOI 10.1890/0012-9658(2001)082[3197:CCDADI]2.0.CO;2; TERSTEEGE H, 2003, TROPENBOS SERIES, V22; Thomas SC, 1996, AM J BOT, V83, P556, DOI 10.2307/2445913; Troup R. S., 1921, SILVICULTURE INDIAN, VI-III; van Gelder HA, 2006, NEW PHYTOL, V171, P367, DOI 10.1111/j.1469-8137.2006.01757.x; Webb CO, 2005, MOL ECOL NOTES, V5, P181, DOI 10.1111/j.1471-8286.2004.00829.x; WEBB CO, 2006, PHYLOCOM SOFTWARE AN; Weiher E, 1999, J VEG SCI, V10, P609, DOI 10.2307/3237076; Westoby M, 1999, HANDBOOK OF FUNCTIONAL PLANT ECOLOGY, P847; Westoby M, 1998, PLANT SOIL, V199, P213, DOI 10.1023/A:1004327224729; Wright IJ, 2007, ANN BOT-LONDON, V99, P1003, DOI 10.1093/aob/mcl066; Wright IJ, 1999, J ECOL, V87, P85, DOI 10.1046/j.1365-2745.1999.00330.x; Wright IJ, 2002, NEW PHYTOL, V155, P403, DOI 10.1046/j.1469-8137.2002.00479.x; WRIGHT IJ, 2004, NATURE, V428, P621; Wright SJ, 2003, ECOLOGY, V84, P3174, DOI 10.1890/02-0038; Wurth MKR, 2005, OECOLOGIA, V143, P11, DOI 10.1007/s00442-004-1773-2 76 288 306 15 181 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 ECOLOGY Ecology JUL 2008 89 7 1908 1920 10.1890/07-0207.1 13 Ecology Environmental Sciences & Ecology 331JC WOS:000258007500013 18705377 Y N 2018-11-12 J Metz, JAJ; Mylius, SD; Diekmann, O Metz, J. A. J.; Mylius, S. D.; Diekmann, O. When does evolution optimize? EVOLUTIONARY ECOLOGY RESEARCH English Article eco-evolutionary feedback; environmental dimension; evolutionary optimization; invasion fitness; life-history theory; r-optimization; R-0-optimization LIFE-HISTORIES; INITIAL INCREASE; POPULATIONS; SELECTION; STABILITY; MODELS; COMPETITION; FITNESS; STRATEGIES; DYNAMICS Aim: To elucidate the role of the eco-evolutionary feedback loop in determining evolutionarily stable life histories, with particular reference to the methodological status of the optimization procedures of classical evolutionary ecology. Key assumption: The fitness p of a type depends both on its strategy X and on the environmental E, p = p(X, E), where E comprises everything, biotic and abiotic, outside an individual that may influence its population dynamically relevant behaviour. Through the community dynamics, this environment is determined (up to non-evolving drivers) by the resident stratergy X-r: E = E-aur(X-r). Procedures: Use the indicated notation to derive necessary and sufficient conditions for the existence of an evolutionary optimization principle, and for the reduction of such a principle to straightforward r- or R-0-maximization. Develop quick tests to diagnose whether an eco-evolutionary model supports an optimization principle. Results: It is necessary and sufficient for the existence of an optimzation principle that the stratergy affects fitness in an effectively monotone one-dimensional manner, or equivalently, that the environment affects fitness in an effectively monotone one-dimensional manner. In particular, there should exist functions psi of the strategies and phi of the environments such that sign[p(X,E)] = sign[psi(X) + phi(E)]. Pairwise invasibility plots of an eco-evolutionary model that supports an optimization principle have a special, easily recognizable shape. Natural selection just maximizes r, or R-0, if and only if r(X, E) can be written as alpha(r(X, E-0), E) or R-0(X, E) can be written as exp[alpha(In[R-0(X, E-0)], E)], with alpha increasing in its first argument, and E-0 fixed, but otherwise arbitrary. Conclusion: A pure optimization approach holds water only when the eco-evolutionary feedbacks are of a particularly simple kind. [Metz, J. A. J.] Leiden Univ, Inst Biol, NL-2300 RA Leiden, Netherlands; [Metz, J. A. J.] Leiden Univ, Math Inst, Sect Theoret Biol, NL-2300 RA Leiden, Netherlands; [Metz, J. A. J.] Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria; [Metz, J. A. J.] Univ Helsinki, Dept Math & Stat, Helsinki, Finland; [Mylius, S. D.] Natl Inst Publ Hlth & Environm, Expertise Ctr Methodol & Informat Serv, RIVM, NL-3720 BA Bilthoven, Netherlands; [Diekmann, O.] Univ Utrecht, Dept Math, Utrecht, Netherlands Metz, JAJ (reprint author), Leiden Univ, Inst Biol, POB 9561, NL-2300 RA Leiden, Netherlands. j.a.j.metz@biology.leidenuniv.nl Life Sciences Foundation (SLW) The work of S.D. Mylius was supported by the Life Sciences Foundation (SLW) subsidized by the Netherlands Organization for Scientific Research (NWO). Peter Klinkhamer, James McAllister, and Jan Sevenster provided useful comments oil a previous version of the manuscript. This paper is an extended version of the first part of IIASA Working Paper #WP-96-04 (Metz. et al., 1996b). After having had this paper in the drawer after initial rejections for more than 10 years, we are grateful to Evolutionary Ecology Research for allowing its comeback, to Eva Kisdi for soliciting LIS to Submit and exposing LIS to two rounds of extensive and very useful comments. and to Michael Rozenzweig for whipping the abstract into the required shape. ARMSTRONG RA, 1980, AM NAT, V115, P151, DOI 10.1086/283553; BULMER M, 1994, THEORETICAL EVOLUTIO; Caswell H., 2000, MATRIX POPULATION MO; CHARLESWORTH B, 1971, ECOLOGY, V52, P469, DOI 10.2307/1937629; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Charnov Eric L., 1993, P1; DEJONG TJ, 1987, VEGETATIO, V70, P149; DEROOS AM, 1990, J MATH BIOL, V28, P609, DOI 10.1007/BF00160229; Dieckmann U, 2006, THEOR POPUL BIOL, V69, P263, DOI 10.1016/j.tpb.2005.12.001; Diekmann O, 2003, THEOR POPUL BIOL, V63, P309, DOI 10.1016/S0040-5809(02)00058-8; DIEKMANN O, 1990, J MATH BIOL, V28, P365; DIEKMANN O, 1994, FRONTIERS MATH BIOL, P263; Diekmann Odo, 1994, Lecture Notes in Biomathematics, V100, P263; Eshel I, 1996, J MATH BIOL, V34, P485; ESHEL I, 1983, J THEOR BIOL, V103, P99, DOI 10.1016/0022-5193(83)90201-1; ESHEL I, 1984, AM NAT, V124, P631, DOI 10.1086/284303; FERRIERE R, 1995, THEOR POPUL BIOL, V48, P126, DOI 10.1006/tpbi.1995.1024; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; GURNEY WSC, 1985, THEOR POPUL BIOL, V28, P150, DOI 10.1016/0040-5809(85)90026-7; Gyllenberg M, 2003, J MATH BIOL, V47, P235, DOI 10.1007/s00285-003-0213-y; Hammerstein P, 1996, J MATH BIOL, V34, P511; Hammerstein Peter, 1994, HDB GAME THEORY EC A, V2, P929; HANSEN SR, 1980, SCIENCE, V207, P1491; HASSELL MP, 1976, J ANIM ECOL, V45, P471, DOI 10.2307/3886; Heino M, 1997, PHILOS T R SOC B, V352, P1647, DOI 10.1098/rstb.1997.0146; HSU SB, 1977, SIAM J APPL MATH, V32, P366, DOI 10.1137/0132030; Jagers P, 2001, INST MATH S, V36, P384, DOI 10.1214/lnms/1215090079; JAGERS P, 1991, STAT SCI, V6, P269; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; KIMURA M, 1978, P NATL ACAD SCI USA, V75, P1934, DOI 10.1073/pnas.75.4.1934; Kisdi E., 1993, LECT NOTES BIOMATH, V98, P26; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; LESSARD S, 1990, THEOR POPUL BIOL, V37, P159, DOI 10.1016/0040-5809(90)90033-R; Li BT, 1998, SIAM J APPL MATH, V59, P411, DOI 10.1137/S003613999631100X; LIBERMAN U, 1988, J MATH BIOL, V26, P477, DOI 10.1007/BF00276375; MATSUDA H, 1985, J THEOR BIOL, V115, P351, DOI 10.1016/S0022-5193(85)80197-1; Meszena G., 1999, WP99045 IIASA; Metz J, 2008, ENCY ECOLOGY; Metz JAJ, 2008, EVOL ECOL RES, V10, P655; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; METZ JAJ, 1992, INDIVIDUAL-BASED MODELS AND APPROACHES IN ECOLOGY, P88; Metz JAJ, 1996, WP9604 IIASA; METZ JAJ, 1986, SPRINGER LECT NOTE B, V68; METZ JAJ, 1996, STOCHASTIC SPATIAL S, P183; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; NAGYLAKI T, 1979, P NATL ACAD SCI USA, V76, P438, DOI 10.1073/pnas.76.1.438; Pasztor E., 1988, P19; Pasztor L, 1996, J EVOLUTION BIOL, V9, P511, DOI 10.1046/j.1420-9101.1996.9040511.x; POWELL EO, 1958, J GEN MICROBIOL, V18, P259, DOI 10.1099/00221287-18-1-259; RAND DA, 1994, PHILOS T ROY SOC B, V343, P261, DOI 10.1098/rstb.1994.0025; Roff Derek A., 1992; ROUGHGARDEN J, 1976, THEOR POPUL BIOL, V9, P388, DOI 10.1016/0040-5809(76)90054-X; ROUGHGARDEN J, 1979, THEORY POPULATION GE; SMITH JM, 1993, Q REV BIOL, V68, P557; Stearns S. C., 1992, EVOLUTION LIFE HIST; TAYLOR PD, 1988, J THEOR BIOL, V130, P363, DOI 10.1016/S0022-5193(88)80035-3; TAYLOR PD, 1988, THEOR POPUL BIOL, V34, P145, DOI 10.1016/0040-5809(88)90039-1; TAYLOR PD, 1989, THEOR POPUL BIOL, V36, P125, DOI 10.1016/0040-5809(89)90025-7; Tilman D., 1982, RESOURCE COMPETITION; TILMAN D, 1976, SCIENCE, V192, P463, DOI DOI 10.1126/SCIENCE.192.4238.463); TULJAPURKAR S, 1989, THEOR POPUL BIOL, V35, P227, DOI 10.1016/0040-5809(89)90001-4; Tuljapurkar S., 1990, LECT NOTES BIOMATHEM, V85; VANTIENDEREN PH, 1986, J THEOR BIOL, V122, P69, DOI 10.1016/S0022-5193(86)80225-9; Weissing FJ, 1996, J MATH BIOL, V34, P533; WOLKOWICZ GSK, 1992, SIAM J APPL MATH, V52, P222, DOI 10.1137/0152012 66 97 98 0 39 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. JUL 2008 10 5 629 654 26 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 341WU WOS:000258747100001 2018-11-12 J Metz, JAJ; Mylius, SD; Diekmann, O Metz, J. A. J.; Mylius, S. D.; Diekmann, O. Even in the odd cases when evolution optimizes, unrelated population dynamical details may shine through in the ESS EVOLUTIONARY ECOLOGY RESEARCH English Article eco-evolutionary feedback; evolutionary optimization; life-history theory; maturation age COMPETITIVE-EXCLUSION Aim: To elucidate the role of the eco-evolutionary feedback loop in determining evolutionarily stable life histories, with particular reference to the methodological status of the optimization procedures of classical evolutionary ecology. Key assumptions: The fitness p of a type depends both on its strategy X and on the environment E, p=p(X,E), where E comprises everything, biotic and abiotic, outside an individual that may influence its population dynamically relevant behaviour. Through the community dynamics, this environment is determined (up to non-evolving external drivers) by the resident strategy X(r): E = E(attr)(X(r)). Procedures: Use the ideas developed in the companion paper (Metz et al., 2008) to rig simply analysable - as they have an optimization principle - eco-evolutionary scenarios to explore the potential of the environmental feedback to influence evolutionary predictions, and to determine in what ways the predictions relate to the tools. Results: Equipping the classical model for the evolution of maturation time with various possible feedback loops leads to different optimization principles as well as qualitatively different predicted relations between the field values of adult mortality mu(A) and maturation time T. When E influences only T, the ESS, T*, decreases with mu(A). When E influences juvenile mortality only or both juvenile and adult mortality in equal measure, T* increases with mu(A). When E influences the reproduction rate only, T* is independent of mu(A). When E influences adult mortality only the environmental feedback loop fixes adult mortality at a constant level so that there is no relationship between T* and mu(A) to speak of. These six cases are subject to three different optimisation principles. There turns out to be no relationship between an optimization principle and its predicted features. Conclusions: Even in cases where an optimization principle exists, the evolutionary outcomes can be largely determined by other aspects of the population dynamical embedding. The existence of an optimization principle is technically helpful, biologically very restrictive, and has in general no further biological relevance. [Metz, J. A. J.] Leiden Univ, Inst Biol, NL-2300 RA Leiden, Netherlands; [Metz, J. A. J.] Leiden Univ, Math Inst, Sect Theoret Biol, NL-2300 RA Leiden, Netherlands; [Metz, J. A. J.] Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria; [Metz, J. A. J.] Univ Helsinki, Dept Math & Stat, Helsinki, Finland; [Mylius, S. D.] Natl Inst Publ Hlth & Environm, Expertise Ctr Methodol & Informat Serv, RIVM, NL-3720 BA Bilthoven, Netherlands; [Diekmann, O.] Univ Utrecht, Dept Math, Utrecht, Netherlands Metz, JAJ (reprint author), Leiden Univ, Inst Biol, POB 9561, NL-2300 RA Leiden, Netherlands. j.a.j.metz@biology.leidenuniv.nl Life Sciences Foundation (SLW) The work of S.D. Mylius was supported by the Life Sciences Foundation (SLW) subsidized by the Netherlands Organization for Scientific Research (NWO). Peter Klinkhamer, James McAllister, and Jan Sevenster provided useful comments oil a previous version of the manuscript. This paper is an extended version of the first part of IIASA Working Paper #WP-96-04 (Metz. et al., 1996b). After having had this paper in the drawer after initial rejections for more than 10 years, we are grateful to Evolutionary Ecology Research for allowing its comeback, to Eva Kisdi for soliciting LIS to Submit and exposing LIS to two rounds of extensive and very useful comments. and to Michael Rozenzweig for whipping the abstract into the required shape. Charnov Eric L., 1993, P1; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; Gyllenberg M, 2003, J MATH BIOL, V47, P235, DOI 10.1007/s00285-003-0213-y; LEVIN SA, 1970, AM NAT, V104, P413, DOI 10.1086/282676; Meszena G, 2006, THEOR POPUL BIOL, V69, P68, DOI 10.1016/j.tpb.2005.07.001; Metz J, 2008, ENCY ECOLOGY; Metz JAJ, 2008, EVOL ECOL RES, V10, P629; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Metz JAJ, 1996, WP9604 IIASA; METZ JAJ, 1996, STOCHASTIC SPATIAL S, P183; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; RAND DA, 1994, PHILOS T ROY SOC B, V343, P261, DOI 10.1098/rstb.1994.0025 12 15 15 0 10 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 EVOL ECOL RES Evol. Ecol. Res. JUL 2008 10 5 655 666 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 341WU WOS:000258747100002 2018-11-12 J Belsky, J Belsky, Jay War, trauma and children's development: Observations from a modern evolutionary perspective INTERNATIONAL JOURNAL OF BEHAVIORAL DEVELOPMENT English Article; Proceedings Paper Workshop on Chronic Exposure to Catastrophic War Experiences and Political Violence - Links to the Well-Being of Children and Their Families MAY 15-18, 2005 Jerusalem, ISRAEL ISSBD, Al Quds Univ, Univ Haifa, Peres Ctr Peace reproductive strategy; evolution; parenting; anxiety; depression; aggression POLITICAL VIOLENCE; PSYCHOLOGICAL ADJUSTMENT; DISORGANIZED ATTACHMENT; INFANT ATTACHMENT; BEHAVIOR PROBLEMS; HOLOCAUST SURVIVORS; AGGRESSIVE-BEHAVIOR; MARITAL CONFLICT; STRESS; FAMILIES Lethal intergroup conflict has been part of the human experience ever since our species emerged on the African savannah. Modern evolutionary thinking suggests that children's development could have evolved a variety of responses to it, some of which are highlighted upon considering, from the field of behavioural ecology, life-history theory and, derived from it, Belsky, Steinberg and Draper's ( 1991) evolutionary theory of socialization. This speculative essay examines the implications of such thinking, specifically with regard to insecure attachment, anxiety, depression, aggression, pubertal and sexual development, as well as mating and parenting. Considered, too, are issues of intergenerational transmission and variation in developmental reactivity to exposure to deadly political violence of the ethnic-cleansing variety in childhood. Univ London Birkbeck Coll, Inst Study Children Families & Social Issues, London WC1B 3RA, England Belsky, J (reprint author), Univ London Birkbeck Coll, Inst Study Children Families & Social Issues, 7 Bedford Sq, London WC1B 3RA, England. j.belsky@bbk.ac.uk Belsky, Jay/0000-0003-2191-2503 Abrams KY, 2006, DEV PSYCHOPATHOL, V18, P345, DOI 10.1017/S0954579406060184; ABRAMSON LY, 1978, J ABNORM PSYCHOL, V87, P49, DOI 10.1037/0021-843X.87.1.49; Ajdukovic M, 1998, INT REV PSYCHIATR, V10, P186, DOI 10.1080/09540269874763; Amato PR, 2001, J FAM PSYCHOL, V15, P355, DOI 10.1037/0893-3200.15.3.355; Bandura A., 1977, SOCIAL LEARNING THEO; Barber B. K, 2008, ADOLESCENTS WAR YOUT, P281; Barber BK, 2001, J COMMUNITY PSYCHOL, V29, P259, DOI 10.1002/jcop.1017; BARBER BK, 2008, ADOLESCENTS WAR YOUT, P3; BARBER BK, 2005, PSYCHOL RESOLVING GL, V2; Barenbaum J, 2004, J CHILD PSYCHOL PSYC, V45, P41, DOI 10.1046/j.0021-9630.2003.00304.x; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P127; Belsky J, 1997, PSYCHOL INQ, V8, P182, DOI 10.1207/s15327965pli0803_3; BELSKY J, 2005, ORIGINS SOCIAL MIND, P139; Belsky J., 2006, DEV PSYCHOPATHOL, P38; Belsky Jay, 2002, Attach Hum Dev, V4, P361, DOI 10.1080/14616730210167267; Berkowitz L., 1993, AGGRESSION ITS CAUSE; Bokhorst CL, 2003, CHILD DEV, V74, P1769, DOI 10.1046/j.1467-8624.2003.00637.x; Bowlby J., 1969, ATTACHMENT LOSS, V1; BRADLEY RH, 1988, CHILD DEV, V59, P852, DOI 10.2307/1130253; Broidy LM, 2003, DEV PSYCHOL, V39, P222, DOI 10.1037/0012-1649.39.2.222; Buehler C, 2002, J MARRIAGE FAM, V64, P78, DOI 10.1111/j.1741-3737.2002.00078.x; Buss D. M., 1999, EVOLUTIONARY PSYCHOL; CAIRNS E, 1996, CHILD DEV, V67, P120; Campbell A, 1999, BEHAV BRAIN SCI, V22, P203; CARINS E, 1996, CHILDREN POLITICAL V; Carlson EA, 1998, CHILD DEV, V69, P1107, DOI 10.1111/j.1467-8624.1998.tb06163.x; CHAGNON NA, 1988, SCIENCE, V239, P985, DOI 10.1126/science.239.4843.985; Charnov Eric L., 1993, P1; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 1999, DEATH HOPE AND SEX; CICCHETTI D, 1989, CHILD MALTREATMENT; Cicchetti D, 2006, DEV PSYCHOPATHOL, V18, P623, DOI 10.1017/S0954579406060329; Cosmides L., 1988, 881 I EV STUD; COSMIDES L, 1987, LATEST BEST ESSAYS E, P124; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; Daly M., 1988, HOMICIDE; DAVIES PT, 1994, PSYCHOL BULL, V116, P387, DOI 10.1037/0033-2909.116.3.387; DAWES A, 1989, INT J MENT HEALTH, V18, P16, DOI 10.1080/00207411.1989.11449122; DAWES A, 1987, MENTAL HLTH TRANSITI; DeWolff MS, 1997, CHILD DEV, V68, P571, DOI 10.2307/1132107; Dickason D., 1999, J AM ACAD CHILD ADOL, V38, P1173; DODGE KA, 1980, CHILD DEV, V51, P162, DOI 10.1111/j.1467-8624.1980.tb02522.x; Dodge KA, 2006, DEV PSYCHOPATHOL, V18, P791, DOI 10.1017/S0954579406060391; Dybdahl R, 2001, CHILD DEV, V72, P1214, DOI 10.1111/1467-8624.00343; ELBEDOUR S, 1993, CHILD ABUSE NEGLECT, V17, P805, DOI 10.1016/S0145-2134(08)80011-7; ELDBEDOUR S, 1998, J YOUTH ADOLESCENCE, V27, P539; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; EMERY R, 1988, MARRIAGE DIVORSE CHI; Farver JAM, 1996, CHILD DEV, V67, P19, DOI 10.1111/j.1467-8624.1996.tb01716.x; Freud A., 1944, INFANTS FAMILIES CAS; Garbarino J, 1996, CHILD DEV, V67, P33, DOI 10.1111/j.1467-8624.1996.tb01717.x; GARBARINO J, 1990, CHILDREN YOUTH WAR Z; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; Goldberg S, 2003, DEV PSYCHOPATHOL, V15, P239, DOI 10.1017/S0954579403000130; GRANT PR, 1995, EVOLUTION, V49, P241, DOI 10.1111/j.1558-5646.1995.tb02236.x; Hankin BL, 1998, J ABNORM PSYCHOL, V107, P128, DOI 10.1037/0021-843X.107.1.128; HART CW, 1960, TIWIS N AUSTR; Hawkes K, 2003, AM J HUM BIOL, V15, P380, DOI 10.1002/ajhb.10156; Hawkes K., 2000, ADAPTATION HUMAN BEH, P231; HINDE RA, 1986, DEV ANTISOCIAL PROSO, P13; HORN HS, 1984, BEHAVIORAL ECOLOGY E, P279; HUESMANN LR, 1988, AGGRESSIVE BEHAV, V14, P13; Hurtado AM, 1996, ACHE LIFE HIST; Husain SA, 1998, AM J PSYCHIAT, V155, P1718, DOI 10.1176/ajp.155.12.1718; JENSEN PS, 1993, J AM ACAD CHILD PSY, V32, P697, DOI 10.1097/00004583-199307000-00001; JOHNS SE, 2003, THESIS U BRISTOL; Kalantari M., 1993, J CHILD FAM STUD, V2, P97; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kerestes G, 2006, INT J BEHAV DEV, V30, P227, DOI 10.1177/0165025406066756; Kuterovac-Jagodic G, 2003, J CLIN PSYCHOL, V59, P9, DOI 10.1002/jclp.10114; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; LABOR N, 2002, CHILD ADOL PSYCH CL, P925; Ladd GW, 1996, CHILD DEV, V67, P14, DOI 10.1111/j.1467-8624.1996.tb01715.x; Laland KN, 2006, EVOL ANTHROPOL, V15, P95, DOI 10.1002/evan.20093; Macksoud MS, 1996, CHILD DEV, V67, P70, DOI 10.2307/1131687; Madigan S, 2006, DEV PSYCHOL, V42, P293, DOI 10.1037/0012-1649.42.2.293; MCLOYD VC, 1990, CHILD DEV, V61, P311, DOI 10.1111/j.1467-8624.1990.tb02781.x; NICHD Early Child Care Research Network, 2004, MON SOC RES CHILD DE, V69; Oppenheimer S., 2003, OUT EDEN PEOPLING WO; Parke R. D., 2004, CHILD DEV, V75, P1613, DOI DOI 10.1111/J.1467-8624.2004.00807.X; PATTERSON GR, 1986, AM PSYCHOL, V41, P432, DOI 10.1037//0003-066X.41.4.432; PETTIT GS, 1989, DEV PSYCHOL, V25, P413, DOI 10.1037//0012-1649.25.3.413; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PROTACIOMARCELI.E, 1989, INT J MENTAL HLTH, V18, P712; Punamaki R. L., 2002, TRAUMATOLOGY, V8, P45; Punamaki RL, 1996, CHILD DEV, V67, P55, DOI 10.2307/1131686; Punamaki RL, 1997, CHILD DEV, V68, P718, DOI 10.2307/1132121; Punamaki RL, 2001, INT J BEHAV DEV, V25, P256, DOI 10.1080/01650250042000294; QUINLAN RJ, 2006, P ROYAL SOC B, V10, P1; RESSLER EM, 1988, UNACCOMPANIED CHILDR; RIEDER C, 1989, DEV PSYCHOL, V25, P382, DOI 10.1037//0012-1649.25.3.382; Sack WH, 1996, CHILD DEV, V67, P107, DOI 10.1111/j.1467-8624.1996.tb01722.x; Sagi-Schwartz A, 2003, AM J PSYCHIAT, V160, P1086, DOI 10.1176/appi.ajp.160.6.1086; SAGISCHWARTZ A, 2006, COMMUNICATION 0911; Seccombe K, 2000, J MARRIAGE FAM, V62, P1094, DOI 10.1111/j.1741-3737.2000.01094.x; Shaw JA, 2003, CLIN CHILD FAM PSYCH, V6, P237, DOI 10.1023/B:CCFP.0000006291.10180.bd; SHIELDS WM, 1983, ETHOL SOCIOBIOL, V4, P115, DOI 10.1016/0162-3095(83)90026-2; SLONE M, 2005, ADOLESCENTS WAR YOUT; Smith P, 2001, J CHILD PSYCHOL PSYC, V42, P395, DOI 10.1017/S0021963001007065; SOLOMON Z, 1988, AM J PSYCHIAT, V145, P865; Stearns S. C., 1992, EVOLUTION LIFE HIST; Straker G, 1996, CHILD DEV, V67, P46, DOI 10.2307/1131685; Thompson JN, 1998, TRENDS ECOL EVOL, V13, P329, DOI 10.1016/S0169-5347(98)01378-0; Thornhill R., 2000, NATURAL HIST RAPE BI; TOOBY J, 1990, ETHOL SOCIOBIOL, V11, P375, DOI 10.1016/0162-3095(90)90017-Z; VAN IJZENDOORN MH, 1995, PSYCHOL BULL, V117, P387, DOI 10.1037/0033-2909.117.3.387; van IJzendoorn MH, 2003, J TRAUMA STRESS, V16, P459, DOI 10.1023/A:1025706427300; VANIJZENDOORN MH, 1999, HDB ATTACHMENT THEOR, P713; WEINE S, 2008, ADOLESCENTS WAR YOUT, P225; Williams GC, 1966, ADAPTATION NATURAL S; Wrangham R. W., 1996, DEMONIC MALES; Yule W, 2000, J CHILD PSYCHOL PSYC, V41, P695, DOI 10.1017/S0021963099005892; ZIVCIC I, 1993, J AM ACAD CHILD PSY, V32, P709, DOI 10.1097/00004583-199307000-00002 115 40 40 0 19 SAGE PUBLICATIONS LTD LONDON 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND 0165-0254 INT J BEHAV DEV Int. J. Behav. Dev. JUL 2008 32 4 260 271 10.1177/0165025408090969 12 Psychology, Developmental Psychology 332WR WOS:000258114300002 2018-11-12 J Mautz, BS; Sakaluk, SK Mautz, Brian S.; Sakaluk, Scott K. The effects of age and previous mating experience on pre- and post-copulatory mate choice in female house crickets (Acheta domesticus L.) JOURNAL OF INSECT BEHAVIOR English Article Acheta domesticus; age; female mate choice; house crickets; mating experience; sexual selection GRYLLUS-INTEGER ORTHOPTERA; BLACK FIELD CRICKET; FLUCTUATING SELECTION; TELEOGRYLLUS-COMMODUS; DECORATED CRICKETS; BIMACULATUS DEGEER; SEXUAL SELECTION; PREDATION RISK; SPERM TRANSFER; MALE SIZE Although females' mating preferences are influenced by male characteristics, there are a number of factors intrinsic to females and unrelated to male phenotype that can modulate female choice. We assessed the effects of age and mating experience on mechanisms of pre- and post-copulatory mate choice in female house crickets, Acheta domesticus L., by randomly assigning males to females, but independently varying the age and number of previous matings of females at the time of experimental matings. Latency to mating, a measure of a female's precopulatory preference, was influenced by female age at the time of mating, with older females mating sooner than younger females. The reduced selectivity of older females appears consistent with life-history theory, which predicts that the reproductive value of females should decline with age. The length of time that females retained the spermatophore after mating, a measure of a female's post-copulatory mating preference, was not influenced by female age at the time of mating, the number of previous matings, or any interaction between the two main effects. Contrary to previous reports, male mass had no effect on either the latency to mating or female retention of the spermatophore in A. domesticus. We conclude that female age and mating experience can moderate female selectivity, but that their impact varies according to the mechanism by which females favor particular sires. [Mautz, Brian S.; Sakaluk, Scott K.] Illinois State Univ, Dept Biol Sci, Behav Ecol Evolut & Systemat Sect, Normal, IL 61790 USA Sakaluk, SK (reprint author), Illinois State Univ, Dept Biol Sci, Behav Ecol Evolut & Systemat Sect, Normal, IL 61790 USA. sksakal@ilstu.edu Mautz, Brian/F-2415-2010 Mautz, Brian/0000-0003-3870-2932 ALEXANDER RD, 1967, MISCELLANEOUS PUBLIC, V133, P1; Allison D. P., 1995, SURVIVAL ANAL USING; Andersson M., 1994, SEXUAL SELECTION; Bateman PW, 2001, ANIM BEHAV, V61, P631, DOI 10.1006/anbe.2000.1617; Borg AA, 2006, ANIM BEHAV, V72, P763, DOI 10.1016/j.anbehav.2005.11.025; Burley NT, 2006, ANIM BEHAV, V72, P713, DOI 10.1016/j.anbehav.2006.01.017; Bussiere LF, 2006, EVOLUTION, V60, P792, DOI 10.1554/05-378.1; CRANKSHAW OS, 1979, ANIM BEHAV, V27, P1274, DOI 10.1016/0003-3472(79)90077-0; Csada RD, 1995, ECOL ENTOMOL, V20, P393, DOI 10.1111/j.1365-2311.1995.tb00473.x; Fedorka KM, 2002, ANIM BEHAV, V64, P361, DOI 10.1006/snbe.2002.3052; Fleischman RR, 2004, BEHAVIOUR, V141, P633, DOI 10.1163/1568539042245141; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; FUTUYMA DJ, 1998, EVOLUTIONARY BIOL; Gamble S, 2003, ECOL LETT, V6, P463, DOI 10.1046/j.1461-0248.2003.00449.x; Gray DA, 1997, ANIM BEHAV, V54, P1553, DOI 10.1006/anbe.1997.0584; Gray DA, 1999, J INSECT BEHAV, V12, P691, DOI 10.1023/A:1020983821436; HEDRICK AV, 1993, ANIM BEHAV, V46, P193, DOI 10.1006/anbe.1993.1176; Hunt J, 2005, AM NAT, V166, P79, DOI 10.1086/430672; Jennions MD, 1997, BIOL REV, V72, P283, DOI 10.1017/S0006323196005014; Khalifa A., 1950, Behaviour Leiden, V2, P264, DOI 10.1163/156853950X00125; Kiflawi M, 2000, P ROY SOC B-BIOL SCI, V267, P2157, DOI 10.1098/rspb.2000.1263; Kodric-Brown A, 2001, AM NAT, V157, P316, DOI 10.1086/319191; Lickman K, 1998, CAN J ZOOL, V76, P1263, DOI 10.1139/cjz-76-7-1263; LOHER W, 1993, PHYSIOL ENTOMOL, V18, P57, DOI 10.1111/j.1365-3032.1993.tb00449.x; LOHER W, 1978, Z TIERPSYCHOL, V46, P222; Luttbeg B, 2001, ETHOLOGY, V107, P545, DOI 10.1046/j.1439-0310.2001.00694.x; Lynch KS, 2006, HORM BEHAV, V49, P450, DOI 10.1016/j.yhbeh.2005.10.001; Lynch KS, 2005, ANIM BEHAV, V69, P689, DOI 10.1016/j.anbehav.2004.06.016; Mack PD, 2003, P ROY SOC B-BIOL SCI, V270, P159, DOI 10.1098/rspb.2002.2214; Martin OY, 2002, ANIM BEHAV, V63, P541, DOI 10.1006/anbe.2001.1929; Moore PJ, 2001, P NATL ACAD SCI USA, V98, P9171, DOI 10.1073/pnas.161154598; Nelson CM, 1997, J INSECT BEHAV, V10, P557, DOI 10.1007/BF02765377; Olvido AE, 2004, BIOL J LINN SOC, V83, P461, DOI 10.1111/j.1095-8312.2004.00404.x; Prosser MR, 1997, J INSECT BEHAV, V10, P437, DOI 10.1007/BF02765609; Reinhold K, 1999, J EVOLUTION BIOL, V12, P897, DOI 10.1046/j.1420-9101.1999.00092.x; SAKALUK SK, 1980, CAN J ZOOL, V58, P404, DOI 10.1139/z80-053; SAKALUK SK, 1984, SCIENCE, V223, P609, DOI 10.1126/science.223.4636.609; Sakaluk SK, 1996, EVOLUTION, V50, P694, DOI 10.1111/j.1558-5646.1996.tb03879.x; Sakaluk SK, 2000, P ROY SOC B-BIOL SCI, V267, P339, DOI 10.1098/rspb.2000.1006; Sakaluk SK, 2002, EVOLUTION, V56, P1999; SAKALUK SK, 1985, CAN J ZOOL, V63, P1652, DOI 10.1139/z85-245; Sakaluk SK, 1997, BEHAV ECOL, V8, P326, DOI 10.1093/beheco/8.3.326; Sasaki A, 1997, EVOLUTION, V51, P682, DOI 10.1111/j.1558-5646.1997.tb03652.x; Shackleton MA, 2005, BEHAV ECOL SOCIOBIOL, V58, P1, DOI 10.1007/s00265-004-0907-1; SIMMONS LW, 1986, ANIM BEHAV, V34, P1463, DOI 10.1016/S0003-3472(86)80217-2; SIMMONS LW, 1988, ECOL ENTOMOL, V13, P57, DOI 10.1111/j.1365-2311.1988.tb00333.x; Wagner WE, 2001, EVOLUTION, V55, P994, DOI 10.1554/0014-3820(2001)055[0994:FRALSB]2.0.CO;2; ZUK M, 1987, CAN J ZOOL, V65, P1564, DOI 10.1139/z87-242; Zuk M., 1997, MATING SYSTEMS INSEC, P89 49 25 25 1 47 SPRINGER/PLENUM PUBLISHERS NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0892-7553 J INSECT BEHAV J. Insect Behav. JUL 2008 21 4 203 212 10.1007/s10905-008-9120-9 10 Entomology Entomology 317ML WOS:000257024200002 2018-11-12 J Jennings, S; Melin, F; Blanchard, JL; Forster, RM; Dulvy, NK; Wilson, RW Jennings, Simon; Melin, Frederic; Blanchard, Julia L.; Forster, Rodney M.; Dulvy, Nicholas K.; Wilson, Rod W. Global-scale predictions of community and ecosystem properties from simple ecological theory PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article macroecology; metabolic ecology; food web; food chain; climate; production FISH PRODUCTION; FOOD WEBS; OCEAN; BIOMASS; SIZE; SEA; PHYTOPLANKTON; NORTHWESTERN; PREDATORS; ABUNDANCE We show how theoretical developments in macroecology, life-history theory and food-web ecology can be combined to formulate a simple model for predicting the potential biomass, production, size and trophic structure of consumer communities. The strength of our approach is that it uses remote sensing data to predict properties of consumer communities in environments that are challenging and expensive to sample directly. An application of the model to the marine environment on a global scale, using primary production and temperature estimates from satellite remote sensing as inputs, suggests that the global biomass of marine animals more than 10(-5) g wet weight is 2.62 x 10(9) t (=8.16 g m(-2) ocean) and production is 1.00 x 10(10) t yr(-1) (31.15 g m(-2) yr(-1)). Based on the life-history theory, we propose and apply an approximation for distinguishing the relative contributions of different animal groups. Fish biomass and production, for example, are estimated as 8.99 x 10(8) t (2.80 g m(-2)) and 7.91 x 10(8) t yr(-1) (2.46 g m(-2) yr(-1)), respectively, and 50% of fish biomass is shown to occur in 17% of the total ocean area (8.22 g m(-2)). The analyses show that emerging ecological theory can be synthesized to set baselines for assessing human and climate impacts on global scales. [Jennings, Simon; Blanchard, Julia L.; Forster, Rodney M.; Dulvy, Nicholas K.] Ctr Environm Fisheries & Aquaculture Scu, Lowestoft NR33 0HT, Suffolk, England; [Melin, Frederic] European Commiss Joint Res Ctr, Inst Environm & Sustainabil, I-21027 Ispra, Italy; [Wilson, Rod W.] Univ Exeter, Sch Biosci, Hatherly Labs, Exeter EX4 4PS, Devon, England Jennings, S (reprint author), Ctr Environm Fisheries & Aquaculture Scu, Pakefield Rd, Lowestoft NR33 0HT, Suffolk, England. simon.jennings@cefas.co.uk Jennings, Simon/F-5085-2012; Blanchard, Julia/E-4919-2010 Jennings, Simon/0000-0002-2390-7225; Blanchard, Julia/0000-0003-0532-4824; Forster, Rodney/0000-0001-6990-1673; Dulvy, Nicholas/0000-0002-4295-9725 Natural Environment Research Council [NE/F001517/1] Agawin NSR, 2000, LIMNOL OCEANOGR, V45, P591, DOI 10.4319/lo.2000.45.3.0591; BOUDREAU PR, 1992, CAN J FISH AQUAT SCI, V49, P1528, DOI 10.1139/f92-169; Brander KM, 2001, ICES J MAR SCI, V58, P962, DOI 10.1006/jmsc.2001.1086; Brown J.H., 1995, MACROECOLOGY, P269; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Brown JH, 2003, P NATL ACAD SCI USA, V100, P1467, DOI 10.1073/pnas.0630310100; Carr ME, 2006, DEEP-SEA RES PT II, V53, P741, DOI 10.1016/j.dsr2.2006.01.028; CHAMBERS RC, 1997, EARLY LIFE HIST RECR, P63; COMPAGNO LJV, IN PRESS SHARKS OPEN; Cushing D.H, 1975, MARINE ECOLOGY FISHE; DICKIE LM, 1987, ECOL MONOGR, V57, P233, DOI 10.2307/2937082; Duarte CM, 1996, LIMNOL OCEANOGR, V41, P1758, DOI 10.4319/lo.1996.41.8.1758; Dunne JP, 2005, GLOBAL BIOGEOCHEM CY, V19, DOI 10.1029/2004GB002390; Duplisea DE, 2005, ICES J MAR SCI, V62, P412, DOI 10.1016/j.icesjms.2004.11.005; Ernest SKM, 2003, ECOL LETT, V6, P990, DOI 10.1046/j.1461-0248.2003.00526.x; Frank KT, 2006, ECOL LETT, V9, P1096, DOI 10.1111/j.1461-0248.2006.00961.x; Friedlander AM, 2002, MAR ECOL PROG SER, V230, P253, DOI 10.3354/meps230253; Gaston K. J., 2000, PATTERN PROCESS MACR; Gislason H, 2008, ICES J MAR SCI, V65, P514, DOI 10.1093/icesjms/fsn035; Goodwin NB, 2002, PHILOS T R SOC B, V357, P259, DOI 10.1098/rstb.2001.0958; Gregg WW, 2007, REMOTE SENS ENVIRON, V111, P25, DOI 10.1016/j.rse.2007.03.008; Hilborn R., 1992, QUANTITATIVE FISHERI; HILDREW AG, 2007, BODY SIZE STRUCUTRE; Hoenig J.M., 1990, 90 NOAA NMFS, P1; HUNTLEY ME, 1991, SCIENCE, V253, P64, DOI 10.1126/science.1905841; IVERSON RL, 1990, LIMNOL OCEANOGR, V35, P1593, DOI 10.4319/lo.1990.35.7.1593; Jennings S, 2004, J ANIM ECOL, V73, P632, DOI 10.1111/j.0021-8790.2004.00839.x; Jennings S, 2003, ECOL LETT, V6, P971, DOI 10.1046/j.1461-0248.2003.00529.x; Kerr SR, 2001, BIOMASS SPECTRUM PRE; Li WKW, 2002, NATURE, V419, P154, DOI 10.1038/nature00994; LONGHURST A, 1995, J PLANKTON RES, V17, P1245, DOI 10.1093/plankt/17.6.1245; McClain CR, 2004, DEEP-SEA RES PT II, V51, P5, DOI 10.1016/j.dsr2.2003.11.001; Merrett N. R., 1997, DEEP SEA DEMERSAL FI; PAULY D, 1995, NATURE, V374, P255, DOI 10.1038/374255a0; RYTHER JH, 1969, SCIENCE, V166, P72, DOI 10.1126/science.166.3901.72; Sarmiento JL, 2004, GLOBAL BIOGEOCHEM CY, V18, DOI 10.1029/2003GB002134; SHELDON RW, 1967, J FISH RES BOARD CAN, V24, P909, DOI 10.1139/f67-081; SPARHOLT H, 1990, J CONSEIL, V46, P200; Ware D. M., 2000, FISH OCEANOGR, P161 39 115 116 1 57 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUN 22 2008 275 1641 1375 1383 10.1098/rspb.2008.0192 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 295VY WOS:000255503300004 18348964 Bronze, Green Published 2018-11-12 J Hochberg, Z Hochberg, Z. Juvenility in the context of life history theory ARCHIVES OF DISEASE IN CHILDHOOD English Review FOLLICLE-STIMULATING-HORMONE; PRADER-WILLI-SYNDROME; PREMATURE ADRENARCHE; DEHYDROEPIANDROSTERONE-SULFATE; INSULIN SENSITIVITY; BODY-COMPOSITION; LUTEINIZING-HORMONE; HEALTHY-CHILDREN; DIURNAL RHYTHMS; HUMAN GROWTH Homo sapiens is unique in having four prolonged and pronounced postnatal pre-adult life history stages: infancy, which lasts for 30-36 months and ends with weaning from breast feeding in traditional societies; childhood, which lasts for an additional 2-4 years and concludes in a degree of independence as regards protection and food provision; a juvenile stage of 3 4 years that terminates with readiness for sexual maturation; and adolescence, which lasts for 3-5 years and culminates in fertility. Juvenility implies two transitional periods which are only experienced by humans: a transition from childhood to juvenility and from juvenility to adolescence. Juvenility, "the age of reason and responsibility'' and concrete operation, coincides with elementary school age and offers opportunities to prepare for the social complexity of adolescence. Here I define the transition to juvenility by three variables: adrenarche (the onset of adrenal androgen generation), growth pattern (decelerating from a linear childhood growth velocity) and adiposity rebound acceleration of body mass index. The data presented suggest that this period is endowed with programming/predictive adaptive responses of body composition to the environment. [Hochberg, Z.] Meyer Childrens Hosp, Rambam Med Ctr, IL-31096 Haifa, Israel; [Hochberg, Z.] Technion Israel Inst Technol, Haifa, Israel Hochberg, Z (reprint author), Meyer Childrens Hosp, Rambam Med Ctr, POB 9602, IL-31096 Haifa, Israel. z_hochberg@rambam.health.gov.il Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; Arlt W, 2000, ENDOCR RES, V26, P505, DOI 10.3109/07435800009048561; ARQUITT AB, 1991, J AM DIET ASSOC, V91, P575; Auchus RJ, 2004, CLIN ENDOCRINOL, V60, P288, DOI 10.1046/j.1365-2265.2003.01858.x; Blogowska A, 2005, J PEDIATR ENDOCR MET, V18, P975; Bogin B, 1999, ANNU REV ANTHROPOL, V28, P109, DOI 10.1146/annurev.anthro.28.1.109; Bogin B, 2007, AM J HUM BIOL, V19, P631, DOI 10.1002/ajhb.20666; Campbell B, 2006, AM J HUM BIOL, V18, P569, DOI 10.1002/ajhb.20528; Chen CCG, 2004, SEMIN REPROD MED, V22, P369, DOI 10.1055/s-2004-861553; COLE TJ, 1995, ARCH DIS CHILD, V73, P25, DOI 10.1136/adc.73.1.25; Coppa A, 2007, J HUM EVOL, V52, P601, DOI 10.1016/j.jhevol.2006.11.009; DHOM G, 1973, BEITR PATHOL, V150, P357; Dorn LD, 1999, ARCH PEDIAT ADOL MED, V153, P137; Ellis KJ, 1997, AM J CLIN NUTR, V65, P724; Ellis KJ, 1997, AM J CLIN NUTR, V66, P1323; GERVER WJM, 1996, PEDIAT MORPHOMETRICS; Gimble JM, 2006, J CELL BIOCHEM, V98, P251, DOI 10.1002/jcb.20777; Gogtay N, 2004, P NATL ACAD SCI USA, V101, P8174, DOI 10.1073/pnas.0402680101; Guercio G, 2003, J CLIN ENDOCR METAB, V88, P1389, DOI 10.1210/jc.2002-020979; Guercio G, 2002, J CLIN ENDOCR METAB, V87, P1162, DOI 10.1210/jc.87.3.1162; Guven A, 2005, J PEDIATR ENDOCR MET, V18, P785; HELM S, 1969, ARCH ORAL BIOL, V14, P1177, DOI 10.1016/0003-9969(69)90157-5; HOCHBERG Z, 1995, J CLIN ENDOCR METAB, V80, P325, DOI 10.1210/jc.80.1.325; HOCHBERG Z, 2008, IN PRESS PEDIAT RES; Hunt PJ, 2000, J CLIN ENDOCR METAB, V85, P4650, DOI 10.1210/jc.85.12.4650; IBANEZ L, 1992, J CLIN ENDOCR METAB, V74, P254, DOI 10.1210/jc.74.2.254; Ibanez L, 2000, ENDOCR REV, V21, P671, DOI 10.1210/er.21.6.671; Janson Charles H., 1993, P57; Kerem N, 2001, HORM RES, V55, P298, DOI 10.1159/000050017; KORTHSCHUTZ S, 1976, J CLIN ENDOCR METAB, V42, P1005, DOI 10.1210/jcem-42-6-1005; Kroboth PD, 1999, J CLIN PHARMACOL, V39, P327, DOI 10.1177/00912709922007903; Lindgren AC, 2000, J PEDIATR-US, V137, P50, DOI 10.1067/mpd.2000.106563; Miller WL, 1999, ACTA PAEDIATR, V88, P60, DOI 10.1111/j.1651-2227.1999.tb14405.x; Mitamura R, 2000, J CLIN ENDOCR METAB, V85, P1074, DOI 10.1210/jc.85.3.1074; Mitamura R, 1999, J CLIN ENDOCR METAB, V84, P29, DOI 10.1210/jc.84.1.29; Norjavaara E, 1996, J CLIN ENDOCR METAB, V81, P4095, DOI 10.1210/jc.81.11.4095; Palmert MR, 2001, J CLIN ENDOCR METAB, V86, P4536, DOI 10.1210/jc.86.9.4536; Paus T, 2005, TRENDS COGN SCI, V9, P60, DOI 10.1016/j.tics.2004.12.008; PERE A, 1995, EUR J PEDIATR, V154, P346; Remer T, 2003, J BONE MINER RES, V18, P1539, DOI 10.1359/jbmr.2003.18.8.1539; Remer T, 2001, J CLIN ENDOCR METAB, V86, P4183, DOI 10.1210/jc.86.9.4183; RODDA C, 1987, ACTA PAEDIATR SCAND, V76, P495, DOI 10.1111/j.1651-2227.1987.tb10505.x; Rolland-Cachera MF, 2006, INT J OBESITY, V30, pS11, DOI 10.1038/sj.ijo.0803514; SAUNDERS E, 1837, TEETH TEST AGE; SIZONENKO PC, 1978, AM J DIS CHILD, V132, P704, DOI 10.1001/archpedi.1978.02120320064015; SMITH BH, 1995, ANNU REV ANTHROPOL, V24, P257, DOI 10.1146/annurev.an.24.100195.001353; SMITH BH, 1994, AM J PHYS ANTHROPOL, V94, P307, DOI 10.1002/ajpa.1330940303; Smith TM, 2007, P NATL ACAD SCI USA, V104, P6128, DOI 10.1073/pnas.0700747104; Steudel-Numbers KL, 2007, J HUM EVOL, V53, P191, DOI 10.1016/j.jhevol.2007.04.001; Suzuki M, 2004, P NATL ACAD SCI USA, V101, P3202, DOI 10.1073/pnas.0307325101; Suzuki T, 2000, CLIN ENDOCRINOL, V53, P739, DOI 10.1046/j.1365-2265.2000.01144.x; Unanue N, 2007, HORM RES, V67, P152, DOI 10.1159/000096742; van Goozen SHM, 1998, BIOL PSYCHIAT, V43, P156, DOI 10.1016/S0006-3223(98)00360-6; VANDERSLUIS I, 2002, CHILDRENS BONE HLTH; VANDOP C, 1987, J PEDIATR-US, V111, P684, DOI 10.1016/S0022-3476(87)80243-3; WHITE SH, 1996, MAC FDN MEN, P17; ZEMEL BS, 1986, AM J PHYS ANTHROPOL, V71, P459, DOI 10.1002/ajpa.1330710409 57 24 26 1 3 BMJ PUBLISHING GROUP LONDON BRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H 9JR, ENGLAND 0003-9888 1468-2044 ARCH DIS CHILD Arch. Dis. Child. JUN 2008 93 6 534 539 10.1136/adc.2008.137570 6 Pediatrics Pediatrics 303TY WOS:000256065000018 18337281 2018-11-12 J Mangel, M Mangel, M. Environment, damage and senescence: modelling the life-history consequences of variable stress and caloric intake FUNCTIONAL ECOLOGY English Review life-history theory; hormesis; foetal programming; metabolic syndrome; damage; foraging CATCH-UP GROWTH; FETAL ORIGINS HYPOTHESIS; DEVELOPMENTAL ORIGINS; DIETARY RESTRICTION; NATURAL-SELECTION; OXIDATIVE STRESS; ANTAGONISTIC PLEIOTROPY; DROSOPHILA-MELANOGASTER; CAENORHABDITIS-ELEGANS; COMPENSATORY GROWTH 1. Senescence is intimately connected with physiological state, which is affected by the environment. Two aspects of the environment - stress and caloric intake - are investigated in the context of senescence, particularly in the context of repair of damage caused by endogenous and exogenous stressors. 2. In a simple life-history model, the organism is characterized by size (affecting reproductive success) and accumulated damage (affecting survival) at age. The modelled organism experiences an imprinting period, at the end of which it estimates the level of food and damaging sources in the environment. From those, an optimal life history is determined, assuming that reproduction is an allometric function of size. 3. The optimal life history involves a behavioural trait (intensity of foraging) and an allocation process (amount of energy allocated to repair of damage). Subsequent to the imprinting period, the organism lives experiencing levels of stress or caloric intake that differ from those during the imprinting period. The mismatch is such that either the caloric intake is greater post-imprinting than during imprinting or environmental stress is smaller post-imprinting that during imprinting. 4. Since reproduction is given allometrically and the organism cannot shrink, there is no reproductive senescence. In all cases, mortality increases with age. Senescence is caused by accumulated damage and we focus on the allocation of potential growth to repair and environmental mismatch. 5. In the case of stress mismatch, the general qualitative result is that both the optimal level of activity and the allocation to repair are greater than their values in the case of no mismatch and they are positively correlated. For caloric mismatch, during the post-imprinting period the intensity of foraging is greater than that predicted if there were no mismatches. However, we predict either a negative correlation between genes characterizing activity and repair (for small mismatch), no correlation (for moderate mismatch) or positive correlation (for large mismatch). Furthermore, caloric mismatch is predicted to lead to a considerable reduction in lifetime reproduction, but stress mismatch is predicted to induce an increase in stress resistance throughout life with little cost to lifetime reproduction. Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA Mangel, M (reprint author), Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA. msmangel@ams.ucsc.edu Adair LS, 2004, J NUTR, V134, P191; Alonso-Alvarez C, 2007, FUNCT ECOL, V21, P873, DOI 10.1111/j.1365-2435.2007.01300.x; Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; Arumugam TV, 2006, AGEING RES REV, V5, P165, DOI 10.1016/j.arr.2006.03.003; Barker D. J. P., 1998, MOTHERS BABIES HLTH; Barker DJP, 2004, PHILOS T ROY SOC B, V359, P1359, DOI 10.1098/rstb.2004.1518; Barker DJP, 2002, J HYPERTENS, V20, P1951, DOI 10.1097/00004872-200210000-00013; Brakefield PM, 2005, MECH AGEING DEV, V126, P431, DOI 10.1016/j.mad.2004.07.013; Brody S., 1945, BIOENERGETICS GROWTH; Brunk UT, 2007, BIOGERONTOLOGY, V8, P619, DOI 10.1007/s10522-007-9091-9; Calabrese EJ, 2008, AGEING RES REV, V7, P8, DOI 10.1016/j.arr.2007.07.001; Calabrese EJ, 2006, BIOGERONTOLOGY, V7, P119, DOI 10.1007/s10522-006-0005-z; Calabrese EJ, 2005, CELL MOL BIOL, V51, P643, DOI 10.1170/T675; Calabrese EJ, 2005, ENVIRON POLLUT, V138, P378, DOI 10.1016/j.envpol.2004.10.001; Calabrese EJ, 2005, TOXICOL APPL PHARM, V202, P289, DOI 10.1016/j.taap.2004.06.023; Calabrese EJ, 2003, NATURE, V421, P691, DOI 10.1038/421691a; Carey JR, 2001, ANNU REV ENTOMOL, V46, P79, DOI 10.1146/annurev.ento.46.1.79; CAREY JR, 2001, POPULATION ENGLISH S, V13, P9; CARLSON S, 2008, UNPUB ECOLOGY; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CLARK CW, 2000, DYNAMIC STATE VARIAB; Comfort A., 1956, BIOL SENESCENCE; Cypser JR, 2006, EXP GERONTOL, V41, P935, DOI 10.1016/j.exger.2006.09.004; Darlington ASE, 2006, J DEV BEHAV PEDIATR, V27, P329, DOI 10.1097/00004703-200608000-00008; DEJONG G, 1995, AM NAT, V145, P49; Finch C., 2007, BIOL HUMAN LONGEVITY; Fogel R., 2004, ESCAPE HUNGER PREMAT; Gluckman P, 2006, DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE, P1, DOI 10.2277/ 0521847435; Gluckman PD, 2004, TRENDS ENDOCRIN MET, V15, P183, DOI 10.1016/j.tem.2004.03.002; Gluckman PD, 2004, SCIENCE, V305, P1733, DOI 10.1126/science.1095292; Gluckman PD, 2005, FETAL MATRIX EVOLUTI; Gluckman PD, 2007, P NATL ACAD SCI USA, V104, P12796, DOI 10.1073/pnas.0705667104; Gomez-Cabrera MC, 2008, FREE RADICAL BIO MED, V44, P126, DOI 10.1016/j.freeradbiomed.2007.02.001; Gomez-Pinilla F, 2008, AGEING RES REV, V7, P49, DOI 10.1016/j.arr.2007.04.003; HADNAY L, 2006, P ROYAL SOC B, V273, P881; Hales CN, 2003, J PHYSIOL-LONDON, V547, P5, DOI 10.1113/jphysiol.2002.024406; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Harman D, 1998, EXP GERONTOL, V33, P95, DOI 10.1016/S0531-5565(97)00059-4; Houston AI, 1999, MODELS ADAPTIVE BEHA; Huxley R, 2002, LANCET, V360, P659, DOI 10.1016/S0140-6736(02)09834-3; Huxley RR, 2000, J HYPERTENS, V18, P815, DOI 10.1097/00004872-200018070-00002; Johnston SL, 2006, P ROY SOC B-BIOL SCI, V273, P1369, DOI 10.1098/rspb.2005.3456; Kermack WO, 1934, LANCET, V1, P698; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; Langley-Evans SC, 2005, MECH AGEING DEV, V126, P804, DOI 10.1016/j.mad.2005.03.003; Lastra G, 2007, ANTIOXID REDOX SIGN, V9, P943, DOI 10.1089/ars.2007.1615; Le Bourg E, 2003, BIOGERONTOLOGY, V4, P319, DOI 10.1023/A:1026255519223; Le Bourg E, 2007, BIOGERONTOLOGY, V8, P431, DOI 10.1007/s10522-007-9086-6; Le Bourg E, 2007, BIOGERONTOLOGY, V8, P327, DOI 10.1007/s10522-006-9077-z; Levin BE, 2006, PHILOS T R SOC B, V361, P1107, DOI 10.1098/rstb.2006.1851; Linnane AW, 2007, BIOGERONTOLOGY, V8, P445, DOI 10.1007/s10522-007-9096-4; LUCKEY TD, 1982, HEALTH PHYS, V43, P771, DOI 10.1097/00004032-198212000-00001; Mair W, 2003, SCIENCE, V301, P1731, DOI 10.1126/science.1086016; Mangel M, 2005, AM NAT, V166, pE155, DOI 10.1086/444439; Mangel M, 2006, THEORETICAL BIOLOGIST'S TOOLBOX: QUANTITATIVE METHODS FOR ECOLOGY AND EVOLUTIONARY BIOLOGY, P1, DOI 10.2277/ 0521537487; Mangel M, 2001, J THEOR BIOL, V213, P559, DOI 10.1006/jtbi.2001.2431; MANGEL M, 1990, J THEOR BIOL, V146, P317, DOI 10.1016/S0022-5193(05)80742-8; MANGEL M, 1992, ANNU REV ECOL SYST, V23, P507; Mangel M., 1988, DYNAMIC MODELING BEH; Marini AM, 2008, AGEING RES REV, V7, P21, DOI 10.1016/j.arr.2007.07.003; Masoro EJ, 2006, BIOGERONTOLOGY, V7, P153, DOI 10.1007/s10522-006-9015-0; Masoro EJ, 1998, EXP GERONTOL, V33, P61, DOI 10.1016/S0531-5565(97)00071-5; Mattson MP, 2008, AGEING RES REV, V7, P43, DOI 10.1016/j.arr.2007.08.004; Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007; McMillen IC, 2005, PHYSIOL REV, V85, P571, DOI 10.1152/physrev.00053.2003; McNamara JM, 2004, THEOR POPUL BIOL, V65, P361, DOI 10.1016/j.tpb.2003.10.006; McNamara JM, 2000, EVOL ECOL RES, V2, P457; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990; MINOIS N, 2003, MODULATING AGING LON, P127; Moskalev A, 2007, BIOGERONTOLOGY, V8, P499, DOI 10.1007/s10522-007-9090-x; Munch SB, 2006, P NATL ACAD SCI USA, V103, P16604, DOI 10.1073/pnas.0601735103; Murado MA, 2007, J THEOR BIOL, V244, P489, DOI 10.1016/j.jtbi.2006.09.002; NUSSEY DH, 2008, IN PRESS FUNCTIONAL; Olsen A, 2006, BIOGERONTOLOGY, V7, P221, DOI 10.1007/s10522-006-9018-x; Ozanne SE, 2005, MECH AGEING DEV, V126, P852, DOI 10.1016/j.mad.2005.03.005; Parsons PA, 2000, J APPL TOXICOL, V20, P103, DOI 10.1002/(SICI)1099-1263(200003/04)20:2<103::AID-JAT639>3.0.CO;2-O; Parsons PA, 2007, BIOGERONTOLOGY, V8, P613, DOI 10.1007/s10522-007-9101-y; Parsons PA, 2007, BIOGERONTOLOGY, V8, P233, DOI 10.1007/s10522-007-9080-z; Pearl R, 1935, Q REV BIOL, V10, P60, DOI 10.1086/394476; PITTS GC, 1986, GROWTH DEVELOP AGING, V50, P419; Radak Z, 2008, AGEING RES REV, V7, P34, DOI 10.1016/j.arr.2007.04.004; Radak Z, 2008, FREE RADICAL BIO MED, V44, P153, DOI 10.1016/j.freeradbiomed.2007.01.029; Rattan SIS, 2004, MECH AGEING DEV, V125, P285, DOI 10.1016/j.amd.2004.01.006; Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002; Robinson SM, 2002, P NUTR SOC, V61, P537, DOI 10.1079/PNS2002189; Rollo CD, 1996, CAN J ZOOL, V74, P606, DOI 10.1139/z96-070; Rollo CD, 2002, EVOL DEV, V4, P55, DOI 10.1046/j.1525-142x.2002.01053.x; Rose MR, 2007, EVOLUTION, V61, P1265, DOI 10.1111/j.1558-5646.2007.00120.x; Sachdev S, 2008, FREE RADICAL BIO MED, V44, P215, DOI 10.1016/j.freeradbiomed.2007.07.019; Scannapieco AC, 2007, BIOGERONTOLOGY, V8, P315, DOI 10.1007/s10522-006-9075-1; Schuck-Paim C, 2004, PLOS BIOL, V2, P2305, DOI 10.1371/journal.pbio.0020402; Simmons R, 2005, EXP GERONTOL, V40, P863, DOI 10.1016/j.exger.2005.09.007; SOUZA PD, 2003, P ROY SOC LOND B BIO, V270, P1047; Speakman JR, 2004, PHYSIOL BIOCHEM ZOOL, V77, P900, DOI 10.1086/427059; Vickers MH, 2005, ENDOCRINOLOGY, V146, P4211, DOI 10.1210/en.2005-0581; Vickers MH, 2000, AM J PHYSIOL-ENDOC M, V279, pE83; Wells JCK, 2007, BIOL REV, V82, P143, DOI 10.1111/j.1469-185X.2006.00007.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams PD, 2003, EVOLUTION, V57, P1478; WILSON AJ, 2008, IN PRESS FUNCTIONAL; Yearsley JM, 2005, J THEOR BIOL, V235, P305, DOI 10.1016/j.jtbi.2005.01.009; Yearsley JM, 2004, FUNCT ECOL, V18, P563, DOI 10.1111/j.0269-8463.2004.00879.x; Yin DZ, 2005, EXP GERONTOL, V40, P455, DOI 10.1016/j.exger.2005.03.012 105 29 29 0 31 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. JUN 2008 22 3 422 430 10.1111/j.1365-2435.2008.01410.x 9 Ecology Environmental Sciences & Ecology 302BF WOS:000255940400005 Bronze 2018-11-12 J Berger, D; Walters, R; Gotthard, K Berger, D.; Walters, R.; Gotthard, K. What limits insect fecundity? Body size- and temperature-dependent egg maturation and oviposition in a butterfly FUNCTIONAL ECOLOGY English Article body size; ectotherms; egg maturation; fecundity; Lepidoptera; life-history theory; ovigenesis; oviposition REPRODUCTIVE EFFORT; REACTION NORMS; GROWTH; PLASTICITY; EVOLUTION; LEPIDOPTERA; FEMALES; STRATEGIES; ALLOCATION; LARVAE 1. Large female insects usually have high potential fecundity. Therefore selection should favour an increase in body size given that these females get opportunities to realize their potential advantage by maturing and laying more eggs. However, ectotherm physiology is strongly temperature-dependent, and activities are carried out sufficiently only within certain temperature ranges. Thus it remains unclear if the fecundity advantage of a large size is fully realized in natural environments, where thermal conditions are limiting. 2. Insect fecundity might be limited by temperature at two levels; first eggs need to mature, and then the female needs time for strategic ovipositing of the egg. Since a female cannot foresee the number of oviposition opportunities that she will encounter on a given day, the optimal rate of egg maturation will be governed by trade-offs associated with egg- and time-limited oviposition. As females of different sizes will have different amounts of body reserves, size-dependent allocation trade-offs between the mother's condition and her egg production might be expected. 3. In the temperate butterfly Pararge aegeria, the time and temperature dependence of oviposition and egg maturation, and the interrelatedness of these two processes were investigated in a series of laboratory experiments, allowing a decoupling of the time budgets for the respective processes. 4. The results show that realized fecundity of this species can be limited by both the temperature dependence of egg maturation and oviposition under certain thermal regimes. Furthermore, rates of oviposition and egg maturation seemed to have regulatory effects upon each other. Early reproductive output was correlated with short life span, indicating a cost of reproduction. Finally, large females matured more eggs than small females when deprived of oviposition opportunities. Thus, the optimal allocation of resources to egg production seems dependent on female size. 5. This study highlights the complexity of processes underlying rates of egg maturation and oviposition in ectotherms under natural conditions. We further discuss the importance of temperature variation for egg- vs. time-limited fecundity and the consequences for the evolution of female body size in insects. [Berger, D.; Walters, R.; Gotthard, K.] Stockholm Univ, Dept Zool, S-10691 Stockholm, Sweden; [Walters, R.] Univ Potsdam, D-14469 Potsdam, Germany Berger, D (reprint author), Stockholm Univ, Dept Zool, S-10691 Stockholm, Sweden. david.berger@zoologi.su.se Gotthard, Karl/F-1163-2011 Angilletta MJ, 2003, TRENDS ECOL EVOL, V18, P234, DOI 10.1016/S0169-5347(03)00087-9; Berger D, 2006, EVOL ECOL, V20, P575, DOI 10.1007/s10682-006-9118-8; BERRIGAN D, 1991, FUNCT ECOL, V5, P448, DOI 10.2307/2389817; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; BLAU WS, 1981, OECOLOGIA, V48, P116, DOI 10.1007/BF00346997; BOGGS CL, 1986, ECOL ENTOMOL, V11, P7, DOI 10.1111/j.1365-2311.1986.tb00274.x; BOULETREAU J, 1978, OECOLOGIA, V35, P319, DOI 10.1007/BF00345140; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Carey JR, 2001, ANNU REV ENTOMOL, V46, P79, DOI 10.1146/annurev.ento.46.1.79; CARROLL AL, 1993, OECOLOGIA, V93, P233, DOI 10.1007/BF00317676; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Ellers J, 2003, OIKOS, V102, P164, DOI 10.1034/j.1600-0706.2003.12183.x; Esperk T, 2004, PHYSIOL ENTOMOL, V29, P56, DOI 10.1111/j.1365-3032.2004.0365.x; GOTTHARD K, 2004, INTEGR COMP BIOL, V44, P71; Gotthard K, 2007, AM NAT, V169, P768, DOI 10.1086/516651; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Jervis MA, 2005, ECOL ENTOMOL, V30, P359, DOI 10.1111/j.0307-6946.2005.00712.x; Jervis MA, 2007, EVOL ECOL, V21, P307, DOI 10.1007/s10682-006-9102-3; KARLSSON B, 1990, FUNCT ECOL, V4, P609, DOI 10.2307/2389728; Kingsolver JG, 2004, INTEGR COMP BIOL, V44, P450, DOI 10.1093/icb/44.6.450; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; LEATHER SR, 1988, OIKOS, V51, P386, DOI 10.2307/3565323; Leimar O, 1996, OIKOS, V76, P228, DOI 10.2307/3546194; Margraf N, 2003, FUNCT ECOL, V17, P605, DOI 10.1046/j.1365-2435.2003.00775.x; Migeon JC, 1999, MOL BIOL CELL, V10, P1733, DOI 10.1091/mbc.10.6.1733; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; Papaj DR, 2000, ANNU REV ENTOMOL, V45, P423, DOI 10.1146/annurev.ento.45.1.423; R Development Core Team, 2005, R LANG ENV STAT COMP; Roff D. A., 2002, LIFE HIST EVOLUTION; SHINE R, 1988, AM NAT, V131, P124, DOI 10.1086/284778; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tammaru T, 2002, OECOLOGIA, V133, P430, DOI 10.1007/s00442-002-1057-7; Thorne AD, 2006, P R SOC B, V273, P1099, DOI 10.1098/rspb.2005.3416; Van Dyck H, 2002, J EVOLUTION BIOL, V15, P216, DOI 10.1046/j.1420-9101.2002.00384.x; VISSER ME, 1994, J ANIM ECOL, V63, P963, DOI 10.2307/5273; WICKMAN PO, 1990, HOLARCTIC ECOL, V13, P238; WICKMAN PO, 1989, OIKOS, V56, P209, DOI 10.2307/3565338; WIKLUND C, 1988, AM NAT, V131, P132, DOI 10.1086/284779 38 80 83 0 47 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0269-8463 FUNCT ECOL Funct. Ecol. JUN 2008 22 3 523 529 10.1111/j.1365-2435.2008.01392.x 7 Ecology Environmental Sciences & Ecology 302BF WOS:000255940400017 Bronze, Green Published 2018-11-12 J Fujiwara, M Fujiwara, Masami Effects of an autocorrelated stochastic environment and fisheries on the age at maturity of Chinook salmon THEORETICAL ECOLOGY English Article Age of maturity; Environmental autocorrelation; Life-history evolution; Matrix population model; Maturation adjustment strategy LIFE-HISTORY THEORY; ONCORHYNCHUS-TSHAWYTSCHA; PACIFIC-SALMON; REACTION NORMS; SIZE; POPULATION; MATURATION; GROWTH; DENSITY; STOCKS Chinook salmon (Oncorhynchus tshawytscha) reproduce only once in their lifetime, and their age at reproduction varies among individuals (indeterminate semelparous). However, the factors that determine their spawning age still remain uncertain. Evidence from recent studies suggests that individual growth and reproduction of Chinook salmon are affected by the rate of coastal upwelling, which is shown to be positively autocorrelated between years. Therefore, the serially autocorrelated environmental is expected to play an important role in determining their spawning age. In the present study, I demonstrate the advantage of an indeterminate maturation strategy under a stochastic environment. I then present theoretical evidence for the advantage of adjusting the maturation probability based on the environment they experienced and demonstrate that fisheries reduce the fitness of the strategy to delay maturation. The results presented herein emphasize the importance of incorporating detailed life-history strategies of organisms when undertaking population management. SW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Fisheries Ecol Div, Santa Cruz, CA 95060 USA Fujiwara, M (reprint author), SW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Fisheries Ecol Div, 110 Shaffer Rd, Santa Cruz, CA 95060 USA. masami.fujiwara@noaa.gov Fujiwara, Masami/C-3115-2012 Fujiwara, Masami/0000-0002-9255-6043 Botsford LW, 2002, PROG OCEANOGR, V53, P283, DOI 10.1016/S0079-6611(02)00034-4; Caswell H, 2001, MATRIX POPULATION MO; Coulson T, 2001, SCIENCE, V292, P1528, DOI 10.1126/science.292.5521.1528; Fujiwara M, 2004, ECOL LETT, V7, P106, DOI 10.1046/j.1461-0248.2003.00556.x; Fujiwara M, 2001, NATURE, V414, P537, DOI 10.1038/35107054; FUJIWARA M, 2007, EFFECTS ENV IN PRESS; Gallager R. G., 1995, DISCRETE STOCHASTIC; Gargett AE, 1997, FISH OCEANOGR, V6, P109, DOI 10.1046/j.1365-2419.1997.00033.x; Greene CM, 2004, CAN J FISH AQUAT SCI, V61, P590, DOI 10.1139/F04-024; Gurney WSC, 1996, FUNCT ECOL, V10, P602, DOI 10.2307/2390170; Hallett TB, 2004, NATURE, V430, P71, DOI 10.1038/nature02708; HANKIN DG, 1986, CAN J FISH AQUAT SCI, V43, P1746, DOI 10.1139/f86-219; HANKIN DG, 1985, CAN J FISH AQUAT SCI, V42, P393; HANKIN DG, 1993, CAN J FISH AQUAT SCI, V50, P343; Hare SR, 1999, FISHERIES, V24, P6, DOI 10.1577/1548-8446(1999)024<0006:IPR>2.0.CO;2; Healey M. C., 1991, PACIFIC SALMON LIFE; HEALEY MC, 1984, CAN J FISH AQUAT SCI, V41, P476, DOI 10.1139/f84-057; Heino M, 2002, ICES J MAR SCI, V59, P562, DOI 10.1006/jmsc.2002.1192; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Hill MF, 2003, J ANIM ECOL, V72, P736, DOI 10.1046/j.1365-2656.2003.00745.x; Jonsson N, 2003, J APPL ECOL, V40, P900, DOI 10.1046/j.1365-2664.2003.00851.x; KAITALA V, 1995, J MATH BIOL, V33, P521, DOI 10.1007/BF00163041; Kingsolver JG, 2007, AM NAT, V169, P163, DOI 10.1086/510631; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Mantua NJ, 1997, B AM METEOROL SOC, V78, P1069, DOI 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2; Mantua NJ, 2002, J OCEANOGR, V58, P35, DOI 10.1023/A:1015820616384; McGregor EA, 1922, CALIF FISH GAME REPO, V8, P161; Morita K, 2005, CAN J FISH AQUAT SCI, V62, P2752, DOI 10.1139/F05-182; Morita K, 2006, EVOLUTION, V60, P1516, DOI 10.1554/06-007.1; Prager MH, 2001, N AM J FISH MANAGE, V21, P533, DOI 10.1577/1548-8675(2001)021<0533:THRMFK>2.0.CO;2; Quinn T. J., 2005, BEHAV ECOLOGY PACIFI; RICKER W. E, 1958, HDB COMPUTATIONS BIO; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; Scheuerell MD, 2005, FISH OCEANOGR, V14, P448, DOI 10.1111/j.1365-2419.2005.00346.x; Tuljapurkar Shripad, 2006, Ecol Lett, V9, P327, DOI 10.1111/j.1461-0248.2006.00881.x; Wells BK, 2007, FISH OCEANOGR, V16, P363, DOI 10.1111/j.1365-2419.2007.00437.x; Wilmers CC, 2007, AM NAT, V169, P673, DOI 10.1086/513484 38 5 5 0 13 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 1874-1738 1874-1746 THEOR ECOL-NETH Theor. Ecol. JUN 2008 1 2 89 101 10.1007/s12080-007-0008-7 13 Ecology Environmental Sciences & Ecology 500UQ WOS:000270331400003 2018-11-12 J Lee, R Lee, Ronald Sociality, selection, and survival: Simulated evolution of mortality with intergenerational transfers and food sharing PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article aging; evolution; life-history theory; parental investment; demography NATURAL-SELECTION; INTELLIGENCE; COEVOLUTION; SENESCENCE; LONGEVITY; HUMANS Why do humans survive so long past reproductive age, and why does juvenile mortality decline after birth, both contrary to the classic theory of aging?, Previous work has shown formally that intergenerational transfers can explain both these patterns. Here, simulations confirm those results under weaker assumptions and explore how different social arrangements shape life-history evolution. Simulated single-sex hunter-gatherers survive, forage, reproduce, and share food with kin and nonkin in ways guided by the ethnographic literature. Natural selection acts on probabilistically occurring deleterious mutations. Neither stable population age distributions nor homogeneous genetic lineages are assumed. When food is shared only within kin groups, an infant death permits reallocation of its unneeded food to the infant's kin, offsetting the fitness cost of the death and weakening the force of selection against infant mortality. Thus, evolved infant mortality is relatively high, more so in larger kin groups. Food sharing with nonkin reduces the costs to kin of child rearing, but also reduces the resources recaptured by kin after an infant death, so evolved infant mortality is lower. Postreproductive adults transfer food to descendants, enhancing their growth and survival, so postreproductive survival is selected. The force of selection for old-age survival depends in complicated ways on the food-sharing arrangements. Population-level food sharing with nonkin leads to the classic pattern of constant low mortality up to sexual maturity and no postreproductive survival. [Lee, Ronald] Univ Calif Berkeley, Dept Demog, Berkeley, CA 94720 USA; [Lee, Ronald] Univ Calif Berkeley, Dept Econ, Berkeley, CA 94720 USA Lee, R (reprint author), Univ Calif Berkeley, Dept Demog, 2232 Piedmont Ave, Berkeley, CA 94720 USA. rlee@demog.berkeley.edu NIA NIH HHS [P01 AG022500] Beise J., 2005, GRANDMOTHERHOOD EVOL, P215; Bengtsson T, 2004, LIFE UNDER PRESSURE; Binford L. R., 2001, CONSTRUCTING FRAMES; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Chu CYC, 2008, THEOR POPUL BIOL, V73, P171, DOI 10.1016/j.tpb.2007.11.005; Chu CYC, 2006, THEOR POPUL BIOL, V69, P193, DOI 10.1016/j.tpb.2005.11.004; Eyre-Walker A, 1999, NATURE, V397, P344, DOI 10.1038/16915; FISHER R. A., 1930, GENETICAL THEORY NAT; Gordo I, 2000, GENETICS, V154, P1379; Gurven M, 2004, BEHAV BRAIN SCI, V27, P543; GURVEN M, 2007, POPUL DEV REV, V33, P1; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hawkes K., 2005, GRANDMOTHERHOOD EVOL, P118, DOI DOI 10.1007/S12110-010-9098-9; Hrdy SB, 2005, GRANDMOTHERHOOD EVOL, P295; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; Kaplan HS, 2002, P NATL ACAD SCI USA, V99, P10221, DOI 10.1073/pnas.152502899; Kaplan HS, 2005, MORAL SENTIMENTS MAT, P75; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; Lee R, 2000, SHARING WEALTH DEMOG, P17; Lee RD, 2003, P NATL ACAD SCI USA, V100, P9637, DOI 10.1073/pnas.1530303100; LEE RD, 1997, ZEUS SALMON BIODEMOG, P212; Lee R, 2006, HIST METHOD, V39, P171; Mace R, 2005, GRANDMOTHERHOOD EVOL, P143; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; Nachman MW, 2000, GENETICS, V156, P297; Packer C, 2001, SEX AND LONGEVITY: SEXUALITY, GENDER, REPRODUCTION, PARENTHOOD, P91; Pavard S, 2007, EVOLUTION, V61, P1153, DOI 10.1111/j.1558-5646.2007.00086.x; R Development Core Team, 2008, LANG ENV STAT COMP; Robson AJ, 2003, AM ECON REV, V93, P150, DOI 10.1257/000282803321455205; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 31 42 43 0 13 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. MAY 20 2008 105 20 7124 7128 10.1073/pnas.0710234105 5 Multidisciplinary Sciences Science & Technology - Other Topics 305FJ WOS:000256162900006 18458325 Green Published, Bronze 2018-11-12 J Lutermann, H; Bennett, NC Lutermann, H.; Bennett, N. C. Strong immune function: a benefit promoting the evolution of sociality? JOURNAL OF ZOOLOGY English Article cost of reproduction; immune function; survival; mole-rat; Cryptomys; cooperative breeding SYMPATHETIC NERVOUS-SYSTEM; NAKED MOLE-RAT; HETEROCEPHALUS-GLABER; CRYPTOMYS-HOTTENTOTUS; CAPTIVE COLONIES; SEASONAL-CHANGES; SEXUAL-ACTIVITY; SPLEEN SIZE; BODY-FAT; REPRODUCTION Life-history theory suggests that breeding effort leads to lowered subsequent fecundity and survival. Immunity is a major physiological mechanism regulating survival and trade-offs between reproductive effort and immune function may be expected. In cooperatively breeding species, breeders may benefit from non-breeders that perform energetically costly tasks by increased survival. However, this has never been related to immune function. In mammals trade-offs between reproductive effort and immune function are likely to be mediated through energy that can be stored in adipose tissue. We compared fat mass and immune function measured as spleen mass between breeders and non-breeders and among the sexes in cooperatively breeding Natal mole-rats Cryptomys hottentotus natalensis. Assuming that larger spleen size indicates a stronger immune function, we hypothesized that reproductive effort leads to reduced energy stores and thus smaller spleen mass in breeders and expected females to have a larger fat and spleen mass than males. We could establish a relationship between energy stores and spleen mass but found the expected sex-specific difference only in breeders. Spleen mass was similar between breeders and non-breeders. The energy cost of reproduction may be compensated for by the contribution of non-breeders in this cooperative breeder. We suggest that non-breeders reduce work loads for breeders and thereby allow breeders a higher investment in immune function that may result in improved survival. This could also explain increased survival in mole-rats and possibly other cooperative vertebrates. [Lutermann, H.; Bennett, N. C.] Univ Pretoria, Dept Zool & Entomol, ZA-0002 Pretoria, South Africa Lutermann, H (reprint author), Univ Pretoria, Dept Zool & Entomol, ZA-0002 Pretoria, South Africa. hlutermann@zoology.up.ac.za Bennett, Nigel/E-4238-2010; Lutermann, Heike/A-4692-2008 Bennett, Nigel/0000-0001-9748-2947; Lutermann, Heike/0000-0002-7521-2302 Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; Arnold KE, 1998, P ROY SOC B-BIOL SCI, V265, P739, DOI 10.1098/rspb.1998.0355; Bachman GC, 2003, J EXP BIOL, V206, P2373, DOI 10.1242/jeb.00467; Bartness TJ, 2002, EXP BIOL MED, V227, P363; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; BENNETT NC, 1993, Z SAUGETIERKD, V58, P362; Bennett NC, 2000, AFRICAN MOLE RATS EC; Bishop JM, 2004, MOL ECOL, V13, P1217, DOI 10.1111/j.1365-294X.2004.02131.x; Burland TM, 2004, MOL ECOL, V13, P2371, DOI 10.1111/j.1365-294X.2004.02233.x; Clarke FM, 1997, P ROY SOC B-BIOL SCI, V264, P993, DOI 10.1098/rspb.1997.0137; Clarke FM, 1998, P ROY SOC B-BIOL SCI, V265, P1391, DOI 10.1098/rspb.1998.0447; Clutton-Brock TH, 1998, P ROY SOC B-BIOL SCI, V265, P185, DOI 10.1098/rspb.1998.0281; CRICK HQP, 1992, IBIS, V134, P56, DOI 10.1111/j.1474-919X.1992.tb07230.x; Dammann P, 2006, CURR BIOL, V16, pR117, DOI 10.1016/j.cub.2006.02.012; Demas GE, 2005, P ROY SOC B-BIOL SCI, V272, P1845, DOI 10.1098/rspb.2005.3126; Demas GE, 2003, P ROY SOC B-BIOL SCI, V270, P905, DOI 10.1098/rspb.2003.2341; Fernandez-Llario P, 2004, EUR J WILDLIFE RES, V50, P13, DOI 10.1007/s10344-003-0028-6; Gabathuler U, 1996, J ZOOL, V240, P221, DOI 10.1111/j.1469-7998.1996.tb05281.x; Hanssen SA, 2003, OECOLOGIA, V136, P457, DOI 10.1007/s00442-003-1282-8; Hatchwell BJ, 1999, AM NAT, V154, P205, DOI 10.1086/303227; HICKMAN GC, 1979, Z SAUGETIERKD, V44, P153; JOHN JL, 1994, Q REV BIOL, V69, P327, DOI 10.1086/418649; Klein SL, 1999, REV REPROD, V4, P168; KOTZE J, IN PRESS PHYSL BEHAV; Kristan DM, 2004, J EXP BIOL, V207, P2351, DOI 10.1242/jeb.01020; Li FH, 2007, PHYSIOL BEHAV, V90, P490, DOI 10.1016/j.physbeh.2006.10.009; LOVEGROVE BG, 1989, PHYSIOL ZOOL, V62, P449, DOI 10.1086/physzool.62.2.30156179; McKean KA, 2001, P NATL ACAD SCI USA, V98, P7904, DOI 10.1073/pnas.131216398; Nelson RJ, 1996, Q REV BIOL, V71, P511, DOI 10.1086/419555; Niewiarowski PH, 2001, AM NAT, V157, P421, DOI 10.1086/319321; Okamoto S, 2000, BRAIN RES, V855, P192, DOI 10.1016/S0006-8993(99)02409-9; PERRET M, 1998, J MAMMAL, V59, P41; Rabenold K.N., 1990, COOPERATIVE BREEDING, P159; Rogowitz GL, 1996, AM ZOOL, V36, P197; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Russell Andrew F., 2004, P210, DOI 10.1017/CBO9780511606816.014; Scantlebury M, 2006, NATURE, V440, P795, DOI 10.1038/nature04578; Schwanz LE, 2006, J EXP BIOL, V209, P5029, DOI 10.1242/jeb.02601; Sherman PW, 2002, J ZOOL, V258, P307, DOI 10.1017/S0952836902001437; Solomon N.G., 1997, COOPERATIVE BREEDING; Stearns S. C., 1992, EVOLUTION LIFE HIST; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Vicente J, 2007, NATURWISSENSCHAFTEN, V94, P581, DOI 10.1007/s00114-007-0231-5 43 10 10 0 3 BLACKWELL PUBLISHING OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND 0952-8369 J ZOOL J. Zool. MAY 2008 275 1 26 32 10.1111/j.1469-7998.2007.00403.x 7 Zoology Zoology 300PZ WOS:000255839000004 2018-11-12 J Cvorovic, J; Rushton, JP; Tenjevic, L Cvorovic, Jelena; Rushton, J. Philippe; Tenjevic, Lazar Maternal IQ and child mortality in 222 Serbian Roma (Gypsy) women PERSONALITY AND INDIVIDUAL DIFFERENCES English Article gypsies; longevity; intelligence; life-history theory; evolutionary psychology REPRODUCTIVE STRATEGIES; LIFE-HISTORY; BRAIN SIZE; INTELLIGENCE; RISK; POPULATION; ABILITY; HEALTH A significant negative correlation (r = -0.26) is found between maternal IQ measured by the Raven's Matrices and child mortality in 222 Serbian Roma (Gypsy) women. Statistical adjustments for schooling, age, religion, number of marriages, age at first reproduction, and birth spacing did not remove the correlation. Indeed, maternal schooling had no association with child mortality after controlling for IQ. We suggest that in addition to cognitively mediated self-management, an explanation for the relationship may lie in a cross-species life-history theory in which IQ scores are linked to brain size and a robust constitution. (C) 2008 Published by Elsevier Ltd. [Rushton, J. Philippe] Univ Western Ontario, London, ON, Canada; [Cvorovic, Jelena] Serbian Acad Sci, Belgrade, Serbia; [Tenjevic, Lazar] Belgrade Univ Philosophy, Belgrade, Serbia Rushton, JP (reprint author), Univ Western Ontario, London, ON, Canada. rushton@uwo.ca ANDERSON B, 1993, NEUROSCI LETT, V153, P98, DOI 10.1016/0304-3940(93)90086-Z; Batty GD, 2007, ANN EPIDEMIOL, V17, P278, DOI 10.1016/j.annepidem.2006.07.010; Bereczkei T, 1997, P ROY SOC B-BIOL SCI, V264, P17, DOI 10.1098/rspb.1997.0003; CRAMER JC, 1987, DEMOGRAPHY, V24, P299, DOI 10.2307/2061300; Cvorovic J, 2004, POPUL ENVIRON, V25, P217; Deary IJ, 2004, J PERS SOC PSYCHOL, V86, P130, DOI 10.1037/0022-3514.86.1.130; Dunbar RIM, 2007, PHILOS T R SOC B, V362, P649, DOI 10.1098/rstb.2006.2001; Gottfredson LS, 2004, J PERS SOC PSYCHOL, V86, P174, DOI 10.1037/0022-3514.86.1.174; Hemmingsson T, 2006, INT J EPIDEMIOL, V35, P665, DOI 10.1093/ije/dyi321; Kanazawa S, 2006, BRIT J HEALTH PSYCH, V11, P623, DOI 10.1348/135910705X69842; Lynn R, 2006, IQ GLOBAL INEQUALITY; Maller J. B., 1933, HUM BIOL, V5, P94; Mortimer JA, 2003, J CLIN EXP NEUROPSYC, V25, P671, DOI 10.1076/jcen.25.5.671.14584; OTOOLE BI, 1992, PERS INDIV DIFFER, V13, P699, DOI 10.1016/0191-8869(92)90241-G; Oxfam and Belgrade Institute for Health Protection, 2003, ROM HLTH; PETROVIC R, 1992, RAZVITAK ROMA JUGOSL, P115; Raven J., 1998, RAVEN MANUAL STANDAR; Rushton J.P, 2007, EVOLUTIONARY COGNITI, P121; Rushton JP, 2007, INTELLIGENCE, V35, P1, DOI 10.1016/j.intell.2006.09.002; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; *SAV CHILDR FUND, 2001, DEN FUT RIGHT ED ROM; Shultz S, 2005, P ROY SOC B-BIOL SCI, V272, P2305, DOI 10.1098/rspb.2005.3250; SMITH BH, 1989, EVOLUTION, V43, P683, DOI 10.1111/j.1558-5646.1989.tb04266.x; TOWNSEND P, 1982, INEQUALITIES HLTH 24 12 12 2 7 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. MAY 2008 44 7 1604 1609 10.1016/j.paid.2008.01.019 6 Psychology, Social Psychology 292MG WOS:000255269600016 2018-11-12 J Blumstein, DT; Moller, AP Blumstein, D. T.; Moller, A. P. Is sociality associated with high longevity in North American birds? BIOLOGY LETTERS English Article cooperative breeding; life-history theory of senescence; longevity; maximum lifespan LIFE-HISTORY; EVOLUTIONARY-THEORIES; SENESCENCE; SELECTION; BEHAVIOR; ECOLOGY; MAMMALS; SIZE; PREY Sociality, as a life-history trait, should be associated with high longevity because complex sociality is characterized by reproductive suppression, delayed breeding, increased care and survival, and some of these traits select for high longevity. We studied the relationship between cooperative parental care (a proxy of complex sociality) and relative maximum lifespan in 257 North American bird species. After controlling for variation in maximum lifespan explained by body mass, sampling effort, latitude, mortality rate, migration distance and age at first reproduction, we found no significant effect of cooperative care on longevity in analyses of species-specific data or phylogenetically independent standardized linear contrasts. Thus, sociality itself is not associated with high longevity. Rather, longevity is correlated with increased body size, survival rate and age of first reproduction. [Blumstein, D. T.] Univ Calif Los Angeles, Dept Ecol & Evolut Biol, Los Angeles, CA 90095 USA; [Moller, A. P.] Univ Paris 06, CNRS, UMR 7103, Lab Parasitol Evolut, F-75252 Paris 05, France Blumstein, DT (reprint author), Univ Calif Los Angeles, Dept Ecol & Evolut Biol, 621 Young Dr S, Los Angeles, CA 90095 USA. marmots@ucla.edu Blumstein, Daniel/B-6199-2012 Blumstein, Daniel/0000-0001-5793-9244 ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; Arnold KE, 1998, P ROY SOC B-BIOL SCI, V265, P739, DOI 10.1098/rspb.1998.0355; AUSTAD SN, 1991, J GERONTOL, V46, pB47, DOI 10.1093/geronj/46.2.B47; Bennett A. F., 2002, EVOLUTIONARY ECOLOGY; Blumstein DT, 1998, BEHAV ECOL, V9, P8; BROWN JL, 1987, HELPING COMMUNAL BRE; Cahan SH, 2002, OIKOS, V96, P206, DOI 10.1034/j.1600-0706.2002.960202.x; Carey JR, 2001, EXP GERONTOL, V36, P713, DOI 10.1016/S0531-5565(00)00237-0; Cockburn A, 2006, P R SOC B, V273, P1375, DOI 10.1098/rspb.2005.3458; Covas R, 2007, P ROY SOC B-BIOL SCI, V274, P1349, DOI 10.1098/rspb.2007.0117; Ebensperger LA, 2006, BEHAV ECOL, V17, P410, DOI 10.1093/beheco/arj048; Gotmark F, 1996, PHILOS T ROY SOC B, V351, P1559, DOI 10.1098/rstb.1996.0141; HOLMES DJ, 1994, J MAMMAL, V75, P224, DOI 10.2307/1382255; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; KOENIG WD, 1992, Q REV BIOL, V67, P111, DOI 10.1086/417552; Krause J, 2002, LIVING GROUPS; Moller AP, 2007, J EVOLUTION BIOL, V20, P750, DOI 10.1111/j.1420-9101.2006.01236.x; Moller AP, 2006, BEHAV ECOL SOCIOBIOL, V60, P227, DOI 10.1007/s00265-006-0160-x; Moller AP, 2006, J EVOLUTION BIOL, V19, P682, DOI 10.1111/j.1420-9101.2005.01065.x; Poole A, 2002, BIRDS N AM; Ricklefs RE, 1998, AM NAT, V152, P24, DOI 10.1086/286147; Varela SAM, 2007, J EVOLUTION BIOL, V20, P1490, DOI 10.1111/j.1420-9101.2007.01334.x; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WILKINSON GS, 2002, AGING CELL, V20, P1474, DOI DOI 10.1046/J.1474-9728.2002.00020.X; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WOLFF JO, 1985, OIKOS, V45, P365, DOI 10.2307/3565572 26 31 31 3 95 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 BIOL LETTERS Biol. Lett. APR 23 2008 4 2 146 148 10.1098/rsbl.2007.0606 3 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 279KD WOS:000254353200002 18182364 Green Published, Bronze 2018-11-12 J De Block, M; Stoks, R De Block, Marjan; Stoks, Robby Compensatory growth and oxidative stress in a damselfly PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article antioxidant enzymes; carry-over costs; damselfly larvae; life-history trade-offs; oxidative stress; rapid growth INCREASED SUSCEPTIBILITY; PHYSIOLOGICAL COSTS; ZEBRA FINCHES; SHORT-TERM; LIFE-SPAN; REPRODUCTION; EXPOSURE; INSECTS; DEFENSE; FITNESS Physiological costs of compensatory growth are poorly understood, yet may be the key components in explaining why growth rates are typically submaximal. Here we tested the hypothesized direct costs of compensatory growth in terms of oxidative stress. We assessed oxidative stress in a study where we generated compensatory growth in body mass by exposing larvae of the damselfly Lestes viridis to a transient starvation period followed by ad libitum food. Compensatory growth in the larval stage was associated with higher oxidative stress (as measured by induction of superoxide dismutase and catalase) in the adult stage. Our results challenge two traditional views of life-history theory. First, they indicate that age and mass at metamorphosis not necessarily completely translate larval stress into adult fitness and that the observed physiological cost may explain hidden carry-over effects. Second, they support the notion that costs of compensatory growth may be associated with free-radical-mediated trade-offs and not necessarily with resource-mediated trade-offs. [De Block, Marjan; Stoks, Robby] Katholieke Univ Leuven, Lab Aquat Ecol & Evolutionary Biol, B-3000 Louvain, Belgium Stoks, R (reprint author), Katholieke Univ Leuven, Lab Aquat Ecol & Evolutionary Biol, Deberiotstr 32, B-3000 Louvain, Belgium. robby.stoks@bio.kuleuven.be Abele D, 1998, COMP BIOCHEM PHYS B, V120, P425, DOI 10.1016/S0305-0491(98)10028-7; AEBI H, 1984, METHOD ENZYMOL, V105, P121; AHMAD S, 1992, BIOCHEM SYST ECOL, V20, P269, DOI 10.1016/0305-1978(92)90040-K; Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Alvarez C, 2007, FUNCT ECOL, V21, P873, DOI 10.1111/j.1365-2435.2007.01300.x; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Blount JD, 2003, P ROY SOC B-BIOL SCI, V270, P1691, DOI 10.1098/rspb.2003.2411; Crescenzo R, 2006, DIABETES, V55, P2286, DOI 10.2337/db06-0312; De Block M, 2005, ECOLOGY, V86, P185, DOI 10.1890/04-0116; Droge W, 2007, AGING CELL, V6, P361, DOI 10.1111/j.1474-9726.2007.00294.x; FELTON GW, 1995, ARCH INSECT BIOCHEM, V29, P187, DOI 10.1002/arch.940290208; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fischer K, 2004, EVOL ECOL, V18, P343, DOI 10.1007/s10682-004-2004-3; Fisher MO, 2006, PLOS BIOL, V4, P1462, DOI 10.1371/journal.pbio.0040251; Korsloot A., 2004, ENV STRESS CELLULAR; Krishnan N, 2006, J INSECT PHYSIOL, V52, P11, DOI 10.1016/j.jinsphys.2005.08.009; LOFT S, 1994, FASEB J, V8, P534; Mangel M, 2005, AM NAT, V166, pE155, DOI 10.1086/444439; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Mittapalli O, 2007, P NATL ACAD SCI USA, V104, P1889, DOI 10.1073/pnas.0604722104; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Roff D. A., 2002, LIFE HIST EVOLUTION; Rojas RR, 1996, CRYOBIOLOGY, V33, P447, DOI 10.1006/cryo.1996.0045; Rollo CD, 2002, EVOL DEV, V4, P55, DOI 10.1046/j.1525-142x.2002.01053.x; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Sandrini JZ, 2006, ENVIRON TOXICOL CHEM, V25, P1337, DOI 10.1897/05-275R.1; STEIDL RJ, 2001, DESIGN ANAL ECOLOGIC, P14; Stoks R, 2006, ECOLOGY, V87, P1566, DOI 10.1890/0012-9658(2006)87[1566:PCOCGI]2.0.CO;2; Stoks R, 2003, ECOLOGY, V84, P3327, DOI 10.1890/02-0696; Verhulst S, 2006, BIOL LETT-UK, V2, P478, DOI 10.1098/rsbl.2006.0496 31 102 104 1 41 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P R SOC B Proc. R. Soc. B-Biol. Sci. APR 7 2008 275 1636 781 785 10.1098/rspb.2007.1515 5 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 262RS WOS:000253166300005 18182373 Bronze, Green Published 2018-11-12 J Walker, RS; Gurven, M; Burger, O; Hamilton, MJ Walker, Robert S.; Gurven, Michael; Burger, Oskar; Hamilton, Marcus J. The trade-off between number and size of offspring in humans and other primates PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article quantity-quality trade-off; Smith-Fretwell model; number and size of offspring; natural-fertility human societies; primate life histories; quarter-power scaling HUMAN LIFE-HISTORY; EVOLUTION; FERTILITY; MAMMALS; GROWTH; POPULATION; ECOLOGY; FITNESS Life-history theory posits a fundamental trade-off between number and size of offspring that structures the variability in parental investment across and within species. We investigate this 'quantity-quality' trade-off across primates and present evidence that a similar trade-off is also found across natural-fertility human societies. Restating the classic Smith-Fretwell model in terms of allometric scaling of resource supply and offspring investment predicts an inverse scaling relation between birth rate and offspring size and a -1/4 power scaling between birth rate and body size. We show that these theoretically predicted relationships, in particular the inverse scaling between number and size of offspring, tend to hold across increasingly finer scales of analyses (i.e. from mammals to primates to apes to humans). The advantage of this approach is that the quantity-quality trade-off in humans is placed into a general framework of parental investment that follows directly from first principles of energetic allocation. [Walker, Robert S.] Max Planck Inst Evolutionary Anthropol, D-04103 Leipzig, Germany; [Gurven, Michael] Univ Calif Santa Barbara, Dept Anthropol, Santa Barbara, CA 93106 USA; [Burger, Oskar; Hamilton, Marcus J.] Univ New Mexico, Dept Anthropol, Albuquerque, NM 87131 USA Walker, RS (reprint author), Max Planck Inst Evolutionary Anthropol, Deutscher Pl 6, D-04103 Leipzig, Germany. robert_walker@eva.mpg.de Burger, Oskar/0000-0002-7552-5851; Gurven, Michael/0000-0002-5661-527X Alvarez HP, 2000, AM J PHYS ANTHROPOL, V113, P435, DOI 10.1002/1096-8644(200011)113:3<435::AID-AJPA11>3.0.CO;2-O; BARRICKMAN NL, J HUM EVOL; BILLEWICZ WZ, 1981, J BIOSOC SCI, V13, P219; BILLINGTON BP, 1948, RECORDS AM AUSTR SCI, V2, P90; Bininda-Emonds ORP, 2007, NATURE, V446, P507, DOI 10.1038/nature05634; Bove RB, 2002, HUM NATURE-INT BIOS, V13, P457, DOI 10.1007/s12110-002-1003-8; BRUSH G, 1983, ANN HUM BIOL, V10, P223, DOI 10.1080/03014468300006391; Cavalli-Sforza LL., 1986, AFRICAN PYGMIES; Charnov EL, 2006, AM NAT, V167, P578, DOI 10.1086/501141; CHARNOV EL, 1995, NATURE, V376, P418, DOI 10.1038/376418a0; Charnov EL, 2001, EVOL ECOL RES, V3, P521; Charnov Eric L., 1993, P1; EARLY JD, 1998, POPULATION DYNAMICS; Ernest SKM, 2003, ECOLOGY, V84, P3402, DOI 10.1890/02-9002; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; GARLAND T, 1993, SYST BIOL, V42, P265, DOI 10.2307/2992464; Gurven M, 2006, P ROY SOC B-BIOL SCI, V273, P835, DOI 10.1098/rspb.2005.3380; Hagen EH, 2006, AM J PHYS ANTHROPOL, V130, P405, DOI 10.1002/ajpa.20272; HAMILTON A, 1981, NATURE NURTURE ABORI; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Howell N., 1979, DEMOGRAPHY DOBE KUNG; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; HURTADO AM, 1987, HUM ECOL, V15, P163; JONES NGB, 1992, AM J PHYS ANTHROPOL, V89, P159, DOI 10.1002/ajpa.1330890204; JONES NGB, 1978, SOC STUDY HUMAN BIOL, V18, P135; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; KAPLAN H, 2000, HUMAN BEHAV ADAPTATI, P283; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; LACK D, 1947, EVOL ANTHROPOL, V89, P302; Lee Phyllis C., 1999, P111, DOI 10.1017/CBO9780511542466.008; Lindenfors P, 2002, J EVOLUTION BIOL, V15, P595, DOI 10.1046/j.1420-9101.2002.00422.x; LITTLE MA, 1983, HUM BIOL, V55, P811; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; MARTIN RD, 1984, S ZOOL SOC LOND, V51, P87; Migliano AB, 2007, P NATL ACAD SCI USA, V104, P20216, DOI 10.1073/pnas.0708024105; Mulder VB, 2000, EVOL HUM BEHAV, V21, P391; NEEL JV, 1975, AM J PHYS ANTHROPOL, V42, P25, DOI 10.1002/ajpa.1330420105; Nunn CL, 2001, EVOL ANTHROPOL, V10, P81, DOI 10.1002/evan.1019; Oftedal O. T., 1984, S ZOOL SOC LOND, V51, P33; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Sato H, 2000, AFR STUD MON, V21, P67, DOI DOI 10.14989/68193; Sear R, 2003, BIODEMOGRAPHY OF HUMAN REPRODUCTION AND FERTILITY, P135; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Smith RJ, 1997, J HUM EVOL, V32, P523, DOI 10.1006/jhev.1996.0122; Stearns S. C., 1992, EVOLUTION LIFE HIST; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510 51 54 54 0 17 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. APR 7 2008 275 1636 827 833 10.1098/rspb.2007.1511 7 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 262RS WOS:000253166300011 18077252 Bronze, Green Published 2018-11-12 J Campos, Z; Magnusson, W; Sanaiotti, T; Coutinho, M Campos, Zilca; Magnusson, William; Sanaiotti, Tania; Coutinho, Marcos Reproductive trade-offs in Caiman crocodilus crocodilus and Caiman crocodilus yacare: implications for size-related management quotas HERPETOLOGICAL JOURNAL English Article breeding females; Caiman crocodilus; life-history; reproduction EVOLUTION; ECOLOGY; ALLIGATOR; LIZARDS; NUMBER; VOLUME; BRAZIL; EGGS Management strategies for crocodilians often include size-selective quotas designed to protect breeding females. However, little is known about among- and within-population variation in size and fecundity in crocodilians. Life-history theory predicts trade-offs between clutch size and egg size. Larger females usually have larger Clutch sizes, and if they also produce larger eggs their contribution to reproductive effort may be greater than the number of eggs they produce. We Studied the relationships among female size and Clutch characteristics for an Amazonian Population of Caiman crocodilus crocodilus between 2001 and 2007, and a Pantanal Population of Caiman crocodilus yacare in 1996. Females in the Amazonian population were smaller, and showed significant differences from the Pantanal Population I-or some relationships. Eggs lost weight during incubation in the Amazonian Population but not in the Pantanal Population. Despite these differences, the effect of egg size accounted for about one quarter of the total effect of female mass on Clutch mass in both populations. Size-selective quotas should take into account that large females produce both more and larger eggs than do small females. However, size distributions of breeding females vary greatly among populations and legal size limits will be more effective if based on data from local populations. [Campos, Zilca; Coutinho, Marcos] EMBRAPA Pantanal, BR-79320900 Corumba, MS, Brazil; [Magnusson, William; Sanaiotti, Tania] INPA CPEC, Manaus, Amazonas, Brazil; [Coutinho, Marcos] IBAMA Ran, Goiania, Go, Brazil Campos, Z (reprint author), EMBRAPA Pantanal, CP 109, BR-79320900 Corumba, MS, Brazil. zilca@cpap.embrapa.br Ballinger R.E., 1983, P241; Brazaitis P, 1998, AMPHIBIA-REPTILIA, V19, P193, DOI 10.1163/156853898X00476; Brazaitis Peter, 1996, Amphibia-Reptilia, V17, P377, DOI 10.1163/156853896X00090; Busack SD, 2001, HERPETOLOGICA, V57, P294; CAMPOS Z, 1995, J TROP ECOL, V11, P353; Campos Z, 2006, HERPETOL J, V16, P123; Caughley G., 1994, WILDLIFE ECOLOGY MAN; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; COTT H. B., 1961, TRANS ZOOL SOC LONDON, V29, P211; Coutinho M, 2001, CROCODILIAN BIOLOGY AND EVOLUTION, P229; CRAWSHAW PG, 1987, THESIS U FLORIDA GAI; DEITZ DC, 1980, COPEIA, P249, DOI 10.2307/1444001; Gorzula S., 1987, P91; *GOV EST AM, 2006, REL GEST 2003 2006; Grace JB, 1998, AM NAT, V152, P151, DOI 10.1086/286156; Graham A., 1968, LAKE RUDOLF CROCODIL; HALL PM, 1987, HERPETOLOGICA, V43, P249; Hines T.C., 1987, P43; Hollands M., 1987, P73; JACOBSEN T, 1989, J ZOOL, V219, P141; JOANEN T, 1989, AM ZOOL, V29, P987; JOANEN T, 1987, WILDLIFE MANAGEMENT, P329; KING RB, 1993, J HERPETOL, V27, P175, DOI 10.2307/1564934; MAGNUSSON WE, 1995, COPEIA, P498; MAGNUSSON WE, 1983, J HERPETOL, V17, P86, DOI 10.2307/1563790; MARITZ MF, 1994, J HERPETOL, V28, P281, DOI 10.2307/1564526; Messel H., 1989, IUCN (International Union for Conservation of Nature and Natural Resources) Publications New Series, P164; Micucci Patricio A., 1995, P81; PACKARD GC, 1987, ECOLOGY, V68, P983, DOI 10.2307/1938369; QUALLS CP, 1995, OECOLOGIA, V103, P73, DOI 10.1007/BF00328427; QUEREJAZU AL, 1999, MANEJO CONSERVACION, P285; SEIGEL RA, 1985, J ANIM ECOL, V54, P497, DOI 10.2307/4494; SEIJAS AE, 1984, GSIIAIT165, P1; Shine R, 2005, ANNU REV ECOL EVOL S, V36, P23, DOI 10.1146/annurev.ecolsys.36.102003.152631; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; Stamps JA, 1998, AM NAT, V152, P470, DOI 10.1086/286183; Staton M.A, 1977, Wildlife Res Rep, V5, P1; THORBJARNARSON JB, 1993, J HERPETOL, V27, P363, DOI 10.2307/1564821; THORBJARNARSON JB, 1994, COPEIA, P907; Turner F.B., 1977, P157; VELASCO A, 2003, INTERCIENCIA, V28, P44; VELASCO A, 1999, MANEJO CONSERVACION, P281; Webb G.J.W., 1987, P199 44 11 11 0 3 BRITISH HERPETOL SOC LONDON C/O ZOOL SOC LONDON REGENTS PARK, LONDON NW1 4RY, ENGLAND 0268-0130 HERPETOL J Herpetolog. J. APR 2008 18 2 91 96 6 Zoology Zoology 440VT WOS:000265728500004 2018-11-12 J Robson, SL; Wood, B Robson, Shannen L.; Wood, Bernard Hominin life history: reconstruction and evolution JOURNAL OF ANATOMY English Article; Proceedings Paper Symposium on Human Evolution 2007 St Annes Coll, Oxford, ENGLAND St Annes Coll dentition; encephalization; evolution; growth and development; hominin life history SOUTH-AFRICAN AUSTRALOPITHECINES; GORILLA-GORILLA-GORILLA; CROSS-SECTIONAL GROWTH; RELATIVE BRAIN SIZE; HOMO-ERECTUS; DENTAL DEVELOPMENT; BODY-MASS; FOSSIL HOMINIDS; MODERN HUMANS; LAKE TURKANA In this review we attempt to reconstruct the evolutionary history of hominin life history from extant and fossil evidence. We utilize demographic life history theory and distinguish life history variables, traits such as weaning, age at sexual maturity, and life span, from life history-related variables such as body mass, brain growth, and dental development. The latter are either linked with, or can be used to make inferences about, life history, thus providing an opportunity for estimating life history parameters in fossil taxa. We compare the life history variables of modern great apes and identify traits that are likely to be shared by the last common ancestor of Pan-Homo and those likely to be derived in hominins. All great apes exhibit slow life histories and we infer this to be true of the last common ancestor of Pan-Homo and the stem hominin. Modern human life histories are even slower, exhibiting distinctively long post-menopausal life spans and later ages at maturity, pointing to a reduction in adult mortality since the Pan-Homo split. We suggest that lower adult mortality, distinctively short interbirth intervals, and early weaning characteristic of modern humans are derived features resulting from cooperative breeding. We evaluate the fidelity of three life history-related variables, body mass, brain growth and dental development, with the life history parameters of living great apes. We found that body mass is the best predictor of great ape life history events. Brain growth trajectories and dental development and eruption are weakly related proxies and inferences from them should be made with caution. We evaluate the evidence of life history-related variables available for extinct species and find that prior to the transitional hominins there is no evidence of any hominin taxon possessing a body size, brain size or aspects of dental development much different from what we assume to be the primitive life history pattern for the Pan-Homo clade. Data for life history-related variables among the transitional hominin grade are consistent and none agrees with a modern human pattern. Aside from mean body mass, adult brain size, crown and root formation times, and the timing and sequence of dental eruption of Homo erectus are inconsistent with that of modern humans. Homo antecessor fossil material suggests a brain size similar to that of Homo erectus s. s., and crown formation times that are not yet modern, though there is some evidence of modern human-like timing of tooth formation and eruption. The body sizes, brain sizes, and dental development of Homo heidelbergensis and Homo neanderthalensis are consistent with a modern human life history but samples are too small to be certain that they have life histories within the modern human range. As more life history-related variable information for hominin species accumulates we are discovering that they can also have distinctive life histories that do not conform to any living model. At least one extinct hominin subclade, Paranthropus, has a pattern of dental life history-related variables that most likely set it apart from the life histories of both modern humans and chimpanzees. [Robson, Shannen L.] Univ Utah, Dept Anthropol, Salt Lake City, UT 84112 USA; [Wood, Bernard] George Washington Univ, Dept Anthropol, Ctr Adv Study Hominid Paleobiol, Washington, DC USA Robson, SL (reprint author), Univ Utah, Dept Anthropol, 270 S 1400 E Room 102, Salt Lake City, UT 84112 USA. robson@umnh.utah.edu Aiello L., 1990, INTRO HUMAN EVOLUTIO; AIELLO LC, 1994, AM J PHYS ANTHROPOL, V95, P409, DOI 10.1002/ajpa.1330950405; Alemseged Z, 2006, NATURE, V443, P296, DOI 10.1038/nature05047; Alvarez HP, 2000, AM J PHYS ANTHROPOL, V113, P435, DOI 10.1002/1096-8644(200011)113:3<435::AID-AJPA11>3.0.CO;2-O; Anemone RL, 2002, HUMAN EVOLUTION THROUGH DEVELOPMENTAL CHANGE, P249; Anton SC, 2003, YEARB PHYS ANTHROPOL, V46, P126, DOI 10.1002/ajpa.10399; Anton SC, 2002, AM J PHYS ANTHROPOL, V118, P301, DOI 10.1002/ajpa.10091; Anton SC, 1997, AM J PHYS ANTHROPOL, V102, P497, DOI 10.1002/(SICI)1096-8644(199704)102:4<497::AID-AJPA6>3.0.CO;2-P; Arsuaga JL, 1999, NATURE, V399, P255, DOI 10.1038/20430; Arsuaga JL, 1997, J HUM EVOL, V33, P219, DOI 10.1006/jhev.1997.0133; Ascenzi A, 2000, J HUM EVOL, V39, P443, DOI 10.1006/jhev.2000.0425; Asfaw B, 1999, SCIENCE, V284, P629, DOI 10.1126/science.284.5414.629; Asfaw B, 2002, NATURE, V416, P317, DOI 10.1038/416317a; Atsalis S, 2006, INT J PRIMATOL, V27, P1663, DOI 10.1007/s10764-006-9097-1; Baba H, 2003, SCIENCE, V299, P1384, DOI 10.1126/science.1081676; Becquet C, 2007, PLOS GENET, V3, DOI 10.1371/journal.pgen.0030066; Begun David, 1993, P326; Bentley GR, 1999, EVOL ANTHROPOL, V7, P175; Bermudez De Castro J. M., 1997, Science (Washington D C), V276, P1392, DOI 10.1126/science.276.5317.1392; BEYNON AD, 1987, ARCH ORAL BIOL, V32, P773, DOI 10.1016/0003-9969(87)90002-1; BEYNON AD, 1987, NATURE, V326, P493, DOI 10.1038/326493a0; BLURTON J, 1999, COMP PRIMATE SOCIOEC, P140; BLURTON JNG, 2002, AM J HUM BIOL, V14, P184; BLURTON JNG, 2002, HUM NATURE, V13, P199; BLURTON JNG, 2006, EVOLUTION HUMAN LIFE, P231; Boesch C., 2000, CHIMPANZEES TAI FORE; Bogin B., 1999, PATTERNS HUMAN GROWT; BONGAARTS J, 1983, FERTILITY BIOL BEHAV; Bradley BJ, 2008, J ANAT, V212, P337, DOI 10.1111/j.1469-7580.2007.00840.x; Brauer G., 1984, P327; Brewer Marsden Stella, 2006, International Journal of Primatology, V27, P391; BROMAGE TG, 1985, NATURE, V317, P525, DOI 10.1038/317525a0; BROMAGE TG, 1987, J HUM EVOL, V16, P257, DOI 10.1016/0047-2484(87)90002-9; BROOM R, 1948, NATURE, V161, P438, DOI 10.1038/161438a0; BROWN B, 1993, AM J PHYS ANTHROPOL, V91, P137, DOI 10.1002/ajpa.1330910202; Brown P, 2004, NATURE, V431, P1055, DOI 10.1038/nature02999; CABANA T, 1993, AM J HUM BIOL, V5, P93, DOI 10.1002/ajhb.1310050113; CHAMBERLAIN AT, 1987, J HUM EVOL, V16, P119, DOI 10.1016/0047-2484(87)90063-7; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; CHIU C-L, 1973, Vertebrata Palasiatica, V11, P109; Clegg M, 1999, AM J PHYS ANTHROPOL, V110, P81, DOI 10.1002/(SICI)1096-8644(199909)110:1<81::AID-AJPA7>3.3.CO;2-K; Cohen AA, 2004, BIOL REV, V79, P733, DOI 10.1017/S1464793103006432; Collard M, 2000, P NATL ACAD SCI USA, V97, P5003, DOI 10.1073/pnas.97.9.5003; CONKLINBRITTAIN NL, 2001, C P APES CHALLENGES, P167; Conroy GC, 2000, AM J PHYS ANTHROPOL, V113, P111; CONROY GC, 1991, AM J PHYS ANTHROPOL, V86, P137, DOI 10.1002/ajpa.1330860205; CONROY GC, 1991, AM J PHYS ANTHROPOL, V86, P121, DOI 10.1002/ajpa.1330860204; CONROY GC, 1987, NATURE, V329, P625, DOI 10.1038/329625a0; Coqueugniot H, 2004, NATURE, V431, P299, DOI 10.1038/nature02852; Corruccini R. S., 1994, INTEGRATIVE PATHS PA, P167; Crompton RH, 2008, J ANAT, V212, P501, DOI 10.1111/j.1469-7580.2008.00870.x; Day M. H., 1986, GUIDE FOSSIL MAN; de Villiers H., 1973, ANN TRANSVAAL MUS, V28, P229; de Waal Frans, 1997, BONOBO FORGOTTEN APE; Dean C, 2000, J ANAT, V197, P77, DOI 10.1046/j.1469-7580.2000.19710077.x; Dean C, 2001, NATURE, V414, P628, DOI 10.1038/414628a; Dean C, 2007, P NATL ACAD SCI USA, V104, P6093, DOI 10.1073/pnas.0701317104; Dean MC, 2006, P ROY SOC B-BIOL SCI, V273, P2799, DOI 10.1098/rspb.2006.3583; DEAN MC, 1987, J HUM EVOL, V16, P197, DOI 10.1016/0047-2484(87)90076-5; DEAN MC, 1993, AM J PHYS ANTHROPOL, V91, P401, DOI 10.1002/ajpa.1330910402; Dean MC, 1998, ARCH ORAL BIOL, V43, P1009, DOI 10.1016/S0003-9969(98)00069-7; DEAN MC, 1981, FOLIA PRIMATOL, V36, P111, DOI 10.1159/000156011; DEAN MC, 1995, P 10 INT S DENT MORP, P308; Dean MC, 1995, STRUCTURE FUNCTION E, P239; Deaner Robert O., 2003, P233; DECASTRO B, 2003, PATTERNS GROWTH DEV, P246; DEKABAN AS, 1978, ANN NEUROL, V4, P345, DOI 10.1002/ana.410040410; Delson E., 2000, ENCY HUMAN EVOLUTION; Derousseau C. Jean, 1994, P127; Dienske H., 1986, P147; Dufour DL, 2002, AM J HUM BIOL, V14, P584, DOI 10.1002/ajhb.10071; Elton S, 2001, J HUM EVOL, V41, P1, DOI 10.1006/jhev.2001.0475; Erwin JM, 2002, INTERD TOP GERONTOL, V31, P1; Falk D, 2000, J HUM EVOL, V38, P695, DOI 10.1006/jhev.1999.0378; Finch CE, 2004, Q REV BIOL, V79, P3, DOI 10.1086/381662; FINCH CE, 2003, BRAIN LONGEVITY, P36; Fischer A, 2006, CURR BIOL, V16, P1133, DOI 10.1016/j.cub.2006.04.033; FitzGerald CM, 1998, J HUM EVOL, V35, P371, DOI 10.1006/jhev.1998.0232; FLETCHER A, 2001, MOUNTAIN GORILLAS 3, P153; FOMON SJ, 1982, AM J CLIN NUTR, V35, P1169, DOI 10.1093/ajcn/35.5.1169; Gabunia L, 2000, SCIENCE, V288, P1019, DOI 10.1126/science.288.5468.1019; GARN SM, 1973, ARCH ORAL BIOL, V18, P609, DOI 10.1016/0003-9969(73)90099-X; Glazko GV, 2003, MOL BIOL EVOL, V20, P424, DOI 10.1093/molbev/msg050; Godfrey Laurie R., 2003, P177; Goodall J, 1986, CHIMPANZEES GOMBE; GOSDEN RG, 1985, BIOL MENOPAUSE CAUSE; GOULD KG, 1981, MATURITAS, V3, P157, DOI 10.1016/0378-5122(81)90007-4; Grimaud-Herve D, 1997, EVOLUTION ENCEPHALE; Groves C. P., 2001, PRIMATE TAXONOMY; Groves CP, 2003, CAM S BIO EVOL ANTHR, V35, P15; Grundy E, 2005, SOC SCI MED, V61, P217, DOI 10.1016/j.socscimed.2004.11.046; Guatelli-Steinberg D, 2005, P NATL ACAD SCI USA, V102, P14197, DOI 10.1073/pnas.0503108102; Guatelli-Steinberg D, 2007, J HUM EVOL, V53, P114, DOI 10.1016/j.jhevol.2007.03.005; Haig D, 1999, EVOLUTION IN HEALTH AND DISEASE, P77; Haile-Selassie Y, 2004, SCIENCE, V303, P1503, DOI 10.1126/science.1092978; Harcourt A. H., 2007, GORILLA SOC CONFLICT; HARTWIG WC, 2002, PRIMATE FOSSIL RECOR; Harvey P.H., 1989, Oxford Surveys in Evolutionary Biology, V6, P13; Harvey P.H., 1987, P181; HARVEY P. H., 1988, EVOLUTION LIFE HIST, P213; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; Hawkes K, 2003, AM J HUM BIOL, V15, P380, DOI 10.1002/ajhb.10156; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hawkes K., 2005, GRANDMOTHERHOOD EVOL, P118, DOI DOI 10.1007/S12110-010-9098-9; Hawkes K, 2006, SCH AM RES, P95; Hawkes K, 2006, SCH AM RES, P45; Helle S, 2005, P ROY SOC B-BIOL SCI, V272, P29, DOI 10.1098/rspb.2004.2944; HENRY AG, 2007, EVOLUTION HUMAN DIET, P11; Herndon JG, 1999, J COMP NEUROL, V409, P567; HILL K, 2001, J HUM EVOL, V39, P1; HOFMAN MA, 1984, J HUM EVOL, V13, P371, DOI 10.1016/S0047-2484(84)80052-4; HOLLOWAY R, 1983, CANADIAN J ANTHR, V3, P215; Holloway R L, 1983, Hum Neurobiol, V2, P105; Holloway R.L., 1988, P97; HOLLOWAY RL, 1981, AM J PHYS ANTHROPOL, V55, P385, DOI 10.1002/ajpa.1330550312; HOLLOWAY RL, 1981, AM J PHYS ANTHROPOL, V55, P503, DOI 10.1002/ajpa.1330550412; HOLMAN DJ, 2001, REPROD ECOLOGY HUMAN, P15; Howell N., 1979, DEMOGRAPHY DOBE KUNG; Humphrey LT, 2007, VERTEBR PALEOBIOL PA, P303, DOI 10.1007/978-1-4020-5845-5_21; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Janson Charles H., 1993, P57; Jenike MR, 2001, BIOSOCIAL S, V13, P205; JOLICOEUR P, 1988, GROWTH DEVELOP AGING, V52, P201; Jolly CJ, 2001, YEARB PHYS ANTHROPOL, V44, P177, DOI 10.1002/ajpa.10021; Jones KP, 2007, BIOL REPROD, V77, P247, DOI 10.1095/biolreprod.106.059634; Judge DS, 2000, J GERONTOL A-BIOL, V55, pB201, DOI 10.1093/gerona/55.4.B201; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kappeler P. M., 2003, PRIMATE LIFE HIST SO; Kappelman J, 1996, J HUM EVOL, V30, P243, DOI 10.1006/jhev.1996.0021; Kelley J, 2005, AM J PHYS ANTHROPOL, P128; Kelley J, 2002, HUMAN EVOLUTION THROUGH DEVELOPMENTAL CHANGE, P223; Kelley Jay, 2004, P280, DOI 10.1017/CBO9780511542299.019; Kennedy GE, 2005, J HUM EVOL, V48, P123, DOI 10.1016/j.jhevol.2004.09.005; Kimbel WH, 2004, SKULL AUSTRALOPITHEC; KNOTT CD, 2001, REPROD ECOLOGY HUMAN, P429; Korpelainen H, 2000, P ROY SOC B-BIOL SCI, V267, P1765, DOI 10.1098/rspb.2000.1208; Korpelainen H, 2003, AM J PHYS ANTHROPOL, V120, P384, DOI 10.1002/ajpa.10191; KRETSCHMANN HJ, 1979, J NEUROL SCI, V40, P169, DOI 10.1016/0022-510X(79)90202-8; Kuroda S., 1989, P184; Kuykendall KL, 2002, HUMAN EVOLUTION THROUGH DEVELOPMENTAL CHANGE, P281; KUYKENDALL KL, 2003, PATTERNS GROWTH DEV, P191; Kuzawa CW, 1998, YEARB PHYS ANTHROPOL, V41, P177; Leakey MG, 2003, AM J PHYS ANTHROPOL, P136; LEAKEY MG, 1995, NATURE, V376, P565, DOI 10.1038/376565a0; LEBOURG E, 1993, EXP GERONTOL, V28, P217, DOI 10.1016/0531-5565(93)90030-H; LEE PC, 1991, J ZOOL, V225, P99, DOI 10.1111/j.1469-7998.1991.tb03804.x; Lee R. B., 1968, MAN HUNTER, P30; Leigh SR, 2004, AM J PRIMATOL, V62, P139, DOI 10.1002/ajp.20012; Leigh SR, 2001, EVOL ANTHROPOL, V10, P223, DOI 10.1002/evan.20002; LEIGH SR, 1994, AM J PHYS ANTHROPOL, V94, P499, DOI 10.1002/ajpa.1330940406; Liversidge H., 2003, PATTERNS GROWTH DEV, P73; Lockwood CA, 1996, J HUM EVOL, V31, P537, DOI 10.1006/jhev.1996.0078; Lockwood CA, 2007, SCIENCE, V318, P1443, DOI 10.1126/science.1149211; Low BS, 2002, AM J HUM BIOL, V14, P149, DOI 10.1002/ajhb.10043; Lucas PW, 2008, J ANAT, V212, P486, DOI 10.1111/j.1469-7580.2008.00877.x; Macchiarelli R, 2006, NATURE, V444, P748, DOI 10.1038/nature05314; Macho GA, 2001, AM J PRIMATOL, V55, P189, DOI 10.1002/ajp.1054; Macho Gabriele A., 1995, Evolutionary Anthropology, V4, P17, DOI 10.1002/evan.1360040105; MACHWATE M, 1995, J CELL BIOCHEM, V57, P62, DOI 10.1002/jcb.240570108; Malenky Richard K., 1994, P59; MANN A, 1990, YEARB PHYS ANTHROPOL, V33, P111; MARCHAND F, 2002, UEBER HIRNGEWICHT ME; Markham R, 1995, NEGLECTED APE, P273; Marquez S, 2001, ANAT REC, V262, P344, DOI 10.1002/ar.1046; Martin J. A., 2003, NATL VITAL STAT REPO, V52; MARTIN RD, 1981, NATURE, V293, P57, DOI 10.1038/293057a0; MARTIN RD, 1983, 52 J ARTH LECT EV HU; MCHENRY HM, 1992, AM J PHYS ANTHROPOL, V87, P407, DOI 10.1002/ajpa.1330870404; MCHENRY HM, 1994, J HUM EVOL, V27, P77, DOI 10.1006/jhev.1994.1036; McHenry HM, 2000, ANNU REV ANTHROPOL, V29, P125, DOI 10.1146/annurev.anthro.29.1.125; Moggi-Cecchi J, 1998, AM J PHYS ANTHROPOL, V106, P425, DOI 10.1002/(SICI)1096-8644(199808)106:4<425::AID-AJPA2>3.0.CO;2-I; Moore Jim, 1996, P275, DOI 10.1017/CBO9780511752414.022; MOORREES COENRAAD F.A., 1963, JOUR DENT RES, V42, P1490, DOI 10.1177/00220345630420062701; Morwood MJ, 2004, NATURE, V431, P1087, DOI 10.1038/nature02956; Mowbray K, 2000, AM J PHYS ANTHROPOL, P233; Muller HG, 2002, J GERONTOL A-BIOL, V57, pB202, DOI 10.1093/gerona/57.5.B202; Nishida T, 2003, AM J PRIMATOL, V59, P99, DOI 10.1002/ajp.10068; Nishida T., 1990, P63; NISSEN HW, 1964, AM J PHYS ANTHROPOL, V22, P285, DOI 10.1002/ajpa.1330220315; Nowell AA, 2007, INT J PRIMATOL, V28, P441, DOI 10.1007/s10764-007-9128-6; NOZAKI M, 1995, BIOL REPROD, V52, P1250, DOI 10.1095/biolreprod52.6.1250; O'Connell JF, 1999, J HUM EVOL, V36, P461, DOI 10.1006/jhev.1998.0285; O'Connor KA, 2001, AM J HUM BIOL, V13, P465, DOI 10.1002/ajhb.1078; Pettay JE, 2005, P NATL ACAD SCI USA, V102, P2838, DOI 10.1073/pnas.0406709102; Plavcan JM, 1997, AM J PHYS ANTHROPOL, V103, P37, DOI 10.1002/(SICI)1096-8644(199705)103:1<37::AID-AJPA4>3.0.CO;2-A; PURVIS A, 1995, J ZOOL, V237, P259, DOI 10.1111/j.1469-7998.1995.tb02762.x; RAMIREZROZZI FV, 2007, DENT PERSPECTIVES HU, P63; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; Reid DJ, 2006, J HUM EVOL, V50, P329, DOI 10.1016/j.jhevol.2005.09.003; Reid DJ, 1998, J HUM EVOL, V35, P427, DOI 10.1006/jhev.1998.0248; Reno PL, 2003, P NATL ACAD SCI USA, V100, P9404, DOI 10.1073/pnas.1133180100; RICHARDSON SJ, 1987, J CLIN ENDOCR METAB, V65, P1231, DOI 10.1210/jcem-65-6-1231; Richmond BG, 2000, NATURE, V404, P382, DOI 10.1038/35006045; Ricklefs RE, 1998, AM NAT, V152, P24, DOI 10.1086/286147; Robine JM, 1998, SCIENCE, V279, P1834; Robson SL, 2006, SCH AM RES, P17; ROSENBERG KR, 1999, AM J PHYS ANTHR S, V28, P235; Rozzi FVR, 2004, NATURE, V428, P936, DOI 10.1038/nature02428; Ruff CB, 1997, NATURE, V387, P173, DOI 10.1038/387173a0; SACHER GA, 1959, LIFESPAN ANIMALS, P115; SACHER GA, 1975, PRIMATE FUNCTIONAL M, P418; Schmitt D, 2003, J EXP BIOL, V206, P1437, DOI 10.1242/jeb.00279; Schoeninger Margaret J., 2001, P179; Schultz A, 1956, PRIMATOLOGIA, P887; Schultz A.H., 1949, ARCH JULIUS KLAUS ST, V24, P197; Schultz A. H., 1969, THE LIFE OF PRIMATES; Schultz AH, 1941, AM J PHYS ANTHROPOL, V28, P273, DOI 10.1002/ajpa.1330280303; Schwartz Gary T., 2000, P207; Sellen DW, 2001, J NUTR, V131, P2707; SHORT R, 1989, J GERONTOL, V44, pB131, DOI 10.1093/geronj/44.5.B131; Silverman N, 2001, AM J PHYS ANTHROPOL, V115, P167, DOI 10.1002/ajpa.1066; SKELTON RR, 1992, J HUM EVOL, V23, P309, DOI 10.1016/0047-2484(92)90070-P; Skinner MM, 2006, SCH AM RES, P331; Smith B. Holly, 1994, Yearbook of Physical Anthropology, V37, P177; Smith B. Holly, 2000, P212, DOI 10.1017/CBO9780511542626.015; SMITH BH, 1991, AM J PHYS ANTHROPOL, V86, P157, DOI 10.1002/ajpa.1330860206; SMITH BH, 1995, ANNU REV ANTHROPOL, V24, P257, DOI 10.1146/annurev.an.24.100195.001353; SMITH BH, 1989, EVOLUTION, V43, P683, DOI 10.1111/j.1558-5646.1989.tb04266.x; SMITH BH, 1992, EVOL ANTHROPOL, V1, P134, DOI DOI 10.1002/EVAN.1360010406; Smith KR, 2002, SOC BIOL, V49, P185; SMITH RJ, 1995, J HUM EVOL, V29, P155, DOI 10.1006/jhev.1995.1051; Smith RJ, 1996, CURR ANTHROPOL, V37, P451, DOI 10.1086/204505; Smith SL, 2004, AM J PHYS ANTHROPOL, V125, P105, DOI 10.1002/ajpa.10376; Smith TM, 2007, VERTEBR PALEOBIOL PA, P177, DOI 10.1007/978-1-4020-5845-5_12; Smith TM, 2007, J HUM EVOL, V52, P201, DOI 10.1016/j.jhevol.2006.09.004; Smith TM, 2007, P NATL ACAD SCI USA, V104, P20220, DOI 10.1073/pnas.0707051104; Smith TM, 2007, P NATL ACAD SCI USA, V104, P6128, DOI 10.1073/pnas.0700747104; SOUTHGATE DAT, 1976, BIOL HUMAN FETAL GRO, P195; Spocter MA, 2007, AM J PHYS ANTHROPOL, V134, P92, DOI 10.1002/ajpa.20641; Spoor F, 2007, NATURE, V448, P688, DOI 10.1038/nature05986; Stearns S. C., 1992, EVOLUTION LIFE HIST; Strait DS, 2004, J HUM EVOL, V47, P399, DOI 10.1016/j.jhevol.2004.08.008; Strait DS, 1997, J HUM EVOL, V32, P17, DOI 10.1006/jhev.1996.0097; STRAIT DS, 2007, HDB PALEOANTHROPOLOG, V3; STRAIT DS, 2001, LUDUS VITALIS, V9, P17; Stringer C., 1979, B BRIT MUS NAT HIST, V32, P77; Sugiyama Y, 2004, AM J PHYS ANTHROPOL, V124, P154, DOI 10.1002/ajpa.10345; Suwa G, 1997, NATURE, V389, P489, DOI 10.1038/39037; Takahata Yukio, 1996, P146, DOI 10.1017/CBO9780511752414.013; Tardieu C, 1998, AM J PHYS ANTHROPOL, V107, P163; Thalmann OH, 2007, MOL BIOL EVOL, V24, P146, DOI 10.1093/molbev/msl160; Thompson ME, 2007, CURR BIOL, V17, P2150, DOI 10.1016/j.cub.2007.11.033; Thompson-Handler N. E., 1990, THESIS YALE U; THORPE SKS, 2007, NATURE, V316, P1328; Tobias P.V., 1971, BRAIN HOMINID EVOLUT; TRELOAR AE, 1981, MATURITAS, V3, P249, DOI 10.1016/0378-5122(81)90032-3; Tutin C.E.G., 1981, P239; VALLOIS HV, 1972, ANTHROPOLOGIE, V76, P71; van Schaik CP, 2006, SCH AM RES, P127; Van Schaik CP, 2003, ANIMAL SOCIAL COMPLEXITY, P5; Vekua A, 2002, SCIENCE, V297, P85, DOI 10.1126/science.1072953; Vinicius L, 2005, J HUM EVOL, V49, P762, DOI 10.1016/j.jhevol.2005.08.001; Vom Saal Frederick S., 1994, P1213; WALKER A, 1986, NATURE, V322, P517, DOI 10.1038/322517a0; WALKER ML, 1995, AM J PRIMATOL, V35, P59, DOI 10.1002/ajp.1350350106; Walker R, 2003, AM J HUM BIOL, V15, P196, DOI 10.1002/ajhb.10135; Wallis J, 1997, J REPROD FERTIL, V109, P297; Weidenreich F., 1943, Palaeontologia Sinica, VD 10, P1; Westendorp RGJ, 1998, NATURE, V396, P743, DOI 10.1038/25519; Wich SA, 2004, J HUM EVOL, V47, P385, DOI 10.1016/j.jhevol.2004.08.006; WIDDOWSON EM, 1950, NATURE, V166, P626, DOI 10.1038/166626a0; Wildman DE, 2003, P NATL ACAD SCI USA, V100, P7181, DOI 10.1073/pnas.1232172100; WOLPOFF M. H., 1999, PALEOANTHROPOLOGY; Wood B, 2004, ASSEMBLING THE TREE OF LIFE, P517; Wood B, 1999, SCIENCE, V284, P65, DOI 10.1126/science.284.5411.65; Wood B, 1999, EVOL ANTHROPOL, V8, P195, DOI 10.1002/(SICI)1520-6505(1999)8:6<195::AID-EVAN1>3.0.CO;2-2; Wood B, 2000, J ANAT, V197, P19, DOI 10.1046/j.1469-7580.2000.19710019.x; Wood B., 2001, LUDUS VITALIS, VIX, P63; Wood B, 2007, YEARB PHYS ANTHROPOL, V50, P106, DOI 10.1002/ajpa.20732; Wood B, 2008, J ANAT, V212, P354, DOI 10.1111/j.1469-7580.2008.00871.x; WOOD JW, 1994, DYNAMICS HUMAN REPRO; WU R, 1982, ACTA ANTHR SIN, V1, P2; WU XZ, 1981, SCI SINICA, V24, P530; Zhang YW, 2001, J MOL EVOL, V52, P516, DOI 10.1007/s002390010182; Zollikofer CPE, 2005, NATURE, V434, P755, DOI 10.1038/nature03397 277 176 180 4 136 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8782 1469-7580 J ANAT J. Anat. APR 2008 212 4 394 425 10.1111/j.1469-7580.2008.00867.x 32 Anatomy & Morphology Anatomy & Morphology 283CY WOS:000254615400005 18380863 Bronze, Green Published 2018-11-12 J Horak, D; Klvana, P; Albrecht, T Horak, David; Klvana, Petr; Albrecht, Tomas Why there is no negative correlation between egg size and number in the Common Pochard? ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY English Article egg size number trade-off; energy allocation; breeding attempt; birds CLUTCH SIZE; WITHIN-CLUTCH; TRADE-OFFS; INCUBATION; ALLOCATION; REPRODUCTION; TEMPERATURE; PARASITISM; PHENOTYPE; DUCKLINGS Trade-off between offspring size and number belongs to the most discussed concepts in the life history theory. Although it has been frequently described at interspecific level as a negative correlation between egg size and number, it is usually difficult to provide similar evidence at a population level. In congruence with most of previous studies, we did not find any evidence for negative correlation between estimated egg mass and clutch size in the Common Pochard (Aythya ferina). However, the predicted negative relationship appeared after incubation when young with many siblings were on average lighter than conspecifics in nests with fewer young. Such a pattern might be generated by differences in hatching success and energy consumption by developing embryos among particular nests. our data indicate that females which had laid clutches containing many big eggs lost a much larger amount of energy invested and, moreover, produced hatchlings of relatively lower body mass if compared with females having few small eggs. We speculate about variation in energy allocation between two most energy demanding parts of breeding (clutch formation and incubation) and female incubation effort as leading mechanisms. Such a variation might reflect inter-individual differences in reproductive strategy or errors in energy allocation. (c) 2007 Elsevier Masson SAS. All rights reserved. [Horak, David] Charles Univ Prague, Dept Ecol, Fac Sci, CZ-12844 Prague 2, Czech Republic; [Horak, David; Klvana, Petr; Albrecht, Tomas] Charles Univ Prague, Dept Zool, Fac Sci, CZ-12844 Prague, Czech Republic; [Klvana, Petr] Natl Museum, Bird Ringing Ctr, CZ-10200 Prague 10, Czech Republic; [Albrecht, Tomas] Acad Sci Czech Republic, Inst Vertebrate Biol, Dept Avian Ecol, CZ-60365 Brno, Czech Republic Horak, D (reprint author), Charles Univ Prague, Dept Ecol, Fac Sci, Vinicna 7, CZ-12844 Prague 2, Czech Republic. horakd@centrum.cz Albrecht, Tomas/A-1130-2011; Horak, David/A-9364-2010 Horak, David/0000-0002-8073-1617; Albrecht, Tomas/0000-0002-9213-0034 Alisauskas Ray T., 1992, P30; Bernardo J, 1996, AM ZOOL, V36, P216; BLACKBURN TM, 1991, AUK, V108, P209; BLUMS P, 1994, J WILDLIFE MANAGE, V58, P76, DOI 10.2307/3809551; Burnham Kenneth P, 1998, MODEL SELECTION MULT; Christians JK, 2000, FUNCT ECOL, V14, P497, DOI 10.1046/j.1365-2435.2000.00444.x; CRAWLEY MJ, 2003, STAT COMPUTING INTRO; Dugger BD, 2001, AUK, V118, P717, DOI 10.1642/0004-8038(2001)118[0717:EOCBPO]2.0.CO;2; Flint PL, 1996, AUK, V113, P939, DOI 10.2307/4088875; Geffen E, 2001, ANIM BEHAV, V62, P1027, DOI 10.1006/anbe.2001.1855; Gil D, 1999, SCIENCE, V286, P126, DOI 10.1126/science.286.5437.126; Gil D, 2003, ARDEOLA, V50, P281; Groothuis TG, 2002, FUNCT ECOL, V16, P281; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Heaney V, 1996, P ROY SOC B-BIOL SCI, V263, P1719, DOI 10.1098/rspb.1996.0251; Hepp GR, 2006, FUNCT ECOL, V20, P307, DOI 10.1111/j.1365-2435.2006.01108.x; Hobson KA, 2004, FUNCT ECOL, V18, P737, DOI 10.1111/j.0269-8463.2004.00890.x; Horak D, 2007, ACTA ORNITHOL, V42, P33; Horak D, 2007, J FIELD ORNITHOL, V78, P334, DOI 10.1111/j.1557-9263.2007.00116.x; Korschgen CE, 1996, J WILDLIFE MANAGE, V60, P120, DOI 10.2307/3802046; LESSELLS CM, 1989, J EVOLUTION BIOL, V2, P457, DOI 10.1046/j.1420-9101.1989.2060457.x; Lourens A, 2005, POULTRY SCI, V84, P914, DOI 10.1093/ps/84.6.914; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; Nager RG, 2000, ECOLOGY, V81, P1339, DOI 10.2307/177212; ROHWER FC, 1988, AUK, V105, P161; Stearns S. C., 1992, EVOLUTION LIFE HIST; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WEBB DR, 1987, CONDOR, V89, P874, DOI 10.2307/1368537; WELLER MILTON W., 1956, JOUR WILDLIFE MANAGEMENT, V20, P111, DOI 10.2307/3797414; WILLIAMS TD, 1994, BIOL REV, V68, P35, DOI DOI 10.1111/J.1469-185X.1994.TB01485.X 30 6 6 0 10 GAUTHIER-VILLARS/EDITIONS ELSEVIER PARIS 23 RUE LINOIS, 75015 PARIS, FRANCE 1146-609X ACTA OECOL Acta Oecol.-Int. J. Ecol. MAR-APR 2008 33 2 197 202 10.1016/j.actao.2007.10.007 6 Ecology Environmental Sciences & Ecology 285RU WOS:000254794700007 2018-11-12 J Pike, DA; Pizzatto, L; Pike, BA; Shine, R Pike, David A.; Pizzatto, Ligia; Pike, Brian A.; Shine, Richard Estimating survival rates of uncatchable animals: The myth of high juvenile mortality in reptiles ECOLOGY English Article juvenile reptiles; lizards; reproductive mode; phylogenetic hypotheses; snakes; Squamata; survival rates; Testudines; turtles TURTLE CHRYSEMYS-PICTA; POPULATION STRUCTURE; NATURAL-SELECTION; PAINTED TURTLES; SNAKES; AMPHISBAENIANS; MANAGEMENT; DEMOGRAPHY; PHYLOGENY; SUCCESS Survival rates of juvenile reptiles are critical population parameters but are difficult to obtain through mark - recapture programs because these small, secretive animals are rarely caught. This scarcity has encouraged speculation that survival rates of juveniles are very low, and we test this prediction by estimating juvenile survival rates indirectly. A simple mathematical model calculates the annual juvenile survival rate needed to maintain a stable population size, using published data on adult survival rates, reproductive output, and ages at maturity in 109 reptile populations encompassing 57 species. Counter to prediction, estimated juvenile survival rates were relatively high ( on average, only about 13% less than those of conspecific adults) and highly correlated with adult survival rates. Overall, survival rates during both juvenile and adult life were higher in turtles than in snakes, and higher in snakes than in lizards. As predicted from life history theory, rates of juvenile survival were higher in species that produce large offspring, and higher in viviparous squamates than in oviparous species. Our analyses challenge the widely held belief that juvenile reptiles have low rates of annual survival and suggest instead that sampling problems and the elusive biology of juvenile reptiles have misled researchers in this respect. [Pike, David A.; Pizzatto, Ligia; Shine, Richard] Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia; [Pike, Brian A.] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA Pike, DA (reprint author), Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia. david.pike@bio.usyd.edu.au Shine, Richard/B-8711-2008; Pike, David/B-2032-2012 Pike, David/0000-0002-6121-5449 BINIDAEMONDS O, 2004, COMPUTATIONAL BIOL S, V4; BLOMBERG S, 2004, PRACTICAL CENSUS TEC, P218; Bodie JR, 2000, COPEIA, P732, DOI 10.1643/0045-8511(2000)000[0732:SSMANS]2.0.CO;2; Brommer JE, 2003, EVOL ECOL RES, V5, P229; BURGER J, 1977, AM MIDL NAT, V97, P444, DOI 10.2307/2425108; Burke VJ, 1998, OIKOS, V83, P3, DOI 10.2307/3546540; Carr A, 1952, HDB TURTLES TURTLES; Carr AF, 1967, SO EXCELLENT FISHE N; Caswell H, 2001, MATRIX POPULATION MO; Congdon J.D., 1990, P45; CONGDON JD, 1993, CONSERV BIOL, V7, P826, DOI 10.1046/j.1523-1739.1993.740826.x; CONGDON JD, 1992, CAN FIELD NAT, V106, P241; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FREDERIKSEN M, 2004, ANIMAL BIODIVERSITY, V21, P541; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; GIBBONS JW, 1968, COPEIA, P260; Harvey P. H., 1991, COMP METHOD EVOLUTIO; Heppell SS, 1996, ECOL APPL, V6, P556, DOI 10.2307/2269391; Lee MSY, 2005, ORG DIVERS EVOL, V5, P25, DOI 10.1016/j.ode.2004.05.003; Maddison W. P., 2006, MESQUITE MODULAR SYS; Midford PE, 2005, PDAP PACKAGE MESQUIT; Morafka D. J, 1994, BIOL N AM TORTOISES, P161; Morafka David J., 2000, Herpetological Monographs, P353; PARKER WS, 1980, MILWAUKEE PUBLIC MUS, V1, P1; Pike David A., 2005, Applied Herpetology, V2, P139, DOI 10.1163/1570754043492054; Pike David A., 2006, Florida Scientist, V69, P92; Prior KA, 2001, HERPETOLOGICA, V57, P460; REAM C, 1966, AM MIDL NAT, V75, P325, DOI 10.2307/2423395; Reed DH, 2003, BIOL CONSERV, V113, P23, DOI 10.1016/S0006-3207(02)00346-4; Schmidt BR, 2002, AMPHIBIA-REPTILIA, V23, P375, DOI 10.1163/15685380260449234; SEXTON OJ, 1959, ECOL MONOGR, V29, P113, DOI 10.2307/1942200; Shine R, 1997, ECOLOGY, V78, P1078, DOI 10.2307/2265859; TAYLOR JA, 1986, AUST J ECOL, V11, P49, DOI 10.1111/j.1442-9993.1986.tb00916.x; TINKLE DW, 1981, ECOLOGY, V62, P1426, DOI 10.2307/1941498; Townsend TM, 2004, SYST BIOL, V53, P735, DOI 10.1080/10635150490522340; Vidal N, 2005, CR BIOL, V328, P1000, DOI 10.1016/j.crvi.2005.10.001; White GC, 1999, BIRD STUDY, V46, P120; WILBUR HM, 1975, ECOLOGY, V56, P64, DOI 10.2307/1935300 39 83 86 2 61 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 1939-9170 ECOLOGY Ecology MAR 2008 89 3 607 611 10.1890/06-2162.1 5 Ecology Environmental Sciences & Ecology 284AS WOS:000254678200002 18459324 2018-11-12 J Kraaijeveld, AR; Barker, CL; Godfray, HCJ Kraaijeveld, A. R.; Barker, C. L.; Godfray, H. C. J. Stage-specific sex differences in Drosophila immunity to parasites and pathogens EVOLUTIONARY ECOLOGY English Article Drosophila; Immunity; sex differences; parasitoid; pathogen; parasite TABIDA NEES BRACONIDAE; ASOBARA-TABIDA; TRADE-OFFS; PHENOLOXIDASE ACTIVITY; GENDER-DIFFERENCES; HOST SELECTION; NOSEMA-KINGI; MELANOGASTER; INFECTIONS; RESISTANCE Arguments from life-history theory predict that other things being equal females are likely to invest more in defence against parasites and pathogens than males. This is either because males and females differ in behaviour or, more importantly, because the variance in mating success is typically higher in males than in females. Such effects are likely to be most pronounced in those developmental stages where sex differences are greatest. In most organisms, but especially in holometabolous insects, this will be the adult stage. We explored sex-specific resistance to four natural enemies of Drosophila melanogaster that attack the insect at different developmental stages: the larval parasitoid Asobara tabida, the pupal parasitoid Pachycrepoideus vindemiae; and the adult pathogens Beauvaria bassiana (a fungus) and Tubulinosema kingi (a microsporidian). Measures of resistance were designed to reflect the four species' natural history. Female larvae were able to defend themselves more strongly against A. tabida than males and there was weak evidence that adult females suffered less from microsporidian attack than males. No differences were found for the other two species. Our results provide some support for lower investment in defences in males, and we discuss why the strongest effect was found at the larval rather than the adult stage contrary to our prediction. [Kraaijeveld, A. R.] Univ Southampton, Sch Biol Sci, Southampton SO16 7PX, Hants, England; [Kraaijeveld, A. R.; Barker, C. L.; Godfray, H. C. J.] Univ London Imperial Coll Sci & Technol, NERC Ctr Populat Biol, Ascot SL5 7PY, Berks, England Kraaijeveld, AR (reprint author), Univ Southampton, Sch Biol Sci, Bassett Crescent E, Southampton SO16 7PX, Hants, England. arkraa@soton.ac.uk Natural Environment Research Council [cpb010001] ARMSTRONG E, 1989, J INVERTEBR PATHOL, V53, P102, DOI 10.1016/0022-2011(89)90079-7; ARMSTRONG E, 1989, J EXP ZOOL, V250, P82, DOI 10.1002/jez.1402500111; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Becnel J.J., 1999, MICROSPORIDIA MICROS; Braune P, 2001, P ROY SOC B-BIOL SCI, V268, P1133, DOI 10.1098/rspb.2001.1641; DAVID L, 1994, J INVERTEBR PATHOL, V63, P212, DOI 10.1006/jipa.1994.1039; Eslin P, 2000, J INSECT PHYSIOL, V46, P1161, DOI 10.1016/S0022-1910(99)00227-9; Fellowes MDE, 1998, ECOL ENTOMOL, V23, P281, DOI 10.1046/j.1365-2311.1998.00137.x; FENG MG, 1994, BIOCONTROL SCI TECHN, V4, P3, DOI 10.1080/09583159409355309; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Franzen C, 2006, J INVERTEBR PATHOL, V91, P158, DOI 10.1016/j.jip.2005.11.007; Futerman PH, 2006, PARASITOLOGY, V132, P479, DOI 10.1017/S0031182005009339; Fytrou A, 2006, P R SOC B, V273, P791, DOI 10.1098/rspb.2005.3383; Gray DA, 1998, J INVERTEBR PATHOL, V71, P288, DOI 10.1006/jipa.1997.4742; HAZARIKA LK, 1987, ZOOL SCI, V4, P307; Hoch G, 2004, ENTOMOL EXP APPL, V113, P77, DOI 10.1111/j.0013-8703.2004.00203.x; Hosken DJ, 2001, CURR BIOL, V11, pR379, DOI 10.1016/S0960-9822(01)00211-1; IWASA Y, 1994, EVOL ECOL, V8, P503, DOI 10.1007/BF01238255; Joop G, 2006, BMC EVOL BIOL, V6, DOI 10.1186/1471-2148-6-19; Joop G, 2004, EVOL ECOL RES, V6, P1051; KRAAIJEVELD AR, 1995, EVOL ECOL, V9, P10, DOI 10.1007/BF01237692; Kraaijeveld AR, 1997, NATURE, V389, P278; Kraaijeveld AR, 2003, EVOL ECOL RES, V5, P1251; Kraaijeveld AR, 2002, PARASITOLOGY, V125, pS71, DOI 10.1017/S0031182002001750; KRAAIJEVELD AR, 1994, ECOL ENTOMOL, V19, P221, DOI 10.1111/j.1365-2311.1994.tb00413.x; Kurtz J, 2001, J INVERTEBR PATHOL, V78, P53, DOI 10.1006/jipa.2001.5040; Kurtz J, 2000, DEV COMP IMMUNOL, V24, P1, DOI 10.1016/S0145-305X(99)00057-9; Lanot R, 2001, DEV BIOL, V230, P243, DOI 10.1006/dbio.2000.0123; Lavine MD, 2002, INSECT BIOCHEM MOLEC, V32, P1295, DOI 10.1016/S0965-1748(02)00092-9; Lemaitre B, 1997, P NATL ACAD SCI USA, V94, P14614, DOI 10.1073/pnas.94.26.14614; LENSKI RE, 1988, EVOLUTION, V42, P425, DOI 10.1111/j.1558-5646.1988.tb04149.x; Meister M, 2003, CELL MICROBIOL, V5, P573, DOI 10.1046/j.1462-5822.2003.00302.x; Mohamed-Ali Q, 1999, J INFECT DIS, V180, P1298, DOI 10.1086/314999; Moore SL, 2002, SCIENCE, V297, P2015, DOI 10.1126/science.1074196; NAPPI AJ, 1981, PARASITOLOGY, V83, P319, DOI 10.1017/S0031182000085322; Nigam Y, 1997, J INVERTEBR PATHOL, V69, P279, DOI 10.1006/jipa.1996.4652; NUNNEY L, 1983, AM NAT, V121, P67, DOI 10.1086/284040; Nunney L, 1996, EVOLUTION, V50, P1193, DOI 10.1111/j.1558-5646.1996.tb02360.x; Offner PJ, 1999, ARCH SURG-CHICAGO, V134, P935, DOI 10.1001/archsurg.134.9.935; Poulin R, 1996, AM NAT, V147, P287, DOI 10.1086/285851; Radhika M, 1998, HYDROBIOLOGIA, V377, P161, DOI 10.1023/A:1003244318887; RHEINS LA, 1985, DEV COMP IMMUNOL, V9, P41, DOI 10.1016/0145-305X(85)90058-8; Rigby MC, 2000, P ROY SOC B-BIOL SCI, V267, P171, DOI 10.1098/rspb.2000.0983; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Roxstrom-Lindquist K, 2004, EMBO REP, V5, P207, DOI 10.1038/sj.embor.7400073; SCHMIDHEMPEL P, 1990, INSECT SOC, V37, P14, DOI 10.1007/BF02223812; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Sheridan LAD, 2000, OIKOS, V88, P327, DOI 10.1034/j.1600-0706.2000.880211.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Van der Veen IT, 2002, PARASITOLOGY, V124, P465, DOI 10.1017/S0031182001001275; VANALPHEN JJM, 1983, NETH J ZOOL, V33, P497; VANALPHEN JJM, 1982, NETH J ZOOL, V32, P215; Verhulst S, 1999, P NATL ACAD SCI USA, V96, P4478, DOI 10.1073/pnas.96.8.4478; Webster JP, 1999, P ROY SOC B-BIOL SCI, V266, P391, DOI 10.1098/rspb.1999.0650; Wedekind C, 1998, OIKOS, V81, P458, DOI 10.2307/3546767; Wertheim B, 2005, GENOME BIOL, V6, DOI 10.1186/gb-2005-6-11-r94; Zuk M, 1996, INT J PARASITOL, V26, P1009, DOI 10.1016/S0020-7519(96)80001-4 57 13 14 1 29 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 EVOL ECOL Evol. Ecol. MAR 2008 22 2 217 228 10.1007/s10682-007-9171-y 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 262DE WOS:000253128400007 2018-11-12 J Lee, KA; Wikelski, M; Robinson, WD; Robinson, TR; Klasing, KC Lee, K. A.; Wikelski, M.; Robinson, W. D.; Robinson, T. R.; Klasing, K. C. Constitutive immune defences correlate with life-history variables in tropical birds JOURNAL OF ANIMAL ECOLOGY English Article immunology; incubation; life history; natural antibodies; tropical birds BARRO-COLORADO ISLAND; DNA SEQUENCE DATA; PHYLOGENETIC-RELATIONSHIPS; NATURAL ANTIBODIES; ECOLOGICAL IMMUNOLOGY; EVOLUTIONARY ECOLOGY; MITOCHONDRIAL GENES; DEVELOPMENTAL RATES; EMBERIZID SPARROWS; PLASMA-LEVELS 1. It has been suggested that immune defences are shaped by life history and ecology, but few general patterns have been described across species. We hypothesized that 'fast' life-history traits (e.g. short development times, large clutch sizes) would be associated with developmentally inexpensive immune defences, minimizing the resource demands of young animals' immune systems during periods of rapid growth. Conversely, 'slow' life histories should be associated with well developed antibody-mediated defences, which are developmentally costly. 2. We therefore predicted that 'fast-living' species would exhibit higher levels of complement proteins, a component of non-specific innate defence, but lower levels of constitutive ('natural') antibodies. Additionally, we predicted that constitutive immune defences in general would be higher in species with ecological characteristics that might increase exposure to pathogens, such as open nests, omnivorous diets, gregariousness, and closed forested habitat. 3. Across 70 Neotropical bird species, we found a strongly positive relationship between incubation period and natural antibody levels in adult birds, suggesting that longer developmental times might allow the production of a more diverse and/or more reactive adaptive immune system. Complement activity was positively, although weakly, correlated with clutch size, providing some support for the hypothesis that faster-living species rely more on innate defences, such as complement. Unexpectedly, solitary species had higher natural antibody titres than species that frequently join flocks. 4. Our results suggest that, despite probably widespread differences in the intensity and diversity of pathogen exposure, species-level variation in constitutive immune defences is understandable within the context of life-history theory. [Lee, K. A.; Klasing, K. C.] Univ Calif Davis, Dept Anim Sci, Davis, CA 95616 USA; [Wikelski, M.] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA; [Robinson, W. D.; Robinson, T. R.] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA Lee, KA (reprint author), Univ Calif Davis, Dept Anim Sci, Davis, CA 95616 USA. kallee@ucdavis.edu Ahumada JA, 2001, AUK, V118, P191, DOI 10.1642/0004-8038(2001)118[0191:COTRBO]2.0.CO;2; Ardia DR, 2005, ECOLOGY, V86, P2040, DOI 10.1890/04-1619; Barker FK, 2004, MOL PHYLOGENET EVOL, V31, P486, DOI 10.1016/j.ympev.2003.08.005; Barker FK, 2004, P NATL ACAD SCI USA, V101, P11040, DOI 10.1073/pnas.0401892101; Baumgarth N, 1999, P NATL ACAD SCI USA, V96, P2250, DOI 10.1073/pnas.96.5.2250; BOSQUE C, 1995, AM NAT, V145, P234, DOI 10.1086/285738; BRAWN JD, 1995, ECOLOGY, V76, P41, DOI 10.2307/1940630; Brumfield RT, 2001, CONDOR, V103, P248, DOI 10.1650/0010-5422(2001)103[0248:PRIBMP]2.0.CO;2; Buehler DM, 2004, WILSON BULL, V116, P277, DOI 10.1676/04-006; Burns KJ, 1998, EVOLUTION, V52, P1219, DOI 10.1111/j.1558-5646.1998.tb01849.x; Burns KJ, 2003, J AVIAN BIOL, V34, P360; Carson RJ, 2003, MOL PHYLOGENET EVOL, V29, P43, DOI 10.1016/S1055-7903(03)00110-6; Chesser RT, 2004, MOL PHYLOGENET EVOL, V32, P11, DOI 10.1016/j.ympev.2003.11.015; Cracraft J, 2004, ASSEMBLING THE TREE OF LIFE, P468; DAVIES CR, 1991, FUNCT ECOL, V5, P655, DOI 10.2307/2389485; Diniz JAF, 2004, CONSERV BIOL, V18, P698; Ehrlich P, 1988, BIRDERS HDB; Ericson PGP, 2005, J AVIAN BIOL, V36, P222, DOI 10.1111/j.0908-8857.2001.03409.x; Ericson PGP, 2003, MOL PHYLOGENET EVOL, V29, P126, DOI 10.1016/S1055-7903(03)00067-8; Esparza-Gordillo J, 2004, IMMUNOGENETICS, V56, P77, DOI 10.1007/s00251-004-0660-7; Esparza-Gordillo J, 2003, IMMUNOGENETICS, V54, P862, DOI 10.1007/s00251-003-0537-1; Ezenwa VO, 2004, BEHAV ECOL, V15, P446, DOI 10.1093/beheco/arh028; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Franklin DC, 2003, NEW ZEAL J ZOOL, V30, P185, DOI 10.1080/03014223.2003.9518338; Geffen E, 2000, J ANIM ECOL, V69, P59, DOI 10.1046/j.1365-2656.2000.00370.x; Grapputo A, 2001, J AVIAN BIOL, V32, P95, DOI 10.1034/j.1600-048X.2001.320201.x; Haghighi HR, 2006, CLIN VACCINE IMMUNOL, V13, P975, DOI 10.1128/CVI.00161-06; Harvey P. H., 1991, COMP METHOD EVOLUTIO; Irestedt M, 2004, J AVIAN BIOL, V35, P280, DOI 10.1111/j.0908-8857.2004.03234.x; Irestedt M, 2001, J AVIAN BIOL, V32, P15, DOI 10.1034/j.1600-048X.2001.320103.x; IRESTEDT M, 2004, BMC EVOLUTIONARY BIO, V4, DOI DOI 10.1186/1471-2148-4-23; Johnson KP, 2000, MOL PHYLOGENET EVOL, V14, P141, DOI 10.1006/mpev.1999.0682; Johnson KP, 2001, AUK, V118, P874, DOI 10.1642/0004-8038(2001)118[0874:AMPOTD]2.0.CO;2; Jullien M, 2000, ECOLOGY, V81, P3416, DOI 10.1890/0012-9658(2000)081[3416:TSVOFI]2.0.CO;2; KAI C, 1985, IMMUNOLOGY, V54, P463; Karr J.R., 1990, P237; KARR JR, 1990, CONSERV BIOL, V4, P391, DOI 10.1111/j.1523-1739.1990.tb00313.x; Klasing KC, 1999, OSTRICH, V69, P2817; Klicka J, 2000, AUK, V117, P321, DOI 10.1642/0004-8038(2000)117[0321:NWNPOR]2.0.CO;2; Kundu S, 2004, P ROY SOC B-BIOL SCI, V271, P273, DOI 10.1098/rspb.203.2584; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Maddison W, 1997, MESQUITE; Mann NI, 2006, MOL PHYLOGENET EVOL, V40, P750, DOI 10.1016/j.ympev.2006.04.014; Martin II LB, 2006, OECOLOGIA, V147, P565, DOI 10.1007/s00442-005-0314-y; Martin LB, 2006, INTEGR COMP BIOL, V46, P1030, DOI 10.1093/icb/icl039; Martins EP, 1997, AM NAT, V149, P646, DOI 10.1086/286013; Matson KD, 2005, DEV COMP IMMUNOL, V29, P275, DOI 10.1016/j.dci.2004.07.006; MCCORMACK WT, 1991, ANNU REV IMMUNOL, V9, P219; Moller AP, 2001, AM NAT, V158, P136, DOI 10.1086/321308; MONROE BL, 1993, WORLD CHECKLIST BIRD; MOORING MS, 1992, BEHAVIOUR, V123, P173, DOI 10.1163/156853992X00011; Nauta AJ, 2004, INT ARCH ALLERGY IMM, V134, P310, DOI 10.1159/000079261; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Ochsenbein AF, 1999, SCIENCE, V286, P2156, DOI 10.1126/science.286.5447.2156; Pagel M, 1997, ZOOL SCR, V26, P331, DOI 10.1111/j.1463-6409.1997.tb00423.x; Palacios MG, 2006, OECOLOGIA, V146, P505, DOI 10.1007/s00442-005-0220-3; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Parmentier HK, 2004, DEV COMP IMMUNOL, V28, P39, DOI 10.1016/S0145-305X(03)00087-9; Patten MA, 1998, AUK, V115, P412, DOI 10.2307/4089200; Pereira HM, 2004, ECOL APPL, V14, P730, DOI 10.1890/02-5405; POIANI A, 1992, OECOLOGIA, V92, P429, DOI 10.1007/BF00317470; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; *R DEV COR TEAM, 2007, R LANG ENV STAT COMP; Remes V, 2002, EVOLUTION, V56, P2505; RICKLEFS RE, 1992, P NATL ACAD SCI USA, V89, P4722, DOI 10.1073/pnas.89.10.4722; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Ridgely R. S., 1989, GUIDE BIRDS PANAMA; Rigby MC, 2000, DEV AN VET, V32, P129; Rolff J, 2004, AM NAT, V164, P559, DOI 10.1086/423715; Schmid-Hempel P, 2003, P ROY SOC B-BIOL SCI, V270, P357, DOI 10.1098/rspb.2002.2265; Schmidt KA, 2001, ECOLOGY, V82, P609, DOI 10.2307/2680183; Scrimshaw NS, 1997, AM J CLIN NUTR, V66, P464; Semple S, 2002, P ROY SOC B-BIOL SCI, V269, P1031, DOI 10.1098/rspb.2001.1950; SETO F, 1968, J EXP ZOOL, V169, P501; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Shudo E, 2001, J THEOR BIOL, V209, P233, DOI 10.1006/jtbi.2000.2259; Sibley CG, 1990, PHYLOGENY CLASSIFICA; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SKUTCH AF, 1969, PACIFIC COAST AVIFAU, V35; Skutch Alexander F., 1945, AUK, V62, P8; Stearns S. C., 1992, EVOLUTION LIFE HIST; STILES FG, 1989, GUIDE BIRDS COSTA RI; Stotz D. F., 1996, NEOTROPICAL BIRDS EC; Tella JL, 2002, P ROY SOC B-BIOL SCI, V269, P1059, DOI 10.1098/rspb.2001.1951; THIOLLAY JM, 1994, J TROP ECOL, V10, P449, DOI 10.1017/S0266467400008154; Venables W. N., 2002, MODERN APPL STAT S; WATVE MG, 1995, P NATL ACAD SCI USA, V92, P8945, DOI 10.1073/pnas.92.19.8945; WILLIS EO, 1974, ECOL MONOGR, V44, P153, DOI 10.2307/1942309; Wilson K, 2003, J ANIM ECOL, V72, P133, DOI 10.1046/j.1365-2656.2003.00680.x; Yuri T, 2002, MOL PHYLOGENET EVOL, V23, P229, DOI 10.1016/S1055-7903(02)00012-X 90 97 100 2 44 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0021-8790 J ANIM ECOL J. Anim. Ecol. MAR 2008 77 2 356 363 10.1111/j.1365-2656.2007.01347.x 8 Ecology; Zoology Environmental Sciences & Ecology; Zoology 257PG WOS:000252810400019 18194261 Bronze 2018-11-12 J Argasinski, K; Kozlowski, J Argasinski, Krzysztof; Kozlowski, Jan How can we model selectively neutral density dependence in evolutionary games THEORETICAL POPULATION BIOLOGY English Article evolutionary game theory; density dependence; replicator dynamics; mortality rate; life history theory DYNAMICS The problem of density dependence appears in all approaches to the modelling of population dynamics. It is pertinent to classic models (i.e., Lotka-Volterra's), and also population genetics and game theoretical models related to the replicator dynamics. There is no density dependence in the classic formulation of replicator dynamics, which means that population size may grow to infinity. Therefore the question arises: How is unlimited population growth suppressed in frequency-dependent models? Two categories of solutions can be found in the literature. In the first, replicator dynamics is independent of background fitness. In the second type of solution, a multiplicative suppression coefficient is used, as in a logistic equation. Both approaches have disadvantages. The first one is incompatible with the methods of life history theory and basic probabilistic intuitions. The logistic type of suppression of per capita growth rate stops trajectories of selection when population size reaches the maximal value (carrying capacity); hence this method does not satisfy selective neutrality. To overcome these difficulties, we must explicitly consider turn-over of individuals dependent on mortality rate. This new approach leads to two interesting predictions. First, the equilibrium value of population size is lower than carrying capacity and depends on the mortality rate. Second, although the phase portrait of selection trajectories is the same as in density-independent replicator dynamics, pace of selection slows down when population size approaches equilibrium, and then remains constant and dependent on the rate of turn-over of individuals. (C) 2007 Elsevier Inc. All rights reserved. [Argasinski, Krzysztof; Kozlowski, Jan] Jagiellonian Univ, Inst Environm Sci, PL-30387 Krakow, Poland Argasinski, K (reprint author), Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland. argas1@wp.pl; kozlo@eko.uj.edu.pl Argasinski, Krzysztof/C-4086-2013; Kozlowski, Jan/K-5549-2012 Kozlowski, Jan/0000-0002-7084-2030 Argasinski K, 2006, MATH BIOSCI, V202, P88, DOI 10.1016/j.mbs.2006.04.007; Cressman R., 1992, STABILITY CONCEPT EV; Eshel I, 2003, J MATH BIOL, V46, P445, DOI 10.1007/s00285-002-0194-2; Hofbauer J., 1988, THEORY EVOLUTION DYN; Hofbauer J., 1998, EVOLUTIONARY GAMES P; KOZLOWSKI J, 1980, Evolutionary Theory, V5, P89; Roff Derek A., 1992; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; Steams S. C., 1992, EVOLUTION LIFE HIST; TAYLOR PD, 1978, MATH BIOSCI, V40, P145, DOI 10.1016/0025-5564(78)90077-9; Weibull J., 1995, EVOLUTIONARY GAME TH 11 8 8 0 8 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0040-5809 1096-0325 THEOR POPUL BIOL Theor. Popul. Biol. MAR 2008 73 2 250 256 10.1016/j.tpb.2007.11.006 7 Ecology; Evolutionary Biology; Genetics & Heredity; Mathematical & Computational Biology Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity; Mathematical & Computational Biology 281JL WOS:000254492600007 18179810 2018-11-12 J Stutchbury, BJM; Morton, ES Stutchbury, Bridget J. M.; Morton, Eugene S. Recent advances in the behavioral ecology of tropical birds - The 2005 Margaret Morse Nice Lecture WILSON JOURNAL OF ORNITHOLOGY English Article STONECHATS SAXICOLA-TORQUATA; ANTBIRD MYRMECIZA-LONGIPES; WRENS THRYOTHORUS-LEUCOTIS; PLASMA TESTOSTERONE LEVELS; EXTRA-PAIR FERTILIZATIONS; RUFOUS-COLLARED SPARROWS; LIFE-HISTORY VARIATION; BLACK-BELLIED WREN; MATING SYSTEM; TERRITORIAL AGGRESSION Tropical birds offer unique opportunities to test ecological and evolutionary theory because their life history traits are so diverse and different from temperate zone models upon which most empirical Studies are based. We review recent studies oil the behavioral ecology of tropical birds, studies that explore new advances, in this field. Life histories and their evolution remain the focus of research on tropical birds. Clutch size manipulations in two species showed that food limitation does not explain small clutch size. In antbirds, enlarged clutches decreased post-fledging survival whereas in thrushes, enlarged broods were costly due to high nest predation. Small clutches may be favored via different ultimate selective forces and shared underlying tradeoffs between the immune, metabolic, and endocrine systems in the body May account for the commonly observed slow pace of life in tropical birds. The physiological tradeoff between testosterone and immunocompetence may explain the evolution of low testosterone levels in tropical passerines where adult survival is paramount. In contrast to life history theory. few studies have explored temperate-tropical differences in territoriality. mating systems. and song function. The idea that low breeding synchrony in tropical birds is associated with low levels of extra-pair fertilizations was supported by several new paternity Studies conducted on tropical passerines. Seasonally breeding tropical birds have higher testosterone levels than tropical birds with prolonged breeding seasons, although it is unclear if this pattern is driven by Mating systems per se or selection from pathogens. Recent work on relations between pair members in permanently paired tropical passerines focuses on the question of mate defense versus territorial defense and the extent of cooperation versus selfish interests in inter-sexual relations. [Stutchbury, Bridget J. M.; Morton, Eugene S.] York Univ, Dept Biol, Toronto, ON M3J 1P3, Canada; [Morton, Eugene S.] Hemlock Hill Field Stn, Cambridge Springs, PA 16403 USA Stutchbury, BJM (reprint author), York Univ, Dept Biol, 4700 Keele St, Toronto, ON M3J 1P3, Canada. bstutch@yorku.ca Wilson Ornithological Society We thank the Wilson Ornithological Society for awarding us the 2005 Margaret Morse Nice Medal. It is a great honor. We dedicate this review to the naturalists that Margaret Morse Nice, Alexander Skutch, and Eugene Eisenmann, among many others, mentored and hope the tradition of "knowing, your organism" will increase as a way to enhance our scientific understanding of birds. Ahumada JA, 2001, AUK, V118, P191, DOI 10.1642/0004-8038(2001)118[0191:COTRBO]2.0.CO;2; Balthazart J., 1983, P221; Bard SC, 2002, CONDOR, V104, P387, DOI 10.1650/0010-5422(2002)104[0387:VDARTC]2.0.CO;2; Carvalho CBV, 2006, CONDOR, V108, P579, DOI 10.1650/0010-5422(2006)108[579:BSOASM]2.0.CO;2; Day LB, 2006, HORM BEHAV, V49, P223, DOI 10.1016/j.yhbeh.2005.07.006; DITTAMI JP, 1985, J ZOOL, V207, P357; Durrant KL, 2006, ORNITHOL MONOGR, V60, P98; Fedy BC, 2005, BEHAV ECOL SOCIOBIOL, V58, P414, DOI 10.1007/s00265-005-0928-4; Fedy BC, 2006, AUK, V123, P61, DOI 10.1642/0004-8038(2006)123[0061:TDNIIR]2.0.CO;2; Fedy BC, 2004, AUK, V121, P486, DOI 10.1642/0004-8038(2004)121[0486:TSAFIW]2.0.CO;2; Ferretti V, 2005, P ROY SOC B-BIOL SCI, V272, P769, DOI 10.1098/rspb.2004.3039; FLEISCHER RC, 1994, MOL ECOL, V3, P383, DOI 10.1111/j.1365-294X.1994.tb00078.x; Fleischer RC, 1997, CONDOR, V99, P512, DOI 10.2307/1369957; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Freed LA, 2007, EVOL ECOL RES, V9, P157; Garamszegi LZ, 2005, HORM BEHAV, V47, P389, DOI 10.1016/j.yhbeh.2004.11.008; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Gill SA, 2005, BEHAV ECOL SOCIOBIOL, V57, P557, DOI 10.1007/s00265-004-0893-3; Gill SA, 2006, BEHAV ECOL SOCIOBIOL, V61, P245, DOI 10.1007/s00265-006-0255-4; Goymann W, 2004, AM NAT, V164, P327, DOI 10.1086/422856; Goymann W, 2006, HORM BEHAV, V50, P779, DOI 10.1016/j.yhbeh.2006.07.002; Greenman CG, 2005, PHYSIOL BIOCHEM ZOOL, V78, P60, DOI 10.1086/425194; Hau M, 2001, HORM BEHAV, V40, P281, DOI 10.1006/hbeh.2001.1673; Hau M, 2000, GEN COMP ENDOCR, V117, P20, DOI 10.1006/gcen.1999.7390; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; Helm B, 2005, ANN NY ACAD SCI, V1046, P216, DOI 10.1196/annals.1343.019; Hillgarth Nigella, 1997, P78; Hirschenhauser K, 2003, HORM BEHAV, V43, P508, DOI 10.1016/S0018-506X(03)00027-8; KEMPENAERS B, 1993, ORNIS SCAND, V24, P84, DOI 10.2307/3676415; Ketterson ED, 2005, AM NAT, V166, pS85, DOI 10.1086/444602; Levin RN, 1996, ANIM BEHAV, V52, P1093, DOI 10.1006/anbe.1996.0257; LEVIN RN, 1992, ORNIS SCAND, V23, P284, DOI 10.2307/3676651; Logue DM, 2004, ANIM BEHAV, V68, P721, DOI 10.1016/j.anbehav.2003.10.026; Logue DM, 2006, CONDOR, V108, P326, DOI 10.1650/0010-5422(2006)108[326:TDCOTF]2.0.CO;2; Mann NI, 2006, BIOL LETTERS, V2, P1, DOI 10.1098/rsbl.2005.0373; Martin II LB, 2006, OECOLOGIA, V147, P565, DOI 10.1007/s00442-005-0314-y; Martin TE, 2001, P NATL ACAD SCI USA, V98, P2071, DOI 10.1073/pnas.98.4.2071; Mennill DJ, 2006, ANIM BEHAV, V71, P219, DOI 10.1016/j.anbehav.2005.05.006; Mennill DJ, 2005, AUK, V122, P175, DOI 10.1642/0004-8038(2005)122[0175:SDISAD]2.0.CO;2; Moller AP, 1998, BEHAV ECOL SOCIOBIOL, V43, P345, DOI 10.1007/s002650050501; Moore IT, 2004, ANIM BEHAV, V67, P411, DOI 10.1016/j.anbehav.2003.03.021; Moore IT, 2002, GEN COMP ENDOCR, V129, P13, DOI 10.1016/S0016-6480(02)00563-4; Moore IT, 2004, GEN COMP ENDOCR, V135, P223, DOI 10.1016/j.ygcen.2003.09.012; Moore OR, 1999, AUK, V116, P1039, DOI 10.2307/4089683; Morton ES, 1998, BEHAV ECOL, V9, P515, DOI 10.1093/beheco/9.5.515; MORTON ES, 1977, AM NAT, V111, P855, DOI 10.1086/283219; Morton ES, 1996, BEHAV ECOL SOCIOBIOL, V39, P195, DOI 10.1007/s002650050281; Morton ES, 2000, BEHAV ECOL, V11, P648, DOI 10.1093/beheco/11.6.648; MORTON ES, 1971, SCIENCE, V181, P920; Morton Eugene S., 1996, P258; MORTON ML, 1990, CONDOR, V92, P166, DOI 10.2307/1368395; Peach WJ, 2001, OIKOS, V93, P235, DOI 10.1034/j.1600-0706.2001.930207.x; Petren K, 1999, AUK, V116, P252, DOI 10.2307/4089475; Raouf SA, 1997, P ROY SOC B-BIOL SCI, V264, P1599, DOI 10.1098/rspb.1997.0223; RICKLEFS RE, 1992, P NATL ACAD SCI USA, V89, P4722, DOI 10.1073/pnas.89.10.4722; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roberts ML, 2004, ANIM BEHAV, V68, P227, DOI 10.1016/j.anbehav.2004.05.001; Robertson BC, 2001, BEHAV ECOL, V12, P666, DOI 10.1093/beheco/12.6.666; Rodl T, 2004, GEN COMP ENDOCR, V139, P124, DOI 10.1016/j.ygcen.2004.08.001; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; Schwabl H, 2005, HORM BEHAV, V47, P503, DOI 10.1016/j.yhbeh.2004.08.003; Seddon N, 2006, BEHAV ECOL, V17, P73, DOI 10.1093/beheco/ari096; Seddon N, 2005, EVOLUTION, V59, P200; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SKUTCH AF, 1985, NEOTROPICAL ORNITHOL, P575; Stutchbury B. J. M., 2001, BEHAV ECOLOGY TROPIC; STUTCHBURY BJ, 1995, BEHAVIOUR, V132, P675, DOI 10.1163/156853995X00081; Stutchbury BJM, 1998, J AVIAN BIOL, V29, P72, DOI 10.2307/3677343; Stutchbury BJM, 2005, ORNITOL NEOTROP, V16, P397; Stutchbury BJM, 1998, BEHAV ECOL SOCIOBIOL, V43, P213, DOI 10.1007/s002650050483; Stutchbury BJM, 2007, J FIELD ORNITHOL, V78, P40, DOI 10.1111/j.1557-9263.2006.00083.x; Stutchbury Bridget J.M., 2005, P307; Styrsky JN, 2005, ECOLOGY, V86, P3238, DOI 10.1890/04-1613; Tieleman BI, 2006, FUNCT ECOL, V20, P491, DOI 10.1111/j.1365-2435.2006.01126.x; Tieleman BI, 2005, P ROY SOC B-BIOL SCI, V272, P1715, DOI 10.1098/rspb.2005.3155; Wada H, 2006, PHYSIOL BIOCHEM ZOOL, V79, P784, DOI 10.1086/505509; Weathers WW, 1997, AUK, V114, P341, DOI 10.2307/4089237; Wikelski M, 1999, P ROY SOC B-BIOL SCI, V266, P551, DOI 10.1098/rspb.1999.0671; Wikelski M, 2003, CONDOR, V105, P683, DOI 10.1650/7251; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; Wiley CJ, 2003, HORM BEHAV, V43, P554, DOI 10.1016/S0018-506X(03)00066-7; WINGFIELD JC, 1994, ANIM BEHAV, V47, P77, DOI 10.1006/anbe.1994.1009; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; Wingfield JC, 2001, BRAIN BEHAV EVOLUT, V57, P239, DOI 10.1159/000047243 84 57 62 1 41 WILSON ORNITHOLOGICAL SOC WACO 5400 BOSQUE BLVD, STE 680, WACO, TX 76710 USA 1559-4491 WILSON J ORNITHOL Wilson J. Ornithol. MAR 2008 120 1 26 37 10.1676/07-018.1 12 Ornithology Zoology 346EH WOS:000259050800003 2018-11-12 J Mangel, M; Bonsall, MB Mangel, Marc; Bonsall, Michael B. Phenotypic Evolutionary Models in Stem Cell Biology: Replacement, Quiescence, and Variability PLOS ONE English Article ACCELERATED STOCHASTIC SIMULATION; JUMP MARKOV PROCESSES; SELECTION; SYSTEMS; MATHEMATICS; RADIATION; DYNAMICS; ECOLOGY; HISTORY; FITNESS Phenotypic evolutionary models have been used with great success in many areas of biology, but thus far have not been applied to the study of stem cells except for investigations of cancer. We develop a framework that allows such modeling techniques to be applied to stem cells more generally. The fundamental modeling structure is the stochastic kinetics of stem cells in their niche and of transit amplifying and fully differentiated cells elsewhere in the organism, with positive and negative feedback. This formulation allows graded signals to be turned into all or nothing responses, and shows the importance of looking beyond the niche for understanding how stem cells behave. Using the deterministic version of this framework, we show how competition between different stem cell lines can be analyzed, and under what circumstances stem cells in a niche will be replaced by other stem cells with different phenotypic characteristics. Using the stochastic version of our framework and state dependent life history theory, we show that the optimal behavior of a focal stem cell will involve long periods of quiescence and that a population of identical stem cells will show great variability in the times at which activity occurs; we compare our results with classic ones on quiescence and variability in the hematopoietic system. [Mangel, Marc] Univ Calif Santa Cruz, Ctr Biomol Sci & Engn, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA; [Bonsall, Michael B.] Univ Oxford, Dept Zool, Math Ecol Res Grp, Oxford, England Mangel, M (reprint author), Univ Calif Santa Cruz, Ctr Biomol Sci & Engn, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA. msmangel@ucsc.edu Bonsall, Michael/0000-0003-0250-0423 NSF; Royal Society; Astor Travel Fund; University of Oxford This work was supported by the NSF, Royal Society, and the Astor Travel Fund, University of Oxford. ALON U, 2007, INTRO SYSTEMS BIOL D; Anderson DJ, 2001, NEURON, V30, P19, DOI 10.1016/S0896-6273(01)00260-4; ANVERSA P, 2006, ESSENTIALS STEM CELL, P425; Appelbaum FR, 2007, NEW ENGL J MED, V357, P1472, DOI 10.1056/NEJMp078166; BARBOUR AD, 1980, ADV APPL PROBAB, V12, P591, DOI 10.2307/1426422; BARBOUR AD, 1974, ADV APPL PROBAB, V6, P21; Bonsall MB, 2004, P ROY SOC B-BIOL SCI, V271, P1143, DOI 10.1098/rspb.2004.2722; CAIRNS J, 1975, NATURE, V255, P197, DOI 10.1038/255197a0; CLARK CW, 2000, DYNAMIC STATE VARIAB; Davey RE, 2007, FASEB J, V21, P2020, DOI 10.1096/fj.06-7852com; Dieckmann U, 1997, TRENDS ECOL EVOL, V12, P128, DOI 10.1016/S0169-5347(97)01004-5; DOBZHANSKY T, 1964, AM ZOOL, V4, P443; FISHER R. A., 1930, GENETICAL THEORY NAT; Frank S. A., 2007, DYNAMICS CANC INCIDE; Fuchs E, 2004, CELL, V116, P769, DOI 10.1016/S0092-8674(04)00255-7; Gibson MA, 2000, J PHYS CHEM A, V104, P1876, DOI 10.1021/jp993732q; Gillespie DT, 2001, J CHEM PHYS, V115, P1716, DOI 10.1063/1.1378322; Gillespie DT, 2000, J CHEM PHYS, V113, P297, DOI 10.1063/1.481811; Gillespie DT, 2003, J CHEM PHYS, V119, P8229, DOI 10.1063/1.1613254; GRANT P, 2007, WHY SPECIES MULTIPLY; Houston AI, 1999, MODELS ADAPTIVE BEHA; Kingsland Sharon, 1985, MODELING NATURE EPIS; Kirouac DC, 2006, CURR OPIN BIOTECH, V17, P538, DOI 10.1016/j.copbio.2006.07.003; KURTZ TG, 1972, J CHEM PHYS, V57, P2976, DOI 10.1063/1.1678692; KURTZ TG, 1971, J APPL PROBAB, V8, P344, DOI 10.2307/3211904; KURTZ TG, 1970, J APPL PROBAB, V7, P49, DOI 10.2307/3212147; Lanza R. P., 2006, ESSENTIALS STEM CELL; LeGrand EK, 1997, Q REV BIOL, V72, P135, DOI 10.1086/419763; MADHAVI A, 2007, PLOS COMPUT BIOL, V3, P1; MANGEL M, 1994, THEOR POPUL BIOL, V45, P16, DOI 10.1006/tpbi.1994.1002; Mangel M, 2004, THEOR POPUL BIOL, V65, P353, DOI 10.1016/j.tpb.2003.07.005; Mangel M, 2006, THEORETICAL BIOLOGIST'S TOOLBOX: QUANTITATIVE METHODS FOR ECOLOGY AND EVOLUTIONARY BIOLOGY, P1, DOI 10.2277/ 0521537487; MANGEL M, 1992, ANNU REV ECOL SYST, V23, P507; Mangel M., 1988, DYNAMIC MODELING BEH; Mangel M, 2007, OIKOS, V116, P1779, DOI 10.1111/j.2007.0030-1299.16248.x; Mangel M, 2007, EVOLUTION, V61, P1208, DOI 10.1111/j.1558-5646.2007.00094.x; May RM, 2004, SCIENCE, V303, P790, DOI 10.1126/science.1094442; MAY RM, 2007, USES ABUSES MATH BIO; Mayr Ernst, 1982, GROWTH BIOL THOUGHT; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Murray J. D., 2003, MATH BIOL; N MacDonald, 1989, BIOL DELAY SYSTEMS L; Neff T, 2006, BLOOD, V107, P1751, DOI 10.1182/blood-2005-06-2335; NOWAK M. A, 2006, EVOLUTIONARY DYNAMIC; PAINTER PR, 1968, ANNU REV MICROBIOL, V22, P519, DOI 10.1146/annurev.mi.22.100168.002511; PIELOU EC, 1977, MATH ECOLOGY; Potten CS, 2002, J CELL SCI, V115, P2381; POTTEN CS, 1990, DEVELOPMENT, V110, P1001; POTTEN CS, 2002, J INVEST DERMATOL, V119, P88; POTTEN CS, 2006, ESSENTIALS STEM CELL, P11; Puterman M. L., 1994, MARKOV DECISION PROC; Raff M, 2003, ANNU REV CELL DEV BI, V19, P1, DOI 10.1146/annurev.cellbio.19.111301.143037; Robert JS, 2004, BIOESSAYS, V26, P1005, DOI 10.1002/bies.20100; Shostak S, 2006, BIOESSAYS, V28, P301, DOI 10.1002/bies.20376; THOMAS ED, 1957, NEW ENGL J MED, V257, P491, DOI 10.1056/NEJM195709122571102; TILL JE, 1964, P NATL ACAD SCI USA, V51, P29, DOI 10.1073/pnas.51.1.29; Venner S, 2006, J THEOR BIOL, V241, P725, DOI 10.1016/j.jtbi.2006.01.008; Vincent T. L., 2005, EVOLUTIONARY GAME TH; Viswanathan S, 2005, BIOTECHNOL APPL BIOC, V42, P119, DOI 10.1042/BA20040207; VOGEL H, 1969, J THEOR BIOL, V22, P249, DOI 10.1016/0022-5193(69)90004-6; Watt FM, 2000, SCIENCE, V287, P1427, DOI 10.1126/science.287.5457.1427; Wodarz D., 2005, LECT NOTES MATH MODE; Zandstra PW, 2001, ANNU REV BIOMED ENG, V3, P275, DOI 10.1146/annurev.bioeng.3.1.275 63 26 27 0 8 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA 1932-6203 PLOS ONE PLoS One FEB 13 2008 3 2 e1591 10.1371/journal.pone.0001591 10 Multidisciplinary Sciences Science & Technology - Other Topics 367ES WOS:000260535900025 18270578 DOAJ Gold, Green Published 2018-11-12 J Miller, TEX; Tenhumberg, B; Louda, SM Miller, Tom E. X.; Tenhumberg, Brigitte; Louda, Svata M. Herbivore-mediated ecological costs of reproduction shape the life history of an iteroparous plant AMERICAN NATURALIST English Article cost of reproduction; dynamic programming; herbivory; life-history evolution; Opuntia; resource allocation CUCUMIS-SATIVUS; RESISTANCE; EVOLUTION; IMPACTS; FITNESS; POLLINATION; DEFENSE Plant reproduction yields immediate fitness benefits but can be costly in terms of survival, growth, and future fecundity. Life-history theory posits that reproductive strategies are shaped by trade-offs between current and future fitness that result from these direct costs of reproduction. Plant reproduction may also incur indirect ecological costs if it increases susceptibility to herbivores. Yet ecological costs of reproduction have received little empirical attention and remain poorly integrated into life-history theory. Here, we provide evidence for herbivore-mediated ecological costs of reproduction, and we develop theory to examine how these costs influence plant life-history strategies. Field experiments with an iteroparous cactus (Opuntia imbricata) indicated that greater reproductive effort (proportion of meristems allocated to reproduction) led to greater attack by a cactus-feeding insect (Narnia pallidicornis) and that damage by this herbivore reduced reproductive success. A dynamic programming model predicted strongly divergent optimal reproductive strategies when ecological costs were included, compared with when these costs were ignored. Meristem allocation by cacti in the field matched the optimal strategy expected under ecological costs of reproduction. The results indicate that plant reproductive allocation can strongly influence the intensity of interactions with herbivores and that associated ecological costs can play an important selective role in the evolution of plant life histories. [Miller, Tom E. X.; Tenhumberg, Brigitte; Louda, Svata M.] Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA; [Tenhumberg, Brigitte] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA Miller, TEX (reprint author), Florida State Univ, Dept Biol Sci, B-157, Tallahassee, FL 32306 USA. tmiller@bio.fsu.edu; btenhumberg2@unl.edu; slouda@unl.edu Agrawal AA, 1999, J CHEM ECOL, V25, P2285, DOI 10.1023/A:1020821823794; Agrawal AA, 2002, ECOL LETT, V5, P377, DOI 10.1046/j.1461-0248.2002.00325.x; AYAL Y, 1993, OECOLOGIA, V93, P518, DOI 10.1007/BF00328960; Bazzaz FA, 1997, PLANT RESOURCE ALLOC; BENSON L., 1982, CACTI US CANADA; CALOW P, 1979, BIOL REV CAMBRIDGE P, V54, P32; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CLARK CW, 2000, DYNAMIC STATE VARIAB; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; COURTNEY SP, 1985, OIKOS, V44, P91, DOI 10.2307/3544048; DACOSTA CP, 1971, SCIENCE, V172, P1145, DOI 10.1126/science.172.3988.1145; DOAK DF, 1992, ECOLOGY, V73, P2086, DOI 10.2307/1941457; Ehrlen J, 2003, AM NAT, V162, P796, DOI 10.1086/379350; Ehrlen J, 2001, J ECOL, V89, P237, DOI 10.1046/j.1365-2745.2001.00546.x; Harper J. L., 1977, POPULATION BIOL PLAN; Johnson MTJ, 2005, ECOLOGY, V86, P874, DOI 10.1890/04-1068; Klinkhamer PGL, 1997, J EVOLUTION BIOL, V10, P529; LOUDA SM, 1995, ECOLOGY, V76, P229, DOI 10.2307/1940645; MANN J, 1969, CACTUS FEEDING INSEC; Maron JL, 1998, ECOLOGY, V79, P1281; MCFARLAND JD, 1989, CAN J BOT, V67, P24, DOI 10.1139/b89-004; MILLER TEX, THESIS U NEBRASKA LI; MILLER TEX, AM NATURALIST, V168, P608; Miller TEX, 2007, J ANIM ECOL, V76, P722, DOI 10.1111/j.1365-2656.2007.01239.x; Miller TEX, 2007, OIKOS, V116, P500, DOI 10.1111/j.2007.0030-1299.15317.x; Ness JH, 2006, OIKOS, V113, P506, DOI 10.1111/j.2006.0030-1299.14143.x; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; Pimienta-Barrios E, 2002, CACTI BIOL USES, P75; Primack R, 1998, AM J BOT, V85, P1672, DOI 10.2307/2446500; PRINS AH, 1992, OIKOS, V65, P409, DOI 10.2307/3545556; Reekie E, 2005, REPROD ALLOCATION PL; ROCHE BM, 1995, ECOLOGY, V76, P1863, DOI 10.2307/1940719; Roff D. A., 2002, LIFE HIST EVOLUTION; Rose KE, 2005, ECOLOGY, V86, P453, DOI 10.1890/03-0697; Stearns S. C., 1992, EVOLUTION LIFE HIST; Strauss SY, 1999, EVOLUTION, V53, P1105, DOI 10.1111/j.1558-5646.1999.tb04525.x; Strauss SY, 2002, TRENDS ECOL EVOL, V17, P278, DOI 10.1016/S0169-5347(02)02483-7; Tenhumberg B, 2006, OIKOS, V113, P121, DOI 10.1111/j.0030-1299.2006.14274.x; Tenhumberg B, 2001, AM NAT, V158, P505, DOI 10.1086/323131; TUTTLE MD, 1981, SCIENCE, V214, P677, DOI 10.1126/science.214.4521.677; Vuorisalo T. O., 1999, LIFE HIST EVOLUTION 43 21 21 0 28 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. FEB 2008 171 2 141 149 10.1086/524961 9 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 251UF WOS:000252400000003 18197767 Green Published 2018-11-12 J Walker, RS; Hamilton, MJ Walker, Robert S.; Hamilton, Marcus J. Reports - Life-history consequences of density dependence and the evolution of human body size CURRENT ANTHROPOLOGY English Article PAPUA-NEW-GUINEA; LATE PLEISTOCENE; REACTION NORMS; GROWTH-RATES; PLASTICITY; INDONESIA; MATURITY; ISLANDS; MAMMALS; FLORES Previous attempts to explain variation in human growth and development emphasize the energetic constraints imposed by malnutrition and disease. However, this approach does not address the evolutionary effects of mortality risk on ontogenetic variation, a common theme in life-history studies. The conventional approach can be reconciled with life-history theory by considering the effect of mortality on the rates and timing of maturity in subsistence-based human populations. Humans slow down growth and development and demonstrate smaller adult body sizes in high-population-density contexts, presumably because of increased nutritional constraints and disease loads. In addition, there is evidence of mortality-based selection for relatively faster/earlier ontogeny in small-bodied hunter-gatherers living at high densities. This finding may be interpreted as an evolved reaction norm for earlier reproductive maturity and consequent smaller adult body size in high-mortality regimes. In sum, comparative results support density-dependent effects on body size that act through two pathways - nutritional constraints and juvenile mortality - at varying intensities, contributing to a nearly twofold range in body size across human societies. [Walker, Robert S.] Max Planck Inst Evolutionary Anthropol, D-04103 Leipzig, Germany Walker, RS (reprint author), Max Planck Inst Evolutionary Anthropol, Deutscher Pl 6, D-04103 Leipzig, Germany. robert_walker@eva.mpg.de Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; BERGMANN C, 1847, GOTTINGER STUDIEN, V1, P595; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; Binford L. R., 2001, CONSTRUCTING FRAMES; Bogin B., 1999, PATTERNS HUMAN GROWT; Brown J. H., 1995, MACROECOLOGY; Brown J.H., 1998, BIOGEOGRAPHY; Brown P, 2004, NATURE, V431, P1055, DOI 10.1038/nature02999; BROWN P, 1987, Archaeology in Oceania, V22, P41; BRUSH G, 1983, ANN HUM BIOL, V10, P223, DOI 10.1080/03014468300006391; Cavalli-Sforza LL., 1986, AFRICAN PYGMIES; Charnov Eric L., 1993, P1; Crespi EJ, 2005, AM J HUM BIOL, V17, P44, DOI 10.1002/ajhb.20098; Eveleth P. B., 1990, WORLDWIDE VARIATION; Finlayson C., 2004, NEANDERTHALS MODERN; FOSTER JB, 1964, NATURE, V202, P234, DOI 10.1038/202234a0; Gurven M, 2006, P ROY SOC B-BIOL SCI, V273, P835, DOI 10.1098/rspb.2005.3380; HILL K, 1996, ARCHE LIFE HIST ECOL; Hill K, 2007, J HUM EVOL, V52, P443, DOI 10.1016/j.jhevol.2006.11.003; Holmes R., 1995, Indigenous peoples and the future of Amazonia: an ecological anthropology of an endangered world., P121; Katzmarzyk PT, 1998, AM J PHYS ANTHROPOL, V106, P483, DOI 10.1002/(SICI)1096-8644(199808)106:4<483::AID-AJPA4>3.0.CO;2-K; LEE RB, 1979, KUNG SAN; LEVITAN DR, 1988, OECOLOGIA, V76, P627, DOI 10.1007/BF00397880; Malthus T., 1798, ESSAY PRINCIPLE POPU; Manly BFJ, 1991, RANDOMIZATION BOOTST; Migliano Andrea Bamberg, 2005, THESIS U CAMBRIDGE; Morwood MJ, 2005, NATURE, V437, P1012, DOI 10.1038/nature04022; MURDOCH WW, 1994, ECOLOGY, V75, P271, DOI 10.2307/1939533; Palkovacs EP, 2003, OIKOS, V103, P37, DOI 10.1034/j.1600-0706.2003.12502.x; Pennington R, 2001, BIOSOCIAL S, V13, P170; Pettay JE, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000606; Roberts DF, 1953, AM J PHYS ANTHROP-NE, V11, P533, DOI 10.1002/ajpa.1330110404; ROBERTS DF, 1978, CLIMATE HUMAN VARIAB; Ruff C, 2002, ANNU REV ANTHROPOL, V31, P211, DOI 10.1146/annurev.anthro.31.040402.085407; RUFF CB, 1997, HOMO NATURE, V387, P173; SEAR R, 2003, ED FERTILITY HERITAB, P135; SIBLY R, 1985, J THEOR BIOL, V112, P553, DOI 10.1016/S0022-5193(85)80022-9; Sibly RM, 2005, SCIENCE, V309, P607, DOI 10.1126/science.1110760; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC., 1992, EVOLUTION LIFE HISTO; STINI WA, 1969, AM J PHYS ANTHROPOL, V31, P417, DOI 10.1002/ajpa.1330310316; Thomas F, 2004, J EVOLUTION BIOL, V17, P542, DOI 10.1111/j.1420-9101.2004.00705.x; TOBIAS P, 1964, ECOLOGICAL STUDIES S, P69; Ulijaszek S., 1998, CAMBRIDGE ENCY HUMAN; Waguespack NM, 2002, HUM ECOL, V30, P227, DOI 10.1023/A:1015644814159; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; WILBUR HM, 1977, ECOLOGY, V58, P196, DOI 10.2307/1935122; WOOD JW, 1982, AM J PHYS ANTHROPOL, V58, P403, DOI 10.1002/ajpa.1330580408; WOOD JW, 1994, DYNAMICS HUMAN REPRO 49 30 30 0 11 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0011-3204 CURR ANTHROPOL Curr. Anthropol. FEB 2008 49 1 115 122 10.1086/524763 8 Anthropology Anthropology 262RV WOS:000253166600006 2018-11-12 J Sandvik, H; Erikstad, KE Sandvik, Hanno; Erikstad, Kjell Einar Seabird life histories and climatic fluctuations: a phylogenetic-comparative time series analysis of North Atlantic seabirds ECOGRAPHY English Review POPULATION-DYNAMICS; BARENTS SEA; FRATERCULA-ARCTICA; CALIFORNIA CURRENT; ANTARCTIC SEABIRD; ADULT SURVIVAL; SOUTHERN-OCEAN; REGIME SHIFTS; HEADED GULLS; EL-NINO In the light of the predicted changes in climate as a consequence of global warming, it is a major concern how animal species will respond to altered meteorological and oceanographic conditions. Seabirds constitute a diverse group of marine top predators which have relatively low fecundity and high annual survival rates. In order to predict effects of climate change, it is a necessary precondition to first understand responses to naturally occurring climatic fluctuations. While the ecological effects of different large-scale climatic phenomena have received much attention in the recent past, the factors determining the responses of seabirds are still little understood. We analyze more than a hundred previously published time series of seabird offspring production and adult survival rates in the North Atlantic in order to detect climatic signals in this data base. As our analyses are phylogenetic-comparative, we are able to search for patterns across species. Using the correlation of these parameters with the North Atlantic Oscillation (NAO) as a measure of responsiveness to climatic variability, we find that effects of climate on either parameters considered are not more common than expected by chance. The magnitudes of the responsivenesses were entirely randomly distributed throughout the seabird phylogeny, but were not strongly related to the explanatory variables considered. However, some tendencies indicate that both life-history traits and feeding ecology may influence how seabirds respond to climatic variability. An explanation of those patterns based on life-history theory is given. [Sandvik, Hanno] Univ Tromso, Dept Biol, NO-9037 Tromso, Norway; [Sandvik, Hanno; Erikstad, Kjell Einar] Norwegian Inst Nat Res, Polar Environm Ctr, NO-9296 Tromso, Norway Sandvik, H (reprint author), Univ Tromso, Dept Biol, NO-9037 Tromso, Norway. hanno@evol.no Sandvik, Hanno/B-5118-2008 Sandvik, Hanno/0000-0002-5889-1606 AEBISCHER NJ, 1990, NATURE, V347, P753, DOI 10.1038/347753a0; Ainley D., 2001, ENCY OCEAN SCI, P2669; Ainley DG, 1995, CAL COOP OCEAN FISH, V36, P72; AINLEY DG, 1995, MAR ECOL PROG SER, V118, P69, DOI 10.3354/meps118069; Alheit J, 2005, ICES J MAR SCI, V62, P1205, DOI 10.1016/j.icejms.2005.04.024; Anderson DR, 2001, J WILDLIFE MANAGE, V65, P373, DOI 10.2307/3803088; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; BARBER RT, 1983, SCIENCE, V222, P1203, DOI 10.1126/science.222.4629.1203; Barbraud C, 2003, P ROY SOC B-BIOL SCI, V270, P2111, DOI 10.1098/rspb.2003.2488; Barbraud C, 2001, NATURE, V411, P183, DOI 10.1038/35075554; BARNSTON AG, 1987, MON WEATHER REV, V115, P1083, DOI 10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2; Barrett Robert T., 2001, Atlantic Seabirds, V3, P97; Barrett RT, 2002, MAR ECOL PROG SER, V230, P275, DOI 10.3354/meps230275; Bauchau V, 1997, OIKOS, V79, P407, DOI 10.2307/3546025; Bennett P. M., 2002, EVOLUTIONARY ECOLOGY; Birkhead T.R., 1985, P145; BJORKLUND M, 1994, AUK, V111, P825; CHASTEL O, 1993, OECOLOGIA, V94, P278, DOI 10.1007/BF00341328; CHU PC, 1995, CONDOR, V97, P174, DOI 10.2307/1368995; Chu PC, 1998, CLADISTICS, V14, P1, DOI 10.1111/j.1096-0031.1998.tb00202.x; CRACRAFT J, 1985, AUK, V102, P834; Crespin L, 2006, J ANIM ECOL, V75, P228, DOI 10.1111/j.1365-2656.2006.01035.x; Crochet PA, 2002, AUK, V119, P603, DOI 10.1642/0004-8038(2002)119[0603:SOLWHG]2.0.CO;2; Crochet PA, 2000, J EVOLUTION BIOL, V13, P47; Dalpadado P, 2003, POLAR BIOL, V26, P233, DOI 10.1007/s00300-002-0470-z; DRENT RH, 1980, ARDEA, V68, P225; Duffy D.C., 1990, GLOBAL ECOLOGICAL CO, P395; Durant JM, 2004, MARINE ECOSYSTEMS AND CLIMATE VARIATION, P95; Durant JM, 2004, ECOL LETT, V7, P388, DOI 10.1111/j.1461-0248.2004.00588.x; Durant JM, 2003, P ROY SOC B-BIOL SCI, V270, P1461, DOI 10.1098/rspb.2003.2397; Ericson Per GP, 2003, BMC Evolutionary Biology, V3, P1; Erikstad KE, 1998, ECOLOGY, V79, P1781; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Ferguson SH, 2005, MAR MAMMAL SCI, V21, P121, DOI 10.1111/j.1748-7692.2005.tb01212.x; Frederiksen M, 2005, OIKOS, V111, P209, DOI 10.1111/j.0030-1299.2005.13746.x; Frederiksen M, 2004, J APPL ECOL, V41, P1129, DOI 10.1111/j.0021-8901.2004.00966.x; Friesen VL, 1996, MOL BIOL EVOL, V13, P359, DOI 10.1093/oxfordjournals.molbev.a025595; Furness RW, 2000, MAR ECOL PROG SER, V202, P253, DOI 10.3354/meps202253; FURNESS RW, 1991, P S SEAB MON CHAN MA, P2241; FURNESS RW, 1984, STATUS CONSERVATION, P701; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; Gille ST, 2002, SCIENCE, V295, P1275, DOI 10.1126/science.1065863; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Harris MP, 2005, MAR ECOL PROG SER, V297, P283, DOI 10.3354/meps297283; HEDGES SB, 1994, P NATL ACAD SCI USA, V91, P9861, DOI 10.1073/pnas.91.21.9861; Hjermann DO, 2004, MAR ECOL PROG SER, V273, P229, DOI 10.3354/meps273229; Hudson P.J., 1985, P233; Hull DL, 1999, BIOL PHILOS, V14, P481, DOI 10.1023/A:1006554919188; Hunt BG, 2004, ATMOS OCEAN, V42, P145, DOI 10.3137/ao.420301; Hurrell J. W., 2003, N ATLANTIC OSCILLATI, P1, DOI [10.1029/134GM01, DOI 10.1029/134GM01]; HURRELL JW, 1995, SCIENCE, V269, P676, DOI 10.1126/science.269.5224.676; Hurrell JW, 2001, SCIENCE, V291, P603, DOI 10.1126/science.1058761; HURRELL JW, 2004, MARINE ECOSYSTEMS CL, P15; Hurrell JW, 2005, CLIMATE INDICES; Inchausti P, 2003, J AVIAN BIOL, V34, P170, DOI 10.1034/j.1600-048X.2003.03031.x; Jennings S, 1999, CONSERV BIOL, V13, P1466, DOI 10.1046/j.1523-1739.1999.98324.x; Jenouvrier S, 2005, ECOLOGY, V86, P2889, DOI 10.1890/05-0514; Jenouvrier S, 2003, J ANIM ECOL, V72, P576, DOI 10.1046/j.1365-2656.2003.00727.x; Kitaysky AS, 2000, J ANIM ECOL, V69, P248, DOI 10.1046/j.1365-2656.2000.00392.x; Kitaysky AS, 2000, MAR ECOL PROG SER, V206, P283, DOI 10.3354/meps206283; Lebreton JD, 1991, BIRD POPULATION STUD, P105; Levitus S, 2000, SCIENCE, V287, P2225, DOI 10.1126/science.287.5461.2225; Martins Emilia P., 1996, P22; Mayr E., 1988, NEW PHILOS BIOL OBSE; MICKEVICH MF, 1980, SYST ZOOL, V29, P108; Moran MD, 2003, OIKOS, V100, P403, DOI 10.1034/j.1600-0706.2003.12010.x; Moum T, 2002, MOL BIOL EVOL, V19, P1434, DOI 10.1093/oxfordjournals.molbev.a004206; MOUM T, 1994, P NATL ACAD SCI USA, V91, P7912, DOI 10.1073/pnas.91.17.7912; Mysterud A, 2000, J ANIM ECOL, V69, P959, DOI 10.1046/j.1365-2656.2000.00454.x; Nunn GB, 1998, MOL BIOL EVOL, V15, P1360, DOI 10.1093/oxfordjournals.molbev.a025864; Ottersen G, 2001, OECOLOGIA, V128, P1, DOI 10.1007/s004420100655; Pons JM, 2005, MOL PHYLOGENET EVOL, V37, P686, DOI 10.1016/j.ympev.2005.05.011; Poole AF, 2003, BIRDS N AM LIFE HIST; Prevot-Julliard AC, 1998, AUK, V115, P85; R Development Core Team, 2005, R LANG ENV STAT COMP; Rattiste K, 1995, J APPL STAT, V22, P1057, DOI 10.1080/02664769524801; REID JB, 1999, DIETS SEABIRDS CONSE, P47; Saether BE, 2003, P ROY SOC B-BIOL SCI, V270, P2397, DOI 10.1098/rspb.2003.2499; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Sandvik H, 2005, J ANIM ECOL, V74, P817, DOI 10.1111/j.1365-2656.2005.00981.x; SANDVIK H, 2001, DYRENSE EVOLUSION IN; SANDVIK H, IN PRESS GLOBAL CHAN; Schreiber E.A., 2002, P179; SCHREIBER EA, 2002, BIOL MARINE BIRDS, P665; SCHREIBER EA, 2002, BIOL MARINE; Sibley CG, 1990, PHYLOGENY CLASSIFICA; Siegel-Causey Douglas, 1997, P159, DOI 10.1016/B978-012498315-1/50010-8; Silvertown J, 1997, OIKOS, V79, P167, DOI 10.2307/3546101; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stenseth NC, 2003, P ROY SOC B-BIOL SCI, V270, P2087, DOI 10.1098/rspb.2003.2415; STENSETH NC, 2004, MARINE ECOSYSTEMS CL; STRAUCH JG, 1985, AUK, V102, P520; Thomas GH, 2004, MOL PHYLOGENET EVOL, V30, P516, DOI 10.1016/S1055-7903(03)00222-7; Thompson PM, 2001, NATURE, V413, P417, DOI 10.1038/35096558; Thompson PM, 2002, DIR SCI, V1, P50; Trenberth K. E., 2001, ENCY OCEAN SCI, P815; Trenberth KE, 2001, SCIENCE, V293, P48, DOI 10.1126/science.293.5527.48; Viot C.R., 1993, Marine Ornithology, V21, P1; Votier SC, 2005, ECOL LETT, V8, P1157, DOI 10.1111/j.1461-0248.2005.00818.x; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; Wanless S, 1996, J APPL ECOL, V33, P1420, DOI 10.2307/2404781; Weimerskirch Henri, 2002, P115; WOOLLER RD, 1992, TRENDS ECOL EVOL, V7, P111, DOI 10.1016/0169-5347(92)90143-Y 105 38 38 0 57 BLACKWELL PUBLISHING OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND 0906-7590 ECOGRAPHY Ecography FEB 2008 31 1 73 83 10.1111/j.2007.0906-7590.05090.x 11 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 266ZN WOS:000253477500010 Bronze 2018-11-12 J Gervasi, SS; Foufopoulos, J Gervasi, Stephanie S.; Foufopoulos, Johannes Costs of plasticity: responses to desiccation decrease post-metamorphic immune function in a pond-breeding amphibian FUNCTIONAL ECOLOGY English Article ephemeral environment; phenotypic plasticity; immune system; Rana sylvatica ADAPTIVE PHENOTYPIC PLASTICITY; LIFE-HISTORY EVOLUTION; RANA-TEMPORARIA TADPOLES; LARVAL GROWTH HISTORY; TRADE-OFFS; SCAPHIOPUS-COUCHII; TIME CONSTRAINTS; BODY-SIZE; DEVELOPMENTAL PLASTICITY; ECOLOGICAL IMMUNOLOGY Phenotypic plasticity may allow an organism to respond to temporally variable opportunities for growth and risks of mortality. However, life-history theory assumes that there are often trade-offs between the benefits afforded by plasticity in one trait and the consequences of that plasticity on other traits that affect fitness. In organisms with a complex life cycle, trade-offs may occur between larval and post-metamorphic traits. Many amphibians metamorphose in temporary ponds, and may accelerate larval development to avoid mortality when a pond desiccates. A younger age at metamorphosis often results in reduced body size, but may also facilitate a trade-off with physiological traits that are linked to fitness in the adult stage. We investigated a potential trade-off between desiccation-driven acceleration of development rate and immune system responsiveness in a species that breeds exclusively in temporary ponds. We exposed Rana sylvatica (wood frog) tadpoles to four possible desiccation regimes and then assayed the cell-mediated immune response to a standardized foreign antigen, phytohaemagglutinin (PHA), injected 3 weeks after metamorphosis. We also quantified total leucocyte numbers from haematological smears to obtain a secondary measure of individual immunological condition. Animals exposed to desiccation had shorter development times, weaker cellular immune system responses to PHA and lower total leucocyte numbers than animals from control groups. Both measures of immune response showed a decrease with increasing severity of the desiccation treatment. It is currently unclear whether the observed depression in immune response is transient or permanent. However, even temporary periods of immune system suppression shortly after metamorphosis may lead to greater susceptibility to opportunistic pathogens or parasites. [Gervasi, Stephanie S.; Foufopoulos, Johannes] Univ Michigan, Sch Nat Resources & Environm, Ann Arbor, MI 48109 USA Gervasi, SS (reprint author), Oregon State Univ, Dept Zool, 3029 Cordley Hall, Corvallis, OR 97331 USA. gervasis@science.oregonstate.edu Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; ALFORD RA, 1988, AM NAT, V131, P91, DOI 10.1086/284775; Altwegg R, 2003, EVOLUTION, V57, P872; Beck CW, 2000, FUNCT ECOL, V14, P32, DOI 10.1046/j.1365-2435.2000.00386.x; BERVEN KA, 1981, EVOLUTION, V35, P707, DOI 10.1111/j.1558-5646.1981.tb04931.x; BERVEN KA, 1983, AM ZOOL, V23, P85; Blanckenhorn WU, 1998, EVOLUTION, V52, P1394, DOI 10.1111/j.1558-5646.1998.tb02021.x; BRADSHAW WE, 1995, ECOLOGY, V76, P2055, DOI 10.2307/1941680; CHODOROWSKI A, 1969, POL ARCH HYDROBIOL, V16, P79; COLLINS JP, 1979, ECOLOGY, V60, P738, DOI 10.2307/1936611; Crespi EJ, 2005, AM J HUM BIOL, V17, P44, DOI 10.1002/ajhb.20098; Cronje PB, 2003, AUST J EXP AGR, V43, P1427, DOI 10.1071/EA03005; CRUMP ML, 1989, COPEIA, P794, DOI 10.2307/1445521; Danks HV, 2006, APPL ENTOMOL ZOOL, V41, P1, DOI 10.1303/aez.2006.1; Daszak P, 2003, DIVERS DISTRIB, V9, P141, DOI 10.1046/j.1472-4642.2003.00016.x; Denver RJ, 1997, HORM BEHAV, V31, P169, DOI 10.1006/hbeh.1997.1383; Denver RJ, 1998, ECOLOGY, V79, P1859, DOI 10.1890/0012-9658(1998)079[1859:APIAMR]2.0.CO;2; Denver RJ, 1997, AM ZOOL, V37, P172; Dhabhar FS, 2002, INTEGR COMP BIOL, V42, P556, DOI 10.1093/icb/42.3.556; Gerlanc NM, 2005, J HERPETOL, V39, P254, DOI 10.1670/171-03A; Gilbertson MK, 2003, ENVIRON TOXICOL CHEM, V22, P101, DOI 10.1897/1551-5028(2003)022<0101:IITNLF>2.0.CO;2; Glennemeier KA, 2002, INTEGR COMP BIOL, V42, P565, DOI 10.1093/icb/42.3.565; GOATER CP, 1993, OIKOS, V66, P129, DOI 10.2307/3545205; Gosner K. L., 1960, Herpetologica, V16, P183; Gotthard K, 1998, J EVOLUTION BIOL, V11, P21; GOTTHARD K, 1995, OIKOS, V74, P3, DOI 10.2307/3545669; Harding J. H., 1997, AMPHIBIANS REPTILES; Hentschel BT, 2000, ECOLOGY, V81, P3495, DOI 10.1890/0012-9658(2000)081[3495:MOBNEO]2.0.CO;2; Houghton JT, 2001, CLIMATE CHANGE 2001; HOWARD RD, 1980, ANIM BEHAV, V28, P705, DOI 10.1016/S0003-3472(80)80130-8; JOHNALDER HB, 1990, COPEIA, P856, DOI 10.2307/1446453; JULIANO SA, 1994, OECOLOGIA, V97, P369, DOI 10.1007/BF00317327; KIKUYAMA S, 1993, INT REV CYTOL, V145, P105, DOI 10.1016/S0074-7696(08)60426-X; Laurila A, 1999, J ANIM ECOL, V68, P1123, DOI 10.1046/j.1365-2656.1999.00354.x; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Loman J, 2003, EVOL ECOL RES, V5, P179; Loman J, 1999, AMPHIBIA-REPTILIA, V20, P421, DOI 10.1163/156853899X00466; Longcore JR, 2007, J WILDLIFE MANAGE, V71, P435, DOI 10.2193/2006-345; Lounibos LP, 2001, ISRAEL J ZOOL, V47, P433, DOI 10.1560/638M-N8E3-61AJ-4178; Low B.S., 1976, P149; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; MCCORMICK CM, 1995, DEV BRAIN RES, V84, P55, DOI 10.1016/0165-3806(94)00153-Q; Merila J, 2004, J EVOLUTION BIOL, V17, P1132, DOI 10.1111/j.1420-9101.2004.00744.x; Morey S, 2000, ECOLOGY, V81, P1736, DOI 10.1890/0012-9658(2000)081[1736:ACAOPI]2.0.CO;2; Morey SR, 2004, OIKOS, V104, P172, DOI 10.1111/j.0030-1299.2004.12623.x; NEWMAN RA, 1994, ECOLOGY, V75, P1085, DOI 10.2307/1939432; NEWMAN RA, 1994, COPEIA, P372; NEWMAN RA, 1988, EVOLUTION, V42, P774, DOI 10.1111/j.1558-5646.1988.tb02495.x; NEWMAN RA, 1992, BIOSCIENCE, V42, P671, DOI 10.2307/1312173; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; Oppliger A, 2004, CAN J ZOOL, V82, P1713, DOI [10.1139/z04-152, 10.1139/Z04-152]; Ouellet M, 2005, CONSERV BIOL, V19, P1431, DOI 10.1111/j.1523-1739.2005.00108.x; PFENNIG DW, 1991, ECOLOGY, V72, P2240, DOI 10.2307/1941574; Rachowicz LJ, 2004, DIS AQUAT ORGAN, V61, P75, DOI 10.3354/dao061075; Relyea RA, 2002, AM NAT, V159, P272, DOI 10.1086/338540; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; Roff Derek A., 1992; Rollins-Smith LA, 1998, IMMUNOL REV, V166, P221, DOI 10.1111/j.1600-065X.1998.tb01265.x; Rollins-Smith LA, 2001, IMMUNOL RES, V23, P273, DOI 10.1385/IR:23:2-3:273; ROLLINSSMITH LA, 1988, DIFFERENTIATION, V37, P180, DOI 10.1111/j.1432-0436.1988.tb00719.x; ROUF MA, 1969, COPEIA, P682; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Rudolf VHW, 2007, EVOL ECOL, V21, P121, DOI 10.1007/s10682-006-0017-9; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Schalm OW, 1986, SCHALMS VET HEMATOLO; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Sheridan MA, 1998, AM ZOOL, V38, P350; SKELLY DK, 1990, ECOLOGY, V71, P2313, DOI 10.2307/1938642; SMITH DC, 1987, ECOLOGY, V68, P344, DOI 10.2307/1939265; SMITHGILL SJ, 1979, AM NAT, V113, P563, DOI 10.1086/283413; Smits JE, 1999, FUNCT ECOL, V13, P567, DOI 10.1046/j.1365-2435.1999.00338.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEARNS SC, 1992, EVOLUTION HIST; Stoks R, 2006, ECOLOGY, V87, P809, DOI 10.1890/0012-9658(2006)87[809:TCMPPI]2.0.CO;2; Svensson E, 2001, P NATL ACAD SCI USA, V98, P12561, DOI 10.1073/pnas.211071298; TRAVIS J, 1984, ECOLOGY, V65, P1155, DOI 10.2307/1938323; Twombly S, 1996, ECOLOGY, V77, P1855, DOI 10.2307/2265789; VANBUSKIRK J, 1988, ECOLOGY, V69, P857; Watkins TB, 2001, EVOLUTION, V55, P1668; WEINSTOCK M, 1992, BRAIN RES, V595, P195, DOI 10.1016/0006-8993(92)91049-K; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; WHITAKER BR, 2001, AMPHIBIAN MED CAPTIV; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; WILBUR HM, 1987, ECOLOGY, V68, P1437, DOI 10.2307/1939227; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956 90 82 86 1 54 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. FEB 2008 22 1 100 108 10.1111/j.1365-2435.2007.01340.x 9 Ecology Environmental Sciences & Ecology 252JU WOS:000252443600013 Bronze 2018-11-12 J Lendvai, AZ; Chastel, O Lendvai, Adam Zoltan; Chastel, Olivier Experimental mate-removal increases the stress response of female house sparrows: The effects of offspring value? HORMONES AND BEHAVIOR English Article stress response modulation; corticosterone; life-history; parental care; mate-removal; brood value BLACK-LEGGED KITTIWAKES; LONG-LIVED BIRD; PASSER-DOMESTICUS; ADRENOCORTICAL RESPONSES; BODY CONDITION; CORTICOSTERONE CONCENTRATIONS; REPRODUCTIVE SUCCESS; BASE-LINE; MODULATION; INVESTMENT Vertebrates secrete elevated levels of glucocorticoids in response to various stressors, which mobilize energetic reserves but concurrently interfere with reproduction. In accordance with life-history theory, recent evidence suggests that the corticosterone response to stress is modulated according to the value of the brood. Since brood value is positively related to parental care, the stress response modulation may be either the consequence of offspring value (e.g. large broods have high fitness potential - the brood value hypothesis) or the consequence of parental workload (e.g. large broods are energetically demanding for the parents - the workload hypothesis). In this experiment, we aimed at experimentally separating the effects of brood value and workload and to confront the latter two hypotheses. To do so, we captured the male parents from breeding pairs of house sparrows (Passer domesticus) and took them in captivity for 48 It. During the absence of males, mate-removed females made more food deliveries than controls (increased workload) but were unable to fully compensate the lack of their mate, thus their chicks were in worse condition (reduced brood value) than control chicks. After the experimental period, mate-removed females responded more strongly to the standardized stressor than controls. In both groups, the corticosterone response to stress was negatively related to the nestlings' mass gain. These results provide experimental support for the brood value hypothesis, i.e. that individuals may actively modulate their stress response (either down- or upwards) with respect to the value of their current reproduction. (C) 2007 Elsevier Inc. All rights reserved. [Lendvai, Adam Zoltan; Chastel, Olivier] CNRS, Ctr Etud Biol Chize, F-79360 Villiers En Bois, France Lendvai, AZ (reprint author), Coll Nyiregyhaza, Inst Biol, Sostoi 31-B, H-4400 Nyiregyhaza, Hungary. lendvai@nyf.hu Lendvai, Adam/B-8546-2008 Lendvai, Adam/0000-0002-8953-920X Angelier F, 2007, J ANIM ECOL, V76, P1181, DOI 10.1111/j.1365-2656.2007.01295.x; Angelier F, 2007, CONDOR, V109, P668, DOI 10.1650/8227.1; Breuner CW, 2006, HORM METAB RES, V38, P260, DOI 10.1055/s-2005-925347; Breuner CW, 2001, J NEUROENDOCRINOL, V13, P412, DOI 10.1046/j.1365-2826.2001.00646.x; Chastel O, 2005, HORM BEHAV, V47, P459, DOI 10.1016/j.yhbeh.2004.10.009; Chastel O, 2003, J AVIAN BIOL, V34, P298, DOI 10.1034/j.1600-048X.2003.02528.x; Chastel O, 2002, IBIS, V144, P284, DOI 10.1046/j.1474-919X.2002.00062.x; Cherel Y., 1988, American Journal of Physiology, V254, P178; Colegrave N, 2003, BEHAV ECOL, V14, P446, DOI 10.1093/beheco/14.3.446; Cyr NE, 2007, GEN COMP ENDOCR, V151, P82, DOI 10.1016/j.ygcen.2006.12.003; Dawkins R, 1980, SOCIOBIOLOGY NATURE, P331; DRENT RH, 1980, ARDEA, V68, P225; Gosler AG, 1998, BIRD STUDY, V45, P92, DOI 10.1080/00063659809461082; HEGNER RE, 1987, AUK, V104, P462, DOI 10.2307/4087545; Holberton RL, 1996, AUK, V113, P558, DOI 10.2307/4088976; Jessop TS, 2001, J ZOOL, V254, P57, DOI 10.1017/S0952836901000553; Ketterson Ellen D., 1999, American Naturalist, V154, P4; Kitaysky AS, 1999, FUNCT ECOL, V13, P577, DOI 10.1046/j.1365-2435.1999.00352.x; Landys MM, 2006, GEN COMP ENDOCR, V148, P132, DOI 10.1016/j.ygcen.2006.02.013; Lendvai AZ, 2007, P R SOC B, V274, P391, DOI 10.1098/rspb.2006.3735; Lepczyk CA, 2000, AUK, V117, P164, DOI 10.1642/0004-8038(2000)117[0164:EOEFRO]2.0.CO;2; Lindstrom KM, 2005, HORM BEHAV, V48, P311, DOI 10.1016/j.yhbeh.2005.04.002; Lormee H, 2003, IBIS, V145, P212, DOI 10.1046/j.1474-919X.2003.00106.x; Love OP, 2004, HORM BEHAV, V46, P59, DOI 10.1016/j.yhbeh.2004.02.001; Marra PP, 1998, OECOLOGIA, V116, P284, DOI 10.1007/s004420050590; MAYNARDSMITH J, 1977, ANIM BEHAV, V25, P1, DOI DOI 10.1016/0003-3472(77)90062-8); Mazuc J, 2003, BEHAV ECOL, V14, P340, DOI 10.1093/beheco/14.3.340; McNamara JM, 2005, BEHAV ECOL, V16, P1008, DOI 10.1093/beheco/ari087; MENDEL CM, 1989, ENDOCR REV, V10, P232, DOI 10.1210/edrv-10-3-232; MORENO J, 1989, BIOL J LINN SOC, V37, P297, DOI 10.1111/j.1095-8312.1989.tb01907.x; *R DEV COR TEAM, 2006, R LANG ENV STAT COMP; Remage-Healey L, 2003, HORM BEHAV, V43, P108, DOI 10.1016/S0018-506X(02)00012-0; Rich EL, 2001, J COMP PHYSIOL B, V171, P543; Romero LM, 2006, GEN COMP ENDOCR, V149, P58, DOI 10.1016/j.ygcen.2006.05.004; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Saino N, 2003, BEHAV ECOL, V14, P16, DOI 10.1093/beheco/14.1.16; Schwagmeyer PL, 2002, BEHAV ECOL, V13, P713, DOI 10.1093/beheco/13.5.713; Schwagmeyer PL, 1997, ANIM BEHAV, V54, P470, DOI 10.1006/anbe.1997.0483; Silverin B, 1998, J AVIAN BIOL, V29, P228, DOI 10.2307/3677104; SILVERIN B, 1986, GEN COMP ENDOCR, V64, P67, DOI 10.1016/0016-6480(86)90029-8; Silverin B, 1997, FUNCT ECOL, V11, P376, DOI 10.1046/j.1365-2435.1997.00097.x; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; Stearns S. C., 1992, EVOLUTION LIFE HIST; SUMMERSSMITH D, 1963, HOUSE SPARROW; Szekely T, 2000, VERTEBRATE MATING SY, P194; VEIGA JP, 1990, BEHAV ECOL SOCIOBIOL, V27, P345, DOI 10.1007/BF00164005; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; WINGFIELD JC, 1994, PERSPECTIVES IN COMPARATIVE ENDOCRINOLOGY, P520; WINGFIELD JC, 1995, AM ZOOL, V35, P285 50 37 37 0 9 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0018-506X HORM BEHAV Horm. Behav. FEB 2008 53 2 395 401 10.1016/j.yhbeh.2007.11.011 7 Behavioral Sciences; Endocrinology & Metabolism Behavioral Sciences; Endocrinology & Metabolism 270CH WOS:000253697000013 18191129 2018-11-12 J Wagner, EC; Prevolsek, JS; Wynne-Edwards, KE; Williams, TD Wagner, Emily C.; Prevolsek, Jaime S.; Wynne-Edwards, Katherine E.; Williams, Tony D. Hematological changes associated with egg production: estrogen dependence and repeatability JOURNAL OF EXPERIMENTAL BIOLOGY English Article hematocrit; cost of reproduction; egg production; erythropoiesis; estrogen; zebra finch FINCHES TAENIOPYGIA-GUTTATA; FEMALE ZEBRA FINCHES; TRANSCRIPTION FACTOR GATA-1; STARLING STURNUS-VULGARIS; REPRODUCTIVE EFFORT; CLUTCH SIZE; HEMATOCRIT VALUES; JAPANESE-QUAIL; EXOGENOUS 17-BETA-ESTRADIOL; BLOOD VOLUME The. cost of reproduction' (i.e. the trade-off between current reproduction and future fecundity and/or survival) is a central concept in life history theory, yet we still know very little about the physiological mechanisms underlying such costs. Recently it has been recognized that reproduction itself or the regulatory ( hormonal) mechanisms underlying reproduction might result in. costs' (cf. resource-allocation based mechanisms). As one example, it has been suggested that the decrease in hematocrit observed during egg production in birds might be due to antagonistic pleiotropic effects of estrogens. This could generate costs of reproduction by reducing oxygen-carrying capacity during subsequent aerobically demanding stages such as chick-provisioning. Here we show that the reduction in hematocrit during egg-laying is dependent on receptor-mediated actions of endogenous estrogens: blocking estrogen receptors using the anti-estrogen tamoxifen reduces the decrease in hematocrit during egg production in female zebra finches (Taeniopygia guttata) such that hematocrit at the 1-egg stage is not significantly different than pre-breeding, baseline values. We also show that both pre-breeding hematocrit and the decrease in hematocrit associated with egg production are repeatable, and that females with the highest pre- breeding hematocrit values tend to show the largest decreases in hematocrit during egg production. We suggest that hematological changes during egg production are a good candidate mechanism for a regulatory-network based trade-off involving antagonistic pleiotropic effects of estrogens, which otherwise have essential reproductive functions. [Wagner, Emily C.] Womens Hlth Res Inst, Vancouver, BC V6H 3N1, Canada; [Prevolsek, Jaime S.] Simon Fraser Univ, Sch Criminol, Burnaby, BC V5A 1S6, Canada; [Wynne-Edwards, Katherine E.] Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada; [Williams, Tony D.] Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada Wagner, EC (reprint author), Womens Hlth Res Inst, E204-4500 Oak St,Box 42, Vancouver, BC V6H 3N1, Canada. ewagner3@cw.bc.ca Wynne-Edwards, Katherine/D-9036-2012 ARCHER RK, 1965, HEMATOLOGICAL TECHNI; BLOBEL GA, 1995, MOL CELL BIOL, V15, P3147; Blobel GA, 1996, MOL CELL BIOL, V16, P1687; CAMPBELL TW, 1995, AVIAN HEMATOLOGY CYT; Challenger WO, 2001, PHYSIOL BIOCHEM ZOOL, V74, P356, DOI 10.1086/320427; Christians JK, 1999, J EXP BIOL, V202, P2679; CLERMONT CP, 1979, AM J PHYSIOL, V236, pE342; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; Davey C, 2000, AUST J ZOOL, V48, P347, DOI 10.1071/ZO00047; DESHMUKH BD, 1982, AVIAN RES, V66, P9; DOMM LV, 1946, PHYSIOL ZOOL, V19, P258, DOI 10.1086/physzool.19.3.30151913; Drabkin DL, 1932, J BIOL CHEM, V98, P719; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; GARCIA F, 1984, COMP BIOCHEM PHYS A, V78, P571, DOI 10.1016/0300-9629(84)90598-X; Gaudard A, 2003, CLIN HEMORHEOL MICRO, V28, P161; Gayathri KL, 2006, ANIM REPROD SCI, V91, P133, DOI 10.1016/j.anireprosci.2005.03.006; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hebert PC, 1997, CAN MED ASSOC J, V156, pS27; Horak P, 1998, CAN J ZOOL, V76, P2235, DOI 10.1139/cjz-76-12-2235; HOUSTON DC, 1995, IBIS, V137, P322, DOI 10.1111/j.1474-919X.1995.tb08028.x; HUNSAKER WG, 1968, POULTRY SCI, V47, P371, DOI 10.3382/ps.0470371; JOHNSON AL, 1981, POULTRY SCI, V60, P2720, DOI 10.3382/ps.0602720; JONES PJ, 1983, J ZOOL, V201, P217; KERN MD, 1972, GEN COMP ENDOCR, V18, P43, DOI 10.1016/0016-6480(72)90078-0; KETTERSON ED, 1992, AM NAT S, V140, P33; Ketterson Ellen D., 1999, American Naturalist, V154, P4; KEYS GC, 1986, COMP BIOCHEM PHYS A, V83, P765, DOI 10.1016/0300-9629(86)90725-5; Kullberg C, 2002, BEHAV ECOL, V13, P575, DOI 10.1093/beheco/13.4.575; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Martin LB, 2003, P ROY SOC B-BIOL SCI, V270, P153, DOI 10.1098/rspb.2002.2185; Merino S, 1997, POLAR BIOL, V17, P14, DOI 10.1007/s003000050099; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; Monaghan P, 1998, P ROY SOC B-BIOL SCI, V265, P1731, DOI 10.1098/rspb.1998.0495; MONAGHAN P, 1995, P ROY SOC B-BIOL SCI, V259, P189, DOI 10.1098/rspb.1995.0027; MORTON ML, 1994, CONDOR, V96, P119, DOI 10.2307/1369069; Nager RG, 2001, J AVIAN BIOL, V32, P159, DOI 10.1034/j.1600-048X.2001.320209.x; NATT MP, 1952, POULTRY SCI, V31, P735, DOI 10.3382/ps.0310735; NIKINMAA M, 1990, VERTEBRATE RED BLOOD; NIRMALAN GP, 1973, GEN COMP ENDOCR, V20, P150, DOI 10.1016/0016-6480(73)90140-8; NIRMALAN GP, 1972, POULTRY SCI, V51, P920, DOI 10.3382/ps.0510920; Oppliger A, 1997, BEHAV ECOL, V8, P148, DOI 10.1093/beheco/8.2.148; Partridge L, 2005, CELL, V120, P461, DOI 10.1016/j.cell.2005.01.026; Perry MJ, 2000, AM J PHYSIOL-ENDOC M, V279, pE1159; Reed WL, 2006, AM NAT, V167, P667, DOI 10.1086/503054; Reynolds SJ, 1999, J AVIAN BIOL, V30, P1, DOI 10.2307/3677236; ROBERTSON GW, 1990, BRIT POULTRY SCI, V31, P881, DOI 10.1080/00071669008417319; RODNAN GP, 1957, BLOOD, V12, P355; Rose MR, 1998, OIKOS, V83, P443, DOI 10.2307/3546672; Salvante KG, 2002, J AVIAN BIOL, V33, P391, DOI 10.1034/j.1600-048X.2002.02920.x; *SAS I, 2003, SAS SYST WIND SAS ST; Sheridan JA, 2004, AUK, V121, P717, DOI 10.1642/0004-8038(2004)121[0717:WABMOH]2.0.CO;2; Stearns S. C., 1992, EVOLUTION LIFE HIST; STURKIE PD, 1966, J APPL PHYSIOL, V21, P1927; TSANG CPW, 1984, STEROIDS, V43, P71, DOI 10.1016/0039-128X(84)90059-X; Veasey JS, 2001, J ANIM ECOL, V70, P20, DOI 10.1046/j.1365-2656.2001.00476.x; Vezina F, 2003, J EXP BIOL, V206, P4443, DOI 10.1242/jeb.00702; Vezina F, 2006, ECOLOGY, V87, P2447, DOI 10.1890/0012-9658(2006)87[2447:IVEMSI]2.0.CO;2; Wagner EC, 2007, PHYSIOL BIOCHEM ZOOL, V80, P293, DOI 10.1086/512586; Williams TD, 1999, HORM BEHAV, V35, P135, DOI 10.1006/hbeh.1998.1506; Williams TD, 1996, CAN J ZOOL, V74, P85, DOI 10.1139/z96-011; Williams TD, 2000, PHYSIOL BIOCHEM ZOOL, V73, P566, DOI 10.1086/317748; Williams TD, 1996, PHYSIOL ZOOL, V69, P1255, DOI 10.1086/physzool.69.5.30164256; Williams TD, 2005, P ROY SOC B-BIOL SCI, V272, P173, DOI 10.1098/rspb.2004.2935; Williams TD, 2005, BIOSCIENCE, V55, P39, DOI 10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2; Williams TD, 2004, FUNCT ECOL, V18, P330, DOI 10.1111/j.0269-8463.2004.00829.x; Williams TD, 2004, GEN COMP ENDOCR, V136, P346, DOI 10.1016/j.ygcen.2004.01.010; Williams TD, 2003, J AVIAN BIOL, V34, P379, DOI 10.1111/j.0908-8857.2003.03080.x; Williams TD, 2001, P ROY SOC B-BIOL SCI, V268, P423, DOI 10.1098/rspb.2000.1374; Zera AJ, 2007, ANNU REV ECOL EVOL S, V38, P793, DOI 10.1146/annurev.ecolsys.38.091206.095615 70 25 25 2 16 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 J EXP BIOL J. Exp. Biol. FEB 1 2008 211 3 400 408 10.1242/jeb.011205 9 Biology Life Sciences & Biomedicine - Other Topics 263CY WOS:000253196400024 18203996 Bronze 2018-11-12 J Simkova, A; Lafond, T; Ondrackova, M; Jurajda, P; Ottova, E; Morand, S Simkova, Andrea; Lafond, Thomas; Ondrackova, Marketa; Jurajda, Pavel; Ottova, Eva; Morand, Serge Parasitism, life history traits and immune defence in cyprinid fish from Central Europe BMC EVOLUTIONARY BIOLOGY English Article ROACH RUTILUS-RUTILUS; IMMUNOCOMPETENCE HANDICAP; SEXUAL ORNAMENTATION; INDEPENDENT CONTRASTS; SPECIES RICHNESS; SEASONAL-CHANGES; ABRAMIS-BRAMA; BARN SWALLOW; ARCTIC CHARR; SPLEEN SIZE Background: The main prediction of life-history theory is that optimal energy allocated among the traits is related to the growth, maintenance and survival. It is hypothesized that the optimal resource allocated to immune function, which generates resistance towards parasites and reduce the fitness losses caused by parasitism, is depending on other requirements for energetic resource and the benefits associated with them. The aims of this study are to investigate in a comparative way (1) how parasitism is related to fish life history traits (fecundity, longevity, mortality), (2) whether there is a trade-off between reproduction and immune investments in fish females (i.e. energetic hypothesis) and in males (i.e. immunohandicap hypothesis), (3) whether parasitism influences host immunity (spleen size) and reproduction (gonad size) in females and males. Results: Data on metazoan parasites of 23 cyprinid fish species from Central Europe were used for the analyses as well as new data collected from a field study. Ectoparasite species richness was negatively correlated with the fish mortality estimated by the k-value and positively correlated with fish body size, suggesting that parasite diversity increases with fish longevity. A negative relationship between spleen size and gonad size, controlling for fish body size, was found in females but not in males. Moreover, parasite abundance was positively correlated with fish spleen size and negatively with fish gonad size in females. Conclusion: The comparative analyses using cyprinid fish species demonstrated that natural mortality could be considered as a factor contributing to the variability of parasite species richness and moreover, parasite species benefit from long-lived fish. The results obtained from the analyses investigating the potential trade-off between reproduction and immunity could be interpreted as an energetic trade-off between female reproduction and immune function. The lack of negative relationship between gonad size and spleen size in males did not support our prediction based on the immunohandicap hypothesis. [Simkova, Andrea; Ondrackova, Marketa; Ottova, Eva] Masaryk Univ, Fac Sci, Inst Bot & Zool, CS-61137 Brno, Czech Republic; [Morand, Serge] Univ Montpellier 2, Inst Sci Evolut, CNRS, CC065, F-34095 Montpellier 05, France; [Lafond, Thomas] Univ Paris 06, Lab Parasitol Evolut, UMR 7103, F-75252 Paris 05, France; [Ondrackova, Marketa; Jurajda, Pavel] Acad Sci Czech Republic, Inst Vertebrate Biol, CS-60365 Brno, Czech Republic Simkova, A (reprint author), Masaryk Univ, Fac Sci, Inst Bot & Zool, Kotlarska 2, CS-61137 Brno, Czech Republic. simkova@sci.muni.cz; morand@isem.univ-montp2.fr; audrey@sci.muni.cz; jurajda@brno.cas.cz; evaottova@email.cz; morand@isem.univ-montp2.fr Jurajda, Pavel/F-9647-2014; Morand, Serge/M-5433-2018; Ondrackova, Marketa/G-1479-2014 Morand, Serge/0000-0003-3986-7659; Ardia DR, 2006, J FISH BIOL, V68, P144, DOI 10.1111/j.1095-8649.2006.00962.x; Barus V, 1995, PETROMYZONTES OSTEIC; Brown CR, 2002, P ROY SOC B-BIOL SCI, V269, P1367, DOI 10.1098/rspb.2002.2036; BUSH S, 2003, VET PARASITOL, V117, P117; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; Collyer ML, 2004, J ANIM ECOL, V73, P821, DOI 10.1111/j.0021-8790.2004.00855.x; Dalmo RA, 1997, J FISH DIS, V20, P241, DOI 10.1046/j.1365-2761.1997.00302.x; Ergens R, 1970, CAUSATIVE AGENTS FIS; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FOLSTAD I, 1994, OIKOS, V69, P511, DOI 10.2307/3545863; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; FROESE R, 2005, WORLD WIDE WEB ELECT; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; Gilles A, 2001, MOL PHYLOGENET EVOL, V19, P22, DOI 10.1006/mpev.2000.0916; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; HARVEY PH, 1982, J THEOR BIOL, V95, P37, DOI 10.1016/0022-5193(82)90285-5; Hou YY, 1999, FISH PHYSIOL BIOCHEM, V20, P155, DOI 10.1023/A:1007799617597; JOHN JL, 1995, BIOL J LINN SOC, V54, P87, DOI 10.1016/0024-4066(95)90038-1; Johnson MW, 2001, CAN J ZOOL, V79, P1980, DOI 10.1139/cjz-79-11-1980; Jokela J, 2005, OIKOS, V108, P156, DOI 10.1111/j.0030-1299.2005.13185.x; Jones KE, 2003, AM NAT, V161, P601, DOI 10.1086/368289; Kortet R, 2004, ECOL FRESHW FISH, V13, P119, DOI 10.1111/j.1600-0633.2004.00039.x; Kortet R, 2003, EVOL ECOL RES, V5, P411; Kortet R, 2003, BIOL J LINN SOC, V78, P117, DOI 10.1046/j.1095-8312.2003.00136.x; Kurtz J, 1999, P ROY SOC B-BIOL SCI, V266, P2515, DOI 10.1098/rspb.1999.0954; Lamkova K, 2007, PARASITOL RES, V101, P775, DOI 10.1007/s00436-007-0546-3; LUSK S, 1983, FISH OUR WATERS; MCPHAIL JD, 1983, CAN J ZOOL, V61, P901, DOI 10.1139/z83-118; Moller Anders Pape, 1997, P105; Moller AP, 1998, J EVOLUTION BIOL, V11, P703, DOI 10.1046/j.1420-9101.1998.11060703.x; Moller AP, 2005, J EVOLUTION BIOL, V18, P223, DOI 10.1111/j.1420-9101.2004.00805.x; Moller AP, 2005, J EVOLUTION BIOL, V18, P46, DOI 10.1111/j.1420-9101.2004.00774.x; Moller AP, 2002, OIKOS, V99, P95, DOI 10.1034/j.1600-0706.2002.990110.x; Moller AP, 2001, AM NAT, V158, P136, DOI 10.1086/321308; Moller AP, 2002, J EVOLUTION BIOL, V15, P495, DOI 10.1046/j.1420-9101.2002.00386.x; Morand S, 2000, CAN J ZOOL, V78, P1356, DOI 10.1139/cjz-78-8-1356; Morand S, 2000, DEV AN VET, V32, P63; *NAT RES COUNC, 1992, BIOL MARK IMM; Ottova E, 2005, EVOL ECOL RES, V7, P581; Ottova E, 2007, BIOL J LINN SOC, V90, P525, DOI 10.1111/j.1095-8312.2007.00743.x; POULIN R., 2004, PARASITE BIODIVERSIT; PURVIS A, 1995, COMPUT APPL BIOSCI, V11, P247; Reznick D, 2002, MECH AGEING DEV, V123, P773, DOI 10.1016/S0047-6374(01)00423-7; Rigby MC, 2000, DEV AN VET, V32, P129; Saino N, 1998, OIKOS, V81, P217, DOI 10.2307/3547043; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Simkova A, 2005, PARASITOL RES, V95, P65, DOI 10.1007/s00436-004-1261-y; Simkova A, 2001, BIODIVERS CONSERV, V10, P511, DOI 10.1023/A:1016658427730; Skarstein F, 1996, OIKOS, V76, P359, DOI 10.2307/3546208; Skarstein F, 2001, CAN J ZOOL, V79, P271, DOI 10.1139/cjz-79-2-271; SLATER CH, 1993, GEN COMP ENDOCR, V89, P291, DOI 10.1006/gcen.1993.1035; Taskinen J, 2002, EVOL ECOL RES, V4, P919; Vainikka A, 2005, ACTA ETHOLOG, V8, P70, DOI 10.1007/s10211-005-0002-2; Vainikka A, 2004, J FISH BIOL, V64, P227, DOI [10.1111/j.1095-8649.2004.00306.x, 10.1046/j.1095-8649.2004.00306.x]; WARD PI, 1989, OIKOS, V55, P428, DOI 10.2307/3565605; WEDEKIND C, 1994, AM NAT, V143, P936, DOI 10.1086/285641; WEDEKIND C, 1992, P ROY SOC B-BIOL SCI, V247, P169, DOI 10.1098/rspb.1992.0024 57 24 25 2 25 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1471-2148 BMC EVOL BIOL BMC Evol. Biol. JAN 28 2008 8 29 10.1186/1471-2148-8-29 11 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity 278JS WOS:000254282400001 18226212 DOAJ Gold, Green Published 2018-11-12 J McNamara, JM; Houston, AI McNamara, John M.; Houston, Alasdair I. Optimal annual routines: behaviour in the context of physiology and ecology PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Review state; life history; trade-offs; seasonality; timing of breeding; virtual experiments TITS PARUS-MAJOR; FUTURE REPRODUCTIVE SUCCESS; OPTIMAL RESOURCE-ALLOCATION; DISTANCE MIGRANT SHOREBIRD; OPTIMAL LIFE-HISTORIES; JUNCOS JUNCO-HYEMALIS; BASAL METABOLIC-RATE; AUSTRALIAN SEA LION; DYNAMIC-MODEL; PARENTAL EFFORT Organisms in a seasonal environment often schedule activities in a regular way over the year. If we assume that such annual routines have been shaped by natural selection then life-history theory should provide a basis for explaining them. We argue that many life-history trade-offs are mediated by underlying physiological variables that act on various time scales. The dynamics of these variables often preclude considering one period of the year in isolation. In order to capture the essence of annual routines, and many life-history traits, a detailed model of changes in physiological state over the annual cycle is required. We outline a modelling approach based on suitable physiological and ecological state variables that can capture this underlying biology, and describe how models based on this approach can be used to generate a range of insights and predictions. [McNamara, John M.] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England; [Houston, Alasdair I.] Univ Bristol, Sch Biol Sci, Bristol BS8 1UG, Avon, England McNamara, JM (reprint author), Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England. john.mcnamara@bristol.ac.uk Abrams PA, 1995, EVOLUTION, V49, P1055, DOI 10.1111/j.1558-5646.1995.tb04433.x; ALERSTAM T, 1991, TRENDS ECOL EVOL, V6, P210, DOI 10.1016/0169-5347(91)90024-R; Ali M, 2003, FISH FISH, V4, P147, DOI 10.1046/j.1467-2979.2003.00120.x; Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Altizer S, 2006, ECOL LETT, V9, P467, DOI 10.1111/j.1461-0248.2005.00879.x; ATKINSON SN, 1995, FUNCT ECOL, V9, P559, DOI 10.2307/2390145; Ball GF, 2008, PHILOS T R SOC B, V363, P231, DOI 10.1098/rstb.2007.2137; Barta Z, 2006, OIKOS, V112, P580, DOI 10.1111/j.0030-1299.2006.14240.x; Barta Z, 2008, PHILOS T R SOC B, V363, P211, DOI 10.1098/rstb.2007.2136; BOUTIN S, 1990, CAN J ZOOL, V68, P203, DOI 10.1139/z90-031; Brodin A, 1997, BEHAV ECOL, V8, P178, DOI 10.1093/beheco/8.2.178; Brown CR, 2000, BEHAV ECOL SOCIOBIOL, V47, P339, DOI 10.1007/s002650050674; Buehler DM, 2008, PHILOS T R SOC B, V363, P247, DOI 10.1098/rstb.2007.2138; BULL JJ, 1979, AM NAT, V114, P296, DOI 10.1086/283476; Caswell H, 2001, MATRIX POPULATION MO; CHARNOV E L, 1982; Cichon M, 1997, P ROY SOC B-BIOL SCI, V264, P1383, DOI 10.1098/rspb.1997.0192; Cichon M, 2000, EVOL ECOL RES, V2, P857; Clark CW, 2000, EVOL ECOL RES, V2, P473; Clarke J. R., 1981, Oxford Reviews of Reproductive Biology, V3, P244; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; DAAN S, 1989, ACT 19 C INT ORN OTT, P392; Daunt F, 2006, BEHAV ECOL SOCIOBIOL, V59, P381, DOI 10.1007/s00265-005-0061-4; Dawson A, 2000, P ROY SOC B-BIOL SCI, V267, P2093, DOI 10.1098/rspb.2000.1254; Doody JS, 2003, J ZOOL, V259, P179, DOI 10.1017/S0952836902003217; DRENT RH, 1980, ARDEA, V68, P225; ENS BJ, 1992, J ANIM ECOL, V61, P703, DOI 10.2307/5625; GALES NJ, 1994, J ZOOL, V234, P353, DOI 10.1111/j.1469-7998.1994.tb04853.x; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; Gould SJ, 1997, P NATL ACAD SCI USA, V94, P10750, DOI 10.1073/pnas.94.20.10750; GWINNER E, 1986, CIRCANNUAL RYTHMS; Hahn TP, 2008, PHILOS T R SOC B, V363, P267, DOI 10.1098/rstb.2007.2139; HEDENSTROM A, 1992, J THEOR BIOL, V158, P535, DOI 10.1016/S0022-5193(05)80714-3; HEDENSTROM A, 1995, PHILOS T ROY SOC B, V348, P471, DOI 10.1098/rstb.1995.0082; Hedenstrom A, 1997, J THEOR BIOL, V189, P227, DOI 10.1006/jtbi.1997.0505; Hedenstrom A, 2008, PHILOS T R SOC B, V363, P287, DOI 10.1098/rstb.2007.2140; Heibo E, 2005, ECOLOGY, V86, P3377, DOI 10.1890/04-1620; HIGGINS LV, 1993, J MAMMAL, V74, P270, DOI 10.2307/1382381; Houston AI, 2005, BIOL PHILOS, V20, P933, DOI 10.1007/s10539-005-9016-4; Houston AI, 2005, TRENDS ECOL EVOL, V20, P33, DOI 10.1016/j.tree.2004.10.008; Houston AI, 2002, PHILOS T ROY SOC B, V357, P351, DOI 10.1098/rstb.2001.0925; HOUSTON AI, 1993, ORNIS SCAND, V24, P205, DOI 10.2307/3676736; Houston AI, 1999, MODELS ADAPTIVE BEHA; IVERSON JB, 1993, CAN J ZOOL, V71, P2448, DOI 10.1139/z93-341; Jacobs JD, 2000, CONDOR, V102, P35, DOI 10.1650/0010-5422(2000)102[0035:ECOLCS]2.0.CO;2; Janeway CA, 2004, IMMUNOBIOLOGY; Jouventin P, 2002, P ROY SOC B-BIOL SCI, V269, P1955, DOI 10.1098/rspb.2002.2080; KETTERSON ED, 1979, AUK, V96, P532; KETTERSON ED, 1976, ECOLOGY, V57, P679, DOI 10.2307/1936182; Ketterson ED, 2005, AM NAT, V166, pS85, DOI 10.1086/444602; KETTERSON ED, 2000, AM NAT, V155, pU7, DOI DOI 10.1086/303308; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; KJELLEN N, 1992, ORNIS SCAND, V23, P420, DOI 10.2307/3676673; KLASSEN M, 1994, AUK, V111, P525; Kokko H, 1999, J ANIM ECOL, V68, P940, DOI 10.1046/j.1365-2656.1999.00343.x; Kokko H, 2006, AM NAT, V167, P901, DOI 10.1086/504604; Komdeur J, 2005, J ORNITHOL, V146, P305, DOI 10.1007/s10336-005-0008-6; LACK D, 1950, IBIS, V92, P288, DOI 10.1111/j.1474-919X.1950.tb01753.x; Lank DB, 2003, OIKOS, V103, P303, DOI 10.1034/j.1600-0706.2003.12314.x; LIMA SL, 1986, ECOLOGY, V67, P377, DOI 10.2307/1938580; LINDSTROM A, 1992, AM NAT, V140, P477, DOI 10.1086/285422; Lindstrom J, 2005, FUNCT ECOL, V19, P421, DOI 10.1111/j.1365-2435.2005.00974.x; Lozano GA, 1996, J AVIAN BIOL, V27, P164, DOI 10.2307/3677146; Madsen T, 1999, J ANIM ECOL, V68, P571, DOI 10.1046/j.1365-2656.1999.00306.x; Mangel M, 2005, AM NAT, V166, pE155, DOI 10.1086/444439; Mangel M, 2001, J THEOR BIOL, V213, P559, DOI 10.1006/jtbi.2001.2431; Martin LB, 2008, PHILOS T R SOC B, V363, P321, DOI 10.1098/rstb.2007.2142; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MCNAMARA JM, 1986, AM NAT, V127, P358, DOI 10.1086/284489; MCNAMARA JM, 1991, THEOR POPUL BIOL, V40, P230, DOI 10.1016/0040-5809(91)90054-J; McNamara JM, 1998, J AVIAN BIOL, V29, P416, DOI 10.2307/3677160; McNamara JM, 2004, THEOR POPUL BIOL, V65, P361, DOI 10.1016/j.tpb.2003.10.006; MCNAMARA JM, 1990, ACTA BIOTHEOR, V38, P37, DOI 10.1007/BF00047272; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; McNamara JM, 1997, J THEOR BIOL, V189, P211, DOI 10.1006/jtbi.1997.0511; McNamara JM, 1997, THEOR POPUL BIOL, V51, P94, DOI 10.1006/tpbi.1997.1291; MCNAMARA JM, 1993, ACTA BIOTHEOR, V41, P165, DOI 10.1007/BF00712164; MCNAMARA JM, 1982, FUNCTIONAL ONTOGENY, P60; McNamara JM, 2006, SOCIAL INFORM TRANSM, P59; McNamara JM, 1990, BEHAV ECOL, V1, P12, DOI 10.1093/beheco/1.1.12; Mendes L, 2005, OIKOS, V109, P396, DOI 10.1111/j.0030-1299.2005.13509.x; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Mueller HC, 2000, WILSON BULL, V112, P214, DOI 10.1676/0043-5643(2000)112[0214:AASDIT]2.0.CO;2; Muller MN, 2002, Q REV BIOL, V77, P3, DOI 10.1086/339199; MURTON RK, 1977, AVIAN BREEDING CYCLE; Nager RG, 2001, J AVIAN BIOL, V32, P159, DOI 10.1034/j.1600-048X.2001.320209.x; Nelson R., 2002, SEASONAL PATTERNS ST; Nelson RJ, 2004, TRENDS IMMUNOL, V25, P187, DOI 10.1016/j.it.2004.02.001; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; Noren DP, 2004, FUNCT ECOL, V18, P233, DOI 10.1111/j.0269-8463.2004.00840.x; Norris DR, 2004, SCIENCE, V306, P2249, DOI 10.1126/science.1103542; Norris DR, 2004, P ROY SOC B-BIOL SCI, V271, P59, DOI 10.1098/rspb.2003.2569; Nussey DH, 2005, SCIENCE, V310, P304, DOI 10.1126/science.1117004; Olsson O, 1996, J AVIAN BIOL, V27, P7, DOI 10.2307/3676955; Part T, 2001, ANIM BEHAV, V62, P379, DOI 10.1006/anbe.2001.1754; Part T, 2001, P ROY SOC B-BIOL SCI, V268, P2267, DOI 10.1098/rspb.2001.1803; Paul MJ, 2008, PHILOS T R SOC B, V363, P341, DOI 10.1098/rstb.2007.2143; PERRINS CM, 1970, IBIS, V112, P242, DOI 10.1111/j.1474-919X.1970.tb00096.x; Piersma T, 1997, TRENDS ECOL EVOL, V12, P134, DOI 10.1016/S0169-5347(97)01003-3; PIERSMA T, 1995, J COMP PHYSIOL B, V165, P37, DOI 10.1007/BF00264684; Piersma T, 1997, OIKOS, V80, P623, DOI 10.2307/3546640; Piersma T, 2002, P ROY SOC B-BIOL SCI, V269, P1101, DOI 10.1098/rspb.2002.1990; Piersma T, 1996, PHYSIOL ZOOL, V69, P191, DOI 10.1086/physzool.69.1.30164207; PIETIAINEN H, 1989, J ANIM ECOL, V58, P905, DOI 10.2307/5132; Pravosudov VV, 2000, J AVIAN BIOL, V31, P463, DOI 10.1034/j.1600-048X.2000.310405.x; Pravosudov VV, 2001, BEHAV ECOL, V12, P207, DOI 10.1093/beheco/12.2.207; PRINCE PA, 1994, IBIS, V136, P50, DOI 10.1111/j.1474-919X.1994.tb08131.x; Rands SA, 2003, NATURE, V423, P432, DOI 10.1038/nature01630; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; Schmid-Hempel P, 2003, TRENDS ECOL EVOL, V18, P27, DOI 10.1016/S0169-5347(02)00013-7; Schulz TM, 2005, ECOL MONOGR, V75, P159, DOI 10.1890/04-0319; SEIGEL R A, 1987, P210; Shine R, 1997, ECOLOGY, V78, P1078, DOI 10.2307/2265859; Shine R, 2003, P ROY SOC B-BIOL SCI, V270, P995, DOI 10.1098/rspb.2002.2307; Shine R, 2008, PHILOS T R SOC B, V363, P363, DOI 10.1098/rstb.2007.2144; Simpson SJ, 2000, ADV STUD BEHAV, V29, P1, DOI 10.1016/S0065-3454(08)60102-3; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; TAYLOR HM, 1974, THEOR POPUL BIOL, V5, P104, DOI 10.1016/0040-5809(74)90053-7; Thomas DW, 2001, SCIENCE, V291, P2598, DOI 10.1126/science.1057487; Tickell W.L.N., 2000, ALBATROSSES; Tilgar V, 2002, J AVIAN BIOL, V33, P407, DOI 10.1034/j.1600-048X.2002.02990.x; van Gils JA, 2003, J EXP BIOL, V206, P3369, DOI 10.1242/jeb.00546; Verhulst S, 2008, PHILOS T R SOC B, V363, P399, DOI 10.1098/rstb.2007.2146; Visser ME, 1998, P ROY SOC B-BIOL SCI, V265, P1867, DOI 10.1098/rspb.1998.0514; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; Weber TP, 1999, J AVIAN BIOL, V30, P416, DOI 10.2307/3677014; Welton NJ, 2002, ACTA BIOTHEOR, V50, P39, DOI 10.1023/A:1014761227478; Welton NJ, 2001, J THEOR BIOL, V213, P275, DOI 10.1006/jtbi.2001.2419; Wernham CV, 1998, J ANIM ECOL, V67, P25, DOI 10.1046/j.1365-2656.1998.00166.x; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; Wikelski M, 2008, PHILOS T R SOC B, V363, P411, DOI 10.1098/rstb.2007.2147; WINGFIELD JC, 1992, J EXP ZOOL, V261, P214, DOI 10.1002/jez.1402610212; Wingfield JC, 2008, PHILOS T R SOC B, V363, P425, DOI 10.1098/rstb.2007.2149; WITTER MS, 1993, PHILOS T R SOC B, V340, P73, DOI 10.1098/rstb.1993.0050; Zera AJ, 1998, AM NAT, V152, P7, DOI 10.1086/286146; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 139 112 114 2 64 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. JAN 27 2008 363 1490 301 319 10.1098/rstb.2007.2141 19 Biology Life Sciences & Biomedicine - Other Topics 250RK WOS:000252317600007 17673417 Green Published, Bronze 2018-11-12 J Vitzthum, VJ Vitzthum, Virginia J. Evolutionary Models of Women's Reproductive Functioning ANNUAL REVIEW OF ANTHROPOLOGY Annual Review of Anthropology English Review; Book Chapter life history theory; reproductive ecology; evolutionary endocrinology; ovarian steroids; adaptation EARLY-PREGNANCY LOSS; SALIVARY PROGESTERONE LEVELS; HUMAN BEHAVIORAL ECOLOGY; HUMAN OVARIAN-FUNCTION; SERUM HORMONE LEVELS; LIFE-HISTORY THEORY; MENSTRUAL CYCLES; BOLIVIAN WOMEN; INTERPOPULATIONAL DIFFERENCES; GONADOTROPIN-SECRETION Life history theory posits that natural selection leads to the evolution of mechanisms that tend to allocate resources to the competing demands of growth, reproduction, and survival such that fitness is locally maximized. (That is, among alternative allocation patterns exhibited in a population, those having the highest inclusive fitness will become more common over generational time.) Strategic modulation of reproductive effort is potentially adaptive because investment in a new conception may risk one's own survival, future reproductive opportunities, and/or current offspring survival. Several physiological and behavioral mechanisms modulate reproductive effort in human females. This review focuses on the hormonal changes that vary the probability of ovulation, conception, and/or continuing pregnancy and discusses evolutionary models that predict how and why these hormonal changes occur. Anthropological field studies have yielded important insights into the environmental correlates of variation in ovarian steroids, but much remains to be learned about the evolutionary determinants, proximate mechanisms, and demographic significance of variation in women's reproductive functioning. [Vitzthum, Virginia J.] Indiana Univ, Dept Anthropol, Bloomington, IN 47405 USA; [Vitzthum, Virginia J.] Indiana Univ, Kinsey Inst, Bloomington, IN 47405 USA Vitzthum, VJ (reprint author), Indiana Univ, Dept Anthropol, Bloomington, IN 47405 USA. vitzthum@indiana.edu Baird DD, 1999, FERTIL STERIL, V71, P40, DOI 10.1016/S0015-0282(98)00419-1; BAIRD DD, 1991, J CLIN ENDOCR METAB, V72, P793, DOI 10.1210/jcem-72-4-793; BarkerGibb ML, 1996, NEUROENDOCRINOLOGY, V64, P194, DOI 10.1159/000127118; Beall CM, 2002, P NATL ACAD SCI USA, V99, P17215, DOI 10.1073/pnas.252649199; Bentley GR, 1999, EVOL ANTHROPOL, V7, P175; BERNSTEIN L, 1990, CANCER CAUSE CONTROL, V1, P51, DOI 10.1007/BF00053183; BOAS F, 1911, CHANGE BODILY FORM D; Bogin B., 1999, PATTERNS HUMAN GROWT; Bogin B, 2007, AM J HUM BIOL, V19, P631, DOI 10.1002/ajhb.20666; BONGAARTS J, 1980, SCIENCE, V208, P564, DOI 10.1126/science.7367878; BONGAARTS J, 1983, FERTILITY BIOL BEHAV; Cameron J L, 1996, Rev Reprod, V1, P117; CAMPBELL KL, 1994, HUMAN REPROD ECOLOGY, V709; CARO TM, 1987, ETHOL SOCIOBIOL, V8, P61, DOI 10.1016/0162-3095(87)90058-6; Charnov EL, 2006, AM NAT, V167, P578, DOI 10.1086/501141; Charnov Eric L., 1993, P1; Chatterton RT, 2006, FERTIL STERIL, V86, P723, DOI 10.1016/j.fertnstert.2006.01.034; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CLUTTONBROCK TH, 1979, PROC R SOC SER B-BIO, V205, P547, DOI 10.1098/rspb.1979.0084; DAVIS K, 1956, ECON DEV CULT CHANGE, V4, P211, DOI 10.1086/449714; De Geyter C, 2002, HUM REPROD, V17, P933, DOI 10.1093/humrep/17.4.933; Dufty AM, 2002, TRENDS ECOL EVOL, V17, P190, DOI 10.1016/S0169-5347(02)02498-9; Dunson DB, 2002, HUM REPROD, V17, P1399, DOI 10.1093/humrep/17.5.1399; Elias SG, 2005, HUM REPROD, V20, P2483, DOI 10.1093/humrep/dei090; Ellison PT, 2007, AM J PHYS ANTHROPOL, V134, P513, DOI 10.1002/ajpa.20698; ELLISON PT, 1986, AM J OBSTET GYNECOL, V154, P1000, DOI 10.1016/0002-9378(86)90737-4; ELLISON PT, 1988, YEARB PHYS ANTHROPOL, V31, P115; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; ELLISON PT, 1993, HUM REPROD, V8, P2248, DOI 10.1093/oxfordjournals.humrep.a138015; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; ELLISON PT, 1994, ANNU REV ANTHROPOL, V23, P255, DOI 10.1146/annurev.anthro.23.1.255; ELLISON PT, 1989, AM J PHYS ANTHROPOL, V78, P519, DOI 10.1002/ajpa.1330780407; Ellison PT, 2001, REPROD ECOLOGY HUMAN; ELTON S, 2008, MED EVOLUTION CURREN; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; FISHER DC, 1985, PALEOBIOLOGY, V11, P120; FISHER R. A., 1930, GENETICAL THEORY NAT; FRISCH RE, 1974, SCIENCE, V185, P949, DOI 10.1126/science.185.4155.949; FRISCH RE, 1970, SCIENCE, V169, P397, DOI 10.1126/science.169.3943.397; Geronimus AT, 1999, SOC SCI MED, V49, P1623, DOI 10.1016/S0277-9536(99)00246-4; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; GOULD SJ, 1982, PALEOBIOLOGY, V8, P4, DOI 10.1017/S0094837300004310; HAIG D, 1990, AM NAT, V136, P550, DOI 10.1086/285113; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; Haiman CA, 2002, BRIT J CANCER, V86, P367, DOI 10.1038/sj/bjc/6600098; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Huxley J, 1942, EVOLUTION MODERN SYN; Islam MM, 2004, J BIOSOC SCI, V36, P351; Jablonka Eva, 2006, EVOLUTION 4 DIMENSIO; JACOB F, 1977, SCIENCE, V196, P1161, DOI 10.1126/science.860134; JASIENSKA G, 1998, P BIOL SCI, V265, P1747; JASIENSKA G, 2001, WHY ENERGY EXPENDITU, P59; Jasienska G, 2006, P NATL ACAD SCI USA, V103, P12759, DOI 10.1073/pnas.0605488103; JUDD S, 1992, J CLIN ENDOCR METAB, V74, P299, DOI 10.1210/jc.74.2.299; Kassam A, 1996, ENVIRON HEALTH PERSP, V104, P408, DOI 10.2307/3432685; KEY TJA, 1990, BRIT J CANCER, V62, P631, DOI 10.1038/bjc.1990.344; KOMLOS J, 1994, STATURE LIVING STAND; KONNER M, 1980, SCIENCE, V207, P788, DOI 10.1126/science.7352291; KOZLOWSKI J, 1989, EVOLUTION, V43, P1369, DOI 10.1111/j.1558-5646.1989.tb02588.x; Lack D., 1954, NATURAL REGULATION A; LANDGREN BM, 1980, ACTA ENDOCRINOL-COP, V94, P89, DOI 10.1530/acta.0.0940089; LASKER GW, 1969, SCIENCE, V166, P1480, DOI 10.1126/science.166.3912.1480; Lauder George V., 1996, P55; LEROI AM, 1994, AM NAT, V143, P381, DOI 10.1086/285609; Leslie PW, 2003, AM ANTHROPOL, V105, P28, DOI 10.1525/aa.2003.105.1.28; Lewontin R.C, 2000, TRIPLE HELIX GENE OR; Li HX, 2001, FERTIL STERIL, V75, P549, DOI 10.1016/S0015-0282(00)01765-9; LIVINGSTONE FB, 1958, AM ANTHROPOL, V60, P533, DOI 10.1525/aa.1958.60.3.02a00110; Lotka AJ, 1922, P NATL ACAD SCI USA, V8, P151, DOI 10.1073/pnas.8.6.151; Lotka AJ, 1922, P NATL ACAD SCI USA, V8, P147, DOI 10.1073/pnas.8.6.147; MACMAHON B, 1974, INT J CANCER, V14, P161, DOI 10.1002/ijc.2910140204; MAZESS RB, 1975, BIOSOCIAL INTERRELAT, P9; MCCOY HV, 1992, PUBLIC HEALTH REP, V107, P389; Migliano AB, 2007, P NATL ACAD SCI USA, V104, P20216, DOI 10.1073/pnas.0708024105; MORBECK ME, 1997, EVOLVING FEMALE LIFE; Mulder M Borgerhoff, 1992, EVOLUTIONARY ECOLOGY, P339; Nepomnaschy PA, 2006, P NATL ACAD SCI USA, V103, P3938, DOI 10.1073/pnas.0511183103; Nepomnaschy PA, 2004, AM J HUM BIOL, V16, P523, DOI 10.1002/ajhb.20057; NEPOMNASCHY PA, 2006, AM J HUM BIOL, V20, P236; Nunez-de la Mora A, 2007, PLOS MED, V4, P813, DOI 10.1371/journal.pmed.0040167; O'Connor KA, 2006, HUM REPROD, V21, P1442, DOI 10.1093/humrep/dei497; PANTERBRICK C, 1993, HUM REPROD, V8, P684, DOI 10.1093/oxfordjournals.humrep.a138120; Peacock N, 1991, Hum Nat, V2, P351, DOI 10.1007/BF02692197; PEACOCK NR, 1990, MG PRIMATOL, V14, P195; Pigliucci M, 2000, TRENDS ECOL EVOL, V15, P66, DOI 10.1016/S0169-5347(99)01762-0; Pinheiro SP, 2005, CANCER EPIDEM BIOMAR, V14, P2147, DOI 10.1158/1055-9965.EPI-04-0944; PRIOR JC, 1987, BAILLIERE CLIN ENDOC, V1, P299, DOI 10.1016/S0950-351X(87)80065-4; PRIOR JC, 1985, SEMIN REPROD ENDOCR, V3, P27, DOI 10.1055/s-2007-1022601; Puder JJ, 2000, J CLIN ENDOCR METAB, V85, P2184, DOI 10.1210/jc.85.6.2184; PURIFOY FE, 1981, ANNU REV ANTHROPOL, V10, P141, DOI 10.1146/annurev.an.10.100181.001041; Robinson WS, 1950, AM SOCIOL REV, V15, P351, DOI 10.2307/2087176; ROSE MR, 1996, ADAPTATION; SCOTT EC, 1982, J ADOLESCENT HEALTH, V2, P249, DOI 10.1016/S0197-0070(82)80059-4; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEWART DR, 1993, J CLIN ENDOCR METAB, V76, P1470, DOI 10.1210/jc.76.6.1470; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; TEMME DH, 1986, EVOLUTION, V40, P414, DOI 10.1111/j.1558-5646.1986.tb00481.x; THOMAS RB, 1989, HUMAN POPULATION BIO, P296; Thornburg J, 2008, AM J PHYS ANTHROPOL, P206; THORNBURG J, 2007, PLOS MED, V4, pE167, DOI DOI 10.1371/JOURNAL.PMED.0040167#R1795; Towner MC, 2007, EVOL ANTHROPOL, V16, P107, DOI 10.1002/evan.20134; TRICHOPOULOS D, 1984, CANCER, V53, P187, DOI 10.1002/1097-0142(19840101)53:1<187::AID-CNCR2820530133>3.0.CO;2-N; VANDERWALT LA, 1978, J CLIN ENDOCR METAB, V46, P658, DOI 10.1210/jcem-46-4-658; Venners SA, 2006, HUM REPROD, V21, P2272, DOI 10.1093/humrep/del187; Vitzthum VJ, 2007, AM J HUM BIOL, V19, P286; Vitzthum V J, 2000, High Alt Med Biol, V1, P39, DOI 10.1089/152702900320676; Vitzthum VJ, 2008, CANCER EPIDEM BIOMAR, V17, P1550, DOI 10.1158/1055-9965.EPI-08-0016; Vitzthum VJ, 2006, FERTIL STERIL, V86, P373, DOI 10.1016/j.fertnstert.2006.01.021; Vitzthum Virginia J., 1994, Yearbook of Physical Anthropology, V37, P307; Vitzthum VJ, 2004, P NATL ACAD SCI USA, V101, P1443, DOI 10.1073/pnas.0302640101; Vitzthum VJ, 2002, HUM REPROD, V17, P1906, DOI 10.1093/humrep/17.7.1906; Vitzthum VJ, 1998, FASEB J, V12, pA726; Vitzthum VJ, 2000, CONTRACEPTION, V62, P181, DOI 10.1016/S0010-7824(00)00164-5; VITZTHUM VJ, 2001, WHY NOT SO GREAT IS, P179; VITZTHUM VJ, 2007, PLOS MED, V4, pE167, DOI DOI 10.1371/JOURNAL.PMED.0040167#R1795; VITZTHUM VJ, 1990, 90200 U MICH POP STU; VITZTHUM VJ, 1997, EVOLVING FEMALE LIFE, P242; Voland E, 1998, ANNU REV ANTHROPOL, V27, P347, DOI 10.1146/annurev.anthro.27.1.347; Wade GN, 1996, AM J PHYSIOL-ENDOC M, V270, pE1; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; WANG DY, 1991, BREAST CANCER RES TR, V18, pS41, DOI 10.1007/BF02633526; WASHBURN SL, 1951, T NEW YORK ACAD SCI, V13, P298, DOI 10.1111/j.2164-0947.1951.tb01033.x; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; WHO, 1995, PHYS STAT US INT ANT; WILEY AS, 1992, MED ANTHROPOL Q, V6, P216, DOI 10.1525/maq.1992.6.3.02a00030; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; Windham GC, 2002, EPIDEMIOLOGY, V13, P675, DOI 10.1097/01.EDE.0000032361.84313.F2; Winterhalder B, 2002, EVOL HUM BEHAV, V23, P59, DOI 10.1016/S1090-5138(01)00089-7; Winterhalder B, 2000, EVOL ANTHROPOL, V9, P51; WINTERHALDER B, 2002, J ECOLOGICAL ANTHR, V6, P4; WOOD JW, 1994, DYNAMICS HUMAN REPRO; Worthman CM, 1997, AM J PHYS ANTHROPOL, V104, P1; Worthman CM, 2003, OFFSPRING, P289; WORTHMAN CM, 1995, ANNU REV ANTHROPOL, V24, P593, DOI 10.1146/annurev.an.24.100195.003113 137 27 28 2 22 ANNUAL REVIEWS PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0139 USA 0084-6570 1545-4290 ANNU REV ANTHROPOL Annu. Rev. Anthropol. 2008 37 53 73 10.1146/annurev.anthro.37.081407.085112 23 Anthropology Anthropology 365IA WOS:000260397900005 2018-11-12 J Boulcott, P; Wright, PJ Boulcott, Philip; Wright, Peter J. Critical timing for reproductive allocation in a capital breeder: evidence from sandeels AQUATIC BIOLOGY English Article sandeels; energy allocation; critical period; growth; fecundity; vitellogenesis SALMO-SALAR L; AMMODYTES-MARINUS RAITT; LIFE-HISTORY VARIATION; MALE ATLANTIC SALMON; COD GADUS-MORHUA; NORTH-SEA; LESSER SANDEEL; RAINBOW-TROUT; OOCYTE GROWTH; SPAWNING TIME Life-history theory predicts a tradeoff in resource allocation between early maturation and growth in species which exhibit indeterminate growth. However, since life-history models assume that the fitness payoff of each developmental strategy at completion is known, they are unable to encapsulate the mechanics by which maturation is controlled under natural conditions. To determine the proximate conditions which influence variation in reproductive investment, we recorded somatic growth, sexual maturation and fecundity in individually marked first-time maturing lesser sandeels Ammodytes marinus. Cytological investigation revealed that the transition in gonad development from primary to secondary stages occurred between June and August in both sexes. Using logistical regression, variation in maturation could be attributed to both initial weight and observed differences in resource accrual during this period, suggesting that if growth prior to this period is inadequate in smaller fish then maturation remains inhibited. For those females that did mature, potential fecundity positively correlated with final body size. Our findings indicate that small changes in the timing of the availability of their zooplankton prey could explain the large regional variability in maturity at age exhibited by sandeels in the field. [Boulcott, Philip; Wright, Peter J.] Fisheries Res Serv, Marine Lab, Aberdeen AB11 9DB, Scotland Boulcott, P (reprint author), Univ Glasgow, Fac Vet Med, Div Anim Prod & Publ Hlth, 464 Bearsden Rd, Glasgow G61 1QH, Lanark, Scotland. p.boulcott@vet.gla.ac.uk WRIGHT, PETER/C-8536-2011 Danish Institute for Fisheries Research; Scottish Executive; University of Aberdeen This work was supported by the Danish Institute for Fisheries Research, the Scottish Executive and the University of Aberdeen. We are grateful to I. Gibb for otolith reading, to B. Williamson, R. Long and P. Gibson for technical assistance and skilful husbandry of the study fish and to F. Neat for assistance during sampling and for constructive criticism of the manuscript. All work was carried out under a UK Home Office Animals (Scientific Procedures) license. ADAMS CE, 1989, AQUACULTURE, V79, P403, DOI 10.1016/0044-8486(89)90483-3; Aubin-Horth N, 2005, P ROY SOC B-BIOL SCI, V272, P1655, DOI 10.1098/rspb.2005.3125; Bagenal T. B, 1978, METHODS ASSESSMENT F; Bergstad OA, 2001, AQUAT LIVING RESOUR, V14, P293, DOI 10.1016/S0990-7440(01)01134-2; Boulcott P, 2007, ICES J MAR SCI, V64, P369, DOI 10.1093/icesjms/fsl033; BURTON MPM, 1994, J ZOOL, V233, P405, DOI 10.1111/j.1469-7998.1994.tb05273.x; Campbell B, 2006, BIOL REPROD, V75, P34, DOI 10.1095/biolreprod.105.049494; Campbell B, 2003, FISH PHYSIOL BIOCHEM, V28, P287, DOI 10.1023/B:FISH.0000030557.60141.33; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Dziewulska Katarzyna, 2003, Reprod Biol, V3, P47; Edwards M, 2002, MAR ECOL PROG SER, V239, P1, DOI 10.3354/meps239001; FISHER R. A., 1930, GENETICAL THEORY NAT; GAULD JA, 1990, J FISH BIOL, V36, P611, DOI 10.1111/j.1095-8649.1990.tb03561.x; GJEDREM T, 1986, AQUACULTURE, V57, P369, DOI 10.1016/0044-8486(86)90229-2; Henderson BA, 1998, J FISH BIOL, V52, P1078, DOI 10.1006/jfbi.1997.0631; HENDERSON BA, 1994, CAN J FISH AQUAT SCI, V51, P986, DOI 10.1139/f94-099; *ICES, 1995, 1995ASSESS9 ICES CM, P1; *ICES CM, 2006, 2006ACFM09 ICES CM; KJESBU OS, 1994, J FISH BIOL, V45, P719, DOI 10.1111/j.1095-8649.1994.tb00939.x; Kjesbu OS, 1998, J SEA RES, V40, P303, DOI 10.1016/S1385-1101(98)00029-X; Lardner B, 2003, OECOLOGIA, V137, P541, DOI 10.1007/s00442-003-1390-5; LECREN ED, 1951, J ANIM ECOL, V20, P201; MACER C. T., 1966, FISH INVEST MIN AGR FISH FOOD [GREAT BRITAIN] SER II SALMON FRESHWATER FISH, V24, P1; McCullagh P., 1983, GEN LINEAR MODELS; McGrath BL, 2002, MAR BIOL, V141, P699, DOI 10.1007/s00227-002-0864-z; Norberg B, 2001, COMP BIOCHEM PHYS B, V129, P357, DOI 10.1016/S1096-4959(01)00320-7; Oskarsson GJ, 2002, J SEA RES, V48, P59, DOI 10.1016/S1385-1101(02)00135-1; Poizat G, 1999, P ROY SOC B-BIOL SCI, V266, P1543, DOI 10.1098/rspb.1999.0813; Raitt D. S., 1934, Journal du Conseil Copenhague, V9, P365; Reid PC, 2003, FISH OCEANOGR, V12, P260, DOI 10.1046/j.1365-2419.2003.00252.x; RIJNSDORP AD, 1993, CAN J FISH AQUAT SCI, V50, P1617, DOI 10.1139/f93-183; Roff D. A., 2002, LIFE HIST EVOLUTION; ROFF DA, 1982, CAN J FISH AQUAT SCI, V39, P1686, DOI 10.1139/f82-225; ROFF DA, 1991, NETH J SEA RES, V27, P197, DOI 10.1016/0077-7579(91)90024-U; Roff Derek A., 1992; ROWE DK, 1991, CAN J FISH AQUAT SCI, V48, P405, DOI 10.1139/f91-052; ROWE DK, 1990, J FISH BIOL, V36, P643, DOI 10.1111/j.1095-8649.1990.tb04319.x; SCHWARZKOPF L, 1993, ECOLOGY, V74, P1970, DOI 10.2307/1940840; SCOTT AP, 1983, GEN COMP ENDOCR, V52, P79, DOI 10.1016/0016-6480(83)90160-0; Sinervo B, 1996, EVOLUTION, V50, P1299, DOI 10.1111/j.1558-5646.1996.tb02370.x; Sokal R.R., 1995, BIOMETRY; Stearns S. C., 1992, EVOLUTION LIFE HIST; Svasand T, 1996, J FISH BIOL, V49, P108; SWARTZMAN G, 1995, CAN J FISH AQUAT SCI, V52, P369, DOI 10.1139/f95-039; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; THORPE JE, 1990, AQUACULTURE, V90, P41, DOI 10.1016/0044-8486(90)90281-Q; THORPE JE, 1983, AQUACULTURE, V33, P119, DOI 10.1016/0044-8486(83)90392-7; THORPE JE, 1986, AGE GROWTH FISH, P463; Thorsen A, 2001, J SEA RES, V46, P295, DOI 10.1016/S1385-1101(01)00090-9; TYLER AV, 1976, J FISH RES BOARD CAN, V11, P933; Tyler CR, 1996, REV FISH BIOL FISHER, V6, P287, DOI 10.1007/BF00122584; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Wanless S, 2004, MAR ECOL PROG SER, V279, P237, DOI 10.3354/meps279237; WINSLADE P, 1974, J FISH BIOL, V6, P577, DOI 10.1111/j.1095-8649.1974.tb05101.x; WINSLADE P, 1971, THESIS U E ANGLIA NO; Wright PJ, 2000, J SEA RES, V44, P243, DOI 10.1016/S1385-1101(00)00050-2 56 23 23 2 20 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 1864-7790 1864-7782 AQUAT BIOL Aquat. Biol. 2008 3 1 31 40 10.3354/ab00063 10 Marine & Freshwater Biology Marine & Freshwater Biology 351UZ WOS:000259452700004 Bronze 2018-11-12 J Lavers, JL; Jones, IL; Diamond, AW; Robertson, GJ Lavers, J. L.; Jones, I. L.; Diamond, A. W.; Robertson, G. J. Annual survival of North American Razorbills (Alca torda) varies with ocean climate indices CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE English Article ADULT SURVIVAL; MARKED ANIMALS; EL-NINO; ATLANTIC; POPULATIONS; RATES; VARIABILITY; AUKLETS; SEABIRD; CONSEQUENCES According to life-history theory, survival in long-lived animals is not expected to vary greatly with environmental conditions. However, recent studies of a number of seabirds have shown that ocean climate indices such as the Pacific Decadal Oscillation index and sea surface temperature are correlated with adult survival. Here we evaluated whether annual adult survival of Razorbills (Alca torda L., 1758) at two breeding colonies covaried with oceanographic conditions in the North Atlantic during 1995-2006. We also examined pre-breeder survival (from fledging to age 2). The relationship between local adult survival and the North Atlantic Oscillation and two oceanographic variables (Labrador Current temperature profile and Bay of Fundy sea surface temperature) were evaluated using the program MARK. Capture-mark-recapture data fit the assumptions of the program MARK reasonably well with (c) over cap values ranging from 1.390 to 2.404. Pre-breeder survival rates were high for Machias Seal Island (Phi = 0.778 +/- 0.041) and low for the Gannet Islands (Phi = 0.482 +/- 0.033), likely the result of hunting pressure. On Machias Seal Island, constant adult survival (Phi = 0.967 +/- 0.028) was the best model; however, time-dependent models that included a climate covariate performed nearly as well. On the Gannet Islands, adult survival (Phi = 0.890 +/- 0.053) was negatively correlated with Labrador Current temperature. Overall, our results show significant differences in survival rates across sites over the same time period and highlight the importance of multisite studies and smaller scale climate indices for local populations. In addition, our study contributes to the growing body of evidence that survival in long-lived animals may vary with environmental conditions more than previously expected. [Lavers, J. L.; Jones, I. L.] Mem Univ Newfoundland, Dept Biol, St John, NF A1B 3X9, Canada; [Diamond, A. W.] Univ New Brunswick, Atlantic Cooperat Wildlife Ecol Res Network, Fredericton, NB E3B 6E1, Canada; [Robertson, G. J.] Environm Canada, Div Sci & Technol, Mt Pearl, NF, Canada Lavers, JL (reprint author), Univ Tasmania, Dept Zool, Hobart, Tas 7001, Australia. Jennifer.Lavers@esiro.au Lavers, Jennifer/0000-0001-7596-6588 AEBISCHER NJ, 1990, NATURE, V347, P753, DOI 10.1038/347753a0; Alheit J, 1997, FISH OCEANOGR, V6, P130, DOI 10.1046/j.1365-2419.1997.00035.x; BARBER RT, 1983, SCIENCE, V222, P1203, DOI 10.1126/science.222.4629.1203; Bertram DF, 2000, CONDOR, V102, P155, DOI 10.1650/0010-5422(2000)102[0155:SROCSA]2.0.CO;2; Bertram DF, 2001, PROG OCEANOGR, V49, P283, DOI 10.1016/S0079-6611(01)00027-1; Brown R.G.B., 1985, P383; Burnham K. P., 1998, MODEL SELECTION INFE; CAIRNS D K, 1987, Biological Oceanography, V5, P261; Chapdelaine G, 1997, COLON WATERBIRD, V20, P47, DOI 10.2307/1521763; CHAPDELAINE G, 2001, 105 N AM CAN WILDL S; Charles J, 1999, IEEE CONCURR, V7, P11; Cooch E, 2001, PROGRAM MARK GENTLE; CROXALL JP, 1991, BIRD POPULATION STUD, P272; Durant JM, 2004, MARINE ECOSYSTEMS AND CLIMATE VARIATION, P95; Dutil JD, 1999, CAN J FISH AQUAT SCI, V56, P1818, DOI 10.1139/cjfas-56-10-1818; Elliot R.D., 1991, STUDIES HIGH LATITUD, P29; Frederiksen M, 2004, GLOBAL CHANGE BIOL, V10, P1214, DOI 10.1111/j.1529-8817.2003.00794.x; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gjerdrum C, 2003, P NATL ACAD SCI USA, V100, P9377, DOI 10.1073/pnas.1133383100; GRECIAN VD, 2005, THESIS U NEW BRUNSWI; Grosbois V, 2005, OIKOS, V109, P273, DOI 10.1111/j.0030-1299.2005.13774.x; Harris MP, 1996, BIRD STUDY, V43, P220, DOI 10.1080/00063659609461014; HARRIS MP, 1989, BIRD STUDY, V36, P105, DOI 10.1080/00063658909477012; HATCH SA, 1987, WILSON BULL, V99, P468; Hirst AG, 2002, MAR ECOL PROG SER, V230, P195, DOI 10.3354/meps230195; Hjermann DO, 2004, MAR ECOL PROG SER, V273, P229, DOI 10.3354/meps273229; Huettmann Falk, 2005, Marine Ornithology, V33, P161; HURRELL JW, 2003, N ATLANTIC OSCILLATI, V134, P1, DOI [DOI 10.1229/134GM01, DOI 10.1029/134GM01]; HURRELL JW, 2004, MARINE ECOSYSTEMS CL, P15; Jones I.L., 1998, BIRD FAMILIES WORLD; Jones IL, 2007, J AVIAN BIOL, V38, P450, DOI 10.1111/j.2007.0908-8857.03895.x; Jones IL, 2002, OECOLOGIA, V133, P38, DOI 10.1007/s00442-002-0991-8; Lavers J. L., 2007, THESIS MEMORIAL U NE; LAVERS JL, 2007, WATERBIRDS, V30, P593; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LLOYD C, 1974, BIRD STUDY, V21, P102, DOI 10.1080/00063657409476406; LLOYD CS, 1977, BIRD BANDING, V48, P239; Lyngs Peter, 2006, Ringing & Migration, V23, P39; Martin TE, 1995, J APPL STAT, V22, P863, DOI 10.1080/02664769524676; MCCARTNEY MS, 1982, J PHYS OCEANOGR, V12, P1169, DOI 10.1175/1520-0485(1982)012<1169:TSMWOT>2.0.CO;2; Montevecchi W.A., 1993, P217; Montevecchi WA, 1997, ICES J MAR SCI, V54, P608, DOI 10.1006/jmsc.1997.0265; Morris RD, 1995, AUK, V112, P326, DOI 10.2307/4088720; Motoda S, 1959, SCI COUNC STUD, V7, P73; Nettleship D. N., 1985, ATLANTIC ALCIDAE; Ottersen G, 2001, OECOLOGIA, V128, P1, DOI 10.1007/s004420100655; PIATT JF, 1987, MAR POLLUT BULL, V18, P344, DOI 10.1016/S0025-326X(87)80023-1; POOLE J, 1998, 277 JOINT NAT CONS C; Pradel R, 1997, J WILDLIFE MANAGE, V61, P816, DOI 10.2307/3802189; Prevot-Julliard AC, 1998, AUK, V115, P85; Sandvik H, 2005, J ANIM ECOL, V74, P817, DOI 10.1111/j.1365-2656.2005.00981.x; Sherwin TJ, 1999, DEEP-SEA RES PT I, V46, P415, DOI 10.1016/S0967-0637(98)00077-6; Sundby S, 2000, SARSIA, V85, P277, DOI 10.1080/00364827.2000.10414580; Thompson PM, 2001, NATURE, V413, P417, DOI 10.1038/35096558; TRENBERTH KE, 1994, CLIM DYNAM, V9, P303, DOI 10.1007/BF00204745; UNDERWOOD LA, 1984, BIRD STUDY, V31, P77; Votier SC, 2005, ECOL LETT, V8, P1157, DOI 10.1111/j.1461-0248.2005.00818.x; WAGNER RH, 1992, BEHAV ECOL SOCIOBIOL, V31, P63, DOI 10.1007/BF00167817; Wallace JM, 2000, Q J ROY METEOR SOC, V126, P791, DOI 10.1256/smsqj.56401; Weimerskirch H, 2001, BEHAV ECOL, V12, P22, DOI 10.1093/oxfordjournals.beheco.a000374; White GC, 1999, BIRD STUDY, V46, P120; WIESE FK, 2002, THESIS MEMORIAL U NE; Zhang Y, 1997, J CLIMATE, V10, P1004, DOI 10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2 63 11 11 1 22 NATL RESEARCH COUNCIL CANADA-N R C RESEARCH PRESS OTTAWA BUILDING M 55, OTTAWA, ON K1A 0R6, CANADA 0008-4301 CAN J ZOOL Can. J. Zool.-Rev. Can. Zool. JAN 2008 86 1 51 61 10.1139/Z07-113 11 Zoology Zoology 271TD WOS:000253810700007 2018-11-12 J Agosta, SJ Agosta, Salvatore J. Selection on offspring size varies within and among families in relation to host nutritional quality EVOLUTIONARY ECOLOGY English Article family effects; herbivory; host plant; larval growth; Lepidoptera; phytophagous insects; phenotypic selection; offspring size; offspring survival; Rothschildia lebeau EGG SIZE; SEED-BEETLE; FITNESS CONSEQUENCES; EVOLUTIONARY ECOLOGY; BODY-SIZE; ENVIRONMENTS; PLANT; LEPIDOPTERA; PLASTICITY; DIFFERS Life history theory often assumes a positive relationship between offspring size and fitness, although the strength and form of this relationship is expected to vary with environmental conditions. In arthropods, surprisingly few studies have examined the influence of larval environment on the offspring size-fitness relation. In phytophagous insects, the few studies that have examined variation in larval host plants have found a negative correlation between host plant nutritional quality and the strength of selection favoring larger offspring size, suggesting that this pattern might be general. I present experimental evidence for such a relationship in a population of the moth Rothschildia lebeau feeding on its three primary host plant species. Unlike previous studies, I consider the effect of offspring size on growth and survival at two levels, both among families and among siblings within families. Neonate caterpillar mass had a significant effect on growth and survival. The effect on growth, however, was weak, resulted primarily from variation among families, and did not differ among host plant diets. The effect on survival was stronger and varied among host plant diets, among families, and within families on different host plants in a manner that was generally consistent with the hypothesized negative correlation between host plant nutritional quality and the strength of selection favoring larger offspring size. Overall, results suggest that the consequences of variation in offspring size for survival within and among families are host plant-dependent in this system. [Agosta, Salvatore J.] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA Agosta, SJ (reprint author), Univ Penn, Dept Biol, Philadelphia, PA 19104 USA. agosta@sas.upenn.edu Agosta, Salvatore/C-8876-2009 Agosta SJ, 2005, OIKOS, V108, P183, DOI 10.1111/j.0030-1299.2005.13504.x; Agresti A., 2002, CATEGORICAL DATA ANA; Azevedo RBR, 1997, AM NAT, V150, P250, DOI 10.1086/286065; Bernardo J, 2005, BIOL J LINN SOC, V86, P309, DOI 10.1111/j.1095-8312.2005.00532.x; Bernardo J, 1996, AM ZOOL, V36, P216; BRABY MF, 1994, OIKOS, V71, P119, DOI 10.2307/3546179; Czesak ME, 2003, EVOLUTION, V57, P1121; Endler JA, 1986, NATURAL SELECTION WI; Fischer K, 2006, J EVOLUTION BIOL, V19, P380, DOI 10.1111/j.1420-9101.2005.01046.x; Fischer K, 2003, ECOLOGY, V84, P3138, DOI 10.1890/02-0733; Fischer K, 2003, FUNCT ECOL, V17, P803, DOI 10.1111/j.1365-2435.2003.00798.x; Fox CW, 2006, J EVOLUTION BIOL, V19, P1167, DOI 10.1111/j.1420-9101.2006.01092.x; Fox CW, 2000, ECOLOGY, V81, P3029, DOI 10.1890/0012-9658(2000)081[3029:NSOSBE]2.0.CO;2; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Fox CW, 1996, OECOLOGIA, V107, P541, DOI 10.1007/BF00333946; Fox CW, 2001, ECOLOGY, V82, P2790, DOI 10.2307/2679961; Janzen D.H., 1984, Oxford Surveys in Evolutionary Biology, V1, P85; Janzen D.H., 1984, Bulletin of the Entomological Society of America, V30, P16; Janzen DH, 2002, HANDBOOK OF ECOLOGICAL RESTORATION, VOL 2, P559; JANZEN DH, 2006, EVENT BASED DATABASE; Janzen FJ, 1998, EVOLUTION, V52, P1564, DOI 10.1111/j.1558-5646.1998.tb02237.x; Jervis MA, 2005, ECOL ENTOMOL, V30, P359, DOI 10.1111/j.0307-6946.2005.00712.x; LEMAIRE C, 1978, C LEMAIRE NEUILLY SU; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; MILLER T A, 1983, Journal of the Lepidopterists' Society, V37, P174; Miller William E., 2005, Journal of the Lepidopterists' Society, V59, P143; NIKASUJI F, 1987, ECOL RES, V2, P175; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; Quinn GP, 2002, EXPT DESIGN DATA ANA; SIBLY R, 1986, PHYS ECOLOGY ANIMALS; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Torres-Vila LM, 2002, OIKOS, V99, P272, DOI 10.1034/j.1600-0706.2002.990207.x; TUSKES PM, 1996, WILD SILK MOTH N AM; Williams GC, 1966, ADAPTATION NATURAL S 34 5 6 0 13 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 EVOL ECOL Evol. Ecol. JAN 2008 22 1 71 83 10.1007/s10682-007-9159-7 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 241IW WOS:000251651100005 2018-11-12 J Kruger, DJ; Fisher, ML Kruger, Daniel J.; Fisher, Maryanne L. Women's Life History Attributes are Associated with Preferences in Mating Relationships EVOLUTIONARY PSYCHOLOGY English Article Life history; mating strategies; evolution; individual differences MATE SELECTION CRITERIA; ANDROGEN RECEPTOR GENE; INDIVIDUAL-DIFFERENCES; GENDER DIFFERENCES; EVOLUTIONARY PERSPECTIVE; REPRODUCTIVE DEVELOPMENT; ATTACHMENT STYLES; SEXUAL SELECTION; FATHER ABSENCE; RISK-TAKING Life history theory (LHT) is a powerful framework for examining relationship choices and other behavioral strategies which integrates evolutionary, ecological, and socio-developmental perspectives. We examine the relationship between psychological and behavioral indicators of women's life history attributes and hypothetical relationship choices with characters representing short-term and long-term male sexual strategies. We demonstrate that psychological indicators of women's life history strategies are related to predicted and actual behaviors in mating relationships. Women with insecure attachment styles, especially those with negative evaluations of both themselves and others (fearful attachment), were more likely to consider men with attributes indicating short-term mating strategies for short-term and long-term relationships than women with a secure attachment style. Women with relatively unrestricted sociosexuality were more likely to predict they would have sexual affairs with men in general, with the tendency being generally stronger when considering men with attributes indicating short-term mating strategies. Those who scored high on self-monitoring were also more likely to predict having sexual affairs and short-term relationships with these men. These and other findings demonstrate the usefulness of a life history approach for understanding women's relationship choices. [Kruger, Daniel J.] Univ Michigan, Sch Publ Hlth, Ann Arbor, MI 48109 USA; [Fisher, Maryanne L.] St Marys Univ, Halifax, NS B3H 3C3, Canada Kruger, DJ (reprint author), Univ Michigan, Sch Publ Hlth, Ann Arbor, MI 48109 USA. djk2012@gmail.com Fisher, Maryanne/0000-0002-7804-8544 Ardener E., 1960, PLANTATION VILLAGE C; Barash David P., 2005, MADAME BOVARYS OVARI; BARTHOLOMEW K, 1991, J PERS SOC PSYCHOL, V61, P226, DOI 10.1037/0022-3514.61.2.226; Beckerman S, 1998, CURR ANTHROPOL, V39, P164, DOI 10.1086/204706; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bowlby J., 1969, ATTACHMENT LOSS, V1; Brennan K. A., 1998, ATTACHMENT THEORY CL, P46; Buss D. M., 1994, EVOLUTION DESIRE STR; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; BUSSE W W, 1989, Drugs, V37, P1; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Clark R. D., 1989, J PSYCHOL HUMAN SEXU, V2, P39, DOI DOI 10.1300/J056V02N01_; CLUTTONBROCK TH, 1989, PROC R SOC SER B-BIO, V236, P339, DOI 10.1098/rspb.1989.0027; Cohen J, 1988, STAT POWER ANAL BEHA; Comings DE, 2002, CHILD DEV, V73, P1046, DOI 10.1111/1467-8624.00456; DALY M, 1978, SEX EVOLUTION BEHAV; DRAPER P, 1990, J PERS, V58, P141, DOI 10.1111/j.1467-6494.1990.tb00911.x; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; FEINGOLD A, 1992, PSYCHOL BULL, V112, P125, DOI 10.1037//0033-2909.112.1.125; Fisher H, 1992, ANATOMY LOVE; FISHER R. A., 1930, GENETICAL THEORY NAT; GANGESTAD SW, 1990, J PERS, V58, P69, DOI 10.1111/j.1467-6494.1990.tb00908.x; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Geary D. C., 1998, MALE FEMALE EVOLUTIO; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Gottlieb B, 1999, HUM MUTAT, V14, P103, DOI 10.1002/(SICI)1098-1004(1999)14:2<103::AID-HUMU2>3.0.CO;2-A; HALL F, 1979, 1ST YEAR LIFE, P153; Hall K. R. L., 1965, P53; HAQ MN, 1984, J YOUTH ADOLESCENCE, V13, P559, DOI 10.1007/BF02088599; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037//0022-3514.52.3.511; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; JACOBS ME, 1955, ECOLOGY, V36, P566, DOI 10.2307/1931296; Jang KL, 1998, J PERS SOC PSYCHOL, V74, P1556, DOI 10.1037/0022-3514.74.6.1556; Kenrick D., 1997, EVOLUTIONARY SOCIAL, P1; KENRICK DT, 1993, J PERS SOC PSYCHOL, V64, P951, DOI 10.1037//0022-3514.64.6.951; Kim K, 1997, EVOL HUM BEHAV, V18, P109, DOI 10.1016/S1090-5138(96)00114-6; Kruger DJ, 2006, PERS RELATIONSHIP, V13, P451, DOI 10.1111/j.1475-6811.2006.00129.x; Kruger DJ, 2003, HUM NATURE-INT BIOS, V14, P305, DOI 10.1007/s12110-003-1008-y; Lancaster JB, 1989, SOCIOBIOLOGY SOCIAL, P63; LEBOEUF BJ, 1969, SCIENCE, V163, P91, DOI 10.1126/science.163.3862.91; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Rholes WS, 1997, J PERS, V65, P357, DOI 10.1111/j.1467-6494.1997.tb00958.x; Richard FD, 2003, REV GEN PSYCHOL, V7, P331, DOI 10.1037/1089-2680.7.4.331; Roff Derek A., 1992; Salmon C., 2003, WARRIOR LOVERS EROTI; Savage RM, 1961, ECOLOGY LIFE HIST CO; Schmitt DP, 2003, J PERS SOC PSYCHOL, V85, P85, DOI 10.1037/0022-3514.85.1.85; SCOTT W, 1814, WAVERLEY; Scott Walter, 1818, HEART MIDLOTHIAN; SIMPSON JA, 1992, J PERS, V60, P31, DOI 10.1111/j.1467-6494.1992.tb00264.x; SIMPSON JA, 1991, J PERS SOC PSYCHOL, V60, P870, DOI 10.1037/0022-3514.60.6.870; SNYDER M, 1986, J PERS SOC PSYCHOL, V51, P181, DOI 10.1037/0022-3514.51.1.181; SNYDER M, 1984, J PERS SOC PSYCHOL, V46, P1281; Stearns S. C., 1992, EVOLUTION LIFE HIST; SYNDER M, 1986, J PERS SOC PSYCHOL, V51, P125; Todd PM, 2007, P NATL ACAD SCI USA, V104, P15011, DOI 10.1073/pnas.0705290104; TOWNSEND JM, 1989, ETHOL SOCIOBIOL, V10, P241, DOI 10.1016/0162-3095(89)90002-2; TOWNSEND JM, 1987, ARCH SEX BEHAV, V16, P425, DOI 10.1007/BF01541424; TOWNSEND JM, 1993, J PSYCHOL, V127, P507, DOI 10.1080/00223980.1993.9914888; TOWNSEND JM, 1999, WHAT WOMEN WANT WHAT; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; WIEDERMAN MW, 1992, ETHOL SOCIOBIOL, V13, P115, DOI 10.1016/0162-3095(92)90021-U; Wyatt GE, 1998, J FAM PSYCHOL, V12, P93, DOI 10.1037//0893-3200.12.1.93; Zimbardo PG, 1999, J PERS SOC PSYCHOL, V77, P1271, DOI 10.1037//0022-3514.77.6.1271 67 8 8 1 10 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2008 6 2 289 302 14 Psychology, Experimental Psychology 453UH WOS:000266637900006 DOAJ Gold 2018-11-12 J Johnson, JA; Carroll, J; Gottschall, J; Kruger, D Johnson, John A.; Carroll, Joseph; Gottschall, Jonathan; Kruger, Daniel Hierarchy in the Library: Egalitarian Dynamics in Victorian Novels EVOLUTIONARY PSYCHOLOGY English Review egalitarian groups; literature; social dominance; stigmatization EVOLUTION; HUMANS The current research investigated the psychological differences between protagonists and antagonists in literature and the impact of these differences on readers. It was hypothesized that protagonists would embody cooperative motives and behaviors that are valued by egalitarian hunter-gatherers groups, whereas antagonists would demonstrate status-seeking and dominance behaviors that are stigmatized in such groups. This hypothesis was tested with an online questionnaire listing characters from 201 canonical British novels of the longer nineteenth century. 519 respondents generated 1470 protocols on 435 characters. Respondents identified the characters as protagonists, antagonists, or minor characters, judged the characters' motives according to human life history theory, rated the characters' traits according to the five-factor model of personality, and specified their own emotional responses to the characters on categories adapted from Ekman's seven basic emotions. As expected, antagonists are motivated almost exclusively by the desire for social dominance, their personality traits correspond to this motive, and they elicit strongly negative emotional responses from readers. Protagonists are oriented to cooperative and affiliative behavior and elicit positive emotional responses from readers. Novels therefore apparently enable readers to participate vicariously in an egalitarian social dynamic like that found in hunter-gatherer societies. We infer that agonistic structure in novels simulates social behaviors that fulfill an adaptive social function and perhaps stimulates impulses toward these behaviors in real life. [Johnson, John A.] Penn State Univ, Dept Psychol, Du Bois, PA USA; [Carroll, Joseph] Univ Missouri, Dept English, St Louis, MO 63121 USA; [Gottschall, Jonathan] Washington & Jefferson Coll, Dept English, Washington, DC USA; [Kruger, Daniel] Univ Michigan, Prevent Res Ctr, Ann Arbor, MI 48109 USA Johnson, JA (reprint author), Penn State Univ, Dept Psychol, Du Bois, PA USA. j5j@psu.edu ALEXANDER R, 1989, HUMAN REVOLUTION BEH; Alexander R. D., 1987, BIOL MORAL SYSTEMS; Alexander R. D., 1979, DARWINISM HUMAN AFFA; Armstrong Nancy, 1987, DESIRE DOMESTIC FICT; AXELROD R, 1981, SCIENCE, V211, P1390, DOI 10.1126/science.7466396; Baumeister R.F, 2005, CULTURAL ANIMAL HUMA; Bingham PM, 1999, Q REV BIOL, V74, P133, DOI 10.1086/393069; Bjorklund D. F., 2002, ORIGINS HUMAN NATURE; Boehm C, 1999, HIERARCHY FOREST EVO; BOWER GH, 1990, SCIENCE, V247, P44, DOI 10.1126/science.2403694; Boyd B, 2005, LIT ANIMAL EVOLUTION, P147; Boyd R., 2007, EVOLUTION MIND FUNDA, P327; Buss A.H., 1997, HDB PERSONALITY PSYC, P346; Buss D. M., 2000, DANGEROUS PASSION WH; BUSS DM, 2003, EVOLUTION DESIRE STR; Carroll J., 2007, OXFORD HDB EVOLUTION, P637; Carroll J., 2005, HDB EVOLUTIONARY PSY, P931; Carroll J, 2008, STYLE, V42, P103; Carroll J, 2008, STYLE, V42, P308; Carroll Joseph, 2004, LIT DARWINISM EVOLUT; Carroll Noel, 1997, EMOTION ARTS, P190; Cummins D., 2005, HDB EVOLUTIONARY PSY, P676; DARWIN C, 1981, DESCENT MAN SELECTIO, V1, P1871; Deacon Terrence, 1997, SYMBOLIC SPECIES COE; Dissanayake E., 2000, ART INTIMACY ARTS BE; Dunbar Robin, 2002, HUMAN EVOLUTIONARY P; EIBL E, 1998, ETHNIC CONFLICT INDO, P21; Ekman P., 2003, EMOTIONS REVEALED RE; Feagin S. L., 1997, EMOTION ARTS, P50; Figueredo AJ, 2005, HDB EVOLUTIONARY PSY, P851; Fish Stanley, 1980, IS THERE TEXT THIS C; Flinn MV, 2005, EVOL HUM BEHAV, V26, P10, DOI 10.1016/j.evolhumbehav.2004.08.005; FLINN MV, 2005, ORIGINS SOCIAL MIND, P19; Geary D. C., 1998, MALE FEMALE EVOLUTIO; Geary D. C., 2005, HDB EVOLUTIONARY PSY, P483; Geary DC, 2001, PARENT-SCI PRACT, V1, P5, DOI 10.1207/S15327922PAR011&2_2; Gilbert S. M., 1979, MADWOMAN ATTIC WOMAN; Goodheart Eugene, 2007, DARWINIAN MISADVENTU; Gosling SD, 2003, J RES PERS, V37, P504, DOI 10.1016/S0092-6566(03)00046-1; Gottschall J, 2008, RAPE OF TROY: EVOLUTION, VIOLENCE, AND THE WORLD OF HOMER, P1; Gottschall J, 2008, COGN STUD LIT PERFOR, P1, DOI 10.1057/9780230615595; GOTTSCHALL J, 2005, LIT ANIMAL EVOLUTION, P199; Gottschall Jonathan, 2005, LIT ANIMAL EVOLUTION; GRABES H, 2004, STYLE, V221, P35; Henrich J., 2007, OXFORD HDB EVOLUTION, DOI [DOI 10.1093/OXFORDHB/9780198568308.013.0038, 10. 1093/oxfordhb/9780198568308. 013. 0038]; Hill Kim, 2007, EVOLUTION MIND FUNDA, P348; Hogan Patrick Colm, 2003, MIND ITS STORIES NAR; Kenrick D. T., 2005, HDB EVOLUTIONARY PSY, P803; Kirby S., 2007, OXFORD HDB EVOLUTION, P669; Krebs D., 2005, HDB EVOLUTIONARY PSY, P747; Kruger DJ, 2003, HUM NATURE-INT BIOS, V14, P305, DOI 10.1007/s12110-003-1008-y; KURLAND JA, HDB EVOLUTIONARY PSY, P447; KURZBAN R, 2005, HDB EVOLUTIONARY PSY, P653; Laland KN, 2007, OXFORD HDB EVOLUTION, P35; LANCASTER JB, 2007, EVOLUTION MIND FUNDA, P111; LEAVIS FR, 1973, GREAT TRADITION GEOR; LOW BL, 2000, WHY SEX MATTERS DARW; LUMSDEN CJ, 1983, HARVARD U PRESS; Matravers Derek, 1997, EMOTION ARTS, P78; McCrae RR, 1997, AM PSYCHOL, V52, P509, DOI 10.1037/0003-066X.52.5.509; MCELREATH R, 2007, PROMETHEAN FIRE REFL, P571; McEwan I., 2005, LIT ANIMAL EVOLUTION, P5; Nettle D, 2007, OXFORD HDB EVOLUTION, P479; Nettle D, 2006, AM PSYCHOL, V61, P622, DOI 10.1037/0003-066X.61.6.622; Oatley K, 2002, NARRATIVE IMPACT: SOCIAL AND COGNITIVE FOUNDATIONS, P39; OATLEY K, 1997, EMOTION ARTS, P263; Oatley K., 1999, REV GEN PSYCHOL, V3, P101, DOI DOI 10.1037/1089-2680.3.2.101; OZYUREK A, 1997, J DISCOURSE PROCESSE, V23, P37; Paulhus DL, 1998, J PERS, V66, P1025, DOI 10.1111/1467-6494.00041; Plotkin H, 2007, OXFORD HDB EVOLUTION, P11; PLUTCHIK R, 2003, EMOTIONS LIFE PERSPE; Premack David, 1995, P205; RICHERSON PJ, 2001, EVOLUTION CAPACITY C, P166; RICHERSON PJ, 1998, IDENTITY EVOLUTIONAR; RICHERSON PJ, 2005, NOT GENES ALONE HOW; RIDLEY M, 1996, ORIGINS VIRTUE HUMAN; Salmon Catherine, 2001, WARRIOR LOVERS EROTI; Salter F. K., 2007, EMOTIONS COMMAND BIO; SCALISE S, 2005, LIT ANIMAL EVOLUTION, P177; Schaller M., 2007, OXFORD HDB EVOLUTION, P491, DOI DOI 10.1093/OXFORDHB/9780198568308.013.0033; Schmitt D. P., 2005, HDB EVOLUTIONARY PSY, P258; SHEENAN S, 2007, OXFORD HDB EVOLUTION, P587; SILK JB, 2007, EVOLUTION MIND FUNDA, P103; Smail David Lord, 2008, DEEP HIST BRAIN BERK; Smith D. V., 2007, MOST DANGEROUS ANIMA; Sober E., 1998, UNTO OTHERS EVOLUTIO; Sterelny K., 2003, THOUGHT HOSTILE WORL; Storey Robert, 1996, MIMESIS HUMAN ANIMAL; Tan E. S., 2000, HDB EMOTIONS, P116; Tomasello M, 2005, BEHAV BRAIN SCI, V28, P675, DOI 10.1017/S0140525X05000129; Tooby J, 2001, SUB-STANCE, P6; Turchin P., 2006, WAR PEACE WAR RISE F; VANPEER W, 1997, EMOTION ARTS, P215; Wilson D. S, 2005, LIT ANIMAL EVOLUTION, P20; Wilson D. S., 2007, EVOLUTION MIND FUNDA, P213; Wilson DS, 2007, Q REV BIOL, V82, P327, DOI 10.1086/522809; Wilson David Sloan, 2002, DARWINS CATHEDRAL EV; WILSON DS, 2007, EVOLUTION EVERYONE H; WILSON DS, 2006, INNATE MIND, V2, P78; Wilson EO, 1998, CONSILIENCE UNITY KN; Wilson S, 2007, MIDWEST QUART, V49, P55 101 15 15 1 4 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2008 6 4 715 738 24 Psychology, Experimental Psychology 453UL WOS:000266638300013 DOAJ Gold 2018-11-12 J Kiorboe, T; Hirst, AG Kiorboe, Thomas; Hirst, Andrew G. Optimal development time in pelagic copepods MARINE ECOLOGY PROGRESS SERIES English Article Fitness; Net reproductive rate; Population growth rate; Fecundity; Mortality MARINE PLANKTONIC COPEPODS; DIEL VERTICAL MIGRATION; LIFE-HISTORY EVOLUTION; GLOBAL RATES; BODY-SIZE; PHYTOPLANKTON CONCENTRATION; PREDATOR AVOIDANCE; CALANUS-PACIFICUS; PSEUDOCALANUS SP; PHYSIO-ECOLOGY According to life history theory, development times have evolved to an optimum solution of the trade-offs between rapid development and high fecundity: rapidly developing individuals have a higher chance of surviving to maturity than do slowly developing ones, but they mature at a smaller size and, thus, have lower fecundity. Here we develop a model to predict egg-to-adult times in marine pelagic marine copepods that maximizes fitness, quantified either as lifetime reproductive output or population growth rate. The model is tested against global data sets of development time as a function of temperature. The optimum development time increases when the enhancement of fecundity with delayed maturation increases, and it decreases with increasing juvenile mortality. Our predictions match the patterns in nature for broadcast spawners, for which most data are available, but appear to underpredict development times for sac-spawning copepods. The partial uncoupling of growth and development rates in copepods demonstrated in laboratory experiments, the substantial variation in age at maturity observed in copepod field populations, as well as the fair match of predicted and observed development times together suggest that development rates in marine pelagic copepods are tuned to the prevailing predation mortality. Observations in freshwater zooplankton suggest that life histories may be adapted to local conditions of growth and predation mortality. The striking lack of similar observations in marine zooplankton calls for work to explore the significance of environmental modulation of life histories of marine zooplankton. Possible future research avenues are proposed, including studies of the effects of seasonal environments, variable presence of predators and the effects of sexual selection on life histories of marine planktonic copepods. [Kiorboe, Thomas] Tech Univ Denmark, Natl Inst Aquat Resources, DK-2920 Charlottenlund, Denmark; [Hirst, Andrew G.] Univ London, Sch Biol & Chem Sci, London E1 4NS, England Kiorboe, T (reprint author), Tech Univ Denmark, Natl Inst Aquat Resources, Kavalergarden 6, DK-2920 Charlottenlund, Denmark. tk@aqua.dtu.dk Kiorboe, Thomas/G-3190-2011; Hirst, Andrew/A-6296-2013 Kiorboe, Thomas/0000-0002-3265-336X; Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Atkinson D, 1997, TRENDS ECOL EVOL, V12, P235, DOI 10.1016/S0169-5347(97)01058-6; BAN SH, 1994, J PLANKTON RES, V16, P721, DOI 10.1093/plankt/16.6.721; BERGGREEN U, 1988, MAR BIOL, V99, P341, DOI 10.1007/BF02112126; BERRIGAN D, 1994, OIKOS, V70, P474, DOI 10.2307/3545787; BOLLENS SM, 1992, HYDROBIOLOGIA, V234, P33, DOI 10.1007/BF00010777; BOLLENS SM, 1994, J PLANKTON RES, V16, P555, DOI 10.1093/plankt/16.5.555; Bunker AJ, 2004, MAR ECOL PROG SER, V279, P161, DOI 10.3354/meps279161; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; Crowley PH, 2000, ECOLOGY, V81, P2592, DOI 10.2307/177477; DAM HG, 1991, MAR ECOL PROG SER, V71, P113, DOI 10.3354/meps071113; de Valpine P, 2000, P ROY SOC B-BIOL SCI, V267, P357; DODSON SI, 1988, LIMNOL OCEANOGR, V33, P1274, DOI 10.4319/lo.1988.33.6.1274; Fauconneau B., 1985, P17; Fiksen O, 1997, ECOLOGY, V78, P1446; FROST BW, 1992, CAN J FISH AQUAT SCI, V49, P1137, DOI 10.1139/f92-126; GILLIAM JF, 1987, ECOLOGY, V68, P1856, DOI 10.2307/1939877; GISKE J, 1993, EVOL ECOL, V7, P233, DOI 10.1007/BF01237741; HAVENHAND JN, 1993, MAR ECOL PROG SER, V97, P247, DOI 10.3354/meps097247; Hirst AG, 2003, LIMNOL OCEANOGR, V48, P1988, DOI 10.4319/lo.2003.48.5.1988; Hirst AG, 2002, MAR ECOL PROG SER, V230, P195, DOI 10.3354/meps230195; Hirst AG, 1999, MAR ECOL PROG SER, V177, P133, DOI 10.3354/meps177133; Hirst A, 2006, MAR ECOL PROG SER, V326, P29, DOI 10.3354/meps326029; Houston AI, 1999, MODELS ADAPTIVE BEHA; HUNTLEY ME, 1992, AM NAT, V140, P201, DOI 10.1086/285410; Kiorboe T, 2006, OECOLOGIA, V148, P40, DOI 10.1007/s00442-005-0346-3; KIORBOE T, 1985, MAR ECOL PROG SER, V26, P85, DOI 10.3354/meps026085; KIORBOE T, 1994, J PLANKTON RES, V16, P1353, DOI 10.1093/plankt/16.10.1353; Kiorboe T, 2008, OECOLOGIA, V155, P179, DOI 10.1007/s00442-007-0893-x; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; LAFFERTY KD, 1993, OIKOS, V68, P3, DOI 10.2307/3545303; MACHACEK J, 1993, LIMNOL OCEANOGR, V38, P1544, DOI 10.4319/lo.1993.38.7.1544; Matty A.J., 1985, P185; MILLER SE, 1993, MAR BIOL, V117, P635, DOI 10.1007/BF00349776; MYERS RA, 1983, MAR ECOL PROG SER, V11, P189, DOI 10.3354/meps011189; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; SIBLY RM, 1994, FUNCT ECOL, V8, P486, DOI 10.2307/2390073; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; STIBOR H, 1992, OECOLOGIA, V92, P162, DOI 10.1007/BF00317358; Titelman J, 2003, MAR ECOL PROG SER, V247, P123, DOI 10.3354/meps247123; Titelman J, 2003, MAR ECOL PROG SER, V247, P137, DOI 10.3354/meps247137; UYE S, 1995, MAR ECOL PROG SER, V118, P121, DOI 10.3354/meps118121; Varpe O, 2007, OIKOS, V116, P1331, DOI 10.1111/j.2007.0030-1299.15893.x; VIDAL J, 1980, MAR BIOL, V56, P135, DOI 10.1007/BF00397130; VIDAL J, 1980, MAR BIOL, V56, P111, DOI 10.1007/BF00397129; Visser AW, 2007, J PLANKTON RES, V29, P447, DOI 10.1093/plankt/fbm029 52 29 29 0 27 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2008 367 15 22 10.3354/meps07572 8 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 359WC WOS:000260017900002 Bronze 2018-11-12 J Lardies, MA; Medina, MH; Correa, JA Lardies, Marco A.; Medina, Matias H.; Correa, Juan A. Intraspecific biogeographic pattern breakage in the snapping shrimp Betaeus emarginatus caused by coastal copper mine tailings MARINE ECOLOGY PROGRESS SERIES English Article copper; life-history traits; biogeography; intertidal rocky shore; reproductive output; Chile LATITUDINAL VARIATION; EGG SIZE; REPRODUCTIVE-BIOLOGY; NORTHERN CHILE; DECAPODA; STRESS; TEMPERATURE; ALPHEIDAE; CRUSTACEA; CRAB Environmental gradients are common in nature, and geographically widespread species must cope with environmental differences between habitats. Environmental differences produce bio-geographic patterns that can involve morphological, physiological, and life-history traits. The Bergmann's rule has been described as one of these ecological and evolutionary patterns, predicting an increase in body size towards colder climates. Human-induced polluting events could impair the performance and/or fitness of exposed individuals and populations. Thus, we hypothesized that species undergoing exposure to pollutants will show a breakage of the natural biogeographical variation of their fitness-related life-history traits. In northern Chile, copper mine tailings have been dumped continuously for more than 60 yr. Because the snapping shrimp Betaeus emarginatus is commonly found in intertidal pools near this dumping site, it was used as a study model. This shrimp has a pelagic larva and a wide distribution along the Chilean coast. Different life-history traits were studied in 5 populations over a range of 19 degrees of latitude along the Chilean coast. Population mean values for female body mass, egg volume, and reproductive output were positively correlated with latitude. In contrast, egg number was negatively correlated with latitude and positively correlated with temperature. Shrimps from the dumping site showed life-history trait values significantly lower than the range observed in areas with no copper enrichment, breaking the biogeographical patterns predicted by the Bergmann's rule. Such studies emphasize the need for integrating different concepts of organism and population ecology and life-history theory in the assessment of anthropogenic pollution. [Lardies, Marco A.] Univ Santo Tomas, Dept Ciencias Basicas, Santiago, Chile; [Lardies, Marco A.] Univ Santo Tomas, Ctr Invest Ciencias Ambientales, Santiago, Chile; [Medina, Matias H.] Univ Austral Chile, CIEN Austral Ctr Invest Nutr Tecnol Alimentos & S, Region Los Lagos, Chile; [Correa, Juan A.] Pontificia Univ Catolica Chile, Fac Ciencias Biol, Dept Ecol, Santiago, Chile; [Correa, Juan A.] Pontificia Univ Catolica Chile, Fac Ciencias Biol, Ctr Adv Studies Ecol & Biodivers, Santiago, Chile Lardies, MA (reprint author), Univ Santo Tomas, Dept Ciencias Basicas, Ejercito 146, Santiago, Chile. mlardies@santotomas.cl Varela, Daniel/D-9484-2013 Lardies, Marco/0000-0003-3525-1830 Andrade S, 2006, MAR CHEM, V101, P203, DOI 10.1016/j.marchem.2006.03.002; Atkinson D, 1997, TRENDS ECOL EVOL, V12, P235, DOI 10.1016/S0169-5347(97)01058-6; BAUER RT, 1992, INVERTEBR REPROD DEV, V22, P193, DOI 10.1080/07924259.1992.9672272; Blanckenhorn WU, 2004, INTEGR COMP BIOL, V44, P413, DOI 10.1093/icb/44.6.413; Calow P, 1998, COMP BIOCHEM PHYS A, V120, P11, DOI 10.1016/S1095-6433(98)10003-X; CASTILLA JC, 1983, MARINE POLLUTION B, V14, P159; CLARKE A, 1991, FUNCT ECOL, V5, P724, DOI 10.2307/2389534; CLARKE A, 1993, J EXP MAR BIOL ECOL, V168, P189, DOI 10.1016/0022-0981(93)90259-Q; CLARKE A, 1987, MAR ECOL PROG SER, V38, P89, DOI 10.3354/meps038089; Correa J. A., 2000, ENVIRON MONIT ASSESS, V61, P267, DOI 10. 1023/A:1006179424239; Fischer K, 2002, EVOL ECOL, V16, P333, DOI 10.1023/A:1020271600025; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Garnacho E, 2001, J MAR BIOL ASSOC UK, V81, P433, DOI 10.1017/S0025315401004064; Harris RR, 2000, MAR BIOL, V137, P691, DOI 10.1007/s002270000382; JONES MB, 1983, B MAR SCI, V33, P656; Laptikhovsky V, 2006, MAR ECOL-EVOL PERSP, V27, P7, DOI 10.1111/j.1439-0485.2006.00077.x; Lardies MA, 1997, OPHELIA, V46, P165, DOI 10.1080/00785326.1997.10432582; Lardies MA, 2001, MAR BIOL, V139, P1125; Lardies MA, 2001, OPHELIA, V55, P55, DOI 10.1080/00785236.2001.10409473; Lesser MP, 2006, ANNU REV PHYSIOL, V68, P253, DOI 10.1146/annurev.physiol.68.040104.110001; Livingstone DR, 2001, MAR POLLUT BULL, V42, P656, DOI 10.1016/S0025-326X(01)00060-1; Medina M, 2005, MAR POLLUT BULL, V50, P396, DOI 10.1016/j.marpolbul.2004.11.022; Medina MH, 2007, CHEMOSPHERE, V67, P2105, DOI 10.1016/j.chemosphere.2006.12.024; Mousseau TA, 1997, EVOLUTION, V51, P630, DOI 10.1111/j.1558-5646.1997.tb02453.x; Notten MJM, 2006, ECOTOXICOLOGY, V15, P295, DOI 10.1007/s10646-006-0059-3; Parker ED, 1999, OIKOS, V86, P179, DOI 10.2307/3546584; Scelzo M. A., 1997, INVEST MAR, V25, P177; *SERV HIDR OC ARM, 1996, ATL OC CHIL, V1; SPICER JI, 1992, MAR BIOL, V112, P429, DOI 10.1007/BF00356288; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; VANSTRAALEN NM, 2000, DEMOGRAPHY ECOTOXICO, P115; Wehrtmann IS, 2003, J NAT HIST, V37, P2165, DOI 10.1080/00222930210133291; WEIS JS, 1989, BIOSCIENCE, V39, P89, DOI 10.2307/1310907; Wilhelm FM, 2000, FUNCT ECOL, V14, P413; Wong CK, 1995, MAR POLLUT BULL, V31, P416, DOI 10.1016/0025-326X(95)00142-A 35 13 13 0 3 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2008 358 203 210 10.3354/meps07347 8 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 306DK WOS:000256228300019 Bronze 2018-11-12 J Casten, LR; Johnston, CE Casten, Lemuel R.; Johnston, Carol E. Life-history Plasticity Among Stream Sites in the Chattahoochee River Drainage, Alabama SOUTHEASTERN NATURALIST English Article PHENOTYPIC PLASTICITY; OVUM SIZE; SHINER; POPULATIONS; CYPRINIDAE; HABITAT; CLUTCH; DARTER Cyprinella venusta (Blacktail Shiner) were studied at four sites to investigate life-history parameter variation in Alabama streams. Consistent with life-history theory, fish from a perceived degraded site were significantly smaller than fish from sites that had less apparent environmental disturbance. Fish from the degraded site had the smallest Size at Maturity and the smallest propagule size. Egg diameters were not related to standard length of fish among sites. There was no significant difference ill mature egg diameters; however, ripening egg diameters differed among sites. Clutch sizes adjusted for standard length varied among sites. There was no difference in gonad miss in females for all spawning months however, there were differences in gonad mass in Males in July. The gonadosomatic index peaked in July for both males and females. Reproductive males were still present in September for three sites, but all females from all sites had become latent by September, indicating that. the spawning season had ended. The results of this study Suggest that Cyprinella venusta has the ability to alter life-history parameters and this may be a factor contributing to its persistence in habitats where other species are declining. [Casten, Lemuel R.; Johnston, Carol E.] Auburn Univ, Dept Fisheries, Fish Biodivers Lab, Auburn, AL 36849 USA Johnston, CE (reprint author), Auburn Univ, Dept Fisheries, Fish Biodivers Lab, Auburn, AL 36849 USA. cjohnsto@acesag.auburn.edu State of Alabama Wildlife Thanks to A.R. Henderson, R.A. Kennon, N.R. Ozburn, P. Cleveland, and D. Holt for assistance with fish collection. This project was funded by a State of Alabama Wildlife Grant. Fish were collected under State of Alabama scientific collecting permit number 4491 issued to C.E. Johnston. Baker JA, 1994, EVOLUTIONARY BIOL TH, P144; Guill JM, 1996, ENVIRON BIOL FISH, V46, P409, DOI 10.1007/BF00005021; Heins D.C., 1987, P223; Heins David C., 1993, Ichthyological Exploration of Freshwaters, V4, P11; HEINS DC, 1991, COPEIA, P736; HEINS DC, 2000, AM MIDL NAT, V145, P74; HOWARD J, 1997, THESIS U FLORIDA GAI; Johnston CE, 2000, ECOL FRESHW FISH, V9, P170, DOI 10.1111/j.1600-0633.2000.eff090306.x; Johnston CE, 1999, COPEIA, P200, DOI 10.2307/1447403; JOHNSTON CE, 2004, STATUS FISH SPECIES; Kristjansson BK, 2002, EVOL ECOL RES, V4, P659; Machado MD, 2002, ECOL FRESHW FISH, V11, P11, DOI 10.1034/j.1600-0633.2002.1o103.x; Mazzoni R, 2002, J FISH BIOL, V61, P1606, DOI 10.1006/jfbi.2002.2178; Miner BG, 2005, TRENDS ECOL EVOL, V20, P685, DOI 10.1016/j.tree.2005.08.002; Reznick D.N., 1989, P125; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Robinson BW, 2002, CAN J FISH AQUAT SCI, V59, P1819, DOI 10.1139/F02-144; Roff Derek A., 1992; ROSS S T, 1990, Polskie Archiwum Hydrobiologii, V37, P221; SAS, 2003, SAS 9 1 WIND; SHEPARD TE, 1995, STATUS SURVEY BLUEST; *SPSS INC, 2005, SPSS 11 0 MAC OS X; Stearns S. C., 1992, EVOLUTION LIFE HIST; Sultan SE, 2000, TRENDS PLANT SCI, V5, P537, DOI 10.1016/S1360-1385(00)01797-0; Walser CA, 1999, ECOL FRESHW FISH, V8, P237, DOI 10.1111/j.1600-0633.1999.tb00075.x 25 4 4 0 5 HUMBOLDT FIELD RESEARCH INST STEUBEN PO BOX 9, STEUBEN, ME 04680-0009 USA 1528-7092 1938-5412 SOUTHEAST NAT Southeast. Nat. 2008 7 4 679 690 10.1656/1528-7092-7.4.679 12 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 383VV WOS:000261703200010 2018-11-12 S Callahan, HS; Maughan, H; Steiner, UK Schlichting, CD; Mousseau, TA Callahan, Hilary S.; Maughan, Heather; Steiner, Ulrich K. Phenotypic Plasticity, Costs of Phenotypes, and Costs of Plasticity Toward an Integrative View YEAR IN EVOLUTIONARY BIOLOGY 2008 Annals of the New York Academy of Sciences English Article experimental evolution; selection analysis; phenotypic evolution; tradeoffs; life history theory; environmental heterogeneity HEAT-SHOCK-PROTEIN; GENOTYPE-ENVIRONMENT INTERACTION; QUANTITATIVE TRAIT LOCI; FRESH-WATER SNAIL; ARABIDOPSIS-THALIANA; ADAPTIVE PLASTICITY; ESCHERICHIA-COLI; REACTION NORM; LIFE-HISTORY; EXPERIMENTAL POPULATIONS Why are some traits constitutive and others inducible? The term costs often appears in work addressing this issue but may be ambiguously defined. This review distinguishes two conceptually distinct types of costs: phenotypic costs and plasticity costs. Phenotypic costs are assessed from patterns of covariation, typically between a focal trait and a separate trait relevant to fitness. Plasticity costs, separable from phenotypic costs, are gauged by comparing the fitness of genotypes with equivalent phenotypes within two environments but differing in plasticity and fitness. Subtleties associated with both types of costs are illustrated by a body of work addressing predator-induced plasticity. Such subtleties, and potential interplay between the two types of costs, have also been addressed, often in studies involving genetic model organisms. In some instances, investigators have pinpointed the mechanistic basis of plasticity. In this vein, microbial work is especially illuminating and has three additional strengths. First, information about the machinery underlying plasticity-such as structural and regulatory genes, sensory proteins, and biochemical pathways-helps link population-level studies with underlying physiological and genetic mechanisms. Second, microbial studies involve many generations, large populations, and replication. Finally, empirical estimation of key parameters (e.g., mutation rates) is tractable. Together, these allow for rigorous investigation of gene interactions, drift, mutation, and selection-all potential factors influencing the maintenance or loss of inducible traits along with phenotypic and plasticity costs. Messages emerging from microbial work can guide future efforts to understand the evolution of plastic traits in diverse organisms. [Callahan, Hilary S.] Columbia Univ, Barnard Coll, Dept Biol Sci, New York, NY 10027 USA; [Maughan, Heather] Univ British Columbia, Dept Zool, Vancouver, BC, Canada; [Steiner, Ulrich K.] Stanford Univ, Dept Biol, Stanford, CA 94305 USA Callahan, HS (reprint author), Columbia Univ, Barnard Coll, Dept Biol Sci, 3009 Broadway, New York, NY 10027 USA. hcallahan@barnard.edu Steiner, Ulrich/C-7099-2015; Callahan, Hilary/A-3229-2013 Steiner, Ulrich/0000-0002-1778-5989; National Science Foundation [IBN 0344518]; Killam Trust at UBC; National Institutes of Health; NIA [P01-AG0225000-01]; Morrison Institute for Population and Resource Studies; Swiss NSF [PBZHA-110325] We thank Joanna Masel, Josh Van Buskirk, and an anonymous reviewer for constructive comments. H.C. received financial support from the National Science Foundation (IBN 0344518). H.M. was supported by postdoctoral fellowships from the Killam Trust at UBC and the National Institutes of Health. U.S. was supported by NIA P01-AG0225000-01, Morrison Institute for Population and Resource Studies, and Swiss NSF PBZHA-110325. ABRAMS PA, 1984, AM NAT, V124, P80, DOI 10.1086/284253; Agrawal AA, 2002, EVOLUTION, V56, P2206, DOI 10.1111/j.0014-3820.2002.tb00145.x; Agrawal AA, 2001, SCIENCE, V294, P321, DOI 10.1126/science.1060701; Altwegg R, 2003, EVOLUTION, V57, P872; Altwegg R, 2002, EVOL ECOL RES, V4, P519; Banta JA, 2005, HEREDITY, V94, P229, DOI 10.1038/sj.hdy.6800603; Benard MF, 2003, ECOLOGY, V84, P68, DOI 10.1890/0012-9658(2003)084[0068:AIDCCO]2.0.CO;2; Bradshaw WE, 2006, SCIENCE, V312, P1477, DOI 10.1126/science.1127000; Brookes JI, 2007, J EVOLUTION BIOL, V20, P1015, DOI 10.1111/j.1420-9101.2007.01299.x; Callahan HS, 2005, INTEGR COMP BIOL, V45, P475, DOI 10.1093/icb/45.3.475; Callahan HS, 2005, J EVOLUTION BIOL, V18, P1403, DOI 10.1111/j.1420-9101.2005.00963.x; Callahan HS, 2005, NEW PHYTOL, V166, P129, DOI 10.1111/j.1469-8137.2005.01368.x; Clauss MJ, 2006, TRENDS PLANT SCI, V11, P449, DOI 10.1016/j.tplants.2006.07.005; Cooper VS, 2002, BMC EVOL BIOL, V2, DOI 10.1186/1471-2148-2-12; Cooper VS, 2000, NATURE, V407, P736, DOI 10.1038/35037572; Cooper VS, 2001, J BACTERIOL, V183, P2834, DOI 10.1128/JB.183.9.2834-2841.2001; Dechaine JM, 2007, NEW PHYTOL, V176, P874, DOI 10.1111/j.1469-8137.2007.02210.x; DEJONG G, 1995, AM NAT, V145, P493, DOI 10.1086/285752; DeWitt TJ, 1999, ANIM BEHAV, V58, P397, DOI 10.1006/anbe.1999.1158; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; DeWitt TJ, 1998, J EVOLUTION BIOL, V11, P465, DOI 10.1046/j.1420-9101.1998.11040465.x; DEWITT TJ, 2004, PHENOTYPIC PLASTICIT, P82; Dorn LA, 2000, EVOLUTION, V54, P1982; Dudley SA, 1996, AM NAT, V147, P445, DOI 10.1086/285860; DYKHUIZEN D, 1978, EVOLUTION, V32, P125, DOI 10.1111/j.1558-5646.1978.tb01103.x; Endler JA, 1986, NATURAL SELECTION WI; Eviner VT, 2004, ECOLOGY, V85, P2215, DOI 10.1890/03-0405; FALCONER DS, 1990, GENET RES, V56, P57, DOI 10.1017/S0016672300028883; Feder ME, 1997, FUNCT ECOL, V11, P90, DOI 10.1046/j.1365-2435.1997.00060.x; FINLAY KW, 1963, AUST J AGR RES, V14, P742, DOI 10.1071/AR9630742; Garland T, 2006, J EXP BIOL, V209, P2344, DOI 10.1242/jeb.02244; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; Gibert P, 1998, EVOLUTION, V52, P1501, DOI 10.1111/j.1558-5646.1998.tb02032.x; Hall AR, 2008, J EVOLUTION BIOL, V21, P610, DOI 10.1111/j.1420-9101.2007.01473.x; Heckathorn SA, 1996, INT J PLANT SCI, V157, P546, DOI 10.1086/297374; Hoverman JT, 2007, ECOLOGY, V88, P693, DOI 10.1890/05-1697; Huber H, 2004, AM NAT, V163, P548, DOI 10.1086/382549; KAPLAN RH, 1984, AM NAT, V123, P393, DOI 10.1086/284211; Kembel SW, 2005, AM NAT, V166, P216, DOI 10.1086/431287; Kingsolver JG, 2007, AM NAT, V169, P163, DOI 10.1086/510631; Kishida O, 2004, OECOLOGIA, V140, P414, DOI 10.1007/s00442-004-1609-0; Krebs RA, 1998, BIOL J LINN SOC, V63, P593, DOI 10.1111/j.1095-8312.1998.tb00331.x; Krebs RA, 1998, EVOLUTION, V52, P841, DOI 10.1111/j.1558-5646.1998.tb03708.x; Kussell E, 2005, GENETICS, V169, P1807, DOI 10.1534/genetics.2=104.035352; Kussell E, 2005, SCIENCE, V309, P2075, DOI 10.1126/science.1114383; LACEY EP, 1983, AM NAT, V122, P114, DOI 10.1086/284122; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Larkindale J, 2005, BIOL SCI SER, P100, DOI 10.1002/9780470988503.ch5; Lass S, 2003, HYDROBIOLOGIA, V491, P221, DOI 10.1023/A:1024487804497; Laugen AT, 2005, GENET RES, V86, P161, DOI 10.1017/S0016672305007810; LECHOWICZ MJ, 1991, J ECOL, V79, P687, DOI 10.2307/2260661; Lee CE, 2002, TRENDS ECOL EVOL, V17, P386, DOI 10.1016/S0169-5347(02)02554-5; Levins R., 1968, EVOLUTION CHANGING E; Lexer C, 2005, J EVOLUTION BIOL, V18, P893, DOI 10.1111/j.1420-9101.2005.00901.x; Lima SL, 1998, ADV STUD BEHAV, V27, P215; LYNCH M, 1987, AM NAT, V129, P283, DOI 10.1086/284635; Masel J, 2007, AM NAT, V169, P38, DOI 10.1086/510212; Maughan H, 2006, EVOLUTION, V60, P686; Maughan H, 2007, GENETICS, V177, P937, DOI 10.1534/genetics.107.075663; McClintock TS, 2006, GENOME BIOL, V7, DOI 10.1186/gb-2006-7-4-312; McCollum SA, 1996, EVOLUTION, V50, P583, DOI 10.1111/j.1558-5646.1996.tb03870.x; MCNAMARA JM, 1994, AM NAT, V144, P978, DOI 10.1086/285721; McPeek MA, 2004, AM NAT, V163, pE88, DOI 10.1086/382755; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Mikolajewski DJ, 2006, EVOLUTION, V60, P1306; Miner BG, 2005, TRENDS ECOL EVOL, V20, P685, DOI 10.1016/j.tree.2005.08.002; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; NEIDHARDT FC, 1996, ESCHERICHIA COLI SAL; NEWMAN RA, 1992, BIOSCIENCE, V42, P671, DOI 10.2307/1312173; Nicieza AG, 2006, J EVOLUTION BIOL, V19, P1092, DOI 10.1111/j.1420-9101.2006.01100.x; Nicotra AB, 2008, OECOLOGIA, V154, P625, DOI 10.1007/s00442-007-0865-1; Picotte JJ, 2007, OECOLOGIA, V153, P821, DOI 10.1007/s00442-007-0794-z; Pigliucci M, 1996, TRENDS ECOL EVOL, V11, P168, DOI 10.1016/0169-5347(96)10008-2; Pigliucci M, 1999, J EVOLUTION BIOL, V12, P551, DOI 10.1046/j.1420-9101.1999.00057.x; Pigliucci M, 2004, EVOL ECOL RES, V6, P243; Pigliucci M, 1999, J EVOLUTION BIOL, V12, P779, DOI 10.1046/j.1420-9101.1999.00074.x; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; Pigliucci M, 2006, J EXP BIOL, V209, P2362, DOI 10.1242/jeb.02070; Pinkhaus O, 2007, FRESHWATER BIOL, V52, P1537, DOI 10.1111/j.1365-2427.2007.01786.x; Relyea RA, 2004, ECOLOGY, V85, P172, DOI 10.1890/03-0169; Relyea RA, 2007, OECOLOGIA, V152, P389, DOI 10.1007/s00442-007-0675-5; Richards CL, 2006, ECOL LETT, V9, P981, DOI 10.1111/j.1461-0248.2006.00950.x; ROSE MR, 1996, ADAPTATION; Sarkar S, 1999, BIOL PHILOS, V14, P235, DOI 10.1023/A:1006690502648; Scheiner SM, 1999, EVOLUTION, V53, P1704, DOI [10.2307/2640433, 10.1111/j.1558-5646.1999.tb04555.x]; Scheiner SM, 1998, EVOLUTION, V52, P368, DOI 10.1111/j.1558-5646.1998.tb01638.x; Scheiner SM, 2002, J EVOLUTION BIOL, V15, P889, DOI 10.1046/j.1420-9101.2002.00468.x; Schlichting C. D., 1998, PHENOTYPIC EVOLUTION; SCHLICHTING CD, 1986, ANNU REV ECOL SYST, V17, P667, DOI 10.1146/annurev.es.17.110186.003315; SCHLICHTING CD, 1984, AM J BOT, V71, P252, DOI 10.2307/2443753; Schlichting CD, 2002, EVOL ECOL, V16, P189, DOI 10.1023/A:1019624425971; Schmitt J, 1995, AM NAT, V146, P937, DOI 10.1086/285832; Schranz ME, 2007, PLANT PHYSIOL, V144, P286, DOI 10.1104/pp.107.096685; SONENSHEIN AL, 2002, BACILLUS SUBTILIS IT; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steiner UK, 2008, J EVOLUTION BIOL, V21, P97, DOI 10.1111/j.1420-9101.2007.01463.x; Steiner UK, 2007, ANIM BEHAV, V74, P1473, DOI 10.1016/j.anbehav.2007.02.016; Steiner UK, 2007, OECOLOGIA, V152, P201, DOI 10.1007/s00442-006-0645-3; Steiner UK, 2007, AM NAT, V169, P118, DOI 10.1086/509939; Steinger T, 2003, J EVOLUTION BIOL, V16, P313, DOI 10.1046/j.1420-9101.2003.00518.x; Stinchcombe JR, 2008, HEREDITY, V100, P158, DOI 10.1038/sj.hdy.6800937; Stinchcombe JR, 2004, J EVOLUTION BIOL, V17, P197, DOI 10.1046/j.1420-9101.2003.00641.x; Stoks R, 2006, ECOLOGY, V87, P1566, DOI 10.1890/0012-9658(2006)87[1566:PCOCGI]2.0.CO;2; Stoks R, 2006, ECOLOGY, V87, P809, DOI 10.1890/0012-9658(2006)87[809:TCMPPI]2.0.CO;2; Stratton DA, 1998, HEREDITY, V81, P144, DOI 10.1038/sj.hdy.6883690; Sultan SE, 2002, AM NAT, V160, P271, DOI 10.1086/341015; Sultan SE, 1998, J ECOL, V86, P363, DOI 10.1046/j.1365-2745.1998.00265.x; Teplitsky C, 2005, J EVOLUTION BIOL, V18, P180, DOI 10.1111/j.1420-9101.2004.00790.x; Tollrian R, 1999, ECOLOGY EVOLUTION IN; Tonsor SJ, 2008, MOL ECOL, V17, P1614, DOI 10.1111/j.1365-294X.2008.03690.x; Tuskan GA, 2006, SCIENCE, V313, P1596, DOI 10.1126/science.1128691; Ungerer MC, 2003, GENETICS, V165, P353; Van Buskirk J, 2000, ECOLOGY, V81, P2813, DOI 10.1890/0012-9658(2000)081[2813:TCOAID]2.0.CO;2; Van Buskirk J, 2001, J EVOLUTION BIOL, V14, P482, DOI 10.1046/j.1420-9101.2001.00282.x; Van Buskirk J, 2001, EVOLUTION, V55, P821; Van Buskirk J, 1998, OIKOS, V82, P20; van Kleunen M, 2005, NEW PHYTOL, V166, P49, DOI 10.1111/j.1469-8137.2004.01296.x; van Kleunen M, 2007, NEW PHYTOL, V176, P727, DOI 10.1111/j.1469-8137.2007.02296.x; VANTIENDEREN PH, 1991, EVOLUTION, V45, P1317, DOI 10.1111/j.1558-5646.1991.tb02638.x; VIA S, 1995, TRENDS ECOL EVOL, V10, P212, DOI 10.1016/S0169-5347(00)89061-8; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Weinig C, 2006, AM NAT, V167, P826, DOI 10.1086/503530; Weinig C, 2003, EVOLUTION, V57, P1270; Weinig C, 2004, BIOSCIENCE, V54, P627, DOI 10.1641/0006-3568(2004)054[0627:EEOTEO]2.0.CO;2; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WESTERMAN JM, 1970, HEREDITY, V25, P609, DOI 10.1038/hdy.1970.66; ZAMENHOF S, 1967, NATURE, V216, P456, DOI 10.1038/216456a0; Zhang XS, 2006, EVOLUTION, V60, P1125, DOI 10.1111/j.0014-3820.2006.tb01192.x 129 59 59 5 85 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN STREET, MALDEN 02148, MA USA 0077-8923 978-1-57331-724-5 ANN NY ACAD SCI Ann.NY Acad.Sci. 2008 1133 44 66 10.1196/annals.1438.008 23 Biology; Multidisciplinary Sciences Life Sciences & Biomedicine - Other Topics; Science & Technology - Other Topics BIJ94 WOS:000260225000003 18559815 2018-11-12 J Rickard, IJ; Russell, AF; Lummaa, V Rickard, Ian J.; Russell, Andrew F.; Lummaa, Virpi Producing sons reduces lifetime reproductive success of subsequent offspring in pre-industrial Finns PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article evolutionary ecology; intergenerational cost of reproduction; lifetime reproductive success; Lack's hypothesis; Trivers-Willard hypothesis BIASED MATERNAL EXPENDITURE; MOUNTAIN BIGHORN SHEEP; BIRTH-WEIGHT; LITTER SIZE; PARENTAL INVESTMENT; MANIPULATION EXPERIMENT; 19TH-CENTURY SWEDEN; OCCUPATIONAL-STATUS; PRECEDING SIBLINGS; PRENATAL GROWTH Life-history theory states that reproductive events confer costs upon mothers. Many studies have shown that reproduction causes a decline in maternal condition, survival or success in subsequent reproductive events. However, little attention has been given to the prospect of reproductive costs being passed onto subsequent offspring, despite the fact that parental fitness is a function of the reproductive success of progeny. Here we use pedigree data from a pre-industrial human population to compare offspring lifehistory traits and lifetime reproductive success (LRS) according to the cost incurred by each individual's mother in the previous reproductive event. Because producing a son versus a daughter has been associated with greater maternal reproductive cost, we hypothesize that individuals born to mothers who previously produced sons will display compromised survival and/or LRS, when compared with those produced following daughters. Controlling for confounding factors such as socio-economic status and ecological conditions, we show that those offspring born after elder brothers have similar survival but lower LRS compared with those born after elder sisters. Our results demonstrate a maternal cost of reproduction manifested in reduced LRS of subsequent offspring. To our knowledge, this is the first time such a longterm intergenerational cost has been shown in a mammal species. Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England Rickard, IJ (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England. i.rickard@sheffield.ac.uk Barker D. J. P., 1998, MOTHERS BABIES HLTH; Berube CH, 1996, BEHAV ECOL, V7, P60, DOI 10.1093/beheco/7.1.60; Birgersson B, 1998, BEHAV ECOL SOCIOBIOL, V43, P87, DOI 10.1007/s002650050470; Blanchard R, 2001, J BIOSOC SCI, V33, P451, DOI 10.1017/S0021932001004515; Blondel J, 1998, OECOLOGIA, V117, P80, DOI 10.1007/s004420050634; CLARK MM, 1991, PHYSIOL BEHAV, V49, P239, DOI 10.1016/0031-9384(91)90038-P; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CLUTTONBROCK TH, 1981, NATURE, V289, P487, DOI 10.1038/289487a0; Cote K, 2003, J BIOSOC SCI, V35, P455, DOI 10.1017/S0021932003004553; DRENT RH, 1980, ARDEA, V68, P225; Festa-Bianchet M, 2000, BEHAV ECOL, V11, P633, DOI 10.1093/beheco/11.6.633; FESTABIANCHET M, 1989, J ANIM ECOL, V58, P785, DOI 10.2307/5124; GOMENDIO M, 1990, NATURE, V343, P261, DOI 10.1038/343261a0; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; HARE JF, 1992, J MAMMAL, V73, P449, DOI 10.2307/1382083; HARPENDING HC, 1991, HUM BIOL, V63, P329; Helle S, 2002, SCIENCE, V296, P1085, DOI 10.1126/science.1070106; Hewison AJM, 1999, TRENDS ECOL EVOL, V14, P229, DOI 10.1016/S0169-5347(99)01592-X; HOGG JT, 1992, BEHAV ECOL SOCIOBIOL, V31, P243; KARN MN, 1951, ANN EUGENIC, V16, P147, DOI 10.1111/j.1469-1809.1951.tb02469.x; KARSKELA S, 2001, SUKUTUKIJAN TIETOKIR; Klein SL, 2000, NEUROSCI BIOBEHAV R, V24, P627, DOI 10.1016/S0149-7634(00)00027-0; Korpelainen H, 2003, AM J PHYS ANTHROPOL, V120, P384, DOI 10.1002/ajpa.10191; Koskela E, 1998, OECOLOGIA, V115, P379, DOI 10.1007/s004420050531; Kruuk LEB, 1999, P ROY SOC B-BIOL SCI, V266, P1655, DOI 10.1098/rspb.1999.0828; Kunkele J, 2000, J MAMMAL, V81, P691, DOI 10.1644/1545-1542(2000)081<0691:EOLSOT>2.3.CO;2; LACK D, 1948, J ANIM ECOL, V17, P45, DOI 10.2307/1608; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; Landete-Castillejos T, 2005, BEHAV ECOL SOCIOBIOL, V57, P267, DOI 10.1007/s00265-004-0848-8; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; LOW BS, 1990, AM ANTHROPOL, V92, P457, DOI 10.1525/aa.1990.92.2.02a00130; LOW BS, 1991, J FAM HIST, V16, P117, DOI 10.1177/036319909101600202; Lummaa V, 2002, TRENDS ECOL EVOL, V17, P141, DOI 10.1016/S0169-5347(01)02414-4; Lummaa V, 2007, P NATL ACAD SCI USA, V104, P10915, DOI 10.1073/pnas.0605875104; Mace R, 1997, J BIOSOC SCI, V29, P499, DOI 10.1017/S0021932097004999; Mace R, 1996, BEHAV ECOL SOCIOBIOL, V38, P75, DOI 10.1007/s002650050219; MAGNUS P, 1985, EARLY HUM DEV, V12, P49, DOI 10.1016/0378-3782(85)90136-7; MAPPES T, 1995, P ROY SOC B-BIOL SCI, V261, P19, DOI 10.1098/rspb.1995.0111; MEULENBERG PMM, 1991, J STEROID BIOCHEM, V39, P51, DOI 10.1016/0960-0760(91)90012-T; Mulder MB, 1998, HUM NATURE-INT BIOS, V9, P119, DOI 10.1007/s12110-998-1001-6; Naguib M, 2006, P R SOC B, V273, P1901, DOI 10.1098/rspb.2006.3526; Parker GA, 2002, PHILOS T R SOC B, V357, P295, DOI 10.1098/rstb.2001.0950; Pettay JE, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000606; Phillips DIW, 2001, BRIT MED J, V322, P771, DOI 10.1136/bmj.322.7289.771; Roff Derek A., 1992; *SAS I INC, 1990, SAS STAT US GUID; Tamimi RM, 2003, BRIT MED J, V326, P1245, DOI 10.1136/bmj.326.7401.1245; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; TROTNOW S, 1976, GEBURTSH FRAUENHEILK, V36, P744; Vagero D, 2002, BRIT MED J, V324, P398, DOI 10.1136/bmj.324.7334.398; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547 53 40 41 0 25 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. DEC 7 2007 274 1628 2981 2988 10.1098/rspb.2007.1051 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 236BV WOS:000251278900009 17895226 Green Published, Other Gold 2018-11-12 J Sargent, RD; Goodwillie, C; Kalisz, S; Rees, RH Sargent, Risa D.; Goodwillie, Carol; Kalisz, Susan; Rees, Richard H. Phylogenetic evidence for a flower size and number trade-off AMERICAN JOURNAL OF BOTANY English Article floral display; flower number; flower size; inflorescence size; life history trade-offs; phylogenetic independent contrasts EICHHORNIA-PANICULATA PONTEDERIACEAE; FLORAL DISPLAY; ATTRACTIVE STRUCTURES; CORRELATED EVOLUTION; GENETIC CONSTRAINTS; SELF-COMPATIBILITY; ADAPTIVE EVOLUTION; SILENE-LATIFOLIA; SYSTEM EVOLUTION; ALLOCATION The size and number of flowers displayed together on an inflorescence (floral display) influences pollinator attraction and pollen transfer and receipt, and is integral to plant reproductive success and fitness. Life history theory predicts that the evolution of floral display is constrained by trade-offs between the size and number of flowers and inflorescences. Indeed, a trade-off between flower size and flower number is a key assumption of models of inflorescence architecture and the evolution of floral display. Surprisingly, however, empirical evidence for the trade-off is limited. In particular, there is a lack of phylogenetic evidence for a trade-off between flower size and number. Analyses of phylogenetic independent contrasts (PICs) of 251 angiosperm species spanning 63 families yielded a significant negative correlation between flower size and flower number. At smaller phylogenetic scales, analyses of individual genera did not always find evidence of a trade-off, a result consistent with previous studies that have examined the trade-off for a single species or genus. Ours is the first study to support an angiosperm-wide trade-off between flower size and number and supports the theory that life history constraints have influenced the evolution of floral display. [Sargent, Risa D.] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA; [Goodwillie, Carol] E Carolina Univ, Dept Biol, Greenville, NC 27858 USA; [Kalisz, Susan] Univ Pittsburgh, Dept Biol Sci, Pittsburgh, PA 15260 USA; [Rees, Richard H.] Field Museum Nat Hist, Dept Bot, Chicago, IL 60605 USA Sargent, RD (reprint author), Univ Ottawa, Dept Biol, Gendron Hall,Room 160,30 Marie Curie, Ottawa, ON K1N 6N5, Canada. rsargent@uottawa.ca; goodwilliec@ecu.edu; kalisz@pitt.edu; rree@fieldmuseum.org Goodwillie, Carol/0000-0003-2649-2771 Ackerly DD, 2000, EVOLUTION, V54, P1480, DOI 10.1111/j.0014-3820.2000.tb00694.x; *ANG PHYL GROUP, 2003, BOT J LINN SOC, V141, P399, DOI DOI 10.1046/J.1095-8339.2003.T01-1-00158.X; Armbruster WS, 2002, AM J BOT, V89, P37, DOI 10.3732/ajb.89.1.37; Ashman TL, 2006, HEREDITY, V96, P343, DOI 10.1038/sj.hdy.6800815; BARRETT SCH, 1994, FUNCT ECOL, V8, P526, DOI 10.2307/2390078; BELL G, 1985, PROC R SOC SER B-BIO, V224, P223, DOI 10.1098/rspb.1985.0031; BERTIN RI, 1993, BOT REV, V59, P112, DOI 10.1007/BF02856676; *CALF, 2007, INFORM CAL PLANTS ED; Carroll SB, 1996, INT J PLANT SCI, V157, P493, DOI 10.1086/297367; Caruso CM, 2006, HEREDITY, V97, P86, DOI 10.1037/sj.hdy.6800853; Caruso CM, 2004, EVOLUTION, V58, P732; COHEN D, 1990, AM NAT, V135, P218, DOI 10.1086/285040; Davies TJ, 2004, P NATL ACAD SCI USA, V101, P1904, DOI 10.1073/pnas.0308127100; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; Delph LF, 2004, EVOLUTION, V58, P1936; Delph LF, 2002, J EVOLUTION BIOL, V15, P1011, DOI 10.1046/j.1420-9101.2002.00467.x; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Goodwillie C, 2005, INT J PLANT SCI, V166, P741, DOI 10.1086/431801; Goodwillie C, 1999, EVOLUTION, V53, P1387, DOI 10.1111/j.1558-5646.1999.tb05403.x; Graham SW, 2004, AM J BOT, V91, P1007, DOI 10.3732/ajb.91.7.1007; HARDER LD, 1995, NATURE, V373, P512, DOI 10.1038/373512a0; HARDER LD, 1990, FUNCT ECOL, V4, P559, DOI 10.2307/2389323; Harvey PH, 1996, J ANIM ECOL, V65, P255, DOI 10.2307/5872; Hickman J.C., 1993, JEPSON MANUAL; James J., 1974, AUST J BIOL SCI, V27, P99; LYONS EE, 1991, AM J BOT, V78, P270, DOI 10.2307/2445250; Meagher TR, 1999, GENDER SEXUAL DIMORP, P275; Miikeda O, 2006, BOT J LINN SOC, V152, P153; Morgan MT, 1998, AM J BOT, V85, P1231, DOI 10.2307/2446632; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; PRIMACK RB, 1987, ANNU REV ECOL SYST, V18, P409, DOI 10.1146/annurev.es.18.110187.002205; Proctor M, 1996, NATURAL HIST POLLINA; *R DEV COR TEAM, 2006, R LANG ENV STAT COMP; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; SAKAI S, 1993, EVOLUTION, V47, P1711, DOI 10.1111/j.1558-5646.1993.tb01263.x; SAKAI S, 1995, EVOLUTION, V49, P557, DOI 10.1111/j.1558-5646.1995.tb02287.x; Sakai Satoki, 2000, Plant Species Biology, V15, P261, DOI 10.1046/j.1442-1984.2000.00045.x; Sato H, 2002, EVOLUTION, V56, P2374; Sato H, 1999, AM J BOT, V86, P1699, DOI 10.2307/2656668; SCHOEN DJ, 1995, EVOLUTION, V49, P131, DOI 10.1111/j.1558-5646.1995.tb05965.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Venable DL, 1996, PHILOS T ROY SOC B, V351, P1319, DOI 10.1098/rstb.1996.0115; Wang W. T., 2001, FLORA CHINA, V6, P333; WEBB CO, 2006, PHYLOCORN SOFTWARE A; WEBB CO, 2005, PHYLOMATIC; Weiss J, 2005, INT J DEV BIOL, V49, P513, DOI 10.1387/ijdb.051998jw; WELLER SG, 2005, J EVOLUTIONARY BIOL, V19, P331; Worley AC, 2000, EVOLUTION, V54, P1533; Worley AC, 2003, AM NAT, V161, P153, DOI 10.1086/345461; Worley AC, 2001, J EVOLUTION BIOL, V14, P469, DOI 10.1046/j.1420-9101.2001.00296.x; Worley AC, 2000, INT J PLANT SCI, V161, P69, DOI 10.1086/314225; WYATT R, 1984, EVOLUTION, V38, P804, DOI 10.1111/j.1558-5646.1984.tb00353.x 54 27 33 2 30 BOTANICAL SOC AMER INC ST LOUIS PO BOX 299, ST LOUIS, MO 63166-0299 USA 0002-9122 AM J BOT Am. J. Bot. DEC 2007 94 12 2059 2062 10.3732/ajb.94.12.2059 4 Plant Sciences Plant Sciences 245QT WOS:000251951500015 21636399 Bronze 2018-11-12 J Charnov, EL; Warne, R; Moses, M Charnov, Eric L.; Warne, Robin; Moses, Melanie Lifetime reproductive effort AMERICAN NATURALIST English Article lizards; mammals; life-history optimization; dimension-less; Williams's hypothesis LIZARD SCELOPORUS-UNDULATUS; IGUANAS AMBLYRHYNCHUS-CRISTATUS; FLORIDA SCRUB LIZARD; POPULATION ECOLOGY; HISTORY EVOLUTION; UROSAURUS-ORNATUS; NEST MORTALITY; ANOLIS-ACUTUS; SMALL MAMMALS; GROWTH In a 1966 American Naturalist article, G. C. Williams initiated the study of reproductive effort (RE) with the prediction that longer-lived organisms ought to expend less in reproduction per unit of time. We can multiply RE, often measured in fractions of adult body mass committed to reproduction per unit time, by the average adult life span to get lifetime reproductive effort (LRE). Williams's hypothesis (across species, RE decreases as life span increases) can then be refined to read "LRE will be approximately constant for similar organisms." Here we show that LRE is a key component of fitness in nongrowing populations, and thus its value is central to understanding life-history evolution. We then develop metabolic life-history theory to predict that LRE ought to be approximately 1.4 across organisms despite extreme differences in production and growth rates. We estimate LRE for mammals and lizards that differ in growth and production by five-to tenfold. The distributions are approximately normal with means of 1.43 and 1.41 for lizards and mammals, respectively (95% confidence intervals: 1.3 - 1.5 and 1.2 - 1.6). Ultimately, therefore, a female can only produce a mass of offspring approximately equal to 1.4 times her own body mass during the course of her life. Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA; Oregon State Univ, Hatfield Marine Sci Ctr, Dept Fisheries & Wildlife, Newport, OR 97365 USA; Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA Charnov, EL (reprint author), Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. rlc@unm.edu; rwarne@unm.edu; melaniem@unm.edu Warne, Robin/A-8978-2013 NCRR NIH HHS [P20 RR-018754] ABTS ML, 1987, ECOL MONOGR, V57, P215, DOI 10.2307/2937081; ALCALA AC, 1967, COPEIA, P596; BALLINGER RE, 1981, J NAT HIST, V15, P213, DOI 10.1080/00222938100770171; BALLINGER RE, 1973, ECOLOGY, V54, P269, DOI 10.2307/1934336; BALLINGER RE, 1977, ECOLOGY, V58, P628, DOI 10.2307/1939012; BALLINGER RE, 1985, COPEIA, P976; BLAIR WF, 1960, RUSTY LIZARD POPULAT; Blomberg SP, 2001, AUSTRAL ECOL, V26, P349, DOI 10.1046/j.1442-9993.2001.01120.x; BROOKS GR, 1967, ECOL MONOGR, V37, P71, DOI 10.2307/2937336; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Burghardt G. M., 1982, IGUANAS WORLD THEIR; BUSTARD HR, 1971, COPEIA, P658; CASE TJ, 1978, Q REV BIOL, V53, P543; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Charnov EL, 2006, AM NAT, V167, P578, DOI 10.1086/501141; Charnov EL, 2005, EVOL ECOL RES, V7, P1221; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov EL, 2002, EVOL ECOL RES, V4, P749; Charnov EL, 2001, EVOL ECOL RES, V3, P521; CHARNOV EL, 1977, NATURE, V266, P828, DOI 10.1038/266828a0; Charnov Eric L., 1993, P1; Christiansen J. L., 1971, American Mus Novit, VNo. 2442, P1; Clobert J, 1998, J EVOLUTION BIOL, V11, P329; DEGENHARDT WG, 1996, AMPHIBIANS REPTIELS; DUHAM AE, 1981, MISCELLLANEOUS PUBLI, V158; DUNHAMM AE, 1988, LIFE HIST PATTERNS S, P441; Duquette LS, 1998, CAN J ZOOL, V76, P623, DOI 10.1139/cjz-76-4-623; ERNEST SKM, 2003, ECOLOGY, V84, P3401; Fitch H. S., 1958, University of Kansas Publications of the Museum of Natural History, V11, P11; FITSCH HS, 1970, MISCELLANEOUS PUBLIC, V52; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; GENNARO A L, 1974, Herpetologica, V30, P85; Glazier DS, 2005, BIOL REV, V80, P611, DOI 10.1017/S1464793105006834; HALL RJ, 1991, OECOLOGIA BERLIN, V88, P347; HALL RJ, 1990, COPEIA, P759; HALL RJ, 1971, U KANSAS SCI B, V49; HENLE K, 1990, HERPETOL MONOGR, V4, P30, DOI DOI 10.2307/1466967; HOWARD C W, 1974, Journal of the Arizona Academy of Science, V9, P108, DOI 10.2307/40023610; HULSE A C, 1981, Annals of Carnegie Museum, V50, P353; INNES DGL, 1994, MAMMAL REV, V24, P179, DOI 10.1111/j.1365-2907.1994.tb00142.x; Iverson JB, 2004, HERPETOL MONOGR, V18, P1, DOI 10.1655/0733-1347(2004)018[0001:TNEOTA]2.0.CO;2; JACKSON JF, 1974, COPEIA, P689; JONES SM, 1987, ECOLOGY, V68, P1828, DOI 10.2307/1939874; KITCHENER DJ, 1988, J HERPETOL, V22, P401, DOI 10.2307/1564335; KNOPF GN, 1966, THESIS U COLORADO BO; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kozlowski J, 1997, AM NAT, V149, P352; KREBS CJ, 1989, ECOLOGICAL MEHTODOLO; KREKORIAN CO, 1984, HERPETOLOGICA, V40, P415; LAURIE WA, 1990, J ANIM ECOL, V59, P515, DOI 10.2307/4878; LAURIE WA, 1990, J ANIM ECOL, V59, P529, DOI 10.2307/4879; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; LIN JY, 1982, COPEIA, P425; MARTIN RF, 1977, COPEIA, P83, DOI 10.2307/1443508; McCoy ED, 2004, HERPETOLOGICA, V60, P54, DOI 10.1655/01-66; MEDICA P A, 1973, Journal of Herpetology, V7, P79, DOI 10.2307/1563204; Millar JS, 2007, ECOSCIENCE, V14, P286, DOI 10.2980/1195-6860(2007)14[286:NMISM]2.0.CO;2; Millar JS, 2004, ACTA THERIOL, V49, P269; Millar JS, 2001, OIKOS, V93, P69, DOI 10.1034/j.1600-0706.2001.930107.x; Moses ME, 2005, THESIS U NEW MEXICO; MUNGER JC, 1986, COPEIA, P820; Niewiarowski PH, 2004, EVOLUTION, V58, P619, DOI 10.1111/j.0014-3820.2004.tb01684.x; NIEWIAROWSKI PH, 1993, ECOLOGY, V74, P1992, DOI 10.2307/1940842; PARKER W S, 1971, Herpetologica, V27, P333; PIANKA ER, 1975, COPEIA, P141; PIANKA ER, 1972, COPEIA, V3, P495; POUGH FH, 1980, AM NAT, V115, P92, DOI 10.1086/283547; PURVIS A, 1995, J ZOOL, V237, P259, DOI 10.1111/j.1469-7998.1995.tb02762.x; ROSE B, 1981, ECOLOGY, V62, P706, DOI 10.2307/1937739; RUIBAL R, 1972, COPEIA, P509; RUIBAL R, 1974, ECOLOGY, V55, P525, DOI 10.2307/1935144; SCHALL JJ, 1978, COPEIA, P108; SCHWARZKOPF L, 1993, ECOLOGY, V74, P1970, DOI 10.2307/1940840; SHINE R, 1992, AM NAT, V139, P1257, DOI 10.1086/285385; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH DC, 1977, THESIS U MICHIGAN AN; Sorci G, 1996, J ANIM ECOL, V65, P781, DOI 10.2307/5676; Stearns S.C., 1992, EVOLUTIONS LIFE HIST; SUGG DW, 1995, SOUTHWEST NAT, V40, P193; TELFORD SR, 1969, COPEIA, P548; TINKLE D, 1967, U MICHIGAN MUSEUM ZO, V132; TINKLE D W, 1976, Herpetologica, V32, P1; TINKLE DW, 1983, COPEIA, P585; TINKLE DW, 1993, ECOLOGY, V74, P2413, DOI 10.2307/1939592; TINKLE DW, 1986, COPEIA, P1; TINKLE DW, 1975, ECOLOGY, V56, P427, DOI 10.2307/1934973; Turner F.B., 1977, P157; TURNER FB, 1974, REPROD SURVIVORSHIP; VINEGAR MB, 1975, AM MIDL NAT, V93, P388, DOI 10.2307/2424171; VINEGAR MB, 1975, ECOLOGY, V56, P172, DOI 10.2307/1935309; VITT L J, 1974, Herpetologica, V30, P410; VITT LJ, 1986, COPEIA, P773, DOI 10.2307/1444960; WERNER C, 1982, AM NAT, V121, P757; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; Wiewandt T.A., 1982, P119; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; ZWEIFEL RICHARD G., 1966, AMER MUS NOVI TATES, V2247, P1 97 49 49 0 26 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. DEC 2007 170 6 E129 E142 10.1086/522840 14 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 229US WOS:000250832000001 18171160 2018-11-12 J Therrien, JF; Cote, SD; Festa-Bianchet, M; Ouellet, JP Therrien, Jean-Francois; Cote, Steeve D.; Festa-Bianchet, Marco; Ouellet, Jean-Pierre Conservative maternal care in an iteroparous mammal: a resource allocation experiment BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article maternal care; growth; reproduction; body mass; white-tailed deer WHITE-TAILED DEER; BIRTH-DATE; REPRODUCTIVE SUCCESS; POPULATION-DYNAMICS; FALLOW DEER; RED DEER; GROWTH; FAWNS; MASS; NUTRITION When resources are limited, life history theory predicts a trade-off between growth, reproduction and survival. In summer, lactating females of temperate large herbivores such as the white-tailed deer (Odocoileus virginianus) normally have access to abundant forage but also face the high energetic needs of lactation and recovery from winter mass loss. At high population density, however, females may face a trade-off between allocating resources for maintenance and for reproduction. To simulate the effects of increased intra-specific competition at high density, we measured for 2 years how an experimental food restriction of approximately 20% affected current reproduction and body mass changes of adult females and their fawns during the fawning and lactation periods. Fawn survival decreased 35%, and fawn growth decreased 26% in the food-restricted treatment. There was no effect of food restriction on female mass. Irrespective of treatment, however, lactating females gained 30 g/day less than non-lactating females, and females that had weaned a fawn the previous year gained 20 g/day less than females that had not. We conclude that when resources were scarce, females adopted a conservative strategy favouring their own survival, mass recovery and future reproductive potential over their current reproduction, probably to maximise their lifetime reproductive success. Univ Laval, Dept Biol, Quebec City, PQ G1K 7P4, Canada; Univ Laval, Ctr Etud Nord, Quebec City, PQ G1K 7P4, Canada; Univ Sherbrooke, Dept Biol, Sherbrooke, PQ J1K 2R1, Canada; Univ Quebec, Dept Biol, Rimouski, PQ G5L 3A1, Canada; Univ Quebec, Ctr Etud Nord, Rimouski, PQ G5L 3A1, Canada Cote, SD (reprint author), Univ Laval, Dept Biol, Quebec City, PQ G1K 7P4, Canada. steeve.cote@bio.ulaval.ca Festa-Bianchet, Marco/0000-0002-2352-3379 Anderson JD, 2002, J WILDLIFE MANAGE, V66, P67, DOI 10.2307/3802872; Bassano B, 2003, WILDLIFE SOC B, V31, P1205; Birgersson B, 1997, BEHAV ECOL, V8, P493, DOI 10.1093/beheco/8.5.493; Boucher S, 2004, ECOSCIENCE, V11, P286, DOI 10.1080/11956860.2004.11682835; CLLUTTONBROCK TH, 1982, RED DEER BEHAV ECOLO; CLUTTONBROCK TH, 1985, J ANIM ECOL, V54, P831, DOI 10.2307/4381; Cook JG, 2004, WILDLIFE MONOGR, P1; COOK RS, 1971, J WILDLIFE MANAGE, V35, P47, DOI 10.2307/3799870; Cote SD, 2001, OECOLOGIA, V127, P230, DOI 10.1007/s004420000584; Cote SD, 2004, ANNU REV ECOL EVOL S, V35, P113, DOI 10.1146/annurev.ecolsys.35.021103.105725; Cote SD, 2001, ANIM BEHAV, V62, P173, DOI 10.1006/anbe.2001.1719; CRETE M, 1993, CAN J ZOOL, V71, P2291, DOI 10.1139/z93-321; DeYoung RW, 2003, WILDLIFE SOC B, V31, P220; Doughty P, 1997, OECOLOGIA, V110, P508, DOI 10.1007/s004420050187; FAIRBANKS WS, 1993, J MAMMAL, V74, P129, DOI 10.2307/1381911; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; Festa-Bianchet M, 1998, BEHAV ECOL, V9, P144, DOI 10.1093/beheco/9.2.144; FestaBianchet M, 1996, CAN J ZOOL, V74, P330, DOI 10.1139/z96-041; Fryxell JM, 1999, ECOLOGY, V80, P1311, DOI 10.2307/177077; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; GAUTHIER D, 1985, BEHAVIOUR, V94, P128, DOI 10.1163/156853985X00307; Hewison AJM, 1999, TRENDS ECOL EVOL, V14, P229, DOI 10.1016/S0169-5347(99)01592-X; Holand O, 2006, P ROY SOC B-BIOL SCI, V273, P293, DOI 10.1098/rspb.2005.3330; Keech MA, 1999, ALCES-N AM MOOSE CON, V35, P51; Landete-Castillejos T, 2002, BIOL REPROD, V67, P1613, DOI 10.1095/biolreprod.102.004507; LAVIGUEUR L, 1992, CAN J ZOOL, V70, P1753, DOI 10.1139/z92-243; MAUTZ W W, 1978, Wildlife Society Bulletin, V6, P88; McCullough DR, 1999, J MAMMAL, V80, P1130, DOI 10.2307/1383164; McMahon CR, 2003, WILDLIFE RES, V30, P35, DOI 10.1071/WR01069; MOEN AN, 1976, ECOLOGY, V57, P192, DOI 10.2307/1936411; Oftedal O.T., 1985, P215; Ricca MA, 2002, J WILDLIFE MANAGE, V66, P1255, DOI 10.2307/3802958; Russell FL, 2001, AM MIDL NAT, V146, P1, DOI 10.1674/0003-0031(2001)146[0001:EOWTDO]2.0.CO;2; RUTBERG AT, 1986, AM NAT, V127, P89, DOI 10.1086/284469; SAETHER BE, 1993, BEHAV ECOL SOCIOBIOL, V33, P147, DOI 10.1007/BF00216594; Sand H, 1996, WILDLIFE BIOL, V2, P233; *SAS I, 2005, SAS SYSTEM WIND REL; SCHULTZ SR, 1995, J MAMMAL, V76, P575, DOI 10.2307/1382366; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEIGERS WD, 1980, J WILDLIFE MANAGE, V44, P381, DOI 10.2307/3807968; Stewart KM, 2005, OECOLOGIA, V143, P85, DOI 10.1007/s00442-004-1785-y; THERRIEN JF, 2007, IN PRESS ANIM BEHAV; THORNE ET, 1976, J WILDLIFE MANAGE, V40, P330, DOI 10.2307/3800433 43 38 38 0 28 SPRINGER NEW YORK 233 SPRING STREET, NEW YORK, NY 10013 USA 0340-5443 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. DEC 2007 62 2 193 199 10.1007/s00265-007-0453-8 7 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology 229VA WOS:000250832800005 2018-11-12 J MacDonald, K MacDonald, Katharine Cross-cultural comparison of learning in human hunting - Implications for life history evolution HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article cultural transmission; human evolution; hunting; learning; life history HUNTER-GATHERERS; OKAVANGO DELTA; DEPENDENCY; BOTSWANA; CHILDREN; GROWTH This paper is a cross- cultural examination of the development of hunting skills and the implications for the debate on the role of learning in the evolution of human life history patterns. While life history theory has proven to be a powerful tool for understanding the evolution of the human life course, other schools, such as cultural transmission and social learning theory, also provide theoretical insights. These disparate theories are reviewed, and alternative and exclusive predictions are identified. This study of cross- cultural regularities in how children learn hunting skills, based on the ethnographic literature on traditional hunters, complements existing empirical work and highlights future areas for investigation. Fac Archeol, NL-2300 RA Leiden, Netherlands; Leiden Univ, Leiden, Netherlands MacDonald, K (reprint author), Fac Archeol, Postbus 9515, NL-2300 RA Leiden, Netherlands. k.MacDonald@arch.leidenuniv.nl MacDonald, Katharine/0000-0003-0411-9589 BERNDT R, 1964, WORLD FIRST AUSTR; Binford L.R., 1978, NUNAMIUT ETHNOARCHAE; BIRD DW, 2003, HUNTERGATHERER CHILD, P129; Bird RB, 2002, HUM NATURE-INT BIOS, V13, P239, DOI 10.1007/s12110-002-1009-2; BIRKETSMITH K, 1938, EYAK INDIANS COPEER; Bock J, 2004, HUM NATURE-INT BIOS, V15, P63, DOI 10.1007/s12110-004-1004-x; Bock J, 2002, HUM NATURE-INT BIOS, V13, P161, DOI 10.1007/s12110-002-1007-4; Bock J., 2005, HUNTER GATHERER CHIL, P109; Bogin B, 1996, AM J HUM BIOL, V8, P703, DOI 10.1002/(SICI)1520-6300(1996)8:6<703::AID-AJHB2>3.0.CO;2-U; Bogin B., 1999, PATTERNS HUMAN GROWT; CABANA T, 1993, AM J HUM BIOL, V5, P93, DOI 10.1002/ajhb.1310050113; Campbell BC, 2004, ANN HUM BIOL, V31, P213, DOI 10.1080/03014460310001656604; Charnov Eric L., 1993, P1; Gibson K. R., 1999, MAMMALIAN SOCIAL LEA, P351; Goodale JC, 1971, TIWI WIVES STUDY WOM; GOODMAN MJ, 1985, SEX ROLES, V12, P1199, DOI 10.1007/BF00287829; Gubser N. J, 1965, NUNAMIUT ESKIMOS HUN; Gurven M, 2006, J HUM EVOL, V51, P454, DOI 10.1016/j.jhevol.2006.05.003; GUSINDE M, 1937, DIE FEUERLANDINDIANE; GUSINDE M, 1974, DIE FEUERLANDINDIANE; GUSINDE M, 1931, DIE FEUERLANDINDIANE; Harrison GA, 1993, HUMAN BIOL INTRO HUM; HAWKES K, 1995, CURR ANTHROPOL, V36, P688, DOI 10.1086/204420; Healey C. J., 1990, MARING HUNTERS TRADE; HEWLETT BS, 1986, AM ANTHROPOL, V88, P922; Hill K, 2007, J HUM EVOL, V52, P443, DOI 10.1016/j.jhevol.2006.11.003; JONES B, 2005, HUNTER GATHERER CHIL, P105; Jones NB, 2002, HUM NATURE-INT BIOS, V13, P199, DOI 10.1007/s12110-002-1008-3; JONES NGB, 2001, COMPARATIVE PRIMATE, P140; JONES NGB, 1997, GENETIC ETHOLOGICAL, P279; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kelly RL, 1995, FORAGING SPECTRUM; Kelly Robert, 2003, COLONIZATION UNFAMIL, P44; Konner M., 2005, HUNTER GATHERER CHIL, P19; Konner MJ, 1976, KALAHARI HUNTER GATH, P325; Lancy D, 1996, PLAYING MOTHER GROUN; Lee RB, 1979, KUNG SAN MEN WOMEN W; Leigh SR, 2001, EVOL ANTHROPOL, V10, P223, DOI 10.1002/evan.20002; LIEBENBERG L, 1990, ART TRACKING; Lowe Pat., 2002, HUNTERS TRACKERS AUS; Marshall L., 1976, KUNG NYAE NYAE; MURDOCH J, 1892, 9 ANN REP BUR AM ETH; NELSON RK, 1969, PEOPLE N ICE; NELSON RK, 1973, HUNTERS N FOREST; O'Connell JF, 1999, J HUM EVOL, V36, P461, DOI 10.1006/jhev.1998.0285; OHTSUKA R, 1989, AM J PHYS ANTHROPOL, V80, P31, DOI 10.1002/ajpa.1330800105; Parker Sue Taylor, 1984, PLAY ANIMALS HUMANS, P271; Pearsall Marion, 1950, U CALIFORNIA ANTHR R, V9, P339; Puri R. K, 1997, THESIS U HAWAII HONO; RAY VF, 1963, PRIMITIVE PRAGMENATI; Roulon-Doko P., 1998, CHASSE CUEILLETTE CU; Shennan S. J, 1999, MAMMALIAN SOCIAL LEA, V72, P367; SIBLY RM, 1999, MAMMALIAN SOCIAL LEA, P57; TAYANIN D, 1991, HUNTING FISHING KAMM; TURNEYHIGH HH, 1941, ETHNOGRAPHY KUTENAI, V56; VANBEEK AG, 1987, THESIS U LEIDEN NETH; Walker R, 2002, J HUM EVOL, V42, P639, DOI 10.1006/jhev.2001.0541; WATANABE H, 1975, BOW ARROW CENSUS W P; WEISNER TS, 1996, MAC FDN MEN, P295; YOST JA, 1983, ADAPTIVE RESPONSES N, P189 60 51 52 0 8 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. DEC 2007 18 4 386 402 10.1007/s12110-007-9019-8 17 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 220CB WOS:000250133400007 26181314 2018-11-12 J Furness, RW Furness, Robert W. Responses of seabirds to depletion of food fish stocks JOURNAL OF ORNITHOLOGY English Article seabird; fisheries; stock depletion; ecosystem-based management NORTH-SEA; SANDEEL RECRUITMENT; BREEDING SUCCESS; BARENTS SEA; FISHERIES; AVAILABILITY; KITTIWAKES; MANAGEMENT; SURVIVAL; SHETLAND Life history theory predicts that seabirds will respond to reduction in food abundance by changes in behaviour or breeding effort, buffering adult survival. Empirical data show some support for this but also sometimes indicate a trade-off in which survival of breeding seabirds may be reduced by food shortage. The sensitivity of seabird adult survival rates may be a feature of the detailed ecology of particular species and may be affected by ecological conditions such as the possibilities for prey switching. Fishery managers may set a lower limit biomass to protect fish stock recruitment, often at about 20% of predicted unfished stock biomass. It is unclear whether this threshold would also protect the needs of seabirds dependent on the fish stock. Time series of seabird breeding success and fish stock biomass may indicate minimum densities of food required. These are orders of magnitude more than the consumption by seabird populations. The critical prey density may also vary tremendously among seabird species and is clearly a function of the detailed ecology of each species. It is possible to predict which species will be most sensitive to reduced food supply. Sensitive species may be sentinels of the "health'' of the marine ecosystem. For example, in Shetland and elsewhere in the North Sea, breeding success of kittiwakes Rissa tridactyla is particularly sensitive to abundance and quality of sandeels Ammodytes spp. However, seabird communities may be affected by a variety of interactions prompted by changes in fisheries; maintaining food fish levels may not alone be sufficient where communities have altered in composition over decades of fishing, as in the North Sea, and where predator-prey impacts induced by changes in fishery management may disrupt seabird communities. Univ Glasgow, Inst Biomed & Life Sci, Glasgow G12 8QQ, Lanark, Scotland Furness, RW (reprint author), Univ Glasgow, Inst Biomed & Life Sci, Graham Kerr Bldg, Glasgow G12 8QQ, Lanark, Scotland. r.furness@bio.gla.ac.uk Arnott SA, 2002, MAR ECOL PROG SER, V238, P199, DOI 10.3354/meps238199; Barrett RT, 1996, ICES J MAR SCI, V53, P713, DOI 10.1006/jmsc.1996.0090; Boyd IL, 2006, CONSERV BIOL SER, P1, DOI 10.2277/ 052161256X; Browman HI, 2004, MAR ECOL PROG SER, V274, P269, DOI 10.3354/meps274269; CAMPHUYSEN CJ, 2005, IMPRESS FINAL REPORT; Cook RM, 2004, ICES J MAR SCI, V61, P159, DOI 10.1016/j.icesjms.2003.11.005; Davis SE, 2005, ECOLOGY, V86, P1047, DOI 10.1890/04-0989; Ellis Hugh I., 2002, P359; Ens Bruno J., 2006, P806; Frederiksen M, 2005, MAR ECOL PROG SER, V300, P201, DOI 10.3354/meps300201; Frederiksen M, 2004, J APPL ECOL, V41, P1129, DOI 10.1111/j.0021-8901.2004.00966.x; FREDERIKSEN M, 2007, MAR ECOL PROG SER, V337, P287; Furness RW, 2000, MAR ECOL PROG SER, V202, P253, DOI 10.3354/meps202253; Furness RW, 2002, ICES J MAR SCI, V59, P261, DOI 10.1006/jmsc.2001.1155; Furness RW, 1987, THE SKUAS; Greenstreet SPR, 2006, CONSERV BIOL SER, P223, DOI 10.1017/CBO9780511541964.016; Hilton GM, 2000, J AVIAN BIOL, V31, P36, DOI 10.1034/j.1600-048X.2000.310106.x; Hjermann DO, 2004, P NATL ACAD SCI USA, V101, P11679, DOI 10.1073/pnas.0402904101; Hunt GL, 2006, PROG OCEANOGR, V68, P115, DOI 10.1016/j.pocean.2006.02.008; *INT COUNC EXPL SE, 2002, 2002ACFM01 ICES CM; Jennings S., 2001, MARINE FISHERIES ECO; MAVOR RA, 2006, UK NATURE CONSERVATI, V30; Mehlum F, 1995, ECOLOGY OF FJORDS AND COASTAL WATERS, P457; Mitchell P. I, 2004, SEABIRD POPULATIONS; Oro D, 2002, ECOLOGY, V83, P2516; Osterblom H, 2006, MAR ECOL PROG SER, V323, P233, DOI 10.3354/meps323233; Pauly D, 2003, SCIENCE, V302, P1359, DOI 10.1126/science.1088667; Pedersen SA, 1999, FISH RES, V41, P221, DOI 10.1016/S0165-7836(99)00026-0; Pennington M., 2004, BIRDS SHETLAND; Poloczanska ES, 2004, ICES J MAR SCI, V61, P788, DOI 10.1016/j.icesjms.2004.03.020; Rindorf A, 2000, MAR ECOL PROG SER, V202, P241, DOI 10.3354/meps202241; Royal Commission on Environmental Pollution, 2004, TURN TID ADDR IMP FI; Votier SC, 2004, NATURE, V427, P727, DOI 10.1038/nature02315; Walsh P.M, 1995, SEABIRD MONITORING H; Wright PJ, 1996, AQUATIC PREDATORS AND THEIR PREY, P154; Zwarts L, 1996, ARDEA, V84A, P401 36 39 40 3 42 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0021-8375 1439-0361 J ORNITHOL J. Ornithol. DEC 2007 148 2 S247 S252 10.1007/s10336-007-0152-2 6 Ornithology Zoology 291LN WOS:000255199000013 2018-11-12 J Karell, P; Pietiainen, H; Siitari, H; Brommer, JE Karell, P.; Pietiainen, H.; Siitari, H.; Brommer, J. E. A possible link between parasite defence and residual reproduction JOURNAL OF EVOLUTIONARY BIOLOGY English Article avain malaria; haematozoa; immunocompetence; reproductive cost HISTORY TRADE-OFFS; ECOLOGICAL IMMUNOLOGY; BLOOD PARASITES; IMMUNE FUNCTION; GREAT TITS; RESISTANCE; PASSERINE; BIRDS; COST; WILD Life-history theory centres around trade-offs between current and future reproduction, but we have little understanding of how such trade-offs are mediated. We supplementary fed Ural owls (Strix uralensis) during the nestling period and quantified parents' current and future life-history components as well as their physiological health by monitoring haematocrit, leucocyte profile, intra- and extracellular blood parasites. Feeding led to reduced parental effort but did not improve offspring viability, male parasite defence, or parental survival. Intracellular leucocytozoan infection was reduced in fed females which lasted to the following year's reproductive season (carry-over effect), when fed females also laid larger and earlier clutches. Leucocytozoon infection therefore may mediate the life-history trade-off between current and residual reproduction in this species. Univ Helsinki, Dept Environm Biol Sci, Bird Ecol Unit, FIN-00014 Helsinki, Finland; Univ Jyvaskyla, Dept Environm Biol Sci, SF-40351 Jyvaskyla, Finland Karell, P (reprint author), Univ Helsinki, Dept Environm Biol Sci, Bird Ecol Unit, PO Box 65 Viikinkaari 1, FIN-00014 Helsinki, Finland. patrik.karell@helsinki.fi Brommer, Jon/C-3613-2008 Brommer, Jon/0000-0002-2435-2612; Karell, Patrik/0000-0003-0297-125X Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; Atkinson CT, 1991, BIRD PARASITE INTERA, P19; Brommer JE, 2004, OECOLOGIA, V139, P354, DOI 10.1007/s00442-004-1528-0; CAMPBELL TW, 1995, AVIAN HEMATOLOGY CYT; Dawson RD, 2002, BEHAV ECOL SOCIOBIOL, V52, P43, DOI 10.1007/s00265-002-0486-y; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Lessells C.M., 1991, P32; Marzal A, 2005, OECOLOGIA, V142, P541, DOI 10.1007/s00442-004-1757-2; Merino S, 2000, P ROY SOC B-BIOL SCI, V267, P2507, DOI 10.1098/rspb.2000.1312; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; NORRIS K, 1994, J ANIM ECOL, V63, P601, DOI 10.2307/5226; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Ojanen U, 2002, ENTOMOL FENNICA, V13, P153; Ots I, 1998, FUNCT ECOL, V12, P700, DOI 10.1046/j.1365-2435.1998.00219.x; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tomas G, 2007, FUNCT ECOL, V21, P125, DOI 10.1111/j.1365-2435.2006.01214.x; Wiehn J, 1998, P ROY SOC B-BIOL SCI, V265, P1197, DOI 10.1098/rspb.1998.0419; WOO PTK, 1969, CAN J ZOOLOG, V47, P921, DOI 10.1139/z69-150; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 22 7 7 0 15 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. NOV 2007 20 6 2248 2252 10.1111/j.1420-9101.2007.01423.x 5 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 222LK WOS:000250298300017 17956387 Bronze 2018-11-12 J Kruger, O Krueger, Oliver Cuckoos, cowbirds and hosts: adaptations, trade-offs and constraints PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Review brood parasitism; evolutionary equilibrium; evolutionary lag; fitness; nest-site selection; selection pressure BROWN-HEADED COWBIRDS; AVIAN BROOD PARASITISM; GREAT SPOTTED CUCKOO; WARBLER ACROCEPHALUS-ARUNDINACEUS; MICRO-EVOLUTIONARY CHANGE; COEVOLUTIONARY ARMS-RACE; CUCULUS-CANORUS EGGS; COMMON CUCKOO; REED WARBLERS; MOLOTHRUS-ATER The interactions between brood parasitic birds and their host species provide one of the best model systems for coevolution. Despite being intensively studied, the parasite-host system provides ample opportunities to test new predictions from both coevolutionary theory as well as life-history theory in general. I identify four main areas that might be especially fruitful: cuckoo female gentes as alternative reproductive strategies, non-random and nonlinear risks of brood parasitism for host individuals, host parental quality and targeted brood parasitism, and differences and similarities between predation risk and parasitism risk. Rather than being a rare and intriguing system to study coevolutionary processes, I believe that avian brood parasites and their hosts are much more important as extreme cases in the evolution of life-history strategies. They provide unique examples of trade-offs and situations where constraints are either completely removed or particularly severe. Univ Cambridge, Dept Zool, Cambridge CB2 3EF, England Kruger, O (reprint author), Univ Cambridge, Dept Zool, Downing St, Cambridge CB2 3EF, England. ok212@cam.ac.uk Alderson GW, 1999, ANIM BEHAV, V58, P895, DOI 10.1006/anbe.1999.1220; ALVAREZ F, 1993, IBIS, V135, P331, DOI 10.1111/j.1474-919X.1993.tb02853.x; Amundsen T, 2002, J AVIAN BIOL, V33, P366, DOI 10.1034/j.1600-048X.2002.02894.x; Aragon S, 1999, J EVOLUTION BIOL, V12, P495; Arcese P, 1996, P NATL ACAD SCI USA, V93, P4608, DOI 10.1073/pnas.93.10.4608; Aviles JM, 2006, BEHAV ECOL, V17, P310, DOI 10.1093/beheco/arj031; BAKER ECS, 1913, IBIS, P381; Barabas L, 2004, J ETHOL, V22, P143, DOI 10.1007/s10164-003-0114-y; Brooke MD, 1998, P ROY SOC B-BIOL SCI, V265, P1277, DOI 10.1098/rspb.1998.0430; BROOKE MD, 1988, NATURE, V335, P630; Brooker M, 1996, BEHAV ECOL, V7, P395, DOI 10.1093/beheco/7.4.395; BROOKER MG, 1991, IBIS, V133, P406, DOI 10.1111/j.1474-919X.1991.tb04589.x; Butchart SHM, 2003, ANIM BEHAV, V65, P345, DOI 10.1006/anbe.2003.2066; Caswell H, 2001, MATRIX POPULATION MO; Cherry MI, 2001, P ROY SOC B-BIOL SCI, V268, P565, DOI 10.1098/rspb.2000.1414; Clotfelter ED, 1998, ANIM BEHAV, V55, P1181, DOI 10.1006/anbe.1997.0638; Cunningham EJA, 2006, BEHAV ECOL, V17, P126, DOI 10.1093/beheco/arj006; Darwin C., 1859, ORIGIN SPECIES MEANS; Davies NB, 2006, P ROY SOC B-BIOL SCI, V273, P693, DOI 10.1098/rspb.2005.3324; Davies NB, 1996, P ROY SOC B-BIOL SCI, V263, P925, DOI 10.1098/rspb.1996.0137; DAVIES NB, 1988, ANIM BEHAV, V36, P262, DOI 10.1016/S0003-3472(88)80269-0; Davies NB, 2003, ANIM BEHAV, V65, P285, DOI 10.1006/anbe.2003.2049; DAVIES NB, 1989, J ANIM ECOL, V58, P207, DOI 10.2307/4995; Davies NB, 1999, OSTRICH, V70, P71, DOI 10.1080/00306525.1999.9639751; DAVIES NB, 1989, J ANIM ECOL, V58, P225, DOI 10.2307/4996; DAVIES NB, 2000, CUCKOOS COWBIRS OTHE; Dearborn DC, 1999, AUK, V116, P448, DOI 10.2307/4089378; Dearborn DC, 1998, BEHAV ECOL SOCIOBIOL, V43, P259, DOI 10.1007/s002650050490; DUCKWORTH JW, 1991, IBIS, V133, P68, DOI 10.1111/j.1474-919X.1991.tb04812.x; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; FREIDMAN H, 1929, COWBIRDS STUDY BIOL; Fry C.H., 1974, Bulletin Br Orn Club, V94, P58; Gibbs HL, 2000, NATURE, V407, P183, DOI 10.1038/35025058; Gill SA, 1997, ETHOLOGY, V103, P56; Grim T, 2005, BIOL J LINN SOC, V84, P69, DOI 10.1111/j.1095-8312.2005.00414.x; Grim T, 2003, P ROY SOC B-BIOL SCI, V270, pS73, DOI 10.1098/rsbl.2003.0017; Grim T, 2002, J AVIAN BIOL, V33, P302, DOI 10.1034/j.1600-048X.2002.330312.x; Groothuis TGG, 2005, HORM BEHAV, V48, P207, DOI 10.1016/j.yhbeh.2005.02.009; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Hauber ME, 2003, J AVIAN BIOL, V34, P339, DOI 10.1111/j.0908-8857.2003.03158.x; Hauber ME, 2004, P ROY SOC B-BIOL SCI, V271, pS317, DOI 10.1098/rsbl.2004.0168; Hauber ME, 2003, AUK, V120, P1, DOI 10.1642/0004-8038(2003)120[0001:PWPCWT]2.0.CO;2; Hauber ME, 2003, AM MIDL NAT, V149, P354, DOI 10.1674/0003-0031(2003)149[0354:YTLANC]2.0.CO;2; Hauber ME, 2003, EVOL ECOL RES, V5, P559; Hauber ME, 2001, CAN J ZOOL, V79, P1518, DOI 10.1139/cjz-79-8-1518; HETT VS, 1936, ARISTOTLE MINOR WORK; HILL DP, 1994, ANIM BEHAV, V48, P1063, DOI 10.1006/anbe.1994.1340; Honza M, 2004, J ETHOL, V22, P175, DOI 10.1007/s10164-004-0119-1; Honza M, 2002, ANIM BEHAV, V64, P861, DOI 10.1006/anbe.2002.1969; Honza M, 2001, J AVIAN BIOL, V32, P249, DOI 10.1111/j.0908-8857.2001.320307.x; Hoover JP, 2003, ANIM BEHAV, V65, P923, DOI 10.1006/anbe.2003.2155; Jenner E., 1788, PHILOS T ROY SOC LON, V78, P219, DOI DOI 10.1098/RSTL.1788.0016; Jensen WE, 2005, OECOLOGIA, V142, P136, DOI 10.1007/s00442-004-1709-x; Kattan GH, 1995, AUK, V112, P335, DOI 10.2307/4088721; Kilner RM, 2004, SCIENCE, V305, P877, DOI 10.1126/science.1098487; Kilner RM, 1999, NATURE, V397, P667, DOI 10.1038/17746; Kilpatrick AM, 2002, CAN J ZOOL, V80, P145, DOI 10.1139/Z01-217; Kleven O, 2004, J AVIAN BIOL, V35, P394, DOI 10.1111/j.0908-8857.2004.03359.x; Kleven O, 1999, BEHAV ECOL SOCIOBIOL, V47, P41, DOI 10.1007/s002650050647; Kruger O, 2002, P ROY SOC B-BIOL SCI, V269, P375, DOI 10.1098/rspb.2001.1887; Kruger O, 2004, OSTRICH, V75, P211, DOI 10.2989/00306520409485447; Kruger O, 2004, BEHAV ECOL, V15, P210, DOI 10.1093/beheco/arg104; Kruger O, 2001, OIKOS, V93, P260, DOI 10.1034/j.1600-0706.2001.930209.x; Lahti DC, 2005, P NATL ACAD SCI USA, V102, P18057, DOI 10.1073/pnas.0508930102; Lahti DC, 2002, ANIM BEHAV, V63, P1135, DOI 10.1006/anbe.2002.3009; Langmore NE, 2003, NATURE, V422, P157, DOI 10.1038/nature01460; Lichtenstein G, 1998, P ROY SOC B-BIOL SCI, V265, P249, DOI 10.1098/rspb.1998.0289; Lichtenstein G, 2001, ANIM BEHAV, V61, P1151, DOI 10.1006/anbe.2000.1688; Lindholm AK, 1999, J ANIM ECOL, V68, P293, DOI 10.1046/j.1365-2656.1999.00286.x; Liversidge R., 1961, Ibis, V103a, P624, DOI 10.1111/j.1474-919X.1961.tb02466.x; Liversidge R, 1970, OSTRICH S, V8, P117; Lorenzana JC, 2001, BEHAV ECOL, V12, P325, DOI 10.1093/beheco/12.3.325; LOTEM A, 1992, BEHAV ECOL, V3, P128, DOI 10.1093/beheco/3.2.128; LOTEM A, 1995, ANIM BEHAV, V49, P1185, DOI 10.1006/anbe.1995.0152; LOTEM A, 1993, NATURE, V362, P743, DOI 10.1038/362743a0; Lovaszi P, 2004, BEHAVIOUR, V141, P245, DOI 10.1163/156853904322890843; LYON BE, 1991, BEHAV ECOL, V2, P309, DOI 10.1093/beheco/2.4.309; Marchetti K, 2000, ANIM BEHAV, V59, P877, DOI 10.1006/anbe.1999.1388; MARCHETTI K, 1992, P ROY SOC B-BIOL SCI, V248, P41, DOI 10.1098/rspb.1992.0040; Marchetti K, 1998, SCIENCE, V282, P471, DOI 10.1126/science.282.5388.471; Martinez JG, 1998, MOL ECOL, V7, P289, DOI 10.1046/j.1365-294X.1998.00348.x; MASON P, 1986, EVOLUTION, V40, P1207, DOI 10.1111/j.1558-5646.1986.tb05745.x; Massoni V, 2002, CONDOR, V104, P407, DOI 10.1650/0010-5422(2002)104[0407:ANCOBP]2.0.CO;2; Massoni V, 1998, BEHAV ECOL SOCIOBIOL, V42, P273, DOI 10.1007/s002650050439; McLean IG, 1998, OX ORN SER, V9, P255; McMaster DG, 1998, CONDOR, V100, P102, DOI 10.2307/1369901; Mermoz ME, 2004, BEHAV ECOL, V15, P109, DOI 10.1093/bheco/arg102; MIKHAILOV KE, 1997, AVIAN EGGSHELLS ATLA, V3; MOKSNES A, 1991, AUK, V108, P348; MOKSNES A, 1991, BEHAVIOUR, V116, P64, DOI 10.1163/156853990X00365; Moskat C, 2000, ECOGRAPHY, V23, P335, DOI 10.1034/j.1600-0587.2000.d01-1642.x; Nakamura H, 1998, OX ORN SER, V9, P94; Nakamura Hiroshi, 1997, Japanese Journal of Ornithology, V46, P23, DOI 10.3838/jjo.46.23; Oien IJ, 1996, J ANIM ECOL, V65, P147, DOI 10.2307/5717; OIEN IJ, 1995, BEHAV ECOL, V6, P166, DOI 10.1093/beheco/6.2.166; PAGEL M, 1994, P ROY SOC B-BIOL SCI, V255, P37, DOI 10.1098/rspb.1994.0006; Payne R. B., 2005, CUCKOOS; PAYNE RB, 1974, EVOLUTION, V28, P169, DOI 10.1111/j.1558-5646.1974.tb00738.x; Payne RB, 1998, BEHAV ECOL, V9, P64, DOI 10.1093/beheco/9.1.64; Payne RB, 2000, ANIM BEHAV, V59, P69, DOI 10.1006/anbe.1999.1283; Payne RB, 2001, ANIM BEHAV, V62, P473, DOI 10.1006/anbe.2001.1773; PAYNE RB, 2005, MISC PUBL U MUSEUM Z, V194; Peer BD, 2004, CONDOR, V106, P580, DOI 10.1650/7412; PICMAN J, 1989, AUK, V106, P577; Picman J, 1997, J ORNITHOL, V138, P531, DOI 10.1007/BF01651384; Redondo T., 1993, Etologia, V3, P235; ROBERTSON RJ, 1976, CONDOR, V78, P166, DOI 10.2307/1366851; Roskaft E, 2002, BEHAVIOUR, V139, P613, DOI 10.1163/15685390260136735; Roskaft E, 2002, BEHAV ECOL, V13, P163, DOI 10.1093/beheco/13.2.163; Rothstein S. I, 1998, PARASITIC BIRDS THEI; ROTHSTEIN SI, 1994, TRENDS ECOL EVOL, V9, P162, DOI 10.1016/0169-5347(94)90077-9; ROTHSTEIN SI, 1975, AM NAT, V109, P161, DOI 10.1086/282984; ROTHSTEIN SI, 1990, ANNU REV ECOL SYST, V21, P481, DOI 10.1146/annurev.es.21.110190.002405; Rothstein SI, 2001, ANIM BEHAV, V61, P95, DOI 10.1006/anbe.2000.1570; SAETHER BE, 1990, CURR ORNITHOL, V7, P2515; SCHONWETTER M, 1964, HDB OOLOGIE, V1; SEALY SG, 1995, ANIM BEHAV, V49, P877, DOI 10.1006/anbe.1995.0120; Servedio MR, 2003, EVOLUTION, V57, P1164; Smith JNM, 2002, ECOLOGY, V83, P3037, DOI 10.1890/0012-9658(2002)083[3037:RBHCIS]2.0.CO;2; SMITH JNM, 1984, BEHAV ECOL SOCIOBIOL, V14, P101, DOI 10.1007/BF00291901; SOLER JJ, 1995, BEHAV ECOL SOCIOBIOL, V36, P201, DOI 10.1007/BF00177797; Soler JJ, 1999, BEHAV ECOL, V10, P275, DOI 10.1093/beheco/10.3.275; Soler JJ, 2001, ECOLOGY, V82, P1621, DOI 10.2307/2679805; SOLER M, 1994, BEHAV ECOL SOCIOBIOL, V35, P295, DOI 10.1007/BF00170710; Soler M, 1998, OECOLOGIA, V117, P381, DOI 10.1007/s004420050671; Sorenson M. D., 2005, CUCKOOS, P68; Sorenson MD, 2002, INTEGR COMP BIOL, V42, P388, DOI 10.1093/icb/42.2.388; Sorenson MD, 2004, SYST BIOL, V53, P140, DOI 10.1080/10635150490265021; Sorenson MD, 2003, NATURE, V424, P928, DOI 10.1038/nature01863; Stokke BG, 2002, EVOLUTION, V56, P199; Stokke BG, 1999, P ROY SOC B-BIOL SCI, V266, P1483, DOI 10.1098/rspb.1999.0804; Strausberger BM, 2003, AUK, V120, P433, DOI 10.1642/0004-8038(2003)120[0433:BBOBPB]2.0.CO;2; Takasu F, 2003, EVOL ECOL RES, V5, P345; TAKASU F, 1993, AM NAT, V142, P819, DOI 10.1086/285574; Takasu F, 1998, AM NAT, V151, P193, DOI 10.1086/286111; Tanaka KD, 2005, SCIENCE, V308, P653, DOI 10.1126/science.1109957; Teuschl Y, 1998, ANIM BEHAV, V56, P1425, DOI 10.1006/anbe.1998.0931; Tewksbury JJ, 2002, P ROY SOC B-BIOL SCI, V269, P423, DOI 10.1098/rspb.2001.1894; Torok J, 2004, ETHOL ECOL EVOL, V16, P271; Trine CL, 1998, OX ORN SER, V9, P273; VICTORIA JK, 1972, IBIS, V114, P367, DOI 10.1111/j.1474-919X.1972.tb00834.x; Vogl W, 2004, BEHAVIOUR, V141, P881, DOI 10.1163/1568539042265671; Vogl W, 2002, ANIM BEHAV, V64, P843, DOI 10.1006/anbe.2002.1967; WHTIE G, 1789, NATURAL HIST SELBOUR; Winfree R, 1999, TRENDS ECOL EVOL, V14, P338, DOI 10.1016/S0169-5347(99)01643-2; Woolfenden BE, 2003, ANIM BEHAV, V66, P95, DOI 10.1006/anbe.2003.2181; ZAHAVI A, 1979, AM NAT, V113, P157, DOI 10.1086/283374; ZAHAVI A, 1997, HANDICAP PRINCIPLE M; Zanette L, 2005, ECOLOGY, V86, P815, DOI 10.1890/04-0809 149 85 88 0 44 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 1471-2970 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. OCT 29 2007 362 1486 1873 1886 10.1098/rstb.2006.1849 14 Biology Life Sciences & Biomedicine - Other Topics 211IE WOS:000249516700015 17827098 Green Published, Bronze 2018-11-12 J Lahdenpera, M; Russell, AF; Lummaa, V Lahdenpera, M.; Russell, A. F.; Lummaa, V. Selection for long lifespan in men: benefits of grandfathering? PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article ageing; cooperative breeding; Homo; life history evolution; longevity; senescence NATURAL-SELECTION; RURAL GAMBIA; KIN; EVOLUTION; GRANDMOTHERS; FERTILITY; HUMANS; WOMEN; REPRODUCTION; SENESCENCE Life-history theory suggests that individuals should live until their reproductive potential declines, and the lifespan of human men is consistent with this idea. However, because women can live long after menopause and this prolonged post-reproductive life can be explained, in part, by the fitness enhancing effects of grandmothering, an alternative hypothesis is that male lifespan is influenced by the potential to gain fitness through grandfathering. Here we investigate whether men, who could not gain fitness through reproduction after their wife's menopause (i.e. married only once), enhanced their fitness through grandfathering in historical Finns. Father presence was associated with reductions in offspring age at first reproduction and birth intervals, but generally not increases in reproductive tenure lengths. Father presence had little influence on offspring lifetime fecundity and no influence on offspring lifetime reproductive success. Overall, in contrast to our results for women in the same population, men do not gain extra fitness (i.e. more grandchildren) through grandfathering. Our results suggest that if evidence for a 'grandfather' hypothesis is lacking in a monogamous society, then its general importance in shaping male lifespan during our more promiscuous evolutionary past is likely to be negligible. Univ Turku, Dept Biol, Sect Ecol, Turku 20014, Finland; Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England Lahdenpera, M (reprint author), Univ Turku, Dept Biol, Sect Ecol, Turku 20014, Finland. mipayl@utu.fi Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; Anderson KG, 2006, CURR ANTHROPOL, V47, P513, DOI 10.1086/504167; Beise J., 2005, GRANDMOTHERHOOD EVOL, P215; Collett D, 2003, MODELLING SURVIVAL D; Dupanloup I, 2003, J MOL EVOL, V57, P85, DOI 10.1007/s00239-003-2458-x; Gibson MA, 2005, EVOL HUM BEHAV, V26, P469, DOI 10.1016/j.evolhumbehav.2005.03.004; Griffin AS, 2003, SCIENCE, V302, P634, DOI 10.1126/science.1089402; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hawkes K., 2005, GRANDMOTHERHOOD EVOL, P118, DOI DOI 10.1007/S12110-010-9098-9; Helle S, 2005, P ROY SOC B-BIOL SCI, V272, P29, DOI 10.1098/rspb.2004.2944; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Jamison CS, 2002, AM J PHYS ANTHROPOL, V119, P67, DOI 10.1002/ajpa.10070; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; Kemkes-Grottenthaler A., 2005, HIST SOCIAL RES, V30, P219; Lahdenpera M, 2004, CLIMACTERIC, V7, P327, DOI 10.1080/13697130400012205; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; Lee RD, 2003, P NATL ACAD SCI USA, V100, P9637, DOI 10.1073/pnas.1530303100; Littell R.C., 1996, SAS SYSTEMS MIXED MO; Lummaa V, 1998, NATURE, V394, P533, DOI 10.1038/28977; Luther G., 1993, SUOMEN TILASTOTOIMEN; Marlowe FW, 2000, BEHAV PROCESS, V51, P45, DOI 10.1016/S0376-6357(00)00118-2; MORING B, 1993, J FAM HIST, V18, P395, DOI 10.1177/036319909301800407; PAGET WJ, 1994, POP STUD-J DEMOG, V48, P333, DOI 10.1080/0032472031000147826; Pettay JE, 2005, P NATL ACAD SCI USA, V102, P2838, DOI 10.1073/pnas.0406709102; Quinlan RJ, 2005, HUM NATURE-INT BIOS, V16, P32, DOI 10.1007/s12110-005-1006-3; Ragsdale G, 2004, HUM NATURE-INT BIOS, V15, P301, DOI 10.1007/s12110-004-1011-y; Ratcliffe AA, 2000, B WORLD HEALTH ORGAN, V78, P570; Roff D. A., 2001, LIFE HIST EVOLUTION; SCHALL R, 1991, BIOMETRIKA, V78, P719; Sear R, 2003, EVOL HUM BEHAV, V24, P25, DOI 10.1016/S1090-5138(02)00105-8; Sear R, 2002, DEMOGRAPHY, V39, P43, DOI 10.1353/dem.2002.0010; SOININEN AM, 1974, OLD TRADITIONAL AGR; Stearns S. C., 1992, EVOLUTION LIFE HIST; SUNDIN J, 1992, SOC SCI HIST, V16, P99, DOI 10.2307/1171323; Tymicki K, 2004, AM J HUM BIOL, V16, P508, DOI 10.1002/ajhb.20059; Voland E, 2002, BEHAV ECOL SOCIOBIOL, V52, P435, DOI 10.1007/s00265-002-0539-2; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 38 28 29 2 28 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P R SOC B Proc. R. Soc. B-Biol. Sci. OCT 7 2007 274 1624 2437 2444 10.1098/rspb.2007.0688 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 202FQ WOS:000248887800010 17650472 Other Gold, Green Published 2018-11-12 J Martin, LB; Weil, ZM; Nelson, RJ Martin, Lynn B., II; Weil, Zachary M.; Nelson, Randy J. Immune defense and reproductive pace of life in Peromyscus mice ECOLOGY English Article immunocompetence; life history; Peromyscus spp.; rodent; trade-off STRESS-INDUCED ENHANCEMENT; TROPICAL HOUSE SPARROWS; TRADE-OFFS; LEUKOCYTE TRAFFICKING; IMMUNOCOMPETENCE HANDICAP; ECOLOGICAL IMMUNOLOGY; EVOLUTIONARY ECOLOGY; PASSER-DOMESTICUS; BIRDS; PARASITES Immune activity is variable within and among vertebrates despite the potentially large fitness costs of pathogens to their hosts. From the perspective of life history theory, immunological variability may be the consequence of counterbalancing investments in immune defense against other expensive physiological processes, namely, reproduction. In the present study, we tested the hypothesis that immune defense among captive-bred, disease-free Peromyscus mice would be influenced by their reproductive life history strategies. Specifically, we expected that small species that reproduce prolifically and mature rapidly (i.e., fast pace of life) would favor inexpensive, nonspecific immune defenses to promote reproductive proclivity. Alternatively, we expected that large species that mature slowly and invest modestly in reproduction over multiple events (i.e., slow pace of life) would favor developmentally expensive, specific immune defenses and avoid cheap, nonspecific ones because such defenses are predisposed to self-damage. We found that species exhibited either strong ability to kill ( gram-negative) bacteria, a developmentally inexpensive defense, or strong ability to produce antibodies against a novel protein, a developmentally expensive defense, but not both. Cell-mediated inflammation also varied significantly among species, but in a unique fashion relative to bacteria killing or antibody production; wound healing was comparatively similar among species. These results indicate that Peromyscus species use immune strategies that are constrained to a dominant axis, but this axis is not determined solely by reproductive pace of life. Further comparisons, ideally with broader phylogenetic coverage, could identify what ecological and evolutionary forces produce the pattern we detected. Importantly, our study indicates that species may not be differentially immunocompetent; rather, they use unique defense strategies to prevent infection. Ohio State Univ, Dept Psychol, Columbus, OH 43210 USA; Ohio State Univ, Dept Neurosci, Columbus, OH 43210 USA; Ohio State Univ, Dept Ecol Evolut & Organismal Biol, Columbus, OH 43210 USA Martin, LB (reprint author), Ohio State Univ, Dept Psychol, Columbus, OH 43210 USA. lmartin@cas.usf.edu Weil, Zachary/B-5003-2008; Martin, Lynn/C-2037-2009; Weil, Zachary/A-2439-2008 Weil, Zachary/0000-0003-3758-1809; Martin, Lynn/0000-0002-5887-4937; Nelson, Randy/0000-0002-8194-4016 NIMH NIH HHS [R01 MH057535, MH 66144, MH 57535]; NINDS NIH HHS [P30NS045758] Abouheif E, 1999, EVOL ECOL RES, V1, P895; Ardia DR, 2005, ECOLOGY, V86, P2040, DOI 10.1890/04-1619; Bilbo SD, 2002, P NATL ACAD SCI USA, V99, P4067, DOI 10.1073/pnas.062001899; Bonneaud C, 2003, AM NAT, V161, P367, DOI 10.1086/346134; Botten J, 2001, COMPARATIVE MED, V51, P314; BRONSON FH, 1988, REPROD NUTR DEV, V28, P335, DOI 10.1051/rnd:19880301; Carleton M. D., 1980, MISC PUBL MUS ZOOL, V157, P1; Demas GE, 2003, J COMP PHYSIOL B, V173, P171, DOI 10.1007/s00360-002-0325-5; Demas GE, 2004, HORM BEHAV, V45, P173, DOI 10.1016/j.yhbeh.2003.11.002; Demas GE, 1997, AM J PHYSIOL-REG I, V273, pR1631; Demas GE, 1996, J COMP PHYSIOL A, V179, P819; Dhabhar FS, 1997, BRAIN BEHAV IMMUN, V11, P286, DOI 10.1006/brbi.1997.0508; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Glasper ER, 2005, BRAIN BEHAV IMMUN, V19, P61, DOI 10.1016/j.bbi.2004.03.002; Graham AL, 2005, ANNU REV ECOL EVOL S, V36, P373, DOI 10.1146/annurev.ecolsys.36.102003.152622; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Janeway CA, 2004, IMMUNOBIOLOGY; King J, 1968, SPECIAL PUBLICATION, V2; Klasing Kirk C., 2004, Acta Zoologica Sinica, V50, P961; Klein SL, 2000, BEHAV PROCESS, V51, P149, DOI 10.1016/S0376-6357(00)00125-X; Klein SL, 2002, J MAMMAL, V83, P478, DOI 10.1644/1545-1542(2002)083<0478:EAPFAW>2.0.CO;2; Klein SL, 2000, NEUROSCI BIOBEHAV R, V24, P627, DOI 10.1016/S0149-7634(00)00027-0; Lee KA, 2005, OECOLOGIA, V145, P244, DOI 10.1007/s00442-005-0113-5; Lee KA, 2004, TRENDS ECOL EVOL, V19, P523, DOI 10.1016/j.tree.2004.07.012; Lee KA, 2006, OECOLOGIA, V150, P383, DOI 10.1007/s00442-006-0537-6; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Leshchinsky TV, 2001, DEV COMP IMMUNOL, V25, P629, DOI 10.1016/S0145-305X(01)00023-4; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; LYLES AM, 1993, J ZOO WILDLIFE MED, V24, P315; MAC ARTHUR ROBERT H., 1967; Martin II LB, 2006, OECOLOGIA, V147, P565, DOI 10.1007/s00442-005-0314-y; Martin LB, 2006, FUNCT ECOL, V20, P630, DOI 10.1111/j.1365-2435.2006.01138.x; Martin LB, 2003, P ROY SOC B-BIOL SCI, V270, P153, DOI 10.1098/rspb.2002.2185; Martin LB, 2005, GEN COMP ENDOCR, V140, P126, DOI 10.1016/j.ygcen.2004.10.010; Martin LB, 2004, ECOLOGY, V85, P2323, DOI 10.1890/03-0365; MARTIN LB, 2006, PHYSIOL BEHAV, V87, P836; MARTIN LB, IN PRESS PHILOS T RO; Martin LB, 2006, INTEGR COMP BIOL, V46, P1030, DOI 10.1093/icb/icl039; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martin TE, 2001, P NATL ACAD SCI USA, V98, P2071, DOI 10.1073/pnas.98.4.2071; Matson KD, 2006, PHYSIOL BIOCHEM ZOOL, V79, P556, DOI 10.1086/501057; Matson KD, 2006, P R SOC B, V273, P815, DOI 10.1098/rspb.2005.3376; Millar J.S., 1989, P169; MODI WS, 1984, CAN J ZOOL, V62, P2576, DOI 10.1139/z84-377; Nelson R., 2002, SEASONAL PATTERNS ST; Nelson RJ, 1996, Q REV BIOL, V71, P511, DOI 10.1086/419555; Nelson RJ, 2004, TRENDS IMMUNOL, V25, P187, DOI 10.1016/j.it.2004.02.001; Nunn CL, 2000, SCIENCE, V290, P1168, DOI 10.1126/science.290.5494.1168; Padgett DA, 1998, BRAIN BEHAV IMMUN, V12, P64, DOI 10.1006/brbi.1997.0512; Palacios MG, 2006, OECOLOGIA, V146, P505, DOI 10.1007/s00442-005-0220-3; PYTER LM, 2005, INTEGRATIVE COMP PHY, V288, pR891; Raberg L, 1998, P ROY SOC B-BIOL SCI, V265, P1637, DOI 10.1098/rspb.1998.0482; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roberts ML, 2004, ANIM BEHAV, V68, P227, DOI 10.1016/j.anbehav.2004.05.001; Schmid-Hempel P, 2003, TRENDS ECOL EVOL, V18, P27, DOI 10.1016/S0169-5347(02)00013-7; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Sroga JM, 2003, J COMP NEUROL, V462, P223, DOI 10.1002/cne.10736; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tella JL, 2002, P ROY SOC B-BIOL SCI, V269, P1059, DOI 10.1098/rspb.2001.1951; Tieleman BI, 2005, P ROY SOC B-BIOL SCI, V272, P1715, DOI 10.1098/rspb.2005.3155; Viswanathan K, 2005, P NATL ACAD SCI USA, V102, P5808, DOI 10.1073/pnas.0501650102; Westneat DF, 1998, P ROY SOC B-BIOL SCI, V265, P1065, DOI 10.1098/rspb.1998.0400; WILLIAMS GC, 1991, Q REV BIOL, V66, P1, DOI 10.1086/417048; Williams GC, 1966, ADAPTATION NATURAL S 65 91 93 0 36 ECOLOGICAL SOC AMER WASHINGTON 1707 H ST NW, STE 400, WASHINGTON, DC 20006-3915 USA 0012-9658 ECOLOGY Ecology OCT 2007 88 10 2516 2528 10.1890/07-0060.1 13 Ecology Environmental Sciences & Ecology 228FY WOS:000250714200013 18027755 2018-11-12 J Bogin, B; Silva, MIV; Rios, L Bogin, Barry; Silva, Maria Ines Varela; Rios, Luis Life history trade-offs in human growth: Adaptation or pathology? AMERICAN JOURNAL OF HUMAN BIOLOGY English Article CORONARY HEART-DISEASE; BIRTH-WEIGHT; CARDIOVASCULAR-DISEASE; TRUNK LENGTH; LEG LENGTH; ORIGINS HYPOTHESIS; BLOOD-PRESSURE; FETAL ORIGINS; SECULAR TREND; CHILDHOOD Human beings growing-up in adverse biocultural environments, including undernutrition, exposure to infection, economic oppression/poverty, heavy workloads, high altitude, war, racism, and religious/ethnic oppression, may be stunted, have asymmetric body proportions, be wasted, be overweight, and be at greater risk for disease. One group of researchers explains this as a consequence of "developmental programming" (DP). Another group uses the phrase "predictive adaptive response" (PAR). The DP group tends to view the alterations as having permanent maladaptive effects that place people at risk for disease. The PAR group considers the alterations at two levels of adaptation: (1) "short-term adaptive responses for immediate survival" and (2) "predictive responses required to ensure postnatal survival to reproductive age." The differences between the DP and PAR hypotheses are evaluated in this article. A life history theory analysis rephrases the DP versus PAR debate from disease or adaptation to the concept of "trade-offs." Even under good conditions, the stages of human life history are replete with trade-offs for survival, productivity, and reproduction. Under adverse conditions, tradeoffs result in reduced survival, poor growth, constraints on physical activity, and poor reproductive outcomes. Models of human development may need to be refined to accommodate a greater range of the biological and cultural sources of adversity as well as their independent and interactive influences. Loughborough Univ Technol, Dept Human Sci, Loughborough LE11 3TU, Leics, England; Univ Autonoma Madrid, Unidad Antropol Biol, Madrid 28047, Spain Bogin, B (reprint author), Loughborough Univ Technol, Dept Human Sci, Loughborough LE11 3TU, Leics, England. b.a.bogin@lboro.ac.uk Rios, Luis/G-3533-2015 Rios, Luis/0000-0002-6720-2534; Varela-Silva, Ines/0000-0002-1493-3093 ADAMS REW, 2000, CAMBRIDGE HIST NATIV; ADAMS RN, 1970, CRUCIFIXON POWER ESS; Barker DJP, 1997, NUTRITION, V13, P807, DOI 10.1016/S0899-9007(97)00193-7; BARKER DJP, 1989, J EPIDEMIOL COMMUN H, V43, P237, DOI 10.1136/jech.43.3.237; Barker DJP, 2002, INT J EPIDEMIOL, V31, P1235, DOI 10.1093/ije/31.6.1235; BEATON GH, 1989, HUM ORGAN, V48, P30, DOI 10.17730/humo.48.1.04n1174r2712g727; Bhargava SK, 2004, NEW ENGL J MED, V350, P865, DOI 10.1056/NEJMoa035698; Bogin B, 2001, PERSPECTIVES IN HUMAN GROWTH, DEVELOPMENT AND MATURATION, P205; Bogin B, 2002, AM J HUM BIOL, V14, P753, DOI 10.1002/ajhb.10092; BOGIN B, 2003, J CHILD HLTH, V1, P149; Bogin B., 1999, PATTERNS HUMAN GROWT; Bogin B, 2001, GROWTH HUMANITY; Bogin B., 2000, HUMAN BIOL EVOLUTION, P377; CAMERON N, 1991, YEARB PHYS ANTHROPOL, V34, P211; CHISHOLM JS, 1999, SEX HOPE DEATH; Coall DA, 2003, SOC SCI MED, V57, P1771, DOI 10.1016/S0277-9536(03)00022-4; Drake AJ, 2004, J ENDOCRINOL, V180, P1, DOI 10.1677/joe.0.1800001; Drooger JC, 2005, ULTRASOUND OBST GYN, V26, P115, DOI 10.1002/uog.1962; Ellison P. T., 2001, FERTILE GROUND; ELLISON PT, 2000, HUMAN BIOL EVOLUTION, P553; EMANUEL I, 1986, ANN NY ACAD SCI, V477, P27, DOI 10.1111/j.1749-6632.1986.tb40318.x; EMANUEL I, 1993, ISSUES REV TERATOL, V6, P47; Eriksson JG, 2005, BMJ-BRIT MED J, V330, P1096, DOI 10.1136/bmj.330.7500.1096; Eriksson JG, 2001, BRIT MED J, V322, P949, DOI 10.1136/bmj.322.7292.949; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Frisancho A. Roberto, 2001, Acta Medica Auxologica (Milan), V33, P47; Frisancho AR, 2003, AM J HUM BIOL, V15, P522, DOI 10.1002/ajhb.10191; GARN SM, 1987, J NUTR, V117, P817; Gluckman P. D., 2005, FETAL MATRIX; Gluckman PD, 2007, AM J HUM BIOL, V19, P1, DOI 10.1002/ajhb.20590; GOLDSCHMIDT W, 2005, BRIDGE HUMANITY; GOODMAN A, 1998, BUILDING NEW BIOCULT; GREULICH WW, 1976, AM J PHYS ANTHROPOL, V45, P553, DOI 10.1002/ajpa.1330450320; Gunnell DJ, 1998, PAEDIATR PERINAT EP, V12, P96, DOI 10.1046/j.1365-3016.1998.0120s1096.x; Gurri F. D., 1990, J HUM ECOL, V1, P125; Han TS, 1997, EUR J CLIN NUTR, V51, P804, DOI 10.1038/sj.ejcn.1600479; Handy J., 1984, GIFT DEVIL HIST GUAT; Hawkes K, 2006, EVOLUTION HUMAN LIFE; HOEPKER T, 1998, RETURN MAYA GUATEMAL; HOSHI H, 1981, HUM BIOL, V53, P593; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kuzawa C, 2005, AM J HUM BIOL, V17, P662, DOI 10.1002/ajhb.20421; Langenberg C, 2003, J HYPERTENS, V21, P537, DOI 10.1097/01.hjh.0000052472.40108.4e; LASKER GW, 1969, SCIENCE, V166, P1480, DOI 10.1126/science.166.3912.1480; Lawlor DA, 2003, PAEDIATR PERINAT EP, V17, P148, DOI 10.1046/j.1365-3016.2003.00479.x; Leary S, 2006, AM J HUM BIOL, V18, P502, DOI 10.1002/ajhb.20518; Lee KS, 1997, J PEDIATR-US, V131, P430, DOI 10.1016/S0022-3476(97)80070-4; LEITCH I, 1951, BRIT J NUTR, V5, P142, DOI 10.1079/BJN19510017; Manz Beatriz, 1988, REFUGEES HIDDEN WAR; Martin RM, 2004, EPIDEMIOLOGY, V15, P308, DOI 10.1097/01.ede.0000120042.16363.e3; MARTORELL R, 1989, HUM ORGAN, V48, P15, DOI 10.17730/humo.48.1.x20u5450x51h5211; MARTORELL R, 1995, J NUTR, V125, pS1127, DOI 10.1093/jn/125.suppl_4.1127S; MORENO VM, 2003, NUTR HOSP, V18, P341; PELTO GH, 1989, HUM ORGAN, V48, P11, DOI 10.17730/humo.48.1.eu7v81qn71w172tu; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Price KC, 2000, HUM REPROD, V15, P452, DOI 10.1093/humrep/15.2.452; *PROGR NAC UN PAR, 1998, SIST NAC UN GUAT INF; RAVELLI GP, 1976, NEW ENGL J MED, V295, P349, DOI 10.1056/NEJM197608122950701; ROCHE AF, 1979, MONOGR SOC RES CHILD, V44, P1; Roseboom T, 2006, EARLY HUM DEV, V82, P485, DOI 10.1016/j.earlhumdev.2006.07.001; Seckler D, 1982, NEWER CONCEPTS NUTR, P127; Sen A., 1999, DEV FREEDOM; Skjaerven R, 1997, BRIT MED J, V314, P1376; Smith GD, 2001, J EPIDEMIOL COMMUN H, V55, P867, DOI 10.1136/jech.55.12.867; SPURR GB, 1983, YEARB PHYS ANTHROPOL, V26, P1; Stearn S. C., 1992, EVOLUTION LIFE HIST; Stein AD, 2004, PEDIATRICS, V113, pE270, DOI 10.1542/peds.113.3.e270; Stein AD, 2006, AM J EPIDEMIOL, V164, P1160, DOI 10.1093/aje/kwj328; Stinson S, 2000, HUMAN BIOL EVOLUTION; Tanner JM, 1962, GROWTH ADOLESCENCE; THOMSON A M, 1954, Nutr Abstr Rev, V24, P1; Varela-Silva MI, 2007, COLLEGIUM ANTROPOL, V31, p315e9; Wadsworth MEJ, 2002, INT J EPIDEMIOL, V31, P383, DOI 10.1093/ije/31.2.383; Watts E. S, 1975, BIOSOCIAL INTERRELAT; Webb AL, 2005, INT J EPIDEMIOL, V34, P898, DOI 10.1093/ije/dyi097; White L.A., 1959, EVOLUTION CULTURE 76 70 73 1 31 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 1520-6300 AM J HUM BIOL Am. J. Hum. Biol. SEP-OCT 2007 19 5 631 642 10.1002/ajhb.20666 12 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 203PS WOS:000248987100005 17636530 2018-11-12 J Kuzawa, CW Kuzawa, Christopher W. Developmental origins of life history: Growth, productivity, and reproduction AMERICAN JOURNAL OF HUMAN BIOLOGY English Article FOR-GESTATIONAL-AGE; LOW-BIRTH-WEIGHT; SEXUAL-DIMORPHISM; FETAL-GROWTH; CARDIOVASCULAR-DISEASE; POSTNATAL-GROWTH; GENERAL-MODEL; ENERGY; CHILDHOOD; EVOLUTION There is now much evidence that early life undernutrition elevates risk of diseases like cardiovascular disease. Less clear is whether the underlying developmental plasticity in metabolism and physiology evolved to serve an adaptive function, beyond these effects on pathophysiology. This review builds from principles of life history theory to propose a functional model linking early environments with adult biology. An organism has metabolic potential in excess of survival requirements, called productivity, that supports growth before being shunted into reproduction after growth ceases. This concept from inter-specific studies leads to the prediction that plasticity in growth rate will be positively correlated with components of future adult reproductive expenditure. Consistent with this idea, evidence is reviewed that early nutrition or growth rate predict offspring size in females, and increased somatic investment related to reproductive strategy in males. Thus, population birth weight and sexual size dimorphism are predicted to increase in response to improvements in early nutrition. A striking feature of the continuity of metabolic production is its perpetuation not merely during the lifecycle but across generations: in females, growth rate predicts future nutritional investment in reproduction, which in turn determines fetal growth rate in the next generation. Growth and reproduction serve as mutually-defining templates, thus creating a phenotypic bridge allowing ecologic information to be maintained during ontogeny and transmitted to offspring. Resetting of metabolic production in response to maternal nutritional cues may serve a broader goal of integrating nutritional information within the matriline, thus providing a more reliable basis for adjusting long-term strategy. Northwestern Univ, Dept Anthropol, Evanston, IL 60208 USA Kuzawa, CW (reprint author), Northwestern Univ, Dept Anthropol, 1810 Himan Ave, Evanston, IL 60208 USA. kuzawa@northwestern.edu Adair LS, 2001, CIRCULATION, V104, P1034, DOI 10.1161/hc3401.095037; ALBERMAN E, 1991, ANN HUM BIOL, V18, P127, DOI 10.1080/03014469100001472; Alberman E, 1992, Paediatr Perinat Epidemiol, V6, P134, DOI 10.1111/j.1365-3016.1992.tb00755.x; BARKER DJ, 1994, BMJ; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Bateson P, 2001, INT J EPIDEMIOL, V30, P928, DOI 10.1093/ije/30.5.928; BIELICKI T, 1977, HUM BIOL, V49, P265; BILLEWICZ WZ, 1982, ANN HUM BIOL, V9, P309, DOI 10.1080/03014468200005811; Bogin B., 1999, PATTERNS HUMAN GROWT; Bribiescas RG, 1996, HUM NATURE-INT BIOS, V7, P163, DOI 10.1007/BF02692109; BRIBIESCAS RG, 2001, AM J PHYS ANTHR S, V33, P148; Butte NF, 2005, PUBLIC HEALTH NUTR, V8, P953, DOI 10.1079/PHN2005790; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov EL, 2001, EVOL ECOL RES, V3, P521; Charnov Eric L., 1993, P1; Cicognani A, 2002, J PEDIATR-US, V141, P376, DOI 10.1067/mpd.2002.126300; Drake AJ, 2005, AM J PHYSIOL-REG I, V288, pR34, DOI 10.1152/ajpregu.00106.2004; Drake AJ, 2004, J ENDOCRINOL, V180, P1, DOI 10.1677/joe.0.1800001; Ellison P. T., 2001, FERTILE GROUND; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gicquel C, 2006, HORM RES, V65, P28, DOI 10.1159/000091503; Gluckman PD, 2003, J NUTR, V133, p1741S, DOI 10.1093/jn/133.5.1741S; GLUCKMAN PD, 2007, AM J HUM BIOL, V196, P1; Gluckman PD, 2005, FETAL MATRIX EVOLUTI; GRAY JP, 1980, AM J PHYS ANTHROPOL, V53, P441, DOI 10.1002/ajpa.1330530314; Greulich WW, 1951, AM J PHYS ANTHROP-NE, V9, P55, DOI 10.1002/ajpa.1330090105; Holden C, 1999, AM J PHYS ANTHROPOL, V110, P27, DOI 10.1002/(SICI)1096-8644(199909)110:1<27::AID-AJPA3>3.0.CO;2-G; *I MED, 1990, NUTR DUR PREGN 1; Ibanez L, 2002, J CLIN ENDOCR METAB, V87, P3391, DOI 10.1210/jc.87.7.3391; Ibanez L, 2003, HUM REPROD, V18, P1565, DOI 10.1093/humrep/deg351; Ibanez L, 2000, J CLIN ENDOCR METAB, V85, P2624, DOI 10.1210/jc.85.7.2624; Jablonka E., 2005, EVOLUTION 4 DIMENSIO; Jasienska G, 2006, AM J HUM BIOL, V18, P133, DOI 10.1002/ajhb.20462; Jasienska G, 2006, P NATL ACAD SCI USA, V103, P12759, DOI 10.1073/pnas.0605488103; Kensara OA, 2006, AM J PHYSIOL-ENDOC M, V291, pE365, DOI 10.1152/ajpendo.00599.2005; Kleiber M., 1961, FIRE LIFE INTRO ANIM; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Kuh D, 2002, AM J EPIDEMIOL, V156, P627, DOI 10.1093/aje/kwf099; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; Kuzawa CW, 1998, YEARB PHYS ANTHROPOL, V41, P177; Kuzawa CW, 2003, AM J CLIN NUTR, V77, P960; KUZAWA CW, 2001, THESIS EMORY U; KUZAWA GW, IN PRESS EVOLUTION H; LAVIGNE DM, 1982, J ANIM ECOL, V51, P195, DOI 10.2307/4319; Lawlor DA, 2003, BRIT J CANCER, V89, P81, DOI 10.1038/sj.bjc.6600972; Li HJ, 2003, AM J CLIN NUTR, V77, P1498; Lillycrop KA, 2005, J NUTR, V135, P1382; Louey S, 2005, EARLY HUM DEV, V81, P745, DOI 10.1016/j.earlhumdev.2005.07.001; Lumey L H, 1992, Paediatr Perinat Epidemiol, V6, P240, DOI 10.1111/j.1365-3016.1992.tb00764.x; Martin RM, 2004, EPIDEMIOLOGY, V15, P308, DOI 10.1097/01.ede.0000120042.16363.e3; MARTORELL R, 1995, J NUTR, V125, pS1060; Oyhenart EE, 1998, GROWTH DEVELOP AGING, V62, P187; Ramakrishnan U, 1999, J NUTR, V129, P544; Rhind SM, 2001, REPRODUCTION, V122, P205, DOI 10.1530/rep.0.1220205; Sayer AA, 2004, J GERONTOL A-BIOL, V59, P930; Sayer AA, 2002, AGE AGEING, V31, P468, DOI 10.1093/ageing/31.6.468; SERIMSHAW NS, 1965, NEW ENGL J MED, V272, P193; Stinson Sara, 1985, YB PHYS ANTHR, V28, P125; TANNER JM, 1990, FETUS MAN; Weaver ICG, 2004, NAT NEUROSCI, V7, P847, DOI 10.1038/nn1276; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122; West-Eberhard MJ, 2003, DEVELOPMENTAL PLASTI; WOLANSKI N, 1976, CURR ANTHROPOL, V17, P548 67 73 74 0 17 WILEY-LISS HOBOKEN DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA 1042-0533 AM J HUM BIOL Am. J. Hum. Biol. SEP-OCT 2007 19 5 654 661 10.1002/ajhb.20659 8 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 203PS WOS:000248987100007 17639581 2018-11-12 J Kokko, H; Lopez-Sepulcre, A Kokko, Hanna; Lopez-Sepulcre, Andres The ecogenetic link between demography and evolution: can we bridge the gap between theory and data? ECOLOGY LETTERS English Review comparative analysis; density-dependent selection; eco-evolutionary feedback; ecogenetics; experimental evolution; frequency-dependent selection; life-history theory LIFE-HISTORY EVOLUTION; SEXUAL SELECTION; POPULATION-DYNAMICS; ADAPTIVE DYNAMICS; NATURAL-SELECTION; RAPID EVOLUTION; TERRITORIAL BEHAVIOR; DEPENDENT SELECTION; DENSITY-DEPENDENCE; PARENTAL CARE Calls to understand the links between ecology and evolution have been common for decades. Population dynamics, i.e. the demographic changes in populations, arise from life history decisions of individuals and thus are a product of selection, and selection, on the contrary, can be modified by such dynamical properties of the population as density and stability. It follows that generating predictions and testing them correctly requires considering this ecogenetic feedback loop whenever traits have demographic consequences, mediated via density dependence (or frequency dependence). This is not an easy challenge, and arguably theory has advanced at a greater pace than empirical research. However, theory would benefit from more interaction between related fields, as is evident in the many near-synonymous names that the ecogenetic loop has attracted. We also list encouraging examples where empiricists have shown feasible ways of addressing the question, ranging from advanced data analysis to experiments and comparative analyses of phylogenetic data. Univ Helsinki, Dept Biol & Environm Sci, Lab Ecol & Evolut Dynam, Helsinki, Finland; Australian Natl Univ, Sch Bot & Zool, Canberra, ACT, Australia; Univ Jyvaskyla, Dept Environm Biol Sci, Evolut Ecol Unit, Jyvaskyla, Finland; Univ Calif Riverside, Dept Biol, Riverside, CA USA Kokko, H (reprint author), Univ Helsinki, Dept Biol & Environm Sci, Lab Ecol & Evolut Dynam, Helsinki, Finland. hanna.kokko@helsinki.fi Kokko, Hanna/C-7861-2009; Lopez-Sepulcre, Andres/G-2404-2010 Lopez-Sepulcre, Andres/0000-0001-9708-0788 Adams ES, 2001, ANNU REV ECOL SYST, V32, P277, DOI 10.1146/annurev.ecolsys.32.081501.114034; Andersson J, 2007, AM NAT, V169, P820, DOI 10.1086/516846; Benton TG, 2000, EVOL ECOL RES, V2, P769; Benton TG, 2006, P R SOC B, V273, P1173, DOI 10.1098/rspb.2006.3495; Bonsall MB, 2003, P NATL ACAD SCI USA, V100, P14932, DOI 10.1073/pnas.2535677100; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Brockhurst MA, 2007, CURR BIOL, V17, P761, DOI 10.1016/j.cub.2007.02.057; Brodie ED, 2005, EVOLUTION, V59, P249, DOI DOI 10.1111/J.0014-3820.2005.TB00914.X; Brommer J, 2000, AM NAT, V155, P454, DOI 10.1086/303335; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; Bull JJ, 2006, AM NAT, V167, pE39, DOI 10.1086/499374; Butlin RK, 2005, J EVOLUTION BIOL, V18, P1205, DOI 10.1111/j.1420-9101.2004.00845.x; CHARLESWORTH B, 1971, ECOLOGY, V52, P469, DOI 10.2307/1937629; Charlesworth B., 1980, EVOLUTION AGE STRUCT; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CONNELL JH, 1980, OIKOS, V35, P131, DOI 10.2307/3544421; Coulson T, 2006, EVOL ECOL RES, V8, P1155; Darwin C., 1859, ORIGIN SPECIES MEANS; DeAngelis Donald L., 2007, P213; Dercole F, 2006, P R SOC B, V273, P983, DOI 10.1098/rspb.2005.3398; Dercole F, 2002, THEOR POPUL BIOL, V62, P365, DOI 10.1016/S0040-5809(02)00008-4; Dieckmann U, 1997, TRENDS ECOL EVOL, V12, P128, DOI 10.1016/S0169-5347(97)01004-5; Dieckmann U, 2006, THEOR POPUL BIOL, V69, P263, DOI 10.1016/j.tpb.2005.12.001; Dobzhansky T, 2013, AM BIOL TEACH, V75, P87, DOI 10.2307/4444260; Doebeli M, 2000, AM NAT, V156, pS77, DOI 10.1086/303417; DOMINGO E, 2006, QUASISPECIES CONCEPT; Dugatkin L. A., 2000, GAME THEORY ANIMAL B; Eshel I, 1995, J THEOR BIOL, V177, P341, DOI 10.1006/jtbi.1995.0252; Facon B, 2006, TRENDS ECOL EVOL, V21, P130, DOI 10.1016/j.tree.2005.10.012; Ferrer M, 2004, ECOL APPL, V14, P616, DOI 10.1890/02-5361; FISHER R. A., 1930, GENETICAL THEORY NAT; Fowler NL, 2006, ECOLOGY, V87, P655, DOI 10.1890/05-1197; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; Getto P, 2005, J MATH BIOL, V51, P695, DOI 10.1007/s00285-005-0342-6; Gyllenberg M, 2002, J MATH BIOL, V45, P79, DOI 10.1007/s002850200151; Haag CR, 2005, P ROY SOC B-BIOL SCI, V272, P2449, DOI 10.1098/rspb.2005.3235; Hairston NG, 2005, ECOL LETT, V8, P1114, DOI 10.1111/j.1461-0248.2005.00812.x; HAKKARAINEN H, 1994, OECOLOGIA, V97, P209, DOI 10.1007/BF00323151; HAMILTON WD, 1967, SCIENCE, V156, P477, DOI 10.1126/science.156.3774.477; Hanski I, 2004, ECOL LETT, V7, P958, DOI 10.1111/j.1461-0248.2004.00654.x; Hanski I, 2006, PLOS BIOL, V4, P719, DOI 10.1371/journal.pbio.0040129; HARDIN G, 1968, SCIENCE, V162, P1243; Hardy ICW, 2002, SEX RATIOS CONCEPTS; Holland B, 1999, P NATL ACAD SCI USA, V96, P5083, DOI 10.1073/pnas.96.9.5083; Houston AI, 2005, BIOL PHILOS, V20, P933, DOI 10.1007/s10539-005-9016-4; Houston AI, 2005, TRENDS ECOL EVOL, V20, P33, DOI 10.1016/j.tree.2004.10.008; Houston AI, 2002, PHILOS T ROY SOC B, V357, P351, DOI 10.1098/rstb.2001.0925; JESCHKE JM, IN PRESS ENCY ECOLOG; Johnson MTJ, 2007, TRENDS ECOL EVOL, V22, P250, DOI 10.1016/j.tree.2007.01.014; Johnson SG, 2006, EVOLUTION, V60, P1417, DOI 10.1554/06-062.1; Kerr B, 2006, NATURE, V442, P75, DOI 10.1038/nature04864; Kokko H, 2000, ECOLOGY, V81, P252, DOI 10.1890/0012-9658(2000)081[0252:BSAPPD]2.0.CO;2; Kokko H, 2006, PHILOS T R SOC B, V361, P319, DOI 10.1098/rstb.2005.1784; Kokko H, 2003, ANN ZOOL FENN, V40, P207; Kokko H, 2006, SCIENCE, V313, P789, DOI 10.1126/science.1128566; Kokko H, 2006, AM NAT, V167, P901, DOI 10.1086/504604; Kvarnemo C, 2007, P R SOC B, V274, P521, DOI 10.1098/rspb.2006.3753; Lambrinos JG, 2004, ECOLOGY, V85, P2061, DOI 10.1890/03-8013; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Le Galliard JF, 2005, P NATL ACAD SCI USA, V102, P18231, DOI 10.1073/pnas.0505172102; Le Galliard JF, 2005, AM NAT, V165, P206, DOI 10.1086/427090; Le Galliard JF, 2003, EVOLUTION, V57, P1; Liker A, 2005, EVOLUTION, V59, P890, DOI 10.1554/04-560; Lopez-Sepulcre A, 2005, AM NAT, V166, P317, DOI 10.1086/432560; MacArthur R. H., 1972, GEOGRAPHICAL ECOLOGY; MACARTHUR RH, 1962, P NATL ACAD SCI USA, V48, P1893, DOI 10.1073/pnas.48.11.1893; Malthus T., 1798, ESSAY PRINCIPLE POPU; Marrow P, 1996, PHILOS T R SOC B, V351, P17, DOI 10.1098/rstb.1996.0002; MATSUDA H, 1994, EVOLUTION, V48, P1764, DOI 10.1111/j.1558-5646.1994.tb02212.x; McLain DK, 1999, EVOL ECOL RES, V1, P549; McNamara JM, 2001, ANN ZOOL FENN, V38, P25; MERILAITA S, 2006, J EVOLUTION BIOL, V19, P2002; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Morgan AD, 2004, ECOL LETT, V7, P1029, DOI 10.1111/j.1461-0248.2004.00670.x; Morrow EH, 2004, P ROY SOC B-BIOL SCI, V271, P2395, DOI 10.1098/rspb.2004.2888; Morrow EH, 2003, P ROY SOC B-BIOL SCI, V270, P1793, DOI 10.1098/rspb.2003.2441; Mougeot F, 2003, J ANIM ECOL, V72, P1073, DOI 10.1046/j.1365-2656.2003.00781.x; Mougeot F, 2003, NATURE, V421, P737, DOI 10.1038/nature01395; Mueller LD, 1997, ANNU REV ECOL SYST, V28, P269, DOI 10.1146/annurev.ecolsys.28.1.269; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Neiman M, 2005, EVOLUTION, V59, P1945; OWENS JPF, 2006, TRENDS ECOL EVOL, V21, P356; Pagie L, 1999, J THEOR BIOL, V196, P251, DOI 10.1006/jtbi.1998.0838; PARKER GA, 1985, BEHAV ECOLOGY; PARVINEN K, 2005, ACTA BIOTHEOR, V53, P251; Pelletier F, 2007, SCIENCE, V315, P1571, DOI 10.1126/science.1139024; Pels B, 2002, AM NAT, V159, P172, DOI 10.1086/324788; Phillips BL, 2006, NATURE, V439, P803, DOI 10.1038/439803a; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIMENTEL D, 1968, SCIENCE, V159, P1432, DOI 10.1126/science.159.3822.1432; Prasad NG, 2003, P ROY SOC B-BIOL SCI, V270, pS84, DOI 10.1098/rsbl.2003.0020; Puurtinen M, 2002, AM NAT, V160, P645, DOI 10.1086/342821; Rankin DJ, 2007, J EVOLUTION BIOL, V20, P173, DOI 10.1111/j.1420-9101.2006.01211.x; Rees M, 2002, AM NAT, V160, P44, DOI 10.1086/340603; Rees M, 2006, AM NAT, V168, pE53, DOI 10.1086/505762; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.2307/3071970; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Roff D. A., 2002, LIFE HIST EVOLUTION; Rogers AC, 2007, BEHAV ECOL, V18, P182, DOI 10.1093/beheco/arl070; ROUGHGARDEN J, 1971, ECOLOGY, V52, P453, DOI 10.2307/1937628; Rueffler C, 2006, AM NAT, V168, pE148, DOI 10.1086/508618; Saccheri I, 2006, TRENDS ECOL EVOL, V21, P341, DOI 10.1016/j.tree.2006.03.018; Sinervo B, 2000, NATURE, V406, P985, DOI 10.1038/35023149; Sinervo B, 2006, ANNU REV ECOL EVOL S, V37, P581, DOI 10.1146/annurev.ecolsys.37.091305.110128; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; Sorci G, 1998, J ANIM ECOL, V67, P263, DOI 10.1046/j.1365-2656.1998.00199.x; Stahl JT, 2006, ECOL MODEL, V198, P23, DOI 10.1016/j.ecolmodel.2006.04.001; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; Tanaka Y, 1996, J THEOR BIOL, V180, P197, DOI 10.1006/jtbi.1996.0096; Thompson JN, 1998, TRENDS ECOL EVOL, V13, P329, DOI 10.1016/S0169-5347(98)01378-0; vanBaalen M, 1995, OIKOS, V74, P391, DOI 10.2307/3545984; Wallace A R, 1858, J P LINN SOC ZOOL, V3, P53; Waxman D, 2005, J EVOLUTION BIOL, V18, P1139, DOI 10.1111/j.1420-9101.2005.00948.x; Webb JN, 1999, ANIM BEHAV, V58, P983, DOI 10.1006/anbe.1999.1215; Werner EE, 2003, ECOLOGY, V84, P1083, DOI 10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2; Whitham TG, 2006, NAT REV GENET, V7, P510, DOI 10.1038/nrg1877; Wojcik AM, 2006, EVOLUTION, V60, P1925; Yoshida T, 2003, NATURE, V424, P303, DOI 10.1038/nature01767 120 118 119 8 107 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X ECOL LETT Ecol. Lett. SEP 2007 10 9 773 782 10.1111/j.1461-0248.2007.01086.x 10 Ecology Environmental Sciences & Ecology 198AB WOS:000248598300003 17663710 2018-11-12 J Lissaker, M Lissaker, Maria Does time of the season influence filial cannibalism in the sand goby, Pomatoschistus minutus? ENVIRONMENTAL BIOLOGY OF FISHES English Article filial cannibalism; operational sex ratio; parental investment; Pomatoschistus miniutus; reproductive season OPERATIONAL SEX-RATIO; PARENTAL CARE; BROOD CANNIBALISM; EVOLUTION; FISH; STRATEGY; ECOLOGY; GOBIES; MATE; SELECTION According to life-history theory, filial cannibalism by fish that breed over one season only should be more beneficial early than late in the season if they eat eggs to invest energy into later clutches. Also, filial cannibalism may be more costly late in the season if finding ripe females for replacing eaten eggs is harder then. On the other hand, offspring hatching early may have a competitive advantage over fry hatching late and hence provide higher fitness to the parent. Using data collected over three successive years, I tested if sand goby males are more prone to eat of their eggs early than late in the reproductive season. I found no difference in the amount of eggs eaten or in the frequency of males eating the whole clutch between early and late in the season. Furthermore, there was no difference in the frequency of males who ate parts of their clutches, early compared to late. This might reflect a trade-off between quality (early hatching offspring) and quantity (producing as many offspring as possible over a long reproductive season). If so, the lack of seasonal pattern of filial cannibalism found in sand gobies might be the result of opposing selection pressures. (c) Springer Science+Business Media B.V. 2006 Stockholm Univ, Dept Zool, SE-10691 Stockholm, Sweden Lissaker, M (reprint author), Stockholm Univ, Dept Zool, SE-10691 Stockholm, Sweden. maria.lissaker@zoologi.su.se Ah-King M, 2005, J EVOLUTION BIOL, V18, P371, DOI 10.1111/j.1420-9101.2004.00823.x; BAYLIS JR, 1981, ENVIRON BIOL FISH, V6, P223, DOI 10.1007/BF00002788; BELLESISLES JC, 1991, ETHOL ECOL EVOL, V3, P49, DOI 10.1080/08927014.1991.9525388; Cargnelli LM, 1997, T AM FISH SOC, V126, P153, DOI 10.1577/1548-8659(1997)126<0153:NFELIE>2.3.CO;2; Cargnelli LM, 1996, CAN J FISH AQUAT SCI, V53, P360, DOI 10.1139/cjfas-53-2-360; CHELLINGSWORTH MC, 1989, J HUM HYPERTENS, V3, P35; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; FONDS M, 1974, Hydrobiological Bulletin, V8, P110, DOI 10.1007/BF02254911; Forsgren E, 1997, ANIM BEHAV, V53, P267, DOI 10.1006/anbe.1996.0374; Guitel F., 1892, ARCH ZOOL EXP GEN, V10, P499; HEALEY MC, 1971, J ZOOL, V163, P177; HOELZER GA, 1992, OIKOS, V65, P113, DOI 10.2307/3544893; Jones JC, 1999, ANIM BEHAV, V57, P181, DOI 10.1006/anbe.1998.0939; Kvarnemo C, 1998, ANIM BEHAV, V56, P1285, DOI 10.1006/anbe.1998.0899; KVARNEMO C, 1994, P ROY SOC B-BIOL SCI, V256, P151, DOI 10.1098/rspb.1994.0063; Kvarnemo C, 1998, REV FISH BIOL FISHER, V8, P93, DOI 10.1023/A:1008816601559; KVARNEMO C, 1996, THESIS ACTA U UPS; Lindstrom K, 1997, BEHAV ECOL SOCIOBIOL, V40, P107, DOI 10.1007/s002650050322; Lindstrom K, 1998, BEHAV ECOL SOCIOBIOL, V42, P101, DOI 10.1007/s002650050417; Lindstrom K, 2000, EVOLUTION, V54, P617, DOI 10.1111/j.0014-3820.2000.tb00063.x; Lissaker M, 2003, BEHAV ECOL, V14, P374, DOI 10.1093/beheco/14.3.374; LISSAKER M, 2006, BEHAV ECOL SOCIOBIOL; Manica A, 2004, ANIM BEHAV, V67, P1015, DOI 10.1016/j.anbehav.2003.09.011; Manica A, 2002, BEHAV ECOL SOCIOBIOL, V51, P319, DOI 10.1007/s00265-001-0444-0; Manica A, 2002, BIOL REV, V77, P261, DOI 10.1017/S1464793101005905; MARCONATO A, 1993, BEHAV ECOL SOCIOBIOL, V32, P229; Miller P.J., 1986, FISHES N E ATLANTIC; Okuda N, 1999, ANIM BEHAV, V58, P273, DOI 10.1006/anbe.1999.1148; ROHWER S, 1978, AM NAT, V112, P429, DOI 10.1086/283284; Sargent Robert Craig, 1992, P38; SMITH C, 1995, REV FISH BIOL FISHER, V5, P372, DOI 10.1007/BF00043007; Takahashi D, 1999, ICHTHYOL RES, V46, P185, DOI 10.1007/BF02675437; Takeyama T, 2002, J FISH BIOL, V61, P633, DOI 10.1006/jfbi.2002.2086 33 4 4 0 14 SPRINGER NEW YORK 233 SPRING STREET, NEW YORK, NY 10013 USA 0378-1909 ENVIRON BIOL FISH Environ. Biol. Fishes SEP 2007 80 1 69 75 10.1007/s10641-006-9117-1 7 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 203ZH WOS:000249012100007 2018-11-12 J Proper, J; von Biela, VR; Burns, JM Proper, Josh; von Biela, Vanessa R.; Burns, Jennifer M. Determining the pattern of cementum annuli and relationship to reproduction in male sea otters ETHNICITY & DISEASE English Article Since the early 1990s, the southwestern Alaskan sea otter (Enhydra lutris) population has declined dramatically and the cause has yet to be determined. Population trajectories of large mammals are determined by three factors: survival rate, reproduction rate, and age of first reproduction (AFR). Of these three, AFR should respond first to environmental change. Life history theory predicts that AFR will be older with bottom-up causes (ie, food limitation) and younger when the cause of the decline is top-down (ie, predation), as there is usually abundant resources in this scenario. Traditionally, determining AFR required lethal sampling, which may not always be possible. Work on many mammalian species suggests that the width of annual cementum layers in teeth may decline when breeding begins. If so, examining teeth annuli may provide a non-lethal alternative for determining AFR. Ongoing research has shown this relationship in female sea otters, but male sea otters have not been tested. Sea otter testes and premolar teeth slides were collected by subsistence hunters working with the US Fish and Wildlife Service and the Alaska Sea Otter and Steller Sea Lion Commission from Alaska (19942005). We determined the pattern in cementum annuli thickness for male sea otters across age by measuring annuli at three sites on each of the two slide sections available. We found that cementum annuli layers decreased with age, but found no correlation between cementum annuli and sexual maturity in male sea otters. This lack of correlation may be due to sampling error or different energy expenditures during reproduction for each sex. Since females expend large amounts of energy through gestation and lactation, we hypothesize that the width of female cementum annuli decreases at a much sharper rate when they reach AFR. [Proper, Josh; von Biela, Vanessa R.] Wasilla High Sch, Anchorage, AK USA; [Burns, Jennifer M.] Univ Alaska Achorage, Dept Biol Sci, Anchorage, AK USA Proper, J (reprint author), Wasilla High Sch, Anchorage, AK USA. Burns, Jennifer/C-4159-2013 Berta A., 2003, MARINE MAMMALS EVOLU; DOROFF AM, 2003, SEA OTTER POPULATION; ESTES JA, 1998, KILLER WHALE PREDATI; Kenyon K.W., 1969, SEA OTTER E PACIFIC; Stearns S. C., 1992, EVOLUTION LIFE HIST; VONBIELA V, IN PRESS EVALUATING 6 1 1 0 4 INT SOC HYPERTENSION BLACKS-ISHIB ATLANTA 100 AUBURN AVE NE STE 401, ATLANTA, GA 30303-2527 USA 1049-510X ETHNIC DIS Ethn. Dis. FAL 2007 17 4 5 S45 S47 3 Public, Environmental & Occupational Health Public, Environmental & Occupational Health 256BO WOS:000252702900023 2018-11-12 J Rees, M; Venable, DL Rees, Mark; Venable, D. Lawrence Why do big plants make big seeds? JOURNAL OF ECOLOGY English Article life-history theory; seed mass; size at maturity; Smith-Fretwell model; evolutionary stable strategy INTEGRAL PROJECTION MODEL; RELATIVE GROWTH-RATE; RAIN-FOREST; SHADE-TOLERANCE; BRIEF-HISTORY; FLOWERING STRATEGIES; VARIABLE ENVIRONMENT; LIFE-HISTORIES; SIZE; EVOLUTION 1. The conventional explanations for large plant species producing larger seeds on average than small plant species have recently been challenged, and it has been suggested that the pattern is better explained by the theory developed by Charnov (1993). Here we use simple life-history theory to explore the logic underlying Charnov's models and show that under most reasonable conditions they predict no relationship between seed mass and size at maturity. 2. Using a simple general model incorporating size-specific growth and survival, we explore the joint evolution of seed mass and size at maturity, and argue that seed mass will be correlated with adult traits, such as the timing of reproduction and size at reproduction, only if seedling and adult growth and mortality rates are correlated. Evidence for such correlations is briefly explored. 3. It has also been suggested that the standard model for seed mass evolution (Smith & Fretwell 1974) has been misinterpreted, and that application of the model requires measurement of survivorship to reproductive maturity. Using a simple model incorporating size-specific growth and survival we show that this criticism is unfounded. 4. Our results differ from those of Moles and colleagues because they look at the effect of long juvenile period on survival to maturity, but do not recognize that this may be compensated by covarying life-history traits, such as plant size and reproductive lifespan. Also, they seem to argue that life-history evolution is constrained by cross-angiosperm correlations, such as that between seed mass and longevity, while the life-history models presented here seek selective causes of such correlations, rather than regarding them as constraints. 5. Models similar to those of Charnov (1993) only predict a positive relationship between seed size and plant size if unrealistic assumptions are made about the effects of seed mass on survival, such as the effect of seed mass on instantaneous survival persisting to adulthood. Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA Rees, M (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England. m.rees@sheffield.ac.uk Aarssen LW, 2001, ECOSCIENCE, V8, P471, DOI 10.1080/11956860.2001.11682677; Aarssen LW, 2005, OIKOS, V111, P199, DOI 10.1111/j.0030-1299.2005.14206.x; ARMSTRONG DP, 1993, ECOLOGY, V74, P1092, DOI 10.2307/1940479; Charnov Eric L., 1993, P1; Childs DZ, 2004, P ROY SOC B-BIOL SCI, V271, P425, DOI 10.1098/rspb.2003.2597; Childs DZ, 2003, P ROY SOC B-BIOL SCI, V270, P1829, DOI 10.1098/rspb.2003.2399; Clark DA, 1999, ECOL APPL, V9, P981; CLARK DA, 1992, ECOL MONOGR, V62, P315, DOI 10.2307/2937114; Comita LS, 2007, J ECOL, V95, P482, DOI 10.1111/j.1365-2745.2007.01229.x; Condit R, 1996, J VEG SCI, V7, P405, DOI 10.2307/3236284; de Jong T, 2005, EVOLUTIONARY ECOLOGY; Eriksson O, 2005, OECOLOGIA, V144, P98, DOI 10.1007/s00442-005-0001-z; Ernest SKM, 2003, ECOLOGY, V84, P3402, DOI 10.1890/02-9002; GERITZ SAH, 1995, AM NAT, V146, P685, DOI 10.1086/285820; Grime J. P., 2002, PLANT STRATEGIES VEG; GROSS KL, 1984, J ECOL, V72, P369, DOI 10.2307/2260053; Grubb PJ, 2005, SCIENCE, V310, p783A, DOI 10.1126/science.1116097; Kiflawi M, 2006, OIKOS, V113, P168, DOI 10.1111/j.0030-1299.2001.14378.x; Kneeshaw DD, 2006, J ECOL, V94, P471, DOI 10.1111/j.1365-2745.2005.01070.x; Leishman M. R., 2000, Seeds: the ecology of regeneration in plant communities, P31, DOI 10.1079/9780851994321.0031; Levine JM, 2002, AM NAT, V160, P452, DOI 10.1086/342073; Lusk CH, 2004, FUNCT ECOL, V18, P820, DOI 10.1111/j.0269-8463.2004.00897.x; MacFarlane DW, 2006, CAN J FOREST RES, V36, P1695, DOI 10.1139/X06-054; MARANON T, 1993, FUNCT ECOL, V7, P591, DOI 10.2307/2390136; Metcalf JC, 2003, TRENDS ECOL EVOL, V18, P471, DOI 10.1016/S0169-5347(03)00162-9; METCALF JCE, 2006, FUNCTIONAL ECOLOGY, V20, P217; Moles AT, 2007, GLOBAL ECOL BIOGEOGR, V16, P109, DOI 10.1111/j.1466-822x.2006.00259.x; Moles AT, 2004, J ECOL, V92, P384, DOI 10.1111/j.0022-0477.2004.00880.x; Moles AT, 2005, SCIENCE, V307, P576, DOI 10.1126/science.1104863; Moles AT, 2006, OIKOS, V113, P91, DOI 10.1111/j.0030-1299.2006.14194.x; Moles AT, 2005, P NATL ACAD SCI USA, V102, P10540, DOI 10.1073/pnas.0501473102; Moles AT, 2004, J ECOL, V92, P372, DOI 10.1111/j.0022-0477.2004.00884.x; Moles AT, 2005, SCIENCE, V310, p783B, DOI 10.1126/science.1116276; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Nee S, 2005, SCIENCE, V309, P1236, DOI 10.1126/science.1114488; Niinemets U, 2006, J ECOL, V94, P464, DOI 10.1111/j.1365-2745.2006.01093.x; Poorter L, 2005, OECOLOGIA, V142, P378, DOI 10.1007/s00442-004-1732-y; Rees M, 1999, AM NAT, V154, P628, DOI 10.1086/303268; Rees M, 2004, P ROY SOC B-BIOL SCI, V271, P471, DOI 10.1098/rspb.2003.2596; Rees M, 1997, OIKOS, V78, P116, DOI 10.2307/3545807; Rees M, 2002, P ROY SOC B-BIOL SCI, V269, P1509, DOI 10.1098/rspb.2002.2037; Rees M, 1996, PHILOS T ROY SOC B, V351, P1299, DOI 10.1098/rstb.1996.0113; Rees M, 2000, ECOLOGICAL CONSEQUEN, P237; Rees M, 2006, AM NAT, V168, pE53, DOI 10.1086/505762; Rose KE, 2002, EVOLUTION, V56, P1416; Sack L, 2003, PLANT ECOL, V168, P139, DOI 10.1023/A:1024423820136; SALISBURY E, 1974, PROC R SOC SER B-BIO, V186, P83, DOI 10.1098/rspb.1974.0039; SAVAGE VM, 1986, SCIENCE, V312; SHIPLEY B, 1988, J ECOL, V76, P1101, DOI 10.2307/2260637; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Svenning JC, 2000, BIOTROPICA, V32, P252, DOI 10.1646/0006-3606(2000)032[0252:SCGIPD]2.0.CO;2; THOMPSON K, 1989, AM NAT, V133, P722, DOI 10.1086/284947; TILMAN DA, 1988, PLANT STRATEGIES DYA; Turnbull LA, 2004, J ECOL, V92, P97, DOI 10.1111/j.1365-2745.2004.00856.x; Turnbull LA, 2005, P ROY SOC B-BIOL SCI, V272, P1357, DOI 10.1098/rspb.2005.3084; VENABLE DL, 1992, AM NAT, V140, P287, DOI 10.1086/285413 56 32 37 1 63 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-0477 J ECOL J. Ecol. SEP 2007 95 5 926 936 10.1111/j.1365-2745.2007.01277.x 11 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology 206EM WOS:000249166700004 Bronze 2018-11-12 J Dirks, W; Bowman, JE Dirks, Wendy; Bowman, Jacqui E. Life history theory and dental development in four species of catarrhine primates JOURNAL OF HUMAN EVOLUTION English Review siamang; lar gibbon; baboon; hanuman langur; weaning; reproduction; molar emergence; dental histology LANGURS PRESBYTIS-ENTELLUS; GIBBONS HYLOBATES-LAR; CROWN FORMATION TIMES; HISTOLOGICAL RECONSTRUCTION; HAMADRYAS BABOONS; PARANTHROPUS-ROBUSTUS; ANTHROPOID PRIMATES; SOCIAL-ORGANIZATION; INFANT-MORTALITY; FOSSIL HOMINIDS Dental development was reconstructed in several individuals representing four species of catarrhine primates-Symphalangus syndactylus, Hylobates lar, Semnopithecus entellus priam, and Papio hamadryas-using the techniques of dental histology. Bar charts assumed to represent species-typical dental development were constructed from these data and estimated ages at first and third molar emergence were plotted on them along with ages at weaning, menarche, and first reproduction from the literature. The estimated age at first molar emergence appears to occur at weaning in the siamang, lar gibbon, and langur, and just after weaning in the baboon. Age at menarche and first reproduction occur earlier relative to dental development in both cercopithecoids than in the hylobatids, suggesting that early reproduction may be a derived trait in cercopithecoids. The results are examined in the context of life history theory. (c) 2007 Elsevier Ltd. All rights reserved. Newcastle Univ, Sch Dent, Newcastle Upon Tyne NE2 4BW, Tyne & Wear, England; Univ Penn, Dept Anthropol, Philadelphia, PA 19104 USA Dirks, W (reprint author), Newcastle Univ, Sch Dent, Framlington Pl, Newcastle Upon Tyne NE2 4BW, Tyne & Wear, England. wendy.dirks@ncl.ac.uk; bowmanje@sas.upenn.edu Altmann J, 2005, BEHAV ECOL SOCIOBIOL, V57, P490, DOI 10.1007/s00265-004-0870-x; Altmann SA., 1998, FORAGING SURVIVAL YE; Anemone RL, 2002, HUMAN EVOLUTION THROUGH DEVELOPMENTAL CHANGE, P249; ANEMONE RL, 1995, ASPECTS DENT BIOL PA, P201; Barton Robert, 1999, P167, DOI 10.1017/CBO9780511542466.010; Beehner JC, 2006, DEV PRIMATOL-PROG PR, P53; Bergman TJ, 2004, INT J PRIMATOL, V25, P1313, DOI 10.1023/B:IJOP.0000043964.01085.dc; BEYNON AD, 1987, ARCH ORAL BIOL, V32, P773, DOI 10.1016/0003-9969(87)90002-1; Beynon AD, 1998, J HUM EVOL, V35, P351, DOI 10.1006/jhev.1998.0234; BEYNON AD, 1991, AM J PHYS ANTHROPOL, V86, P189, DOI 10.1002/ajpa.1330860208; BEYNON AD, 1988, NATURE, V335, P509, DOI 10.1038/335509a0; BLAFFERHRDY S, 1977, AM SCI, V65, P40; Bolter Debra, 2007, P408; Borries C, 1997, BEHAV ECOL SOCIOBIOL, V41, P139, DOI 10.1007/s002650050373; BORRIES C, 1993, FOLIA PRIMATOL, V61, P21, DOI 10.1159/000156723; Borries C, 2001, BEHAV ECOL SOCIOBIOL, V50, P391, DOI 10.1007/s002650100391; Bowman JE, 2000, AM J PHYS ANTHROPOL, P110; Boyde A., 1963, EXCERPTA MED INT C S, V80, P36; Brockelman WY, 1998, BEHAV ECOL SOCIOBIOL, V42, P329, DOI 10.1007/s002650050445; BROMAGE TG, 1985, NATURE, V317, P525, DOI 10.1038/317525a0; BROMAGE TG, 1987, J HUM EVOL, V16, P257, DOI 10.1016/0047-2484(87)90002-9; Charnov EL, 2005, EVOL ECOL RES, V7, P795; Charnov EL, 2001, EVOL ECOL RES, V3, P521; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; CHIVERS JD, 1974, SIAMANG MALAYA; CHIVERS JD, 1972, GIBBON SIAMANG, P103; CONROY GC, 1995, AM J PHYS ANTHROPOL, V98, P121, DOI 10.1002/ajpa.1330980203; de Castro JMB, 2001, AM J PHYS ANTHROPOL, V114, P325, DOI 10.1002/ajpa.1044; Dean C, 2001, NATURE, V414, P628, DOI 10.1038/414628a; Dean MC, 2006, P ROY SOC B-BIOL SCI, V273, P2799, DOI 10.1098/rspb.2006.3583; DEAN MC, 1991, AM J PHYS ANTHROPOL, V86, P215, DOI 10.1002/ajpa.1330860210; Dean MC, 2004, ANN ANAT, V186, P405; DEAN MC, 1993, AM J PHYS ANTHROPOL, V91, P401, DOI 10.1002/ajpa.1330910402; DEAN MC, 1985, AM J PHYS ANTHROPOL, V67, P251, DOI 10.1002/ajpa.1330670310; Dirks W, 2003, AM J PRIMATOL, V61, P29, DOI 10.1002/ajp.10106; Dirks W, 2002, AM J PHYS ANTHROPOL, V118, P239, DOI 10.1002/ajpa.10089; Dirks W, 1998, J HUM EVOL, V35, P411, DOI 10.1006/jhev.1997.0185; ELLEFSON JO, 1974, GIBBON SIAMANG, P1; Enstam K. L., 2007, PRIMATES PERSPECTIVE, P252; Fox G.J., 1984, P324; FOX GJ, 1977, THESIS U WISCONSIN; GEISSMANN T, 1991, AM J PRIMATOL, V23, P11, DOI 10.1002/ajp.1350230103; GITTINS S. P, 1980, MALAYAN FOREST PRIMA, P63; Godfrey Laurie R., 2003, P177; Godfrey Laurie R., 2002, P113; Godfrey LR, 2001, AM J PHYS ANTHROPOL, V114, P192, DOI 10.1002/1096-8644(200103)114:3<192::AID-AJPA1020>3.0.CO;2-Q; GUATELLISTEINBE.D, 2005, P NATL ACAD SCI USA, V102, P14186; HARLEY D, 1990, AM J PHYS ANTHROPOL, V83, P253, DOI 10.1002/ajpa.1330830213; Harvey P.H., 1987, P181; HARVEY PH, 1999, ADV ECOLOGICAL THEOR, P232; HAUSFATER G, 1982, J THEOR BIOL, V94, P391, DOI 10.1016/0022-5193(82)90318-6; Hrdy S., 1977, LANGURS ABU FEMALE M; HRDY SB, 1974, FOLIA PRIMATOL, V22, P19; *IMPR LTD, 2000, IMPR OP 2 0 7 IM AN; Jablonski NG, 1998, PRIMATES, V39, P29, DOI 10.1007/BF02557741; JABLONSKI NG, 1997, CHANGING FACE E ASIA, P462; Janson Charles H., 1993, P57; Jones KE, 2001, EVOL ECOL RES, V3, P465; KAHUMBU P, 1991, AM J PRIMATOL, V23, P1, DOI 10.1002/ajp.1350230102; Kelley J, 2003, J HUM EVOL, V44, P307, DOI 10.1016/S0047-2484(03)00005-8; Kelley J, 2002, HUMAN EVOLUTION THROUGH DEVELOPMENTAL CHANGE, P223; KELLEY J, 1994, CURRENT PRIMATOLOGY, V1, P11; KELLEY J, 2001, DENT MORPHOLOGY 2001, P123; Kelley Jay, 2004, P280, DOI 10.1017/CBO9780511542299.019; Kelley Jay, 1997, P173; KIRKWOOD JK, 1992, BIOL REARING CARE YO; Knott C., 2007, PRIMATES PERSPECTIVE, P290; Kozlowski J, 1997, AM NAT, V149, P352; LEE PC, 1991, J ZOOL, V225, P99, DOI 10.1111/j.1469-7998.1991.tb03804.x; Lee Phyllis C., 1999, P111, DOI 10.1017/CBO9780511542466.008; LEIGH SR, 1995, AM J PHYS ANTHROPOL, V97, P339, DOI 10.1002/ajpa.1330970402; LEIGH SR, 1994, AM J PHYS ANTHROPOL, V94, P499, DOI 10.1002/ajpa.1330940406; Leigh SR, 1998, AM J PHYS ANTHROPOL, V107, P331; LEIGH SR, 2007, PRIMATES PERSPECTIVE, P396; Leigh SR, 2006, DEV PRIMATOL-PROG PR, P225; Macho GA, 2001, AM J PRIMATOL, V55, P189, DOI 10.1002/ajp.1054; Martin D.P., 1979, P299; MARTIN RD, 1990, PRIMATE ORIGINS EVOU; MUCKENHHIM NA, 1972, THESIS U MARYLAND; NAGEL U, 1973, FOLIA PRIMATOL, V19, P104, DOI 10.1159/000155536; Napier P. H., 1985, CATALOGUE PRIMATES 3; Nargolwalla MC, 2005, J HUM EVOL, V49, P99, DOI 10.1016/j.jhevol.2005.03.008; Nee S, 2005, SCIENCE, V309, P1236, DOI 10.1126/science.1114488; NEWTON PN, 1988, INT J PRIMATOL, V9, P59, DOI 10.1007/BF02740198; NYSTROM P, 1992, THESIS WASHINGTON U; PALOMBIT R, 1994, BEHAVIOUR, V128, P65, DOI 10.1163/156853994X00055; PALOMBIT RA, 1995, INT J PRIMATOL, V16, P739, DOI 10.1007/BF02735718; Palombit RA, 1999, EVOL ANTHROPOL, V7, P117, DOI 10.1002/(SICI)1520-6505(1999)7:4<117::AID-EVAN2>3.0.CO;2-O; PEREIRA ME, 1993, JUVENILE PRIMATES; Pereira Michael E., 2003, P149; PHILLIPSCONROY JE, 1981, AM J PHYS ANTHROPOL, V56, P115, DOI 10.1002/ajpa.1330560203; PHILLIPSCONROY JE, 1988, AM J PRIMATOL, V15, P17, DOI 10.1002/ajp.1350150104; Povinelli DJ, 1995, Q REV BIOL, V70, P393, DOI 10.1086/419170; Purvis Andy, 2003, P25; Raff EC, 2000, EVOL DEV, V2, P235, DOI 10.1046/j.1525-142x.2000.00069.x; RAJPUROHIT LS, 1991, PRIMATES, V32, P213, DOI 10.1007/BF02381178; Reichard U, 1998, AM J PRIMATOL, V46, P35, DOI 10.1002/(SICI)1098-2345(1998)46:1<35::AID-AJP4>3.0.CO;2-W; Reid DJ, 1998, J HUM EVOL, V35, P463, DOI 10.1006/jhev.1998.0233; Ripley S., 1970, P481; RIPLEY S, 1965, THESIS U CALIFORNIA; RISNES S, 1986, SCAND J DENT RES, V94, P394; Robbins M. M., 2007, PRIMATES PERSPECTIVE, P305; ROSS C, 1993, AM J PRIMATOL, V30, P75, DOI 10.1002/ajp.1350300106; Ross Caroline, 1999, P73, DOI 10.1017/CBO9780511542466.007; Rowe N, 1996, PICTORIAL GUIDE LIVI; Savage VM, 2006, SCIENCE, V312, p198B, DOI 10.1126/science.1123679; SCHULTZ A. H., 1933, HUMAN BIOL, V5, P212; Schultz A. H., 1960, HUMAN GROWTH, P1; Schultz AH, 1935, AM J PHYS ANTHROPOL, V19, P489, DOI 10.1002/ajpa.1330190417; Schwartz GT, 2006, INT J PRIMATOL, V27, P1201, DOI 10.1007/s10764-006-9051-2; Schwartz GT, 2005, J HUM EVOL, V49, P702, DOI 10.1016/j.jhevol.2005.08.006; Schwartz GT, 2002, P NATL ACAD SCI USA, V99, P6124, DOI 10.1073/pnas.092685099; Setchell JM, 2004, FOLIA PRIMATOL, V75, P121, DOI 10.1159/000078302; SIGG H, 1982, Primates, V23, P473, DOI 10.1007/BF02373959; Smith B. Holly, 1993, P195; Smith B. Holly, 1994, Yearbook of Physical Anthropology, V37, P177; SMITH BH, 1991, AM J PHYS ANTHROPOL, V86, P157, DOI 10.1002/ajpa.1330860206; SMITH BH, 1989, EVOLUTION, V43, P683, DOI 10.1111/j.1558-5646.1989.tb04266.x; SMITH BH, 1992, EVOL ANTHROPOL, V1, P134, DOI DOI 10.1002/EVAN.1360010406; SMITH RJ, 1995, J HUM EVOL, V29, P155, DOI 10.1006/jhev.1995.1051; Smith RJ, 1997, J HUM EVOL, V32, P523, DOI 10.1006/jhev.1996.0122; Smith RJ, 1996, CURR ANTHROPOL, V37, P451, DOI 10.1086/204505; Smith RJ, 1998, J HUM EVOL, V34, P173, DOI 10.1006/jhev.1997.0190; SMITH RJ, 1980, J THEOR BIOL, V87, P97, DOI 10.1016/0022-5193(80)90222-2; Smith TM, 2003, J HUM EVOL, V44, P283, DOI 10.1016/S0047-2484(03)00006-X; SOMMER V, 1992, AM J PRIMATOL, V28, P1, DOI 10.1002/ajp.1350280102; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; Sterck EHM, 1998, AM J PRIMATOL, V44, P235, DOI 10.1002/(SICI)1098-2345(1998)44:4<235::AID-AJP1>3.0.CO;2-X; Strier KB, 2003, YEARB PHYS ANTHROPOL, V46, P2, DOI 10.1002/ajpa.10383; STRUM SC, 1982, AM J PRIMATOL, V3, P61, DOI 10.1002/ajp.1350030106; Sugiyama Y., 1967, P221; Swedell L, 2003, AM J PRIMATOL, V60, P113, DOI 10.1002/ajp.10096; Thierry B., 2007, PRIMATES PERSPECTIVE, P224; Uchikoshi Makiko, 2007, Gibbon Journal, V3, P66; *US NIH, 1996, NIH IM VERS 1 61; Van Schaik CP, 2003, ANIMAL SOCIAL COMPLEXITY, P5; WATTS ES, 1990, MG PRIMATOL, V14, P89; WILSON ME, 1983, AM J PHYS ANTHROPOL, V61, P103, DOI 10.1002/ajpa.1330610111; WINKLER P, 1984, FOLIA PRIMATOL, V43, P1, DOI 10.1159/000156167; WOLF K, 1984, THESIS YALE U; Zihlman A, 2004, P NATL ACAD SCI USA, V101, P10541, DOI 10.1073/pnas.0402635101; ZINNER D, 1994, BEHAV ECOL SOCIOBIOL, V35, P175, DOI 10.1007/s002650050085 143 43 45 0 16 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0047-2484 J HUM EVOL J. Hum. Evol. SEP 2007 53 3 309 320 10.1016/j.jhevol.2007.04.007 12 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 216KM WOS:000249876900007 17706270 2018-11-12 J Jones, JH Jones, James Holland demogR: A package for the construction and analysis of age-structured demographic models in R JOURNAL OF STATISTICAL SOFTWARE English Article demography; human ecology; life history theory; matrix population models; model life tables; R POPULATION-GROWTH RATE; LIFE-HISTORY EVOLUTION; ELASTICITY ANALYSIS; LOOP ANALYSIS; RED DEER; SELECTION; CONSERVATION; SENSITIVITY; SENESCENCE; FREQUENCY The analysis of matrix population models has become a fundamental tool in ecology, conservation biology, and life history theory. In this paper, I present demogR, a package for analyzing age-structured population models in R. The package includes tools for the construction and analysis of matrix population models. In addition to the standard analyses commonly used in evolutionary demography and conservation biology, demogR contains a variety of tools from classical demography. This includes the construction of period life tables, and the generation of model mortality and fertility schedules for human populations. The tools in demogR are generally applicable to age-structured populations but are particularly useful for analyzing problems in human ecology. I illustrate some of the capabilities of the package by doing an evolutionary demographic analysis of several human populations. Stanford Univ, Dept Anthropol Sci, Stanford, CA 94505 USA Jones, JH (reprint author), Stanford Univ, Dept Anthropol Sci, 450 Serra Mall,Bldg 360, Stanford, CA 94505 USA. Jones, James/0000-0003-1680-6757 Alvard MS, 1998, EVOL ANTHROPOL, V7, P62, DOI 10.1002/(SICI)1520-6505(1998)7:2<62::AID-EVAN3>3.0.CO;2-I; ARNOLD SJ, 1984, EVOLUTION, V38, P709, DOI 10.1111/j.1558-5646.1984.tb00344.x; Baudisch A, 2005, P NATL ACAD SCI USA, V102, P8263, DOI 10.1073/pnas.0502155102; Beissinger SR, 1998, J WILDLIFE MANAGE, V62, P821, DOI 10.2307/3802534; Benton TG, 1996, AM NAT, V147, P115, DOI 10.1086/285843; Benton TG, 1999, TRENDS ECOL EVOL, V14, P467, DOI 10.1016/S0169-5347(99)01724-3; Bird DW, 2005, HUM ECOL, V33, P443, DOI 10.1007/s10745-005-5155-0; Caswell H, 1996, ECOLOGY, V77, P870, DOI 10.2307/2265507; CASWELL H, 1978, THEOR POPUL BIOL, V14, P215, DOI 10.1016/0040-5809(78)90025-4; Caswell H, 2001, MATRIX POPULATION MO; Caswell W, 1998, ECOL APPL, V8, P1226, DOI 10.2307/2640975; CAUGHLEY G, 1966, ECOLOGY, V47, P906, DOI 10.2307/1935638; Charmantier A, 2005, P ROY SOC B-BIOL SCI, V272, P1415, DOI 10.1098/rspb.2005.3117; Charmantier A, 2006, P ROY SOC B-BIOL SCI, V273, P225, DOI 10.1098/rspb.2005.3294; Charnov Eric L., 1993, P1; Coale A. J., 1983, REGIONAL MODEL LIFE; COALE AJ, 1972, J AM STAT ASSOC, V67, P743, DOI 10.2307/2284631; Coulson T, 2006, EVOL ECOL RES, V8, P1155; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; DEEVEY ES, 1947, Q REV BIOL, V22, P283, DOI 10.1086/395888; DEMETRIUS L, 1969, Mathematical Biosciences, V4, P129, DOI 10.1016/0025-5564(69)90009-1; DOAK D, 1994, ECOL APPL, V4, P446, DOI 10.2307/1941949; DYKE B, 1995, AM J PRIMATOL, V37, P25, DOI 10.1002/ajp.1350370104; DYKE B, 1993, AM J PRIMATOL, V29, P269, DOI 10.1002/ajp.1350290404; EARLY JD, 1990, POPULATION DYNAMICS; Fisher R. A., 1958, GENETICAL THEORY NAT; GAGE TB, 1988, AM J PRIMATOL, V16, P305, DOI 10.1002/ajp.1350160403; GOODMAN LA, 1974, THEOR POPUL BIOL, V5, P1, DOI 10.1016/0040-5809(74)90049-5; Greville T. N. E., 1943, RECORD AM I ACTUARIE, V32, P29; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Howell N., 1979, DEMOGRAPHY DOBE KUNG; Hurtado AM, 1996, ACHE LIFE HIST; Jones JH, 2005, AM J HUM BIOL, V17, P22, DOI 10.1002/ajhb.20099; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Keyfitz N., 1977, INTRO MATH POPULATIO; KEYFITZ N, 1990, DEMOGRAPHIC TREENDS; LANDE R, 1988, OECOLOGIA, V75, P601, DOI 10.1007/BF00776426; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Mills LS, 1999, CONSERV BIOL, V13, P815, DOI 10.1046/j.1523-1739.1999.98232.x; Morris WF, 2006, ECOL LETT, V9, P1331, DOI 10.1111/j.1461-0248.2006.00988.x; Morris WF, 2002, QUANTITATIVE CONSERV; Mulder MB, 1998, TRENDS ECOL EVOL, V13, P266, DOI 10.1016/S0169-5347(98)01357-3; Murray CJL, 2003, POP STUD-J DEMOG, V57, P165, DOI 10.1080/0032472032000097083; *NETW 1, 2002, POP HLTH DEV COUNTR, V1; Nussey DH, 2006, ECOL LETT, V9, P1342, DOI 10.1111/j.1461-0248.2006.00989.x; Nussey DH, 2005, BIOL LETT-UK, V1, P457, DOI 10.1098/rsbl.2005.0352; Pelletier F, 2007, SCIENCE, V315, P1571, DOI 10.1126/science.1139024; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Preston S. H., 2001, DEMOGRAPHY MEASURING; *R DEV COR TEAM, 2007, R LANG ENV STAT COMP; Smith EA, 2000, ANNU REV ANTHROPOL, V29, P493, DOI 10.1146/annurev.anthro.29.1.493; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steinsaltz D, 2005, ADV APPL MATH, V35, P16, DOI 10.1016/j.aam.2004.09.003; Tuljapurkar S, 2006, ECOL LETT, V9, P324, DOI 10.1111/j.1461-0248.2006.00881.x; *UN, 1981, 137 UN; VANGROENENDAEL J, 1994, ECOLOGY, V75, P2410, DOI 10.2307/1940894; Wardle GM, 1998, ECOLOGY, V79, P2539, DOI 10.2307/176842 58 5 5 0 8 JOURNAL STATISTICAL SOFTWARE LOS ANGELES UCLA DEPT STATISTICS, 8130 MATH SCIENCES BLDG, BOX 951554, LOS ANGELES, CA 90095-1554 USA 1548-7660 J STAT SOFTW J. Stat. Softw. SEP 2007 22 10 1 28 28 Computer Science, Interdisciplinary Applications; Statistics & Probability Computer Science; Mathematics 252EW WOS:000252430400001 DOAJ Gold 2018-11-12 J Saastamoinen, M Saastamoinen, Marjo Mobility and lifetime fecundity in new versus old populations of the Glanville fritillary butterfly OECOLOGIA English Article fecundity; life history; population age; reproduction; trade-off HISTORY TRADE-OFFS; BODY-SIZE; ONCOPELTUS-FASCIATUS; NUPTIAL GIFTS; DISPERSAL; REPRODUCTION; LEPIDOPTERA; MIGRATION; ALLOCATION; EVOLUTION Life history theory often assumes a trade-off between dispersal and reproduction, and such a trade-off is commonly observed in wing-dimorphic insects. The results are less consistent for wing-monomorphic species, for which it is more difficult to assess dispersal capacity and rate. Three replicate experiments were carried out in consecutive years on the Glanville fritillary butterfly in a large outdoor population cage to study the relationship between lifetime egg production and mobility. The experimental material included females originating from newly-established and old populations, as previous studies have shown dispersal capacity to depend on population age. There was a consistent and significant interaction between mobility and population age, such that in newly-established populations mobile females had higher fecundity than less mobile females, while in old populations there was no such relationship. As selection favours individuals with the highest fecundity, selection pressure on mobility is likely to be different between the two population types, which may contribute to maintenance of variation in dispersal rate in the metapopulation as a whole. Several other female traits also affected lifetime fecundity, including lifespan, number of matings and date of eclosion, although these effects were not consistent across the years. These results highlight the importance of conducting experiments in more than one year before generalizing about patterns in life history variation. Univ Helsinki, Dept Biol & Environm Sci, Helsinki 00014, Finland Saastamoinen, M (reprint author), Univ Helsinki, Dept Biol & Environm Sci, POB 65 Viikinkaari 1, Helsinki 00014, Finland. marjo.saastamoinen@helsinki.fi Saastamoinen, Marjo/F-6576-2012 Saastamoinen, Marjo/0000-0001-7009-2527 Baguette M, 2006, ECOLOGY, V87, P648, DOI 10.1890/04-1631; Bergstrom J, 2002, BEHAV ECOL SOCIOBIOL, V52, P296, DOI 10.1007/s00265-002-0512-0; Boggs CL, 2005, OECOLOGIA, V144, P353, DOI 10.1007/s00442-005-0076-6; Boggs CL, 1997, ECOLOGY, V78, P192; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; Calvo D, 2005, ANN ENTOMOL SOC AM, V98, P191, DOI 10.1603/0013-8746(2005)098[0191:FSRAOR]2.0.CO;2; CARROLL AL, 1993, OECOLOGIA, V93, P233, DOI 10.1007/BF00317676; DINGLE H, 1988, EVOLUTION, V42, P79, DOI 10.1111/j.1558-5646.1988.tb04109.x; Fischer K, 2002, OECOLOGIA, V131, P375, DOI 10.1007/s00442-002-0913-9; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Haag CR, 2005, P ROY SOC B-BIOL SCI, V272, P2449, DOI 10.1098/rspb.2005.3235; Hanski I, 2006, J ANIM ECOL, V75, P91, DOI 10.1111/j.1365-2656.2005.01024.x; Hanski I, 2004, ECOL LETT, V7, P958, DOI 10.1111/j.1461-0248.2004.00654.x; Hanski I, 2002, OIKOS, V98, P87, DOI 10.1034/j.1600-0706.2002.980109.x; Hanski I., 1999, METAPOPULATION ECOLO; HANSKI I, 2006, PLOS BIOL, V4, DOI UNSP 0719-0726; Hill JK, 1999, OECOLOGIA, V121, P165, DOI 10.1007/s004420050918; Hughes CL, 2003, P ROY SOC B-BIOL SCI, V270, pS147, DOI 10.1098/rsbl.2003.0049; Jimenez-Perez A, 2003, J INSECT BEHAV, V16, P797, DOI 10.1023/B:JOIR.0000018321.81949.25; Karlsson B, 1998, ECOLOGY, V79, P2931, DOI 10.1890/0012-9658(1998)079[2931:NGRBAR]2.0.CO;2; Kuussaari M, 1998, OIKOS, V82, P384, DOI 10.2307/3546980; Kuussaari M, 2004, ON THE WINGS OF CHECKERSPOTS: A MODEL SYSTEM FOR POPULATION BIOLOGY, P138; Kuussaari M., 1998, THESIS U HELSINKI HE; LAVIE B, 1978, CAN J GENET CYTOL, V20, P589, DOI 10.1139/g78-068; MOLE S, 1994, FUNCT ECOL, V8, P573, DOI 10.2307/2389917; MOLE S, 1993, OECOLOGIA, V93, P121, DOI 10.1007/BF00321201; Nieminen M, 2004, ON THE WINGS OF CHECKERSPOTS: A MODEL SYSTEM FOR POPULATION BIOLOGY, P63; PALMER JO, 1989, EVOLUTION, V43, P1805, DOI 10.1111/j.1558-5646.1989.tb02629.x; Roff D.A., 1991, AM ZOOL, V31, P343; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff DA, 2007, BIOSCIENCE, V57, P155, DOI 10.1641/B570210; Saastamoinen M, 2007, ECOL ENTOMOL, V32, P235, DOI 10.1111/j.1365-2311.2007.00865.x; *SAS I, 1999, SAS STAT SOFTW US GU; Tammaru T, 1996, ECOL ENTOMOL, V21, P185, DOI 10.1111/j.1365-2311.1996.tb01186.x; Tammaru T, 2002, OECOLOGIA, V133, P430, DOI 10.1007/s00442-002-1057-7; WIKLUND C, 1993, BEHAV ECOL SOCIOBIOL, V33, P25, DOI 10.1007/BF00164343; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; ZIEGLER JR, 1976, EVOLUTION, V30, P579, DOI 10.1111/j.1558-5646.1976.tb00935.x 39 45 45 1 32 SPRINGER NEW YORK 233 SPRING STREET, NEW YORK, NY 10013 USA 0029-8549 OECOLOGIA Oecologia SEP 2007 153 3 569 578 10.1007/s00442-007-0772-5 10 Ecology Environmental Sciences & Ecology 201DP WOS:000248812000008 17566782 2018-11-12 J Allen, JD; McAlister, JS Allen, Jonathan D.; McAlister, Justin S. Testing rates of planktonic versus benthic predation in the field JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY English Article benthic; larvae; life history; planktonic; predation MARINE INVERTEBRATE LARVAE; DIEL VERTICAL MIGRATION; REPRODUCTIVE STRATEGIES; SWIMMING RHYTHMS; LIFE HISTORIES; EVOLUTION; DISPERSAL; CANCER; CRAB; RECRUITMENT Predation is a major source of mortality for the eggs, embryos, and larvae of marine invertebrates. Many studies have measured rates of predation on the developmental stages of marine invertebrates in the lab, but few studies have estimated predation rates in the field. Field studies of predation on developmental stages have generally been limited to organisms in a single environment, with few comparisons of equivalent prey items between habitats. These limitations have prevented comparisons of the relative risks of development in planktonic and benthic habitats. To determine the relative risks of predation for free-living eggs, embryos, and larvae, we measured loss rates for agarose baits flavored with the eggs of two species of marine invertebrates on separate coasts of the United States. First, we deployed agarose baits flavored with eggs of the sand dollar, Dendraster excentricus (Eschscholtz), in planktonic and benthic habitats in Parks Bay, Shaw Island, Washington. We subsequently deployed agarose baits flavored with eggs of the sipunculan Phascolopsis gouldii (Fisher), in planktonic and benthic habitats in Ewin Narrows, Harpswell, Maine. In addition, we measured loss rates of live, tethered megalopae of the Dungeness crab, Cancer magister (Dana) in Washington. For both agarose baits and tethered megalopae, loss rates were highest in benthic habitats. Loss rates of agarose baits flavored with sand dollar eggs were nearly two times greater on the benthos than in the plankton. Loss rates of agarose baits flavored with sipunculan eggs were 13 times greater on the benthos than in the plankton. Loss rates of tethered megalopae were 12 times greater on the benthos than in the plankton during the day, and were 28 times greater for benthic megalopae than for planktonic megalopae at night. These results Support a basic, yet previously untested assumption of life-history theory, that rates of predation on developmental stages of marine invertebrates are greater on the benthos than in the plankton. (c) 2007 Elsevier B.V All rights reserved. Bowdoin Coll, Dept Biol, Brunswick, ME 04011 USA; Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA Allen, JD (reprint author), Bowdoin Coll, Dept Biol, 6500 Coll Stn, Brunswick, ME 04011 USA. jallen@bowdoin.edu Acosta CA, 1999, LIMNOL OCEANOGR, V44, P494, DOI 10.4319/lo.1999.44.3.0494; ARONSON RB, 1995, MAR ECOL PROG SER, V121, P307, DOI 10.3354/meps121307; ARONSON RB, 1989, ECOLOGY, V70, P856, DOI 10.2307/1941354; BOLLENS SM, 1991, DIEL VERTICAL MIGRAT, P1359; Bullard SG, 2002, MAR ECOL PROG SER, V225, P17, DOI 10.3354/meps225017; CASWELL H, 1981, AM NAT, V117, P529, DOI 10.1086/283733; CHRISTIANSEN FB, 1979, THEOR POPUL BIOL, V16, P267, DOI 10.1016/0040-5809(79)90017-0; CHRISTOPHER P, 1982, WATER RESOUR RES, V18, P489; COSTELLO DP, 1971, METHODS OBTAINING HA; EMLET RB, 1986, MAR ECOL PROG SER, V31, P245, DOI 10.3354/meps031245; Forward RB, 1997, MAR BIOL, V127, P621, DOI 10.1007/s002270050052; HAVENHAND JN, 1993, MAR ECOL PROG SER, V97, P247, DOI 10.3354/meps097247; HOBBS RC, 1992, MAR BIOL, V112, P417, DOI 10.1007/BF00356287; Johnson KB, 2003, MAR ECOL PROG SER, V248, P125, DOI 10.3354/meps248125; Levitan DR, 2000, AM NAT, V156, P175, DOI 10.1086/303376; McEdward LR, 1997, AM NAT, V150, P48, DOI 10.1086/286056; Morgan Steven G., 1995, P279; Motro R, 2005, CORAL REEFS, V24, P95, DOI 10.1007/s00338-004-0451-5; NEILL WE, 1990, NATURE, V345, P524, DOI 10.1038/345524a0; OLSON RR, 1987, J EXP MAR BIOL ECOL, V110, P245, DOI 10.1016/0022-0981(87)90004-9; Park W, 2005, ESTUARIES, V28, P266, DOI 10.1007/BF02732860; Pechenik JA, 1999, MAR ECOL PROG SER, V177, P269, DOI 10.3354/meps177269; PECHENIK JA, 1979, AM NAT, V114, P859, DOI 10.1086/283533; PETERSON CH, 1994, MAR ECOL PROG SER, V111, P289, DOI 10.3354/meps111289; Peterson KJ, 2005, GEOLOGY, V33, P929, DOI 10.1130/G21697.1; RUMRILL SS, 1990, OPHELIA, V32, P163, DOI 10.1080/00785236.1990.10422030; SHANKS AL, 1986, MAR BIOL, V92, P189, DOI 10.1007/BF00392836; SIGNOR PW, 1994, PALEOBIOLOGY, V20, P297; STRATHMANN MF, 1987, REPROD DEV MARINE IN; Strathmann RR, 2002, B MAR SCI, V70, P377; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; STRATHMANN RR, 1982, ESTUARINE COMPARISON, V18, P521; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; Werner E.E., 1988, P60; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; YOUNG CM, 1987, REPRODUCTION MARINE, V9, P385; Zeng CS, 1996, MAR ECOL PROG SER, V136, P69, DOI 10.3354/meps136069; ZIMMERFAUST RK, 1994, MAR ECOL PROG SER, V111, P299, DOI 10.3354/meps111299 39 29 29 0 15 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0022-0981 J EXP MAR BIOL ECOL J. Exp. Mar. Biol. Ecol. AUG 24 2007 347 1-2 77 87 10.1016/j.jembe.2007.03.010 11 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 184TX WOS:000247666600007 2018-11-12 J Aira, M; Dominguez, J; Monroy, F; Velando, A Aira, Manuel; Dominguez, Jorge; Monroy, Fernando; Velando, Alberto Stress promotes changes in resource allocation to growth and reproduction in a simultaneous hermaphrodite with indeterminate growth BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article body condition; compensatory growth; current reproduction; earthworms; iteroparity; life-history trade-off; residual reproductive value EISENIA-ANDREI OLIGOCHAETA; SNAIL ARIANTA-ARBUSTORUM; LIFE-HISTORY; EARTHWORM; LUMBRICIDAE; FOETIDA; SIZE; EVOLUTION; ANIMALS; HABITAT In iteroparous animals, investment in growth is compromised by investment in reproduction, especially in species with indeterminate growth. Life-history theory predicts that growth should be favoured over reproduction, assuming size-related fecundity or survival. Hence, increase body condition represents an increase in reproductive potential. Simultaneous hermaphrodites should adjust their resource allocation to each sex function in response to current conditions but, recently, it has been suggested that, in hermaphrodites, gender allocation should be considered as a three-way trade-off, including the investment in somatic growth. Due to the higher costs involved, the female function is affected to a greater extent by environmentally stressful conditions rather than the male function. To examine this, we induced stress in the hermaphroditic earthworm Eisenia fetida (Savigny, 1826) and looked for changes in resource allocation in nonreproductive and reproductive individuals. Experimental stress was induced by using tweezers to elicit contractile escape movements. We predicted that stressed earthworms would preferentially allocate resources to growth. In nonreproductive individuals, however, stress had a negative effect on growth, although weight recovery was rapid once manipulation ceased, indicating the importance of body condition, as well as the existence of mechanisms of compensatory growth for growth trajectories in this earthworm species. The response of reproductive individuals was consistent with our expectation: (1) stressed worms maintained their growth rate at the expense of current reproduction and (2) stressed earthworms laid 25% fewer cocoons, which were 30% lighter than cocoons laid by control earthworms. The present results suggest that E. fetida regulates its reproductive effort and that future reproduction has more impact on its fitness than current reproduction. The trade-off between current and future reproduction should be taken into consideration in models of sex allocation in simultaneous hermaphrodites. (C) 2007 The Linnean Society of London. Univ Vigo, Fac Ciencias, Dept Ecol & Biol Anim, E-36310 Vigo, Spain Aira, M (reprint author), Univ Vigo, Fac Ciencias, Dept Ecol & Biol Anim, E-36310 Vigo, Spain. aira@uvigo.es Dominguez, Jorge/M-2046-2014; Velando, Alberto/B-1701-2009; Aira, Manuel/B-4506-2016 Dominguez, Jorge/0000-0002-4313-8582; Velando, Alberto/0000-0001-8909-0724; Aira, Manuel/0000-0002-2513-4609 Alvarez D, 2005, P ROY SOC B-BIOL SCI, V272, P601, DOI 10.1098/rspb.2004.2991; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; BAUR B, 1988, INT J INVER REP DEV, V14, P197, DOI 10.1080/01688170.1988.10510378; BAUR B, 1988, J ANIM ECOL, V57, P71, DOI 10.2307/4764; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV E L, 1982; CHARNOV EL, 1979, P NATL ACAD SCI USA, V76, P2480, DOI 10.1073/pnas.76.5.2480; DeWitt TJ, 1996, ANIM BEHAV, V51, P345, DOI 10.1006/anbe.1996.0033; Dominguez J, 2003, PEDOBIOLOGIA, V47, P530, DOI 10.1016/S0031-4056(04)70233-4; Dominguez J, 1997, SOIL BIOL BIOCHEM, V29, P743, DOI 10.1016/S0038-0717(96)00276-3; Dominguez J, 1997, PEDOBIOLOGIA, V41, P566; Dominguez Jorge, 2004, P401; FISHER R. A., 1930, GENETICAL THEORY NAT; HARTENSTEIN R, 1979, OECOLOGIA, V43, P329, DOI 10.1007/BF00344959; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Herrera CM, 2000, ECOLOGY, V81, P15, DOI 10.2307/177130; Hughes RN, 2003, P NATL ACAD SCI USA, V100, P10326, DOI 10.1073/pnas.1334011100; Hughes RN, 2002, P NATL ACAD SCI USA, V99, P14884, DOI 10.1073/pnas.162339699; KAITALA A, 1987, OIKOS, V48, P125, DOI 10.2307/3565848; LLOYD DG, 1984, EVOL BIOL, V17, P255; Madec L, 2000, BIOL J LINN SOC, V69, P25, DOI 10.1006/bijl.1999.0324; McCullagh P, 1989, GEN LINEAR MODELS; Meyer WJ, 1997, SOIL BIOL BIOCHEM, V29, P731, DOI 10.1016/S0038-0717(96)00200-3; Michiels N. K., 1998, SPERM COMPETITION SE, P219, DOI 10.1016/B978-012100543-6/50032-5; MICHON JEAN, 1957, ANNEE BIOL, V33, P367; Monroy F, 2005, J ETHOL, V23, P69, DOI 10.1007/s10164-004-0127-1; Monroy F, 2006, CR BIOL, V329, P912, DOI 10.1016/j.crvi.2006.08.001; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; RICHTER R, 1982, CURR GENET, V5, P233, DOI 10.1007/BF00391812; Ridley M., 1983, EXPLANATION ORGANIC; ROBERTS MBV, 1962, J EXP BIOL, V39, P219; RUSHTON WAH, 1945, NATURE, V156, P109, DOI 10.1038/156109b0; Scharer L, 2005, J EVOLUTION BIOL, V18, P396, DOI 10.1111/j.1420-9101.2004.00827.x; SCHWARZKOPF L, 1993, ECOLOGY, V74, P1970, DOI 10.2307/1940840; Sella G, 2003, BIOL J LINN SOC, V78, P149, DOI 10.1046/j.1095-8312.2003.00167.x; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Tato A, 2006, EUR J SOIL BIOL, V42, pS331, DOI 10.1016/j.ejsobi.2006.07.010; Tomiyama K, 1996, J MOLLUS STUD, V62, P101, DOI 10.1093/mollus/62.1.101; Trouve S, 1999, EVOLUTION, V53, P1599, DOI [10.2307/2640905, 10.1111/j.1558-5646.1999.tb05423.x]; VANGESTEL CAM, 1992, PEDOBIOLOGIA, V36, P109; VENTER JM, 1988, S AFR J ZOOL, V23, P161; Vreys C, 1997, P ROY SOC B-BIOL SCI, V264, P1559, DOI 10.1098/rspb.1997.0217; Wedekind C, 1998, PARASITOLOGY, V117, P373, DOI 10.1017/S0031182098003114; West HK, 2003, PEDOBIOLOGIA, V47, P535; WILLIAMS R, 1966, ADAPTATION NATURAL S; Yund PO, 1997, BIOL BULL-US, V192, P290, DOI 10.2307/1542722; Yusa Yoichi, 1994, Publications of the Seto Marine Biological Laboratory, V36, P249 51 10 11 1 16 BLACKWELL PUBLISHING OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND 0024-4066 BIOL J LINN SOC Biol. J. Linnean Soc. AUG 2007 91 4 593 600 10.1111/j.1095-8312.2007.00822.x 8 Evolutionary Biology Evolutionary Biology 198AR WOS:000248599900005 Bronze 2018-11-12 J Gangestad, SW Gangestad, Steven W. Life-history theory and evolutionary genetics EUROPEAN JOURNAL OF PERSONALITY English Editorial Material Penke et al. (this issue) argue that evolutionary genetics offers important insights into the fundamental nature of personality-how people adaptively adjust to their life circumstances in particular ways, as well as failures to adapt. I strongly endorse this enterprise. It is particularly promising, I suggest, when embedded within life history theory (LHT), a broad evolutionary framework to understand selection on organisms. Copyright (C) 2007 John Wiley & Sons, Ltd. Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA Gangestad, SW (reprint author), Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA. sgangest@unm.edu 0 0 0 0 1 JOHN WILEY & SONS LTD CHICHESTER THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND 0890-2070 EUR J PERSONALITY Eur. J. Personal. AUG 2007 21 5 601 603 3 Psychology, Social Psychology 220CL WOS:000250134400009 2018-11-12 J Penke, L; Denissen, JJA; Miller, GF Penke, Lars; Denissen, Jaap J. A.; Miller, Geoffrey F. Evolution, genes, and inter-disciplinary personality research EUROPEAN JOURNAL OF PERSONALITY English Editorial Material LIFE-HISTORY THEORY; GENOTYPE-ENVIRONMENT INTERACTION; ADAPTIVE INDIVIDUAL-DIFFERENCES; QUANTITATIVE TRAIT LOCI; CROSS-CULTURAL TWIN; NATURAL-SELECTION; PHENOTYPIC PLASTICITY; BRAIN SIZE; FUNCTIONAL POLYMORPHISM; FUNDAMENTAL THEOREM Most commentaries welcomed an evolutionary genetic approach to personality, but several raised concerns about our integrative model. In response, we clarify the scientific status of evolutionary genetic theory and explain the plausibility and value of our evolutionary genetic model of personality, despite some shortcomings with the currently available theories and data. We also have a closer look at mate choice for personality traits, point to promising ways to assess evolutionarily relevant environmental factors and defend higher-order personality domains and the g-factor as the best units for evolutionary genetic analyses. Finally, we discuss which extensions of and alternatives to our model appear most fruitful, and end with a call for more inter-disciplinary personality research grounded in evolutionary theory. Copyright (C) 2007 John Wiley & Sons, Ltd. Humboldt Univ, Berlin, Germany; Int Max Planck Res Sch LIFE, Berlin, Germany; Univ Utrecht, Utrecht, Netherlands; Univ New Mexico, Albuquerque, NM 87131 USA Penke, L (reprint author), Humboldt Univ, Berlin, Germany. Denissen, Jaap/H-2180-2013; Penke, Lars/F-6918-2014; Miller, Geoffrey/C-4145-2008 Denissen, Jaap/0000-0002-6282-4107; Miller, Geoffrey/0000-0002-6026-5372 ARNOLD SJ, 1984, EVOLUTION, V38, P709, DOI 10.1111/j.1558-5646.1984.tb00344.x; ASENDORPF JB, 2002, EUROPEAN J PERSONALI, V16, P51; Bamshad M, 2003, NAT REV GENET, V4, P99, DOI 10.1038/nrg999; Bates TC, 2007, EUR J HUM GENET, V15, P194, DOI 10.1038/sj.ejhg.5201739; Beldade P, 2002, P NATL ACAD SCI USA, V99, P14262, DOI 10.1073/pnas.222236199; Bell AM, 2005, J EVOLUTION BIOL, V18, P464, DOI 10.1111/j.1420-9101.2004.00817.x; Belsky J, 1999, HDB ATTACHMENT THEOR, P141; Benjamin J, 1996, NAT GENET, V12, P81, DOI 10.1038/ng0196-81; Blasi P, 2006, J MOL EVOL, V63, P54, DOI 10.1007/s00239-005-0154-8; Boomsma DI, 2006, TWIN RES HUM GENET, V9, P849, DOI 10.1375/twin.9.6.849; Bouchard TJ, 2001, BEHAV GENET, V31, P243; Bowers CA, 2000, SMALL GR RES, V31, P305, DOI 10.1177/104649640003100303; BRADLEY JH, 1997, J MANAGEMENT DEV, V16, P337, DOI DOI 10.1108/02621719710174525; BRODIE ED, 1995, TRENDS ECOL EVOL, V10, P313, DOI 10.1016/S0169-5347(00)89117-X; Brommer JE, 2004, AM NAT, V163, P505, DOI 10.1086/382547; Brown SM, 2005, MOL PSYCHIATR, V10, P884, DOI 10.1038/sj.mp.4001716; BUIRSKI P, 1978, ANIM BEHAV, V26, P123, DOI 10.1016/0003-3472(78)90011-8; Buss D.M., 1997, HDB PERSONALITY PSYC, P317; Buss DM, 2006, BEHAV BRAIN SCI, V29, P409; BUSS DM, 1991, ANNU REV PSYCHOL, V42, P459, DOI 10.1146/annurev.ps.42.020191.002331; BUSS DM, 1986, J PERS SOC PSYCHOL, V50, P559, DOI 10.1037//0022-3514.50.3.559; Butcher LM, 2005, HUM MOL GENET, V14, P1315, DOI 10.1093/ddi142; Campbell A, 1999, BEHAV BRAIN SCI, V22, P203; Canli T, 2005, J NEURAL TRANSM, V112, P1479, DOI 10.1007/s00702-005-0391-4; Carere C, 2004, PHYSIOL BEHAV, V82, P905, DOI 10.1016/j.physbeh.2004.07.009; Caspi A, 2005, ANNU REV PSYCHOL, V56, P453, DOI 10.1146/annurev.psych.55.090902.141913; Charlesworth B, 1999, EVOL GENET, V1, P369; Charnov Eric L., 1993, P1; Chen CS, 1999, EVOL HUM BEHAV, V20, P309, DOI 10.1016/S1090-5138(99)00015-X; Ciani ASC, 2007, EUR J PERSONALITY, V21, P3, DOI 10.1002/per.595; Comings DE, 2003, MOL PSYCHIATR, V8, P10, DOI 10.1038/sj.mp.4001095; Costa PT, 2007, BEHAV GENET, V37, P376, DOI 10.1007/s10519-006-9103-6; COSTA PT, 1992, REREVISED NEO PERSON; Cottrell CA, 2007, J PERS SOC PSYCHOL, V92, P208, DOI 10.1037/0022-3514.92.2.208; Coulson T, 2006, P ROY SOC B-BIOL SCI, V273, P547, DOI 10.1098/rspb.2005.3357; CRNOKRAK P, 1995, HEREDITY, V75, P530, DOI 10.1038/hdy.1995.169; Crow JF, 2002, EVOLUTION, V56, P1313; Cziko G., 2000, THINGS WE DO USING L; Cziko G. A, 1995, WITHOUT MIRACLES UNI; Dall SRX, 2004, ECOL LETT, V7, P734, DOI 10.1111/j.1461-0248.2004.00618.x; De Jong G, 2000, GENET RES, V76, P295, DOI 10.1017/S0016672300004729; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DEJONG G, 1995, AM NAT, V145, P493, DOI 10.1086/285752; DEJONG G, 1990, J EVOLUTIONARY BIOL, V3, P468; Depue RA, 1999, BEHAV BRAIN SCI, V22, P491; Dick DM, 2007, BEHAV GENET, V37, P265, DOI 10.1007/s10519-006-9131-2; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Eaves L J, 1998, Twin Res, V1, P131, DOI 10.1375/136905298320566267; EAVES LJ, 1990, BEHAV GENET, V20, P563, DOI 10.1007/BF01065872; Ebstein RP, 1996, NAT GENET, V12, P78, DOI 10.1038/ng0196-78; Ebstein RP, 2006, MOL PSYCHIATR, V11, P427, DOI 10.1038/sj.mp.4001814; Edelman G. M., 1987, NEURAL DARWINISM THE; EDWARDS AWF, 1994, BIOL REV, V69, P443, DOI 10.1111/j.1469-185X.1994.tb01247.x; Egan MF, 2001, P NATL ACAD SCI USA, V98, P6917, DOI 10.1073/pnas.111134598; Eley TC, 2003, AM J MED GENET B, V120B, P90, DOI 10.1002/ajmg.b.20046; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; ELLISON PT, 2000, ON FERTILE GROUND NA; ENDLER PT, 1986, NATURAL SELECTION WI; Enoch MA, 2003, PSYCHIAT GENET, V13, P33, DOI 10.1097/01.ypg.0000054709.85338.c3; EULER HA, 2001, EVOLUTIONARY APPROAC, P277; Evans PD, 2006, P NATL ACAD SCI USA, V103, P18178, DOI 10.1073/pnas.0606966103; Evans PD, 2006, GENE, V375, P75, DOI 10.1016/j.gene.2006.02.019; Evans PD, 2005, SCIENCE, V309, P1717, DOI 10.1126/science.1113722; Eysenck MW, 2007, EMOTION, V7, P336, DOI 10.1037/1528-3542.7.2.336; FALCONER DS, 1989, INTRO QUANTITATIVE G; Fan J, 2002, J COGNITIVE NEUROSCI, V14, P340, DOI 10.1162/089892902317361886; FEIJ JA, 1984, HANDLEIDING SPANNING; Feltovich PJ, 2006, CAMBRIDGE HANDBOOK OF EXPERTISE AND EXPERT PERFORMANCE, P41; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2005, HDB EVOLUTIONARY PSY, P851; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fisher R. A., 1919, Transactions of the Royal Society of Edinburgh, V52; FISHER R. A., 1930, GENETICAL THEORY NAT; FRANK SA, 1992, TRENDS ECOL EVOL, V7, P92, DOI 10.1016/0169-5347(92)90248-A; Funder DC, 2006, J RES PERS, V40, P21, DOI 10.1016/j.jrp.2005.08.003; FUNDER DC, 1987, PSYCHOL BULL, V101, P75, DOI 10.1037/0033-2909.101.1.75; Funder DC, 2000, BEHAV BRAIN SCI, V23, P673, DOI 10.1017/S0140525X00313437; FUNDER DC, IN PRESS HDB PERSONA; Gangestad SW, 1997, TRENDS COGN SCI, V1, P103, DOI 10.1016/S1364-6613(97)89056-0; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Gebhardt C, 2000, PSYCHIATR GENET, V10, P131, DOI 10.1097/00041444-200010030-00005; Getty T, 2006, TRENDS ECOL EVOL, V21, P83, DOI 10.1016/j.tree.2005.10.016; Gigerenzer G., 1999, SIMPLE HEURISTICS TH; Goldberg TE, 2003, ARCH GEN PSYCHIAT, V60, P889, DOI 10.1001/archpsyc.60.9.889; Gosling SD, 1999, CURR DIR PSYCHOL SCI, V8, P69, DOI 10.1111/1467-8721.00017; Gosling SD, 2002, J RES PERS, V36, P607, DOI 10.1016/S0092-6566(02)00511-1; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; Gosso MF, 2006, GENES BRAIN BEHAV, V5, P577, DOI 10.1111/j.1601-183X.2006.00211.x; Gosso MF, 2006, MOL PSYCHIATR, V11, P878, DOI 10.1038/sj.mp.4001868; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; Grace AA, 2000, BRAIN RES REV, V31, P330, DOI 10.1016/S0165-0173(99)00049-1; Grafen A, 2003, J ROY STAT SOC D-STA, V52, P319, DOI 10.1111/1467-9884.00362; GRISKEVICIUS V, J PERSONALITY SOCIAL; HAMILTON WD, 1990, P NATL ACAD SCI USA, V87, P3566, DOI 10.1073/pnas.87.9.3566; Harding RM, 2004, CURR OPIN GENET DEV, V14, P667, DOI 10.1016/j.gde.2004.08.010; Haselton MG, 2006, HUM NATURE-INT BIOS, V17, P50, DOI 10.1007/s12110-006-1020-0; Hawks J., 2006, PALEOANTHROPOLOGY, P101; Hersch EI, 2004, EVOLUTION, V58, P479, DOI 10.1111/j.0014-3820.2004.tb01671.x; Hill EM, 2002, ADDICTION, V97, P401, DOI 10.1046/j.1360-0443.2002.00020.x; HILL WG, 1987, P 2 INT C QUANT GEN, P57; Holmes JG, 2002, PERS RELATIONSHIP, V9, P1, DOI 10.1111/1475-6811.00001; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Houle D, 1998, GENETICA, V102-3, P241, DOI 10.1023/A:1017034925212; HOULE D, 1992, GENETICS, V130, P195; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; Hull DL, 2001, BEHAV BRAIN SCI, V24, P511; Jang KL, 1998, J PERS SOC PSYCHOL, V74, P1556, DOI 10.1037/0022-3514.74.6.1556; Jang KL, 2002, PERS INDIV DIFFER, V33, P83, DOI 10.1016/S0191-8869(01)00137-4; Jang KL, 2001, J PERS SOC PSYCHOL, V81, P295, DOI 10.1037//0022-3514.81.2.295; JANIS I, 1972, VICTIMS GROUPTHINK; Jensen A. R., 1998, G FACTOR SCI MENTAL; JF Crow, 1986, BASIC CONCEPTS POPUL; Johnson W, 2007, PSYCHOL REV, V114, P423, DOI 10.1037/0033-295X.114.2.423; Kaplan H. S, 2005, HDB EVOLUTIONARY PSY, P68; Keller MC, 2006, BEHAV BRAIN SCI, V29, P385, DOI 10.1017/S0140525X06009095; Keller MC, 2005, TWIN RES HUM GENET, V8, P201, DOI 10.1375/twin.8.3.201; Keller MC, 2005, BEHAV GENET, V35, P707, DOI 10.1007/s10519-005-6041-7; KENDLER KS, 1986, AM J PSYCHIAT, V143, P279; KENRICK DT, 1993, J PERS SOC PSYCHOL, V64, P951, DOI 10.1037//0022-3514.64.6.951; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; KIRKWOOD TBL, 1990, GENETICS EFFECT AGIN, V11, P9; Kokko H, 2003, P ROY SOC B-BIOL SCI, V270, P653, DOI 10.1098/rspb.2002.2235; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Koolhaas JM, 2001, COPING CHALLENGE WEL, P197; Kopp M, 2006, EVOLUTION, V60, P1537; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; KRUGER RF, IN PRESS HDB PERSONA; KRUGER RF, UNPUB GENE ENV INTER; Lachman HM, 1996, PHARMACOGENETICS, V6, P243, DOI 10.1097/00008571-199606000-00007; Lake RIE, 2000, BEHAV GENET, V30, P223, DOI 10.1023/A:1001918408984; Laland K. N., 2002, SENSE NONSENSE EVOLU; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Leary MR, 2000, ADV EXP SOC PSYCHOL, V32, P1, DOI 10.1016/S0065-2601(00)80003-9; LENENEWEGER MF, BIOL PSYCHIAT; LESSELLS CM, 1999, BEHAV ECOLOGY, P32; Livesley WJ, 1998, ARCH GEN PSYCHIAT, V55, P941, DOI 10.1001/archpsyc.55.10.941; LUCIANO M, IN PRSS BIO PSYCHIAT; Lykken DT, 2006, GENES BRAIN BEHAV, V5, P306, DOI 10.1111/j.1601-183X.2006.00233.x; Lynch M, 1998, GENETICS ANAL QUANTI; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; MacDonald Kevin, 2005, EVOLUTIONARY PERSPEC, P207; Malhotra AK, 2002, AM J PSYCHIAT, V159, P652, DOI 10.1176/appi.ajp.159.4.652; Markon KE, 2005, J PERS SOC PSYCHOL, V88, P139, DOI 10.1037/0022-3514.88.1.139; Matthews G, 1999, PERS INDIV DIFFER, V26, P583, DOI 10.1016/S0191-8869(98)00158-5; MATTHEWS G, 2000, HIST PHILOS PSYCHOL, V2, P1; MATTHEWS G, IN PRESS HDB PERSONA, V1; Matthews G., 2000, HUMAN PERFORMANCE CO; Matthews G., 2003, PERSONALITY TRAITS; MATTHEWS G, 1999, FUTURE LEARNING INDI, P251; Matthews G., 2004, MOTIVATION EMOTION C, P143; Matthews G., 2004, PSYCHOBIOLOGY PERSON, P249, DOI DOI 10.1016/B978-008044209-9/50015-4; McCrae RR, 1996, PSYCHOL BULL, V120, P323, DOI 10.1037//0033-2909.120.3.323; McCrae RR, 2002, 5 FACTOR MODEL PERSO; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; McElreath R, 2006, ANIM BEHAV, V72, P1135, DOI 10.1016/j.anbehav.2006.04.001; McNaughton N, 2000, NEUROPSYCHOL ANXIETY; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; MEALEY L, 2001, ANN M HUM BEH EV SOC; MEEHL PE, 1978, J CONSULT CLIN PSYCH, V46, P806, DOI 10.1037//0022-006X.46.4.806; Merila J, 2001, CURR ORNITHOL, V16, P179; Merila J, 1999, HEREDITY, V83, P103, DOI 10.1046/j.1365-2540.1999.00585.x; Mezey JG, 2003, GENETICS, V165, P411; MICHALSKI RL, IN PRSS HDB PERSONAL; Miller EK, 2001, ANNU REV NEUROSCI, V24, P167, DOI 10.1146/annurev.neuro.24.1.167; MILLER EK, 2000, MATING MIND; Miller G, 2000, ANN NY ACAD SCI, V907, P62; Miller GF, 2007, INTELLIGENCE, V35, P97, DOI 10.1016/j.intell.2006.08.008; Miller GF, 2000, NATURE INTELLIGENCE, V233, P260, DOI DOI 10.1002/0470870850.CH16; Mingroni MA, 2004, INTELLIGENCE, V32, P65, DOI 10.1016/S0160-2896(03)00058-8; MISCHEL W, 1995, PSYCHOL REV, V102, P246, DOI 10.1037/0033-295X.102.2.246; Mohammed S, 2003, SMALL GR RES, V34, P651, DOI 10.1177/1046496403257228; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Munafo MR, 2003, MOL PSYCHIATR, V8, P471, DOI 10.1038/sj.mp.4001326; Nettle D, 2005, EVOL HUM BEHAV, V26, P363, DOI 10.1016/j.evolhumbehav.2004.12.004; Nettle D, 2002, HUM NATURE-INT BIOS, V13, P473, DOI 10.1007/s12110-002-1004-7; Nettle D, 2006, AM PSYCHOL, V61, P622, DOI 10.1037/0003-066X.61.6.622; Ostatnikova D, 2007, NEUROPSYCHOLOGIA, V45, P1378, DOI 10.1016/j.neuropsychologia.2006.10.018; Otto SP, 2000, TRENDS GENET, V16, P526, DOI 10.1016/S0168-9525(00)02141-7; Ozer DJ, 2006, ANNU REV PSYCHOL, V57, P401, DOI 10.1146/annurev.psych.57.102904.190127; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PEDERSEN NL, 1992, PSYCHOL SCI, V3, P346, DOI 10.1111/j.1467-9280.1992.tb00045.x; PENKE L, IN PRESS MATING INTE; Pilia G, 2006, PLOS GENET, V2, P1207, DOI 10.1371/journal.pgen.0020132; PLOMIN R, 1977, PSYCHOL BULL, V84, P309, DOI 10.1037//0033-2909.84.2.309; Plomin R, 2004, MOL PSYCHIATR, V9, P582, DOI 10.1038/sj.mp.4001441; Plomin R, 2004, J PERS SOC PSYCHOL, V86, P112, DOI 10.1037/0022-3514.86.1.112; PLOMIN R, 1990, BEHAV GENETICS PRIME; PLOMIN R, 1999, AM J HUM GENET, V65, P1476; Plomin R, 2006, INTELLIGENCE, V34, P513, DOI 10.1016/j.intell.2006.01.001; POMIANKOWSKI A, 1995, P ROY SOC B-BIOL SCI, V260, P21, DOI 10.1098/rspb.1995.0054; Posthuma D, 2005, AM J HUM GENET, V77, P318, DOI 10.1086/432647; Posthuma D, 2002, BIOL PSYCHOL, V61, P157, DOI 10.1016/S0301-0511(02)00057-1; PRICE T, 1991, EVOLUTION, V45, P853, DOI 10.1111/j.1558-5646.1991.tb04354.x; Purcell S, 2002, TWIN RES, V5, P554, DOI 10.1375/twin.5.6.554; Rae C, 2003, P ROY SOC B-BIOL SCI, V270, P2147, DOI 10.1098/rspb.2003.2492; Reale D, 2003, ANIM BEHAV, V65, P463, DOI 10.1006/anbe.2003.2100; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; REIS H, 2007, BEING SOCIAL REINVIG; Reuter M, 2007, INT J NEUROPSYCHOPH, V10, P401, DOI 10.1017/S1461145706007073; Reuter M, 2007, J COGNITIVE NEUROSCI, V19, P401, DOI 10.1162/jocn.2007.19.3.401; Reynolds CA, 2000, BEHAV GENET, V30, P455, DOI 10.1023/A:1010250818089; Rijsdijk FV, 2002, BEHAV GENET, V32, P199, DOI 10.1023/A:1016021128949; Robbins TW, 2005, J COMP NEUROL, V493, P140, DOI 10.1053/cne.20717; Roberts BW, 2004, J RES PERS, V38, P164, DOI 10.1016/S0092-6566(03)00065-5; Roff D. A., 1997, EVOLUTIONARY QUANTIT; Roff D. A., 2002, LIFE HIST EVOLUTION; ROFF DA, 2007, LIMITS FAMILY INFLUE, V20, P433; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Rutter M, 2007, DEVELOPMENTAL SCI, V10, P12, DOI 10.1111/j.1467-7687.2007.00557.x; Saad G., 2007, EVOLUTIONARY BASES C; Scheiner SM, 1998, EVOLUTION, V52, P368, DOI 10.1111/j.1558-5646.1998.tb01638.x; Schinka JA, 2004, MOL PSYCHIATR, V9, P197, DOI 10.1038/sj.mp.4001405; Sgro CM, 2004, HEREDITY, V93, P241, DOI 10.1038/sj.hdy.6800532; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Simpson T., 2005, INNATE MIND STRUCTUR, P3; SOUTH SC, UNPUB ADOLESCENT PER; Spielberger C., 1983, ADV PERSONALITY ASSE, V2, P159; Spielberger CD, 1970, MANUAL STATE TRAIN A; STEARNS SS, 1997, EVOLUTION LIFE HIST; Steppan SJ, 2002, TRENDS ECOL EVOL, V17, P320, DOI 10.1016/S0169-5347(02)02505-3; Stirling DG, 2002, J EVOLUTION BIOL, V15, P277, DOI 10.1046/j.1420-9101.2002.00389.x; Stoltenberg SF, 1997, GENETICA, V99, P89, DOI 10.1007/BF02259512; STROBEL A, IN PRESS J COGNITIVE; SULLOWAY FJ, 1995, PSYCHOL INQ, V6, P75, DOI 10.1207/s15327965pli0601_15; SULLOWAY FJ, 1996, BORN REBEL BIRTH FAM; TOOBY J, 1990, J PERS, V58, P17, DOI 10.1111/j.1467-6494.1990.tb00907.x; TOOBY J, 1982, J THEOR BIOL, V97, P557, DOI 10.1016/0022-5193(82)90358-7; Torgersen S, 2001, ARCH GEN PSYCHIAT, V58, P590, DOI 10.1001/archpsyc.58.6.590; Troisi A, 2005, NEUROSCI BIOBEHAV R, V29, P159, DOI 10.1016/j.neubiorev.2004.06.012; Turelli M, 2004, GENETICS, V166, P1053, DOI 10.1534/genetics.166.2.1053; Turkheimer E, 2000, PSYCHOL BULL, V126, P78, DOI 10.1037//0033-2909.126.1.78; van Alphen SPJ, 2006, INT J GERIATR PSYCH, V21, P205, DOI 10.1002/gps.1451; van Oers K, 2005, BEHAVIOUR, V142, P1185, DOI 10.1163/156853905774539364; Vandenbergh DJ, 1997, MOL PSYCHIATR, V2, P417, DOI 10.1038/sj.mp.4000309; VANDERPLOEG HM, 1982, HANDLEEDING ZELF ANA; VANLJZENDOORN MH, 2006, ATTACHMENT HUMAN DEV, V8, P291; VANTIENDEREN PH, 1991, EVOLUTION, V45, P317; VIA S, 1995, TRENDS ECOL EVOL, V10, P212, DOI 10.1016/S0169-5347(00)89061-8; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; WAGERMAN SA, 2006, RIVERSIDE SITUATION; Wang ET, 2006, P NATL ACAD SCI USA, V103, P135, DOI 10.1073/pnas.0509691102; Watson D, 2004, J PERS, V72, P1029, DOI 10.1111/j.0022-3506.2004.00289.x; WILDE GJS, 1970, NEUROTISCHE LABILITE; WILISOWEN SA, 2007, NEUROSCI BIOBEHAV R, V31, P115; Williamson SH, 2007, PLOS GENET, V3, P901, DOI 10.1371/journal.pgen.0030090; Wilson DS, 1996, PSYCHOL BULL, V119, P285, DOI 10.1037/0033-2909.119.2.285; Wilson DS, 1998, PHILOS T ROY SOC B, V353, P199, DOI 10.1098/rstb.1998.0202; WILSON DS, 1994, TRENDS ECOL EVOL, V9, P442, DOI 10.1016/0169-5347(94)90134-1; Wolf JB, 1998, TRENDS ECOL EVOL, V13, P64, DOI 10.1016/S0169-5347(97)01233-0; Yamagata S, 2006, J PERS SOC PSYCHOL, V90, P987, DOI 10.1037/0022-3514.90.6.987; YEO RA, 1993, GENETICA, V89, P281, DOI 10.1007/BF02424521; Yeo RA, 1999, SCHIZOPHR RES, V39, P197, DOI 10.1016/S0920-9964(99)00074-2; Zhang JZ, 2003, GENETICS, V165, P2063; Zhang XS, 2005, AM NAT, V166, P569, DOI 10.1086/491800; Zhang XS, 2006, EVOLUTION, V60, P1125, DOI 10.1111/j.0014-3820.2006.tb01192.x; ZUCKEMAN M, 1991, PSYCHOBIOLOGY PERSON; ZUCKERMAN M, 1971, J CONSULT CLIN PSYCH, V36, P45, DOI 10.1037/h0030478 260 21 21 0 13 JOHN WILEY & SONS LTD CHICHESTER THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND 0890-2070 EUR J PERSONALITY Eur. J. Personal. AUG 2007 21 5 639 665 10.1002/per.657 27 Psychology, Social Psychology 220CL WOS:000250134400025 2018-11-12 J Townsend, HM; Anderson, DJ Townsend, Howard M.; Anderson, David J. Assessment of costs of reproduction in a pelagic seabird using multistate mark-recapture models EVOLUTION English Article Galapagos; life-history theory; sex ratio; sex-specific survival; statistical model BOOBIES SULA-GRANTI; CAPTURE-RECAPTURE; NATURAL-SELECTION; CALIFORNIA GULL; NAZCA BOOBY; SURVIVAL; POPULATIONS; HYPOTHESES; ANIMALS; PARENTS We used a long-term population band-resight survey database, a parallel reproduction database, and multistate mark-recapture analysis to assess the costs of reproduction, a keystone concept of life-history evolution, in Nazca boobies (Sula granti) from Punta Cevallos, Isla Espanola, Galapagos, Ecuador. We used eight years of resight and breeding data to compare models that included sex- and state-specific survival probabilities and probabilities of transition between reproductive states using multistate mark-recapture models. Models that included state-specific effects were compared with models lacking such effects to evaluate costs of reproduction. The top model, optimizing the trade-off of model simplicity and fit to the data using the Akaike Information Criterion (AIC), showed evidence of a temporally varying survival cost of reproduction: nonbreeders showed higher annual survival than breeders did in some years. Because increasing investment among breeders showed no negative association with survival and subsequent breeding success, this evidence indicates a cost to both males and females of initiating, but not of continuing, a reproductive attempt. In some cases, breeders reaching the highest reproductive state (fledging an offspring) showed higher survival or subsequent breeding success than did failed breeders, consistent with differences in overall quality that promote both survival and reproduction. Although a male-biased adult sex ratio was observed in this population of Nazca boobies, models of state- and sex-specific survival and transition probabilities were not supported, indicating that males and females do not incur different costs of reproduction, and that the observed sex ratio bias is not due to sex-specific adult mortality. Wake Forest Univ, Dept Biol, Winston Salem, NC 27109 USA Townsend, HM (reprint author), Natl Ocean & Atmospher Adm, Chesapeake Bay Off Cooperat Oxford Lab, 904 S Morris St, Oxford, MD 21654 USA. Howard.Townsend@noaa.gov ANDERSON D J, 1987, National Geographic Research, V3, P152; Anderson David J., 1993, Birds of North America, V73, P1; Anderson DJ, 2004, BEHAVIOUR, V141, P959, DOI 10.1163/1568539042360134; ANDERSON DJ, 1989, MAR ECOL PROG SER, V52, P209, DOI 10.3354/meps052209; ARNASON A N, 1972, Researches on Population Ecology (Tokyo), V13, P97; Banks RC, 2000, AUK, V117, P847, DOI 10.2307/4089622; Breitwisch R., 1989, Current Ornithology, V6, P1; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; Burnham KP, 2002, MODEL SELECTION INFE; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; Choquet R, 2005, U CARE 2 2 USERS MAN; Clifford LD, 2001, J ANIM ECOL, V70, P539, DOI 10.1046/j.1365-2656.2001.00521.x; Cooch E., 1999, PROGRAM MARK GENTLE; COULSON JC, 1985, IBIS, V127, P45; Fleiss J. L., 1981, STAT METHODS RATES P; GOODMAN D, 1974, AM NAT, V108, P247, DOI 10.1086/282906; HESTBECK JB, 1991, ECOLOGY, V72, P523, DOI 10.2307/2937193; Humphries CA, 2006, OECOLOGIA, V147, P379, DOI 10.1007/s00442-005-0264-4; Huyvaert KP, 2004, J AVIAN BIOL, V35, P46; Kvarnemo C, 1996, TRENDS ECOL EVOL, V11, P404, DOI 10.1016/0169-5347(96)10056-2; LEBRETON JD, 1993, TRENDS ECOL EVOL, V8, P91, DOI 10.1016/0169-5347(93)90058-W; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Liker A, 2005, EVOLUTION, V59, P890, DOI 10.1554/04-560; LINDEN M, 1989, TRENDS ECOL EVOL, V6, P183; Maness TJ, 2007, WATERBIRDS, V30, P10, DOI 10.1675/1524-4695(2007)030[0010:OSRVIN]2.0.CO;2; MANESS TJ, IN PRESS P R SOC B; Moreno J, 2003, SCI MAR, V67, P7, DOI 10.3989/scimar.2003.67s27; NICHOLS JD, 1994, ECOLOGY, V75, P2052, DOI 10.2307/1941610; NICHOLS JD, 1992, BIOSCIENCE, V42, P94, DOI 10.2307/1311650; Nichols JD, 1995, J APPL STAT, V22, P835, DOI 10.1080/02664769524658; Nur N., 1990, NATO ASI Series Series G Ecological Sciences, V24, P281; Pitman RL, 1998, WILSON BULL, V110, P155; POLLOCK KH, 1990, WILDLIFE MONOGR, P1; Pradel R, 2003, BIOMETRICS, V59, P43, DOI 10.1111/1541-0420.00006; Pradel R., 2005, Animal Biodiversity and Conservation, V28, P189; Pugesek BH, 1995, J APPL STAT, V22, P625, DOI 10.1080/02664769524504; PUGESEK BH, 1992, EVOL ECOL, V6, P279, DOI 10.1007/BF02270965; Rexstad E., 1991, USERS GUIDE INTERACT; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tavecchia G, 2001, ECOLOGY, V82, P165, DOI 10.1890/0012-9658(2001)082[0165:SAARVI]2.0.CO;2; TOWNSEND H, IN PRESS BEHAV ECOLO; TOWNSEND HM, 2004, THESIS WAKE FOREST U; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Viallefont A, 1995, J APPL STAT, V22, P847, DOI 10.1080/02664769524667; White GC, 1999, BIRD STUDY, V46, P120; White GC, 1978, USERS MANUAL PROGRAM; WHITE GC, 2002, PROGRAM MARK VERSION; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILSON K, 2002, CONCEPTS RES METHODS, P48; Yoccoz NG, 2002, J APPL STAT, V29, P57, DOI 10.1080/02664760120108458 53 20 20 1 17 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 USA 0014-3820 EVOLUTION Evolution AUG 2007 61 8 1956 1968 10.1111/j.1558-5646.2007.00169.x 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 198AV WOS:000248600300015 17683437 Bronze 2018-11-12 J Charmantier, A; Keyser, AJ; Promislow, DEL Charmantier, Anne; Keyser, Amber J.; Promislow, Daniel E. L. First evidence for heritable variation in cooperative breeding behaviour PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article cooperative breeding; heritability; life-history theory; lifespan; Sialia mexicana; western bluebirds WESTERN BLUEBIRDS; LIFE-HISTORY; GENETIC-PARAMETERS; SEYCHELLES WARBLER; SOCIAL-BEHAVIOR; SIALIA-MEXICANA; ANIMAL-MODEL; EVOLUTION; BIRDS; HELPERS Understanding the evolution of complex social behaviours, such as cooperative breeding, is a fundamental problem in evolutionary biology, which has attracted much theoretical and empirical interest. Variation within and between species in the frequency of helping behaviour has been typically associated with variation in direct costs and benefits due to ecological constraints, or with indirect fitness payoffs (i.e. kin selection). Here, we provide the first evidence that individual variation in cooperative behaviour within a natural population also has a heritable component. Using a seven-generation pedigree in a wild population of western bluebirds (Sialia mexicana), we show significant heritable variation for the propensity to help rather than breed, as well as for the probability of having a helper at the nest. We also document a strong positive relationship between a bird's lifespan and its prospect of receiving help when breeding, in accordance with earlier comparative studies across species. These findings provide useful insights into the possible mechanisms which have led to the evolution of cooperative breeding and other social systems. Univ Oxford, Dept Zool, Edward Grey Inst, Oxford OX1 3PS, England; Univ Georgia, Dept Genet, Athens, GA 30602 USA Charmantier, A (reprint author), CNRS, UMR 5175, Ctr Ecol Fonct & Evolut, 1919 Route Mende, F-34293 Montpellier 5, France. anne.charmantier@cefe.cnrs.fr Promislow, Daniel/0000-0001-7088-4495 Agrawal AF, 2001, SCIENCE, V292, P1710, DOI 10.1126/science.1059910; ANDERSSON M, 1984, ANNU REV ECOL SYST, V15, P165, DOI 10.1146/annurev.es.15.110184.001121; Arnold KE, 1998, P ROY SOC B-BIOL SCI, V265, P739, DOI 10.1098/rspb.1998.0355; BROWN JL, 1987, HELPING COMMUNAL BRE; Cockburn A, 2006, P R SOC B, V273, P1375, DOI 10.1098/rspb.2005.3458; Cockburn A, 2003, P ROY SOC B-BIOL SCI, V270, P2207, DOI 10.1098/rspb.2003.2503; Cockburn A, 1996, FRONTIERS OF POPULATION ECOLOGY, P451; Cockburn A, 1998, ANNU REV ECOL SYST, V29, P141, DOI 10.1146/annurev.ecolsys.29.1.141; Covas R, 2004, P ROY SOC B-BIOL SCI, V271, P827, DOI 10.1098/rspb.2003.2652; Dickinson JL, 1998, MOL ECOL, V7, P95, DOI 10.1046/j.1365-294x.1998.00320.x; Dickinson JL, 2004, ANIM BEHAV, V68, P373, DOI 10.1016/j.anbehav.2003.07.022; Dickinson JL, 2004, BEHAV ECOL, V15, P233, DOI 10.1093/beheco/arh001; DUPLESSIS MA, 1991, BEHAV ECOL SOCIOBIOL, V28, P291, DOI 10.1007/BF00175102; EDWARDS JH, 1969, BRIT MED BULL, V25, P58, DOI 10.1093/oxfordjournals.bmb.a070672; EDWARDS SV, 1993, AM NAT, V141, P754, DOI 10.1086/285504; Ekman J, 2006, P ROY SOC B-BIOL SCI, V273, P1117, DOI 10.1098/rspb.2005.3431; Falconer DS, 1996, INTRO QUANTITATIVE G; Fink S, 2006, P NATL ACAD SCI USA, V103, P10956, DOI 10.1073/pnas.0602380103; GILMOUR AR, 2002 ASREML USER GUI; HILL WG, 1977, BIOMETRICS, V33, P234; Keyser AJ, 2004, AUK, V121, P118, DOI 10.1642/0004-8038(2004)121[0118:LVADIW]2.0.CO;2; KEYSER AJ, UNPUB S FEEDING INCR; KNOTT SA, 1995, FUNCT ECOL, V9, P122, DOI 10.2307/2390099; Koenig W., 2004, ECOLOGY EVOLUTION CO; Komdeur J, 2003, P ROY SOC B-BIOL SCI, V270, P3, DOI 10.1098/rspb.2002.2211; KOMDEUR J, 1992, NATURE, V358, P493, DOI 10.1038/358493a0; Komdeur J, 2006, ETHOLOGY, V112, P729, DOI 10.1111/j.1439-0310.2006.01243.x; Kraaijeveld K, 2001, ANIM BEHAV, V61, P109, DOI 10.1006/anbe.2000.1591; Krieger MJB, 2002, SCIENCE, V295, P328, DOI 10.1126/science.1065247; Kruuk LEB, 2004, PHILOS T ROY SOC B, V359, P873, DOI 10.1098/rstb.2003.1437; Lim MM, 2005, HORM BEHAV, V48, P84; Lynch M, 1998, GENETICS ANAL QUANTI; MacColl ADC, 2003, EVOLUTION, V57, P2191; Maynard Smith J, 1995, MAJOR TRANSITIONS EV; Nicholls JA, 2000, J AVIAN BIOL, V31, P165, DOI 10.1034/j.1600-048X.2000.310208.x; SAPPINGTON JN, 1977, WILSON BULL, V89, P300; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Stacey P., 1990, COOPERATIVE BREEDING; Trivers R., 1972, PARENTAL INVESTMENT, P136 39 32 32 2 41 ROYAL SOCIETY LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P R SOC B Proc. R. Soc. B-Biol. Sci. JUL 22 2007 274 1619 1757 1761 10.1098/rspb.2007.0012 5 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 178IJ WOS:000247214100011 17490945 Green Published 2018-11-12 J Pettay, JE; Helle, S; Jokela, J; Lummaa, V Pettay, Jenni E.; Helle, Samuli; Jokela, Jukka; Lummaa, Virpi Natural Selection on Female Life-History Traits in Relation to Socio-Economic Class in Pre-Industrial Human Populations PLOS ONE English Article Life-history theory predicts that resource scarcity constrains individual optimal reproductive strategies and shapes the evolution of life-history traits. In species where the inherited structure of social class may lead to consistent resource differences among family lines, between-class variation in resource availability should select for divergence in optimal reproductive strategies. Evaluating this prediction requires information on the phenotypic selection and quantitative genetics of life-history trait variation in relation to individual lifetime access to resources. Here, we show using path analysis how resource availability, measured as the wealth class of the family, affected the opportunity and intensity of phenotypic selection on the key life-history traits of women living in pre-industrial Finland during the 1800s and 1900s. We found the highest opportunity for total selection and the strongest selection on earlier age at first reproduction in women of the poorest wealth class, whereas selection favoured older age at reproductive cessation in mothers of the wealthier classes. We also found clear differences in female life-history traits across wealth classes: the poorest women had the lowest age-specific survival throughout their lives, they started reproduction later, delivered fewer offspring during their lifetime, ceased reproduction younger, had poorer offspring survival to adulthood and, hence, had lower fitness compared to the wealthier women. Our results show that the amount of wealth affected the selection pressure on female life-history in a pre-industrial human population. [Pettay, Jenni E.; Helle, Samuli] Univ Turku, Dept Biol, Sect Ecol, SF-20500 Turku, Finland; [Jokela, Jukka] Swiss Fed Inst Aquat Sci & Technol, Eawag, Dubendorf, Switzerland; [Jokela, Jukka] Swiss Fed Inst Technol, Swiss Fed Inst Technol, Inst Integrat Biol IBZ, Zurich, Switzerland; [Lummaa, Virpi] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England Pettay, JE (reprint author), Univ Turku, Dept Biol, Sect Ecol, SF-20500 Turku, Finland. jenni.pettay@utu.fi The Academy of Finland; The Finnish Cultural Foundation; The Royal Society This work was supported by The Academy of Finland (V.L., S.H., J.J. and J.E.P.), The Finnish Cultural Foundation (J.E.P) and The Royal Society (V.L.). Allison PD, 1995, SURVIVAL ANAL USING; Ardia DR, 2005, J ANIM ECOL, V74, P517, DOI 10.1111/j.1365-2656.2005.00950.x; ARNOLD SJ, 1984, EVOLUTION, V38, P709, DOI 10.1111/j.1558-5646.1984.tb00344.x; Brommer JE, 2004, AM NAT, V163, P505, DOI 10.1086/382547; Charmantier A, 2005, P ROY SOC B-BIOL SCI, V272, P1415, DOI 10.1098/rspb.2005.3117; Cichon M, 2001, J EVOLUTION BIOL, V14, P180, DOI 10.1046/j.1420-9101.2001.00243.x; COLLETT D, 2003, MODELING SURVIVAL DA; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Dribe M, 2004, POP STUD-J DEMOG, V58, P297, DOI 10.1080/0032472042000272357; Endler JA, 1986, NATURAL SELECTION WI; Grace JB, 2003, STRUCTURAL EQUATION MODELING, P281, DOI 10.1017/CBO9780511542138.012; Hatcher L., 1994, STEP BY STEP APPROAC; HEERVA I, 1983, KUSTAVIN HIST; Helle S, 2005, P ROY SOC B-BIOL SCI, V272, P29, DOI 10.1098/rspb.2004.2944; HILTUNEN M, 1996, SIIKAJOKILAAKSON HIS, V1; HRDY SB, 1992, ETHOL SOCIOBIOL, V13, P409, DOI 10.1016/0162-3095(92)90011-R; JASIENSKA G, 2001, REPROD ECOLOGY HUMAN, P59; Kaar P, 1996, P ROY SOC B-BIOL SCI, V263, P1475, DOI 10.1098/rspb.1996.0215; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Kirk KM, 2001, EVOLUTION, V55, P423; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; LAHELMA E, 1990, SOC SCI MED, V31, P257, DOI 10.1016/0277-9536(90)90272-T; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LITTLE RC, 1996, SAS SYSTEM MIXED MOD; Lummaa V, 1998, NATURE, V394, P533, DOI 10.1038/28977; Lummaa V, 2001, J ANIM ECOL, V70, P739, DOI 10.1046/j.0021-8790.2001.00537.x; Lycett JE, 2000, P ROY SOC B-BIOL SCI, V267, P31, DOI 10.1098/rspb.2000.0962; Mace R, 1996, ETHOL SOCIOBIOL, V17, P263, DOI 10.1016/0162-3095(96)00044-1; Mace R, 1996, BEHAV ECOL SOCIOBIOL, V38, P75, DOI 10.1007/s002650050219; MARTIKAINEN P, 1995, POP STUD-J DEMOG, V49, P71, DOI 10.1080/0032472031000148256; McCulloch C. E., 2001, GEN LINEAR MIXED MOD; Mitchell Randall J., 1993, P211; Moring B, 1996, CONTINUITY CHANGE, V11, P91, DOI 10.1017/S0268416000003106; Mulder MB, 1998, TRENDS ECOL EVOL, V13, P266, DOI 10.1016/S0169-5347(98)01357-3; Petraitis PS, 1996, FUNCT ECOL, V10, P421, DOI 10.2307/2389934; Pettay JE, 2005, P NATL ACAD SCI USA, V102, P2838, DOI 10.1073/pnas.0406709102; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick DN, 2005, CAN J FISH AQUAT SCI, V62, P791, DOI 10.1139/F05-079; Roff D. A., 2002, LIFE HIST EVOLUTION; SAARI L, 2000, RYMATTYLAN HIST, V2; Scheiner SM, 2000, J EVOLUTION BIOL, V13, P423, DOI 10.1046/j.1420-9101.2000.00191.x; Scott Susan, 2002, DEMOGRAPHY NUTR EVID; SOININEN AM, 1974, OLD TRADITIONAL AGR; THAPA S, 1988, NATURE, V335, P679, DOI 10.1038/335679a0; TOMER A, 2003, ECOLOGICAL EVOLUTION, P125; TURPEINEN O, 1978, POP STUD-J DEMOG, V32, P523, DOI 10.2307/2173725; Turpeinen Oiva, 1986, NALKA VAI TAUTI TAPP; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Westendorp RGJ, 1998, NATURE, V396, P743, DOI 10.1038/25519; Wilson AJ, 2006, PLOS BIOL, V4, P1270, DOI 10.1371/journal.pbio.0040216; Wirilander Kaarlo, 1974, HERRASVAKEA SUOMEN S; ZEGER SL, 1986, BIOMETRICS, V42, P121, DOI 10.2307/2531248 53 63 64 0 15 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JUL 11 2007 2 7 e606 10.1371/journal.pone.0000606 9 Multidisciplinary Sciences Science & Technology - Other Topics V10GH WOS:000207452000013 17622351 DOAJ Gold, Green Published 2018-11-12 J Smith, CR Smith, Christopher R. Energy use and allocation in the Florida harvester ant, Pogonomyrmex badius: are stored seeds a buffer? BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article supplementation; starvation; seeds; sex ratio; sex allocation COLONY SIZE; SEX-RATIOS; REPRODUCTIVE ALLOCATION; PARENTAL INVESTMENT; MATING FREQUENCY; SOCIAL INSECT; FOREST ANTS; FOOD; HYMENOPTERA; FORMICIDAE Limitation of a necessary resource can affect an organism's investment into growth and reproduction. Pogonomyrmex harvester ants store vast quantities of seeds in their nests that are thought to buffer the ants when external resources are not available. This research uses externally controlled food availability to examine how resource shortage affects colony investment, resource use, and resource distribution within the nest. Colonies were either starved or supplemented with resources for 2 months, beginning at the onset of reproductive investment and ending immediately before nuptial flights. Fed colonies invested more in overall production, proportionally more in reproduction relative to growth and in female reproductives relative to males. Stored seeds in starved colonies did not buffer production in this study. However, worker fat reserves were depleted in starved colonies, indicating that fat reserves fuel the spring bout of production. In starved colonies, worker fat reserves were depleted evenly throughout the nest, distributing the burden of starvation on all workers regardless of caste and age. A reallocation of diploid eggs into female workers rather than reproductives best explains the observed change in sex ratio investment between treatments. The redistribution of resources into growth relative to reproduction in starved colonies is consistent with life history theory for long-lived organisms, switching from current to future reproduction when resources are scarce. Univ Illinois, Program Ecol & Evolutionary Biol, Urbana, IL 61801 USA Smith, CR (reprint author), Univ Illinois, Program Ecol & Evolutionary Biol, 515 Morrill Hall,505 S Goodwin Ave, Urbana, IL 61801 USA. crsmith@life.uiuc.edu Abell AJ, 1999, EVOLUTION, V53, P535, DOI 10.1111/j.1558-5646.1999.tb03788.x; Amdam GV, 2004, P NATL ACAD SCI USA, V101, P11350, DOI 10.1073/pnas.0403073101; Anderson KE, 2006, P NATL ACAD SCI USA, V103, P13433, DOI 10.1073/pnas.0606055103; Aron S, 2001, J ANIM ECOL, V70, P831, DOI 10.1046/j.0021-8790.2001.00545.x; BACKUS VL, 1992, BEHAV ECOL SOCIOBIOL, V30, P425; Bono JM, 2003, P ROY SOC B-BIOL SCI, V270, P811, DOI 10.1098/rspb.2002.2287; BOOMSMA JJ, 1989, AM NAT, V133, P517, DOI 10.1086/284933; BOOMSMA JJ, 1982, J ANIM ECOL, V51, P975, DOI 10.2307/4017; Brown WD, 2006, BEHAV ECOL SOCIOBIOL, V60, P612, DOI 10.1007/s00265-006-0204-2; Cahan SH, 2004, CURR BIOL, V14, P2277, DOI 10.1016/j.cub.2004.12.027; Cole BJ, 2000, INSECT SOC, V47, P249, DOI 10.1007/PL00001711; DAVIDSON DW, 1977, ECOLOGY, V58, P711, DOI 10.2307/1936208; DAVIDSON DW, 1982, BEHAV ECOL SOCIOBIOL, V10, P245, DOI 10.1007/BF00302813; DESLIPPE RJ, 1995, ECOLOGY, V76, P375, DOI 10.2307/1941196; Diamond J, 1999, GUNS GERMS STEEL FAT; Gadau J, 2003, MOL ECOL, V12, P1931, DOI 10.1046/j.1365-294X.2003.01853.x; Gilboa S, 2006, OECOLOGIA, V146, P667, DOI 10.1007/s00442-005-0139-8; HERBERS JM, 1990, AM NAT, V136, P178, DOI 10.1086/285091; Herbers JM, 1998, OIKOS, V83, P145, DOI 10.2307/3546555; HURLY TA, 1992, BEHAV ECOL, V3, P181, DOI 10.1093/beheco/3.2.181; Julian GE, 2002, P NATL ACAD SCI USA, V99, P8157, DOI 10.1073/pnas.112222099; MACKAY W P, 1981, Psyche (Cambridge), V88, P25, DOI 10.1155/1981/78635; MACKAY WP, 1985, OECOLOGIA, V66, P484, DOI 10.1007/BF00379338; MACKAY WP, 1983, J KANSAS ENTOMOL SOC, V56, P538; MACKAY WP, 1984, SOCIOBIOLOGY, V9, P31; MacMahon JA, 2000, ANNU REV ECOL SYST, V31, P265, DOI 10.1146/annurev.ecolsys.31.1.265; Markiewicz DA, 2001, J COMP PHYSIOL A, V187, P327, DOI 10.1007/s003590100204; Morales MA, 1998, ECOLOGY, V79, P734, DOI 10.2307/176966; MUNGER JC, 1992, OECOLOGIA, V90, P276, DOI 10.1007/BF00317186; NONACS P, 1986, Q REV BIOL, V61, P1, DOI 10.1086/414723; Ode PJ, 2002, BEHAV ECOL SOCIOBIOL, V51, P548, DOI 10.1007/s00265-002-0462-6; PORTER SD, 1981, BEHAV ECOL SOCIOBIOL, V9, P247, DOI 10.1007/BF00299879; Rheindt FE, 2005, INSECT SOC, V52, P163, DOI 10.1007/s00040-004-0787-4; Rheindt FE, 2004, BEHAV ECOL SOCIOBIOL, V56, P472, DOI 10.1007/s00265-004-0808-3; Rosenheim JA, 1996, AM NAT, V148, P501, DOI 10.1086/285937; Sanders NJ, 2004, ECOL ENTOMOL, V29, P632, DOI 10.1111/j.0307-6946.2004.00641.x; Schwander T, 2006, J EVOLUTION BIOL, V19, P402, DOI 10.1111/j.1420-9101.2005.01023.x; Smith CR, 2006, J INSECT SCI, V6, DOI 10.1673/2006_06_32.1; SMITH CC, 1984, ANNU REV ECOL SYST, V15, P329, DOI 10.1146/annurev.es.15.110184.001553; Smith CR, 2007, ECOL ENTOMOL, V32, P105, DOI 10.1111/j.1365-2311.2006.00845.x; Smith CR, 2005, J INSECT BEHAV, V18, P859, DOI 10.1007/s10905-005-8745-1; *STATSOFT, 2004, STATISTICA DAT AN SO; Stearns S. C., 1992, EVOLUTION LIFE HIST; Toth AL, 2005, ANIM BEHAV, V69, P427, DOI 10.1016/j.anbehav.2004.03.017; TRIVERS RL, 1976, SCIENCE, V191, P249, DOI 10.1126/science.1108197; Tschinkel WR, 1999, ANN ENTOMOL SOC AM, V92, P80, DOI 10.1093/aesa/92.1.80; TSCHINKEL WR, 1993, ECOL MONOGR, V63, P425, DOI 10.2307/2937154; Tschinkel WR, 1998, INSECT SOC, V45, P385, DOI 10.1007/s000400050097; Tschinkel WR, 1999, ECOL ENTOMOL, V24, P222, DOI 10.1046/j.1365-2311.1999.00184.x; Volny VP, 2002, P NATL ACAD SCI USA, V99, P6108, DOI 10.1073/pnas.092066699; Wagner D, 1999, OECOLOGIA, V119, P175, DOI 10.1007/s004420050774; WHITFORD WG, 1978, ECOLOGY, V59, P185, DOI 10.2307/1936647; Wiernasz DC, 2004, MOL ECOL, V13, P1601, DOI 10.1111/j.1365-294X.2004.02153.x; Wiernasz DC, 2001, EVOLUTION, V55, P324; Wilson EO, 1990, ANTS 55 17 17 0 7 SPRINGER NEW YORK 233 SPRING STREET, NEW YORK, NY 10013 USA 0340-5443 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. JUL 2007 61 9 1479 1487 10.1007/s00265-007-0380-8 9 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology 178YJ WOS:000247256000017 2018-11-12 J Heppell, SS Heppell, Selina S. Elasticity analysis of green sturgeon life history ENVIRONMENTAL BIOLOGY OF FISHES English Article Acipenser medirostris; elasticity analysis; demography; life history; harvest POPULATION VIABILITY; CONSERVATION; MODEL; EXTINCTION; MARINE; RISK I provide an analysis of a simplified life history model for green sturgeon, Acipenser medirostris, based on published and recent estimates of reproduction and growth rates and survival rates from life history theory. The deterministic life cycle models serve as a tool for qualitative analysis of the impacts of perturbations on green sturgeon, including harvest regulations based on minimum and maximum size limits ("slot limits"). Elasticity analysis of models with two alternative age-length relationships give similar results, with a high sensitivity of population growth rate to changes in the survival rate of subadult and adult fish. A dramatic increase in the survival of young of the year sturgeon or annual egg production is required to compensate for relatively low levels of fishing mortality. Peak reproductive values occur from ages 25 to 40. An increase or decrease in the maximum and minimum size limits can have a profound effect on the elasticity of population growth to changes in the annual survival rate of age classes specified by the slot, due to changes in the number of age classes of subadults and adults that are available for harvest. This analysis provides managers with a simple tool to assess the relative impacts of alternative harvest regulations. In general, green sturgeon follow life history patterns similar to other sturgeon, but species-specific demographic information is needed to produce more complex assessment and viability analysis models. Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA Heppell, SS (reprint author), Oregon State Univ, Dept Fisheries & Wildlife, 104 Nash Hall, Corvallis, OR 97331 USA. selina.heppell@oregonstate.edu Berkeley SA, 2004, FISHERIES, V29, P23, DOI 10.1577/1548-8446(2004)29[23:FSVPOA]2.0.CO;2; Boreman J, 1997, ENVIRON BIOL FISH, V48, P399, DOI 10.1023/A:1007345806559; CASWELL H, 1984, AQUACULTURE, V43, P123, DOI 10.1016/0044-8486(84)90016-4; Caswell H, 2001, MATRIX POPULATION MO; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; ERICKSON DL, 2006, ENV BIOL FISH; FARR RA, 2002, F178R OR DEP FISH WI; Ferriere R, 1996, ACTA OECOL, V17, P629; Groom Martha J., 1998, P4; Gross MR, 2002, AM FISH S S, V28, P13; Heppell Selina S., 2000, P148, DOI 10.1007/0-387-22648-6_10; Heppell SS, 1998, COPEIA, P367, DOI 10.2307/1447430; Heppell SS, 2000, ECOLOGY, V81, P654, DOI 10.1890/0012-9658(2000)081[0654:LHAEPP]2.0.CO;2; Heppell SS, 1999, AM FISH S S, V23, P137; Jager HI, 2001, ECOL MODEL, V144, P61, DOI 10.1016/S0304-3800(01)00362-3; Jager HI, 2001, ENVIRON BIOL FISH, V60, P347, DOI 10.1023/A:1011036127663; Morris WF, 2002, QUANTITATIVE CONSERV; Musick JA, 2000, FISHERIES, V25, P6, DOI 10.1577/1548-8446(2000)025<0006:MEADFS>2.0.CO;2; Perrins C. M., 1991, BIRD POPULATION STUD, P594; Pine WE, 2001, T AM FISH SOC, V130, P1164, DOI 10.1577/1548-8659(2001)130<1164:PVOTGO>2.0.CO;2; Reed JM, 2002, CONSERV BIOL, V16, P7, DOI 10.1046/j.1523-1739.2002.99419.x; RIEN TA, 2001, F178R OR DEP FISH WI; ROOT KV, 2002, BIOL MANAGEMENT PROT; SCHEMSKE DW, 1994, ECOLOGY, V75, P584, DOI 10.2307/1941718; *USFWS, 1993, KLAM RIV FISH INV 19; Van Eenennaam JP, 2006, T AM FISH SOC, V135, P151, DOI 10.1577/T05-030.1; VANWINKLE W, 2002, BIOL MANAGEMENT PROT 29 12 14 1 20 SPRINGER NEW YORK 233 SPRING STREET, NEW YORK, NY 10013 USA 0378-1909 ENVIRON BIOL FISH Environ. Biol. Fishes JUL-AUG 2007 79 3-4 357 368 10.1007/s10641-006-9052-1 12 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 200IO WOS:000248757300014 2018-11-12 J Terblanche, JS; Janion, C; Chown, SL Terblanche, J. S.; Janion, C.; Chown, S. L. Variation in scorpion metabolic rate and rate-temperature relationships: implications for the fundamental equation of the metabolic theory of ecology JOURNAL OF EVOLUTIONARY BIOLOGY English Article allometry; metabolic down-regulation; phenotypic plasticity; repeatability; scaling. ALLOMETRIC SCALING LAWS; DROSOPHILA-MELANOGASTER; OXYGEN-CONSUMPTION; WATER-LOSS; PHENOTYPIC PLASTICITY; LABORATORY SELECTION; HSP70 EXPRESSION; COLD ADAPTATION; MOLECULAR CLOCK; LIFE-HISTORY The fundamental equation of the metabolic theory of ecology (MTE) indicates that most of the variation in metabolic rate are a consequence of variation in organismal size and environmental temperature. Although evolution is thought to minimize energy costs of nutrient transport, its effects on metabolic rate via adaptation, acclimatization or acclimation are considered small, and restricted mostly to variation in the scaling constant, b(0). This contrasts strongly with many conclusions of evolutionary physiology and life-history theory, making closer examination of the fundamental equation an important task for evolutionary biologists. Here we do so using scorpions as model organisms. First, we investigate the implications for the fundamental equation Of metabolic rate variation and its temperature dependence in the scorpion Uroplectes carinatus following laboratory acclimation. During 22 days of acclimation at 25 degrees C metabolic rates declined significantly (from 127.4 to 78.2 mu W; P = 0.0001) whereas mean body mass remained constant (367.9-369.1 mg; P = 0.999). In field-fresh scorpions, metabolic rate-temperature (MRT) relationships varied substantially within and among individuals, and therefore had low repeatability values (tau = 0.02) and no significant among-individual variation (P = 0.181). However, acclimation resulted in a decline in within-individual variation of MRT slopes which subsequently revealed significant differences among individuals (P = 0.0031) and resulted in a fourfold increase in repeatability values (tau = 0.08). These results highlight the fact that MRT relationships can show substantial, directional variation within individuals over time. Using a randomization model we demonstrate that the reduction in metabolic rate with acclimation while body mass remains constant causes a decline both in the value of the mass-scaling exponent and the coefficient of determination. Furthermore, interspecific comparisons of activation energy, E, demonstrated significant variation in scorpions (0.09-1.14 eV), with a mean value of 0.77 eV, significantly higher than the 0.6-0.7 eV predicted by the fundamental equation. Our results add to a growing body of work questioning both the theoretical basis and empirical support for the MTE, and suggest that alternative models of metabolic rate variation incorporating explicit consideration of life history evolution deserve further scrutiny. Univ Stellenbosch, Ctr Invas Biol, Dept Bot & Zool, Stellenbosch, South Africa Terblanche, JS (reprint author), Univ Stellenbosch, Ctr Invas Biol, Private Bag XI, ZA-7602 Stellenbosch, South Africa. jst@sun.ac.za Chown, Steven/H-3347-2011 Chown, Steven/0000-0001-6069-5105 NIAID NIH HHS [AI-52456] Addo-Bediako A, 2002, FUNCT ECOL, V16, P332, DOI 10.1046/j.1365-2435.2002.00634.x; Allen AP, 2006, P NATL ACAD SCI USA, V103, P9130, DOI 10.1073/pnas.0603587103; Allen AP, 2002, SCIENCE, V297, P1545, DOI 10.1126/science.1072380; Branscome DD, 2005, PHYSIOL ENTOMOL, V30, P144, DOI 10.1111/j.1365-3032.2005.00439.x; Bridges CR, 1997, PHYSIOL ZOOL, V70, P244, DOI 10.1086/639587; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Catala SS, 2004, MEM I OSWALDO CRUZ, V99, P25, DOI 10.1590/S0074-02762004000100005; Chaui-Berlinck JG, 2006, J EXP BIOL, V209, P3045, DOI 10.1242/jeb.02362; Chown S.L, 2003, FUNCT ECOL, V17, P562, DOI DOI 10.1046/J.1365-2435.2003.07431.X; Chown SL, 2004, FUNCT ECOL, V18, P159, DOI 10.1111/j.0269-8463.2004.00825.x; CHOWN SL, 2007, IN PRESS FUNCT ECOL, V21; Clarke A, 2004, FUNCT ECOL, V18, P243, DOI 10.1111/j.0269-8463.2004.00841.x; Clarke A, 2006, FUNCT ECOL, V20, P405, DOI 10.1111/j.1365-2435.2006.01109.x; Clarke A, 2004, FUNCT ECOL, V18, P252, DOI 10.1111/j.0269-8463.2004.00842.x; Cossins AH, 1987, TEMPERATURE BIOL ANI; Ernest SKM, 2003, ECOL LETT, V6, P990, DOI 10.1046/j.1461-0248.2003.00526.x; Falconer DS, 1996, INTRO QUANTITATIVE G; Feder ME, 2000, ANNU REV ECOL SYST, V31, P315, DOI 10.1146/annurev.ecolsys.31.1.315; FEDER ME, 2003, NAT REV GENET, V4, P649, DOI DOI 10.1038/NRG1128; Gefen E, 2006, COMP BIOCHEM PHYS A, V144, P58, DOI 10.1016/j.cbpa.2006.02.002; Gibbs AG, 1999, J EXP BIOL, V202, P2709; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Gillooly JF, 2006, FUNCT ECOL, V20, P400, DOI 10.1111/j.1365-2435.2006.01110.x; Gillooly JF, 2005, P NATL ACAD SCI USA, V102, P140, DOI 10.1073/pnas.0407735101; Glazier DS, 2005, BIOL REV, V80, P611, DOI 10.1017/S1464793105006834; HADLEY NF, 1969, COMP BIOCHEM PHYSIOL, V29, P217, DOI 10.1016/0010-406X(69)91737-X; HAMMACK L, 1991, J CHEM ECOL, V17, P2143, DOI 10.1007/BF00987997; Harshman LG, 2000, TRENDS ECOL EVOL, V15, P32, DOI 10.1016/S0169-5347(99)01756-5; HAWKINS AJS, 1995, J THERM BIOL, V20, P23, DOI 10.1016/0306-4565(94)00023-C; Hochachka PW, 2002, BIOCH ADAPTATION MEC; Hodkinson ID, 2003, FUNCT ECOL, V17, P562, DOI 10.1046/j.1365-2435.2003.07431.x; Hoekstra HE, 2001, P NATL ACAD SCI USA, V98, P9157, DOI 10.1073/pnas.161281098; Hoffmann AA, 2003, J THERM BIOL, V28, P175, DOI 10.1016/S0306-4565(02)00057-8; Hoffmann AA, 2001, EVOLUTION, V55, P436; HUEY RB, 1991, EVOLUTION, V45, P751, DOI 10.1111/j.1558-5646.1991.tb04343.x; KING WW, 1979, PHYSIOL ZOOL, V52, P176, DOI 10.1086/physzool.52.2.30152562; Kingsolver JG, 1998, AM ZOOL, V38, P545; Kingsolver JG, 2001, GENETICA, V112, P87, DOI 10.1023/A:1013323318612; Kozlowski J, 2004, FUNCT ECOL, V18, P283, DOI 10.1111/j.0269-8463.2004.00830.x; Kozlowski J, 2003, P NATL ACAD SCI USA, V100, P14080, DOI 10.1073/pnas.2334605100; Krebs C.J., 1999, ECOLOGICAL METHODOLG; Krebs RA, 2001, J EVOLUTION BIOL, V14, P75, DOI 10.1046/j.1420-9101.2001.00256.x; LEE RE, 1987, SCIENCE, V238, P1415, DOI 10.1126/science.238.4832.1415; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Lighton J.R.B, 1991, CONCISE ENCY BIOL BI, P201; Lighton JRB, 2001, J EXP BIOL, V204, P607; Makarieva AM, 2005, FUNCT ECOL, V19, P547, DOI 10.1111/j.1365-2435.2005.01005.x; Marais E, 2005, J EXP BIOL, V208, P4495, DOI 10.1242/jeb.01928; Matos M, 2000, J EVOLUTION BIOL, V13, P9, DOI 10.1046/j.1420-9101.2000.00116.x; McKechnie AE, 2006, P R SOC B, V273, P931, DOI 10.1098/rspb.2005.3415; MCRAE TH, 2001, MOL MECH METABOLIC A, P169; Muller-Landau HC, 2006, ECOL LETT, V9, P589, DOI 10.1111/j.1461-0248.2006.00915.x; Muller-Landau HC, 2006, ECOL LETT, V9, P575, DOI 10.1111/j.1461-0248.2006.00904.x; PUNZO F, 1991, COMP BIOCHEM PHYS A, V100, P833, DOI 10.1016/0300-9629(91)90300-2; Rako L, 2006, J INSECT PHYSIOL, V52, P94, DOI 10.1016/j.jinsphys.2005.09.007; Riddle W.A., 1978, Journal of Arid Environments, V1, P243; ROBERTSON HG, 1982, COMP BIOCHEM PHYS A, V71, P605, DOI 10.1016/0300-9629(82)90210-9; Roff D. A., 2002, LIFE HIST EVOLUTION; Savage VM, 2004, FUNCT ECOL, V18, P257, DOI 10.1111/j.0269-8463.2004.00856.x; Sgro CM, 2001, AM NAT, V158, P657, DOI 10.1086/323592; Sgro CM, 2000, AM NAT, V156, P341, DOI 10.1086/303394; Spicer J. I., 1999, PHYSL DIVERSITY ITS; Terblanche JS, 2006, AM J TROP MED HYG, V74, P786, DOI 10.4269/ajtmh.2006.74.786; Terblanche JS, 2005, J INSECT PHYSIOL, V51, P861, DOI 10.1016/j.jinsphys.2005.03.017; Terblanche JS, 2004, J INSECT PHYSIOL, V50, P637, DOI 10.1016/j.jinphys.2004.04.010; Thomas JA, 2006, P NATL ACAD SCI USA, V103, P7366, DOI 10.1073/pnas.0510261103; VANAARDT WJ, 1991, J ENTOMOL SOC S AFR, V54, P129; West GB, 2005, J EXP BIOL, V208, P1575, DOI 10.1242/jeb.01589; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; White CR, 2006, BIOL LETTERS, V2, P125, DOI 10.1098/rsbl.2005.0378; Whitfield J, 2004, PLOS BIOL, V2, P2023, DOI 10.1371/journal.pbio.0020440; Zatsepina OG, 2001, J EXP BIOL, V204, P1869 73 34 41 1 44 BLACKWELL PUBLISHING OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND 1010-061X J EVOLUTION BIOL J. Evol. Biol. JUL 2007 20 4 1602 1612 10.1111/j.1420-9101.2007.01322.x 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 192CE WOS:000248177600033 17584252 Bronze 2018-11-12 J Simmons, LW; Garcia-Gonzalez, F Simmons, L. W.; Garcia-Gonzalez, F. Female crickets trade offspring viability for fecundity JOURNAL OF EVOLUTIONARY BIOLOGY English Article embryo viability; female fecundity; field crickets; life-history trade-off; maternal fitness; paternal effects; polyandry; sexual conflict EGG SIZE; TELEOGRYLLUS-COMMODUS; FIELD CRICKET; CLUTCH SIZE; EVOLUTIONARY ECOLOGY; GRYLLUS-BIMACULATUS; SPERM COMPETITION; POLYANDRY; NUMBER; BENEFITS A growing number of studies are suggesting that females can improve the viability of their embryos by mating with multiple males. However, the reason why females should have low rates of embryo viability is puzzling. Here we conduct a quantitative genetic study of maternal effects on embryo viability in the field cricket Teleogryllus oceanicus. After controlling for female body size, we find significant additive genetic variance for ovary weight, a measure of fecundity, and egg hatching success, a measure of embryo viability. Moreover, we show a genetic trade-off between these traits that is predicted from life-history theory. High rates of embryo mortality in this highly fecund species might therefore be explained by selection favouring an optimum balance between fecundity and embryo viability that maximizes maternal fitness. Paternal effects on female fecundity and embryo viability are often seen as benefits driving the evolution of polyandrous behaviour. However, we raise the alternative possibility that paternal effects might shift females from their naturally selected optimum, and present some support for the notion that sexual conflict over a female's optimal fecundity and embryo viability might generate antagonistic coevolution between the sexes. Univ Western Australia, Ctr Evolut Biol, Sch Anim Biol, Crawley, WA 6009, Australia Simmons, LW (reprint author), Univ Western Australia, Ctr Evolut Biol, Sch Anim Biol, Crawley, WA 6009, Australia. Isimmons@cyllene.uwa.edu.au Simmons, Leigh/B-1815-2011; Garcia-Gonzalez, Francisco/A-3780-2008 Simmons, Leigh/0000-0003-0562-1474; Garcia-Gonzalez, Francisco/0000-0001-9515-9038 Andres JA, 2006, MOL BIOL EVOL, V23, P1574, DOI 10.1093/molbev/msl020; ARNQVIST G, 2005, SEXUAL CONFLICTS; Astles PA, 2006, J EVOLUTION BIOL, V19, P114, DOI 10.1111/j.1420-9101.2005.00997.x; BECKER WA, 1984, MANUAL QUANTIATIVE G; Blanckenhorn WU, 2004, EVOL ECOL, V18, P385, DOI 10.1007/s10682-004-2680-z; Byrne PG, 2003, P ROY SOC B-BIOL SCI, V270, P2079, DOI 10.1098/rspb.2003.2433; CARRIERE Y, 1995, OECOLOGIA, V102, P389, DOI 10.1007/BF00329806; Czesak ME, 2003, EVOLUTION, V57, P1121; Dunn DW, 2005, BEHAV ECOL SOCIOBIOL, V58, P128, DOI 10.1007/s00265-005-0922-x; Dziminski MA, 2006, J EVOLUTION BIOL, V19, P144, DOI 10.1111/j.1420-9101.2005.00978.x; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; ELGAR MA, 1990, OIKOS, V59, P283, DOI 10.2307/3545546; Fedorka KM, 2002, ANIM BEHAV, V64, P361, DOI 10.1006/snbe.2002.3052; Fischer K, 2006, J EVOLUTION BIOL, V19, P380, DOI 10.1111/j.1420-9101.2005.01046.x; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Gall GAE, 2004, AQUACULTURE, V234, P143, DOI 10.1016/j.aquaculture.2004.01.029; Garcia-Gonzalez F, 2005, J EVOLUTION BIOL, V18, P1097, DOI 10.1111/j.1420-9101.2005.00889.x; Garcia-Gonzalez F, 2007, CURR BIOL, V17, P32, DOI 10.1016/j.cub.2006.10.054; Hoffmann AA, 1999, TRENDS ECOL EVOL, V14, P96, DOI 10.1016/S0169-5347(99)01595-5; HOULE D, 1992, GENETICS, V130, P195; Jennions MD, 2007, J EVOLUTION BIOL, V20, P1469, DOI 10.1111/j.1420-9101.2007.01333.x; Kolm N, 2006, J EVOLUTION BIOL, V19, P76, DOI 10.1111/j.1420-9101.2005.00987; LESSELLS CM, 1989, J EVOLUTION BIOL, V2, P457, DOI 10.1046/j.1420-9101.1989.2060457.x; Lynch M, 1998, GENETICS ANAL QUANTI; Mappes T, 2004, EVOLUTION, V58, P645, DOI 10.1111/j.0014-3820.2004.tb01686.x; Mills W, 2004, GENETICS, V168, P2317, DOI 10.1534/genetics.104.030098; PARKER GA, 1989, ETHOLOGY, V82, P3; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; POULIN R, 1995, EVOLUTION, V49, P325, DOI 10.1111/j.1558-5646.1995.tb02245.x; Qvarnstrom A, 2001, TRENDS ECOL EVOL, V16, P95, DOI 10.1016/S0169-5347(00)02063-2; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff DA, 2006, INTRODUCTION TO COMPUTER-INTENSIVE METHODS OF DATA ANALYSIS IN BIOLOGY, P1, DOI 10.2277/ 0521608651; Shikano T, 2005, J EXP ZOOL PART A, V303A, P635, DOI 10.1002/jez.a.161; Simmons LW, 2001, J EVOLUTION BIOL, V14, P585, DOI 10.1046/j.1420-9101.2001.00309.x; Simmons LW, 2003, J EVOLUTION BIOL, V16, P624, DOI 10.1046/j.1420-9101.2003.00572.x; SIMMONS LW, 1988, ECOL ENTOMOL, V13, P57, DOI 10.1111/j.1365-2311.1988.tb00333.x; Simmons LW, 2005, ANNU REV ECOL EVOL S, V36, P125, DOI 10.1146/annurev.ecolsys.36.102403.112501; Simmons LW, 2003, BEHAV ECOL, V14, P539, DOI 10.1093/beheco/arg038; SIMONS AM, 1994, EVOLUTION, V48, P1637, DOI 10.1111/j.1558-5646.1994.tb02201.x; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SNYDER RJ, 1991, COPEIA, P529; STANLEYSAMUELSON DW, 1986, PHYSIOL ENTOMOL, V11, P213, DOI 10.1111/j.1365-3032.1986.tb00408.x; STANLEYSAMUELSON DW, 1985, ARCH INSECT BIOCHEM, V2, P367, DOI 10.1002/arch.940020404; STANLEYSAMUELSON DW, 1987, PHYSIOL ENTOMOL, V12, P347, DOI 10.1111/j.1365-3032.1987.tb00760.x; STANLEYSAMUELSON DW, 1983, J INSECT PHYSIOL, V29, P41, DOI 10.1016/0022-1910(83)90104-X; Su GS, 1997, AQUACULTURE, V154, P115, DOI 10.1016/S0044-8486(97)00050-1; Tregenza T, 1998, EVOLUTION, V52, P1726, DOI 10.1111/j.1558-5646.1998.tb02252.x; Wagner WE, 2003, EVOLUTION, V57, P2054, DOI 10.1554/02-548; Yanagi SI, 2006, ANN ENTOMOL SOC AM, V99, P364, DOI 10.1603/0013-8746(2006)099[0364:HAGCEF]2.0.CO;2 51 13 13 1 22 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JUL 2007 20 4 1617 1623 10.1111/j.1420-9101.2007.01320.x 7 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 192CE WOS:000248177600035 17584254 Bronze 2018-11-12 J Brzek, P; Konarzewski, M Brzek, Pawel; Konarzewski, Marek Relationship between avian growth rate and immune response depends on food availability JOURNAL OF EXPERIMENTAL BIOLOGY English Article body mass increments; food availability; immune; response; life history; Riparia riparia; trade-off NESTLING BARN SWALLOWS; MARTINS DELICHON-URBICA; TASTY CHICK HYPOTHESIS; RIPARIA-RIPARIA; HOUSE MARTINS; SAND MARTIN; TRADE-OFFS; EVOLUTIONARY ECOLOGY; LOCAL RECRUITMENT; HIRUNDO-RUSTICA Life history theory predicts that when resources are limited growing organisms are likely to trade an immune response for competing demands of growth. To test this we examined the effect of energy intake on body mass increments and an immune response in hand-reared sand martin (Riparia riparia) nestlings. We subjected the nestlings to three different feeding regimes, mimicking the range of food availability in the wild, and then evaluated nestlings' immune response to phytohaemagglutinin ( PHA). Direction of correlation between the magnitude of PHA-induced swelling response and body mass increments depended on food availability: it was negative when food was scarce and positive when resources were plentiful. There was no significant correlation between the two traits under intermediate feeding conditions. We conclude that the relative cost of immune function in young birds depends on food availability and, therefore, may be modified by external factors such as weather conditions or hatching asynchrony. Univ Bialystok, Dept Anim Ecol, PL-15950 Bialystok, Poland Brzek, P (reprint author), Univ Wisconsin, Dept Wildlife Ecol, 213 Russell Labs,1630 Linden Dr, Madison, WI 53706 USA. pbrzek2@wisc.edu Konarzewski, Marek/0000-0001-7428-6521 Birkhead TR, 1999, P ROY SOC B-BIOL SCI, V266, P385, DOI 10.1098/rspb.1999.0649; Brommer JE, 2004, P ROY SOC B-BIOL SCI, V271, pS110, DOI 10.1098/rsbl.2003.0103; BRYANT DM, 1975, IBIS, V117, P180, DOI 10.1111/j.1474-919X.1975.tb04206.x; Brzek P, 2004, AUK, V121, P1187, DOI 10.1642/0004-8038(2004)121[1187:EOROGD]2.0.CO;2; Brzek P, 2001, J EXP BIOL, V204, P3065; Christe P, 1998, OIKOS, V83, P175, DOI 10.2307/3546559; Christe P, 2001, OECOLOGIA, V126, P333, DOI 10.1007/s004420000527; Cichon M, 2005, J EVOLUTION BIOL, V18, P962, DOI 10.1111/j.1420-9101.2005.00910.x; Fargallo JA, 2002, ECOL LETT, V5, P95, DOI 10.1046/j.1461-0248.2002.00290.x; GEBHARDTHENRICH S, 1998, AVIAN GROWTH DEV, P324; Gwinner H., 2006, Acta Zoologica Sinica, V52, P280; Hoi-Leitner M, 2001, BEHAV ECOL SOCIOBIOL, V49, P333, DOI 10.1007/s002650000310; Horak P, 2000, CAN J ZOOL, V78, P905, DOI 10.1139/cjz-78-6-905; Kennedy MW, 2006, TRENDS ECOL EVOL, V21, P653, DOI 10.1016/j.tree.2006.09.017; Klasing K. C., 1999, P INT ORNITHOL C, P2817; Klasing Kirk C., 2004, Acta Zoologica Sinica, V50, P961; Ksiazek A, 2003, P ROY SOC B-BIOL SCI, V270, P2025, DOI 10.1098/rspb.2003.2474; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Lifjeld JT, 2002, OECOLOGIA, V130, P185, DOI 10.1007/s004420100798; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; LOCHMILLER RL, 1993, AUK, V110, P503, DOI 10.2307/4088414; Manly BF, 1997, RANDOMIZATION BOOTST; Martin LB, 2006, FUNCT ECOL, V20, P290, DOI 10.1111/j.1365-2435.01094.x; Mauck RA, 2005, FUNCT ECOL, V19, P1001, DOI 10.1111/j.1365-2435.2005.01060.x; McCarty JP, 1999, IBIS, V141, P286, DOI 10.1111/j.1474-919X.1999.tb07551.x; Merino S, 1999, ANIM BEHAV, V58, P219, DOI 10.1006/anbe.1999.1127; Merino S, 2000, OIKOS, V90, P327, DOI 10.1034/j.1600-0706.2000.900213.x; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Mock D. W., 1997, EVOLUTION SIBLING RI; Moller AP, 2004, OIKOS, V104, P299, DOI 10.1111/j.0030-1299.2004.12844.x; Moreno J, 2005, J AVIAN BIOL, V36, P251, DOI 10.1111/j.0908-8857.2005.03413.x; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Pilorz V, 2005, PHYSIOL BEHAV, V85, P205, DOI 10.1016/j.physbeh.2005.04.008; Roff D. A., 2002, LIFE HIST EVOLUTION; Saino N, 1997, J ANIM ECOL, V66, P827, DOI 10.2307/5998; Saino N, 2002, EVOLUTION OF BEGGING: COMPETITION, COOPERATION AND COMMUNICATION, P245, DOI 10.1007/0-306-47660-6_13; Saino N, 2002, OECOLOGIA, V133, P139, DOI 10.1007/s00442-002-1015-4; Saino N, 2001, J AVIAN BIOL, V32, P263, DOI 10.1111/j.0908-8857.2001.320309.x; Sandland GJ, 2003, TRENDS PARASITOL, V19, P571, DOI 10.1016/j.pt.2003.10.006; SCHEW WA, 1998, AVIAN GROWTH DEV EVO, P288; Schmid-Hempel P, 2003, P ROY SOC B-BIOL SCI, V270, P357, DOI 10.1098/rspb.2002.2265; Simon A, 2003, OIKOS, V102, P551, DOI 10.1034/j.1600-0706.2003.12307.x; Smits JE, 1999, FUNCT ECOL, V13, P567, DOI 10.1046/j.1365-2435.1999.00338.x; SMITS JE, 2001, FUNCT ECOL, V15, P812; Snoeijs T, 2005, OECOLOGIA, V145, P165, DOI 10.1007/s00442-005-0088-2; Soler JJ, 2003, P ROY SOC B-BIOL SCI, V270, P241, DOI 10.1098/rspb.2002.2217; STACK JM, 1998, AVIAN GROWTH DEV, P3; Szep T, 2000, OECOLOGIA, V125, P201, DOI 10.1007/s004420000447; Szep T, 1999, OECOLOGIA, V119, P9, DOI 10.1007/s004420050755; TURNER AK, 1979, BIRD STUDY, V26, P117, DOI 10.1080/00063657909476628; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Whitaker S, 2002, OIKOS, V99, P161, DOI 10.1034/j.1600-0706.2002.990116.x; Zuk M., 2002, AM NAT, V160, P9, DOI DOI 10.1086/342131 54 57 60 2 28 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 J EXP BIOL J. Exp. Biol. JUL 1 2007 210 13 2361 2367 10.1242/jeb.003517 7 Biology Life Sciences & Biomedicine - Other Topics 193WC WOS:000248304900022 17575041 Bronze 2018-11-12 J Fitzsimons, JD; Jonas, JL; Claramunt, RM; Williston, B; Williston, G; Marsden, JE; Ellrott, BJ; Honeyfield, DC Fitzsimons, J. D.; Jonas, J. L.; Claramunt, R. M.; Williston, B.; Williston, G.; Marsden, J. E.; Ellrott, B. J.; Honeyfield, D. C. Influence of egg predation and physical disturbance on lake trout Salvelinus namaycush egg mortality and implications for life-history theory JOURNAL OF FISH BIOLOGY English Article eggs; Great Lakes; lake trout; predation; wind fetch GOBIES NEOGOBIUS-MELANOSTOMUS; GREAT-LAKES; SPAWNING HABITAT; ORCONECTES-PROPINQUUS; COTTUS-COGNATUS; MOTTLED SCULPIN; SLIMY SCULPIN; ROUND GOBY; MICHIGAN; ONTARIO The influence of egg predators and physical disturbance on lake trout Salvelinus namaycush egg mortality was investigated in situ in Lake Michigan where recruitment is below detectable levels and egg predator abundance is high. Comparisons were made with Lake Champlain where recruitment is low and egg predator abundance is also low and with Parry Sound (Lake Huron) where recruitment is moderate and egg predators are in low abundance. A multi-density egg seeding method (100 to 5000 eggs m(-2)) was used to quantify the effect of physical disturbance and egg predation on egg loss. Wind fetch was used as an index of physical disturbance and comparisons across all locations and egg densities suggested that at sites with high wind fetch (> 5 km), physical disturbance may be a greater source of egg loss than predation. When analyses were limited to those sites having a wind fetch of < 5 km, the percentage of eggs recovered was found to be linearly related to predator density. The strength of this relationship was based largely on egg recovery at 500 and 1000 eggs m(-2) because recovery at lower (100, 250 eggs m(-2)) and very high (5000 eggs m(-2)) densities was not significantly related to predator density. The reason for this is probably that at low egg densities, crayfish Orconectes spp., the major egg predator at most sites, had difficulty finding and consuming eggs and at high egg densities they became satiated. Egg loss was directly related to wind fetch for Lake Michigan and on average six-fold greater than for Parry Sound suggesting that without corresponding changes in fecundity and age structure, lake trout populations in large lakes like Lake Michigan are inherently less productive than those from enclosed inland waters. (c) 2007 The Authors Journal compilation. (c) 2007 The Fisheries Society of the British Isles. Fisheries & Oceans Canada, Burlington, ON L7R 4A6, Canada; Michigan Dept Nat Resources, Charlevoix Fisheries Res Stn, Charlevoix, MI 49720 USA; Univ Vermont, Sch Nat Resources, Aiken Ctr, Burlington, VT 05405 USA; US Geol Serv, No Appalachian Res Lab, Wellsboro, PA 16901 USA Fitzsimons, JD (reprint author), Fisheries & Oceans Canada, 867 Lakeshore Rd, Burlington, ON L7R 4A6, Canada. fitzsimonsj@dfo-mpo.gc.ca BALON EK, 1980, CHARRS SALMONID FISH, P462; Biga H, 1998, J GREAT LAKES RES, V24, P464, DOI 10.1016/S0380-1330(98)70836-6; Bronte C. R., 2003, POSSIBLE IMPEDIMENTS; Charlebois PM, 2001, J GREAT LAKES RES, V27, P263, DOI 10.1016/S0380-1330(01)70641-7; Chotkowski MA, 1999, J GREAT LAKES RES, V25, P26, DOI 10.1016/S0380-1330(99)70714-8; CLADY JR, 1976, PROGR FISH CULTURIST, V34, P91; Claramunt RM, 2005, T AM FISH SOC, V134, P1048, DOI 10.1577/T04-075.1; Dawson KA, 1997, CAN J FISH AQUAT SCI, V54, P2290, DOI 10.1139/cjfas-54-10-2290; Diana J.S, 1995, BIOL ECOLOGY FISHES; Dubs DOL, 1996, J GREAT LAKES RES, V22, P838, DOI 10.1016/S0380-1330(96)71005-5; Ellrott BJ, 2004, T AM FISH SOC, V133, P252, DOI 10.1577/02-165; Ellrott BJ, 2007, J GREAT LAKES RES, V33, P7, DOI 10.3394/0380-1330(2007)33[7:EOTADO]2.0.CO;2; Eshenroder RL, 1995, J GREAT LAKES RES, V21, P313, DOI 10.1016/S0380-1330(95)71105-4; ESHENRODER RL, 1999, GREAT LAKES FISHERY, V64; Ferreri CP, 1996, J FISH BIOL, V49, P763, DOI 10.1006/jfbi.1996.0209; Fitzsimons JD, 1999, AMBIO, V28, P9; Fitzsimons JD, 2002, J GREAT LAKES RES, V28, P421, DOI 10.1016/S0380-1330(02)70595-9; Fitzsimons JD, 1995, J GREAT LAKES RES, V21, P337, DOI 10.1016/S0380-1330(95)71108-X; FITZSIMONS JD, 1994, PROG FISH CULT, V56, P149, DOI 10.1577/1548-8640(1994)056<0149:SOLTEA>2.3.CO;2; FITZSIMONS JD, 2003, STATE LAKE ONTARIO P, P493; Fitzsimons J, 2006, J GREAT LAKES RES, V32, P227, DOI 10.3394/0380-1330(2006)32[227:LEOSEP]2.0.CO;2; Flavelle LS, 2002, HYDROBIOLOGIA, V483, P137, DOI 10.1023/A:1021371327810; Foote CJ, 1998, CAN J FISH AQUAT SCI, V55, P1524, DOI 10.1139/cjfas-55-6-1524; Holey ME, 1995, J GREAT LAKES RES, V21, P128, DOI 10.1016/S0380-1330(95)71087-5; HOLLING C. S., 1959, CANADIAN ENT, V91, P293; HORNS W H, 1981, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V178, P299; Jonas JL, 2005, CAN J FISH AQUAT SCI, V62, P2254, DOI 10.1139/F05-141; Jones ML, 1995, J GREAT LAKES RES, V21, P505, DOI 10.1016/S0380-1330(95)71122-4; Madenjian Charles P., 1999, North American Journal of Fisheries Management, V19, P658, DOI 10.1577/1548-8675(1999)019<0658:SOLTRI>2.0.CO;2; Marsden JE, 2005, J GREAT LAKES RES, V31, P492; Marsden JE, 1997, J GREAT LAKES RES, V23, P450; MAUDE SH, 1983, CAN J FISH AQUAT SCI, V40, P68, DOI 10.1139/f83-010; MILLER JE, 1992, J FRESHWATER ECOL, V7, P127, DOI 10.1080/02705060.1992.9664678; MILLER MC, 1977, SEDIMENTOLOGY, V24, P507, DOI 10.1111/j.1365-3091.1977.tb00136.x; O'Gorman R, 1998, J GREAT LAKES RES, V24, P131, DOI 10.1016/S0380-1330(98)70805-6; Perkins David L., 1994, North American Journal of Fisheries Management, V14, P866, DOI 10.1577/1548-8675(1994)014<0866:DAUOMB>2.3.CO;2; Perkins DL, 1995, J GREAT LAKES RES, V21, P400, DOI 10.1016/S0380-1330(95)71113-3; Reid DM, 2001, N AM J FISH MANAGE, V21, P156, DOI 10.1577/1548-8675(2001)021<0156:ROLTIP>2.0.CO;2; Roseman EE, 2001, T AM FISH SOC, V130, P341, DOI 10.1577/1548-8659(2001)130<0341:ROWEFR>2.0.CO;2; SAVINO JF, 1991, ENVIRON BIOL FISH, V31, P275, DOI 10.1007/BF00000692; Savino JF, 1999, J GREAT LAKES RES, V25, P36, DOI 10.1016/S0380-1330(99)70715-X; Selgeby JH, 1995, J GREAT LAKES RES, V21, P1, DOI 10.1016/S0380-1330(95)71078-4; SLY PG, 1988, J GREAT LAKES RES, V14, P301, DOI 10.1016/S0380-1330(88)71560-9; SMITH BR, 1980, CAN J FISH AQUAT SCI, V37, P1780, DOI 10.1139/f80-222; THIBODEAU ML, 1990, CANADIAN TECHNICAL R, V1793; Trippel Edward A., 1993, North American Journal of Fisheries Management, V13, P64, DOI 10.1577/1548-8675(1993)013<0064:ROFMAB>2.3.CO;2; VENTLINGSCHWANK AR, 1994, CAN J FISH AQUAT SCI, V51, P1908, DOI 10.1139/f94-192; WELLS L, 1973, GREAT LAKES FISHERY, V20 48 18 18 2 24 BLACKWELL PUBLISHING OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND 0022-1112 J FISH BIOL J. Fish Biol. JUL 2007 71 1 1 16 10.1111/j.1095-8649.2007.01437.x 16 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 181MW WOS:000247441800001 2018-11-12 J Covas, R; Griesser, M Covas, Rita; Griesser, Michael Life history and the evolution of family living in birds PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Review deferred reproduction; delayed dispersal; kin sociality; group living; parental nepotism; survival JAY PERISOREUS-INFAUSTUS; DELAYED DISPERSAL; SIBERIAN JAY; ACORN WOODPECKER; HELPING-BEHAVIOR; NATAL DISPERSAL; REPRODUCTIVE-PERFORMANCE; ECOLOGICAL CONSTRAINTS; OFFSPRING RETENTION; NATURAL-SELECTION The reason why some bird species live in family groups is an important question of evolutionary biology that remains unanswered. Families arise when young delay the onset of independent reproduction and remain with their parents beyond independence. Explanations for why individuals forgo independent reproduction have hitherto focused on dispersal constraints, such as the absence of high-quality breeding openings. However, while constraints successfully explain within-population dispersal decisions, they fail as an ultimate explanation for variation in family formation across species. Most family-living species are long-lived and recent life-history studies demonstrated that a delayed onset of reproduction can be adaptive in long-lived species. Hence, delayed dispersal and reproduction might be an adaptive life-history decision rather than 'the best of a bad job'. Here, we attempt to provide a predictive framework for the evolution of families by integrating life-history theory into family formation theory. We suggest that longevity favours a delayed onset of reproduction and gives parents the opportunity of a prolonged investment in offspring, an option which is not available for short-lived species. Yet, parents should only prolong their investment in offspring if this increases offspring survival and outweighs the fitness cost that parents incur, which is only possible under ecological conditions, such as a predictable access to resources. We therefore propose that both life-history and ecological factors play a role in determining the evolution of family living across species, yet we suggest different mechanisms than those proposed by previous models. Univ Edinburgh, Inst Evolutionary Biol, Edinburgh EH9 3JT, Midlothian, Scotland; Univ Evora, CEA, Macroecol & Conservat Unit, P-7002554 Evora, Portugal; Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; Uppsala Univ, Dept Ecol & Evolut, Evolutionary Biol Ctr, S-75236 Uppsala, Sweden Covas, R (reprint author), CNRS, CEFE, 1919 Route Mende, F-34293 Montpellier, France. rita.covas@cefe.cnrs.fr Griesser, Michael/J-4542-2012; Griesser, Michael/E-4340-2012 Griesser, Michael/0000-0002-2220-2637; Covas, Rita/0000-0001-7130-144X Alonso JC, 2004, J AVIAN BIOL, V35, P434, DOI 10.1111/j.0908-8857.2004.03290.x; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; Arnold KE, 1999, BEHAV ECOL, V10, P465, DOI 10.1093/beheco/10.5.465; Arnold KE, 1998, P ROY SOC B-BIOL SCI, V265, P739, DOI 10.1098/rspb.1998.0355; Baglione V, 2006, P R SOC B, V273, P1529, DOI 10.1098/rspb.2006.3481; Baglione V, 2005, J ANIM ECOL, V74, P842, DOI 10.1111/j.1365-2656.2005.00983.x; Baglione V, 2002, AUK, V119, P790, DOI 10.1642/0004-8038(2002)119[0790:CBGOCC]2.0.CO;2; Barbraud C, 2001, NATURE, V411, P183, DOI 10.1038/35075554; BARKAN CPL, 1986, ANIM BEHAV, V34, P175, DOI 10.1016/0003-3472(86)90021-7; BLACK JM, 1987, BEHAVIOUR, V102, P129, DOI 10.1163/156853986X00081; BROWN JL, 1984, BEHAV ECOL SOCIOBIOL, V14, P203, DOI 10.1007/BF00299620; BROWN JL, 1987, HELPING COMMUNAL BRE; CARMEN WJ, 2004, STUD AVIAN BIOL, V28; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CLUTTONBROCK TH, 1988, REPROD SUCCESS; Cockburn A, 2003, P ROY SOC B-BIOL SCI, V270, P2207, DOI 10.1098/rspb.2003.2503; Cockburn A, 1996, FRONTIERS OF POPULATION ECOLOGY, P451; Cockburn A, 1998, ANNU REV ECOL SYST, V29, P141, DOI 10.1146/annurev.ecolsys.29.1.141; Covas R, 2004, P ROY SOC B-BIOL SCI, V271, P827, DOI 10.1098/rspb.2003.2652; Cramp S, 1977, HDB BIRDS EUROPE MID; Cramp S., 1993, HDB BIRDS EUROPE MID; DESROCHERS A, 1992, ANIM BEHAV, V43, P885, DOI 10.1016/S0003-3472(06)80002-3; Dickinson JL, 2005, P ROY SOC B-BIOL SCI, V272, P2423, DOI 10.1098/rspb.2005.3269; DUPLESSIS MA, 1995, OECOLOGIA, V102, P180, DOI 10.1007/BF00333250; EKMAN J, 1989, WILSON BULL, V101, P263; Ekman J, 2006, J AVIAN BIOL, V37, P289, DOI 10.1111/j.2006.0908-8857.03666.x; EKMAN J, 1992, THEOR POPUL BIOL, V42, P117, DOI 10.1016/0040-5809(92)90008-H; EKMAN J, 1994, BEHAV ECOL, V5, P245, DOI 10.1093/beheco/5.3.245; Ekman J, 1999, P ROY SOC B-BIOL SCI, V266, P911, DOI 10.1098/rspb.1999.0723; Ekman J, 2002, P ROY SOC B-BIOL SCI, V269, P1709, DOI 10.1098/rspb.2002.2082; Ekman J, 2001, AUK, V118, P1, DOI 10.1642/0004-8038(2001)118[0001:DDLUTR]2.0.CO;2; Ekman J, 2001, J ANIM ECOL, V70, P317, DOI 10.1046/j.1365-2656.2001.00490.x; Emlen S.T., 1991, P301; EMLEN ST, 1994, TRENDS ECOL EVOL, V9, P282, DOI 10.1016/0169-5347(94)90030-2; EMLEN ST, 1982, AM NAT, V119, P29, DOI 10.1086/283888; EMLEN ST, 1990, COOPERATIVE BREEDING, P489; ENS BJ, 1995, AM NAT, V146, P625, DOI 10.1086/285818; FORD HA, 1988, BEHAV ECOL SOCIOBIOL, V22, P239, DOI 10.1007/BF00299838; GAYOU DC, 1986, AUK, V103, P540; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; GOODMAN D, 1974, AM NAT, V108, P247, DOI 10.1086/282906; Green DJ, 2001, J AVIAN BIOL, V32, P6, DOI 10.1034/j.1600-048X.2001.320102.x; Green DJ, 2001, J ANIM ECOL, V70, P505, DOI 10.1046/j.1365-2656.2001.00503.x; Griesser M, 2005, ANIM BEHAV, V69, P345, DOI 10.1016/j.anbehav.2004.05.013; Griesser M, 2004, ANIM BEHAV, V67, P933, DOI 10.1016/j.anbehav.2003.09.005; Griesser M, 2003, BEHAV ECOL, V14, P246, DOI 10.1093/beheco/14.2.246; Griesser M, 2006, P R SOC B, V273, P1881, DOI 10.1098/rspb.2006.3527; Griffin AS, 2003, SCIENCE, V302, P634, DOI 10.1126/science.1089402; Griffin AS, 2002, TRENDS ECOL EVOL, V17, P15, DOI 10.1016/S0169-5347(01)02355-2; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Hatchwell BJ, 1999, AUK, V116, P355, DOI 10.2307/4089370; Hatchwell BJ, 2000, ANIM BEHAV, V59, P1079, DOI 10.1006/anbe.2000.1394; HEMMINGS AD, 1994, J ROY SOC NEW ZEAL, V24, P245, DOI 10.1080/03014223.1994.9517469; Koenig W.D., 1981, P261; Koenig WD, 1999, ANIM BEHAV, V57, P1287, DOI 10.1006/anbe.1999.1093; KOENIG WD, 1992, Q REV BIOL, V67, P111, DOI 10.1086/417552; Kokko H, 2001, AM NAT, V157, P188, DOI 10.1086/318632; Komdeur J, 1996, BEHAV ECOL, V7, P326; KOMDEUR J, 1992, NATURE, V358, P493, DOI 10.1038/358493a0; Kraaijeveld K, 2001, ANIM BEHAV, V61, P109, DOI 10.1006/anbe.2000.1591; Kruger O, 2005, J ANIM ECOL, V74, P266, DOI 10.1111/j.1365-2656.2004.00920.x; Macedo RH, 1997, J AVIAN BIOL, V28, P207, DOI 10.2307/3676971; MARTIN K, 1995, AM ZOOL, V35, P340; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; MULDER RA, 1995, J AVIAN BIOL, V26, P234, DOI 10.2307/3677324; NILSSON JA, 1989, J ANIM ECOL, V58, P619, DOI 10.2307/4852; Orell M, 2002, J ANIM ECOL, V71, P55, DOI 10.1046/j.0021-8790.2001.00575.x; Pravosudova EV, 2001, CONDOR, V103, P821, DOI 10.1650/0010-5422(2001)103[0821:TIOKON]2.0.CO;2; PRUETTJONES SG, 1990, NATURE, V348, P541, DOI 10.1038/348541a0; Pyle P, 1997, BEHAV ECOL, V8, P140, DOI 10.1093/beheco/8.2.140; Rathburn MK, 2003, EMU, V103, P295, DOI 10.1071/MU03011; Ridley J, 2002, P ROY SOC B-BIOL SCI, V269, P2559, DOI 10.1098/rspb.2002.2208; Roff Derek A., 1992; RUSSELL EM, 1989, EMU, V89, P61, DOI 10.1071/MU9890061; Schoech SJ, 1996, ANIM BEHAV, V52, P445, DOI 10.1006/anbe.1996.0189; SCOTT DK, 1980, ANIM BEHAV, V28, P938, DOI 10.1016/S0003-3472(80)80156-4; STACEY PB, 1978, SCIENCE, V202, P1298, DOI 10.1126/science.202.4374.1298; STACEY PB, 1987, AM NAT, V130, P654, DOI 10.1086/284737; Stearns CS, 1992, EVOLUTION LIFE HIST; STRICKLAND D, 1993, BIRDS N AM, V40; Tavecchia G, 2001, ECOLOGY, V82, P165, DOI 10.1890/0012-9658(2001)082[0165:SAARVI]2.0.CO;2; VERBEEK NAM, 1981, IBIS, V123, P183, DOI 10.1111/j.1474-919X.1981.tb00923.x; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; VLECK CM, 1991, AUK, V108, P638, DOI 10.2307/4088104; West SA, 2002, SCIENCE, V296, P72, DOI 10.1126/science.1065507; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WREGE PH, 1994, BEHAV ECOL SOCIOBIOL, V35, P185, DOI 10.1007/s002650050086; Young BE, 1996, ECOLOGY, V77, P472, DOI 10.2307/2265623; ZACK S, 1989, ANIM BEHAV, V38, P235, DOI 10.1016/S0003-3472(89)80086-7 90 76 78 1 82 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUN 7 2007 274 1616 1349 1357 10.1098/rspb.2007.0117 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 167UR WOS:000246478500001 17374593 Green Published 2018-11-12 J Gotthard, K; Berger, D; Walters, R Gotthard, Karl; Berger, David; Walters, Richard What keeps insects small? Time limitation during oviposition reduces the fecundity benefit of female size in a butterfly AMERICAN NATURALIST English Article life-history theory; body size; growth trajectory; trade-off; fecundity; Lepidoptera PARARGE-AEGERIA; BODY-SIZE; LIFE-HISTORY; RESOURCE-ALLOCATION; THERMOREGULATORY STRATEGIES; EVOLUTIONARY ARGUMENT; POPULATION-DYNAMICS; COLIAS BUTTERFLIES; FOOD LIMITATION; EGG LIMITATION Laboratory studies of insects suggest that female fecundity may increase very rapidly with adult size and that mass may often increase close to exponentially with time during larval growth. These relationships make it difficult to see how realistic levels of larval mortality can outweigh the fecundity benefit of prolonged growth. Hence, it is unclear why many insects do not become bigger. In this study, we experimentally explore the relationship between female size and fecundity in the butterfly Pararge aegeria and show that thermally induced time limitation during oviposition may substantially reduce the fecundity benefit of larger females. We model time-limited oviposition under natural temperature conditions and show that fecundity is also likely to increase asymptotically with female size in the field. With realistic estimates of juvenile mortality, the model predicts optimal body sizes within the observed range even when larvae grow exponentially. We conclude that one important reason for why insects with a high capacity of larval growth do not evolve toward larger sizes may be that the fecundity benefit is in fact relatively limited under natural conditions. If so, these results may help resolve some of the inconsistencies between theory and empirical patterns in explaining optimal size in insects. Univ Stockholm, Dept Zool, S-10691 Stockholm, Sweden Gotthard, K (reprint author), Univ Stockholm, Dept Zool, S-10691 Stockholm, Sweden. karl.gotthard@zoologi.su.se; david.berger@zoologi.su.se; richard.walters@zoo.ox.ac.uk Gotthard, Karl/F-1163-2011 Gotthard, Karl/0000-0002-4560-6271 Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Angilletta MJ, 2003, TRENDS ECOL EVOL, V18, P234, DOI 10.1016/S0169-5347(03)00087-9; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Berger D, 2006, EVOL ECOL, V20, P575, DOI 10.1007/s10682-006-9118-8; Berwaerts K, 2001, J ZOOL, V255, P261, DOI 10.1017/S0952836901001327; Blanckenhorn WU, 2005, ETHOLOGY, V111, P977, DOI 10.1111/j.1439-0310.2005.01147.x; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; BLAU WS, 1981, OECOLOGIA, V48, P116, DOI 10.1007/BF00346997; BOGGS CL, 1993, ECOLOGY, V74, P433, DOI 10.2307/1939305; Boggs CL, 2005, OECOLOGIA, V144, P353, DOI 10.1007/s00442-005-0076-6; CARROLL AL, 1993, OECOLOGIA, V93, P233, DOI 10.1007/BF00317676; COURTNEY SP, 1983, ECOL ENTOMOL, V8, P271, DOI 10.1111/j.1365-2311.1983.tb00508.x; COX DR, 1972, J R STAT SOC B, V34, P187; D'Amico LJ, 2001, P ROY SOC B-BIOL SCI, V268, P1589, DOI 10.1098/rspb.2001.1698; DAVIES NB, 1978, ANIM BEHAV, V26, P138, DOI 10.1016/0003-3472(78)90013-1; Doak P, 2006, ECOLOGY, V87, P395, DOI 10.1890/05-0647; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Ellers J, 2001, OIKOS, V92, P309, DOI 10.1034/j.1600-0706.2001.920213.x; Esperk T, 2004, PHYSIOL ENTOMOL, V29, P56, DOI 10.1111/j.1365-3032.2004.0365.x; FEENY P, 1985, ECOL MONOGR, V55, P167, DOI 10.2307/1942556; Fox GA, 2001, DESIGN ANAL ECOLOGIC, P253; Gibbs M, 2005, J INSECT SCI, V5, DOI 10.1093/jis/5.1.39; GILCHRIST GW, 1995, AM NAT, V146, P252, DOI 10.1086/285797; Gotthard K, 2001, EXPTL BIOL REV, P287; Gotthard K, 2000, OECOLOGIA, V122, P36, DOI 10.1007/PL00008833; GOTTHARD K, 2004, INTEGR COMP BIOL, V44, P71; HEINRICH B, 1986, ECOLOGY, V67, P593, DOI 10.2307/1937682; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Karlsson B, 2005, J ANIM ECOL, V74, P99, DOI 10.1111/j.1365-2656.2004.00902.x; KARLSSON B, 1990, FUNCT ECOL, V4, P609, DOI 10.2307/2389728; KAZMER DJ, 1995, ECOLOGY, V76, P412, DOI 10.2307/1941200; Kemp DJ, 2004, P ROY SOC B-BIOL SCI, V271, P1707, DOI 10.1098/rspb.2004.2775; Kingsolver JG, 2004, INTEGR COMP BIOL, V44, P450, DOI 10.1093/icb/44.6.450; KINGSOLVER JG, 1984, ECOLOGY, V65, P1835, DOI 10.2307/1937780; KINGSOLVER JG, 1983, AM NAT, V121, P32, DOI 10.1086/284038; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; KRISTENSEN CO, 1994, J APPL ENTOMOL, V117, P92, DOI 10.1111/j.1439-0418.1994.tb00712.x; LEATHER SR, 1988, OIKOS, V51, P386, DOI 10.2307/3565323; Leimar O, 1996, OIKOS, V76, P228, DOI 10.2307/3546194; Margraf N, 2003, FUNCT ECOL, V17, P605, DOI 10.1046/j.1365-2435.2003.00775.x; Migeon JC, 1999, MOL BIOL CELL, V10, P1733, DOI 10.1091/mbc.10.6.1733; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; NYLIN S, 1993, ECOLOGY, V74, P1414, DOI 10.2307/1940071; R Development Core Team, 2005, R LANG ENV STAT COMP; Ratte H. T., 1985, ENV PHYSL BIOCH INSE, P31; Roff D. A., 2002, LIFE HIST EVOLUTION; Rosenheim JA, 1999, EVOL ECOL, V13, P141, DOI 10.1023/A:1006612519265; Rosenheim JA, 2000, P ROY SOC B-BIOL SCI, V267, P1565, DOI 10.1098/rspb.2000.1179; Rosenheim JA, 1996, EVOLUTION, V50, P2089, DOI 10.1111/j.1558-5646.1996.tb03595.x; Sevenster JG, 1998, EVOLUTION, V52, P1241, DOI 10.1111/j.1558-5646.1998.tb01853.x; SPRINGER P, 1986, AM NAT, V127, P252, DOI 10.1086/284483; *STAT, 2005, STAT STAT SOFTW REL; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tammaru T, 1996, OIKOS, V77, P407, DOI 10.2307/3545931; Tammaru T, 1996, OIKOS, V77, P561, DOI 10.2307/3545946; Tammaru T, 2002, OECOLOGIA, V133, P430, DOI 10.1007/s00442-002-1057-7; Tammaru T, 1998, ECOL ENTOMOL, V23, P80, DOI 10.1046/j.1365-2311.1998.00106.x; Van Dyck H, 2002, J EVOLUTION BIOL, V15, P216, DOI 10.1046/j.1420-9101.2002.00384.x; Van Dyck H, 1998, OECOLOGIA, V114, P326, DOI 10.1007/s004420050454; VISSER ME, 1994, J ANIM ECOL, V63, P963, DOI 10.2307/5273; Walters RJ, 2006, AM NAT, V167, P510, DOI 10.1086/501029; West SA, 1996, J ANIM ECOL, V65, P631, DOI 10.2307/5742; WICKMAN PO, 1990, HOLARCTIC ECOL, V13, P238; WICKMAN PO, 1983, ANIM BEHAV, V31, P1206, DOI 10.1016/S0003-3472(83)80027-X; WIKLUND C, 1975, T ROY ENT SOC LONDON, V127, P73; WIKLUND C, 1987, AM NAT, V130, P828, DOI 10.1086/284750 66 57 63 1 27 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 AM NAT Am. Nat. JUN 2007 169 6 768 779 10.1086/516651 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 168WE WOS:000246553900008 17479463 2018-11-12 J Pfenning, B; Poethke, HJ; Hovestadt, T Pfenning, B.; Poethke, H. J.; Hovestadt, T. Dealing with time constraints on development: the effect of food availability ECOLOGICAL ENTOMOLOGY English Article development time; phenotypic plasticity; seasonal habitats; water striders; wing dimorphism AQUARIUS-REMIGIS HETEROPTERA; LIFE-HISTORY ADAPTATION; WATER STRIDER; BODY-SIZE; PHENOTYPIC PLASTICITY; SEASONAL ENVIRONMENT; ENERGY ACQUISITION; INTRINSIC GROWTH; TRADE-OFF; GERRIDAE 1. Life-history theory predicts that organisms should speed up development in response to time constraints. However, acceleration of development carries energetic costs that have to be compensated, e.g. by an increase in foraging rate. For the wing dimorphic water strider Gerris lacustris (L.), the hypothesis was tested that the adjustment of development to time constraints is limited by the availability of food resources. 2. Six cohorts of larvae hatched increasingly late in the season were reared under two feeding regimes. For each cohort and experimental group the physiological time (in degree-days) of larval development was estimated. 3. In both high- and low-food groups there was a significant reduction of physiological time for development towards the end of the season. Furthermore, within cohorts, physiological development time was always lower in the high-food group than in the low-food group. However, there was no significant interaction effect between food treatment and cohort. 4. The results demonstrate that G. lacustris has the flexibility to adjust development to time constraints. In addition, 20% of the 'low-food individuals' developed into the short-winged morph while all of the 'high-food individuals' became long-winged. The limitation of food may thus lead to a reduced allocation of energy into the development of the flight apparatus. This may explain the strong increase in short-wingedness at the end of the season in natural populations, which are highly food limited. Univ Wurzburg, Field Stn Fabrikschleichach, D-97070 Wurzburg, Germany Pfenning, B (reprint author), Univ Wurzburg, Field Stn Fabrikschleichach, Rauhenebrach, D-97070 Wurzburg, Germany. pfenning@biozentrum.uni-wuerzburg.de Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; ANDERSON N, 1982, J HIST SOCIOL, V3, P1; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Berner D, 2004, ECOGRAPHY, V27, P733, DOI 10.1111/j.0906-7590.2005.04012.x; Billerbeck JM, 2000, OECOLOGIA, V122, P210, DOI 10.1007/PL00008848; Blanckenhorn WU, 1998, EVOLUTION, V52, P1394, DOI 10.1111/j.1558-5646.1998.tb02021.x; BLANCKENHORN WU, 1994, OECOLOGIA, V97, P354, DOI 10.1007/BF00317325; BLANCKENHORN WU, 1991, EVOLUTION, V45, P1520, DOI 10.1111/j.1558-5646.1991.tb02655.x; BLANCKENHORN WU, 1995, J EVOLUTION BIOL, V8, P21, DOI 10.1046/j.1420-9101.1995.8010021.x; Carriere Y, 1996, OIKOS, V75, P463, DOI 10.2307/3545887; COHEN D, 1970, AM NAT, V104, P389, DOI 10.1086/282672; Danks H. V., 1994, INSECT LIFE CYCLE PO; Davidowitz G, 2003, EVOL DEV, V5, P188, DOI 10.1046/j.1525-142X.2003.03026.x; De Block M, 2005, ECOLOGY, V86, P185, DOI 10.1890/04-0116; FAIRBAIRN DJ, 1985, CAN J ZOOL, V63, P2594, DOI 10.1139/z85-388; FAIRBAIRN DJ, 1984, OECOLOGIA, V61, P126, DOI 10.1007/BF00379098; Gotthard K, 2000, J ANIM ECOL, V69, P896, DOI 10.1046/j.1365-2656.2000.00432.x; Guthrie M., 1989, ANIMALS SURFACE FILM; HAUSER R, 1982, REV SUISSE ZOOL, V89, P903, DOI 10.5962/bhl.part.82483; HOUSTON AI, 1993, PHILOS T ROY SOC B, V341, P375, DOI 10.1098/rstb.1993.0123; Inoue T, 1997, ZOOL SCI, V14, P21, DOI 10.2108/zsj.14.21; JARVINEN O, 1976, HEREDITAS, V84, P61; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.1890/0012-9658(1999)080[1242:LHABRT]2.0.CO;2; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; KOPFLI R, 1987, REV SUISSE ZOOL, V94, P533; Lankford TE, 2001, EVOLUTION, V55, P1873, DOI 10.1111/j.0014-3820.2001.tb00836.x; Leimar O, 1996, OIKOS, V76, P228, DOI 10.2307/3546194; Masaki S., 1978, P72; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Nijhout H. F., 1994, INSECT HORMONES; NIJHOUT HF, 1979, J INSECT PHYSIOL, V25, P277, DOI 10.1016/0022-1910(79)90055-6; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; NYLIN S, 1992, BIOL J LINN SOC, V47, P301, DOI 10.1111/j.1095-8312.1992.tb00672.x; NYLIN S, 1991, HOLARCTIC ECOL, V14, P192; PARK SO, 1988, ENVIRON ENTOMOL, V17, P150, DOI 10.1093/ee/17.2.150; PFENNING B, 2006, ECOLOGICAL ENTOMOLOG, V31, P121; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff D. A., 2002, LIFE HIST EVOLUTION; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stoks R, 2005, J ANIM ECOL, V74, P708, DOI 10.1111/j.1365-2656.2005.00969.x; Strobbe F, 2004, BIOL J LINN SOC, V83, P187, DOI 10.1111/j.1095-8312.2004.00379.x; Valente LMP, 1999, J FISH BIOL, V55, P675, DOI 10.1006/jfbi.1999.1027; Vepsalainen K., 1974, Acta Zoologica Fennica, V141, P1; Vepsalainen K., 1978, P218; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; ZERA AJ, 1984, EVOLUTION, V38, P1023, DOI 10.1111/j.1558-5646.1984.tb00372.x 47 10 10 0 10 BLACKWELL PUBLISHING OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND 0307-6946 ECOL ENTOMOL Ecol. Entomol. JUN 2007 32 3 273 278 10.1111/j.1365-2311.2007.00867.x 6 Entomology Entomology 176ZN WOS:000247123500004 2018-11-12 J Waelti, MO; Reyer, HU Waelti, Marc Olivier; Reyer, Heinz-Ulrich Food supply modifies the trade-off between past and future reproduction in a sexual parasite-host system (Rana esculenta, Rana lessonae) OECOLOGIA English Article life history theory; costs of reproduction; resource availability; metabolic rate; population dynamics POPULATION-DYNAMICS; OFFSPRING SIZE; BODY CONDITION; FEMALE FROGS; ALLOCATION; CORTICOSTERONE; HYBRIDIZATION; MANIPULATION; TEMPORARIA; INVESTMENT Life history theory is concerned with the costs of survival, growth and reproduction under different ecological conditions and the allocation of resources to meet these costs. Typical approaches used to address these topics include manipulation of food resources, followed by measures of subsequent reproductive traits, and measures of the relationship between current and future reproductive investment. Rarely, however, do studies test for the interaction of past investment, present resource availability and future investment simultaneously. Here, we investigate this interaction in females of a sexual parasite-host system consisting of the hybridogenetic frog Rana esculenta (E) and one of its parental species Rana lessonae (L). We kept females from each of two groups (with or without previous reproduction) under two food treatments (low or high) and regularly recorded their growth as well as their body condition and hormone titres as measures of future reproductive condition. After keeping them in hibernation until the following spring, we exposed the females to males, recorded whether they spawned or not and related this response to their condition in the previous autumn. Past reproduction negatively affected growth during summer and condition during autumn which, in turn, reduced the following year's reproductive output. These costs of previous reproduction were less pronounced under the high than under the low food treatment and lower in R. lessonae than in R. esculenta. Increasing food supply improved reproductive condition more in L than in E females. These species differences in reproductive costs and food requirements provide a mechanistic explanation for why E females skip annual reproduction almost twice as often as L females. Since R. esculenta is a sexual parasite that depends on R. lessonae for successful reproduction, these species-specific life history patterns not only affect individual fitness but also the spatial structure and temporal dynamics of mixed LE populations. Univ Zurich, Inst Zool, CH-8057 Zurich, Switzerland Reyer, HU (reprint author), Univ Zurich, Inst Zool, Winterthurerstr 190, CH-8057 Zurich, Switzerland. ulireyer@zool.unizh.ch ABT G, 2004, COPEIA, P638; Anholt BR, 2003, ECOLOGY, V84, P391, DOI 10.1890/0012-9658(2003)084[0391:OSORLA]2.0.CO;2; Banks PB, 2004, OIKOS, V106, P176, DOI 10.1111/j.0030-1299.2004.12679.x; Beckerman AP, 2002, TRENDS ECOL EVOL, V17, P263, DOI 10.1016/S0169-5347(02)02469-2; Benton TG, 2005, P ROY SOC B-BIOL SCI, V272, P1351, DOI 10.1098/rspb.2005.3081; Berger L., 1977, P367; BERGER L, 1980, FOLIA BIOL-KRAKOW, V28, P3; Berger Leszek, 1994, Amphibia-Reptilia, V15, P408, DOI 10.1163/156853894X00452; Bize P, 2004, J ANIM ECOL, V73, P1080, DOI 10.1111/j.0021-8790.2004.00880.x; Blankenhorn H.J., 1977, P389; Brodmann PA, 1999, OECOLOGIA, V120, P506, DOI 10.1007/s004420050884; Brown CA, 2003, EVOLUTION, V57, P2184, DOI 10.1111/j.0014-3820.2003.tb00397.x; Camargo A, 2005, ANN ZOOL FENN, V42, P513; Castellano S, 2004, COPEIA, P659, DOI 10.1643/CE-03-182R2; CLUTTONBROCK TH, 1983, J ANIM ECOL, V52, P367, DOI 10.2307/4560; Covas R, 2004, P ROY SOC B-BIOL SCI, V271, P827, DOI 10.1098/rspb.2003.2652; DRENT RH, 1980, ARDEA, V68, P225; ELMBERG J, 1991, FUNCT ECOL, V5, P340, DOI 10.2307/2389805; Erelli MC, 2000, ENVIRON ENTOMOL, V29, P476, DOI 10.1603/0046-225X-29.3.476; Gatten Robert E. Jr, 1992, P314; Gignac A, 2005, ECOSCIENCE, V12, P236, DOI 10.2980/i1195-6860-12-2-236.1; Girish S, 2000, J EXP ZOOL, V286, P487, DOI 10.1002/(SICI)1097-010X(20000401)286:5<487::AID-JEZ6>3.0.CO;2-Z; Graf Jean-Daniel, 1989, New York State Museum Bulletin, V466, P289; Green AJ, 2001, ECOLOGY, V82, P1473, DOI 10.2307/2680003; Guex GD, 2002, EVOLUTION, V56, P1036; Hellriegel B, 2000, J EVOLUTION BIOL, V13, P906, DOI 10.1046/j.1420-9101.2000.00235.x; Holenweg AK, 2000, OECOLOGIA, V123, P41, DOI 10.1007/s004420050987; HOLENWEG P. A.-K., 2002, ECOSCIENCE, V9, P1; HOLENWEG PAK, 2001, CAN J ZOOL, V79, P652; Huber H, 2000, EVOL ECOL, V14, P731, DOI 10.1023/A:1011643904616; Jakob EM, 1996, OIKOS, V77, P61, DOI 10.2307/3545585; Koivula M, 2003, ECOLOGY, V84, P398, DOI 10.1890/0012-9658(2003)084[0398:CORITW]2.0.CO;2; Lampo M, 1996, J TROP ECOL, V12, P321, DOI 10.1017/S0266467400009500; Lardner B, 2003, OECOLOGIA, V137, P541, DOI 10.1007/s00442-003-1390-5; Lengagne T, 2006, BEHAV ECOL SOCIOBIOL, V60, P123, DOI 10.1007/s00265-005-0148-y; Lessells C.M., 1991, P32; LICHT P, 1983, GEN COMP ENDOCR, V50, P124, DOI 10.1016/0016-6480(83)90249-6; LUEDDECKE H, 1997, AMPHIB REPTIL, V18, P357; Nager RG, 1997, J ANIM ECOL, V66, P495, DOI 10.2307/5944; NEVEU A, 1991, B FR PECHE PISCIC, P55, DOI 10.1051/kmae:1991008; Pagano Alain, 1999, Alytes (Paris), V16, P130; PAOLUCCI M, 1990, B ZOOL, V57, P253, DOI 10.1080/11250009009355704; Parejo D, 2006, BEHAV ECOL SOCIOBIOL, V60, P184, DOI 10.1007/s00265-005-0155-z; POUGH FH, 1992, ENV PHYSL AMPHIBIANS, P3959; REDSHAW MR, 1972, AM ZOOL, V12, P289; Reyer HU, 2004, J ANIM ECOL, V73, P1089, DOI 10.1111/j.0021-8790.2004.00881.x; Reyer HU, 2004, HERPETOLOGICA, V60, P349, DOI 10.1655/03-77; Reyer HU, 1999, P ROY SOC B-BIOL SCI, V266, P2101, DOI 10.1098/rspb.1999.0894; RITKE ME, 1994, COPEIA, P1014; Roff D. A., 2002, LIFE HIST EVOLUTION; Schmidt-Nielsen K., 1983, ANIMAL PHYSL ADAPTAT; SCHULTZ RJ, 1969, AM NAT, V103, P605, DOI 10.1086/282629; SINSCH U, 1983, THESIS U KOELN GERMA; Sinsch Ulrich, 1992, Salamandra, V28, P116; Snedecor G. W., 1980, STAT METHODS; Som C, 2000, AM NAT, V156, P34, DOI 10.1086/303372; Stearns S. C., 1992, EVOLUTION LIFE HIST; SVENSSON E, 1995, ANIM BEHAV, V49, P2569; Uller T, 2005, J ZOOL, V265, P295, DOI 10.1017/S0952836904006326; UZZELL T, 1975, P ACAD NAT SCI PHILA, V127, P13; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANDERKRAAK G, 1983, GEN COMP ENDOCR, V49, P470; Vorburger C, 2001, EVOLUTION, V55, P2319 63 15 15 0 10 SPRINGER NEW YORK 233 SPRING STREET, NEW YORK, NY 10013 USA 0029-8549 OECOLOGIA Oecologia JUN 2007 152 3 415 424 10.1007/s00442-007-0671-9 10 Ecology Environmental Sciences & Ecology 169TN WOS:000246614700003 17333285 2018-11-12 J Wolf, M; van Doorn, GS; Leimar, O; Weissing, FJ Wolf, Max; van Doorn, G. Sander; Leimar, Olof; Weissing, Franz J. Life-history trade-offs favour the evolution of animal personalities NATURE English Article GASTEROSTEUS-ACULEATUS; INDIVIDUAL-DIFFERENCES; BEHAVIORAL-DIFFERENCES; DISRUPTIVE SELECTION; AVIAN PERSONALITIES; HERITABILITY; POPULATIONS; CONSEQUENCES; STICKLEBACKS; BOLDNESS In recent years evidence has been accumulating that personalities are not only found in humans(1) but also in a wide range of other animal species(2-8). Individuals differ consistently in their behavioural tendencies and the behaviour in one context is correlated with the behaviour in multiple other contexts. From an adaptive perspective, the evolution of animal personalities is still a mystery, because a more flexible structure of behaviour should provide a selective advantage(9-11). Accordingly, many researchers view personalities as resulting from constraints imposed by the architecture of behaviour(7) (but see ref. 12). In contrast, we show here that animal personalities can be given an adaptive explanation. Our argument is based on the insight that the trade-off between current and future reproduction(13) often results in polymorphic populations(14) in which some individuals put more emphasis on future fitness returns than others. Life-history theory predicts that such differences in fitness expectations should result in systematic differences in risk-taking behaviour(15). Individuals with high future expectations (who have much to lose) should be more risk-averse than individuals with low expectations. This applies to all kinds of risky situations, so individuals should consistently differ in their behaviour. By means of an evolutionary model we demonstrate that this basic principle results in the evolution of animal personalities. It simultaneously explains the coexistence of behavioural types, the consistency of behaviour through time and the structure of behavioural correlations across contexts. Moreover, it explains the common finding that explorative behaviour and risk-related traits like boldness and aggressiveness are common characteristics of animal personalities(2-8). Univ Groningen, Theoret Biol Grp, Ctr Ecol & Evolutionary Studies, NL-9751 NN Haren, Netherlands; Stockholm Univ, Dept Zool, SE-10691 Stockholm, Sweden Weissing, FJ (reprint author), Univ Groningen, Theoret Biol Grp, Ctr Ecol & Evolutionary Studies, NL-9751 NN Haren, Netherlands. f.j.weissing@rug.nl van Doorn, G. Sander/G-3247-2011; Leimar, Olof/L-3781-2014; Wolf, Max/L-4903-2013 van Doorn, G. Sander/0000-0002-4703-3788; Leimar, Olof/0000-0001-8621-6977; Weissing, Franz J./0000-0003-3281-663X BAKKER TCM, 1986, BEHAVIOUR, V98, P1, DOI 10.1163/156853986X00937; Bell AM, 2005, J EVOLUTION BIOL, V18, P464, DOI 10.1111/j.1420-9101.2004.00817.x; Bell AM, 2004, ANIM BEHAV, V68, P1339, DOI 10.1016/j.anbehav.2004.05.007; BOISSY A, 1995, Q REV BIOL, V70, P165, DOI 10.1086/418981; CLARK CW, 1994, BEHAV ECOL, V5, P159, DOI 10.1093/beheco/5.2.159; Coleman K, 1998, ANIM BEHAV, V56, P927, DOI 10.1006/anbe.1998.0852; Dall SRX, 2004, ECOL LETT, V7, P734, DOI 10.1111/j.1461-0248.2004.00618.x; Dingemanse NJ, 2002, ANIM BEHAV, V64, P929, DOI 10.1006/anbe.2002.2006; Dingemanse NJ, 2004, P ROY SOC B-BIOL SCI, V271, P847, DOI 10.1098/rspb.2004.2680; Drent PJ, 2003, P ROY SOC B-BIOL SCI, V270, P45, DOI 10.1098/rspb.2002.2168; Gosling SD, 1999, CURR DIR PSYCHOL SCI, V8, P69, DOI 10.1111/1467-8721.00017; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; Groothuis TGG, 2005, NEUROSCI BIOBEHAV R, V29, P137, DOI 10.1016/j.neubiorev.2004.06.010; Hedrick AV, 2000, P ROY SOC B-BIOL SCI, V267, P671, DOI 10.1098/rspb.2000.1054; HUNTINGFORD FA, 1976, ANIM BEHAV, V24, P245, DOI 10.1016/S0003-3472(76)80034-6; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; McNamara JM, 2004, NATURE, V428, P745, DOI 10.1038/nature02432; Pervin LA, 1999, HDB PERSONALITY THEO; Rands SA, 2003, NATURE, V423, P432, DOI 10.1038/nature01630; Reale D, 2000, ANIM BEHAV, V60, P589, DOI 10.1006/anbe.2000.1530; Roff D. A., 2002, LIFE HIST EVOLUTION; Rueffler C, 2006, TRENDS ECOL EVOL, V21, P238, DOI 10.1016/j.tree.2006.03.003; Rueffler C, 2004, THEOR POPUL BIOL, V65, P165, DOI 10.1016/j.tpb.2003.10.001; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sinn DL, 2006, J EVOLUTION BIOL, V19, P1437, DOI 10.1111/j.1420-9101.2006.01136.x; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; Van Doorn GS, 2006, EVOLUTION, V60, P2226, DOI 10.1554/06-291.1; Wilson DS, 1998, PHILOS T ROY SOC B, V353, P199, DOI 10.1098/rstb.1998.0202; WILSON DS, 1994, TRENDS ECOL EVOL, V9, P442, DOI 10.1016/0169-5347(94)90134-1 30 631 642 20 534 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 0028-0836 NATURE Nature MAY 31 2007 447 7144 581 584 10.1038/nature05835 4 Multidisciplinary Sciences Science & Technology - Other Topics 172YZ WOS:000246842000046 17538618 2018-11-12 J Hadley, GL; Rotella, JJ; Garrott, RA Hadley, Gillian L.; Rotella, Jay J.; Garrott, Robert A. Evaluation of reproductive costs for weddell seals in Erebus Bay, Antarctica JOURNAL OF ANIMAL ECOLOGY English Article breeding costs; breeding state; environmental variation; Leptonychotes weddellii; pinniped KITTIWAKE RISSA-TRIDACTYLA; AGE-SPECIFIC SURVIVAL; MCMURDO-SOUND; LEPTONYCHOTES-WEDDELLI; TEMPORARY EMIGRATION; BREEDING EXPERIENCE; CAPTURE-RECAPTURE; FUR SEALS; POPULATION-DYNAMICS; INDIVIDUAL QUALITY 1. Organisms balance current reproduction against future survival and reproduction, which results in life-history trade-offs. These trade-offs are also known as reproductive costs and may represent significant factors shaping life-history strategy for many species. 2. Using multistate mark-resight models and 26 years of mark-resight data (1979-2004), we estimated the costs of reproduction to survival and reproductive probabilities for Weddell seals in Erebus Bay, Antarctica and evaluated whether this species either conformed to the 'prudent parent' reproductive strategy predicted by life-history theory for long-lived mammals or alternatively, incurred costs to survival in order to reproduce in a variable environment (flexible-strategy hypothesis). 3. Results strongly supported the presence of reproductive costs to survival (mean annual survival probability was 0.91 for breeders vs. 0.94 for nonbreeders), a notable difference for a long-lived mammal, demonstrating that investment in reproduction does result in a cost to survival for Weddell seals, contrary to the prudent parent hypothesis. 4. Reproductive costs to subsequent reproductive probabilities were also present for first-time breeders (mean probability of breeding the next year was 31.3% lower for first-time breeders than for experienced breeders), thus supporting our prediction of the influence of breeding experience. 5. We detected substantial annual variation in survival and breeding probabilities. Breeding probabilities were negatively influenced by summer sea-ice extent, whereas weak evidence suggested that survival probabilities were affected more by winter sea-ice extent, and the direction of this effect was negative. However, a model with annual variation unrelated to any of our climate or sea-ice covariates performed best, indicating that further study will be needed to determine the appropriate mechanism or combination of mechanisms underlying this annual variation. Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA Hadley, GL (reprint author), 27820 Southside Centennial Rd, Lima, MT 59739 USA. gillian.hadley@gmail.com Akaike H, 1973, INT S INF THEOR, P267, DOI DOI 10.2307/2334537; ARNASON A N, 1973, Researches on Population Ecology (Tokyo), V15, P1; ARNASON A N, 1972, Researches on Population Ecology (Tokyo), V13, P97; ARNASON AN, 1981, CAN J FISH AQUAT SCI, V38, P1077, DOI 10.1139/f81-148; Arrigo KR, 2004, DEEP-SEA RES PT II, V51, P117, DOI 10.1016/j.dsr2.2003.04.003; Barbraud C, 2005, ECOLOGY, V86, P682, DOI 10.1890/04-0075; Beauplet G, 2006, OIKOS, V112, P430, DOI 10.1111/j.0030-1299.2006.14412.x; Beauplet G, 2005, J ANIM ECOL, V74, P1160, DOI 10.1111/j.1365-2656.2005.01016.x; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; Burnham K. P., 1998, MODEL SELECTION INFE; Cam E, 2000, J ANIM ECOL, V69, P380, DOI 10.1046/j.1365-2656.2000.00400.x; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; CAM E, 2002, AM NAT, V159, P97; Cameron MF, 2004, CAN J ZOOL, V82, P601, DOI 10.1139/Z04-025; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHOQUET R, 2003, USERS MANUAL U CARE; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; COMISO J, 1990, SMSP SSM I DAILY POL; CROXALL JP, 1983, J APPL ECOL, V20, P19, DOI 10.2307/2403373; Croxall JP, 2002, SCIENCE, V297, P1510, DOI 10.1126/science.1071987; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; DRENT RH, 1980, ARDEA, V68, P225; Erikstad KE, 1998, ECOLOGY, V79, P1781; Erikstad KE, 1997, BEHAV ECOL SOCIOBIOL, V40, P95, DOI 10.1007/s002650050320; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; FESTABIANCHET M, 1989, J ANIM ECOL, V58, P785, DOI 10.2307/5124; Fujiwara M, 2002, ECOLOGY, V83, P3266, DOI 10.2307/3072077; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; GOODMAN D, 1974, AM NAT, V108, P247, DOI 10.1086/282906; Hadley GL, 2006, J ANIM ECOL, V75, P1058, DOI 10.1111/j.1365-2656.2006.01118.x; HARRIS MP, 1995, IBIS, V137, P192, DOI 10.1111/j.1474-919X.1995.tb03239.x; HESTBECK JB, 1991, ECOLOGY, V72, P523, DOI 10.2307/2937193; HILL SEB, 1987, THESIS U MINNESOTA M; HURVICH CM, 1989, BIOMETRIKA, V76, P297, DOI 10.2307/2336663; JACOBSEN KO, 1995, ECOLOGY, V76, P1636, DOI 10.2307/1938164; Jenouvrier S, 2005, OIKOS, V108, P511, DOI 10.1111/j.0030-1299.2005.13351.x; Kendall WL, 2002, ECOLOGY, V83, P3276; Kendall WL, 1997, ECOLOGY, V78, P563; Kwok R, 2002, J CLIMATE, V15, P487, DOI 10.1175/1520-0442(2002)015<0487:SOCASI>2.0.CO;2; LUNN NJ, 1994, J ANIM ECOL, V63, P827, DOI 10.2307/5260; McMahon CR, 2005, P ROY SOC B-BIOL SCI, V272, P923, DOI 10.1098/rspb.2004.3038; McMahon CR, 2004, BEHAV ECOL SOCIOBIOL, V55, P349, DOI 10.1007/s00265-003-0721-1; NICHOLS JD, 1992, J WILDLIFE MANAGE, V56, P485, DOI 10.2307/3808863; Ollason J.C., 1988, P263; ORELL M, 1994, OECOLOGIA, V100, P339, DOI 10.1007/BF00316963; Pistorius PA, 2004, J ZOOL, V263, P107, DOI 10.1017/S0952836904004984; REID WV, 1987, OECOLOGIA, V74, P458, DOI 10.1007/BF00378945; REITER J, 1991, BEHAV ECOL SOCIOBIOL, V28, P153, DOI 10.1007/BF00172166; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; SAETHER BE, 1983, J MAMMAL, V64, P226, DOI 10.2307/1380552; Schaub M, 2004, ECOLOGY, V85, P2107, DOI 10.1890/03-3110; SINIFF DB, 1977, ECOL MONOGR, V47, P319, DOI 10.2307/1942520; Stearns S. C., 1992, EVOLUTION LIFE HIST; STIRLING I, 1974, AUST J ZOOL, V22, P39, DOI 10.1071/ZO9740039; STIRLING I, 1969, ECOLOGY, V50, P573, DOI 10.2307/1936247; Tavecchia G, 2005, J ANIM ECOL, V74, P201, DOI 10.1111/j.1365-2656.2005.00916.x; TESTA JW, 1987, ECOL MONOGR, V57, P149, DOI 10.2307/1942622; TESTA JW, 1987, CAN J ZOOL, V65, P1091, DOI 10.1139/z87-173; TESTA JW, 1989, MAR MAMMAL SCI, V5, P399, DOI 10.1111/j.1748-7692.1989.tb00354.x; TUOMI J, 1983, AM ZOOL, V23, P25; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Viallefont A, 1995, AUK, V112, P67, DOI 10.2307/4088767; WEIMERSKIRCH H, 1990, J ANIM ECOL, V59, P867, DOI 10.2307/5019; Weladji RB, 2006, P ROY SOC B-BIOL SCI, V273, P1239, DOI 10.1098/rspb.2005.3393; White GC, 1999, BIRD STUDY, V46, P120; Williams B. K., 2002, ANAL MANAGEMENT ANIM; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WOOLLER RD, 1977, IBIS, V119, P339, DOI 10.1111/j.1474-919X.1977.tb08252.x 71 51 51 2 28 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. MAY 2007 76 3 448 458 10.1111/j.1365-2656.2007.01219.x 11 Ecology; Zoology Environmental Sciences & Ecology; Zoology 155WI WOS:000245608900004 17439462 Bronze 2018-11-12 J Arnold, KE; Blount, JD; Metcalfe, NB; Orr, KJ; Adam, A; Houston, D; Monaghan, P Arnold, Kathryn E.; Blount, Jonathan D.; Metcalfe, Neil B.; Orr, Kate J.; Adam, Aileen; Houston, David; Monaghan, Pat Sex-specific differences in compensation for poor neonatal nutrition in the zebra finch Taeniopygia guttata JOURNAL OF AVIAN BIOLOGY English Article MATERNAL INVESTMENT; OFFSPRING SEX; POEPHILA-GUTTATA; SIZE DIMORPHISM; NESTLING DIET; GROWTH-RATES; RATIO; ATTRACTIVENESS; EVOLUTION; FEMALES Individuals can compensate for poor early, nutrition by accelerating their growth rates once diet improves, but if malnutrition Occurs at a key stage of development only certain body structures may compensate fully. This degree of compensation is predicted to differ between the sexes and also between species with different life history strategies. In this paper we determine how males and females in a short-lived bird species, with only slight size dimorphism, differ in their abilities to compensate for a poor start in life. Here, zebra finch Taeniopygia guttata chicks from 93 broods were reared on either a standard quality (SO), or low quality (LQ) diet for the first 15 d of life, followed by a standard diet for the rest of their lives. Thus, the period of nutritional manipulation was relatively short compared with previous studies. Nestlings on a LQ diet showed slower body mass and tarsus growth rates than those on SQ diet but this was reversed after the diet of the LQ birds was improved. LQ birds of both sexes were able to fully compensate in terms of body mass and beak colour, but not tarsus length. Body size and beak colour are sexually selected traits in male zebra finches. By adulthood LQ females had significantly shorter wings than other birds, apparently directing resources into sex-specific structures instead of feather and skeletal growth. Thus, our experiment showed that the sexes differed in how they phenotypically compensated for a poor start in life. Males in particular invested sparse resources into structures associated with mate acquisition, as Proposed by life history theory for a species that 'lives fast and dies young.' We predict that this relatively short period of malnutrition during early development will have long term, sex-specific, fitness consequences for these birds. Univ Glasgow, Inst Biomed & Life Sci, Div Environm & Evolutionary Biol, Glasgow G12 8QQ, Lanark, Scotland Arnold, KE (reprint author), Univ Glasgow, Inst Biomed & Life Sci, Div Environm & Evolutionary Biol, Graham Kerr Bldg, Glasgow G12 8QQ, Lanark, Scotland. K.Arnold@bio.gla.ac.uk Piper, Walter/B-7908-2009; Monaghan, Pat/A-4271-2008; Blount, Jonathan/K-7695-2012; Arnold, Kathryn/F-8683-2016; Monaghan, Pat/E-6810-2015; Metcalfe, Neil/C-5997-2009 Blount, Jonathan/0000-0002-0016-0130; Arnold, Kathryn/0000-0002-6485-6065; Metcalfe, Neil/0000-0002-1970-9349 Alvarez D, 2002, OECOLOGIA, V131, P186, DOI 10.1007/s00442-002-0876-x; Arnold KE, 2003, J AVIAN BIOL, V34, P275, DOI 10.1034/j.1600-048X.2003.03068.x; ARNOLD KE, 2003, P R SOC B, V2, P216; Badyaev AV, 2001, EVOLUTION, V55, P176; Barker DJP, 2002, INT J EPIDEMIOL, V31, P1235, DOI 10.1093/ije/31.6.1235; Birkhead TR, 1999, P ROY SOC B-BIOL SCI, V266, P385, DOI 10.1098/rspb.1999.0649; Bize P, 2003, J ANIM ECOL, V72, P633, DOI 10.1046/j.1365-2656.2003.00734.x; Blount JD, 2003, SCIENCE, V300, P125, DOI 10.1126/science.1082142; Blount JD, 2003, P ROY SOC B-BIOL SCI, V270, P1691, DOI 10.1098/rspb.2003.2411; Blount JD, 2006, IBIS, V148, P509, DOI 10.1111/j.1474-919X.2006.00554.x; BOAG PT, 1987, AUK, V104, P155; Bradbury RR, 1998, P ROY SOC B-BIOL SCI, V265, P895, DOI 10.1098/rspb.1998.0375; Bryant DM, 1997, P NUTR SOC, V56, P1025, DOI 10.1079/PNS19970107; Brzek P, 2004, AUK, V121, P1187, DOI 10.1642/0004-8038(2004)121[1187:EOROGD]2.0.CO;2; BURLEY N, 1987, ETHOLOGY, V76, P133; Cockburn A, 2002, SEX RATIOS: CONCEPTS AND RESEARCH METHODS, P266, DOI 10.1017/CBO9780511542053.014; Collins SA, 1996, ANIM BEHAV, V52, P105, DOI 10.1006/anbe.1996.0156; DeKogel CH, 1996, ANIM BEHAV, V51, P699, DOI 10.1006/anbe.1996.0073; Desai M, 1996, BRIT J NUTR, V76, P591, DOI 10.1079/BJN19960065; Eits RM, 2003, BRIT POULTRY SCI, V44, P398, DOI [NO_DOI, 10.1080/0007166031000035544]; GALLIARD JFL, 2005, OIKOS, V111, P368; Gluckman PD, 2004, SCIENCE, V305, P1733, DOI 10.1126/science.1095292; Gorman HE, 2004, P ROY SOC B-BIOL SCI, V271, P1923, DOI 10.1098/rspb.2004.2799; Hassan SM, 2003, POULTRY SCI, V82, P1163, DOI 10.1093/ps/82.7.1163; HAYWOOD S, 1992, P ROY SOC B-BIOL SCI, V249, P195, DOI 10.1098/rspb.1992.0103; Hornick JL, 2000, DOMEST ANIM ENDOCRIN, V19, P121, DOI 10.1016/S0739-7240(00)00072-2; Jespersen LB, 2003, FUNCT ECOL, V17, P737, DOI 10.1111/j.1365-2435.2003.00788.x; Kalmbach E, 2005, BEHAV ECOL, V16, P442, DOI 10.1093/beheco/ari018; Kilner R, 1998, ANIM BEHAV, V56, P155, DOI 10.1006/anbe.1998.0775; Kirkwood TBL, 2002, MECH AGEING DEV, V123, P737, DOI 10.1016/S0047-6374(01)00419-5; Krackow S, 2001, BEHAV ECOL SOCIOBIOL, V50, P293, DOI 10.1007/s002650100366; Krackow S, 1997, BEHAV ECOL SOCIOBIOL, V41, P435, DOI 10.1007/s002650050404; Krebs EA, 2002, BEHAV ECOL SOCIOBIOL, V51, P447, DOI 10.1007/s00265-002-0459-1; LeBlanc M, 2001, CAN J ZOOL, V79, P1661, DOI 10.1139/cjz-79-9-1661; Martins TLF, 2004, BEHAV ECOL, V15, P174, DOI 10.1093/beheco/arg094; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Monaghan P, 1996, P ROY SOC B-BIOL SCI, V263, P1183, DOI 10.1098/rspb.1996.0173; Morgan IJ, 2001, P ROY SOC B-BIOL SCI, V268, P295, DOI 10.1098/rspb.2000.1365; Nager RG, 1999, P NATL ACAD SCI USA, V96, P570, DOI 10.1073/pnas.96.2.570; Ohlsson T, 2001, PHYSIOL BIOCHEM ZOOL, V74, P212, DOI 10.1086/319657; Rutkowska J, 2002, ANIM BEHAV, V64, P817, DOI 10.1006/anbe.2002.1973; Selman RG, 1996, P ROY SOC B-BIOL SCI, V263, P1585, DOI 10.1098/rspb.1996.0232; Sikes RS, 1996, J MAMMAL, V77, P1092, DOI 10.2307/1382790; Toigo C, 1999, J MAMMAL, V80, P1021, DOI 10.2307/1383272; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; Velando A, 2000, ARDEA, V88, P127; Wilson K, 2002, SEX RATIOS: CONCEPTS AND RESEARCH METHODS, P48, DOI 10.1017/CBO9780511542053.004; Zann RA, 1996, ZEBRA FINCH SYNTHESI 49 34 34 1 38 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 J AVIAN BIOL J. Avian Biol. MAY 2007 38 3 356 366 10.1111/j.2007.0908-8857.03818.x 11 Ornithology Zoology 179TD WOS:000247312100015 2018-11-12 J Seamans, ME; Gutierrez, RJ Seamans, Mark E.; Gutierrez, R. J. Sources of variability in spotted owl population growth rate: testing predictions using long-term mark-recapture data OECOLOGIA English Article elasticity; fitness components; life history strategy; spotted owl; temporal variability RANDOMLY VARYING ENVIRONMENT; LIFE-HISTORY; TEMPORAL VARIATION; OPTIMIZING REPRODUCTION; LARGE HERBIVORES; SIERRA-NEVADA; CALIFORNIA; SURVIVAL; OCCIDENTALIS; CONSERVATION For long-lived iteroparous vertebrates that annually produce few young, life history theory predicts that reproductive output (R) and juvenile survival should influence temporal variation in population growth rate (lambda) more than adult survival does. We examined this general prediction using 15 years of mark-recapture data from a population of California spotted owls (Strix occidentalis occidentalis). We found that survival of individuals >= 1 year old (phi) exhibited much less temporal variability ((CV) over cap = 0.04), where CV is coefficient of variation, than R ((CV) over cap 0.83), and that R was strongly influenced by environmental stochasticity. Although lambda was most sensitive ((e) over cap log-transformed sensitivity) to phi((e) over cap = 0.77), and much less sensitive to either R ((e) over cap = 0.12) or juvenile survival ( survival rate of owls from fledging to 1 year old; (e) over cap = 0.12), we estimated that R contributed as much as phi to the observed annual variability in lambda. The contribution of juvenile survival to variability in lambda was proportional to its (e) over cap. These results are consistent with the hypothesis that natural selection may have favored the evolution of longevity in spotted owls as a strategy to increase the probability of experiencing favorable years for reproduction. Our finding that annual weather patterns that most affected R ( temperature and precipitation during incubation) and phi (conditions during winter related to the Southern Oscillation Index) were equally good at explaining temporal variability in lambda supports the conclusion that R and phi were equally responsible for variability in lambda. Although currently accepted conservation measures for spotted owl populations attempt to enhance survival, our results indicated that conservation measures that target R may be as successful, as long as actions do not reduce phi. Univ Minnesota, Dept Fisheries Wildlife & Conservat Biol, St Paul, MN 55108 USA Gutierrez, RJ (reprint author), Univ Minnesota, Dept Fisheries Wildlife & Conservat Biol, 200 Hodson Hall,1980 Folwell Ave, St Paul, MN 55108 USA. gutie012@umn.edu Akcakaya HR, 1998, BIODIVERS CONSERV, V7, P875, DOI 10.1023/A:1008867602813; Anthony R. G, 2006, WILDL MONOGR, V163; Benton TG, 1996, AM NAT, V147, P115, DOI 10.1086/285843; Blakesley JA, 2006, CONDOR, V108, P71, DOI 10.1650/0010-5422(2006)108[0071:BDITCS]2.0.CO;2; Burnham K. P., 1998, MODEL SELECTION INFE; Burnham KP, 2002, J APPL STAT, V29, P245, DOI 10.1080/02664760120108755; Burnham KP, 1987, AM FISH SOC MONOGR, V5; Caswell H, 2001, MATRIX POPULATION MO; CAUGHLEY G, 1994, J ANIM ECOL, V63, P215, DOI 10.2307/5542; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; COHEN D, 1967, J THEOR BIOL, V16, P1, DOI 10.1016/0022-5193(67)90050-1; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; Doherty PF, 2004, OIKOS, V105, P606; FORSMAN ED, 1981, AUK, V98, P735; FORSMAN ED, 2002, WILDL MONOGR, V149; Franklin AB, 2000, ECOL MONOGR, V70, P539, DOI 10.1890/0012-9615(2000)070[0539:CHQAFI]2.0.CO;2; FRANKLIN AB, 2004, ORNITHOL MONOGR, V54; Franklin Alan B., 1996, Studies in Avian Biology, V17, P12; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; GASHWILER JS, 1979, AM MIDL NAT, V102, P95, DOI 10.2307/2425070; Gutierrez RJ, 1995, BIRDS N AM; HANDRICH Y, 1993, AUK, V110, P458, DOI 10.2307/4088410; Horvitz C., 1997, STRUCTURED POPULATIO, P247, DOI [10. 1007/978-1-4615-5973-3, DOI 10.1007/978-1-4615-5973-3]; KELLY PA, 1990, THESIS U CALIFORNIA; Koenig Walter D., 1999, Madrono, V46, P20; LaHaye WS, 2004, AUK, V121, P1056, DOI 10.1642/0004-8038(2004)121[1056:TVITVR]2.0.CO;2; LANDE R, 1988, OECOLOGIA, V75, P601, DOI 10.1007/BF00776426; LANDE R, 1993, AM NAT, V142, P911, DOI 10.1086/285580; Link WA, 2002, ECOLOGY, V83, P3299, DOI 10.2307/3072080; Littell RC, 1996, SAS SYSTEM MIXED MOD; MAGUIRE WILLIAM P., 1956, JOUR FOREST, V54, P778; Mills LS, 1999, CONSERV BIOL, V13, P815, DOI 10.1046/j.1523-1739.1999.98232.x; MODI WS, 1984, CAN J ZOOL, V62, P2576, DOI 10.1139/z84-377; MOEN CA, 1991, WILDLIFE SOC B, V19, P489; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; Newton I., 1998, POPULATION LIMITATIO; Nichols JD, 2002, J APPL STAT, V29, P539, DOI 10.1080/02664760120108809; NOON BR, 1990, J WILDLIFE MANAGE, V54, P18, DOI 10.2307/3808895; NOON BR, 1992, PSWGTR133 US FOR SER, P207; Olson GS, 2004, J WILDLIFE MANAGE, V68, P1039, DOI 10.2193/0022-541X(2004)068[1039:MDPONS]2.0.CO;2; Orzack SH, 2001, ECOLOGY, V82, P2659, DOI 10.2307/2679944; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Pradel R, 1996, BIOMETRICS, V52, P703, DOI 10.2307/2532908; Pyare S, 2002, CAN J FOREST RES, V32, P1016, DOI [10.1139/x02-002, 10.1139/X02-002]; Ransome DB, 2004, J MAMMAL, V85, P206, DOI 10.1644/BOS-118; REDMOND KT, 1991, WATER RESOUR RES, V27, P2381, DOI 10.1029/91WR00690; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; Rosenberg DK, 2003, CAN J ZOOL, V81, P1715, DOI 10.1139/Z03-167; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Seamans ME, 2002, AUK, V119, P321, DOI 10.1642/0004-8038(2002)119[0321:MSOSOP]2.0.CO;2; Seamans ME, 2001, J WILDLIFE MANAGE, V65, P425, DOI 10.2307/3803094; Searle S.R., 1992, VARIANCE COMPONENTS; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1994, EVOLUTION, V48, P1438, DOI 10.1111/j.1558-5646.1994.tb02186.x; Tuljapurkar S., 1997, STRUCTURED POPULATIO; VANTIENDEREN PH, 1995, ECOLOGY, V76, P2482, DOI 10.2307/2265822; Weathers WW, 2001, CONDOR, V103, P678, DOI 10.1650/0010-5422(2001)103[0678:TEAEEO]2.0.CO;2; White GC, 1999, BIRD STUDY, V46, P120; White L W, 2001, J Clin Orthod, V35, P36; WILLIAMS DF, 1992, PSW133 US FOR SERV G, P207; Wisdom MJ, 2000, ECOLOGY, V81, P628, DOI 10.2307/177365 64 20 21 0 17 SPRINGER NEW YORK 233 SPRING STREET, NEW YORK, NY 10013 USA 0029-8549 OECOLOGIA Oecologia MAY 2007 152 1 57 70 10.1007/s00442-006-0622-x 14 Ecology Environmental Sciences & Ecology 158QR WOS:000245808100006 17160689 2018-11-12 J Reznick, D; Bryant, M Reznick, David; Bryant, Michael Comparative long-term mark-recapture studies of guppies (Poecilia reticulata): differences among high and low predation localities in growth and survival ANNALES ZOOLOGICI FENNICI English Article LIFE-HISTORY EVOLUTION; NATURAL-SELECTION; TRINIDADIAN GUPPIES; GENETIC-BASIS; POPULATIONS; SENESCENCE; COEVOLUTION; PARALLELISM; MORTALITY; PATTERNS Life history theory predicts that high extrinsic mortality rates will cause the evolution of earlier maturity and increased reproductive effort. Guppies that co-occur with predators support these predictions because they attain maturity at an earlier age and have higher levels of reproductive effort than their counterparts from localities that lack predators. In the past, we used short term (12 day) mark-recapture studies to show that guppy populations that co-occur with predators do in fact have higher mortality rates than those that do not. Here we extend this result to long term mark-recapture studies with a single recapture interval of over 200 days. We show that the recapture probabilities after these longer intervals are very similar to what one would predict based on the short term studies. Because of the multiplicative nature of mortality rate, the differences in recapture rates in guppies from low as opposed to high predation sites are now much more dramatic, on the order of 20 to 30 fold after 200+ days, as opposed to being around 15% higher after 12 days. The earlier short-term studies also revealed that guppies from high predation localities grow faster, in part as an indirect effect of predators because they reduce guppy population densities and increase per capita food availability. The long-term studies reported here yield the same result, but the difference between high and low predation localities is again far more dramatic as a consequence of the longer duration of the recapture interval. These observations, in combination with those of the earlier work, support the hypothesis that the increased mortality that accompanies predation represents a plausible mechanism that causes the evolution of the observed differences in life histories; however, the confounding of mortality rate and growth rate also suggests that more complex life history models that include density regulation and eco-evolutionary interactions may provide a better explanation for life history evolution in guppies. Univ Calif Riverside, Dept Biol, Riverside, CA 92507 USA; Univ Calif Riverside, Ctr Conservat Biol, Riverside, CA 92507 USA; Calif Inst Arts, Sch Crit Studies, Valencia, CA 91355 USA Reznick, D (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92507 USA. david.reznick@ucr.edu; michael.bryant@ucr.edu Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; ABRAMS PA, 1991, EVOL ECOL, V5, P343, DOI 10.1007/BF02214152; Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; Bryant MJ, 2004, AM NAT, V163, P55, DOI 10.1086/380650; Charlesworth B., 1994, EVOLUTION AGE STRUCT; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Loeuille N, 2005, P NATL ACAD SCI USA, V102, P5761, DOI 10.1073/pnas.0408424102; Loeuille N, 2002, J THEOR BIOL, V217, P369, DOI 10.1006/yjtbi.3032; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; SCHLUTER D, 1988, EVOLUTION, V42, P849, DOI 10.1111/j.1558-5646.1988.tb02507.x; White GC, 1999, BIRD STUDY, V46, P120 22 23 23 0 17 FINNISH ZOOLOGICAL BOTANICAL PUBLISHING BOARD UNIV HELSINKI P O BOX 25, FIN-00014 UNIV HELSINKI, FINLAND 0003-455X ANN ZOOL FENN Ann. Zool. Fenn. APR 25 2007 44 2 152 160 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology 174TC WOS:000246964700007 2018-11-12 J Sear, R Sear, Rebecca The impact of reproduction on Gambian women: Does controlling for phenotypic quality reveal costs of reproduction? AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article life history; mortality; sub-Saharan Africa MATERNAL MORTALITY; TWIN MOTHERS; LIFE-SPAN; LONGEVITY; FERTILITY; HEALTH; CHILDBEARING; PREGNANCY; ANEMIA; POPULATION Life history theory predicts that where resources are limited, investment in reproduction will cause a decline in body condition and ultimately may lower survival rates. We investigate the relationship between reproduction and mortality in women in rural Gambia. We use a number of different measures of reproductive investment: the timing of reproduction, intensity of reproduction, and cumulative reproductive investment (parity). Though giving birth is clearly a risk factor for increased mortality, we find limited evidence that the timing, intensity, or cumulative effects of reproduction have a survival cost. Instead, there is some evidence that women who have invested heavily in reproduction have higher survival than women with lower reproductive investment: both high parity and late age at last reproduction are associated with high survival. The only evidence for any cost of reproduction is that women who have given birth to twins (considered a marker of heavy investment in reproduction) have higher mortality rates than other women, after the age of 50 years. A potential confounding factor may be differences in health between women: particularly healthy women may be able to invest substantially in both reproduction and their own survival, leading to the positive correlations between survival and both parity and age at last birth we observe. To control for differences in health between women, we reanalyze the relationship between reproduction and mortality but include variables correlating with health in our models (height, BMI, and hemoglobin). Even when controlling for health, the positive correlation between investment in reproduction and survival remains unchanged. Univ London London Sch Econ & Polit Sci, Dept Social Policy, London WC2A 2AE, England Sear, R (reprint author), Univ London London Sch Econ & Polit Sci, Dept Social Policy, Houghton St, London WC2A 2AE, England. r.sear@lse.ac.uk Sear, Rebecca/0000-0002-4315-0223 AbouZahr C, 2003, MATERNAL MORTALITY 2; Allen LH, 2000, AM J CLIN NUTR, V71, p1280S, DOI 10.1093/ajcn/71.5.1280s; Ardia DR, 2005, J ANIM ECOL, V74, P517, DOI 10.1111/j.1365-2656.2005.00950.x; Beise J, 2002, SCIENCE, V298; BILLEWICZ WZ, 1981, J BIOSOC SCI, V13, P219; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; Doblhammer G, 2003, P ROY SOC B-BIOL SCI, V270, P1541, DOI 10.1098/rspb.2003.2400; Doblhammer G, 2000, POP STUD-J DEMOG, V54, P169, DOI 10.1080/713779087; Dribe M, 2004, POP STUD-J DEMOG, V58, P297, DOI 10.1080/0032472042000272357; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; FERROLUZZI A, 1992, EUR J CLIN NUTR, V46, P173; Gilgen D, 2001, TROP MED INT HEALTH, V6, P449, DOI 10.1046/j.1365-3156.2001.00729.x; Gilgen D, 2001, PARASITOLOGY, V122, P105, DOI 10.1017/S0031182000007113; GRAHAM W, 1989, STUD FAMILY PLANN, V20, P125, DOI 10.2307/1966567; Grundy E, 2005, SOC SCI MED, V61, P217, DOI 10.1016/j.socscimed.2004.11.046; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Helle S, 2005, P ROY SOC B-BIOL SCI, V272, P29, DOI 10.1098/rspb.2004.2944; Helle S, 2004, P NATL ACAD SCI USA, V101, P12391, DOI 10.1073/pnas.0402215101; Helle S, 2002, SCIENCE, V296, P1085, DOI 10.1126/science.1070106; HILL AVS, 1991, NATURE, V352, P595, DOI 10.1038/352595a0; Hurt LS, 2006, POP STUD-J DEMOG, V60, P55, DOI 10.1080/00324720500436011; Jasienska G, 1998, P ROY SOC B-BIOL SCI, V265, P1847, DOI 10.1098/rspb.1998.0511; Korpelainen H, 2000, P ROY SOC B-BIOL SCI, V267, P1765, DOI 10.1098/rspb.2000.1208; LAMB WH, 1984, LANCET, V2, P912; LEBOURG E, 1993, EXP GERONTOL, V28, P217, DOI 10.1016/0531-5565(93)90030-H; Lycett JE, 2000, P ROY SOC B-BIOL SCI, V267, P31, DOI 10.1098/rspb.2000.0962; Mace R, 1996, INT J GYNECOL OBSTET, V54, P137, DOI 10.1016/0020-7292(96)02691-4; MCGREGOR IA, 1976, OIKOS, V27, P180, DOI 10.2307/3543897; McGregor IA, 1991, DIS MORTALITY SUBSAH, P306; Menken J, 2003, POPUL DEV REV, V29, P405, DOI 10.1111/j.1728-4457.2003.00405.x; Moreno J, 1999, P ROY SOC B-BIOL SCI, V266, P1105, DOI 10.1098/rspb.1999.0750; Mueller U, 2004, POPUL DEV REV, V30, P449, DOI 10.1111/j.1728-4457.2004.00023.x; Muller HG, 2002, J GERONTOL A-BIOL, V57, pB202, DOI 10.1093/gerona/57.5.B202; Olsen A, 1998, T ROY SOC TROP MED H, V92, P643, DOI 10.1016/S0035-9203(98)90795-7; Ossewaarde ME, 2005, EPIDEMIOLOGY, V16, P556, DOI 10.1097/01.ede.0000165392.35273.d4; POPPITT SD, 1993, AM J CLIN NUTR, V57, P353; Prentice AM, 2000, AM J CLIN NUTR, V71, p1226S, DOI 10.1093/ajcn/71.5.1226s; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; ROSENBERG KR, 1992, YEARB PHYS ANTHROPOL, V35, P89; Sear R, 2004, RES ECON ANTHROPOL, V23, P203, DOI 10.1016/S0190-1281(04)23008-6; Sear R, 2003, BIODEMOGRAPHY OF HUMAN REPRODUCTION AND FERTILITY, P135; Sear R, 2001, J EVOLUTION BIOL, V14, P433, DOI 10.1046/j.1420-9101.2001.00287.x; SEAR RS, 2001, THESIS U COLL LONDON; Silventoinen K, 2003, J BIOSOC SCI, V35, P263, DOI 10.1017/S0021932003000087; Singer J. D., 2003, APPL LONGITUDINAL DA; Smith KR, 2002, SOC BIOL, V49, P185; Stearns S. C., 1992, EVOLUTION LIFE HIST; Thomas F, 2000, J EVOLUTION BIOL, V13, P409; TRACER DP, 1991, AM J PHYS ANTHROPOL, V85, P393, DOI 10.1002/ajpa.1330850404; Trevathan W. R., 1987, HUMAN BIRTH EVOLUTIO; WADSWORTH GR, 1992, DIET DEMOGRAPHY DIS, P63; WEAVER LT, 1993, LANCET, V341, P1327, DOI 10.1016/0140-6736(93)90827-4; Wendeln H, 1999, J ANIM ECOL, V68, P205, DOI 10.1046/j.1365-2656.1999.00276.x; World Health Organization, 1946, CONST WHO 55 12 13 0 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 1096-8644 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. APR 2007 132 4 632 641 10.1002/ajpa.20558 10 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 149QA WOS:000245160500016 17274011 2018-11-12 J Mikolajewski, DJ; Joop, G; Wohlfahrt, B Mikolajewski, Dirk Johannes; Joop, Gerrit; Wohlfahrt, Bianca Coping with predators and food limitation: testing life history theory for sex-specific larval development OIKOS English Article REACTION NORMS; DAMSELFLY LARVAE; TRADE-OFF; PHENOTYPIC PLASTICITY; TIME CONSTRAINTS; PREY DENSITY; BODY-SIZE; ODONATA; BEHAVIOR; GROWTH For animals with complex life cycles, recent models of sexual size-dimorphism at maturity assume three key variables to optimise larval life history: activity in the larval stage, development time, and size at maturation. However, model predictions remain largely untested. In the territorial dragonfly Libellula depressa (Odonata) exhibiting a flexible development time we tested for male-biased sexual size-dimorphism and sex differences in larval activity, development time, and growth rate. Based on models we predicted that males achieved their larger size compared to females by a longer development rather than being more active. Results revealed that males took longer to develop and achieved a larger size than females but were not more active. Compared to males, females exhibited a higher growth rate which was not achieved by an activity-mediated increased food intake. We conclude that sexual size-dimorphism in species with a flexible development time is mediated by differences in developmental length but not activity. Furthermore, sexes differ in their plastic responses to food availability and predator presence making it necessary to consider sex-specific differences in testing further life history responses. Katholieke Univ Leuven, Lab Aquat Ecol, BE-3000 Louvain, Belgium; TU Braunschweig, Zool Inst Okol, DE-38106 Braunschweig, Germany Mikolajewski, DJ (reprint author), Katholieke Univ Leuven, Lab Aquat Ecol, Charles Deberiotstr 32, BE-3000 Louvain, Belgium. d.mikolajewski@tu-bs.de Joop, Gerrit/M-4519-2013 ANHOLT BR, 1991, CAN J ZOOL, V69, P1156, DOI 10.1139/z91-164; Anholt BR, 2000, ECOLOGY, V81, P3509, DOI 10.2307/177510; ANHOLT BR, 1991, EVOLUTION, V45, P1091, DOI 10.1111/j.1558-5646.1991.tb04377.x; BAKER RL, 1992, CAN J ZOOL, V70, P1161, DOI 10.1139/z92-162; Ball SL, 1996, ECOLOGY, V77, P1116, DOI 10.2307/2265580; Benard MF, 2004, ANNU REV ECOL EVOL S, V35, P651, DOI 10.1146/annurev.ecolsys.35.021004.112426; BENKE AC, 1970, ECOLOGY, V51, P328, DOI 10.2307/1933673; Braune P, 2001, P ROY SOC B-BIOL SCI, V268, P1133, DOI 10.1098/rspb.2001.1641; Brodin T, 2006, OECOLOGIA, V148, P162, DOI 10.1007/s00442-005-0334-7; Brodin T, 2004, ECOLOGY, V85, P2927, DOI 10.1890/03-3120; CONVEY P, 1989, BEHAVIOUR, V109, P125, DOI 10.1163/156853989X00187; Crowley PH, 2000, ECOLOGY, V81, P2592, DOI 10.2307/177477; Crowley PH, 2002, OIKOS, V96, P364, DOI 10.1034/j.1600-0706.2002.960218.x; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; De Block M, 2005, ECOLOGY, V86, P185, DOI 10.1890/04-0116; DEBLOCK M, 2003, J EVOLUTION BIOL, V16, P86; Fischer K, 2001, J EVOLUTION BIOL, V14, P210, DOI 10.1046/j.1420-9101.2001.00280.x; HOUSTON AI, 1992, EVOL ECOL, V6, P43; JEFFRIES M, 1990, FRESHWATER BIOL, V23, P191, DOI 10.1111/j.1365-2427.1990.tb00264.x; JOHANSSON F, 1993, OIKOS, V68, P481, DOI 10.2307/3544916; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.1890/0012-9658(1999)080[1242:LHABRT]2.0.CO;2; Johansson F, 2002, CAN J ZOOL, V80, P944, DOI 10.1139/Z02-073; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Johansson F, 2000, FRESHWATER BIOL, V43, P149, DOI 10.1046/j.1365-2427.2000.00532.x; Mikolajewski DJ, 2005, OIKOS, V110, P91, DOI 10.1111/j.0030-1299.2005.13766.x; Mikolajewski DJ, 2004, BEHAV ECOL, V15, P614, DOI 10.1093/beheco/arh061; MILLER P L, 1983, Odonatologica, V12, P227; MOORE AJ, 1990, EVOLUTION, V44, P315, DOI 10.1111/j.1558-5646.1990.tb05201.x; NYLIN S, 1993, ECOLOGY, V74, P1414, DOI 10.2307/1940071; ORBER PS, 1999, DRAGONFLIES BEAHV EC; Peacor SD, 2002, ECOL LETT, V5, P77, DOI 10.1046/j.1461-0248.2002.00287.x; Plaistow S, 1999, ANIM BEHAV, V58, P659, DOI 10.1006/anbe.1999.1171; Rantala MJ, 2001, ANN ZOOL FENN, V38, P117; ROBERT PA, 1959, LIBELLEN ODONATA; Schaffner AK, 1998, J INSECT BEHAV, V11, P793, DOI 10.1023/A:1020803925186; Sokolovska N, 2000, ECOL ENTOMOL, V25, P239, DOI 10.1046/j.1365-2311.2000.00251.x; STERNBERG K, 2000, LIBELLEN BADEN WURTT, V2, P436; Stoks R, 2005, J ANIM ECOL, V74, P708, DOI 10.1111/j.1365-2656.2005.00969.x; Stoks R, 2001, ECOL ENTOMOL, V26, P188, DOI 10.1046/j.1365-2311.2001.00303.x; Strobbe F, 2004, BIOL J LINN SOC, V83, P187, DOI 10.1111/j.1095-8312.2004.00379.x; Suhling F, 2005, OIKOS, V108, P609, DOI 10.1111/j.0030-1299.2005.13230.x; Thompson DJ, 2002, ECOL ENTOMOL, V27, P378, DOI 10.1046/j.1365-2311.2002.00419.x; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WISSINGER SA, 1988, CAN J ZOOL, V66, P543, DOI 10.1139/z88-080; Wohlfahrt B, 2006, FRESHWATER BIOL, V51, P76, DOI 10.1111/j.1365-2427.2005.01475.x 45 13 16 0 17 BLACKWELL PUBLISHING OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND 0030-1299 OIKOS Oikos APR 2007 116 4 642 649 10.1111/j.2007.0030-1299.15139.x 8 Ecology Environmental Sciences & Ecology 151TK WOS:000245313500011 2018-11-12 J Sol, D; Szekely, T; Liker, A; Lefebvre, L Sol, Daniel; Szekely, Tamas; Liker, Andras; Lefebvre, Louis Big-brained birds survive better in nature PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article brain evolution; behavioural flexibility; life-history theory; mortality rate PARENTAL CARE; INDEPENDENT CONTRASTS; MORTALITY COSTS; SIZE; EVOLUTION; PRIMATES; DIVERSIFICATION; INNOVATIONS; COGNITION; PARADOX Big brains are hypothesized to enhance survival of animals by facilitating flexible cognitive responses that buffer individuals against environmental stresses. Although this theory receives partial support from the finding that brain size limits the capacity of animals to behaviourally respond to environmental challenges, the hypothesis that large brains are associated with reduced mortality has never been empirically tested. Using extensive information on avian adult mortality from natural populations, we show here that species with larger brains, relative to their body size, experience lower mortality than species with smaller brains, supporting the general importance of the cognitive buffer hypothesis in the evolution of large brains. Autonomous Univ Barcelona, CREAF, Bellaterra 08193, Catalonia, Spain; Univ Bath, Dept Biol & Biochem, Bath BA2 7AY, Avon, England; Pannon Univ, Dept Limnol, H-8201 Veszprem, Hungary; McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada Sol, D (reprint author), Autonomous Univ Barcelona, CREAF, Bellaterra 08193, Catalonia, Spain. d.sol@creaf.uab.es Sol, Daniel/A-5238-2008 Sol, Daniel/0000-0001-6346-6949 ALLMAN J, 1993, P NATL ACAD SCI USA, V90, P118, DOI 10.1073/pnas.90.1.118; Allman J. M., 2000, EVOLVING BRAINS; BENNETT PM, 1985, J ZOOL, V207, P151; Blackburn TM, 2001, NATURE, V414, P195, DOI 10.1038/35102557; Byrne RW, 2004, P ROY SOC B-BIOL SCI, V271, P1693, DOI 10.1098/rspb.2004.2780; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Deaner R. O., 2002, PRIMATE LIFE HIST SO, P233; Deaner RO, 2000, BRAIN BEHAV EVOLUT, V55, P44, DOI 10.1159/000006641; Dukas Reuven, 1998, P129; DUNBAR RIM, 1992, J HUM EVOL, V20, P469, DOI DOI 10.1016/0047-2484(92)90081-J); ENNETT PM, 2002, EVOLUTIONARY ECOLOGY; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Garamszegi LZ, 2005, P ROY SOC B-BIOL SCI, V272, P159, DOI 10.1098/rspb.2004.2940; Garamszegi LZ, 2002, P ROY SOC B-BIOL SCI, V269, P961, DOI 10.1098/rspb.2002.1967; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; Gittelman John L., 1996, P289; GITTLEMAN JL, 1994, P NATL ACAD SCI USA, V91, P5495, DOI 10.1073/pnas.91.12.5495; Harvey P. H., 1991, COMP METHOD EVOLUTIO; Iwaniuk AN, 2003, CAN J ZOOL, V81, P1913, DOI 10.1139/Z03-190; Iwaniuk AN, 2002, CAN J ZOOL, V80, P16, DOI 10.1139/Z01-204; JERIOSN HJ, 1973, EVOLUTION BRAIN INTE; Lefebvre L, 2004, BRAIN BEHAV EVOLUT, V63, P233, DOI 10.1159/000076784; Lefebvre L, 1997, ANIM BEHAV, V53, P549, DOI 10.1006/anbe.1996.0330; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Li C.C, 1975, PATH ANAL PRIMER; Liker A, 2005, EVOLUTION, V59, P890, DOI 10.1554/04-560; Madden J, 2001, P ROY SOC B-BIOL SCI, V268, P833, DOI 10.1098/rspb.2000.1425; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Nealen PM, 2001, J ZOOL, V253, P391, DOI 10.1017/S095283690100036X; OWENS IPF, 1994, P ROY SOC B-BIOL SCI, V257, P1, DOI 10.1098/rspb.1994.0086; PAGEL MD, 1988, AM NAT, V132, P344, DOI 10.1086/284857; Price TD, 2003, P ROY SOC B-BIOL SCI, V270, P1433, DOI 10.1098/rspb.2003.2372; PURVIS A, 1995, COMPUT APPL BIOSCI, V11, P247; Reader SM, 2004, NEW SCI, V183, P34; Reader SM, 2002, P NATL ACAD SCI USA, V99, P4436, DOI 10.1073/pnas.062041299; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Sax DF, 2000, GLOBAL ECOL BIOGEOGR, V9, P363, DOI 10.1046/j.1365-2699.2000.00217.x; Shultz S, 2005, P ROY SOC B-BIOL SCI, V272, P2305, DOI 10.1098/rspb.2005.3250; Sibley CG, 1990, PHYLOGENY CLASSIFICA; SIBLEY CG, 1990, DISTRIBUTION TAXONOM; Sol D, 2005, EVOLUTION, V59, P2669, DOI 10.1111/j.0014-3820.2005.tb00978.x; Sol D, 2005, P NATL ACAD SCI USA, V102, P5460, DOI 10.1073/pnas.0408145102; Sol D., 2005, P R SOC B, V272, P1471; Stearns S. C., 1992, EVOLUTION LIFE HIST; Winkler H, 2004, J ORNITHOL, V145, P238, DOI 10.1007/s10336-004-0040-y; WOL D, 2003, ANIMAL INNOVATION, P63; WYLES JS, 1983, P NATL ACAD SCI-BIOL, V80, P4394, DOI 10.1073/pnas.80.14.4394 47 102 104 1 93 ROYAL SOCIETY LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P R SOC B Proc. R. Soc. B-Biol. Sci. MAR 22 2007 274 1611 763 769 10.1098/rspb.2006.3765 7 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 131BE WOS:000243842100002 17251112 Green Published 2018-11-12 J Rodgers, JL; Bard, DE; Miller, WB Rodgers, Joseph Lee; Bard, David E.; Miller, Warren B. Multivariate Cholesky models of human female fertility patterns in the NLSY BEHAVIOR GENETICS English Article fertility; Fisher's theorem; FTNS; heritability; shared environment; multivariate models; phenotypic plasticity; Hox genes; life history theory 1ST SEXUAL INTERCOURSE; LIFE-HISTORY; DANISH TWIN; GENETIC-ANALYSIS; KINSHIP DATA; BEHAVIOR; BIRTH; TRAITS; WOMEN; CHILDBEARING Substantial evidence now exists that variables measuring or correlated with human fertility outcomes have a heritable component. In this study, we define a series of age-sequenced fertility variables, and fit multivariate models to account for underlying shared genetic and environmental sources of variance. We make predictions based on a theory developed by Udry [(1996) Biosocial models of low-fertility societies. In: Casterline, JB, Lee RD, Foote KA (eds) Fertility in the United States: new patterns, new theories. The Population Council, New York] suggesting that biological/genetic motivations can be more easily realized and measured in settings in which fertility choices are available. Udry's theory, along with principles from molecular genetics and certain tenets of life history theory, allow us to make specific predictions about biometrical patterns across age. Consistent with predictions, our results suggest that there are different sources of genetic influence on fertility variance at early compared to later ages, but that there is only one source of shared environmental influence that occurs at early ages. These patterns are suggestive of the types of gene-gene and gene-environment interactions for which we must account to better understand individual differences in fertility outcomes. Univ Oklahoma, Dept Psychol, Norman, OK 73019 USA; Univ Oklahoma, Hlth Sci Ctr, Dept Pediat, Norman, OK 73019 USA; Transnatl Family Res Int, Aptos, CA USA Rodgers, JL (reprint author), Univ Oklahoma, Dept Psychol, Norman, OK 73019 USA. jrodgers@ou.edu Bard, David/I-6629-2012 NICHD NIH HHS [R01 HD043265-03, R01 HD043265, R01-HD43265] Carey G, 2005, BEHAV GENET, V35, P653, DOI 10.1007/s10519-005-5355-9; CARROLL SB, 2005, ENDLESS FORMS MOST B; Christensen K, 2003, EPIDEMIOLOGY, V14, P60, DOI 10.1097/00001648-200301000-00015; *CTR HUM RES RES, 2003, NLY HDB; Doughty D, 2000, GENETIC INFLUENCES F; DUNNE MP, 1997, PSYCHOL SCI, V8, P1; Falconer DS, 1979, INTRO QUANTITATIVE G; FIGUEREDO AJ, IN PRESS SOC BIOL; FISHER R. A., 1930, GENETICAL THEORY NAT; Flatt T, 2005, Q REV BIOL, V80, P287, DOI 10.1086/432265; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; GERONIMUS AT, 1992, Q J ECON, V107, P1187, DOI 10.2307/2118385; GERONIMUS AT, 1991, FAM RELAT, V40, P463, DOI 10.2307/584905; HOULE D, 1992, GENETICS, V130, P195; Hughes KA, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P7; Johnson AB, 2006, J APPL SOC PSYCHOL, V36, P2685, DOI 10.1111/j.0021-9029.2006.00123.x; KALLAN JE, 1993, DEMOGRAPHY, V30, P489, DOI 10.2307/2061653; Kirk KM, 2001, EVOLUTION, V55, P423; Kohler H.-P., 2003, OFFSPRING HUMAN FERT; Kohler HP, 2002, SOC BIOL, V49, P218; Kohler HP, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P67; Kohler HP, 1999, POPUL DEV REV, V25, P253, DOI 10.1111/j.1728-4457.1999.00253.x; Kuhnert PM, 2003, BEHAV GENET, V33, P441, DOI 10.1023/A:1025325710903; Little R., 2002, STAT ANAL MISSING DA; LYONS MJ, 1995, ARCH GEN PSYCHIAT, V52, P906; MEALEY L, 1993, PERS INDIV DIFFER, V14, P783, DOI 10.1016/0191-8869(93)90091-G; Mehta PD, 2004, PSYCHOL METHODS, V9, P301, DOI 10.1037/1082-989X.9.3.301; Miles DR, 1997, J PERS SOC PSYCHOL, V72, P207, DOI 10.1037/0022-3514.72.1.207; Miller WB, 1999, J BIOSOC SCI, V31, P43, DOI 10.1017/S0021932099000437; Miller WB, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P183; Miller WB, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P35; MILLER WB, 2001, ONTOGENY HUMAN BONDI; MOFFITT TE, 1993, PSYCHOL REV, V100, P674, DOI 10.1037//0033-295X.100.4.674; Neale M.C., 1992, METHODOLOGY GENETIC; NEALE MC, 2003, MX STAT MODELING; Neiss M, 2002, J BIOSOC SCI, V34, P259, DOI 10.1017/S0021932002002596; Pasta DJ, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P107; Posthuma D, 2000, BEHAV GENET, V30, P311, DOI 10.1023/A:1026501501434; Potts M, 1997, POPUL DEV REV, V23, P1, DOI 10.2307/2137459; Repetti RL, 2002, PSYCHOL BULL, V128, P330, DOI 10.1037//0033-2909.128.2.330; RETHERFORD RD, 1989, INTELLIGENCE, V13, P169, DOI 10.1016/0160-2896(89)90015-9; RODGERS JL, 1990, J FAM ISSUES, V11, P274, DOI 10.1177/019251390011003003; Rodgers JL, 1999, J BIOSOC SCI, V31, P29, DOI 10.1017/S0021932099000292; Rodgers JL, 2001, J QUANT CRIMINOL, V17, P145, DOI 10.1023/A:1011097929954; Rodgers JL, 2001, CURR DIR PSYCHOL SCI, V10, P184, DOI 10.1111/1467-8721.00145; Rodgers JL, 2001, DEMOGRAPHY, V38, P29, DOI 10.1353/dem.2001.0009; RODGERS JL, 2000, GENETIC INFLUENCES F; RODGERS JL, 1996, UNPUB NLSY YOUTH LIN; RODGERS JL, 1998, COMPREHENSIVE ADOLES; ROWE DC, 2002, BEHAV GENETICS POSTG, P71; ROWE DC, 2000, GENETIC INFLUENCES F; RUTTER M, 2002, ANN REV PSYCHOL ANN; SAPPENFIELD WM, 1987, NEW ENGL J MED, V326, P1522; SELF SG, 1987, J AM STAT ASSOC, V82, P605, DOI 10.2307/2289471; TAMBS K, 1989, BEHAV GENET, V19, P505; TRUMBETTA SL, 2000, GENETIC INFLUENCES F; TURKE PW, 1989, POPUL DEV REV, V15, P61, DOI 10.2307/1973405; Udry JR, 1996, FERTILITY US NEW PAT; Van den Oord EJCG, 2000, DEMOGRAPHY, V37, P285, DOI 10.2307/2648042; VANDEKAA DJ, 1987, POPUL BULL, V42, P1; Vigil JM, 2005, DEV PSYCHOL, V41, P553, DOI 10.1037/0012-1649.41.3.553; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WILLIAMS LA, 1974, SOC BIOL, V21, P225, DOI 10.1080/19485565.1974.9988115 63 19 19 0 5 SPRINGER NEW YORK 233 SPRING STREET, NEW YORK, NY 10013 USA 0001-8244 BEHAV GENET Behav. Genet. MAR 2007 37 2 345 361 10.1007/s10519-006-9137-9 17 Behavioral Sciences; Genetics & Heredity; Psychology, Multidisciplinary Behavioral Sciences; Genetics & Heredity; Psychology 153BQ WOS:000245407100009 17205393 Green Accepted 2018-11-12 J Simmons, LW; Kotiaho, JS Simmons, L. W.; Kotiaho, J. S. The effects of reproduction on courtship, fertility and longevity within and between alternative male mating tactics of the horned beetle, Onthophagus binodis JOURNAL OF EVOLUTIONARY BIOLOGY English Article alternative mating tactics; cost of reproduction; ejaculate expenditure; life history; trade-off SPERM COMPETITION GAMES; MALE DROSOPHILA-MELANOGASTER; DIMORPHIC MALE BEETLES; SEXUAL SELECTION; DUNG BEETLES; EGG-PRODUCTION; LIFE-SPAN; CONDITION DEPENDENCE; CERATITIS-CAPITATA; FEMALE LONGEVITY Life history theory provides a powerful tool to study an organism's biology within an evolutionary framework. The notion that males face a longevity cost of competing for and displaying to females lies at the core of sexual selection theory. Likewise, recent game theory models of the evolution of ejaculation strategies assume that males face a trade-off between expenditure on the ejaculate and expenditure on gaining additional matings. Males of the dung beetle Onthophagus binodis adopt alternative reproductive tactics in which major males fight for and help provision females, and minor males sneak copulations with females that are guarded by major males. Minor males are always subject to sperm competition, and consistent with theoretical expectation, minor males have a greater expenditure on their ejaculate than major males. We used this model system to seek evidence that mating comes at a cost for future fertility and/or male expenditure on courtship and attractiveness, and to establish whether these traits vary between alternative mating tactics. We monitored the lifespan of males exposed to females and nonmating populations, and sampled males throughout their lives to assess their fertility and courtship behaviour. We found a significant longevity cost of reproduction, but no fertility cost. On average, males from mating populations had a lower courtship rate than those from nonmating populations. This small effect, although statistically nonsignificant, was associated with significant increases in the time males required to achieve mating. Minor males had lower courtship rates than major males, and took longer to achieve mating. Although we did not measure ejaculate expenditure in this study, the correlation between lower courtship rate and longer mating speed of minor males documented here with their greater expenditure on the ejaculate found in previous studies, is consistent with game theory models of ejaculate expenditure which assume that males trade expenditure on gaining matings for expenditure on gaining fertilizations. Univ Western Australia, Ctr Evolut Biol, Sch Anim Biol, Nedlands, WA 6009, Australia; Univ Jyvaskyla, Dept Biol & Environm Sci, Jyvaskyla, Finland; Univ Jyvaskyla, Museum Nat Hist, Jyvaskyla, Finland Simmons, LW (reprint author), Univ Western Australia, Ctr Evolut Biol, Sch Anim Biol, M092, Nedlands, WA 6009, Australia. lsimmons@cyllene.uwa.edu.au Simmons, Leigh/B-1815-2011 Simmons, Leigh/0000-0003-0562-1474; Kotiaho, Janne/0000-0002-4732-784X Andersson M., 1994, SEXUAL SELECTION; Baer B, 2005, P ROY SOC B-BIOL SCI, V272, P319, DOI 10.1098/rspb.2004.2958; Barnes AI, 2006, P ROY SOC B-BIOL SCI, V273, P939, DOI 10.1098/rspb.2005.3388; Barnes AI, 2003, ANIM BEHAV, V66, P199, DOI 10.1006/anbe.2003.2122; Birkhead Timothy R., 1997, P121; Blanckenhorn WU, 2002, BEHAV ECOL, V13, P353, DOI 10.1093/beheco/13.3.353; Brooks R, 2000, NATURE, V406, P67, DOI 10.1038/35017552; Chapman T, 1998, P ROY SOC B-BIOL SCI, V265, P1879, DOI 10.1098/rspb.1998.0516; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; CluttonBrock T, 1997, BEHAV ECOL, V8, P392, DOI 10.1093/beheco/8.4.392; Colegrave N, 2003, BEHAV ECOL, V14, P446, DOI 10.1093/beheco/14.3.446; COOK D, 1987, AUST J ZOOL, V35, P123, DOI 10.1071/ZO9870123; COOK D, 1988, AUST J ZOOL, V36, P521, DOI 10.1071/ZO9880521; COOK DF, 1990, ANIM BEHAV, V40, P428, DOI 10.1016/S0003-3472(05)80522-6; Cordts R, 1996, ANIM BEHAV, V52, P269, DOI 10.1006/anbe.1996.0172; Crow JF, 1997, P NATL ACAD SCI USA, V94, P8380, DOI 10.1073/pnas.94.16.8380; Crudgington HS, 2000, NATURE, V407, P855, DOI 10.1038/35038154; Danielsson I, 2001, P ROY SOC B-BIOL SCI, V268, P77, DOI 10.1098/rspb.2000.1332; Emlen DJ, 1997, BEHAV ECOL SOCIOBIOL, V41, P335, DOI 10.1007/s002650050393; Fedorka KM, 2004, EVOLUTION, V58, P2478; Gaskin T, 2002, ANIM BEHAV, V63, P121, DOI 10.1006/anbe.2001.1896; HOUSTON WWK, 1986, J AUST ENTOMOL SOC, V25, P161; Hsin H, 1999, NATURE, V399, P362, DOI 10.1038/20694; Hunt J, 2000, EVOLUTION, V54, P936; Hunt J, 2002, J EVOLUTION BIOL, V15, P784, DOI 10.1046/j.1420-9101.2002.00442.x; Hunt J, 2002, J EVOLUTION BIOL, V15, P57, DOI 10.1046/j.1420-9101.2002.00374.x; HUNT J, 2005, NATURE, V432, P1024; Johansson BG, 2005, ANIM BEHAV, V69, P851, DOI 10.1016/j.anbehav.2004.08.007; Johnson DH, 1999, J WILDLIFE MANAGE, V63, P763, DOI 10.2307/3802789; Johnston Carol E., 1995, Journal of the Tennessee Academy of Science, V70, P65; Jones TM, 2004, P ROY SOC B-BIOL SCI, V271, P1311, DOI 10.1098/rspb.2004.2723; Jones TM, 2000, P ROY SOC B-BIOL SCI, V267, P681, DOI 10.1098/rspb.2000.1056; Kidd SA, 2001, FERTIL STERIL, V75, P237, DOI 10.1016/S0015-0282(00)01679-4; Kokko H, 1998, EVOL ECOL, V12, P739, DOI 10.1023/A:1006541701002; Kokko H, 1996, P ROY SOC B-BIOL SCI, V263, P1533, DOI 10.1098/rspb.1996.0224; Kotiaho JS, 2001, NATURE, V410, P684, DOI 10.1038/35070557; Kotiaho JS, 2000, BEHAV ECOL SOCIOBIOL, V48, P188, DOI 10.1007/s002650000221; Kotiaho JS, 2002, BEHAV ECOL, V13, P791, DOI 10.1093/beheco/13.6.791; Kotiaho JS, 2001, BEHAV ECOL, V12, P553, DOI 10.1093/beheco/12.5.553; Kotiaho JS, 2003, J INSECT PHYSIOL, V49, P817, DOI 10.1016/S0022-1910(03)00117-3; Kotiaho JS, 1998, P ROY SOC B-BIOL SCI, V265, P2203, DOI 10.1098/rspb.1998.0560; LEE JM, 1981, ENVIRON ENTOMOL, V10, P626, DOI 10.1093/ee/10.5.626; Liker A, 2005, EVOLUTION, V59, P890, DOI 10.1554/04-560; MANNING AUBREY, 1961, ANIMAL BEHAVIOUR, V9, P82, DOI 10.1016/0003-3472(61)90054-9; Martin OY, 2004, J EVOLUTION BIOL, V17, P357, DOI 10.1046/j.1420-9101.2003.00668.x; Moczek AP, 2000, ANIM BEHAV, V59, P459, DOI 10.1006/anbe.1999.1342; Moore AJ, 1999, P ROY SOC B-BIOL SCI, V266, P711, DOI 10.1098/rspb.1999.0694; Parker G. A., 1998, SPERM COMPETITION SE, P3; PARKER GA, 1990, P ROY SOC B-BIOL SCI, V242, P120, DOI 10.1098/rspb.1990.0114; PARKER GA, 1990, P ROY SOC B-BIOL SCI, V242, P127, DOI 10.1098/rspb.1990.0115; PARKER GA, 1970, BIOL REV, V45, P525, DOI 10.1111/j.1469-185X.1970.tb01176.x; PARSONS PA, 1974, BEHAV GENET, V4, P395, DOI 10.1007/BF01066159; PARTRIDGE L, 1990, J INSECT PHYSIOL, V36, P419, DOI 10.1016/0022-1910(90)90059-O; PARTRIDGE L, 1987, J INSECT PHYSIOL, V33, P745, DOI 10.1016/0022-1910(87)90060-6; PELLESTOR F, 1994, INT J FERTIL MENOP S, V39, P278; Preston BT, 2001, NATURE, V409, P681, DOI 10.1038/35055617; Prowse N, 1997, J INSECT PHYSIOL, V43, P501, DOI 10.1016/S0022-1910(97)00014-0; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Ridsdill Smith T.J., 1982, Entomologia Experimentalis et Applicata, V32, P80; Roff D. A., 2002, LIFE HIST EVOLUTION; Shackleton MA, 2005, BEHAV ECOL SOCIOBIOL, V58, P1, DOI 10.1007/s00265-004-0907-1; SIMMONS LW, 1988, ANIM BEHAV, V36, P372, DOI 10.1016/S0003-3472(88)80008-3; Simmons LW, 1999, P ROY SOC B-BIOL SCI, V266, P145, DOI 10.1098/rspb.1999.0614; Simmons LW, 2006, P ROY SOC B-BIOL SCI, V273, P465, DOI 10.1098/rspb.2005.3309; Simmons LW., 2001, SPERM COMPETITION IT; Siva-Jothy MT, 2000, ECOL LETT, V3, P172; SMITH PH, 1990, PHYSIOL ENTOMOL, V15, P469; Smith RL, 1984, SPERM COMPETITION EV; Sowig P, 1996, ECOL ENTOMOL, V21, P81, DOI 10.1111/j.1365-2311.1996.tb00269.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stutt AD, 2001, P NATL ACAD SCI USA, V98, P5683, DOI 10.1073/pnas.101440698; Tomkins JL, 2000, P ROY SOC B-BIOL SCI, V267, P1547, DOI 10.1098/rspb.2000.1177; VANVOORHIES WA, 1992, NATURE, V360, P456, DOI 10.1038/360456a0; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; Wedell N, 2002, TRENDS ECOL EVOL, V17, P313, DOI 10.1016/S0169-5347(02)02533-8 75 24 25 1 33 BLACKWELL PUBLISHING OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND 1010-061X J EVOLUTION BIOL J. Evol. Biol. MAR 2007 20 2 488 495 10.1111/j.1420-9101.2006.01274.x 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 136SL WOS:000244244300007 17305814 Bronze 2018-11-12 J Simons, AM Simons, A. M. Selection for increased allocation to offspring number under environmental unpredictability JOURNAL OF EVOLUTIONARY BIOLOGY English Article bet hedging; diversification; life-history trade-off; offspring size vs. number trade-off; optimality; risk spreading BET-HEDGING STRATEGY; SEED SIZE VARIATION; LOBELIA-INFLATA; CONSEQUENCES; REPRODUCTION; ECOLOGY According to life-history theory, the evolution of offspring size is constrained by the trade-off between allocation of resources to individual offspring and the number of offspring produced. Existing models explore the ecological consequences of offspring size, whereas number is invariably treated simply as an outcome of the trade-off with size. Here I ask whether there is a direct evolutionary advantage of increased allocation to offspring number under environmental unpredictability. Variable environments are expected to select for diversification in the timing of egg hatch and seed germination, yet the dependence of the expression of diversification strategies, and thus parental fitness, on offspring number has not previously been recognized. I begin by showing that well-established sampling theory predicts that a target bet-hedging diversification strategy is more reliably achieved as offspring number increases. I then use a simulation model to demonstrate that higher offspring number leads to greater geometric mean fitness under environmental uncertainty. Natural selection is thus expected to act directly to increase offspring number under assumptions of environmental unpredictability in season quality. Carleton Univ, Dept Biol, Ottawa, ON K1S 5B6, Canada Simons, AM (reprint author), Carleton Univ, Dept Biol, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada. asimons@ccs.carleton.ca Simons, Andrew/A-7751-2012 Simons, Andrew/0000-0002-0198-465X COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; GERITZ SAH, 1995, AM NAT, V146, P685, DOI 10.1086/285820; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; Halpern SL, 2005, AM J BOT, V92, P205, DOI 10.3732/ajb.92.2.205; Imbert E, 2002, PERSPECT PLANT ECOL, V5, P13, DOI 10.1078/1433-8319-00021; Koops MA, 2003, EVOL ECOL RES, V5, P29; Rees Mark, 1997, P121; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; Simons AM, 2000, AM J BOT, V87, P124, DOI 10.2307/2656690; Simons AM, 2003, J EVOLUTION BIOL, V16, P233, DOI 10.1046/j.1420-9101.2003.00530.x; Simons AM, 1997, OIKOS, V80, P401, DOI 10.2307/3546608; Simons AM, 2004, TRENDS ECOL EVOL, V19, P453, DOI 10.1016/j.tree.2004.07.001; Simons AM, 2002, J EVOLUTION BIOL, V15, P688, DOI 10.1046/j.1420-9101.2002.00437.x; Simons AM, 2006, EVOLUTION, V60, P2280, DOI 10.1554/05-396.1; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Venable DL, 2004, EVOL ECOL RES, V6, P1109; WESTOBY M, 1992, TRENDS ECOL EVOL, V7, P368, DOI 10.1016/0169-5347(92)90006-W; WOLFE LM, 1995, OECOLOGIA, V101, P343, DOI 10.1007/BF00328821; Zar J. H., 1984, BIOSTATISTICAL ANAL 20 30 31 1 25 BLACKWELL PUBLISHING OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND 1010-061X J EVOLUTION BIOL J. Evol. Biol. MAR 2007 20 2 813 817 10.1111/j.1420-9101.2006.01270.x 5 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 136SL WOS:000244244300040 17305847 Bronze 2018-11-12 J Mitteldorf, J; Pepper, JW Mitteldorf, Joshua; Pepper, John W. How can evolutionary theory accommodate recent empirical results on organismal senescence? THEORY IN BIOSCIENCES English Article group selection; aging; guppies; Poecilia reticulata; life history theory; reproductive potential POECILIA-RETICULATA; NATURAL-POPULATIONS; LIFE-SPANS; MORTALITY; GUPPIES; PLEIOTROPY; SELECTION According to a prominent recent report, guppies collected from sites lacking predators are inferior in every aspect of their life history profile to those evolved in other, nearby sites with predators present. This is an exception to two classical predictions of evolutionary theory: that low extrinsic mortality should be associated with longer life span, and that higher fertility should be associated with shorter life span. Some theorists have tried to accommodate this and other anomalous results within the standard framework, but we argue that the exceptions they carve out do not explain the results at hand. In fact, the findings suggest that population regulation has been selected at the group level, though this is a mechanism that most theorists regard with suspicion. We conclude by relating the present result to other experiments that seem to point in the same direction. Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA Mitteldorf, J (reprint author), 7209 Charlton St, Philadelphia, PA 19119 USA. josh@mathforum.org Pepper, John/O-1662-2013 Pepper, John/0000-0001-9888-0437 ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; AUSTAD SN, 1993, J ZOOL, V229, P695, DOI 10.1111/j.1469-7998.1993.tb02665.x; AUSTAD SN, 1991, J GERONTOL, V46, P47; Bell G, 1982, MASTERPIECE NATURE E; Bredesen DE, 2004, AGING CELL, V3, P255, DOI 10.1111/j.1474-9728.2004.00121.x; Bryant MJ, 2004, AM NAT, V163, P55, DOI 10.1086/380650; CHARLESWORTH B, 1994, EVOLUTION LIFE HIST; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; FISHER R. A., 1930, GENETICAL THEORY NAT; Gray DA, 2000, CAN J ZOOL, V78, P140, DOI 10.1139/cjz-78-1-140; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; Kenyon C, 2001, CELL, V105, P165, DOI 10.1016/S0092-8674(01)00306-3; LEROI AM, 1994, EVOLUTION, V48, P1244, DOI 10.1111/j.1558-5646.1994.tb05309.x; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; Miller RA, 2002, EXP BIOL MED, V227, P500; MILLER RA, 2000, J ZOOL, V250, P94; Mitteldorf J, 2006, EVOL ECOL RES, V8, P561; Mitteldorf J, 2004, EVOL ECOL RES, V6, P937; MITTELDORF J, 2007, IN PRESS THEOR POP B; Pepper JW, 2000, SFI STU SCI, P45; Reznick D, 2001, EXP GERONTOL, V36, P791, DOI 10.1016/S0531-5565(00)00241-2; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; Ricklefs RE, 1998, AM NAT, V152, P24, DOI 10.1086/286147; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Stearns S. C., 1992, EVOLUTION LIFE HIST; Van Valen L, 1973, EVOL THEORY, V1, P1, DOI DOI 10.1017/CBO9781139173179; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams PD, 2003, EVOLUTION, V57, P1478 28 11 12 0 6 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1431-7613 1611-7530 THEOR BIOSCI Theory Biosci. MAR 2007 126 1 3 8 10.1007/s12064-007-0001-0 6 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology 221EB WOS:000250209100002 18087751 2018-11-12 J Paitz, RT; Harms, HK; Bowden, RM; Janzen, FJ Paitz, Ryan T.; Harms, Heidi K.; Bowden, Rachel M.; Janzen, Fredric J. Experience pays: offspring survival increases with female age BIOLOGY LETTERS English Article life-history theory; survivorship; body size; Chrysemys picta; turtle TURTLES CHRYSEMYS-PICTA; EGG SIZE; REPRODUCTIVE SUCCESS; LIFE-HISTORY; PERFORMANCE; HYPOTHESES; ALLOCATION; SELECTION; PATTERNS; STAGE Life-history theory predicts that, in long-lived organisms, effort towards reproduction will increase with age, and research from oviparous vertebrates largely supports this prediction. In reptiles, where parental care occurs primarily via provisioning of the egg, older females tend to produce larger eggs, which in turn produce larger hatchlings that have increased survival. We conducted an experimental release study and report that maternal age positively influences offspring survivorship in the painted turtle (Chrysemys picta) and predicts offspring survival at least as well as hatchling body size does. These data suggest that, although increasing hatchling size is a major component of reproductive success in older individuals, other factors also contribute. Iowa State Univ Sci & Technol, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA; Illinois State Univ, Dept Biol Sci, Normal, IL 61790 USA Bowden, RM (reprint author), Iowa State Univ Sci & Technol, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA. rmbowde@ilstu.edu Paitz, Ryan/A-8308-2008 Paitz, Ryan/0000-0003-4609-4359 Apanius V, 2006, OECOLOGIA, V147, P12, DOI 10.1007/s00442-005-0238-6; Bogdanova MI, 2006, FUNCT ECOL, V20, P132, DOI 10.1111/j.1365-2435.2006.01088.x; Bowden RM, 2004, FUNCT ECOL, V18, P522, DOI 10.1111/j.0269-8463.2004.00861.x; Brown GP, 2005, ECOLOGY, V86, P2763, DOI 10.1890/04-1805; Cam E, 2000, OIKOS, V90, P560, DOI 10.1034/j.1600-0706.2000.900314.x; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; CONGDON JD, 1985, HERPETOLOGICA, V41, P194; Congdon JD, 2001, EXP GERONTOL, V36, P813, DOI 10.1016/S0531-5565(00)00242-4; Congdon JD, 2003, EXP GERONTOL, V38, P765, DOI 10.1016/S0531-5565(03)00106-2; Crawley MJ, 1993, GLIM ECOLOGISTS; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; DeForest LN, 1996, ECOLOGY, V77, P1501, DOI 10.2307/2265547; Harms HK, 2005, PHYSIOL BIOCHEM ZOOL, V78, P996, DOI 10.1086/432920; Janzen FJ, 2000, ECOLOGY, V81, P2290; MILLER K, 1987, J EXP BIOL, V127, P401; Nisbet ICT, 2002, J FIELD ORNITHOL, V73, P117, DOI 10.1648/0273-8570-73.2.117; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; SCHLUTER D, 1988, EVOLUTION, V42, P849, DOI 10.1111/j.1558-5646.1988.tb02507.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Weisrock DW, 1999, FUNCT ECOL, V13, P94, DOI 10.1046/j.1365-2435.1999.00288.x; Wilkinson LR, 2005, COPEIA, P868, DOI 10.1643/0045-8511(2005)005[0868:PORACA]2.0.CO;2 21 34 34 1 17 ROYAL SOCIETY LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 BIOL LETT-UK Biol. Lett. FEB 22 2007 3 1 44 46 10.1098/rsbl.2006.0573 3 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 126AY WOS:000243485800013 17443962 Green Published 2018-11-12 J Phillips, NE Phillips, Nicole E. High variability in egg size and energetic content among intertidal mussels BIOLOGICAL BULLETIN English Article ARBACIA-LIXULA ECHINODERMATA; MYTILUS-EDULIS-L; MATERNAL SIZE; POPULATION DIFFERENCES; LARVAL DEVELOPMENT; MARINE MUSSEL; QUALITY; NUMBER; GROWTH; REPRODUCTION Maternal investment is a fundamentally important parameter in life-history theory and models, yet the scales at which it varies (among individuals vs. among populations) is rarely reported. In this study, variability in attributes of eggs and early larvae of Mytilus calfornianus was examined from four sites spanning Point Conception, California, in June and September 2001. The effects of female, site, and month were examined for the following variables: egg volume (mu l), egg energy content (mu g carbon per egg), and initial larval size (mu m). The only significant effect on both egg traits was that of female. Females differed by up to 57% in mean egg volume and 116% in mean egg energetic content. Although there were significant effects of rearing environment, female, site, and month on initial larval size, variability in larval length was small compared to the egg traits. Mean larval length was maximally 11% different among females. Neither female body weight nor length was correlated to mean offspring traits, and there were also no significant relationships between egg traits and initial larval size. The primary source of variation in maternal investment in this system appears to be among individual females rather than over space or time. Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA Phillips, NE (reprint author), Victoria Univ Wellington, Sch Biol Sci, POB 600, Wellington 6140, New Zealand. Nicole.Phillips@vuw.ac.nz Phillips, Nicole/M-6342-2016 Phillips, Nicole/0000-0002-9234-8164 BARBER BJ, 1983, J EXP MAR BIOL ECOL, V66, P247, DOI 10.1016/0022-0981(83)90163-6; BAYNE BL, 1972, NATURE, V237, P459, DOI 10.1038/237459a0; BAYNE BL, 1975, J MAR BIOL ASSOC UK, V55, P675, DOI 10.1017/S0025315400017343; BAYNE BL, 1983, OECOLOGIA, V59, P18, DOI 10.1007/BF00388067; BAYNE BL, 1978, J MAR BIOL ASSOC UK, V58, P824; Bernardo J, 1996, AM ZOOL, V36, P216; Bertram DF, 1998, ECOLOGY, V79, P315, DOI 10.1890/0012-9658(1998)079[0315:EOMALN]2.0.CO;2; Corkum LD, 1997, OECOLOGIA, V111, P69, DOI 10.1007/s004420050209; DITTMAN D, 1991, ECOLOGY, V72, P286, DOI 10.2307/1938922; GALLAGER SM, 1986, AQUACULTURE, V56, P105, DOI 10.1016/0044-8486(86)90021-9; George SB, 1996, OCEANOL ACTA, V19, P297; GEORGE SB, 1990, J EXP MAR BIOL ECOL, V141, P107, DOI 10.1016/0022-0981(90)90217-Z; GEORGE SB, 1994, J EXP MAR BIOL ECOL, V175, P121, DOI 10.1016/0022-0981(94)90179-1; GEORGE SB, 1990, INVERTEBR REPROD DEV, V17, P111, DOI 10.1080/07924259.1990.9672098; Glazier DS, 2000, OECOLOGIA, V122, P335, DOI 10.1007/s004420050039; Guisande C, 1996, MAR ECOL PROG SER, V143, P37, DOI 10.3354/meps143037; HELM MM, 1973, J MAR BIOL ASSOC UK, V53, P673, DOI 10.1017/S0025315400058872; Helmuth BST, 2001, BIOL BULL, V201, P374, DOI 10.2307/1543615; HICKEY BM, 1993, ECOLOGY SO CALIFORNI, P1970; IGUCHI K, 1994, COPEIA, P184; Ito K, 1997, MAR ECOL PROG SER, V152, P187, DOI 10.3354/meps152187; LESSIOS HA, 1987, J EXP MAR BIOL ECOL, V114, P217; LONNING SUNNIVA, 1963, SARSIA, V11, P25; MARSH E, 1984, COPEIA, P291, DOI 10.2307/1445184; Marteinsdottir G, 1998, J FISH BIOL, V52, P1241, DOI 10.1111/j.1095-8649.1998.tb00969.x; MCEDWARD LR, 1987, EVOLUTION, V41, P914, DOI 10.1111/j.1558-5646.1987.tb05865.x; MCEDWARD LR, 1987, MAR ECOL PROG SER, V37, P159, DOI 10.3354/meps037159; McIntyre GS, 2000, CAN J ZOOL, V78, P1544, DOI 10.1139/cjz-78-9-1544; Menge BA, 2004, ECOL MONOGR, V74, P663, DOI 10.1890/03-4060; Phillips NE, 2005, MAR ECOL PROG SER, V295, P79, DOI 10.3354/meps295079; Phillips NE, 2002, ECOLOGY, V83, P2562, DOI 10.1890/0012-9658(2002)083[2562:EONMLC]2.0.CO;2; PHILLIPS NE, 2002, THESIS U CALIFORNIA; QIAN PY, 1992, J EXP MAR BIOL ECOL, V156, P23, DOI 10.1016/0022-0981(92)90014-2; Quinn GP, 2002, EXPT DESIGN DATA ANA; ROBB LA, 1992, J ANIM ECOL, V61, P215, DOI 10.2307/5524; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; THOMPSON RJ, 1983, OECOLOGIA, V56, P50, DOI 10.1007/BF00378216; VENABLE DL, 1992, AM NAT, V140, P287, DOI 10.1086/285413 38 21 21 3 18 MARINE BIOLOGICAL LABORATORY WOODS HOLE 7 MBL ST, WOODS HOLE, MA 02543 USA 0006-3185 BIOL BULL-US Biol. Bull. FEB 2007 212 1 12 19 10.2307/25066576 8 Biology; Marine & Freshwater Biology Life Sciences & Biomedicine - Other Topics; Marine & Freshwater Biology 140LP WOS:000244507000003 17301327 2018-11-12 J Jervis, MA; Boggs, CL; Ferns, PN Jervis, Mark A.; Boggs, Carol L.; Ferns, Peter N. Egg maturation strategy and survival trade-offs in holometabolous insects: a comparative approach BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article cost of reproduction; Hymenoptera; Lepidoptera; reproductive investment; resource allocation; Trichoptera LIFE-HISTORY EVOLUTION; RESOURCE-ALLOCATION; PARASITOID WASPS; BODY-SIZE; HYMENOPTERAN PARASITOIDS; REPRODUCTIVE ALLOCATION; NYMPHALIDAE LEPIDOPTERA; DROSOPHILA-MELANOGASTER; PHYLOGENY LEPIDOPTERA; FEMALE BUTTERFLIES One of the key predictions of general life-history theory is that reproduction incurs a survival cost. Although there is a convincing body of evidence to support this prediction at the intraspecific level in insects, evidence at the interspecific level is relatively scarce, as is the case for other animals. By employing two methods of phylogenetically controlled analysis, we demonstrate the existence of a negative correlation between life-span and early life investment in reproduction, across a wide diversity of Lepidoptera. The measure of initial reproductive effort used was the 'ovigeny index', defined as the proportion of the lifetime potential egg complement that is mature (ready to lay) upon female emergence. We present a graphical model for holometabolous insects, illustrating the trade-offs that are hypothesized to occur among capital resources (soma vs non-soma and initial eggs vs storage) in relation to variation in ovigeny index. These trade-offs, for which there is some empirical support, are postulated to underlie the life-span/ovigeny index relationship observed in the Lepidoptera and also in other insect orders. (c) 2007 The Linnean Society of London. Univ Wales Coll Cardiff, Cardiff Sch Biosci, Cardiff CF10 3TL, S Glam, Wales; Stanford Univ, Dept Biol Sci, Ctr Conservat Biol, Stanford, CA 94305 USA Jervis, MA (reprint author), Univ Wales Coll Cardiff, Cardiff Sch Biosci, Cardiff CF10 3TL, S Glam, Wales. jervis@cf.ac.uk Ferns, Peter/A-5902-2010 BARBOSA P, 1989, AM MIDL NAT, V122, P262, DOI 10.2307/2425912; Barnes AI, 2003, ANIM BEHAV, V66, P199, DOI 10.1006/anbe.2003.2122; BARNES AI, 2005, P ROY SOC LOND B BIO, V273, P939; BERNSTEIN C, BEHAV ECOLOGY PARASI; BLACKBURN TM, 1991, J ANIM ECOL, V60, P151, DOI 10.2307/5451; Boggs Carol L., 1994, P25; BOGGS CL, 1981, AM NAT, V117, P692, DOI 10.1086/283753; Boggs CL, 1997, ECOLOGY, V78, P181; BOGGS CL, 1986, ECOL ENTOMOL, V11, P7, DOI 10.1111/j.1365-2311.1986.tb00274.x; Boggs CL, 2004, ENVIRON ENTOMOL, V33, P1020, DOI 10.1603/0046-225X-33.4.1020; Boggs CL, 1997, ECOLOGY, V78, P192; BOGGS CL, 1990, AM NAT, V136, P598, DOI 10.1086/285118; Brower AVZ, 2000, P ROY SOC B-BIOL SCI, V267, P1201, DOI 10.1098/rspb.2000.1129; BROWER LP, 1985, MIGRATION MECH ADAPT, P748; Calder W. A., 1984, SIZE FUNCTION LIFE H; Casas J, 2005, ECOLOGY, V86, P545, DOI 10.1890/04-0812; Caterino MS, 2001, SYST BIOL, V50, P106, DOI 10.1080/106351501750107530; Chapman R. F., 1998, INSECTS STRUCTURE FU; DeJong R, 1996, ENTOMOL SCAND, V27, P65; Dixon AFG, 2000, INSECT PREDATOR PREY; Eidmann H., 1931, Zeitschrift fuer Angewandte Entomologie, V18, P57; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; Ellers J, 2004, EVOL ECOL RES, V6, P993; Ellers J, 2003, OIKOS, V102, P164, DOI 10.1034/j.1600-0706.2003.12183.x; ERNSTING G, 1991, FUNCT ECOL, V5, P299, DOI 10.2307/2389268; Fang QQ, 2000, MOL PHYLOGENET EVOL, V15, P473, DOI 10.1006/mpev.1999.0758; FLANDERS STANLEY E., 1950, CANADIAN ENT, V82, P134; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gilbert F, 1998, BIOL J LINN SOC, V63, P495, DOI 10.1006/bijl.1997.0208; Giron D, 2003, J INSECT PHYSIOL, V49, P141, DOI 10.1016/S0022-1910(02)00258-5; Harvey P. H., 1991, COMP METHOD EVOLUTIO; Heimpel GE, 1998, BIOL CONTROL, V11, P160, DOI 10.1006/bcon.1997.0587; Herz A, 2002, EUR J ENTOMOL, V99, P117, DOI 10.14411/eje.2002.020; Janzen D.H., 1984, Oxford Surveys in Evolutionary Biology, V1, P85; Jervis MA, 2005, TRENDS ECOL EVOL, V20, P585, DOI 10.1016/j.tree.2005.08.015; JERVIS MA, 1986, BIOL REV, V61, P395, DOI 10.1111/j.1469-185X.1986.tb00660.x; Jervis MA, 2004, OIKOS, V107, P449, DOI 10.1111/j.0030-1299.2004.13453.x; JERVIS MA, 1993, J NAT HIST, V27, P67, DOI 10.1080/00222939300770051; Jervis MA, 2003, FUNCT ECOL, V17, P375, DOI 10.1046/j.1365-2435.2003.00742.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis MA, 2000, BIOL J LINN SOC, V70, P121, DOI 10.1006/bijl.1999.0396; Jervis MA, 1996, BIOCONTROL NEWS INFO, V16, P11; JERVIS MA, 2005, ECOL ENTOMOL, V30, P1; JERVIS MA, 2004, INSECTS NATURAL ENEM, P73; KAITALA A, 1991, FUNCT ECOL, V5, P12, DOI 10.2307/2389551; KOPELMAN AH, 1992, ANN ENTOMOL SOC AM, V85, P195, DOI 10.1093/aesa/85.2.195; KRISTENSEN NP, 1996, LEPIDOPTERA MOTHS BU, P7; LABINE PA, 1968, EVOLUTION, V22, P799, DOI 10.1111/j.1558-5646.1968.tb03478.x; LEVERTON R, 2001, ENJOYING MOTHS; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; MEVISCHUTZ J, 2005, AM NAT, V165, P412; Miller WE, 1996, ENVIRON ENTOMOL, V25, P213, DOI 10.1093/ee/25.2.213; MINET J, 1991, ENTOMOL SCAND, V22, P69; NOVAK KAREL, 1963, CAS CESK SPOLECNOSTI ENTOMOL [ACTA SOC ENTOMOL CECH], V60, P68; Novoseltsev VN, 2002, EVOLUTION, V56, P1136; O'Brien DM, 2004, OIKOS, V105, P279, DOI 10.1111/j.0030-1299.2004.13012.x; O'Brien DM, 2005, PHYSIOL BIOCHEM ZOOL, V78, P819, DOI 10.1086/431191; O'Brien DM, 2003, P ROY SOC B-BIOL SCI, V270, P2631, DOI 10.1098/rspb.2003.2552; O'Brien DM, 2002, P NATL ACAD SCI USA, V99, P4413, DOI 10.1073/pnas.072346699; Oldroyd H., 1964, NATURAL HIST FLIES; Papaj DR, 2000, ANNU REV ENTOMOL, V45, P423, DOI 10.1146/annurev.ento.45.1.423; Partridge L, 1999, P ROY SOC B-BIOL SCI, V266, P255, DOI 10.1098/rspb.1999.0630; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; Pexton JJ, 2002, BEHAV ECOL, V13, P690, DOI 10.1093/beheco/13.5.690; PURVIS A, 1995, COMPUT APPL BIOSCI, V11, P247; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; Rivero A, 2001, P ROY SOC B-BIOL SCI, V268, P1231, DOI 10.1098/rspb.2001.1645; Roff D. A., 2002, LIFE HIST EVOLUTION; Roitberg BD, 2000, PARASITOID POPULATION BIOLOGY, P254; ROSE MR, 1984, EVOLUTION, V38, P1001; Rosenheim JA, 2000, P ROY SOC B-BIOL SCI, V267, P1565, DOI 10.1098/rspb.2000.1179; Sattler K., 1991, Bulletin of the British Museum (Natural History) Entomology, V60, P243; SPRADBERY JP, 1981, ENTOMOL EXP APPL, V30, P116, DOI 10.1111/j.1570-7458.1981.tb03084.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stearns S. C., 2000, EVOLUTION INTRO; Stevens DJ, 1999, P ROY SOC B-BIOL SCI, V266, P1049, DOI 10.1098/rspb.1999.0742; Stevens DJ, 2000, P ROY SOC B-BIOL SCI, V267, P1511, DOI 10.1098/rspb.2000.1172; Strong D. R., 1984, INSECTS PLANTS COMMU; TATAR M, 1993, EVOLUTION, V47, P1302, DOI 10.1111/j.1558-5646.1993.tb02156.x; Thorne AD, 2006, P R SOC B, V273, P1099, DOI 10.1098/rspb.2005.3416; VALICENTE FH, 1995, BIOL CONTROL, V5, P449, DOI 10.1006/bcon.1995.1054; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Wahlberg N, 2005, P ROY SOC B-BIOL SCI, V272, P1577, DOI 10.1098/rspb.2005.3124; Wahlberg N, 2003, MOL PHYLOGENET EVOL, V28, P473, DOI 10.1016/S1055-7903(03)00052-6; Weinert BT, 2003, J APPL PHYSIOL, V95, P1706, DOI 10.1152/japplphysiol.00288.2003; Zera AJ, 2003, INTEGR COMP BIOL, V43, P607, DOI 10.1093/icb/43.5.607; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zhao ZW, 2002, P NATL ACAD SCI USA, V99, P16829, DOI 10.1073/pnas.262533999 88 42 44 2 25 BLACKWELL PUBLISHING OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND 0024-4066 BIOL J LINN SOC Biol. J. Linnean Soc. FEB 2007 90 2 293 302 10.1111/j.1095-8312.2007.00721.x 10 Evolutionary Biology Evolutionary Biology 131YW WOS:000243909900008 Bronze 2018-11-12 J Roff, DA Roff, Derek A. Contributions of genomics to life-history theory NATURE REVIEWS GENETICS English Review QUANTITATIVE TRAIT LOCI; GENE-EXPRESSION PROFILES; DROSOPHILA-MELANOGASTER; EXPERIMENTAL EVOLUTION; ARABIDOPSIS-THALIANA; INSECTICIDE RESISTANCE; TRADE-OFFS; BODY-SIZE; CAENORHABDITIS-ELEGANS; FITNESS COMPONENTS Life-history theory seeks to understand the factors that produce variation in life histories that are found both among and within species. At the organismal level there is a well developed mathematical framework, and an important focus of the current research is determining the biological underpinnings of this framework, with particular attention to the causal mechanisms that underlie trade-offs. Genomic approaches are proving useful in addressing this issue. Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Roff, DA (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. derek.roff@ucr.edu Abouheif E, 2002, SCIENCE, V297, P249, DOI 10.1126/science.1071468; Anderson JB, 2006, EUKARYOT CELL, V5, P1243, DOI 10.1128/EC.00048-06; Aubin-Horth N, 2005, J HERED, V96, P261, DOI 10.1093/jhered/esi030; Aubin-Horth N, 2005, P ROY SOC B-BIOL SCI, V272, P1655, DOI 10.1098/rspb.2005.3125; Bennett AF, 1999, AM ZOOL, V39, P346; Berticat C, 2002, GENET RES, V79, P41, DOI 10.1017/S001667230100547X; Bettencourt BR, 1999, EVOLUTION, V53, P484, DOI 10.1111/j.1558-5646.1999.tb03783.x; Blows MW, 2005, ECOLOGY, V86, P1371, DOI 10.1890/04-1209; Bochdanovits Z, 2004, P ROY SOC B-BIOL SCI, V271, pS75, DOI 10.1098/rsbl.2003.0091; Boivin T, 2003, HEREDITY, V90, P107, DOI 10.1038/sj.hdy.6800188; Brandt BW, 2005, BIOESSAYS, V27, P339, DOI 10.1002/bies.20161; Brown PO, 1999, NAT GENET, V21, P33, DOI 10.1038/4462; Bult A, 1996, BEHAV GENET, V26, P439, DOI 10.1007/BF02359488; Calboli FCF, 2003, EVOLUTION, V57, P2653; Calboli FCF, 2003, EVOLUTION, V57, P566; Camara MD, 1999, EVOLUTION, V53, P1692, DOI 10.1111/j.1558-5646.1999.tb04554.x; CARRIERE Y, 1994, P ROY SOC B-BIOL SCI, V258, P35, DOI 10.1098/rspb.1994.0138; Chippindale AK, 1997, EVOLUTION, V51, P1536, DOI 10.1111/j.1558-5646.1997.tb01477.x; Cutter AD, 2005, J EVOLUTION BIOL, V18, P27, DOI 10.1111/j.1420-9101.2004.00804.x; Drnevich JM, 2004, P ROY SOC B-BIOL SCI, V271, P2267, DOI 10.1098/rspb.2004.2880; Erickson DL, 2004, MOL ECOL, V13, P2505, DOI 10.1111/j.1365-294X.2004.02254.x; Evans JD, 2001, BIOESSAYS, V23, P62, DOI 10.1002/1521-1878(200101)23:1<62::AID-BIES1008>3.3.CO;2-Z; Ferea TL, 1999, P NATL ACAD SCI USA, V96, P9721, DOI 10.1073/pnas.96.17.9721; Festucci-Buselli RA, 2005, INSECT MOL BIOL, V14, P69, DOI 10.1111/j.1365-2583.2005.00532.x; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Flatt T, 2004, GENETICA, V122, P141, DOI 10.1023/B:GENE.0000041000.22998.92; Foster SP, 2003, HEREDITY, V91, P98, DOI 10.1038/sj.hdy.6800285; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Frisk MG, 2001, CAN J FISH AQUAT SCI, V58, P969, DOI 10.1139/cjfas-58-5-969; Garland T, 1999, AM ZOOL, V39, P374; Gems D, 2001, CURR OPIN GENET DEV, V11, P287, DOI 10.1016/S0959-437X(00)00192-1; Gibson G, 2002, MOL ECOL, V11, P17, DOI 10.1046/j.0962-1083.2001.01425.x; Gilchrist AS, 1999, GENETICS, V153, P1775; Gilchrist GW, 2004, EVOLUTION, V58, P768; Heidel AJ, 2004, GENETICS, V168, P2197, DOI 10.1534/genetics.104.032193; Heppell SS, 1998, COPEIA, P367, DOI 10.2307/1447430; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hofmann HA, 1999, P NATL ACAD SCI USA, V96, P14171, DOI 10.1073/pnas.96.24.14171; Hofmann HA, 2003, J NEUROBIOL, V54, P272, DOI 10.1002/neu.10172; HOULE D, 1992, GENETICS, V130, P195; Hughes KA, 2005, ANNU REV ENTOMOL, V50, P421, DOI 10.1146/annurev.ento.50.071803.130409; HUTCHINGS JA, 1994, EVOL ECOL, V8, P256, DOI 10.1007/BF01238277; Janmaat AF, 2006, ECOL ENTOMOL, V31, P172, DOI 10.1111/j.0307-6946.2006.00768.x; JOSHI A, 1995, EVOLUTION, V49, P616, DOI 10.1111/j.1558-5646.1995.tb02298.x; Kirkwood TBL, 2003, TRENDS ENDOCRIN MET, V14, P345, DOI 10.1016/j.tem.2003.08.003; Kirkwood TBL, 2002, MECH AGEING DEV, V123, P737, DOI 10.1016/S0047-6374(01)00419-5; Krebs RA, 1997, CELL STRESS CHAPERON, V2, P60, DOI 10.1379/1466-1268(1997)002<0060:DCOHOI>2.3.CO;2; LaMunyon CW, 2002, P ROY SOC B-BIOL SCI, V269, P1125, DOI 10.1098/rspb.2002.1996; Leips J, 2006, GENETICS, V172, P1595, DOI 10.1534/genetics.105.048520; Mauricio R, 2001, NAT REV GENET, V2, P370, DOI 10.1038/35072085; MCKENZIE JA, 1994, TRENDS ECOL EVOL, V9, P166, DOI 10.1016/0169-5347(94)90079-5; McKenzie John A., 2001, P347; Mery F, 2002, P NATL ACAD SCI USA, V99, P14274, DOI 10.1073/pnas.222371199; Messenger SL, 1999, P ROY SOC B-BIOL SCI, V266, P397, DOI 10.1098/rspb.1999.0651; Mohamed SA, 2001, J ANIM BREED GENET, V118, P263, DOI 10.1046/j.1439-0388.2001.00292.x; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Nijhout H. F., 1994, INSECT HORMONES; Nuzhdin SV, 2005, GENETICS, V170, P719, DOI 10.1534/genetics.104.038331; Oakeshott JG, 2003, GENOME BIOL, V4, DOI 10.1186/gb-2003-4-1-202; Promislow DEL, 1996, GENETICS, V143, P839; Reboud X, 1997, HEREDITY, V78, P507, DOI 10.1038/hdy.1997.79; Rise ML, 2004, GENOME RES, V14, P478, DOI 10.1101/gr.1687304; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; Roff DA, 2006, J EVOLUTION BIOL, V19, P1920, DOI 10.1111/j.1420-9101.2006.01155.x; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff DA, 1996, Q REV BIOL, V71, P3, DOI 10.1086/419266; ROFF DA, 1994, AM NAT, V144, P772, DOI 10.1086/285706; ROFF DA, IN PRESS PHYSL BIOCH; ROFF DA, 2006, J EVOL BIOL 1010, DOI DOI 10.1111/J.1420-9101.2006.01255X; Roff Derek A., 1992; Roux F, 2005, GENET RES, V85, P101, DOI 10.1017/S0016672305007378; Schluter D, 1996, EVOLUTION, V50, P1766, DOI 10.1111/j.1558-5646.1996.tb03563.x; Sgro CM, 1999, SCIENCE, V286, P2521, DOI 10.1126/science.286.5449.2521; Shimizu KK, 2005, PLANT PHYSIOL, V138, P578, DOI 10.1104/pp.105.061655; Smirle MJ, 1998, PESTIC BIOCHEM PHYS, V61, P183, DOI 10.1006/pest.1998.2358; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stearns SC, 1996, EVOLUTION, V50, P795, DOI 10.1111/j.1558-5646.1996.tb03889.x; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; Stearns SC, 2003, AM NAT, V161, P171, DOI 10.1086/367983; STEARNS SC, 1999, EVOLUTION HLTH DIS, P328; Stowe KA, 1998, EVOLUTION, V52, P703, DOI 10.1111/j.1558-5646.1998.tb03695.x; Takken FLW, 2006, CURR OPIN PLANT BIOL, V9, P383, DOI 10.1016/j.pbi.2006.05.009; Tian D, 2003, NATURE, V423, P74, DOI 10.1038/nature01588; Ungerer MC, 2003, EVOLUTION, V57, P2531; Ungerer MC, 2003, GENETICS, V163, P277; Valenzuela RK, 2004, GENETICS, V168, P313, DOI 10.1534/genetics.103.023291; Walsh B, 2001, THEOR POPUL BIOL, V59, P175, DOI 10.1006/tpbi.2001.1512; Wayne ML, 2001, GENET RES, V77, P107, DOI 10.1017/S0016672300004894; Wichman HA, 2000, PHILOS T ROY SOC B, V355, P1677, DOI 10.1098/rstb.2000.0731; Zhang E, 1999, FEMS MICROBIOL LETT, V176, P395, DOI 10.1016/S0378-1097(99)00257-8; Zhong DB, 2005, GENETICS, V169, P2127, DOI 10.1534/genetics.104.038794; Zinser ER, 2003, GENETICS, V164, P1271 92 55 58 1 34 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 1471-0056 1471-0064 NAT REV GENET Nat. Rev. Genet. FEB 2007 8 2 116 125 10.1038/nrg2040 10 Genetics & Heredity Genetics & Heredity 126VU WOS:000243544400012 17230198 2018-11-12 J Navarro, J; Gonzalez-Solis, J Navarro, Joan; Gonzalez-Solis, Jacob Experimental increase of flying costs in a pelagic seabird: effects on foraging strategies, nutritional state and chick condition OECOLOGIA English Article body condition; ecophysiology; foraging ecology; life history theory; shearwaters THIN-BILLED PRION; BLUE-FOOTED BOOBY; PARENTAL EFFORT; BODY CONDITION; INCUBATION; PETREL; REPRODUCTION; MASS; PRODUCTIVITY; MANIPULATION A central point in life history theory is that parental investment in current reproduction should be balanced by the costs in terms of residual reproductive value. Long-lived seabirds are considered fixed investors, that is, parents fix a specific level of investment in their current reproduction independent to the breeding requirements. We tested this hypothesis analysing the consequences of an experimental increase in flying costs on the foraging ecology, body condition and chick condition in Cory's shearwaters Calonectris diomedea. We treated 28 pairs by reducing the wing surface in one partner and compared them with 14 control pairs. We monitored mass changes and incubation shifts and tracked 19 foraging trips per group using geolocators. Furthermore, we took blood samples at laying, hatching and chick-rearing to analyse the nutritional condition, haematology, muscle damage and stable isotopes. Eighty-day-old chicks were measured, blood sampled and challenged with PHA immune assay. In addition, we analysed the effects of handicap on the adults at the subsequent breeding season. During incubation, handicapped birds showed a greater foraging effort than control birds, as indicated by greater foraging distances and longer periods of foraging, covering larger areas. Eighty-day-old chicks reared by treated pairs were smaller and lighter and showed a lower immunity than those reared by control pairs. However, oxygen demands, nutritional condition and stable isotopes did not differ between control and handicapped birds. Although handicapped birds had to increase their foraging effort, they maintained physical condition by reducing parental investment and transferred the experimentally increased costs to their partners and the chick. This result supports the fixed investment hypothesis and is consistent with life history theory. Univ Barcelona, Dept Biol Anim Vertebrats, E-08028 Barcelona, Spain Navarro, J (reprint author), Univ Barcelona, Dept Biol Anim Vertebrats, Av Diagonal 645, E-08028 Barcelona, Spain. jgsolis@ub.edu Gonzalez-Solis, Jacob/C-3942-2008; Navarro, Joan/C-2119-2009 Gonzalez-Solis, Jacob/0000-0002-8691-9397; Navarro, Joan/0000-0002-5756-9543 Afanasyev Vsevolod, 2004, Memoirs of National Institute of Polar Research Special Issue, V58, P227; Alonso-Alvarez C, 2001, CAN J ZOOL, V79, P101, DOI 10.1139/cjz-79-1-101; Alonso-Alvarez C, 2002, IBIS, V144, P147, DOI 10.1046/j.0019-1019.2001.00023.x; Barton ED, 1998, PROG OCEANOGR, V41, P455, DOI 10.1016/S0079-6611(98)00023-8; *BIRD LIF INT, 2004, GLOB PROC TRACK WORK; BUSTAMANTE J, 1994, COMP BIOCHEM PHYS A, V107, P661, DOI 10.1016/0300-9629(94)90366-2; CHAURAND T, 1994, IBIS, V136, P285, DOI 10.1111/j.1474-919X.1994.tb01097.x; CROXALL JP, 1982, J ANIM ECOL, V63, P275; Davenport R, 2002, DEEP-SEA RES PT II, V49, P3481, DOI 10.1016/S0967-0645(02)00095-4; DRABKIN DL, 1936, J BIOL CHEM, V112, P105; DRENT RH, 1980, ARDEA, V68, P225; Duncan R. J., 1994, VET LAB MED CLIN PAT; Duriez O, 2000, CAN J ZOOL, V78, P1275, DOI 10.1139/cjz-78-7-1275; Ellegren H, 1996, P ROY SOC B-BIOL SCI, V263, P1635, DOI 10.1098/rspb.1996.0239; Ewing AD, 2005, EMU, V105, P137, DOI 10.1071/MU03061; Forero MG, 2003, SCI MAR, V67, P23, DOI 10.3989/scimar.2003.67s223; Forero MG, 2002, MAR ECOL PROG SER, V234, P289, DOI 10.3354/meps234289; FREED LA, 1981, ECOLOGY, V62, P1179, DOI 10.2307/1937282; Fudge AM, 2000, LAB MED AVIAN EXOTIC; Gonzalez-Solis J, 2000, OIKOS, V90, P390, DOI 10.1034/j.1600-0706.2000.900220.x; Granadeiro JP, 1998, ANIM BEHAV, V56, P1169, DOI 10.1006/anbe.1998.0827; Guglielmo C, 2001, J EXP BIOL, V204, P2683; HOBSON KA, 1993, MAR ECOL-PROG SER, V95, P1; HOOGE PN, 1997, ANIMAL MOVEMENT EXTE; Jenni-Eiermann Susanne, 1999, Biologia e Conservazione della Fauna, V102, P312; JOHNSEN I, 1994, ECOLOGY, V76, P1636; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; MCCONNELL BJ, 1992, ANTARCT SCI, V4, P393; Minguez E, 1998, J AVIAN BIOL, V29, P183, DOI 10.2307/3677197; Nisbet ICT, 2004, WATERBIRDS, V27, P13, DOI 10.1675/1524-4695(2004)027[0013:ROKCTT]2.0.CO;2; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PENNYCUICK CJ, 1989, BIRD FLIGHT PERFORMA, P7; PHILLIPS RA, 2004, MAR ECOL-PROG SER, V266, P262; REID WV, 1987, OECOLOGIA, V74, P458, DOI 10.1007/BF00378945; RICKLEFS RE, 1987, AUK, V104, P750; Rosskopf W.J. Jr, 1982, California Veterinarian, V36, P11; Silva Maria Patricia, 2001, Marine Ornithology, V29, P85; Smits JE, 1999, FUNCT ECOL, V13, P567, DOI 10.1046/j.1365-2435.1999.00338.x; *SPSS, 1999, SPSS WIND; Stearns S. C., 1992, EVOLUTION LIFE HIST; Thibault J. C., 1997, CORYS SHEARWATER; Totzke U, 1999, PHYSIOL BIOCHEM ZOOL, V72, P426, DOI 10.1086/316675; Tveraa T, 1997, BEHAV ECOL, V8, P465, DOI 10.1093/beheco/8.5.465; Velando A, 2002, BEHAV ECOL, V13, P443, DOI 10.1093/beheco/13.4.443; Velando A, 2003, J ANIM ECOL, V72, P846, DOI 10.1046/j.1365-2656.2003.00756.x; Warham J, 1990, PETRELS THEIR ECOLOG; Weimerskirch H, 1997, BEHAV ECOL, V8, P635, DOI 10.1093/beheco/8.6.635; Weimerskirch H, 2000, IBIS, V142, P103, DOI 10.1111/j.1474-919X.2000.tb07689.x; Weimerskirch H, 1999, J AVIAN BIOL, V30, P165, DOI 10.2307/3677126; WEIMERSKIRCH H, 1995, BEHAV ECOL SOCIOBIOL, V36, P11; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zar J. H., 1984, BIOSTATISTICAL ANAL 53 62 62 4 39 SPRINGER NEW YORK 233 SPRING STREET, NEW YORK, NY 10013 USA 0029-8549 OECOLOGIA Oecologia FEB 2007 151 1 150 160 10.1007/s00442-006-0559-0 11 Ecology Environmental Sciences & Ecology 123WB WOS:000243325800015 17124570 2018-11-12 J Franks, SJ; Sim, S; Weis, AE Franks, Steven J.; Sim, Sheina; Weis, Arthur E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article contemporary evolution; global climate change; life history theory; local adaptation; plant phenology ADAPTIVE EVOLUTION; BRASSICA-RAPA; DROSOPHILA; MICROEVOLUTION; REPRODUCTION; ENVIRONMENT; ADAPTATION; EXTINCTION; PATTERN; SHIFT Ongoing climate change has affected the ecological dynamics of many species and is expected to impose natural selection on ecologically important traits. Droughts and other anticipated changes in precipitation may be particularly potent selective factors, especially in and regions. Here we demonstrate the evolutionary response of an annual plant, Brassica rapa, to a recent climate fluctuation resulting in a multiyear drought. Ancestral (predrought) genotypes were recovered from stored seed and raised under a set of common environments with descendant (postdrought) genotypes and with ancestor x descendant hybrids. As predicted, the abbreviated growing seasons caused by drought led to the evolution of earlier onset of flowering. Descendants bloomed earlier than ancestors, advancing first flowering by 1.9 days in one study population and 8.6 days in another. The intermediate flowering time of ancestor x descendant hybrids supports an additive genetic basis for divergence. Experiments confirmed that summer drought selected for early flowering, that flowering time was heritable, and that selection intensities in the field were more than sufficient to account for the observed evolutionary change. Natural selection for drought escape thus appears to have caused adaptive evolution in just a few generations. A systematic effort to collect and store propagules from suitable species would provide biologists with materials to detect and elucidate the genetic basis of further evolutionary shifts driven by climate change. Univ Calif Irvine, Dept Ecol & Evolutionary Biol, Irvine, CA 92697 USA Franks, SJ (reprint author), Univ Calif Irvine, Dept Ecol & Evolutionary Biol, 321 Steinhaus Hall, Irvine, CA 92697 USA. sfranks@uci.edu Barbraud C, 2006, P NATL ACAD SCI USA, V103, P6248, DOI 10.1073/pnas.0510397103; BENNETT AF, 1992, EVOLUTION, V46, P16, DOI 10.1111/j.1558-5646.1992.tb01981.x; Bone E, 2001, GENETICA, V112, P165, DOI 10.1023/A:1013378014069; Both C, 2006, NATURE, V441, P81, DOI 10.1038/nature04539; Bradshaw WE, 2001, P NATL ACAD SCI USA, V98, P14509, DOI 10.1073/pnas.241391498; BURGER R, 1995, EVOLUTION, V49, P151, DOI 10.1111/j.1558-5646.1995.tb05967.x; COHEN D, 1976, AM NAT, V110, P801, DOI 10.1086/283103; Davis MB, 2001, SCIENCE, V292, P673, DOI 10.1126/science.292.5517.673; Etterson JR, 2001, SCIENCE, V294, P151, DOI 10.1126/science.1063656; Fox GA, 2001, DESIGN ANAL ECOLOGIC, P253; Franke DM, 2006, INT J PLANT SCI, V167, P83, DOI 10.1086/497648; GOMULKIEWICZ R, 1995, EVOLUTION, V49, P201, DOI 10.1111/j.1558-5646.1995.tb05971.x; Grant PR, 2002, SCIENCE, V296, P707, DOI 10.1126/science.1070315; Hairston NG, 1999, NATURE, V401, P446, DOI 10.1038/46731; HOERLING M, 2003, SCIENCE, V229, P691; Jump AS, 2005, ECOL LETT, V8, P1010, DOI 10.1111/j.1461-0248.2005.00796.x; Kinnison MT, 2001, GENETICA, V112, P145, DOI 10.1023/A:1013375419520; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Levitan M, 2005, BMC EVOL BIOL, V5, DOI 10.1186/1471-2148-5-4; Linhart YB, 1996, ANNU REV ECOL SYST, V27, P237, DOI 10.1146/annurev.ecolsys.27.1.237; Lynch M, 1998, GENETICS ANAL QUANTI; McCabe GJ, 2004, P NATL ACAD SCI USA, V101, P4136, DOI 10.1073/pnas.0306738101; McCarthy J. J., 2001, CLIMATE CHANGE 2001; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Penuelas J, 2002, GLOBAL CHANGE BIOL, V8, P531, DOI 10.1046/j.1365-2486.2002.00489.x; Reale D, 2003, P ROY SOC B-BIOL SCI, V270, P591, DOI 10.1098/rspb.2002.2224; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Rodriguez-Trelles F, 1998, EVOL ECOL, V12, P829, DOI 10.1023/A:1006546616462; Umina PA, 2005, SCIENCE, V308, P691, DOI 10.1126/science.1109523; Weis AE, 2004, AM J BOT, V91, P825, DOI 10.3732/ajb.91.6.825 30 470 495 16 360 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. JAN 23 2007 104 4 1278 1282 10.1073/pnas.0608379104 5 Multidisciplinary Sciences Science & Technology - Other Topics 131EB WOS:000243849900031 17220273 Green Published 2018-11-12 S Bjorklund, DF; Ellis, BJ; Rosenberg, JS Kail, RV Bjorklund, David F.; Ellis, Bruce J.; Rosenberg, Justin S. Evolved probabilistic cognitive mechanisms: An evolutionary approach to gene x environment x development interactions ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR, VOL 35 Advances in Child Development and Behavior English Article; Book Chapter BOBWHITE QUAIL CHICKS; ADAPTIVE INDIVIDUAL-DIFFERENCES; EARLY PERCEPTUAL DEVELOPMENT; LIFE-HISTORY THEORY; COLINUS-VIRGINIANUS; HONEYCUTT 2003; INTERSENSORY EXPERIENCE; REPRODUCTIVE STRATEGY; VISUAL-STIMULATION; BRAIN-DEVELOPMENT Florida Atlantic Univ, Dept Psychol, Boca Raton, FL 33431 USA; Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, Tucson, AZ 85721 USA Bjorklund, DF (reprint author), Florida Atlantic Univ, Dept Psychol, Boca Raton, FL 33431 USA. ALS H, 1995, FETAL DEV PSYCHOBIOL, P439; Baron-Cohen S, 1999, NEUROCASE, V5, P475, DOI 10.1093/neucas/5.6.475; Baron-Cohen S, 2005, ORIGINS SOCIAL MIND, P468; Baron-Cohen S, 1995, MINDBLINDNESS ESSAY; BARONCOHEN S, 1985, COGNITION, V21, P37, DOI 10.1016/0010-0277(85)90022-8; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BELSKY J, 2005, ORIGINS SOCIAL MIND, P139; Bittner GD, 2000, NEUROSCIENTIST, V6, P241, DOI 10.1177/107385840000600407; Bjorklund D.F., 2005, ORIGINS SOCIAL MIND, P3; Bjorklund D. F., 2002, ORIGINS HUMAN NATURE; Bjorklund DF, 2002, EVOLUTION OF INTELLIGENCE, P27; Bjorklund DF, 2003, PSYCHOL BULL, V129, P836, DOI 10.1037/0033-2909.129.6.836; Bjorklund DF, 2000, CHILD DEV, V71, P1687, DOI 10.1111/1467-8624.00258; BJORKLUND DF, 1995, NEW PERSPECTIVES INT, P141, DOI DOI 10.1016/B978-012208930-5/50006-4; BJORKLUND DF, 2005, ORIGINS SOCIAL MIND, P45; BLACK JE, 2003, COMPREHENSIVE HDB PS, V3, P655; Black M P, 2003, Annu Rev Sex Res, V14, P160; Blasi CH, 2003, HUM DEV, V46, P259, DOI 10.1159/000071935; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Bruner J. S., 1983, CHILDS TALK LEARNING; BRUNSWIK E, 1955, PSYCHOL REV, V62, P236, DOI 10.1037/h0040198; BRUNSWIK E, 1955, PSYCHOL REV, V62, P193, DOI 10.1037/h0047470; Bugental DB, 2000, PSYCHOL BULL, V126, P187, DOI 10.1037/0033-2909.126.2.187; Buller D. J., 2005, ADAPTING MINDS EVOLU; BURGESS R, 2005, EVOLUTIONARY PERSPEC; BUSS DM, 1995, PSYCHOL INQ, V6, P1, DOI 10.1207/s15327965pli0601_1; Buss DM, 2003, PSYCHOL BULL, V129, P848, DOI 10.1037/0033-2909.129.6.848; Buss DM, 1999, J PERS, V67, P209, DOI 10.1111/1467-6494.00053; Caporael L., 2003, EVOLUTIONARY PSYCHOL, P71; Carlson SM, 2002, INFANT CHILD DEV, V11, P73, DOI 10.1002/icd.298; CARPENTER M, 1998, MONOGRAPHS SOC RES C, V63; Caspi A, 2003, SCIENCE, V301, P386, DOI 10.1126/science.1083968; Caspi A, 2002, SCIENCE, V297, P851, DOI 10.1126/science.1072290; CHARLESWORTH WR, 1992, DEV PSYCHOL, V28, P5, DOI 10.1037//0012-1649.28.1.5; Chiappe D, 2005, J GEN PSYCHOL, V132, P5, DOI 10.3200/GENP.132.1.5-40; Columbus RF, 1998, J COMP PSYCHOL, V112, P161, DOI 10.1037//0735-7036.112.2.161; Cummins DD, 1999, COGNITION, V73, pB37; CURTISS S, 1977, PSYCHOLINGUISTIC STU; Dawkins R., 1976, SELFISH GENE; DURRANT R, 2003, COMPREHENSIVE HDB PS, V3, P1; Edelman G. M., 1987, NEURAL DARWINISM THE; Ellis B. J., 2005, ORIGINS SOCIAL MIND; Ellis BJ, 2002, J PERS, V70, P611; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; ELLISON PT, 2001, FERTILE GROUND NATUR; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Foley Robert, 1995, Evolutionary Anthropology, V4, P194, DOI 10.1002/evan.1360040603; GARCIA J, 1966, PSYCHON SCI, V4, P123, DOI DOI 10.3758/BF03342209; Geary D. C., 1998, MALE FEMALE EVOLUTIO; Geary DC, 2002, PSYCHOL BULL, V128, P667, DOI 10.1037//0033-2909.128.5.667; GEARY DC, 1995, AM PSYCHOL, V50, P24, DOI 10.1037/0003-066X.50.1.24; Geary DC, 2000, CHILD DEV, V71, P57, DOI 10.1111/1467-8624.00118; GEARY DC, 2005, ORIGIN MIND EVOLUTIO; GOTTLIEB G, 1989, INFANT BEHAV DEV, V12, P1, DOI 10.1016/0163-6383(89)90048-9; Gottlieb G, 1998, PSYCHOL REV, V105, P792, DOI 10.1037/0033-295X.105.4.792-802; GOTTLIEB G, 1991, DEV PSYCHOL, V27, P35, DOI 10.1037//0012-1649.27.1.35; Gottlieb G, 2002, PSYCHOL REV, V109, P211, DOI 10.1037//0033-295X.109.2.211; Gottlieb G, 1971, BIOPSYCHOLOGY DEV, P67; Gottlieb G., 1997, SYNTHESIZING NATURE; Greene E, 1996, BIOL J LINN SOC, V58, P277, DOI 10.1006/bijl.1996.0036; GREENOUGH WT, 1987, CHILD DEV, V58, P539, DOI 10.1111/j.1467-8624.1987.tb01400.x; Griffiths P. E., 2001, CYCLES CONTINGENCY D; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Hare B, 2000, ANIM BEHAV, V59, P771, DOI 10.1006/anbe.1999.1377; HO MW, 1998, COMP PSYCHOL HDB, P107; Hughes C, 2002, INFANT CHILD DEV, V11, P201, DOI 10.1002/icd.297; Irons W, 1998, EVOL ANTHROPOL, V6, P194, DOI 10.1002/(SICI)1520-6505(1998)6:6<194::AID-EVAN2>3.0.CO;2-B; JOHNSON JS, 1989, COGNITIVE PSYCHOL, V21, P60, DOI 10.1016/0010-0285(89)90003-0; Johnson MH, 2000, CHILD DEV, V71, P75, DOI 10.1111/1467-8624.00120; JOHNSON MH, 1998, HDB CHILD PSYCHOL, V2, P1; Johnston TD, 2002, PSYCHOL REV, V109, P26, DOI 10.1037//0033-295X.109.1.26; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; KENNY PA, 1986, DEV PSYCHOBIOL, V19, P57, DOI 10.1002/dev.420190107; Kuo Z.Y, 1976, DYNAMICS BEHAV DEV E; Lang B, 2000, UNDERSTANDING OTHER, P150; Leslie A. M., 1994, MAPPING MIND DOMAIN, P119, DOI [DOI 10.1017/CBO9780511752902.006, 10.1017/CBO9780511752902.006]; LICKLITER R, 1990, DEV PSYCHOBIOL, V23, P15, DOI 10.1002/dev.420230103; LICKLITER R, 1995, DEV PSYCHOL, V31, P609, DOI 10.1037//0012-1649.31.4.609; Lickliter R, 2003, PSYCHOL BULL, V129, P819, DOI 10.1037/0033-2909.129.6.819; LICKLITER R, 1992, DEV PSYCHOBIOL, V25, P7; LOBUE V, 2005, M SOC RES CHILD DEV; LORENZ KONRAD Z., 1937, AUK, V54, P245; MacDonald K, 1999, POPUL ENVIRON, V21, P223; MCBRIDE TC, 1993, J COMP PSYCHOL, V107, P320, DOI 10.1037/0735-7036.107.3.320; McDougall I, 2005, NATURE, V433, P733, DOI 10.1038/nature03258; MILLER DB, 1998, COMP PSYCHOL HDB, P105; MILLER EM, 1994, MANKIND QUART, V34, P297; MINEKA S, 1984, J ABNORM PSYCHOL, V93, P355, DOI 10.1037//0021-843X.93.4.355; MITHEN Steven, 1996, PREHISTORY MIND COGN; Moore David S., 2001, DEPENDENT GENE FALLA; Mul D, 2002, HORM RES, V57, P1, DOI 10.1159/000057939; Nelson CA, 2000, DEVELOPMENTAL SCI, V3, P115, DOI 10.1111/1467-7687.00104; NELSON K, 2005, ORIGINS SOCIAL MIND, P354; Nesse RM, 1997, SCIENCE, V278, P63, DOI 10.1126/science.278.5335.63; NEWPORT EL, 1990, COGNITIVE SCI, V14, P11, DOI 10.1016/0364-0213(90)90024-Q; Ohman A, 2001, J EXP PSYCHOL GEN, V130, P466, DOI 10.1037/0096-3445.130.3.466; OLLER DK, 1988, CHILD DEV, V59, P441, DOI 10.1111/j.1467-8624.1988.tb01479.x; OLSON S, 2002, MAPPING HUMAN HISTOR; Oyama S, 2000, ONTOGENY INFORM DEV; Oyama S., 2001, CYCLES CONTINGENCY D, P177; PETITTO LA, 1991, SCIENCE, V251, P1493, DOI 10.1126/science.2006424; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; PINKER S, 1994, LANGUAGE INSTINCT HO; Pinker Steven, 1997, HOW MIND WORKS; Potts R, 1998, EVOL ANTHROPOL, V7, P81, DOI 10.1002/(SICI)1520-6505(1998)7:3<81::AID-EVAN3>3.0.CO;2-A; POVINELLI DJ, 1996, MONOGRAPH SOC RES CH, V61; PROOS LA, 1991, ACTA PAEDIATR SCAND, V80, P852, DOI 10.1111/j.1651-2227.1991.tb11960.x; RAKISON D, 2005, M SOC RES CHILD DEV; Rhen T, 2002, J NEUROENDOCRINOL, V14, P517, DOI 10.1046/j.1365-2826.2002.00820.x; RIDLEY M, 1993, RED QUEEN; Sabbagh MA, 2006, PSYCHOL SCI, V17, P74, DOI 10.1111/j.1467-9280.2005.01667.x; Sabbagh MA, 2000, PSYCHOL SCI, V11, P46, DOI 10.1111/1467-9280.00213; Schlichting C. D., 1998, PHENOTYPIC EVOLUTION; SELIGMAN ME, 1971, BEHAV THER, V2, P307, DOI 10.1016/S0005-7894(71)80064-3; SELIGMAN ME, 1970, PSYCHOL REV, V77, P406, DOI 10.1037/h0029790; Senghas A, 2004, SCIENCE, V305, P1779, DOI 10.1126/science.1100199; Senghas A, 2001, PSYCHOL SCI, V12, P323, DOI 10.1111/1467-9280.00359; Shepard R. N., 1992, ADAPTED MIND EVOLUTI, P495; Sleigh MJ, 1998, DEV PSYCHOL, V34, P215, DOI 10.1037//0012-1649.34.2.215; SPEAR NE, 1984, COMP PERSPECTIVES DE, P325; Stringer C, 2005, COMPLETE WORLD HUMAN; Surbey MK, 1998, HUM NATURE-INT BIOS, V9, P67, DOI 10.1007/s12110-998-1012-3; SYMON D, 1995, CHIC SEX HIST SOC, P80; Tattersall I., 1998, BECOMING HUMAN EVOLU; THELEN E, 1998, DYNAMIC SYSTEM APPRO; Tomasello Michael, 2003, CONSTRUCTING LANGUAG; Tooby J, 2003, PSYCHOL BULL, V129, P858, DOI 10.1037/0033-2909.129.6.858; TOOBY J, 1990, J PERS, V58, P17, DOI 10.1111/j.1467-6494.1990.tb00907.x; Tooby J., 2005, HDB EVOLUTIONARY PSY, P5, DOI DOI 10.1002/9780470939376.CH1; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; TURKEWITZ G, 1982, DEV PSYCHOBIOL, V15, P357, DOI 10.1002/dev.420150408; TURKEWITZ G, 1993, DEV TIME TIMING, P125; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; Wellman H. M., 1990, CHILDS THEORY MIND; Wellman HM, 2001, CHILD DEV, V72, P655, DOI 10.1111/1467-8624.00304; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Whiten A, 1999, NATURE, V399, P682, DOI 10.1038/21415; Wilson E.O., 1975, P1; WITELSON SF, 1987, CHILD DEV, V58, P653, DOI 10.2307/1130205; Worthman CM, 1999, EVOLUTIONARY MEDICI NE, P135 141 17 17 0 15 ELSEVIER ACADEMIC PRESS INC SAN DIEGO 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA 0065-2407 978-0-12-009735-7 ADV CHILD DEV BEHAV Adv. Child Develop. Behav. 2007 35 1 36 36 Psychology, Developmental Psychology BGM32 WOS:000248433300001 17682322 2018-11-12 J Gluckman, PD; Hanson, MA; Beedle, AS Gluckman, Peter D.; Hanson, Mark A.; Beedle, Alan S. Early life events and their consequences for later disease: A life history and evolutionary perspective AMERICAN JOURNAL OF HUMAN BIOLOGY English Review LOW-BIRTH-WEIGHT; FOR-GESTATIONAL-AGE; INTRAUTERINE GROWTH-RESTRICTION; THRIFTY PHENOTYPE HYPOTHESIS; IMPAIRED GLUCOSE-TOLERANCE; ADOLESCENTS BORN PRETERM; LATER INSULIN-RESISTANCE; LOW-PROTEIN DIET; BODY-MASS INDEX; DEVELOPMENTAL PLASTICITY Biomedical science has little considered the relevance of life history theory and evolutionary and ecological developmental biology to clinical medicine. However, the observations that early life influences can alter later disease risk-the "developmental origins of health and disease" (DOHaD) paradigm-have led to a recognition that these perspectives can inform our understanding of human biology. We propose that the DOHaD phenomenon can be considered as a subset of the broader processes of developmental plasticity by which organisms adapt to their environment during their life course. Such adaptive processes allow genotypic variation to be preserved through transient environmental changes. Cues for plasticity operate particularly during early development; they may affect a single organ or system, but generally they induce integrated adjustments in the mature phenotype, a process underpinned by epigenetic mechanisms and influenced by prediction of the mature environment. In mammals, an adverse intrauterine environment results in an integrated suite of responses, suggesting the involvement of a few key regulatory genes, that resets the developmental trajectory in expectation of poor postnatal conditions. Mismatch between the anticipated and the actual mature environment exposes the organism to risk of adverse consequences-the greater the mismatch, the greater the risk. For humans, prediction is inaccurate for many individuals because of changes in the postnatal environment toward energy-dense nutrition and low energy expenditure, contributing to the epidemic of chronic noncommunicable disease. This view of human disease from the perspectives of life history biology and evolutionary theory offers new approaches to prevention, diagnosis and intervention. Univ Auckland, Liggins Inst, Auckland 1, New Zealand; Natl Res Ctr Growth & Dev, Auckland, New Zealand; Univ Southampton, Ctr Dev Origins Hlth & Dis, Southampton SO16 5YA, Hants, England Gluckman, PD (reprint author), Univ Auckland, Liggins Inst, Private Bag 92019, Auckland 1, New Zealand. pd.gluckman@auckland.ac.nz Hanson, Mark/0000-0002-6907-613X Applebaum SW, 1999, ANNU REV ENTOMOL, V44, P317, DOI 10.1146/annurev.ento.44.1.317; AUSTAD SN, 1994, EXP GERONTOL, V29, P255, DOI 10.1016/0531-5565(94)90005-1; Barker DJP, 1998, CLIN SCI, V95, P115, DOI 10.1042/CS19980019; BARKER DJP, 1986, LANCET, V1, P1077; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Bellinger L, 2004, BRIT J NUTR, V92, P513, DOI 10.1079/BJN20041224; Benyshek DC, 2006, AM J PHYS ANTHROPOL, V131, P120, DOI 10.1002/ajpa.20334; Benyshek DC, 2006, DIABETOLOGIA, V49, P1117, DOI 10.1007/s00125-006-0196-5; Bertram C, 2001, ENDOCRINOLOGY, V142, P2841, DOI 10.1210/en.142.7.2841; Bertram CE, 2001, BRIT MED BULL, V60, P103, DOI 10.1093/bmb/60.1.103; Bhargava SK, 2004, NEW ENGL J MED, V350, P865, DOI 10.1056/NEJMoa035698; Bloomfield FH, 2003, ENDOCRINOLOGY, V144, P2933, DOI 10.1210/en.2003-0189; Boonstra R, 1998, ECOL MONOGR, V68, P371, DOI 10.1890/0012-9615(1998)068[0371:TIOPIS]2.0.CO;2; Bouret SG, 2004, SCIENCE, V304, P108, DOI 10.1126/science.1095004; BROOKS AA, 1995, EARLY HUM DEV, V42, P29, DOI 10.1016/0378-3782(95)01637-I; Charmantier A, 2005, P ROY SOC B-BIOL SCI, V272, P1415, DOI 10.1098/rspb.2005.3117; Chong SY, 2004, CURR OPIN GENET DEV, V14, P692, DOI 10.1016/j.gde.2004.09.001; Cicognani A, 2002, J PEDIATR-US, V141, P376, DOI 10.1067/mpd.2002.126300; Coall DA, 2003, SOC SCI MED, V57, P1771, DOI 10.1016/S0277-9536(03)00022-4; COHEN MP, 1988, DIABETES, V37, P824, DOI 10.2337/diabetes.37.6.824; Cooney CA, 2002, J NUTR, V132, p2393S; Cooper C, 1996, BRIT J OBSTET GYNAEC, V103, P814, DOI 10.1111/j.1471-0528.1996.tb09879.x; CUTFIELD W, 2005, P 3 INT C DEV OR HLT; Debat V, 2001, TRENDS ECOL EVOL, V16, P555, DOI 10.1016/S0169-5347(01)02266-2; DIAMOND J, 1991, NAT HIST, P2; DOSSANTOS SI, 2004, BRIT J CANCER, V91, P519; Drake AJ, 2005, AM J PHYSIOL-REG I, V288, pR34, DOI 10.1152/ajpregu.00106.2004; Drake AJ, 2004, J ENDOCRINOL, V180, P1, DOI 10.1677/joe.0.1800001; El-Haddad MA, 2004, J SOC GYNECOL INVEST, V11, P123, DOI 10.1016/j.jsgi.203.12.001; Eriksson JG, 2003, DIABETOLOGIA, V46, P190, DOI 10.1007/s00125-002-1012-5; Eriksson JG, 2002, DIABETES, V51, P2321, DOI 10.2337/diabetes.51.7.2321; Eshel I, 1998, GENETICS, V149, P2119; FORSDAHL A, 1977, BRIT J PREV SOC MED, V31, P91; Francois I, 1997, PEDIATR RES, V42, P899, DOI 10.1203/00006450-199712000-00029; Gate JJ, 1999, REPROD FERT DEVELOP, V11, P415, DOI 10.1071/RD99050; Gilbert SF, 2001, DEV BIOL, V233, P1, DOI 10.1006/dbio.2001.0210; Gilbert WM, 1999, OBSTET GYNECOL, V93, P9, DOI 10.1016/S0029-7844(98)00382-2; Gluckman P, 2006, DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE, P1, DOI 10.2277/ 0521847435; Gluckman PD, 2003, J NUTR, V133, p1741S, DOI 10.1093/jn/133.5.1741S; Gluckman PD, 2006, TRENDS ENDOCRIN MET, V17, P7, DOI 10.1016/j.tem.2005.11.006; GLUCKMAN PD, 1995, J CLIN ENDOCR METAB, V80, P1047, DOI 10.1210/jc.80.4.1047; Gluckman PD, 2005, TRENDS ECOL EVOL, V20, P527, DOI 10.1016/j.tree.2005.08.001; Gluckman PD, 2005, BIOL NEONATE, V87, P127, DOI 10.1159/000082311; Gluckman PD, 2004, TRENDS ENDOCRIN MET, V15, P183, DOI 10.1016/j.tem.2004.03.002; Gluckman PD, 1997, ACTA PAEDIATR, V86, P69; Gluckman PD, 2005, EARLY HUM DEV, V81, P51, DOI 10.1016/j.earlhumdev.2004.10.003; Gluckman PD, 2005, P ROY SOC B-BIOL SCI, V272, P671, DOI 10.1098/rspb.2004.3001; Gluckman PD, 2004, SCIENCE, V305, P1733, DOI 10.1126/science.1095292; GLUCKMAN PD, IN PRESS HORM RES; GLUCKMAN PD, 2005, METAL MATRIX EVOLUTI; Gluckman Peter D, 2004, Semin Fetal Neonatal Med, V9, P419, DOI 10.1016/j.siny.2004.03.001; Godfrey K, 2006, DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE, P6, DOI 10.1017/CBO9780511544699.003; HAIG D, 1991, CELL, V64, P1045; Hales CN, 2003, J PHYSIOL-LONDON, V547, P5, DOI 10.1113/jphysiol.2002.024406; HALES CN, 1991, BMJ-BRIT MED J, V303, P1019, DOI 10.1136/bmj.303.6809.1019; Hales CN, 2001, BRIT MED BULL, V60, P5, DOI 10.1093/bmb/60.1.5; Hardy R, 2004, INT J EPIDEMIOL, V33, P121, DOI 10.1093/ije/dyh027; Heindel JJ, 2006, DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE, P82, DOI 10.1017/CBO9780511544699.008; HINCHLIFFE SA, 1992, BRIT J OBSTET GYNAEC, V99, P296, DOI 10.1111/j.1471-0528.1992.tb13726.x; Hofman PL, 2004, NEW ENGL J MED, V351, P2179, DOI 10.1056/NEJMoa042275; Ibanez L, 2000, PEDIATRICS, V106, DOI 10.1542/peds.106.5.e72; Ibanez L, 2003, HUM REPROD, V18, P1565, DOI 10.1093/humrep/deg351; Ibanez L, 2006, J CLIN ENDOCR METAB, V91, P2153, DOI 10.1210/jc.2005-2778; Islam MS, 2000, INT J OBESITY, V24, P1246, DOI 10.1038/sj.ijo.0801370; Jablonka E, 1995, PHILOS T R SOC B, V350, P133, DOI 10.1098/rstb.1995.0147; Jasienska G, 2006, AM J HUM BIOL, V18, P133, DOI 10.1002/ajhb.20462; Jimenez-Chillaron JC, 2006, DIABETOLOGIA, V49, P1974, DOI 10.1007/s00125-006-0311-7; Jordan KM, 2005, J RHEUMATOL, V32, P678; Kaati G, 2002, EUR J HUM GENET, V10, P682, DOI 10.1038/sj.ejhg.5200859; Kajantie E, 2005, INT J EPIDEMIOL, V34, P655, DOI 10.1093/ije/dyi048; Kajantie E, 2004, J CLIN ENDOCR METAB, V89, P5738, DOI 10.1210/jc.2004-0492; Karlberg J, 2002, HORM RES, V57, P19, DOI 10.1159/000058096; Kirkwood TBL, 2002, MECH AGEING DEV, V123, P737, DOI 10.1016/S0047-6374(01)00419-5; Kubaszek A, 2004, J CLIN ENDOCR METAB, V89, P2044, DOI 10.1210/jc.2003-031350; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; Kuzawa CW, 2005, AM J HUM BIOL, V17, P1, DOI 10.1002/ajhb.20090; Kwong WY, 2000, DEVELOPMENT, V127, P4195; Langley-Evans S. C., 2003, Archives of Physiology and Biochemistry, V111, P8, DOI 10.1076/apab.111.1.8.15136; Lee C, 2001, NUMER HEAT TR B-FUND, V40, P495, DOI 10.1080/104077901753306610; LEE TM, 1988, AM J PHYSIOL, V255, pR831; Leimar O, 2006, AM NAT, V167, P367, DOI 10.1086/499566; Lelievre-Pegorier M, 1998, KIDNEY INT, V54, P1455, DOI 10.1046/j.1523-1755.1998.00151.x; Lillycrop KA, 2005, J NUTR, V135, P1382; Lucas A, 1998, BRIT MED J, V317, P1481, DOI 10.1136/bmj.317.7171.1481; LUCAS A, 1991, CIBA F SYMP, V156, P38; Mallard C, 2000, NEUROSCIENCE, V100, P327, DOI 10.1016/S0306-4522(00)00271-2; McCarton CM, 1996, PEDIATRICS, V98, P1167; McMillen IC, 2005, PHYSIOL REV, V85, P571, DOI 10.1152/physrev.00053.2003; Mericq V, 2005, DIABETOLOGIA, V48, P2609, DOI 10.1007/s00125-005-0036-z; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; MORTON NE, 1955, ANN HUM GENET, V20, P125; Muehlenbein MP, 2005, AM J HUM BIOL, V17, P527, DOI 10.1002/ajhb.20419; NEEL JV, 1962, AM J HUM GENET, V14, P353; Neggers Y, 2003, J NUTR, V133, p1737S, DOI 10.1093/jn/133.5.1737S; NEGUS NC, 1992, CAN J ZOOL, V70, P2121, DOI 10.1139/z92-285; NEWMAN RA, 1992, BIOSCIENCE, V42, P671, DOI 10.2307/1312173; O'Regan D, 2001, Semin Neonatol, V6, P319, DOI 10.1053/siny.2001.0067; OUNSTED M, 1965, DEV MED CHILD NEUROL, V7, P479; Ounsted M., 1973, FETAL GROWTH RATE IT; Painter RC, 2005, REPROD TOXICOL, V20, P345, DOI 10.1016/j.reprotox.2005.04.005; Pembrey ME, 2006, EUR J HUM GENET, V14, P159, DOI [10.1038/sj.ejhg.5201538, 10.1038/sj.ejhg.5204538]; Phillips DIW, 1998, J CLIN ENDOCR METAB, V83, P757, DOI 10.1210/jc.83.3.757; Pike IL, 2005, AM J HUM BIOL, V17, P55, DOI 10.1002/ajhb.20093; Plagemann A, 2000, NEUROPEPTIDES, V34, P1, DOI 10.1054/npep.1999.0778; Potts R, 1998, YEARB PHYS ANTHROPOL, V41, P93; Queitsch C, 2002, NATURE, V417, P618, DOI 10.1038/nature749; Relyea RA, 2003, OECOLOGIA, V134, P596, DOI 10.1007/s00442-002-1161-8; Ross MG, 2005, AM J PHYSIOL-REG I, V288, pR97, DOI 10.1152/ajpregu.00315.2004; Sayer AA, 2005, EARLY HUM DEV, V81, P735, DOI 10.1016/j.earlhumdev.2005.07.003; Scheiner S.M., 2004, PHENOTYPIC PLASTICIT; SCHLICHTING CD, 1997, PHENOTYPIC EVOLUTION; Schmalhausen I. I., 1949, FACTORS EVOLUTION; Schwartz R, 2000, SEMIN PERINATOL, V24, P120, DOI 10.1053/sp.2000.6363; Seckl JR, 2004, ANN NY ACAD SCI, V1032, P63, DOI 10.1196/annals.1314.006; Shimabukuro M, 1998, P NATL ACAD SCI USA, V95, P9558, DOI 10.1073/pnas.95.16.9558; Singhal A, 2004, LANCET, V363, P1642, DOI 10.1016/S0140-6736(04)16210-7; Singhal A, 2003, LANCET, V361, P1089, DOI 10.1016/S0140-6736(03)12895-4; Singhal A, 2004, LANCET, V363, P1571, DOI 10.1016/S0140-6736(04)16198-9; SPENCER N, 2003, WEIGHING EVIDENCE HO; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC, 2001, Q REV BIOL, V76, P417, DOI 10.1086/420539; Stettler N, 2000, AM J CLIN NUTR, V72, P378; Stettler N, 2005, CIRCULATION, V111, P1897, DOI 10.1161/01.CIR.0000161797.67671.A7; Stoffers DA, 2003, DIABETES, V52, P734, DOI 10.2337/diabetes.52.3.734; Sultan SE, 2002, AM NAT, V160, P271, DOI 10.1086/341015; SUSSER M, 1994, NUTR REV, V52, P84, DOI 10.1111/j.1753-4887.1994.tb01395.x; Syddall HE, 2005, AM J EPIDEMIOL, V161, P1074, DOI 10.1093/aje/kwi137; Tolsa CB, 2004, PEDIATR RES, V56, P132, DOI 10.1203/01.PDR.0000128983.54614.7E; TREVATHAN WR, 1988, AM ANTHROPOL, V90, P674, DOI 10.1525/aa.1988.90.3.02a00100; TRIVERS RL, 1974, AM ZOOL, V14, P249; Trut LN, 1999, AM SCI, V87, P160, DOI 10.1511/1999.2.160; Vickers MH, 2005, ENDOCRINOLOGY, V146, P4211, DOI 10.1210/en.2005-0581; Vickers MH, 2000, AM J PHYSIOL-ENDOC M, V279, pE83; Vickers MH, 2003, AM J PHYSIOL-REG I, V285, pR271, DOI 10.1152/ajpregu.00051.2003; VILLAR J, 1988, PEDIATRICS, V81, P51; Waddington CH, 1942, NATURE, V150, P563, DOI 10.1038/150563a0; Waddington CH, 1957, STRATEGY GENES DISCU; Walker SK, 1996, THERIOGENOLOGY, V45, P111, DOI 10.1016/0093-691X(95)00360-K; Wallace JM, 2004, BIOL REPROD, V71, P1055, DOI 10.1095/biolreprod.104.030965; Walton A, 1938, PROC R SOC SER B-BIO, V125, P311, DOI 10.1098/rspb.1938.0029; Weaver ICG, 2004, NAT NEUROSCI, V7, P847, DOI 10.1038/nn1276; Weedon MN, 2005, DIABETES, V54, P576, DOI 10.2337/diabetes.54.2.576; Wells JCK, 2003, J THEOR BIOL, V221, P143, DOI 10.1006/jtbi.2003.3183; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wilcox AJ, 2001, INT J EPIDEMIOL, V30, P1233, DOI 10.1093/ije/30.6.1233; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wintour EM, 2003, J PHYSIOL-LONDON, V549, P929, DOI 10.1113/jphysiol.2003.042408; Wolff GL, 1998, FASEB J, V12, P949; Wyrwoll CS, 2006, ENDOCRINOLOGY, V147, P599, DOI 10.1210/en.2005-0748; Young LE, 2001, NAT GENET, V27, P153, DOI 10.1038/84769; Zambrano E, 2005, J PHYSIOL-LONDON, V566, P225, DOI 10.1113/jphysiol.2005.086462 151 429 442 5 139 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 1520-6300 AM J HUM BIOL Am. J. Hum. Biol. JAN-FEB 2007 19 1 1 19 10.1002/ajhb.20590 19 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 120ZU WOS:000243126600001 17160980 2018-11-12 J Lende, D Lende, D. Life history theory, early childhood risk and adolescent behavior in Colombia AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Meeting Abstract 0 0 0 0 1 WILEY-LISS HOBOKEN DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA 0002-9483 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. 2007 44 154 154 1 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 142NK WOS:000244656500406 2018-11-12 J Dobson, FS; Oli, MK Dobson, F. Stephen; Oli, Madan K. Fast and slow life histories of mammals ECOSCIENCE English Article; Proceedings Paper Symposium on Marsupials as Models for Research held at the 9th International Mammalogical Congress AUG, 2005 Sapporo, JAPAN Australian Mammal Soc body size; fast-slow continuum; life-history theory; precociality; reproduction; survival NATURAL-SELECTION; GROUND-SQUIRREL; K-SELECTION; R-SELECTION; PATTERNS; POPULATION; EVOLUTION; REPRODUCTION; TRAITS; BIRDS Studies of life histories often compare species to discern patterns in the evolution of traits. Major components of life histories appear to involve important aspects of species biology, and the first such component appears to be body size. We tested whether the second major component of variation in life histories of mammals is a continuum from species with short lives to long lives, the "fast-slow continuum." Mammalian populations (n = 143) representing 109 species were examined, and life histories were summarized using 5 key variables that reflect reproduction and survival. Body size and phylogeny were significant influences on life histories. Once these influences were removed statistically, a major axis of life history variation that reflected the fast-slow continuum was revealed in a principal components analysis. This component of life history was poorly but significantly associated with indices of the fast-slow continuum, such as the ratio of reproduction to age at maturity and generation time. Fast and slow species were identified among several orders and families of mammals, and one species exhibited fast and slow populations. These results may indicate that fast and slow life cycles are highly phenotypically plastic. Degree of precociality did not appear to be a third major component of life histories. Auburn Univ, Dept Biol Sci, Auburn, AL 36849 USA; Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL 32611 USA Dobson, FS (reprint author), Auburn Univ, Dept Biol Sci, Auburn, AL 36849 USA. fsdobson@msn.com BERVEN KA, 1982, EVOLUTION, V36, P962, DOI 10.1111/j.1558-5646.1982.tb05466.x; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; Brown J. H., 1995, MACROECOLOGY; Calder W. A., 1984, SIZE FUNCTION LIFE H; Caswell H, 2001, MATRIX POPULATION MO; Charnov Eric L., 1993, P1; Dobson FS, 2001, AM NAT, V158, P236, DOI 10.1086/321322; DOBSON FS, 1987, AM NAT, V129, P382, DOI 10.1086/284643; DOBSON FS, 1992, AM NAT, V140, P109, DOI 10.1086/285405; DOBSON FS, 1985, EVOLUTION, V39, P1384, DOI 10.1111/j.1558-5646.1985.tb05703.x; DOBSON FS, 1988, EVOLUTION LIFE HIST, P193; DOBSON FS, 2007, SOCIAL BIOL RODENTS, P163; EISENBERG JF, 1981, MAMMALIAN RAD ANAL T; Endler JA, 1986, NATURAL SELECTION WI; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Harvey P.H., 1989, Oxford Surveys in Evolutionary Biology, V6, P13; Harvey P. H., 1991, COMP METHOD EVOLUTIO; HARVEY PH, 1991, NATURE, V350, P23, DOI 10.1038/350023a0; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; HARVEY PH, 1999, ADV ECOLOGICAL THEOR, P232; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; JAMES FC, 1983, SCIENCE, V221, P184, DOI 10.1126/science.221.4606.184; MAC ARTHUR ROBERT H., 1967; Martins EP, 1997, AM NAT, V149, P646, DOI 10.1086/286013; MILES DB, 1992, AM NAT, V139, P848, DOI 10.1086/285361; Oli MK, 2005, AM NAT, V166, P124, DOI 10.1086/430332; Oli MK, 2004, BASIC APPL ECOL, V5, P449, DOI 10.1016/j.baae.2004.06.002; Oli MK, 2003, AM NAT, V161, P422, DOI 10.1086/367591; Oli MK, 1999, OIKOS, V86, P557, DOI 10.2307/3546660; Oli MK, 2001, ECOLOGY, V82, P1180, DOI 10.1890/0012-9658(2001)082[1180:PLCAAM]2.0.CO;2; Peters R.H., 1983, P1; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; ROFF DA, 2002, LIFE HIST EVOLUTIONA; Roff Derek A., 1992; SCHMIDTNIELSEN K, 1983, SCALING WHY ANIMAL S; Sherman PW, 2002, ECOLOGY, V83, P2816, DOI 10.1890/0012-9658(2002)083[2816:DOAPCT]2.0.CO;2; Silva M., 1995, CRC HDB MAMMALIAN BO; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, EVOLUTION, V37, P601, DOI 10.1111/j.1558-5646.1983.tb05577.x; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1983, AM ZOOL, V23, P65; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; WESTERN D, 1982, OECOLOGIA, V54, P281, DOI 10.1007/BF00379994; WESTERN D, 1979, AFR J ECOL, V17, P185, DOI 10.1111/j.1365-2028.1979.tb00256.x; WILSON DE, 2005, 2005 MAMMAL SPECIES; ZAMMUTO RM, 1985, ECOLOGY, V66, P1784, DOI 10.2307/2937374 53 34 34 6 50 TAYLOR & FRANCIS INC PHILADELPHIA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA 1195-6860 2376-7626 ECOSCIENCE Ecoscience 2007 14 3 292 299 10.2980/1195-6860(2007)14[292:FASLHO]2.0.CO;2 8 Ecology Environmental Sciences & Ecology 218UL WOS:000250040400004 2018-11-12 J Rudolf, VHW; Rodel, MO Rudolf, Volker H. W.; Roedel, Mark-Oliver Phenotypic plasticity and optimal timing of metamorphosis under uncertain time constraints EVOLUTIONARY ECOLOGY English Article Amphibians; Complex life cycles; Development; Growth rate; Mortality risk; Desiccation risk; Adaptation; Life history evolution SCAPHIOPUS-COUCHII TADPOLES; LIFE-HISTORY EVOLUTION; PITCHER-PLANT MOSQUITO; LARVAL GROWTH HISTORY; AMPHIBIAN METAMORPHOSIS; REACTION NORMS; RANA-SYLVATICA; DEVELOPMENTAL THRESHOLDS; PSEUDACRIS-TRISERIATA; SEASONAL ENVIRONMENT Life-history theory suggests that optimal timing of metamorphosis should depend on growth conditions and time constraints under which individuals develop. Current models cannot make reliable predictions for species in ephemeral habitats where individuals often face an increasing mortality risk over time because these models assume time-invariant mortality rates (i.e., daily mortality rates remain constant) and fixed seasons. We examined the plasticity of growth, development, and body mass at metamorphosis in tadpoles of the tree-hole breeding frog Phrynobatrachus guineensis in relation to an unpredictable time constraint in the field and in controlled experiments along a fixed density and food gradient. Mean mass and age at metamorphosis of sibships were positively correlated with per capita food level. Based on our results, we developed a simple model of the optimal timing of metamorphosis under time-dependent mortality rates showing that development rates are not only adjusted to growth conditions but also to time-variant mortality rates. The increasing mortality rate represents a time constraint that favors a reduced larval period, but because it is based on probabilities of survival it allows a trade-off between development time and mass. We extend this model to different types of time constraints and show that it can predict the range of documented reaction norms. Differences between species in the correlation of age and mass at metamorphosis may have evolved due to differences in their time-variant mortality rates. Univ Wurzburg, Bioctr, Theodor Boveri Inst, Dept Anim Ecol & Trop Biol Zool 3, D-97074 Wurzburg, Germany; Univ Mainz, Dept Zool, D-55099 Mainz, Germany Rudolf, VHW (reprint author), Univ Virginia, Dept Biol, 243 Gilmer Hall, Charlottesville, VA 22904 USA. vrudolf@virginia.edu Rudolf, Volker/B-7913-2009 Rudolf, Volker/0000-0002-9214-2000 Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; ALFORD RA, 1988, AM NAT, V131, P91, DOI 10.1086/284775; Altwegg R, 2003, EVOLUTION, V57, P872; BEISWENGER R E, 1975, Herpetologica, V31, P222; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; BERRIGAN D, 1994, OIKOS, V70, P474, DOI 10.2307/3545787; BERVEN KA, 1981, EVOLUTION, V35, P707, DOI 10.1111/j.1558-5646.1981.tb04931.x; BERVEN KA, 1990, ECOLOGY, V71, P1599, DOI 10.2307/1938295; BERVEN KA, 1983, AM ZOOL, V23, P85; BLAKLEY N, 1981, ECOLOGY, V62, P57, DOI 10.2307/1936668; BRADSHAW WE, 1995, ECOLOGY, V76, P2055, DOI 10.2307/1941680; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; Denver RJ, 1998, ECOLOGY, V79, P1859, DOI 10.1890/0012-9658(1998)079[1859:APIAMR]2.0.CO;2; ESCH GW, 1977, REGULATION PARASITE; Gosner K. L., 1960, Herpetologica, V16, P183; GOTTHARD K, 1995, OIKOS, V75, P3; GRIMKO MH, 1973, J EXP ZOOL, V186, P63; HENSLEY FR, 1993, ECOLOGY, V74, P2405, DOI 10.2307/1939591; Hentschel BT, 2000, ECOLOGY, V81, P3495, DOI 10.1890/0012-9658(2000)081[3495:MOBNEO]2.0.CO;2; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.1890/0012-9658(1999)080[1242:LHABRT]2.0.CO;2; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Joly P, 2005, HERPETOL J, V15, P45; Jones M, 2003, OIKOS, V102, P155, DOI 10.1034/j.1600-0706.2003.12347.x; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Laurila A, 1999, J ANIM ECOL, V68, P1123, DOI 10.1046/j.1365-2656.1999.00354.x; LEIPS J, 1994, ECOLOGY, V75, P1345, DOI 10.2307/1937459; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; Lytle DA, 2002, ECOLOGY, V83, P370; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; MOEUR JE, 1980, J ANIM ECOL, V49, P775, DOI 10.2307/4226; Morey S, 2000, ECOLOGY, V81, P1736, DOI 10.1890/0012-9658(2000)081[1736:ACAOPI]2.0.CO;2; Morey SR, 2004, OIKOS, V104, P172, DOI 10.1111/j.0030-1299.2004.12623.x; NEWMAN RA, 1994, ECOLOGY, V75, P1085, DOI 10.2307/1939432; NEWMAN RA, 1988, EVOLUTION, V42, P774, DOI 10.1111/j.1558-5646.1988.tb02495.x; NEWMAN RA, 1989, ECOLOGY, V70, P1775, DOI 10.2307/1938111; PFENNIG DW, 1991, ECOLOGY, V72, P2240, DOI 10.2307/1941574; Plaistow SJ, 2004, P ROY SOC B-BIOL SCI, V271, P919, DOI 10.1098/rspb.2004.2682; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Rodel Mark-Oliver, 2004, Miscellaneous Publications Museum of Zoology University of Michigan, P31; Rodel Mark-Oliver, 1998, Herpetozoa, V11, P19; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Rudolf VHW, 2005, OECOLOGIA, V142, P316, DOI 10.1007/s00442-004-1668-2; SCOTT DE, 1994, ECOLOGY, V75, P1383, DOI 10.2307/1937462; SEMLITSCH RD, 1988, ECOLOGY, V69, P184, DOI 10.2307/1943173; SEMLITSCH RD, 1982, ECOLOGY, V63, P905, DOI 10.2307/1937230; SKELLY DK, 1990, ECOLOGY, V71, P2313, DOI 10.2307/1938642; SMITH DC, 1987, ECOLOGY, V68, P344, DOI 10.2307/1939265; SMITH DC, 1983, ECOLOGY, V64, P501, DOI 10.2307/1939970; SMITHGILL SJ, 1978, AM NAT, V112, P557, DOI 10.1086/283297; SMITHGILL SJ, 1979, AM NAT, V113, P563, DOI 10.1086/283413; SOKAL RR, 1994, BIOMETRY; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEINWASCHER K, 1978, ECOLOGY, V59, P1039, DOI 10.2307/1938556; TRAVIS J, 1981, EVOLUTION, V35, P423, DOI 10.1111/j.1558-5646.1981.tb04903.x; TRAVIS J, 1984, ECOLOGY, V65, P1155, DOI 10.2307/1938323; Twombly S, 1996, ECOLOGY, V77, P1855, DOI 10.2307/2265789; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Werner E.E., 1988, P60; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; WILBUR HM, 1987, ECOLOGY, V68, P1437, DOI 10.2307/1939227; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; WILBUR HM, 1976, ECOLOGY, V57, P1289, DOI 10.2307/1935053; WILBUR HM, 1977, AM NAT, V111, P43, DOI 10.1086/283137 68 51 54 1 32 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 EVOL ECOL Evol. Ecol. JAN 2007 21 1 121 142 10.1007/s10682-006-0017-9 22 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 131XI WOS:000243905200009 2018-11-12 J Blomquist, GE Blomquist, Gregory E. Population regulation and the life history studies of LaMont Cole HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES English Article life history theory; demography; ecology; evolution; group selection NATURAL-SELECTION; COMPETITIVE EXCLUSION; EVOLUTIONARY ECOLOGY; COLES RESULT; DEMOGRAPHY; CONSEQUENCES; TOLERATION Transformative changes marked the growth of mid-twentieth century American ecology. This included redirection of the scholarly focus of the discipline, especially on the role evolutionary theory and "levels of selection,", and increased visibility of ecologist as public figures in the environmental movement with special knowledge of how natural systems work. Cornell ecologist LaMont Cole is an important figure to examine both of these trends. Like many of his contemporaries, Cole was devoted to a perspective on natural selection operating at levels above the individual. However, because of his influential mathematical treatment of animal demography he has been historically subsumed into a group of scholars that views the events in the life course as adaptations to the maximization of individual fitness - life history theory. Cole's popular writings and lectures, which consumed his later career, extend his scholarly portrayal of natural populations as tending toward stable and homoeostatic equilibrium, with the goal of drawing contrasts with the deviance of rapid human population growth. In both regards, Cole serves as a topical and temporal extension of the well-documented and analyzed ecology of his mentors - Alfred Emerson, Thomas Park, and Warder Allee - in the University of Chicago Zoology Department. Univ Missouri, Dept Anthropol, Columbia, MO 65211 USA Blomquist, GE (reprint author), Univ Missouri, Dept Anthropol, 107 Swallow Hall, Columbia, MO 65211 USA. Agrawal AF, 2001, AM NAT, V158, P308, DOI 10.1086/321324; Allee W., 1949, PRINCIPLES ANIMAL EC; Andrewartha H. G., 1954, DISTRIBUTION ABUNDAN; BIRCH LC, 1948, J ANIM ECOL, V17, P15, DOI 10.2307/1605; *BRIT EC SOC, 1964, J ANIM ECOL, V52, P241; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; BRYANT EH, 1971, AM NAT, V105, P75, DOI 10.1086/282703; BURGESS RL, 1977, HIST AM ECOLOGY, P1; Caswell H, 2001, MATRIX POPULATION MO; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Cole L. C, 1962, SCI AM, V207, P173; Cole LC, 1948, SCI MON, V67, P338; COLE LC, 1957, ECOLOGY, V38, P226, DOI 10.2307/1931681; COLE LC, 1957, SCIENCE, V125, P874, DOI 10.1126/science.125.3253.874; COLE LC, 1955, SCIENCE, V122, P831, DOI 10.1126/science.122.3174.831-a; COLE LC, 1952, ANAT REC, V113, P528; COLE LC, 1945, ECOLOGY, V26, P202, DOI 10.2307/1930826; COLE LC, 1960, SCIENCE, V132, P1675, DOI 10.1126/science.132.3440.1675; COLE LC, 1964, AM J PUBLIC HEALTH N, V54, P24, DOI 10.2105/AJPH.54.Suppl_1.24; COLE LC, 1968, BIOSCIENCE, V18, P679, DOI 10.2307/1294188; Cole LC, 1943, ECOLOGY, V24, P94, DOI 10.2307/1929864; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; COLE LC, 1949, ECOLOGY, V30, P411, DOI 10.2307/1932444; COLE LC, 1962, ECOLOGY, V43, P749, DOI 10.2307/1933472; COLE LC, 1946, ECOL MONOGR, V16, P49, DOI 10.2307/1943574; COLE LC, 1958, SCI AM, V198, P83, DOI 10.1038/scientificamerican0458-83; COLE LC, 1946, ECOLOGY, V27, P329, DOI 10.2307/1933543; COLE LC, 1969, BIOSCIENCE, V19, P967, DOI 10.1093/bioscience/19.11.967; COLE LC, 1951, J WILDLIFE MANAGE, V15, P233, DOI 10.2307/3797216; COLE LC, 1954, J WILDLIFE MANAGE, V18, P2, DOI 10.2307/3797611; COLE LC, 1957, COLD SPRING HARB SYM, V22, P1; COLE LC, 1960, SCIENCE, V132, P348, DOI 10.1126/science.132.3423.348; COLE LC, 1965, PUBLIC HLTH POPULATI, P221; COLE LC, 1950, ECOLOGY, V31, P153; COLE LC, 1970, OUR FRAGILE OCEANS; COLE LC, 1947, US PUBLIC HLTH SERVI, V202, P1; COLE LC, 1946, US PUBLIC HLTH SERVI, V61, P1469; COLE LC, LAMONT COLE FACULTY; COLE LC, 1972, ENV HAZARDS 3 WORLD; COLE LC, 1969, EXPLODING HUMANITY C, P9; COLE LC, 1970, PROJECT SURVIVAL, P3; COLE LC, 1945, US PUBLIC HLTH SERVI, V60, P1337; COLLINS JP, 1986, J HIST BIOL, V19, P257, DOI 10.1007/BF00138879; DEEVEY ES, 1947, Q REV BIOL, V22, P283, DOI 10.1086/395888; EDGERTON FN, 1973, Q REV BIOL, V48, P322; Ehrlich P, 1968, POPULATION BOMB; Ehrlich PR, 1970, POPULATION RESOURCES; Emerson AE, 1943, AM NAT, V77, P97, DOI 10.1086/281109; EMERSON ALFRED E., 1939, AMER MIDLAND NAT, V21, P182, DOI 10.2307/2420380; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gerard RW, 1940, SCI MON, V50, P340; Gerard RW, 1940, SCI MON, V50, P403; Gerard RW, 1940, SCI MON, V50, P530; Gould Stephen Jay, 1983, DIMENSIONS DARWINISM, P72; Greenhalgh S, 1996, COMP STUD SOC HIST, V38, P26, DOI 10.1017/S0010417500020119; Hagen Joel Bartholemew, 1992, ENTANGLED BANK ORIGI; HUTCHINSON GE, 1957, COLD SPRING HARB SYM, V22, P415, DOI 10.1101/SQB.1957.022.01.039; Jelinski DE, 2005, HUM ECOL, V33, P271, DOI 10.1007/s10745-005-2435-7; KIMLER WC, 1986, J HIST BIOL, V19, P215, DOI 10.1007/BF00138877; KINGSLAND SE, 1986, J HIST BIOL, V19, P235, DOI 10.1007/BF00138878; Kingsland Sharon E., 1995, MODELING NATURE EPIS; LACK D, 1948, J ANIM ECOL, V17, P45, DOI 10.2307/1608; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D., 1954, NATURAL REGULATION A; LESLIE PH, 1949, ECOLOGY, V30, P469, DOI 10.2307/1932450; Leslie PH, 1940, J ANIM ECOL, V9, P27, DOI 10.2307/1425; Lewontin R.C., 1965, GENETICS COLONIZING, P79; MAYR E, 1961, SCIENCE, V134, P1501, DOI 10.1126/science.134.3489.1501; Medawar P. B., 1946, MODERN Q, V1, P30; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; Mitman Gregg, 1992, STATE NATURE ECOLOGY; Norton B., 1983, P19; ORIANS GH, 1962, AM NAT, V96, P257, DOI 10.1086/282233; PALMGREN P, 1949, OIKOS, V1, P114, DOI 10.2307/3565042; PARK T, 1988, REMINISCENCE THOMAS, V2; Pickett STA, 1994, ECOLOGICAL UNDERSTAN; Pimm S. L, 1991, BALANCE NATURE ECOLO; Roff D. A., 2002, LIFE HIST EVOLUTION; SIMPSON GEORGE GAYLORD, 1941, JOUR WASHINGTON ACAD SCI, V31, P1; SLOBODKIN LAWRENCE B., 1961; Stearns S. C., 1992, EVOLUTION LIFE HIST; THOMPSON W. R., 1931, BULL ENT RES, V22, P147; VANVALEN L, 1960, SCIENCE, V132, P1674, DOI 10.1126/science.132.3440.1674; WALSH J, 1971, SCIENCE, V172, P353, DOI 10.1126/science.172.3981.353; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; WILSON DS, 1975, P NATL ACAD SCI USA, V72, P143, DOI 10.1073/pnas.72.1.143; Wright Sewall, 1945, ECOLOGY, V26, P415, DOI 10.2307/1931666; Wynne-Edwards V., 1962, ANIMAL DISPERSION RE 90 1 1 1 6 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0391-9714 1742-6316 HIST PHIL LIFE SCI Hist. Philos. Life Sci. 2007 29 4 495 516 22 History & Philosophy Of Science History & Philosophy of Science 350JJ WOS:000259348400004 18822665 2018-11-12 J Figueredo, AJ; Vasquez, G; Brumbach, BH; Schneider, SMR Figueredo, Aurelio Jose; Vasquez, Geneva; Brumbach, Barbara Hagenah; Schneider, Stephanie M. R. The K-factor, covitality, and personality - A psychometric test of life history theory HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article general health; life history theory; MIDUS; personality factors; social privilege theory R-SELECTION; INDIVIDUAL-DIFFERENCES; BIG 5; HEALTH; SOLIDARITY; BEHAVIORS; EVOLUTION; STRATEGY We present a psychometric test of life history theory as applied to human individual differences using MIDUS survey data (Brim et al. 2000). Twenty scales measuring cognitive and behavioral dimensions theoretically related to life history strategy were constructed using items from the MIDUS survey. These scales were used to construct a single common factor, the K-factor, which accounted for 70% of the-reliable variance. The scales used included measures of personal, familial, and social function. A second common factor, Covitality, was constructed from scales for physical and mental health. Finally, a single general factor, Personality, was constructed from scales for the "Big Five" factors of personality. The K-factor, covitality factor, and general personality factor correlated significantly with each other, supporting the prediction that high K predicts high somatic effort and also manifests in behavioral display. Thus, a single higher-order common factor, the Super-K factor, was constructed that consisted of the K-factor, covitality factor, and personality factor. Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA Figueredo, AJ (reprint author), Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA. ajf@u.arizona.edu Arrow Kenneth, 2000, MERITOCRACY EC INEQU; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P127; Blackburn R, 2004, PERS INDIV DIFFER, V37, P957, DOI 10.1016/j.paid.2003.10.017; BRIM OG, 2004, HLTH ARE WE NATL STU, P64; Brim OG, 2000, NATL SURVEY MIDLIFE; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; Buss DM, 1999, J PERS, V67, P209, DOI 10.1111/1467-6494.00053; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; Cohen J., 1983, APPL MULTIPLE REGRES; Costa P. T., 1992, REVISED NEO PERSONAL; Digman JM, 1997, J PERS SOC PSYCHOL, V73, P1246, DOI 10.1037/0022-3514.73.6.1246; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Eysenck HJ, 1975, MANUAL EYSENCK PERSO; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2001, EVOL HUM BEHAV, V22, P295, DOI 10.1016/S1090-5138(01)00067-8; FIGUEREDO AJ, 2005, PERSONALITY INDIVIDU, V41, P431; Figueredo AJ, 2005, HDB EVOLUTIONARY PSY, P851; FLEESON W, 2001, CARING DOING OTHERS, P75; Fouts HN, 2005, CURR ANTHROPOL, V46, P29, DOI 10.1086/425659; GADGIL M, 1972, AM NAT, V106, P14, DOI 10.1086/282748; GEARY DC, 2005, ORIGIN MIND EVOLUTIO; Gottfredson L. S., 2006, INTRO PSICOLOGIA DIF, P433; Grzywacz JG, 2004, AM J HEALTH BEHAV, V28, P99, DOI 10.5993/AJHB.28.2.1; Grzywacz JG, 2002, FAM RELAT, V51, P28, DOI 10.1111/j.1741-3729.2002.00028.x; Grzywacz JG, 1999, J FAM ISSUES, V20, P243, DOI 10.1177/019251399020002004; KAWACHI I, 1999, INCOME INEQUALITY HL, V1; KERCKHOFF AC, 2000, GENERATING SOCIAL ST; King V, 2003, J MARRIAGE FAM, V65, P382, DOI 10.1111/j.1741-3737.2003.00382.x; KREBS CJ, 1973, SCIENCE, V179, P35, DOI 10.1126/science.179.4068.35; Lamb M. E, 2002, CULTURE BIOL PERSPEC, P241; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; MAC ARTHUR ROBERT H., 1967; Marks N., 2004, HLTH ARE WE NATL STU, P514; Marmot MG, 1998, MILBANK Q, V76, P403, DOI 10.1111/1468-0009.00097; MARMOT MG, 2004, HLTH ARE WE NATL STU, P64; Martin M, 2003, J ADULT DEV, V10, P99, DOI 10.1023/A:1022439915499; Miller G, 2000, ANN NY ACAD SCI, V907, P62; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.2307/3071970; ROSSI A, 2001, CARING DOING OTHERS; ROSSI AS, 2004, HLTH ARE WE NATL STU, P550; Rowe DC, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P147; Rushton J., 2000, RACE EVOLUTION BEHAV; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; RYFF CD, 2001, HEALTHY ARE WE NATL, P90; SAS Institute Inc, 1999, SAS STAT US GUID VER; Schlichting C. D., 1998, PHENOTYPIC EVOLUTION; Sterns S., 1992, EVOLUTION LIFE HIST; Tal I. R., 2006, MEDIO AMBIENTE COMPO, V7, P7; TAYLOR CE, 1980, EVOLUTION, V34, P1183, DOI 10.1111/j.1558-5646.1980.tb04064.x; Thornhill R, 2004, EVOLUTIONARY PSYCHOLOGY, PUBLIC POLICY AND PERSONAL DECISIONS, P249; VASQUEZ G, 2004, THESIS U ARIZONA TUC; Weiss A, 2002, J PERS SOC PSYCHOL, V83, P1141, DOI 10.1037//0022-3514.83.5.1141; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; WILKINSON RG, 1998, UNHEALTHY SOC AFFLIC; ZUCKERMAN M, 1993, J PERS SOC PSYCHOL, V65, P757, DOI 10.1037/0022-3514.65.4.757 61 96 98 4 23 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 2007 18 1 47 73 10.1007/BF02820846 27 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 131ZG WOS:000243910900004 26181744 2018-11-12 J Ryan, PG; Phillips, RA; Nel, DC; Wood, AG Ryan, Peter G.; Phillips, Richard A.; Nel, Deon C.; Wood, Andrew G. Breeding frequency in Grey-headed Albatrosses Thalassarche chrysostoma IBIS English Article TOOTHFISH LONGLINE FISHERY; HIGH ANNUAL VARIABILITY; PRINCE EDWARD ISLANDS; REPRODUCTIVE SUCCESS; DIOMEDEA-MELANOPHRIS; POPULATION-DYNAMICS; SEABIRD MORTALITY; BODY CONDITION; SOUTH GEORGIA; BIRD-ISLAND Although Grey-headed Albatrosses Thalassarche chrysostoma are usually regarded as biennial breeders, taking a year off following a successful breeding attempt, a small proportion of successful birds attempt to breed annually. This proportion was higher at Marion Island (5.4%) than at Bird Island, South Georgia (1.0%), suggesting that conditions are more favourable at Marion Island. This hypothesis is supported by higher average breeding success and shorter lags following both successful and failed breeding attempts at Marion Island. Factors favouring reproduction at Marion Island may include reduced intraspecific competition (given the much smaller breeding population) and/or more predictable food supply (owing to production of meso-scale eddies associated with the Indian Ocean Ridge). Although annual breeding appeared to increase the risk of adult mortality, with several birds that attempted to breed annually found dead the following year, at least some birds greatly enhanced their reproductive output, with one male raising five chicks in five successive years. Contrary to life-history theory, there was no evidence that older birds were more likely to attempt annual breeding because of declining reproductive value. Univ Cape Town, Percy Fitzpatrick Inst, NRF Ctr Excellence, DST, ZA-7701 Rondebosch, South Africa; British Antarctic Survey, NERC, Cambridge CB3 0ET, England Ryan, PG (reprint author), Univ Cape Town, Percy Fitzpatrick Inst, NRF Ctr Excellence, DST, ZA-7701 Rondebosch, South Africa. pryan@botzoo.uct.ac.za Ryan, Peter/0000-0002-3356-2056 AEBISCHER NJ, 1990, J ANIM ECOL, V59, P1063, DOI 10.2307/5031; Burg TM, 2001, MOL ECOL, V10, P2647, DOI 10.1046/j.0962-1083.2001.01392.x; Catry P, 1998, CONDOR, V100, P448, DOI 10.2307/1369710; Chastel O, 1995, AUK, V112, P964, DOI 10.2307/4089027; CHASTEL O, 1993, OECOLOGIA, V94, P278, DOI 10.1007/BF00341328; CHASTEL O, 1995, IBIS, V137, P360, DOI 10.1111/j.1474-919X.1995.tb08033.x; Cobley ND, 1998, IBIS, V140, P315, DOI 10.1111/j.1474-919X.1998.tb04395.x; Coulson JC, 2001, J AVIAN BIOL, V32, P146, DOI 10.1034/j.1600-048X.2001.320207.x; Crawford RJM, 2003, AFR J MAR SCI, V25, P453, DOI 10.2989/18142320309504034; Croxall JP, 2005, SCIENCE, V307, P249, DOI 10.1126/science.1106042; Croxall JP, 1998, ALBATROSS: BIOLOGY AND CONSERVATION, P69; Erikstad KE, 1998, ECOLOGY, V79, P1781; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; HARRIS M P, 1973, Ibis, V115, P483, DOI 10.1111/j.1474-919X.1973.tb01988.x; Holmes DJ, 2001, EXP GERONTOL, V36, P869, DOI 10.1016/S0531-5565(00)00247-3; Jenouvrier S, 2005, OIKOS, V108, P511, DOI 10.1111/j.0030-1299.2005.13351.x; MURPHY EC, 1991, J ANIM ECOL, V60, P515, DOI 10.2307/5295; Nel DC, 2001, MAR ECOL PROG SER, V217, P15, DOI 10.3354/meps217015; Nel DC, 2002, ANTARCT SCI, V14, P151; Newton I, 1997, ECOLOGY, V78, P1000, DOI 10.1890/0012-9658(1997)078[1000:SARVIS]2.0.CO;2; PRINCE PA, 1994, IBIS, V136, P50, DOI 10.1111/j.1474-919X.1994.tb08131.x; PRINCE PA, 1980, IBIS, V122, P476, DOI 10.1111/j.1474-919X.1980.tb00902.x; PRINCE PA, 1993, IBIS, V135, P121, DOI 10.1111/j.1474-919X.1993.tb02823.x; RICE DALE W., 1962, AUK, V79, P517; Ryan PG, 1999, AUK, V116, P851, DOI 10.2307/4089350; Ryan PG, 1999, OSTRICH, V70, P187, DOI 10.1080/00306525.1999.9634233; Sagar PM, 2000, AUK, V117, P699, DOI 10.1642/0004-8038(2000)117[0699:TAARCI]2.0.CO;2; Stearns S. C., 1992, EVOLUTION LIFE HIST; TICKELL WLN, 1975, IBIS, V117, P433, DOI 10.1111/j.1474-919X.1975.tb04237.x; Waugh SM, 1999, IBIS, V141, P216, DOI 10.1111/j.1474-919X.1999.tb07544.x; WEIMERSKIRCH H, 1986, IBIS, V128, P195, DOI 10.1111/j.1474-919X.1986.tb02669.x 32 19 20 0 6 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0019-1019 IBIS Ibis JAN 2007 149 1 45 52 8 Ornithology Zoology 125WQ WOS:000243474600006 2018-11-12 J Dibattista, JD; Feldheim, KA; Gruber, SH; Hendry, AP Dibattista, J. D.; Feldheim, K. A.; Gruber, S. H.; Hendry, A. P. When bigger is not better: selection against large size, high condition and fast growth in juvenile lemon sharks JOURNAL OF EVOLUTIONARY BIOLOGY English Article directional selection; lemon shark; life history; marine environment; morphological traits; Negaprion; quantitative genetics; selection coefficients; viability ENERGY ACQUISITION RATES; NATURAL-SELECTION; NEGAPRION-BREVIROSTRIS; INTRINSIC GROWTH; TRADE-OFFS; BODY-SIZE; DIRECTIONAL SELECTION; ONCORHYNCHUS-KISUTCH; BRITISH-COLUMBIA; SEXUAL SELECTION Selection acting on large marine vertebrates may be qualitatively different from that acting on terrestrial or freshwater organisms, but logistical constraints have thus far precluded selection estimates for the former. We overcame these constraints by exhaustively sampling and repeatedly recapturing individuals in six cohorts of juvenile lemon sharks (450 age-0 and 255 age-1 fish) at an enclosed nursery site (Bimini, Bahamas). Data on individual size, condition factor, growth rate and inter-annual survival were used to test the 'bigger is better', 'fatter is better' and 'faster is better' hypotheses of life-history theory. For age-0 sharks, selection on all measured traits was weak, and generally acted against large size and high condition. For age-1 sharks, selection was much stronger, and consistently acted against large size and fast growth. These results suggest that selective pressures at Bimini may be constraining the evolution of large size and fast growth, an observation that fits well with the observed small size and low growth rate of juveniles at this site. Our results support those of some other recent studies in suggesting that bigger/fatter/faster is not always better, and may often be worse. Redpath Museum, Montreal, PQ H3A 2K6, Canada; McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada; Field Museum, Pritzker Lab Mol Systemat & Evolut, Chicago, IL USA; Rosenstiel Sch Marine & Atmospher Sci, Div Marine Biol & Fisheries, Miami, FL USA Dibattista, JD (reprint author), Redpath Museum, 859 Sherbrooke St W, Montreal, PQ H3A 2K6, Canada. joseph.dibattista@mail.mcgill.ca Hendry, Andrew/C-5765-2008; DiBattista, Joseph/O-2074-2014 Hendry, Andrew/0000-0002-4807-6667; DiBattista, Joseph/0000-0002-5696-7574 Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Barker MJ, 2005, ENVIRON BIOL FISH, V72, P343, DOI 10.1007/s10641-004-2584-3; Begon M., 1996, POPULATION ECOLOGY U; Billerbeck JM, 2001, EVOLUTION, V55, P1863; Biro PA, 2003, ECOLOGY, V84, P2419, DOI 10.1890/02-0416; Biro PA, 2004, P ROY SOC B-BIOL SCI, V271, P2233, DOI 10.1098/rspb.2004.2861; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Blanckenhorn WU, 1999, J EVOLUTION BIOL, V12, P563, DOI 10.1046/j.1420-9101.1999.00050.x; BRODIE ED, 1995, TRENDS ECOL EVOL, V10, P313, DOI 10.1016/S0169-5347(00)89117-X; Brown C, 2004, ANIM BEHAV, V68, P1325, DOI 10.1016/j.anbehav.2004.04.004; Burnham K. P., 2002, MODEL SELECTION MULT; Carlson JK, 2003, FISH RES, V60, P405, DOI 10.1016/S0165-7836(02)00135-2; Carlson SM, 2003, J FISH BIOL, V63, P780, DOI 10.1016/j.1095-8649.2003.00191.x; Carlson SM, 2004, EVOL ECOL RES, V6, P955; CASTRO JI, 1993, ENVIRON BIOL FISH, V38, P37, DOI 10.1007/BF00842902; Compagno L. J. V., 1984, FAO SPECIES CATALOGU; Cowen RK, 2006, SCIENCE, V311, P522, DOI 10.1126/science.1122039; De Troch M, 2006, MAR ENVIRON RES, V61, P59, DOI 10.1016/j.marenvres.2005.05.003; Edren SMC, 2005, ENVIRON BIOL FISH, V72, P267, DOI 10.1007/s10641-004-2583-4; Endler JA, 1986, NATURAL SELECTION WI; FAUSCH KD, 1981, CAN J FISH AQUAT SCI, V38, P1220, DOI 10.1139/f81-164; Feldheim KA, 2001, MOL ECOL, V10, P295, DOI 10.1046/j.1365-294x.2001.01182.x; Feldheim KA, 2004, EVOLUTION, V58, P2332, DOI 10.1111/j.0014-3820.2004.tb01607.x; Feldheim KA, 2002, P ROY SOC B-BIOL SCI, V269, P1655, DOI 10.1098/rspb.2002.2051; Goodman SJ, 1998, MOL BIOL EVOL, V15, P104, DOI 10.1093/oxfordjournals.molbev.a025907; Grant PR, 2002, SCIENCE, V296, P707, DOI 10.1126/science.1070315; GRUBER S H, 1982, Florida Scientist, V45, P46; Gruber SH, 2001, T AM FISH SOC, V130, P376, DOI 10.1577/1548-8659(2001)130<0376:SOJLSA>2.0.CO;2; Hare MP, 2005, EVOLUTION, V59, P2509, DOI 10.1554/05-150.1; HENDERSON PA, 1988, J FISH BIOL, V33, P221, DOI 10.1111/j.1095-8649.1988.tb05465.x; Hendry AP, 2003, CONSERV BIOL, V17, P795, DOI 10.1046/j.1523-1739.2003.02075.x; Hendry AP, 2001, AM NAT, V157, P387, DOI 10.1086/319316; Hereford J, 2004, EVOLUTION, V58, P2133; Hersch EI, 2004, EVOLUTION, V58, P479, DOI 10.1111/j.0014-3820.2004.tb01671.x; Hoekstra HE, 2001, P NATL ACAD SCI USA, V98, P9157, DOI 10.1073/pnas.161281098; Hueter R. E., 2005, Journal of Northwest Atlantic Fishery Science, V35, P239; Jann P, 2000, J EVOLUTION BIOL, V13, P927, DOI 10.1046/j.1420-9101.2000.00230.x; Janzen FJ, 1998, EVOLUTION, V52, P1564, DOI 10.1111/j.1558-5646.1998.tb02237.x; JUANES F, 1994, MAR ECOL PROG SER, V114, P59, DOI 10.3354/meps114059; Kingsolver JG, 2004, EVOLUTION, V58, P1608; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; KINGSOLVER JG, 1995, EVOLUTION, V49, P384, DOI 10.1111/j.1558-5646.1995.tb02252.x; Kinnison MT, 2001, GENETICA, V112, P145, DOI 10.1023/A:1013375419520; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Lankford TE, 2001, EVOLUTION, V55, P1873, DOI 10.1111/j.0014-3820.2001.tb00836.x; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Letcher BH, 2005, EVOL ECOL RES, V7, P643; Mangel M, 2001, EVOL ECOL RES, V3, P583; MANIRE CA, 1991, T AM FISH SOC, V120, P776, DOI 10.1577/1548-8659(1991)120<0776:EOMDTO>2.3.CO;2; MARTEL G, 1995, ETHOLOGY, V99, P139; McAdam AG, 2003, EVOLUTION, V57, P1689; MITCHELLOLDS T, 1987, EVOLUTION, V41, P1149, DOI 10.1111/j.1558-5646.1987.tb02457.x; MORRISSEY JF, 1993, ENVIRON BIOL FISH, V38, P311, DOI 10.1007/BF00007524; Newman Steven P., 2002, Bahamas Journal of Science, V9, P19; PALSBOLL PJ, 1995, MAR ECOL PROG SER, V116, P1, DOI 10.3354/meps116001; PARKER RR, 1971, J FISH RES BOARD CAN, V28, P1503, DOI 10.1139/f71-231; Pratt H.L., 1990, ELASMOBRANCHS LIVING, P97; Przybylo R, 2000, BIOL J LINN SOC, V69, P213, DOI 10.1111/j.1095-8312.2000.tb01199.x; Quinn TP, 2001, EVOL ECOL RES, V3, P917; Roff Derek A., 1992; ROWE DK, 1990, J FISH BIOL, V36, P643, DOI 10.1111/j.1095-8649.1990.tb04319.x; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; SCHLUTER D, 1988, EVOLUTION, V42, P849, DOI 10.1111/j.1558-5646.1988.tb02507.x; Schulte-Hostedde AI, 2005, ECOLOGY, V86, P155, DOI 10.1890/04-0232; Sinclair AF, 2002, CAN J FISH AQUAT SCI, V59, P361, DOI 10.1139/F02-015; Sogard SM, 1997, B MAR SCI, V60, P1129; Sundstrom LF, 2005, EVOLUTION, V59, P1560; WEST CJ, 1987, CAN J FISH AQUAT SCI, V44, P712, DOI 10.1139/f87-086; White GC, 1999, BIRD STUDY, V46, P120; Zabel RW, 2004, ECOLOGY, V85, P795, DOI 10.1890/02-0719 70 72 72 1 51 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JAN 2007 20 1 201 212 10.1111/j.1420-9101.2006.01210.x 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 117WS WOS:000242904600028 17210013 Bronze 2018-11-12 J Remes, V Remes, V. Avian growth and development rates and age-specific mortality: the roles of nest predation and adult mortality JOURNAL OF EVOLUTIONARY BIOLOGY English Article age-specific mortality; development; growth; life-history theory; maternal effects; nest predation LIFE-HISTORY EVOLUTION; ALTRICIAL BIRDS; YOLK ANDROGENS; SIBLING COMPETITION; INCUBATION PERIOD; POSTNATAL-GROWTH; BEGGING BEHAVIOR; IMMUNE FUNCTION; TESTOSTERONE; SURVIVAL Previous studies have shown that avian growth and development covary with juvenile mortality. Juveniles of birds under strong nest predation pressure grow rapidly, have short incubation and nestling periods, and leave the nest at low body mass. Life-history theory predicts that parental investment increases with adult mortality rate. Thus, developmental traits that depend on the parental effort exerted (pre- and postnatal growth rate) should scale positively with adult mortality, in contrast to those that do not have a direct relationship with parental investment (timing of developmental events, e.g. nest leaving). I tested this prediction on a sample of 84 North American songbirds. Nestling growth rate scaled positively and incubation period duration negatively with annual adult mortality rates even when controlled for nest predation and other covariates, including phylogeny. On the contrary, neither the duration of the nestling period nor body mass at fledging showed any relationship. Proximate mechanisms generating the relationship of pre- and postnatal growth rates to adult mortality may include increased feeding, nest attentiveness during incubation and/or allocation of hormones, and deserve further attention. Palacky Univ, Fac Sci, Dept Zool, Olomouc 77146, Czech Republic Remes, V (reprint author), Palacky Univ, Fac Sci, Dept Zool, Tr Svobody 26, Olomouc 77146, Czech Republic. vladimir.remes@upol.cz Remes, Vladimir/B-6842-2016 BOSQUE C, 1995, AM NAT, V145, P234, DOI 10.1086/285738; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Conway CJ, 2000, BEHAV ECOL, V11, P178, DOI 10.1093/beheco/11.2.178; DUNNING JB, 1993, BODY WEIGHTS 686 SPE; Eggers S, 2005, BEHAV ECOL, V16, P309, DOI 10.1093/beheco/arh163; Eising CM, 2001, P ROY SOC B-BIOL SCI, V268, P839, DOI 10.1098/rspb.2001.1594; Eising CM, 2003, ANIM BEHAV, V66, P1027, DOI 10.1006/anbe.2003.2287; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Goodship NM, 2006, P ROY SOC B-BIOL SCI, V273, P71, DOI 10.1098/rspb.2005.3289; Gorman KB, 2005, BIOL LETT-UK, V1, P461, DOI 10.1098/rsbl.2005.0346; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; GRAFEN A, 2005, USERS GUIDE SAS IMPL; Groothuis TGG, 2005, NEUROSCI BIOBEHAV R, V29, P329, DOI 10.1016/j.neubiorev.2004.12.002; Harvey P. H., 1991, COMP METHOD EVOLUTIO; JOHNSEN I, 1994, OIKOS, V71, P273, DOI 10.2307/3546276; Johnson LS, 2004, ETHOLOGY, V110, P693, DOI 10.1111/j.1439-0310.2004.01001.x; Lack D., 1968, ECOLOGICAL ADAPTATIO; LACK D, 1954, NATURAL REGULATION A; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 1999, AM NAT, V153, P131, DOI 10.1086/303153; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Moller AP, 2005, OIKOS, V111, P291; Murphy Mary E., 1996, P158; Navara KJ, 2005, PHYSIOL BIOCHEM ZOOL, V78, P570, DOI 10.1086/430689; NILSSON JA, 1993, ANIM BEHAV, V46, P379, DOI 10.1006/anbe.1993.1200; Palacios MG, 2006, OECOLOGIA, V146, P505, DOI 10.1007/s00442-005-0220-3; POOLE AF, 1992, BIRDS N AM; Remes V, 2002, EVOLUTION, V56, P2505; REMES V, 2006, IN PRESS EVOLUTION; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Ricklefs R.E., 1998, AVIAN GROWTH DEV EVO, P266; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; RICKLEFS RE, 1992, P NATL ACAD SCI USA, V89, P4722, DOI 10.1073/pnas.89.10.4722; RICKLEFS RE, 1969, ECOLOGY, V50, P1031, DOI 10.2307/1936894; RICKLEFS RE, 1968, IBIS, V110, P419, DOI 10.1111/j.1474-919X.1968.tb00058.x; Ricklefs Robert E., 1993, Current Ornithology, V11, P199; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff DA, 2005, J EVOLUTION BIOL, V18, P1425, DOI 10.1111/j.1420-9101.2005.00958.x; *SAS I INC, 2005, SAS ONL DOC; SCHEW WA, 1998, AVIAN GROWTH DEV EVO, P288; Schwabl H, 1996, COMP BIOCHEM PHYS A, V114, P271, DOI 10.1016/0300-9629(96)00009-6; Sibley CG, 1990, PHYLOGENY CLASSIFICA; Sockman KW, 2000, P ROY SOC B-BIOL SCI, V267, P1451, DOI 10.1098/rspb.2000.1163; Soler JJ, 2003, P ROY SOC B-BIOL SCI, V270, P241, DOI 10.1098/rspb.2002.2217; Starck J.M., 1998, AVIAN GROWTH DEV; Tella JL, 2002, P ROY SOC B-BIOL SCI, V269, P1059, DOI 10.1098/rspb.2001.1951; Tschirren B, 2005, J ANIM ECOL, V74, P675, DOI 10.1111/j.1365-2656.2005.00963.x; WEBB DR, 1987, CONDOR, V89, P874, DOI 10.2307/1368537; Williams GC, 1966, ADAPTATION NATURAL S 56 16 18 0 28 BLACKWELL PUBLISHING OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND 1010-061X J EVOLUTION BIOL J. Evol. Biol. JAN 2007 20 1 320 325 10.1111/j.1420-9101.2006.01191.x 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 117WS WOS:000242904600040 17210025 Bronze 2018-11-12 J Mollet, FM; Kraak, SBM; Rijnsdorp, AD Mollet, Fabian M.; Kraak, Sarah B. M.; Rijnsdorp, Adriaan D. Fisheries-induced evolutionary changes in maturation reaction norms in North Sea sole Solea solea MARINE ECOLOGY PROGRESS SERIES English Article life history evolution; probabilistic maturation reaction norm; phenotypic plasticity; growth; condition PLEURONECTES-PLATESSA L; LIFE-HISTORY EVOLUTION; LONG-TERM CHANGES; COD GADUS-MORHUA; CORAL-REEF FISH; PHENOTYPIC PLASTICITY; NATURAL-POPULATIONS; SOCIAL INHIBITION; SEXUAL-MATURITY; EGG SIZE Age and size at maturation decreased in several commercially exploited fish stocks, which, according to life history theory, may be due to fisheries-induced evolutionary change. However, the observed changes may also represent a plastic response to environmental variability. To disentangle phenotypic plasticity from evolutionary change, the probabilistic reaction norm approach was applied to 43 cohorts (1960 to 2002) of female sole Solea solea from market samples. The reaction norm for age and size at first maturation has significantly shifted towards younger age and smaller size. Size at 50% probability of maturation at Age 3 decreased from 28.6 cm (251 g) to 24.6 cm (128 g). This change was even stronger when condition was included as a third dimension in the reaction norm estimation. The influence of alternative factors was tested on the population level by regression of reaction norm midpoints on annual estimates of condition, temperature and competitive biomass. Although effects of temperature and competitive biomass were significant, the variation in the midpoints was best explained by the decreasing time trend. Therefore, the results provide strong evidence for a fisheries -induced evolutionary change in the onset of sexual maturity. [Mollet, Fabian M.; Kraak, Sarah B. M.; Rijnsdorp, Adriaan D.] Wageningen Inst Marine Resources & Ecol Studies, NL-1970 AB Ijmuiden, Netherlands Mollet, FM (reprint author), Wageningen Inst Marine Resources & Ecol Studies, POB 68, NL-1970 AB Ijmuiden, Netherlands. fabian.mollet@wur.nl Rijnsdorp, Adriaan/A-4217-2008 Rijnsdorp, Adriaan/0000-0003-0785-9662 Barot S, 2004, EVOL ECOL RES, V6, P659; Baynes SM, 1996, J EXP MAR BIOL ECOL, V199, P59, DOI 10.1016/0022-0981(95)00189-1; BOROWSKY R, 1978, SCIENCE, V201, P933, DOI 10.1126/science.201.4359.933; Charnov EL, 2004, INTEGR COMP BIOL, V44, P494, DOI 10.1093/icb/44.6.494; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Conover DO, 2005, CAN J FISH AQUAT SCI, V62, P730, DOI 10.1139/F05-069; de Veen J.F., 1976, Journal Cons int Explor Mer, V37, P60; DEVEEN JF, 1970, BER DEUT WISS KOMM, V21, P78; Dhillon RS, 2004, COPEIA, P37, DOI 10.1643/CI-02-098R1; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; FRICKE H, 1977, NATURE, V266, P830, DOI 10.1038/266830a0; Fuiman LA, 1998, COPEIA, P602, DOI 10.2307/1447790; Grift RE, 2007, MAR ECOL PROG SER, V334, P213, DOI 10.3354/meps334213; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Hobbs JPA, 2004, P ROY SOC B-BIOL SCI, V271, P2109, DOI 10.1098/rspb.2004.2845; *ICES, 2006, REP WORK GROUP ASS D; Janssen PAH, 1997, AQUAT TOXICOL, V39, P195, DOI 10.1016/S0166-445X(97)00036-2; JONES GP, 1980, MAR BIOL, V59, P247, DOI 10.1007/BF00404748; JORGENSEN T, 1990, J CONSEIL, V46, P235; KJESBU OS, 1991, CAN J FISH AQUAT SCI, V48, P2333, DOI 10.1139/f91-274; Kraak SBM, 2007, MAR ECOL PROG SER, V335, P295, DOI 10.3354/meps335295; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Marshall CT, 2007, MAR ECOL PROG SER, V335, P301, DOI 10.3354/meps335301; Millner RS, 1996, ICES J MAR SCI, V53, P1185, DOI 10.1006/jmsc.1996.0143; Oberdorster E, 2001, ENVIRON TOXICOL CHEM, V20, P23, DOI 10.1897/1551-5028(2001)020<0023:GBATBE>2.0.CO;2; Quinn TP, 2001, GENETICA, V112, P493, DOI 10.1023/A:1013348024063; Ramsay K, 1996, J SEA RES, V36, P275, DOI 10.1016/S1385-1101(96)90796-0; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; REZNICK DN, 1993, EXPLOITATION EVOLVIN; RIJNSDORP AD, 1993, CAN J FISH AQUAT SCI, V50, P1617, DOI 10.1139/f93-183; RIJNSDORP AD, 1991, NETH J SEA RES, V27, P441, DOI 10.1016/0077-7579(91)90045-3; RIJNSDORP AD, 1993, OECOLOGIA, V96, P391, DOI 10.1007/BF00317510; RIJNSDORP AD, 1990, NETH J SEA RES, V25, P279, DOI 10.1016/0077-7579(90)90027-E; RIJNSDORP AD, 1992, NETH J SEA RES, V29, P173, DOI 10.1016/0077-7579(92)90018-A; Sinclair AF, 2002, CAN J FISH AQUAT SCI, V59, P361, DOI 10.1139/F02-015; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stentiford GD, 2005, MAR ECOL PROG SER, V301, P307, DOI 10.3354/meps301307; STOKES TK, 1993, P INTL C JUL GERM 3; Trippel EA, 2004, CAN J FISH AQUAT SCI, V61, P2097, DOI 10.1139/F04-125; Van Aken H.M., 2003, ICES MAR SCI S, V219, P359; VANDERLAND MA, 1991, NETH J SEA RES, V27, P277, DOI 10.1016/0077-7579(91)90030-5; Wright PJ, 2007, MAR ECOL PROG SER, V335, P279, DOI 10.3354/meps335279 47 67 68 1 13 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2007 351 189 199 10.3354/meps07138 11 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 247FV WOS:000252064100016 Bronze 2018-11-12 J Fiksen, O; Jorgensen, C; Kristiansen, T; Vikebo, F; Huse, G Fiksen, Oyvind; Jorgensen, Christian; Kristiansen, Trond; Vikebo, Frode; Huse, Geir Linking behavioural ecology and oceanography: larval behaviour determines growth, mortality and dispersal MARINE ECOLOGY PROGRESS SERIES English Article; Proceedings Paper Workshop on Advancements in Modelling Physical-Biological Interactions in Fish Early-Life History APR, 2006 Nantes, FRANCE WGPBI, ICES Working Grp Recruitment Proc behavioural rules; larval ecology; individual-based models; general circulation models; predation; habitat selection COD GADUS-MORHUA; INDIVIDUAL-BASED MODELS; REEF FISH LARVAE; GEORGES BANK; NORTH-SEA; LIFE-HISTORY; POPULATIONS; MARINE; TEMPERATURE; PREDATION Highly resolved general circulation models (GCMs) now generate realistic flow fields, and have revealed how sensitive larval drift routes are to vertical positioning in the water column. Sensible representation of behavioural processes then becomes essential to generate reliable patterns of environmental exposure (growth and survival), larval drift trajectories and dispersal. Existing Individual-based models involving larval fish allow individuals to vary only in their attributes such as spatial coordinates, and not in their inherited behavioural strategies or phenotypes. We illustrate the interaction between short-term behaviour and longer-term dispersal consequences applying a model of larval cod Gadus morhua drifting in a GCM, and show how variations in swimming behaviour influence growth and dispersal. We recommend a deep integration of oceanography and behavioural ecology. First, we need to understand the causes and survival value of behaviours of larval fish, framed in terms of behavioural ecology. Second, we need practices to address how drift and dispersal of offspring are generating spawning strategies (timing and location) of adults, using life history theory. Third, the relative importance of local growth and mortality versus the need to drift to particular areas depend strongly on the mobility of organisms at the time of settling, or the spatial fitness-landscape. The field of 'individual-based ecology' provides sound methods to approach this interface between evolutionary theory and physical oceanography. Univ Bergen, Dept Biol, N-5020 Bergen, Norway; Inst Marine Res, N-5817 Bergen, Norway; Univ N Carolina, Dept Marine Sci, Chapel Hill, NC 27599 USA Fiksen, O (reprint author), Univ Bergen, Dept Biol, N-5020 Bergen, Norway. oyvind.fiksen@bio.uib.no Jorgensen, Christian/B-4453-2009; Fiksen, Oyvind/F-1771-2011 Jorgensen, Christian/0000-0001-7087-4625; Fiksen, Oyvind/0000-0002-9687-5842; Kristiansen, Trond/0000-0001-6121-297X AKSNES DL, 1993, ECOL MODEL, V67, P233, DOI 10.1016/0304-3800(93)90007-F; Aksnes DL, 2004, LIMNOL OCEANOGR, V49, P233, DOI 10.4319/lo.2004.49.1.0233; BAILEY KM, 1989, ADV MAR BIOL, V25, P1; Beaugrand G, 2003, NATURE, V426, P661, DOI 10.1038/nature02164; CHAMBERS RC, 1993, T AM FISH SOC, V122, P404, DOI 10.1577/1548-8659(1993)122<0404:PVIFPA>2.3.CO;2; Ciannelli L, 2007, ECOLOGY, V88, P635, DOI 10.1890/05-2035; CLARK CW, 2000, DYNAMIC STATE VARIAB; Clark DL, 2005, MAR ECOL PROG SER, V292, P287, DOI 10.3354/meps292287; Cowen RK, 2006, SCIENCE, V311, P522, DOI 10.1126/science.1122039; Dawkins R., 1976, SELFISH GENE; Fiksen O, 2005, J ANIM ECOL, V74, P423, DOI 10.1111/j.1365-2656.2005.00937.x; Fisher R, 2005, MAR BIOL, V147, P1201, DOI 10.1007/s00227-005-0001-x; FISHER R. A., 1930, GENETICAL THEORY NAT; Fitzpatrick MJ, 2005, TRENDS ECOL EVOL, V20, P96, DOI 10.1016/j.tree.2004.11.017; Folkvord A, 2005, CAN J FISH AQUAT SCI, V62, P1037, DOI 10.1139/F05-008; Fuiman LA, 1997, J EXP BIOL, V200, P1745; Garrison LP, 2000, CAN J FISH AQUAT SCI, V57, P2455, DOI 10.1139/cjfas-57-12-2455; Giske J, 2003, EVOL ECOL RES, V5, P835; Giske J, 1998, REV FISH BIOL FISHER, V8, P57, DOI 10.1023/A:1008864517488; Grimm V, 2005, SCIENCE, V310, P987, DOI 10.1126/science.1116681; GRIMM V, 2005, IND BASED MODELING E; Harden Jones F. R., 1968, FISH MIGRATION; Hare JA, 2005, MAR ECOL PROG SER, V303, P295, DOI 10.3354/meps303295; Hinckley S, 1996, MAR ECOL PROG SER, V139, P47, DOI 10.3354/meps139047; Hinrichsen HH, 2005, ICES J MAR SCI, V62, P878, DOI 10.1016/j.icesjms.2005.04.003; Holland J. H., 1992, ADAPTATION NATURAL A; HOUDE ED, 1997, EARLY LIFE HIST RECR, P173; Houston AI, 1999, MODELS ADAPTIVE BEHA; Huret M, 2007, MAR ECOL PROG SER, V347, P261, DOI 10.3354/meps06983; Huse G, 2004, ICES J MAR SCI, V61, P1201, DOI 10.1016/j.icesjms.2004.06.011; Huse G, 2001, SARSIA, V86, P477, DOI 10.1080/00364827.2001.10420487; Huse G, 1999, EVOL ECOL, V13, P469, DOI 10.1023/A:1006746727151; Hutchinson JMC, 2005, BEHAV PROCESS, V69, P97, DOI 10.1016/j.beproc.2005.02.019; JONES FRH, 1978, J CONS INT EXPLOR ME, V38, P331; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P200, DOI 10.1139/F05-210; Larsson AI, 2006, ECOLOGY, V87, P1960, DOI 10.1890/0012-9658(2006)87[1960:BLASFE]2.0.CO;2; Leis JM, 2007, MAR ECOL PROG SER, V347, P185, DOI 10.3354/meps06977; Leis JM, 2006, MAR BIOL, V148, P655, DOI 10.1007/s00227-005-0108-0; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LOOSE CJ, 1994, ECOLOGY, V75, P2255, DOI 10.2307/1940881; Lough RG, 2005, FISH OCEANOGR, V14, P241, DOI 10.1111/j.1365-2419.2005.00330.x; LOUGH RG, 1993, FISH B-NOAA, V91, P281; MALEY CC, 1993, ECOL MODEL, V68, P75, DOI 10.1016/0304-3800(93)90109-6; MCNAMARA JM, 1987, ECOLOGY, V68, P1515, DOI 10.2307/1939235; Menczer F, 1996, ADAPT BEHAV, V4, P317, DOI 10.1177/105971239600400305; Mullon C, 2002, CAN J FISH AQUAT SCI, V59, P910, DOI 10.1139/F02-064; Nielsen R, 2004, MAR ECOL PROG SER, V278, P261, DOI 10.3354/meps278261; Olla BL, 1996, FISH OCEANOGR, V5, P167, DOI 10.1111/j.1365-2419.1996.tb00090.x; Paris CB, 2004, LIMNOL OCEANOGR, V49, P1964, DOI 10.4319/lo.2004.49.6.1964; Peck MA, 2006, ENVIRON BIOL FISH, V75, P419, DOI 10.1007/s10641-006-0031-3; Persson L, 2003, ECOLOGY, V84, P1129, DOI 10.1890/0012-9658(2003)084[1129:AHUISP]2.0.CO;2; PLOMIN R, 2000, BEHAV GENETICS; Railsback SF, 1999, ECOL MODEL, V123, P73, DOI 10.1016/S0304-3800(99)00124-6; SCHEFFER M, 1995, ECOL MODEL, V80, P161, DOI 10.1016/0304-3800(94)00055-M; Schwalme K, 1999, ICES J MAR SCI, V56, P303, DOI 10.1006/jmsc.1999.0458; SINCLAIR M, 1988, MARINE POPULATIONS; SKIFTESVIK AB, 1992, CAN J FISH AQUAT SCI, V49, P1570, DOI 10.1139/f92-174; Slotte A, 2000, J FISH BIOL, V56, P138; Strand E, 2002, AM NAT, V159, P624, DOI 10.1086/339997; Takamoto T, 2001, MACROMOL BIOSCI, V1, P223; Varpe O, 2005, OECOLOGIA, V146, P443, DOI 10.1007/s00442-005-0219-9; Vikebo F, 2005, ICES J MAR SCI, V62, P1375, DOI 10.1016/j.icesjms.2005.05.017; Vikebo F, 2007, MAR ECOL PROG SER, V347, P207, DOI 10.3354/meps06979; Wright KJ, 2005, MAR BIOL, V147, P1425, DOI 10.1007/s00227-005-0028-z 64 131 133 1 37 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2007 347 195 205 10.3354/meps06978 11 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 231VY WOS:000250978500018 Bronze 2018-11-12 J Fisher, R; Sogard, SM; Berkeley, SA Fisher, Rebecca; Sogard, Susan M.; Berkeley, Steven A. Trade-offs between size and energy reserves reflect alternative strategies for optimizing larval survival potential in rockfish MARINE ECOLOGY PROGRESS SERIES English Article life history trade-offs; offspring size; larval performance traits; Sebastes CORAL-REEF FISH; CENTRAL CALIFORNIA; EARLY-LIFE; EGG SIZE; ENVIRONMENTAL-QUALITY; NORTHERN CALIFORNIA; JUVENILE TRANSITION; SEBASTES-MELANOPS; ESCAPE RESPONSE; RAINBOW-TROUT Reproductive strategies balancing offspring size and offspring number have been well documented in empirical tests of life-history theory. Here we found an additional trade-off between offspring size and offspring condition. Among 5 species of live-bearing rockfishes (Sebastes spp.) from central Californian populations, we observed a negative relationship between larval length at parturition and the size of their oil globule (a triacylglycerol-rich energy reserve). When compared with a variety of performance variables (resistance to starvation, growth, startle-escape performance and routine activity levels), it appears that this trade-off leads to a conflict when trying to optimize survival potential, with differing benefits to each trait. A large oil globule greatly increases resistance to starvation, whereas larger body size is associated with numerous performance benefits likely to synergistically decrease predation-based mortality and increase success at capturing prey (increased startle speeds and distances, as well as more rapid onset of growth and larger size at age). The trade-off between energy reserves and body size is further reflected in the seasonal patterns of parturition of the 5 species, with larvae having large oil globules and small body size being released in winter, when productivity in the California Current is low but transport is generally onshore, and those with small oil globule reserves and large body size released in late spring, when productivity is high but transport is generally offshore. These 2 apparent reproductive strategies also reflect subgeneric phylogenetic relationships, suggesting a potential lineage-specific basis for the contrast in larval traits. The results highlight the importance of measuring both physical and performance traits of larvae, as well as considering multiple attributes of both, when evaluating progeny quality. Univ Newcastle, Sch Marine Sci & Technol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England; Natl Marine Fisheries Serv, Santa Cruz, CA 95060 USA; Univ Calif Santa Cruz, Long Marine Lab, Santa Cruz, CA 95060 USA Sogard, SM (reprint author), Univ Newcastle, Sch Marine Sci & Technol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. susan.sogard@noaa.gov Fisher, Rebecca/C-5459-2011 Fisher, Rebecca/0000-0001-5148-6731 BATTY RS, 1993, MAR BIOL, V115, P523, DOI 10.1007/BF00349358; Berg OK, 2001, FUNCT ECOL, V15, P13, DOI 10.1046/j.1365-2435.2001.00473.x; Bergenius MAJ, 2002, OECOLOGIA, V131, P521, DOI 10.1007/s00442-002-0918-4; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Bjorkstedt EP, 2002, MAR ECOL PROG SER, V242, P215, DOI 10.3354/meps242215; Bobko SJ, 2004, FISH B-NOAA, V102, P418; BOEHLERT GW, 1986, J EXP MAR BIOL ECOL, V101, P239, DOI 10.1016/0022-0981(86)90266-2; BOEHLERT GW, 1984, BIOL BULL, V167, P354, DOI 10.2307/1541282; Cushing D.H., 1988, P105; EATON RC, 1986, T AM FISH SOC, V115, P128, DOI 10.1577/1548-8659(1986)115<128:ROTTER>2.0.CO;2; ECHEVERRIA TW, 1987, FISH B-NOAA, V85, P229; Eidietis L, 2005, CAN J ZOOL, V83, P1117, DOI 10.1139/Z05-109; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; Eldridge MB, 2002, J FISH BIOL, V61, P1122, DOI 10.1006/jfbi.2002.2127; ELGAR MA, 1990, OIKOS, V59, P283, DOI 10.2307/3545546; Fisher R, 2003, MAR ECOL PROG SER, V263, P177, DOI 10.3354/meps263177; Fuiman L. A., 1999, Journal of Fish Biology, V55, P215, DOI 10.1006/jfbi.1999.1065; HARPER DG, 1990, J EXP BIOL, V150, P321; Hoey AS, 2004, OECOLOGIA, V139, P23, DOI 10.1007/s00442-004-1489-3; Houde E.D, 1987, AM FISH SOC S, V2, P17; HOUDE ED, 1989, J FISH BIOL, V35, P29, DOI 10.1111/j.1095-8649.1989.tb03043.x; Hunter J.R., 1981, P33; HUNTER JR, 1980, FISH B-NOAA, V78, P89; KAPLAN RH, 1980, EVOLUTION, V34, P51, DOI 10.1111/j.1558-5646.1980.tb04788.x; KENDALL AW, 2000, MAR FISH REV, V62, P1; Laidig TE, 2003, FISH B-NOAA, V101, P800; Lenarz WH, 1995, CAL COOP OCEAN FISH, V36, P106; Letcher BH, 1996, CAN J FISH AQUAT SCI, V53, P787, DOI 10.1139/cjfas-53-4-787; Li Z, 2006, CAN J ZOOL, V84, P527, DOI 10.1139/Z06-022; Llodra ER, 2002, ADV MAR BIOL, V43, P87; Love M.S., 2002, ROCKFISHES NE PACIFI; McEdward LR, 2001, BIOL BULL, V200, P33, DOI 10.2307/1543083; MILLER TJ, 1988, CAN J FISH AQUAT SCI, V45, P1657, DOI 10.1139/f88-197; Moran AL, 2001, ECOLOGY, V82, P1597, DOI 10.1890/0012-9658(2001)082[1597:OSAPIV]2.0.CO;2; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Norton EC, 2001, J FISH BIOL, V58, P1010, DOI 10.1006/jfbi.2000.1509; PARICHY DM, 1992, OECOLOGIA, V91, P579, DOI 10.1007/BF00650334; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; Parrish R.H., 1981, Biological Oceanography, V1, P175; Pennington JT, 2000, DEEP-SEA RES PT II, V47, P947; RALSTON S, 1995, FISH B-NOAA, V93, P710; ROESLER C S, 1987, California Cooperative Oceanic Fisheries Investigations Reports, V28, P59; Roff Derek A., 1992; Ross JRM, 2003, CAL COOP OCEAN FISH, V44, P65; Sakuma KM, 1999, FISH OCEANOGR, V8, P68, DOI 10.1046/j.1365-2419.1999.00088.x; Searcy SP, 2001, ECOLOGY, V82, P2452; Shanks AL, 2005, ECOL MONOGR, V75, P505, DOI 10.1890/05-0309; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SOGARD SM, IN PRESS MATERNAL EF; Stearns S. C., 1992, EVOLUTION LIFE HIST; Takamoto T, 2001, MACROMOL BIOSCI, V1, P223; Wesp HM, 2003, T AM FISH SOC, V132, P1166, DOI 10.1577/T02-069; Williams PJ, 1996, CAN J FISH AQUAT SCI, V53, P1246, DOI 10.1139/cjfas-53-6-1246; WINEMILLER KO, 1993, AM NAT, V142, P585, DOI 10.1086/285559; WOURMS JP, 1991, ENVIRON BIOL FISH, V30, P111, DOI 10.1007/BF02296882; Yoklavich MM, 1996, FISH B-NOAA, V94, P766 57 24 24 0 20 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2007 344 257 270 10.3354/meps06927 14 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 215NM WOS:000249816300022 Bronze 2018-11-12 J Gosselin, LA; Rehak, R Gosselin, Louis A.; Rehak, Renata Initial juvenile size and environmental severity: influence of predation and wave exposure on hatching size in Nucella ostrina MARINE ECOLOGY PROGRESS SERIES English Article offspring size; life history; early juveniles; mortality factors; interpopulation variation; selective pressures OFFSPRING SIZE; LIFE-HISTORY; VARIABLE ENVIRONMENTS; MARINE-INVERTEBRATES; EMARGINATA DESHAYES; PROTECTED SHORES; EGG SIZE; PERFORMANCE; SNAIL; GASTROPODS According to life history theory, offspring survival increases with offspring size, mainly because large offspring are more resistant to environmental stress. Populations and species living in habitats with severe environmental conditions have therefore been predicted to produce larger offspring than populations in more benign environments. We studied 10 populations of the rocky intertidal gastropod Nucella ostrina in Barkley Sound, Canada, to determine the extent of variation in average hatching size at a small spatial scale (the sites being <= 10 km apart), and to determine the influence on hatching size of 2 components of environmental stress: predation and wave exposure. In a 3 yr study of these 10 populations, average shell length of newly hatched snails differed by 15 to 25% among the populations in a given year, and estimated total organic carbon per hatchling varied by 97 to 210 %. These are considerable differences given the proximity of these populations. The relative differences among populations were broadly consistent over the 3 years of the study, some populations consistently producing larger average hatching sizes than other populations. Based on the abundance and size structure of the predator populations at 4 of these field sites, predation pressure was predicted to favour different average N. ostrina hatching sizes at these sites: large at 2 sites and small at 2 sites. However, the average hatching size of N. ostrina populations at those sites was not consistent with that prediction, suggesting predation pressure may not have been an important determinant of hatching size. This is a surprising finding, as predation is often considered to be a major cause of early juvenile mortality and thus an important selective pressure influencing the evolution of early juvenile traits. However, average population hatching size did correlate with the relative degree of wave exposure of the site, indicating that either wave action itself or factors covarying with wave action have a substantial influence on initial juvenile size in this species. Thompson Rivers Univ, Dept Biol Sci, Kamloops, BC V2C 5N3, Canada; Univ Victoria, Dept Biol, Stn CSC, Victoria, BC V8W 3N3, Canada Gosselin, LA (reprint author), Thompson Rivers Univ, Dept Biol Sci, 900 McGill Rd, Kamloops, BC V2C 5N3, Canada. lgosselin@tru.ca Gosselin, Louis/F-1284-2011 Boulding EG, 1999, J EXP MAR BIOL ECOL, V232, P217, DOI 10.1016/S0022-0981(98)00117-8; BOULDING EG, 1993, J EXP MAR BIOL ECOL, V169, P139, DOI 10.1016/0022-0981(93)90191-P; BOULDING EG, 1990, HYDROBIOLOGIA, V193, P41, DOI 10.1007/BF00028065; BOULDING EG, 1993, EVOLUTION, V47, P76592; CARBALLO M, 2001, J SHELLFISH RES, V20, P15422; CROTHERS JH, 1983, BIOL J LINN SOC, V20, pB5102; Dahlhoff EP, 2001, ECOLOGY, V82, P2816, DOI 10.1890/0012-9658(2001)082[2816:POTRIP]2.0.CO;2; DAYTON PK, 1971, ECOL MONOGR, V41, P351, DOI 10.2307/1948498; Emlet RB, 2006, INTEGR COMP BIOL, V46, P334, DOI 10.1093/icb/icj023; Emlet RB, 1997, EVOLUTION, V51, P141, DOI 10.1111/j.1558-5646.1997.tb02395.x; Etter RJ, 1996, J EXP MAR BIOL ECOL, V196, P341, DOI 10.1016/0022-0981(95)00139-5; ETTER RJ, 1988, EVOLUTION, V42, P660, DOI 10.1111/j.1558-5646.1988.tb02485.x; ETTER RJ, 1989, ECOLOGY, V70, P1857, DOI 10.2307/1938118; Gosselin LA, 1997, MAR ECOL PROG SER, V157, P185, DOI 10.3354/meps157185; GOSSELIN LA, 1995, MAR BIOL, V122, P625, DOI 10.1007/BF00350684; Gosselin LA, 1997, MAR ECOL PROG SER, V146, P265, DOI 10.3354/meps146265; GOSSELIN LA, 1994, J EXP MAR BIOL ECOL, V176, P1, DOI 10.1016/0022-0981(94)90193-7; Gosselin LA, 1995, MAR ECOL PROG SER, V128, P213, DOI 10.3354/meps128213; GOSSELIN LA, 1994, THESIS U ALBERTA EDM; KITCHING JA, 1976, J EXP MAR BIOL ECOL, V23, P109, DOI 10.1016/0022-0981(76)90135-0; LEIGH EG, 1987, P NATL ACAD SCI USA, V84, P1314, DOI 10.1073/pnas.84.5.1314; Marko PB, 2003, VELIGER, V46, P77; Marshall DJ, 2005, AUSTRAL ECOL, V30, P275, DOI 10.1111/j.1442-9993.2005.01463.x; Marshall DJ, 2003, ECOLOGY, V84, P3131, DOI 10.1890/02-0311; Marshall DJ, 2003, MAR ECOL PROG SER, V259, P139, DOI 10.3354/meps259139; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; MENGE BA, 1983, OECOLOGIA, V58, P141, DOI 10.1007/BF00399210; Moran AL, 1999, AM ZOOL, V39, P304; Moran AL, 2001, ECOLOGY, V82, P1597, DOI 10.1890/0012-9658(2001)082[1597:OSAPIV]2.0.CO;2; PALMER AR, 1985, VELIGER, V27, P349; Phillips NE, 2002, ECOLOGY, V83, P2562, DOI 10.1890/0012-9658(2002)083[2562:EONMLC]2.0.CO;2; Rasanen K, 2005, OECOLOGIA, V142, P546, DOI 10.1007/s00442-004-1762-5; RAWLINGS TA, 1994, EVOLUTION, V48, P1301, DOI 10.1111/j.1558-5646.1994.tb05314.x; Rawlings TA, 1995, THESIS U ALBERTA EDM; Ray-Culp M, 1999, J EXP MAR BIOL ECOL, V240, P303, DOI 10.1016/S0022-0981(99)00065-9; Rex MA, 1999, EVOLUTION, V53, P1298, DOI 10.1111/j.1558-5646.1999.tb04543.x; RIVEST BR, 1983, J EXP MAR BIOL ECOL, V69, P217, DOI 10.1016/0022-0981(83)90071-0; Robles CD, 2001, OECOLOGIA, V128, P142, DOI 10.1007/s004420100638; SHANKS AL, 1986, OECOLOGIA, V69, P420, DOI 10.1007/BF00377065; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH KN, 1992, J EXP MAR BIOL ECOL, V157, P3, DOI 10.1016/0022-0981(92)90070-Q; Sokal R. R., 1981, BIOMETRY; SPIGHT TM, 1976, OECOLOGIA, V24, P283, DOI 10.1007/BF00381135; SPIGHT TM, 1976, BIOL BULL, V150, P491, DOI 10.2307/1540687; Stearns S. C., 1992, EVOLUTION LIFE HIST; Thiyagarajan V, 2003, MAR BIOL, V143, P543, DOI 10.1007/s00227-003-1077-9; Tsai ML, 2001, MAR ECOL PROG SER, V210, P175, DOI 10.3354/meps210175; Vermeij GJ., 1978, BIOGEOGRAPHY ADAPTAT; Walker SE, 2003, EVOL ECOL RES, V5, P19; Zar J.H, 1999, BIOSTATISTICAL ANAL 50 22 22 0 12 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2007 339 143 155 10.3354/meps339143 13 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 185MA WOS:000247713900014 Bronze 2018-11-12 J Grift, RE; Heino, M; Rijnsdorp, AD; Kraak, SBM; Dieckmann, U Grift, R. E.; Heino, M.; Rijnsdorp, A. D.; Kraak, S. B. M.; Dieckmann, U. Three-dimensional maturation reaction norms for North Sea plaice MARINE ECOLOGY PROGRESS SERIES English Article fisheries-induced evolution; body condition; probabilistic maturation reaction norms; phenotypic plasticity; maturation process; Pleuronectes platessa PLEURONECTES-PLATESSA L; LIFE-HISTORY EVOLUTION; COD GADUS-MORHUA; HIPPOGLOSSOIDES-PLATESSOIDES; SEXUAL-MATURATION; BACK-CALCULATION; GROWTH; SIZE; AGE; REPRODUCTION Probabilistic maturation reaction norms (PMRNs) with up to 3 explanatory dimensions were estimated for female North Sea plaice Pleuronectes platessa. The 3-dimensional PMRNs reported here (1) are the first to be obtained for any organism, (2) reveal the differential capacity of alternative life-history state variables to predict the onset of reproduction, (3) document consistent temporal trends in maturation, and (4) help disentangle the contributions of genetic and plastic effects to these trends. We first show that PMRNs based on age and weight provide slightly more accurate approximations of maturation probabilities than PMRNs based on age and length. At the same time, weight-based PMRNs imply a much wider spread of maturation probabilities than length-based PMRNs. We then demonstrate that including condition as a third explanatory variable improves predictions of maturation probability, The resultant 3-dimensional PMRNs for age-length-condition or age-weight-condition not only show how, at given size and age, maturation probability increases with condition, but also expose how this impact of condition decreases with age and has changed over time. Our analysis reveals several interesting temporal trends. First, it is demonstrated that even after removing plastic effects on maturation captured by age, length, weight and condition, residual trends towards maturation at younger ages and smaller lengths remain. Second, we find that the width of both length- and weight-based PMRNs decreased significantly over time. Third, age and condition are nowadays affecting maturation probabilities less than they did decades ago. We conclude that plaice are currently maturing at a very low age, size and body condition, and that the narrow and steep reaction norms do not allow a strong continuation of the observed trends. The findings obtained are in good agreement with predictions from life-history theory based on the hypothesis of evolutionary change caused by heavy exploitation. Wageningen UR, Inst Marine Resources & Ecosyst Studies, Wageningen IMARES, NL-1970 AB Ijmuiden, Netherlands; Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria; Inst Marine Res, N-5817 Bergen, Norway; Univ Bergen, Dept Biol, N-5020 Bergen, Norway Rijnsdorp, AD (reprint author), Wageningen UR, Inst Marine Resources & Ecosyst Studies, Wageningen IMARES, POB 68, NL-1970 AB Ijmuiden, Netherlands. adriaan.rijnsdorp@wur.nl Heino, Mikko/C-7241-2009; Dieckmann, Ulf/E-1424-2011; Rijnsdorp, Adriaan/A-4217-2008 Heino, Mikko/0000-0003-2928-3940; Dieckmann, Ulf/0000-0001-7089-0393; Rijnsdorp, Adriaan/0000-0003-0785-9662 Allison PD, 1999, LOGISTIC REGRESSION; Barot S, 2005, ICES J MAR SCI, V62, P56, DOI 10.1016/j.icesjms.2004.10.004; Barot S, 2004, ECOL APPL, V14, P1257, DOI 10.1890/03-5066; Barot S, 2004, EVOL ECOL RES, V6, P659; BELL G, 1976, AM NAT, V110, P57, DOI 10.1086/283048; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BERNARDO J, 1993, TRENDS ECOL EVOL, V8, P166, DOI 10.1016/0169-5347(93)90142-C; BOHLIN T, 1990, ANN ZOOL FENN, V27, P139; BOHLIN T, 1994, CAN J FISH AQUAT SCI, V51, P1920, DOI 10.1139/f94-193; Borisov VM., 1978, J ICHTHYOL, V18, P896; Bromley PJ, 2000, J FISH BIOL, V56, P264, DOI 10.1006/jfbi.1999.1162; Bromley PJ, 2003, ICES J MAR SCI, V60, P52, DOI 10.1006/jmsc.2002.1318; Cook R.M., 1999, Journal of Northwest Atlantic Fishery Science, V25, P91, DOI 10.2960/J.v25.a8; DAWSON AS, 1980, J FISH BIOL, V16, P493, DOI 10.1111/j.1095-8649.1980.tb03729.x; Dembski S, 2006, J FISH BIOL, V69, P331, DOI 10.1111/j.1095-8649.2006.01087.x; Dhillon RS, 2004, COPEIA, P37, DOI 10.1643/CI-02-098R1; GRAFEN A, 1987, ANIM BEHAV, V35, P462, DOI 10.1016/S0003-3472(87)80271-3; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 2002, B MAR SCI, V70, P639; Heino M, 1999, J EVOLUTION BIOL, V12, P423; HEINO M, 2002, 2002Y14114 ICEM CM, P1; Henderson BA, 2002, J FISH BIOL, V61, P999, DOI 10.1006/jfbi.2002.2119; Hobbs JPA, 2004, P ROY SOC B-BIOL SCI, V271, P2109, DOI 10.1098/rspb.2004.2845; Hosmer D. W., 2000, APPL LOGISTIC REGRES; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Lambert Y, 1997, CAN J FISH AQUAT SCI, V54, P104, DOI 10.1139/cjfas-54-S1-104; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Manly BF, 1997, RANDOMIZATION BOOTST; Marshall CT, 1999, NATURE, V402, P288, DOI 10.1038/46272; Marteinsdottir G, 2002, MAR ECOL PROG SER, V235, P235, DOI 10.3354/meps235235; Morgan MJ, 2004, ICES J MAR SCI, V61, P64, DOI 10.1016/j.icesjms.2003.09.001; Olsen E, 2005, CAN J FISH AQUAT SCI, V62, P811, DOI 10.1139/F05-065; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; RIJNSDORP AD, 1989, J FISH BIOL, V35, P401; Rijnsdorp AD, 1996, ICES J MAR SCI, V53, P1170, DOI 10.1006/jmsc.1996.0142; RIJNSDORP AD, 1992, MAR ECOL PROG SER, V88, P19, DOI 10.3354/meps088019; RIJNSDORP AD, 1990, FISH RES, V9, P97, DOI 10.1016/0165-7836(90)90058-4; RIJNSDORP AD, 1993, OECOLOGIA, V96, P391, DOI 10.1007/BF00317510; Rijnsdorp AD, 2005, CAN J FISH AQUAT SCI, V62, P833, DOI 10.1139/F05-039; Rijnsdorp AD, 1996, ICES J MAR SCI, V53, P1199, DOI 10.1006/jmsc.1996.0145; RIJNSDORP AD, 1989, J CONSEIL, V46, P35; RIJNSDORP AD, 2005, BIOL FLATFISH, P68; ROWE DK, 1991, CAN J FISH AQUAT SCI, V48, P405, DOI 10.1139/f91-052; ROYSTON P, 1994, J R STAT SOC C-APPL, V43, P429, DOI 10.2307/2986270; Siems DP, 1998, ENVIRON BIOL FISH, V53, P319, DOI 10.1023/A:1007407925835; SIMPSON AL, 1992, CAN J ZOOL, V70, P1737, DOI 10.1139/z92-241; SOHN JJ, 1977, SCIENCE, V195, P199, DOI 10.1126/science.831271; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Van Dooren TJM, 2005, EVOLUTION, V59, P500, DOI 10.1554/04-356 53 55 56 0 12 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2007 334 213 224 10.3354/meps334213 12 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 159JN WOS:000245862000020 Bronze 2018-11-12 J Saad, G Saad, Gad Suicide triggers as sex-specific threats in domains of evolutionary import: Negative correlation between global male-to-female suicide ratios and average per capita gross national income MEDICAL HYPOTHESES English Article LIFE-HISTORY THEORY; SELF-PRESERVATION; STRATEGIES; COUNTRIES From an evolutionary perspective, suicide is a paradoxical phenomenon given its fatal consequences on one's reproductive fitness. That fact notwithstanding, evolutionists have typically used kin and group selection arguments in proposing that suicide might indeed be viewed as an adaptive behavioral response. The current paper posits that in some instances, suicide might be construed as the ultimate maladaptive response to "crushing defeats" in domains of great evolutionary import (e.g., mating). Specifically, it is hypothesized that numerous sex-specific triggers of suicide are universally consistent because they correspond to dire sex-specific attacks on one's reproductive fitness (e.g., toss of occupational status is much more strongly linked to male suicides). More generally, it is proposed that many epidemiological aspects of suicide are congruent with Darwinian-based frameworks. These include the near-universal finding that men are much more likely to commit suicide (sexual selection theory), the differential motives that drive men and women to commit suicide (evolutionary psychology), and the shifting patterns of suicide across the life span (life-history theory). Using data from the World Health Organization and the World Bank, several evolutionary-informed hypotheses, regarding the correlation between male-to-femate suicide ratios and average per capita Gross National Income, are empirically tested. Overall, the findings are congruent with Darwinian-based expectations namely as economic conditions worsen the male-to-femate suicide ratio is exacerbated, with the negative correlation being the strongest for the "working age" brackets. The hypothesized evolutionary outlook provides a consilient framework in comprehending universal sex-specific triggers of suicide. Furthermore, it allows suicidologists to explore new research avenues that might remain otherwise untapped if one were to restrict their research interests on the identification of proximate causes of suicide. Global clinical and epidemiological data emphasizing other universally robust triggers of suicide would afford additional support for the postulated framework. (c) 2006 Elsevier Ltd. All rights reserved. Concordia Univ, John Molson Sch Business, Montreal, PQ H3G 1M8, Canada Saad, G (reprint author), Concordia Univ, John Molson Sch Business, 1455 Maisonneuve Blvd W, Montreal, PQ H3G 1M8, Canada. gadsaad@jmsb.concordia.ca Abed RT, 1998, BRIT J MED PSYCHOL, V71, P525, DOI 10.1111/j.2044-8341.1998.tb01007.x; Brown RM, 1999, SUICIDE LIFE-THREAT, V29, P58; Buss D., 2005, HDB EVOLUTIONARY PSY; Buss D. M., 1994, EVOLUTION DESIRE STR; BUSS DM, 1992, PSYCHOL SCI, V3, P251, DOI 10.1111/j.1467-9280.1992.tb00038.x; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cutright P, 2001, SOC SCI RES, V30, P76, DOI 10.1006/ssre.2000.0691; Daly M., 1988, HOMICIDE; DECATANZARO D, 1991, ETHOL SOCIOBIOL, V12, P13, DOI 10.1016/0162-3095(91)90010-N; deCatanzaro D, 1995, ETHOL SOCIOBIOL, V16, P385, DOI 10.1016/0162-3095(95)00055-0; DECATANZARO D, 1981, SUICIDE SELF DAMAGIN; DURKHEIM E, 1951, SUICIDE; Eckersley R, 2002, SOC SCI MED, V55, P1891, DOI 10.1016/S0277-9536(01)00319-7; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Goetze David B., 2004, EVOLUTIONARY PSYCHOL, V2, P142; Hill EM, 2002, ADDICTION, V97, P401, DOI 10.1046/j.1360-0443.2002.00020.x; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Jungeilgess J, 2002, J SOCIO-ECON, V31, P215; KRUGER DJ, 2004, EVOL PSYCHOL, V2, P66, DOI DOI 10.1177/147470490400200112; Lester D, 1997, NEW IDEAS PSYCHOL, V15, P97, DOI 10.1016/S0732-118X(97)00006-8; Marmot Michael, 2005, STATUS SYNDROME SOCI; MARSDEN P, J MEMEVOLUT MODELS I; McGuire Michael, 1998, DARWINIAN PSYCHIAT; Milroy C M, 1998, J Clin Forensic Med, V5, P61, DOI 10.1016/S1353-1131(98)90054-2; MORRELL S, 1993, SOC SCI MED, V36, P749, DOI 10.1016/0277-9536(93)90035-3; Nell V, 2002, CURR DIR PSYCHOL SCI, V11, P75, DOI 10.1111/1467-8721.00172; Neumayer E, 2003, CROSS-CULT RES, V37, P307, DOI 10.1177/1069397103253708; RUBINSTEIN DH, 1986, SUICIDE LIFE-THREAT, V16, P182; RUSHTON J, 2005, NATIONS NATL, V11, P489, DOI DOI 10.1111/J.1469-8129.2005.00216.X; Saad G, 2006, PSYCHOL MARKET, V23, P617, DOI 10.1002/mar.20149; SCOTT G, 2003, INT SCOPE REV, V5, P1; Sher L, 2006, J MENS HLTH GENDER, V3, P39, DOI DOI 10.1016/J.JMHG.205.04.016; Stillion J. M., 1996, SUICIDE LIFE SPAN PR; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Voracek M, 2004, PERS INDIV DIFFER, V37, P543, DOI 10.1016/j.paid.2003.09.025; Winterhalder B, 2000, EVOL ANTHROPOL, V9, P51; Zacharakis CA, 2005, EUR PSYCHIAT, V20, P110, DOI 10.1016/j.eurpsy.2004.11.011 37 11 12 0 5 CHURCHILL LIVINGSTONE EDINBURGH JOURNAL PRODUCTION DEPT, ROBERT STEVENSON HOUSE, 1-3 BAXTERS PLACE, LEITH WALK, EDINBURGH EH1 3AF, MIDLOTHIAN, SCOTLAND 0306-9877 MED HYPOTHESES Med. Hypotheses 2007 68 3 692 696 10.1016/j.mehy.2006.08.012 5 Medicine, Research & Experimental Research & Experimental Medicine 136NX WOS:000244232500036 17011714 2018-11-12 J Engqvist, L Engqvist, Leif Environment-dependent genetic correlations between development time and body mass in a scorpionfly ZOOLOGY English Article Panorpa cognata; food availability; life history evolution; genotype-by-environment interaction; reaction norms LIFE-HISTORY TRAITS; AQUARIUS-REMIGIS HETEROPTERA; PANORPA-VULGARIS MECOPTERA; PHENOTYPIC PLASTICITY; QUANTITATIVE GENETICS; GROWTH STRATEGIES; REACTION NORMS; TRADE-OFF; EVOLUTION; SIZE Development time and body mass at maturation are two important fitness traits fundamental for our understanding of life history theory. Generally, fast development is associated with small adult body mass, as it will take longer to grow large. However, the strength of this trade-off may depend on average food availability, as the potential benefit of long development will depend on the rate of food intake. Here, I report results of a food manipulation experiment during larval development of the scorpionfly Panorpa cognata (Insecta, Mecoptera). Development time showed considerable genetic variation, yet food level had no influence and there was a strong genetic correlation in development time across environments. As expected, larval and adult body weight was significantly affected by food availability. Furthermore, body mass was influenced by a highly significant genotype-by-environment interaction. The reaction norm for body mass in response to food treatment was much stronger in families with long development time compared with rapidly developing genotypes. This effect was accompanied by a shift in the genetic correlation between development time and body size when comparing the two food levels. Specifically, the genetic correlation between body mass and development time changed from being positive at high food levels to a negative genetic correlation at low food levels. These results are consistent with other empirical findings demonstrating a similar shift in genetic correlations between body mass and development time when comparing favourable and unfavourable environmental conditions. (C) 2007 Elsevier GmbH. All rights reserved. Univ Bonn, Dept Ecol & Evolutionary Biol, D-53121 Bonn, Germany Engqvist, L (reprint author), Univ Bonn, Dept Ecol & Evolutionary Biol, Immenburg 1, D-53121 Bonn, Germany. lengqvist@evolution.uni-bonn.de Engqvist, Leif/C-3595-2009 Engqvist, Leif/0000-0002-9434-7130 Aiken L.S., 1991, MULTIPLE REGRESSION; Andersson M., 1994, SEXUAL SELECTION; Blanckenhorn WU, 1998, EVOLUTION, V52, P1394, DOI 10.1111/j.1558-5646.1998.tb02021.x; Blanckenhorn WU, 2004, EVOL ECOL, V18, P385, DOI 10.1007/s10682-004-2680-z; BLANCKENHORN WU, 1994, OECOLOGIA, V97, P354, DOI 10.1007/BF00317325; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; BLANCKENHORN WU, 1995, J EVOLUTION BIOL, V8, P21, DOI 10.1046/j.1420-9101.1995.8010021.x; Blanckenhorn WU, 1999, EVOL ECOL, V13, P395, DOI 10.1023/A:1006741222586; BOCKWINKEL G, 1994, ANIM BEHAV, V47, P203, DOI 10.1006/anbe.1994.1023; BYERS GW, 1983, ANNU REV ENTOMOL, V28, P203, DOI 10.1146/annurev.en.28.010183.001223; Engqvist L, 2003, J EVOLUTION BIOL, V16, P1196, DOI 10.1046/j.1420-9101.2003.00613.x; Engqvist L, 2003, ETHOLOGY, V109, P911, DOI 10.1046/j.1439-0310.2003.00937.x; Engqvist L, 2001, P ROY SOC B-BIOL SCI, V268, P729, DOI 10.1098/rspb.2000.1423; Ernande B, 2004, J EVOLUTION BIOL, V17, P342, DOI 10.1046/j.1420-9101.2003.00674.x; Falconer DS, 1996, INTRO QUANTITATIVE G; FRY JD, 1992, EVOLUTION, V46, P540, DOI 10.1111/j.1558-5646.1992.tb02057.x; GEBHARDT MD, 1988, J EVOLUTION BIOL, V1, P335, DOI 10.1046/j.1420-9101.1988.1040335.x; GILLESPIE JH, 1989, GENETICS, V121, P129; Gotthard K, 2001, EXPTL BIOL REV, P287; Hoffmann A.A., 1991, EVOLUTIONARY GENETIC; Hoffmann AA, 1999, TRENDS ECOL EVOL, V14, P96, DOI 10.1016/S0169-5347(99)01595-5; Houle D, 1996, GENETICS, V143, P1467; Jia FY, 2000, EVOLUTION, V54, P953; Kause A, 2001, GENET RES, V78, P31, DOI 10.1017/S0016672301005171; Kause A, 2001, EVOLUTION, V55, P1992; LEGENDRE P, 2001, MODEL 2 REGRESSION U; Messina FJ, 2003, J EVOLUTION BIOL, V16, P501, DOI 10.1046/j.1420-9101.2003.00535.x; NEWMAN RA, 1988, EVOLUTION, V42, P763, DOI 10.1111/j.1558-5646.1988.tb02494.x; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff D. A., 1997, EVOLUTIONARY QUANTIT; Roff DA, 1996, EVOLUTION, V50, P1392, DOI 10.1111/j.1558-5646.1996.tb03913.x; ROFF DA, 1994, HEREDITY, V73, P544, DOI 10.1038/hdy.1994.153; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; Roff Derek A., 1992; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SAUER K P, 1977, Zoologische Jahrbuecher Abteilung fuer Systematik Oekologie und Geographie der Tiere, V104, P489; Sauer KP, 1998, NATURWISSENSCHAFTEN, V85, P219, DOI 10.1007/s001140050487; SAUER KP, 1970, ZOOL JB SYST, V97, P201; Sgro CM, 2004, HEREDITY, V93, P241, DOI 10.1038/sj.hdy.6800532; SIBLY R, 1986, J THEOR BIOL, V123, P311, DOI 10.1016/S0022-5193(86)80246-6; Simons AM, 1996, EVOLUTION, V50, P267, DOI 10.1111/j.1558-5646.1996.tb04490.x; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; SWIGER LA, 1964, BIOMETRICS, V20, P818, DOI 10.2307/2528131; Tessier AJ, 2000, ECOLOGY, V81, P826, DOI 10.1890/0012-9658(2000)081[0826:AFTOIR]2.0.CO;2; THORNHILL R, 1992, ANIM BEHAV, V43, P255, DOI 10.1016/S0003-3472(05)80221-0; THORNHILL R, 1980, ECOL MONOGR, V50, P179, DOI 10.2307/1942478; Uhl G, 2004, EVOL ECOL RES, V6, P523; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341 55 5 5 2 13 ELSEVIER GMBH, URBAN & FISCHER VERLAG JENA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY 0944-2006 ZOOLOGY Zoology 2007 110 5 344 353 10.1016/j.zool.2007.07.004 10 Zoology Zoology 238GC WOS:000251434400003 17888643 Green Published 2018-11-12 J Cornwell, RE; Smith, MJL; Boothroyd, LG; Moore, FR; Davis, HP; Stirrat, M; Tiddeman, B; Perrett, DI Cornwell, R. Elisabeth; Smith, Miriam J. Law; Boothroyd, Lynda G.; Moore, Fhionna R.; Davis, Hasker P.; Stirrat, Michael; Tiddeman, Bernard; Perrett, David I. Reproductive strategy, sexual development and attraction to facial characteristics PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article face; attraction; development; masculinity; mate value; assortative mating LIFE-HISTORY THEORY; FATHER ABSENCE; EARLY ADOLESCENCE; EVOLUTIONARY PERSPECTIVE; PHYSICAL ATTRACTIVENESS; SALIVARY TESTOSTERONE; CHILDHOOD EXPERIENCE; PUBERTAL MATURATION; FEMALE PREFERENCES; NATURAL-SELECTION Sexual reproduction strategies vary both between and within species in the level of investment in offspring. Life-history theories suggest that the rate of sexual maturation is critically linked to reproductive strategy, with high investment being associated with few offspring and delayed maturation. For humans, age of puberty and age of first sex are two developmental milestones that have been associated with reproductive strategies. Stress during early development can retard or accelerate sexual maturation and reproduction. Early age of menarche is associated with absence of younger siblings, absence of a father figure during early life and increased weight. Father absence during early life is also associated with early marriage, pregnancy and divorce. Choice of partner characteristics is critical to successful implementation of sexual strategies. It has been suggested that sexually dimorphic traits (including those evident in the face) signal high-quality immune function and reproductive status. Masculinity in males has also been associated with low investment in mate and offspring. Thus, women's reproductive strategy should be matched to the probability of male investment, hence to male masculinity. Our review leads us to predict associations between the rate of sexual maturation and adult preferences for facial characteristics (enhanced sexual dimorphism and attractiveness). We find for men, engaging in sex at an early age is related to an increased preference for feminized female faces. Similarly, for women, the earlier the age of first sex the greater the preference for masculinity in opposite-sex faces. When we controlled sexual dimorphism in male faces, the speed of sexual development in women was not associated with differences in preference for male facial attractiveness. These developmental influences on partner choice were not mediated by self-rated attractiveness or parental relationships. We conclude that individuals assort in preferences based on the rapidity of their sexual development. Fast developing individuals prefer opposite-sex partners with an increased level of sexually dimorphic facial characteristics. Univ St Andrews, Sch Psychol, St Andrews KY16 9JP, Fife, Scotland; Univ Colorado, Dept Psychol, Colorado Springs, CO 80918 USA; Univ St Andrews, Sch Comp Sci, St Andrews KY16 9SX, Fife, Scotland Cornwell, RE (reprint author), Univ St Andrews, Sch Psychol, South St, St Andrews KY16 9JP, Fife, Scotland. dp@st-andrews.ac.uk Stirrat, Michael/D-8046-2011; Boothroyd, Lynda/B-9168-2009 Stirrat, Michael/0000-0003-3796-6266; Boothroyd, Lynda/0000-0001-6660-5828 AHMED SA, 1990, BAILLIERE CLIN RHEUM, V4, P13, DOI 10.1016/S0950-3579(05)80241-9; Badyaev AV, 2002, BEHAV ECOL, V13, P591, DOI 10.1093/beheco/13.5.591; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BELSKY J, 1987, T SOC, V24, P20; Bereczkei T, 2001, INT J BEHAV DEV, V25, P501, DOI 10.1080/01650250042000573; BERG E, 2003, J DIVORCE REMARRIAGE, V0040; BERSCHEID E, 1971, J EXP SOC PSYCHOL, V7, P173, DOI 10.1016/0022-1031(71)90065-5; BLACK C, 1985, ADOLESCENCE, V20, P281; Boothroyd LG, 2006, P R SOC B, V273, P2375, DOI 10.1098/rspb.2006.3579; BURLEY N, 1986, AM NAT, V127, P415, DOI 10.1086/284493; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Comings DE, 2002, CHILD DEV, V73, P1046, DOI 10.1111/1467-8624.00456; Cornwell RE, 2004, P ROY SOC B-BIOL SCI, V271, P635, DOI 10.1098/rspb.2003.2649; CUNNINGHAM MR, 1995, J PERS SOC PSYCHOL, V68, P261, DOI 10.1037//0022-3514.68.2.261; Dorn LD, 2003, J YOUTH ADOLESCENCE, V32, P157, DOI 10.1023/A:1022590818839; Dorn LD, 2003, J YOUTH ADOLESCENCE, V32, P315, DOI 10.1023/A:1024945113763; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Edgardh K, 2002, ACTA PAEDIATR, V91, P985, DOI 10.1080/080352502760272704; Elfenbein DS, 2003, PEDIATR CLIN N AM, V50, P781, DOI 10.1016/S0031-3955(03)00069-5; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; ELLIS BJ, 2000, CHILD DEV, V71, P4585; ENLOW DH, 1990, FACIAL GROWTH; FEINGOLD A, 1988, PSYCHOL BULL, V104, P226, DOI 10.1037/0033-2909.104.2.226; FEINGOLD A, 1990, J PERS SOC PSYCHOL, V59, P981, DOI 10.1037/0022-3514.59.5.981; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Gowaty Patricia Adair, 1996, Advances in the Study of Behavior, V25, P477; Gowen LK, 2004, J YOUTH ADOLESCENCE, V33, P167, DOI 10.1023/B:JOYO.0000013428.41781.a0; GRAMMER K, 1994, J COMP PSYCHOL, V108, P233, DOI 10.1037/0735-7036.108.3.233; GROSS MR, 1985, NATURE, V313, P47, DOI 10.1038/313047a0; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Halpern CT, 1998, ARCH SEX BEHAV, V27, P445, DOI 10.1023/A:1018700529128; HARRIS JR, 1995, PSYCHOL REV, V102, P458, DOI 10.1037//0033-295X.102.3.458; Hawley PH, 2003, MERRILL PALMER QUART, V49, P239, DOI 10.1353/mpq.2003.0012; Hawley PH, 1999, DEV REV, V19, P97, DOI 10.1006/drev.1998.0470; Hawley PH, 2003, MERRILL PALMER QUART, V49, P279, DOI 10.1353/mpq.2003.0013; Henson SA, 1997, ANNU REV ECOL SYST, V28, P571, DOI 10.1146/annurev.ecolsys.28.1.571; Hoier S, 2003, HUM NATURE-INT BIOS, V14, P209, DOI 10.1007/s12110-003-1004-2; Jones BC, 2001, EVOL HUM BEHAV, V22, P417, DOI 10.1016/S1090-5138(01)00083-6; JONES BC, 1972, MED J AUSTRALIA, V21, P533; Kim K, 1998, INT J BEHAV DEV, V22, P729, DOI 10.1080/016502598384144; Kim K, 1997, EVOL HUM BEHAV, V18, P109, DOI 10.1016/S1090-5138(96)00114-6; Kirk KM, 2001, EVOLUTION, V55, P423; KRACKE B, 1993, PUBERTAET PROBLEMVER; Langlois JH, 2000, PSYCHOL BULL, V126, P390, DOI 10.1037/0033-2909.126.3.390; Law-Smith MJ, 2006, P ROY SOC B-BIOL SCI, V273, P135, DOI 10.1098/rspb.2005.3296; Little AC, 2002, BRIT J PSYCHOL, V93, P451, DOI 10.1348/000712602761381349; Little AC, 2001, P ROY SOC B-BIOL SCI, V268, P39, DOI 10.1098/rspb.2000.1327; MAC ARTHUR ROBERT H., 1967; MACARTHUR RH, 1962, P NATL ACAD SCI USA, V48, P1893, DOI 10.1073/pnas.48.11.1893; MacDonald K, 1997, HUM NATURE-INT BIOS, V8, P327, DOI 10.1007/BF02913038; MacDonald K, 1999, POPUL ENVIRON, V21, P223; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; MAGNUSSON D, 1985, J YOUTH ADOLESCENCE, V14, P267, DOI 10.1007/BF02089234; Maynard Smith J., 1973, Nature London, V246, P15; Mazur A, 1998, BEHAV BRAIN SCI, V21, P353; McNeely C, 2002, J ADOLESCENT HEALTH, V31, P256, DOI 10.1016/S1054-139X(02)00350-6; MILLER EM, 1994, MANKIND QUART, V34, P297; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; Moller AP, 1998, ANIM BEHAV, V55, P1507, DOI 10.1006/anbe.1998.0731; NOTTELMANN ED, 1987, J ADOLESCENT HEALTH, V8, P246, DOI 10.1016/0197-0070(87)90428-1; OLWEUS D, 1988, PSYCHOSOM MED, V50, P261, DOI 10.1097/00006842-198805000-00004; Overpeck MD, 1998, NEW ENGL J MED, V339, P1211, DOI 10.1056/NEJM199810223391706; Penton-Voak IS, 2003, J COMP PSYCHOL, V117, P264, DOI 10.1037/0735-7036.117.3.264; Penton-Voak IS, 2004, EVOL HUM BEHAV, V25, P229, DOI 10.1016/j.evolhumbehav.2004.04.003; Penton-Voak IS, 2001, ADV STUD BEHAV, V30, P219, DOI 10.1016/S0065-3454(01)80008-5; PENTONVOAK IS, 1999, NATURE, V399, P714, DOI DOI 10.1038/21557; Perrett DI, 1998, NATURE, V394, P884, DOI 10.1038/29772; Perrett DI, 1999, EVOL HUM BEHAV, V20, P295, DOI 10.1016/S1090-5138(99)00014-8; PETERSEN AC, 1985, J YOUTH ADOLESCENCE, V14, P191, DOI 10.1007/BF02090318; Pickles A, 1998, BEHAV GENET, V28, P243, DOI 10.1023/A:1021615228995; Prokopcakova A, 1998, STUD PSYCHOL, V40, P287; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Romans SE, 2003, PSYCHOL MED, V33, P933, DOI 10.1017/S0033291703007530; Schaal B, 1996, J AM ACAD CHILD PSY, V35, P1322, DOI 10.1097/00004583-199610000-00019; Scheib JE, 1999, P ROY SOC B-BIOL SCI, V266, P1913, DOI 10.1098/rspb.1999.0866; Scheib JE, 2001, PERS RELATIONSHIP, V8, P371, DOI 10.1111/j.1475-6811.2001.tb00046.x; Seli E, 2002, IMMUNOL ALLERGY CLIN, V22, P407, DOI 10.1016/S0889-8561(02)00017-6; Sheldon BC, 2000, TRENDS ECOL EVOL, V15, P397, DOI 10.1016/S0169-5347(00)01953-4; SILBEREISEN RK, 1997, HLTH RISKS DEV TRANS; Smith J. Maynard, 1982, EVOLUTION THEORY GAM; Spencer JM, 2002, PEDIATRICS, V109, P581, DOI 10.1542/peds.109.4.581; Statfin H., 1990, PUBERTAL MATURATION, V2; SURBEY MK, 1990, MG PRIMATOL, V13, P11; SUSMAN EJ, 1987, CHILD DEV, V58, P1114, DOI 10.2307/1130551; Swaddle JP, 2002, P ROY SOC B-BIOL SCI, V269, P2285, DOI 10.1098/rspb.2002.2165; THORNHILL R, 1994, PSYCHOL SCI, V5, P297, DOI 10.1111/j.1467-9280.1994.tb00629.x; Tiddeman B, 2001, IEEE COMPUT GRAPH, V21, P42, DOI 10.1109/38.946630; Tremblay RE, 1998, INT J BEHAV DEV, V22, P753, DOI 10.1080/016502598384153; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; WEICHOLD K., 2003, GENDER DIFFERENCES P; WEICHOLD K, 2001, 7 EUR C PSYCH LOND; Weisfeld GE, 2004, J AM ACAD CHILD PSY, V43, P11, DOI 10.1097/01.chi.0000091503.46853.c4; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 96 25 25 2 39 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. DEC 29 2006 361 1476 2143 2154 10.1098/rstb.2006.1936 12 Biology Life Sciences & Biomedicine - Other Topics 114SI WOS:000242685500007 17118929 Green Published 2018-11-12 J Robbins, AM; Robbins, MM; Gerald-Steklis, N; Steklis, HD Robbins, Andrew M.; Robbins, Martha M.; Gerald-Steklis, Netzin; Steklis, H. Dieter Age-related patterns of reproductive success among female mountain gorillas AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article maternal experience; maternal investment; reproductive senescence; reproductive termination; interbirth interval MANDRILLS MANDRILLUS-SPHINX; COLUMBIAN GROUND-SQUIRRELS; POSTREPRODUCTIVE LIFE-SPAN; NONHUMAN PRIMATE MODELS; MATERNAL INVESTMENT; RHESUS MACAQUES; HISTORY CONSEQUENCES; TERMINAL INVESTMENT; PRESBYTIS-ENTELLUS; JAPANESE MONKEYS A key goal of life history theory is to explain the effects of age and parity on the reproductive success of iteroparous organisms. Age-related patterns may be influenced by changes in maternal experience or physical condition, and they may reflect maternal investment trade-offs between current versus future reproduction. This article examines the influences of age and parity upon the interbirth intervals (IBI), offspring survival, and birth rates of 66 female mountain gorillas in the Virunga Volcano region from 1967-2004. Fertility was relatively low for females below age 12; improved as they matured; and then declined as they aged further. Primiparous mothers had 50% higher offspring mortality and 20% longer IBI than second-time mothers, though only the difference with IBI was statistically significant. The length of subsequent IBI was positively correlated with birth order but not with the mother's age. Mountain gorillas showed no evidence of an extended postreproductive lifespan. Age-related patterns seem most likely to reflect changes in the physical condition of the mother, but more detailed studies are needed to quantify those physical differences, and to obtain behavioral evidence that would provide more direct measures of maternal investment and experience. Max Planck Inst Evolutionary Anthropol, D-04103 Leipzig, Germany; Dian Fossey Gorilla Fund Int, Atlanta, GA 30315 USA Robbins, MM (reprint author), Max Planck Inst Evolutionary Anthropol, Deutsch Pl 6, D-04103 Leipzig, Germany. robbins@eva.mpg.de Alvarez HP, 2000, AM J PHYS ANTHROPOL, V113, P435, DOI 10.1002/1096-8644(200011)113:3<435::AID-AJPA11>3.0.CO;2-O; ANDERSON CM, 1986, INT J PRIMATOL, V7, P305, DOI 10.1007/BF02736394; Atsalis S, 2004, AM J PRIMATOL, V62, P123, DOI 10.1002/ajp.20010; ATSALIS S, IN PRESS INT J PRIMA; Bellino FL, 2003, BIOL REPROD, V68, P10, DOI 10.1095/biolreprod.102.005215; Bercovitch FB, 1998, AM J PRIMATOL, V46, P135, DOI 10.1002/(SICI)1098-2345(1998)46:2<135::AID-AJP3>3.3.CO;2-A; BERCOVITCH FB, 1993, BEHAV ECOL SOCIOBIOL, V32, P103, DOI 10.1007/BF00164042; Bercovitch FB, 2000, BEHAV ECOL SOCIOBIOL, V48, P1, DOI 10.1007/s002650000204; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.2307/177240; Black A, 2002, GERONTOLOGY, V48, P72, DOI 10.1159/000048930; Bloomsmith MA, 2003, APPL ANIM BEHAV SCI, V84, P235, DOI 10.1016/j.applanim.2003.08.005; Boesch C, 1997, ANIM BEHAV, V54, P811, DOI 10.1006/anbe.1996.0510; BORRIES C, 1991, INT J PRIMATOL, V12, P231, DOI 10.1007/BF02547586; Broussard DR, 2003, J ANIM ECOL, V72, P212, DOI 10.1046/j.1365-2656.2003.00691.x; Cameron EZ, 2000, BEHAV ECOL SOCIOBIOL, V47, P243, DOI 10.1007/s002650050661; CARO TM, 1995, INT J PRIMATOL, V16, P205, DOI 10.1007/BF02735478; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Cohen AA, 2004, BIOL REV, V79, P733, DOI 10.1017/S1464793103006432; Colas S, 1999, INT J PRIMATOL, V20, P911, DOI 10.1023/A:1020878618941; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; Czekala N. M., 2001, MOUNTAIN GORILLAS 3, P317; Dwyer CM, 2000, BEHAVIOUR, V137, P1391, DOI 10.1163/156853900501999; Ericsson G, 2001, ECOLOGY, V82, P1613, DOI 10.1890/0012-9658(2001)082[1613:ARREAS]2.0.CO;2; Fessler DMT, 2005, AM J PHYS ANTHROPOL, V127, P95, DOI 10.1002/ajpa.20039; FESTABIANCHET M, 1995, ECOLOGY, V76, P871, DOI 10.2307/1939352; Fisher MW, 2000, J REPROD FERTIL, V120, P211, DOI 10.1530/reprod/120.2.211; FISHER R. A., 1930, GENETICAL THEORY NAT; FOSSEY D, 1982, AM J PRIMATOL, V2, P97; Gaillard JM, 2000, P ROY SOC B-BIOL SCI, V267, P471, DOI 10.1098/rspb.2000.1024; GERALD C, 1995, DEMOGRAPHY VIRUNGA M, P81; Harcourt A H, 1980, J Reprod Fertil Suppl, VSuppl 28, P59; HARCOURT AH, 1987, ANIM BEHAV, V35, P182, DOI 10.1016/S0003-3472(87)80223-3; Harcourt AH, 2001, ANIM BEHAV, V62, P905, DOI 10.1006/anbe.2001.1835; HARLEY D, 1990, AM J PHYS ANTHROPOL, V83, P253, DOI 10.1002/ajpa.1330830213; Hawkes K, 2003, AM J HUM BIOL, V15, P380, DOI 10.1002/ajhb.10156; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill K, 1991, Hum Nat, V2, P313, DOI 10.1007/BF02692196; HOLMAN DJ, 2001, REPROD ECOLOGY HUMAN, P15; Johnson RL, 1995, J REPROD FERTIL, V105, P271; Johnson SE, 2003, AM J PHYS ANTHROPOL, V120, P83, DOI 10.1002/ajpa.10139; Kunkele J, 1997, PHYSIOL ZOOL, V70, P571; Leigh SR, 1996, AM J PHYS ANTHROPOL, V99, P43, DOI 10.1002/(SICI)1096-8644(199601)99:1<43::AID-AJPA3>3.0.CO;2-0; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; Marsh H., 1986, Reports of the International Whaling Commission Special Issue, P57; Martin LJ, 2003, MECH AGEING DEV, V124, P865, DOI 10.1016/S0047-6374(03)00134-9; Mysterud A, 2002, OIKOS, V97, P177, DOI 10.1034/j.1600-0706.2002.970203.x; Neuhaus P, 2004, J ANIM ECOL, V73, P36, DOI 10.1111/j.1365-2656.2004.00793.x; Nishida T, 2003, AM J PRIMATOL, V59, P99, DOI 10.1002/ajp.10068; NOZAKI M, 1995, BIOL REPROD, V52, P1250, DOI 10.1095/biolreprod52.6.1250; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; PAUL A, 1993, INT J PRIMATOL, V14, P105, DOI 10.1007/BF02196506; Pavelka MSM, 1999, AM J PHYS ANTHROPOL, V109, P455, DOI 10.1002/(SICI)1096-8644(199908)109:4<455::AID-AJPA3>3.0.CO;2-Z; PAVELKA MSM, 1991, YEARB PHYS ANTHROPOL, V34, P13; Peccei JS, 2001, AM J HUM BIOL, V13, P434, DOI 10.1002/ajhb.1076; Peccei JS, 1995, ETHOL SOCIOBIOL, V16, P425, DOI 10.1016/0162-3095(95)00069-0; Pistorius PA, 2004, J ZOOL, V263, P107, DOI 10.1017/S0952836904004984; Pistorius PA, 2002, CAN J ZOOL, V80, P395, DOI 10.1139/Z02-017; Ransome RD, 1995, PHILOS T ROY SOC B, V350, P153, DOI 10.1098/rstb.1995.0149; REITER J, 1991, BEHAV ECOL SOCIOBIOL, V28, P153, DOI 10.1007/BF00172166; Robbins M. M., 2001, MOUNTAIN GORILLAS 3, P29; ROBBINS MM, 1995, BEHAVIOUR, V132, P21, DOI 10.1163/156853995X00261; Roof KA, 2005, AM J PRIMATOL, V67, P199, DOI 10.1002/ajp.20177; SCHOLL TO, 1994, AM J CLIN NUTR, V60, P183; Setchell JM, 2004, AM J PHYS ANTHROPOL, V125, P73, DOI 10.1002/ajpa.10375; Setchell JM, 2002, INT J PRIMATOL, V23, P51, DOI 10.1023/A:1013245707228; SETCHELL JM, 2004, SEXUAL SELECTION PRI, P187; Shanley DP, 2001, BIOESSAYS, V23, P282, DOI 10.1002/1521-1878(200103)23:3<282::AID-BIES1038>3.3.CO;2-0; SICOTTE P, 2001, MOUNTAIN GORILLAS 3, P59; Sousa AO, 2003, PHYSICA A, V326, P233, DOI 10.1016/S0378-4371(03)00291-7; STEARNS SC, 1992, EVOLUTION LIFE HIST, P250; TAKAHATA Y, 1995, PRIMATES, V36, P169, DOI 10.1007/BF02381343; Timmermans PJA, 1996, INT J PRIMATOL, V17, P277, DOI 10.1007/BF02735453; WATTS DP, 1984, AM J PRIMATOL, V7, P323, DOI 10.1002/ajp.1350070403; WATTS DP, 1991, AM J PRIMATOL, V24, P211, DOI 10.1002/ajp.1350240307; WATTS DP, 1989, ETHOLOGY, V81, P1; WATTS DP, 1985, ANIM BEHAV, V33, P72, DOI 10.1016/S0003-3472(85)80121-4; WATTS DP, 1991, ETHOLOGY, V89, P135; Watts DP, 2000, PRIMATE MALES, P169; WATTS DP, 1990, ZOO BIOL, V9, P185, DOI 10.1002/zoo.1430090302; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams GC, 1966, ADAPTATION NATURAL S; Williamson E, 2001, AFRICAN PRIMATES, V5, P48; WOOD JW, 1994, DYNAMICS HUMAN REPRO, P478 84 60 61 1 41 WILEY-LISS HOBOKEN DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA 0002-9483 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. DEC 2006 131 4 511 521 10.1002/ajpa.20474 11 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 105NS WOS:000242038000008 16941601 2018-11-12 J Anderson, KG; Kaplan, H; Lancaster, JB Anderson, Kermyt G.; Kaplan, Hillard; Lancaster, Jane B. Demographic correlates of paternity confidence and pregnancy outcomes among Albuquerque men AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article paternity assessment; abortion; miscarriage; life-history theory MALE PARENTAL CARE; DISCRIMINATIVE GRANDPARENTAL SOLICITUDE; CHILD-SUPPORT; MISATTRIBUTED PATERNITY; MATRILATERAL BIASES; RESEMBLANCE; INVESTMENT; FAMILY; FATHERS; BIRDS We examine the demographic correlates of paternity confidence, or men's assessment of the likelihood that they are the genetic father of a particular child. Evolutionary theory predicts that men will provide less parental investment for putative genetic offspring who are unlikely to be their actual offspring, but confidence of paternity has not been as extensively examined as its importance would merit. Using self-reported data on paternity confidence in 3,360 pregnancies reported by men living in Albuquerque, New Mexico, we find that low paternity confidence is more common among unmarried couples and for unplanned pregnancies. We also find that men are more likely not to state paternity confidence (i.e., they refuse to answer the question) if a pregnancy is unplanned. We additionally examine the pregnancy outcomes associated with confidence of paternity. We find that low paternity confidence pregnancies are significantly more likely to be aborted, and pregnancies for which paternity confidence is unstated are more likely to be aborted or to miscarry. Both abortion and miscarriage are associated with unmarried couples, with unplanned pregnancies, and with couples who have fewer children together. Univ Oklahoma, Dept Anthropol, Norman, OK 73019 USA; Univ New Mexico, Dept Anthropol, Human Evolutionary Ecol Program, Albuquerque, NM 87131 USA Anderson, KG (reprint author), Univ Oklahoma, Dept Anthropol, Norman, OK 73019 USA. kganders@ou.edu Kaplan, Hillard/0000-0002-7398-7358 Adu S. A., 1996, Central African Journal of Medicine, V42, P198; Alexander R.D., 1974, Annual Rev Ecol Syst, V5, P325, DOI 10.1146/annurev.es.05.110174.001545; Alfred J, 2002, NAT REV GENET, V3, P161, DOI 10.1038/nrg757; Allison DB, 1996, INT J OBESITY, V20, P553; Anderson KG, 2003, BIODEMOGRAPHY OF HUMAN REPRODUCTION AND FERTILITY, P57; Anderson KG, 1999, EVOL HUM BEHAV, V20, P405, DOI 10.1016/S1090-5138(99)00023-9; ANDERSON KG, 2006, IN PRESS EVOL HUM BE; ANDERSON KG, 2006, IN PRESS CURR ANTHR; Apicella CL, 2004, EVOL HUM BEHAV, V25, P371, DOI 10.1016/j.evolhumbehav.2004.06.003; Baker R. R., 1995, HUMAN SPERM COMPETIT; Becker S, 1996, STUD FAMILY PLANN, V27, P291, DOI 10.2307/2138025; Beckerman S, 1998, CURR ANTHROPOL, V39, P164, DOI 10.1086/204706; Bergstrom TC, 1996, J ECON LIT, V34, P1903; BETZIG L, 1989, CURR ANTHROPOL, V30, P654, DOI 10.1086/203798; Bredart S, 1999, EVOL HUM BEHAV, V20, P129, DOI 10.1016/S1090-5138(98)00047-6; Bressan P, 2002, PSYCHOL SCI, V13, P213, DOI 10.1111/1467-9280.00440; Bressan P, 2004, EVOL HUM BEHAV, V25, P133, DOI 10.1016/j.evolhumbehav.2004.03.001; Burch RL, 2000, EVOL HUM BEHAV, V21, P429, DOI 10.1016/S1090-5138(00)00056-8; Cai Y, 2005, DEMOGRAPHY, V42, P301, DOI 10.1353/dem.2005.0010; Cervino ACL, 2000, AM J HUM GENET, V67, P120, DOI 10.1086/302992; CHASE ID, 1980, AM NAT, V115, P827, DOI 10.1086/283603; CHRISTENFELD NJS, 1995, NATURE, V378, P669, DOI 10.1038/378669a0; DALY M, 1982, ETHOL SOCIOBIOL, V3, P69, DOI 10.1016/0162-3095(82)90002-4; Daly M., 1988, HOMICIDE; Davis JN, 1997, Q REV BIOL, V72, P407, DOI 10.1086/419953; DEBRUINE LM, 2004, EVOL HUM BEHAV, V25, P141; DIAMOND AM, 1989, ECON INQ, V27, P719, DOI 10.1111/j.1465-7295.1989.tb00798.x; Dubey SN, 1995, J SOCIOL SOC WELFARE, V22, P115; Durham W, 1991, COEVOLUTION GENES CU; ELLISON P, 2001, FERTIL GROUND NATURA; Euler HA, 1996, HUM NATURE-INT BIOS, V7, P39, DOI 10.1007/BF02733489; Flinn M. V., 1981, NATURAL SELECTION SO, P439; Fox GL, 2001, J MARRIAGE FAM, V63, P394, DOI 10.1111/j.1741-3737.2001.00394.x; Gaulin SJC, 1997, HUM NATURE-INT BIOS, V8, P139, DOI 10.1007/s12110-997-1008-4; GAULIN SJC, 1980, ETHOL SOCIOBIOL, V1, P301, DOI 10.1016/0162-3095(80)90015-1; GJERTSON DW, 1988, AM J HUM GENET, V43, P860; GRAFEN A, 1980, ANIM BEHAV, V28, P967, DOI 10.1016/S0003-3472(80)80160-6; Greene Penelope J., 1978, AM ETHNOL, V5, P151, DOI DOI 10.1525/AE.1978.5.1.02A00110; HARRIS WT, 1968, ORIGINS MENDE BELIEF; HARTUNG J, 1985, BEHAV BRAIN SCI, V8, P661, DOI 10.1017/S0140525X00045520; HENSHAW SK, 1985, FAM PLANN PERSPECT, V17, P90, DOI 10.2307/2135271; HILL EM, 1992, ETHOL SOCIOBIOL, V13, P35, DOI 10.1016/0162-3095(92)90005-O; Hrdy SB, 2000, ANN NY ACAD SCI, V907, P75, DOI 10.1111/j.1749-6632.2000.tb06617.x; HUBER BR, 2004, WORLD CULTURES, V15, P60; James W. H., 1993, Acta Geneticae Medicae et Gemellologiae, V42, P257; JEFFREYS AJ, 1991, AM J HUM GENET, V48, P824; Kaplan HS, 1998, MEN IN FAMILIES, P55; Kempenaers B, 1997, ANIM BEHAV, V53, P423, DOI 10.1006/anbe.1996.0377; Korenman S, 2002, PERSPECT SEX REPRO H, V34, P198, DOI 10.2307/3097730; Kurland J., 1979, EVOLUTIONARY BIOL HU, P145; LEVINE NE, 1987, MAN, V22, P267, DOI 10.2307/2802865; Lisker R, 1998, CLIN GENET, V54, P321, DOI 10.1034/j.1399-0004.1998.5440410.x; Lycett JE, 1999, P ROY SOC B-BIOL SCI, V266, P2355, DOI 10.1098/rspb.1999.0931; MacDougall-Shackleton EA, 1998, BEHAV ECOL, V9, P201, DOI 10.1093/beheco/9.2.201; MACINTYRE S, 1991, LANCET, V338, P869, DOI 10.1016/0140-6736(91)91513-T; MAYNARDSMITH J, 1977, ANIM BEHAV, V25, P1, DOI DOI 10.1016/0003-3472(77)90062-8); McBurney DH, 2002, HUM NATURE-INT BIOS, V13, P391, DOI 10.1007/s12110-002-1022-5; McLain DK, 2000, EVOL HUM BEHAV, V21, P11, DOI 10.1016/S1090-5138(99)00029-X; MICKEY MR, 1986, AM J HUM GENET, V39, P123; Miller C, 1999, POPUL RES POLICY REV, V18, P237, DOI 10.1023/A:1006137601213; MOLLER AP, 1993, BEHAV ECOL SOCIOBIOL, V33, P261, DOI 10.1007/BF02027123; Mulder M Borgerhoff, 1992, EVOLUTIONARY ECOLOGY, P339; NICHOLSCASEBOLT A, 1991, SOC SCI QUART, V72, P83; Oda R, 2002, J ETHOL, V20, P81, DOI 10.1007/s10164-002-0057-8; Pagel M, 1997, ANIM BEHAV, V53, P973, DOI 10.1006/anbe.1996.0317; Pashos A, 2000, EVOL HUM BEHAV, V21, P97, DOI 10.1016/S1090-5138(99)00030-6; PENA SDJ, 1994, TRENDS GENET, V10, P204, DOI 10.1016/0168-9525(94)90257-7; Petrie M, 1998, TRENDS ECOL EVOL, V13, P52, DOI 10.1016/S0169-5347(97)01232-9; Platek SM, 2003, EVOL HUM BEHAV, V24, P81, DOI 10.1016/S1090-5138(02)00117-4; Platek SM, 2002, EVOL HUM BEHAV, V23, P159, DOI 10.1016/S1090-5138(01)00094-0; Puffer R R, 1993, Bull Pan Am Health Organ, V27, P120; REGALSKI JM, 1993, ETHOL SOCIOBIOL, V14, P97, DOI 10.1016/0162-3095(93)90010-F; Ross LF, 1996, BIOETHICS, V10, P114, DOI 10.1111/j.1467-8519.1996.tb00111.x; Rudavsky S, 1999, SCI CONTEXT, V12, P123, DOI 10.1017/S0269889700003331; Salter F, 1996, ETHOL SOCIOBIOL, V17, P211, DOI 10.1016/0162-3095(96)00036-2; Schwagmeyer PL, 1999, AUK, V116, P487, DOI 10.2307/4089381; SCHWAGMEYER PL, 1993, ANIM BEHAV, V46, P1020, DOI 10.1006/anbe.1993.1286; Sheldon BC, 2002, PHILOS T R SOC B, V357, P341, DOI 10.1098/rstb.2001.0931; STEWART AD, 1989, NATURE, V341, P696, DOI 10.1038/341696b0; Strassmann B I, 1992, Hum Nat, V3, P89, DOI 10.1007/BF02692249; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Tullberg BS, 2001, EVOL HUM BEHAV, V22, P1, DOI 10.1016/S1090-5138(00)00057-X; Udry JR, 1996, FAM PLANN PERSPECT, V28, P228, DOI 10.2307/2135842; van Schaik Carel, 1996, Evolutionary Anthropology, V5, P152, DOI 10.1002/(SICI)1520-6505(1996)5:5<152::AID-EVAN3>3.0.CO;2-H; Volk A, 2002, HUM NATURE-INT BIOS, V13, P437, DOI 10.1007/s12110-002-1002-9; WERTZ DC, 1990, AM J HUM GENET, V46, P1200; WESTNEAT DF, 1993, BEHAV ECOL, V4, P66, DOI 10.1093/beheco/4.1.66; WHITTINGHAM LA, 1992, AM NAT, V139, P1115, DOI 10.1086/285376; Whittingham LA, 2001, CURR ORNITHOL, V16, P257; WILCOX AJ, 1988, NEW ENGL J MED, V319, P189, DOI 10.1056/NEJM198807283190401; Wilson M., 1987, U TORONTO LAW REV, V45, P216; Wright L, 2002, SEMIN DIALYSIS, V15, P202, DOI 10.1046/j.1525-139X.2002.00541.x; XIA XH, 1992, AM NAT, V139, P1126, DOI 10.1086/285377; Zinaman MJ, 1996, FERTIL STERIL, V65, P503, DOI 10.1016/S0015-0282(16)58144-8 94 10 10 0 12 WILEY-LISS HOBOKEN DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA 0002-9483 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. DEC 2006 131 4 560 571 10.1002/ajpa.20452 12 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 105NS WOS:000242038000015 16685730 2018-11-12 J Depczynski, M; Bellwood, DR Depczynski, Martial; Bellwood, David R. Extremes, plasticity, and invariance in vertebrate life history traits: Insights from coral reef fishes ECOLOGY English Article age; biomass; body size; coral reefs; Gobiidae; growth; lifetime fecundity; mortality; pelagic larval duration; reproduction; trade-offs; turnover PARENTAL CARE; EVIOTA-ABAX; GROWTH; MORTALITY; LARVAL; GOBIIDAE; EVOLUTION; GOBIES; RATES; COMMUNITIES Life history theory predicts a range of directional generic responses in life history traits with increasing organism size. Among these are the relationships between size and longevity, mortality, growth rate, timing of maturity, and lifetime reproductive output. Spanning three orders of magnitude in size, coral reef fishes provide an ecologically diverse and species-rich vertebrate assemblage in which to test these generic responses. Here we examined these relationships by quantifying the life cycles of three miniature species of coral reef fish from the genus Eviota (Gobiidae) and compared their life history characteristics with other reef fish species. We found that all three species of Eviota have life spans of,100 days, suffer high daily mortality rates of 7-8%, exhibit rapid linear growth, and matured at an earlier than expected size. Although lifetime reproductive output was low, consistent with their small body sizes, short generation times of 47-74 days help overcome low individual fecundity and appear to be a critical feature in maintaining Eviota populations. Comparisons with other coral reef fish species showed that Eviota species live on the evolutionary margins of life history possibilities for vertebrate animals. This addition of demographic information on these smallest size classes of coral reef fishes greatly extends our knowledge to encompass the full size spectrum and highlights the potential for coral reef fishes to contribute to vertebrate life history studies. James Cook Univ N Queensland, Sch Marine Biol, ARC, Ctr Excellence Coral Reef Studies, Townsville, Qld 4811, Australia Bellwood, DR (reprint author), James Cook Univ N Queensland, Sch Marine Biol, ARC, Ctr Excellence Coral Reef Studies, Townsville, Qld 4811, Australia. David.Bellwood@jcu.edu.au depczynski, martial/B-7689-2008 depczynski, martial/0000-0001-8723-0076 Ackerman JL, 2000, MAR ECOL PROG SER, V206, P227, DOI 10.3354/meps206227; Aday DD, 2003, ECOLOGY, V84, P3370; ALE PF, 1991, ECOLOGY FISHES CORAL; ANDERSON J T, 1988, Journal of Northwest Atlantic Fishery Science, V8, P55; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Bonhomme F, 2000, ENVIRON BIOL FISH, V59, P365, DOI 10.1023/A:1026508715631; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Calder W. A., 1984, SIZE FUNCTION LIFE H; Caley MJ, 1998, AUST J ECOL, V23, P241, DOI 10.1111/j.1442-9993.1998.tb00726.x; Charnov Eric L., 1993, P1; Choat J. Howard, 2002, P57; Choat JH, 1996, MAR ECOL PROG SER, V134, P15, DOI 10.3354/meps134015; Churchfield S, 1996, SYM ZOOL S, P259; Clarke BT, 1996, SYM ZOOL S, P201; Delbono O, 2003, AGING CELL, V2, P21, DOI 10.1046/j.1474-9728.2003.00011.x; Depczynski M, 2005, MAR ECOL PROG SER, V303, P283, DOI 10.3354/meps303283; Depczynski M, 2004, MAR BIOL, V145, P455, DOI 10.1007/s002270004-1342-6; Depczynski M, 2003, MAR ECOL PROG SER, V256, P183, DOI 10.3354/meps256183; DEPCZYNSKI M, 2005, CURR BIOL, V15, pR228; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; GLADSTONE W, 1994, ENVIRON BIOL FISH, V39, P249, DOI 10.1007/BF00005127; HELFMANN GS, 1997, DIVERSITY FISHES; Hendry AP, 2001, AM NAT, V157, P387, DOI 10.1086/319316; Hernaman V, 2005, MAR ECOL PROG SER, V290, P207, DOI 10.3354/meps290207; Hernaman V, 2005, MAR ECOL PROG SER, V290, P223, DOI 10.3354/meps290223; HOENIG JM, 1983, FISH B-NOAA, V81, P898; Job SD, 2000, LIMNOL OCEANOGR, V45, P362, DOI 10.4319/lo.2000.45.2.0362; Kon T, 2002, ICHTHYOL RES, V49, P224, DOI 10.1007/s102280200031; Kritzer JP, 2002, ENVIRON BIOL FISH, V63, P211, DOI 10.1023/A:1014278319097; Leis J.M., 1991, P183; Longenecker K, 2005, ENVIRON BIOL FISH, V73, P243, DOI 10.1007/s10641-004-5332-9; LUCKHURST BE, 1978, MAR BIOL, V49, P325, DOI 10.1007/BF00455027; Miller P.J., 1984, P119; Miller PJ, 1996, SYM ZOOL S, P175; Munday PL, 1997, J FISH BIOL, V51, P931, DOI 10.1006/jfbi.1997.0498; MUNDAY PL, 1998, OCEANOGRAPHY MARINE, V36, P371; Nee S, 2005, SCIENCE, V309, P1236, DOI 10.1126/science.1114488; Neff BD, 2003, NATURE, V422, P716, DOI 10.1038/nature01528; PAULY D, 1980, J CONSEIL, V39, P175; Purvis A, 1996, SYM ZOOL S, P159; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; RICKLEFS RE, 1995, AGEING NATURAL HIST; ROBERTSON DR, 1990, ECOL MONOGR, V60, P311, DOI 10.2307/1943060; Roff Derek A., 1992; SCHMITT PD, 1984, FISH B-NOAA, V82, P237; Searcy SP, 2000, MAR ECOL PROG SER, V206, P213, DOI 10.3354/meps206213; SPONAUGLE S, 1994, MAR BIOL, V120, P133; Stearns S. C., 1992, EVOLUTION LIFE HIST; SUNOBE T, 1987, J FAC AGR KYUSHU U, V31, P287; Sunobe T, 1998, ICHTHYOL RES, V45, P409, DOI 10.1007/BF02725195; Sunobe Tomoki, 1995, Natural History Research, V3, P153; Taru M, 2000, B MAR SCI, V66, P507; Thresher R., 1984, REPROD REEF FISHES; Toms JD, 2003, ECOLOGY, V84, P2034, DOI 10.1890/02-0472; Watson W, 2004, REC AUST MUS, V56, P139, DOI 10.3853/j.0067-1975.56.2004.1429; WEST G, 1990, AUST J MAR FRESH RES, V41, P199; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wilson DT, 1999, MAR BIOL, V134, P29, DOI 10.1007/s002270050522; Wilson SK, 2004, MAR ECOL PROG SER, V284, P253, DOI 10.3354/meps284253; WINTERBOTTOM R, 1981, ENVIRON BIOL FISH, V6, P139, DOI 10.1007/BF00002777; Wootton R. J., 1990, ECOLOGY TELEOST FISH 63 48 48 0 32 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology DEC 2006 87 12 3119 3127 10.1890/0012-9658(2006)87[3119:EPAIIV]2.0.CO;2 9 Ecology Environmental Sciences & Ecology 120OL WOS:000243094300019 17249236 2018-11-12 J Etterson, MA; Bennett, RS Etterson, Matthew A.; Bennett, Richard S. On the use of published demographic data for population-level risk assessment in birds HUMAN AND ECOLOGICAL RISK ASSESSMENT English Article population-level risk assessment; demographic models; surrogate data FINDING CONFIDENCE-LIMITS; CONSERVATION RESERVE PROGRAM; CAPTURE-RECAPTURE DATA; NEST SUCCESS; GROWTH RATE; AUXILIARY VARIABLES; VIABILITY ANALYSIS; BAYESIAN METHODS; MAYFIELD METHOD; SURVIVAL As the practice of using population models for wildlife risk assessment has become more common, so has the practice of using surrogate data, typically taken from the published scientific literature, as inputs for demographic models. This practice clearly exposes the user to inferential errors. However, it is likely to continue because demographic data are expensive to gather. We review potential errors associated with the use of previously published demographic data and how those errors propagate into the endpoints of demographic projection models. We suggest methods for inferring bias in model endpoints when multiple and opposing biases are present in the demographic input data. We provide an example using Eastern Meadowlarks (Sturnella magna), a common songbird in Midwestern grasslands and agro-ecosystems. We conclude with a brief review of methods that could improve inference made using published demographic data, including methods from life-history theory, meta-analysis, and Bayesian statistics. US EPA, Off Res & Dev, Natl Hlth & Environm Effects Res Lab, Midcontinent Ecol Div, Duluth, MN 55804 USA Etterson, MA (reprint author), US EPA, Off Res & Dev, Natl Hlth & Environm Effects Res Lab, Midcontinent Ecol Div, 6201 Congdon Blvd, Duluth, MN 55804 USA. etterson.matthew@epa.gov Aebischer NJ, 1999, BIRD STUDY, V46, P22; Akaike H., 1973, 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_; Akcakaya HR, 1997, CONSERV BIOL, V11, P422, DOI 10.1046/j.1523-1739.1997.96164.x; ALVAREZBUYLLA ER, 1991, TRENDS ECOL EVOL, V6, P221, DOI 10.1016/0169-5347(91)90026-T; ALVAREZBUYLLA ER, 1994, ECOLOGY, V75, P255, DOI 10.2307/1939401; ALVAREZBUYLLA ER, 1993, OIKOS, V68, P273, DOI 10.2307/3544840; Bartell SM, 2003, HUM ECOL RISK ASSESS, V9, P907, DOI 10.1080/713610016; Beissinger SR, 1998, J WILDLIFE MANAGE, V62, P821, DOI 10.2307/3802534; BEISSINGER SR, 1997, RECOVERY PLAN MARBLE, pB1; BENNETT R, HUM ECOL RISK ASSESS, V12, P762; Boyce MS, 2005, J APPL ECOL, V42, P38, DOI 10.1111/j.1365-2664.2004.00986.x; Broekhuizen N, 2003, J APPL ECOL, V40, P678, DOI 10.1046/j.1365-2664.2003.00834.x; Brook BW, 2000, CONSERV BIOL, V14, P564, DOI 10.1046/j.1523-1739.2000.99039.x; Brooks SP, 2002, J APPL STAT, V29, P187, DOI 10.1080/02664760120108683; Burnham K. P., 2002, MODEL SELECTION MULT; Burnham Kenneth P., 1996, Studies in Avian Biology, V17, P92; Burnham KP, 1987, AM FISH SOC MONOGRAP, V5; Caswell H, 2003, ECOLOGY, V84, P1968, DOI 10.1890/02-0100; CASWELL H, 1978, THEOR POPUL BIOL, V14, P215, DOI 10.1016/0040-5809(78)90025-4; Caswell H, 2001, MATRIX POPULATION MO; Clark JS, 2003, ECOLOGY, V84, P1370, DOI 10.1890/0012-9658(2003)084[1370:UAVIDA]2.0.CO;2; Clark JS, 2005, ECOLOGY, V86, P2232, DOI 10.1890/04-1348; CLOBERT J, 1991, BIRD POPULATION STUD, P75; DALY DJ, 1979, THEOR POPUL BIOL, V15, P257; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; Dececco JA, 2000, CONDOR, V102, P653, DOI 10.1650/0010-5422(2000)102[0653:CSFOFN]2.0.CO;2; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; Dinsmore SJ, 2002, ECOLOGY, V83, P3476, DOI 10.1890/0012-9658(2002)083[3476:ATFMAN]2.0.CO;2; Edwards AWF, 1992, LIKELIHOOD; EMLEN JM, 1989, ENVIRON TOXICOL CHEM, V8, P831, DOI 10.1897/1552-8618(1989)9[831:TPMFER]2.0.CO;2; ETTERSON M, IN PRESS ECOL MODEL; Etterson MA, 2005, ECOLOGY, V86, P1414, DOI 10.1890/04-1181; Forbes VE, 1999, ENVIRON TOXICOL CHEM, V18, P1544, DOI 10.1897/1551-5028(1999)018<1544:ITPCRO>2.3.CO;2; Franklin Alan B., 1996, Studies in Avian Biology, V17, P12; Franklin Alan B., 2004, Ornithological Monographs, V54, P1; Gates S, 2002, J ANIM ECOL, V71, P547, DOI 10.1046/j.1365-2656.2002.00634.x; GINSBURG LR, 2002, ECOLOGICAL MODELING, P205; GINSBURG LR, 1982, RISK ANAL, V2, P171; Granfors DA, 1996, J FIELD ORNITHOL, V67, P222; Gryzybowski JA, 2005, AUK, V122, P280; GUREVITCH J, 1992, AM NAT, V140, P539, DOI 10.1086/285428; Hoenig JM, 2001, AM STAT, V55, P19, DOI 10.1198/000313001300339897; Holmes RT, 1996, J ANIM ECOL, V65, P183, DOI 10.2307/5721; Jackson LJ, 2000, BIOSCIENCE, V50, P694, DOI 10.1641/0006-3568(2000)050[0694:AITTPO]2.0.CO;2; JOHNSON DH, 1979, AUK, V96, P651; JOLLY GM, 1965, BIOMETRIKA, V52, P225, DOI 10.2307/2333826; KENDALL RJ, 1994, WILDLIFE TOXICOLOGY; Kershner EL, 2004, AUK, V121, P796, DOI 10.1642/0004-8038(2004)121[0796:BDRAAF]2.0.CO;2; KEYFITZ N, 1972, J AM STAT ASSOC, V67, P347, DOI 10.2307/2284381; Lacy Robert C., 2000, Ecological Bulletins, V48, P191; LANYON WE, 1957, PUBLICATIONS NUTTALL, V1; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Linacre NA, 2004, CONSERV BIOL, V18, P768, DOI 10.1111/j.1523-1739.2004.00067.x; Lindenmayer DB, 2005, J APPL ECOL, V42, P649, DOI 10.1111/j.1365-2664.2005.01054.x; Ludwig D, 1996, ECOL APPL, V6, P1067, DOI 10.2307/2269591; MAYFIELD HAROLD, 1961, WILSON BULL, V73, P255; MAYFIELD HF, 1975, WILSON BULL, V87, P456; McCarthy MA, 2003, CONSERV BIOL, V17, P982, DOI 10.1046/j.1523-1739.2003.01570.x; McCoy TD, 1999, J WILDLIFE MANAGE, V63, P530, DOI 10.2307/3802639; MICHEL N, 2005, MONITORING AVIAN PRO; Morris WF, 2002, QUANTITATIVE CONSERV; Murray BG, 2000, CONDOR, V102, P470, DOI 10.1650/0010-5422(2000)102[0470:MARSIB]2.0.CO;2; Nichols JD, 2002, J APPL STAT, V29, P539, DOI 10.1080/02664760120108809; NICHOLS JD, 1981, STUDIES AVIAN BIOL, V6, P121; NOON BR, 1991, WILDLIFE 2001 POPULA, P441; Pastorok RA, 2002, ECOLOGICAL MODELING; Pastorok Robert A., 2002, P23; Pledger S, 1998, BIOMETRICS, V54, P888, DOI 10.2307/2533843; Pollock KH, 2002, J APPL STAT, V29, P85, DOI 10.1080/02664760120108430; POLLOCK KH, 1984, BIOMETRICS, V40, P329, DOI 10.2307/2531386; POLLOCK KH, 1982, J WILDLIFE MANAGE, V46, P757, DOI DOI 10.2307/3808568; Pradel R, 1996, BIOMETRICS, V52, P703, DOI 10.2307/2532908; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; Ricklefs R.E., 1973, P366; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Sandercock BK, 2002, AUK, V119, P149, DOI 10.1642/0004-8038(2002)119[0149:ASROWS]2.0.CO;2; SEBER GAF, 1965, BIOMETRIKA, V52, P249; Seber GAF, 1982, ESTIMATION ANIMAL AB; Snell TW, 2000, ENVIRON TOXICOL CHEM, V19, P2357, DOI 10.1897/1551-5028(2000)019<2357:UPOETE>2.3.CO;2; South A, 1999, CONSERV BIOL, V13, P1039, DOI 10.1046/j.1523-1739.1999.98236.x; Stanley TR, 2000, ECOLOGY, V81, P2048, DOI 10.1890/0012-9658(2000)081[2048:MAEOSS]2.0.CO;2; Thompson BC, 2001, J FIELD ORNITHOL, V72, P527, DOI 10.1648/0273-8570-72.4.527; Tuljapurkar S., 1997, STRUCTURED POPULATIO; *USEPA, 2005, WILDL RES STRAT; VANHORNE B, 1983, J WILDLIFE MANAGE, V47, P893; Wade PR, 2000, CONSERV BIOL, V14, P1308, DOI 10.1046/j.1523-1739.2000.99415.x; Williams B. K., 2002, ANAL MANAGEMENT ANIM; YOUNG H, 1968, ECOLOGY, V49, P991, DOI 10.2307/1936550 88 8 8 0 12 TAYLOR & FRANCIS INC PHILADELPHIA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA 1080-7039 HUM ECOL RISK ASSESS Hum. Ecol. Risk Assess. DEC 2006 12 6 1074 1093 10.1080/10807030600977277 20 Biodiversity Conservation; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology 100DG WOS:000241647000003 2018-11-12 J Vigil, JM; Geary, DC Vigil, Jacob M.; Geary, David C. Parenting and community background and variation in women's life-history development JOURNAL OF FAMILY PSYCHOLOGY English Article child development; parenting style; sexual behaviors; life history; family relations SOCIOECONOMIC-STATUS; PUBERTAL MATURATION; CHILD MALTREATMENT; MENTAL-HEALTH; FAMILY; EVOLUTION; AGE; SOCIALIZATION; NEIGHBORHOOD; PLASTICITY For a community sample of 623 low-income women (mean age = 26.9 years), the authors use life-history theory to explore relations between parenting and community background and timing of reproductive development and sexual behaviors. Among other patterns, reported levels of paternal involvement during childhood were related to delayed menarche and ages at 1st sexual intercourse and 1st childbirth. The relation between parental investment and women's reproductive delay varied with estimates of wealth in the community in which the participants grew up. The results suggest that parents increased their investment as the level of community wealth increased, and in ways that likely facilitated women's ability to compete for social status in adulthood. Implications for future research on the relation between parenting and child outcomes are discussed. Univ Missouri, Dept Psychol Sci, Columbia, MO 65211 USA Vigil, JM (reprint author), Univ Missouri, Dept Psychol Sci, 210 McAlester Hall, Columbia, MO 65211 USA. jmv427@mizzou.edu Vigil, Jacob/D-6044-2013 ADLER NE, 1994, AM PSYCHOL, V49, P15, DOI 10.1037//0003-066X.49.1.15; Alexander R. D., 1987, BIOL MORAL SYSTEMS; Amato PR, 1998, MEN IN FAMILIES, P241; BARON RM, 1986, J PERS SOC PSYCHOL, V51, P1173, DOI 10.1037//0022-3514.51.6.1173; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bogin B., 1999, PATTERNS HUMAN GROWT; BRONFENBRENNER U, 1986, DEV PSYCHOL, V22, P723, DOI 10.1037//0012-1649.22.6.723; Burgess RL, 1999, HUM NATURE-INT BIOS, V10, P373, DOI 10.1007/s12110-999-1008-7; Caspi A, 2000, PSYCHOL SCI, V11, P338, DOI 10.1111/1467-9280.00267; Ceci SJ, 1997, AM PSYCHOL, V52, P1051, DOI 10.1037/0003-066X.52.10.1051; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Comings DE, 2002, CHILD DEV, V73, P1046, DOI 10.1111/1467-8624.00456; de Bruin JP, 2001, HUM REPROD, V16, P2014, DOI 10.1093/humrep/16.9.2014; Duncan Otis Dudley, 1967, AM OCCUPATIONAL STRU; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Feinstein L, 2004, CHILD DEV, V75, P1329, DOI 10.1111/j.1467-8624.2004.00743.x; Flinn Mark V, 1999, HORMONES HLTH BEHAV, P105; Geary D. C., 1998, MALE FEMALE EVOLUTIO; Geary DC, 2001, PARENT-SCI PRACT, V1, P5, DOI 10.1207/S15327922PAR011&2_2; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Geary DC, 2004, J SEX RES, V41, P27, DOI 10.1080/00224490409552211; Geary DC, 2000, CHILD DEV, V71, P57, DOI 10.1111/1467-8624.00118; HARRIS JR, 1995, PSYCHOL REV, V102, P458, DOI 10.1037//0033-295X.102.3.458; Harris KM, 1996, J FAM ISSUES, V17, P614, DOI 10.1177/019251396017005003; Jaffee SR, 2003, CHILD DEV, V74, P109, DOI 10.1111/1467-8624.t01-1-00524; KAPLAN H, 2000, EVOLUTIONARY ANTHR, V10, P223; Kaplan HS, 1998, MEN IN FAMILIES, P55; Kirk KM, 2001, EVOLUTION, V55, P423; Klebanov PK, 1998, CHILD DEV, V69, P1420, DOI 10.2307/1132275; Korpelainen H, 2000, P ROY SOC B-BIOL SCI, V267, P1765, DOI 10.1098/rspb.2000.1208; LIN N, 1981, SOC FORCES, V59, P1163, DOI 10.2307/2577987; Loving TJ, 2001, J SOC PERS RELAT, V18, P551, DOI 10.1177/0265407501184007; MOSHER WD, 1988, AM J PUBLIC HEALTH, V78, P181, DOI 10.2105/AJPH.78.2.181; Must A, 2002, AM J EPIDEMIOL, V155, P672, DOI 10.1093/aje/155.7.672; Roff Derek A., 1992; Roosa MW, 2000, CHILD DEV, V71, P567, DOI 10.1111/1467-8624.00166; Sapolsky RM, 2004, ANNU REV ANTHROPOL, V33, P393, DOI 10.1146/annurev.anthro.33.070203.144000; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Vigil JM, 2005, DEV PSYCHOL, V41, P553, DOI 10.1037/0012-1649.41.3.553; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; Whisman MA, 2005, J FAM PSYCHOL, V19, P111, DOI 10.1037/0893-3200-19.1.111; Widom CS, 2004, CHILD ABUSE NEGLECT, V28, P715, DOI 10.1016/j.chiabu.2004.03.009; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 48 17 17 0 11 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0893-3200 1939-1293 J FAM PSYCHOL J. Fam. Psychol. DEC 2006 20 4 597 604 10.1037/0893-3200.20.4.597 8 Psychology, Clinical; Family Studies Psychology; Family Studies 116DD WOS:000242781800008 17176194 2018-11-12 J Radder, RS Radder, Rajkumar S. An overview of geographic variation in the life history traits of the tropical agamid lizard, Calotes versicolor CURRENT SCIENCE English Review Calotes versicolor; geographic variation; life history; lizards; reptiles; reproduction ORIENTAL GARDEN LIZARD; SCELOPORUS-UNDULATUS; INCUBATION-TEMPERATURE; COMPARATIVE DEMOGRAPHY; ALTITUDINAL GRADIENT; SEXUAL DIMORPHISM; GROWTH-RATES; SIZE; POPULATIONS; ENVIRONMENT Life history theory seeks to explain patterns of variation among geographically widespread populations of same species to understand their ecology and adaptations. To date, very few attempts have been made to review and compare life history traits of tropical reptiles, especially those that inhabit the Asian continent. Among tropical reptiles, the agamid lizard Calotes versicolor is widespread, extensively studied and thus 'tailor made' to understand geographic variation if any. Therefore, in this review, life history traits of C versicolor are compared to understand variation in life history with reference to their geographical distribution. The examination of C versicolor populations across its geographic range demonstrates considerable variation in some of the life history traits but not in all. For example, there is no sexual size dimorphism at hatching in one population but it is apparent in another. Body size, mass, reproductive output, influence of incubation thermal regimes on eggs and embryos differ between the populations. There is a trade-off between clutch size and egg size in one population but egg size is optimised in another. Lizards that belong to one population mature at a smaller size but at the same age compared to another population. Also, embryos exhibit high thermal tolerance in one population compared to another. These emergent life history patterns from the comparisons are discussed in light of traditional as well as recent views and theories of life history in reptiles. Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia Radder, RS (reprint author), Univ Sydney, Sch Biol Sci, Bldg A08, Sydney, NSW 2006, Australia. raju@mail.usyd.edu.au Adolph SC, 1996, OIKOS, V77, P267, DOI 10.2307/3546065; ADOLPH SC, 1993, AM NAT, V142, P273, DOI 10.1086/285538; Andrews R.M., 1982, Biology of Reptilia, V13, P273; Andrews RM, 1998, J THERM BIOL, V23, P329, DOI 10.1016/S0306-4565(98)00018-7; Angilletta MJ, 2001, PHYSIOL BIOCHEM ZOOL, V74, P11; Ballinger R.E., 1983, P241; BALLINGER RE, 1979, ECOLOGY, V60, P901, DOI 10.2307/1936858; BALLINGER RE, 1973, ECOLOGY, V54, P269, DOI 10.2307/1934336; Bauwens D, 1997, AM NAT, V149, P91, DOI 10.1086/285980; Begon M., 1990, ECOLOGY INDIVIDUALS, P473; BELLAIRS A, 1971, ENZYKLOPADIE NATUR, V11, P767; BERVEN KA, 1983, AM ZOOL, V23, P85; BLANCHARD F., 2000, GUIDE MILIEUX NATURE; Boulenger G. A., 1912, REPTILIA BATRACHIA; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; BRUCE RC, 1990, J HERPETOL, V24, P126, DOI 10.2307/1564219; COOPER WE, 1989, AM NAT, V133, P729, DOI 10.1086/284948; DIDI NTH, 1993, HAMADRYAD, V18, P42; Diong C.H., 1994, Nature Malaysiana, V19, P46; Downes SJ, 2001, EVOLUTION, V55, P605, DOI 10.1554/0014-3820(2001)055[0605:GVIATT]2.0.CO;2; DUNHAM AE, 1982, HERPETOLOGICA, V38, P208; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; DUNHAM AE, 1985, AM NAT, V125, P480; ENGE KE, 2004, BIOL SCI, V67, P226; ERDELEN W, 1988, J HERPETOL, V22, P42, DOI 10.2307/1564355; ERDELEN W, 1986, Spixiana, V9, P111; FERGUSON GW, 1993, OECOLOGIA, V93, P88, DOI 10.1007/BF00321196; FERGUSON GW, 1980, ECOLOGY, V61, P313, DOI 10.2307/1935190; Forsman A, 1995, FUNCT ECOL, V9, P818, DOI 10.2307/2389979; Galan P, 1996, HERPETOL J, V6, P87; GUNTHER ACL, 1864, REPTILES BRIT INDIA; Harvey P. H., 1991, COMP METHOD EVOLUTIO; Hews DK, 1996, J ZOOL, V238, P743, DOI 10.1111/j.1469-7998.1996.tb05427.x; INDURKAR S S, 1977, Indian Journal of Animal Research, V11, P7; Ji X, 2002, J EXP ZOOL, V292, P649, DOI 10.1002/jez.10101; Ji X, 2002, J HERPETOL, V36, P1; Ji X, 2002, CHIN J APPL ECOL, V13, P680; JONES SM, 1987, ECOLOGY, V68, P1828, DOI 10.2307/1939874; JONES SM, 1987, OIKOS, V48, P325, DOI 10.2307/3565521; LOMAN J, 1997, CALOTES VERSICOLOR; Macedonia JM, 2003, J HERPETOL, V37, P467, DOI 10.1670/159-02A; Macey JR, 2000, SYST BIOL, V49, P233, DOI 10.1093/sysbio/49.2.233; MATHIES T, 1995, OECOLOGIA, V104, P101, DOI 10.1007/BF00365568; MATYOT P, 1802, CALOTES VERSICOLOR; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; Mesquita DO, 2003, COPEIA, P285; NIEWIAROWSKI PH, 1993, ECOLOGY, V74, P1992, DOI 10.2307/1940842; Niewiarowski PH, 1995, HERPETOLOGICA, V51, P487; PANDHA SK, 1967, COPEIA, P121; PARKER WS, 1975, COPEIA, P615; PERMALNAICK L, 1993, PLUS BELLES BALADES; Pigliucci Massimo, 2001, P58; Qualls FJ, 1998, BIOL J LINN SOC, V64, P477, DOI 10.1006/bijl.1998.0236; Radder RS, 2001, J HERPETOL, V35, P156, DOI 10.2307/1566042; Radder RS, 2002, AMPHIBIA-REPTILIA, V23, P71, DOI 10.1163/156853802320877636; Radder RS, 2004, J BIOSCIENCES, V29, P105, DOI 10.1007/BF02702567; Roff Derek A., 1992; Rohr DH, 1997, J ANIM ECOL, V66, P567, DOI 10.2307/5950; SCHMIDT KP, 1957, KNAURS TIERREICH FAR, P312; Seufer Hermann, 1999, Herpetofauna (Weinstadt), V21, P24; Shanbhag BA, 2000, COPEIA, P1062; SHINE R, 1992, AM NAT, V139, P1257, DOI 10.1086/285385; SINERVO B, 1990, OECOLOGIA, V83, P228, DOI 10.1007/BF00317757; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Smith MA., 1935, FAUNA BRIT INDIA INC, VII; Smith SA, 2001, BIOL J LINN SOC, V74, P131, DOI 10.1111/j.1095-8312.2001.tb01382.x; Staub F., 1993, FAUNA MAURITIUS ASS; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; STEARNS SC, 1984, AM NAT, V123, P56, DOI 10.1086/284186; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STUART BL, 1999, AMPHIBIANS REPTILES, P43; TINKLE DW, 1970, EVOLUTION, V24, P55, DOI 10.1111/j.1558-5646.1970.tb01740.x; TINKLE DW, 1993, ECOLOGY, V74, P2413, DOI 10.2307/1939592; TINKLE DW, 1986, COPEIA, P1; TINKLE DW, 1972, ECOLOGY, V53, P570, DOI 10.2307/1934772; Vitt L.J., 1992, P135; Vitt LJ, 1998, CAN J ZOOL, V76, P1671, DOI 10.1139/cjz-76-9-1671; Wapstra E, 2001, J HERPETOL, V35, P194, DOI 10.2307/1566108 82 11 15 0 26 INDIAN ACAD SCIENCES BANGALORE C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA 0011-3891 CURR SCI INDIA Curr. Sci. NOV 25 2006 91 10 1354 1363 10 Multidisciplinary Sciences Science & Technology - Other Topics 114YQ WOS:000242702000016 DOAJ Gold 2018-11-12 J Brown, JH; Sibly, RM Brown, James H.; Sibly, Richard M. Life-history evolution under a production constraint PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article allometry; life-history theory; metabolic ecology BODY-SIZE; RULE; MAMMALS; CLIMATE; BIRDS; LAW The recently formulated metabolic theory of ecology has profound implications for the evolution of life histories. Metabolic rate constrains the scaling of production with body mass, so that larger organisms have lower rates of production on a mass-specific basis than smaller ones. Here, we explore the implications of this constraint for life-history evolution. We show that for a range of very simple life histories, Darwinian fitness is equal to birth rate minus death rate. So, natural selection maximizes birth and production rates and minimizes death rates. This implies that decreased body size will generally be favored because it increases production, so long as mortality is unaffected. Alternatively, increased body size will be favored only if it decreases mortality or enhances reproductive success sufficiently to override the preexisting production constraint. Adaptations that may favor evolution of larger size include niche shifts that decrease mortality by escaping predation or that increase fecundity by exploiting new abundant food sources. These principles can be generalized to better understand the intimate relationship between the genetic currency of evolution and the metabolic currency of ecology. Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA; Univ Reading, Sch Biol Sci, Reading RG6 6AS, Berks, England; Santa Fe Inst, Santa Fe, NM 87501 USA Brown, JH (reprint author), Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. jhbrown@unm.edu Sibly, Richard/0000-0001-6828-3543 Abouheif E, 1997, AM NAT, V149, P540, DOI 10.1086/286004; Alroy J, 1998, SCIENCE, V280, P731, DOI 10.1126/science.280.5364.731; Ashton KG, 2002, CAN J ZOOL, V80, P708, DOI 10.1139/Z02-049; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Atkinson D, 1997, TRENDS ECOL EVOL, V12, P235, DOI 10.1016/S0169-5347(97)01058-6; Bergmann C, 1847, GOTTINGER STUDIEN, V1, P595; Brown J. H., 1995, MACROECOLOGY; BROWN JH, 1993, AM NAT, V142, P573, DOI 10.1086/285558; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Calder W. A., 1984, SIZE FUNCTION LIFE H; Campbell N. A., 2002, BIOLOGY; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV E L, 1982; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Ernest SKM, 2003, ECOL LETT, V6, P990, DOI 10.1046/j.1461-0248.2003.00526.x; FISHER RA, 1930, GENET THEORY NAT SEL; FOSTER JB, 1964, NATURE, V202, P234, DOI 10.1038/202234a0; Glazier DS, 2005, BIOL REV, V80, P611, DOI 10.1017/S1464793105006834; HUME ID, 1989, PHYSIOL ZOOL, V62, P1145, DOI 10.1086/physzool.62.6.30156206; JAMES FC, 1970, ECOLOGY, V51, P365, DOI 10.2307/1935374; LINSTEDT SL, 1981, Q REV BIOL, V56, P1; Lomolino MV, 2005, J BIOGEOGR, V32, P1683, DOI 10.1111/j.1365-2699.2005.01314.x; NEE S, 1991, NATURE, V351, P312, DOI 10.1038/351312a0; OWENSMITH RN, 1988, INFLUENCE VERY LARGE; Peters R.H., 1983, P1; RAY CARLETON, 1960, JOUR MORPHOL, V106, P85, DOI 10.1002/jmor.1051060104; Rensch B., 1950, Bonner Zoologische Beitraege, V1, P58; Roff D. A., 2002, LIFE HIST EVOLUTION; Roth V.L., 1990, P151; SIBLY R, 1987, J THEOR BIOL, V125, P177, DOI 10.1016/S0022-5193(87)80039-5; Sibly R.M., 1981, P109; Sibly R.M., 2002, ENCY EVOLUTION, P623; SIBLY RM, 1993, J THEOR BIOL, V160, P533, DOI 10.1006/jtbi.1993.1034; SIBLY RM, 1992, GENES ECOLOGY, P87; Sinclair A.R.E., 1989, P197; Sinclair ARE, 1996, FRONTIERS OF POPULATION ECOLOGY, P127; SMITH FA, 1995, SCIENCE, V270, P2012, DOI 10.1126/science.270.5244.2012; Stearns S. C., 1992, EVOLUTION LIFE HIST 38 83 87 0 34 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. NOV 21 2006 103 47 17595 17599 10.1073/pnas.0608522103 5 Multidisciplinary Sciences Science & Technology - Other Topics 111PG WOS:000242464900005 17090668 Bronze, Green Published 2018-11-12 J Miller, TEX; Tyre, AJ; Louda, SM Miller, Tom E. X.; Tyre, Andrew J.; Louda, Svata M. Plant reproductive allocation predicts herbivore dynamics across spatial and temporal scales AMERICAN NATURALIST English Article demographic model; herbivory; insect-plant interactions; Opuntia; population dynamics; resource allocation SEXUAL REPRODUCTION; RESOURCE-ALLOCATION; POPULATION-DYNAMICS; MERISTEM ALLOCATION; SEED PREDATION; LIFE-HISTORY; CONSEQUENCES; PATTERNS; FITNESS; GROWTH Life-history theory suggests that iteroparous plants should be flexible in their allocation of resources toward growth and reproduction. Such plasticity could have consequences for herbivores that prefer or specialize on vegetative versus reproductive structures. To test this prediction, we studied the response of the cactus bug ( Narnia pallidicornis) to meristem allocation by tree cholla cactus ( Opuntia imbricata). We evaluated the explanatory power of demographic models that incorporated variation in cactus relative reproductive effort ( RRE; the proportion of meristems allocated toward reproduction). Field data provided strong support for a single model that defined herbivore fecundity as a time-varying, increasing function of host RRE. High-RRE plants were predicted to support larger insect populations, and this effect was strongest late in the season. Independent field data provided strong support for these qualitative predictions and suggested that plant allocation effects extend across temporal and spatial scales. Specifically, late-season insect abundance was positively associated with interannual changes in cactus RRE over 3 years. Spatial variation in insect abundance was correlated with variation in RRE among five cactus populations across New Mexico. We conclude that plant allocation can be a critical component of resource quality for insect herbivores and, thus, an important mechanism underlying variation in herbivore abundance across time and space. Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA; Univ Nebraska, Sch Nat Sci, Lincoln, NE 68588 USA Miller, TEX (reprint author), Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA. tmiller2@unl.edu; atyre2@unl.edu; slouda@unl.edu Agrawal AA, 2004, AM NAT, V164, P113, DOI 10.1086/420980; Bazzaz FA, 1997, PLANT RESOURCE ALLOC; Benson L., 1982, CACTI US MEXICO; Bigger David S., 1998, Integrative Biology, V1, P60, DOI 10.1002/(SICI)1520-6602(1998)1:2<60::AID-INBI4>3.0.CO;2-Z; Bonser SP, 1996, OIKOS, V77, P347, DOI 10.2307/3546076; Bowers JE, 1996, B TORREY BOT CLUB, V123, P34, DOI 10.2307/2996304; Bradley KL, 2003, ECOLOGY, V84, P2214, DOI 10.1890/02-3082; Burnham Kenneth P, 1998, MODEL SELECTION MULT; Crawley Michael J., 1997, P401; CRAWLEY MJ, 1983, HERBIVORY DYNAMICS A; Denno RF, 1983, VARIABLE PLANTS HERB; DOAK DF, 1992, ECOLOGY, V73, P2086, DOI 10.2307/1941457; Duffy NM, 1999, OIKOS, V84, P284, DOI 10.2307/3546723; EDELSTEINKESHET L, 1989, AM NAT, V133, P787, DOI 10.1086/284953; Ehrlen J, 2003, AM NAT, V162, P796, DOI 10.1086/379350; GEBER MA, 1990, EVOLUTION, V44, P799, DOI 10.1111/j.1558-5646.1990.tb03806.x; Geber Monica A., 1997, P113, DOI 10.1016/B978-012083490-7/50006-2; Gibson A. C., 1986, CACTUS PRIMER; Harper J. L., 1977, POPULATION BIOL PLAN; Hartemink N, 2004, OIKOS, V105, P159, DOI 10.1111/j.0030-1299.2004.12784.x; Hilborn R., 1997, ECOLOGICAL DETECTIVE; Holland JN, 2004, P ROY SOC B-BIOL SCI, V271, P1807, DOI 10.1098/rspb.2004.2789; Huberty AF, 2004, ECOLOGY, V85, P1383, DOI 10.1890/03-0352; KINRAIDE T B, 1978, Southwestern Naturalist, V23, P117, DOI 10.2307/3669987; Klinkhamer PGL, 1997, J EVOLUTION BIOL, V10, P529; Larsson S, 2000, OIKOS, V89, P440, DOI 10.1034/j.1600-0706.2000.890303.x; LOUDA SM, 1983, ECOLOGY, V64, P511, DOI 10.2307/1939971; LOUDA SM, 1982, ECOL MONOGR, V52, P25, DOI 10.2307/2937343; LOUDA SM, 1995, ECOLOGY, V76, P229, DOI 10.2307/1940645; LOUDA SM, 1992, ECOLOGY, V73, P153, DOI 10.2307/1938728; MANN J, 1969, CACTUS FEEDING INSEC; Mann J., 1970, CACTI NATURALIZED AU; Maron JL, 1998, ECOLOGY, V79, P1281; Mendez M, 2004, OIKOS, V104, P59, DOI 10.1111/j.0030-1299.2004.12335.x; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Olejniczak P, 2001, OIKOS, V95, P156, DOI 10.1034/j.1600-0706.2001.950118.x; Pimienta-Barrios E, 2002, CACTI BIOL USES, P75; Prado PIKL, 1999, ECOL ENTOMOL, V24, P80, DOI 10.1046/j.1365-2311.1999.00173.x; RAUSHER MD, 1981, ECOL MONOGR, V51, P1, DOI 10.2307/2937304; Reekie E. G., 1999, LIFE HIST EVOLUTION, P173; RHOADES DF, 1983, VARIABLE PLANTS HERB, P55; Root RB, 1996, ECOLOGY, V77, P1074, DOI 10.2307/2265577; ROOT RB, 1992, ECOL MONOGR, V62, P393, DOI 10.2307/2937117; Silvertown J, 1999, AM NAT, V154, P321, DOI 10.1086/303238; Underwood N, 2000, ECOLOGY, V81, P1565, DOI 10.2307/177307; Vuorisalo T. O., 1999, LIFE HIST EVOLUTION; WATSON MA, 1984, AM NAT, V123, P411, DOI 10.1086/284212; WHITE TCR, 1984, OECOLOGIA, V63, P90, DOI 10.1007/BF00379790 48 21 23 2 25 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 AM NAT Am. Nat. NOV 2006 168 5 608 616 10.1086/509610 9 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 105GR WOS:000242018900003 17080360 Green Published 2018-11-12 J Kuriwada, T; Kasuya, E Kuriwada, T.; Kasuya, E. Female responsiveness is negatively correlated with life expectancy in Meloimorpha japonica (Orthoptera : Gryllidae) ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA English Article cricket; mate choice; life history strategy; sexual selection SEXUAL SELECTION; REPRODUCTIVE EFFORT; MATING PREFERENCES; MATE-CHOICE; AGE; CONSEQUENCES; INVESTMENT; HISTORY; CRICKET; SIGNAL Life history theory predicts that current reproductive investment should increase as life expectancy decreases. We adapted the prediction to female mate choice behavior and examined the effect of life expectancy on two components of female choice of the cricket Meloimorpha japonica (De Haan) (Orthoptera: Gryllidae). We measured female responsiveness and female preference by using a two-choice playback experiment of male calling songs. Females with a shorter life span exhibited higher responsiveness to the male calling song. No significant effect of life span on female preference for male calling songs was found. We discuss the implications of these results for sexual selection and life history strategy. Kyushu Univ, Dept Biol, Lab Ecol Sci, Fukuoka 8128581, Japan Kuriwada, T (reprint author), Kyushu Univ, Dept Biol, Lab Ecol Sci, Hakozaki 6-10-1, Fukuoka 8128581, Japan. tkurisch@mbox.nc.kyushu-u.ac.jp Brooks R, 2001, EVOLUTION, V55, P1644; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; *CYT SOFTW CORP, 2004, LOGXAXT 6 2 US MAN; Engqvist L, 2002, BEHAV ECOL, V13, P632, DOI 10.1093/beheco/13.5.632; Gerhardt HC, 2002, ACOUSTIC COMMUNICATI; Gray DA, 1999, J INSECT BEHAV, V12, P691, DOI 10.1023/A:1020983821436; Hoglund J, 1998, OIKOS, V83, P478, DOI 10.2307/3546675; Javois J, 2004, ANIM BEHAV, V68, P249, DOI 10.1016/j.anbehav.2003.10.022; Jennions MD, 1997, BIOL REV, V72, P283, DOI 10.1017/S0006323196005014; Kemp DJ, 2002, P ROY SOC B-BIOL SCI, V269, P1341, DOI 10.1098/rspb.2002.2000; Kodric-Brown A, 2001, AM NAT, V157, P316, DOI 10.1086/319191; Mauck RA, 2004, EVOLUTION, V58, P880, DOI 10.1554/03-147; Moore PJ, 2001, P NATL ACAD SCI USA, V98, P9171, DOI 10.1073/pnas.161154598; Roff D. A., 2002, LIFE HIST EVOLUTION; Ryder JJ, 2000, P ROY SOC B-BIOL SCI, V267, P1171, DOI 10.1098/rspb.2000.1125; Scheuber H, 2003, ANIM BEHAV, V65, P721, DOI 10.1006/anbe.2003.2083; Stearns S. C., 1992, EVOLUTION LIFE HIST; Syriatowicz Alexandra, 2004, BMC Ecology, V4, P5, DOI 10.1186/1472-6785-4-5; Widemo F, 1999, TRENDS ECOL EVOL, V14, P26, DOI 10.1016/S0169-5347(98)01531-6; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams GC, 1966, ADAPTATION NATURAL S 22 6 6 0 2 ENTOMOLOGICAL SOCIETY AMERICA LANHAM 10001 DEREKWOOD LANE, STE 100, LANHAM, MD 20706-4876 USA 0013-8746 ANN ENTOMOL SOC AM Ann. Entomol. Soc. Am. NOV 2006 99 6 1244 1247 10.1603/0013-8746(2006)99[1244:FRINCW]2.0.CO;2 4 Entomology Entomology 105ME WOS:000242033400027 Other Gold 2018-11-12 J Sockman, KW; Sharp, PJ; Schwabl, H Sockman, Keith W.; Sharp, Peter J.; Schwabl, Hubert Orchestration of avian reproductive effort: an integration of the ultimate and proximate bases for flexibility in clutch size, incubation behaviour, and yolk androgen deposition BIOLOGICAL REVIEWS English Review clutch size; egg laying; hatching asynchrony; life-history traits; maternal androgens; maternal effects; parental care; prolactin; seasonal breeding; yolk androgens WHITE-CROWNED SPARROW; VASOACTIVE-INTESTINAL-PEPTIDE; FINCHES TAENIOPYGIA-GUTTATA; TURKEY MELEAGRIS-GALLOPAVO; KESTREL FALCO-TINNUNCULUS; FEMALE ZEBRA FINCHES; STARLINGS STURNUS-VULGARIS; COTURNIX-COTURNIX-JAPONICA; RED-WINGED BLACKBIRDS; OFFSPRING SEX-RATIO How much effort to expend in any one bout of reproduction is among the most important decisions made by an individual that breeds more than once. According to life-history theory, reproduction is costly, and individuals that invest too much in a given reproductive bout pay with reduced reproductive output in the future. Likewise, investing , too little does not maximize reproductive potential. Because reproductive effort relative to output can vary with predictable and unpredictable challenges and opportunities, no single level of reproductive effort maximizes fitness. This leads to the prediction that individuals possessing behavioural mechanisms to buffer challenges and take advantage of opportunities would incur fitness benefits. Here, we review evidence in birds, primarily of altricial species, for the presence of at least two such mechanisms and evidence for and against the seasonal coordination of these mechanisms through seasonal changes in plasma concentrations of the pituitary hormone prolactin. First, the seasonal decline in clutch size of most bird species may partially offset a predictable seasonal decline in the reproductive value of offspring. Second, establishing a developmental sibling-hierarchy among offspring may), hedge against unpredictable changes in resource availability and offspring viability or quality, and minimize energy), expenditure in raising a brood. The hierarchy may be a product, in part, of the timing of incubation onset relative to clutch completion and the rate of yolk androgen deposition during the laying cycle. Because clutch size should influence the effects of both these traits on the developmental hierarchy, we predicted and describe evidence in some species that females adjust the timing of incubation onset and rate of yolk androuen deposition to match clutch size. Studies on domesticated precocial species reveal an inhibitory effect of the pituitary hormone prolactin on egg layin 9, suggesting a possible hormonal basis for the regulation of clutch size. Studies on the American kestrel (Falco sparverius) and other species suggest that the seasonal increase in plasma concentrations of prolactin may regulate both a seasonal advance in the timing of incubation onset and a seasonal increase in the rate of yolk androgen deposition. These observations, together with strong conceptual arguments published previously, raise the possibility that a single hormone, prolactin, functions as the basis of a common mechanism for the seasonal adjustment of reproductive effort. However, a role for prolactin in regulating, clutch size in any species is not firmly established, and evidence from some species indicates that clutch size may not be coupled to the timing of incubation onset and rate of yolk androgen deposition. A dissociation between the regulation of clutch size and the regulation of incubation onset and yolk androgen deposition may enable an independent response to the predictable and unpredictable challenges and opportunities faced during reproduction. Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA; Roslin Inst, Div Genet & Genom, Roslin EH25 9PS, Midlothian, Scotland; Washington State Univ, Ctr Reprod Biol, Sch Biol Sci, Pullman, WA 99164 USA Sockman, KW (reprint author), Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA. kws@unc.edu NIMH NIH HHS [MH 49877] ALEXANDER B, 1970, POULTRY SCI, V49, P632, DOI 10.3382/ps.0490632; Alexander R.D., 1974, Annual Rev Ecol Syst, V5, P325, DOI 10.1146/annurev.es.05.110174.001545; Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Anderson DJ, 1997, FUNCT ECOL, V11, P331, DOI 10.1046/j.1365-2435.1997.00091.x; Aparicio JM, 1997, BEHAV ECOL SOCIOBIOL, V41, P129, DOI 10.1007/s002650050372; APARICIO JM, 1994, OIKOS, V71, P451, DOI 10.2307/3545833; Aparicio JM, 2001, EVOLUTION, V55, P1188; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; ASTHEIMER LB, 1985, AUK, V102, P401, DOI 10.2307/4086789; ASTHEIMER LB, 1992, ORNIS SCAND, V23, P355, DOI 10.2307/3676661; Badyaev AV, 2005, P ROY SOC B-BIOL SCI, V272, P2165, DOI 10.1098/rspb.2005.3194; Badyaev AV, 2003, OECOLOGIA, V135, P386, DOI 10.1007/s00442-003-1203-x; Badyaev AV, 2003, EVOLUTION, V57, P384; Badyaev AV, 2002, J EVOLUTION BIOL, V15, P997, DOI 10.1046/j.1420-9101.2002.00462.x; BAILEY ROBERT E., 1950, CONDOR, V52, P247, DOI 10.2307/1364516; BALGOOYEN T G, 1976, University of California Publications in Zoology, V103, P1; Ball Gregory F., 2002, P649; Ball Gregory F., 2000, P129; Barnes AI, 2003, ANIM BEHAV, V66, P199, DOI 10.1006/anbe.2003.2122; Bedecarrats G, 1999, GEN COMP ENDOCR, V113, P105, DOI 10.1006/gcen.1998.7188; Bedecarrats G, 1999, GEN COMP ENDOCR, V113, P96, DOI 10.1006/gcen.1998.7187; Bentley GE, 2003, J NEUROENDOCRINOL, V15, P794, DOI 10.1046/j.1365-2826.2003.01062.x; BERGHMAN LR, 1992, GEN COMP ENDOCR, V85, P346, DOI 10.1016/0016-6480(92)90079-Y; Bernardo J, 1996, AM ZOOL, V36, P216; Bety J, 2003, AM NAT, V162, P110, DOI 10.1086/375680; BEUKEBOOM L, 1988, ORNIS SCAND, V19, P41, DOI 10.2307/3676526; BIRD DM, 1982, CAN J ZOOL, V60, P71, DOI 10.1139/z82-009; Blanco G, 2003, J ANIM ECOL, V72, P831, DOI 10.1046/j.1365-2656.2003.00753.x; BLUHM CK, 1983, BIOL REPROD, V28, P295, DOI 10.1095/biolreprod28.2.295; BOOK CM, 1991, PHYSIOL BEHAV, V50, P281, DOI 10.1016/0031-9384(91)90067-X; BORTOLOTTI GR, 1991, CAN J ZOOL, V69, P1447, DOI 10.1139/z91-205; Bowden RM, 2002, J EXP ZOOL, V293, P67, DOI 10.1002/jez.10094; Bowden RM, 2001, GEN COMP ENDOCR, V121, P95, DOI 10.1006/gcen.2000.7579; Brown JL, 1998, BEHAV ECOL, V9, P541, DOI 10.1093/beheco/9.6.541; BUNTIN JD, 1993, AM ZOOL, V33, P229; BUNTIN JD, 1991, HORM BEHAV, V25, P424, DOI 10.1016/0018-506X(91)90012-7; BUNTIN JD, 1993, NEUROENDOCRINOLOGY, V57, P738, DOI 10.1159/000126432; BUNTIN JD, 1987, GEN COMP ENDOCR, V65, P243, DOI 10.1016/0016-6480(87)90172-9; Buntin JD, 1999, GEN COMP ENDOCR, V114, P97, DOI 10.1006/gcen.1998.7239; BUNTIN JD, 1988, J ENDOCRINOL, V118, P33, DOI 10.1677/joe.0.1180033; BUNTIN JD, 1985, HORMONES BEHAV, V19; Buntin John D., 1996, Advances in the Study of Behavior, V25, P161; BURKE WH, 1980, GEN COMP ENDOCR, V41, P92, DOI 10.1016/0016-6480(80)90037-4; Burley RW, 1989, AVIAN EGG CHEM BIOL; CAMPER PM, 1977, POULTRY SCI, V56, P1130, DOI 10.3382/ps.0561130; CHAKRABORTY S, 1995, GEN COMP ENDOCRINOLO, V99; Challenger WO, 2001, PHYSIOL BIOCHEM ZOOL, V74, P356, DOI 10.1086/320427; Chaudhuri Santasri, 1998, Indian Journal of Experimental Biology, V36, P790; CHEREL Y, 1994, PHYSIOL ZOOL, V67, P1154, DOI 10.1086/physzool.67.5.30163887; Christians JK, 1999, J EXP BIOL, V202, P2679; Christians JK, 1999, PHYSIOL BIOCHEM ZOOL, V72, P455, DOI 10.1086/316683; Christians JK, 2002, GEN COMP ENDOCR, V125, P121, DOI 10.1006/gcen.2001.7737; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; Christians JK, 2001, J ANIM ECOL, V70, P1080, DOI 10.1046/j.0021-8790.2001.00566.x; CLARK AB, 1981, Q REV BIOL, V56, P253, DOI 10.1086/412316; CLARK MM, 1992, PHYSIOL BEHAV, V51, P957, DOI 10.1016/0031-9384(92)90077-F; Clarke W.C., 1980, Hormonal Proteins and Peptides, V8, P105; Clifford LD, 2001, BEHAV ECOL, V12, P340, DOI 10.1093/beheco/12.3.340; Clotfelter ED, 1999, AUK, V116, P417, DOI 10.2307/4089375; Clutton-Brock TH, 1988, REPROD SUCCESS, P472; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CLUTTONBROCK TH, 1986, IBIS, V128, P317, DOI 10.1111/j.1474-919X.1986.tb02682.x; CONRAD KF, 1993, OECOLOGIA, V96, P290, DOI 10.1007/BF00317744; Conway CJ, 2000, EVOLUTION, V54, P670; Cook MI, 2005, ECOL LETT, V8, P532, DOI 10.1111/j.1461-0248.2005.00748.x; Cook MI, 2003, P ROY SOC B-BIOL SCI, V270, P2233, DOI 10.1098/rspb.2003.2508; Cooper CB, 2005, ECOLOGY, V86, P2018, DOI 10.1890/03-8028; CORCORAN DH, 1991, COMP BIOCHEM PHYS B, V99, P563, DOI 10.1016/0305-0491(91)90338-E; Correa SM, 2005, BIOL LETT-UK, V1, P215, DOI 10.1098/rsbl.2004.0283; Crisostomo S, 1998, THERIOGENOLOGY, V50, P675, DOI 10.1016/S0093-691X(98)00172-1; Crisostomo S, 1997, REPROD NUTR DEV, V37, P253, DOI 10.1051/rnd:19970302; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; Daan S, 1996, BEHAV ECOL, V7, P426, DOI 10.1093/beheco/7.4.426; Daan S., 1988, P392; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; DAWSON A, 1985, J ZOOL, V206, P241; Dawson A, 1998, ENDOCRINOLOGY, V139, P485, DOI 10.1210/en.139.2.485; Dawson A, 2001, J BIOL RHYTHM, V16, P365, DOI 10.1177/074873001129002079; DAWSON A, 1982, GEN COMP ENDOCR, V48, P213, DOI 10.1016/0016-6480(82)90019-3; Dawson RD, 2003, CAN J ZOOL, V81, P852, DOI 10.1139/Z03-064; Dawson RD, 2002, BEHAV ECOL SOCIOBIOL, V52, P43, DOI 10.1007/s00265-002-0486-y; Deeming D.C., 1991, P147, DOI 10.1017/CBO9780511585739.011; Deeming DC, 2002, AVIAN INCUBATION BEH, P43; DEERENBERG C, 1995, ZOOL-ANAL COMPLEX SY, V99, P39; DIJKSTRA C, 1990, FUNCT ECOL, V4, P143, DOI 10.2307/2389333; DORRINGTON J, 1981, NATURE, V290, P600, DOI 10.1038/290600a0; DRENT RH, 1980, ARDEA, V68, P225; DRUMMOND H, 1991, AM NAT, V138, P623, DOI 10.1086/285238; DRUMMOND H, 1986, BEHAV ECOL SOCIOBIOL, V19, P365, DOI 10.1007/BF00295710; DUTT A, 1994, NEUROENDOCRINOLOGY, V59, P413; Dzus EH, 1998, AUK, V115, P311, DOI 10.2307/4089189; Eising CM, 2001, P ROY SOC B-BIOL SCI, V268, P839, DOI 10.1098/rspb.2001.1594; Eising CM, 2003, J EXP BIOL, V206, P3211, DOI 10.1242/jeb.00552; EISNER ERICA, 1960, ANIMAL BEHAVIOUR, V8, P155, DOI 10.1016/0003-3472(60)90023-3; ELHALAWANI ME, 1991, BIOL REPROD, V44, P420, DOI 10.1095/biolreprod44.3.420; ELHALAWANI ME, 1986, BIOL REPROD, V35, P59, DOI 10.1095/biolreprod35.1.59; ELHALAWANI ME, 1995, BIOL REPROD, V52, P179, DOI 10.1095/biolreprod52.1.179; ELHALAWANI ME, 1990, GEN COMP ENDOCR, V78, P66, DOI 10.1016/0016-6480(90)90048-Q; ELHALAWANI ME, 1991, GEN COMP ENDOCR, V84, P360, DOI 10.1016/0016-6480(91)90082-H; ELHALAWANI ME, 1997, PERSPECTIVES AVIAN E, P403; EMMS SK, 1991, CONDOR, V93, P943, DOI 10.2307/3247729; Eriksen MS, 2003, BRIT POULTRY SCI, V44, P690, DOI 10.1080/00071660310001643660; Etches R. J., 1996, REPROD POULTRY; ETCHES RJ, 1979, CAN J ZOOL, V57, P1624, DOI 10.1139/z79-213; Evans RM, 1996, BEHAV ECOL SOCIOBIOL, V39, P203, DOI 10.1007/s002650050282; Evans RM, 1997, BEHAV ECOL, V8, P378, DOI 10.1093/beheco/8.4.378; FECHNER JH, 1989, BRAIN RES, V487, P245, DOI 10.1016/0006-8993(89)90829-9; FISHER R. A., 1930, GENETICAL THEORY NAT; FOLLETT BK, 1988, J ENDOCRINOL, V116, P363, DOI 10.1677/joe.0.1160363; Forbes LS, 1996, ECOSCIENCE, V3, P45, DOI 10.1080/11956860.1996.11682314; Forbes LS, 1998, J THEOR BIOL, V192, P3, DOI 10.1006/jtbi.1997.0596; FORBES LS, 1993, AM NAT, V142, P82, DOI 10.1086/285530; Forbes LS, 1996, J THEOR BIOL, V180, P247; Forbes S, 1997, NATURE, V390, P351, DOI 10.1038/37025; Forbes S, 2002, ECOLOGY, V83, P2529, DOI 10.1890/0012-9658(2002)083[2529:MIFPOA]2.0.CO;2; Forbes S, 2001, BEHAV ECOL SOCIOBIOL, V50, P37, DOI 10.1007/s002650100332; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Freeman ME, 2000, PHYSIOL REV, V80, P1523; Gil D, 1999, SCIENCE, V286, P126, DOI 10.1126/science.286.5437.126; Gil D, 2003, ARDEOLA, V50, P281; GILBERT AB, 1976, BRIT POULTRY SCI, V17, P13, DOI 10.1080/00071667608416244; Gilbert L, 2005, NATURWISSENSCHAFTEN, V92, P178, DOI 10.1007/s00114-004-0603-z; Gloutney ML, 1996, COMP BIOCHEM PHYS A, V114, P265, DOI 10.1016/0300-9629(96)00006-0; Godfray HCJ, 1996, TRENDS ECOL EVOL, V11, pA59; Godsave SF, 2002, J COMP NEUROL, V453, P57, DOI 10.1002/cne.10391; Goldsmith A.R., 1991, P2063; GOLDSMITH AR, 1982, J ENDOCRINOL, V94, P51, DOI 10.1677/joe.0.0940051; GOLDSMITH AR, 1984, J ENDOCRINOL, V103, P251, DOI 10.1677/joe.0.1030251; GRATTOTREVOR CL, 1990, AUK, V107, P718, DOI 10.2307/4088002; Greenwood JJD, 1997, NATURE, V389, P442, DOI 10.1038/38900; GUNASEKAR PG, 1988, INT J ANDROL, V11, P53, DOI 10.1111/j.1365-2605.1988.tb01216.x; Gwinner E, 1995, AUK, V112, P748; Hackl R, 2003, J COMP PHYSIOL B, V173, P327, DOI 10.1007/s00360-003-0339-7; HAHN DC, 1981, ANIM BEHAV, V29, P421, DOI 10.1016/S0003-3472(81)80101-7; Hahn TP, 1997, CURR ORNITHOL, V14, P39; HAHN TP, 1995, J EXP ZOOL, V272, P213, DOI 10.1002/jez.1402720306; HALAWANI ME, 1980, BIOL REPROD, V23, P118, DOI 10.1095/biolreprod23.1.118; HALL MR, 1983, GEN COMP ENDOCR, V49, P270, DOI 10.1016/0016-6480(83)90144-2; HALL MR, 1986, GEN COMP ENDOCR, V64, P112, DOI 10.1016/0016-6480(86)90036-5; HALL TR, 1986, GEN COMP ENDOCR, V62, P171, DOI 10.1016/0016-6480(86)90107-3; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Hardy ICW, 1997, APPL ANIM BEHAV SCI, V51, P217, DOI 10.1016/S0168-1591(96)01106-9; Hauber ME, 2003, AUK, V120, P1, DOI 10.1642/0004-8038(2003)120[0001:PWPCWT]2.0.CO;2; HAWORTH C, 1994, J REPROD FERTILITY, V13; Hayward LS, 2005, PHYSIOL BIOCHEM ZOOL, V78, P1026, DOI 10.1086/432854; Hayward LS, 2004, GEN COMP ENDOCR, V135, P365, DOI 10.1016/j.ygcen.2003.11.002; HAYWOOD S, 1993, AUK, V110, P778, DOI 10.2307/4088633; HAYWOOD S, 1993, IBIS, V135, P79, DOI 10.1111/j.1474-919X.1993.tb02812.x; Herbst KL, 2004, CURR OPIN CLIN NUTR, V7, P271, DOI 10.1097/01.mco.0000126345.96117.9c; Horak P, 2003, BEHAV ECOL SOCIOBIOL, V54, P105, DOI 10.1007/s00265-003-0608-1; HOWE HF, 1976, ECOLOGY, V57, P1195, DOI 10.2307/1935044; HUSSELL DJT, 1972, ECOL MONOGR, V42, P317, DOI 10.2307/1942213; HUTCHISON RE, 1975, J ENDOCRINOL, V67, P29, DOI 10.1677/joe.0.0670029; JANIK DS, 1985, J ENDOCRINOL, V105, P201, DOI 10.1677/joe.0.1050201; Johnson AL, 2001, ENDOCRINOLOGY, V142, P3116, DOI 10.1210/en.142.7.3116; Johnson AL, 1996, ENDOCRINOLOGY, V137, P2059, DOI 10.1210/en.137.5.2059; Johnson AL, 1999, ENDOCRINOLOGY, V140, P4521, DOI 10.1210/en.140.10.4521; KELLY PA, 1991, ENDOCR REV, V12, P235, DOI 10.1210/edrv-12-3-235; Kilner R, 1998, ANIM BEHAV, V56, P155, DOI 10.1006/anbe.1998.0775; KLOMP H, 1970, ARDEA, V58, P1; Komdeur J, 2002, P ROY SOC B-BIOL SCI, V269, P1067, DOI 10.1098/rspb.2002.1965; KOMDEUR J, 2002, P ROY SOC LOND B BIO, V270, P3; Korpimaki E, 1998, OIKOS, V83, P259, DOI 10.2307/3546837; Korpimaki E, 2000, J AVIAN BIOL, V31, P128, DOI 10.1034/j.1600-048X.2000.310204.x; KOZLOWSKI J, 1989, EVOLUTION, V43, P1369, DOI 10.1111/j.1558-5646.1989.tb02588.x; KRACKOW S, 1995, BIOL REV, V70, P225, DOI 10.1111/j.1469-185X.1995.tb01066.x; Laaksonen T, 2004, EVOL ECOL, V18, P215, DOI 10.1023/B:EVEC.0000035081.91292.17; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; Lack D., 1968, ECOLOGICAL ADAPTATIO; Lack D., 1954, NATURAL REGULATION A; LEA RW, 1981, J ENDOCRINOL, V91, P89, DOI 10.1677/joe.0.0910089; LEA RW, 1994, J PHYSIOL-LONDON, V479P, pP142; LEA RW, 1982, BRIT POULTRY SCI, V23, P451, DOI 10.1080/00071688208447978; LEHRMAN DS, 1961, J ENDOCRINOL, V22, P269, DOI 10.1677/joe.0.0220269; LEHRMAN DS, 1958, J COMP PHYSIOL PSYCH, V51, P142, DOI 10.1037/h0046502; Lipar JL, 1999, GEN COMP ENDOCR, V115, P220, DOI 10.1006/gcen.1999.7296; Lipar JL, 2000, P ROY SOC B-BIOL SCI, V267, P2005, DOI 10.1098/rspb.2000.1242; Lovern MB, 2003, J EXP ZOOL PART A, V295A, P206, DOI 10.1002/jez.a.10225; Lovern MB, 2003, GEN COMP ENDOCR, V134, P109, DOI 10.1016/S0016-6480(03)00240-5; Lovern MB, 2001, GEN COMP ENDOCR, V124, P226, DOI 10.1006/gcen.2001.7704; MACNAMEE MC, 1986, GEN COMP ENDOCR, V62, P470, DOI 10.1016/0016-6480(86)90057-2; MAGRATH RD, 1990, BIOL REV, V65, P587, DOI 10.1111/j.1469-185X.1990.tb01239.x; Malecki IA, 1997, ADVANCES IN COMPARATIVE ENDOCRINOLOGY, TOMES 1 AND 2, P431; Maney DL, 1999, GEN COMP ENDOCR, V113, P323, DOI 10.1006/gcen.1998.7220; Maney DL, 1999, GEN COMP ENDOCR, V113, P445, DOI 10.1006/gcen.1998.7219; MARCH JB, 1994, J REPROD FERTIL, V100, P31; McInroy JKE, 2000, HORM BEHAV, V37, P399, DOI 10.1006/hbeh.2000.1591; MEAD PS, 1985, AUK, V102, P781; MEIER AH, 1968, PHYSIOL ZOOL, V41, P95, DOI 10.1086/physzool.41.1.30158487; MEIER AH, 1969, GEN COMP ENDOCR, V13, P222, DOI 10.1016/0016-6480(69)90243-3; MEIJER T, 1990, BEHAVIOUR, V114, P117, DOI 10.1163/156853990X00077; MEIJER T, 1988, THESIS U GRONINGEN; Mock D. W., 1997, EVOLUTION SIBLING RI; MOCK DW, 1995, TRENDS ECOL EVOL, V10, P130, DOI 10.1016/S0169-5347(00)89014-X; Mock DW, 1998, ANIM BEHAV, V56, P1, DOI 10.1006/anbe.1998.0842; MOCK DW, 1990, AM SCI, V78, P438; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; Monaghan P, 1998, P ROY SOC B-BIOL SCI, V265, P1731, DOI 10.1098/rspb.1998.0495; MORENO J, 1994, J AVIAN BIOL, V25, P125, DOI 10.2307/3677030; Morton Martin L., 2002, Studies in Avian Biology, V24, P1; MORTON ML, 1992, CONDOR, V94, P117, DOI 10.2307/1368802; Morton ML, 2004, CONDOR, V106, P131, DOI 10.1650/7304; Muller W, 2004, BEHAV ECOL, V15, P893, DOI 10.1093/beheco/arh091; Muller W, 2002, P ROY SOC B-BIOL SCI, V269, P2249, DOI 10.1098/rspb.2002.2159; Nager RG, 1999, P NATL ACAD SCI USA, V96, P570, DOI 10.1073/pnas.96.2.570; NALBANDOV AV, 1945, ENDOCRINOLOGY, V36, P251, DOI 10.1210/endo-36-4-251; Navara KJ, 2005, PHYSIOL BIOCHEM ZOOL, V78, P570, DOI 10.1086/430689; Nishiumi I, 1996, BEHAV ECOL SOCIOBIOL, V39, P211, DOI 10.1007/s002650050283; NONNEMAN DJ, 1992, BIOL REPROD, V47, P723, DOI 10.1095/biolreprod47.5.723; OCONNER RJ, 1984, GROWTH DEV BIRDS; Ohkubo T, 1998, GEN COMP ENDOCR, V109, P60, DOI 10.1006/gcen.1997.7008; Oppenheimer SD, 1996, CONDOR, V98, P428, DOI 10.2307/1369163; Osugi T, 2004, J ENDOCRINOL, V182, P33, DOI 10.1677/joe.0.1820033; PAPADOPOULOS V, 1986, ANDROLOGIA, V18, P79; PEDERSEN HC, 1989, ANIM BEHAV, V38, P926, DOI 10.1016/S0003-3472(89)80134-4; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; Petrie M, 2001, NATURE, V412, P498, DOI 10.1038/35087652; PIJANOWSKI BC, 1992, AM NAT, V139, P1270, DOI 10.1086/285386; Pike TW, 2003, BIOL REV, V78, P553, DOI 10.1017/S1464793103006146; Pilz KM, 2005, BIOL LETT-UK, V1, P318, DOI 10.1098/rsbl.2005.0321; Pilz KM, 2004, HORM BEHAV, V46, P179, DOI 10.1016/j.yhbeh.2004.03.004; Pilz KM, 2003, ANIM BEHAV, V65, P841, DOI 10.1006/anbe.2003.2094; Pitts GR, 2000, POULTRY SCI, V79, P355, DOI 10.1093/ps/79.3.355; PORTER RD, 1975, AUK, V117, P510; PUGESEK BH, 1981, SCIENCE, V212, P822, DOI 10.1126/science.212.4496.822; Rabouam C, 1998, AUK, V115, P483; Ramesh R, 2000, CELL TISSUE RES, V299, P371, DOI 10.1007/s004410050035; RAMSEY SM, 1985, GEN COMP ENDOCR, V59, P246, DOI 10.1016/0016-6480(85)90376-4; Reed WL, 2001, OECOLOGIA, V128, P164, DOI 10.1007/s004420100642; Reid J. M., 2002, AVIAN INCUBATION BEH, P314; Reid JM, 2000, FUNCT ECOL, V14, P560, DOI 10.1046/j.1365-2435.2000.t01-1-00446.x; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Ricklefs RE, 1997, TRENDS ECOL EVOL, V12, P229, DOI 10.1016/S0169-5347(97)86956-X; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; Ricklefs RE, 2000, CONDOR, V102, P3, DOI 10.1650/0010-5422(2000)102[0003:LSAMTE]2.0.CO;2; RICKLEFS RE, 1983, AVIAN BIOL, V7, P1; Riddle O, 1935, AM J PHYSIOL, V111, P352; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; Royle NJ, 2001, BEHAV ECOL, V12, P381, DOI 10.1093/beheco/12.4.381; Rutstein AN, 2005, BEHAV ECOL, V16, P62, DOI 10.1093/beheco/arh123; Ryan BC, 2002, NEUROSCI BIOBEHAV R, V26, P665, DOI 10.1016/S0149-7634(02)00038-6; Saether B.-E., 1990, Current Ornithology, V7, P251; Saino N, 2002, P ROY SOC B-BIOL SCI, V269, P1729, DOI 10.1098/rspb.2002.2088; SCHAWBL H, 1996, COMP BIOCH PHYSL A, V114, P271; Schwabl H, 1997, NATURE, V386, P231, DOI 10.1038/386231a0; Schwabl H, 1996, J EXP ZOOL, V276, P157, DOI 10.1002/(SICI)1097-010X(19961001)276:2<157::AID-JEZ9>3.0.CO;2-N; SCHWABL H, 1993, P NATL ACAD SCI USA, V90, P11446, DOI 10.1073/pnas.90.24.11446; SEILER HW, 1992, GEN COMP ENDOCR, V88, P83; SHARP PJ, 1988, J ENDOCRINOL, V118, P279, DOI 10.1677/joe.0.1180279; SHARP PJ, 1978, GEN COMP ENDOCR, V34, P296, DOI 10.1016/0016-6480(78)90251-4; SHARP PJ, 1989, J ENDOCRINOL, V122, P5, DOI 10.1677/joe.0.1220005; Sharp PJ, 2003, CAN J PHYSIOL PHARM, V81, P350, DOI 10.1139/Y03-025; Sharp PJ, 1998, COMP BIOCHEM PHYS C, V119, P275, DOI 10.1016/S0742-8413(98)00016-4; SILVERIN B, 1983, J ZOOL, V200, P119; Silverin B, 1997, GEN COMP ENDOCR, V105, P145, DOI 10.1006/gcen.1996.6817; Smallwood PD, 1998, EVOL ECOL, V12, P839, DOI 10.1023/A:1006598600532; Smiseth PT, 1998, BEHAV ECOL SOCIOBIOL, V42, P321, DOI 10.1007/s002650050444; Smith HG, 2004, OIKOS, V105, P301, DOI 10.1111/j.0030-1299.2004.10543.x; Sockman KW, 2000, HORM BEHAV, V38, P168, DOI 10.1006/hbeh.2000.1616; Sockman KW, 1999, GEN COMP ENDOCR, V114, P257, DOI 10.1006/gcen.1999.7252; Sockman KW, 1998, CAN J ZOOL, V76, P1399, DOI 10.1139/cjz-76-7-1399; Sockman KW, 2005, INTEGR COMP BIOL, V45, P1074; Sockman KW, 2005, BIOL LETT-UK, V1, P34, DOI 10.1098/rsbl.2004.0257; Sockman KW, 1998, J FIELD ORNITHOL, V69, P95; Sockman KW, 2004, BIOL REPROD, V71, P979, DOI 10.1095/biolreprod.104.029751; Sockman KW, 2004, ANIM BEHAV, V67, P1151, DOI 10.1016/j.anbehav.2003.07.011; Sockman KW, 2001, CONDOR, V103, P570, DOI 10.1650/0010-5422(2001)103[0570:COCSLD]2.0.CO;2; Sockman KW, 2001, GEN COMP ENDOCR, V122, P205, DOI 10.1006/gcen.2001.7626; Sockman KW, 2000, P ROY SOC B-BIOL SCI, V267, P1451, DOI 10.1098/rspb.2000.1163; Sockman KW, 2001, HORM BEHAV, V40, P462, DOI 10.1006/hbeh.2001.1715; Sreekumar KP, 1998, J NEUROENDOCRINOL, V10, P147, DOI 10.1046/j.1365-2826.1998.00187.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stenning MJ, 1996, TRENDS ECOL EVOL, V11, P243, DOI 10.1016/0169-5347(96)10030-6; STEVENSON IR, 2001, TRENDS ECOL EVOL, V16, P539; STOKKAN KA, 1984, GEN COMP ENDOCR, V54, P402, DOI 10.1016/0016-6480(84)90154-0; Stoleson Scott H., 1995, Current Ornithology, V12, P191; Stoleson SH, 1999, J ANIM ECOL, V68, P951, DOI 10.1046/j.1365-2656.1999.00342.x; Thomson DL, 1998, BIOL REV, V73, P293, DOI 10.1017/S0006323198005180; TRIVERS RL, 1974, AM ZOOL, V14, P249; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; TSAIMORRIS CH, 1983, BIOL REPROD, V29, P342, DOI 10.1095/biolreprod29.2.342; Tschirren B, 2005, J ANIM ECOL, V74, P675, DOI 10.1111/j.1365-2656.2005.00963.x; Tschirren B, 2004, P ROY SOC B-BIOL SCI, V271, P1371, DOI 10.1098/rspb.2004.2730; Ubuka T, 2005, P NATL ACAD SCI USA, V102, P3052, DOI 10.1073/pnas.0403840102; Vehrencamp SL, 2000, BEHAV ECOL, V11, P334, DOI 10.1093/beheco/11.3.334; Visser ME, 1999, OIKOS, V85, P445, DOI 10.2307/3546694; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; Vleck C. M., 2002, AVIAN INCUBATION BEH, P54; Vleck CM, 1999, GEN COMP ENDOCR, V113, P146, DOI 10.1006/gcen.1998.7191; VLECK CM, 1980, AM ZOOL, V20, P405; vom Saal F S, 1984, Prog Clin Biol Res, V169, P135; VOMSAAL FS, 1981, J REPROD FERTIL, V62, P633; VOMSAAL FS, 1990, BIOL REPROD, V43, P751, DOI 10.1095/biolreprod43.5.751; VOMSAAL FS, 1981, BIOL AGGRESSION, P231; VOMSAAL FS, 1999, ENCY REPROD, V2, P893; VOMSAAL FS, 1981, P 5 WORLD C SEX; von Engelhardt N, 2004, HORM BEHAV, V45, P306, DOI 10.1016/j.yhbeh.2003.12.009; Walsberg G.E., 1983, P161; Wang Q, 1999, HORM BEHAV, V35, P241, DOI 10.1006/hbeh.1999.1517; WATSON MD, 1993, CONDOR, V95, P869, DOI 10.2307/1369424; WEBB DR, 1987, CONDOR, V89, P874, DOI 10.2307/1368537; WHITTINGHAM LA, 1993, AUK, V110, P240; Wiebe KL, 1995, OIKOS, V74, P453, DOI 10.2307/3545990; WIEBE KL, 1995, BEHAV ECOL SOCIOBIOL, V36, P49; Wiebe KL, 1996, CAN J ZOOL, V74, P118, DOI 10.1139/z96-016; WIEBE KL, 1992, BEHAV ECOL SOCIOBIOL, V30, P379; WIEBE KL, 1994, J ANIM ECOL, V63, P551, DOI 10.2307/5221; Wiebe KL, 1996, AUK, V113, P258, DOI 10.2307/4088961; Wiebe KL, 1998, ANIM BEHAV, V55, P1043, DOI 10.1006/anbe.1997.0660; WIEBE KL, 1994, ECOLOGY, V75, P813, DOI 10.2307/1941737; WIEBE KL, 1995, J ZOOL, V237, P285, DOI 10.1111/j.1469-7998.1995.tb02763.x; WIEBE KL, 1995, CONDOR, V97, P708, DOI 10.2307/1369179; Wiehn J, 1997, ECOLOGY, V78, P2043, DOI 10.1890/0012-9658(1997)078[2043:FLOBSE]2.0.CO;2; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S; Williams T.D., 2001, P205; Williams TD, 1999, HORM BEHAV, V35, P135, DOI 10.1006/hbeh.1998.1506; Williams TD, 1996, PHYSIOL ZOOL, V69, P1255, DOI 10.1086/physzool.69.5.30164256; Williams TD, 1999, PHYSIOL BIOCHEM ZOOL, V72, P19, DOI 10.1086/316639; Williams TD, 2005, BIOSCIENCE, V55, P39, DOI 10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2; Williams TD, 2004, GEN COMP ENDOCR, V136, P346, DOI 10.1016/j.ygcen.2004.01.010; Williams TD, 2004, J EXP BIOL, V207, P263, DOI 10.1242/jeb.00740; Williams TD, 2003, AUK, V120, P481, DOI 10.1642/0004-8038(2003)120[0481:IARVIA]2.0.CO;2; Williams TD, 2001, P ROY SOC B-BIOL SCI, V268, P423, DOI 10.1098/rspb.2000.1374; WILLIAMS TD, 1994, BIOL REV, V69, P35, DOI 10.1111/j.1469-185X.1994.tb01485.x; WILLIAMS TD, 1993, GEN COMP ENDOCR, V92, P339, DOI 10.1006/gcen.1993.1171; WILLIAMS TD, 1999, ENCY REPROD, V1, P325; WILSON FE, 1986, J ENDOCRINOL, V109, P133, DOI 10.1677/joe.0.1090133; WINGFIELD JC, 1984, GEN COMP ENDOCR, V56, P417, DOI 10.1016/0016-6480(84)90084-4; WINGFIELD JC, 1994, ANIM BEHAV, V47, P77, DOI 10.1006/anbe.1994.1009; WINGFIELD JC, 1994, PSYCHONEUROENDOCRINO, V19, P709, DOI 10.1016/0306-4530(94)90052-3; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; Wingfield JC, 2003, ANIM BEHAV, V66, P807, DOI 10.1006/anbe.2003.2298; WINGFIELD JC, 1990, HORM BEHAV, V24, P89, DOI 10.1016/0018-506X(90)90029-W; WINGFIELD JC, 1993, AVIAN ENDOCRINOLOGY, P111; Woods DC, 2005, BIOL REPROD, V72, P643, DOI 10.1095/biolreprod.104.033902; Wynne-Edwards KE, 2000, TRENDS ECOL EVOL, V15, P464, DOI 10.1016/S0169-5347(00)01972-8; YOU S, 1995, J MOL ENDOCRINOL, V14, P117, DOI 10.1677/jme.0.0140117; Young RL, 2004, J EVOLUTION BIOL, V17, P1355, DOI 10.1111/j.1420.9101.2004.00762.x; YOUNGREN OM, 1991, BIOL REPROD, V44, P425, DOI 10.1095/biolreprod44.3.425; YOUNGREN OM, 1989, BIOL REPROD, V41, P610, DOI 10.1095/biolreprod41.4.610; ZELINSKIWOOTEN MB, 1993, J CLIN ENDOCR METAB, V76, P988, DOI 10.1210/jc.76.4.988; ZERBA E, 1983, CONDOR, V85, P1, DOI 10.2307/1367879; ZERBA E, 1983, ORNIS SCAND, V14, P188, DOI 10.2307/3676152; ZIELINSKI WJ, 1991, PHYSIOL BEHAV, V49, P117, DOI 10.1016/0031-9384(91)90241-F; ZIELINSKI WJ, 1991, J COMP PSYCHOL, V105, P134, DOI 10.1037/0735-7036.105.2.134; ZIELINSKI WJ, 1992, BEHAV ECOL SOCIOBIOL, V30, P185, DOI 10.1007/BF00166702 349 91 93 6 66 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1464-7931 1469-185X BIOL REV Biol. Rev. NOV 2006 81 4 629 666 10.1017/S1464793106007147 38 Biology Life Sciences & Biomedicine - Other Topics 110DL WOS:000242358400008 17038202 2018-11-12 J Shutler, D; Clark, RG; Fehr, C; Diamond, AW Shutler, Dave; Clark, Robert G.; Fehr, Carla; Diamond, Antony W. Time and recruitment costs as currencies in manipulation studies on the costs of reproduction ECOLOGY English Article lifetime reproductive success; recruitment; reproduction costs; Tachycineta bicolor; Tree Swallows SWALLOWS TACHYCINETA-BICOLOR; BREEDING BLUE TITS; TREE SWALLOWS; CLUTCH-SIZE; BROOD SIZE; GREAT TIT; NESTLING WEIGHT; LONG-TERM; SURVIVAL; BIRDS Life history theory predicts that parents will have lower Darwinian fitness if they tend clutches that are above or below the size they naturally produce. We experimentally tested for relationships between fitness and clutch size in Tree Swallow ( Tachycineta bicolor) offspring and parents. Over 130 trios of nests initiated on the same day were randomly divided among reduce ( -3 eggs), control ( 3 eggs picked up and replaced), or add ( +3 eggs) manipulations. Pre-manipulation modal clutch size was six eggs ( range before manipulations was 1-10; afterwards, it was 1-11). Hatching took longer in larger clutches, but the proportion of eggs hatching and. edging was similar for clutches from 4 to 10, so that clutches of 10 produced the maximum number of fledgling. Parental feeding rates were higher for larger broods, but per capita feeds to nestlings were fewer, and nestlings were smaller. Nonetheless, survival of both young and adults, based on recaptures in subsequent years, was not significantly affected by manipulations. Manipulations also had no significant effect on subsequent reproduction, including the number of fledglings produced by either local recruits or returning breeders. Collectively, our results failed to detect fitness costs associated with tending larger clutches for either parents or the offspring reared and suggested directional selection for larger clutch size. However, because clutches that hatch later produce fewer recruits, the extra days required to lay more eggs and to. edge extra young may eliminate a large part of the advantage that would accrue to parents producing enlarged clutches. For example, our data suggest that there may be less than a 16% benefit to producing nine instead of six eggs, rather than 50%, as is suggested by experimentally manipulated egg numbers alone. Thus, time, rather than costs of reproduction, may be the crucial constraint selecting against Tree Swallows laying larger clutches. Acadia Univ, Dept Biol, Wolfville, NS B4P 2R6, Canada; Prairie & No Wildlife Res Ctr, Canadian Wildlife Serv, Saskatoon, SK S7N 0X4, Canada; Univ Saskatchewan, Dept Biol, Saskatoon, SK S7N 5E2, Canada Shutler, D (reprint author), Acadia Univ, Dept Biol, Wolfville, NS B4P 2R6, Canada. dave.shutler@acadiau.ca Barber CA, 1996, BEHAV ECOL SOCIOBIOL, V38, P425, DOI 10.1007/s002650050260; Bidwell MT, 2005, AUK, V122, P246, DOI 10.1642/0004-8038(2005)122[0246:CALROO]2.0.CO;2; Blums P, 2002, J ANIM ECOL, V71, P280, DOI 10.1046/j.1365-2656.2002.00598.x; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Brown CR, 1999, CONDOR, V101, P230, DOI 10.2307/1369986; BRYANT DM, 1979, J ZOOL, V189, P275; Burness GP, 2000, J EXP BIOL, V203, P3513; Burnham K. P., 1998, MODEL SELECTION INFE; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Clark RG, 1999, ECOLOGY, V80, P272, DOI 10.2307/176996; Cohen J, 1988, STAT POWER ANAL BEHA; CONRAD KF, 1992, OECOLOGIA, V89, P356, DOI 10.1007/BF00317413; Cresswell W, 1997, ANIM BEHAV, V53, P93, DOI 10.1006/anbe.1996.0281; CRONMILLER JR, 1980, AUK, V97, P559; DESTEVEN D, 1980, EVOLUTION, V34, P278, DOI 10.1111/j.1558-5646.1980.tb04816.x; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; DRENT RH, 1980, ARDEA, V68, P225; Dunn PO, 2000, AUK, V117, P215, DOI 10.1642/0004-8038(2000)117[0215:GAEVIC]2.0.CO;2; ERSKINE AJ, 1976, WILSON BULL, V88, P611; Festa-Bianchet M, 1998, BEHAV ECOL, V9, P144, DOI 10.1093/beheco/9.2.144; Gloutney ML, 1996, COMP BIOCHEM PHYS A, V114, P265, DOI 10.1016/0300-9629(96)00006-0; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Heaney V, 1996, P ROY SOC B-BIOL SCI, V263, P1719, DOI 10.1098/rspb.1996.0251; HOCHACHKA W, 1992, BEHAV ECOL, V3, P42, DOI 10.1093/beheco/3.1.42; HUSSELL DJT, 1987, IBIS, V129, P243, DOI 10.1111/j.1474-919X.1987.tb03204.x; KREMENTZ DG, 1986, AUK, V103, P299; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LEFFELAAR D, 1986, BEHAV ECOL SOCIOBIOL, V18, P199, DOI 10.1007/BF00290823; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; MARTINS TLF, 1993, BEHAV ECOL, V4, P213, DOI 10.1093/beheco/4.3.213; McCarty JP, 2002, J FIELD ORNITHOL, V73, P9, DOI 10.1648/0273-8570-73.1.9; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MITCHELL JS, 1993, CONDOR, V95, P546, DOI 10.2307/1369598; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; Murphy MT, 2000, AUK, V117, P902, DOI 10.1642/0004-8038(2000)117[0902:IRBTSC]2.0.CO;2; NILSSON JA, 1994, J ANIM ECOL, V63, P200, DOI 10.2307/5595; NUR N, 1988, EVOLUTION, V42, P351, DOI 10.1111/j.1558-5646.1988.tb04138.x; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; NUR N, 1988, ARDEA, V76, P155; NUR N, 1984, J ANIM ECOL, V53, P497, DOI 10.2307/4530; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; PERRINS CM, 1975, J ANIM ECOL, V44, P695, DOI 10.2307/3712; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Robertson R. J., 1992, BIRDS N AM; ROBERTSON RJ, 1990, CAN J ZOOL, V68, P1046, DOI 10.1139/z90-152; Robertson RJ, 2001, J ANIM ECOL, V70, P1014, DOI 10.1046/j.0021-8790.2001.00555.x; Roff Derek A., 1992; *SAS I, 2002, SOFTW WIND VERS 8 02; Shutler D, 2003, AUK, V120, P619, DOI 10.1642/0004-8038(2003)120[0619:CACOTS]2.0.CO;2; Stearns S. C., 1992, EVOLUTION LIFE HIST; STUTCHBURY BJ, 1988, CAN J ZOOL, V66, P827, DOI 10.1139/z88-122; Tinbergen JM, 2004, BEHAV ECOL, V15, P525, DOI 10.1093/beheco/arh045; VANDERWERF E, 1992, ECOLOGY, V73, P1699, DOI 10.2307/1940021; WHEELWRIGHT NT, 1991, CAN J ZOOL, V69, P2540, DOI 10.1139/z91-358; White GC, 1999, BIRD STUDY, V46, P120; WIGGINS DA, 1990, CONDOR, V92, P534, DOI 10.2307/1368257; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Winkler DW, 1996, ECOLOGY, V77, P922, DOI 10.2307/2265512; Winkler DW, 2005, J ANIM ECOL, V74, P1080, DOI 10.1111/j.1365-2656.2005.01007.x; YOMTOV Y, 1981, OECOLOGIA, V48, P234, DOI 10.1007/BF00347969 63 47 47 1 21 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology NOV 2006 87 11 2938 2946 10.1890/0012-9658(2006)87[2938:TARCAC]2.0.CO;2 9 Ecology Environmental Sciences & Ecology 108BK WOS:000242214800025 17168037 2018-11-12 J Ferkau, C; Fischer, K Ferkau, Carina; Fischer, Klaus Costs of reproduction in male Bicyclus anynana and Pieris napi butterflies: Effects of mating history and food limitation ETHOLOGY English Article MALE DROSOPHILA-MELANOGASTER; SEXUAL SIZE DIMORPHISM; FEMALE LONGEVITY; BODY-SIZE; CHORISTONEURA-ROSACEANA; NUTRIENT INVESTMENT; MONANDRY POLYANDRY; RAPAE LEPIDOPTERA; EJACULATE SIZE; BUSH-CRICKET Life history theory predicts trade-offs arising from the costs of reproduction: individuals investing more into reproduction should have less energy available for their own somatic demands. Despite a wealth of research on such costs for females, very few studies have looked at the male side. We investigated the costs of reproduction in males of two butterfly species, Bicyclus anynana and Pieris napi. The males of these species differ tremendously in their allocation of nutrients to reproduction: virgin male spermatophores were 18.5 times larger in the latter compared with those in the former. Based on this striking difference, we expected to find a longevity cost of mating in P. napi, but not necessarily in B. anynana. In line with our predictions, we found no evidence for a survival cost of mating in B. anynana, while there was some evidence for such a cost in P. napi. Here, virgin males lived longer than once- or twice-mated ones. However, this overall trend did not hold for all treatment groups; and there was no lineal relationship between the number of copulations and longevity. Adult food limitation reduced longevity throughout, but had otherwise very little impact. Spermatophore dry mass decreased in later compared with first spermatophores, while water content increased, indicating that spermatophore production is indeed physiologically costly. Additionally, adult food limitation tended to reduce spermatophore fresh and dry mass, and tended to increase spermatophore water content. Based on our results we tentatively conclude that longevity and reproduction may not always be traded off against each other, as in our study organisms' longevity seems to depend in first place on adult carbohydrate income, while male reproduction seems to be primarily (although not entirely) fuelled by larval storage reserves. Univ Bayreuth, Dept Anim Ecol 1, D-95440 Bayreuth, Germany Ferkau, C (reprint author), Univ Bayreuth, Dept Anim Ecol 1, POB 101 251, D-95440 Bayreuth, Germany. klaus.fischer@uni-bayreuth.de Barnes AI, 2003, ANIM BEHAV, V66, P199, DOI 10.1006/anbe.2003.2122; Bauerfeind SS, 2005, OIKOS, V111, P514, DOI 10.1111/j.0030-1299.2005.13888.x; Bergstrom J, 2002, ANIM BEHAV, V64, P49, DOI 10.1006/anbe.2002.3032; BISSONDATH CJ, 1996, FUNCT ECOL, V10, P547; BISSOONDATH CJ, 1995, BEHAV ECOL SOCIOBIOL, V37, P365, DOI 10.1007/BF00170583; Bissoondath CJ, 1996, BEHAV ECOL SOCIOBIOL, V39, P285, DOI 10.1007/s002650050291; BOGGS CL, 1990, AM NAT, V136, P598, DOI 10.1086/285118; Brakefield Paul M., 1997, V83, P65; Brakefield PM, 2001, J EVOLUTION BIOL, V14, P148, DOI 10.1046/j.1420-9101.2001.00248.x; BRAKEFIELD PM, 1991, ECOL ENTOMOL, V16, P291, DOI 10.1111/j.1365-2311.1991.tb00220.x; Chapman T, 1998, P ROY SOC B-BIOL SCI, V265, P1879, DOI 10.1098/rspb.1998.0516; Cook PA, 1996, P ROY SOC B-BIOL SCI, V263, P1047, DOI 10.1098/rspb.1996.0154; Cordts R, 1996, ANIM BEHAV, V52, P269, DOI 10.1006/anbe.1996.0172; DELISLE J, 1995, OECOLOGIA, V104, P508, DOI 10.1007/BF00341349; Ebert G, 1993, SCHMETTERLINGE BADEN; Fischer K, 2004, FUNCT ECOL, V18, P656, DOI 10.1111/j.0269-8463.2004.00892.x; FOWLER K, 1989, NATURE, V338, P760, DOI 10.1038/338760a0; Gems D, 1996, NATURE, V379, P723, DOI 10.1038/379723a0; GURDON JB, 1991, METHOD CELL BIOL, V36, P299; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Hughes L, 2000, BEHAV ECOL SOCIOBIOL, V47, P119, DOI 10.1007/s002650050002; KAITALA A, 1995, J INSECT BEHAV, V8, P355; Kandori I, 1996, RES POPUL ECOL, V38, P225, DOI 10.1007/BF02515731; Karlsson B, 1998, ECOLOGY, V79, P2931, DOI 10.1890/0012-9658(1998)079[2931:NGRBAR]2.0.CO;2; KARLSSON B, 1990, FUNCT ECOL, V4, P609, DOI 10.2307/2389728; Kotiaho JS, 2003, J INSECT PHYSIOL, V49, P817, DOI 10.1016/S0022-1910(03)00117-3; LARSEN TB, 1991, BUTTERFLIES KENYA; LEIMAR O, 1994, P ROY SOC B-BIOL SCI, V258, P121, DOI 10.1098/rspb.1994.0151; Marcotte M, 2005, J INSECT PHYSIOL, V51, P537, DOI 10.1016/j.jinsphys.2004.12.009; MARSHALL LD, 1982, AM NAT, V120, P273, DOI 10.1086/283989; Martin OY, 2004, J EVOLUTION BIOL, V17, P357, DOI 10.1046/j.1420-9101.2003.00668.x; OBERHAUSER KS, 1988, ANIM BEHAV, V36, P1384, DOI 10.1016/S0003-3472(88)80208-2; Oberhauser KS, 1997, FUNCT ECOL, V11, P166, DOI 10.1046/j.1365-2435.1997.00074.x; OBERHAUSER KS, 1992, BEHAV ECOL SOCIOBIOL, V31, P367; OBERHAUSER KS, 1989, BEHAV ECOL SOCIOBIOL, V25, P237, DOI 10.1007/BF00300049; Omura H, 2003, J INSECT PHYSIOL, V49, P1031, DOI 10.1016/j.jinsphys.2003.07.001; PARTRIDGE L, 1990, J INSECT PHYSIOL, V36, P419, DOI 10.1016/0022-1910(90)90059-O; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; Paukku S, 2005, J INSECT PHYSIOL, V51, P1220, DOI 10.1016/j.jinsphys.2005.06.012; Prowse N, 1997, J INSECT PHYSIOL, V43, P501, DOI 10.1016/S0022-1910(97)00014-0; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff D. A., 2002, LIFE HIST EVOLUTION; ROYER L, 1993, FUNCT ECOL, V7, P209, DOI 10.2307/2389889; RUTOWSKI RL, 1983, EVOLUTION, V37, P708, DOI 10.1111/j.1558-5646.1983.tb05592.x; RUTOWSKI RL, 1987, BEHAV ECOL SOCIOBIOL, V20, P319, DOI 10.1007/BF00300677; Simmons LW, 2001, J EVOLUTION BIOL, V14, P585, DOI 10.1046/j.1420-9101.2001.00309.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; SUGAWARA T, 1979, J COMP PHYSIOL, V130, P191, DOI 10.1007/BF00614605; SVARD L, 1989, BEHAV ECOL SOCIOBIOL, V24, P395, DOI 10.1007/BF00293267; Vahed K, 1998, BIOL REV, V73, P43, DOI 10.1017/S0006323197005112; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; van't Hof AE, 2005, MOL ECOL NOTES, V5, P169, DOI 10.1111/j.1471-8268.2005.00870.x; Wagner WE, 2005, ECOL ENTOMOL, V30, P350, DOI 10.1111/j.0307-6946.2005.00698.x; Watanabe M, 1998, J INSECT BEHAV, V11, P559, DOI 10.1023/A:1022319514424; Wedell N, 1997, J EVOLUTION BIOL, V10, P315, DOI 10.1007/s000360050025; Wedell N, 2004, ANIM BEHAV, V67, P1059, DOI 10.1016/j.anbehav.2003.10.007; WEDELL N, 1991, EVOLUTION, V45, P1975, DOI 10.1111/j.1558-5646.1991.tb02704.x; Wedell N, 1999, FUNCT ECOL, V13, P85, DOI 10.1046/j.1365-2435.1999.00286.x; Wedell N, 1999, P ROY SOC B-BIOL SCI, V266, P1033, DOI 10.1098/rspb.1999.0740; Wedell N, 1996, AM NAT, V148, P1075, DOI 10.1086/285972; Wedell N, 2003, P ROY SOC B-BIOL SCI, V270, P2065, DOI 10.1098/rspb.2003.2479; Wheeler D, 1996, ANNU REV ENTOMOL, V41, P407, DOI 10.1146/annurev.en.41.010196.002203; WIKLUND C, 1993, BEHAV ECOL SOCIOBIOL, V33, P25, DOI 10.1007/BF00164343; WIKLUND C, 1995, BEHAV ECOL, V6, P6, DOI 10.1093/beheco/6.1.6; WIKLUND C, 1991, OIKOS, V60, P373, DOI 10.2307/3545080; Wiklund C, 1998, BEHAV ECOL, V9, P20, DOI 10.1093/beheco/9.1.20; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 68 66 69 2 36 BLACKWELL PUBLISHING OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND 0179-1613 ETHOLOGY Ethology NOV 2006 112 11 1117 1127 10.1111/j.1439-0310.2006.01266.x 11 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology 101QT WOS:000241756200010 2018-11-12 J Cox, RM Cox, R. M. A test of the reproductive cost hypothesis for sexual size dimorphism in Yarrow's spiny lizard Sceloporus jarrovii JOURNAL OF ANIMAL ECOLOGY English Article body size; cost of reproduction; growth rate; ovariectomy; trade-off SOUTHEASTERN ARIZONA; VIVIPAROUS LIZARD; NERODIA-SIPEDON; LIFE-HISTORY; WATER SNAKES; GROWTH-RATES; FOOD-INTAKE; TESTOSTERONE; AVAILABILITY; POPULATION 1. Trade-offs between reproduction and growth are central assumptions of life-history theory, but their implications for sexual size dimorphism (SSD) are poorly understood. 2. Adult male Yarrow's spiny lizards Sceloporus jarrovii average 10% larger than adult females. In a low-altitude (1700 m) population, this SSD develops because males grow more quickly than females during the first year of life, particularly during the first female reproductive season. This study tests the hypothesis that SSD develops because female growth is constrained by energetic costs of reproduction. 3. To test for a growth cost of reproduction, I compared growth rates of free-living females that differed, either naturally or experimentally, in reproductive status. Females that naturally delayed reproduction until their second year grew more quickly than females that reproduced as yearlings, and ovariectomized yearlings grew more quickly and to larger sizes than reproductive controls. 4. To determine whether SSD develops in the absence of this inferred reproductive cost, I also studied a high-altitude (2500 m) population in which all females delay reproduction until their second year. Sex differences in growth trajectories were similar to those observed at low altitude, such that males averaged 10% larger than females even prior to female reproduction. 5. Although female growth may be constrained by reproduction, multiple lines of evidence indicate that this cost is insufficient to explain the full magnitude of SSD in S. jarrovii. First, differences in growth of reproductive and nonreproductive females are not observed until the final month of gestation, by which time SSD is already well developed. Second, the growth benefit accruing from experimental inhibition of reproduction accounts for only 32% of the natural sex difference in body size. Finally, SSD develops well in advance of female reproduction in a high-altitude population with delayed maturation. Rutgers State Univ, Grad Program Ecol & Evolut, New Brunswick, NJ 08901 USA Cox, RM (reprint author), Ohio State Univ, Aronoff Lab 300, 318 W 12th Ave, Columbus, OH 43210 USA. cox.541@osu.edu Andersson M., 1994, SEXUAL SELECTION; Angilletta MJ, 2000, FUNCT ECOL, V14, P39, DOI 10.1046/j.1365-2435.2000.00387.x; BALLINGER RE, 1989, J HERPETOL, V23, P282, DOI 10.2307/1564450; BALLINGER RE, 1979, ECOLOGY, V60, P901, DOI 10.2307/1936858; BALLINGER RE, 1973, ECOLOGY, V54, P269, DOI 10.2307/1934336; Beaupre SJ, 1998, COPEIA, P40, DOI 10.2307/1447700; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BEUCHAT CA, 1990, PHYSIOL ZOOL, V63, P555, DOI 10.1086/physzool.63.3.30156228; BEUCHAT CA, 1986, COPEIA, P971, DOI 10.2307/1445294; Brown GP, 1997, CAN J ZOOL, V75, P424, DOI 10.1139/z97-052; Brown GP, 2004, OIKOS, V104, P269, DOI 10.1111/j.0030-1299.2004.12712.x; BRUCE RC, 1993, COPEIA, P313; CONGDON JD, 1977, THESIS ARIZONA STATE; COOPER WE, 1990, BEHAV ECOL SOCIOBIOL, V27, P153; Cox RM, 2005, J EXP BIOL, V208, P4679, DOI 10.1242/jeb.01948; Cox RM, 2005, PHYSIOL BIOCHEM ZOOL, V78, P531, DOI 10.1086/430226; Cox RM, 2003, EVOLUTION, V57, P1653, DOI 10.1554/02-227; COX RM, 2005, THESIS RUTGERS U NEW; DEMARCO V, 1992, J EXP ZOOL, V262, P383, DOI 10.1002/jez.1402620404; DEMARCO V, 1993, PHYSIOL ZOOL, V66, P166, DOI 10.1086/physzool.66.1.30158293; DUNHAM AE, 1978, ECOLOGY, V59, P770, DOI 10.2307/1938781; DUNHAM AE, 1978, MARQUARDT NONLINEAR; FITCH H S, 1978, University of Kansas Science Bulletin, V51, P441; Ford J. J., 1989, ANIMAL GROWTH REGULA, P317; GOLDBERG S R, 1971, Herpetologica, V27, P123; LANDWER AJ, 1994, OECOLOGIA, V100, P243, DOI 10.1007/BF00316951; Lardner B, 2003, OECOLOGIA, V137, P541, DOI 10.1007/s00442-003-1390-5; LAWLOR LR, 1976, ECOLOGY, V57, P1179, DOI 10.2307/1935043; Mathies T, 1997, FUNCT ECOL, V11, P498, DOI 10.1046/j.1365-2435.1997.00119.x; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RUBY DE, 1984, HERPETOLOGICA, V40, P425; SCHULTZ ET, 1993, COPEIA, P456; SCHWARTZ JJ, 1994, CHEM RES TOXICOL, V7, P29, DOI 10.1021/tx00037a005; SCHWARZKOPF L, 1993, ECOLOGY, V74, P1970, DOI 10.2307/1940840; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SINERVO B, 1991, J EXP BIOL, V155, P323; Smith GR, 1997, J HERPETOL, V31, P576, DOI 10.2307/1565613; Stearns S. C., 1992, EVOLUTION LIFE HIST; SUGG DW, 1995, SOUTHWEST NAT, V40, P193; TINKLE DW, 1973, COPEIA, P272; TINKLE DW, 1975, ECOLOGY, V56, P427, DOI 10.2307/1934973; Weeks SC, 1996, OIKOS, V75, P345, DOI 10.2307/3546263; Weiss SL, 2001, HERPETOLOGICA, V57, P138; Woodley SK, 1999, HORM BEHAV, V35, P205, DOI 10.1006/hbeh.1999.1514; WOOLBRIGHT LL, 1983, AM NAT, V121, P110, DOI 10.1086/284042; WOOLBRIGHT LL, 1989, HERPETOLOGICA, V45, P68; Yurewicz KL, 2004, COPEIA, P28, DOI 10.1643/0045-8511(2004)004[0028:RAACOR]2.0.CO;2 49 37 39 2 12 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0021-8790 J ANIM ECOL J. Anim. Ecol. NOV 2006 75 6 1361 1369 10.1111/j.1365-2656.2006.01160.x 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology 093HI WOS:000241158600014 17032368 Bronze 2018-11-12 J Rhen, T; Crews, D; Fivizzani, A; Elf, P Rhen, T.; Crews, D.; Fivizzani, A.; Elf, P. Reproductive tradeoffs and yolk steroids in female leopard geckos, Eublepharis macularius JOURNAL OF EVOLUTIONARY BIOLOGY English Article egg; life history; lizard; maternal effects; reproductive tradeoffs; yolk steroids LOW-DENSITY-LIPOPROTEIN; MATERNAL TESTOSTERONE; SEX DETERMINATION; HORMONE LEVELS; EGG SIZE; DEPOSITION; ANDROGENS; LIZARDS; CONSTRAINTS; EVOLUTION Life history theory predicts tradeoffs among reproductive traits, but the physiological mechanisms underlying such tradeoffs remain unclear. Here we examine reproductive tradeoffs and their association with yolk steroids in an oviparous lizard. Female leopard geckos lay two eggs in a clutch, produce multiple clutches in a breeding season, and reproduce for several years. We detected a significant tradeoff between egg size and the number of clutches laid by females during their first two breeding seasons. Total reproductive effort was strongly condition-dependent in the first season, but much less so in the second season. Although these and other tradeoffs were unmistakable, they were not associated with levels of androstenedione, oestradiol, or testosterone in egg yolk. Female condition and egg size, however, were inversely related to dihydrotestosterone (DHT) levels in egg yolk. Finally, steroid levels in egg yolk were not directly related to steroid levels in the maternal circulation when follicles were developing, indicating that steroid transfer to eggs is regulated. These findings suggest that maternal allocation of DHT could mitigate tradeoffs that lead to poor offspring quality (i.e. poor female condition) and small offspring size (i.e. small egg size). Univ N Dakota, Dept Biol, Grand Forks, ND 58202 USA; Univ Texas, Sch Biol Sci, Sect Integrat Biol, Austin, TX 78712 USA; Univ Minnesota, Dept Math Sci & Technol, Crookston, MN USA Rhen, T (reprint author), Univ N Dakota, Dept Biol, Box 9019, Grand Forks, ND 58202 USA. turk.rhen@und.nodak.edu NIMH NIH HHS [MH 57874, MH 11369] Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Bujo H, 1997, J NUTR, V127, pS801, DOI 10.1093/jn/127.5.801S; BURLEY RW, 1993, POULTRY SCI, V72, P850, DOI 10.3382/ps.0720850; Eising CM, 2001, P ROY SOC B-BIOL SCI, V268, P839, DOI 10.1098/rspb.2001.1594; Elf PK, 2003, GEN COMP ENDOCR, V132, P349, DOI 10.1016/S0016-6480(03)00098-4; Elf PK, 2002, GEN COMP ENDOCR, V127, P26, DOI 10.1016/S0016-6480(02)00017-5; FLORES D, 1994, PHYSIOL BEHAV, V55, P1067, DOI 10.1016/0031-9384(94)90389-1; Gil D, 1999, SCIENCE, V286, P126, DOI 10.1126/science.286.5437.126; Groothuis TGG, 2005, ANN NY ACAD SCI, V1046, P168, DOI 10.1193/annals.1343.014; Groothuis TGG, 2005, NEUROSCI BIOBEHAV R, V29, P329, DOI 10.1016/j.neubiorev.2004.12.002; Lipar JL, 2000, P ROY SOC B-BIOL SCI, V267, P2005, DOI 10.1098/rspb.2000.1242; Lovern MB, 2003, GEN COMP ENDOCR, V134, P109, DOI 10.1016/S0016-6480(03)00240-5; Marshall RC, 2005, J EXP BIOL, V208, P4593, DOI 10.1242/jeb.01949; Mazuc J, 2003, ECOL LETT, V6, P1084, DOI 10.1046/j.1461-0248.2003.00535.x; MEANS AR, 1972, METABOLISM, V21, P357, DOI 10.1016/0026-0495(72)90081-9; Painter D, 2002, GEN COMP ENDOCR, V127, P105, DOI 10.1016/S0016-6480(02)00075-8; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; Rhen T, 2000, GEN COMP ENDOCR, V118, P322, DOI 10.1006/gcen.2000.7477; Roff Derek A., 1992; Sakai S, 2005, J THEOR BIOL, V233, P65, DOI 10.1016/j.jtbi.2004.09.007; *SAS I INC, 2002, JMP STAT GRAPH GUID; SCHNEIDER WJ, 1992, CLIN INVESTIGATOR, V70, P385; Schwabl H, 1996, J EXP ZOOL, V276, P157, DOI 10.1002/(SICI)1097-010X(19961001)276:2<157::AID-JEZ9>3.0.CO;2-N; SCHWABL H, 1993, P NATL ACAD SCI USA, V90, P11446, DOI 10.1073/pnas.90.24.11446; Schwabl H, 1996, COMP BIOCHEM PHYS A, V114, P271, DOI 10.1016/0300-9629(96)00009-6; SINERVO B, 1991, J EXP ZOOL, V257, P252, DOI 10.1002/jez.1402570216; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; Speake BK, 2000, COMP BIOCHEM PHYS A, V127, P453, DOI 10.1016/S1095-6433(00)00276-2; Stearns S. C., 1992, EVOLUTION LIFE HIST; Strauss JFI, 2004, YEN JAFFES REPROD EN, P125; Tanvez A, 2004, GEN COMP ENDOCR, V138, P113, DOI 10.1016/j.ygcen.2004.05.010; Thompson MB, 2002, COMP BIOCHEM PHYS A, V133, P529, DOI 10.1016/S1095-6433(02)00188-5; Verboven N, 2003, P ROY SOC B-BIOL SCI, V270, P2223, DOI 10.1098/rspb.2003.2496; VIETS BE, 1993, J EXP ZOOL, V265, P679, DOI 10.1002/jez.1402650610; Walzem RL, 1999, J NUTR, V129, p467S, DOI 10.1093/jn/129.2.467S 36 19 20 0 15 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. NOV 2006 19 6 1819 1829 10.1111/j.1420-9101.2006.01180.x 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 094MI WOS:000241243100009 17040379 2018-11-12 J Roff, DA; Heibo, E; Vollestad, LA Roff, D. A.; Heibo, E.; Vollestad, L. A. The importance of growth and mortality costs in the evolution of the optimal life history JOURNAL OF EVOLUTIONARY BIOLOGY English Article age at first reproduction; allocation to reproduction; gonadosomatic index; life history; trade-offs DENSITY-DEPENDENT ENVIRONMENTS; OPTIMAL REPRODUCTIVE EFFORT; SALVELINUS-ALPINUS; ENERGY ALLOCATION; 1ST REPRODUCTION; ARCTIC CHARR; AGE; TRAITS; MODEL; PERCH A central assumption of life history theory is that the evolution of the component traits is determined in part by trade-offs between these traits. Whereas the existence of such trade-offs has been well demonstrated, the relative importance of these remains unclear. In this paper we use optimality theory to test the hypothesis that the trade-off between present and future fecundity induced by the costs of continued growth is a sufficient explanation for the optimal age at first reproduction, alpha, and the optimal allocation to reproduction, G, in 38 populations of perch and Arctic char. This hypothesis is rejected for both traits and we conclude that this trade-off, by itself, is an insufficient explanation for the observed values of alpha and G. Similarly, a fitness function that assumes a mortality cost to reproduction but no growth cost cannot account for the observed values of alpha. In contrast, under the assumption that fitness is maximized, the observed life histories can be accounted for by the joint action of trade-offs between growth and reproductive allocation and between mortality and reproductive allocation (Individual Juvenile Mortality model). Although the ability of the growth/mortality model to fit the data does not prove that this is the mechanism driving the evolution of the optimal age at first reproduction and allocation to reproduction, the fit does demonstrate that the hypothesis is consistent with the data and hence cannot at this time be rejected. We also examine two simpler versions of this model, one in which adult mortality is a constant proportion of juvenile mortality [Proportional Juvenile Mortality (PJM) model] and one in which the proportionality is constant within but not necessarily between species [Specific Juvenile Mortality (SSJM) model]. We find that the PJM model is unacceptable but that the SSJM model produces fits suggesting that, within the two species studied, juvenile mortality is proportional to adult mortality but the value differs between the two species. Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; Swedish Univ Agr Sci, Dept Aquaculture, S-90183 Umea, Sweden; Univ Oslo, Dept Biol, Ctr Ecol & Evolutionary Synth, Oslo, Norway Roff, DA (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. derek.roff@ucr.edu Vollestad, Leif Asbjorn/0000-0002-9389-7982 Benton TG, 2000, EVOL ECOL RES, V2, P769; Benton TG, 1999, EVOLUTION, V53, P677, DOI 10.1111/j.1558-5646.1999.tb05363.x; Bertschy KA, 1999, ECOLOGY, V80, P2299, DOI 10.2307/176911; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARLESWORTH B, 1993, LIFE HIT INVARIANTS; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; COOCH EG, 1994, OIKOS, V69, P447, DOI 10.2307/3545857; Czarnoleski M, 1998, ECOL LETT, V1, P5, DOI 10.1046/j.1461-0248.1998.0007b.x; DIANA JS, 1983, T AM FISH SOC, V112, P38, DOI 10.1577/1548-8659(1983)112<38:GMAPON>2.0.CO;2; Finstad AG, 2002, ENVIRON BIOL FISH, V65, P63, DOI 10.1023/A:1019679326993; Gemmill AW, 1999, J EVOLUTION BIOL, V12, P1148, DOI 10.1046/j.1420-9101.1999.00117.x; Heath DD, 1996, ENVIRON BIOL FISH, V45, P53, DOI 10.1007/BF00000627; Heibo E, 2005, ECOLOGY, V86, P3377, DOI 10.1890/04-1620; Hendry AP, 1999, CAN J ZOOL, V77, P1663, DOI 10.1139/cjz-77-11-1663; Jonsson N, 2003, CAN J FISH AQUAT SCI, V60, P506, DOI [10.1139/f03-042, 10.1139/F03-042]; KITAHARA T, 1987, RES POPUL ECOL, V29, P85, DOI 10.1007/BF02515427; KUSANO T, 1982, RES POPUL ECOL, V24, P329, DOI 10.1007/BF02515580; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; MACKINNON JC, 1972, J FISH RES BOARD CAN, V29, P1749, DOI 10.1139/f72-276; MAYNARDSMITH J, 1985, Q REV BIOL, V60, P265, DOI DOI 10.1086/414425); MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; MYERS RA, 1983, CAN J FISH AQUAT SCI, V40, P612, DOI 10.1139/f83-080; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Nicola GG, 2002, FRESHWATER BIOL, V47, P1353, DOI 10.1046/j.1365-2427.2002.00866.x; PAUL AJ, 1993, J FISH BIOL, V43, P131, DOI 10.1006/jfbi.1993.1115; PRESS WH, 1986, NUMERICAL RECIPES; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; Roff D. A., 2002, LIFE HIST EVOLUTION; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Roff Derek A., 1992; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; VANDERWERF E, 1992, ECOLOGY, V73, P1699, DOI 10.2307/1940021; VOLLESTAD LA, 1994, EVOL ECOL, V8, P315, DOI 10.1007/BF01238281; WANG SB, 1994, MAR BIOL, V121, P219, DOI 10.1007/BF00346729; Ylikarjula J, 2002, ANN ZOOL FENN, V39, P99 38 29 29 1 48 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. NOV 2006 19 6 1920 1930 10.1111/j.1420-9101.2006.01155.x 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 094MI WOS:000241243100019 17040389 Bronze 2018-11-12 J Gurven, M; Kaplan, H; Gutierrez, M Gurven, Michael; Kaplan, Hillard; Gutierrez, Maguin How long does it take to become a proficient hunter? Implications for the evolution of extended development and long life span JOURNAL OF HUMAN EVOLUTION English Article foraging; life history theory; hunting; childhood; Tsimane WHITE-WINGED CHOUGHS; HUMAN GROWTH; BEHAVIORAL ECOLOGY; OKAVANGO DELTA; BRAIN SIZE; INTELLIGENCE; HUMANS; LONGEVITY; HISTORY; COEVOLUTION Human hunting is arguably one of the most difficult activities common to foraging peoples now and in the past. Children and teenagers have usually been described as incompetent hunters in ethnographies of hunter-gatherers. This paper explores the extent to which adult-level competence is limited more by the constraints of physical capital, or body size, and brain-based capital, or skills and learning. The grandmother hypothesis requires that production is an increasing function of size alone, while the embodied capital model stipulates that production is a function of both size and delayed learning. Tests based on observational, interview, and experimental data collected among Tsimane Amerindians of the Bolivian Amazon suggest that size alone cannot explain the long delay until peak hunting productivity. Indirect encounters (e.g., smells, sounds, tracks, and scat) and shooting of stationary targets are two components of hunting ability limited primarily by physical size alone, but the more difficult components of hunting-direct encounters with important prey items and successful capture-require substantial skill. Those skills can take an additional ten to twenty years to develop after achieving adult body size. (c) 2006 Elsevier Ltd. All rights reserved. Univ Calif Santa Barbara, Dept Anthropol, Santa Barbara, CA 93106 USA; Univ New Mexico, Dept Anthropol, Albuquerque, NM 87131 USA; Correo Cent, Beni, Bolivia Gurven, M (reprint author), Univ Calif Santa Barbara, Dept Anthropol, Santa Barbara, CA 93106 USA. gurven@anth.ucsb.edu Henrich, Joseph/A-2403-2009; Robine, Jean-Marie/F-5439-2011 Robine, Jean-Marie/0000-0002-4111-6195; Gurven, Michael/0000-0002-5661-527X; Kaplan, Hillard/0000-0002-7398-7358 Alvarez HP, 2000, AM J PHYS ANTHROPOL, V113, P435, DOI 10.1002/1096-8644(200011)113:3<435::AID-AJPA11>3.0.CO;2-O; Barton R., 1997, MACHIAVELLIAN INTELL, P240, DOI DOI 10.1017/CB09780511525636.010; Barton Robert, 1999, P167, DOI 10.1017/CBO9780511542466.010; Binford L. R., 1981, BONES ANCIENT MEN MO; Bird D. W., 2005, HUNTER GATHERER CHIL, P129; Bird DW, 2002, HUM NATURE-INT BIOS, V13, P269, DOI 10.1007/s12110-002-1010-9; Bird R, 1999, EVOL ANTHROPOL, V8, P65, DOI 10.1002/(SICI)1520-6505(1999)8:2<65::AID-EVAN5>3.0.CO;2-3; Bird RB, 2002, HUM NATURE-INT BIOS, V13, P239, DOI 10.1007/s12110-002-1009-2; Bjorklund DF, 1997, PSYCHOL BULL, V122, P153, DOI 10.1037/0033-2909.122.2.153; BLUMENSCHINE RJ, 1994, J HUM EVOL, V27, P197, DOI 10.1006/jhev.1994.1042; Blurton Jones N, 1989, COMP SOCIOECOLOGY BE, P367; Bock J, 2004, HUM NATURE-INT BIOS, V15, P63, DOI 10.1007/s12110-004-1004-x; Bock J, 2002, HUM NATURE-INT BIOS, V13, P161, DOI 10.1007/s12110-002-1007-4; Bock J, 2002, HUM NATURE-INT BIOS, V13, P153, DOI 10.1007/s12110-002-1006-5; Bock J., 2005, HUNTER GATHERER CHIL, P109; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; Bogin B, 1996, AM J HUM BIOL, V8, P703, DOI 10.1002/(SICI)1520-6300(1996)8:6<703::AID-AJHB2>3.0.CO;2-U; Boyd R., 1985, CULTURE EVOLUTIONARY; Byrne R., 1995, THINKING APE EVOLUTI; Charnov Eric L., 1993, P1; Chicchon A., 1992, THESIS U FLORIDA; Clark W.E.LeGros, 1971, ANTECEDENTS MAN; Coleman J., 1998, AM J SOCIOL, V84, p[95, 120], DOI DOI 10.1086/228943; Cordain L, 2000, AM J CLIN NUTR, V71, P682; Cordain L., 2002, EUR J CLIN NUTR S1, V56, P42; Dean C, 2001, NATURE, V414, P628, DOI 10.1038/414628a; Draper P., 1976, KALAHARI HUNTER GATH, P199; DUNBAR RIM, 1993, BEHAV BRAIN SCI, V16, P681, DOI 10.1017/S0140525X00032325; Dunbar RIM, 1998, EVOL ANTHROPOL, V6, P178, DOI 10.1002/(SICI)1520-6505(1998)6:5<178::AID-EVAN5>3.0.CO;2-8; Eisenberg J. F, 1989, MAMMALS NEOTROPICS, V1; Emmons L. H., 1990, NEOTROPICAL RAINFORE; FALK D, 1980, YEARB PHYS ANTHROPOL, V23, P93, DOI DOI 10.1002/AJPA.1330230507; Godoy RA, 2004, HUM ECOL, V32, P339, DOI 10.1023/B:HUEC.0000028085.47707.08; Goodall J., 1986, CHIMPANZEES GOMBE PA; Gurven M, 2000, EVOL HUM BEHAV, V21, P263, DOI 10.1016/S1090-5138(00)00032-5; Gurven M, 2004, EXP ECON, V7, P5, DOI 10.1023/A:1026256404208; Gurven M, 2006, HUM NATURE-INT BIOS, V17, P1, DOI 10.1007/s12110-006-1019-6; Hawkes K, 2003, AM J HUM BIOL, V15, P380, DOI 10.1002/ajhb.10156; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hawkes K., 1990, RISK UNCERTAINTY TRI, P145; HEINSOHN RG, 1988, ETHOLOGY, V77, P177; HEINSOHN RG, 1991, AM NAT, V137, P864, DOI 10.1086/285198; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill K., 1983, ADAPTIVE RESPONSES N, P139; Iwaniuk AN, 2003, CAN J ZOOL, V81, P1913, DOI 10.1139/Z03-190; Janson Charles H., 1993, P57; Jerison H. J., 1973, EVOLUTION BRAIN INTE; Jones NB, 2002, HUM NATURE-INT BIOS, V13, P199, DOI 10.1007/s12110-002-1008-3; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan HS, 2003, RES PERSPECT LONGEV, P69; Kaplan HS, 2002, P NATL ACAD SCI USA, V99, P10221, DOI 10.1073/pnas.152502899; Klein RG., 1989, HUMAN CAREER HUMAN B; Konner MJ, 1976, KALAHARI HUNTER GATH, P325; LAMPL M, 1992, SCIENCE, V258, P801, DOI 10.1126/science.1439787; LANCASTER JB, 1978, HUM NATURE, V1, P82; Lee RD, 2003, P NATL ACAD SCI USA, V100, P9637, DOI 10.1073/pnas.1530303100; LEIBENBERG L, 1990, ART TRACKING ORIGIN; Leigh SR, 2001, EVOL ANTHROPOL, V10, P223, DOI 10.1002/evan.20002; Leigh SR, 1998, AM J PHYS ANTHROPOL, V107, P331; MEEHAN B, 1982, SHELL BED MIDDEN; O'Connell JF, 2002, J HUM EVOL, V43, P831, DOI 10.1006/jhev.2002.0604; OHTSUKA R, 1989, AM J PHYS ANTHROPOL, V80, P31, DOI 10.1002/ajpa.1330800105; Pagel Mark D., 1993, P28; PARKER ST, 1999, ORIGINS INTELLIGENCE; PEREIRA ME, 2002, JUVENILE PRIMATES LI; PUTNAM R., 2000, BOWLING ALONE COLLAP; Reader SM, 2002, P NATL ACAD SCI USA, V99, P4436, DOI 10.1073/pnas.062041299; Redford K. H., 1992, MAMMALS NEOTROPICS S; REYESGARCIA V, 2001, THESIS U FLORIDA GAI; Robson AJ, 2003, AM ECON REV, V93, P150, DOI 10.1257/000282803321455205; Ross Caroline, 1999, P73, DOI 10.1017/CBO9780511542466.007; Schultz A, 1956, PRIMATOLOGIA, P887; Smith B. Holly, 1993, P195; Smith EA, 2004, HUM NATURE-INT BIOS, V15, P343, DOI 10.1007/s12110-004-1013-9; STANFORD CG, 1999, HUNTING APES MEAT EA; STINER MC, 1991, HUMAN PREDATORS PREY, P149; STINERM, 2002, J ARCHAEOL RES, V10, P1; Tucker B., 2005, HUNTER GATHERER CHIL, P147; Walker R, 2002, J HUM EVOL, V42, P639, DOI 10.1006/jhev.2001.0541; WUNDERLE JM, 1991, CURR ORNITHOL, V8, P273 80 120 120 1 24 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0047-2484 J HUM EVOL J. Hum. Evol. NOV 2006 51 5 454 470 10.1016/j.jhevol.2006.05.003 17 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 106VT WOS:000242130800002 16797055 2018-11-12 J Munch, SB; Mangel, M Munch, Stephan B.; Mangel, Marc Evaluation of mortality trajectories in evolutionary biodemography PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article free-radical theory; disposable soma; life history theory; dynamic programming LONGEVITY; GROWTH; SENESCENCE; CURVES; RATES; MODEL An important task in evolutionary biodemography is to determine the schedule of survival and reproduction as the outcome of natural selection acting on life histories. We do this by using a model in which the state of the organism is characterized by mass and accumulated damage, both of which are affected by activity and which affect the rate of mortality. Focusing on growth during the juvenile period, we determine the level of activity that maximizes reproductive value. Given this, we are able to project forward and determine the trajectory of mortality for an individual following the optimal life history, given the physiological and reproductive parameters. We show that there are two main classes of juvenile mortality trajectories: U-shaped (such as recently reported for prereproductive humans) and steadily declining and we are able to connect the shape of the mortality trajectory with the physiological and reproductive parameters characterizing the life history. Our work shows the importance of state in models of evolutionary biodemography and the power of modern computational methods to illuminate biological process. Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA; SUNY Stony Brook, Marine Sci Res Ctr, Stony Brook, NY 11794 USA Mangel, M (reprint author), Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA. msmangel@ucsc.edu Carey JR, 2001, ANNU REV ENTOMOL, V46, P79, DOI 10.1146/annurev.ento.46.1.79; CAREY JR, 2003, LONGEVITY BIOL DEMOG; CAREY JR, 2001, POPULATION ENGLISH S, V13, P9; Chu CYC, 2006, THEOR POPUL BIOL, V69, P193, DOI 10.1016/j.tpb.2005.11.004; Cichon M, 2000, EVOL ECOL RES, V2, P857; CLARK CW, 2000, DYNAMIC STATE VARIAB; Collins AR, 1998, FASEB J, V12, P1397; Drenos F, 2005, MECH AGEING DEV, V126, P99, DOI 10.1016/j.mad.2004.09.026; Essington TE, 2001, CAN J FISH AQUAT SCI, V58, P2129, DOI 10.1139/cjfas-58-11-2129; GAVRILOV LA, 1991, BIOL LIFE SPAN QUANT; GOMPERTZ B, 1825, PHILOS T ROY SOC LON, V115, P513, DOI DOI 10.1098/RSTL.1825.0026; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Hastie T., 2001, ELEMENTS STAT LEARNI, P84; Houston AI, 1999, MODELS ADAPTIVE BEHA; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Lander AD, 2004, PLOS BIOL, V2, P712, DOI 10.1371/journal.pbio.0020164; Mangel M, 2005, AM NAT, V166, pE155, DOI 10.1086/444439; Mangel M, 2004, THEOR POPUL BIOL, V65, P353, DOI 10.1016/j.tpb.2003.07.005; Mangel M, 2001, J THEOR BIOL, V213, P559, DOI 10.1006/jtbi.2001.2431; Mangel M., 1988, DYNAMIC MODELING BEH; Mangel M, 2003, POPUL DEV REV, V29, P57; Milne EMG, 2006, MECH AGEING DEV, V127, P290, DOI 10.1016/j.mad.2005.11.003; Novoseltsev VN, 2002, EVOLUTION, V56, P1136; Pearl R, 1935, Q REV BIOL, V10, P60, DOI 10.1086/394476; Wachter KW, 2003, POPUL DEV REV, V29, P270; WACHTER KW, 1997, ZEUS SALMON BIOMDEMO; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; Yearsley JM, 2005, J THEOR BIOL, V235, P305, DOI 10.1016/j.jtbi.2005.01.009 30 14 15 0 13 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. OCT 31 2006 103 44 16604 16607 10.1073/pnas.0601735103 4 Multidisciplinary Sciences Science & Technology - Other Topics 103IS WOS:000241879500095 17060634 Green Published, Bronze 2018-11-12 J Doroszuk, A; Wojewodzic, MW; Kammenga, JE Doroszuk, Agnieszka; Wojewodzic, Marcin W.; Kammenga, Jan E. Rapid adaptive divergence of life-history traits in response to abiotic stress within a natural population of a parthenogenetic nematode PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article population differentiation; adaptation; life history; asexual reproduction; stress PLANT RANUNCULUS-REPTANS; CAENORHABDITIS-ELEGANS; LOCAL ADAPTATION; ACROBELOIDES-NANUS; EVOLUTION; SELECTION; SPECIFICATION; VARIABILITY; GENETICS; GRADIENT Sexual reproduction is acknowledged to facilitate adaptation to novel environments while asexual eukaryotes are often regarded as having low adaptive potential. This view has been challenged in a number of studies, but the adaptive potential of asexual populations in the field is poorly documented. We investigated the response of natural populations of the parthenogenetic nematode Acrobeloides nanus to imposed divergent selective pressures. For this purpose, we employed a replicated evolution experiment in the field. After 20 years of evolution under abiotic stress and control conditions, life-history traits were assessed in reaction norm- and reciprocal transplant experiments. Both these experiments indicated adaptive divergence within the population of A. nanus. Namely, the transplant experiment demonstrated that in the stressed soil environment, body growth rate was more reduced in the nematodes originating from the control treatment. In the reaction norm experiment, survival and reproduction were higher under test conditions corresponding to the native environment of the nematodes. The differences in the analysed traits are discussed in the context of life-history theory. Overall, our results strongly support high adaptive potential of A. nanus and suggest that population structure and distribution of asexual species is shaped by local adaptation events. Univ Wageningen & Res Ctr, Nematol Lab, NL-6709 PD Wageningen, Netherlands Doroszuk, A (reprint author), Univ Wageningen & Res Ctr, Nematol Lab, Binnenhaven 5, NL-6709 PD Wageningen, Netherlands. agnieszka.doroszuk@wur.nl Wojewodzic, Marcin W./P-9463-2017 Wojewodzic, Marcin W./0000-0003-2501-5201 ANDRADE MCB, 1995, EVOL ECOL, V9, P397, DOI 10.1007/BF01237762; Antonovics J., 1971, Advances in Ecological Research, V7, P1, DOI 10.1016/S0065-2504(08)60202-0; ARONSON J, 1992, OECOLOGIA, V89, P17, DOI 10.1007/BF00319010; Arts MJSJ, 2004, ECOTOXICOLOGY, V13, P739, DOI 10.1007/s10646-003-4473-5; ASHER JH, 1970, GENETICS, V66, P369; Berglund ABN, 2004, NEW PHYTOL, V161, P199, DOI 10.1046/j.1469-8137.2003.00934.x; Bijlsma R, 2005, J EVOLUTION BIOL, V18, P744, DOI 10.1111/j.1420-9101.2005.00962.x; BIRD A. F., 1971, Plant parasitic nematodes. Volume II. Cytogenetics, hostparasite interactions, and physiology. New York: Academic Press, Inc., V2, P35; BIRD AF, 1993, J NEMATOL, V25, P607; Bongers T., 1988, NEMATODEN NEDERLAND; CAMPBELL BD, 1992, ECOLOGY, V73, P15, DOI 10.2307/1938717; DE GOEDE R. G. M, 1998, NEMATODE COMMUNITIES; De Visser JAGM, 2005, J EVOLUTION BIOL, V18, P779, DOI 10.1111/j.1420-9101.2005.00879.x; Denver DR, 2004, NATURE, V430, P679, DOI 10.1038/nature02697; DICKSON RC, 1962, INT K ENT WIEN 1960, V2, P26; DONKER MH, 1992, FUNCT ECOL, V6, P445, DOI 10.2307/2389282; EMMONS SW, 1979, P NATL ACAD SCI USA, V76, P1333, DOI 10.1073/pnas.76.3.1333; Enjalbert J, 2005, MOL ECOL, V14, P2065, DOI 10.1111/j.1365-294X.2005.02566.x; Freckman D.W., 1982, P81; FUTUYMA DJ, 1988, ANNU REV ECOL SYST, V19, P207, DOI 10.1146/annurev.es.19.110188.001231; Goddard MR, 2005, NATURE, V434, P636, DOI 10.1038/nature03405; Goldstein B, 1998, CURR BIOL, V8, P157, DOI 10.1016/S0960-9822(98)70062-4; GOROKHOVA E, 2002, P R SOC B, V268, P2373; GRIME JP, 1975, J ECOL, V63, P393, DOI 10.2307/2258728; Groot TVM, 2005, EXP APPL ACAROL, V36, P165, DOI 10.1007/s10493-005-3360-6; Hunt HW, 2001, NEMATOLOGY, V3, P705, DOI 10.1163/156854101753536082; Kawecki TJ, 2004, ECOL LETT, V7, P1225, DOI 10.1111/j.1461-0248.2004.00684.x; Korthals GW, 1996, ENVIRON TOXICOL CHEM, V15, P979, DOI 10.1897/1551-5028(1996)015<0979:LTEOCA>2.3.CO;2; KORTHALS GW, 1997, POLLUTANT INDUCED CH; Lahl V, 2006, INT J DEV BIOL, V50, P393, DOI 10.1387/ijdb.052030vl; Laugsch M, 2004, INT J DEV BIOL, V48, P655, DOI 10.1387/ijdb.031758ml; Lee D.L., 2002, BIOL NEMATODES; Lenssen JPM, 2004, J ECOL, V92, P696, DOI 10.1111/j.0022-0477.2004.00895.x; Lenz R, 1998, PLANT SOIL, V198, P109, DOI 10.1023/A:1004372228844; LOKKI J, 1976, HEREDITAS, V83, P65; Loxdale HD, 2003, BIOL J LINN SOC, V79, P3, DOI 10.1046/j.1095-8312.2003.00177.x; Lushai G, 2003, BIOL J LINN SOC, V79, P193, DOI 10.1046/j.1095-8312.2003.00189.x; LYNCH M, 1984, Q REV BIOL, V59, P257, DOI 10.1086/413902; Maddox PS, 2004, CHROMOSOME RES, V12, P641, DOI 10.1023/B:CHRO.0000036588.42225.2f; MCNEILLY T, 1968, HEREDITY, V23, P99, DOI 10.1038/hdy.1968.8; Morin P. J., 1999, COMMUNITY ECOLOGY; Nesterov P. I., 1979, PLANT PARASITIC FREE; Oostenbrink M, 1960, NEMATOLOGY, P85; POSTHUMA L, 1993, COMP BIOCHEM PHYS C, V106, P11, DOI 10.1016/0742-8413(93)90251-F; Prati D, 2000, OIKOS, V90, P442, DOI 10.1034/j.1600-0706.2000.900303.x; RADFORD PJ, 1967, CROP SCI, V7, P171, DOI 10.2135/cropsci1967.0011183X000700030001x; RICE KJ, 1991, OECOLOGIA, V88, P91, DOI 10.1007/BF00328408; *SAS I, 2000, SAS STAT SOFTW; SOHLENIUS B, 1999, NEMATOLOGY, P695; Stanton ML, 2000, EVOLUTION, V54, P93, DOI 10.1111/j.0014-3820.2000.tb00011.x; Sunnucks P, 1998, HEREDITY, V81, P638, DOI 10.1038/sj.hdy.6884440; Travisano M, 1996, GENETICS, V143, P15; TRIANTAPHYLLOU AC, 1973, ANNU REV PHYTOPATHOL, V11, P441, DOI 10.1146/annurev.py.11.090173.002301; VANBEZOOIJEN J, 1997, METHODEN TECHNIKEN N; Wiegner O, 1998, DEV BIOL, V204, P3, DOI 10.1006/dbio.1998.9054; WILHOIT LR, 1991, ENVIRON ENTOMOL, V20, P757, DOI 10.1093/ee/20.3.757; WOOD WB, 1988, NEMATODE CAENORHABDI 57 10 14 0 11 ROYAL SOCIETY LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P R SOC B Proc. R. Soc. B-Biol. Sci. OCT 22 2006 273 1601 2611 2618 10.1098/rspb.2006.3602 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 092OS WOS:000241107800005 17002946 Green Published 2018-11-12 J Podolsky, RD; Moran, AL Podolsky, Robert D.; Moran, Amy L. Integrating function across marine life cycles INTEGRATIVE AND COMPARATIVE BIOLOGY English Article; Proceedings Paper Annual Meeting of the Society-for-Integrative-and-Comparative-Biology JAN 04-08, 2006 Orlando, FL POST-METAMORPHIC PERFORMANCE; FREE-SPAWNED EGGS; CHASMAGNATHUS-GRANULATA; DELAYED METAMORPHOSIS; ESTUARINE CRAB; OFFSPRING SIZE; LARVAL QUALITY; REPRODUCTIVE STRATEGIES; POSTSETTLEMENT SURVIVAL; POSTLARVAL PERFORMANCE Complex life cycles involve a set of discrete stages that can differ dramatically in form and function. Transitions between different stages vary in nature and magnitude; likewise, the degree of autonomy among stages enabled by these transitions can vary as well. Because the selective value of traits is likely to shift over ontogeny, the degree of autonomy among stages is important for understanding how processes at one life-history stage alter the conditions for performance and selection at others. We pose 3 questions that help to define a research focus on processes that integrate function across life cycles. First, to what extent do particular transitions between life-history stages allow those stages to function as autonomous units? We identify the roles that stages play in the life history, types of transitions between stages, and 3 forces (structural, genetic/epigenetic, and experiential) that can contribute to integration among stages. Second, what are the potential implications of integration across life cycles for assumptions and predictions of life-history theory? We provide 3 examples where theory has traditionally focused on processes acting within stages in isolation from others. Third, what are the long-term consequences of carryover of experience from one life cycle stage to the next? We distinguish 3 scenarios: persistence (effects of prior experience persist through subsequent stages), amplification (effects persist and are magnified at subsequent stages), and compensation (effects arc compensated for and diminish at subsequent stages). We use these scenarios to differentiate between effects of a carryover of state and carryover into subsequent processes. The symposium introduced by our discussion is meant to highlight how discrete stages can be functionally coupled, such that life cycle evolution becomes a more highly integrated response to selection than can be deduced from the study of individual stages. Coll Charleston, Grice Marine Lab, Charleston, SC 29412 USA; Clemson Univ, Dept Biol Sci, Clemson, SC 29634 USA Podolsky, RD (reprint author), Coll Charleston, Grice Marine Lab, 205 Ft Johnson, Charleston, SC 29412 USA. podolskyr@cofc.edu Moran, Amy/F-7072-2011 Allen JD, 2006, J EXP MAR BIOL ECOL, V331, P186, DOI 10.1016/j.jembe.2005.10.020; BAGENAL TB, 1971, J FISH BIOL, V3, P207, DOI 10.1111/j.1095-8649.1971.tb03665.x; BAYNE BL, 1978, J MAR BIOL ASSOC UK, V58, P825, DOI 10.1017/S0025315400056794; Bingham BL, 2004, CAN J ZOOL, V82, P457, DOI 10.1139/Z04-009; Brawley SH, 1999, AM ZOOL, V39, P218; CHRISTIANSEN FB, 1979, THEOR POPUL BIOL, V16, P267, DOI 10.1016/0040-5809(79)90017-0; CUSHING DH, 1967, J MAR BIOL ASSOC UK, V47, P193, DOI 10.1017/S002531540003366X; Davidson B, 2004, MODULARITY IN DEVELOPMENT AND EVOLUTION, P443; Emlet R.B., 1987, Echinoderm Studies, V2, P55; Emlet RB, 1997, EVOLUTION, V51, P141, DOI 10.1111/j.1558-5646.1997.tb02395.x; Farley GS, 2001, AM NAT, V157, P626, DOI 10.1086/320619; Fischer K, 2004, HEREDITY, V92, P163, DOI 10.1038/sj.hdy.6800382; Galeotti P, 2006, P R SOC B, V273, P1105, DOI 10.1098/rspb.2005.3345; George SB, 1996, OCEANOL ACTA, V19, P297; Gimenez L, 2004, OIKOS, V104, P570; Gimenez L, 2001, J EXP MAR BIOL ECOL, V260, P241, DOI 10.1016/S0022-0981(01)00258-1; Gimenez L, 2003, MAR ECOL PROG SER, V249, P251, DOI 10.3354/meps249251; Gimenez L, 2006, INTEGR COMP BIOL, V46, P615, DOI 10.1093/icb/ic1010; Grosberg RK, 1998, TRENDS ECOL EVOL, V13, P112, DOI 10.1016/S0169-5347(97)01313-X; Hemmi A, 2004, OECOLOGIA, V140, P302, DOI 10.1007/s00442-004-1574-7; Jordan DS, 1908, AM NAT, V42, P73, DOI 10.1086/278905; Kiflawi M, 2006, OIKOS, V113, P168, DOI 10.1111/j.0030-1299.2001.14378.x; LESSIOS HA, 1990, AM NAT, V135, P1, DOI 10.1086/285028; Levitan DR, 2000, AM NAT, V156, P175, DOI 10.1086/303376; LEVITAN DR, 1993, AM NAT, V141, P517, DOI 10.1086/285489; Marshall DJ, 2006, ECOLOGY, V87, P214, DOI 10.1890/05-0350; Marshall DJ, 2004, MAR ECOL PROG SER, V279, P73, DOI 10.3354/meps279073; Marshall DJ, 2004, MAR ECOL PROG SER, V272, P301, DOI 10.3354/meps272301; Marshall DJ, 2003, ECOLOGY, V84, P3131, DOI 10.1890/02-0311; Marshall DJ, 2003, MAR ECOL PROG SER, V259, P139, DOI 10.3354/meps259139; Marshall DJ, 2003, INVERTEBR REPROD DEV, V44, P63, DOI 10.1080/07924259.2003.9652554; Marshall DJ, 2003, MAR ECOL PROG SER, V246, P153, DOI 10.3354/meps246153; Marshall DJ, 2002, ECOL LETT, V5, P173, DOI 10.1046/j.1461-0248.2002.00257.x; Marshall DJ, 2000, MAR ECOL PROG SER, V195, P305, DOI 10.3354/meps195305; Marshall DJ, 2006, INTEGR COMP BIOL, V46, P643, DOI [10.1093/icb/icl013, 10.1093/icb/ic1013]; McEdward LR, 2003, MAR ECOL PROG SER, V256, P111, DOI 10.3354/meps256111; Moran AL, 1999, AM ZOOL, V39, P304; Moran AL, 2004, EVOLUTION, V58, P2718; Moran AL, 2001, ECOLOGY, V82, P1597, DOI 10.1890/0012-9658(2001)082[1597:OSAPIV]2.0.CO;2; Pechenik JA, 2006, INTEGR COMP BIOL, V46, P323, DOI 10.1093/icb/icj028; Pechenik JA, 2001, INVERTEBR BIOL, V120, P50; Phillips NE, 2002, ECOLOGY, V83, P2562, DOI 10.1890/0012-9658(2002)083[2562:EONMLC]2.0.CO;2; Podolsky RD, 2003, INTEGR COMP BIOL, V43, P450, DOI 10.1093/icb/43.3.450; Podolsky RD, 2004, AM NAT, V163, P735, DOI 10.1086/382791; Podolsky RD, 1996, AM NAT, V148, P160, DOI 10.1086/285916; Podolsky RD, 2001, EVOLUTION, V55, P2470; Podolsky RD, 2002, J EXP BIOL, V205, P1657; Qian PY, 1998, J EXP MAR BIOL ECOL, V227, P169, DOI 10.1016/S0022-0981(97)00267-0; RAY J, 1691, WISDOM GOD MANIFESTE, P80; ROTHSCHILD LORD, 1951, JOUR EXAT L BIOL, V28, P403; Schlosser G, 2004, MODULARITY IN DEVELOPMENT AND EVOLUTION, P1; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Styan CA, 1998, AM NAT, V152, P290, DOI 10.1086/286168; THRESHER RE, 1982, SCIENCE, V218, P70, DOI 10.1126/science.218.4567.70; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; Werner E.E., 1988, P60; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435 58 41 41 0 18 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 INTEGR COMP BIOL Integr. Comp. Biol. OCT 2006 46 5 577 586 10.1093/icb/ic1026 10 Zoology Zoology 085QZ WOS:000240620000002 21672768 2018-11-12 J de Heij, ME; van den Hout, PJ; Tinbergen, JM de Heij, Maaike E.; van den Hout, Piet J.; Tinbergen, Joost M. Fitness cost of incubation in great tits (Parus major) is related to clutch size PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article clutch size manipulation; costs of reproduction; fitness consequences; life history; temporal variation FLYCATCHER FICEDULA-ALBICOLLIS; PIED FLYCATCHER; BROOD SIZE; TRADE-OFF; COLLARED FLYCATCHER; EGG-PRODUCTION; REPRODUCTIVE PHASES; FUTURE REPRODUCTION; MANIPULATION; CONSEQUENCES Life-history theory predicts that parents produce the number of offspring that maximizes their fitness. In birds, natural selection on parental decisions regarding clutch size may act during egg laying, incubation or nestling phase. To study the fitness consequences of clutch size during the incubation phase, we manipulated the clutch sizes during this phase only in three breeding seasons and measured the fitness consequences on the short and the long term. Clutch enlargement did not affect the offspring fitness of the manipulated first clutches, but fledging probability of the subsequent clutch in the same season was reduced. Parents incubating enlarged first clutches provided adequate care for the offspring of their first clutches during the nestling phase, but paid the price when caring for the offspring of their second clutch. Parents that incubated enlarged first clutches had lower local survival in the 2 years when the population had a relatively high production of second clutches, but not in the third year when there was a very low production of second clutches. During these 2 years, the costs of incubation were strong enough to change positive selection, as established by brood size manipulations in this study population, into stabilizing selection through the negative effect of incubation on parental fitness. Univ Groningen, Ctr Ecol & Evolut Studies, Anim Ecol Grp, NL-9750 AA Haren, Netherlands de Heij, ME (reprint author), Univ Groningen, Ctr Ecol & Evolut Studies, Anim Ecol Grp, POB 14, NL-9750 AA Haren, Netherlands. m.e.de.heij@rug.nl CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Cichon M, 2000, OECOLOGIA, V125, P453, DOI 10.1007/s004420000461; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Engstrand SM, 2002, FUNCT ECOL, V16, P782, DOI 10.1046/j.1365-2435.2002.00681.x; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; Hanssen SA, 2003, P ROY SOC B-BIOL SCI, V270, P531, DOI 10.1098/rspb.2002.2262; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; HEANEY V, 1995, P ROY SOC B-BIOL SCI, V261, P361, DOI 10.1098/rspb.1995.0160; Heaney V, 1996, P ROY SOC B-BIOL SCI, V263, P1719, DOI 10.1098/rspb.1996.0251; Ilmonen P, 2002, OECOLOGIA, V130, P199, DOI 10.1007/s004420100804; Kalmbach E, 2004, J AVIAN BIOL, V35, P501, DOI 10.1111/j.0908-8857.2004.03271.x; Larsen VA, 2003, J ANIM ECOL, V72, P784, DOI 10.1046/j.1365-2656.2003.00751.x; Lessells C.M., 1993, Etologia, V3, P95; Lessells C.M., 1991, P32; LINDEN M, 1990, THESIS U UPPSALA UPP; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; MORENO J, 1989, ORNIS SCAND, V20, P123, DOI 10.2307/3676879; MORENO J, 1991, IBIS, V133, P186, DOI 10.1111/j.1474-919X.1991.tb04830.x; Rasbash J., 2000, USERS GUIDE MLWIN; Reid J. M., 2002, AVIAN INCUBATION BEH, P314; Reid JM, 2000, FUNCT ECOL, V14, P560, DOI 10.1046/j.1365-2435.2000.t01-1-00446.x; Reid JM, 2000, P ROY SOC B-BIOL SCI, V267, P37, DOI 10.1098/rspb.2000.0963; Roff Derek A., 1992; ROYAMA T, 1966, IBIS, V108, P313, DOI 10.1111/j.1474-919X.1966.tb07348.x; Rytkonen S, 2001, OIKOS, V93, P439, DOI 10.1034/j.1600-0706.2001.930309.x; Sanz JJ, 1997, J AVIAN BIOL, V28, P157, DOI 10.2307/3677309; Sanz JJ, 2000, J ANIM ECOL, V69, P74, DOI 10.1046/j.1365-2656.2000.00373.x; SIIKAMAKI P, 1995, J AVIAN BIOL, V26, P76, DOI 10.2307/3677215; Siikamaki P, 1997, FUNCT ECOL, V11, P176, DOI 10.1046/j.1365-2435.1997.00075.x; SMITH HG, 1989, ORNIS SCAND, V20, P156, DOI 10.2307/3676885; STEARNS SC, 1992, EVOLUTION LIEF HIST; Tinbergen JM, 2004, BEHAV ECOL, V15, P525, DOI 10.1093/beheco/arh045; TINBERGEN JM, 1990, BEHAVIOUR, V114, P161, DOI 10.1163/156853990X00103; Tinbergen JM, 2005, J ANIM ECOL, V74, P1112, DOI 10.1111/j.1365-2656.2005.01010.x; VANDERWERF E, 1992, ECOLOGY, V73, P1699, DOI 10.2307/1940021; Verboven N, 2002, ANIM BEHAV, V63, P951, DOI 10.1006/anbe.2001.1971; Verhulst S, 1998, FUNCT ECOL, V12, P132, DOI 10.1046/j.1365-2435.1998.00165.x; VERHULST S, 1995, THESIS U GRONINGEN G; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; Wallander J, 2002, OECOLOGIA, V130, P391, DOI 10.1007/s004420100812; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 41 60 61 0 34 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. SEP 22 2006 273 1599 2353 2361 10.1098/rspb.2006.3584 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 082QC WOS:000240400800013 16928638 Green Published 2018-11-12 J Gardmark, A; Dieckmann, U Gardmark, Anna; Dieckmann, Ulf Disparate maturation adaptations to size-dependent mortality PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article maturation size; size-dependent mortality; alternative equilibria; evolutionary bistability; adaptation; selection LIFE-HISTORY EVOLUTION; OPTIMAL RESOURCE-ALLOCATION; STRUCTURED POPULATIONS; PREDATION; STRATEGIES; SELECTION; PREY; COD; AGE; DAPHNIA Body size is an important determinant of resource use, fecundity and mortality risk. Evolution of maturation size in response to size-dependent selection is thus a fundamental part of life-history theory. Increased mortality among small individuals has previously been predicted to cause larger maturation size, whereas increased mortality among large individuals is expected to have the opposite effect. Here we use a continuously size-structured model to demonstrate that, contrary to these widespread expectations, increased mortality among small individuals can have three alternative effects: maturation size may increase, decrease or become evolutionarily bistable. We show that such complex responses must be reckoned with whenever mortality is size-dependent, growth is indeterminate, reproduction impairs growth and fecundity increases with size. Predicting adaptive responses to altered size-dependent mortality is thus inherently difficult, since, as demonstrated here, such mortality cannot only reverse the direction of but also cause abrupt shifts in evolutionarily stable maturation sizes. Lund Univ, Dept Theoret Ecol, S-22362 Lund, Sweden; Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria Gardmark, A (reprint author), Swedish Board Fisheries, Inst Coastal Res, POB 109, S-74071 Oregrund, Sweden. anna.gardmark@fiskeriverket.se Dieckmann, Ulf/E-1424-2011 Dieckmann, Ulf/0000-0001-7089-0393 Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Day T, 2002, EVOLUTION, V56, P877; DEANGELIS DL, 1985, AM NAT, V126, P817, DOI 10.1086/284455; EDLEY MT, 1988, BIOL J LINN SOC, V34, P309, DOI 10.1111/j.1095-8312.1988.tb01966.x; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; Haugen TO, 2001, GENETICA, V112, P475, DOI 10.1023/A:1013315116795; Heino M, 1998, TRENDS ECOL EVOL, V13, P367, DOI 10.1016/S0169-5347(98)01380-9; Hutchings JA, 2004, NATURE, V428, P899, DOI 10.1038/428899a; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; JORGENSEN T, 1992, ICES J MAR SCI, V49, P263, DOI 10.1093/icesjms/49.3.263; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Meszena G, 2001, SELECTION, V2, P193, DOI DOI 10.1556/SELECT.2.2001.1-2.14; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; METZ JAJ, 1986, SPRINGER LECT NOTES, V68, P511; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Nakaoka M, 1998, EVOL ECOL, V12, P347, DOI 10.1023/A:1006556301655; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; Roff Derek A., 1992; SCHAFFER WM, 1977, ECOLOGY, V58, P60, DOI 10.2307/1935108; Taborsky B, 2003, P ROY SOC B-BIOL SCI, V270, P713, DOI 10.1098/rspb.2002.2255; Takada T, 1997, J THEOR BIOL, V187, P81, DOI 10.1006/jtbi.1997.0420; TAYLOR BE, 1992, AM NAT, V139, P248, DOI 10.1086/285326; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Wootton R. J., 1990, ECOLOGY TELEOST FISH 29 39 40 0 7 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. SEP 7 2006 273 1598 2185 2192 10.1098/rspb.2006.3562 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 078LL WOS:000240104300012 16901838 Green Published 2018-11-12 J Heidinger, BJ; Nisbet, ICT; Ketterson, ED Heidinger, Britt J.; Nisbet, Ian C. T.; Ketterson, Ellen D. Older parents are less responsive to a stressor in a long-lived seabird: a mechanism for increased reproductive performance with age? PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article age; common tern (Sterna hirundo); corticosterone; life history evolution; parental care; stress response ADRENOCORTICAL RESPONSES; PHYSIOLOGICAL STRESS; BINDING PROTEINS; SEASONAL-CHANGES; PIED FLYCATCHER; COMMON TERNS; CORTICOSTERONE; PLASMA; GLUCOCORTICOIDS; MODULATION In many taxa, reproductive performance increases throughout the lifespan and this may occur in part because older adults invest more in reproduction. The mechanisms that facilitate an increase in reproductive performance with age, however, are poorly understood. In response to stressors, vertebrates release glucocorticoids, which enhance survival but concurrently shift investment away from reproduction. Consequently, when the value of current reproduction is high relative to the value of future reproduction and survival, as it is in older adults, life history theory predicts that the stress response should be suppressed. In this study, we tested the hypothesis that older parents would respond less strongly to a stressor in a natural, breeding population of common terns (Sterna hirundo). Common terns are long-lived seabirds and reproductive performance is known to increase throughout the lifespan of this species. As predicted, the maximum level of glucocorticoids released in response to handling stress decreased significantly with age. We suggest that suppression of the stress response may be an important physiological mechanism that facilitates an increase in reproductive performance with age. Indiana Univ, Dept Biol, Bloomington, IN 47405 USA; Indiana Univ, Ctr Integrat Study Anim Behav, Bloomington, IN 47405 USA; ICT Nisbet & Co, N Falmouth, MA 02556 USA Heidinger, BJ (reprint author), Indiana Univ, Dept Biol, 1001 E 3rd St, Bloomington, IN 47405 USA. bheiding@indiana.edu Adams NJ, 2005, PHYSIOL BIOCHEM ZOOL, V78, P69, DOI 10.1086/423740; Barnes AI, 2003, ANIM BEHAV, V66, P199, DOI 10.1006/anbe.2003.2122; Breuner CW, 2003, AM J PHYSIOL-REG I, V285, pR594, DOI 10.1152/ajpregu.00748.2002; Breuner CW, 2002, J ENDOCRINOL, V175, P99, DOI 10.1677/joe.0.1750099; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Jessop TS, 2005, AUST J ZOOL, V53, P131, DOI 10.1071/ZO04061; Ketterson ED, 1999, AM NAT, V154, pS4, DOI 10.1086/303280; KETTERSON ED, 1991, HORM BEHAV, V25, P489, DOI 10.1016/0018-506X(91)90016-B; Kitaysky AS, 1999, FUNCT ECOL, V13, P577, DOI 10.1046/j.1365-2435.1999.00352.x; Kitaysky AS, 2001, BEHAV ECOL, V12, P619, DOI 10.1093/beheco/12.5.619; Lovera M, 2004, NONLIN SYST AVIAT AE, V2, P1; Meddle SL, 2003, P ROY SOC B-BIOL SCI, V270, P1849, DOI 10.1098/rspb.2003.2455; Nisbet I.C.T., 1984, Colonial Waterbirds, V7, P117, DOI 10.2307/1521090; Nisbet Ian C.T., 2002, Birds of North America, V618, P1; Nisbet ICT, 2002, J FIELD ORNITHOL, V73, P117, DOI 10.1648/0273-8570-73.2.117; O'Reilly KM, 2001, GEN COMP ENDOCR, V124, P1, DOI 10.1006/gcen.2001.7676; Otte C, 2005, PSYCHONEUROENDOCRINO, V30, P80, DOI 10.1016/j.psyneuen.2004.06.002; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Romero LM, 2005, COMP BIOCHEM PHYS A, V140, P73, DOI 10.1016/j.cbpb.2004.11.004; Romero LM, 1998, AM J PHYSIOL-REG I, V274, pR1338, DOI 10.1152/ajpregu.1998.274.5.R1338; Romero LM, 1997, COMP BIOCHEM PHYS C, V116, P171, DOI 10.1016/S0742-8413(96)00208-3; Salmon AB, 2001, EVOLUTION, V55, P1600, DOI 10.1111/j.0014-3820.2001.tb00679.x; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; SILVERIN B, 1986, GEN COMP ENDOCR, V64, P67, DOI 10.1016/0016-6480(86)90029-8; Silverin B, 1997, FUNCT ECOL, V11, P376, DOI 10.1046/j.1365-2435.1997.00097.x; Silverin B, 1998, ANIM BEHAV, V55, P1411, DOI 10.1006/anbe.1997.0717; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEINBEHRENS BA, 1992, AGING-CLIN EXP RES, V4, P197; Wendeln H, 1999, J ANIM ECOL, V68, P205, DOI 10.1046/j.1365-2656.1999.00276.x; Williams TD, 2001, P ROY SOC B-BIOL SCI, V268, P423, DOI 10.1098/rspb.2000.1374; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; WINGFIELD JC, 1992, J EXP ZOOL, V264, P419, DOI 10.1002/jez.1402640407; Wingfield JC, 2003, ANIM BEHAV, V66, P807, DOI 10.1006/anbe.2003.2298; WINGFIELD JC, 1975, STEROIDS, V26, P311, DOI 10.1016/0039-128X(75)90077-X; WINGFIELD JC, 1994, J EXP ZOOL, V270, P372, DOI 10.1002/jez.1402700406; WINGFIELD JC, 1995, AM ZOOL, V35, P285; Wingfield John C., 2000, P85 41 87 87 1 25 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. SEP 7 2006 273 1598 2227 2231 10.1098/rspb.2006.3557 5 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 078LL WOS:000240104300017 16901843 Green Published 2018-11-12 J Bisang, I; Ehrlen, J; Hedenas, L Bisang, Irene; Ehrlen, Johan; Hedenas, Lars Reproductive effort and costs of reproduction do not explain female-biased sex ratios in the moss Pseudocalliergon trifarium (Amblystegiaceae) AMERICAN JOURNAL OF BOTANY English Article Amblystegiaceae; bryophyte; prefertilization reproductive effort and costs; resource allocation; sex ratio; sexual branches; Sweden SPOROPHYTE PRODUCTION; HYLOCOMIUM-SPLENDENS; CERATODON-PURPUREUS; MARCHANTIA-INFLEXA; DICRANUM-POLYSETUM; DIOECIOUS PLANTS; DESERT MOSS; POPULATIONS; ALLOCATION; BRYOPHYTES A fundamental assumption in life-history theory is that reproduction is costly. Higher reproductive investment for fruits than for flowers may result in larger costs of reproduction in females than in males, which is often used to explain male-skewed sex ratios in unisexual seed plants. In contrast, bryophytes have predominantly female-biased sex ratios, suggested to be a product of a higher average cost of sexual reproduction in males. Empirical evidence to support this notion is largely lacking, We investigated sex-specific reproductive effort and costs in the unisexual moss Pseudocalliergon trifarium that has a female-dominated expressed sex ratio and rarely produces sporophytes. Annual vegetative segment mass did not differ among male, female, and non-expressing individuals, indicating that there was no threshold-size for sex expression. Mean and annual mass of sexual branches were higher in females than in males, but branch number per segment did not differ between sexes. Prefertilization reproductive effort for females was significantly greater (11.2%) than for males (8.6%). No cost for sexual branch production in terms of reduced relative vegetative growth or decreased investment in reproductive structures in consecutive years was detected. A higher realized reproductive cost in males cannot explain the unbalanced sex ratio in the study species. Swedish Museum Nat Hist, Div Res, SE-10405 Stockholm, Sweden; Stockholm Univ, Dept Bot, SE-10691 Stockholm, Sweden; Swedish Museum Nat Hist, Dept Cryptogam Bot, SE-10405 Stockholm, Sweden Bisang, I (reprint author), Swedish Museum Nat Hist, Div Res, Box 50007, SE-10405 Stockholm, Sweden. irene.bisang@nrm.se Ehrlen, Johan/H-6286-2013 Ehrlen, Johan/0000-0001-8539-8967 ALLEN GA, 1993, AM NAT, V141, P537, DOI 10.1086/285490; Arnell HW, 1875, UPPSALA U ARSSKR MAT, VIV, P1; Bazzaz F. A., 2000, Seeds: the ecology of regeneration in plant communities, P1, DOI 10.1079/9780851994321.0001; Bisang I, 2005, J BRYOL, V27, P207, DOI 10.1179/174328205X69959; Bisang I, 2004, OIKOS, V104, P291, DOI 10.1111/j.0030-1299.2004.12853.x; Bisang I, 2002, BRYOLOGIST, V105, P384, DOI 10.1639/0007-2745(2002)105[0384:REACOS]2.0.CO;2; Charlesworth D, 2002, HEREDITY, V88, P94, DOI [10.1038/sj.hdy.6800016, 10.1038/sj/hdy/6800016]; CONVEY P, 1993, OIKOS, V68, P293, DOI 10.2307/3544842; de Jong TJ, 2002, SEX RATIOS: CONCEPTS AND RESEARCH METHODS, P349, DOI 10.1017/CBO9780511542053.018; De Wreede R. E., 1988, PLANT REPROD ECOLOGY, P267; Delph L, 1999, GENDER SEXUAL DIMORP, P149, DOI 10.1554/0014-3820(2000)054; Ehrlen J, 2000, PLANT ECOL, V149, P207, DOI 10.1023/A:1026531122302; Fischer R. A., 1930, GENETICAL THEORY NAT; FREEMAN DC, 1976, SCIENCE, V193, P597, DOI 10.1126/science.193.4253.597; Fuselier L, 2004, BRYOLOGIST, V107, P345, DOI 10.1639/0007-2745(2004)107[0345:MASDIM]2.0.CO;2; Fuselier L, 2002, AM J BOT, V89, P592, DOI 10.3732/ajb.89.4.592; Gonzalez-Mancebo J. M., 1997, Lindbergia, V22, P36; HARDY I. C. W., 2002, SEX RATIOS; Hassel K, 2005, PLANT ECOL, V179, P207, DOI 10.1007/s11258-005-8065-8; Hedenas L, 2003, BOT HELV, V113, P111, DOI 10.1007/S00035-003-0677-9; HEDENAS L, 2003, FLORA NEOTROPICA MON, V89, P1; HEDENAS L, 1992, LINDBERGIA, V16, P80; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; Laaka-Lindberg S, 2001, J BRYOL, V23, P3, DOI 10.1179/jbr.2001.23.1.3; Laaka-Lindberg Sanna, 2000, Lindbergia, V25, P78; Longton R. E., 1983, NEW MANUAL BRYOLOGY, P386; LONGTON RE, 1992, BIOL CONSERV, V59, P89, DOI 10.1016/0006-3207(92)90566-6; LONGTON RE, 1969, MITT ANN BOT, V33, P107; McLetchie DN, 2001, BRYOLOGIST, V104, P69, DOI 10.1639/0007-2745(2001)104[0069:SSGRIT]2.0.CO;2; McLetchie DN, 2002, BRYOLOGIST, V104, P543; MEAGHER TR, 1981, EVOLUTION, V35, P557, DOI 10.1111/j.1558-5646.1981.tb04917.x; NEWTON ME, 1971, T BRIT BRYOL SOC, V6, P230; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Ortiz PL, 2002, ANN BOT-LONDON, V89, P205, DOI 10.1093/aob/mcf028; Pohjamo M, 2004, PLANT ECOL, V173, P73, DOI 10.1023/B:VEGE.0000026330.62021.0a; POHJAMO M, 2003, PERSPECT PLANT ECOL, V6, P159; PROCTOR MCF, 1977, J BRYOL, V9, P375, DOI 10.1179/jbr.1977.9.3.375; PUTWAIN PD, 1972, J ECOL, V60, P113, DOI 10.2307/2258045; REEKIE EG, 1987, AM NAT, V129, P876, DOI 10.1086/284681; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; RICHARDS AJ, 1997, PLANT BREEDING SYSTE; Rottenberg A, 1998, BOT J LINN SOC, V128, P137, DOI 10.1111/j.1095-8339.1998.tb02112.x; Rydgren K, 2003, BRYOLOGIST, V106, P212, DOI 10.1639/0007-2745(2003)106[0212:SCOSRI]2.0.CO;2; Rydgren K, 2002, ECOLOGY, V83, P1573, DOI 10.2307/3071976; Rydgren K, 2001, J BRYOL, V23, P91, DOI 10.1179/jbr.2001.23.2.91; RYDGREN K, 1998, OIKOS, V85, P5; SHAW AJ, 1993, AM J BOT, V80, P584, DOI 10.2307/2445376; Shaw AJ, 2000, BRYOPHYTE BIOL, P369; Shaw J, 1999, AM J BOT, V86, P512, DOI 10.2307/2656812; Silverton J., 1993, INTRO PLANT POPULATI; Stark L, 2001, PLANT ECOL, V157, P181; Stark LR, 2000, AM J BOT, V87, P1599, DOI 10.2307/2656736; STARK LR, 1983, SYST BOT, V8, P389, DOI 10.2307/2418358; *STATS I, 1999, STATISTICA WIND VERS; StatSoft I, 2003, STATISTICA DAT AN SO; Stehlik I, 2005, EVOLUTION, V59, P814; SUTHERLAND S, 1986, ECOLOGY, V67, P991, DOI 10.2307/1939822; THOMPSON K, 1981, AM NAT, V117, P205, DOI 10.1086/283700; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WEBB CJ, 1980, NEW ZEAL J BOT, V18, P121; WYATT R, 1985, TAXON, V34, P420, DOI 10.2307/1221208; WYATT R, 1982, J HATTORI BOT LAB, V52, P179 62 29 32 1 21 BOTANICAL SOC AMER INC ST LOUIS PO BOX 299, ST LOUIS, MO 63166-0299 USA 0002-9122 AM J BOT Am. J. Bot. SEP 2006 93 9 1313 1319 10.3732/ajb.93.9.1313 7 Plant Sciences Plant Sciences 092LI WOS:000241097800011 21642196 Bronze 2018-11-12 J Stoehr, AM; Kokko, H Stoehr, Andrew M.; Kokko, Hanna Sexual dimorphism in immunocompetence: what does life-history theory predict? BEHAVIORAL ECOLOGY English Article ecological immunology; immune defense; life-history theory; sexual selection TRADE-OFFS; IMMUNE DEFENSE; REPRODUCTIVE STRATEGIES; EVOLUTIONARY ECOLOGY; BATEMANS PRINCIPLE; RESISTANCE; SELECTION; VIRULENCE; PATTERNS; SYSTEM Sexual dimorphism in immunocompetence, usually in the direction of inferior male immunocompetence, has historically been explained as the result of proximate physiological mechanisms such as the immunosuppressive effects of the male hormone testosterone. More recently, it has been argued that this pattern is best understood as a result of resource-based trade-offs between male mating effort and immune defense, a trade-off that females do not make. The central prediction of this hypothesis is that as the strength of sexual selection on males increases, the magnitude of the sex differences in immunocompetence will increase. Two implicit assumptions of this argument are that 1) longevity is of more importance for female than for male fitness and 2) that the primary benefit of immunocompetence is increased longevity. However, both of these assumptions may not be as broadly applicable as has been argued. We have modeled the optimal allocation to immunocompetence for males and females without making these assumptions. We find that the optimal allocation to immune defense for males decreases as the strength of sexual selection increases, as predicted. However, males may still invest more, relative to females, into immunocompetence if the impact of parasites on condition differs for the sexes and/or if the relationship between condition and reproduction differs for the sexes. We argue that these previously overlooked assumptions may be critical for predicting sex-specific patterns of immunocompetence. Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; Univ Helsinki, Lab Ecol & Evolutionary Dynam, Dept Biol & Environm Sci, FIN-00014 Helsinki, Finland Stoehr, AM (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. andrew.stoehr@email.ucr.edu Kokko, Hanna/C-7861-2009 Adamo SA, 2001, ANIM BEHAV, V62, P417, DOI 10.1006/anbe.2001.1786; Arnqvist G, 2004, EVOLUTION, V58, P1383; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Blanco G, 2001, BIOL J LINN SOC, V72, P279, DOI 10.1006/bijl.2000.0503; Boots M, 2004, P ROY SOC B-BIOL SCI, V271, P715, DOI 10.1098/rspb.2003.2655; Brommer JE, 2002, ECOL LETT, V5, P802, DOI 10.1046/j.1461-0248.2002.00369.x; Clayton D. H., 1997, HOST PARASITE EVOLUT; Clutton-Brock TH, 1988, REPROD SUCCESS, P472; Cotter SC, 2004, J EVOLUTION BIOL, V17, P421, DOI 10.1046/j.1420-9101.2003.00655.x; Day T, 2003, EVOLUTION, V57, P671; Fedorka KM, 2004, EVOLUTION, V58, P2478; Gandon S, 2002, AM NAT, V159, P658, DOI 10.1086/339993; GRENFELL BT, 1995, ECOLOGY INFECTIOUS D; GUPTA AP, 1991, IMMUNOLOGY INSECTS O; Hosken DJ, 2001, CURR BIOL, V11, pR379, DOI 10.1016/S0960-9822(01)00211-1; Hunt J, 2004, TRENDS ECOL EVOL, V19, P329, DOI 10.1016/j.tree.2004.03.035; Johnston Carol E., 1995, Journal of the Tennessee Academy of Science, V70, P65; Klein SL, 2000, BEHAV PROCESS, V51, P149, DOI 10.1016/S0376-6357(00)00125-X; Kokko H, 2003, TRENDS ECOL EVOL, V18, P103, DOI 10.1016/S0169-5347(03)00009-0; Kokko H, 2003, ANN ZOOL FENN, V40, P207; LAGALLIARD JF, 2005, P NATL ACAD SCI USA, V102, P18231; Lambrechts L, 2004, EVOLUTION, V58, P2377; LANDE R, 1980, EVOLUTION, V34, P292, DOI 10.1111/j.1558-5646.1980.tb04817.x; LOYE JE, 1991, BIRD PARASITE INTERA; McGraw KJ, 2005, EVOL ECOL RES, V7, P251; McKean KA, 2005, EVOLUTION, V59, P1510; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Newton I., 1989, P441; Reimchen TE, 2001, BIOL J LINN SOC, V73, P51, DOI 10.1006/bijl.2001.0523; Rhen T, 2000, EVOLUTION, V54, P37, DOI 10.1111/j.0014-3820.2000.tb00005.x; ROITT IM, 1998, IMMUNOLOGY; Rolff J, 2005, EVOLUTION, V59, P1844; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; ROLFF J, 2004, SCIENCE, V301, P472; Schmid-Hempel P, 2003, P ROY SOC B-BIOL SCI, V270, P357, DOI 10.1098/rspb.2002.2265; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; TINSLEY RC, 1989, PARASITOL TODAY, V5, P190, DOI 10.1016/0169-4758(89)90144-0; TSENG M, 2003, P ROY SOC LOND B BIO, V271, pS186; van Boven M, 2004, AM NAT, V163, P277, DOI 10.1086/381407; ZENG ZB, 1988, EVOLUTION, V42, P363, DOI 10.1111/j.1558-5646.1988.tb04139.x; Zuk M, 2004, CAN J ZOOL, V82, P627, DOI [10.1139/z04-032, 10.1139/Z04-032]; ZUK M, 1990, PARASITOL TODAY, V6, P231, DOI 10.1016/0169-4758(90)90202-F; Zuk M, 1996, INT J PARASITOL, V26, P1009, DOI 10.1016/S0020-7519(96)80001-4; Zuk M, 1998, Q REV BIOL, V73, P415, DOI 10.1086/420412; Zuk M., 2002, AM NAT, V160, P9, DOI DOI 10.1086/342131 45 76 78 2 35 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 BEHAV ECOL Behav. Ecol. SEP-OCT 2006 17 5 751 756 10.1093/beheco/ark018 6 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 075QE WOS:000239899500008 Bronze 2018-11-12 J Pelletier, F; Hogg, JT; Festa-Bianchet, M Pelletier, Fanie; Hogg, John T.; Festa-Bianchet, Marco Male mating effort in a polygynous ungulate BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article rut; male mating effort; ungulates; bighorn sheep; life history DEPENDENT REPRODUCTIVE SUCCESS; MOUNTAIN BIGHORN SHEEP; SEXUAL SIZE DIMORPHISM; AGE-SPECIFIC SURVIVAL; LIFE-HISTORY; INTRASEXUAL COMPETITION; SOAY SHEEP; RED DEER; SELECTION; COSTS Survival and mating success are key fitness components of mammalian males. Because energy is limited, life history theory predicts trade-offs between current and future reproduction. While many studies have examined fitness trade-off in females, we know little about trade-offs faced by males. In polygynous species, male mating success is largely dependent upon intrasexual competition. Consequently, males have greater uncertainty over the benefits of a given allocation than over its costs, and the correlation between mating effort and success is likely much weaker in males than in females. We analyzed 14 years of data on the mating effort and survival of marked bighorn rams to investigate fitness trade-offs. Dominant rams defended single estrous ewes ("tending") while subordinates attempted to copulate after separating the tending pair ("coursing"). We estimated the participation in tending and coursing for each ram and the effort in searching for breeding opportunities by each ram each year. We compared these three behavioral indices of male mating effort to demographic parameters, individual characteristics, and both yearly and long-term survival. Mating effort during the rut was unrelated to ram overwinter survival, but longevity was positively correlated with mating effort between 2 and 5 years of age. Persistent variation among rams is likely to explain this pattern, suggesting that in natural populations a few high quality males enjoy both high mating success and high survival. Univ London Imperial Coll Sci Technol & Med, Div Biol, Fac Nat Sci, Ascot SL5 7PY, Berks, England; Univ Sherbrooke, Dept Biol, Sherbrooke, PQ J1K 2R1, Canada; Montana Conservat Sci Inst Ltd, Missoula, MT 59803 USA Pelletier, F (reprint author), Univ London Imperial Coll Sci Technol & Med, Div Biol, Fac Nat Sci, Silwood Pk, Ascot SL5 7PY, Berks, England. fanie.pelletier@imperial.ac.uk; jthogg@montana.com; M.Festa@Usherbrooke.ca Festa-Bianchet, Marco/0000-0002-2352-3379 Andersson M., 1994, SEXUAL SELECTION; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.2307/177240; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; CLINTON WL, 1993, ECOLOGY, V74, P1884, DOI 10.2307/1939945; Clutton-Brock T. H, 1982, RED DEER BEHAV ECOLO; CluttonBrock TH, 1997, P ROY SOC B-BIOL SCI, V264, P1509, DOI 10.1098/rspb.1997.0209; Coltman DW, 2005, EVOLUTION, V59, P1372; Coltman DW, 2002, P ROY SOC B-BIOL SCI, V269, P165, DOI 10.1098/rspb.2001.1851; De Vries H, 1998, ANIM BEHAV, V55, P827, DOI 10.1006/anbe.1997.0708; DEVRIES H, 1993, BEHAVIOUR, V125, P157, DOI 10.1163/156853993X00218; DEVRIES H, 1995, ANIM BEHAV, V50, P1375, DOI 10.1016/0003-3472(95)80053-0; Dobson FS, 1999, J ANIM ECOL, V68, P73, DOI 10.1046/j.1365-2656.1999.00268.x; Festa-Bianchet M, 1998, ECOL LETT, V1, P91; Festa-Bianchet M, 2000, BEHAV ECOL, V11, P633, DOI 10.1093/beheco/11.6.633; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; FESTABIANCHET M, 1986, CAN J ZOOL, V64, P2126, DOI 10.1139/z86-326; FESTABIANCHET M, 1986, J WILDLIFE MANAGE, V50, P325, DOI 10.2307/3801922; FESTABIANCHET M, 1989, J WILDLIFE MANAGE, V53, P259, DOI 10.2307/3801344; FestaBianchet M, 1996, CAN J ZOOL, V74, P330, DOI 10.1139/z96-041; Forsyth DM, 2005, ECOLOGY, V86, P2154, DOI 10.1890/03-0738; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; GEIST V, 1967, J WILDLIFE MANAGE, V31, P192, DOI 10.2307/3798378; GOSLING LM, 1987, ANIM BEHAV, V35, P616, DOI 10.1016/S0003-3472(87)80296-8; HOGG JT, 1988, BEHAV ECOL SOCIOBIOL, V22, P49, DOI 10.1007/BF00395697; HOGG JT, 1984, SCIENCE, V225, P526, DOI 10.1126/science.6539948; Hogg JT, 1997, BEHAV ECOL SOCIOBIOL, V41, P33, DOI 10.1007/s002650050361; HOGG JT, 1987, ETHOLOGY, V75, P119; HOGG JT, 2000, VERTEBRATE MATING SY, P214; HOOGE PN, 1997, ANIMAL MOVEMENT EXTE; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Jewell PA, 1997, J ZOOL, V243, P623, DOI 10.1111/j.1469-7998.1997.tb02806.x; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; JORGENSON JT, 1990, J WILDLIFE DIS, V26, P522, DOI 10.7589/0090-3558-26.4.522; Jorgenson JT, 1997, ECOLOGY, V78, P1019, DOI 10.2307/2265855; Loison A, 1999, ECOLOGY, V80, P2539, DOI 10.2307/177239; McElligott AG, 2003, EVOL ECOL RES, V5, P1239; McElligott AG, 2002, P ROY SOC B-BIOL SCI, V269, P1129, DOI 10.1098/rspb.2002.1993; MIQUELLE DG, 1990, BEHAV ECOL SOCIOBIOL, V27, P145, DOI 10.1007/BF00168458; Mysterud A, 2005, J ANIM ECOL, V74, P742, DOI 10.1111/j.1365-2656.2005.00965.x; Mysterud A, 2004, J ZOOL, V264, P209, DOI 10.1017/S0952836904005618; OWENSMITH N, 1993, J ANIM ECOL, V62, P428, DOI 10.2307/5192; OWENSMITH N, 1993, BEHAV ECOL SOCIOBIOL, V32, P177; PARTRIDGE L, 1983, ANIM BEHAV, V31, P871, DOI 10.1016/S0003-3472(83)80242-5; Pelletier F, 2006, ANIM BEHAV, V71, P649, DOI 10.1016/j.anbehav.2005.07.008; Pelletier F, 2004, ANIM BEHAV, V67, P1163, DOI 10.1016/j.anbehav.2003.07.009; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PROMISLOW DEL, 1992, P ROY SOC B-BIOL SCI, V247, P203, DOI 10.1098/rspb.1992.0030; RALLS K, 1980, REP INT WHALING COMM, V2, P233; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; SCHEMPER M, 1990, BIOMETRIKA, V77, P216, DOI 10.1093/biomet/77.1.216; Service PM, 2000, AM NAT, V156, P1, DOI 10.1086/303371; Sokal R. R., 1981, BIOMETRY; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stevenson IR, 1995, P ROY SOC B-BIOL SCI, V262, P267, DOI 10.1098/rspb.1995.0205; Toigo C, 2003, OIKOS, V101, P376, DOI 10.1034/j.1600-0706.2003.12073.x; Toigo C, 1999, J MAMMAL, V80, P1021, DOI 10.2307/1383272; TUOMI J, 1983, AM ZOOL, V23, P25; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Yoccoz NG, 2002, P ROY SOC B-BIOL SCI, V269, P1523, DOI 10.1098/rspb.2002.2047 60 29 29 0 29 SPRINGER NEW YORK 233 SPRING STREET, NEW YORK, NY 10013 USA 0340-5443 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. SEP 2006 60 5 645 654 10.1007/s00265-006-0208-y 10 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology 076KK WOS:000239956400005 2018-11-12 J Hadley, GL; Rotella, JJ; Garrott, RA; Nichols, JD Hadley, Gillian L.; Rotella, Jay J.; Garrott, Robert A.; Nichols, James D. Variation in probability of first reproduction of Weddell seals JOURNAL OF ANIMAL ECOLOGY English Article age-specific recruitment; life-history traits; long-lived; multistate model; pinnipeds CAPTURE-RECAPTURE DATA; NORTHERN ELEPHANT SEALS; AGE-SPECIFIC SURVIVAL; MCMURDO-SOUND; LEPTONYCHOTES-WEDDELLII; POPULATION-DYNAMICS; BREEDING PROBABILITIES; TEMPORAL VARIATION; LARGE HERBIVORES; SITE FIDELITY 1. For many species, when to begin reproduction is an important life-history decision that varies by individual and can have substantial implications for lifetime reproductive success and fitness. 2. We estimated age-specific probabilities of first-time breeding and modelled variation in these rates to determine age at first reproduction and understand why it varies in a population of Weddell seals in Erebus Bay, Antarctica. We used multistate mark-recapture modelling methods and encounter histories of 4965 known-age female seals to test predictions about age-related variation in probability of first reproduction and the effects of annual variation, cohort and population density. 3. Mean age at first reproduction in this southerly located study population (7(.)62 years of age, SD = 1(.)71) was greater than age at first reproduction for a Weddell seal population at a more northerly and typical latitude for breeding Weddell seals ( mean = 4 5 years of age). This difference suggests that age at first reproduction may be influenced by whether a population inhabits the core or periphery of its range. 4. Age at first reproduction varied from 4 to 14 years, but there was no age by which all seals recruited to the breeding population, suggesting that individual heterogeneity exists among females in this population. 5. In the best model, the probability of breeding for the first time varied by age and year, and the amount of annual variation varied with age ( average variance ratio for age-specific rates = 4(.)3%). 6. Our results affirmed the predictions of life-history theory that age at first reproduction in long-lived mammals will be sensitive to environmental variation. In terms of life-history evolution, this variability suggests that Weddell seals display flexibility in age at first reproduction in order to maximize reproductive output under varying environmental conditions. Future analyses will attempt to test predictions regarding relationships between environmental covariates and annual variation in age at first reproduction and evaluate the relationship between age at first reproduction and lifetime reproductive success. Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA; US Geol Survey, Patuxent Wildlife Res Ctr, Laurel, MD 20708 USA Hadley, GL (reprint author), Montana State Univ, Dept Ecol, 310 Lewis Hall, Bozeman, MT 59717 USA. hadley@montana.edu Akaike H, 1973, INT S INF THEOR, P267, DOI DOI 10.2307/2334537; ARNASON A N, 1973, Researches on Population Ecology (Tokyo), V15, P1; ARNASON A N, 1972, Researches on Population Ecology (Tokyo), V13, P97; ARNASON AN, 1981, CAN J FISH AQUAT SCI, V38, P1077, DOI 10.1139/f81-148; Arrigo KR, 2002, GEOPHYS RES LETT, V29, DOI 10.1029/2002GL015277; BENGSTON JL, 1985, INSIGHT ANTARCTIC MA, P669; Bowen WD, 2003, J ZOOL, V261, P155, DOI 10.1017/S0952836903004047; Boyd IL, 2000, FUNCT ECOL, V14, P623, DOI 10.1046/j.1365-2435.2000.t01-1-00463.x; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; Burnham K. P., 1998, MODEL SELECTION INFE; BURNHAM KP, 1987, AM FISHERIES SOC MON, V5; CAM E, 2002, AM NAT, V159, P97; Cameron MF, 2004, CAN J ZOOL, V82, P601, DOI 10.1139/Z04-025; CAMERON MF, 2001, THESIS U MINNESOTA M; CLOBERT J, 1994, BIOMETRICS, V50, P375, DOI 10.2307/2533381; Clutton-Brock T.H., 1988, REPROD SUCCESS STUDI; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Cooch EG, 2002, J APPL STAT, V29, P19, DOI 10.1080/02664760120108421; CROXALL JP, 1983, J APPL ECOL, V20, P19, DOI 10.2307/2403373; EBERHARDT L L, 1977, Environmental Conservation, V4, P205; EBERHARDT LL, 1977, J FISH RES BOARD CAN, V34, P183, DOI 10.1139/f77-028; Festa-Bianchet M, 1998, BEHAV ECOL, V9, P144, DOI 10.1093/beheco/9.2.144; FOWLER CW, 1981, ECOLOGY, V62, P602, DOI 10.2307/1937727; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Goodman D., 1981, P415; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; Hastings KK, 1998, J ANIM ECOL, V67, P722, DOI 10.1046/j.1365-2656.1998.00242.x; Hastings KK, 1999, J ZOOL, V248, P307, DOI 10.1017/S0952836999007049; HESTBECK JB, 1991, ECOLOGY, V72, P523, DOI 10.2307/2937193; HUBER HR, 1991, J MAMMAL, V72, P525, DOI 10.2307/1382136; HURVICH CM, 1989, BIOMETRIKA, V76, P297, DOI 10.2307/2336663; JOLLY GM, 1965, BIOMETRIKA, V52, P225, DOI 10.2307/2333826; Kendall WL, 1997, ECOLOGY, V78, P563; Link WA, 2002, J APPL STAT, V29, P207, DOI 10.1080/02664760120108700a; LUNN NJ, 1994, J ANIM ECOL, V63, P827, DOI 10.2307/5260; McElligott AG, 2002, P ROY SOC B-BIOL SCI, V269, P1129, DOI 10.1098/rspb.2002.1993; NICHOLS JD, 1994, ECOLOGY, V75, P2052, DOI 10.2307/1941610; NICHOLS JD, 1992, J WILDLIFE MANAGE, V56, P485, DOI 10.2307/3808863; Pistorius PA, 2001, POLAR BIOL, V24, P343, DOI 10.1007/s003000000217; POLLOCK KH, 1990, WILDLIFE MONOGR, V107, P97; REITER J, 1991, BEHAV ECOL SOCIOBIOL, V28, P153, DOI 10.1007/BF00172166; Roff Derek A., 2001, P99; Roff Derek A., 1992; Sand H, 1996, OECOLOGIA, V106, P212, DOI 10.1007/BF00328601; Sato K, 2002, POLAR BIOL, V25, P696, DOI 10.1007/s00300-002-0406-7; Schwarz CJ, 1996, BIOMETRICS, V52, P860, DOI 10.2307/2533048; SEBER GAF, 1965, BIOMETRIKA, V52, P249; SINIFF DB, 1981, J ROY SOC NEW ZEAL, V11, P317, DOI 10.1080/03036758.1981.10423323; SINIFF DB, 1977, ECOL MONOGR, V47, P319, DOI 10.2307/1942520; Smith RC, 1998, BIOSCIENCE, V48, P83, DOI 10.2307/1313133; Spendelow JA, 2002, J APPL STAT, V29, P385, DOI 10.1080/02664760120108764; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEWART REA, 1986, J ZOOL, V208, P503; STIRLING I, 1974, AUST J ZOOL, V22, P39, DOI 10.1071/ZO9740039; STIRLING I, 1969, ECOLOGY, V50, P573, DOI 10.2307/1936247; STROEVE J, 2004, HIST ARCTIC ANTARCTI; TESTA JW, 1987, ECOL MONOGR, V57, P149, DOI 10.2307/1942622; TESTA JW, 1987, CAN J ZOOL, V65, P1091, DOI 10.1139/z87-173; TESTA JW, 1987, CAN J ZOOL, V65, P2993, DOI 10.1139/z87-453; TESTA JW, 1990, J ANIM ECOL, V59, P1165, DOI 10.2307/5038; White GC, 1999, BIRD STUDY, V46, P120; Williams B. K., 2002, ANAL MANAGEMENT ANIM; WILLIAMS BK, 1984, AM NAT, V123, P1, DOI 10.1086/284182 67 51 51 1 30 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. SEP 2006 75 5 1058 1070 10.1111/j.1365-2656.2006.01118.x 13 Ecology; Zoology Environmental Sciences & Ecology; Zoology 070IY WOS:000239516500003 16922841 Bronze 2018-11-12 J Servedio, MR; Hauber, ME Servedio, M. R.; Hauber, M. E. To eject or to abandon? Life history traits of hosts and parasites interact to influence the fitness payoffs of alternative anti-parasite strategies JOURNAL OF EVOLUTIONARY BIOLOGY English Article coevolution; game theory; lifetime reproductive success; nest desertion AVIAN BROOD PARASITISM; BROWN-HEADED COWBIRD; GREAT SPOTTED CUCKOO; CLUTCH SIZE; EGG-REJECTION; PROTHONOTARY WARBLERS; REPRODUCTIVE SUCCESS; EVOLUTIONARY LAG; SAYORNIS-PHOEBE; NEST DESERTION Hosts either tolerate avian brood parasitism or reject it by ejecting parasitic eggs, as seen in most rejecter hosts of common cuckoos, Cuculus canorus, or by abandoning parasitized clutches, as seen in most rejecter hosts of brown-headed cowbirds, Molothrus ater. What explains consistent variation between alternative rejection behaviours of hosts within the same species and across species when exposed to different types of parasites? Life history theory predicts that when parasites decrease the fitness of host offspring, but not the future reproductive success of host adults, optimal clutch size should decrease. Consistent with this prediction, evolutionarily old cowbird hosts, but not cuckoo hosts, have lower clutch sizes than related rarely- or newly parasitized species. We constructed a mathematical model to calculate the fitness payoffs of egg ejector vs. nest abandoner hosts to determine if various aspects of host life history traits and brood parasites' virulence on adult and young host fitness differentially influence the payoffs of alternative host defences. These calculations showed that in general egg ejection was a superior anti-parasite strategy to nest abandonment. Yet, increasing parasitism rates and increasing fitness values of hosts' eggs in both currently parasitized and future replacement nests led to switch points in fitness payoffs in favour of nest abandonment. Nonetheless, nest abandonment became selectively more favourable only at lower clutch sizes and only when hosts faced parasitism by a cowbird- rather than a cuckoo-type brood parasite. We suggest that, in addition to evolutionary lag and gape-size limitation, our estimated fitness differences based on life history trait variation provide new insights for the consistent differences observed in the anti-parasite rejection strategies between many cuckoo- and cowbird-hosts. Univ Auckland, Sch Biol Sci, Auckland 92019, New Zealand; Univ N Carolina, Dept Biol, Chapel Hill, NC USA Hauber, ME (reprint author), Univ Auckland, Sch Biol Sci, 3 Symonds St,Thomas Bldg, Auckland 92019, New Zealand. m.hauber@auckland.ac.nz Servedio, Maria/A-9743-2008 Servedio, Maria/0000-0002-3965-4445 Arcese P, 1996, P NATL ACAD SCI USA, V93, P4608, DOI 10.1073/pnas.93.10.4608; Aviles JM, 2006, BEHAV ECOL, V17, P310, DOI 10.1093/beheco/arj031; Aviles JM, 2005, BEHAV ECOL SOCIOBIOL, V58, P608, DOI 10.1007/s00265-005-0941-7; Brooke MD, 1998, P ROY SOC B-BIOL SCI, V265, P1277, DOI 10.1098/rspb.1998.0430; Cunningham EJA, 2006, BEHAV ECOL, V17, P126, DOI 10.1093/beheco/arj006; Davies N. B., 2000, CUCKOOS COWBIRDS OTH; Davies NB, 1996, P ROY SOC B-BIOL SCI, V263, P925, DOI 10.1098/rspb.1996.0137; Davies NB, 1999, OSTRICH, V70, P71, DOI 10.1080/00306525.1999.9639751; Falconer D. S., 1996, INTRO QUANTITATIVE G, P464; Gill SA, 2004, BEHAV ECOL SOCIOBIOL, V56, P71, DOI 10.1007/s00265-003-0736-7; Glassey B, 2003, ANIM BEHAV, V65, P1235, DOI 10.1006/anbe.2003.2168; Grim T, 2003, P ROY SOC B-BIOL SCI, V270, pS73, DOI 10.1098/rsbl.2003.0017; Grim T, 2001, BEHAV ECOL SOCIOBIOL, V49, P322, DOI 10.1007/s002650000295; GRIM T, 2006, IN PRESS EVOL ECOL R; HAUBER M.E., 2003, BEHAV ECOLOGY, V14, P224, DOI DOI 10.1093/BEHEC0/14.2.227; Hauber Mark E., 2004, Etologia, V10, P1; Hauber ME, 2004, P ROY SOC B-BIOL SCI, V271, pS317, DOI 10.1098/rsbl.2004.0168; Hauber ME, 2003, EVOL ECOL RES, V5, P559; Hauber ME, 2002, BEHAV ECOL SOCIOBIOL, V51, P503, DOI 10.1007/s00265-001-0450-2; Hauber ME, 2001, CAN J ZOOL, V79, P1518, DOI 10.1139/cjz-79-8-1518; HAUBER ME, 2006, IN PRESS BIOL LETT; Honza M, 2005, ANN ZOOL FENN, V42, P627; Hoover JP, 2003, ANIM BEHAV, V65, P923, DOI 10.1006/anbe.2003.2155; Hosoi SA, 2000, ANIM BEHAV, V59, P823, DOI 10.1006/anbe.1999.1370; JOHNSON C, 1976, INTRO NATURAL SELECT; Kilner Rebecca M., 2005, Ornithological Science, V4, P55, DOI 10.2326/osj.4.55; Kilner RM, 2004, SCIENCE, V305, P877, DOI 10.1126/science.1098487; Kilner RM, 2003, ANIM BEHAV, V66, P569, DOI 10.1006/anbe.2003.2204; Kilner RM, 1999, NATURE, V397, P667, DOI 10.1038/17746; Kilpatrick AM, 2002, CAN J ZOOL, V80, P145, DOI 10.1139/Z01-217; Kruger O, 2004, BEHAV ECOL, V15, P210, DOI 10.1093/beheco/arg104; Kus BE, 2002, CONDOR, V104, P795, DOI 10.1650/0010-5422(2002)104[0795:FCONDI]2.0.CO;2; Lack D., 1968, ECOLOGICAL ADAPTATIO; Langmore NE, 2005, BEHAV ECOL, V16, P686, DOI 10.1093/beheco/ari041; Lawes MJ, 2003, BEHAV ECOL, V14, P757, DOI 10.1093/beheco/arg068; Lea SEG, 1998, ANIM BEHAV, V56, P1571, DOI 10.1006/anbe.1998.0925; Lorenzana JC, 2001, BEHAV ECOL, V12, P325, DOI 10.1093/beheco/12.3.325; LOTEM A, 1992, BEHAV ECOL, V3, P128, DOI 10.1093/beheco/3.2.128; LOTEM A, 1993, NATURE, V362, P743, DOI 10.1038/362743a0; Lyon BE, 1998, NATURE, V392, P380, DOI 10.1038/32878; Marchetti K, 2000, ANIM BEHAV, V59, P877, DOI 10.1006/anbe.1999.1388; Martin TE, 2001, P NATL ACAD SCI USA, V98, P2071, DOI 10.1073/pnas.98.4.2071; MASON P, 1986, EVOLUTION, V40, P1207, DOI 10.1111/j.1558-5646.1986.tb05745.x; MAY RM, 1985, AM NAT, V126, P475, DOI 10.1086/284433; MOSKAT C, IN PRESS ETHOL ECOL; Moskat Csaba, 2005, Ornithological Science, V4, P3, DOI 10.2326/osj.4.3; Oppliger A, 1996, NATURE, V381, P565, DOI 10.1038/381565a0; PARTRIDGE L, 1985, NATURE, V316, P20, DOI 10.1038/316020a0; Payne R. B., 2005, CUCKOOS; Payne RB, 1998, BEHAV ECOL, V9, P64, DOI 10.1093/beheco/9.1.64; Peer BD, 2004, CONDOR, V106, P580, DOI 10.1650/7412; PETIT LJ, 1991, ANIM BEHAV, V41, P425, DOI 10.1016/S0003-3472(05)80843-7; Planque R, 2002, B MATH BIOL, V64, P1045, DOI 10.1006/bulm.2002.0311; POWER HW, 1989, CONDOR, V91, P753, DOI 10.2307/1368058; REEVE HK, 1989, AM NAT, V133, P407, DOI 10.1086/284926; Robinson Scott K., 1995, P428; Rohwer S, 1988, EVOL ECOL, V2, P27, DOI 10.1007/BF02071586; ROSKAFT E, 1993, ORNIS SCAND, V24, P28, DOI 10.2307/3676406; Rothstein S. I, 1998, PARASITIC BIRDS THEI; ROTHSTEIN SI, 1975, AM NAT, V109, P161, DOI 10.1086/282984; Rothstein SI, 2002, BEHAV ECOL, V13, P1, DOI 10.1093/beheco/13.1.1; Ruxton GD, 2002, P ROY SOC B-BIOL SCI, V269, P1989, DOI 10.1098/rspb.2002.2125; Servedio MR, 2003, EVOLUTION, V57, P1164; SMITH JNM, 1981, CONDOR, V83, P152, DOI 10.2307/1367420; Soler JJ, 2000, OECOLOGIA, V125, P309, DOI 10.1007/s004420000487; Soler JJ, 2001, ECOLOGY, V82, P1621, DOI 10.2307/2679805; Soler JJ, 1999, BEHAV ECOL, V10, P1, DOI 10.1093/beheco/10.1.1; Stokke BG, 2002, BEHAVIOUR, V139, P629, DOI 10.1163/15685390260136744; Tella JL, 2002, P ROY SOC B-BIOL SCI, V269, P1059, DOI 10.1098/rspb.2001.1951; Tewksbury JJ, 2002, P ROY SOC B-BIOL SCI, V269, P423, DOI 10.1098/rspb.2001.1894; Trine CL, 2000, ECOLOGY AND MANAGEMENT OF COWBIRDS AND THEIR HOSTS, P135; TURELLI M, 1984, THEOR POPUL BIOL, V25, P138, DOI 10.1016/0040-5809(84)90017-0; Underwood TJ, 2006, ETHOLOGY, V112, P164, DOI 10.1111/j.1439-0310.2006.01143.x 73 41 41 3 29 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. SEP 2006 19 5 1585 1594 10.1111/j.1420-9101.2006.01124.x 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 072RZ WOS:000239692000030 16910987 Bronze 2018-11-12 J Ackerman, JT; Eadie, JM; Moore, TG Ackerman, Joshua T.; Eadie, John M.; Moore, Thomas G. Does life history predict risk-taking behavior of wintering dabbling ducks? CONDOR English Article allometry; Anas; dabbling ducks; life history; predation risk; risk-taking behavior; spinning-wing decoy PHYLOGENETICALLY INDEPENDENT CONTRASTS; EUROPEAN BIRDS; NEST DEFENSE; BODY-SIZE; CONFIDENCE-INTERVALS; PARENTAL INVESTMENT; SURVIVAL RATES; PREDATION RISK; ANAS-CRECCA; WATERFOWL Life-history theory predicts that longer-lived, less fecund species should take fewer risks when exposed to predation than shorter-lived, more fecund species. We tested this prediction for seven species of dabbling ducks (Anas) by measuring the approach behavior (behavior of ducks when approaching potential landing sites) of 1099 duck flocks during 37 hunting trials and 491 flocks during 13 trials conducted immediately after the 1999-2000 waterfowl hunting season in California, USA. We also experimentally manipulated the attractiveness of the study site by using two decoy treatments: (1) traditional, stationary decoys only, and (2) traditional decoys in conjunction with a mechanical spinning-wing decoy. Approach behavior of ducks was strongly correlated with their life history. Minimum approach distance was negatively correlated with reproductive output during each decoy treatment and trial type. Similarly, the proportion of flocks taking risk (approaching landing sites to within 45 m) was positively correlated with reproductive output. We found similar patterns of approach behavior in relation to other life-history parameters (i.e., adult female body mass and annual adult female survival rate). Thus, species characterized by a slower life-history strategy (e.g., Northern Pintail [A. acuta]) were more risk-averse than species with a faster life-history strategy (e.g., Cinnamon Teal [A. cyanoptera]). Furthermore, although we were able to reduce riskaverseness using the spinning-wing decoy, we were unable to override the influence of life history on risk-taking behavior. Alternative explanations did not account for the observed correlation between approach behavior and life-history parameters. These results suggest that life history influences the risk-taking behavior of dabbling ducks and provide an explanation for the differential vulnerability of waterfowl to harvest. Univ Calif Davis, Dept Wildlife Fish & Conservat Biol, Davis, CA 95616 USA Ackerman, JT (reprint author), Univ Calif Davis, US Geol Survey, Western Ecol Res Ctr, Davis Field Stn, 1 Shields Ave, Davis, CA 95616 USA. jackerman@usgs.gov Eadie, John/E-4820-2011 Ackerman, Josh/0000-0002-3074-8322 ACKERMAN JT, 2006, IN PRESS J WILDLIFE, V70; ARNOLD TW, 1988, CAN J ZOOL, V66, P1906, DOI 10.1139/z88-279; Baldassarre G. A., 1994, WATERFOWL ECOLOGY MA; BELLROSE FC, 1976, DUCKS GEESE SWANS N; BELLROSE FRANK C, 1961, ILLINOIS NAT HIST SURV BULL, V27, P391; Bjorklund M, 1997, OIKOS, V80, P607, DOI 10.2307/3546637; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; BOTERO J E, 1988, P469; Caswell JH, 2004, WILDLIFE SOC B, V32, P1297, DOI 10.2193/0091-7648(2004)032[1297:VOMTHW]2.0.CO;2; DUBOVSKY JA, 1994, J WILDLIFE MANAGE, V58, P780, DOI 10.2307/3809693; Dunning JB, 1993, CRC HDB AVIAN BODY M; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Figuerola J, 2000, FUNCT ECOL, V14, P701, DOI 10.1046/j.1365-2435.2000.00474.x; Fleskes JP, 2002, CALIF FISH GAME, V88, P75; FORBES MRL, 1994, BEHAV ECOL SOCIOBIOL, V34, P79, DOI 10.1007/BF00164178; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; GAMMONLEY JH, 1996, BIRDS N AM, V209; Garland T, 2000, AM NAT, V155, P346, DOI 10.1086/303327; Garland T, 1999, AM ZOOL, V39, P374; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; GARLAND T, 1993, SYST BIOL, V42, P265, DOI 10.2307/2992464; GARLAND T, 2001, PDAP PHENOTYPIC DIVE; Ghalambor CK, 2000, ANIM BEHAV, V60, P263, DOI 10.1006/anbe.2000.1472; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; GILMER DS, 1982, T N AM WILDL NAT RES, V47, P441; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; GREENBERG R, 1984, P NATL ACAD SCI-BIOL, V81, P3778, DOI 10.1073/pnas.81.12.3778; GREENBERG R, 1990, STUD AVIAN BIOL, V13, P431; Gunness MA, 2001, ECOLOGY, V82, P1151, DOI 10.2307/2679910; HARAMIS GM, 1986, AUK, V103, P506; Harvey P. H., 1991, COMP METHOD EVOLUTIO; HEBERT CE, 1984, J WILDLIFE MANAGE, V48, P388, DOI 10.2307/3801170; HEITMEYER ME, 1989, T N AM WILDL NAT RES, V54, P391; HEITMEYER ME, 1981, T N AM WILDL NAT RES, V46, P44; HUMBURG D D, 1982, Wildlife Society Bulletin, V10, P121; JESKE CW, 1994, J WILDLIFE MANAGE, V51, P141; JOHNSON FA, 2002, PROBLEM SCALE ADAPTI; Johnson KP, 2000, J EVOLUTION BIOL, V13, P634; KRAPU GL, 1981, AUK, V98, P29; KREMENTZ DG, 1989, OIKOS, V56, P203, DOI 10.2307/3565337; Krementz DG, 1997, AUK, V114, P93, DOI 10.2307/4089068; LAURILA T, 1988, ORNIS FENNICA, V65, P49; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LINDSTEDT SL, 1981, Q REV BIOL, V56, P1, DOI 10.1086/412080; LIVEZEY BC, 1991, AUK, V108, P471, DOI 10.2307/4088089; Livezey BC, 1997, ANN CARNEGIE MUS, V66, P457; LIVEZEY BC, 1986, AUK, V103, P737; MAC ARTHUR ROBERT H., 1967; Mallory ML, 1998, CONDOR, V100, P694, DOI 10.2307/1369751; MIKULA E J, 1977, Wildlife Society Bulletin, V5, P3; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; Mori Y, 2001, J ETHOL, V19, P115, DOI 10.1007/s101640170007; Nagy KA, 2005, J EXP BIOL, V208, P1621, DOI 10.1242/jeb.01553; Olsen RE, 2000, J WILDLIFE MANAGE, V64, P983, DOI 10.2307/3803208; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Poysa H, 1998, OECOLOGIA, V114, P283, DOI 10.1007/s004420050447; POYSA H, 1991, ANIM BEHAV, V41, P285, DOI 10.1016/S0003-3472(05)80480-4; POYSA H, 1987, BEHAVIOUR, V103, P123, DOI 10.1163/156853987X00305; Price T, 1997, PHILOS T ROY SOC B, V352, P519, DOI 10.1098/rstb.1997.0036; RAVELING DG, 1989, J WILDLIFE MANAGE, V53, P1088, DOI 10.2307/3809615; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; RICKLEFS RE, 1977, CONDOR, V79, P376, DOI 10.2307/1368016; Ricklefs RE, 1996, OIKOS, V77, P167, DOI 10.2307/3545598; Roff Derek A., 1992; ROHWER FC, 1988, AUK, V105, P161; Rohwer FC, 1988, CURRENT ORNITHOLOGY, V5, P187; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; SAETHER BE, 1989, ORNIS SCAND, V20, P13, DOI 10.2307/3676702; *SAS I INC, 1998, STATVIEW STATVIEW RE; SJOBERG G, 1994, IBIS, V136, P129, DOI 10.1111/j.1474-919X.1994.tb01076.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1984, AM NAT, V123, P56, DOI 10.1086/284186; Szymanski ML, 2005, WILDLIFE SOC B, V33, P993, DOI 10.2193/0091-7648(2005)33[993:EOSDOF]2.0.CO;2; *US FISH WILDL SER, 2003, AD HARV MAN 2003 DUC; WESTERN D, 1982, OECOLOGIA, V54, P281, DOI 10.1007/BF00379994 78 8 8 0 21 COOPER ORNITHOLOGICAL SOC LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0010-5422 1938-5129 CONDOR Condor AUG 2006 108 3 530 546 10.1650/0010-5422(2006)108[530:DLHPRB]2.0.CO;2 17 Ornithology Zoology 074QS WOS:000239827500004 2018-11-12 J Johnson, RA Johnson, R. A. Capital and income breeding and the evolution of colony founding strategies in ants INSECTES SOCIAUX English Article brood production; capital breeding; income breeding; life history; colony founding strategies IMPORTED FIRE ANT; LIFE-HISTORY; BROOD PRODUCTION; POGONOMYRMEX-CALIFORNICUS; RESOURCE-ALLOCATION; PARASITOID WASPS; HORNED LIZARD; P-BARBATUS; BODY-SIZE; HYMENOPTERA Ability to store resources that will be used for reproduction represents a potential life history adaptation because storage permits feeding and reproduction to be decoupled spatially and/or temporally. The two ends of a continuum involve acquiring all resources prior to reproduction (capital breeding) or acquiring all resources during the reproductive period (income breeding). Traditional life history theory examines tradeoffs between costs and benefits of such strategies, but this theory has not been integrated into life history studies of ants, even though founding queens have the analogous strategies of fully claustral (capital breeding) and semi-claustral (income breeding). This study demonstrates that facultatively semi-claustral queens of the seed-harvester ant Pogonomyrmex desertorum exhibit phenotypic plasticity during colony founding because unfed queens produced few, small minims, whereas ad libitum fed queens produced larger, heavier minims and additional brood. Fed queens also lost less mass than unfed queens despite their producing more brood. Overall, foraging provides queens with a suite of benefits that likely offset potential negative effects of foraging risk. Life history studies across a diverse array of taxa show that capital breeding is consistently associated with low availability and/or unpredictability of food, i.e., environmental conditions that favor prepackaging of reproductive resources. Such a broad and consistent pattern suggests that similar factors favored the evolution of fully claustral (capital breeding) colony founding in ants. Overall, these data suggest that ant researchers should revise their conventional view that fully claustral colony founding evolved because it eliminated the need for queens to leave the nest to forage. Instead, colony founding strategies should be examined from the perspective of environmental variation, i.e., availability and predictability of food. I also provide a functional scenario that could explain the evolution of colony founding strategies in ants. Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA Johnson, RA (reprint author), Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. atraj@imap1.asu.edu Anderson KE, 2006, INSECT SOC, V53, P92, DOI 10.1007/s00040-005-0840-y; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Bonnet X, 2002, ECOLOGY, V83, P2124, DOI 10.2307/3072044; Bourke A. F. G., 1995, SOCIAL EVOLUTION ANT; Brown MJF, 2003, EVOL ECOL RES, V5, P305; Brown MJF, 1999, INSECT SOC, V46, P194, DOI 10.1007/s000400050133; Costa Daniel P., 1993, Symposia of the Zoological Society of London, V66, P293; Gauthier G, 2003, ECOLOGY, V84, P3250, DOI 10.1890/02-0613; GREEN HB, 1962, J ECON ENTOMOL, V55, P1003, DOI 10.1093/jee/55.6.1003; Hahn DA, 2004, PHYSIOL BIOCHEM ZOOL, V77, P100, DOI 10.1086/380214; HASKINS CARYL P., 1950, PSYCHE, V57, P1, DOI 10.1155/1950/72123; HEDENSTROM A, 1992, J THEOR BIOL, V158, P535, DOI 10.1016/S0022-5193(05)80714-3; Heinze J, 1995, RES POPUL ECOL, V37, P135, DOI 10.1007/BF02515814; Hoelldobler B, 1990, ANTS; HOELLDOBLER B, 1970, PSYCHE, V77, P202; Jervis MA, 2005, ECOL ENTOMOL, V30, P359, DOI 10.1111/j.0307-6946.2005.00712.x; Jervis MA, 2003, FUNCT ECOL, V17, P375, DOI 10.1046/j.1365-2435.2003.00742.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; JOENSSON KI, 1997, OIKOS, V78, P57; JOENSSON KI, 1998, OIKOS, V83, P424; Johnson RA, 1998, INSECT SOC, V45, P255, DOI 10.1007/s000400050086; Johnson RA, 2002, OECOLOGIA, V132, P60, DOI 10.1007/s00442-002-0960-2; Johnson RA, 2004, ANIM BEHAV, V68, P1189, DOI 10.1016/j.anbehav.2003.11.021; Johnson RA, 2000, ECOL ENTOMOL, V25, P403, DOI 10.1046/j.1365-2311.2000.00286.x; Johnson RA, 2000, SOCIOBIOLOGY, V36, P89; KELLER L, 1989, OECOLOGIA, V80, P236, DOI 10.1007/BF00380157; LIMA SL, 1986, ANIM BEHAV, V34, P536, DOI 10.1016/S0003-3472(86)80122-1; MACKAY WP, 1982, OECOLOGIA, V53, P406, DOI 10.1007/BF00389022; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Meijer T, 1999, IBIS, V141, P399, DOI 10.1111/j.1474-919X.1999.tb04409.x; Oster GF, 1978, CASTE ECOLOGY SOCIAL; Peeters Christian, 1997, P372; PORTER SD, 1986, ANN ENTOMOL SOC AM, V79, P723, DOI 10.1093/aesa/79.4.723; PORTER SD, 1985, BEHAV ECOL SOCIOBIOL, V16, P323, DOI 10.1007/BF00295545; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; Reznick DN, 2002, SCIENCE, V298, P1018, DOI 10.1126/science.1076018; RISSING SW, 1981, ECOLOGY, V62, P1031, DOI 10.2307/1937002; SPSS I, 1990, SPSS REF GUID; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stille M, 1996, OECOLOGIA, V105, P87, DOI 10.1007/BF00328795; Talbot M, 1934, ECOLOGY, V15, P416, DOI 10.2307/1932358; Tammaru T, 1996, OIKOS, V77, P561, DOI 10.2307/3545946; THIBAULT RE, 1978, EVOLUTION, V32, P320, DOI 10.1111/j.1558-5646.1978.tb00648.x; Trexler JC, 2003, AM NAT, V162, P574, DOI 10.1086/378822; TSCHINKEL WR, 1991, INSECT SOC, V38, P77, DOI 10.1007/BF01242715; TSCHINKEL WR, 1993, BEHAV ECOL SOCIOBIOL, V33, P209, DOI 10.1007/BF02027118; TSCHINKEL WR, 2002, J INS SCI, V2; Wheeler D, 1996, ANNU REV ENTOMOL, V41, P407, DOI 10.1146/annurev.en.41.010196.002203; WHITFORD WG, 1979, ECOLOGY, V60, P686, DOI 10.2307/1936605 49 27 27 0 23 BIRKHAUSER VERLAG AG BASEL VIADUKSTRASSE 40-44, PO BOX 133, CH-4010 BASEL, SWITZERLAND 0020-1812 INSECT SOC Insect. Soc. AUG 2006 53 3 316 322 10.1007/s00040-006-0874-9 7 Entomology Entomology 068ES WOS:000239355900010 2018-11-12 J Croll, DA; Demer, DA; Hewitt, RP; Jansen, JK; Goebel, ME; Tershy, BR Croll, D. A.; Demer, D. A.; Hewitt, R. P.; Jansen, J. K.; Goebel, M. E.; Tershy, B. R. Effects of variability in prey abundance on reproduction and foraging in chinstrap penguins (Pygoscelis antarctica) JOURNAL OF ZOOLOGY English Article penguin; foraging; Antarctica; krill; seabird KRILL EUPHAUSIA-SUPERBA; GUILLEMOTS URIA-AALGE; DIVING BEHAVIOR; ELEPHANT-ISLAND; TARGET-STRENGTH; PARENTAL EFFORT; FOOD; PERFORMANCE; SEABIRD; ATTACHMENT Life-history theory predicts that adults of long-lived species such as seabirds should optimally balance investment in current and future offspring. However, when trying to optimize investment in offspring provisioning, the most energetically costly component of seabird parental care, adults need to contend with large interannual fluctuations in prey availability and hence the cost of chick provisioning. Adults faced with this uncertainty can mechanistically balance parental care by adopting a strategy somewhere along the continuum between maintaining constant investment in foraging effort between years and letting chick provisioning fluctuate or holding chick provisioning constant and varying investment in foraging effort. Using ship-based hydroacoustic assessment of prey, time-depth recorders attached to penguins and land-based observations at the breeding colony, we examined how foraging and reproductive effort in breeding chinstrap penguins Pygoscelis antarctica responded to interannual variation in the abundance of Antarctic krill Euphausia superba in the vicinity of Seal Island, South Shetland Islands, 1990-1992. Regional measures of krill density varied by a factor of 2.5 (47.0, 23.8 and 61.2 g m(-2) in 1990, 1991 and 1992, respectively) and was correlated with annual measures of breeding adult body weight and reproductive performance (breeding population size, duration of chick rearing, chick growth, breeding success and fledgling weight). In contrast, measures of penguin foraging effort (dive depth, dive duration, number of trips day(-1), trip duration, number of dives trip(-1) and dive rate) did not differ between years. We conclude that chinstrap penguins reduce reproductive success rather than increase foraging effort in response to decreases in prey abundance in a manner consistent with predictions of life-history strategies for long-lived seabirds. Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95060 USA; Natl Marine Fisheries Serv, SW Fisheries Sci Ctr, La Jolla, CA 92038 USA; NOAA, Natl Marine Fisheries Serv, Natl Marine Mammal Lab, Seattle, WA 98115 USA Croll, DA (reprint author), Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, 100 Shaffer Rd, Santa Cruz, CA 95060 USA. croll@biology.ucsc.edu Ainley D. G., 1984, MARINE ECOLOGY BIRDS; ANDERSON DW, 1982, OIKOS, V39, P23, DOI 10.2307/3544527; BENGTSON JL, 1993, ANTARCT SCI, V5, P9; BERGMAN G, 1978, Memoranda Societatis pro Fauna et Flora Fennica, V54, P31; Boyd IL, 1996, CAN J ZOOL, V74, P1696, DOI 10.1139/z96-187; BOYD IL, 1994, J ANIM ECOL, V63, P703, DOI 10.2307/5235; BURGER AE, 1990, STUD AVIAN BIOL, V14, P71; CAIRNS D K, 1987, Biological Oceanography, V5, P261; CAIRNS DK, 1992, COLON WATERBIRD, V15, P245, DOI 10.2307/1521461; *CCAMLR, 1991, CCAMLR EC MON PROGR; Croll DA, 1996, J FIELD ORNITHOL, V67, P1; CROLL DA, 1991, CONDOR, V93, P777, DOI 10.2307/1368216; Croxall JP, 2002, SCIENCE, V297, P1510, DOI 10.1126/science.1071987; Croxall JP, 1999, MAR ECOL PROG SER, V177, P115, DOI 10.3354/meps177115; Demer DA, 2005, ICES J MAR SCI, V62, P25, DOI 10.1016/j.icesjms.2004.07.027; Demer DA, 2004, DEEP-SEA RES PT II, V51, P1237, DOI 10.1016/j.dsr2.2004.06.012; EVERSON I, 1990, NATURE, V345, P338, DOI 10.1038/345338a0; FOOTE KG, 1990, J ACOUST SOC AM, V87, P16, DOI 10.1121/1.399282; Fraser William R., 1996, Antarctic Research Series, V70, P257; Furness R. W., 1987, SEABIRD ECOLOGY; GREENE CH, 1991, NATURE, V349, P110, DOI 10.1038/349110a0; HEWITT RP, 1993, MAR ECOL PROG SER, V99, P29, DOI 10.3354/meps099029; HEWITT RP, 1991, NATURE, V353, P310, DOI 10.1038/353310b0; HEWITT RP, 1994, CCAMLR SCI, V1, P1; Jansen JK, 2002, OECOLOGIA, V131, P306, DOI 10.1007/s00442-002-0880-1; Jansen JK, 1998, MAR ECOL PROG SER, V165, P161, DOI 10.3354/meps165161; JOLLY GM, 1990, CAN J FISH AQUAT SCI, V47, P1282, DOI 10.1139/f90-147; Kitaysky AS, 2000, J ANIM ECOL, V69, P248, DOI 10.1046/j.1365-2656.2000.00392.x; Lack D., 1968, ECOLOGICAL ADAPTATIO; LACK D, 1954, NATURAL REGULATION A; LID G, 1980, FAUNA NORV SER C CIN, V4, P30; LISHMAN GS, 1985, J ZOOL, V205, P245, DOI 10.1111/j.1469-7998.1985.tb03532.x; Loeb V, 1997, NATURE, V387, P897, DOI 10.1038/43174; Lynnes AS, 2004, POLAR BIOL, V27, P544, DOI 10.1007/s00300-004-0617-1; MACAULAY MC, 1984, J CRUSTACEAN BIOL, V4, P16, DOI 10.1163/1937240X84X00480; MACAULAY MC, 1991, ANTARCT J US, V26, P203; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Meyer WR, 1997, POLAR BIOL, V17, P228, DOI 10.1007/s003000050126; MONAGHAN P, 1994, IBIS, V136, P214, DOI 10.1111/j.1474-919X.1994.tb01087.x; Monaghan P, 1996, OIKOS, V77, P227, DOI 10.2307/3546061; Murphy E.J., 1988, P120; SAETHER BE, 1993, BEHAV ECOL SOCIOBIOL, V33, P147, DOI 10.1007/BF00216594; SIEGEL V, 1995, MAR ECOL PROG SER, V123, P45, DOI 10.3354/meps123045; SIEGEL V, 1991, SELECTED SCI PAPERS, P145; SIMMONDS EJ, 1981, COMM M INT COUN EX B, P54; Stearns SC., 1992, EVOLUTION LIFE HISTO; TRIVELPIECE WZ, 1986, AUK, V103, P777; UTTLEY JD, 1994, IBIS, V136, P205, DOI 10.1111/j.1474-919X.1994.tb01086.x; VOLKMAN NJ, 1980, CONDOR, V82, P373, DOI 10.2307/1367558; WEIMERSKIRCH H, 1995, BEHAV ECOL SOCIOBIOL, V36, P11; WILLIAMS TD, 1990, J APPL ECOL, V27, P1042, DOI 10.2307/2404394; WILSON RP, 1986, ECOLOGY, V67, P1091, DOI 10.2307/1939832; Woehler E. J., 1997, Marine Ornithology, V25, P43 53 16 17 0 21 BLACKWELL PUBLISHING OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND 0952-8369 J ZOOL J. Zool. AUG 2006 269 4 506 513 10.1111/j.1469-7998.2006.00090.x 8 Zoology Zoology 063HP WOS:000239009600014 2018-11-12 J Hagen, EH; Barrett, HC; Price, ME Hagen, Edward H.; Barrett, H. Clark; Price, Michael E. Do human parents face a quantity-quality tradeoff?: Evidence from a Shuar community AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article parental investment theory; life history theory; anthropometry growth; nutrition LOWER RESPIRATORY-INFECTIONS; MEDIATED IMMUNE-DEFICIENCY; BANGLADESHI CHILDREN; NUTRITIONAL-STATUS; FAMILY-SIZE; MALNUTRITION; INVESTMENT; SEX; FERTILITY; DIARRHEA A number of evolutionary theories of human life history assume a quantity-quality tradeoff for offspring production: parents with fewer offspring can have higher biological fitness than those with more. Direct evidence for such a tradeoff, however, is mixed. We tested this assumption in a community of Ecuadorian Shuar hunter-horticulturalists, using child anthropometry as a proxy for fitness. We measured the impact of household consumer/producer (CP) ratio on height, weight, skinfold thicknesses, and arm and calf circumferences of 85 children and young adults. To control for possible "phenotypic" correlates that might mask the effect of CP ratio on anthropometry, we also measured household garden productivity, wealth, and social status. Regression models of the age-standardized variables indicated a significant negative impact of CP ratio on child growth and nutrition. The age-standardized height and weight of children in households with the largest CP ratio (10) were 1.38 and 1.44 standard deviations, respectively, below those of children in households with the smallest CP ratio (2). Surprisingly, garden productivity, wealth, and status had little to no effect on the fitness proxies. There was, however, an interesting and unexpected interaction between status and sex: for females, but not males, higher father status correlated significantly with higher values on the proxies. Humboldt Univ, Inst Theoret Biol, D-10115 Berlin, Germany; Max Planck Inst Human Dev, D-14195 Berlin, Germany; Univ Calif Los Angeles, Dept Anthropol, Los Angeles, CA 90095 USA; Indiana Univ, Workshop Polit Theory & Policy Anal, Bloomington 47404, IN USA; Santa Fe Inst, Santa Fe, NM 87501 USA Hagen, EH (reprint author), Humboldt Univ, Inst Theoret Biol, Invalidenstr 43, D-10115 Berlin, Germany. e.hagen@biologie.hu-berlin.de Price, Michael/0000-0002-2572-4326 Alexander R.D., 1974, Annual Rev Ecol Syst, V5, P325, DOI 10.1146/annurev.es.05.110174.001545; BALLARD TJ, 1995, J TROP PEDIATRICS, V41, P8, DOI 10.1093/tropej/41.1.8; BAQUI AH, 1993, AM J EPIDEMIOL, V137, P355, DOI 10.1093/oxfordjournals.aje.a116682; BAQUI AH, 1993, AM J CLIN NUTR, V58, P543; Becker G. S., 1993, HUMAN CAPITAL THEORE; BETZIG LL, 1986, ETHOL SOCIOBIOL, V7, P29, DOI 10.1016/0162-3095(86)90013-0; BINKIN NJ, 1988, PEDIATRICS, V82, P828; Blurton-Jones N., 1986, ETHOL SOCIOBIOL, V7, P91, DOI DOI 10.1016/0162-3095(86)90002-6); BLURTONJONES N, 1994, AM J PHYS ANTHROPOL, V93, P391; BONGAARTS J, 1979, NATURAL FERTILITY, P107; Boyd R., 1985, CULTURE EVOLUTIONARY; CHAGNON NA, 1988, SCIENCE, V239, P985, DOI 10.1126/science.239.4843.985; Chayanov A. V., 1996, THEORY PEASANT EC; CHIBNIK M, 1984, CURR ANTHROPOL, V25, P335, DOI 10.1086/203141; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; COALE AJ, 1986, DECLINE FERTILITY EU, P31; Daly M., 1988, HOMICIDE; Daly M., 1984, INFANTICIDE COMP EVO, P487; Dickemann M., 1981, NATURAL SELECTION SO, P417; DURRENBERGER P, 1984, CHAYANOV PEASANTS EC; ELSAMANI EFZ, 1988, AM J EPIDEMIOL, V128, P93; FOX J, 1997, APPL REGRESSION ANAL; GAULIN SJC, 1991, AM J PHYS ANTHROPOL, V85, P61, DOI 10.1002/ajpa.1330850108; Gurven M, 2004, BEHAV BRAIN SCI, V27, P543; Hagen EH, 2002, EVOL HUM BEHAV, V23, P323, DOI 10.1016/S1090-5138(01)00102-7; Hagen EH, 2001, J BIOSOC SCI, V33, P503, DOI 10.1017/S002193200100503X; Hagen EH, 1999, EVOL HUM BEHAV, V20, P325, DOI 10.1016/S1090-5138(99)00016-1; HAGEN EH, PERINATAL SADNESS SH; HARPENDING H, 1994, AM J PHYS ANTHROPOL, V93, P385, DOI 10.1002/ajpa.1330930310; Hesketh T, 2003, ARCH DIS CHILD, V88, P467, DOI 10.1136/adc.88.6.467; Hewlett B. S., 1991, INTIMATE FATHERS NAT; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; IRONS W, 1983, SOCIAL BEHAVIOR FEMA, P169; JONSSON KI, 1994, TRENDS ECOL EVOL, V9, P304, DOI 10.1016/0169-5347(94)90042-6; Joshi NV, 1996, P NATL ACAD SCI USA, V93, P6387, DOI 10.1073/pnas.93.13.6387; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; KAPLAN H, 2000, HUMAN BEHAV ADAPTATI, P283; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; Kuczmarski RJ, 2002, VITAL HLTH STAT, V11, P246; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LANCASTER JB, 1997, FEMINISM EVOLUTIONAR, P466; LANCASTER JB, 1987, PARENTING LIFE SPAN, P187; Livi-Bacci M, 1986, DECLINE FERTILITY EU, P182; LOHMAN TG, 1981, HUM BIOL, V53, P181; LUTTBEG B, 2000, HUMAN BEHAV ADAPTATI, P345; Mace R, 1998, PHILOS T R SOC B, V353, P389, DOI 10.1098/rstb.1998.0217; MANN J, 1992, ADAPTED MIND EVOLUTI, P367; MARGULIS SW, 1993, BEHAV ECOL SOCIOBIOL, V32, P41; MARTORELL R, 2001, NESTLE NUTR WORKSHOP, V47; MARTORELL R, 1992, HUMAN GROWTH BASIC C, P143; Mascarenhas MR, 1998, NUTRITION, V14, P105, DOI 10.1016/S0899-9007(97)00226-8; MILLER J E, 1989, American Journal of Human Biology, V1, P409, DOI 10.1002/ajhb.1310010403; MULDER MB, 1995, CURR ANTHROPOL, V36, P573, DOI 10.1086/204405; Mulder MB, 1998, HUM NATURE-INT BIOS, V9, P119, DOI 10.1007/s12110-998-1001-6; Mulder VB, 2000, EVOL HUM BEHAV, V21, P391; NANDA S, 1996, INDIAN J MATERN CHIL, V71, P20; Orr CM, 2001, AM J HUM BIOL, V13, P301, DOI 10.1002/ajhb.1053.abs; PELLETIER DL, 1993, AM J PUBLIC HEALTH, V83, P1130, DOI 10.2105/AJPH.83.8.1130; Pelletier DL, 2003, J NUTR, V133, P107; PELLETIER DL, 1991, RELATIONSHIPS CHILD; Pinheiro JC, 2000, MIXED EFFECTS MODELS; Prasad M, 2002, J Obstet Gynaecol, V22, P513; RAO KV, 1969, J NUTR DIET, V6, P258; Roff Derek A., 1992; ROGERS AR, 1995, HUMAN REPRODUCTIVE DECISIONS, P76; ROGERS AR, 1990, ETHOL SOCIOBIOL, V11, P479, DOI 10.1016/0162-3095(90)90022-X; SanJose C, 1997, PERCEPT MOTOR SKILL, V85, P917; Sarria A, 1998, EUR J CLIN NUTR, V52, P573, DOI 10.1038/sj.ejcn.1600606; SEMBA RD, 2001, NUTR HLTH DEV COUNTR; SPURR GB, 1977, AM J CLIN NUTR, V30, P316; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tada Yuko, 2002, Southeast Asian Journal of Tropical Medicine and Public Health, V33, P628; TAHA SA, 1979, ECOL FOOD NUTR, V7, P193, DOI 10.1080/03670244.1979.9990530; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; TURKE PW, 1989, POPUL DEV REV, V15, P61, DOI 10.2307/1973405; VINING DR, 1986, BEHAV BRAIN SCI, V9, P167, DOI 10.1017/S0140525X00021968; WHO, 1995, PHYS STAT US INT ANT; WOLFE BL, 1982, J DEV ECON, V11, P163, DOI 10.1016/0304-3878(82)90002-5; WOOD JW, 1994, DYNAMICS HUMAN REPRO; Zaman K, 1996, EUR J CLIN NUTR, V50, P309 81 45 46 1 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 1096-8644 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. JUL 2006 130 3 405 418 10.1002/ajpa.20272 14 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 050HM WOS:000238078100012 16365856 2018-11-12 J De Paepe, M; Taddei, F De Paepe, Marianne; Taddei, Francois Viruses' life history: Towards a mechanistic basis of a trade-off between survival and reproduction among phages PLOS BIOLOGY English Article RNA BACTERIOPHAGES; DNA; EVOLUTION; MUTANTS; INACTIVATION; VIRULENCE; WATER; T7; BACTERIA; EJECTION Life history theory accounts for variations in many traits involved in the reproduction and survival of living organisms, by determining the constraints leading to trade-offs among these different traits. The main life history traits of phages-viruses that infect bacteria-are the multiplication rate in the host, the survivorship of virions in the external environment, and their mode of transmission. By comparing life history traits of 16 phages infecting the bacteria Escherichia coli, we show that their mortality rate is constant with time and negatively correlated to their multiplication rate in the bacterial host. Even though these viruses do not age, this result is in line with the trade-off between survival and reproduction previously observed in numerous aging organisms. Furthermore, a multiple regression shows that the combined effects of two physical parameters, namely, the capsid thickness and the density of the packaged genome, account for 82% of the variation in the mortality rate. The correlations between life history traits and physical characteristics of virions may provide a mechanistic explanation of this trade- off. The fact that this trade- off is present in this very simple biological situation suggests that it might be a fundamental property of evolving entities produced under constraints. Moreover, such a positive correlation between mortality and multiplication reveals an underexplored trade- off in host-parasite interactions. Univ Paris 05, Lab Genet Mol Evolut & Med, INSERM, Paris, France Taddei, F (reprint author), Univ Paris 05, Lab Genet Mol Evolut & Med, INSERM, Paris, France. taddei@necker.fr Ackermann HW, 2003, RES MICROBIOL, V154, P245, DOI 10.1016/S0923-2508(03)00067-6; Adams M. H., 1959, BACTERIOPHAGES; Araujo RM, 1997, J APPL MICROBIOL, V82, P281, DOI 10.1046/j.1365-2672.1997.00354.x; BAMFORD DH, 1981, J GEN VIROL, V57, P365, DOI 10.1099/0022-1317-57-2-365; BERTANI LE, 1988, BACTERIOPHAGES, P77; BLACK LW, 1994, MOL BIOL BACTERIOP T, V4, P218; Boedtker H., 1975, RNA PHAGES, P1; Bonhoeffer S, 1996, P ROY SOC B-BIOL SCI, V263, P715, DOI 10.1098/rspb.1996.0107; Brion Gail M., 2004, Journal of Water and Health, V2, P261; Bull JJ, 2004, EVOLUTION, V58, P692; Bull JJ, 2004, TRENDS ECOL EVOL, V19, P76, DOI 10.1016/j.tree.2003.10.008; CALDENDAR R, 1988, BACTERIOPHAGES; Campbell AM, 1996, ESCHERICHIA COLI SAL, P2325; Cerritelli ME, 1996, J MOL BIOL, V258, P286, DOI 10.1006/jmbi.1996.0250; Cerritelli ME, 1997, CELL, V91, P271, DOI 10.1016/S0092-8674(00)80409-2; Charnov EL, 1997, NATURE, V387, P393, DOI 10.1038/387393a0; Chiu W., 1997, STRUCTURAL BIOL VIRU; DOKLAND T, 1992, EMBO J, V11, P839, DOI 10.1002/j.1460-2075.1992.tb05121.x; Dokland T, 1999, J MOL BIOL, V288, P595, DOI 10.1006/jmbi.1999.2699; DROESBEKE JJ, 1989, ANAL STAT DUREES VIE; Ebert D, 2003, TRENDS MICROBIOL, V11, P15, DOI 10.1016/S0966-842X(02)00003-3; Evilevitch A, 2004, J PHYS CHEM B, V108, P6838, DOI 10.1021/jp0376525; Frank SA, 1996, Q REV BIOL, V71, P37, DOI 10.1086/419267; GEORGOPOULOS C, 1983, LAMBDA, V2, P279; GIPHARTGASSLER M, 1981, J MOL BIOL, V145, P139, DOI 10.1016/0022-2836(81)90338-7; HARSHEY R, 1988, BACTERIOPHAGES, P193; HAVELAAR AH, 1990, J APPL BACTERIOL, V69, P30, DOI 10.1111/j.1365-2672.1990.tb02908.x; HOLLIDAY R, 1995, UNDERSTANDING AGEING; Kindt J, 2001, P NATL ACAD SCI USA, V98, P13671, DOI 10.1073/pnas.241486298; Kirkwood TBL, 2005, CELL, V120, P437, DOI 10.1016/j.cell.2005.01.027; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Leroi AM, 2001, TRENDS ECOL EVOL, V16, P24, DOI 10.1016/S0169-5347(00)02032-2; LOEB T, 1961, P NATL ACAD SCI USA, V47, P282, DOI 10.1073/pnas.47.3.282; MAKOWSKI L, 1997, STRUCTURAL BIOL VIRU, P352; McCorquodale D.J., 1988, BACTERIOPHAGES, P439; MCKENNA R, 1992, NATURE, V355, P137, DOI 10.1038/355137a0; Mindich L., 1988, BACTERIOPHAGES, P475; Moce-Llivina L, 2003, APPL ENVIRON MICROB, V69, P1452, DOI 10.1128/AEM.69.3.1452-1456.2003; Pajunen MI, 2002, J MOL BIOL, V319, P1115, DOI 10.1016/S0022-2836(02)00384-4; PARKINSON JS, 1971, J MOL BIOL, V56, P369, DOI 10.1016/0022-2836(71)90471-2; Purohit PK, 2005, BIOPHYS J, V88, P851, DOI 10.1529/biophysj.104.047134; Purohit PK, 2003, P NATL ACAD SCI USA, V100, P3173, DOI 10.1073/pnas.0737893100; RITCHIE DA, 1970, J GEN VIROL, V9, P35, DOI 10.1099/0022-1317-9-1-35; RUBENSTEIN I, 1968, VIROLOGY, V36, P356, DOI 10.1016/0042-6822(68)90161-X; RUSSELL PW, 1984, J VIROL, V52, P822; Schaper M, 2002, APPL ENVIRON MICROB, V68, P3702, DOI 10.1128/AEM.68.8.3702-3707.2002; Sinton LW, 1999, APPL ENVIRON MICROB, V65, P3605; Skraber S, 2004, APPL ENVIRON MICROB, V70, P3644, DOI 10.1128/aem.70.6.3644-3649.2004; Smith DE, 2001, NATURE, V413, P748, DOI 10.1038/35099581; TAYLOR P, 1991, J THEOR BIOL, V148, P33, DOI 10.1016/S0022-5193(05)80464-3; VANDUIN J, 1988, BACTERIOPHAGES, V1, P117; WOODY MA, 1995, APPL ENVIRON MICROB, V61, P1520; YAMAGISHI H, 1973, VIROLOGY, V53, P277, DOI 10.1016/0042-6822(73)90486-8; YARMOLINSKY M, 1988, BACTERIOPHAGES, P291; ZINDER N, 1975, RHA PHAGES 55 130 131 0 34 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA 1544-9173 PLOS BIOL PLoS. Biol. JUL 2006 4 7 1248 1256 e193 10.1371/journal.pbio.0040193 9 Biochemistry & Molecular Biology; Biology Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics 062VU WOS:000238974300016 16756387 DOAJ Gold, Green Published 2018-11-12 J Saad, G; Peng, A Saad, G; Peng, A Applying Darwinian principles in designing effective intervention strategies: The case of sun tanning PSYCHOLOGY & MARKETING English Article LIFE-HISTORY THEORY; EVOLUTIONARY HEALTH PROMOTION; HUMAN MATE PREFERENCES; SKIN-CANCER; SUNSCREEN USE; SEXUAL SELECTION; TIME-PREFERENCE; GENDER DIFFERENCES; PLANNED BEHAVIOR; PUBLIC-POLICY Public-service announcements typically seek to educate consumers regarding a given unhealthy practice, the assumption being that individuals will cease the harmful behavior once they are fully informed. Many intervention strategies have failed in curbing the targeted behaviors because these are not due to incomplete information but instead may also have a Darwinian-based etiology. Using sunbathing as a case analysis, it is shown how Darwinian theorizing (evolutionary psychology, life-history theory, gene-culture co-evolution, and memetic theory) can augment social marketers' ability to develop efficacious intervention strategies. (c) 2006 Wiley Periodicals, Inc. Concordia Univ, John Molson Sch Business, Dept Mkt, Montreal, PQ H3G 1M8, Canada Saad, G (reprint author), Concordia Univ, John Molson Sch Business, Dept Mkt, 1455 Maisonneuve Blvd W, Montreal, PQ H3G 1M8, Canada. gadsaad@jmsb.concordia.ca Abed RT, 1998, BRIT J MED PSYCHOL, V71, P525, DOI 10.1111/j.2044-8341.1998.tb01007.x; Ajzen I., 1980, UNDERSTANDING ATTITU; Ajzen I., 1988, ATTITUDES PERSONALIT; Alberink AM, 2000, AUST NZ J PUBL HEAL, V24, P488, DOI 10.1111/j.1467-842X.2000.tb00498.x; *AM CANC SOC, 2002, CANC FACTS FIG 2002; Aoki K, 2002, ANN HUM BIOL, V29, P589, DOI 10.1080/0301446021000019144; Armstrong BK, 2001, J PHOTOCH PHOTOBIO B, V63, P8, DOI 10.1016/S1011-1344(01)00198-1; ARTHEY S, 1995, SOC SCI MED, V40, P265, DOI 10.1016/0277-9536(94)E0063-X; Barkow Jerome H., 1992, ADAPTED MIND EVOLUTI; Beckmann KR, 2001, MED J AUSTRALIA, V174, P75; BERWICK M, 1992, PREV MED, V21, P302, DOI 10.1016/0091-7435(92)90029-H; BLACKMORE S., 1999, MEME MACHINE; Boldeman C, 1997, PREV MED, V26, P114, DOI 10.1006/pmed.1996.9986; Boldeman C, 2001, EUR J CANCER, V37, P2441, DOI 10.1016/S0959-8049(01)00310-0; BROADSTOCK M, 1992, J APPL SOC PSYCHOL, V22, P157, DOI 10.1111/j.1559-1816.1992.tb01527.x; Burnham T., 2000, MEAN GENES SEX MONEY; BURTON S, 1995, J PUBLIC POLICY MARK, V14, P60; Buss D. M., 1994, EVOLUTION DESIRE STR; Chen JG, 2001, DERMATOL SURG, V27, P1035, DOI 10.1046/j.1524-4725.2001.01004.x; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Clarke VA, 1997, J BEHAV MED, V20, P207, DOI 10.1023/A:1025586829179; Dawkins R., 1976, SELFISH GENE; Detweiler JB, 1999, HEALTH PSYCHOL, V18, P189, DOI 10.1037//0278-6133.18.2.189; Diepgen TL, 2002, BRIT J DERMATOL, V146, P1, DOI 10.1046/j.1365-2133.146.s61.2.x; Dunbar Robin, 2002, HUMAN EVOLUTIONARY P; Eaton SB, 2002, PREV MED, V34, P109, DOI 10.1006/pmed.2001.0876; Eaton SB, 2002, PREV MED, V34, P119, DOI 10.1006/pmed.2001.0966; FEINGOLD A, 1992, PSYCHOL BULL, V112, P125, DOI 10.1037//0033-2909.112.1.125; Feldman SR, 2001, J AM ACAD DERMATOL, V45, P718, DOI 10.1067/mjd.2001.117855; Fiala B, 1997, BRIT J DERMATOL, V137, P950; FRITSCHI L, 1992, J AM ACAD DERMATOL, V27, P25, DOI 10.1016/0190-9622(92)70150-E; GANGESTAD SW, 1994, ETHOL SOCIOBIOL, V15, P73, DOI 10.1016/0162-3095(94)90018-3; GANGESTAD SW, 1993, ETHOL SOCIOBIOL, V14, P89, DOI 10.1016/0162-3095(93)90009-7; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Geller AC, 2002, PEDIATRICS, V109, P1009, DOI 10.1542/peds.109.6.1009; Gigerenzer G., 1999, SIMPLE HEURISTICS MA; Gray PB, 2004, J GAMBL STUD, V20, P347, DOI 10.1007/s10899-004-4579-6; GREEN L, 1994, PSYCHOL SCI, V5, P33, DOI 10.1111/j.1467-9280.1994.tb00610.x; GREENLEES IA, 1994, ETHOL SOCIOBIOL, V15, P59, DOI 10.1016/0162-3095(94)90017-5; HILL D, 1984, COMMUNITY HEALTH ST, V8, P33; HILL EM, 1992, ETHOL SOCIOBIOL, V13, P35, DOI 10.1016/0162-3095(92)90005-O; Hill EM, 2002, ADDICTION, V97, P401, DOI 10.1046/j.1360-0443.2002.00020.x; Hillhouse JJ, 2002, J BEHAV MED, V25, P395, DOI 10.1023/A:1015870516460; Hillhouse JJ, 1997, J BEHAV MED, V20, P365, DOI 10.1023/A:1025517130513; Hillhouse JJ, 1996, J BEHAV MED, V19, P543, DOI 10.1007/BF01904903; Hillhouse JJ, 2000, HEALTH EDUC RES, V15, P405, DOI 10.1093/her/15.4.405; Jablonski NG, 2004, ANNU REV ANTHROPOL, V33, P585, DOI 10.1146/annurev.anthro.33.070203.143955; Jablonski NG, 2000, J HUM EVOL, V39, P57, DOI 10.1006/jhev.2000.0403; Jackson KM, 2000, HEALTH PSYCHOL, V19, P469, DOI 10.1037//0278-6133.19.5.469; JOHNSON EY, 1984, ARCH DERMATOL, V120, P727, DOI 10.1001/archderm.120.6.727; JONES JL, 1994, HEALTH PSYCHOL, V13, P86, DOI 10.1037/0278-6133.13.1.86; KEESLING B, 1987, HEALTH PSYCHOL, V6, P477, DOI 10.1037//0278-6133.6.5.477; Knight JM, 2002, ARCH DERMATOL, V138, P1311, DOI 10.1001/archderm.138.10.1311; Koblenzer CS, 1998, CLIN DERMATOL, V16, P421, DOI 10.1016/S0738-081X(98)00015-7; LALAND KN, 1994, THEOR POPUL BIOL, V45, P1, DOI 10.1006/tpbi.1994.1001; LEARY MR, 1993, J APPL SOC PSYCHOL, V23, P1390, DOI 10.1111/j.1559-1816.1993.tb01039.x; Low BS, 2005, EVOL HUM BEHAV, V26, P64, DOI 10.1016/j.evolhumbehav.23004.08.011; MAWN VB, 1993, J AM ACAD DERMATOL, V29, P959, DOI 10.1016/0190-9622(93)70274-W; McGuire Michael, 1998, DARWINIAN PSYCHIAT; McVary KT, 2001, J UROLOGY, V166, P1624, DOI 10.1016/S0022-5347(05)65641-8; MERMELSTEIN RJ, 1992, HEALTH PSYCHOL, V11, P371, DOI 10.1037/0278-6133.11.6.371; MILLER AG, 1990, J APPL SOC PSYCHOL, V20, P1272, DOI 10.1111/j.1559-1816.1990.tb01472.x; Monfrecola G, 2000, PHOTODERMATOL PHOTO, V16, P15, DOI 10.1034/j.1600-0781.2000.160105.x; Nell V, 2002, CURR DIR PSYCHOL SCI, V11, P75, DOI 10.1111/1467-8721.00172; NESSE RM, 1996, WHY GET SICK NEW SCI; Newman WG, 1996, AM J PREV MED, V12, P186; Peattie K, 2001, J PUBLIC POLICY MARK, V20, P268, DOI 10.1509/jppm.20.2.268.17371; Pinker S., 2002, BLANK STATE MODERN D; Randle HW, 1997, MAYO CLIN PROC, V72, P461, DOI 10.4065/72.5.461; Read D, 2004, ORGAN BEHAV HUM DEC, V94, P22, DOI 10.1016/j.obhdp.2004.01.002; Rhainds M, 1999, J AM ACAD DERMATOL, V40, P572, DOI 10.1016/S0190-9622(99)70439-1; RICHERSON PJ, 2005, GENES ALONE CULTURE; Robinson JK, 1997, J AM ACAD DERMATOL, V37, P179, DOI 10.1016/S0190-9622(97)80122-3; ROGERS AR, 1994, AM ECON REV, V84, P460; ROSEN MP, 1991, J UROLOGY, V145, P759, DOI 10.1016/S0022-5347(17)38444-6; ROSS SA, 1990, J AM ACAD DERMATOL, V23, P1090, DOI 10.1016/0190-9622(90)70338-I; ROSSI JS, 1995, DERMATOL CLIN, V13, P613, DOI 10.1016/S0733-8635(18)30067-6; SAAD G, IN PRESS APPL EVOLUT; Shackelford TK, 2005, PERS INDIV DIFFER, V39, P447, DOI 10.1016/j.paid.2005.01.023; Singh Devendra, 2002, Neuro Endocrinol Lett, V23 Suppl 4, P81; Sozou PD, 2003, P ROY SOC B-BIOL SCI, V270, P1047, DOI 10.1098/rspb.2003.2344; Sprott DE, 2002, J PUBLIC POLICY MARK, V21, P105, DOI 10.1509/jppm.21.1.105.17606; Stearns SC, 2001, Q REV BIOL, V76, P417, DOI 10.1086/420539; Stephens DW, 2001, BEHAV ECOL, V12, P330, DOI 10.1093/beheco/12.3.330; SURBEY MK, 1987, ETHOL SOCIOBIOL, V8, pS47; Symons D., 1979, EVOLUTION HUMAN SEXU; Tengs TO, 2001, PREV MED, V32, P447, DOI 10.1006/pmed.2001.0830; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; Trostel PA, 2001, ECON INQ, V39, P379, DOI 10.1093/ei/39.3.379; Tsao HS, 1998, J AM ACAD DERMATOL, V38, P669, DOI 10.1016/S0190-9622(98)70195-1; Turrisi R, 1998, J BEHAV MED, V21, P299, DOI 10.1023/A:1018773101658; Vail-Smith K, 1993, J Am Coll Health, V42, P21; Vigil JM, 2005, DEV PSYCHOL, V41, P553, DOI 10.1037/0012-1649.41.3.553; Walsh A, 1999, PERS INDIV DIFFER, V27, P779, DOI 10.1016/S0191-8869(98)00281-5; WEINSTOCK MA, 1993, ARCH DERMATOL, V129, P1286, DOI 10.1001/archderm.129.10.1286; Westman A., 1999, EVOL HUM BEHAV, V20, P219; Wharton JR, 1998, CLIN DERMATOL, V16, P415, DOI 10.1016/S0738-081X(98)00014-5; WICHSTROM L, 1994, HEALTH PSYCHOL, V13, P412, DOI 10.1037//0278-6133.13.5.412; Wilson M, 2004, P ROY SOC B-BIOL SCI, V271, pS177, DOI 10.1098/rsbl.2003.0134; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X 100 27 27 0 12 JOHN WILEY & SONS INC HOBOKEN 111 RIVER ST, HOBOKEN, NJ 07030 USA 0742-6046 PSYCHOL MARKET Psychol. Mark. JUL 2006 23 7 617 638 10.1002/mar.20149 22 Business; Psychology, Applied Business & Economics; Psychology 054GY WOS:000238366000004 2018-11-12 J Johnston, SL; Grune, T; Bell, LM; Murray, SJ; Souter, DM; Erwin, SS; Yearsley, JM; Gordon, IJ; Illius, AW; Kyriazakis, I; Speakman, JR Johnston, S. L.; Grune, T.; Bell, L. M.; Murray, S. J.; Souter, D. M.; Erwin, S. S.; Yearsley, J. M.; Gordon, I. J.; Illius, A. W.; Kyriazakis, I.; Speakman, J. R. Having it all: historical energy intakes do not generate the anticipated trade-offs in fecundity PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article life history; trade-off; resource allocation; oxidative stress LIFE-SPAN; CALORIE RESTRICTION; DIETARY RESTRICTION; C-ELEGANS; MICE; MASS; AGE; MECHANISMS; LONGEVITY; NUTRITION axiom of life-history theory, and fundamental to our understanding of ageing, is that animals must trade-off their allocation of resources since energy and nutrients are limited. Therefore, animals cannot 'have it all'-combine high rates of fecundity with extended lifespans. The idea of life-history trade-offs was recently challenged by the discovery that ageing may be governed by a small subset of molecular processes independent of fitness. We tested the 'trade-off' and 'having it all' theories by examining the fecundities of C57BL/6J mice placed onto four different dietary treatments that generated caloric intakes from -21 to +8.6% of controls. We predicted body fat would be deposited in relation to caloric intake. Excessive body fat is known to cause co-morbidities that shorten lifespan, while caloric restriction enhances somatic protection and increases longevity. The trade-off model predicts that increased fat would be tolerated because reproductive gain offsets shortened longevity, while animals on a restricted intake would sacrifice reproduction for lifespan extension. The responses of body fat to treatments followed our expectations, however, there was a negative relationship between reproductive performance (fecundity, litter mass) and historical intake/body fat. Our dietary restricted animals had lower protein oxidative damage and appeared able to combine life-history traits in a manner contrary to traditional expectations by having increased fecundity with the potential to have extended lifespans. Rowett Res Inst, Div Energy Balance & Obes, Aberdeen AB21 9SB, Scotland; Univ Dusseldorf, Res Inst Environm Med, D-40225 Dusseldorf, Germany; Macaulay Inst, Aberdeen AB15 8QH, Scotland; CSIRO, Davies Lab, Aitkenvale, Qld 4814, Australia; Univ Edinburgh, Inst Evolutionary Biol, Sch Biol Sci, Edinburgh EH9 3JT, Midlothian, Scotland; Scottish Agr Coll, Anim Nutr & Hlth Dept, Edinburgh EH9 3JG, Midlothian, Scotland; Univ Aberdeen, Sch Biol Sci, Aberdeen AB24 2TZ, Scotland; ACERO, Aberdeen AB21 9SB, Scotland Speakman, JR (reprint author), Rowett Res Inst, Div Energy Balance & Obes, Greenburn Rd, Aberdeen AB21 9SB, Scotland. j.speakman@abdn.ac.uk Yearsley, Jon/H-5301-2011; Gordon, Iain/K-8636-2012; John, Speakman/A-9494-2008 Yearsley, Jon/0000-0003-1838-0454; Gordon, Iain/0000-0001-9704-0946; John, Speakman/0000-0002-2457-1823; Grune, Tilman/0000-0003-4775-9973 Austad SN, 1997, EXP GERONTOL, V32, P23, DOI 10.1016/S0531-5565(96)00059-9; Clancy DJ, 2001, SCIENCE, V292, P104, DOI 10.1126/science.1057991; Covas R, 2002, P ROY SOC B-BIOL SCI, V269, P1905, DOI 10.1098/rspb.2002.2106; FISHER R. A., 1930, GENETICAL THEORY NAT; Guarente L, 2000, NATURE, V408, P255, DOI 10.1038/35041700; GUNN RG, 1991, ANIM PROD, V52, P157, DOI 10.1017/S0003356100005791; GUNN RG, 1984, ANIM PROD, V39, P235, DOI 10.1017/S0003356100041866; HOLINKA CF, 1981, EXP GERONTOL, V16, P393, DOI 10.1016/0531-5565(81)90060-7; Holzenberger M, 2003, NATURE, V421, P182, DOI 10.1038/nature01298; Hsin H, 1999, NATURE, V399, P362, DOI 10.1038/20694; Huang C, 2004, P NATL ACAD SCI USA, V101, P8084, DOI 10.1073/pnas.0400848101; Johnston SL, 2005, OBES RES, V13, P1558, DOI 10.1038/oby.2005.191; KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0; KIRKWOOD TBL, 1992, AM J CLIN NUTR, V55, P1191; Lin SJ, 2000, SCIENCE, V289, P2126, DOI 10.1126/science.289.5487.2126; Lithgow GJ, 2003, NATURE, V421, P125, DOI 10.1038/421125a; Lyon CJ, 2003, ENDOCRINOLOGY, V144, P2195, DOI 10.1210/en.2003-0285; McCay CM, 1935, J NUTR, V10, P63; Merry BJ, 2002, INT J BIOCHEM CELL B, V34, P1340, DOI 10.1016/S1357-2725(02)00038-9; Nemoto S, 2004, NATURE, V429, P149, DOI 10.1038/429149a; Partridge L, 2005, CELL, V120, P461, DOI 10.1016/j.cell.2005.01.026; Rands SA, 2001, P ROY SOC B-BIOL SCI, V268, P1783, DOI 10.1098/rspb.2001.1653; Shanley DP, 2000, EVOLUTION, V54, P740, DOI 10.1111/j.0014-3820.2000.tb00076.x; Sitte N, 1998, FEBS LETT, V440, P399, DOI 10.1016/S0014-5793(98)01495-1; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tatar M, 2001, SCIENCE, V292, P107, DOI 10.1126/science.1057987; Tortoriello DV, 2004, ENDOCRINOLOGY, V145, P1238, DOI 10.1210/en.2003-1406; Vaupel JW, 2003, SCIENCE, V301, P1679, DOI 10.1126/science.1090529; WALFORD RL, 1987, J NUTR, V117, P1650; Weindruch R, 2004, INT CONGR SER, V1260, P13, DOI 10.1016/S0531-5131(03)01560-7; WEINDRUCH R, 1982, SCIENCE, V215, P1415, DOI 10.1126/science.7063854; WEST DB, 1992, AM J PHYSIOL, V262, pR1025; WITTER MS, 1993, PHILOS T R SOC B, V340, P73, DOI 10.1098/rstb.1993.0050 33 31 31 0 14 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUN 7 2006 273 1592 1369 1374 10.1098/rspb.2005.3456 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 045ZB WOS:000237780100009 16777725 Green Published 2018-11-12 J Shanley, DP; Kirkwood, TBL Shanley, Daryl P.; Kirkwood, Thomas B. L. Caloric restriction does not enhance longevity in all species and is unlikely to do so in humans BIOGERONTOLOGY English Editorial Material calorie restriction; comparative studies; disposable soma theory; life history; phenotypic plasticity DIETARY RESTRICTION; LIFE-SPAN; DROSOPHILA; PLASTICITY; STRESS; AGE Calorie restriction is known to increase lifespan in many but not all species and may perhaps not do so in humans. Exceptions to life extension have been identified in the laboratory and others are known in nature. Given the variety of physiological responses to variation in food supply that are possible. evolutionary life history theory indicates that an increased investment in maintenance in response to resource shortage will not always be the strategy that maximises Darwinian fitness. Additionally, for the well-studied species in which life extension is observed, there is considerable variation in the response. This suggests that it is not an ancient ancestral response, which has been conserved across the species range. Although calorie restriction does not increase lifespan in all species, it remains a fascinating and valuable tool to study ageing at the whole organism level. Univ Newcastle Upon Tyne, Henry Wellcome Lab Biogerontol Res, Sch Clin & Med Sci Gerontol, Newcastle Upon Tyne NE4 6BE, Tyne & Wear, England Shanley, DP (reprint author), Univ Newcastle Upon Tyne, Henry Wellcome Lab Biogerontol Res, Sch Clin & Med Sci Gerontol, Newcastle Upon Tyne NE4 6BE, Tyne & Wear, England. dary.shanley@ncl.ac.uk Biotechnology and Biological Sciences Research Council [BEP17042, BB/C008200/1] Buffenstein R, 2005, J GERONTOL A-BIOL, V60, P1369, DOI 10.1093/gerona/60.11.1369; Carey JR, 2005, AGING CELL, V4, P31, DOI 10.1111/j.1474-9728.2004.00140.x; Heilbronn LK, 2003, AM J CLIN NUTR, V78, P361; Houthoofd K, 2002, EXP GERONTOL, V37, P1371, DOI 10.1016/S0531-5565(02)00173-0; Jiang JC, 2000, FASEB J, V14, P2135; KAITALA A, 1991, FUNCT ECOL, V5, P12, DOI 10.2307/2389551; Kealy RD, 2002, J AM VET MED ASSOC, V220, P1315, DOI 10.2460/javma.2002.220.1315; Kenyon C, 2005, CELL, V120, P449, DOI 10.1016/j.cell.2006.02.002; KEYS A, 1950, BIOL HUMAN STARVATIO; KIRK KL, 2001, J GERONTOL A-BIOL, V56, P123; Lane MA, 2004, J GERONTOL A-BIOL, V59, P405; LeBourg E, 1996, J GERONTOL A-BIOL, V51, pB280, DOI 10.1093/gerona/51A.4.B280; Lin SJ, 2002, NATURE, V418, P344, DOI 10.1038/nature00829; Mair W, 2003, SCIENCE, V301, P1731, DOI 10.1126/science.1086016; Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012; MASORO EJ, 1996, J GERONTOL B-PSYCHOL, V51, P387; MERKT JR, 1994, P NATL ACAD SCI USA, V91, P12313, DOI 10.1073/pnas.91.25.12313; Merry BJ, 2005, MECH AGEING DEV, V126, P951, DOI 10.1016/j.mad.2005.03.015; Partridge L, 2005, MECH AGEING DEV, V126, P938, DOI 10.1016/j.mad.2005.03.023; PINNEY DO, 1972, J ANIM SCI, V34, P1067; PRENTICE AM, 1987, S ZOOLOGICAL SOC LON, V57, P275; Rikke BA, 2003, MECH AGEING DEV, V124, P663, DOI 10.1016/S0047-6374(03)00003-4; Shanley DP, 2000, EVOLUTION, V54, P740, DOI 10.1111/j.0014-3820.2000.tb00076.x; Vitousek KM, 2004, EUR EAT DISORD REV, V12, P338, DOI 10.1002/erv.604; Walford RL, 2002, J GERONTOL A-BIOL, V57, pB211, DOI 10.1093/gerona/57.6.B211; Wikelski M, 2000, NATURE, V403, P37, DOI 10.1038/47396 26 48 51 0 6 SPRINGER NEW YORK 233 SPRING STREET, NEW YORK, NY 10013 USA 1389-5729 BIOGERONTOLOGY Biogerontology JUN 2006 7 3 165 168 10.1007/s10522-006-9006-1 4 Geriatrics & Gerontology Geriatrics & Gerontology 085AY WOS:000240576700010 16858629 2018-11-12 J Figueredo, AJ; Vasquez, G; Brumbach, BH; Schneider, SMR; Sefcek, JA; Tal, IR; Hill, D; Wenner, CJ; Jacobs, WJ Figueredo, Aurelio Jose; Vasquez, Geneva; Brumbach, Barbara H.; Schneider, Stephanie M. R.; Sefcek, Jon A.; Tal, Ilanit R.; Hill, Dawn; Wenner, Christopher J.; Jacobs, W. Jake Consilience and Life History Theory: From genes to brain to reproductive strategy DEVELOPMENTAL REVIEW English Review consilience; life history theory; reproductive strategy; social deviance; brain development; heterochrony TEENAGE PREGNANCY; SEXUAL-BEHAVIOR; INDIVIDUAL-DIFFERENCES; HIPPOCAMPAL FUNCTION; PARENTAL INVESTMENT; EVOLUTIONARY-THEORY; RISK BEHAVIORS; FATHER ABSENCE; SUBSTANCE USE; MATING-EFFORT We describe an integrated theory of individual differences that traces the behavioral development of life history from genes to brain to reproductive strategy. We provide evidence that a single common factor, the K-Factor, underpins a variety of life-history parameters, including an assortment of sexual, reproductive, parental, familial, and social behaviors. We explore the psychometrics and behavioral genetics of the K-Factor and offer a speculative account of the proximate mediation of this adaptive patterning of behavior as instantiated in well-established functions of specific areas of the human brain, including the frontal lobes, amygdala, and hippocampus. We then apply Life History Theory to predict patterns of development within the brain that are paedomorphic (i.e., development begins later, proceeds at a slower rate, and has an earlier cessation) and peramorphic (i.e., development begins early, proceeds at a faster rate, and has a later cessation). (c) 2006 Elsevier Inc. All rights reserved. Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA Figueredo, AJ (reprint author), Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA. ajf@u.arizona.edu Adolphs R, 2005, NATURE, V433, P68, DOI 10.1038/nature03086; AGGLETON JP, 2000, AMYGDALA FUNCTIONAL; Albus KE, 2004, BEHAV MODIF, V28, P548, DOI 10.1177/0145445503259512; Allen JP, 1997, CHILD DEV, V68, P729, DOI 10.2307/1132122; Amato PR, 1996, J MARRIAGE FAM, V58, P628, DOI 10.2307/353723; AMATO PR, 1991, PSYCHOL BULL, V110, P26, DOI 10.1037//0033-2909.110.1.26; American Psychiatric Association, 2000, DIAGN STAT MAN MENT; American Psychiatry Association, 1994, DIAGN STAT MAN MENT; ARROW K, 2000, MERITOCRACY EC INEQ; Asahi S, 2004, EUR ARCH PSY CLIN N, V254, P245, DOI 10.1007/s00406-004-0488-z; BARASH D, 1982, SOCIOBIOLOGY BEHAV; Barber N, 2002, CROSS-CULT RES, V36, P362, DOI 10.1177/106939702237307; BARRATT ES, 1983, PERS INDIV DIFFER, V4, P387, DOI 10.1016/0191-8869(83)90004-1; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BJORKLUND DF, 2005, ORIGINS SOCIAL MIND, P45; BLAIR J, 2000, CRIMINAL BEHAV MENTA, V10, P66; BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; Bonell C, 2004, CULT HEALTH SEX, V6, P255, DOI 10.1080/13691050310001643025; BRIM OG, 2000, NAT SURV MIDLIFE DEV; BRUMBACH BH, 2005, ANN M HUM BEH EV SOC; Bulow PJ, 1998, J COMMUNITY PSYCHOL, V26, P581, DOI 10.1002/(SICI)1520-6629(199811)26:6<581::AID-JCOP5>3.0.CO;2-Y; Buss D.M., 1997, HDB PERSONALITY PSYC, P317; BUSS DM, 1991, ANNU REV PSYCHOL, V42, P459, DOI 10.1146/annurev.ps.42.020191.002331; Buss DM, 1999, J PERS, V67, P209, DOI 10.1111/1467-6494.00053; BUSSE W W, 1989, Drugs, V37, P1; CAMPBELL DT, 1959, PSYCHOL BULL, V56, P81, DOI 10.1037/h0046016; CANAVAN AGM, 1983, NEUROPSYCHOLOGIA, V21, P375, DOI 10.1016/0028-3932(83)90024-6; Charles KE, 2005, PERS INDIV DIFFER, V38, P1035, DOI 10.1016/j.paid.2004.06.021; CHISHOLM JS, 1996, NUMAN NATURE, V7, P1; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Cochran DL, 1997, FAM SOC-J CONTEMP H, V78, P340, DOI 10.1606/1044-3894.792; Coley RL, 1998, AM PSYCHOL, V53, P152, DOI 10.1037//0003-066X.53.2.152; COSTA PT, 1992, REVISTED NEO PERSONA; Cottle CC, 2001, CRIM JUSTICE BEHAV, V28, P367, DOI 10.1177/0093854801028003005; Craig LA, 2004, J FORENSIC PSYCHI PS, V15, P532, DOI 10.1080/14789940412331270726; Darby D, 2005, NEUROPSYCHOLOGY; Davison GC, 2004, ABNORMAL PSYCHOL; DIGMAN J, 1997, J PERS SOC PSYCHOL, V73, P1243; Dong MX, 2004, CHILD ABUSE NEGLECT, V28, P771, DOI 10.1016/j.chiabu.2004.01.008; Dunbar RIM, 1998, EVOL ANTHROPOL, V6, P178, DOI 10.1002/(SICI)1520-6505(1998)6:5<178::AID-EVAN5>3.0.CO;2-8; DUVERNOY HM, 2005, HUMAN HIPPOCAMPUS FU; Eisenberg J. F., 1981, MAMMALIAN RADIATIONS; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; ELLIS L, 1988, PERS INDIV DIFFER, V9, P697, DOI 10.1016/0191-8869(88)90059-1; Eysenck HJ, 1975, MANUAL EYSENCK PERSO; FALCONER DS, 1989, INTRO QUANTITATIVE; Figueredo AJ, 2006, INTELLIGENCE, V34, P211, DOI 10.1016/j.intell.2005.03.006; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P317; Figueredo AJ, 2001, EVOL HUM BEHAV, V22, P295, DOI 10.1016/S1090-5138(01)00067-8; FIGUEREDO AJ, 2005, IN PRESS HUMAN NATUR; FIGUEREDO AJ, 2005, IN PRESS SOCIAL BIOL; FIGUEREDO AJ, 2005, IN PRESS PERSONALITY; Figueredo AJ, 2005, HDB EVOLUTIONARY PSY, P851; FIGUEREDO AJ, 2005, NINEZ ADOLESCENCIA P, P29; FISCHBEIN S, 2000, EUROPEAN J SPECIAL N, V15, P264; FRIASARMENTA M, 2005, NINEZ ADOLESCENCIA P, P267; Friedrich WN, 2004, CHILD MALTREATMENT, V9, P239, DOI 10.1177/1077559504266907; GANGESTAD SW, 1990, J PERS, V58, P69, DOI 10.1111/j.1467-6494.1990.tb00908.x; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Geary DC, 2004, J SEX RES, V41, P27, DOI 10.1080/00224490409552211; GEARY DC, 2005, ORGIN MIND EVOLUTION; Giedd JN, 1999, NAT NEUROSCI, V2, P861, DOI 10.1038/13158; GOLDMANRAKIC PS, 1984, TRENDS NEUROSCI, V7, P425, DOI 10.1016/S0166-2236(84)80147-2; GORENSTEIN EE, 1980, PSYCHOL REV, V87, P301, DOI 10.1037//0033-295X.87.3.301; Gorsuch R. L., 1983, FACTOR ANAL; GOTTFREDSON LS, 2005, INTRO PSICOLOGIA DIF; Gottfredson M. R., 1990, GEN THEORY CRIME; Guagliardo MF, 1999, J ADOLESCENT HEALTH, V24, P10, DOI 10.1016/S1054-139X(98)00028-7; Gueorguieva RV, 2001, AM J EPIDEMIOL, V154, P212, DOI 10.1093/aje/154.3.212; Hagen EH, 2001, J BIOSOC SCI, V33, P503, DOI 10.1017/S002193200100503X; HEATH K, 1998, REPORT WENNER GREN F; Hill K, 2001, J HUM EVOL, V40, P437, DOI 10.1006/jhev.2001.0469; HRDY SB, 1999, MOTHER NATURE MAT IN; Hubbard D. J., 2002, J OFFENDER REHABILIT, V34, P1, DOI DOI 10.1300/J076V34N03_01; Hunt MH, 2002, PSYCHOL SCHOOLS, V39, P399, DOI 10.1002/pits.10019; Jacobs LF, 2003, PSYCHOL REV, V110, P285, DOI 10.1037/0033-295X.110.2.285; Jacobs WJ, 1999, CAN J EXP PSYCHOL, V53, P92, DOI 10.1037/h0087302; JACOBS WJ, 1998, PSYCHOL PUBLIC POLIC, V4, P1; Jessor R, 1977, PROBLEM BEHAV PSYCHO; KAWACHI I, 1999, SOC POPULATION HLTH, V1; KELLY A, 2003, ANN NY ACAD SCI, V1021, P27; KEREKHOFF AC, 2000, GENERATING SOCIAL ST; Killgore WDS, 2004, PERCEPT MOTOR SKILL, V99, P371; Kirk KM, 2001, EVOLUTION, V55, P423; Kirsner BR, 2003, J AFFECT DISORDERS, V75, P131, DOI 10.1016/S0165-0327(02)00048-4; Kivisto P, 2001, J FAM ISSUES, V22, P1044, DOI 10.1177/019251301022008005; KOLB B, 2003, FUNDAMENTALS HUMAN N; LeDoux JE, 2000, ANNU REV NEUROSCI, V23, P155, DOI 10.1146/annurev.neuro.23.1.155; LEDOUX JE, 1998, EMOTIONAL BRAIN MYST; Lejuez CW, 2004, ADDICT BEHAV, V29, P1643, DOI 10.1016/j.adbeh.2004.02.035; Lezak MD, 2004, NEUROPSYCHOLOGICAL A; Lindsay WR, 2004, J INTERPERS VIOLENCE, V19, P875, DOI 10.1177/0886260504266884; LOEHLIN JC, 2004, LATENT VARIABLE MODE; Lumsden C. J, 1981, GENES MIND CULTURE C; MAC ARTHUR ROBERT H., 1967; MACNAMARA KJ, 1997, SHAPES TIME EVOLUTIO; Mangina CA, 2000, INT J PSYCHOPHYSIOL, V37, P71, DOI 10.1016/S0167-8760(00)00096-9; MCLANAHAN S, 1989, J MARRIAGE FAM, V51, P557, DOI 10.2307/352157; Metcalfe J, 2000, MEMORY, CONSCIOUSNESS, AND THE BRAIN, P228; Metcalfe J, 1999, PSYCHOL REV, V106, P3, DOI 10.1037/0033-295X.106.1.3; METCALFE JE, 1998, PSYCHOL LEARN MOTIV, V34, P187; Miller G, 2000, ANN NY ACAD SCI, V907, P62; MILNER B, 1984, TRENDS NEUROSCI, V7, P403, DOI 10.1016/S0166-2236(84)80143-5; MILNER B, 1964, FRONTAL GRANULAR COR, P313; Moeller FG, 2001, AM J PSYCHIAT, V158, P1783, DOI 10.1176/appi.ajp.158.11.1783; Moran PB, 2004, CHILD ABUSE NEGLECT, V28, P565, DOI 10.1016/j.chiabu.2003.12.002; Murphey DA, 2000, CHILD WELFARE, V79, P711; Nadel L, 2004, NEUROPSYCHOLOGY, V18, P473, DOI 10.1037/0894-4105.18.3.473; NADEL L, 1988, CURRENT DIRECTIONS, V7, P1; O'Connor TG, 1999, J CHILD PSYCHOL PSYC, V40, P777, DOI 10.1017/S0021963099004060; O'Keefe J., 1978, HIPPOCAMPUS COGNITIV; Patton JH, 1995, J CLIN PSYCHOL, V51, P768, DOI 10.1002/1097-4679(199511)51:6<768::AID-JCLP2270510607>3.0.CO;2-1; Perkins DF, 2004, CHILD ABUSE NEGLECT, V28, P547, DOI 10.1016/j.chiabu.2003.12.001; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; RAKIC P, 1994, PROG BRAIN RES, V102, P227; REHM LP, 1988, DICT BEHAV ASSESSMEN, P394; REISBERG D, 2002, COGNITION EXPLORING; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.2307/3071970; Robbins RN, 2004, J ADOLESCENT RES, V19, P428, DOI 10.1177/074355840328860; Rodgers CS, 2004, CHILD ABUSE NEGLECT, V28, P575, DOI 10.1016/j.chiabu.2004.01.002; Rodgers JL, 2001, CURR DIR PSYCHOL SCI, V10, P184, DOI 10.1111/1467-8721.00145; Rodwin VG, 2005, AM J PUBLIC HEALTH, V95, P86, DOI 10.2105/AJPH.2004.040287; ROSENBAUM M, 1980, BEHAV THER, V11, P109, DOI 10.1016/S0005-7894(80)80040-2; ROWE D, 2002, BIOL CRIME; Rowe DC, 1997, PERS INDIV DIFFER, V23, P105, DOI 10.1016/S0191-8869(97)00005-6; ROWE DC, 1994, J RES CRIME DELINQ, V31, P374, DOI 10.1177/0022427894031004002; Rowe DC, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P147; ROWE DC, 1996, CURRENT THEORIES DEL; ROWE DC, 1989, ADV ADOLESCENT DEV, P38; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; RUSHTON JP, 1988, J RES PERS, V22, P259, DOI 10.1016/0092-6566(88)90029-3; RUSHTON JP, 1987, ACTA GENET MED GEMEL, V36, P289, DOI 10.1017/S0001566000006048; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; SEFCEK JA, 2005, PSYCHOMETRICS BEHAV; SEFCEK SA, 2005, UNPUB DOES LIFE HIST; Sharma AK, 2002, PREV MED, V34, P512, DOI 10.1006/pmed.2002.1010; Shennan S., 2002, GENES MEMES HUMAN HI; Sisk CL, 2004, NAT NEUROSCI, V7, P1040, DOI 10.1038/nn1326; SmithBattle L, 2000, PUBLIC HEALTH NURS, V17, P85, DOI 10.1046/j.1525-1446.2000.00085.x; Spear LP, 2000, NEUROSCI BIOBEHAV R, V24, P417, DOI 10.1016/S0149-7634(00)00014-2; Spencer N, 2001, J EPIDEMIOL COMMUN H, V55, P5, DOI 10.1136/jech.55.1.5; Stearns S. C., 1992, EVOLUTION LIFE HIST; Sweatt JD, 2004, PSYCHOPHARMACOLOGY, V174, P99, DOI 10.1007/s00213-004-1795-9; TAL IR, 2005, IN PRESS MEDIO AMBIE; Thornhill R, 2004, EVOLUTIONARY PSYCHOLOGY, PUBLIC POLICY AND PERSONAL DECISIONS, P249; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; VASQUEZ G, 2004, THESIS U ARIZONA; VASQUEZ G, 2005, ANN M HUM BEHAV EVOL; VOYDANOFF P, 1990, ADOLESCENT SEXUALITY; WALSH M, 2005, SEXUAL RESTRICTEDNES; Weinman M. L., 2002, CHILD ADOLESCENT SOC, V19, P437; Weiss A, 2002, J PERS SOC PSYCHOL, V83, P1141, DOI 10.1037//0022-3514.83.5.1141; WENNER CJ, 2005, ANN M HUM BEH EV SOC; Whewell W, 1840, PHILOS INDUCTIVE SCI; WIDOM CS, 1994, ADOLESCENT PROBLEM BEHAVIORS, P127; WILKINSON R, 1996, UNHEALTHY SOC AFFLIC; Wilson E.O., 1975, P1; Wilson EO, 1998, CONSILIENCE UNITY KN; WOLF P, 2005, ANN M HUM BEH EV SOC; ZUCKERMAN M, 1993, J PERS SOC PSYCHOL, V65, P757, DOI 10.1037/0022-3514.65.4.757; ZUCKERMAN M, 1988, PERS INDIV DIFFER, V9, P1025, DOI 10.1016/0191-8869(88)90136-5; Zuckerman M, 2000, J PERS, V68, P999, DOI 10.1111/1467-6494.00124 167 224 236 5 57 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0273-2297 1090-2406 DEV REV Dev. Rev. JUN 2006 26 2 243 275 10.1016/j.dr.2006.02.002 33 Psychology, Developmental Psychology 053LS WOS:000238307200006 2018-11-12 J Leitner, S; Marshall, RC; Leisler, B; Catchpole, CK Leitner, S; Marshall, RC; Leisler, B; Catchpole, CK Male song quality, egg size and offspring sex in captive canaries (Serinus canaria) ETHOLOGY English Article YOLK HORMONE LEVELS; RATIO MANIPULATION; ZEBRA FINCHES; FEMALE CANARIES; PATERNAL ATTRACTIVENESS; MATERNAL TESTOSTERONE; TAENIOPYGIA-GUTTATA; RESOURCE-ALLOCATION; SIBLING COMPETITION; CLUTCH SIZE Life history theory predicts that females should vary their investment in offspring according to the quality of their mate. In birds, several studies have now shown that females do vary investment according to perceived male quality, by producing larger eggs, investing more in parental care or by manipulating the sex of their offspring. In a captive breeding colony of canaries, we first show that under normal conditions larger eggs in a clutch are more likely to hatch male offspring. In canaries, male song functions in female attraction and females respond more to complex structures in male song called sexy syllables. In a series of experiments, we go on to show first, that females exposed to playback of male song produce larger eggs than those who heard no song. Next, using synthetic songs, we show that females exposed to playback of more attractive songs containing sexy syllables, produced larger eggs than those exposed to simpler songs containing no sexy syllables. However, in a final analysis, we found no evidence from our experiments that females exposed to playback of more attractive songs also produced more male offspring. Univ London Royal Holloway & Bedford New Coll, Sch Biol Sci, Egham TW20 0EX, Surrey, England; Max Planck Inst Ornithol, Seewiesen, Germany; Max Planck Inst Ornithol, Vogelwarte Radolfzell, Radolfzell am Bodensee, Germany Leitner, S (reprint author), Univ London Royal Holloway & Bedford New Coll, Sch Biol Sci, Egham TW20 0EX, Surrey, England. s.leitner@rhul.ac.uk Leitner, Stefan/D-2129-2012; Marshall, Rupert/C-7093-2008 Leitner, Stefan/0000-0002-9482-0362; Marshall, Rupert/0000-0002-1019-465X Albrecht DJ, 2000, ANIM BEHAV, V59, P1227, DOI 10.1006/anbe.1999.1420; Anderson DJ, 1997, FUNCT ECOL, V11, P331, DOI 10.1046/j.1365-2435.1997.00091.x; Andersson M., 1994, SEXUAL SELECTION; Badyaev AV, 2002, SCIENCE, V295, P316, DOI 10.1126/science.1066651; Balzer AL, 1998, BEHAVIOUR, V135, P297, DOI 10.1163/156853998793066230; BEDNARZ JC, 1991, AM NAT, V137, P116, DOI 10.1086/285149; BORTOLOTTI GR, 1986, AM NAT, V127, P495, DOI 10.1086/284498; BURLEY N, 1986, EVOLUTION, V40, P1191, DOI 10.1111/j.1558-5646.1986.tb05744.x; BURLEY N, 1988, AM NAT, V132, P611, DOI 10.1086/284877; CHARNOV E L, 1982; Cordero PJ, 2000, BEHAV ECOL SOCIOBIOL, V48, P353, DOI 10.1007/s002650000252; Cunningham EJA, 2000, NATURE, V404, P74, DOI 10.1038/35003565; Cunningham EJA, 2001, NATURE, V412, P498, DOI 10.1038/35087655; Depraz V, 2000, ANIM COGN, V3, P45, DOI 10.1007/s100710050049; Draganoiu TI, 2002, P ROY SOC B-BIOL SCI, V269, P2525, DOI 10.1098/rspb.2002.2192; Dzialowski EM, 2004, J EXP BIOL, V207, P597, DOI 10.1242/jeb.00792; Ellegren H, 1996, P NATL ACAD SCI USA, V93, P11723, DOI 10.1073/pnas.93.21.11723; Gil D, 2004, HORM BEHAV, V45, P64, DOI 10.1016/j.yhbeh.2003.08.005; Gil D, 1999, SCIENCE, V286, P126, DOI 10.1126/science.286.5437.126; Griffith SC, 2002, MOL ECOL, V11, P2195, DOI 10.1046/j.1365-294X.2002.01613.x; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; HOYT DF, 1979, AUK, V96, P73; Kilner R, 1998, ANIM BEHAV, V56, P155, DOI 10.1006/anbe.1998.0775; Komdeur J, 2002, P ROY SOC B-BIOL SCI, V269, P1067, DOI 10.1098/rspb.2002.1965; Komdeur J, 1997, NATURE, V385, P522, DOI 10.1038/385522a0; Krackow S, 2002, ETHOLOGY, V108, P1041, DOI 10.1046/j.1439-0310.2002.00843.x; KROODSMA DE, 1976, SCIENCE, V192, P574, DOI 10.1126/science.192.4239.574; Leitner S, 2002, J NEUROBIOL, V52, P294, DOI 10.1002/neu.10085; Leitner S, 2001, BEHAVIOUR, V138, P885, DOI 10.1163/156853901753172700; MEAD PS, 1987, CONDOR, V89, P798, DOI 10.2307/1368527; Nager RG, 1999, P NATL ACAD SCI USA, V96, P570, DOI 10.1073/pnas.96.2.570; Petrie M, 2001, NATURE, V412, P498, DOI 10.1038/35087652; Pike TW, 2003, BIOL REV, V78, P553, DOI 10.1017/S1464793103006146; Rutkowska J, 2005, J AVIAN BIOL, V36, P12, DOI 10.1111/j.0908-8857.2005.03469.x; Rutstein AN, 2005, BEHAV ECOL, V16, P763, DOI 10.1093/beheco/ari052; Rutstein AN, 2004, ANIM BEHAV, V68, P1087, DOI 10.1016/j.anbehav.2004.02.011; SCHWABL H, 1993, P NATL ACAD SCI USA, V90, P11446, DOI 10.1073/pnas.90.24.11446; Schwabl H, 1996, COMP BIOCHEM PHYS A, V114, P271, DOI 10.1016/0300-9629(96)00009-6; Sheldon BC, 1999, NATURE, V402, P874; Suthers RA, 2004, J NEUROBIOL, V60, P381, DOI 10.1002/neu.20040; Vallet E, 1998, ANIM BEHAV, V55, P291, DOI 10.1006/anbe.1997.0631; VALLET E, 1995, ANIM BEHAV, V49, P1603, DOI 10.1016/0003-3472(95)90082-9; VANDURME M, 1914, ARCH BIOL, V29, P71; Voigt C., 1998, Boletim do Museu Municipal do Funchal, P117; Voigt C, 2003, J ORNITHOL, V144, P86, DOI 10.1007/BF02465520; Waas JR, 2005, P ROY SOC B-BIOL SCI, V272, P383, DOI 10.1098/rspb.2004.2949; Williams TD, 2001, P ROY SOC B-BIOL SCI, V268, P423, DOI 10.1098/rspb.2000.1374; Young RL, 2004, J EVOLUTION BIOL, V17, P1355, DOI 10.1111/j.1420.9101.2004.00762.x 48 36 36 2 20 BLACKWELL PUBLISHING OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND 0179-1613 ETHOLOGY Ethology JUN 2006 112 6 554 563 10.1111/j.1439-0310.2006.01195.x 10 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology 044SM WOS:000237692700005 2018-11-12 J McEdward, LR; Miner, BG McEdward, Larry R.; Miner, Benjamin G. Estimation and interpretation of egg provisioning in marine invertebrates INTEGRATIVE AND COMPARATIVE BIOLOGY English Article; Proceedings Paper Annual Meeting of the Society-for-Integrative-and-Comparative-Biology JAN 04-08, 2004 San Diego, CA Soc Integrative Comparative Biol BENTHIC INVERTEBRATES; REPRODUCTIVE STRATEGIES; ENERGETIC CONTENT; EVOLUTION; LARVAE; SIZE; ECHINOIDEA; TIME Per-offspring maternal investment is an integral part of life-history theory. To understand the evolution of per-offspring maternal investment in marine invertebrates, a number of mathematical models have been developed. These models examine how selection affects the proportion of maternally derived egg energy used to produce a newly metamorphosed juvenile (s) and make predictions about the distribution of s in nature. However, there are very few published values of s and therefore it is difficult to evaluate how well these models match nature. We present several equations to empirically estimate values of s for any group of marine invertebrate, and use data from echinoderms to compare the different equations. The calculations that directly estimate s require information on the amount of egg energy, juvenile energy, and energy metabolized during development. Currently, there are few data available for directly estimating s, and thus generating distributions of s derived from direct estimates is not possible. Furthermore, the direct estimations of s are informative for planktotrophy but not for lecithotrophy. We have developed an equation that can be used to directly estimate s for lecithotrophs. The calculations to indirectly estimate s only require egg energy or egg size for the species in question and the value of s and egg energy or size for a reference species. This reference species replaces the need to measure juvenile energy and energy metabolized during larval development. Because egg energy or size is currently available for many species, the indirect estimates will be useful for generating distributions of s, and will allow comparisons with models. Although these indirect methods are good for generating distributions of s, they do not provide reliable estimates of s for any particular species. Estimating values of s to compare models is a critical gap in our current evaluations of marine invertebrate life-history models. Univ Florida, Dept Zool, Gainesville, FL 32611 USA; Univ Calif Bodega, Bodega Marine Lab, Bodega Bay, CA 94923 USA McEdward, LR (reprint author), Univ Florida, Dept Zool, Gainesville, FL 32611 USA. bgminer@ucdavis.edu Miner, Benjamin/0000-0002-0996-2252 CHRISTIANSEN FB, 1979, THEOR POPUL BIOL, V16, P267, DOI 10.1016/0040-5809(79)90017-0; Emlet R.B., 1987, Echinoderm Studies, V2, P55; EMLET RB, 1986, J EXP MAR BIOL ECOL, V95, P183, DOI 10.1016/0022-0981(86)90202-9; FEXAUX L, 1985, MAR BIOL, V86, P151; GRANT A, 1983, AM NAT, V122, P549, DOI 10.1086/284155; Hart MW, 1996, EVOLUTION, V50, P174, DOI 10.1111/j.1558-5646.1996.tb04484.x; Havenhand Jon N., 1995, P79; Herrera JC, 1996, OCEANOL ACTA, V19, P313; HoeghGuldberg O, 1997, BIOL BULL, V192, P27, DOI 10.2307/1542573; Jaeckle William B., 1995, P49; Levin Lisa A., 1995, P1; Levitan DR, 2000, AM NAT, V156, P175, DOI 10.1086/303376; MCEDWARD LR, 1993, BIOL BULL, V184, P255, DOI 10.2307/1542444; McEdward LR, 1997, AM NAT, V150, P48, DOI 10.1086/286056; McEdward LR, 1997, BIOL J LINN SOC, V60, P381; MCEDWARD LR, 1987, EVOLUTION, V41, P914, DOI 10.1111/j.1558-5646.1987.tb05865.x; McEdward LR, 2003, MAR ECOL PROG SER, V256, P111, DOI 10.3354/meps256111; McEdward LR, 2001, BIOL BULL, V200, P33, DOI 10.2307/1543083; MCEDWARD LR, 1988, INT J INVER REP DEV, V13, P9, DOI 10.1080/01688170.1988.10510338; Miner BG, 2002, BIOL BULL-US, V202, P97, DOI 10.2307/1543646; Pernet B, 2004, BIOL BULL-US, V207, P67, DOI 10.2307/1543629; PERRON FE, 1981, AM NAT, V118, P749, DOI 10.1086/283865; Roff Derek A., 1992; Roughgarden J., 1989, P270; Stearns S. C., 1992, EVOLUTION LIFE HIST; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838 27 13 13 0 8 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 1557-7023 INTEGR COMP BIOL Integr. Comp. Biol. JUN 2006 46 3 224 232 10.1093/icb/icj026 9 Zoology Zoology 048LP WOS:000237948900002 21672737 Bronze 2018-11-12 J Nicoll, MAC; Jones, CG; Norris, K Nicoll, Malcolm A. C.; Jones, Carl G.; Norris, Ken The impact of harvesting on a formerly endangered tropical bird: insights from life-history theory JOURNAL OF APPLIED ECOLOGY English Article clutch manipulation; clutch removal; conservation management; egg harvest; Falco punctatus; fecundity; fostering; Mauritius kestrel; supplemental feeding; survival DENSITY-DEPENDENCE; MARKED ANIMALS; SURVIVAL RATES; EGG-PRODUCTION; BROOD SIZE; KESTREL; POPULATION; COSTS 1. Life-history theory assumes that trade-offs exist between an individual's life-history components, such that an increased allocation of a resource to one fitness trait might be expected to result in a cost for a conflicting fitness trait. Recent evidence from experimental manipulations of wild individuals supports this assumption. 2. The management of many bird populations involves harvesting for both commercial and conservation purposes. One frequently harvested life-history stage is the egg, but the consequences of repeated egg harvesting for the individual and the long-term dynamics of the population remain poorly understood. 3. We used a well-documented restored population of the Mauritius kestrel Falco punctatus as a model system to explore the consequences of egg harvesting (and associated management practices) for an individual within the context of life-history theory. 4. Our analysis indicated that management practices enhanced both the size and number of clutches laid by managed females, and improved mid-life male and female adult survival relative to unmanaged adult kestrels. 5. Although management resulted in an increased effort in egg production, it reduced parental effort during incubation and the rearing of offspring, which could account for these observed changes. 6. Synthesis and applications. This study demonstrates how a commonly applied harvesting strategy, when examined within the context of life-history theory, can identify improvements in particular fitness traits that might alleviate some of the perceived negative impact of harvesting on the long-term dynamics of a managed population. Univ Reading, Ctr Agrienvironm Res, Sch Agr, Reading RG6 6AR, Berks, England; Durrell Wildlife Conservat Trust, Trinity, Jersey, England Nicoll, MAC (reprint author), Univ Reading, Ctr Agrienvironm Res, Sch Agr, Earley Gate,POB 237, Reading RG6 6AR, Berks, England. m.a.c.nicoll@reading.ac.uk Natural Environment Research Council [NE/B502444/1] Anderson DR, 1999, BIRD STUDY, V46, P261; ARMSTRONG D, 2001, REINTRODUCTION PROJE; Bell Ben D., 2002, V7, P105, DOI 10.1017/CBO9780511606304.007; COOCH E, 2001, ELECT HDB PROGRAM MA; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; DENLINGER L, 2001, 9 CAFF; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Feare CJ, 2004, IBIS, V146, P475, DOI 10.1111/j.1474-919x.2004.00288.x; Frederiksen M, 2001, J APPL ECOL, V38, P617, DOI 10.1046/j.1365-2664.2001.00620.x; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; HAMILTON S, 1995, BIOL CONSERV, V73, P107, DOI 10.1016/0006-3207(95)00048-9; Jones C.G., 1987, P208, DOI 10.1017/CBO9780511735769.007; JONES CG, 1995, IBIS, V137, pS173, DOI 10.1111/j.1474-919X.1995.tb08439.x; JONES CG, 1985, CONSERVATION STUDIES, P211; JONES CG, 1999, 7 WORLD C BREED END, P77; JONES CG, 1991, DODO, V27, P81; JONES CG, 1988, P ROYAL SOC ARTS SCI, V1, P79; JONES PJ, 2000, WORKSH RES PRIOR MIG, P139; KOKKO H, 2001, CONSERVATION EXPLOIT, P301; Kuehler Cyndi, 2000, Re-introduction News, V19, P14; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Litzbarski Heinz, 2000, Re-introduction News, V19, P49; Meretsky VJ, 2000, CONSERV BIOL, V14, P957, DOI 10.1046/j.1523-1739.2000.99113.x; Nager RG, 2001, J AVIAN BIOL, V32, P159, DOI 10.1034/j.1600-048X.2001.320209.x; Nicoll MAC, 2004, BIOL CONSERV, V118, P539, DOI 10.1016/j.biocon.2003.09.028; Nicoll MAC, 2003, J ANIM ECOL, V72, P917, DOI 10.1046/j.1365-2656.2003.00768.x; NICOLL MAC, 2004, ECOLOGY MANAGEMENT R; Roff Derek A., 1992; Stearns S. C., 1992, EVOLUTION LIFE HIST; TITUS K, 1984, AM MIDL NAT, V111, P1, DOI 10.2307/2425535; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; White GC, 1999, BIRD STUDY, V46, P120; Wiehn J, 1997, ECOLOGY, V78, P2043, DOI 10.1890/0012-9658(1997)078[2043:FLOBSE]2.0.CO;2 33 11 12 0 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8901 1365-2664 J APPL ECOL J. Appl. Ecol. JUN 2006 43 3 567 575 10.1111/j.1365-2664.2006.01165.x 9 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 042GT WOS:000237516600019 2018-11-12 J Thorne, AD; Pexton, JJ; Dytham, C; Mayhew, PJ Thorne, AD; Pexton, JJ; Dytham, C; Mayhew, PJ Small body size in an insect shifts development, prior to adult eclosion, towards early reproduction PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article adaptation; ecological developmental biology; Hymenoptera; life histories; oogenesis; ovigeny index LIFE-HISTORY EVOLUTION; PARASITOID WASPS; GREGARIOUS DEVELOPMENT; EGG MATURATION; ASOBARA-TABIDA; PLASTICITY; STRATEGY; ALLOCATION; FITNESS; OVIGENY Life-history theory has suggested that individual body size can strongly affect the allocation of resources to reproduction and away from other traits such as survival. In many insects, adults eclose with a proportion of their potential lifetime egg production that is already mature (the ovigeny index). We establish for the solitary parasitoid wasp Aphaereta genevensis that the ovigeny index decreases with adult body size, despite both initial egg load and potential lifetime fecundity increasing with body size. This outcome is predicted by adaptive models and is the first unequivocal intraspecific demonstration. Evidence suggests that a high ovigeny index carries a cost of reduced longevity in insects. Our results therefore contribute to the emerging evidence that small body size can favour a developmental shift in juveniles that favours early reproduction, but which has adverse late-life consequences. These findings are likely to have important implications for developmental biologists and population biologists. Univ York, Dept Biol, Area 18, York YO10 5YW, N Yorkshire, England Mayhew, PJ (reprint author), Univ York, Dept Biol, Area 18, POB 373, York YO10 5YW, N Yorkshire, England. pjm19@york.ac.uk Mayhew, Peter/I-6363-2012; Mayhew, Peter/B-1370-2008 Mayhew, Peter/0000-0002-7346-6560; BANKS MJ, 1987, J ANIM ECOL, V56, P815, DOI 10.2307/4950; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; CORBET PS, 1999, DRAGONFLIES BEHAV EC; Crawley MJ, 1993, GLIM ECOLOGISTS; Crespi EJ, 2005, AM J HUM BIOL, V17, P44, DOI 10.1002/ajhb.20098; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; Ellers J, 2004, EVOL ECOL RES, V6, P993; Ellers J, 2003, OIKOS, V102, P164, DOI 10.1034/j.1600-0706.2003.12183.x; Ellers J, 2001, OIKOS, V92, P309, DOI 10.1034/j.1600-0706.2001.920213.x; Godfray HCJ., 1994, PARASITOIDS BEHAV EV; IWASA Y, 1984, THEOR POPUL BIOL, V26, P205, DOI 10.1016/0040-5809(84)90030-3; Jervis MA, 2005, ECOL ENTOMOL, V30, P359, DOI 10.1111/j.0307-6946.2005.00712.x; Jervis MA, 2004, OIKOS, V107, P449, DOI 10.1111/j.0030-1299.2004.13453.x; Jervis MA, 2003, FUNCT ECOL, V17, P375, DOI 10.1046/j.1365-2435.2003.00742.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; KING BH, 1994, BEHAV ECOL, V5, P448, DOI 10.1093/beheco/5.4.448; Kudoh Hiroshi, 2002, Plant Species Biology, V17, P101, DOI 10.1046/j.1442-1984.2002.00080.x; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Mayhew PJ, 1999, ANIM BEHAV, V58, P131, DOI 10.1006/anbe.1999.1106; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Olson DM, 1998, ENVIRON ENTOMOL, V27, P508, DOI 10.1093/ee/27.2.508; Papaj DR, 2000, ANNU REV ENTOMOL, V45, P423, DOI 10.1146/annurev.ento.45.1.423; Pexton JJ, 2005, BEHAV ECOL SOCIOBIOL, V58, P99, DOI 10.1007/s00265-004-0881-7; Pexton JJ, 2002, BEHAV ECOL, V13, P690, DOI 10.1093/beheco/13.5.690; Sibley R. M., 1986, PHYSL ECOLOGY ANIMAL; Stearns S. C., 1992, EVOLUTION LIFE HIST; Traynor RE, 2005, ENTOMOL EXP APPL, V117, P41, DOI 10.1111/j.1570-7458.2005.00331.x; West GB, 1999, SCIENCE, V284, P167; West SA, 2001, BEHAV ECOL, V12, P577, DOI 10.1093/beheco/12.5.577 29 30 31 0 13 ROYAL SOCIETY LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P R SOC B Proc. R. Soc. B-Biol. Sci. MAY 7 2006 273 1590 1099 1103 10.1098/rspb.2005.3416 5 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 033MU WOS:000236852700010 16600887 Green Published 2018-11-12 J Wells, JCK Wells, Jonathan C. K. The evolution of human fatness and susceptibility to obesity: an ethological approach BIOLOGICAL REVIEWS English Review body fat; survival; life history theory; reproductive fitness; energetics; human ecology; seasonality; encephalisation BODY-MASS INDEX; ADIPOSE-TISSUE DISTRIBUTION; INSULIN-RESISTANCE SYNDROME; CHRONIC ENERGY DEFICIENCY; TUMOR-NECROSIS-FACTOR; FOR-GESTATIONAL-AGE; CATCH-UP GROWTH; PHYSICAL-ACTIVITY; BIRTH-WEIGHT; CHILDHOOD OBESITY Human susceptibility to obesity is ail unusual phenomenon amongst annuals. An evolutionary analysis, identifying factors favouring the capacity for fat deposition, may aid in the development of preventive public health strategies. This article considers the proximate causes, ontogeny, fitness value and evolutionary history of human fat deposition. Proximate causes include diet composition, physical activity level, feeding behaviour, endocrine and genetic factors, psychological traits, and exposure to broader environmental factors. Fat deposition peaks during late gestation and early infancy, and again during adolescence in females. As in other species, human fat stores not only buffer malnutrition, but also regulate reproduction and immune function, and are subject to sexual selection. Nevertheless, our characteristic ontogenetic pattern of fat deposition, along with relatively high fatness in adulthood, contrasts with die phenotype of other mammals occupying the tropical savannah environment in which hominids evolved. The increased Value of energy stores in our species can be attributed to factors increasing either uncertainty in energy availability, or vulnerability to that uncertainty. Early hominid evolution was characterised by adaptation to a more seasonal environment, when selection would have favoured general thriftiness. The evolution of the large expensive brain in the genus Homo then favoured increased energy stores in the reproducing female, and in the offspring in early life. More recently, the introduction of agriculture has had three significant effects: exposure to regular famine; adaptation to a variety of local niches favouring population-specific adaptations; and the development of social hierarchies which predispose to differential exposure to environmental pressures. Thus, humans have persistently encountered greater energy stress than that experienced by their closest living relatives during recent evolution. The capacity to accumulate fat has therefore been a major adaptive feature of our species, but is now increasingly maladaptive in the modern environment where fluctuations in energy supply have been minimised, and productivity is dependent on mechanisation rather than physical effort. Alterations to the obesogenic environment are predicted to play a key role in reducing the prevalence of obesity. Inst Child Hlth, Childhood Nutr Res Ctr, MRC, London WC1N 1EH, England Wells, JCK (reprint author), Inst Child Hlth, Childhood Nutr Res Ctr, MRC, 30 Guilford St, London WC1N 1EH, England. J.Wells@ich.ucl.ac.uk Wells, Jonathan/A-4604-2009 Wells, Jonathan/0000-0003-0411-8025 Ahmed SM, 1998, J BIOSOC SCI, V30, P349, DOI 10.1017/S0021932098003496; Aiello LC, 2002, AM J HUM BIOL, V14, P551, DOI 10.1002/ajhb.10069; Aiello LC, 2002, ANNU REV ANTHROPOL, V31, P323, DOI 10.1146/annurev.anthro.31.040402.085403; AIELLO LC, 1995, CURR ANTHROPOL, V36, P199, DOI 10.1086/204350; Albu J, 2003, PRIMARY CARE, V30, P465, DOI 10.1016/S0095-4543(03)00043-5; ARMSTRONG E, 1983, SCIENCE, V220, P1302, DOI 10.1126/science.6407108; Astrup A, 2002, P NUTR SOC, V61, P299, DOI 10.1079/PNS2002149; Astrup A, 2001, INT J OBESITY, V25, pS46, DOI 10.1038/sj/ijo/0801698; BAILEY K. V., 1965, J TROP PEDIAT AFRICAN CHILD HEALTH, V11, P35; BARTNESS TJ, 1985, NEUROSCI BIOBEHAV R, V9, P599, DOI 10.1016/0149-7634(85)90006-5; Bavdekar A, 1999, DIABETES, V48, P2422, DOI 10.2337/diabetes.48.12.2422; Beaufrere B, 2000, EUR J CLIN NUTR, V54, pS48, DOI 10.1038/sj.ejcn.1601025; Bell SJ, 2003, CRIT REV FOOD SCI, V43, P357, DOI 10.1080/10408690390826554; Blundell JE, 2003, P NUTR SOC, V62, P651, DOI 10.1079/PNS2003286; BLUNDELL JE, 1994, BIOMED PHARMACOTHER, V48, P119, DOI 10.1016/0753-3322(94)90100-7; Bogin B, 1996, AM J HUM BIOL, V8, P703, DOI 10.1002/(SICI)1520-6300(1996)8:6<703::AID-AJHB2>3.0.CO;2-U; Bogin B, 1988, PATTERNS HUMAN GROWT; BOGIN B, 1909, BIOL ANTHR STATE SCI, P1; Boserup E, 1965, CONDITIONS AGR GROWT; Bouchard Claude, 1997, Human Reproduction (Oxford), V12, P1; BROWN PJ, 1987, ANN NY ACAD SCI, V499, P29, DOI 10.1111/j.1749-6632.1987.tb36195.x; BRYDEN MM, 1972, J ZOOL, V167, P265; Butte NF, 2000, PEDIATR RES, V47, P578, DOI 10.1203/00006450-200005000-00004; CANN RL, 1987, NATURE, V325, P31, DOI 10.1038/325031a0; CAREY WB, 1985, J DEV BEHAV PEDIATR, V6, P128; CATALANO PM, 1992, OBSTET GYNECOL, V79, P46; Chakravarthy MV, 2004, J APPL PHYSIOL, V96, P3, DOI 10.1152/japplphysiol.00757.2003; Chandra RK, 1996, P NATL ACAD SCI USA, V93, P14304, DOI 10.1073/pnas.93.25.14304; Chehab FF, 2002, NUTR REV, V60, pS39, DOI 10.1301/002966402320634823; Choi CS, 2000, DIABETES RES CLIN PR, V49, P53, DOI 10.1016/S0168-8227(00)00131-5; Chopra M, 2002, B WORLD HEALTH ORGAN, V80, P952; CLUTTONBROCK TH, 1989, NATURE, V337, P260, DOI 10.1038/337260a0; COHEN MN, 1984, PALAEOPATHOLOGY ORIG; COHEN MN, 1998, HUMAN BIOL SOCIAL IN, P249; Cohen MN, 1977, FOOD CRISIS PREHISTO; Colagiuri S, 2002, EUR J CLIN NUTR, V56, pS30, DOI [10.1038/sj.ejcn.1601351, 10.1038/sj/ejcn/1601351]; COLE TJ, 1995, ARCH DIS CHILD, V73, P25, DOI 10.1136/adc.73.1.25; COLLINS S, 1995, NAT MED, V1, P810, DOI 10.1038/nm0895-810; DANDO WA, 1980, GEOGRAPHY FAMINE; DEACON Terrence W, 1998, SYMBOLIC SPECIES CO; DELGADO HL, 1982, AM J CLIN NUTR, V35, P1468; Demas GE, 2003, P ROY SOC B-BIOL SCI, V270, P905, DOI 10.1098/rspb.2003.2341; Demas GE, 1997, AM J PHYSIOL-REG I, V273, pR1631; DENNY MJS, 1975, AM J PHYSIOL, V228, P1794; Deurenberg P, 2001, EUR J CLIN NUTR, V55, P973, DOI 10.1038/sj.ejcn.1601254; DEURENBERG P, 1995, ANN NUTR METAB, V39, P234, DOI 10.1159/000177868; Deurenberg-Yap M, 2000, INT J OBESITY, V24, P1011, DOI 10.1038/sj.ijo.0801353; DIETZ WH, 1994, AM J CLIN NUTR, V59, P955; DiMeglio DP, 2000, INT J OBESITY, V24, P794, DOI 10.1038/sj.ijo.0801229; DOWSE GK, 1991, AM J EPIDEMIOL, V133, P1093, DOI 10.1093/oxfordjournals.aje.a115822; Drazen DL, 2001, ENDOCRINOLOGY, V142, P2768, DOI 10.1210/en.142.7.2768; EATON SB, 1988, AM J MED, V84, P739, DOI 10.1016/0002-9343(88)90113-1; Egger G, 1997, BRIT MED J, V315, P477, DOI 10.1136/bmj.315.7106.477; Evans KC, 2003, ARCH DIS CHILD, V88, pF380, DOI 10.1136/fn.88.5.F380; EWING WG, 1970, COMP BIOCHEM PHYSIOL, V36, P119, DOI 10.1016/0010-406X(70)90658-4; Fagan B., 1999, FLOODS FAMINES EMPER; Fernandez-Real JM, 1999, DIABETOLOGIA, V42, P1367, DOI 10.1007/s001250051451; FERROLUZZI A, 1993, SOC ST HUM, V35, P149, DOI 10.1017/CBO9780511600517.012; Fewtrell MS, 2004, AM J CLIN NUTR, V80, P436; Foley R., 1987, ANOTHER UNIQUE SPECI; FOLEY RA, 1993, SOC ST HUM, V35, P17, DOI 10.1017/CBO9780511600517.003; Foley RA, 1998, PRIMATE LOCOMOTION, P419; FOLEY RA, 1991, PHILOS T ROY SOC B, V334, P223, DOI 10.1098/rstb.1991.0111; FOMON SJ, 1982, AM J CLIN NUTR, V35, P1169, DOI 10.1093/ajcn/35.5.1169; Foster-Powell K, 2002, AM J CLIN NUTR, V76, P5; FRIEDL KE, 1994, J APPL PHYSIOL, V77, P933; FRIEDMAN MA, 1995, PSYCHOL BULL, V117, P3, DOI 10.1037//0033-2909.117.1.3; FRISCH RE, 1974, SCIENCE, V185, P949, DOI 10.1126/science.185.4155.949; Froguel P, 2001, EXP BIOL MED, V226, P991; Galtier-Dereure F, 2000, AM J CLIN NUTR, V71, p1242S, DOI 10.1093/ajcn/71.5.1242s; Girod JP, 2003, MED HYPOTHESES, V60, P584, DOI 10.1016/S0306-9877(03)00053-7; Goulding A, 2003, INT J OBESITY, V27, P410, DOI 10.1038/sj.ijo.802236; GRUNFELD C, 1990, ENDOCRINOLOGY, V127, P46, DOI 10.1210/endo-127-1-46; GRUNFELD C, 1990, CANCER RES, V50, P4233; Guo SS, 1999, AM J CLIN NUTR, V70, p145S, DOI 10.1093/ajcn/70.1.145s; Guzick DS, 2004, OBSTET GYNECOL, V103, P181, DOI 10.1097/01.AOG.0000104485.44999.C6; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; Haig D, 2003, AM J HUM BIOL, V15, P320, DOI 10.1002/ajhb.10150; Haschke F, 1989, 98 ROSS C PED RES BO, P76; Hediger ML, 1998, PEDIATRICS, V102, DOI 10.1542/peds.102.5.e60; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hoffman DJ, 2000, AM J CLIN NUTR, V72, P702; HOLLIDAY MA, 1971, PEDIATRICS, V47, P169; HOYENGA KB, 1982, PHYSIOL BEHAV, V28, P545, DOI 10.1016/0031-9384(82)90153-6; Hunter HL, 2002, OBES RES, V10, P1180, DOI 10.1038/oby.2002.160; IMMINK MDC, 1992, EUR J CLIN NUTR, V46, P419; Johnson SE, 2003, AM J PHYS ANTHROPOL, V120, P83, DOI 10.1002/ajpa.10139; JOHNSTONE RA, 1993, ANIM BEHAV, V46, P759, DOI 10.1006/anbe.1993.1253; Kagawa Y, 2002, BIOCHEM BIOPH RES CO, V295, P207, DOI 10.1016/S0006-291X(02)00680-0; KAMIS AB, 1981, COMP BIOCHEM PHYS A, V70, P45, DOI 10.1016/0300-9629(81)90391-1; Karlberg J, 1989, Acta Paediatr Scand Suppl, V350, P70; KASHYAP S, 1988, J PEDIATR-US, V113, P713, DOI 10.1016/S0022-3476(88)80388-3; Katzmarzyk PT, 1999, AM J CLIN NUTR, V69, P1123; KAYE SA, 1990, INT J OBESITY, V14, P583; KERR DS, 1978, METABOLISM, V27, P411, DOI 10.1016/0026-0495(78)90097-5; KEYS A, 1950, BIOL HUMAN STARVATIO; KIRKWOOD JK, 1985, J ZOOL, V205, P123; Kleiber M., 1961, FIRE LIFE INTRO ANIM; Kuzawa CW, 1998, YEARB PHYS ANTHROPOL, V41, P177; Kyle UG, 2003, NUTRITION, V19, P597, DOI 10.1016/S0899-9007(03)00061-3; Lanningham-Foster L, 2003, OBES RES, V11, P1178, DOI 10.1038/oby.2003.162; LAWRENCE M, 1987, AM J CLIN NUTR, V45, P1442; LAWRENCE M, 1986, ENERGY EXPENDITURE E; LEE PC, 1987, J ZOOL, V213, P409, DOI 10.1111/j.1469-7998.1987.tb03717.x; Leonard WR, 2003, COMP BIOCHEM PHYS A, V136, P5, DOI 10.1016/S1095-6433(03)00132-6; Leonard WR, 1997, AM J PHYS ANTHROPOL, V102, P265, DOI 10.1002/(SICI)1096-8644(199702)102:2<265::AID-AJPA8>3.0.CO;2-X; LEONARD WR, 1994, AM J HUM BIOL, V6, P77, DOI 10.1002/ajhb.1310060111; LEONARD WR, 1992, AM J HUM BIOL, V4, P179, DOI 10.1002/ajhb.1310040204; LEWIN R, 1998, PRINCIPLES HUMAN EVO; LEWIS DS, 1983, J NUTR, V113, P2253; Livingstone MBE, 2003, P NUTR SOC, V62, P681, DOI 10.1079/PNS2003291; LIVINGSTONE MBE, 2005, CHILDHOOD OBESITY ST, P101; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Lord G, 2002, NUTR REV, V60, pS35, DOI 10.1301/002966402320634913; LUCAS A, 1991, CIBA F SYMP, V156, P38; Ludwig DS, 2001, LANCET, V357, P505, DOI 10.1016/S0140-6736(00)04041-1; Malina RM, 1996, OBES RES, V4, P385, DOI 10.1002/j.1550-8528.1996.tb00246.x; Martin RJ, 1998, P SOC EXP BIOL MED, V219, P200; Maynard LM, 2001, PEDIATRICS, V107, P344, DOI 10.1542/peds.107.2.344; MCHENRY HM, 1992, AM J PHYS ANTHROPOL, V87, P407, DOI 10.1002/ajpa.1330870404; Mead J. G., 1989, HDB MARINE MAMMALS, V4, P309; Mendez MA, 2005, AM J CLIN NUTR, V81, P714; Mokdad AH, 1999, JAMA-J AM MED ASSOC, V282, P1519, DOI 10.1001/jama.282.16.1519; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; Neel JV, 1999, NUTR REV, V57, pS2; NEEL JV, 1962, AM J HUM GENET, V14, P353; NORGAN NG, 1994, EUR J CLIN NUTR, V48, pS10; Norgan NG, 1997, INT J OBESITY, V21, P738, DOI 10.1038/sj.ijo.0800473; O'Rahilly S, 2003, ENDOCRINOLOGY, V144, P3757, DOI 10.1210/en.2003-0373; Odling-Smee F J, 2003, NICHE CONSTRUCTION N; Oftedal O. T., 1984, S ZOOL SOC LOND, V51, P33; Oftedal O. T., 1995, HDB MILK COMPOSITION, P749; Okosun IS, 2000, INT J OBESITY, V24, P479, DOI 10.1038/sj.ijo.0801182; Ong K, 2002, J CLIN ENDOCR METAB, V87, P1041, DOI 10.1210/jc.87.3.1041; Ong KKL, 2000, BRIT MED J, V320, P967, DOI 10.1136/bmj.320.7240.967; PACKER C, 1995, NATURE, V373, P60, DOI 10.1038/373060a0; Parsons TJ, 1999, INT J OBESITY, V23, pS1; PASQUET P, 1992, AM J CLIN NUTR, V56, P483; Poehlman ET, 2002, ACTA OBSTET GYN SCAN, V81, P603, DOI 10.1034/j.1600-0412.2002.810705.x; POND CM, 1994, J ZOOL, V232, P603, DOI 10.1111/j.1469-7998.1994.tb04616.x; POND CM, 1992, CAN J ZOOL, V70, P342, DOI 10.1139/z92-050; POND CM, 1985, FORTSCHR ZOOL, V30, P445; POND CM, 1998, FATS LIFE; POPPITT SD, 1994, AM J OBSTET GYNECOL, V171, P118, DOI 10.1016/S0002-9378(94)70087-7; Poston WSC, 1999, ATHEROSCLEROSIS, V146, P201, DOI 10.1016/S0021-9150(99)00258-0; Prentice A M, 2003, Obes Rev, V4, P187, DOI 10.1046/j.1467-789X.2003.00117.x; Prentice A.M., 2001, NUTR B, V26, P13; PRENTICE AM, 1994, EUR J CLIN NUTR, V48, pS78; Prentice AM, 2002, NUTR REV, V60, pS56, DOI 10.1301/002966402320634940; PRENTICE AM, 1995, BRIT MED J, V311, P437, DOI 10.1136/bmj.311.7002.437; Prentice Andrew M., 1992, V10, P245; Raikkonen K, 1999, METABOLISM, V48, P1146, DOI 10.1016/S0026-0495(99)90129-4; Raikkonen K, 1996, METABOLISM, V45, P1533, DOI 10.1016/S0026-0495(96)90184-5; RAVELLI GP, 1976, NEW ENGL J MED, V295, P349, DOI 10.1056/NEJM197608122950701; Rawlings DJ, 1999, ARCH DIS CHILD, V80, pF188, DOI 10.1136/fn.80.3.F188; Reilly JJ, 2003, P NUTR SOC, V62, P611, DOI [10.1079/PNS2003276, 10.1079/PNS2003265]; RENNIE KL, 2005, IN PRESS BRIT J NUTR; Richerson PJ, 2001, AM ANTIQUITY, V66, P387, DOI 10.2307/2694241; RIDLEY M, 1994, RED QUEEN SEX EVOLUT; ROBERTS SB, 1985, AM J CLIN NUTR, V41, P1270; Rodriguez G, 2004, EUR J PEDIATR, V163, P457, DOI 10.1007/s00431-004-1468-z; ROLLANDCACHERA MF, 1984, AM J CLIN NUTR, V39, P129; ROLLANDCACHERA MF, 1995, INT J OBESITY, V19, P573; ROOSEVELT AC, 1984, PALEOPATHOLOGY ORIGI, P559; Ruff C, 2002, ANNU REV ANTHROPOL, V31, P211, DOI 10.1146/annurev.anthro.31.040402.085407; Rushing PA, 2000, HORM METAB RES, V32, P62, DOI 10.1055/s-2007-978590; RYG M, 1990, CAN J FISH AQUAT SCI, V47, P1223, DOI 10.1139/f90-142; Samaras K, 1999, ANN INTERN MED, V130, P873, DOI 10.7326/0003-4819-130-11-199906010-00002; Schoenemann PT, 2004, BRAIN BEHAV EVOLUT, V63, P47, DOI 10.1159/000073759; Schultz A. H., 1969, THE LIFE OF PRIMATES; Shennan S., 2002, GENES MEMES HUMAN HI; Siervogel RM, 2003, HORM RES, V60, P36, DOI 10.1159/000071224; SINGH D, 1993, J PERS SOC PSYCHOL, V65, P293, DOI 10.1037/0022-3514.65.2.293; Singhal A, 2003, AM J CLIN NUTR, V77, P726; SINGHAL A, 2002, OBESITY CHILDHOOD AD, P83; Slyper AH, 1998, PEDIATRICS, V102, DOI 10.1542/peds.102.1.e4; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stein ZA, 1975, FAMINE HUMAN DEV DUT; Stephenson TR, 1998, CAN J ZOOL, V76, P717, DOI 10.1139/cjz-76-4-717; Stettler N, 2002, PEDIATRICS, V109, P194, DOI 10.1542/peds.109.2.194; Stini WA, 1978, ECOL FOOD NUTR, V1, P125; STRATZ CH, 1909, ARCH ANTHR, V8, P287; STRICKLAND SS, 1994, EUR J CLIN NUTR, V48, pS98; Thomson R, 2000, P NATL ACAD SCI USA, V97, P7360, DOI 10.1073/pnas.97.13.7360; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; Torrence R., 1983, HUNTER GATHERER EC P, P11, DOI DOI 10.1073/PNAS.0913047107; Tracer DP, 2002, AM J HUM BIOL, V14, P621, DOI 10.1002/ajhb.10073; TRIBE D. E., 1963, AUSTRALIAN JOUR ZOOL, V11, P273, DOI 10.1071/ZO9630273; Trowell H., 1975, Plant Foods for Man, V1, P157; Tsigos C, 2002, J PEDIATR ENDOCR MET, V15, P241; Tull ES, 1999, J NATL MED ASSOC, V91, P447; Ulijaszek SJ, 2002, P NUTR SOC, V61, P517, DOI 10.1079/PNS2002180; Ulijaszek SJ, 2001, ANN HUM BIOL, V28, P363, DOI 10.1080/03014460152438955; Victora CG, 2001, INT J EPIDEMIOL, V30, P1325, DOI 10.1093/ije/30.6.1325; Visser M, 1999, JAMA-J AM MED ASSOC, V282, P2131, DOI 10.1001/jama.282.22.2131; Visser M, 2001, PEDIATRICS, V107, part. no., DOI 10.1542/peds.107.1.e13; Wells JCK, 1997, INT J OBESITY, V21, P400, DOI 10.1038/sj.ijo.0800420; Wells JCK, 2003, J THEOR BIOL, V221, P143, DOI 10.1006/jtbi.2003.3183; Wells JCK, 2005, INT J OBESITY, V29, P1192, DOI 10.1038/sj.ijo.0803054; Wells JCK, 1998, INT J OBESITY, V22, P1139, DOI 10.1038/sj.ijo.0800776; Wells JCK, 1998, ARCH DIS CHILD, V78, P131, DOI 10.1136/adc.78.2.131; Wells JCK, 2003, Q REV BIOL, V78, P169, DOI 10.1086/374952; Wells JCK, 1996, INT J OBESITY, V20, P848; Wells JCK, 2000, INT J OBESITY, V24, P325, DOI 10.1038/sj.ijo.0801132; WELLS JCK, 2002, ACTA DIABETOL, V39, P141; WELLS JCK, 1998, ANN HUM BIOL, V25, P392; WENDORF M, 1989, AM J PHYS ANTHROPOL, V79, P503, DOI 10.1002/ajpa.1330790407; Whitaker RC, 1998, J PEDIATR-US, V132, P768, DOI 10.1016/S0022-3476(98)70302-6; Whiting M., 1958, THESIS HARVARD SCH P; Williams GC, 1966, ADAPTATION NATURAL S; Wisse BE, 2004, J AM SOC NEPHROL, V15, P2792, DOI 10.1097/01.ASN.0000141966.69934.21; Wlodek D, 2003, J THEOR BIOL, V225, P33, DOI 10.1016/S0022-5193(03)00218-2; Woods SC, 2000, NUTRITION, V16, P894, DOI 10.1016/S0899-9007(00)00454-8; Wright CM, 2001, BRIT MED J, V323, P1280, DOI 10.1136/bmj.323.7324.1280; Wynn A, 1987, Nutr Health, V5, P31; Yajnik CS, 2003, INT J OBESITY, V27, P173, DOI 10.1038/sj.ijo.802219; Yeung MY, 2003, BIOL NEONATE, V84, P1, DOI 10.1159/000071438; ZAADSTRA BM, 1993, BRIT MED J, V306, P484, DOI 10.1136/bmj.306.6876.484; ZIEGLER EE, 1976, GROWTH, V40, P329 219 107 111 0 66 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1464-7931 1469-185X BIOL REV Biol. Rev. MAY 2006 81 2 183 205 10.1017/S1464793105006974 23 Biology Life Sciences & Biomedicine - Other Topics 049ZP WOS:000238057200002 16677431 2018-11-12 J Krist, AC Krist, AC Prevalence of parasites does not predict age at first reproduction or reproductive output in the freshwater snail, Helisoma anceps EVOLUTIONARY ECOLOGY RESEARCH English Article; Proceedings Paper International Symposium on Dynamical Systems Theory and Its Applications to Biology and Environmental Sciences MAR, 2004 Shizuoka Univ, Hamamatsu, JAPAN Jap Soc for Math Biol, Soc of Pop Ecol, Math Soc of Japan, Japan Soc for Indus and Appl Math, Soc for Study of Spec Biol, Ecol Soc of Japan, Soc of Evol Stud Shizuoka Univ age at first reproduction; castrating parasites; freshwater snails; life-history theory; reproductive output; trematodes HOST LIFE-HISTORY; BIOMPHALARIA-GLABRATA; VIRULENCE; COEVOLUTION; INFECTION; FECUNDITY; EVOLUTION; GROWTH; COST Question: Are reproductive output and age at first reproduction explained by the prevalence of castrating parasites in a population? Life-history theory predicts this relationship. Data studied: Reproductive output over 21 days in field-caught freshwater snails from 12 lake populations in Wisconsin. I also measured age at first reproduction and reproductive output over 27 weeks in laboratory-reared snails from the same populations. I determined the prevalence of parasites in each of 2 years as the proportion of snails infected with digenean trematodes. Search method: Field-caught: I regressed mean reproductive output on mean prevalence. Laboratory-reared: I regressed mean reproductive output and mean age at first reproduction on mean prevalence. Conclusions: Neither measure of reproductive output, nor age at first reproduction, was predicted by the mean prevalence of trematode parasites. Univ Wisconsin, Dept Biol, Eau Claire, WI 54701 USA Krist, AC (reprint author), Univ Wyoming, Dept Zool & Physiol, Dept 3166,1000 E Univ Ave, Laramie, WY 82071 USA. krist@uwyo.edu Agnew P, 1999, P ROY SOC B-BIOL SCI, V266, P947, DOI 10.1098/rspb.1999.0728; Brown K.M., 1991, P285; Burch J. B., 1982, FRESHWATER SNAILS MO; Bush AO, 1997, J PARASITOL, V83, P575, DOI 10.2307/3284227; Christe P, 1996, BEHAV ECOL, V7, P127, DOI 10.1093/beheco/7.2.127; Ebert D, 2004, AM NAT, V164, pS19, DOI 10.1086/424606; FERNANDEZ J, 1991, J PARASITOL, V77, P937, DOI 10.2307/3282746; FORBES MRL, 1993, OIKOS, V67, P444, DOI 10.2307/3545356; Gandon S, 2002, AM NAT, V160, P374, DOI 10.1086/341525; HOCHBERG ME, 1992, J EVOLUTION BIOL, V5, P491, DOI 10.1046/j.1420-9101.1992.5030491.x; Jokela J, 1995, EVOLUTION, V49, P1268, DOI 10.1111/j.1558-5646.1995.tb04453.x; Koella JC, 2001, ECOL LETT, V4, P207, DOI 10.1046/j.1461-0248.2001.00213.x; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; Krist AC, 2001, EVOL ECOL RES, V3, P191; LAFFERTY KD, 1993, OIKOS, V67, P1; MINCHELLA DJ, 1985, PARASITOLOGY, V90, P205, DOI 10.1017/S0031182000049143; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; PARTRIDGE L, 1990, MORE EXACT ECOLOGY, P231; Perrin N, 1996, OIKOS, V75, P317, DOI 10.2307/3546256; R Development Core Team, 2005, R LANG ENV STAT COMP; SCHALLIG HDFH, 1991, PARASITOLOGY, V102, P85, DOI 10.1017/S0031182000060376; SCHRAG SJ, 1994, PARASITOLOGY, V108, P27, DOI 10.1017/S0031182000078483; Sorci G, 1996, OIKOS, V76, P121, DOI 10.2307/3545754; Sorensen RE, 1998, OECOLOGIA, V115, P188, DOI 10.1007/s004420050507; Sorensen RE, 2001, PARASITOLOGY, V123, pS3; THORNHILL JA, 1986, PARASITOLOGY, V93, P443, DOI 10.1017/S0031182000081166 27 3 3 0 2 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 EVOL ECOL RES Evol. Ecol. Res. MAY 2006 8 4 753 763 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 043ZU WOS:000237642500014 2018-11-12 J Ashman, TL; Majetic, CJ Ashman, TL; Majetic, CJ Genetic constraints on floral evolution: a review and evaluation of patterns HEREDITY English Review genetic correlation; genetic covariance; flowers; heritability; mating system; sexual dimorphism LIFE-HISTORY TRAITS; RAPHANUS-SATIVUS L; PENSTEMON-CENTRANTHIFOLIUS SCROPHULARIACEAE; EICHHORNIA-PANICULATA PONTEDERIACEAE; SPERGULARIA-MARINA CARYOPHYLLACEAE; COMPOSITE HETEROSPERMA-PINNATUM; QUANTITATIVE GENETICS; NATURAL-POPULATION; WILD RADISH; SEXUAL-DIMORPHISM The characteristics of flowers influence most aspects of angiosperm reproduction, including the agents of pollination and patterns of mating. Thus, a clear view of the forces that mediate floral phenotypic evolution is central to understanding angiosperm diversity. Here, we inform on the capacity for floral phenotype to respond to selection by reviewing published data on heritabilities and genetic correlations for several classes of floral traits (primary sexual, attraction, mating system) in hermaphroditic plants. We find significant heritability for all floral traits but also variation among them, as well as a tendency for heritability to vary with mating system, but not life history. We additionally test predictions stemming from life history theory (eg, negative covariation between male-female traits and flower size-flower number), and ideas concerning the extent and pattern of genetic integration between flowers and leaves, and between the sexes of dioecious and gynodioecious species. We find mixed evidence for life history tradeoffs. We find strong support for floral integration and its relation with floral morphology (actinomorphy vs zygomorphy) and for a decoupling of floral and vegetative traits, but no evidence that modular integration varies with floral morphology. Lastly, we find mixed evidence for a relationship between the level of sexual dimorphism in attraction traits and the between-sex correlation in gender dimorphic plants. Univ Pittsburgh, Dept Biol Sci, Pittsburgh, PA 15260 USA Ashman, TL (reprint author), Univ Pittsburgh, Dept Biol Sci, 4249 5th Ave & Ruskin, Pittsburgh, PA 15260 USA. TIA1@PITT.EDU AGREN J, 1995, EVOLUTION, V49, P121, DOI 10.1111/j.1558-5646.1995.tb05964.x; Andersson S, 1997, BIOL J LINN SOC, V62, P519, DOI 10.1006/bijl.1997.0174; Armbruster WS, 1999, AM J BOT, V86, P39, DOI 10.2307/2656953; Arntz AM, 2001, OECOLOGIA, V127, P455, DOI 10.1007/s004420100650; Ashman TL, 2004, P ROY SOC B-BIOL SCI, V271, P553, DOI [10.1098/rspb.2003.2642, 10.1098/rspb.2003..2642]; Ashman TL, 2003, EVOLUTION, V57, P2012; Ashman TL, 1999, HEREDITY, V83, P733, DOI 10.1046/j.1365-2540.1999.00639.x; Ashman TL, 2005, AM NAT, V166, pS5, DOI 10.1086/444598; Bennington CC, 1996, EVOLUTION, V50, P1083, DOI 10.1111/j.1558-5646.1996.tb02349.x; BERG RL, 1960, EVOLUTION, V14, P171, DOI 10.2307/2405824; Blows MW, 2005, ECOLOGY, V86, P1371, DOI 10.1890/04-1209; CAMPBELL DR, 1994, EVOLUTION, V48, P55, DOI 10.1111/j.1558-5646.1994.tb01294.x; Campbell DR, 1996, EVOLUTION, V50, P1442, DOI 10.1111/j.1558-5646.1996.tb03918.x; Campbell DR, 1997, HEREDITY, V79, P606, DOI 10.1038/sj.hdy.6882390; Campbell DR, 1997, EVOLUTION, V51, P373, DOI 10.1111/j.1558-5646.1997.tb02424.x; CARR DE, 1994, HEREDITY, V72, P606, DOI 10.1038/hdy.1994.84; CARTER MEB, 1986, B TORREY BOT CLUB, V113, P259, DOI 10.2307/2996365; Caruso CM, 2004, EVOLUTION, V58, P732; Caruso CM, 2003, OECOLOGIA, V135, P524, DOI [10.1007/s00442-003-1199-2, 10.1007/s00442-003-1305-5]; CHARLESWORTH D, 1995, EVOLUTION, V49, P911, DOI 10.1111/j.1558-5646.1995.tb02326.x; CHARLESWORTH D, 1995, AM J BOT, V82, P112, DOI 10.2307/2445793; CLAY K, 1982, EVOLUTION, V36, P734, DOI 10.1111/j.1558-5646.1982.tb05439.x; CONNER J, 1993, EVOLUTION, V47, P704, DOI 10.1111/j.1558-5646.1993.tb02128.x; Conner JK, 2002, NATURE, V420, P407, DOI 10.1038/nature01105; Conner JK, 2003, EVOLUTION, V57, P487; Conner JK, 1997, INT J PLANT SCI, V158, pS108, DOI 10.1086/297511; Costa MMR, 2005, DEVELOPMENT, V132, P5093, DOI 10.1242/dev.02085; Costich DE, 2001, BIOL J LINN SOC, V74, P475, DOI 10.1006/bijl.2001.0600; DAMGAARD C, 1994, J EVOLUTION BIOL, V7, P599, DOI 10.1046/j.1420-9101.1994.7050599.x; Davis SL, 2001, J HERED, V92, P361, DOI 10.1093/jhered/92.4.361; DELESALLE VA, 1995, AM J BOT, V82, P798, DOI 10.2307/2445620; Delph LF, 2004, EVOL DEV, V6, P438, DOI 10.1111/j.1525-142X.2004.04052.x; Delph LF, 2005, AM NAT, V166, pS3I ; DORN LA, 1991, EVOLUTION, V45, P371, DOI 10.1111/j.1558-5646.1991.tb04411.x; ECKHART VM, 1993, BIOL J LINN SOC, V50, P47, DOI 10.1111/j.1095-8312.1993.tb00918.x; Elle E, 1998, HEREDITY, V80, P481, DOI 10.1046/j.1365-2540.1998.00319.x; FALCONER DS, 1989, INTRO QUANTITATIVE G; Fenster CB, 1997, J EVOLUTION BIOL, V10, P641, DOI 10.1007/s000360050046; Fishman L, 2002, EVOLUTION, V56, P2138; Galen C, 1996, EVOLUTION, V50, P120, DOI 10.1111/j.1558-5646.1996.tb04478.x; Galen C, 2001, EVOLUTION, V55, P1963; Geber MA, 2003, INT J PLANT SCI, V164, pS21, DOI 10.1086/368233; Good-Avila SV, 2002, EVOLUTION, V56, P263; Goodwillie C, 2005, ANNU REV ECOL EVOL S, V36, P47, DOI 10.1146/annurev.ecolsys.36.091704.175539; GRAY AJ, 1980, NEW PHYTOL, V85, P89, DOI 10.1111/j.1469-8137.1980.tb04451.x; Gurevitch J, 1999, ECOLOGY, V80, P1142, DOI 10.1890/0012-9658(1999)080[1142:SIIEMA]2.0.CO;2; Hansen TF, 2003, J EVOLUTION BIOL, V16, P754, DOI 10.1046/j.1420-9101.2003.00556.x; HAVENS K, 1995, AM J BOT, V82, P726, DOI 10.2307/2445611; Hof L, 1999, EUPHYTICA, V110, P35, DOI 10.1023/A:1003701700116; HOULE D, 1992, GENETICS, V130, P195; Juenger T, 2005, EVOL DEV, V7, P259, DOI 10.1111/j.1525-142X.2005.05028.x; Kim GT, 1999, P NATL ACAD SCI USA, V96, P9433, DOI 10.1073/pnas.96.16.9433; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; LANDE R, 1980, EVOLUTION, V34, P292, DOI 10.1111/j.1558-5646.1980.tb04817.x; Lendvai G, 2003, HEREDITY, V90, P336, DOI 10.1038/sj.hdy.6800249; MACNAIR MR, 1989, GENETICS, V122, P211; Markow TA, 1997, J EVOLUTION BIOL, V10, P31, DOI 10.1007/s000360050004; Mazer S. J., 1999, LIFE HIST EVOLUTION, P85; MAZER SJ, 1987, EVOLUTION, V41, P355, DOI 10.1111/j.1558-5646.1987.tb05803.x; Mazer SJ, 1999, EVOLUTION, V53, P717, DOI 10.1111/j.1558-5646.1999.tb05366.x; Mazer SJ, 1998, EVOL ECOL, V12, P403, DOI 10.1023/A:1006568704381; MAZER SJ, 1987, AM NAT, V130, P891, DOI 10.1086/284754; Mazer SJ, 2003, J EVOLUTION BIOL, V16, P767, DOI 10.1046/j.1420-9101.2003.00555.x; MAZER SJ, 1993, AM J BOT, V80, P474, DOI 10.2307/2445394; MAZER SJ, 1991, EVOLUTION, V45, P1888, DOI 10.1111/j.1558-5646.1991.tb02694.x; Mazer SJ, 2001, AM J BOT, V88, P819, DOI 10.2307/2657034; MAZER SJ, 1991, HEREDITY, V67, P143, DOI 10.1038/hdy.1991.74; McDaniel SF, 2005, EVOLUTION, V59, P2353; Mitchell RJ, 2004, ECOLOGY, V85, P1527, DOI 10.1890/03-0388; Mitchell RJ, 1998, INT J PLANT SCI, V159, P331, DOI 10.1086/297554; MITCHELL RJ, 1993, HEREDITY, V71, P185, DOI 10.1038/hdy.1993.123; MORGAN M, 1993, EVOL ECOL, V7, P219, DOI 10.1007/BF01237740; MOSSOP R, 1994, FUNCT ECOL, V8, P410, DOI 10.2307/2389835; Nishihiro J, 2000, FUNCT ECOL, V14, P502, DOI 10.1046/j.1365-2435.2000.00449.x; Nunney L, 2002, AM NAT, V160, P195, DOI 10.1086/341017; ONEIL P, 1993, EVOLUTION, V47, P1457, DOI 10.1111/j.1558-5646.1993.tb02168.x; ONeil P, 1997, EVOLUTION, V51, P267, DOI 10.1111/j.1558-5646.1997.tb02408.x; Pelabon C, 2004, EVOLUTION, V58, P504, DOI 10.1111/j.0014-3820.2004.tb01674.x; Prati D, 2000, OIKOS, V90, P442, DOI 10.1034/j.1600-0706.2000.900303.x; PRIMACK RB, 1981, EVOLUTION, V35, P1069, DOI 10.1111/j.1558-5646.1981.tb04975.x; RAMEAU C, 1991, J EVOLUTION BIOL, V4, P291, DOI 10.1046/j.1420-9101.1991.4020291.x; Ritland K, 1996, EVOLUTION, V50, P1074, DOI 10.1111/j.1558-5646.1996.tb02348.x; ROBERTSON AW, 1994, HEREDITY, V72, P300, DOI 10.1038/hdy.1994.40; ROFF DA, 1987, HEREDITY, V58, P103, DOI 10.1038/hdy.1987.15; Sarkissian TS, 2001, J EVOLUTION BIOL, V14, P456, DOI 10.1046/j.1420-9101.2001.00285.x; SCHOEN DJ, 1994, AM J BOT, V81, P232, DOI 10.2307/2445638; SCHOEN DJ, 1982, EVOLUTION, V36, P352, DOI 10.1111/j.1558-5646.1982.tb05051.x; SHORE JS, 1990, HEREDITY, V64, P105, DOI 10.1038/hdy.1990.13; STANTON M, 1994, J EVOLUTION BIOL, V7, P271, DOI 10.1046/j.1420-9101.1994.7030271.x; Strauss SY, 1997, ECOLOGY, V78, P1640; SVENSSON L, 1994, AM J BOT, V81, P1112, DOI 10.2307/2445473; Tonsor SJ, 1997, EVOLUTION, V51, P1773, DOI 10.1111/j.1558-5646.1997.tb05101.x; Ungerer MC, 2002, GENETICS, V160, P1133; van Kleunen M, 2004, J EVOLUTION BIOL, V17, P1389, DOI [10.1111/j.1420.9101.2004.00787.x, 10.1111/j.1420-9101.2004.00787.x]; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VENABLE DL, 1989, EVOLUTION, V43, P113, DOI 10.1111/j.1558-5646.1989.tb04211.x; VENABLE DL, 1990, EVOLUTION, V44, P1748, DOI 10.1111/j.1558-5646.1990.tb05246.x; Vogler DW, 1999, AM J BOT, V86, P482, DOI 10.2307/2656809; Waldmann P, 1998, HEREDITY, V81, P79, DOI 10.1038/sj.hdy.6883790; Whitlock MC, 1997, J EVOLUTION BIOL, V10, P63; Worley AC, 2000, EVOLUTION, V54, P1533; Worley AC, 2001, J EVOLUTION BIOL, V14, P469, DOI 10.1046/j.1420-9101.2001.00296.x; YOUNG HJ, 1994, HEREDITY, V73, P298, DOI 10.1038/hdy.1994.137 103 118 123 2 83 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 0018-067X HEREDITY Heredity MAY 2006 96 5 343 352 10.1038/sj.hdy.6800815 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 036TY WOS:000237099800004 16598191 Bronze 2018-11-12 J Dyck, LJ; DeWreede, RE Dyck, Leonard James; DeWreede, Robert E. Reproduction and survival in Mazzaella splendens (Gigartinales, Rhodophyta) PHYCOLOGIA English Article macroalgae; Mazzaella; reproduction; reproductive cost; Rhodophyta; survival ECOLOGICAL DIFFERENCES; POPULATION-STRUCTURE; CHONDRUS-CRISPUS; NATURAL-HISTORY; LIFE-CYCLES; RED ALGAE; PHASES; PLANTS; COST; EVOLUTION Mazzaella splendens at Brockton Point, Vancouver, British Columbia, shows seasonally restricted reproduction, a pattern often associated with life history optimisation through some cost of reproduction. Production of cystocarpic and tetrasporangial blades was lowest during maximum population density in spring and summer and highest in winter when population density was lowest. A distinct temporal separation of peak cystocarpic blade density and peak tetrasporangial blade density was observed, suggesting ecological differences with respect to reproduction between the alternate phases. The total reproductive effort, however, was similar between gametophytes and tetrasporophytes (assuming a 1:1 ratio of males to females). Onset of reproduction did not siggificantly reduce the probability of survival for modules of either life history phase, and differential survival between nonreproductive gametophytes and tetrasporophytes was also absent. These results are discussed in relation to life history theory and to more specific theories about the nature of ecological differences between the alternate isomorphic phases of M. splendelis. Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada Dyck, LJ (reprint author), Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada. iridaea@mail.botany.ubc.ca ADAMS RW, 1979, THESIS U VICTORIA BR; Aickin M, 1999, BRIT MED J, V318, P127, DOI 10.1136/bmj.318.7176.127a; ANG PO, 1992, MAR ECOL PROG SER, V89, P25, DOI 10.3354/meps089025; BELL G, 1984, EVOLUTION, V38, P300, DOI 10.1111/j.1558-5646.1984.tb00289.x; BELL G, 1984, EVOLUTION, V38, P314, DOI 10.1111/j.1558-5646.1984.tb00290.x; Bender R, 1999, BRIT MED J, V318, P600, DOI 10.1136/bmj.318.7183.600a; BURNS R L, 1972, Journal of Experimental Marine Biology and Ecology, V9, P77, DOI 10.1016/0022-0981(72)90009-3; De Wreede R. E., 1988, PLANT REPROD ECOLOGY, P267; DEEVEY ES, 1947, Q REV BIOL, V22, P283, DOI 10.1086/395888; Destombe Christophe, 1993, Hydrobiologia, V260-261, P131, DOI 10.1007/BF00049011; DEWREEDE RE, 1990, J APPL PHYCOL, V2, P27; DYCK L, 1985, Japanese Journal of Phycology, V33, P225; DYCK LJ, 1995, PHYCOLOGIA, V34, P390, DOI 10.2216/i0031-8884-34-5-390.1; Fisher L. D., 1993, BIOSTATISTICS METHOD; GREEN LG, 1989, THESIS U BRIT COLUMB; HANNACH G, 1985, MAR ECOL PROG SER, V22, P291, DOI 10.3354/meps022291; HANSEN JE, 1976, J PHYCOL, V12, P273, DOI 10.1111/j.0022-3646.1976.00273.x; HANSEN JE, 1977, J PHYCOL, V13, P395, DOI 10.1111/j.1529-8817.1977.tb00618.x; HARPER JL, 1970, J ECOL, V58, P681, DOI 10.2307/2258529; Hughes JS, 1999, AM NAT, V154, P306, DOI 10.1086/303241; Hurlbert S. H., 2003, ECOLOGY, V84, P810, DOI DOI 10.1890/0012-9658(2003)084[0810:DAAUIU]2.0.CO;2; Juanes Jose A., 1993, Hydrobiologia, V260-261, P139, DOI 10.1007/BF00049012; KLINGER T, 1988, THESIS U CALIFORNIA; LITTLER MM, 1987, J PHYCOL, V23, P501, DOI 10.1111/j.1529-8817.1987.tb02538.x; LUXORO C, 1989, J PHYCOL, V25, P206, DOI 10.1111/j.1529-8817.1989.tb00115.x; Lynch M, 1998, GENETICS ANAL QUANTI; Mable BK, 1998, BIOESSAYS, V20, P453, DOI 10.1002/(SICI)1521-1878(199806)20:6<453::AID-BIES3>3.0.CO;2-N; MATHIESON AC, 1975, J EXP MAR BIOL ECOL, V17, P137, DOI 10.1016/0022-0981(75)90027-1; MAY G, 1986, J PHYCOL, V22, P448, DOI 10.1111/j.1529-8817.1986.tb02488.x; NORALL TL, 1981, J EXP MAR BIOL ECOL, V54, P119, DOI 10.1016/0022-0981(81)90139-8; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Pacheco-Ruiz Isai, 1999, Hydrobiologia, V398-399, P159, DOI 10.1023/A:1017098332403; Perneger TV, 1999, BRIT MED J, V318, P1288; Perneger TV, 1998, BRIT MED J, V316, P1236, DOI 10.1136/bmj.316.7139.1236; PHILLIPS B, 1994, THESIS U BRIT COLUMB; PRINCE JS, 1973, AM J BOT, V60, P964, DOI 10.2307/2441510; Santelices B, 1999, J PHYCOL, V35, P1127, DOI 10.1046/j.1529-8817.1999.3561127.x; Santelices B, 1999, TRENDS ECOL EVOL, V14, P152, DOI 10.1016/S0169-5347(98)01519-5; SANTELICES B, 1990, OCEANOGR MAR BIOL, V28, P177; Santos Rui, 1996, Hydrobiologia, V326-327, P223, DOI 10.1007/BF00047811; Scrosati R, 1998, BOT MAR, V41, P483, DOI 10.1515/botm.1998.41.1-6.483; Scrosati R, 2002, BASIC APPL ECOL, V3, P97, DOI 10.1078/1439-1791-00106; Shaughnessy FJ, 1996, MAR ECOL PROG SER, V136, P257, DOI 10.3354/meps136257; SHAUGHNESSY FJ, 1991, J APPL PHYCOL, V3, P121, DOI 10.1007/BF00003694; Shaughnessy FJ, 2001, MAR ECOL PROG SER, V222, P109, DOI 10.3354/meps222109; Sosa P. A., 1993, Hydrobiologia, V260-261, P445, DOI 10.1007/BF00049054; Sterne JAC, 2001, BMJ-BRIT MED J, V322, P226, DOI 10.1136/bmj.322.7280.226; THORNBER CS, 2001, THESIS U CALIFORNIA; Vega JMA, 2001, BOT MAR, V44, P571, DOI 10.1515/BOT.2001.063; WAALAND J R, 1973, Journal of Experimental Marine Biology and Ecology, V11, P71, DOI 10.1016/0022-0981(73)90018-X; Zar JH, 1984, BIOSTATISTICAL ANAL 51 7 7 1 9 INT PHYCOLOGICAL SOC LAWRENCE NEW BUSINESS OFFICE, PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0031-8884 PHYCOLOGIA Phycologia MAY 2006 45 3 302 310 9 Plant Sciences; Marine & Freshwater Biology Plant Sciences; Marine & Freshwater Biology 039RB WOS:000237323300008 2018-11-12 J Wiebe, KL Wiebe, KL A review of adult survival rates in woodpeckers ANNALES ZOOLOGICI FENNICI English Article; Proceedings Paper 6th International Woodpecker Symposium AUG 27-30, 2005 Mekrijarvi, FINLAND LIFE-HISTORY EVOLUTION; RED-COCKADED WOODPECKER; NEST PREDATION; MARKED ANIMALS; BIRDS; SURVIVORSHIP; REPRODUCTION; WARBLERS; MONTANA; FOOD Although many forestry management strategies rely on population estimates of indicator species such as woodpeckers (family Picidae), empirical estimates of demographic parameters within this taxon are few. In this review, I searched the literature for survival estimates of woodpeckers and found information for 54% of North American species and 30% of European species. The average survival rate for all woodpecker species combined was 0.58 but varied from 0.30 to 0.93 in apparently stable populations. Data were few, but there was not a consistent pattern of sex-biased mortality. Among North American species, there was a negative correlation between clutch size and survival consistent with life history theory. Univ Saskatchewan, Dept Biol, Saskatoon, SK S7N 5E2, Canada Wiebe, KL (reprint author), Univ Saskatchewan, Dept Biol, 112 Sci Pl, Saskatoon, SK S7N 5E2, Canada. karen.wiebe@usask.ca BONAR R, 2001, THESIS U ALBERTA EDM; Bull EL, 2001, J FIELD ORNITHOL, V72, P131, DOI 10.1648/0273-8570-72.1.131; BULL EL, 1988, 474 USDA FOR SERV PA; BULL EL, 1995, BIRDS N AM, V166, P1; Burnham K. P., 1998, MODEL SELECTION INFE; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Cilimburg AB, 2002, AUK, V119, P778, DOI 10.1642/0004-8038(2002)119[0778:EODOSP]2.0.CO;2; Cody M. L., 1971, P461; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Cramp S., 1993, BIRDS W PALEARCTIC; CURIO E, 1989, TRENDS ECOL EVOL, V4, P81, DOI 10.1016/0169-5347(89)90155-9; DELOTELLE RS, 1992, WILSON BULL, V104, P285; Desante DE, 1998, AVIAN CONSERVATION: RESEARCH AND MANAGEMENT, P93; DESANTE DF, 1992, WILDLIFE 2001 : POPULATIONS, P511; Dinsmore SJ, 2003, ECOL APPL, V13, P1013, DOI 10.1890/01-5311; Doherty PF, 2002, ECOLOGY, V83, P844, DOI 10.1890/0012-9658(2002)083[0844:SOPRBI]2.0.CO;2; Elchuk CL, 2002, WILSON BULL, V114, P349, DOI 10.1676/0043-5643(2002)114[0349:FAPRAF]2.0.CO;2; Farner D. S., 1945, Wilson Bulletin Ann Arbor, V57, P56; FISHER RJ, 2006, IN PRESS CONDOR, V108; Forde J.D., 1984, North American Bird Bander, V9, P5; *I BIRD POP, 2003, MON AV PROD SURV MAP; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; Khan MZ, 2002, BEHAV ECOL SOCIOBIOL, V51, P336, DOI 10.1007/s00265-001-0441-3; Koenig W. D., 1990, COOPERATIVE BREEDING, P415; KOSSENKO SM, 2003, ORNITHOLOGIA, V30, P97; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Martin K, 1999, FOREST ECOL MANAG, V115, P243, DOI 10.1016/S0378-1127(98)00403-4; MARTIN TE, 1993, AM NAT, V142, P937, DOI 10.1086/285582; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; McClelland BR, 1999, WILDLIFE SOC B, V27, P846; Michalek KG, 2001, BEHAVIOUR, V138, P1259, DOI 10.1163/15685390152822210; Pasinelli G, 2006, ANN ZOOL FENN, V43, P96; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.2307/3071970; Ricklefs R.E., 1973, P366; ROBERTS JOL, 1971, BIRD BANDING, V42, P165, DOI 10.2307/4511771; Sandercock BK, 2002, AUK, V119, P149, DOI 10.1642/0004-8038(2002)119[0149:ASROWS]2.0.CO;2; Sillett TS, 2002, J ANIM ECOL, V71, P296, DOI 10.1046/j.1365-2656.2002.00599.x; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TROMBINO CL, 1998, THESIS NO ILLINOIS U; Walters Eric L., 2002, Birds of North America, V663, P1; WALTERS JR, 1988, ETHOLOGY, V78, P275; White GC, 1999, BIRD STUDY, V46, P120; Wiktander U, 2001, AUK, V118, P624, DOI 10.1642/0004-8038(2001)118[0624:AARILS]2.0.CO;2 46 19 19 2 15 FINNISH ZOOLOGICAL BOTANICAL PUBLISHING BOARD UNIV HELSINKI P O BOX 17, FIN-00014 UNIV HELSINKI, FINLAND 0003-455X ANN ZOOL FENN Ann. Zool. Fenn. APR 28 2006 43 2 112 117 6 Ecology; Zoology Environmental Sciences & Ecology; Zoology 044WD WOS:000237703000005 2018-11-12 J Bishop, MJ; Peterson, CH Bishop, MJ; Peterson, CH When r-selection may not predict introduced-species proliferation: Predation of a nonnative oyster ECOLOGICAL APPLICATIONS English Article blue crab; Crassostrea ariakensis; exotic species; life-history trade-offs; mechanical defense; predation; proliferation of introduced species CRAB CALLINECTES-SAPIDUS; CRASSOSTREA-VIRGINICA GMELIN; BLUE-CRAB; BIOLOGICAL INVASIONS; FORAGING BEHAVIOR; JUVENILE OYSTERS; CARCINUS-MAENAS; CHESAPEAKE BAY; PREY-SIZE; FUNCTIONAL-RESPONSES Predicting outcomes of species introductions may be enhanced by integrating life-history theory with results of contained experiments that compare ecological responses of exotic and analogue native species to dominant features of the recipient environment. An Asian oyster under consideration for introduction to the Chesapeake Bay, USA, the rapidly growing Suminoe oyster (Crassostrea ariakensis), may not be as successful an invader as its r-selected life history suggests if the trade-off for rapid growth and maturation is lower investment in defenses against blue crab (Callinectes sapidus) predation than the native Eastern oyster (Crassostrea virginica). In laboratory trials, blue crabs simultaneously offered equal numbers of Suminoe and Eastern oysters consumed more nonnatives, irrespective of whether the crabs had previous experience with Suminoe oysters as prey. Satiated blue crabs consumed nearly three times as many Suminoe oysters as Eastern oysters of 25-mm shell height, and eight times as many of 35-mm shell height. Despite blue crabs consuming small (30 mm) Suminoe oysters at twice the rate of large (40 mm) Suminoe oysters, when 40-mm Suminoe were paired with 30-mm Eastern oysters, seven times as many of the larger (Suminoe) oysters were consumed. The greater susceptibility of C. ariakensis than C. virginica to blue crab predation appears to be based upon the biomechanics of shell strength rather than active selection of a more attractive food. Much less force was required to crush shells of Suminoe than Eastern oysters of similar shell height. Tissue transplant experiments demonstrated greater predation on oyster tissues in weaker C. ariakensis shells independent of tissue identity, and duration of handling time before rejection of C. virginica exceeded the time to crush C. ariakensis.. These results, coupled with the present importance of blue crab predation in limiting recovery of native Eastern oysters, imply a role for blue crabs in inhibiting Suminoe oysters, if introduced, from attaining high adult densities required to restore a fishery, provide appreciable reef habitat, and reduce turbidity through filtration. Thus, in high-predation environments, allocation of resources to rapid growth and development rather than to predation defenses reflects a life-history trade-off that may promote early stages of invasion, yet prevent attainment of dense adult populations. Univ N Carolina, Inst Marine Sci, Morehead City, NC 28557 USA Bishop, MJ (reprint author), Univ Technol Sydney, Dept Environm Sci, Gore Hill, NSW 2065, Australia. Melanie.Bishop-1@uts.edu.au Bishop, Melanie/0000-0001-8210-6500 ASIF M, 1979, HYDROBIOLOGIA, V66, P49, DOI 10.1007/BF00019139; AYERS P, 1991, MARYLAND SEA GRANT E, P3; Bax N, 2001, CONSERV BIOL, V15, P1234, DOI 10.1046/j.1523-1739.2001.99487.x; BERTNESS MD, 1985, OECOLOGIA, V67, P192, DOI 10.1007/BF00384283; BOULDING EG, 1993, EVOLUTION, V47, P576, DOI 10.1111/j.1558-5646.1993.tb02114.x; Branch GM, 2004, J EXP MAR BIOL ECOL, V300, P189, DOI 10.1016/j.jembe.2003.12.007; BROWN KM, 1992, J EXP MAR BIOL ECOL, V160, P67, DOI 10.1016/0022-0981(92)90111-M; Burch A, 2000, J MAR BIOL ASSOC UK, V80, P799, DOI 10.1017/S0025315400002770; Byers JE, 2002, OECOLOGIA, V130, P146, DOI 10.1007/s004420100777; Calvo GW, 2001, J SHELLFISH RES, V20, P221; Carlton JT, 1996, BIOL CONSERV, V78, P97, DOI 10.1016/0006-3207(96)00020-1; CATES RG, 1975, ECOLOGY, V56, P410, DOI 10.2307/1934971; Clark JS, 2001, SCIENCE, V293, P657, DOI 10.1126/science.293.5530.657; Cohen AN, 1998, SCIENCE, V279, P555, DOI 10.1126/science.279.5350.555; COLEY PD, 1985, SCIENCE, V230, P895, DOI 10.1126/science.230.4728.895; COX C, 1992, Journal of Shellfish Research, V11, P49; CURREY JD, 1979, J ZOOL, V188, P301, DOI 10.1111/j.1469-7998.1979.tb03417.x; DAVIDSON RJ, 1986, J EXP MAR BIOL ECOL, V102, P281, DOI 10.1016/0022-0981(86)90182-6; de Jong MCV, 2004, FISHERIES MANAG ECOL, V11, P183; DINAMAIN P, 1991, MARYLAND SEA GRANT E, P9; EGGLESTON DB, 1990, J EXP MAR BIOL ECOL, V143, P73, DOI 10.1016/0022-0981(90)90112-P; EGGLESTON DB, 1990, B MAR SCI, V46, P62; EGGLESTON DB, 1990, J ANIM ECOL, V59, P615, DOI 10.2307/4884; Ehrlich PR, 1989, BIOL INVASIONS GLOBA, P315; ELNER RW, 1978, J ANIM ECOL, V47, P103, DOI 10.2307/3925; ELTON C, 1958, ECOLOGY INVASIONS; Finelli CM, 2000, ECOLOGY, V81, P784, DOI 10.2307/177377; Fisher R.A., 1954, STAT METHODS RES WOR; Galtsoff PS, 1930, SCIENCE, V72, P97, DOI 10.1126/science.72.1856.97; Gascoigne JC, 2004, J APPL ECOL, V41, P801, DOI 10.1111/j.0021-8901.2004.00944.x; Gosselin LA, 1997, MAR ECOL PROG SER, V146, P265, DOI 10.3354/meps146265; Grabowski JH, 2004, J SHELLFISH RES, V23, P781; HINES AH, 1990, MAR ECOL PROG SER, V67, P105, DOI 10.3354/meps067105; HUGHES RN, 1979, J ANIM ECOL, V48, P65, DOI 10.2307/4100; HUGHES RN, 1981, MAR ECOL PROG SER, V6, P83, DOI 10.3354/meps006083; Jablonski David, 1996, P256; JACHOWSKI RL, 1974, BEHAVIOUR, V50, P232, DOI 10.1163/156853974X00471; JUANES F, 1992, MAR ECOL PROG SER, V87, P239, DOI 10.3354/meps087239; Langdon CJ, 1996, AQUACULTURE, V144, P321, DOI 10.1016/0044-8486(96)01302-6; LAWTON JH, 1986, PHILOS T ROY SOC B, V314, P607, DOI 10.1098/rstb.1986.0076; LAWTON P, 1985, MAR ECOL PROG SER, V27, P143, DOI 10.3354/meps027143; Lenihan H. S., 2001, ECOL APPL, V11, P746; LIN J, 1991, ESTUAR COAST SHELF S, V32, P61, DOI 10.1016/0272-7714(91)90028-A; LISZKA D, 1990, J EXP MAR BIOL ECOL, V137, P47, DOI 10.1016/0022-0981(90)90059-L; LODGE DM, 1993, TRENDS ECOL EVOL, V8, P133, DOI 10.1016/0169-5347(93)90025-K; Mack RN, 2000, ECOL APPL, V10, P689, DOI 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2; Mack RN, 1996, BIOL CONSERV, V78, P107, DOI 10.1016/0006-3207(96)00021-3; Mann R, 2000, J SHELLFISH RES, V19, P335; McMahon RF, 2002, CAN J FISH AQUAT SCI, V59, P1235, DOI 10.1139/F02-105; MENZEL R, 1979, NATURE, V281, P368, DOI 10.1038/281368a0; MENZEL R. WINSTON, 1958, BULL MARINE SCI GULF AND CARIBBEAN, V8, P125; MEYER DL, 1994, ESTUARIES, V17, P674, DOI 10.2307/1352415; MICHELI F, 1995, J ANIM ECOL, V64, P63, DOI 10.2307/5827; Miller AW, 2002, ECOL LETT, V5, P159, DOI 10.1046/j.1461-0248.2002.00306.x; MOLLOY DP, 1994, J SHELLFISH RES, V13, P367; Murdoch WW, 1975, ADV ECOL RES, V9, P1, DOI DOI 10.1016/S0065-2504(08)60288-3; *NRC, 2004, STUD NON OYST CHES B; PALMER AR, 1981, NATURE, V292, P150, DOI 10.1038/292150a0; Parker I.M., 1999, Biological Invasions, V1, P3, DOI 10.1023/A:1010034312781; PECK LS, 1993, PHILOS T ROY SOC B, V339, P17, DOI 10.1098/rstb.1993.0002; PETERSON CH, 1979, OECOLOGIA, V39, P1, DOI 10.1007/BF00345993; Reusch TBH, 1998, MAR ECOL PROG SER, V170, P159, DOI 10.3354/meps170159; ROBINSON JV, 1988, OECOLOGIA, V77, P445, DOI 10.1007/BF00377258; Roy J, 1990, BIOL INVASIONS EUROP, P335; Roy K, 2002, ECOL LETT, V5, P163, DOI 10.1046/j.1461-0248.2002.00316.x; Ruiz GM, 1997, AM ZOOL, V37, P621; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; Seed R, 1995, J EXP MAR BIOL ECOL, V193, P177, DOI 10.1016/0022-0981(95)00117-4; Seitz RD, 2001, ECOLOGY, V82, P2435, DOI 10.2307/2679927; Simberloff D, 2005, TRENDS ECOL EVOL, V20, P216, DOI 10.1016/j.tree.2005.02.008; Simberloff D, 2005, FRONT ECOL ENVIRON, V3, P12, DOI 10.1890/1540-9295(2005)003[0012:ISPMAF]2.0.CO;2; SMITH LD, 1994, SCIENCE, V264, P710, DOI 10.1126/science.264.5159.710; SOUSA WP, 1984, ANNU REV ECOL SYST, V15, P353, DOI 10.1146/annurev.es.15.110184.002033; Stachowicz JJ, 2002, ECOLOGY, V83, P2575; STANTON LS, 1983, ANIM BEHAV, V31, P33; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stephens DW, 1986, FORAGING THEORY; STONER AW, 1990, B MAR SCI, V46, P3; VERMEIJ GJ, 1991, SCIENCE, V253, P1099, DOI 10.1126/science.253.5024.1099; VERMEIJ GJ, 1976, NATURE, V260, P135, DOI 10.1038/260135a0; Vermeij GJ, 1987, EVOLUTION ESCALATION; VIRNSTEIN RW, 1977, ECOLOGY, V58, P1199, DOI 10.2307/1935076; Vitousek PM, 1996, AM SCI, V84, P468; WEISS LM, 2001, THESIS U N CAROLINA; WEISSBURG MJ, 1993, ECOLOGY, V74, P1428, DOI 10.2307/1940072; Williamson M, 1996, BIOL INVASIONS; Woodin SA, 1999, AUST J ECOL, V24, P291, DOI 10.1046/j.1442-9993.1999.00978.x; Zhou MF, 2003, J SHELLFISH RES, V22, P1 88 28 28 0 14 ECOLOGICAL SOC AMER WASHINGTON 1707 H ST NW, STE 400, WASHINGTON, DC 20006-3915 USA 1051-0761 ECOL APPL Ecol. Appl. APR 2006 16 2 718 730 10.1890/1051-0761(2006)016[0718:WRMNPI]2.0.CO;2 13 Ecology; Environmental Sciences Environmental Sciences & Ecology 036DW WOS:000237052200025 16711058 2018-11-12 J Fontaine, JJ; Martin, TE Fontaine, JJ; Martin, TE Parent birds assess nest predation risk and adjust their reproductive strategies ECOLOGY LETTERS English Article clutch size; egg size; nest predation; parental care; reproduction FLYCATCHER FICEDULA-HYPOLEUCA; CLUTCH SIZE VARIATION; MALE INCUBATION; EGG SIZE; FOOD; SURVIVAL; SUCCESS; CONSEQUENCES; MANIPULATION; PLASTICITY Avian life history theory has long assumed that nest predation plays a minor role in shaping reproductive strategies. Yet, this assumption remains conspicuously untested by broad experiments that alter environmental risk of nest predation, despite the fact that nest predation is a major source of reproductive failure. Here, we examined whether parents can assess experimentally reduced nest predation risk and alter their reproductive strategies. We experimentally reduced nest predation risk and show that in safer environments parents increased investment in young through increased egg size, clutch mass, and the rate they fed nestlings. Parents also increased investment in female condition by increasing the rates that males fed incubating females at the nest, and decreasing the time that females spent incubating. These results demonstrate that birds can assess nest predation risk at large and that nest predation plays a key role in the expression of avian reproductive strategies. Univ Montana, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA; Univ Montana, US Geol Survey, Missoula, MT 59812 USA Fontaine, JJ (reprint author), Univ Montana, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA. joseph.fontaine@umontana.edu Martin, Thomas/F-6016-2011; Fontaine, Joseph/F-6557-2010 Martin, Thomas/0000-0002-4028-4867; Fontaine, Joseph/0000-0002-7639-9156 Ferretti V, 2005, P ROY SOC B-BIOL SCI, V272, P769, DOI 10.1098/rspb.2004.3039; Ghalambor CK, 2002, BEHAV ECOL, V13, P101, DOI 10.1093/beheco/13.1.101; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; HALUPKA K, 1994, J AVIAN BIOL, V25, P251, DOI 10.2307/3677083; HENSLER GL, 1981, WILSON BULL, V93, P42; Julliard R, 1997, ECOLOGY, V78, P394; Kleindorfer S, 1997, ETHOLOGY, V103, P619; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; LYON BE, 1985, BEHAV ECOL SOCIOBIOL, V17, P279, DOI 10.1007/BF00300147; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Martin TE, 1998, ECOLOGY, V79, P656, DOI 10.2307/176961; MARTIN TE, 1993, J FIELD ORNITHOL, V64, P507; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MARZLUFF JM, 1985, CONDOR, V87, P559, DOI 10.2307/1367966; MAYFIELD HAROLD, 1961, WILSON BULL, V73, P255; MAYFIELD HF, 1975, WILSON BULL, V87, P456; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; Pelayo JT, 2003, AUK, V120, P384, DOI 10.1642/0004-8038(2003)120[0384:COESFO]2.0.CO;2; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; Roff Derek A., 1992; Saino N, 2004, FUNCT ECOL, V18, P50, DOI 10.1046/j.0269-8463.2004.00808.x; Sanz JJ, 1996, AUK, V113, P249; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; SMITH HG, 1989, BEHAV ECOL SOCIOBIOL, V24, P417, DOI 10.1007/BF00293270; SMITH HG, 1995, ECOLOGY, V76, P1, DOI 10.2307/1940626; Styrsky JD, 1999, P ROY SOC B-BIOL SCI, V266, P1253, DOI 10.1098/rspb.1999.0771; TINBERGEN JM, 1990, J ANIM ECOL, V59, P1113, DOI 10.2307/5035; von HAARTMAN LARS, 1958, ORNIX FENNICA, V35, P71; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; Williams Joseph B., 1996, P375; WILLIAMS TD, 1994, BIOL REV, V69, P35, DOI 10.1111/j.1469-185X.1994.tb01485.x 35 232 240 6 168 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. APR 2006 9 4 428 434 10.1111/j.1461-0248.2006.00892.x 7 Ecology Environmental Sciences & Ecology 027AE WOS:000236384100007 16623728 2018-11-12 J Collin, R Collin, R Sex ratio, life-history invariants, and patterns of sex change in a family of protandrous gastropods EVOLUTION English Article Bostrycapulus; calyptraeidae; Crepidula; protandry THALASSOMA-BIFASCIATUM PISCES; LYSMATA-WURDEMANNI DECAPODA; CORAL-REEF FISH; SIMULTANEOUS HERMAPHRODITE; CALYPTRAEID GASTROPODS; BLUEHEAD WRASSE; PHENOTYPIC PLASTICITY; SIZE ADVANTAGE; SOCIAL-CONTROL; FEMALE CHOICE Application of optimality theory to the evolution of life histories has been broadly successful in predicting the conditions favoring sex change, the type of change, and the timing of such changes. The size advantage hypothesis predicts that the optimal size at which an individual should change sex is a function of its size and the size and sex of its potential mates. I collected data on the size, sex, and grouping of individuals of 27 populations of 19 species of the calyptraeids, a family of protandrous marine gastropods that includes Crepidula. These data are used to test the following predictions about variation in size at sex change: (1) sex ratio is biased toward the first sex; (2) the ratio of the size at sex change to the maximum size is a life-history invariant; and (3) species that form variable-sized groups or stacks have more variation in size at sex change than species that show less variation in stack formation. Across all 19 species, sex ratio was not significantly more often biased toward the first sex than it was toward the second sex, although sex ratios were significantly male biased more often than they were significantly female biased. Sex ratios ranged from 0.05 to 0.91, and this variation was related to mode of development, skew in size distribution, and frequency of stacking, but not with maximum body size. There was little evidence that the ratio of size at sex change and maximum size is invariant. There is evidence that one of the main underlying assumptions of this life-history invariant, that male fertility increases with the same function of size in all species, is invalid for calyptraeids and probably for other animals. Finally, species that form larger stacks or mating groups had more variation in size at sex change within a population than species that were generally solitary. These results suggest that information about individual groupings should be included in predictions of life-history theory and that more information about the relationship between male fitness and size is also needed. Smithsonian Trop Res Inst, Balboa, Ancon, Panama Collin, R (reprint author), Smithsonian Trop Res Inst, Aprtado Postal 0843-03092, Balboa, Ancon, Panama. collinr@naos.si.edu Collin, Rachel/G-2001-2010 Collin, Rachel/0000-0001-5103-4460 Allsop DJ, 2004, EVOLUTION, V58, P1019; Allsop DJ, 2003, J EVOLUTION BIOL, V16, P921, DOI 10.1046/j.1420-9101.2003.00590.x; Allsop DJ, 2003, NATURE, V425, P783, DOI 10.1038/425783a; Baeza JA, 2004, BEHAV ECOL SOCIOBIOL, V55, P544, DOI 10.1007/s00265-003-0744-7; Baldwin AP, 2003, MAR BIOL, V143, P157, DOI 10.1007/s00227-003-1043-6; Bauer RT, 2005, J MAR BIOL ASSOC UK, V85, P101, DOI 10.1017/S0025315405010891h; Bauer RT, 2002, BIOL BULL, V203, P347, DOI 10.2307/1543577; Bauer RT, 2002, J CRUSTACEAN BIOL, V22, P742, DOI 10.1651/0278-0372(2002)022[0742:REOAPS]2.0.CO;2; Bauer RT, 1998, MAR BIOL, V132, P223, DOI 10.1007/s002270050388; BUSTON PM, 2004, NATURE 0408, P428; BUXTON CD, 1993, ENVIRON BIOL FISH, V36, P47, DOI 10.1007/BF00005979; Chaparro OR, 2002, NEW ZEAL J MAR FRESH, V36, P661, DOI 10.1080/00288330.2002.9517122; Chaparro OR, 1999, J EXP MAR BIOL ECOL, V232, P261, DOI 10.1016/S0022-0981(98)00115-4; CHARNOV E L, 1982; Charnov EL, 2000, EVOL ECOL RES, V2, P1067; CHARNOV EL, 1986, J THEOR BIOL, V119, P283, DOI 10.1016/S0022-5193(86)80141-2; CHARNOV EL, 1989, NATURE, V338, P148, DOI 10.1038/338148a0; Charnov EL, 2002, EVOL ECOL RES, V4, P239; CHARNOV EL, 1979, AM NAT, V113, P715, DOI 10.1086/283428; CHARNOV EL, 1981, MAR BIOL LETT, V2, P53; Charnov Eric L., 1993, P1; Cipriani R, 2005, J EVOLUTION BIOL, V18, P1613, DOI 10.1111/j.1420-9101.2005.00949.x; Coe WR, 1938, BIOL BULL-US, V75, P274, DOI 10.2307/1537735; COE WR, 1953, J EXP ZOOL, V122, P5, DOI 10.1002/jez.1401220103; COE WR, 1948, J EXP ZOOL, V108, P155, DOI 10.1002/jez.1401080108; Collin R, 2005, MAR ECOL PROG SER, V293, P89, DOI 10.3354/meps293089; Collin R, 1995, AM NAT, V146, P815, DOI 10.1086/285826; Collin R, 2003, SYST BIOL, V52, P618, DOI 10.1080/10635150390235430; Collin R, 2003, MAR ECOL PROG SER, V247, P103, DOI 10.3354/meps247103; Collin R, 2000, VELIGER, V43, P24; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Gardner A, 2005, AM NAT, V165, P551, DOI 10.1086/429526; Gould HN, 1919, J EXP ZOOL, V29, P113, DOI 10.1002/jez.1400290104; Gould HN, 1917, J EXP ZOOL, V23, P225, DOI 10.1002/jez.1400230202; GOULD HN, 1952, J EXP ZOOL, V119, P93, DOI 10.1002/jez.1401190107; HANNAH RW, 1991, FISH B-NOAA, V89, P41; Hardy ICW, 2002, SEX RATIOS CONCEPTS; HOAGLAND KE, 1978, MALACOLOGIA, V17, P365; LEIGH EG, 1976, P NATL ACAD SCI USA, V73, P3655, DOI DOI 10.1111/J.1420-9101.2006.01156.X; Lin J, 2001, MAR BIOL, V139, P1155; Nee S, 2005, SCIENCE, V309, P1236, DOI 10.1126/science.1114488; Pagel M, 1997, ZOOL SCR, V26, P331, DOI 10.1111/j.1463-6409.1997.tb00423.x; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Petersen CW, 2001, BEHAV ECOL, V12, P237, DOI 10.1093/beheco/12.2.237; POLICANSKY D, 1981, P NATL ACAD SCI-BIOL, V78, P1306, DOI 10.1073/pnas.78.2.1306; SCHULTZ ET, 1989, EVOLUTION, V43, P1497, DOI 10.1111/j.1558-5646.1989.tb02599.x; SCHULTZ ET, 1991, ENVIRON BIOL FISH, V30, P333, DOI 10.1007/BF02028849; Shapiro D., 1980, Journal of Theoretical Biology, V82, P411; Sokal R.R., 1995, BIOMETRY; WARNER RR, 1987, ANIM BEHAV, V35, P1470, DOI 10.1016/S0003-3472(87)80019-2; Warner RR, 1996, J EXP MAR BIOL ECOL, V204, P155, DOI 10.1016/0022-0981(96)02582-8; WARNER RR, 1992, EVOLUTION, V46, P1421, DOI 10.1111/j.1558-5646.1992.tb01134.x; WARNER RR, 1980, ECOLOGY, V61, P772, DOI 10.2307/1936747; WARNER RR, 1975, AM NAT, V109, P61, DOI 10.1086/282974; WARNER RR, 1991, BIOL BULL-US, V181, P199, DOI 10.2307/1542090; Wilson K, 2002, SEX RATIOS: CONCEPTS AND RESEARCH METHODS, P48, DOI 10.1017/CBO9780511542053.004 56 36 37 0 19 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 USA 0014-3820 EVOLUTION Evolution APR 2006 60 4 735 745 10.1111/j.0014-3820.2006.tb01152.x 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 041GC WOS:000237441300009 16739455 Bronze 2018-11-12 J Williamson, KA; Surai, PF; Graves, JA Williamson, KA; Surai, PF; Graves, JA Yolk antioxidants and mate attractiveness in the Zebra Finch FUNCTIONAL ECOLOGY English Article alpha-tocopherol; carotenoids; differential allocation; maternal effects GULL LARUS-FUSCUS; DIFFERENTIAL-ALLOCATION; EGGS; TESTOSTERONE; ANDROGENS; INVESTMENT; DEPOSITION; CANARIES; IMMUNITY; GROWTH Egg laying is costly for birds, as eggs must contain all the energy and nutrients needed by the developing embryo. As nutrients are limiting, there is a conflict between provisioning eggs and conserving nutrients for future health and survival. Life-history theory suggests that females should choose how to invest resources in relation to the value of the reproductive attempt. Females may manipulate egg composition in relation to the attractiveness of their mate, ensuring chick survival and assuming that the offspring will themselves be more attractive and have higher reproductive success. Antioxidants are an important component of egg composition: they are vital for embryonic and posthatching chick development and survival. Here we demonstrate that female Zebra Finches (Taeniopygia guttata) mated to attractive males deposit more carotenoids and alpha-tocopherol (vitamin E) in later-laid eggs, shown by a significant interaction between laying order and antioxidant concentration. This bias may increase the probability of chick survival from later-laid eggs and potentially the lifetime reproductive success of the laying female. The body condition of the laying female, measured as fat reserves, was found to be a significant predictor of yolk carotenoid concentration but not of yolk alpha-tocopherol concentration. Univ St Andrews, Sch Biol Sci, St Andrews KY16 9TS, Fife, Scotland; Scottish Agr Coll, Avian Sci Res Ctr, Auchincruive KA6 5HW, Ayr, Scotland Williamson, KA (reprint author), Univ St Andrews, Sch Biol Sci, St Andrews KY16 9TS, Fife, Scotland. kaw8@st-and.ac.uk Surai, Peter/0000-0002-5012-8681 Andersson M., 1992, SEXUAL SELECTION; BAHR JM, 1983, BIOL REPROD, V29, P327; Blount JD, 2002, P ROY SOC B-BIOL SCI, V269, P29, DOI 10.1098/rspb.2001.1840; BLOUNT JD, 2004, P ROYAL SOC LOND B, V271, pS71; BURLEY N, 1982, ANIM BEHAV, V30, P444, DOI 10.1016/S0003-3472(82)80055-9; BURLEY N, 1988, AM NAT, V132, P611, DOI 10.1086/284877; Cunningham EJA, 2000, NATURE, V404, P74, DOI 10.1038/35003565; FEINGOLD IB, 1993, BIOCHIM BIOPHYS ACTA, V1176, P192, DOI 10.1016/0167-4889(93)90196-V; Gil D, 2004, HORM BEHAV, V45, P64, DOI 10.1016/j.yhbeh.2003.08.005; Gil D, 1999, SCIENCE, V286, P126, DOI 10.1126/science.286.5437.126; GRAVES J, 1984, ANIM BEHAV, V32, P798, DOI 10.1016/S0003-3472(84)80156-6; GWINNER H, 2002, HORM BEHAV, V41, P21; Hails R, 2002, MODERN STAT LIFE SCI; Halifeoglu I, 2003, CELL BIOCHEM FUNCT, V21, P133, DOI 10.1002/cbf.1009; Halliwell B., 1999, FREE RADICALS MED BI; Haq AU, 1996, POULTRY SCI, V75, P1092, DOI 10.3382/ps.0751092; HELMS CW, 1960, BIRDBANDING, V31, P1, DOI DOI 10.2307/4510793; Johnson A. L., 2000, STURKIES AVIAN PHYSL; Johnson LS, 2003, J AVIAN BIOL, V34, P35, DOI 10.1034/j.1600-048X.2003.02950.x; Lago K, 2000, J FIELD ORNITHOL, V71, P676, DOI 10.1648/0273-8570-71.4.676; LESSELLS CM, 1991, BEHAV ECOLOGY EVOLUT; MOCK DW, 1990, AM SCI, V78, P438; MOUSSEAU TA, 1998, MAT EFFECTS ADAPTATI, P345; Nager RG, 2001, J AVIAN BIOL, V32, P159, DOI 10.1034/j.1600-048X.2001.320209.x; PETRIE M, 1993, P ROY SOC B-BIOL SCI, V251, P127, DOI 10.1098/rspb.1993.0018; Royle NJ, 2003, FUNCT ECOL, V17, P472, DOI 10.1046/j.1365-2435.2003.00752.x; Royle NJ, 2001, BEHAV ECOL, V12, P381, DOI 10.1093/beheco/12.4.381; Rutstein AN, 2004, ANIM BEHAV, V68, P1087, DOI 10.1016/j.anbehav.2004.02.011; Saino N, 2002, P ROY SOC B-BIOL SCI, V269, P1005, DOI 10.1098/rspb.2002.1992; SAINO N, 2002, P ROY SOC LOND B BIO, V269, P1792; Schwabl H, 1997, NATURWISSENSCHAFTEN, V84, P406, DOI 10.1007/s001140050418; Sheldon BC, 2000, TRENDS ECOL EVOL, V15, P397, DOI 10.1016/S0169-5347(00)01953-4; Stearns S. C., 1992, EVOLUTION LIFE HIST; Surai P. F., 2002, NATURAL ANTIOXIDANTS; Tanvez A, 2004, GEN COMP ENDOCR, V138, P113, DOI 10.1016/j.ygcen.2004.05.010; Veasey JS, 2001, J ANIM ECOL, V70, P20, DOI 10.1046/j.1365-2656.2001.00476.x; Verboven N, 2005, BEHAV ECOL SOCIOBIOL, V57, P357, DOI 10.1007/s00265-004-0862-x; Whittingham LA, 2002, ANIM BEHAV, V63, P63, DOI 10.1006/anbe.2001.1889; ZANN R, 1996, ZEBRA FINCH 39 38 38 1 15 BLACKWELL PUBLISHING OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND 0269-8463 FUNCT ECOL Funct. Ecol. APR 2006 20 2 354 359 10.1111/j.1365-2435.2006.01087.x 6 Ecology Environmental Sciences & Ecology 042GZ WOS:000237517400022 Bronze 2018-11-12 J Gibson, MA; Mace, R Gibson, Mhairi A.; Mace, Ruth An energy-saving development initiative increases birth rate and childhood malnutrition in rural Ethiopia PLOS MEDICINE English Article FERTILITY TRANSITION; DEVELOPING-COUNTRIES; POPULATION-POLICY; OVARIAN-FUNCTION; IMPROVED WATER; UNMET NEED; MORTALITY; INFANT; CONTRACEPTION; BANGLADESH Background Evolutionary life history theory predicts that, in the absence of contraception, any enhancement of maternal condition can increase human fertility. Energetic trade-offs are likely to be resolved in favour of maximizing reproductive success rather than health or longevity. Here we find support for the hypothesis that development initiatives designed to improve maternal and child welfare may also incur costs associated with increased family sizes if they do not include a family planning component. Methods and Findings Demographic and anthropometric data were collected in a rural Ethiopian community benefiting from a recent labour-saving development technology that reduces women's energetic expenditure (n = 1,976 households). Using logistic hazards models and general linear modelling techniques, we found that whilst infant mortality has declined, the birth rate has increased, causing greater scarcity of resources within households. Conclusions This study is, to our knowledge, the first to demonstrate a link between a technological development intervention and an increase in both birth rate and childhood malnutrition. Women's nutritional status was not improved by the energy-saving technology, because energy was diverted into higher birth rates. We argue that the contribution of biological processes to increased birth rates in areas of the developing world without access to modern contraception has been overlooked. This highlights the continued need for development programmes to be multisectoral, including access to and promotion of contraception. Univ Bristol, Dept Archaeol & Anthropol, Bristol, Avon, England; UCL, Dept Anthropol, London, England Gibson, MA (reprint author), Univ Bristol, Dept Archaeol & Anthropol, Bristol, Avon, England. mhairi.gibson@bris.ac.uk; r.mace@ucl.ac.uk Gibson, Mhairi/D-4726-2009 Gibson, Mhairi/0000-0001-7963-4759; Mace, Ruth/0000-0002-6137-7739 Wellcome Trust [GR068461MA] ALAM N, 1995, J BIOSOC SCI, V27, P393; BAILEY RC, 1992, J BIOSOC SCI, V24, P393; BELAY N, 1999, ARSI BALE ZONES OROM, P1; Bentley GR, 1999, SOC SCI MED, V48, P149, DOI 10.1016/S0277-9536(98)00330-X; BOHLER E, 1995, J BIOSOC SCI, V27, P431; BONGAARTS J, 1995, STUD FAMILY PLANN, V26, P57, DOI 10.2307/2137932; BONGAARTS J, 2002, 6 BILLION FORECASTIN; BRIEND A, 1989, LANCET, V2, P319; Caldwell JC, 2004, POPUL DEV REV, V30, P297, DOI 10.1111/j.1728-4457.2004.014_1.x; Casterline JB, 2000, POPUL DEV REV, V26, P691, DOI 10.1111/j.1728-4457.2000.00691.x; *CENTR STAT AUTH, 1998, 1994 POP HOUS CENS E; CLELAND J, 1987, POP STUD-J DEMOG, V41, P5, DOI 10.1080/0032472031000142516; Coale A.J., 1986, DECLINE FERTILITY EU; Cohen JE, 2003, SCIENCE, V302, P1172, DOI 10.1126/science.1088665; DEGEFE B, 2001, 2 ETH EC ASS, V2; Demeny P, 2003, POPUL DEV REV, V29, P1, DOI 10.1111/j.1728-4457.2003.00001.x; DYSON T, 1985, POPUL DEV REV, V11, P399, DOI 10.2307/1973246; ELLISON PT, 1989, AM J PHYS ANTHROPOL, V78, P519, DOI 10.1002/ajpa.1330780407; ELLISON PT, 2001, FERTILE GROUND NATUR; ESREY SA, 1986, EPIDEMIOL REV, V8, P117, DOI 10.1093/oxfordjournals.epirev.a036290; ESREY SA, 1991, B WORLD HEALTH ORGAN, V69, P609; Eveleth P. B., 1990, WORLDWIDE VARIATION; Gibson MA, 2002, CURR ANTHROPOL, V43, P631, DOI 10.1086/342428; GIBSON MA, 2002, DEV DEMOGRAPHIC CHAN; HOBCRAFT J, 1983, POPUL INDEX, V49, P585, DOI 10.2307/2737284; HOBCRAFT JN, 1985, POP STUD-J DEMOG, V39, P363, DOI 10.1080/0032472031000141576; HUTTLY SRA, 1992, PEDIATRICS, V89, P1049; Jasienska G, 2003, ACTA BIOTHEOR, V51, P1, DOI 10.1023/A:1023035321162; Jasienska G, 1998, P ROY SOC B-BIOL SCI, V265, P1847, DOI 10.1098/rspb.1998.0511; KING M, 1993, T ROY SOC TROP MED H, V87, P23, DOI 10.1016/0035-9203(93)90523-S; Larsen U, 1997, POP STUD-J DEMOG, V51, P213, DOI 10.1080/0032472031000149926; LeGrand TK, 1996, POP STUD-J DEMOG, V50, P51, DOI 10.1080/0032472031000149046; Lindstrom DP, 1999, DEMOGRAPHY, V36, P247, DOI 10.2307/2648112; LOHMAN TG, 1988, ANTHROPOMETRIC STAND; Low B S, 1993, Evol Anthropol, P177, DOI 10.1002/evan.1360010507; Luck M, 2000, STUD FAMILY PLANN, V31, P325, DOI 10.1111/j.1728-4465.2000.00325.x; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; Mason KO, 1997, DEMOGRAPHY, V34, P443, DOI 10.2307/3038299; [ORC Macro Central Statistical Agency [Ethiopia]], 2001, ETH DEM HLTH SURV 20; PanterBrick C, 1996, POP STUD-J DEMOG, V50, P203, DOI 10.1080/0032472031000149306; PEBLEY AR, 1991, J BIOSOC SCI, V23, P445; Poskitt EME, 1999, ARCH DIS CHILD, V80, P115, DOI 10.1136/adc.80.2.115; Potts M, 1997, POPUL DEV REV, V23, P1, DOI 10.2307/2137459; Roff Derek A., 1992; ROSS JA, 1999, PROFILES FAMILY PLAN; Stearns S. C., 1992, EVOLUTION LIFE HIST; Strassmann BI, 1998, AM J PHYS ANTHROPOL, V105, P167, DOI 10.1002/(SICI)1096-8644(199802)105:2<167::AID-AJPA5>3.0.CO;2-S; Tsui AO, 1992, FAMILY PLANNING PROG, P222; *UNOCHA, 2004, EV RESP 2002 03 EM E; WEAVER LT, 1993, LANCET, V341, P1327, DOI 10.1016/0140-6736(93)90827-4; *WHO, 1983, MEAS CHANG NUTR STAT; WHO, 1995, PHYS STAT US INT ANT; WOOD JW, 1994, BIOL BIOMETRY DEMOGR, P80; YAMAGUCHI K, 1991, EVENT HIST ANAL REGR 54 53 53 2 13 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1549-1676 PLOS MED PLos Med. APR 2006 3 4 476 484 e87 10.1371/journal.pmed.0030087 9 Medicine, General & Internal General & Internal Medicine 042RX WOS:000237548200016 16464132 DOAJ Gold, Green Published 2018-11-12 J Eggers, S; Griesser, M; Nystrand, M; Ekman, J Eggers, S; Griesser, M; Nystrand, M; Ekman, J Predation risk induces changes in nest-site selection and clutch size in the Siberian jay PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article clutch size; nest site selection; predation; phenotypic plasticity; life-history LIFE-HISTORY EVOLUTION; PERISOREUS-INFAUSTUS; DELAYED DISPERSAL; GREAT-TIT; BIRDS; REPRODUCTION; INCUBATION; PLASTICITY; BEHAVIOR; SHIFTS Life-history theory predicts that an individual should reduce its reproductive efforts by laying a smaller clutch size when high risk of nest predation reduces the value of current reproduction. Evidence in favour of this 'nest predation hypothesis', however, is scarce and based largely on correlative analyses. Here, we manipulated perceived risk of nest predation in the Siberian jay Perisoreus infaustus using playback involving a mixture of calls by corvid nest predators in the vicinity of nest sites. In response to being exposed to this acoustic cue simulating increased risk of nest predation, the jays chose a nest site offering more protective covering and reduced clutch size. This is the first experimental demonstration of clutch size adjustment and nest site selection as a result of phenotypic plasticity in an open nesting passerine reflecting a facultative response to the perceived risk of nest predation. Evolut Biol Ctr, Dept Ecol & Evolut, S-75236 Uppsala, Sweden Eggers, S (reprint author), Stockholm Univ, Dept Zool, S-10691 Stockholm, Sweden. sonke.eggers@zoologi.su.se Nystrand, Magdalena/D-1399-2009; Griesser, Michael/E-4340-2012; IB/USP, Genetica e Biologia/G-1755-2017; Griesser, Michael/J-4542-2012 Griesser, Michael/0000-0002-2220-2637 Ball SL, 1996, ECOLOGY, V77, P1116, DOI 10.2307/2265580; Boulton RL, 2003, J AVIAN BIOL, V34, P267, DOI 10.1034/j.1600-048X.2003.03062.x; Conway CJ, 2000, BEHAV ECOL, V11, P178, DOI 10.1093/beheco/11.2.178; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; Doligez B, 2003, ECOLOGY, V84, P2582, DOI 10.1890/02-3116; Eggers S, 2005, OIKOS, V111, P150, DOI 10.1111/j.0030-1299.2005.13802.x; Eggers S, 2005, BEHAV ECOL, V16, P309, DOI 10.1093/beheco/arh163; EKMAN J, 1994, BEHAV ECOL, V5, P245, DOI 10.1093/beheco/5.3.245; Ekman J, 2002, ANIM BEHAV, V64, P453, DOI 10.1006/anbe.2002.3075; Ekman J, 2001, J ANIM ECOL, V70, P317, DOI 10.1046/j.1365-2656.2001.00490.x; Forstmeier W, 2004, OIKOS, V104, P487, DOI 10.1111/j.0030-1299.1999.12698.x; Hindmarch TD, 2001, ENVIRON ENTOMOL, V30, P919, DOI 10.1603/0046-225X-30.5.919; Julliard R, 1997, ECOLOGY, V78, P394; Larsen T, 2000, IBIS, V142, P476, DOI 10.1111/j.1474-919X.2000.tb04444.x; Littell RC, 1996, SAS SYSTEM MIXED MOD; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 1999, AM NAT, V153, P131, DOI 10.1086/303153; MARZLUFF JM, 1988, ANIM BEHAV, V36, P1, DOI 10.1016/S0003-3472(88)80244-6; McCleery RH, 1996, J ANIM ECOL, V65, P96, DOI 10.2307/5703; Reid JM, 2000, FUNCT ECOL, V14, P560, DOI 10.1046/j.1365-2435.2000.t01-1-00446.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Roff Derek A., 1992; SAFRIEL UN, 1975, ECOLOGY, V56, P703, DOI 10.2307/1935505; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; Strickland D, 2001, CAN J ZOOL, V79, P2128, DOI 10.1139/cjz-79-12-2128; WEBB DR, 1987, CONDOR, V91, P628 31 179 190 4 112 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. MAR 22 2006 273 1587 701 706 10.1098/rspb.2005.3373 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 019AC WOS:000235806400010 16608689 Green Published 2018-11-12 J Michod, RE; Viossat, Y; Solari, CA; Hurand, M; Nedelcu, AM Michod, RE; Viossat, Y; Solari, CA; Hurand, M; Nedelcu, AM Life-history evolution and the origin of multicellularity JOURNAL OF THEORETICAL BIOLOGY English Article cost of reproduction; germ-soma differentiation; fitness; body size; evolutionary transitions; life-history evolution; Volvox COLONIAL VOLVOCALES CHLOROPHYCEAE; AMEBA DICTYOSTELIUM-DISCOIDEUM; GERM-SOMA DIFFERENTIATION; MULTILEVEL SELECTION; CONFLICT MEDIATION; VOLVOX-CARTERI; TRADE-OFFS; INDIVIDUALITY; GENE; REPRODUCTION The fitness of an evolutionary individual can be understood in terms of its two basic components: survival and reproduction. As embodied in current theory, trade-offs between these fitness components drive the evolution of life-history traits in extant multicellular organisms. Here, we argue that the evolution of germ-soma specialization and the emergence of individuality at a new higher level during the transition from unicellular to multicellular organisms are also consequences of trade-offs between the two components of fitness-survival and reproduction. The models presented here explore fitness trade-offs at both the cell and group levels during the unicellular-multicellular transition. When the two components of fitness negatively covary at the lower level there is an enhanced fitness at the group level equal to the covariance of components at the lower level. We show that the group fitness trade-offs are initially determined by the cell level trade-offs. However, as the transition proceeds to multicellularity, the group level trade-offs depart from the cell level ones, because certain fitness advantages of cell specialization may be realized only by the group. The curvature of the trade-off between fitness components is a basic issue in life-history theory and we predict that this Curvature is concave in single-celled organisms but becomes increasingly convex as group size increases in multicellular organisms. We argue that the increasingly convex curvature of the trade-off function is driven by the initial cost of reproduction to Survival which increases as group size increases. To illustrate the principles and conclusions of the model, we consider aspects of the biology of the volvocine green algae, which contain both unicellular and multicellular members. (C) 2005 Elsevier Ltd. All rights reserved. Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA; Ecole Polytech, Lab Econ, F-75005 Paris, France; Stockholm Sch Econ, Dept Econ, SE-11383 Stockholm, Sweden; Ecole Polytech, Lab Informat, F-91128 Palaiseau, France; Univ New Brunswick, Dept Biol, Fredericton, NB E3B 6E1, Canada Michod, RE (reprint author), Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. michod@u.arizona.edu; yannick.viossat@polytechnique.org; casolari@email.arizona.edu; mathilde.hurand@polytechnique.org; anedelcu@unb.ca Bell G., 1985, ORIGIN EVOLUTION SEX, P221; BENKMAN CW, 1993, ECOL MONOGR, V63, P305, DOI 10.2307/2937103; Benson KE, 1996, AM ZOOL, V36, P506; Blows MW, 2004, AM NAT, V163, P329, DOI 10.1086/381941; BUCHHEIM MA, 1994, MOL PHYLOGENET EVOL, V3, P322, DOI 10.1006/mpev.1994.1039; CARRIERE Y, 1995, OECOLOGIA, V102, P389, DOI 10.1007/BF00329806; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Coleman AW, 1999, P NATL ACAD SCI USA, V96, P13892, DOI 10.1073/pnas.96.24.13892; DAMUTH J, 1988, BIOL PHILOS, V3, P407, DOI 10.1007/BF00647962; DESNITSKI AG, 1995, EUR J PROTISTOL, V31, P241, DOI 10.1016/S0932-4739(11)80087-8; Foster KR, 2002, P ROY SOC B-BIOL SCI, V269, P2357, DOI 10.1098/rspb.2002.2163; King N, 2001, P NATL ACAD SCI USA, V98, P15032, DOI 10.1073/pnas.261477698; Kirk D. L., 1998, VOLVOX MOL GENETIC O; Kirk DL, 1997, ANNU REV GENET, V31, P359, DOI 10.1146/annurev.genet.31.1.359; Kirk MM, 1999, DEVELOPMENT, V126, P639; Kisdi E, 1998, EVOL ECOL, V12, P211, DOI 10.1023/A:1006535829880; Kisdi E, 2001, EVOL ECOL RES, V3, P721; KOUFOPANOU V, 1993, P ROY SOC B-BIOL SCI, V254, P107, DOI 10.1098/rspb.1993.0134; KOUFOPANOU V, 1994, AM NAT, V143, P907, DOI 10.1086/285639; LARSON A, 1992, MOL BIOL EVOL, V9, P85; Levins R., 1968, EVOLUTION CHANGING E; Michod R., 1999, DARWINIAN DYNAMICS E; Michod RE, 1997, AM NAT, V149, P607, DOI 10.1086/286012; Michod RE, 1997, P ROY SOC B-BIOL SCI, V264, P853, DOI 10.1098/rspb.1997.0119; Michod RE, 1996, P ROY SOC B-BIOL SCI, V263, P813, DOI 10.1098/rspb.1996.0121; MICHOD RE, 1982, ANNU REV ECOL SYST, V13, P23, DOI 10.1146/annurev.es.13.110182.000323; Michod RE, 2003, BIOSYSTEMS, V69, P95, DOI 10.1016/S0303-2647(02)00133-8; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MICHOD RE, 1999, MATH COMPUTATIONAL B, P47; Miller SM, 1999, DEVELOPMENT, V126, P649; Morgan N.C., 1980, International Biological Programme, V22, P247; Niklas K.J., 1994, PLANT ALLOMETRY SCAL; Niklas KJ, 2000, ANN BOT-LONDON, V85, P411, DOI 10.1006/anbo.1999.1100; Nozaki H, 2000, MOL PHYLOGENET EVOL, V17, P256, DOI 10.1006/mpev.2000.0831; Nozaki H, 2003, BIOLOGIA, V58, P425; Nozaki H, 2003, MOL PHYLOGENET EVOL, V29, P58, DOI 10.1016/S1055-7903(03)00089-7; Nozaki H, 2002, MOL PHYLOGENET EVOL, V23, P326, DOI 10.1016/S1055-7903(02)00030-1; PENTECOST A, 1983, ANN BOT-LONDON, V52, P769, DOI 10.1093/oxfordjournals.aob.a086635; PORTER KG, 1977, AM SCI, V65, P159; Queller DC, 2003, SCIENCE, V299, P105, DOI 10.1126/science.1077742; RAUSCH H, 1989, J MOL EVOL, V29, P255, DOI 10.1007/BF02100209; Reynolds C. S., 1984, ECOLOGY FRESHWATER P; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; Rueffler C, 2004, THEOR POPUL BIOL, V65, P165, DOI 10.1016/j.tpb.2003.10.001; Sato H, 2002, EVOLUTION, V56, P2374; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SHIKANO S, 1990, MICROBIAL ECOL, V20, P75, DOI 10.1007/BF02543868; SHIMKETS LJ, 1990, MICROBIOL REV, V54, P473; SOLARI CA, 2005, UNPUB AM NAT; SOLARI CA, 2005, THESIS U ARIZONA; Stearns S. C., 1992, EVOLUTION LIFE HIST; Strassmann JE, 2000, NATURE, V408, P965, DOI 10.1038/35050087; Strohm E, 2000, BIOL J LINN SOC, V69, P173, DOI 10.1006/bijl.1999.0356; Takada T, 1996, J THEOR BIOL, V182, P179, DOI 10.1006/jtbi.1996.0153; Velicer GJ, 2000, NATURE, V404, P598, DOI 10.1038/35007066 58 60 62 0 44 ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0022-5193 J THEOR BIOL J. Theor. Biol. MAR 21 2006 239 2 257 272 10.1016/j.jtbi.2005.08.043 16 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology 026LP WOS:000236340700015 16288782 2018-11-12 J Rutz, C; Whittingham, MJ; Newton, I Rutz, C; Whittingham, MJ; Newton, I Age-dependent diet choice in an avian top predator PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article Accipiter gentilis; age-dependent foraging proficiency; delayed maturation and breeding; fitness; life-history theory; northern goshawk GOSHAWKS ACCIPITER-GENTILIS; REPRODUCTIVE SUCCESS; EUROPEAN BLACKBIRDS; BIRDS; SPARROWHAWKS; PERFORMANCE; SELECTION; SURVIVAL; NISUS; SIZE Age-dependent breeding performance is arguably one of the best-documented phenomena in ornithology. The existence of age-related trends has major implications for life-history theory, but the proximate reasons for these patterns remain poorly understood. It has been proposed that poor breeding performance of young individuals might reflect lack of foraging skills. We investigated this possibility in a medium-sized, powerful raptor-the northern goshawk Accipitergentilis. Male goshawks are responsible for providing their females and their offspring with food. We hypothesized that young males may generally show poor breeding performance or even delay breeding, because they lack the experience to hunt efficiently-especially, their principal avian prey, the feral pigeon Columba livia. Our study exploited a rare 'natural experiment', the expansion phase of an urban population, where intraspecific interference was negligible and many young males bred successfully. This enabled us to examine the improvement of foraging skills in a larger sample of young individuals, and in more controlled conditions than usually possible. Using data from individually identified male breeders, we show that, consistent with our hypothesis, the proportion of pigeons in the diet increased significantly with male age, for at least the first three years of life. Other studies have shown a parallel increase in productivity, and a positive effect of a pigeon-rich diet on brood size and nestling condition, stressing the potential fitness relevance of this prey species for goshawks. Our results suggest a causal link between patterns of age-dependence in foraging ecology and reproductive performance. Furthermore, our study is, to our knowledge, the first demonstration that prey choice of breeders, which might reflect individual hunting skills, is age-dependent in a raptor. Univ Oxford, Dept Zool, Oxford OX1 3PS, England; Univ Newcastle, Sch Biol & Psychol, Newcastle Upon Tyne NE1 4RU, Tyne & Wear, England; Ctr Ecol & Hydrol, Huntingdon PE28 2LS, Cambs, England Rutz, C (reprint author), Univ Oxford, Dept Zool, S Parks Rd, Oxford OX1 3PS, England. christian.rutz@zoo.ox.ac.uk Whittingham, Mark/C-4958-2008 Natural Environment Research Council [CEH010010] Bijlsma R., 1997, HANDLEIDING VELDONDE; Bijlsma R. G, 1993, ECOLOGISCHE ATLAS NE; Black J. M., 1996, PARTNERSHIPS BIRDS; BOURNE GR, 1985, J ANIM ECOL, V54, P697, DOI 10.2307/4372; BURGER J, 1988, P 19 INT ORN C U OTT, P1127; Catry P, 1999, J AVIAN BIOL, V30, P399, DOI 10.2307/3677012; CRAMP S, 1980, HDB BIRDS EUROPE MID, V2, P148; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; Daunt F, 1999, P ROY SOC B-BIOL SCI, V266, P1489, DOI 10.1098/rspb.1999.0805; DESROCHERS A, 1992, ANIM BEHAV, V43, P885, DOI 10.1016/S0003-3472(06)80002-3; DESROCHERS A, 1992, ECOLOGY, V73, P1128, DOI 10.2307/1940186; EDWARDS TC, 1989, CONDOR, V91, P30, DOI 10.2307/1368145; EDWARDS TC, 1989, ECOLOGY, V70, P881, DOI 10.2307/1941356; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Galbraith H, 1999, J AVIAN BIOL, V30, P85, DOI 10.2307/3677247; Gotmark F, 1996, PHILOS T ROY SOC B, V351, P1559, DOI 10.1098/rstb.1996.0141; HAMILTON TH, 1961, EVOLUTION, V15, P180, DOI 10.2307/2406079; Johnson S.J., 1986, Raptor Research, V20, P29; KENWARD RE, 1982, J ANIM ECOL, V51, P69, DOI 10.2307/4311; Kenward RE, 1999, J ANIM ECOL, V68, P1020, DOI 10.1046/j.1365-2656.1999.00347.x; Komdeur J, 1996, BEHAV ECOL, V7, P417, DOI 10.1093/beheco/7.4.417; Kruger O, 2005, J ANIM ECOL, V74, P266, DOI 10.1111/j.1365-2656.2004.00920.x; Kruger Oliver, 1996, Vogelwelt, V117, P1; KUHNAPFEL O, 1995, CHARADRIUS, V31, P120; Lack D., 1968, ECOLOGICAL ADAPTATIO; MARCHETTI K, 1989, BIOL REV, V64, P51, DOI 10.1111/j.1469-185X.1989.tb00638.x; MARCSTROM V, 1981, IBIS, V123, P311, DOI 10.1111/j.1474-919X.1981.tb04033.x; MARTIN K, 1995, AM ZOOL, V35, P340; Mauck RA, 2004, EVOLUTION, V58, P880, DOI 10.1554/03-147; NEWTON I, 1991, IBIS, V133, P76, DOI 10.1111/j.1474-919X.1991.tb07671.x; Newton I, 1997, ECOLOGY, V78, P1000, DOI 10.1890/0012-9658(1997)078[1000:SARVIS]2.0.CO;2; Newton I, 2002, AUK, V119, P735, DOI 10.1642/0004-8038(2002)119[0735:ARTIDA]2.0.CO;2; Newton I, 2001, ARDEA, V89, P143; NEWTON I, 1989, LIFETIME REPROD BIRD; Newton I., 1986, SPARROWHAWK; Newton I, 1979, POPULATION ECOLOGY R; Nielsen JT, 2003, IBIS, V145, P1; OPDAN P, 1976, Beaufortia, V24, P55; Palleroni A, 2005, NATURE, V434, P973, DOI 10.1038/434973b; Part T, 2001, P ROY SOC B-BIOL SCI, V268, P2267, DOI 10.1098/rspb.2001.1803; Part T., 1996, P ROY SOC LOND B BIO, V360, P113, DOI [DOI 10.1098/RSPB.1995.0067, 10.1098/rspb.1995.0067]; Payne R.W., 2000, GUIDE GENSTAT 2; Risch M., 2004, Corax, V19, P323; Roff Derek A., 1992; Rust Rudolf, 1996, Ornithologischer Anzeiger, V35, P75; Rutz C, 2003, J ZOOL, V259, P209, DOI 10.1017/S0952836902003175; RUTZ C, IN PRESS STUD AVIAN; Saether B.-E., 1990, Current Ornithology, V7, P251; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stillman RA, 2000, J ANIM ECOL, V69, P484, DOI 10.1046/j.1365-2656.2000.00410.x; Tornberg R, 1999, OECOLOGIA, V121, P369, DOI 10.1007/s004420050941; Village A., 1990, THE KESTREL; VONBLOTZHEIM UNG, 1971, HDB VOGEL MITTELEURO, V4, P444; Whaley Wayne H., 1994, Proceedings of the Western Foundation of Vertebrate Zoology, V5, P161; WUNDERLE JM, 1991, CURR ORNITHOL, V8, P273; WURFELS M, 1999, CHARADRIUS, V35, P20; WURFELS M, 1994, CHARADRIUS, V30, P82; ZIESEMER F, 1983, THESIS U KIEL KIEL 58 59 61 2 36 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. MAR 7 2006 273 1586 579 586 10.1098/rspb.2005.3353 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 010ZT WOS:000235238100009 16537129 Green Published 2018-11-12 J Carl, LM; McGuiness, F Carl, LM; McGuiness, F Lake whitefish and lake herring population structure and niche in ten south-central Ontario lakes ENVIRONMENTAL BIOLOGY OF FISHES English Article catch per unit effort; diet; size at age; bet-hedging TROUT SALVELINUS-NAMAYCUSH; FISH COMMUNITIES; PREDATION; OPEONGO; BURBOT This study compares simple fish communities of ten oligotrophic lakes in south-central Ontario. Species densities and population size structure vary significantly among these lake communities depending on fish species present beyond the littoral zone. Lake whitefish are fewer and larger in the presence of lake herring than in their absence. Diet analysis indicates that lake whitefish shift from feeding on both plankton and benthic prey when lake herring are absent to a primarily benthic feeding niche in the presence of lake herring. When benthic round whitefish are present, lake whitefish size and density decline and they move lower in the lake compared to round whitefish. Burbot are also fewer and larger in lakes with lake herring than in lakes without herring. Burbot, in turn, appear to influence the population structure of benthic coregonine species. Lower densities of benthic lake whitefish and round whitefish are found in lakes containing large benthic burbot than in lakes with either small burbot or where burbot are absent. Predation on the pelagic larvae of burbot and lake whitefish by planktivorous lake herring alters the size and age structure of these populations. As life history theory predicts, those species with poor larval survival appear to adopt a bet-hedging life history strategy of long-lived individuals as a reproductive reserve. Trent Univ, Minist Nat Resources, Harkness Lab Fisheries Lab, Aquat Res & Dev Sect, Peterborough, ON, Canada Carl, LM (reprint author), US Geol Survey, Great Lakes Sci Ctr, 1451 Green Rd, Ann Arbor, MI 48105 USA. lcarl@usgs.gov BARBOUR CD, 1974, AM NAT, V108, P473, DOI 10.1086/282927; CARL LM, 1995, T AM FISH SOC, V124, P77, DOI 10.1577/1548-8659(1995)124<0077:STOBIL>2.3.CO;2; CARL LM, 1992, HYDROBIOLOGIA, V243, P229, DOI 10.1007/BF00007038; CARL LM, 1992, HYDROBIOLOGIA, V243, P237, DOI 10.1007/BF00007039; CARL LM, FISH COMMUNITY ENV E; CARL LML, 2000, SPECIAL PUBLICATION, V1, P81; Carr MH, 2002, P NATL ACAD SCI USA, V99, P11241, DOI 10.1073/pnas.162653499; Casselman J.M., 1987, P209; DAY AC, 1983, THESIS U MANITOBA; Evans DO, 1991, EFFECTS EXPLOITATION; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GODDARD CI, 1987, CAN J FISH AQUAT SCI, V44, P239; Harvey H.H., 1975, Verhandlungen Int Verein Theor Angew Limnol, V19, P2406; Jackson DA, 2001, CAN J FISH AQUAT SCI, V58, P157, DOI 10.1139/cjfas-58-1-157; Langeland A., 1991, American Fisheries Society Symposium, V9, P88; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; NIKOLSKI GV, 1969, THEORY FISH POPULATI; Romare P, 2003, LIMNOL OCEANOGR, V48, P1956, DOI 10.4319/lo.2003.48.5.1956; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; SVARDSON G, 1976, REP I FRESHWATER RES, V55, P144; TONN WM, 1986, CAN J FISH AQUAT SCI, V43, P194, DOI 10.1139/f86-022; Townsend CR, 2003, CONSERV BIOL, V17, P38, DOI 10.1046/j.1523-1739.2003.02017.x; TRIPPEL EA, 1993, CAN J FISH AQUAT SCI, V50, P1347; WALTERS CJ, 1988, CAN J FISH AQUAT SCI, V45, P530, DOI 10.1139/f88-062; WERNER EE, 1979, ECOLOGY, V60, P256, DOI 10.2307/1937653 25 7 10 1 11 SPRINGER NEW YORK 233 SPRING STREET, NEW YORK, NY 10013 USA 0378-1909 ENVIRON BIOL FISH Environ. Biol. Fishes MAR 2006 75 3 315 323 10.1007/s10641-006-0030-4 9 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 039FW WOS:000237292400006 2018-11-12 J Leips, J; Gilligan, P; Mackay, TFC Leips, J; Gilligan, P; Mackay, TFC Quantitative trait loci with age-specific effects on fecundity in Drosophila melanogaster GENETICS English Review GENOTYPE-ENVIRONMENT INTERACTION; FITNESS-RELATED TRAITS; LIFE-HISTORY TRAITS; GENE-EXPRESSION; CAENORHABDITIS-ELEGANS; EVOLUTIONARY GENETICS; SELECTION EXPERIMENTS; ARABIDOPSIS-THALIANA; CALORIC RESTRICTION; AFFECTING LONGEVITY Life-history theory and evolutionary, theories of aging assume the existence of alleles with age-specific effects oil fitness. While various Studies have documented age-related changes in the genetic contribution to variation in fitness components, we know very little about the underlying genetic architecture Of Such changes. We used a set of recombinant inbred lines to map and characterize the effects of quantitative trait loci (QTL) affecting fecundity of Drosophila melanogaster females at 1 and 4 weeks of age. We identified one QTL on the second chromosome and one or two QTL affecting fecundity oil the third chromosome, but these QTL affected fecundity only at I week of age. There was more genetic variation for fecundity at 4 weeks of age than at I week of age and there was no genetic correlation between early and late-age fecundity. These results Suggest that. different loci contribute to the variation in fecundity as the organism ages. Our data provide Support for the mutation accumulation theory of aging as applied to reproductive senescence. Comparing the results from this study with our previous work on life-span QTL, we also find evidence that antagonistic pleiotropy may contribute to the genetic basis of senescence in these lines as well. Univ Maryland Baltimore Cty, Dept Biol Sci, Baltimore, MD 21250 USA; N Carolina State Univ, Dept Genet, Raleigh, NC 27695 USA Leips, J (reprint author), Univ Maryland Baltimore Cty, Dept Biol Sci, 1000 Hilltop Circle, Baltimore, MD 21250 USA. leips@umbc.edu NIGMS NIH HHS [GM45344, P01 GM045344, F32 GM018818, GM18818-03] AIGAKI T, 1984, EXP GERONTOL, V19, P13, DOI 10.1016/0531-5565(84)90027-5; Ayyadevara S, 2003, GENETICS, V163, P557; Barton NH, 2002, NAT REV GENET, V3, P11, DOI 10.1038/nrg700; BARTON NH, 1989, ANNU REV GENET, V23, P337, DOI 10.1146/annurev.ge.23.120189.002005; Broekmans Frank J, 2004, Menopause, V11, P607, DOI 10.1097/01.GME.0000123643.76105.27; Chang KT, 2002, AGEING RES REV, V1, P313, DOI 10.1016/S1568-1637(02)00003-X; Charlesworth B, 1996, P NATL ACAD SCI USA, V93, P6140, DOI 10.1073/pnas.93.12.6140; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHURCHILL GA, 1994, GENETICS, V138, P963; Colosimo PF, 2005, SCIENCE, V307, P1928, DOI 10.1126/science.1107239; Curtsinger JW, 2002, MECH AGEING DEV, V123, P81, DOI 10.1016/S0047-6374(01)00345-1; De Luca M, 2003, NAT GENET, V34, P429, DOI 10.1038/ng1218; Doerge RW, 1996, GENETICS, V142, P285; Drnevich JM, 2004, P ROY SOC B-BIOL SCI, V271, P2267, DOI 10.1098/rspb.2004.2880; ENGSTROM G, 1989, THEOR APPL GENET, V77, P119, DOI 10.1007/BF00292325; Fanara JJ, 2002, GENETICS, V162, P1321; Fedorka KM, 2004, EVOLUTION, V58, P2478; Fiumera AC, 2005, GENETICS, V169, P243, DOI 10.1534/genetics.104.032870; Fox CW, 2004, HEREDITY, V92, P170, DOI 10.1038/sj.hdy.6800383; Fry JD, 1998, GENET RES, V71, P133, DOI 10.1017/S0016672398003176; Gasser M, 2000, EVOLUTION, V54, P1260; Geiger-Thornsberry GL, 2004, MECH AGEING DEV, V125, P179, DOI 10.1016/j.mad.2003.12.008; Gurganus MC, 1999, GENETICS, V152, P1585; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Halaschek-Wiener J, 2005, GENOME RES, V15, P603, DOI 10.1101/gr.3274805; Harbison ST, 2004, GENETICS, V166, P1807, DOI 10.1534/genetics.166.4.1807; HARD JJ, 1993, AM NAT, V142, P457, DOI 10.1086/285549; Harshman LG, 2000, TRENDS ECOL EVOL, V15, P32, DOI 10.1016/S0169-5347(99)01756-5; HOULE D, 1994, GENETICS, V138, P773; HOULE D, 1992, GENETICS, V130, P195; Hsin H, 1999, NATURE, V399, P362, DOI 10.1038/20694; Hughes KA, 2005, ANNU REV ENTOMOL, V50, P421, DOI 10.1146/annurev.ento.50.071803.130409; Hughes KA, 2002, P NATL ACAD SCI USA, V99, P14286, DOI 10.1073/pnas.222326199; HUGHES KA, 1995, EVOLUTION, V49, P521, DOI 10.1111/j.1558-5646.1995.tb02284.x; HUGHES KA, 1994, NATURE, V367, P64, DOI 10.1038/367064a0; Issa JP, 2003, CLIN IMMUNOL, V109, P103, DOI 10.1016/S1521-6616(03)00203-1; Jackson AU, 2003, GENES IMMUN, V4, P30, DOI 10.1038/sj.gene.6363895; Jaenisch R, 2003, NAT GENET, V33, P245, DOI 10.1038/ng1089; Jin W, 2001, NAT GENET, V29, P389, DOI 10.1038/ng766; Jouventin P, 2002, P ROY SOC B-BIOL SCI, V269, P1955, DOI 10.1098/rspb.2002.2080; Kaeberlein M, 2005, MECH AGEING DEV, V126, P491, DOI 10.1016/j.mad.2004.10.007; Kao CH, 1999, GENETICS, V152, P1203; Kao CH, 2002, GENETICS, V160, P1243; KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0; Khazaeli AA, 2005, GENETICS, V169, P231, DOI 10.1534/genetics.104.030403; Kim SN, 2005, NEUROBIOL AGING, V26, P1083, DOI 10.1016/j.neurobiolaging.2004.06.017; Knight CG, 2001, EVOLUTION, V55, P1795; KOSUDA K, 1985, BEHAV GENET, V15, P297, DOI 10.1007/BF01065984; Kruuk LEB, 2000, P NATL ACAD SCI USA, V97, P698, DOI 10.1073/pnas.97.2.698; Leips J, 2000, GENETICS, V155, P1773; Leips J, 2002, EXP AGING RES, V28, P361, DOI 10.1080/03610730290080399; Leips J, 2000, ECOL MONOGR, V70, P289, DOI 10.1890/0012-9615(2000)070[0289:GIOEPD]2.0.CO;2; Leroi AM, 2005, MECH AGEING DEV, V126, P421, DOI 10.1016/j.mad.2004.07.012; Lin JZ, 2000, GENOME, V43, P628, DOI 10.1139/gen-43-4-628; Lin YJ, 1998, SCIENCE, V282, P943, DOI 10.1126/science.282.5390.943; Lindsley D., 1992, GENOME DROSOPHILA ME; Littell R., 2002, SAS LINEAR MODELS; LONG AD, 1995, GENETICS, V139, P1273; Lynch M, 1998, GENETICS ANAL QUANTI; Mack PD, 2000, GENETICA, V110, P31, DOI 10.1023/A:1017538505627; Mackay TFC, 2001, ANNU REV GENET, V35, P303, DOI 10.1146/annurev.genet.35.102401.090633; MACKAY TFC, 2005, HDB BIOL AGING, P181; Marden JH, 2003, P NATL ACAD SCI USA, V100, P3369, DOI 10.1073/pnas.0634985100; McCarroll SA, 2004, NAT GENET, V36, P197, DOI 10.1038/ng1291; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; Moehring AJ, 2004, GENETICS, V167, P1249, DOI 10.1534/genetics.103.024372; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Nguyen TTT, 2004, MOL GENET GENOMICS, V272, P35, DOI 10.1007/s00438-004-1025-5; Nichols SM, 2005, HUM REPROD, V20, P79, DOI 10.1093/humrep/deh576; Novoseltsev VN, 2004, ANN NY ACAD SCI, V1019, P577, DOI 10.1196/annals.1297.108; Nunney L, 1996, EVOLUTION, V50, P1193, DOI 10.1111/j.1558-5646.1996.tb02360.x; Nuzhdin SV, 2005, GENETICS, V170, P719, DOI 10.1534/genetics.104.038331; Nuzhdin SV, 1997, P NATL ACAD SCI USA, V94, P9734, DOI 10.1073/pnas.94.18.9734; Oksanen TA, 2002, EVOLUTION, V56, P1530; Ottinger MA, 2004, EXP GERONTOL, V39, P1679, DOI 10.1016/j.exger.2004.06.021; Palsson A, 2004, GENETICS, V167, P1187, DOI 10.1534/genetics.103.021766; PARTRIDGE L, 1986, J INSECT PHYSIOL, V32, P925, DOI 10.1016/0022-1910(86)90140-X; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; Pasyukova EG, 2004, AGING CELL, V3, P297, DOI 10.1111/j.1474-9728.2004.00114.x; PASYUKOVA EG, 1993, MOL GEN GENET, V240, P302, DOI 10.1007/BF00277071; Pasyukova EG, 2000, GENETICS, V156, P1129; Peripato AC, 2004, J EVOLUTION BIOL, V17, P593, DOI 10.1111/j.1420-9101.2004.00702.x; Picard F, 2004, NATURE, V429, P771, DOI 10.1038/nature02583; Pletcher SD, 1999, GENETICS, V153, P813; Pletcher SD, 2002, CURR BIOL, V12, P712, DOI 10.1016/S0960-9822(02)00808-4; Pletcher SD, 1998, GENETICS, V148, P287; Promislow DEL, 1996, GENETICS, V143, P839; Rauser CL, 2003, EXP GERONTOL, V38, P27, DOI 10.1016/S0531-5565(02)00148-1; Ricklefs RE, 2003, EXP GERONTOL, V38, P741, DOI 10.1016/S0531-5565(03)00101-3; ROBERTSON A, 1959, BIOMETRICS, V15, P469, DOI 10.2307/2527750; Robertson F. W., 1957, J GENET, V55, P428, DOI DOI 10.1007/BF02984061; Rogina B, 2004, P NATL ACAD SCI USA, V101, P15998, DOI 10.1073/pnas.0404184101; Rogina B, 2002, SCIENCE, V298, P1745, DOI 10.1126/science.1078986; Rogina B, 1998, CURR BIOL, V8, P475, DOI 10.1016/S0960-9822(98)70184-8; Rong YKS, 2002, GENE DEV, V16, P1568, DOI 10.1101/gad.986602; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1981, GENETICS, V97, P187; Seroude L, 2002, AGING CELL, V1, P47, DOI 10.1046/j.1474-9728.2002.00007.x; Service PM, 2000, GENET RES, V75, P153, DOI 10.1017/S0016672399004322; SHAW RG, 1995, GENETICS, V139, P397; Shook DR, 1999, GENETICS, V153, P1233; Skoracka A, 2004, EXP APPL ACAROL, V32, P231, DOI 10.1023/B:APPA.0000023237.70549.20; Slate J, 2002, GENETICS, V162, P1863; Snoke MS, 2003, HEREDITY, V91, P546, DOI 10.1038/sj.hdy.6800353; Sommer S, 2003, GENETICA, V118, P1, DOI 10.1023/A:1022965424352; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steinmetz LM, 2002, NATURE, V416, P326, DOI 10.1038/416326a; Sun JT, 2002, GENETICS, V161, P661; Sun S, 2004, SCIENCE, V305, P81, DOI 10.1126/science.1093904; TANTAWY AO, 1964, GENETICS, V50, P1349; Tatar M, 2001, SCIENCE, V292, P107, DOI 10.1126/science.1057987; Tatar M, 1996, GENETICS, V143, P849; Tatar M, 1997, EVOLUTION, V51, P1323, DOI 10.1111/j.1558-5646.1997.tb03980.x; Tissenbaum HA, 2002, DEV CELL, V2, P9, DOI 10.1016/S1534-5807(01)00098-3; Tu MP, 2002, AGING CELL, V1, P75, DOI 10.1046/j.1474-9728.2002.00010.x; Turelli M, 2004, GENETICS, V166, P1053, DOI 10.1534/genetics.166.2.1053; Ungerer MC, 2003, EVOLUTION, V57, P2531; Valenzuela RK, 2004, GENETICS, V168, P313, DOI 10.1534/genetics.103.023291; Verhoeven KJF, 2004, EVOLUTION, V58, P270, DOI 10.1111/j.0014-3820.2004.tb01644.x; Vieira C, 2000, GENETICS, V154, P213; Wayne ML, 2002, P NATL ACAD SCI USA, V99, P14903, DOI 10.1073/pnas.222549199; Wayne ML, 2001, GENET RES, V77, P107, DOI 10.1017/S0016672300004894; Weindruch R, 2001, J NUTR, V131, p918S; Weinig C, 2003, GENETICS, V165, P321; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Windig JJ, 2004, HEREDITY, V93, P450, DOI 10.1038/sj.hdy.6800522; Yampolsky LY, 2000, GENETICA, V110, P11, DOI 10.1023/A:1017582625191; ZENG ZB, 1994, GENETICS, V136, P1457; Zhong DB, 2005, GENETICS, V169, P2127, DOI 10.1534/genetics.104.038794; ZWAAN B, 1995, EVOLUTION, V49, P635, DOI 10.1111/j.1558-5646.1995.tb02300.x 131 34 35 1 13 GENETICS SOC AM BETHESDA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA 0016-6731 GENETICS Genetics MAR 2006 172 3 1595 1605 10.1534/genetics.105.048520 11 Genetics & Heredity Genetics & Heredity 030XG WOS:000236668100019 16272414 Green Published, Bronze 2018-11-12 J Derry, PS Derry, Paula S. A lifespan biological model of menopause SEX ROLES English Article; Proceedings Paper 15th Biennial Conference of the Society-for-Menstrual-Cycle-Research JUN 05-07, 2003 Pittsburgh, PA Soc Menstrual Cycle Res menopause; women's health; life history theory; adult development BONE LOSS; WOMEN; EVOLUTION; FRACTURE; DENSITY; RISK This paper continues the author's theoretical reconsideration of the biology of menopause (Derry, 2002). The author's broader-biological theoretical model of menopause, the Lifespan Biological Model, asserts that menopause is best understood by considering the biology of healthy systems. The biological subfield of life history theory combined with the psychological subfield of lifespan development provides a useful starting point to understand the biology of menopause. When compared with other mammals, humans have unusual life stages, one of which is a post-reproductive stage of relatively healthy, competent adulthood. Implications of the model are discussed with regard to conceptualizing: menopause as normal versus pathological; the arc of development as childhood growth/adult stability/aging senescence versus lifespan developmental; and the relation of menopause to chronic disease, especially osteoporosis. Paula Derry Enterprises Hlth Psychol, Baltimore, MD 21212 USA Derry, PS (reprint author), Paula Derry Enterprises Hlth Psychol, 4811 Crowson Ave, Baltimore, MD 21212 USA. pderry@bcpl.net Ahlborg HG, 2003, NEW ENGL J MED, V349, P327, DOI 10.1056/NEJMoa022464; Ahlborg HG, 2001, BONE, V28, P327, DOI 10.1016/S8756-3282(00)00451-8; Bogin B., 1999, PATTERNS HUMAN GROWT; BROWN JK, 1985, HER PRIME; Cao J, 2003, J BONE MINER RES, V18, P270, DOI 10.1359/jbmr.2003.18.2.270; Day L, 2002, BRIT MED J, V325, P128, DOI 10.1136/bmj.325.7356.128; DeLaet CEDH, 1997, BRIT MED J, V315, P221, DOI 10.1136/bmj.315.7102.221; Derry PS, 2002, SEX ROLES, V46, P13, DOI 10.1023/A:1016081400820; DIAMOND J, 1996, DISCOVER, V17, P130; Gosden R, 1996, CHEATING TIME; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; HELSON R, 1992, PSYCHOL AGING, V7, P46, DOI 10.1037/0882-7974.7.1.46; KANIS JA, 1993, OSTEOPOROSIS INT S, V1, P10; Lee R. B., 1985, HER PRIME, P23; National Institutes of Health, 2000, OST PREV DIAGN THER; NOTMAN MT, 1990, ANN NY ACAD SCI, V592, P149; PAVELKA MSM, 1991, YEARB PHYS ANTHROPOL, V34, P13; Pfaff D. W., 1999, DRIVE NEUROBIOLOGICA; Rebar RW, 2000, MENOPAUSE, V7, P5; RICHARDSON SJ, 1987, J CLIN ENDOCR METAB, V65, P1231, DOI 10.1210/jcem-65-6-1231; SARKAR S, 2002, J BONE MINER RES, V1, P1; Siris ES, 2001, JAMA-J AM MED ASSOC, V286, P2815, DOI 10.1001/jama.286.22.2815 23 3 3 1 7 SPRINGER/PLENUM PUBLISHERS NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0360-0025 SEX ROLES Sex Roles MAR 2006 54 5-6 393 399 10.1007/s11199-006-9008-0 7 Psychology, Developmental; Psychology, Social; Women's Studies Psychology; Women's Studies 101OX WOS:000241751200010 2018-11-12 J Martin, TE; Bassar, RD; Bassar, SK; Fontaine, JJ; Lloyd, P; Mathewson, HA; Niklison, AM; Chalfoun, A Martin, TE; Bassar, RD; Bassar, SK; Fontaine, JJ; Lloyd, P; Mathewson, HA; Niklison, AM; Chalfoun, A Life-history and ecological correlates of geographic variation in egg and clutch mass among passerine species EVOLUTION English Article allometry; birds; clutch size; egg mass; nest predation; trade-offs PARENTAL CARE; NEST PREDATION; TRADE-OFF; INTERSPECIFIC RELATIONSHIP; REPRODUCTIVE ALLOCATION; MAYFIELD METHOD; OFFSPRING SIZE; PROPAGULE SIZE; K-SELECTION; BIRDS Broad geographic patterns in egg and clutch mass are poorly described, and potential causes of variation remain largely unexamined. We describe interspecific variation in avian egg and clutch mass within and among diverse geographic regions and explore hypotheses related to allometry, clutch size, nest predation, adult mortality, and parental care as correlates and possible explanations of variation. We studied 74 species of Passeriformes at four latitudes on three continents: the north temperate United States, tropical Venezuela, subtropical Argentina, and south temperate South Africa. Egg and clutch mass increased with adult body mass in all locations, but differed among locations for the same body mass, demonstrating that egg and clutch mass have evolved to some extent independent of body mass among regions. A major portion of egg mass variation was explained by an inverse relationship with clutch size within and among regions, as predicted by life-history theory. However, clutch size did not explain all geographic differences in egg mass; eggs were smallest in South Africa despite small clutch sizes. These small eggs might be explained by high nest predation rates in South Africa; life-history theory predicts reduced reproductive effort under high risk of offspring mortality. This prediction was supported for clutch mass, which was inversely related to nest predation but not for egg mass. Nevertheless, clutch mass variation was not fully explained by nest predation, possibly reflecting interacting effects of adult mortality. Tests of the possible effects of nest predation on egg mass were compromised by limited power and by counterposing direct and indirect effects. Finally, components of parental investment, defined as effort per offspring, might be expected to positively coevolve. Indeed, egg mass, but not clutch mass, was greater in species that shared incubation by males and females compared with species in which only females incubate eggs. However, egg and clutch mass were not related to effort of parental care as measured by incubation attentiveness. Ecological and life-history correlates of egg and clutch mass variation found here follow from theory, but possible evolutionary causes deserve further study. Univ Montana, US Geol Survey, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA; Univ Cape Town, Ctr Excellence, Natl Res Fdn, Dept Sci & Technol,Percy FitzPatrick Inst African, ZA-7701 Rondebosch, South Africa Martin, TE (reprint author), Univ Montana, US Geol Survey, Montana Cooperat Wildlife Res Unit, Missoula, MT 59812 USA. tom.martin@umontana.edu; rdbassar@yahoo.com; myioborus@yahoo.com; joseph.fontaine@umontana.edu; plloyd@botzoo.uct.ac.za; heatherm@unr.edu; alina.niklison@mso.umt.edu; anna.chalfoun@umontana.edu Martin, Thomas/F-6016-2011; Fontaine, Joseph/F-6557-2010 Martin, Thomas/0000-0002-4028-4867; Fontaine, Joseph/0000-0002-7639-9156 Armbruster P, 2001, EVOLUTION, V55, P439; Barker FK, 2002, P ROY SOC B-BIOL SCI, V269, P295, DOI 10.1098/rspb.2001.1883; Bernardo J, 1996, AM ZOOL, V36, P216; BERRIGAN D, 1991, OIKOS, V60, P313, DOI 10.2307/3545073; Birdsley JS, 2002, AUK, V119, P715, DOI 10.1642/0004-8038(2002)119[0715:POTTFT]2.0.CO;2; BLACKBURN TM, 1991, AUK, V108, P209; BLACKBURN TM, 1991, AUK, V108, P973; Bonduriansky R, 1999, ECOL ENTOMOL, V24, P389, DOI 10.1046/j.1365-2311.1999.00221.x; Caley MJ, 2001, EVOLUTION, V55, P1245; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Chesser RT, 2004, MOL PHYLOGENET EVOL, V32, P11, DOI 10.1016/j.ympev.2003.11.015; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; Cibois A, 2004, MOL PHYLOGENET EVOL, V32, P264, DOI 10.1016/j.ympev.2003.12.002; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Czesak ME, 2003, EVOLUTION, V57, P1121; Dodds PS, 2001, J THEOR BIOL, V209, P9, DOI 10.1006/jtbi.2000.2238; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; FONTAINE JJ, 2006, IN PRESS ECOL LETT; Forsman A, 1995, FUNCT ECOL, V9, P818, DOI 10.2307/2389979; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Gollmann B, 1996, HERPETOLOGICA, V52, P181; Harvey P. H., 1991, COMP METHOD EVOLUTIO; HENSLER GL, 1981, WILSON BULL, V93, P42; JOHNSON DH, 1979, AUK, V96, P651; Johnston TA, 2002, ECOLOGY, V83, P1777, DOI 10.1890/0012-9658(2002)083[1777:MAEGIT]2.0.CO;2; Krist M, 2004, OECOLOGIA, V140, P52, DOI 10.1007/s00442-004-1568-5; Lack D., 1968, ECOLOGICAL ADAPTATIO; Lovette IJ, 2002, AUK, V119, P695, DOI 10.1642/0004-8038(2002)119[0695:WIAWWM]2.0.CO;2; MAC ARTHUR ROBERT H., 1967; MARSHALL SD, 1994, FUNCT ECOL, V8, P118, DOI 10.2307/2390120; Martin TE, 1998, ECOLOGY, V79, P656, DOI 10.2307/176961; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; MAYFIELD HF, 1975, WILSON BULL, V87, P456; Morrison C, 2003, J ANIM ECOL, V72, P270, DOI 10.1046/j.1365-2656.2003.00696.x; NUSSBAUM RA, 1989, AM NAT, V133, P591, DOI 10.1086/284939; Outlaw DC, 2003, AUK, V120, P299, DOI 10.1642/0004-8038(2003)120[0299:EOLMIA]2.0.CO;2; Peach WJ, 2001, OIKOS, V93, P235, DOI 10.1034/j.1600-0706.2001.930207.x; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIANKA ER, 1972, AM NAT, V106, P581, DOI 10.1086/282798; POIANI A, 1994, EVOL ECOL, V8, P471, DOI 10.1007/BF01238252; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PURVIS A, 1995, COMPUT APPL BIOSCI, V11, P247; RAHN H, 1985, J ORNITHOL, V126, P263, DOI 10.1007/BF01640368; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff Derek A., 1992; ROHWER FC, 1991, AUK, V108, P211; ROHWER FC, 1988, AUK, V105, P161; ROS EMR, 1981, GENETICS, V97, P173; Ruber L, 2004, EVOLUTION, V58, P799; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; SCHMIDTNIELSEN K, 1984, SCALING ANIMAL SIZE; Schwarzkopf L, 1999, AM NAT, V154, P333, DOI 10.1086/303242; SHINE R, 1978, J THEOR BIOL, V75, P417, DOI 10.1016/0022-5193(78)90353-3; Sibley CG, 1990, PHYLOGENY CLASSIFICA; SIMPSON MR, 1995, ECOLOGY, V76, P795, DOI 10.2307/1939345; SINERVO B, 1991, J EXP ZOOL, V257, P252, DOI 10.1002/jez.1402570216; Skutch A. F., 1957, Ibis, V99, P69, DOI 10.1111/j.1474-919X.1957.tb01934.x; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; West GB, 1999, SCIENCE, V284, P1677, DOI 10.1126/science.284.5420.1677; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122; White CR, 2003, P NATL ACAD SCI USA, V100, P4046, DOI 10.1073/pnas.0436428100; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams TD, 2001, P ROY SOC B-BIOL SCI, V268, P423, DOI 10.1098/rspb.2000.1374; WILLIAMS TD, 1994, BIOL REV, V69, P35, DOI 10.1111/j.1469-185X.1994.tb01485.x; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667 74 98 102 2 52 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution FEB 2006 60 2 390 398 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 026ZW WOS:000236383200016 16610329 2018-11-12 J Ford, NB; Seigel, RA Ford, NB; Seigel, RA Intra-individual variation in clutch and offspring size in an oviparous snake JOURNAL OF ZOOLOGY English Article snakes; between-clutch variation; phenotypic plasticity BODY-SIZE; PHENOTYPIC PLASTICITY; REPRODUCTIVE OUTPUT; UTA-STANSBURIANA; EGG SIZE; EVOLUTIONARY SIGNIFICANCE; INDIVIDUAL-DIFFERENCES; LOCOMOTOR PERFORMANCE; THAMNOPHIS-ELEGANS; GARTER SNAKE Intra-individual variation can be extremely informative in understanding the evolution of life-history traits. In this study, we examined intra-individual variation in clutch and offspring size for brown house snakes Lamprophis fuliginosus, a species that can lay up to six clutches in the laboratory within a 12-month interval without a refractory period. The number of clutches produced per female during this interval ranged from two to six, and there was no significant relationship between the total number of clutches laid and maternal body size. Unlike results from lizards and turtles, house snakes showed no significant changes in clutch size or offspring size among successive clutches, and individual repeatability of both traits was moderate to high. House snakes in this study also showed a strong negative relationship between clutch size and offspring size for all clutches produced, as expected by life-history theory. Our data indicate that house snakes show much less intra-individual variation than most other reptile species examined. However, this high level of consistency may be due to regulation of food availability under laboratory conditions. This will be varied in future experiments to test the degree of plasticity exhibited by individual females for these traits. Towson Univ, Dept Biol Sci, Towson, MD 21252 USA; Univ Texas, Dept Biol, Tyler, TX USA Seigel, RA (reprint author), Towson Univ, Dept Biol Sci, 8000 York Rd, Towson, MD 21252 USA. rseigel@towson.edu ANDREN C, 1983, Amphibia-Reptilia, V4, P63, DOI 10.1163/156853883X00274; Ballinger R.E., 1983, P241; Bernardo J, 1996, AM ZOOL, V36, P83; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Bonnet X, 2001, J ZOOL, V255, P341, DOI 10.1017/S0952836901001443; Bonnet X, 2000, OIKOS, V89, P509, DOI 10.1034/j.1600-0706.2000.890310.x; Broadley DG., 1983, FITZSIMONS SNAKES SO; Brodie ED, 1999, ANIM BEHAV, V57, P445, DOI 10.1006/anbe.1998.0990; Bronikowski AM, 1999, ECOLOGY, V80, P2314, DOI 10.1890/0012-9658(1999)080[2314:TEEOLH]2.0.CO;2; Brown GP, 2002, J ZOOL, V258, P63, DOI 10.1017/S0952836902001218; BROWN WS, 1991, HERPETOLOGICA, V47, P101; Doody JS, 2003, J ZOOL, V259, P179, DOI 10.1017/S0952836902003217; FARRELL TM, 1995, J HERPETOL, V29, P21, DOI 10.2307/1565081; FERGUSON GW, 1984, EVOLUTION, V38, P342, DOI 10.1111/j.1558-5646.1984.tb00292.x; FERGUSON GW, 1986, HERPETOLOGICA, V42, P185; FERGUSON GW, 1982, HERPETOLOGICA, V38, P178; FERGUSON GW, 1990, HERPETOLOGICA, V46, P227; FORD NB, 1989, HERPETOLOGICA, V45, P75; FORD NB, 1989, ECOLOGY, V70, P1768, DOI 10.2307/1938110; Ford Neil B., 2001, African Journal of Herpetology, V50, P31; GIBBONS JW, 1982, HERPETOLOGICA, V38, P222; Gregory PT, 1998, AM NAT, V151, P477, DOI 10.1086/286134; Hatle JD, 2002, OECOLOGIA, V132, P517, DOI 10.1007/s00442-002-0994-5; Huey RB, 1983, LIZARD ECOLOGY STUDI; Jordan MA, 2002, OECOLOGIA, V130, P44, DOI 10.1007/s004420100776; Luiselli L, 1996, OECOLOGIA, V106, P100, DOI 10.1007/BF00334412; Madsen T, 1996, HERPETOLOGICA, V52, P146; MILES D. B., 1988, BIOL REPTILIA, p[443, 659]; NUSSBAUM RA, 1981, OECOLOGIA, V49, P8, DOI 10.1007/BF00376891; Olsson M, 2002, FUNCT ECOL, V16, P135, DOI 10.1046/j.0269-8463.2001.00600.x; Olsson M, 1997, AM NAT, V149, P179, DOI 10.1086/285985; Roff Derek A., 1992; SEIGEL R A, 1987, P210; Seigel Richard A., 1993, P395; Shine R, 2000, TRENDS ECOL EVOL, V15, P221, DOI 10.1016/S0169-5347(00)01853-X; Shine R, 2003, P ROY SOC B-BIOL SCI, V270, P995, DOI 10.1098/rspb.2002.2307; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; Sokal R.R., 1995, BIOMETRY; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; STEWART JR, 1979, HERPETOLOGICA, V35, P342; TRYON B W, 1984, Transactions of the Kansas Academy of Science, V87, P98, DOI 10.2307/3627843; VANBERKUM FH, 1989, FUNCT ECOL, V3, P97; Vanhooydonck B, 2001, PHYSIOL BIOCHEM ZOOL, V74, P937, DOI 10.1086/324749 43 12 13 0 8 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. FEB 2006 268 2 171 176 10.1111/j.1469-7998.2005.00006 6 Zoology Zoology 008YF WOS:000235077600006 2018-11-12 J Beauplet, G; Barbraud, C; Dabin, W; Kussener, C; Guinet, C Beauplet, G; Barbraud, C; Dabin, W; Kussener, C; Guinet, C Age-specific survival and reproductive performances in fur seals: evidence of senescence and individual quality OIKOS English Review NORTHERN ELEPHANT SEALS; LIFE-HISTORY EVOLUTION; POPULATION-DYNAMICS; ARCTOCEPHALUS-TROPICALIS; BREEDING EXPERIENCE; AMSTERDAM ISLAND; MARKED ANIMALS; RED DEER; ROE DEER; TEMPORARY EMIGRATION Life history theory hypothesises that breeding events induce reproductive costs that may vary among individuals. However, the growing number of studies addressing this question are taxonomically biased, therefore impeding the generalisation of this hypothesis, especially with regard to marine top predators. This study investigated age-related survival and breeding performances in subantarctic fur seal (Arctocephalus tropicalis) females from Amsterdam Island, southern Indian Ocean. Using multistate capture-recapture models on data obtained from known-age tagged females over eight consecutive years, we tested for evidence of senescence, individual quality, and reproductive costs in terms of future survival and fecundity. Adult female yearly survival appeared high and constant throughout time. While a two age-class model was preferred in non-breeders, breeding females exhibited three age classes with a maximum survival for the prime-age class (7-12 years). Survival and reproductive probabilities decreased from 13 years onward, suggesting senescence in this population. Survival was lower for non-breeders than for breeders, among both prime-aged (0.938 vs 0.982) and older (0.676 vs 0.855) females. Furthermore, non-breeders exhibited higher probabilities of being non-breeders the following year than did breeders (0.555 vs 0.414). Such results suggest consistency in female breeding performance over years, supporting the hypothesis that non-breeding tend to occur among lower quality individuals rather than representing an alternative strategy to enhance residual reproductive value. However, the high proportion of females that did not breed during two consecutive years, and the lower probability of being a successful breeder after a greater reproductive effort confirmed the existence of reproductive costs, especially during the second half of the lactation. These results also suggest that younger age-classes included a higher proportion of lower quality individuals, which are likely to face higher costs of reproduction. Such hypotheses lead to consider the first breeding event as a filter generating a within-cohort selection process in females. CNRS, Ctr Etud Biol Chize, FR-79360 Villiers En Bois, France; Ctr Rech Mammiferes Marins, FR-17000 La Rochelle, France Beauplet, G (reprint author), Texas A&M Univ, Inst Marine Life Sci, 4700 Ave U,Bldg 303, Galveston, TX 77551 USA. ufuf@cebc.cnrs.fr Barbraud, Christophe/A-5870-2012 Anderson DR, 1999, BIRD STUDY, V46, P261; ARNASON A N, 1973, Researches on Population Ecology (Tokyo), V15, P1; Arnould JPY, 2003, CAN J ZOOL, V81, P1428, DOI 10.1139/Z03-134; Beauplet G, 2005, J ANIM ECOL, V74, P1160, DOI 10.1111/j.1365-2656.2005.01016.x; Beauplet G, 2004, MAR ECOL PROG SER, V273, P211, DOI 10.3354/meps273211; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.2307/177240; BESTER MN, 1995, MAR MAMMAL SCI, V11, P362, DOI 10.1111/j.1748-7692.1995.tb00291.x; Bowen W.D., 1991, P66; BOYD IL, 1995, J ANIM ECOL, V64, P505, DOI 10.2307/5653; Burnham K. P., 1998, MODEL SELECTION INFE; BURNHAM KP, 1992, WILDLIFE 2001 : POPULATIONS, P16; Cam E, 2000, J ANIM ECOL, V69, P380, DOI 10.1046/j.1365-2656.2000.00400.x; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; CAUGHLEY G, 1966, ECOLOGY, V47, P906, DOI 10.2307/1935638; CAUGHLEY G, 1977, ANAL VERTEBRATE POPU; Chambellant M, 2003, CAN J ZOOL, V81, P1222, DOI 10.1139/Z03-114; CHOQUET R, 2002, U CARE UTILITIES CAP; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Clutton-Brock T.H., 1988, REPROD SUCCESS STUDI; CluttonBrock TH, 1996, J ANIM ECOL, V65, P675, DOI 10.2307/5667; CLUTTONBROCK TH, 1987, J ANIM ECOL, V56, P53, DOI 10.2307/4799; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CLUTTONBROCK TH, 1983, J ANIM ECOL, V52, P367, DOI 10.2307/4560; CLUTTONBROCK TH, 1992, J ANIM ECOL, V61, P381, DOI 10.2307/5330; Cobley ND, 1998, IBIS, V140, P315, DOI 10.1111/j.1474-919X.1998.tb04395.x; COULSON JC, 1985, IBIS, V127, P450, DOI 10.1111/j.1474-919X.1985.tb04841.x; COULSON JC, 1984, IBIS, V126, P525, DOI 10.1111/j.1474-919X.1984.tb02078.x; Crocker DE, 2001, ECOLOGY, V82, P3541, DOI 10.1890/0012-9658(2001)082[3541:MTAREI]2.0.CO;2; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; Dabin W, 2004, CAN J ZOOL, V82, P1043, DOI 10.1139/Z04-079; Dobson FS, 1999, J ANIM ECOL, V68, P73, DOI 10.1046/j.1365-2656.1999.00268.x; DRENT RH, 1980, ARDEA, V68, P225; EBERHARDT LL, 1985, J WILDLIFE MANAGE, V49, P997, DOI 10.2307/3801386; EVANS RM, 1990, ANIM BEHAV, V39, P797, DOI 10.1016/S0003-3472(05)80391-4; Festa-Bianchet M, 1998, ECOL LETT, V1, P91; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; Fujiwara M, 2002, ECOLOGY, V83, P3266, DOI 10.2307/3072077; Gaillard JM, 2003, POPUL DEV REV, V29, P39; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Gaillard JM, 1998, ECOLOGY, V79, P2878, DOI 10.2307/176523; GAILLARD JM, 1993, J ANIM ECOL, V62, P778; GAILLARD JM, 1994, EVOLUTION, V48, P509, DOI 10.1111/j.1558-5646.1994.tb01329.x; GENTRY RL, 1986, FUR SEALS MATERNAL S; Georges JY, 2000, ECOLOGY, V81, P295, DOI 10.1890/0012-9658(2000)081[0295:MCITSF]2.0.CO;2; Georges JY, 1999, MAMMALIA, V63, P384; Goodman D., 1981, P415; Guinet C, 1998, CAN J ZOOL, V76, P1418, DOI 10.1139/cjz-76-8-1418; GUINET C, 1994, ANTARCT SCI, V6, P473; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; Hall AJ, 2001, J ANIM ECOL, V70, P138; HARRIS MP, 1995, IBIS, V137, P192, DOI 10.1111/j.1474-919X.1995.tb03239.x; Hewison AJM, 2001, J ANIM ECOL, V70, P600, DOI 10.1046/j.1365-2656.2001.00528.x; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; Jorgenson JT, 1997, ECOLOGY, V78, P1019, DOI 10.2307/2265855; Kendall WL, 2002, ECOLOGY, V83, P3276; LANDER RH, 1981, FISH RES, V1, P55, DOI 10.1016/0165-7836(81)90007-2; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Loison A, 2004, ECOLOGY, V85, P1992, DOI 10.1890/03-0600; LOISON A, 1994, CAN J ZOOL, V72, P591, DOI 10.1139/z94-081; LUNN NJ, 1994, J ANIM ECOL, V63, P827, DOI 10.2307/5260; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; Morris DW, 1998, OIKOS, V83, P518, DOI 10.2307/3546679; NEWTON I, 1989, LIFETIME REPROD BIRD; NICHOLS JD, 1994, ECOLOGY, V75, P2052, DOI 10.2307/1941610; NUR N, 1988, ARDEA, V76, P155; Oftedal O.T., 1987, Current Mammalogy, V1, P175; ORELL M, 1994, OECOLOGIA, V100, P339, DOI 10.1007/BF00316963; Partridge L, 1987, FUNCT ECOL, V1, P317, DOI 10.2307/2389786; PAYNE MR, 1977, PHILOS T ROY SOC B, V279, P67, DOI 10.1098/rstb.1977.0072; Pistorius PA, 2002, CAN J ZOOL, V80, P395, DOI 10.1139/Z02-017; Pomeroy PP, 1999, J ANIM ECOL, V68, P235, DOI 10.1046/j.1365-2656.1999.00281.x; Pradel R, 2003, BIOMETRICS, V59, P43, DOI 10.1111/1541-0420.00006; Pradel R., 1993, P29; Prevot-Julliard AC, 1998, AUK, V115, P85; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PUGESEK BH, 1992, EVOL ECOL, V6, P279, DOI 10.1007/BF02270965; REITER J, 1991, BEHAV ECOL SOCIOBIOL, V28, P153, DOI 10.1007/BF00172166; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Schaub M, 2004, ECOLOGY, V85, P2107, DOI 10.1890/03-3110; SCHWARZ CJ, 1993, BIOMETRICS, V49, P177, DOI 10.2307/2532612; Seber GAF, 1982, ESTIMATION ANIMAL AB; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; SYDEMAN WJ, 1991, ECOLOGY, V72, P2204, DOI 10.2307/1941571; TESTA JW, 1987, ECOL MONOGR, V57, P149, DOI 10.2307/1942622; Toigo C, 2002, ECOSCIENCE, V9, P427; TRILLMICH F, 1986, BEHAV ECOL SOCIOBIOL, V19, P157; TRITES AW, 1991, CAN J ZOOL, V69, P2608, DOI 10.1139/z91-367; TRIVERS RL, 1974, AM ZOOL, V14, P249; TUOMI J, 1983, AM ZOOL, V23, P25; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VAUPEL JW, 1985, AM STAT, V39, P176, DOI 10.2307/2683925; White GC, 1999, BIRD STUDY, V46, P120; Wickens P, 1997, MAR MAMMAL SCI, V13, P241, DOI 10.1111/j.1748-7692.1997.tb00631.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WOOLLER RD, 1990, J ANIM ECOL, V59, P161, DOI 10.2307/5165; YORK AE, 1981, CAN J FISH AQUAT SCI, V38, P84, DOI 10.1139/f81-011; YORK AE, 1987, STATUS BIOL ECOLOGY, P133 102 92 92 3 42 BLACKWELL PUBLISHING OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND 0030-1299 OIKOS Oikos FEB 2006 112 2 430 441 10.1111/j.0030-1299.2006.14412.x 12 Ecology Environmental Sciences & Ecology 005CR WOS:000234800700020 2018-11-12 J Sedinger, JS; Ward, DH; Schamber, JL; Butler, WI; Eldridge, WD; Conant, B; Voelzer, JF; Chelgren, ND; Herzog, MP Sedinger, JS; Ward, DH; Schamber, JL; Butler, WI; Eldridge, WD; Conant, B; Voelzer, JF; Chelgren, ND; Herzog, MP Effects of El Nino on distribution and reproductive performance of Black Brant ECOLOGY English Article arctic; Black Brant; Branta bernicla nigricans; breeding; demography; El Nino; herbivore; population; robust design; sea surface temperature; Zostera marina LESSER SNOW GEESE; YUKON-KUSKOKWIM DELTA; POPULATION-DYNAMICS; SURVIVAL ESTIMATION; EELGRASS ABUNDANCE; BERNICLA-NIGRICANS; MARKED ANIMALS; CLIMATE-CHANGE; CLUTCH SIZE; GROWTH Climate in low-latitude wintering areas may influence temperate and high-latitude breeding populations of birds, but demonstrations of such relationships have been rare because of difficulties in linking wintering with breeding populations. We used long-term aerial surveys in Mexican wintering areas and breeding areas in Alaska, USA, to assess numbers of Black Brant (Branta bernicla nigricans; hereafter brant) on their principal wintering and breeding area in El Nino and non-El Nino years. We used Pollock's robust design to directly estimate probability of breeding and apparent annual survival of individually marked brant at the Tutakoke River (TR) colony, Alaska, in each year between 1988 and 2001. Fewer brant wintered in Mexico during every El Nino event since 1965. Fewer brant were observed on the principal breeding area following each El Nino since surveys began in 1985. Probability of breeding was negatively related to January sea surface temperature along the subtropical coast of North America during the preceding winter., Between 23% (five-year-olds or older) and 30% (three-year-olds) fewer brant nested in 1998 following the strong El Nino event in the winter of 1997-1998 than in non-El Nino years. This finding is consistent with life history theory, which predicts that longer-lived species preserve adult survival at the expense of reproduction. Oceanographic conditions off Baja California, apparently by their effect on Zostera marina (eelgrass), strongly influence winter distribution of brant geese and their reproduction (but not survival), which in turn affects ecosystem dynamics in Alaska. Univ Nevada, Dept Nat Resources & Environm Sci, Reno, NV 89512 USA; US Geol Survey, Alaska Sci Ctr, Anchorage, AK 99503 USA; US Fish & Wildlife Serv, Arlington, VA 22203 USA; US Fish & Wildlife Serv, Juneau, AK 99801 USA; US Fish & Wildlife Serv, Portland, OR 97232 USA; Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA Sedinger, JS (reprint author), Univ Nevada, Dept Nat Resources & Environm Sci, 1000 Valley Rd, Reno, NV 89512 USA. jsedinger@cabnr.unr.edu Alisauskas RT, 2002, J WILDLIFE MANAGE, V66, P181, DOI 10.2307/3802884; ANKNEY CD, 1978, AUK, V95, P459; ANTHONY RM, 1991, WILDLIFE SOC B, V19, P176; Bety J, 2003, AM NAT, V162, P110, DOI 10.1086/375680; Burnham K. P., 2002, MODEL SELECTION MULT; BUTLER WI, 1995, WILDLIFE SOC B, V23, P140; Cabello-Pasini A, 2002, AQUAT BOT, V74, P149, DOI 10.1016/S0304-3770(02)00076-1; CABELLOPASINI A, 2003, AQUAT BOT, V1633, P1; Cam E, 2002, J APPL STAT, V29, P163, DOI 10.1080/02664760120108502; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CONANT B, 2001, UNPUB WINTER WATERFO; CONANT B, 1995, UNPUB WE BRANT POPUL; DAVIES JC, 1983, J WILDLIFE MANAGE, V47, P291, DOI 10.2307/3808501; DRENT RH, 1980, ARDEA, V68, P225; EBBINGE BS, 1995, J AVIAN BIOL, V26, P105, DOI 10.2307/3677058; EINARSEN AS, 1965, BLACK BRANT SEA GOOS; Feret M, 2003, J WILDLIFE MANAGE, V67, P796, DOI 10.2307/3802687; FLINT PL, 1995, J WILDLIFE MANAGE, V59, P455, DOI 10.2307/3802451; Ganter B, 2000, ARCTIC, V53, P289; Gauthier G, 2003, ECOLOGY, V84, P3250, DOI 10.1890/02-0613; Hines J. E., 1996, RDSURVIV USERS MANUA; JEFFERIES RL, 2002, INTEGR COMP BIOL, V42, P130; Jorgenson MT, 2000, ARCT ANTARCT ALP RES, V32, P221, DOI 10.2307/1552521; Kendall WL, 1997, ECOLOGY, V78, P563; Kotanen PM, 1997, ECOSCIENCE, V4, P179, DOI 10.1080/11956860.1997.11682393; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lindberg MS, 1998, ECOLOGY, V79, P1893, DOI 10.1890/0012-9658(1998)079[1893:NABPIA]2.0.CO;2; MOOERS CNK, 1986, AM GEOPHYS UNION EOS, V67, P1404; Moore JE, 2004, BIOL CONSERV, V115, P475, DOI 10.1016/S0006-3207(03)00164-2; Moore KA, 1997, J EXP MAR BIOL ECOL, V215, P115, DOI 10.1016/S0022-0981(96)02774-8; Moore KA, 2000, J EXP MAR BIOL ECOL, V244, P1, DOI 10.1016/S0022-0981(99)00135-5; MORA PP, 1998, SCIENCE, V282, P1884; OWEN M, 1989, J ANIM ECOL, V86, P243; Person BT, 2003, OECOLOGIA, V135, P583, DOI 10.1007/s00442-003-1197-4; Person BT, 1998, J ECOL, V86, P243, DOI 10.1046/j.1365-2745.1998.00249.x; PHILANDER SG, 1990, EL NINO LA NINA SO O; Plus M, 2001, J EXP MAR BIOL ECOL, V259, P63, DOI 10.1016/S0022-0981(01)00223-4; POLLOCK KH, 1982, J WILDLIFE MANAGE, V46, P757, DOI DOI 10.2307/3808568; Prop J, 2003, OIKOS, V103, P403, DOI 10.1034/j.1600-0706.2003.12042.x; RASMUSSON EM, 1982, MON WEATHER REV, V110, P354, DOI 10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2; Reed A., 1998, BIRDS N AM, P1; SCHMUTZ JA, 1993, CONDOR, V95, P222, DOI 10.2307/1369404; Sedinger James S., 1993, Wildfowl, V44, P49; Sedinger JS, 1998, AUK, V115, P613, DOI 10.2307/4089410; Sedinger JS, 1997, J WILDLIFE MANAGE, V61, P782, DOI 10.2307/3802185; Sedinger JS, 2002, AUK, V119, P510, DOI 10.1642/0004-8038(2002)119[0510:LHIOLS]2.0.CO;2; SEDINGER JS, 1995, ECOLOGY, V76, P2404, DOI 10.2307/2265816; Sedinger JS, 2001, J ANIM ECOL, V70, P798, DOI 10.1046/j.0021-8790.2001.00535.x; Short FT, 1999, AQUAT BOT, V63, P169, DOI 10.1016/S0304-3770(98)00117-X; Sillett TS, 2000, SCIENCE, V288, P2040, DOI 10.1126/science.288.5473.2040; *SUBC PAC BRANT, 2002, PAC FLYW MAN PLAN PA; THOM RM, 2003, ESTUARIES, V48, P1117; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; Ward DH, 2005, GLOBAL CHANGE BIOL, V11, P869, DOI 10.1111/j.1365-2486.2005.00942.x; White GC, 1999, BIRD STUDY, V46, P120; WILSON UW, 1995, CONDOR, V97, P91, DOI 10.2307/1368986 56 27 28 1 26 ECOLOGICAL SOC AMER WASHINGTON 1707 H ST NW, STE 400, WASHINGTON, DC 20006-3915 USA 0012-9658 ECOLOGY Ecology JAN 2006 87 1 151 159 10.1890/04-1013 9 Ecology Environmental Sciences & Ecology 021XU WOS:000236020000017 16634306 2018-11-12 B Hawkes, K Hawkes, K; Paine, RR Hawkes, Kristen Life history theory and human evolution - A chronicle of ideas and findings Evolution of Human Life History SCHOOL OF AMERICAN RESEARCH ADVANCED SEMINAR SERIES English Proceedings Paper Seminar on Evolution of Human Life History NOV 02-08, 2002 Santa Fe, NM Sch Amer Res Fertility ends at similar ages in women and female chimpanzees, but humans usually live longer and mature later. We also differ from our closest living relatives in weaning infants before they can feed themselves. The comparisons pose questions about when and why the distinctively human life history traits evolved in our lineage. Here I outline the basic framework of the field of life history evolution and, against that background, chronicle past inquiries into each of these distinctively human traits. The chronicle covers discovery and description, guided sometimes by hypotheses about underlying developmental mechanisms and sometimes by hypotheses about adaptive effects. Following the review, I discuss the continuing importance of distinguishing between questions about mechanisms and adaptive effects in light of accumulating fossil evidence and progress in genomics. 1 conclude with a brief reference to the most influential adaptive hypothesis to date, the Hunting hypothesis, and some of the accumulating empirical challenges to it, setting the stage for current debates addressed in subsequent chapters. Univ Utah, Dept Anthropol, Salt Lake City, UT 84112 USA 0 17 18 0 5 SCHOOL AMERICAN RESEARCH PRESS SANTA FE PO BOX 2188, SANTA FE, NM 87504-2188 USA 1-930618-72-7 SCH AM RES 2006 45 93 49 Anthropology Anthropology BFB60 WOS:000240856000003 2018-11-12 B Bogin, B Hawkes, K; Paine, RR Bogin, Barry Modern human life history - The evolution of human childhood and fertility Evolution of Human Life History SCHOOL OF AMERICAN RESEARCH ADVANCED SEMINAR SERIES English Proceedings Paper Seminar on Evolution of Human Life History NOV 02-08, 2002 Santa Fe, NM Sch Amer Res Life history theory needs to account for certain features of human social behavior and physical growth that are unusual compared with other primates. Human infants have a relatively early age for weaning (the cessation of breastfeeding)-on average, by age 36 months-but after weaning, human children are still dependent on older individuals for food and protection, until about age 7 years. Many members of the social group-older siblings, grandmothers, fathers, other kin, even nonkin-take an active role in this provisioning. Also, humans have seven to ten years of relatively slow growth following weaning and then a few years of rapid growth in virtually all skeletal dimensions of the body. No other primate species shares this pattern of skeletal growth. A central question in life history evolution is, did these characteristics evolve as a package or as a mosaic? The evidence suggests a mosaic, with the evolution of a childhood life stage more than two million years ago as perhaps the earliest feature of modern human growth. The evolution of childhood occurred because it provided reproductive advantages to the mother-by weaning early, the mother was free to reproduce again, faster than any ape. As a secondary benefit, the extra time for growth and development afforded by childhood enabled greater investments in physical and social capital of the youngster before maturation. These investments, especially in greater brain growth and behavioral complexity, may be inadvertent and chance consequences of the evolution of childhood. The primary driver of the evolution of human life history was the evolution of childhood and cooperative care of children. These allowed for more rapid reproduction, higher-quality offspring, and lower prereproductive mortality than ever before in mammalian history. Univ Michigan, Dept Behav Sci, Dearborn, MI 48128 USA 0 22 23 0 24 SCHOOL AMERICAN RESEARCH PRESS SANTA FE PO BOX 2188, SANTA FE, NM 87504-2188 USA 1-930618-72-7 SCH AM RES 2006 197 230 34 Anthropology Anthropology BFB60 WOS:000240856000007 2018-11-12 B Jones, NB Hawkes, K; Paine, RR Jones, Nicholas Blurton Contemporary hunter-gatherers and human life history evolution Evolution of Human Life History SCHOOL OF AMERICAN RESEARCH ADVANCED SEMINAR SERIES English Proceedings Paper Seminar on Evolution of Human Life History NOV 02-08, 2002 Santa Fe, NM Sch Amer Res In this chapter, I use data from contemporary hunter-gatherers to argue that human life history fits a general mammalian pattern and needs little "special pleading. " Among hunter-gatherers, first birth occurs at the age we should predict for a great ape with a hunter-gatherer adult lifespan, so our long juvenile period needs no unique explanation. Archaeological demography, however, has suggested much higher adult mortality. I exclude modern influences on hunter-gatherer adult mortality and summarize problems in archaeological demography. Hunter-gatherer adult mortality resembles mortality in the rural third world and in historical pre-industrial populations. Because of the many accounts of special features of human growth (such as the adolescent spurt), 1 was surprised to find that Charnov's growth function (an essential piece of his general mammalian life history theory) accounted for most of the variance in Hadza growth between weaning and maturity. Hunter-gatherers and great apes (except gorillas) grow at the same rate. Young foragers have much to learn, but they seem able to learn it even when deprived of big stretches of their juvenile bush experience. Learning does not come to a halt when reproduction begins. We cannot argue that the human juvenile period is long because so much needs to be learned before reproduction. Effects of grandmothers on younger kin (demonstrated in sedentary populations) could account for elongated adult life. Older Hadza women (but not men) live where their help to younger kin (if effective) would most enhance their own fitness. The opportunistic mobility of older Hadza women may make their demographic effects difficult to see. Univ Calif Los Angeles, Dept Anthropol, Los Angeles, CA 90024 USA 0 10 10 0 11 SCHOOL AMERICAN RESEARCH PRESS SANTA FE PO BOX 2188, SANTA FE, NM 87504-2188 USA 1-930618-72-7 SCH AM RES 2006 231 266 36 Anthropology Anthropology BFB60 WOS:000240856000008 2018-11-12 J Gurven, M; Kaplan, H Gurven, Michael; Kaplan, Hillard Determinants of time allocation across the lifespan - A theoretical model and an application to the Machiguenga and Piro of Peru HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article behavioral ecology; family; hunter-gatherers; life history theory; time allocation OKAVANGO DELTA PEOPLES; EASTERN PARAGUAY; LIMITED NEEDS; WEALTH FLOWS; EVOLUTION; FERTILITY; INTELLIGENCE; LONGEVITY; BOTSWANA; CHILDREN This paper lays the groundwork for a theory of time allocation across the life course, based on the idea that strength and skill vary as a function of age, and that return rates for different activities vary as a function of the combination of strength and skills involved in performing those tasks. We apply the model to traditional human subsistence patterns. The model predicts that young children engage most heavily in low-strength/low-skill activities, middle-aged adults in high-strength/high-skill activities, and older adults in low-strength/high-skill activities. Tests among Machiguenga and Piro forager-horticulturalists of southeastern Peru show that males and females focus on low-strength/low-skill tasks early in life (domestic tasks and several forms of fishing), switch to higher-strength/higher-skill activities in their twenties and thirties (hunting, fishing, and gardening for males; fishing and gardening for females), and shift focus to high-skill activities late in life (manufacture/repair, food processing). Univ Calif Santa Barbara, Dept Anthropol, Santa Barbara, CA 93106 USA; Univ New Mexico, Albuquerque, NM 87131 USA Gurven, M (reprint author), Univ Calif Santa Barbara, Dept Anthropol, Santa Barbara, CA 93106 USA. gurven@anth.ucsb.edu; hkaplan@umn.edu Henrich, Joseph/A-2403-2009 Kaplan, Hillard/0000-0002-7398-7358; Gurven, Michael/0000-0002-5661-527X ALVARD MS, 1993, THESIS U NEW MEXICO; BAKSH M, 1984, THESIS U CALIFORNIA; BECKER G., 1991, TREATISE FAMILY; Bird DW, 2002, HUM NATURE-INT BIOS, V13, P269, DOI 10.1007/s12110-002-1010-9; Bird R, 1999, EVOL ANTHROPOL, V8, P65, DOI 10.1002/(SICI)1520-6505(1999)8:2<65::AID-EVAN5>3.0.CO;2-3; Bird RB, 2002, HUM NATURE-INT BIOS, V13, P239, DOI 10.1007/s12110-002-1009-2; Blurton Jones N. G., 1994, KEY ISSUES HUNTER GA, P189; Bock J, 2004, HUM NATURE-INT BIOS, V15, P63, DOI 10.1007/s12110-004-1004-x; Bock J, 2002, HUM NATURE-INT BIOS, V13, P161, DOI 10.1007/s12110-002-1007-4; Bock J, 2002, HUM NATURE-INT BIOS, V13, P153, DOI 10.1007/s12110-002-1006-5; Bock J, 2002, AM J HUM BIOL, V14, P206, DOI 10.1002/ajhb.10040; BOCK J, 1995, THESIS U NEW MEXICO; BOCK J, 2004, HUNTER GATHERER CHIL, P109; BOCK J, 2004, NATURE PLAY GREAT AP, P254; CAIN MT, 1977, POPUL DEV REV, V3, P201, DOI 10.2307/1971889; CAIN MT, 1981, POPULATION DEV REV; Caldwell J. C., 1982, THEORY FERTILITY DEC; CARO TM, 1988, TRENDS ECOL EVOL, V3, P50, DOI 10.1016/0169-5347(88)90048-1; Charnov Eric L., 1993, P1; Draper Patricia, 1975, ANTHR WOMEN, P77; FAGEN R, 1981, ANIMAL PLAY BEHAV; Gow Peter, 2001, AMAZONIAN MYTH ITS H; HAMES R, 1992, EVOLUTIONARY ECOLOGY, P203; Hames R. B., 1989, RES EC ANTHR, V11, P43; HAMES RB, 1979, HUM ECOL, V7, P219, DOI 10.1007/BF00889493; HAWKES K, 1985, ETHOL SOCIOBIOL, V6, P3, DOI 10.1016/0162-3095(85)90037-8; Hawkes K, 2003, AM J HUM BIOL, V15, P380, DOI 10.1002/ajhb.10156; Hawkes K, 2002, EVOL ANTHROPOL, V11, P58, DOI 10.1002/evan.20005; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; HILL K, 1985, HUM ECOL, V13, P29, DOI 10.1007/BF01531087; HUET S, 1996, STAT TOOLS NONLINEAR; Hurtado A M, 1992, Hum Nat, V3, P185, DOI 10.1007/BF02692239; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; HURTADO AM, 1990, J ANTHROPOL RES, V35, P207; Janson Charles H., 1993, P57; JOHNSON A, 1975, ETHNOLOGY, V14, P301, DOI 10.2307/3773258; Johnson A, 2003, FAMILIES OF THE FOREST: THE MATSIGENKA INDIANS OF THE PERUVIAN AMAZON, P1, DOI 10.1525/california/9780520232419.001.0001; Johnson SE, 2004, HUM NATURE-INT BIOS, V15, P45, DOI 10.1007/s12110-004-1003-y; Jones NB, 2002, HUM NATURE-INT BIOS, V13, P199, DOI 10.1007/s12110-002-1008-3; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; Kaplan H, 1997, BETWEEN ZEUS AND THE SALMON, P175; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; Kaplan H, 2003, POPUL DEV REV, V29, P152; Kaplan HS, 2002, P NATL ACAD SCI USA, V99, P10221, DOI 10.1073/pnas.152502899; KELLY RL, 1983, J ANTHROPOL RES, V39, P277, DOI 10.1086/jar.39.3.3629672; KOPISCHKE K, 2001, TALKING CHILDREN CAR; Kramer KL, 2002, CURR ANTHROPOL, V43, P511, DOI 10.1086/340239; Kramer KL, 2002, HUM NATURE-INT BIOS, V13, P299, DOI 10.1007/s12110-002-1011-8; KUMAR SK, 1988, 69 FOOD POL RES I; LEE R, 1996, SEMINAR INTERGENERAT, V16, P1; Lee RD, 2002, POPUL DEV REV, V28, P475, DOI 10.1111/j.1728-4457.2002.00475.x; LEE RD, 2002, ANN M POP ASS AM ATL; MUNROE RH, 1983, ETHNOLOGY, V22, P355, DOI 10.2307/3773682; NAG M, 1977, INT UNION SCI STUDY, P123; Nerlove M, 1965, ESTIMATION IDENTIFIC; Ratkowsky DA, 1990, HDB NONLINEAR REGRES; Robson AJ, 2003, AM ECON REV, V93, P150, DOI 10.1257/000282803321455205; Roff Derek A., 1992; SALISBURY R, 1962, STONE STEEL; SMITH EA, 1987, ETHOL SOCIOBIOL, V8, P73, DOI 10.1016/0162-3095(87)90059-8; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tiefenthaler J, 1997, POPUL DEV REV, V23, P377, DOI 10.2307/2137550; Tooby J., 1987, P183; TURKE PW, 1991, POPUL DEV REV, V17, P687, DOI 10.2307/1973602; TURKE PW, 1991, POPUL DEV REV, V17, P756; TURKE PW, 1991, POPUL DEV REV, V17, P758; Van den Berghe Pierre L, 1979, HUMAN FAMILY SYSTEMS; Walker R, 2002, J HUM EVOL, V42, P639, DOI 10.1006/jhev.2001.0541; WINTERHALDER B, 1983, AM NAT, V122, P73, DOI 10.1086/284119 70 56 56 0 7 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 2006 17 1 1 49 10.1007/s12110-006-1019-6 49 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 041KE WOS:000237454300003 26181344 2018-11-12 J Berner, D; Blanckenhorn, WU Berner, D; Blanckenhorn, WU Grasshopper ontogeny in relation to time constraints: adaptive divergence and stasis JOURNAL OF ANIMAL ECOLOGY English Article body size; development time; intrinsic growth rate; Omocestus viridulus; trade-off SEXUAL SIZE DIMORPHISM; LIFE-HISTORY ADAPTATION; BODY-SIZE; CHORTHIPPUS-BRUNNEUS; FIELD CRICKET; TRADE-OFFS; SEASONAL ENVIRONMENT; GEOGRAPHIC-VARIATION; GENETIC CORRELATIONS; DEGEER ORTHOPTERA 1. Life history theory generally predicts a trade-off between short juvenile development and large adult size, assuming invariant growth rates within species. This pivotal assumption has been explicitly tested in few organisms. 2. We studied ontogeny in 13 populations of Omocestus viridulus grasshoppers under common garden conditions. High-altitude populations, facing short growing seasons and thus seasonal time constraints, were found to grow at a similar rate to low altitude conspecifics. 3. Instead, high-altitude grasshoppers evolved faster development, and the correlated change in body size led to an altitudinal size cline mediating a trade-off with female fecundity. 4. An additional juvenile stage occurred in low- but not high-altitude females. This difference is probably due to the evolution of lowered critical size thresholds in high-altitude grasshoppers to accelerate development. 5. We found a strikingly lower growth rate in males than females that we interpret as the outcome of concurrent selection for protandry and small male size. 6. Within populations, large individuals developed faster than small individuals, suggesting within-population genetic variation in growth rates. 7. We provide evidence that different time constraints (seasonal, protandry selection) can lead to different evolutionary responses in intrinsic growth, and that correlations among ontogenetic traits within populations cannot generally be used to predict life history adaptation among populations. Moreover, our study illustrates that comparisons of ontogenetic patterns can shed light on the developmental basis underlying phenotypic evolution. Swiss Fed Res Stn Agroecol & Agr, Agroscope FAL Reckenholz, CH-8046 Zurich, Switzerland; Univ Zurich, Zool Museum, CH-8057 Zurich, Switzerland Berner, D (reprint author), Swiss Fed Res Stn Agroecol & Agr, Agroscope FAL Reckenholz, Reckenholzstr 191, CH-8046 Zurich, Switzerland. daniel.berner@fal.admin.ch Berner, Daniel/C-3461-2014 Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Amundson Ron, 2001, P303, DOI 10.1017/CBO9780511609084.011; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Armbruster WS, 1996, J EVOLUTION BIOL, V9, P261, DOI 10.1046/j.1420-9101.1996.9030261.x; Atkinson D, 1997, TRENDS ECOL EVOL, V12, P235, DOI 10.1016/S0169-5347(97)01058-6; AYRES MP, 1994, ECOL MONOGR, V64, P465, DOI 10.2307/2937146; Begin M, 2004, EVOLUTION, V58, P2287; BEGON M, 1983, ECOL ENTOMOL, V8, P361, DOI 10.1111/j.1365-2311.1983.tb00516.x; BELLINGER RG, 1987, ENVIRON ENTOMOL, V16, P120, DOI 10.1093/ee/16.1.120; Bernardo J, 1996, AM ZOOL, V36, P216; Berner D, 2004, ECOGRAPHY, V27, P733, DOI 10.1111/j.0906-7590.2005.04012.x; BERVEN KA, 1983, AM ZOOL, V23, P85; Blanckenhorn WU, 1998, EVOLUTION, V52, P1394, DOI 10.1111/j.1558-5646.1998.tb02021.x; BLANCKENHORN WU, 1995, EVOL ECOL, V9, P369, DOI 10.1007/BF01237760; Blanckenhorn WU, 2004, INTEGR COMP BIOL, V44, P413, DOI 10.1093/icb/44.6.413; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; BLANCKENHORN WU, 1995, J EVOLUTION BIOL, V8, P21, DOI 10.1046/j.1420-9101.1995.8010021.x; Bradshaw W, 1996, EVOLUTION, V50, P1176, DOI 10.1111/j.1558-5646.1996.tb02358.x; Brakefield PM, 2003, ANNU REV ECOL EVOL S, V34, P633, DOI 10.1146/annurev.ecolsys.34.011802.132425; Cherrill A, 2002, ECOL ENTOMOL, V27, P521, DOI 10.1046/j.1365-2311.2002.00444.x; D'Amico LJ, 2001, P ROY SOC B-BIOL SCI, V268, P1589, DOI 10.1098/rspb.2001.1698; Davidowitz G, 2003, EVOL DEV, V5, P188, DOI 10.1046/j.1525-142X.2003.03026.x; Del Castillo RC, 1999, EVOLUTION, V53, P209, DOI 10.1111/j.1558-5646.1999.tb05346.x; DINGLE H, 1990, OECOLOGIA, V84, P199, DOI 10.1007/BF00318272; FAIRBAIRN DJ, 1990, AM NAT, V136, P61, DOI 10.1086/285082; Fischer K, 2001, J EVOLUTION BIOL, V14, P210, DOI 10.1046/j.1420-9101.2001.00280.x; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; GUNNARSSON B, 1990, OIKOS, V59, P205, DOI 10.2307/3545536; Higgins LE, 1996, EVOLUTION, V50, P573, DOI 10.1111/j.1558-5646.1996.tb03869.x; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; INGRISCH S, 1998, HEURSCHRECKEN MITTEL; Klingenberg CP, 1997, ECOL ENTOMOL, V22, P55, DOI 10.1046/j.1365-2311.1997.00031.x; KLINGENBERG CP, 1993, EVOLUTION, V47, P1834, DOI 10.1111/j.1558-5646.1993.tb01273.x; Laugen AT, 2003, J EVOLUTION BIOL, V16, P996, DOI 10.1046/j.1420-9101.2003.00560.x; Lounibos LP, 1996, OIKOS, V77, P309, DOI 10.2307/3546070; MASAKI S, 1967, EVOLUTION, V21, P725, DOI 10.1111/j.1558-5646.1967.tb03430.x; Morbey YE, 2001, ECOL LETT, V4, P663, DOI 10.1046/j.1461-0248.2001.00265.x; MOUSSEAU TA, 1991, ANNU REV ENTOMOL, V36, P511, DOI 10.1146/annurev.en.36.010191.002455; Mousseau TA, 1997, EVOLUTION, V51, P630, DOI 10.1111/j.1558-5646.1997.tb02453.x; MOUSSEAU TA, 1989, EVOLUTION, V43, P1483, DOI 10.1111/j.1558-5646.1989.tb02598.x; NIJHOUT HF, 1981, AM ZOOL, V21, P631; NYLIN S, 1993, ECOLOGY, V74, P1414, DOI 10.2307/1940071; NYLIN S, 1994, SERIES ENTOM, V52, P41; Orr MR, 1996, EVOLUTION, V50, P704, DOI 10.1111/j.1558-5646.1996.tb03880.x; PARK O, 1949, PHYSIOL ZOOL, V22, P359, DOI 10.1086/physzool.22.4.30152061; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; Peters R.H., 1983, P1; Phelan JP, 2003, EVOLUTION, V57, P527; Prasad NG, 2000, GENET RES, V76, P249, DOI 10.1017/S0016672300004754; Reiss M. J., 1989, ALLOMETRY GROWTH REP; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff DA, 1996, EVOLUTION, V50, P1392, DOI 10.1111/j.1558-5646.1996.tb03913.x; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; SIBLY R, 1987, OIKOS, V48, P186, DOI 10.2307/3565854; Simons AM, 1996, EVOLUTION, V50, P267, DOI 10.1111/j.1558-5646.1996.tb04490.x; Simons AM, 1998, J EVOLUTION BIOL, V11, P721, DOI 10.1046/j.1420-9101.1998.11060721.x; SOKAL RR, 1978, INTERFACE, P215; Stearns S., 1994, ACTA PALAENTOL POL, V38, P215; TANAKA A, 1981, J INSECT PHYSIOL, V27, P587, DOI 10.1016/0022-1910(81)90105-0; TANAKA S, 1983, CAN J ZOOL, V61, P1986, DOI 10.1139/z83-262; Telfer MG, 1999, OECOLOGIA, V121, P245, DOI 10.1007/s004420050926; Thornhill R., 1983, EVOLUTION INSECT MAT; UENO H, 1994, RES POPUL ECOL, V36, P121, DOI 10.1007/BF02515093; Uhl G, 2004, EVOL ECOL RES, V6, P523; vanderHave TM, 1996, J THEOR BIOL, V183, P329, DOI 10.1006/jtbi.1996.0224; WALL R, 1987, OIKOS, V49, P15, DOI 10.2307/3565550; WIKLUND C, 1991, OIKOS, V60, P373, DOI 10.2307/3545080; WIKLUND C, 1991, OIKOS, V60, P241, DOI 10.2307/3544871; WOODRING JP, 1983, J INSECT PHYSIOL, V29, P461, DOI 10.1016/0022-1910(83)90075-6; Zonneveld C, 1996, AM NAT, V147, P946, DOI 10.1086/285887 75 48 58 0 16 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 2006 75 1 130 139 10.1111/j.1365-2656.2005.01028.x 10 Ecology; Zoology Environmental Sciences & Ecology; Zoology 008MB WOS:000235043700013 16903050 Bronze 2018-11-12 J Kolm, N; Goodwin, NB; Balshine, S; Reynolds, JD Kolm, N; Goodwin, NB; Balshine, S; Reynolds, JD Life history evolution in cichlids 2: directional evolution of the trade-off between egg number and egg size JOURNAL OF EVOLUTIONARY BIOLOGY English Article clutch size; correlated evolution; discrete; life history; phylogeny CLUTCH SIZE; DISCRETE CHARACTERS; OFFSPRING SIZE; PARENTAL CARE; PHYLOGENIES; FISHES; TRAITS; SELECTION The negative relationship between offspring number and offspring size provides a classic example of the role of trade-offs in life history theory. However, the evolutionary transitions in egg size and clutch size that have produced this negative relationship are still largely unknown. Since body size may affect both of these traits, it would be helpful to understand how evolutionary changes in body size may have facilitated or constrained shifts in clutch and egg size. By using comparative methods with a database of life histories and a phylogeny of 222 genera of cichlid fishes, we investigated the order of evolutionary transitions in these traits in relation to each other. We found that the ancestral large-bodied cichlids first increased egg size, followed by a decrease in both body size and clutch size resulting in the common current combination of a small-bodied cichlid with a small clutch of large eggs. Furthermore, lineages that deviated from the negative relationship between clutch and egg size underwent different transitions in these traits according to their body size (large bodied genera have moved towards the large clutch/small egg end of the continuum and small bodied genera towards the small clutch/large egg end of the continuum) to reach the negative relationship between clutch size and egg size. Our results show that body size is highly important in shaping the negative relationship between clutch size and egg size. Univ E Anglia, Sch Biol Sci, Ctr Ecol Evolut & Conservat, Norwich, Norfolk, England; McMaster Univ, Dept Psychol, Anim Behav Grp, Hamilton, ON, Canada Kolm, N (reprint author), Univ Edinburgh, Ashworth Labs, Sch Biol Sci, Inst Evolut Biol, Edinburgh EH9 3JT, Midlothian, Scotland. n.kolm@ed.ac.uk Reynolds, John/L-6345-2015 Reynolds, John/0000-0002-0459-0074; Kolm, Niclas/0000-0001-5791-336X AXELROD HR, 1988, AFRICAN CICHLIDS LAK; BAGENAL TB, 1966, BIOL BASIS FRESHWATE, P89; Barlow G.W., 1991, P173; Barlow GW, 2000, CICHLID FISHES NATUR; Bennett P. M., 2002, EVOLUTIONARY ECOLOGY; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; Blaxter J. H. S., 1969, P177; Brichard P., 1989, P BRICHARDS BOOK CIC; Cezilly F, 2000, ANIM BEHAV, V59, P1143, DOI 10.1006/anbe.2000.1422; CICHOCKI FP, 1976, THESIS U MICHIGAN AN; Coleman R., 2002, CICHLID EGG SIZE DAT; CONKEL D., 1993, CICHLIDS N CENTRAL A; Einum Sigurd, 2004, P126; ELGAR MA, 1990, OIKOS, V59, P283, DOI 10.2307/3545546; Farias IP, 2001, J MOL EVOL, V53, P89, DOI 10.1007/s002390010197; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; Froese R., 2002, FISHBASE; Garcia-Barros E, 2000, BIOL J LINN SOC, V70, P251, DOI 10.1006/bijl.1999.0374; GASHAGAZA M M, 1991, Physiology and Ecology Japan, V28, P29; Goodwin NB, 1998, P ROY SOC B-BIOL SCI, V265, P2265, DOI 10.1098/rspb.1998.0569; Harvey P. H., 1991, COMP METHOD EVOLUTIO; HARVEY PH, 1999, ADV ECOLOGICAL THEOR, P232; Hulsey CD, 2004, MOL PHYLOGENET EVOL, V31, P754, DOI 10.1016/j.ympev.2003.08.024; KAWANABE HM, 1997, FISH COMMUNITIES LAK; Klett V, 2002, MOL BIOL EVOL, V19, P865, DOI 10.1093/oxfordjournals.molbev.a004144; Koblmuller S, 2004, J MOL EVOL, V58, P79, DOI 10.1007/s00239-003-2527-1; Kolm N, 2006, J EVOLUTION BIOL, V19, P66, DOI 10.1111/j.1420-9101.2005.00984.x; Konings A. F., 1990, CICHLIDS ALL OTHER F; Kruger O, 2002, P ROY SOC B-BIOL SCI, V269, P375, DOI 10.1098/rspb.2001.1887; Kullander SO, 1989, CICHLIDS SURINAM; LINKE H, 1996, CICHLIDS E AFRICA; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; LOISELLE PV, 1985, CICHLID AQUARIUM; Lowe R. H., 1955, East African Agricultural Journal, V21, P45; LOWE ROSEMARY H., 1959, PROC ZOOL SOC LONDON, V132, P1; LOWE-MCCONNELL R H, 1969, Zoological Journal of the Linnean Society, V48, P255, DOI 10.1111/j.1096-3642.1969.tb00714.x; Pagel M, 1999, SYST BIOL, V48, P612, DOI 10.1080/106351599260184; PAGEL M, 1994, P ROY SOC B-BIOL SCI, V255, P37, DOI 10.1098/rspb.1994.0006; Pagel M, 1997, ZOOL SCR, V26, P331, DOI 10.1111/j.1463-6409.1997.tb00423.x; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; POULIN R, 1995, EVOLUTION, V49, P325, DOI 10.1111/j.1558-5646.1995.tb02245.x; RICHTER HJ, 1989, COMPLETE BOOK DWARF; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Rolland C, 1998, AM NAT, V151, P514, DOI 10.1086/286137; Salzburger W, 2002, SYST BIOL, V51, P113, DOI 10.1080/106351502753475907; Schwarzkopf L, 1999, AM NAT, V154, P333, DOI 10.1086/303242; Sinervo B, 1996, EVOLUTION, V50, P1314, DOI 10.1111/j.1558-5646.1996.tb02371.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SNYDER RJ, 1990, CAN J ZOOL, V68, P2027, DOI 10.1139/z90-287; SNYDER RJ, 1991, COPEIA, P526; STAECK W, 1994, AM CICHLIDS DWARF CI; Stawikowski R., 1998, BUNTBARSCHE AM, V1; Stearns S. C., 1992, EVOLUTION LIFE HIST; TANASICHUK RW, 1987, CAN J FISH AQUAT SCI, V44, P1485, DOI 10.1139/f87-178; TREWAVAS E, 1972, J ZOOL, V167, P41; Trewavas E., 1983, TILAPINE FISHES GENE; WOOTTON RJ, 1979, S ZOOL SOC LOND, V44, P133 60 23 24 1 16 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JAN 2006 19 1 76 84 10.1111/j.1420-9101.2005.00987 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 001NM WOS:000234543600009 16405579 2018-11-12 J Gilboa, S; Nonacs, P Gilboa, S; Nonacs, P Testing models of parental investment strategy and offspring size in ants OECOLOGIA English Article dynamic parental investment; skew; kurtosis; variance; Formica; Pogonomyrmex WESTERN HARVESTER ANT; POGONOMYRMEX-OCCIDENTALIS; SEXUAL SELECTION; COLONY FITNESS; HYMENOPTERA; FORMICIDAE; CONFLICT; EVOLUTION; SURVIVAL; DENSITY Parental investment strategies can be fixed or flexible. A fixed strategy predicts making all offspring a single 'optimal' size. Dynamic models predict flexible strategies with more than one optimal size of offspring. Patterns in the distribution of offspring sizes may thus reveal the investment strategy. Static strategies should produce normal distributions. Dynamic strategies should often result in non-normal distributions. Furthermore, variance in morphological traits should be positively correlated with the length of developmental time the traits are exposed to environmental influences. Finally, the type of deviation from normality (i.e., skewed left or right, or platykurtic) should be correlated with the average offspring size. To test the latter prediction, we used simulations to detect significant departures from normality and categorize distribution types. Data from three species of ants strongly support the predicted patterns for dynamic parental investment. Offspring size distributions are often significantly non-normal. Traits fixed earlier in development, such as head width, are less variable than final body weight. The type of distribution observed correlates with mean female dry weight. The overall support for a dynamic parental investment model has implications for life history theory. Predicted conflicts over parental effort, sex investment ratios, and reproductive skew in cooperative breeders follow from assumptions of static parental investment strategies and omnipresent resource limitations. By contrast, with flexible investment strategies such conflicts can be either absent or maladaptive. Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA Nonacs, P (reprint author), Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA. smadarg@biology.ucla.edu; pnonacs@biology.ucla.edu Nonacs, Peter/A-3159-2008 Abell AJ, 1999, EVOLUTION, V53, P535, DOI 10.1111/j.1558-5646.1999.tb03788.x; BACKUS VL, 1993, OECOLOGIA, V30, P425; BARTZ SH, 1982, BEHAV ECOL SOCIOBIOL, V10, P137, DOI 10.1007/BF00300174; Beekman M, 2003, TRENDS ECOL EVOL, V18, P277, DOI 10.1016/S0169-5347(03)00068-5; BRIAN MV, 1979, SOCIAL INSECTS, V1, P122; Buschinger A., 1990, P37; DAVIDSON DW, 1982, BEHAV ECOL SOCIOBIOL, V10, P245, DOI 10.1007/BF00302813; Forbes LS, 1996, ECOSCIENCE, V3, P45, DOI 10.1080/11956860.1996.11682314; Forbes LS, 1999, OIKOS, V85, P146, DOI 10.2307/3546800; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; FRANKLIN JF, 1973, PNW8 USDA FOR SERV; Hahn DA, 2004, PHYSIOL BIOCHEM ZOOL, V77, P100, DOI 10.1086/380214; Johnson RA, 1998, INSECT SOC, V45, P255, DOI 10.1007/s000400050086; Johnson RA, 2000, SOCIOBIOLOGY, V36, P89; Mehdiabadi NJ, 2003, TRENDS ECOL EVOL, V18, P88, DOI 10.1016/S0169-5347(02)00056-3; MOCK DW, 1995, TRENDS ECOL EVOL, V10, P130, DOI 10.1016/S0169-5347(00)89014-X; MOCK DW, 1992, TRENDS ECOL EVOL, V7, P409, DOI 10.1016/0169-5347(92)90022-4; NONACS P, 1986, EVOLUTION, V40, P199, DOI 10.1111/j.1558-5646.1986.tb05731.x; NONACS P, 1986, Q REV BIOL, V61, P1, DOI 10.1086/414723; NONACS P, 1992, INSECT SOC, V39, P3, DOI 10.1007/BF01240527; NONACS P, 1990, Psyche (Cambridge), V97, P217, DOI 10.1155/1990/21379; NONACS P, 1991, J INSECT PHYSIOL, V37, P891, DOI 10.1016/0022-1910(91)90004-J; Nonacs P, 2001, ANN ZOOL FENN, V38, P239; PASSERA L, 1990, J COMP PHYSIOL B, V160, P207, DOI 10.1007/BF00300955; PORTER SD, 1983, ANN ENTOMOL SOC AM, V76, P866, DOI 10.1093/aesa/76.5.866; Rissing S.W., 1988, P179; Rosenheim JA, 1996, AM NAT, V148, P501, DOI 10.1086/285937; Royle NJ, 2002, TRENDS ECOL EVOL, V17, P434, DOI 10.1016/S0169-5347(02)02565-X; RUST RW, 1988, J KANSAS ENTOMOL SOC, V61, P492; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Sokal R.R., 1995, BIOMETRY; TRIVERS RL, 1974, AM ZOOL, V14, P249; TSCHINKEL WR, 1992, ECOL ENTOMOL, V17, P179, DOI 10.1111/j.1365-2311.1992.tb01176.x; Wagner D, 1999, OECOLOGIA, V119, P175, DOI 10.1007/s004420050774; WHEELER DE, 1995, J INSECT PHYSL, V41, P85; Wheeler G. C., 1986, THE ANTS OF NEVADA; Wiernasz DC, 2003, EVOLUTION, V57, P2179; WIERNASZ DC, 1995, J INSECT BEHAV, V8, P523, DOI 10.1007/BF01995324; Wiernasz DC, 2001, EVOLUTION, V55, P324; Wilson EO, 1990, ANTS 40 7 7 0 13 SPRINGER NEW YORK 233 SPRING STREET, NEW YORK, NY 10013 USA 0029-8549 OECOLOGIA Oecologia JAN 2006 146 4 667 674 10.1007/s00442-005-0139-8 8 Ecology Environmental Sciences & Ecology 995ZX WOS:000234145300019 16249898 2018-11-12 S Bornhofen, S; Lattaud, C Runarsson, TP; Beyer, HG; Burke, E; MereloGuervos, JJ; Whitley, LD; Yao, X Bornhofen, Stefan; Lattaud, Claude Life history evolution of virtual plants: Trading off between growth and reproduction PARALLEL PROBLEM SOLVING FROM NATURE - PPSN IX, PROCEEDINGS Lecture Notes in Computer Science English Article; Proceedings Paper 9th International Conference on Parallel Problem Solving from Nature (PPSN IX) SEP 09-13, 2006 Univ Iceland, Reykjavik, ICELAND Univ Iceland, Fac Engn, Univ Iceland, Sci Inst Univ Iceland NATURAL-SELECTION; MODELS; SIZE This paper presents studies on the life history evolution of plants carried out by experimenting with a multi-agent platform of generic virtual plants. The conducted simulations address the trade-off between resource allocation to vegetative and reproductive structures. The trade-off is pointed out by evolutionary runs selecting for one of the two traits. It is further shown that the introduction of an age at maturity is an effective measure to enhance both life history traits. A third series of experiments highlights that competition in plant communities has an impact on the trade-off. Depending on the competitive pressure, plants evolve more investment of resources into growth than into reproduction. The results corroborate some hypotheses of life history theory. Univ Paris 05, LIAP5, CRIP5, F-75006 Paris, France Bornhofen, S (reprint author), Univ Paris 05, LIAP5, CRIP5, 45 Rue St Peres, F-75006 Paris, France. Begon M., 1990, ECOLOGY INDIVIDUALS; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; DANA MN, 2002, PURDUE U COOPERATIVE; Ferber J., 1995, SYSTEMES MULTIAGENTS; Goldberg D. E, 1989, GENETIC ALGORITHMS S; HARPER JL, 1967, J ECOL, V55, P247, DOI 10.2307/2257876; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; Holland J., 1975, ADAPTATION NATURAL A; KURTH W, 1994, ECOL MODEL, V75, P299, DOI 10.1016/0304-3800(94)90027-2; Landsberg J. J., 1997, APPL PHYSL ECOLOGY F; Le Roux X, 2001, ANN FOR SCI, V58, P469, DOI 10.1051/forest:2001140; Lewontin R.C., 1965, GENETICS COLONIZING, P79; NIKLAS KJ, 1986, SCI AM, V254, P78, DOI 10.1038/scientificamerican0386-78; PRUSINKIEWICZ P, 1990, ALGORITHMIC BEAUTY P; Roff Derek A., 1992; Room PM, 1996, TRENDS PLANT SCI, V1, P33, DOI 10.1016/S1360-1385(96)80021-5; SAMSON DA, 1986, AM NAT, V127, P667, DOI 10.1086/284512; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Stearns SC., 1992, EVOLUTION LIFE HISTO; Thompson K., 2005, ECOLOGY SEEDS; THORNLEY JH, 1972, ANN BOT-LONDON, V36, P431, DOI 10.1093/oxfordjournals.aob.a084602; Thornley JHM, 1998, ANN BOT-LONDON, V81, P165, DOI 10.1006/anbo.1997.0529; ULAM S, 1962, P S APPL MATH, V14, P215, DOI DOI 10.1090/PSAPM/014/9947; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 25 3 4 1 8 SPRINGER-VERLAG BERLIN BERLIN HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY 0302-9743 3-540-38990-3 LECT NOTES COMPUT SC 2006 4193 808 817 10 Computer Science, Theory & Methods Computer Science BFE29 WOS:000241446400082 2018-11-12 J Reyer, J Reyer, Juergen Evolutionary Attachment Theory - A new type of integrative socialization research ZEITSCHRIFT FUR ERZIEHUNGSWISSENSCHAFT German Article attachment research; reproductive strategy; life history theory; mating; parental investment; behavioral genetics; evolutionary development psychology INFANT ATTACHMENT; REPRODUCTIVE STRATEGY; SECURITY; PERSPECTIVE; METAANALYSIS; SENSITIVITY; CULTURE; BIOLOGY; LIFE; TWIN The evolutionary roots of modern attachment theory are well known. But for decades this theoretical background was given little attention in attachment research. In the 1990s a new paradigm of evolutionary thinking about ontogenetic development came to life, The three main patterns of attachment (insecurity-avoidant, security, insecurity-ambivalent) are now considered to be not only results of early childhood experiences, but also of processes of evolutionary adaptation. Within the reference frame of life history theory, attachment is now understood to be a preliminary stage of reproductive strategy. As for socialization and education theory in Germany, the conclusion has to be drawn that cultural transmission is not only influenced by mechanisms of socialization and educational efforts, but also by this distant evolutionary echo. The term 'biological and cultural transmission of culture' has become common in English-language handbooks concerning cross-cultural and evolutionary psychology. It may be time to create an equivalent term in German handbooks of socialization and education theory. Univ Erfurt, Erziehungswissensch Fak, D-99089 Erfurt, Germany Reyer, J (reprint author), Univ Erfurt, Erziehungswissensch Fak, Nordhauser Str 63, D-99089 Erfurt, Germany. Juergen.Reyer@uni-erfurt.de AINSWORTH MDS, 1977, CULTURE INFANCY VARI, P49; ARNHART L, 1995, POLIT LIFE SCI, V14, P163; ASENDORPF JB, 1998, LEHRBUCH ENTWICKLUNG, P97; BAILEY JM, 1998, HDB EVOLUTIONARY PSY, P210; BARTH P, 1919, GRUND PSYCHOL PHILOS, V6; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, HUM NATURE-INT BIOS, V8, P361, DOI 10.1007/BF02913039; Belsky J., 1994, DEV LIFE HDB CLIN, P373; Belsky J, 1999, HDB ATTACHMENT THEOR, P141; Bjorklund D. F., 2002, ORIGINS HUMAN NATURE; BLURTONJONES NG, 1993, JUVENILE PRIMATES, P309; Bogin B., 1995, BIOL ANTHR STATE SCI, P49; Bokhorst CL, 2003, CHILD DEV, V74, P1769, DOI 10.1046/j.1467-8624.2003.00637.x; Bouchard TJ, 2001, BEHAV GENET, V31, P243; BOUCHARD TJ, 1990, SCIENCE, V250, P223, DOI 10.1126/science.2218526; BUSS DM, 1990, J PERS, V58, P1, DOI 10.1111/j.1467-6494.1990.tb00906.x; CASSIDY J, 1994, CHILD DEV, V65, P971, DOI 10.2307/1131298; Chasiotis A., 1995, KINDHEIT JUGENT SOZI, P21; CHASIOTIS A, 1998, LEHRBUCH ENTWICKLUNG, P171; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHISHOLM JS, 1996, HUMAN NATURE, P1; DAWKINS R, 1976, SELFISH GENE OXFORD; DeWolff MS, 1997, CHILD DEV, V68, P571, DOI 10.2307/1132107; Dozier M, 2001, CHILD DEV, V72, P1467, DOI 10.1111/1467-8624.00360; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; DUNN J, 1996, WARUM GESCHWISTER VE; EULER HA, 2002, BILDUNG ERZIEHUNG, V55, P271; Finkel D, 1998, BEHAV GENET, V28, P1, DOI 10.1023/A:1021448429653; Finkel D, 2000, Twin Res, V3, P242, DOI 10.1375/twin.3.4.242; FREEDMAN DG, 1993, J SOC EVOL SYST, V16, P297, DOI 10.1016/1061-7361(93)90037-R; Gloger-Tippelt G, 2001, BINDUNG ERWACHSENENA; Goodson I. F., 2001, LIFE HIST RES ED SET; Gottlieb G., 1998, HDB CHILD PSYCHOL, V1, P233; Gowaty P A, 1992, Hum Nat, V3, P217, DOI 10.1007/BF02692240; Grossmann K. E., 1987, ERBE UMWELT NATUR AN, P200; GROSSMANN KE, 1986, Z ENTWICKL PADAGOGIS, V18, P287; GROSSMANN KE, 1990, HUM DEV, V33, P31, DOI 10.1159/000276501; Grossmann KE, 2003, BINDUNG MENSCHLICHE; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HARRIS JR, 2002, NURTURE ASSUMTION WH; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037//0022-3514.52.3.511; HERBART JF, 1802, SYSTEMATISCHE PADAGO, P55; HESSE E, 1999, HDB ATTACHMENT THEOR, P395, DOI DOI 10.1016S0191-8869(02)00333-1; Hewlett B. S., 2001, NEW DIRECTIONS ANTHR, P93; HILL EM, 1994, ETHOL SOCIOBIOL, V15, P323, DOI 10.1016/0162-3095(94)90006-X; HINDE RA, 1991, CHILD DEV, V62, P671, DOI 10.1111/j.1467-8624.1991.tb01559.x; HINDE RA, 1990, HUM DEV, V33, P48; HURRELMANN K, 1991, Z SOZIALISATIONSFORS, V11, P98; Kagan J., 1998, HDB CHILD PSYCHOL, V3, P177; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; KELLER H, 1998, LEHRBUCH ENTWICKLUNG; KELLER H, CULTURE BIOL PERSPEC; Keller H., 2002, CULTURE BIOL, P215; Keller H., 1997, HDB CROSS CULTURAL P, V1, P215; KELLY R, 1995, FORAGING SPECTRUM DI; Lakatos K, 2002, MOL PSYCHIATR, V7, P27, DOI 10.1038/sj/mp/4000986; Lamb M. E, 2002, CULTURE BIOL PERSPEC, P241; LIEDTKE M, 2003, PADAGOGISCHE ANTHR Z; MAIN M, 1990, HUM DEV, V33, P48, DOI 10.1159/000276502; Main M., 1991, ATTACHMENT LIFE CYCL, P127; Main M., 1999, HDB ATTACHMENT THEOR, P845; Main M., 1990, ATTACHMENT PRESCHOOL, P121; Main M., 1981, BEHAV DEV BIELEFELD, P651; Main M., 1986, AFFECTIVE DEV INFANC, P95; Meins E, 1999, Attach Hum Dev, V1, P325, DOI 10.1080/14616739900134181; Neumann D, 2002, Z PADAGOGIK, V48, P720; O'Connor T G, 2000, Attach Hum Dev, V2, P107; O'Connor TG, 2001, CHILD DEV, V72, P1501, DOI 10.1111/1467-8624.00362; Panter-Brick C., 1998, BIOSOCIAL PERSPECTIV; Parkes C. M., 1991, ATTACHMENT LIFE CYCL; PLOMIN R, 1999, BEHAV GENETICS; REYER J, 2004, Z SOZIOL ERZIEH SOZI, V24, P339; REYER J, 2004, NEUE SAMMLUNG, V44, P333; Ricciuti A. E, 1992, DISS ABSTR INT, V54, P3364; Richardson K., 2000, DEV PSYCHOL NATURE N; RICKS MH, 1985, MONOGRAPHS SOC RES C, V50, P1; ROWE DC, 1997, LIMITS FAMILY INFLUE; SCARR S, 1992, CHILD DEV, V63, P1, DOI 10.2307/1130897; SCARR S, 1983, CHILD DEV, V54, P424, DOI 10.1111/j.1467-8624.1983.tb03884.x; SCARR S, 1993, CHILD DEV, V64, P1333, DOI 10.1111/j.1467-8624.1993.tb02956.x; Shaver Phillip R., 1993, ADV PERSONAL RELATIO, V4, P29; SIMPSON JA, 1999, HDB ATTACHMENT THEOR, P115; SPRANGER E, 1932, PSYCHOL JUGENDALTERS; STEARNS SC, 1992, EVOLUTION LIFE HIT; TREMI AK, 2004, EVOLUTIONARE PADAGOG; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TRIVERS RL, 1974, AM ZOOL, V14, P249; VAN IJZENDOORN MH, 1995, PSYCHOL BULL, V117, P387, DOI 10.1037/0033-2909.117.3.387; VAN IJZENDOORN MH, 1995, J CHILD PSYCHOL PSYC, V36, P225; VANIJZENDOORN MH, 2000, CHILD DEV, V71, P1068; VANIJZENDOORN MH, 1999, HDB ATTACHMENT THEOR, P713; Wall S., 1978, PATTERNS ATTACHMENT; Waters E, 2000, CHILD DEV, V71, P684, DOI 10.1111/1467-8624.00176; Ziller T., 1876, VORLESUNGEN ALLGEMEI 94 0 0 1 13 VS VERLAG SOZIALWISSENSCHAFTEN-GWV FACHVERLAGE GMBH WIESBADEN ABRAHAM-LINCOLN-STR 46, 65189 WIESBADEN, GERMANY 1434-663X Z ERZIEHWISS Z. Erziehwiss. 2006 9 5 S 133 152 20 Education & Educational Research Education & Educational Research 140XE WOS:000244539300010 2018-11-12 J Polishchuk, LV; Vijverberg, J Polishchuk, LV; Vijverberg, J Body mass dynamics of Daphnia in the context of life history theory: an approach based on contribution analysis ZHURNAL OBSHCHEI BIOLOGII Russian Article TABLE RESPONSE EXPERIMENTS; FOOD LIMITATION; ENERGY ALLOCATION; MATERNAL SIZE; ALPINE LAKE; BIRTH-RATE; GALEATA; REPRODUCTION; MAGNA; GROWTH In this paper, we elaborate on the method of contribution analysis in relation to body mass dynamics which has been proposed recently (Polishchuk, Vijverberg, 2005. Oecologia. V. 144. P. 268-277). We suggest that contribution analysis as applied to body mass dynamics makes a bridge between production-energetic approach and life history theory. Production is conventionally divided into somatic and reproductive components, and our approach shows how to estimate the role (i.e. contributions) of these components in body mass dynamics. The pattern of contributions is further interpreted in terms of life history. The approach is applied to study body mass dynamics of the cladoceran Daphnia galeata in response to improving trophic conditions. The performance of the method is found to depend on the resolution of food concentrations, that is. on how many food concentrations are examined and how far they re spaced on the food concentration axis. When resolution is fine, a shift in resource allocation priorities is detected - from somatic component attracting more resources under harsh food conditions to reproduction attracting more resources under favorable conditions. However, when resolution is poor this pattern remains hidden. In that case, we observe roughly equal contributions of somatic and reproductive components to body mass dynamics. Moscow MV Lomonosov State Univ, Dept Gen Ecol, Moscow 119992, Russia; Netherlands Inst Ecol, Dept Food Web Studies, NIOO, KNAW,Ctr Limnol, NL-3631 AC Nieuwersluis, Netherlands Polishchuk, LV (reprint author), Moscow MV Lomonosov State Univ, Dept Gen Ecol, Moscow 119992, Russia. leonard_polishchuk@hotmail.com Polishchuk, Leonard/I-9342-2012 Achenbach L, 1997, OIKOS, V79, P469, DOI 10.2307/3546889; Alimov A. F., 2000, ELEMENTY TEORII FUNK; Bizina EV, 2000, ZH OBSHCH BIOL, V61, P601; BOERSMA M, 1994, J PLANKTON RES, V16, P1793, DOI 10.1093/plankt/16.12.1793; BOERSMA M, 1995, ECOLOGY, V76, P1251, DOI 10.2307/1940932; Boersma M, 1996, FRESHWATER BIOL, V35, P25, DOI 10.1046/j.1365-2427.1996.00478.x; BOLGER T, 1989, J FISH BIOL, V34, P171, DOI 10.1111/j.1095-8649.1989.tb03300.x; CASWELL H, 1989, ECOL MODEL, V46, P221, DOI 10.1016/0304-3800(89)90019-7; Doksaeter A, 2001, HYDROBIOLOGIA, V442, P207, DOI 10.1023/A:1017537012727; Duncan A., 1985, Advances in Limnology, V21, P81; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; FILIPPOVA TG, 1949, ZH OBSHCH BIOL, V49, P540; GILYAROV AM, 1981, PRIRODA, P96; GILYAROV AM, 1981, DINAMIKA CHISLENNOST; GILYAROVA AM, 1987, DINAMIKA CHISLENNOST; GLAZIER DS, 1992, ECOLOGY, V73, P910, DOI 10.2307/1940168; Glazier DS, 1998, FRESHWATER BIOL, V40, P87, DOI 10.1046/j.1365-2427.1998.00333.x; Glazier DS, 2002, EVOLUTION, V56, P1696; GLAZIER DS, 1992, OECOLOGIA, V90, P540, DOI 10.1007/BF01875448; GLIWICZ ZM, 1990, NATURE, V343, P638, DOI 10.1038/343638a0; IVLEV VS, 1945, USP SOVREM BIOL, V19, P98; Jeppesen E, 2000, FRESHWATER BIOL, V45, P201, DOI 10.1046/j.1365-2427.2000.00675.x; Kooijman S. A. L. M, 2000, DYNAMIC ENERGY MASS; LAMPERT W, 1977, Archiv fuer Hydrobiologie Supplement, V48, P336; LAMPERT W, 1993, ECOLOGY, V74, P1455, DOI 10.2307/1940074; Lampert W., 1987, Memorie dell'Istituto Italiano di Idrobiologia Dott Marco de Marchi, V45, P143; Levin L, 1996, ECOL APPL, V6, P1295, DOI 10.2307/2269608; Manca M, 1997, AQUAT SCI, V59, P48; MANCA M, 1994, J PLANKTON RES, V16, P1303, DOI 10.1093/plankt/16.10.1303; MCCAULEY E, 1990, ECOLOGY, V71, P703, DOI 10.2307/1940324; Mehner T, 1998, J PLANKTON RES, V20, P1797, DOI 10.1093/plankt/20.9.1797; PERRIN N, 1990, OIKOS, V59, P70, DOI 10.2307/3545124; Peters R.H., 1983, P1; POLISHCHUK LV, 1995, DOKL AKAD NAUK+, V340, P437; Polishchuk LV, 2005, OECOLOGIA, V144, P268, DOI 10.1007/s00442-005-0072-x; Polishchuk LV, 1999, ECOLOGY, V80, P721; POLISHCHUK LV, 1995, LIMNOL OCEANOGR, V40, P483, DOI 10.4319/lo.1995.40.3.0483; POLISHCHUK LV, 1986, DINAMICHESKIYE KHARA; RAVEN K, 1964, OOGENEZ, P306; Repka S, 1997, FRESHWATER BIOL, V38, P675, DOI 10.1046/j.1365-2427.1997.00236.x; Repka S, 1999, J PLANKTON RES, V21, P971, DOI 10.1093/plankt/21.5.971; Roff Derek A., 1992; Romanovsky YE, 1998, ZH OBSHCH BIOL, V59, P565; ROMANOVSKY YE, 1985, ERGEBNISSE LIMNOLOGI, V21, P363; SALONEN K, 1998, FIN16900 UNIQUANT OY; Schwenk K, 2000, P ROY SOC B-BIOL SCI, V267, P1833, DOI 10.1098/rspb.2000.1218; Shertzer KW, 2002, ECOLOGY, V83, P2181, DOI 10.2307/3072050; Sibly RM, 1998, J ANIM ECOL, V67, P17, DOI 10.1046/j.1365-2656.1998.00178.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Sokal R.R., 1995, BIOMETRY; *STATSOFT, 2003, STAT WIND; Stearns S. C., 1992, EVOLUTION LIFE HIST; Taylor B.E., 1985, Advances in Limnology, V21, P285; Tesch F. W., 1968, METHODS ASSESSMENT F, V3, P93; TESSIER AJ, 1982, LIMNOL OCEANOGR, V27, P707, DOI 10.4319/lo.1982.27.4.0707; Threlkeld S.T., 1987, Memorie dell'Istituto Italiano di Idrobiologia Dott Marco de Marchi, V45, P353; THRELKELD ST, 1979, LIMNOL OCEANOGR, V24, P601, DOI 10.4319/lo.1979.24.4.0601; URABE J, 1988, Bulletin of Plankton Society of Japan, V35, P159; VIJVERBERG J, 1989, FRESHWATER BIOL, V21, P317, DOI 10.1111/j.1365-2427.1989.tb01369.x; VILENKIN BY, 1978, MATEMATICHESKOE MODE, P5; Vinberg G.G., 1968, METODY OPREDELENIYA; Winder M, 2001, HYDROBIOLOGIA, V442, P269, DOI 10.1023/A:1017589013636; Zaika V.E., 1983, SRAVNITELNAYA PRODUK 63 2 5 1 3 MEZHDUNARODNAYA KNIGA MOSCOW 39 DIMITROVA UL., MOSCOW, 113095, RUSSIA 0044-4596 ZH OBSHCH BIOL Zhurnal Obshchei Biol. JAN-MAR 2006 67 1 23 36 14 Biology Life Sciences & Biomedicine - Other Topics 016RK WOS:000235637400002 16521568 2018-11-12 J Wilkinson, LR; Gibbons, JW Wilkinson, LR; Gibbons, JW Patterns of reproductive allocation: Clutch and egg size variation in three freshwater turtles COPEIA English Article HATCHLING SNAPPING TURTLES; CHRYSEMYS-PICTA BELLII; MATERNAL BODY-SIZE; NATURAL-SELECTION; PARENTAL INVESTMENT; LIFE-HISTORY; CHELYDRA-SERPENTINA; MUD TURTLE; INCUBATION-TEMPERATURE; PROPAGULE SIZE Understanding the mechanisms and patterns of how energy is allocated into the reproductive components of offspring size and number is central to life-history theory. We used X-ray photographs from a long-term mark recapture study of Kinosternon subrubrum, Sternotherus odoratus, and Pseudemys floridana to investigate hypotheses concerning variation in reproductive allocation due to constraint on egg size, within-female variability (within and among clutches), interannual environmental variation, multiple annual clutches, allocation of continuous resources into small integer numbers of offspring (fractional offspring-size problem), and age. Patterns of reproductive allocation varied markedly within and among species. Overall, egg size varied as a function of maternal body size and age, intra-annual clutch frequency, the fractional offspring-size problem, and environmental variation. Clutch size varied with maternal body size, clutch frequency, and environmental variation. We examine how effectively the data support optimal-egg-size and phenotypic-plasticity models of reproductive allocation, and identify limitations of fundamental biological findings necessary to address the issues. Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA Wilkinson, LR (reprint author), Univ Georgia, Savannah River Ecol Lab, Drawer E, Aiken, SC 29802 USA. lwilkinson@srel.edu Bernardo J, 1996, AM ZOOL, V36, P216; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; CAGLE FRED R., 1939, COPEIA, V1939, P170, DOI 10.2307/1436818; Caldwell D. K., 1959, Bulletin of the Florida State Museum Biological Sciences, V4, P293; CAPINERA JL, 1979, AM NAT, V114, P350, DOI 10.1086/283484; CARR A, 1970, COPEIA, P783, DOI 10.2307/1442334; CHARNOV EL, 1995, NATURE, V376, P418, DOI 10.1038/376418a0; CHRISTIANSEN J L, 1972, Herpetologica, V28, P130; Clark PJ, 2001, FUNCT ECOL, V15, P70, DOI 10.1046/j.1365-2435.2001.00494.x; CONGDON JD, 1991, CAN J ZOOL, V69, P239, DOI 10.1139/z91-036; Congdon JD, 1999, OECOLOGIA, V121, P224, DOI 10.1007/s004420050924; CONGDON JD, 1987, P NATL ACAD SCI USA, V84, P4145, DOI 10.1073/pnas.84.12.4145; CONGDON JD, 1983, ECOLOGY, V64, P419, DOI 10.2307/1939959; CONGDON JD, 1985, HERPETOLOGICA, V41, P194; Congdon JD, 2001, EXP GERONTOL, V36, P813, DOI 10.1016/S0531-5565(00)00242-4; CONGDON JD, 1989, PHYSIOL ZOOL, V62, P356, DOI 10.1086/physzool.62.2.30156175; Congdon JD, 2003, EXP GERONTOL, V38, P765, DOI 10.1016/S0531-5565(03)00106-2; CONGDON JD, 1983, HERPETOLOGICA, V39, P147; CONGDON JD, 1982, HERPETOLOGICA, V38, P228; COOPER WS, 1982, J THEOR BIOL, V94, P135, DOI 10.1016/0022-5193(82)90336-8; DOBIE JL, 1971, COPEIA, P645; EBERT D, 1994, ECOLOGY, V75, P568, DOI 10.2307/1939560; ELGAR MA, 1989, J ZOOL, V219, P137, DOI 10.1111/j.1469-7998.1989.tb02572.x; FROESE AD, 1974, ANIM BEHAV, V22, P735, DOI 10.1016/S0003-3472(74)80025-4; FUKADA HAJIME, 1965, BULL KYOTO GAKUGEI UNIV SER B MATH NATUR SCI, V27, P65; Gibbons J.W., 1990, P124; GIBBONS J W, 1977, Herpetologica, V33, P29; Gibbons J.W., 1990, P19; GIBBONS J W, 1970, Herpetologica, V26, P268; GIBBONS JW, 1979, HERPETOLOGICA, V35, P86; GIBBONS JW, 1983, HERPETOLOGICA, V39, P254; GIBBONS JW, 1982, COPEIA, P776, DOI 10.2307/1444086; GIBBONS JW, 1976, EXPT AGING RES, P454; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; Guinnee MA, 2004, AM NAT, V163, P880, DOI 10.1086/386553; HALIDAY TR, 1988, J HERPETOL, V22, P253; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HARLESS M, 1979, TURTLES PERSPECTIVES; IVERSON JB, 1991, HERPETOLOGICA, V47, P373; IVERSON JB, 1993, COPEIA, P1; IVERSON JB, 1979, J HERPETOL, V13, P105, DOI 10.2307/1563764; Iverson JB, 1992, HERPETOL MONOGR, V6, P25, DOI DOI 10.2307/1466960; Janzen FJ, 2000, ECOLOGY, V81, P2290; KAPLAN RH, 1984, AM NAT, V123, P393, DOI 10.1086/284211; KUCHLING G, 1999, REPROD BIOL CHELONIA; LEGLER JOHN M., 1960, UNIV KANSAS PUBL MUS NAT HIST, V11, P527; LONG DR, 1989, J HERPETOL, V23, P315, DOI 10.2307/1564462; Lovich J.E., 1983, Herpetofauna (Sydney), V14, P95; MAHMOUD I Y, 1972, Journal of Herpetology, V6, P183, DOI 10.2307/1562769; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; MILLER K, 1987, J EXP BIOL, V127, P401; Moll E.O., 1979, P305; Nagle RD, 1998, COMP BIOCHEM PHYS B, V120, P145, DOI 10.1016/S0305-0491(98)10003-2; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; RICKLEFS RE, 1968, P NATL ACAD SCI USA, V61, P847, DOI 10.1073/pnas.61.3.847; Roosenburg WM, 1997, COPEIA, P290, DOI 10.2307/1447749; Roosenburg WM, 1996, J HERPETOL, V30, P198, DOI 10.2307/1565510; ROSE FL, 1991, J HERPETOL, V25, P248, DOI 10.2307/1564666; ROWE JW, 1995, J HERPETOL, V29, P73, DOI 10.2307/1565088; ROWE JW, 1994, COPEIA, P1034; SCHULTZ DL, 1991, EVOL ECOL, V5, P415, DOI 10.1007/BF02214158; SCHULTZ DL, 1989, EVOLUTION, V43, P473, DOI 10.1111/j.1558-5646.1989.tb04243.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Steyermark AC, 2001, FUNCT ECOL, V15, P624, DOI 10.1046/j.0269-8463.2001.00564.x; Tucker J.K., 1978, Bulletin of the Maryland Herpetological Society, V14, P10; WHITE J B, 1973, Herpetologica, V29, P240; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 68 32 34 0 16 AMER SOC ICHTHYOLOGISTS HERPETOLOGISTS CHARLESTON UNIV CHARLESTON, GRICE MARINE LABORATORY, 205 FORT JOHNSON RD, CHARLESTON, SC 29412 USA 0045-8511 COPEIA Copeia DEC 15 2005 4 868 879 10.1643/0045-8511(2005)005[0868:PORACA]2.0.CO;2 12 Zoology Zoology 995GF WOS:000234088100015 2018-11-12 J Mangel, M; Munch, SB Mangel, M; Munch, SB A life-history perspective on short- and long-term consequences of compensatory growth AMERICAN NATURALIST English Review compensatory growth; catch-up growth; life-history theory; metabolic damage; dynamic programming; acquisition MITOCHONDRIAL OXIDATIVE STRESS; JUVENILE ATLANTIC SALMON; CATCH-UP GROWTH; ECOLOGICAL DEVELOPMENTAL BIOLOGY; FREE-RADICAL THEORY; CALORIC RESTRICTION; LIPID-PEROXIDATION; MATHEMATICAL-MODEL; FOOD-DEPRIVATION; RAINBOW-TROUT Compensatory or catch-up growth (CG) is widely observed following periods of resource deprivation. Because of this commonness, it is generally assumed that compensatory growth is adaptive, but most theory to date has explicitly ignored considerations of fitness. Following a period of deprivation, when resources become plentiful again, individuals may not respond at all and continue on a "normal" trajectory from a smaller size at age, may exhibit faster-than-normal growth immediately following the end of the period, or may adopt a growth strategy that involves faster-than-normal growth at some later time. Compensating individuals may also overtake control individuals who have been growing normally throughout. We hypothesize that the key to understanding CG is that growth leads to the accumulation of damage at the cellular level that is expressed (and thus must be modeled) at the level of the organism. We show that a life-history model incorporating the mortality consequences of both size and damage provides a framework for understanding compensatory growth. We use the theory to classify physiological and life-history characteristics for which CG is predicted to be the optimal response to deprivation. Univ Calif Santa Cruz, Ctr Stock Assessment Res, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA; SUNY Stony Brook, Marine Sci Res Ctr, Stony Brook, NY 11794 USA Mangel, M (reprint author), Univ Calif Santa Cruz, Ctr Stock Assessment Res, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA. msmangel@ucsc.edu; zasummen@aol.com Abrams PA, 1995, EVOLUTION, V49, P1055, DOI 10.1111/j.1558-5646.1995.tb04433.x; Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; AGARWAL S, 1996, EXP GERONTOL, V31, P387; Aguilera A, 2002, EMBO J, V21, P195, DOI 10.1093/emboj/21.3.195; ALBON SD, 1987, J ANIM ECOL, V56, P69, DOI 10.2307/4800; Ali M, 2003, FISH FISH, V4, P147, DOI 10.1046/j.1467-2979.2003.00120.x; Ali M, 2001, J FISH BIOL, V58, P1531, DOI 10.1006/jfbi.2001.1555; AMES BN, 1993, P NATL ACAD SCI USA, V90, P7915, DOI 10.1073/pnas.90.17.7915; Arendt J, 2001, OIKOS, V93, P95, DOI 10.1034/j.1600-0706.2001.930110.x; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Arendt JD, 2000, CAN J FISH AQUAT SCI, V57, P351, DOI 10.1139/cjfas-57-2-351; Arendt JD, 2000, J EXP ZOOL, V288, P219, DOI 10.1002/1097-010X(20001015)288:3<219::AID-JEZ3>3.3.CO;2-3; Arking R, 2000, EXP GERONTOL, V35, P353, DOI 10.1016/S0531-5565(00)00096-6; Ashok BT, 1999, EXP GERONTOL, V34, P293, DOI 10.1016/S0531-5565(99)00005-4; Aviv A, 2003, MECH AGEING DEV, V124, P829, DOI 10.1016/S0047-6374(03)00143-X; Barker D. J. P., 1998, MOTHERS BABIES HLTH; Barker DJP, 2002, TRENDS ENDOCRIN MET, V13, P364, DOI 10.1016/S1043-2760(02)00689-6; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Beckerman AP, 2002, TRENDS ECOL EVOL, V17, P263, DOI 10.1016/S0169-5347(02)02469-2; Beckman KB, 1998, PHYSIOL REV, V78, P547; Billerbeck JM, 2000, OECOLOGIA, V122, P210, DOI 10.1007/PL00008848; Block G, 2002, AM J EPIDEMIOL, V156, P274, DOI 10.1093/aje/kwf029; Boersma B, 1997, ENDOCR REV, V18, P646, DOI 10.1210/er.18.5.646; Brand MD, 2000, EXP GERONTOL, V35, P811, DOI 10.1016/S0531-5565(00)00135-2; BROEKHUIZEN N, 1994, FUNCT ECOL, V8, P770, DOI 10.2307/2390237; Cawthon RM, 2003, LANCET, V361, P393, DOI 10.1016/S0140-6736(03)12384-7; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Chatgilialoglu C, 2001, EXP GERONTOL, V36, P1459, DOI 10.1016/S0531-5565(01)00132-2; Chen LS, 2003, AGING CELL, V2, P191, DOI 10.1046/j.1474-9728.2003.00052.x; CHICHON M, 1997, P ROY SOC LOND B BIO, V264, P1383; CHICON M, 2000, EVOL ECOL, V2, P857; Christiansen J. S., 1992, BAM, V2, P235; CLARK CW, 2000, DYNAMIC STATE VARIAB; COMFORT A, 1963, GERONTOLOGY, V8, P150, DOI 10.1159/000211216; Cowen T, 2001, TRENDS GENET, V17, P109, DOI 10.1016/S0168-9525(00)02214-9; Dandona P, 2004, TRENDS IMMUNOL, V25, P4, DOI 10.1016/j.it.2003.10.013; DESAI M, 1995, BIOCHEM SOC T, V23, P331, DOI 10.1042/bst0230331; Dobrian AD, 2001, HYPERTENSION, V37, P554, DOI 10.1161/01.HYP.37.2.554; DOBSON SH, 1984, J FISH BIOL, V25, P649, DOI 10.1111/j.1095-8649.1984.tb04911.x; Dobzhansky T., 1962, MANKIND EVOLVING EVO; Driver C, 2004, BIOGERONTOLOGY, V5, P185, DOI 10.1023/B:BGEN.0000031156.75376.e3; Dulloo A, 2002, INT J OBES S2, V26, P46; Essington TE, 2001, CAN J FISH AQUAT SCI, V58, P2129, DOI 10.1139/cjfas-58-11-2129; FARRELL AP, 2003, COMP BIOCH PHYSL A, V132, P723; FEUERS RJ, 1993, MUTAT RES, V295, P191, DOI 10.1016/0921-8734(93)90020-4; FILHO DW, 2000, TRENDS COMP BIOCH PH, V7, P33; Finch CE, 2004, SCIENCE, V305, P1736, DOI 10.1126/science.1092556; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fridovich I, 2004, AGING CELL, V3, P13, DOI 10.1111/j.1474-9728.2003.00075.x; Gaver DP, 1997, B MATH BIOL, V59, P89, DOI 10.1016/S0092-8240(96)00056-0; Gavrilov Leonid A., 2002, TheScientificWorldJOURNAL, V2, P339; GIBSON BW, 2004, SCI AGING KNOWLEDGE, pPE12; Gilbert SF, 2001, DEV BIOL, V233, P1, DOI 10.1006/dbio.2001.0210; Gluckman PD, 2004, SCIENCE, V305, P1733, DOI 10.1126/science.1095292; Gotthard K, 2000, J ANIM ECOL, V69, P896, DOI 10.1046/j.1365-2656.2000.00432.x; Gurney WSC, 2003, ECOLOGY, V84, P2777, DOI 10.1890/02-0536; Halliwell B, 1999, FREE RADICALS BIOL M; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Hartman P, 2004, MECH AGEING DEV, V125, P417, DOI 10.1016/j.mad.2004.02.007; Hasty P, 2003, SCIENCE, V299, P1355, DOI 10.1126/science.1079161; Hayward RS, 1997, T AM FISH SOC, V126, P316, DOI 10.1577/1548-8659(1997)126<0316:NUOCGT>2.3.CO;2; Hayward RS, 2001, J FISH BIOL, V59, P126, DOI 10.1006/jfbi.2001.1634; Hermanussen M, 1996, GROWTH REGULAT, V6, P230; Holmgren K, 2003, J FISH BIOL, V62, P918, DOI 10.1046/j.1095-8649.2003.00086.x; Houston AI, 1999, MODELS ADAPTIVE BEHA; ISHII N, 2000, RESULTS PROBLEMS CEL, V29, P150; Janssens BJ, 2002, J FISH BIOL, V61, P71, DOI 10.1006/jfbi.2002.2008; Jazwinski SM, 2000, TRENDS GENET, V16, P506, DOI 10.1016/S0168-9525(00)02119-3; Jobling M, 1996, J FISH BIOL, V49, P658; Jobling M, 1999, AQUAC RES, V30, P473, DOI 10.1046/j.1365-2109.1999.00358.x; Jobling M, 1994, AQUACULT INT, V2, P75, DOI DOI 10.1007/BF00128802; Kapahi P, 1999, FREE RADICAL BIO MED, V26, P495, DOI 10.1016/S0891-5849(98)00323-2; Karanjawala ZE, 2004, MECH AGEING DEV, V125, P405, DOI 10.1016/j.mad.2004.04.003; Keaney JF, 2003, ARTERIOSCL THROM VAS, V23, P434, DOI 10.1161/01.ATV.0000058402.34138.11; Kirkwood TBL, 2005, CELL, V120, P437, DOI 10.1016/j.cell.2005.01.027; Kirkwood TBL, 2003, MECH AGEING DEV, V124, P85, DOI 10.1016/S0047-6374(02)00177-X; Kowald A, 1996, MUTAT RES-DNAGING G, V316, P209, DOI 10.1016/S0921-8734(96)90005-3; Lambert AJ, 2004, AM J PHYSIOL-REG I, V286, pR71, DOI 10.1152/ajpregu.00341.2003; Lander AD, 2004, PLOS BIOL, V2, P712, DOI 10.1371/journal.pbio.0020164; Leeuwenburgh C, 1999, AM J PHYSIOL-REG I, V276, pR128, DOI 10.1152/ajpregu.1999.276.1.R128; LEEUWENBURGH C, 1998, AM J PHYSIOL, V274, P453; Levine RL, 2001, EXP GERONTOL, V36, P1495, DOI 10.1016/S0531-5565(01)00135-8; Lika K, 2000, J MATH BIOL, V41, P361, DOI 10.1007/s002850000049; Lorenzen K, 1996, J FISH BIOL, V49, P627, DOI 10.1111/j.1095-8649.1996.tb00060.x; Lu T, 2004, NATURE, V429, P883, DOI 10.1038/nature02661; Lucas A, 1999, BRIT MED J, V319, P245, DOI 10.1136/bmj.319.7204.245; Lummaa V, 2002, TRENDS ECOL EVOL, V17, P141, DOI 10.1016/S0169-5347(01)02414-4; Maclean A, 2001, J FISH BIOL, V58, P1331, DOI 10.1006/jfbi.2000.1545; Mangel M, 2004, THEOR POPUL BIOL, V65, P353, DOI 10.1016/j.tpb.2003.07.005; Mangel M, 2001, EVOL ECOL RES, V3, P583; Mangel M., 1988, DYNAMIC MODELING BEH; MANGEL M, 1985, DECISION CONTROL UNC; Martin GM, 1996, NAT GENET, V13, P25, DOI 10.1038/ng0596-25; MCCANCE RA, 1974, PROC R SOC SER B-BIO, V185, P1, DOI 10.1098/rspb.1974.0001; McCay C M, 1933, Science, V77, P410, DOI 10.1126/science.77.2000.410; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; METCALFE NB, 2002, EVOLUTIONARY ECOLOGY, V4, P1; MINAKAMI H, 1990, FASEB J, V4, P3239; Miquel J, 1998, EXP GERONTOL, V33, P113, DOI 10.1016/S0531-5565(97)00060-0; Morgan I., 2000, P ROY SOC LOND B BIO, V268, P1; Morgan IJ, 2000, J FISH BIOL, V56, P637, DOI 10.1006/jfbi.1999.1183; Morrow JD, 2003, ARTERIOSCL THROM VAS, V23, P368, DOI 10.1161/01.ATV.0000063107.86298.FD; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Munch SB, 2003, EVOLUTION, V57, P2119, DOI 10.1554/02-711; Nagy KA, 1999, ANNU REV NUTR, V19, P247, DOI 10.1146/annurev.nutr.19.1.247; Nicieza AG, 1997, ECOLOGY, V78, P2385; Novoseltsev VN, 2000, EXP GERONTOL, V35, P971, DOI 10.1016/S0531-5565(00)00165-0; Ogburn CE, 2001, J GERONTOL A-BIOL, V56, pB468, DOI 10.1093/gerona/56.11.B468; Olson M., 2002, EVOLUTION, V56, P1867; Ozanne SE, 1999, P NUTR SOC, V58, P615, DOI 10.1017/S0029665199000804; Ozanne SE, 2002, TRENDS ENDOCRIN MET, V13, P368, DOI 10.1016/S1043-2760(02)00666-5; OZAWA T, 1995, EXP GERONTOL, V30, P269, DOI 10.1016/0531-5565(94)00057-A; Partridge L, 1999, TRENDS ECOL EVOL, V14, P438, DOI 10.1016/S0169-5347(99)01646-8; Partridge L, 2002, NAT REV GENET, V3, P165, DOI 10.1038/nrg753; Pearl R, 1928, RATE LIVING; Pedersen BH, 1997, AQUACULTURE, V155, P259, DOI 10.1016/S0044-8486(97)00127-0; PERRIN N, 1992, AM NAT, V139, P1344, DOI 10.1086/285390; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; PERRIN N, 1993, EVOL ECOL, V7, P576, DOI 10.1007/BF01237822; PITTS GC, 1986, GROWTH DEVELOP AGING, V50, P419; Pollack M, 2001, J GERONTOL A-BIOL, V56, pB475, DOI 10.1093/gerona/56.11.B475; POLLACK M, 1999, HDB OXIDANTS ANTIOXI, P881; PROMISLOW DEL, 1994, J THEOR BIOL, V170, P291, DOI 10.1006/jtbi.1994.1190; Reed HS, 1921, AM NAT, V55, P539, DOI 10.1086/279839; Ricklefs RE, 2003, FUNCT ECOL, V17, P384, DOI 10.1046/j.1365-2435.2003.00745.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; RICKLEFS RE, 1994, EVOLUTION, V48, P1080, DOI 10.1111/j.1558-5646.1994.tb05295.x; Rikans LE, 1997, BBA-MOL BASIS DIS, V1362, P116, DOI 10.1016/S0925-4439(97)00067-7; Rollo CD, 2002, EVOL DEV, V4, P55, DOI 10.1046/j.1525-142x.2002.01053.x; Ruel J, 2002, ECOLOGY, V83, P2691; Samaras TT, 2003, LIFE SCI, V72, P1781, DOI 10.1016/S0024-3205(02)02503-1; Sarkar S, 2003, EVOL DEV, V5, P106, DOI 10.1046/j.1525-142X.2003.03016.x; Sastre J, 2000, IUBMB LIFE, V49, P427; Sastre J, 2003, FREE RADICAL BIO MED, V35, P1, DOI 10.1016/S0891-5849(03)00184-9; Schultz ET, 2002, OECOLOGIA, V133, P501, DOI 10.1007/s00442-002-1076-4; SEEBERG E, 2003, AGING MOL LEVEL, P27; SEEBERG E, 2003, AGING MOL LEVEL, P11; Serra V, 2003, J BIOL CHEM, V278, P6824, DOI 10.1074/jbc.M207939200; Shertzer KW, 2002, ECOLOGY, V83, P2181, DOI 10.2307/3072050; SHIGENAGA MK, 1994, P NATL ACAD SCI USA, V91, P10771, DOI 10.1073/pnas.91.23.10771; SIBLY R, 1985, J THEOR BIOL, V112, P553, DOI 10.1016/S0022-5193(85)80022-9; SILBY RM, 1986, PHYSL ECOLOGY ANIMAL; SITTE N, 2003, AGING MOL LEVEL, P1; SMITH JM, 1986, PROBLEMS BIOL; Smith TR, 2003, T AM FISH SOC, V132, P9, DOI 10.1577/1548-8659(2003)132<0009:RDRISF>2.0.CO;2; Sogard SM, 2002, MAR ECOL PROG SER, V243, P165, DOI 10.3354/meps243165; Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59; SOHAL RS, 2000, RESULTS PROBLEMS CEL, V29, P46; Speakman JR, 2004, AGING CELL, V3, P87, DOI 10.1111/j.1474-9728.2004.00097.x; Spiteller G, 2001, EXP GERONTOL, V36, P1425, DOI 10.1016/S0531-5565(01)00131-0; STADTMAN ER, 1992, SCIENCE, V257, P1220, DOI 10.1126/science.1355616; Sukhotin AA, 2002, MAR ECOL PROG SER, V226, P223, DOI 10.3354/meps226223; Sultan SE, 2000, TRENDS PLANT SCI, V5, P537, DOI 10.1016/S1360-1385(00)01797-0; Tenhumberg B, 2000, J THEOR BIOL, V202, P257, DOI 10.1006/jtbi.1999.1049; Tian XL, 2003, AQUACULTURE, V224, P169, DOI 10.1016/S0044-8486(03)00224-2; TIMIRAS PS, 1972, DEV PHYSL AGING, P273; Trifunovic A, 2004, NATURE, V429, P417, DOI 10.1038/nature02517; Unterluggauer H, 2003, EXP GERONTOL, V38, P1149, DOI 10.1016/j.exger.2003.08.007; URSIN E, 1967, J FISH RES BOARD CAN, V24, P2355, DOI 10.1139/f67-190; URSIN E, 1979, S ZOOL SOC LOND, V44, P63; van Leeuwen IMM, 2002, BIOGERONTOLOGY, V3, P373, DOI 10.1023/A:1021336321551; Van Remmen H, 2001, EXP GERONTOL, V36, P957; Van Voorhies WA, 2004, AGING CELL, V3, P327, DOI 10.1111/j.1474-9728.2004.00113.x; von BERTALANFFY LUDWIG, 1938, HUMAN BIOL, V10, P181; von Zglinicki T, 2000, LAB INVEST, V80, P1739, DOI 10.1038/labinvest.3780184; von Zglinicki T, 2002, TRENDS BIOCHEM SCI, V27, P339, DOI 10.1016/S0968-0004(02)02110-2; WAALER HT, 1984, ACTA MED SCAND, P1; Wachter KW, 2003, POPUL DEV REV, V29, P270; Wang N, 1998, AQUACULTURE, V167, P43, DOI 10.1016/S0044-8486(98)00299-3; WEATHERLEY AH, 1981, J FISH BIOL, V18, P195, DOI 10.1111/j.1095-8649.1981.tb02814.x; Weindruch R, 1997, NEW ENGL J MED, V337, P986, DOI 10.1056/NEJM199710023371407; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; Whitledge GW, 1998, T AM FISH SOC, V127, P740, DOI 10.1577/1548-8659(1998)127<0740:TBMUFR>2.0.CO;2; Wilke CO, 2002, TRENDS ECOL EVOL, V17, P528, DOI 10.1016/S0169-5347(02)02612-5; Wilke CO, 2001, NATURE, V412, P331, DOI 10.1038/35085569; Wong JMY, 2003, LANCET, V362, P983, DOI 10.1016/S0140-6736(03)14369-3; Xin MG, 2003, MECH AGEING DEV, V124, P911, DOI 10.1016/S0047-6374(03)00163-5; Yanase S, 2002, MECH AGEING DEV, V123, P1579, DOI 10.1016/S0047-6374(02)00093-3; Yearsley JM, 2004, FUNCT ECOL, V18, P563, DOI 10.1111/j.0269-8463.2004.00879.x; Zhu X, 2003, J FISH BIOL, V62, P195, DOI 10.1046/j.0022-1112.2003.00019.x; Zhu X, 2001, J FISH BIOL, V58, P1149, DOI 10.1006/jfbi.2000.1521; Zielinski S, 2000, COMP BIOCHEM PHYS B, V125, P147, DOI 10.1016/S0305-0491(99)00162-5 183 123 124 3 70 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 AM NAT Am. Nat. DEC 2005 166 6 E155 E176 10.1086/444439 22 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 988FF WOS:000233576600002 16475079 2018-11-12 J Heibo, E; Magnhagen, C; Vollestad, LA Heibo, E; Magnhagen, C; Vollestad, LA Latitudinal variation in life-history traits in Eurasian perch ECOLOGY English Article latitudinal cline; life-history variation; trade-offs; Perca fluviatilis L.; perch SHAD ALOSA-SAPIDISSIMA; BERGMANNS RULE; YELLOW PERCH; BODY-SIZE; REPRODUCTIVE-BIOLOGY; FLUVIATILIS L; GROWTH-RATE; POPULATIONS; PATTERNS; FISHES Few studies have examined multiple life-history traits across a latitudinal gradient to test whether variation in growth rate and mortality schedules induces trends predicted by life-history theory. We collected data for the following life-history traits for 75 Eurasian perch (Perca fluviatilis) Populations: growth coefficient (K) and asymptotic body length (L-infinity) from the von Bertalanffy growth model, size at ages one and two years, specific juvenile growth rate, instantaneous adult and juvenile mortality rates, life span, age and length at maturity, and reproductive life span and investment. All life-history traits except L-infinity were significantly correlated with latitude. In general, growth rates, mortality rates, and reproductive investment decreased with latitude, whereas age at maturity, size at maturity, and life span increased with latitude. Populations could be grouped into two categories based on variation in L-infinity: stunted (small sized) vs. piscivorous (large sized). Four trait-latitude relationships differed between these two types: the growth coefficient (K) and the juvenile growth rate were larger, and age and length at maturity were lower in the stunted populations compared with piscivorous populations. Perch from southern populations tend to grow fast and experience high juvenile and adult mortality rates. As predicted from life-history theory, this selects for an early age and small size at maturity and relatively large investment in reproduction. The opposite pattern was found for northern populations. Swedish Univ Agr Sci, Dept Aquaculture, SE-90183 Umea, Sweden; Univ Oslo, Dept Biol, Ctr Ecol & Evolutionary Synth, N-0316 Oslo, Norway Heibo, E (reprint author), Swedish Univ Agr Sci, Dept Aquaculture, SE-90183 Umea, Sweden. erik.heibo@vabr.slu.se Vollestad, Leif Asbjorn/0000-0002-9389-7982 ALM G, 1946, MEDD STATENS UNDERSO, V25, P1; ALM GUNNAR, 1952, REPT INST FRESHWATER RES DROTTNINGHOLM, V33, P17; ALM GUNNAR, 1959, REPT INST FRESHWATER RES DROTTNINGHOLM, V40, P5; Angilletta MJ, 2003, AM NAT, V162, P332; Ashton KG, 2000, AM NAT, V156, P390, DOI 10.1086/303400; Ashton KG, 2003, EVOLUTION, V57, P1151, DOI 10.1111/j.0014-3820.2003.tb00324.x; Ashton KG, 2002, GLOBAL ECOL BIOGEOGR, V11, P505, DOI 10.1046/j.1466-822X.2002.00313.x; Bagenal T. B, 1978, METHODS ASSESSMENT F; Belk MC, 2002, AM NAT, V160, P803, DOI 10.1086/343880; BEVERTON RJH, 1992, J FISH BIOL, V41, P137, DOI 10.1111/j.1095-8649.1992.tb03875.x; BEVERTON RJH, 1987, EVOLUTION LONGEVITY, P161; Bystrom P, 1998, ECOLOGY, V79, P2153, DOI 10.1890/0012-9658(1998)079[2153:CPAPJB]2.0.CO;2; Bystrom P, 2003, J ANIM ECOL, V72, P156, DOI 10.1046/j.1365-2656.2003.00681.x; Chambers R. C., 1997, EARLY LIFE HIST RECR, P596; Claessen D, 2000, AM NAT, V155, P219, DOI 10.1086/303315; COLBY PJ, 1981, CAN J FISH AQUAT SCI, V38, P1814, DOI 10.1139/f81-228; COLLETTE BB, 1977, J FISH RES BOARD CAN, V34, P1450, DOI 10.1139/f77-209; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; DANYLCHUK AJ, 1994, CAN J FISH AQUAT SCI, V51, P490, DOI 10.1139/f94-051; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; Englund G, 1999, ECOLOGY, V80, P1132, DOI 10.2307/177060; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; FORSETH T, 1994, J ANIM ECOL, V63, P116, DOI 10.2307/5588; Freckleton RP, 2003, AM NAT, V161, P821, DOI 10.1086/374346; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Garvey JE, 2003, BIOSCIENCE, V53, P141, DOI 10.1641/0006-3568(2003)053[0141:EAAABL]2.0.CO;2; GLEBE BD, 1981, CAN J FISH AQUAT SCI, V38, P795, DOI 10.1139/f81-108; GUNDERSON DR, 1988, J CONSEIL, V44, P200; Haugen TO, 2000, OIKOS, V90, P107, DOI 10.1034/j.1600-0706.2000.900111.x; HEATH D, 1987, T AM FISH SOC, V116, P98, DOI 10.1577/1548-8659(1987)116<98:TOGDIG>2.0.CO;2; Heath DD, 1996, ENVIRON BIOL FISH, V45, P53, DOI 10.1007/BF00000627; Heibo E, 2002, ECOL FRESHW FISH, V11, P270, DOI 10.1034/j.1600-0633.2002.00023.x; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Jansen WA, 1996, ANN ZOOL FENN, V33, P403; JONSSON B, 1993, J FISH BIOL, V43, P1; KESTEVEN GL, 1960, FAO MANUALS FISHERIE, V1, P414; Le Cren E. D., 1947, JOUR ANIMAL ECOL, V16, P188; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; LINDSEY CC, 1966, EVOLUTION, V20, P456, DOI 10.1111/j.1558-5646.1966.tb03380.x; LINLOKKEN A, 1984, Fauna (Oslo), V37, P112; LobonCervia J, 1996, J FISH BIOL, V48, P1074, DOI 10.1111/j.1095-8649.1996.tb01805.x; MAKAROVA N P, 1975, Journal of Ichthyology, V15, P330; Mann R.H.K., 1984, P171; METCALFE NB, 1988, J ANIM ECOL, V57, P463, DOI 10.2307/4918; Mousseau TA, 1997, EVOLUTION, V51, P630, DOI 10.1111/j.1558-5646.1997.tb02453.x; Partridge L, 1997, EVOLUTION, V51, P632, DOI 10.1111/j.1558-5646.1997.tb02454.x; Persson L, 2000, ECOLOGY, V81, P1058; Persson L, 2000, OECOLOGIA, V122, P459, DOI 10.1007/s004420050967; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1993, EXPLOITATION EVOLVIN, P73; Ricker W. E., 1975, FISHERIES RES BOARD, V191, P382; Roff D. A., 2002, LIFE HIST EVOLUTION; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Roff Derek A., 1992; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; Stearns S.C., 1984, P13; SUMARI O, 1971, Annales Zoologici Fennici, V8, P406; Taborsky B, 2003, P ROY SOC B-BIOL SCI, V270, P713, DOI 10.1098/rspb.2002.2255; Thorpe J., 1977, FAO FISHERIES SYNOPS, V113; TREASURER JW, 1981, J FISH BIOL, V18, P359, DOI 10.1111/j.1095-8649.1981.tb03778.x; TREASURER JW, 1981, J FISH BIOL, V18, P729, DOI 10.1111/j.1095-8649.1981.tb03814.x; TRIPPEL EA, 1991, CAN J FISH AQUAT SCI, V48, P1446, DOI 10.1139/f91-172; VOLLESTAD LA, 1992, J ANIM ECOL, V61, P41, DOI 10.2307/5507; VOLODIN VM, 1979, J ICHTHYOLOGY, V19, P85; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Ylikarjula J, 1999, EVOL ECOL, V13, P433, DOI 10.1023/A:1006755702230 66 90 93 1 58 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology DEC 2005 86 12 3377 3386 10.1890/04-1620 10 Ecology Environmental Sciences & Ecology 994YI WOS:000234066700029 2018-11-12 J Charnov, EL Charnov, EL Reproductive effort is inversely proportional to average adult life span EVOLUTIONARY ECOLOGY RESEARCH English Article allometry; life history; optimization; trade-offs; Williams' hypothesis TRADE-OFF; HISTORIES; EVOLUTION; GROWTH; FISHES; COST Background: Forty years ago, G.C. Williams predicted that reproductive effort should be inversely related to the average adult life span across species. Aim: Use allometric life-history theory to refine that prediction. Result: Reproductive effort should be inversely proportional to average adult life span, a -1 scaling rule. Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA Charnov, EL (reprint author), Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. rlc@unm.edu Charnov EL, 1997, NATURE, V387, P393, DOI 10.1038/387393a0; Charnov EL, 2002, EVOL ECOL RES, V4, P749; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; Charnov EL, 2001, EVOL ECOL RES, V3, P521; Charnov Eric L., 1993, P1; Gunderson DR, 1997, CAN J FISH AQUAT SCI, V54, P990, DOI 10.1139/cjfas-54-5-990; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Roff Derek A., 1992; Stearns S. C., 1992, EVOLUTION LIFE HIST; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 10 19 19 0 8 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. DEC 2005 7 8 1221 1222 2 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 001PX WOS:000234549900011 2018-11-12 J Figueredo, AJ; Vasquez, G; Brumbach, BH; Sefcek, JA; Kirsner, BR; Jacobs, WJ Figueredo, AJ; Vasquez, G; Brumbach, BH; Sefcek, JA; Kirsner, BR; Jacobs, WJ The K-factor: Individual differences in life history strategy PERSONALITY AND INDIVIDUAL DIFFERENCES English Article personality; life history theory; reproductive strategy; frequency-dependent selection; evolutionary psychology R/K REPRODUCTIVE STRATEGIES; R-SELECTION; 5-FACTOR MODEL; PERSONALITY; CHILDHOOD; EVOLUTION; BEHAVIOR; SOCIOBIOLOGY; LONGEVITY; RACE Until recently, variations in life history strategy were studied exclusively at the species level. Although this domain of study has been extended to examine systematic differences in life history strategy among various human ethnic groupings, more recent evolutionary theories of human development and related behavioral genetic work imply substantial within-group individual variation in life history strategy. We constructed a latent variable model identifying a single common factor, denoted as K, which underlies a variety of otherwise disparate life history parameters. This "K-Factor" loaded 0.36 on childhood attachment to the biological father, -0.36 on childhood attachment to any non-biological father figure, 0.38 on adult romantic partner attachment, -0.51 on mating effort, -0.58 on Machiavellianism, and -0.41 on risk propensity. The bivariate correlations of the K-factor with higher-order personality factors were statistically significant, -0.24 with "Big Neuroticism" and -0.67 with "Big Psychoticism", and approached significance, correlating 0.12, with "Big Extraversion". The K-factor appears to be an underappreciated individual difference variable of major importance to human development. (c) 2005 Elsevier Ltd. All rights reserved. Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA Figueredo, AJ (reprint author), Univ Arizona, Dept Psychol, POB 210068, Tucson, AZ 85721 USA. ajf@u.arizona.edu BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; Brennan K. A., 1998, ATTACHMENT THEORY CL, P46; BUSS DM, 1991, ANNU REV PSYCHOL, V42, P459, DOI 10.1146/annurev.ps.42.020191.002331; Costa P. T., 1992, REVISED NEO PERSONAL; EADINGTON W, 1976, GAMBLING SOC INTERDI; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Eysenck H. J., 1976, SEX PERSONALITY; Eysenck HJ, 1975, MANUAL EYSENCK PERSO; FIGUEREDO AJ, 1995, J GOOD I CHIMP ZOO A; FIGUEREDO AJ, 2001, EVOLUTION INDIVIDUAL; FIGUEREDO AJ, IN PRESS HDB EVOLUTI; FINE MA, 1985, PSYCHOL REP, V57, P155, DOI 10.2466/pr0.1985.57.1.155; FRIEDMAN HS, 1993, J PERS SOC PSYCHOL, V65, P176, DOI 10.1037/0022-3514.65.1.176; GADGIL M, 1972, AM NAT, V106, P14, DOI 10.1086/282748; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; KAYS TM, 1997, DISS ABSTR INT B, V57; Kidd P S, 1993, J Emerg Nurs, V19, P292; KREBS CJ, 1973, SCIENCE, V179, P35, DOI 10.1126/science.179.4068.35; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; MacDonald K, 1998, J CROSS CULT PSYCHOL, V29, P119, DOI 10.1177/0022022198291007; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; MCARTHUR RH, 1967, THEORY ISLAND BIOGEO; MISCHEL W, 1995, PSYCHOL REV, V102, P246, DOI 10.1037/0033-295X.102.2.246; Mischel W, 2002, CURR DIR PSYCHOL SCI, V11, P50, DOI 10.1111/1467-8721.00166; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Rowe DC, 1997, PERS INDIV DIFFER, V23, P105, DOI 10.1016/S0191-8869(97)00005-6; Rowe DC, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P147; ROWE DC, 1996, CURRENT THEORIES DEL; Rushton J. P., 1995, RACE EVOLUTION BEHAV; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; RUSHTON JP, 1988, J RES PERS, V22, P259, DOI 10.1016/0092-6566(88)90029-3; RUSHTON JP, 1987, ACTA GENET MED GEMEL, V36, P289, DOI 10.1017/S0001566000006048; RUSHTON JP, 1990, J PERS, V58, P117, DOI 10.1111/j.1467-6494.1990.tb00910.x; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; *SAS I INC, 1999, SAS STAT US GUID VER, V1; SCHWARTZ JE, 1995, AM J PUBLIC HEALTH, V85, P1237, DOI 10.2105/AJPH.85.9.1237; TAYLOR CE, 1980, EVOLUTION, V34, P1183, DOI 10.1111/j.1558-5646.1980.tb04064.x; TOOBY J, 1990, J PERS, V58, P17, DOI 10.1111/j.1467-6494.1990.tb00907.x; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Wilson E.O., 1975, P1; ZUCKERMAN M, 1993, J PERS SOC PSYCHOL, V65, P757, DOI 10.1037/0022-3514.65.4.757; ZUCKERMAN M, 1988, PERS INDIV DIFFER, V9, P1025, DOI 10.1016/0191-8869(88)90136-5; Zuckerman M, 2000, J PERS, V68, P999, DOI 10.1111/1467-6494.00124 44 133 139 3 24 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. DEC 2005 39 8 1349 1360 10.1016/j.paid.2005.06.009 12 Psychology, Social Psychology 985ZH WOS:000233417200002 2018-11-12 J Miller, LK; Brooks, R Miller, LK; Brooks, R The effects of genotype, age, and social environment on male ornamentation, mating behavior, and attractiveness EVOLUTION English Article aging; genetic quality; genotype-environment interaction; life-history theory; reproductive effort; sexual advertisement; sexual selection GUPPIES POECILIA-RETICULATA; MALE FIELD CRICKETS; DEPENDENT SEXUAL ADVERTISEMENT; MATE CHOICE; GOOD GENES; NATURAL-SELECTION; COLOR PATTERNS; FEMALE CHOICE; OLDER MALES; LEK PARADOX The traits thought to advertise genetic quality are often highly susceptible to environmental variation and prone to change with age. These factors may either undermine or reinforce the potential for advertisement traits to signal quality depending on the magnitude of age-dependent expression, environmental variation, and genotype-age and genotype-environment interaction. Measurements of the magnitude of these effects are thus a necessary step toward assessing the implications of age dependence and environmental variability for the evolution of signals of quality. We conducted a longitudinal study of male guppies (Poecilia reticulata) from 22 full-sibling families. Each fish was assigned at maturity to one of three treatments in order to manipulate his allocation of resources to reproduction: a control in which the male was kept alone, a courtship-only treatment in which he could see and court a female across a clear partition, and a mating treatment in which he interacted freely with a female. We measured each male's size, ornamental color patterns, courtship, attractiveness to females, and mating success at three ages. Size was influenced by treatment and age-treatment interactions, indicating that courtship and mating may impose costs on growth. Tail size and color patterns were influenced by age but not by treatment, suggesting fixed age-dependent trajectories in these advertisement traits. By contrast, display rate and attempted sneak copulation rate differed among treatments but not among ages, suggesting greater plasticity of these behavioral traits. As a result of the different patterns of variation in ornamentation and behavior, male attractiveness and mating success responded to male age, treatment, and the interaction between age and treatment. Neither age nor treatment obscured the presence of genetic variation, and the genetic relationship between male ornamentation and attractiveness remained the same among treatments. Our findings suggest that neither age-dependent variation nor environmentally induced variation in reproductive effort is likely to undermine the reliability of male signaling. Univ New S Wales, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia Brooks, R (reprint author), Australian Museum, 6 Coll St, Sydney, NSW 2010, Australia. rob.brooks@unsw.edu.au Brooks, Robert/A-1251-2008 Brooks, Robert/0000-0001-6926-0781 ANDERSSON M, 1982, BIOL J LINN SOC, V17, P375, DOI 10.1111/j.1095-8312.1982.tb02028.x; Badyaev AV, 2003, J EVOLUTION BIOL, V16, P1065, DOI 10.1046/j.1420-9101.2003.00628.x; BAERENDS G. P., 1955, BEHAVIOUR, V8, P249, DOI 10.1163/156853955X00238; Barnes AI, 2003, ANIM BEHAV, V66, P199, DOI 10.1006/anbe.2003.2122; Beck CW, 2000, EVOL ECOL RES, V2, P107; Blows MW, 1998, AM NAT, V152, P826, DOI 10.1086/286211; Blows MW, 2003, EVOLUTION, V57, P1622; BOWERMAN BL, 1990, LINEAR STAT MODELS; Brandt LSE, 2004, J EVOLUTION BIOL, V17, P821, DOI 10.1111/j.1420-9101.2004.00716.x; Brooks R, 2000, NATURE, V406, P67, DOI 10.1038/35017552; Brooks R, 2001, TRENDS ECOL EVOL, V16, P308, DOI 10.1016/S0169-5347(01)02147-4; Brooks R, 2001, EVOLUTION, V55, P1002, DOI 10.1554/0014-3820(2001)055[1002:DAISSA]2.0.CO;2; CHENOWETH SF, 2004, AM NAT, V165, P281; Cordts R, 1996, ANIM BEHAV, V52, P269, DOI 10.1006/anbe.1996.0172; David P, 2000, NATURE, V406, P186; Draper N, 1981, APPL REGRESSION ANAL; DRAPER NR, 1988, TECHNOMETRICS, V30, P423, DOI 10.2307/1269805; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1995, EVOLUTION, V49, P456, DOI 10.1111/j.1558-5646.1995.tb02278.x; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; ENDLER JA, 1987, ANIM BEHAV, V35, P1376, DOI 10.1016/S0003-3472(87)80010-6; ENDLER JA, 1990, BIOL J LINN SOC, V41, P315, DOI 10.1111/j.1095-8312.1990.tb00839.x; ENDLER JA, 1988, NATURE, V332, P593, DOI 10.1038/332593b0; Eshel I, 2000, EVOL ECOL RES, V2, P509; Evans JP, 2002, J FISH BIOL, V60, P495, DOI 10.1006/jfbi.2001.1849; Falconer DS, 1996, INTRO QUANTITATIVE G; FARR JA, 1983, EVOLUTION, V37, P1193, DOI 10.1111/j.1558-5646.1983.tb00235.x; Gilg MR, 2003, AM MIDL NAT, V149, P306, DOI 10.1674/0003-0031(2003)149[0306:RDLSIT]2.0.CO;2; Godin JGJ, 2003, BEHAV ECOL, V14, P194, DOI 10.1093/beheco/14.2.194; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; Greenfield MD, 2004, ANIM BEHAV, V68, P1461, DOI 10.1016/j.anbehav.2004.01.014; Grether GF, 1999, P ROY SOC B-BIOL SCI, V266, P1317, DOI 10.1098/rspb.1999.0781; Grether GF, 2001, P ROY SOC B-BIOL SCI, V268, P1245, DOI 10.1098/rspb.2001.1624; Griffith SC, 1999, NATURE, V400, P358, DOI 10.1038/22536; Griffith SC, 2000, P ROY SOC B-BIOL SCI, V267, P1115, DOI 10.1098/rspb.2000.1116; GUSTAFSSON L, 1995, NATURE, V375, P311, DOI 10.1038/375311a0; Hall M, 2004, BMC EVOL BIOL, V4, DOI 10.1186/1471-2148-4-1; Hansen TF, 1995, J EVOLUTION BIOL, V8, P759, DOI 10.1046/j.1420-9101.1995.8060759.x; Hoglund J, 1998, OIKOS, V83, P478, DOI 10.2307/3546675; Houde A. E., 1997, SEX COLOR MATE CHOIC; HOUDE AE, 1992, HEREDITY, V69, P229, DOI 10.1038/hdy.1992.120; HOUDE AE, 1987, EVOLUTION, V41, P1, DOI 10.1111/j.1558-5646.1987.tb05766.x; HOUDE AE, 1988, ANIM BEHAV, V36, P888, DOI 10.1016/S0003-3472(88)80171-4; HOUDE AE, 1994, P ROY SOC B-BIOL SCI, V256, P125, DOI 10.1098/rspb.1994.0059; HOUDE AE, 1992, BEHAV ECOL, V3, P346, DOI 10.1093/beheco/3.4.346; Houle D, 2002, P ROY SOC B-BIOL SCI, V269, P97, DOI 10.1098/rspb.2001.1823; Hughes KA, 2005, J EVOLUTION BIOL, V18, P35, DOI 10.1111/j.1420-9101.2004.00806.x; Hunt J, 2004, TRENDS ECOL EVOL, V19, P329, DOI 10.1016/j.tree.2004.03.035; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; Jia FY, 2000, EVOLUTION, V54, P953; Jia FY, 1997, P ROY SOC B-BIOL SCI, V264, P1057, DOI 10.1098/rspb.1997.0146; Kokko H, 1998, EVOL ECOL, V12, P739, DOI 10.1023/A:1006541701002; Kokko H, 2002, P ROY SOC B-BIOL SCI, V269, P1331, DOI 10.1098/rspb.2002.2020; Kokko H, 1997, BEHAV ECOL SOCIOBIOL, V41, P99, DOI 10.1007/s002650050369; Kotiaho J, 1998, J ANIM ECOL, V67, P287, DOI 10.1046/j.1365-2656.1998.00192.x; Kotiaho JS, 2001, NATURE, V410, P684, DOI 10.1038/35070557; Kotiaho JS, 2001, BIOL REV, V76, P365, DOI 10.1017/S1464793101005711; LYNCH M, 1997, GENETICS ANAL QUANTI; Mackay TFC, 2001, ANNU REV GENET, V35, P303, DOI 10.1146/annurev.genet.35.102401.090633; MANNING JT, 1985, J THEOR BIOL, V116, P349, DOI 10.1016/S0022-5193(85)80273-3; Mappes J, 1996, P ROY SOC B-BIOL SCI, V263, P785, DOI 10.1098/rspb.1996.0117; MOLLER AP, 1989, NATURE, V339, P132; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; Proulx SR, 2002, P ROY SOC B-BIOL SCI, V269, P2291, DOI 10.1098/rspb.2002.2129; Proulx SR, 2001, EVOLUTION, V55, P2401; Quinn GP, 2002, EXPT DESIGN DATA ANA; Qvarnstrom A, 1999, EVOLUTION, V53, P1564, DOI 10.1111/j.1558-5646.1999.tb05419.x; Qvarnstrom A, 2000, NATURE, V405, P344, DOI 10.1038/35012605; Qvarnstrom A, 2001, TRENDS ECOL EVOL, V16, P5, DOI 10.1016/S0169-5347(00)02030-9; Radwan J, 2003, ECOL LETT, V6, P581, DOI 10.1046/j.1461-0248.2003.00484.x; REYNOLDS JD, 1993, ANIM BEHAV, V45, P145, DOI 10.1006/anbe.1993.1013; REYNOLDS JD, 1992, P ROY SOC B-BIOL SCI, V250, P57, DOI 10.1098/rspb.1992.0130; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RODD FH, 1995, ANIM BEHAV, V49, P1139; Roff D. A., 2002, LIFE HIST EVOLUTION; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Sgro CM, 2004, HEREDITY, V93, P241, DOI 10.1038/sj.hdy.6800532; SIMMONS LW, 1992, ANIM BEHAV, V44, P1145, DOI 10.1016/S0003-3472(05)80326-4; TIMM N, 1997, UNIVARIATE MULTIVARI; Tomkins JL, 2004, TRENDS ECOL EVOL, V19, P323, DOI 10.1016/j.tree.2004.03.029; van Oosterhout C, 2003, J EVOLUTION BIOL, V16, P273, DOI 10.1046/j.1420-9101.2003.00511.x; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Vieira C, 2000, GENETICS, V154, P213; WEATHERHEAD PJ, 1984, AM NAT, V123, P873, DOI 10.1086/284247; Welch AM, 2003, EVOLUTION, V57, P883; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3; ZUK M, 1988, EVOLUTION, V42, P969, DOI 10.1111/j.1558-5646.1988.tb02515.x 89 52 52 0 51 SOC STUDY EVOLUTION LAWRENCE 810 E 10TH STREET, LAWRENCE, KS 66044 USA 0014-3820 EVOLUTION Evolution NOV 2005 59 11 2414 2425 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 990UP WOS:000233769000013 16396182 2018-11-12 J Beauplet, G; Barbraud, C; Chambellant, M; Guinet, C Beauplet, G; Barbraud, C; Chambellant, M; Guinet, C Interannual variation in the post-weaning and juvenile survival of subantarctic fur seals: influence of pup sex, growth rate and oceanographic conditions JOURNAL OF ANIMAL ECOLOGY English Article early development; multistate mark-recapture models; post-lactating survival; sea surface temperature anomalies; temporary emigration SOUTHERN ELEPHANT SEALS; RED DEER; ARCTOCEPHALUS-TROPICALIS; POPULATION-DYNAMICS; AMSTERDAM ISLAND; REPRODUCTIVE SUCCESS; CALLORHINUS-URSINUS; MIROUNGA-LEONINA; BREEDING SUCCESS; POSTFLEDGING SURVIVAL 1. A major hypothesis of life history theory is that early development conditions affect future survival and reproductive success. However, although a growing number of studies have addressed this question, many of them are taxonomically biased, thereby impeding the generalization of this hypothesis. 2. This study examines the factors influencing post-weaning survival in five weaned cohorts of subantarctic fur seal pups from Amsterdam Island, southern Indian Ocean. It used mark-recapture data from 7 consecutive years of different environmental conditions. 3. The cohort return rate varied from 45% to 74% of weaned pups, depending on the year of weaning. In each cohort, 96% of weaned pups returned between 3 and 6 years of age, and none of the factors examined seemed to influence this timing pattern. The probability of survival to this first return was negatively related to sea-surface temperature anomalies (SSTa) of the 6 months following the weaning process. It increased with pup preweaning growth rate and differed between the sexes. Females' survival rate was significantly higher than males', except during years of extreme SSTa, where no difference was detected. 4. The juvenile state represented young individuals after their first return on their native island. Annual juvenile tag loss rate was constant at 0.217 (SE = 0.027), whereas temporary emigration rate varied over cohorts and was higher in males 0.423 (SE = 0.035) than in females 0.170 (SE = 0.012). This dispersion pattern may be prolonged in some cases, as the yearly immigration probability was constant at 0.290 (SE = 0.065). 5. Taking into account tag loss and temporary emigration, the estimated yearly survival probability of juveniles was 0.964 (SE = 0.022). This value was unrelated to any tested oceanographic or individual parameter including sex. 6. Results support the hypothesis that early development traits affect short-term post-weaning survival. However, no long-term effect of maternal postnatal investment was detected after the first return to the native island. Results also indicate that the effect of early development traits on survival interacts with environmental conditions encountered shortly after independence of individuals. CNRS, Ctr Etud Biol Chize, F-79360 Villiers En Bois, France Beauplet, G (reprint author), CNRS, Ctr Etud Biol Chize, F-79360 Villiers En Bois, France. ufuf@cebc.cnrs.fr Barbraud, Christophe/A-5870-2012 Anderson DR, 1999, BIRD STUDY, V46, P261; ARNASON A N, 1973, Researches on Population Ecology (Tokyo), V15, P1; ARNASON AN, 1981, CAN J FISH AQUAT SCI, V38, P1077, DOI 10.1139/f81-148; BAKER JD, 1992, J ZOOL, V227, P231, DOI 10.1111/j.1469-7998.1992.tb04819.x; Ballachey BE, 2003, CAN J ZOOL, V81, P1494, DOI 10.1139/Z03-121; Beauplet G, 2004, MAR ECOL PROG SER, V273, P211, DOI 10.3354/meps273211; Beauplet G, 2003, PHYSIOL BIOCHEM ZOOL, V76, P262, DOI 10.1086/367951; BLIX AS, 1979, AM J PHYSIOL, V236, pR188; Boltnev AI, 1998, CAN J ZOOL, V76, P843, DOI 10.1139/cjz-76-5-843; Boulinier T, 1996, J AVIAN BIOL, V27, P252, DOI 10.2307/3677230; Boulinier T, 1997, EVOL ECOL, V11, P505, DOI 10.1007/s10682-997-1507-0; Bowen W.D., 1991, P66; Boyd IL, 1998, CAN J FISH AQUAT SCI, V55, P845, DOI 10.1139/cjfas-55-4-845; Bradshaw CJA, 2003, J MAMMAL, V84, P65, DOI 10.1644/1545-1542(2003)084<0065:ESACPO>2.0.CO;2; BRYDEN MM, 1968, NATURE, V220, P597, DOI 10.1038/220597a0; BRYDEN MM, 1964, NATURE, V203, P1299, DOI 10.1038/2031299a0; Burnham K. P., 1998, MODEL SELECTION INFE; Chambellant M, 2003, CAN J ZOOL, V81, P1222, DOI 10.1139/Z03-114; CHOQUET R, 2002, U CARE UTILITIES CAP; Clutton-Brock T. H, 1982, RED DEER BEHAV ECOLO; Clutton-Brock T.H., 1988, REPROD SUCCESS STUDI; Clutton-Brock TH, 2002, NATURE, V415, P633, DOI 10.1038/415633a; CLUTTONBROCK TH, 1987, J ANIM ECOL, V56, P53, DOI 10.2307/4799; CLUTTONBROCK TH, 1984, NATURE, V308, P358, DOI 10.1038/308358a0; CLUTTONBROCK TH, 1985, NATURE, V313, P131, DOI 10.1038/313131a0; CLUTTONBROCK TH, 1991, J ANIM ECOL, V60, P593, DOI 10.2307/5300; Coulson T, 1997, ECOLOGY, V78, P852; Coulson T, 2003, EVOLUTION, V57, P2879; Dabin W, 2004, CAN J ZOOL, V82, P1043, DOI 10.1139/Z04-079; DOIDGE DW, 1984, J ZOOL, V203, P87; Eberhardt L.L., 1981, P197; Festa-Bianchet M, 2000, BEHAV ECOL, V11, P633, DOI 10.1093/beheco/11.6.633; FestaBianchet M, 1997, CAN J ZOOL, V75, P1372, DOI 10.1139/z97-763; Fujiwara M, 2002, ECOLOGY, V83, P3266, DOI 10.2307/3072077; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Gaillard JM, 1998, ECOLOGY, V79, P2878, DOI 10.2307/176523; Georges JY, 2000, ECOLOGY, V81, P295, DOI 10.1890/0012-9658(2000)081[0295:MCITSF]2.0.CO;2; Georges JY, 1999, MAMMALIA, V63, P384; Greenberg R., 1980, P493; GUINET C, 1994, ANTARCT SCI, V6, P473; Hall AJ, 2001, J ANIM ECOL, V70, P138; HINDELL MA, 1994, AUST J ZOOL, V42, P723, DOI 10.1071/ZO9940723; Hindell MA, 1999, CAN J ZOOL, V77, P1807, DOI 10.1139/cjz-77-11-1807; Keedwell RJ, 2003, J FIELD ORNITHOL, V74, P217, DOI 10.1648/0273-8570-74.3.217; Kendall WL, 2002, ECOLOGY, V83, P3276; KOOYMAN GL, 1989, DIVERSE DIVERS; Kruuk LEB, 1999, P ROY SOC B-BIOL SCI, V266, P1655, DOI 10.1098/rspb.1999.0828; LANDER RH, 1975, J FISH RES BOARD CAN, V32, P2447, DOI 10.1139/f75-282; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lebreton JD, 1991, BIRD POPULATION STUD, P105; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Mann K., 1991, DYNAMICS MARINE ECOS; McMahon CR, 1999, POLAR BIOL, V21, P279, DOI 10.1007/s003000050363; McMahon CR, 2000, ANTARCT SCI, V12, P149; Merila J, 1997, J AVIAN BIOL, V28, P279, DOI 10.2307/3676940; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; NEWTON I, 1989, LIFETIME REPROD BIRD; Oftedal O.T., 1987, Current Mammalogy, V1, P175; Olsson O, 1997, POLAR BIOL, V18, P161, DOI 10.1007/s003000050172; Peters R.H., 1983, P1; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Pistorius PA, 2000, J WILDLIFE MANAGE, V64, P373, DOI 10.2307/3803235; Pomeroy PP, 1999, J ANIM ECOL, V68, P235, DOI 10.1046/j.1365-2656.1999.00281.x; Pradel R, 2003, BIOMETRICS, V59, P43, DOI 10.1111/1541-0420.00006; Prevot-Julliard AC, 1998, AUK, V115, P85; PROMISLOW DEL, 1992, P ROY SOC B-BIOL SCI, V247, P203, DOI 10.1098/rspb.1992.0030; REYNOLDS RW, 1994, J CLIMATE, V7, P929, DOI 10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2; Rose KE, 1998, J ANIM ECOL, V67, P979, DOI 10.1046/j.1365-2656.1998.6760979.x; Sagar PM, 1998, IBIS, V140, P329, DOI 10.1111/j.1474-919X.1998.tb04397.x; Sarno RJ, 1999, BEHAV ECOL, V10, P41, DOI 10.1093/beheco/10.1.41; Schjorring S, 1999, ANIM BEHAV, V57, P647, DOI 10.1006/anbe.1998.0993; SCHWARZ CJ, 1993, BIOMETRICS, V49, P177, DOI 10.2307/2532612; Sinclair ARE, 1996, FRONTIERS OF POPULATION ECOLOGY, P127; Singer FJ, 1997, J WILDLIFE MANAGE, V61, P12, DOI 10.2307/3802410; Sokal R. R., 1981, BIOMETRY; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stewart BS, 1997, J MAMMAL, V78, P1101, DOI 10.2307/1383053; Trillmich Fritz, 1996, Advances in the Study of Behavior, V25, P533; TRITES AW, 1989, CAN J FISH AQUAT SCI, V46, P1428, DOI 10.1139/f89-182; WEIMERSKIRCH H, 1987, OIKOS, V49, P315, DOI 10.2307/3565767; White GC, 1999, BIRD STUDY, V46, P120; Wickens P, 1997, MAR MAMMAL SCI, V13, P241, DOI 10.1111/j.1748-7692.1997.tb00631.x 83 63 63 0 17 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. NOV 2005 74 6 1160 1172 10.1111/j.1365-2656.2005.01016.x 13 Ecology; Zoology Environmental Sciences & Ecology; Zoology 980DW WOS:000232995200017 Bronze 2018-11-12 J Brown, GP; Shine, R Brown, GP; Shine, R Female phenotype, life history, and reproductive success in free-ranging snakes (Tropidonophis mairii) ECOLOGY English Article Australia; colubrid snake; fitness; incubation; keelback snake; life history; offspring size; phenotype; reproductive success; reptile; selection; Tropidonophis mairii NATURAL-SELECTION; OFFSPRING SIZE; INCUBATION ENVIRONMENTS; HATCHLING PHENOTYPES; VIVIPAROUS SNAKE; UTA-STANSBURIANA; LACERTA-AGILIS; PATH-ANALYSIS; SAND LIZARD; CLUTCH MASS Life-history theory posits causal links from an organism's phenotype (e.g., its body size and condition) to its reproductive output (e.g., offspring size and number) and thence to its microevolutionary fitness. However, few empirical data are available to quantify such links, especially for tropical organisms. Oviposition by field-caught keelback snakes (Tropidonophis mairii, Colubridae) in tropical Australia yielded data on clutches from 318 adult females (3151 eggs) over three years, and mark-recapture studies (1804 nights surveyed) quantified survival rates of neonates from those laboratory-incubated clutches. Path analysis revealed strong links between maternal phenotype, reproductive output, and fitness, and these links were consistent among years and across different parts of the nesting period. Although all eggs were incubated at standard water potentials, clutches varied considerably in the amount of water uptake by eggs during incubation. Hatchling body length was influenced more by the egg's water uptake than by its initial mass. Larger offspring were more likely to survive their first year of life. Overall, the rate of water uptake by a female's eggs was more important for her reproductive success (number of surviving progeny) than were variables such as mean, egg mass. Hence, this population experiences intense selection not only on "conventional" life-history traits such as egg size and number, but also on maternal nest-site choice and on the physiological mechanisms that control water exchange between the egg and the nest substrate. Univ Sydney, Sydney, NSW 2006, Australia Shine, R (reprint author), Univ Sydney, Sydney, NSW 2006, Australia. rics@bio.usyd.edu.au Brown, Gregory/F-9897-2011; Shine, Richard/B-8711-2008 Brown, Gregory/0000-0002-2924-9040; Bonnet X, 2001, OIKOS, V92, P297, DOI 10.1034/j.1600-0706.2001.920212.x; Brown GP, 2004, ECOLOGY, V85, P1627, DOI 10.1890/03-0107; Brown GP, 2002, J ZOOL, V258, P63, DOI 10.1017/S0952836902001218; Charnov Eric L., 1993, P1; Clutton-Brock T.H., 1988, REPROD SUCCESS STUDI; COGGER HG, 2000, REPTILES AMPHIBIANS; DAVIES NB, 1992, DUNNOCK BEHAV SOCIAL; Deeming D.C., 2004, P229; Du WG, 2005, BIOL LETT-UK, V1, P98, DOI 10.1016/rsbl.2004.0268; Endler JA, 1986, NATURAL SELECTION WI; FERGUSON GW, 1984, EVOLUTION, V38, P342, DOI 10.1111/j.1558-5646.1984.tb00292.x; Fitch HS, 1970, MISCELLANEOUS PUBLIC, P1; FOX SF, 1975, EVOLUTION, V29, P95, DOI 10.1111/j.1558-5646.1975.tb00818.x; Grant P.R., 1986, ECOLOGY EVOLUTION DA; KING RB, 1993, J HERPETOL, V27, P175, DOI 10.2307/1564934; KINGSOLVER JG, 1991, TRENDS ECOL EVOL, V6, P276, DOI 10.1016/0169-5347(91)90004-H; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Madsen T, 1996, ECOLOGY, V77, P149, DOI 10.2307/2265663; Madsen T, 1996, HERPETOLOGICA, V52, P146; Naulleau G, 1996, OECOLOGIA, V107, P301, DOI 10.1007/BF00328446; Olsson M, 1996, EVOLUTION, V50, P1328, DOI 10.1111/j.1558-5646.1996.tb02372.x; Olsson M, 2001, FUNCT ECOL, V15, P443, DOI 10.1046/j.0269-8463.2001.00544.x; Olsson M, 1997, AM NAT, V149, P179, DOI 10.1086/285985; Petraitis PS, 1996, FUNCT ECOL, V10, P421, DOI 10.2307/2389934; PIANKA ER, 1976, AM ZOOL, V16, P775; Qualls CP, 1999, FUNCT ECOL, V13, P845, DOI 10.1046/j.1365-2435.1999.00374.x; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; SEIGEL RA, 1991, HERPETOLOGICA, V47, P301; SHINE R, 1991, COPEIA, P120, DOI 10.2307/1446254; Shine R, 1996, OECOLOGIA, V107, P484, DOI 10.1007/BF00333939; Shine R, 2003, J EVOLUTION BIOL, V16, P823, DOI 10.1046/j.1420-9101.2003.00600.x; Shine R, 2002, BIOL J LINN SOC, V76, P339, DOI 10.1046/j.1095-8312.2002.d01-3.x; Shine R, 1996, ECOLOGY, V77, P1808, DOI 10.2307/2265785; Shine R, 1997, ECOLOGY, V78, P2559; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; Warner DA, 2002, BIOL J LINN SOC, V76, P105, DOI 10.1111/j.1095-8312.2002.tb01718.x; Warner DA, 2000, AM ZOOL, V40, P1251; Weatherhead PJ, 1996, CAN J ZOOL, V74, P1617, DOI 10.1139/z96-179; Weatherhead PJ, 1999, J HERPETOL, V33, P577, DOI 10.2307/1565574; Webb JK, 2001, FUNCT ECOL, V15, P561, DOI 10.1046/j.0269-8463.2001.00570.x 44 30 30 0 12 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology OCT 2005 86 10 2763 2770 10.1890/04-1805 8 Ecology Environmental Sciences & Ecology 971DP WOS:000232361800021 2018-11-12 J Isaac, JL; Johnson, CN Isaac, JL; Johnson, CN Terminal reproductive effort in a marsupial BIOLOGY LETTERS English Article age; life history; reproductive effort; residual reproductive value COMMON BRUSHTAIL POSSUM; TRICHOSURUS-VULPECULA; AGE; SUCCESS Life-history theory predicts that as organisms approach the end of their life, they should increase their reproductive effort (RE). However, studies on mammals often find that measures of RE do not vary with maternal age. This might be because offspring have some control over energy transfer which may constrain adaptive variation in RE by mothers, particularly in eutherian mammals where placental function is primarily controlled by offspring. However, in marsupials, energy transfer is primarily by lactation and under maternal control, leaving marsupial mothers free to vary RE. Here, we provide the first analysis, to our knowledge, of age-specific RE in a marsupial, the common brushtail possum. RE, measured as the proportion of maternal mass lost during lactation, was strongly correlated with offspring mass as a yearling. Older females had higher RE, gave birth earlier in the season and were more likely to produce two offspring in a year. Females with high RE in one year were fighter at the beginning of the next breeding season. These results provide the clearest support yet for terminal RE in a mammal. James Cook Univ N Queensland, Sch Trop Biol, Townsville, Qld 4811, Australia Isaac, JL (reprint author), James Cook Univ N Queensland, Sch Trop Biol, Townsville, Qld 4811, Australia. joanne.isaac@icu.edu.au Johnson, Christopher/J-7894-2014; Johnson, Chris/A-7275-2008 Johnson, Christopher/0000-0002-9719-3771; Cameron EZ, 2000, BEHAV ECOL SOCIOBIOL, V47, P243, DOI 10.1007/s002650050661; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Cote SD, 2001, ANIM BEHAV, V62, P173, DOI 10.1006/anbe.2001.1719; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; GREEN WCH, 1993, J ZOOL, V230, P177, DOI 10.1111/j.1469-7998.1993.tb02680.x; Haig D, 1996, J EVOLUTION BIOL, V9, P357, DOI 10.1046/j.1420-9101.1996.9030357.x; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; Hsu MJ, 1999, J COMP PHYSIOL B, V169, P67, DOI 10.1007/s003600050195; Isaac JL, 2005, J ANIM ECOL, V74, P552, DOI 10.1111/j.1365-2656.2005.00954.x; Isaac JL, 2003, BEHAV ECOL, V14, P818, DOI 10.1093/beheco/arg076; McMahon CR, 2004, BEHAV ECOL SOCIOBIOL, V55, P349, DOI 10.1007/s00265-003-0721-1; PACKER C, 1998, NATURE, V392, P107; PARK CS, 1993, DUKES PHYSL DOMESTIC; PIANKA ER, 1988, EVOLUTIONARY ECOLGY; Polak M, 1998, P ROY SOC B-BIOL SCI, V265, P2197, DOI 10.1098/rspb.1998.0559; Renfree M., 1984, S ZOOL SOC LOND, V51, P403; Stearns S. C., 1992, EVOLUTION LIFE HIST; Trott JF, 2003, BIOL REPROD, V68, P929, DOI 10.1095/biolreprod.102.005934; TYNDALEBISCO CH, 1987, REPROD PHYSL MARSUPI; Weladji RB, 2002, OECOLOGIA, V131, P79, DOI 10.1007/s00442-001-0864-6; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WINTER JW, 1980, AUST WILDLIFE RES, V7, P359 24 23 23 0 20 ROYAL SOCIETY LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 BIOL LETT-UK Biol. Lett. SEP 22 2005 1 3 271 275 10.1098/rsbl.2005.0326 5 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 968NX WOS:000232170300006 17148185 Green Published 2018-11-12 J Muehlenbein, MP; Bribiescas, RG Muehlenbein, MP; Bribiescas, RG Testosterone-mediated immune functions and male life histories AMERICAN JOURNAL OF HUMAN BIOLOGY English Review TUMOR-NECROSIS-FACTOR; IMMUNOCOMPETENCE-HANDICAP HYPOTHESIS; MANDRILLS MANDRILLUS-SPHINX; MALE BARN SWALLOWS; MICE MUS-MUSCULUS; T-CELL SUBSETS; SECONDARY SEXUAL ADORNMENTS; PLASMODIUM-CHABAUDI MALARIA; STARLINGS STURNUS-VULGARIS; PITUITARY-ADRENAL AXIS Recent advances in human life history theory have provided new insights into the potential selection pressures that were instrumental in the evolution of human and non-human primate males. However, gaps remain in our understanding of how primate males regulate and allocate energetic resources between survivorship and reproductive effort. Defense against parasitic infection is an important force shaping life history evolution. Proper performance of immunological responses against infection is influenced by many physiological systems, including metabolic, reproductive, and stress hormones. Because androgens influence and modulate immune, reproductive, and somatic metabolic functions, assessing changes in testosterone and immune factors during infection may yield insight into male physiological ecology. In this review, we examine male life history trade-offs between immune and reproductive endocrine functions as well as provide a comprehensive review of testosterone-immunocompetence relationships. Emphasis is placed on testosterone because it is a primary hormone shown to be crucial to energy-allocation processes in vertebrates. Non-primate species have been used more extensively in this research than humans or non-human primates, and therefore this extensive literature is organized and reviewed in order to better understand potential parallel relationships in primates, especially humans. Furthermore, we attempt to reconcile the many inconsistent results obtained from field studies on immune-endocrine interactions as well as detail various methodologies that may be used to forward this research in evolutionary anthropology. Univ Wisconsin, Dept Anthropol, Lab Evolutionary Physiol & Parasitol, Milwaukee, WI 53211 USA; Yale Univ, Dept Anthropol, Reprod Ecol Lab, New Haven, CT 06520 USA Muehlenbein, MP (reprint author), Univ Wisconsin, Dept Anthropol, Lab Evolutionary Physiol & Parasitol, 3413 N Downer Ave, Milwaukee, WI 53211 USA. mpm1@uwm.edu AAKVAAG A, 1978, EUR J APPL PHYSIOL O, V39, P283, DOI 10.1007/BF00421452; Able DJ, 1996, P NATL ACAD SCI USA, V93, P2229, DOI 10.1073/pnas.93.5.2229; Adamo SA, 2001, ANIM BEHAV, V62, P417, DOI 10.1006/anbe.2001.1786; Al-Afaleq AI, 1998, IMMUNOPHARM IMMUNOT, V20, P315, DOI 10.3109/08923979809038547; Allen JE, 1996, INT ARCH ALLERGY IMM, V109, P3, DOI 10.1159/000237225; Angele MK, 1998, AM J PHYSIOL-CELL PH, V274, pC1530, DOI 10.1152/ajpcell.1998.274.6.C1530; ARDAWI MSM, 1985, ESSAYS BIOCHEM, V21, P1; AYALA SC, 1976, J PARASITOL, V62, P177, DOI 10.2307/3279261; BAGATELL CJ, 1990, FERTIL STERIL, V53, P688; BAMBINO TH, 1981, ENDOCRINOLOGY, V108, P2142, DOI 10.1210/endo-108-6-2142; BARNARD CJ, 1994, PARASITOLOGY, V108, P487, DOI 10.1017/S0031182000077349; Barnard CJ, 1996, ETHOLOGY, V102, P63, DOI 10.1111/j.1439-0310.1996.tb01104.x; Barnard CJ, 1998, P ROY SOC B-BIOL SCI, V265, P2087, DOI 10.1098/rspb.1998.0544; BARRETT KE, 1988, AM J TROP MED HYG, V38, P574, DOI 10.4269/ajtmh.1988.38.574; BEALL CM, 1992, ANN HUM BIOL, V19, P67, DOI 10.1080/03014469200001932; BEAVER PC, 1988, AM J TROP MED HYG, V39, P343, DOI 10.4269/ajtmh.1988.39.343; Benten WPM, 1999, FASEB J, V13, P123; Benten WPM, 1997, J ENDOCRINOL, V153, P275, DOI 10.1677/joe.0.1530275; BENTEN WPM, 1993, J ENDOCRINOL, V139, P487, DOI 10.1677/joe.0.1390487; BENTLEY GR, 1993, AM J HUM BIOL, V5, P711, DOI 10.1002/ajhb.1310050614; Bentley GR, 1999, EVOL ANTHROPOL, V7, P175; Berke G, 1997, Curr Opin Hematol, V4, P32; BEUTLER B, 1988, ENDOCR REV, V9, P57, DOI 10.1210/edrv-9-1-57; Bhasin S, 2000, JAMA-J AM MED ASSOC, V283, P763, DOI 10.1001/jama.283.6.763; Bhasin S, 1996, NEW ENGL J MED, V335, P1, DOI 10.1056/NEJM199607043350101; Bigler LR, 2002, J ORAL PATHOL MED, V31, P421, DOI 10.1034/j.1600-0714.2002.00123.x; Bijlsma JWJ, 1999, IMMUNOL TODAY, V20, P298, DOI 10.1016/S0167-5699(98)01422-4; Bilbo SD, 2001, AM J PHYSIOL-REG I, V280, pR207; BLACK SJ, 2002, INFECT RESISTANCE IM, P1; BLACK SJ, 2002, INFECT RESISTANCE IM, P45; BONAVERA JJ, 1993, BRAIN RES, V612, P1, DOI 10.1016/0006-8993(93)91637-8; BORGIA G, 1986, BEHAV ECOL SOCIOBIOL, V19, P355, DOI 10.1007/BF00295708; BRABIN L, 1990, EPIDEMIOL INFECT, V105, P335, DOI 10.1017/S0950268800047932; Braude S, 1999, BEHAV ECOL, V10, P345, DOI 10.1093/beheco/10.3.345; Bribiescas RG, 2005, AM J PHYS ANTHROPOL, V127, P114, DOI 10.1002/ajpa.20079; Bribiescas RG, 2001, YEARB PHYS ANTHROPOL, V44, P148, DOI 10.1002/ajpa.10025; Bribiescas RG, 1996, HUM NATURE-INT BIOS, V7, P163, DOI 10.1007/BF02692109; BRIBIESCAS RG, 1997, THESIS HARVARD U CAM; BRIBIESCAS RG, 2001, REPROD ECOLOGY HUMAN, P107; Broglio F, 2003, HORM RES, V59, P109, DOI 10.1159/000069065; Brown R. E., 1994, INTRO NEUROENDOCRINO; Buchanan KL, 2000, TRENDS ECOL EVOL, V15, P156, DOI 10.1016/S0169-5347(99)01812-1; Burger D, 2002, ANN NY ACAD SCI, V966, P464, DOI 10.1111/j.1749-6632.2002.tb04248.x; CALZORLARI A, 1889, ARCH ITAL BIOL, V30, P71; Campbell B, 2003, AM J HUM BIOL, V15, P697, DOI 10.1002/ajhb.10203; Campbell BC, 1995, YEARB PHYS ANTHROPOL, V38, P1; CAMPBELL BC, 2001, REPROD ECOLOGY HUMAN, P159; Carroll MC, 1998, ANNU REV IMMUNOL, V16, P545, DOI 10.1146/annurev.immunol.16.1.545; Casto JM, 2001, AM NAT, V157, P408, DOI 10.1086/319318; Cernak I, 1997, WORLD J SURG, V21, P240, DOI 10.1007/s002689900223; CHAO TC, 1995, CELL IMMUNOL, V160, P43, DOI 10.1016/0008-8749(95)80007-6; CHAO TC, 1994, AM J REPROD IMMUNOL, V32, P43, DOI 10.1111/j.1600-0897.1994.tb00877.x; Chatterton RT, 1997, J CLIN ENDOCR METAB, V82, P2503, DOI 10.1210/jc.82.8.2503; CHRISTIANSEN KH, 1991, AM J PHYS ANTHROPOL, V86, P37, DOI 10.1002/ajpa.1330860103; CLAYTON DH, 1991, PARASITOL TODAY, V7, P329, DOI 10.1016/0169-4758(91)90211-6; COFFMAN RL, 1991, RES IMMUNOL, V142, P7, DOI 10.1016/0923-2494(91)90002-Z; COLEMAN RM, 1982, P SOC EXP BIOL MED, V171, P294; CONNORS VA, 1991, PARASITOLOGY, V103, P395, DOI 10.1017/S0031182000059916; COX FEG, 1992, IMMUNOL TODAY, V13, P445, DOI 10.1016/0167-5699(92)90072-F; COX FEG, 2002, INFECT RESISTANCE IM, P349; Dabbs JM, 1996, PHARMACOLOGY, BIOLOGY, AND CLINICAL APPLICATIONS OF ANDROGENS, P179; DABBS JM, 1990, PSYCHOL SCI, V1, P209, DOI 10.1111/j.1467-9280.1990.tb00200.x; DASILVA JAP, 1995, ANN RHEUM DIS, V54, P6, DOI 10.1136/ard.54.1.6; DAYNES RA, 1991, RES IMMUNOL, V142, P40, DOI 10.1016/0923-2494(91)90010-G; DAYNES RA, 1991, PROG LEUC B, V11, P77; De Ridder E, 2002, AUK, V119, P487, DOI 10.1642/0004-8038(2002)119[0487:SALTEO]2.0.CO;2; Demas GE, 1998, J COMP PHYSIOL B, V168, P419, DOI 10.1007/s003600050161; DEMAS GE, 1997, AM J PHYSIOL-REG I, V42, pR1331; Ditchkoff SS, 2001, EVOLUTION, V55, P616, DOI 10.1554/0014-3820(2001)055[0616:MHCAVI]2.0.CO;2; DIXSON AF, 1993, PRIMATES, V34, P525, DOI 10.1007/BF02382663; DOERR P, 1976, J CLIN ENDOCR METAB, V43, P622, DOI 10.1210/jcem-43-3-622; Doucet SM, 2003, BEHAV ECOL, V14, P503, DOI 10.1093/beheco/arg035; Drickamer LC, 2000, ANIM BEHAV, V59, P371, DOI 10.1006/anbe.1999.1316; Duffy DL, 2000, BEHAV ECOL, V11, P654, DOI 10.1093/beheco/11.6.654; Duffy DL, 2002, P ROY SOC B-BIOL SCI, V269, P847, DOI 10.1098/rspb.2002.1956; DUGAN PR, 2002, INFECT RESISTANCE IM, P283; DUGGAN MB, 1986, ARCH DIS CHILD, V61, P61, DOI 10.1136/adc.61.1.61; Dunbar R. I. M., 1984, REPROD DECISIONS EC; DYM M, 1990, CONRAD W S, P181; ECCLES MP, 1989, EUR J CLIN NUTR, V43, P485; Eens M, 2000, HORM BEHAV, V37, P126, DOI 10.1006/hbeh.1999.1569; Eisen RJ, 2000, J PARASITOL, V86, P1041, DOI 10.1645/0022-3395(2000)086[1041:LHOAMP]2.0.CO;2; Elenkov IJ, 1999, BEST PRACT RES CL EN, V13, P583, DOI 10.1053/beem.1999.0045; Elenkov IJ, 1996, P ASSOC AM PHYSICIAN, V108, P374; ELIA M, 1992, ENERGY METABOLISM, P19; ELIAS M, 1992, ENERGY METABOLISM TI, P51; ELLISON P T, 1989, American Journal of Human Biology, V1, P21, DOI 10.1002/ajhb.1310010106; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; ELLISON PT, 1993, HUM REPROD, V8, P2248, DOI 10.1093/oxfordjournals.humrep.a138015; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Ellison PT, 2002, HUM REPROD, V17, P3251, DOI 10.1093/humrep/17.12.3251; ELLISON PT, 1994, ANNU REV ANTHROPOL, V23, P255, DOI 10.1146/annurev.anthro.23.1.255; Ellison PT, 1996, HUM BIOL, V68, P955; ELLISON PT, 2001, REPROD ECOLOGY HUMAN, P1; ELLISON PT, 2001, FERTILE GROUND NATUR; ELOISANTOS S, 1992, EXP PARASITOL, V75, P168, DOI 10.1016/0014-4894(92)90176-B; Else KJ, 1998, INT J PARASITOL, V28, P1145, DOI 10.1016/S0020-7519(98)00087-3; Evans MR, 2000, BEHAV ECOL SOCIOBIOL, V47, P156, DOI 10.1007/s002650050006; Fedigan LM, 1997, AM J PHYS ANTHROPOL, V102, P161, DOI 10.1002/(SICI)1096-8644(199702)102:2<161::AID-AJPA2>3.0.CO;2-1; FLEMING PJ, 1994, ARCH DIS CHILD, V70, P187, DOI 10.1136/adc.70.3.187; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; FOLSTAD I, 1989, OIKOS, V55, P87, DOI 10.2307/3565877; Friedl R, 2000, LIFE SCI, V68, P417, DOI 10.1016/S0024-3205(00)00953-X; FRISANCHO AR, 1993, HUMAN ADAPTATION ACC; GANDSTEAD SW, 1998, P ROY SOC LOND B BIO, V265, P927; Ganley L, 2001, EXP PARASITOL, V98, P29, DOI 10.1006/expr.2001.4608; Garamszegi LZ, 2003, EVOLUTION, V57, P905, DOI 10.1554/0014-3820(2003)057[0905:TEOIDA]2.0.CO;2; Gems D, 1996, NATURE, V379, P723, DOI 10.1038/379723a0; George J. Richard, 1997, American Journal of Medicine, V102, P21; Gerald MS, 2001, ANIM BEHAV, V61, P559, DOI 10.1006/anbe.2000.1648; Giltay EJ, 2000, J CLIN ENDOCR METAB, V85, P1648, DOI 10.1210/jc.85.4.1648; Gomez Y, 2000, J STEROID BIOCHEM, V74, P143, DOI 10.1016/S0960-0760(00)00099-6; Gould KG, 1998, DEV COMP IMMUNOL, V22, P457, DOI 10.1016/S0145-305X(98)00024-X; GRAMMER K, 1994, J COMP PSYCHOL, V108, P233, DOI 10.1037/0735-7036.108.3.233; Granger DA, 2000, PSYCHOSOM MED, V62, P583, DOI 10.1097/00006842-200007000-00018; Grant Nicole N, 2002, Treat Endocrinol, V1, P217, DOI 10.2165/00024677-200201040-00003; GRAY A, 1991, J CLIN ENDOCR METAB, V73, P1016, DOI 10.1210/jcem-73-5-1016; Gray DA, 1998, J INVERTEBR PATHOL, V71, P288, DOI 10.1006/jipa.1997.4742; Gropp J, 1976, Environ Qual Saf Suppl, P131; GROSSMAN CJ, 1984, ENDOCR REV, V5, P435, DOI 10.1210/edrv-5-3-435; GROSSMAN CJ, 1991, J STEROID BIOCHEM, V40, P649, DOI 10.1016/0960-0760(91)90287-F; GROSSMAN CJ, 1995, BILATERAL COMMUNICAT, P1; HADID R, 1995, NEUROENDOCRINOLOGY, V62, P348, DOI 10.1159/000127024; Hadigan C, 2000, J CLIN ENDOCR METAB, V85, P35, DOI 10.1210/jc.85.1.35; Hadju Veni, 1995, Southeast Asian Journal of Tropical Medicine and Public Health, V26, P719; HADLEY ME, 1996, ENDOCRINOLOGY; HALES DB, 1992, ENDOCRINOLOGY, V131, P2165, DOI 10.1210/en.131.5.2165; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Harman SM, 2001, J CLIN ENDOCR METAB, V86, P724, DOI 10.1210/jc.86.2.724; Hasselquist D, 1999, BEHAV ECOL SOCIOBIOL, V45, P167, DOI 10.1007/s002650050550; HENKEN AM, 1982, POULTRY SCI, V61, P1667, DOI 10.3382/ps.0611667; HENRIKSSON J, 1992, ENERGY METABOLISM, P345; HICKEY MA, 2002, INFECT RESISTANCE IM, P131; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hillgarth N, 1997, BEHAV ECOL, V8, P108, DOI 10.1093/beheco/8.1.108; Hosken DJ, 2001, ETHOL ECOL EVOL, V13, P173; HOUDE AE, 1992, BEHAV ECOL, V3, P346, DOI 10.1093/beheco/3.4.346; Huber SA, 1999, J VIROL, V73, P4689; Hughes VL, 2001, PARASITOLOGY, V123, P365, DOI 10.1017/S0031182001008599; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Ing R, 2000, P NATL ACAD SCI USA, V97, P7078, DOI 10.1073/pnas.97.13.7078; JAMES SL, 1995, MICROBIOL REV, V59, P533; John JL, 1997, INT J PARASITOL, V27, P1269, DOI 10.1016/S0020-7519(97)00098-2; Kacelnik A, 1998, BEHAV BRAIN SCI, V21, P378, DOI 10.1017/S0140525X98411221; KACPRZAKBERGMAN I, 1994, ANN HUM BIOL, V21, P563, DOI 10.1080/03014469400003562; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Karunaweera ND, 1998, AM J TROP MED HYG, V58, P204, DOI 10.4269/ajtmh.1998.58.204; Kasper LH, 2001, INFECT IMMUN, V69, P1, DOI 10.1128/IAI.69.1.1-8.2001; Kaufman E, 2002, CRIT REV ORAL BIOL M, V13, P197, DOI 10.1177/154411130201300209; KETTERSON ED, 1992, AM NAT, V140, pS33, DOI 10.1086/285396; KING CL, 1992, CHEM IMMUNOL, V54, P136; Klasing KC, 1998, POULTRY SCI, V77, P1119, DOI 10.1093/ps/77.8.1119; Klein SL, 1997, HORM BEHAV, V32, P30, DOI 10.1006/hbeh.1997.1402; Klein SL, 1998, AM NAT, V151, P59, DOI 10.1086/286102; Klein SL, 1999, ANIM BEHAV, V57, P603, DOI 10.1006/anbe.1998.1038; Klein SL, 1999, AM J PHYSIOL-REG I, V277, pR1362, DOI 10.1152/ajpregu.1999.277.5.R1362; Klein SL, 2000, NEUROSCI BIOBEHAV R, V24, P627, DOI 10.1016/S0149-7634(00)00027-0; Klukowski M, 2001, BEHAV ECOL SOCIOBIOL, V49, P289, DOI 10.1007/s002650000298; Koski KG, 2001, ANNU REV NUTR, V21, P297, DOI 10.1146/annurev.nutr.21.1.297; Koski KG, 1999, BIOCHEM BIOPH RES CO, V264, P796, DOI 10.1006/bbrc.1999.1596; Kramer TR, 1997, INT J SPORTS MED, V18, pS84, DOI 10.1055/s-2007-972704; KRZYCH U, 1981, AM J REPROD IMMUNOL, V1, P73, DOI 10.1111/j.1600-0897.1981.tb00020.x; Kurtis JD, 2001, INFECT IMMUN, V69, P123, DOI 10.1128/IAI.69.1.123-128.2001; Kurtz J, 2000, TRENDS ECOL EVOL, V15, P418, DOI 10.1016/S0169-5347(00)01969-8; Lagesen K, 1998, BEHAV ECOL SOCIOBIOL, V44, P135, DOI 10.1007/s002650050524; LAIRMORE MD, 2002, INFECT RESISTANCE IM, P319; Lawrence Herenia P, 2002, J Can Dent Assoc, V68, P170; Leder BZ, 2001, J CLIN ENDOCR METAB, V86, P3654, DOI 10.1210/jc.86.8.3654; Lertmemongkolchai G, 2001, J IMMUNOL, V166, P1097, DOI 10.4049/jimmunol.166.2.1097; LICHTMAN MA, 1967, ARTHRITIS RHEUM, V10, P204, DOI 10.1002/art.1780100306; Lin E, 1998, NUTRITION, V14, P545, DOI 10.1016/S0899-9007(98)00046-X; LIN TM, 1996, PHYSL IMMUNITY, P263; Lindstrom KM, 2001, P ROY SOC B-BIOL SCI, V268, P207, DOI 10.1098/rspb.2000.1352; Lister A, 2002, J EXP ZOOL, V292, P477, DOI 10.1002/jez.10066; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Long KZ, 2004, AM J HUM BIOL, V16, P499, DOI 10.1002/ajhb.20064; Lukas WD, 2004, AM J HUM BIOL, V16, P704, DOI 10.1002/ajhb.20083; Lunn SF, 1997, J ENDOCRINOL, V154, P125, DOI 10.1677/joe.0.1540125; MacDonald AS, 2002, INFECT IMMUN, V70, P427, DOI 10.1128/IAI.70.2.427-433.2002; Maggioncalda AN, 1999, AM J PHYS ANTHROPOL, V109, P19, DOI 10.1002/(SICI)1096-8644(199905)109:1<19::AID-AJPA3>3.0.CO;2-3; Mann DR, 1996, J ENDOCRINOL, V149, P191, DOI 10.1677/joe.0.1490191; MANN DR, 1994, J CLIN ENDOCR METAB, V78, P292, DOI 10.1210/jc.78.2.292; Mann DR, 2000, CELL IMMUNOL, V200, P105, DOI 10.1006/cimm.2000.1623; Mann DR, 1998, AM J REPROD IMMUNOL, V39, P256; MARIN P, 1992, INT J OBESITY, V16, P991; Marin P, 1992, Eur J Med, V1, P329; MARLER CA, 1988, BEHAV ECOL SOCIOBIOL, V23, P21, DOI 10.1007/BF00303053; MARLER CA, 1995, BEHAV ECOL SOCIOBIOL, V37, P225, DOI 10.1007/s002650050185; Martin LB, 2003, P ROY SOC B-BIOL SCI, V270, P153, DOI 10.1098/rspb.2002.2185; Maurer M, 2001, HORM METAB RES, V33, P691, DOI 10.1055/s-2001-19142; McCurdy DG, 1998, OIKOS, V82, P303, DOI 10.2307/3546970; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; McKean KA, 2001, P NATL ACAD SCI USA, V98, P7904, DOI 10.1073/pnas.131216398; MCMILLIN JM, 1980, FED PROC, V39, P2964; Meier U, 2004, CLIN CHEM, V50, P1511, DOI 10.1373/clinchem.2004.032482; MENDENHALL CL, 1990, J STEROID BIOCHEM, V37, P71, DOI 10.1016/0960-0760(90)90374-T; Messingham KAN, 2001, J ENDOCRINOL, V169, P299, DOI 10.1677/joe.0.1690299; MILINSKI M, 1990, NATURE, V344, P330, DOI 10.1038/344330a0; MIZOBATA Y, 1995, J SURG RES, V59, P165, DOI 10.1006/jsre.1995.1149; MOLLER A. P., 1997, ASYMMETRY DEV STABIL; Moller AP, 1996, BEHAV ECOL SOCIOBIOL, V39, P317, DOI 10.1007/s002650050295; Moller AP, 1998, J THEOR BIOL, V193, P497, DOI 10.1006/jtbi.1998.0718; Moller AP, 2002, BEHAV ECOL, V13, P248, DOI 10.1093/beheco/13.2.248; Moore SL, 2002, SCIENCE, V297, P2015, DOI 10.1126/science.1074196; MOSMANN TR, 1989, ADV IMMUNOL, V46, P111, DOI 10.1016/S0065-2776(08)60652-5; MOSMANN TR, 1991, RES IMMUNOL, V142, P9, DOI 10.1016/0923-2494(91)90003-2; MOSMANN TR, 1991, IMMUNOL RES, V10, P183, DOI 10.1007/BF02919690; MOSMANN TR, 1986, J IMMUNOL, V136, P2348; MOSMANN TR, 1989, ANNU REV IMMUNOL, V7, P145, DOI 10.1146/annurev.immunol.7.1.145; Muehlenbein MP, 2005, AM J TROP MED HYG, V73, P178, DOI 10.4269/ajtmh.2005.73.178; Muehlenbein MP, 2005, AM J PRIMATOL, V65, P167, DOI 10.1002/ajp.20106; MUEHLENBEIN MP, 2004, THESIS YALE U NEW HA; MUNCK A, 1984, ENDOCR REV, V5, P25, DOI 10.1210/edrv-5-1-25; NADLER RD, 1993, J MED PRIMATOL, V22, P325; Nakazawa M, 1997, EXP PARASITOL, V85, P233, DOI 10.1006/expr.1997.4148; Nelson R., 2002, SEASONAL PATTERNS ST; Newsholme P, 2001, J NUTR, V131, p2515S, DOI 10.1093/jn/131.9.2515S; Niewiarowski PH, 2000, J EXP BIOL, V203, P295; Norbiato G, 1997, J CLIN ENDOCR METAB, V82, P3260, DOI 10.1210/jc.82.10.3260; NORRIS K, 1994, J ANIM ECOL, V63, P601, DOI 10.2307/5226; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; O'Garra A, 1998, IMMUNITY, V8, P275, DOI 10.1016/S1074-7613(00)80533-6; Ober C, 1997, AM J HUM GENET, V61, P497, DOI 10.1086/515511; Ogilvie KM, 1999, BIOL REPROD, V60, P527, DOI 10.1095/biolreprod60.2.527; Olsen NJ, 1996, ENDOCR REV, V17, P369, DOI 10.1210/er.17.4.369; OLSEN NJ, 1991, ENDOCRINOLOGY, V129, P2471, DOI 10.1210/endo-129-5-2471; Olsson M, 2000, P ROY SOC B-BIOL SCI, V267, P2339, DOI 10.1098/rspb.2000.1289; Olsson M, 1997, P ROY SOC B-BIOL SCI, V264, P455, DOI 10.1098/rspb.1997.0065; Owens IPF, 2002, SCIENCE, V297, P2008; PARRYBILLINGS M, 1992, MED SCI SPORT EXER, V24, P1353; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; Penn D, 1998, TRENDS ECOL EVOL, V13, P391, DOI 10.1016/S0169-5347(98)01473-6; Perez-Tris J, 2002, BIOL J LINN SOC, V76, P481, DOI 10.1046/j.1095-8312.2002.00083.x; Perrett DI, 1998, NATURE, V394, P884, DOI 10.1038/29772; Peters A, 2000, P ROY SOC B-BIOL SCI, V267, P883, DOI 10.1098/rspb.2000.1085; Picard F, 2002, CLIN DIAGN LAB IMMUN, V9, P771, DOI 10.1128/CDLI.9.4.774-776.2002; PORETSKY L, 1995, METABOLISM, V44, P946, DOI 10.1016/0026-0495(95)90250-3; POTTS WK, 1991, NATURE, V352, P619, DOI 10.1038/352619a0; Poulin R, 1996, AM NAT, V147, P287, DOI 10.1086/285851; Raberg L, 1998, P ROY SOC B-BIOL SCI, V265, P1637, DOI 10.1098/rspb.1998.0482; Raberg L, 2002, P ROY SOC B-BIOL SCI, V269, P817, DOI 10.1098/rspb.2001.1953; Reiner SL, 1999, IMMUNITY, V11, P1, DOI 10.1016/S1074-7613(00)80076-X; Remmers DE, 1997, AM J PHYSIOL-HEART C, V273, pH2919; Remoue F, 2002, INFECT IMMUN, V70, P601, DOI 10.1128/IAI.70.2.601-605.2002; RICHNER H, 1995, P NATL ACAD SCI USA, V92, P1192, DOI 10.1073/pnas.92.4.1192; Roberts ML, 2004, ANIM BEHAV, V68, P227, DOI 10.1016/j.anbehav.2004.05.001; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Rooyackers OE, 1997, ANNU REV NUTR, V17, P457, DOI 10.1146/annurev.nutr.17.1.457; Ros AFH, 1997, AM NAT, V150, P201, DOI 10.1086/286063; ROSENBERG IH, 1984, FED PROC, V43, P246; Rosmond R, 1996, OBES RES, V4, P245, DOI 10.1002/j.1550-8528.1996.tb00542.x; ROTHWELL TLW, 1989, INT J PARASITOL, V19, P139, DOI 10.1016/0020-7519(89)90003-9; Roubenoff R, 2002, AM J PHYSIOL-ENDOC M, V283, pE138, DOI 10.1152/ajpendo.00426.2001; SAAD AH, 1990, IMMUNOBIOLOGY, V180, P184, DOI 10.1016/S0171-2985(11)80327-X; Saino N, 1999, J ANIM ECOL, V68, P999, DOI 10.1046/j.1365-2656.1999.00350.x; Saino N, 1995, BEHAV ECOL, V6, P397, DOI 10.1093/beheco/6.4.397; Saino N, 2003, BEHAV ECOL SOCIOBIOL, V54, P465, DOI 10.1007/s00265-003-0642-z; Saino N, 2003, BEHAV ECOL, V14, P16, DOI 10.1093/beheco/14.1.16; Saino N, 2002, BEHAV ECOL, V13, P169, DOI 10.1093/beheco/13.2.169; SAINO N, 1994, ANIM BEHAV, V48, P1325, DOI 10.1006/anbe.1994.1369; Saino N, 1999, AM NAT, V154, P441, DOI 10.1086/303246; Salvador A, 1996, BEHAV ECOL, V7, P145, DOI 10.1093/beheco/7.2.145; Samy TSA, 2000, SHOCK, V14, P465; Sapolsky RM, 1995, ANN NY ACAD SCI, V771, P626, DOI 10.1111/j.1749-6632.1995.tb44715.x; Schalk G, 1997, OIKOS, V78, P67, DOI 10.2307/3545801; SCHALL JJ, 1993, BIOTROPICA, V25, P229, DOI 10.2307/2389187; Schall JJ, 1996, ADV PARASIT, V37, P255, DOI 10.1016/S0065-308X(08)60222-5; Schmid-Hempel P, 2003, TRENDS ECOL EVOL, V18, P27, DOI 10.1016/S0169-5347(02)00013-7; Schmid-Hempel P, 2003, P ROY SOC B-BIOL SCI, V270, P357, DOI 10.1098/rspb.2002.2265; SCHUURS AHWM, 1990, J STEROID BIOCHEM, V35, P157, DOI 10.1016/0022-4731(90)90270-3; Setchell JM, 2002, AM J PRIMATOL, V56, P9, DOI 10.1002/ajp.1060; Setchell JM, 2001, AM J PHYS ANTHROPOL, V115, P245, DOI 10.1002/ajpa.1079; Setchell JM, 2001, AM J PRIMATOL, V53, P109, DOI 10.1002/1098-2345(200103)53:3<109::AID-AJP2>3.0.CO;2-I; SETCHELL JM, 1999, THESIS U CAMBRIDGE C; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Shephard PJ, 1998, CRIT REV IMMUNOL, V18, P545; SHER A, 1992, ANNU REV IMMUNOL, V10, P385, DOI 10.1146/annurev.iy.10.040192.002125; Singh AB, 2002, J CLIN ENDOCR METAB, V87, P136, DOI 10.1210/jc.87.1.136; SLATER CH, 1993, GEN COMP ENDOCR, V89, P291, DOI 10.1006/gcen.1993.1035; Smith EM, 1998, AQUAT MICROB ECOL, V16, P27, DOI 10.3354/ame016027; SMITH T, 1934, PARASITISM DIS; SORENSEN RA, 2002, INFECT RESISTANCE IM, P157; SORENSEN RA, 2002, INFECT RESISTANCE IM, P61; Soronen P, 2004, J STEROID BIOCHEM, V92, P281, DOI 10.1016/j.jsbmb.2004.10.004; Sotchell JM, 2001, HORM BEHAV, V39, P177, DOI 10.1006/bheh.2000.1628; SOUDAN B, 1992, ACTA ENDOCRINOL-COP, V127, P86, DOI 10.1530/acta.0.1270086; SPRATT DI, 1993, J CLIN ENDOCR METAB, V76, P1548, DOI 10.1210/jc.76.6.1548; SPRATT DI, 1988, AM J PHYSIOL, V254, pE652; Spratt DI, 2001, BEST PRACT RES CL EN, V15, P479, DOI 10.1053/beem.2001.0165; Spurlock ME, 1997, J ANIM SCI, V75, P1773; Stanley J., 2002, ESSENTIALS IMMUNOLOG; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEVENSON MM, 1990, INFECT IMMUN, V58, P3225; STHOEGER ZM, 1988, J IMMUNOL, V141, P91; Straub RH, 2001, ARTHRITIS RHEUM-US, V44, P493, DOI 10.1002/1529-0131(200103)44:3<493::AID-ANR95>3.3.CO;2-L; Streckfus CF, 2002, ORAL DIS, V8, P69, DOI 10.1034/j.1601-0825.2002.1o834.x; TAKHAR BS, 1979, BRIT POULTRY SCI, V20, P197, DOI 10.1080/00071667908416569; TARGETT G, 1990, SCAND J INFECT DIS, P79; TAYLOR DW, 2002, INFECT RESISTANCE IM, P105; Thomas F, 1995, OIKOS, V74, P305, DOI 10.2307/3545660; TIURIA R, 1995, PARASITE IMMUNOL, V17, P479, DOI 10.1111/j.1365-3024.1995.tb00918.x; Travi BL, 2002, INFECT IMMUN, V70, P2288, DOI 10.1128/IAI.70.5.2288-2296.2002; Tsai LW, 1996, AGGRESSIVE BEHAV, V22, P357; Turnbull AV, 1999, PHYSIOL REV, V79, P1; ULIJASZEK SJ, 1990, SOC ST HUM, V30, P137; URBAN JF, 1992, IMMUNOL REV, V127, P205, DOI 10.1111/j.1600-065X.1992.tb01415.x; Valenti S, 1999, ANN NY ACAD SCI, V876, P298, DOI 10.1111/j.1749-6632.1999.tb07652.x; VANDENBE.JG, 1965, GEN COMP ENDOCR, V5, P31, DOI 10.1016/0016-6480(65)90065-1; VANVOORHIES WA, 1992, NATURE, V360, P456, DOI 10.1038/360456a0; Verhulst S, 1999, P NATL ACAD SCI USA, V96, P4478, DOI 10.1073/pnas.96.8.4478; VONSCHANTZ T, 1989, NATURE, V337, P166, DOI 10.1038/337166a0; WAAGE A, 1989, J EXP MED, V170, P1859, DOI 10.1084/jem.170.6.1859; Wallace Alfred Russel, 1891, NATURAL SELECTION TR; Watanabe K, 1999, PARASITOL RES, V85, P522, DOI 10.1007/s004360050591; Wauters M, 2000, EUR J ENDOCRINOL, V143, P293, DOI 10.1530/eje.0.1430293; WEATHERHEAD PJ, 1993, BEHAV ECOL SOCIOBIOL, V33, P13, DOI 10.1007/BF00164342; WEDEKIND C, 1994, AM NAT, V143, P936, DOI 10.1086/285641; Wedekind C, 1998, OIKOS, V81, P458, DOI 10.2307/3546767; WEDEKIND C, 1995, P ROY SOC B-BIOL SCI, V260, P245, DOI 10.1098/rspb.1995.0087; WEINSTEIN Y, 1981, J IMMUNOL, V126, P998; WELLE S, 1992, J CLIN ENDOCR METAB, V74, P332, DOI 10.1210/jc.74.2.332; Westneat DF, 1998, P ROY SOC B-BIOL SCI, V265, P1065, DOI 10.1098/rspb.1998.0400; Wichmann MW, 1997, AM J PHYSIOL-CELL PH, V273, pC1335; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; Wunderlich F, 2002, STEROIDS, V67, P535, DOI 10.1016/S0039-128X(01)00175-1; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3; Zhang HP, 2001, PARASITOL RES, V87, P674, DOI 10.1007/s004360000354; Zhang ZH, 2000, EXP PARASITOL, V96, P121, DOI 10.1006/expr.2000.4572; Zirkin BR, 2000, BIOL REPROD, V63, P977, DOI 10.1095/biolreprod63.4.977; ZUCKERMAN S., 1939, Journal of Endocrinology, V1, P430, DOI 10.1677/joe.0.0010430; Zuk M, 1996, INT J PARASITOL, V26, P1009, DOI 10.1016/S0020-7519(96)80001-4; ZUK M, 1995, P ROY SOC B-BIOL SCI, V260, P205, DOI 10.1098/rspb.1995.0081; Zuk M, 1996, ECOLOGY, V77, P1037, DOI 10.2307/2265574 333 193 204 3 80 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 1520-6300 AM J HUM BIOL Am. J. Hum. Biol. SEP-OCT 2005 17 5 527 558 10.1002/ajhb.20419 32 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 961IO WOS:000231655700001 16136532 2018-11-12 J Vedder, O; Dijkstra, C; Dekker, AL; Waasdorp, S; Visser, GH Vedder, O; Dijkstra, C; Dekker, AL; Waasdorp, S; Visser, GH Sex-specific nestling body mass in relation to brood sex composition in the Eurasian Sparrowhawk Accipiter nisus ARDEA English Article sexual size dimorphism; sibling competition; parental investment; sex allocation; Eurasian Sparrowhawk; Accipiter nisus TIT PARUS-MAJOR; RATIO MANIPULATION; GREAT TIT; EUROPEAN SPARROWHAWK; ENERGY-REQUIREMENTS; SIZE DIMORPHISM; CLUTCH SIZE; BIRDS; SURVIVAL; ALLOCATION The trade-off between brood size and offspring quality as predicted by life history theory, has been extensively studied in birds. However, in sexually size-dimorphic birds, where the larger sex requires more investment from the parents, the potential additional trade-off between brood sex ratio and offspring quality has received less attention. Effects of brood sex composition on nestling fitness can have implications for optimal sex allocation strategies. A harmful effect of a higher proportion of the larger sex on either one of the sexes predicts selection towards parents producing the less harmful, smaller sex. In addition to Fisherian equal allocation this should lead to considerable sex ratio biases in extremely sexually size-dimorphic birds. We tested this in the Eurasian Sparrowhawk Accipiter nisus, where female nestlings require about 40% more parental investment than male nestlings. Sex-specific nestling body mass, calculated as the relative difference with the average body mass, corrected for age, for both sexes, was used as an indicator of nestling quality. With a sample size of 120 broods, containing 483 nestlings, we found that individual nestlings were of lower body mass when they hatched in larger and female dominated broods. This effect was particularly pronounced in female nestlings. Under these conditions, sex ratio theory predicts a male bias in the population. However, this is not supported by empirical evidence from literature. Univ Groningen, Zool Lab, NL-9750 AA Haren, Netherlands; Univ Groningen, Ctr Isotope Res, NL-9747 AG Groningen, Netherlands Vedder, O (reprint author), Univ Groningen, Zool Lab, POB 14, NL-9750 AA Haren, Netherlands. oscarvedder@hotmail.com Vedder, Oscar/A-9350-2012; Dijkstra, Cor/D-5876-2011 Dijkstra, Cor/0000-0002-7042-8083 ANDERSON DJ, 1993, CAN J ZOOL, V71, P2541, DOI 10.1139/z93-347; Badyaev AV, 2002, SCIENCE, V295, P316, DOI 10.1126/science.1066651; Bijlsma Rob G., 2005, Takkeling, V13, P9; Byholm P, 2005, ANN ZOOL FENN, V42, P81; Byholm P, 2002, J AVIAN BIOL, V33, P399, DOI 10.1034/j.1600-048X.2002.02952.x; CLUTTONBROCK TH, 1985, NATURE, V313, P131, DOI 10.1038/313131a0; COCKBURN A, 2002, CONCEPTS RES METHODS, P266; Darwin C. R., 1874, DESCENT MAN SELECTIO; DeKogel CH, 1997, J ANIM ECOL, V66, P167; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Dijkstra C, 1998, BEHAV ECOL, V9, P287, DOI 10.1093/beheco/9.3.287; Ewen JG, 2004, P ROY SOC B-BIOL SCI, V271, P1277, DOI 10.1098/rspb.2004.2735; FISHER R. A., 1930, GENETICAL THEORY NAT; FRANK SA, 1990, ANNU REV ECOL SYST, V21, P13, DOI 10.1146/annurev.ecolsys.21.1.13; GEBHARDTHENRICH S, 1998, AVIAN GROWTH DEV, P324; GEER T, 1981, J ZOOL, V195, P71; Godfray HCJ., 1994, PARASITOIDS BEHAV EV; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; Heinsohn R, 1997, P ROY SOC B-BIOL SCI, V264, P1325, DOI 10.1098/rspb.1997.0183; HERRE AE, 2001, ADAPTATIONISM OPTIMA, P191; Komdeur J, 2002, P ROY SOC B-BIOL SCI, V269, P1067, DOI 10.1098/rspb.2002.1965; Komdeur J, 1997, NATURE, V385, P522, DOI 10.1038/385522a0; Krackow S, 2002, ETHOLOGY, V108, P1041, DOI 10.1046/j.1439-0310.2002.00843.x; KRACKOW S, 1993, BEHAV ECOL SOCIOBIOL, V32, P429, DOI 10.1007/BF00168827; Krijgsveld KL, 1998, PHYSIOL ZOOL, V71, P693, DOI 10.1086/515983; Laaksonen T, 2004, J ANIM ECOL, V73, P342, DOI 10.1111/j.0021-8790.2004.00811.x; Lessells CM, 1998, ANIM BEHAV, V56, P395, DOI 10.1006/anbe.1998.0764; MAGRATH MJL, 2000, P ROY SOC LOND B BIO, V271, pS347; Moe B, 2004, J EXP BIOL, V207, P4067, DOI 10.1242/jeb.01226; Nager RG, 2000, BEHAV ECOL SOCIOBIOL, V48, P452, DOI 10.1007/s002650000262; NEWTON I, 1983, AUK, V100, P344; NEWTON I, 1984, J ANIM ECOL, V53, P809, DOI 10.2307/4661; NEWTON I, 1978, J ZOOL, V184, P465; NEWTON I, 1979, AM NAT, V113, P309, DOI 10.1086/283390; Newton I, 2000, J AVIAN BIOL, V31, P226, DOI 10.1034/j.1600-048X.2000.310214.x; OLSEN PD, 1991, BEHAV ECOL SOCIOBIOL, V28, P417, DOI 10.1007/BF00164123; Pen I, 2002, SEX RATIOS: CONCEPTS AND RESEARCH METHODS, P26, DOI 10.1017/CBO9780511542053.003; PEN I, 2000, THESIS U GRONINGEN N, P244; Pike TW, 2005, BEHAV ECOL SOCIOBIOL, V58, P407, DOI 10.1007/s00265-005-0931-9; Pike TW, 2003, BIOL REV, V78, P553, DOI 10.1017/S1464793103006146; RABERG L, 2005, OECOLOGIA; RASBASH J, 2000, MULTILEVEL MODELS PR; Riedstra B, 1998, AUK, V115, P635, DOI 10.2307/4089412; Risch M, 2002, ORNIS FENNICA, V79, P49; ROBINSON KD, 1991, AUK, V108, P277; Rosenfield RN, 1996, AUK, V113, P957, DOI 10.2307/4088881; Ryttman Hans, 2001, Ornis Svecica, V11, P79; SCHEW WA, 1998, AVIAN GROWTH DEV EVO, P288; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; Stearns S. C., 1992, EVOLUTION LIFE HIST; TINBERGEN JM, 1990, BEHAVIOUR, V114, P161, DOI 10.1163/156853990X00103; TINBERGEN JM, 1987, ARDEA, V75, P111; TINBERGEN JM, 1990, J ANIM ECOL, V59, P1113, DOI 10.2307/5035; TINBERGEN L., 1935, ARDEA, V24, P67; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; Uller T, 2003, EVOLUTION, V57, P927; ULLER T, IN PRESS BIOL REV; Van den Burg AB, 2002, IBIS, V144, pE39, DOI 10.1046/j.0019-1019.2001.00027.x; van der Ziel CE, 2001, PHYSIOL BIOCHEM ZOOL, V74, P52, DOI 10.1086/319314; Vedder O, 2005, BEHAV ECOL SOCIOBIOL, V58, P429, DOI 10.1007/s00265-005-0926-6; Vedder Oscar, 2004, Takkeling, V12, P239; West SA, 2002, HEREDITY, V88, P117, DOI [10.1038/sj.hdy.6800018, 10.1038/sj/hdy/6800018]; West SA, 2002, SCIENCE, V295, P1685, DOI 10.1126/science.1069043 63 5 5 1 9 NEDERLANDSE ORNITHOLOGISCHE UNIE ZEIST C/O PAUL STARMANS, OUDE ARNHEMSEWEG 261, 3705 BD ZEIST, NETHERLANDS 0373-2266 ARDEA Ardea FAL 2005 93 2 179 187 9 Ornithology Zoology 018AG WOS:000235734500004 2018-11-12 J Freitak, D; Vanatoa, A; Ots, I; Rantala, MJ Freitak, D; Vanatoa, A; Ots, I; Rantala, MJ Formation of melanin-based wing patterns is influenced by condition and immune challenge in Pieris brassicae ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA English Article encapsulation; immune response; pigmentation; large white butterfly; wing spots; trade-off; melanization; Lepidoptera; Pieridae EVOLUTIONARY ECOLOGY; TENEBRIO-MOLITOR; BUTTERFLY WINGS; EVO-DEVO; RESISTANCE; SYSTEM; IMMUNOCOMPETENCE; INVERTEBRATES; MELANIZATION; INVESTMENT According to life-history theory, trade-offs emerge because organisms possess a limited amount of resources that they have to allocate between different bodily functions. Here, we tested whether there is a trade-off between melanin-based immune response and dark melanized wing patterning in the large white butterfly, Pieris brassicae L. (Lepidoptera: Pieridae), by activating the immune system of pupae and measuring the wing pigmentation of freshly emerged adults. In contrast to expectations, we did not find any negative associations between immune challenge and wing patterning. Furthermore, implanted and punctured male pupae tended to have larger and darker forewing tips as adults compared to controls. Both in females and males, different wing spots were affected by condition-reflecting traits (e.g., pupal mass, brood), which suggest that formation of wing patterns may be a condition-dependent process and/or heritable. Univ Tartu, Ins Zool & Hydrobiol, EE-51014 Tartu, Estonia; Estonain Agr Univ, Inst Zool & Bot, EE-51014 Tartu, Estonia; Univ Jyvaskyla, Dept Biol & Environm Sci, Jyvaskyla 40351, Finland Freitak, D (reprint author), Max Planck Inst Chem Ecol, Dept Entomol, Hans Knoll Str 8, D-07745 Jena, Germany. dfreitak@ice.mpg.de Freitak, Dalial/H-4904-2012 Freitak, Dalial/0000-0001-8574-0531 Armitage SAO, 2003, J EVOLUTION BIOL, V16, P1038, DOI 10.1046/j.1420-9101.2003.00551.x; Barnes AI, 2000, P ROY SOC B-BIOL SCI, V267, P177, DOI 10.1098/rspb.2000.0984; Beldade P, 2002, NAT REV GENET, V3, P442, DOI 10.1038/nrg818; Beldade P, 2002, P NATL ACAD SCI USA, V99, P14262, DOI 10.1073/pnas.222236199; Bonduriansky R, 2001, BIOL REV, V76, P305, DOI 10.1017/S1464793101005693; BONSER RHC, 1995, CONDOR, V97, P590, DOI 10.2307/1369048; Cerenius L, 2004, IMMUNOL REV, V198, P116, DOI 10.1111/j.0105-2896.2004.00116.x; Chapman R. F., 1998, INSECTS STRUCTURE FU; COTTER SC, 2003, J EVOLUTIONARY BIOL, V17, P421; FELTWELL J, 1982, SERIES ETNOMOLOGICA, V18, P560; Fordyce JA, 2002, J EVOLUTION BIOL, V15, P871, DOI 10.1046/j.1420-9101.2002.00432.x; Freitak D, 2003, P ROY SOC B-BIOL SCI, V270, pS220, DOI 10.1098/rsbl.2003.0069; GUPTA AP, 1991, IMMUNOLOGY INSECTS O; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Janssen JM, 2001, EVOL DEV, V3, P415, DOI 10.1046/j.1525-142X.2001.01046.x; Jiggins CD, 2001, NATURE, V411, P302, DOI 10.1038/35077075; Kumar S, 2003, P NATL ACAD SCI USA, V100, P14139, DOI 10.1073/pnas.2036262100; Little TJ, 2004, TRENDS ECOL EVOL, V19, P58, DOI 10.1016/j.tree.2003.11.011; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; Mushtaque Mohammad, 1993, Pakistan Journal of Zoology, V25, P165; Nijhout HF, 1991, DEV EVOLUTION BUTTER; Perez-Tris J, 2002, BIOL J LINN SOC, V76, P481, DOI 10.1046/j.1095-8312.2002.00083.x; Plaistow SJ, 2003, ECOL LETT, V6, P489, DOI 10.1046/j.1461-0248.2003.00455.x; Rantala MJ, 2000, P ROY SOC B-BIOL SCI, V267, P2453, DOI 10.1098/rspb.2000.1305; Reeson AF, 1998, P ROY SOC B-BIOL SCI, V265, P1787, DOI 10.1098/rspb.1998.0503; Rutowski Ronald L., 1997, P257, DOI 10.1017/CBO9780511721946.016; Schmid-Hempel P, 2003, P ROY SOC B-BIOL SCI, V270, P357, DOI 10.1098/rspb.2002.2265; Schmid-Hempel R, 1998, FUNCT ECOL, V12, P22, DOI 10.1046/j.1365-2435.1998.00153.x; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Siva-Jothy MT, 2000, P ROY SOC B-BIOL SCI, V267, P2523, DOI 10.1098/rspb.2000.1315; Talloen W, 2004, EVOLUTION, V58, P360, DOI 10.1111/j.0014-3820.2004.tb01651.x; Vilmos P, 1998, IMMUNOL LETT, V62, P59, DOI 10.1016/S0165-2478(98)00023-6; WIERNASZ DC, 1992, ANIM BEHAV, V43, P89, DOI 10.1016/S0003-3472(05)80074-0; WIERNASZ DC, 1995, ANIM BEHAV, V49, P45, DOI 10.1016/0003-3472(95)80152-9; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 35 21 21 0 16 BLACKWELL PUBLISHING OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND 0013-8703 ENTOMOL EXP APPL Entomol. Exp. Appl. SEP 2005 116 3 237 243 10.1111/j.1570-7458.2005.00330.x 7 Entomology Entomology 955KL WOS:000231224700011 2018-11-12 J Stelzer, CP Stelzer, CP Evolution of rotifer life histories HYDROBIOLOGIA English Article; Proceedings Paper 10th International Rotifer Symposium JUN 07-13, 2003 Illmitz, AUSTRIA life history theory; egg size; body size; trade-off; constraint; adaptation BRACHIONUS-PLICATILIS ROTIFERA; HAPLODIPLOID CYCLICAL PARTHENOGENS; POPULATION-GROWTH RATES; EGG SIZE; BODY-SIZE; VARIABLE ENVIRONMENTS; PLANKTONIC ROTIFERS; BDELLOID ROTIFER; PHENOTYPIC PLASTICITY; RESOURCE LIMITATION When compared to most other multicellular animals, rotifers are all relatively small, short-lived and fast-reproducing organisms. However among and within different rotifer species there is a large variation in life history patterns. This review accounts for such variation in rotifers, with a strong focus on monogonont rotifers. As the life cycle of monogonont rotifers involves both asexual and sexual reproduction, life history patterns can be examined on the level of the genetic individual, which includes all asexual females, sexual females and males that originated from one resting egg. This concept has been applied successfully in many areas, for example in predicting optimal levels of mictic reproduction or sex allocation theory. The benefits and implications of the view of the genetic individual are discussed in detail. Rotifer life histories can also be viewed on the level of physiological individuals. A large part of this review deals with the life histories of individual amictic females and addresses life history traits like body size, egg size and resource allocation patterns. It asks which trade-offs exist among those traits, how these traits change under the influence of environmental factors like food availability or temperature, and whether these changes can be interpreted as adaptive. Univ Munster, Inst Anim Evolut & Ecol, Dept Evolutionary Biol, D-48149 Munster, Germany Stelzer, CP (reprint author), Univ Munster, Inst Anim Evolut & Ecol, Dept Evolutionary Biol, Hufferstr 1, D-48149 Munster, Germany. cpstelzer@web.de Stelzer, Claus-Peter/F-3789-2018 Stelzer, Claus-Peter/0000-0002-6682-0904 ALLAN JD, 1976, AM NAT, V110, P165, DOI 10.1086/283056; Aparici E, 2002, J EVOLUTION BIOL, V15, P65, DOI 10.1046/j.1420-9101.2002.00371.x; Aparici E, 1998, AM NAT, V152, P652, DOI 10.1086/286196; BEGON M, 1991, OKOLOGIE; Bernardo J, 1996, AM ZOOL, V36, P216; CASEWELL H, 1989, MATRIX POPULATION MO; Conde-Porcuna JM, 1998, J PLANKTON RES, V20, P1637, DOI 10.1093/plankt/20.8.1637; EPP RW, 1984, OECOLOGIA, V61, P289, DOI 10.1007/BF00379624; Fox GA, 2001, DESIGN ANAL ECOLOGIC, P253; Gilbert JJ, 1998, ECOLOGY, V79, P1371, DOI 10.2307/176749; Gilbert JJ, 2003, EVOL DEV, V5, P19, DOI 10.1046/j.1525-142X.2003.03004.x; Gilbert JJ, 2002, FRESHWATER BIOL, V47, P1633, DOI 10.1046/j.1365-2427.2002.00900.x; GILBERT JJ, 1989, LIMNOL OCEANOGR, V34, P606, DOI 10.4319/lo.1989.34.3.0606; GLAZIER DS, 1992, ECOLOGY, V73, P910, DOI 10.2307/1940168; Gomez A, 2002, EVOLUTION, V56, P1431; Gomez A, 1996, J EVOLUTION BIOL, V9, P953, DOI 10.1046/j.1420-9101.1996.9060953.x; GONZALEZ MJ, 1992, OECOLOGIA, V89, P560, DOI 10.1007/BF00317164; Green J, 1998, HYDROBIOLOGIA, V387, P301, DOI 10.1023/A:1017034409096; HALBACH U, 1970, OECOLOGIA, V4, P176, DOI 10.1007/BF00377100; Jr Lewis WM, 1979, ZOOPLANKTON COMMUNIT; KING CE, 1977, HEREDITY, V39, P361, DOI 10.1038/hdy.1977.77; KING CE, 1970, PHYSIOL ZOOL, V43, P206, DOI 10.1086/physzool.43.3.30155530; Kirk KL, 1997, FRESHWATER BIOL, V37, P515, DOI 10.1046/j.1365-2427.1997.00177.x; Kirk KL, 1997, ECOLOGY, V78, P434, DOI 10.1890/0012-9658(1997)078[0434:LHRTVE]2.0.CO;2; Kirk KL, 1999, FRESHWATER BIOL, V42, P637, DOI 10.1046/j.1365-2427.1999.00502.x; LAMPERT W, 1993, ECOLOGY, V74, P1455, DOI 10.2307/1940074; Lapesa S, 2002, FRESHWATER BIOL, V47, P1685, DOI 10.1046/j.1365-2427.2002.00926.x; Loxdale HD, 2003, BIOL J LINN SOC, V79, P3, DOI 10.1046/j.1095-8312.2003.00177.x; Merriman JL, 2000, ECOLOGY, V81, P141, DOI 10.1890/0012-9658(2000)081[0141:TPORLI]2.0.CO;2; MEYER JS, 1986, ECOLOGY, V67, P1156, DOI 10.2307/1938671; Orsenigo S, 1998, HYDROBIOLOGIA, V387, P317, DOI 10.1023/A:1017094627751; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; RICCI C, 1995, HYDROBIOLOGIA, V299, P231, DOI 10.1007/BF00767330; Ricci C, 1995, HYDROBIOLOGIA, V313, P157, DOI 10.1007/BF00025945; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; ROTHHAUPT KO, 1990, FRESHWATER BIOL, V23, P561, DOI 10.1111/j.1365-2427.1990.tb00295.x; Rougier C, 2000, HYDROBIOLOGIA, V436, P105, DOI 10.1023/A:1026579212772; Santo N, 2001, HYDROBIOLOGIA, V446, P71, DOI 10.1023/A:1017525222744; Sarma SSS, 2002, HYDROBIOLOGIA, V481, P89, DOI 10.1023/A:1021265104165; SARMA SSS, 1987, ARCH HYDROBIOL, V111, P245; Serra M, 1999, J EVOLUTION BIOL, V12, P263; Serra M, 1998, TRENDS ECOL EVOL, V13, P360, DOI 10.1016/S0169-5347(98)01446-3; SERRA M, 1994, HYDROBIOLOGIA, V277, P97, DOI 10.1007/BF00016757; Shertzer KW, 2002, ECOLOGY, V83, P2181, DOI 10.2307/3072050; SLEIGH MA, 1977, SCALE EFFECTS ANIMAL; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SNELL TW, 1984, AQUACULTURE, V37, P359, DOI 10.1016/0044-8486(84)90300-4; SNELL TW, 1977, EVOLUTION, V31, P882, DOI 10.1111/j.1558-5646.1977.tb01082.x; SNELL TW, 1987, HYDROBIOLOGIA, V147, P329, DOI 10.1007/BF00025762; SNELL TW, 1987, INT J INVER REP DEV, V12, P103, DOI 10.1080/01688170.1987.10510306; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stelzer CP, 2002, FUNCT ECOL, V16, P835, DOI 10.1046/j.1365-2435.2002.00693.x; Stelzer CP, 2001, ECOLOGY, V82, P2521; STEMBERGER RS, 1987, ECOLOGY, V68, P181, DOI 10.2307/1938818; STEMBERGER RS, 1985, ECOLOGY, V66, P1151, DOI 10.2307/1939167; STEWART AJ, 1986, ARCH HYDROBIOL, V106, P1; Telesh IV, 1998, HYDROBIOLOGIA, V387, P355, DOI 10.1023/A:1017092021816; Wallace RL, 1998, HYDROBIOLOGIA, V387, P311, DOI 10.1023/A:1017009725025; WALZ N, 1995, EXPERIENTIA, V51, P437, DOI 10.1007/BF02143197; Walz N, 1995, HYDROBIOLOGIA, V313, P165, DOI 10.1007/BF00025946; Walz N., 1987, VERH INT VER LIMNOL, V24, P2750; WICKHAM SA, 1991, FRESHWATER BIOL, V26, P77, DOI 10.1111/j.1365-2427.1991.tb00510.x; Yoshinaga T, 2000, J EXP MAR BIOL ECOL, V253, P253, DOI 10.1016/S0022-0981(00)00268-9; Yoshinaga T, 2003, J EXP MAR BIOL ECOL, V287, P261, DOI 10.1016/S0022-0981(02)00574-9; YUFERA M, 2004, HYDROBIOLOGIA, V546, P375 65 30 35 0 36 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 HYDROBIOLOGIA Hydrobiologia SEP 1 2005 546 335 346 10.1007/s10750-005-4243-x 12 Marine & Freshwater Biology Marine & Freshwater Biology 981WE WOS:000233117900035 2018-11-12 J Bonduriansky, R; Brassil, CE Bonduriansky, R; Brassil, CE Reproductive ageing and sexual selection on male body size in a wild population of antler flies (Protopiophila litigata) JOURNAL OF EVOLUTIONARY BIOLOGY English Article body size; field study; life history; Protopiophila litigata; senescence; sexual selection; trade-off; wild population AGE-SPECIFIC SURVIVAL; YELLOW DUNG FLY; LIFE-SPAN; DROSOPHILA-MELANOGASTER; DIETARY RESTRICTION; TRADE-OFFS; SCATHOPHAGA-STERCORARIA; FEMALE PREFERENCE; IMMUNE FUNCTION; MATING SUCCESS Little is known about the importance of trade-offs between ageing and other life history traits, or the effects of ageing on sexual selection, particularly in wild populations suffering high extrinsic mortality rates. Life history theory suggests that trade-offs between reproduction and somatic maintenance may constrain individuals with higher initial reproductive rates to deteriorate more rapidly, resulting in reduced sexual selection strength. However, this trade-off may be masked by increased condition dependence of reproductive effort in older individuals. We tested for this trade-off in males in a wild population of antler flies (Protopiophila litigata). High mating rate was associated with reduced longevity, as a result of increased short-term mortality risk or accelerated ageing in traits affecting viability. In contrast, large body size was associated with accelerated ageing in traits affecting mating success, resulting in reduced sexual selection for large body size. Thus, ageing can affect sexual selection and evolution in wild populations. Univ New S Wales, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia; Univ Toronto, Dept Zool, Toronto, ON, Canada Bonduriansky, R (reprint author), Univ New S Wales, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia. r.bonduriansky@unsw.edu.au Brassil, Chad/A-1193-2008 Brassil, Chad/0000-0002-9611-7283; Bonduriansky, Russell/0000-0002-5786-6951 ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; Alcock J, 1996, ECOL ENTOMOL, V21, P309, DOI 10.1046/j.1365-2311.1996.00007.x; Austad SN, 1996, EXP GERONTOL, V31, P453, DOI 10.1016/0531-5565(95)02068-3; BANKS MJ, 1985, ANIM BEHAV, V33, P1175, DOI 10.1016/S0003-3472(85)80178-0; Bartke A, 2001, NATURE, V414, P412, DOI 10.1038/35106646; Beck CW, 2002, EVOL ECOL RES, V4, P275; Berglund A, 1996, BIOL J LINN SOC, V58, P385, DOI 10.1111/j.1095-8312.1996.tb01442.x; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Bonduriansky R, 2005, EVOLUTION, V59, P138, DOI 10.1111/j.0014-3820.2005.tb00901.x; Bonduriansky R, 2003, EVOLUTION, V57, P2046; Bonduriansky R, 2003, CAN J ZOOL, V81, P479, DOI 10.1139/Z03-031; Bonduriansky R, 1997, CAN ENTOMOL, V129, P827, DOI 10.4039/Ent129827-5; Bonduriansky R, 2002, NATURE, V420, P377, DOI 10.1038/420377a; Bonduriansky R, 1998, CAN J ZOOL, V76, P1277, DOI 10.1139/cjz-76-7-1277; Bonduriansky R, 1998, CAN ENTOMOL, V130, P399, DOI 10.4039/Ent130399-4; Bonduriansky R, 1999, ETHOL ECOL EVOL, V11, P287, DOI 10.1080/08927014.1999.9522829; Brooks R, 2001, TRENDS ECOL EVOL, V16, P308, DOI 10.1016/S0169-5347(01)02147-4; CARTAR RV, 1992, J ANIM ECOL, V61, P225, DOI 10.2307/5525; Chapman R. F., 1998, INSECTS STRUCTURE FU; Clancy DJ, 2002, SCIENCE, V296, P319, DOI 10.1126/science.1069366; Clancy DJ, 2001, SCIENCE, V292, P104, DOI 10.1126/science.1057991; CLINTON WL, 1993, ECOLOGY, V74, P1884, DOI 10.2307/1939945; Clutton-Brock TH, 1988, REPROD SUCCESS, P472; Comfort A, 1979, BIOL SENESCENCE; Coschigano KT, 2000, ENDOCRINOLOGY, V141, P2608, DOI 10.1210/en.141.7.2608; Elgar M.A., 1988, P59; ERNSTING G, 1991, FUNCT ECOL, V5, P299, DOI 10.2307/2389268; Faddy MJ, 2001, BIOMETRICS, V57, P620, DOI 10.1111/j.0006-341X.2001.00620.x; Fincke O.M., 1988, P24; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gasser M, 2000, EVOLUTION, V54, P1260; Hilborn R., 1997, ECOLOGICAL DETECTIVE; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; Hu HH, 2004, BEHAV ECOL, V15, P883, DOI 10.1093/beheco/arh114; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; Kemp DJ, 2002, P ROY SOC B-BIOL SCI, V269, P1341, DOI 10.1098/rspb.2002.2000; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; KIRKWOOD TBL, 1992, AM J CLIN NUTR, V55, P1191; Kokko H, 1998, EVOL ECOL, V12, P739, DOI 10.1023/A:1006541701002; Kokko H, 1996, P ROY SOC B-BIOL SCI, V263, P1533, DOI 10.1098/rspb.1996.0224; Loison A, 1999, ECOLOGY, V80, P2539, DOI 10.2307/177239; Magwere T, 2004, J GERONTOL A-BIOL, V59, P3; Mair W, 2003, SCIENCE, V301, P1731, DOI 10.1126/science.1086016; Marden JH, 2003, P NATL ACAD SCI USA, V100, P3369, DOI 10.1073/pnas.0634985100; McElligott AG, 2002, P ROY SOC B-BIOL SCI, V269, P1129, DOI 10.1098/rspb.2002.1993; McKean KA, 2001, P NATL ACAD SCI USA, V98, P7904, DOI 10.1073/pnas.131216398; Medawar P. B., 1946, MODERN Q, V1, P30; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Moller AP, 1999, J ANIM ECOL, V68, P163, DOI 10.1046/j.1365-2656.1999.00274.x; Mysterud A, 2002, OIKOS, V97, P177, DOI 10.1034/j.1600-0706.2002.970203.x; NESSE RM, 1988, EXP GERONTOL, V23, P445, DOI 10.1016/0531-5565(88)90056-3; Nijhout HF, 2003, DEVELOPMENT, V130, P5863, DOI 10.1242/dev.00902; Osada K, 2003, P ROY SOC B-BIOL SCI, V270, P929, DOI 10.1098/rspb.2002.2308; Otronen M, 1996, ETHOL ECOL EVOL, V8, P399; Partridge L, 1999, TRENDS ECOL EVOL, V14, P438, DOI 10.1016/S0169-5347(99)01646-8; Partridge L, 1996, P ROY SOC B-BIOL SCI, V263, P1365, DOI 10.1098/rspb.1996.0200; Patronek GJ, 1997, J GERONTOL A-BIOL, V52, pB171, DOI 10.1093/gerona/52A.3.B171; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; Proulx SR, 2002, P ROY SOC B-BIOL SCI, V269, P2291, DOI 10.1098/rspb.2002.2129; Radwan J, 2003, ECOL LETT, V6, P581, DOI 10.1046/j.1461-0248.2003.00484.x; Rantala MJ, 2003, P ROY SOC B-BIOL SCI, V270, P2257, DOI 10.1098/rspb.2003.2472; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roach DA, 2001, EXP GERONTOL, V36, P687, DOI 10.1016/S0531-5565(00)00235-7; Roff Derek A., 1992; Rolff J, 2002, P NATL ACAD SCI USA, V99, P9916, DOI 10.1073/pnas.152271999; ROSE MR, 1981, GENETICS, V97, P172; ROWE L, 1994, ANIM BEHAV, V48, P1049, DOI 10.1006/anbe.1994.1338; Saino N, 2002, J ANIM ECOL, V71, P309, DOI 10.1046/j.1365-2656.2002.00600.x; SAKAMOTO Y, 1986, AKAIKE INFORMATION C; Service PM, 1998, EVOLUTION, V52, P1844, DOI 10.1111/j.1558-5646.1998.tb02262.x; SIMMONS LW, 1991, J EVOLUTION BIOL, V4, P593, DOI 10.1046/j.1420-9101.1991.4040593.x; Tucic N, 1996, J EVOLUTION BIOL, V9, P485, DOI 10.1046/j.1420-9101.1996.9040485.x; Wang C, 2004, INT J OBESITY, V28, P357, DOI 10.1038/sj.ijo.0802518; WEDEKIND C, 1994, AM NAT, V143, P936, DOI 10.1086/285641; Wigglesworth V. B., 1972, PRINCIPLES INSECT PH; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams PD, 2003, EVOLUTION, V57, P1478; Wolfram S., 1999, MATH BOOK; Zens MS, 2003, TRENDS ECOL EVOL, V18, P366, DOI 10.1016/S0169-5347(03)00096-X 81 47 48 1 30 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. SEP 2005 18 5 1332 1340 10.1111/j.1420-9101.2005.00957.x 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 959HN WOS:000231508900027 16135128 Bronze 2018-11-12 J Nee, S; Colegrave, N; West, SA; Grafen, A Nee, S; Colegrave, N; West, SA; Grafen, A The illusion of invariant quantities in life histories SCIENCE English Article SEX-CHANGE; BODY-SIZE; INDETERMINATE GROWTH; PARASITIC NEMATODES; TRADE-OFF; REPRODUCTION; EVOLUTION; AGE; ANIMALS; OPTIMIZATION Life-history theory attempts to provide evolutionary explanations for variations in the ways in which animal species live their lives. Recent analyses have suggested that the dimensionless ratios of several key life-history parameters are the same for different species, even across distant taxa. However, we show here that previous analyses may have given a false picture and created an illusion of invariants, which do not necessarily exist; essentially, this is because life-history variables have been regressed against themselves. The following question arises from our analysis: How do we identify an invariant? Univ Edinburgh, Sch Biol Sci, Inst Evolutionary Biol, Edinburgh EH9 3JT, Midlothian, Scotland; Univ Oxford, Dept Zool, Oxford OX1 3PS, England Nee, S (reprint author), Univ Edinburgh, Sch Biol Sci, Inst Evolutionary Biol, W Mains Rd, Edinburgh EH9 3JT, Midlothian, Scotland. sean.nee@ed.ac.uk West, Stuart/M-3608-2014; Colegrave, Nick/F-3916-2010 West, Stuart/0000-0003-2152-3153; Grafen, Alan/0000-0002-1843-6457 Allsop DJ, 2003, J EVOLUTION BIOL, V16, P921, DOI 10.1046/j.1420-9101.2003.00590.x; Allsop DJ, 2003, NATURE, V425, P783, DOI 10.1038/425783a; Beddington JR, 2005, PHILOS T R SOC B, V360, P163, DOI 10.1098/rstb.2004.1582; BUSTON PM, 2004, NATURE, V428, P783; Charnov EL, 2000, EVOL ECOL RES, V2, P1067; Charnov EL, 1997, NATURE, V387, P393, DOI 10.1038/387393a0; Charnov EL, 2002, EVOL ECOL RES, V4, P749; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; Charnov Eric L., 1993, P1; CIPRIANI R, 2005, J EVOL BIOL; Clobert J, 1998, J EVOLUTION BIOL, V11, P329; Economo EP, 2005, ECOL LETT, V8, P353, DOI 10.1111/j.1461-0248.2005.00737.x; Gardner A, 2005, AM NAT, V165, P551, DOI 10.1086/429526; Gemmill AW, 1999, J EVOLUTION BIOL, V12, P1148, DOI 10.1046/j.1420-9101.1999.00117.x; Hawkes K, 2004, NATURE, V428, P128, DOI 10.1038/428128a; He JX, 2001, ECOLOGY, V82, P784, DOI 10.1890/0012-9658(2001)082[0784:AASAFR]2.0.CO;2; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; Jones KE, 2001, EVOL ECOL RES, V3, P465; Kozlowski J, 1997, AM NAT, V149, P352; KOZLOWSKI J, 1996, P ROY SOC LOND B BIO, V263, P556; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Mangel M, 1996, EVOL ECOL, V10, P249, DOI 10.1007/BF01237683; MILES DB, 1994, ECOLOGY, V75, P2143; Moller AP, 2002, OECOLOGIA, V132, P492, DOI 10.1007/s00442-002-0952-2; Morand S, 1996, FUNCT ECOL, V10, P210, DOI 10.2307/2389845; PURVIS A, 1995, J ZOOL, V237, P259, DOI 10.1111/j.1469-7998.1995.tb02762.x; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; Roff D. A., 2002, LIFE HIST EVOLUTION; SMITH JM, 1993, Q REV BIOL, V68, P557; Stearns S. C., 1992, EVOLUTION LIFE HIST; West GB, 2004, PHYS TODAY, V57, P36, DOI 10.1063/1.1809090; Willemsen RE, 1999, J ZOOL, V248, P379, DOI 10.1111/j.1469-7998.1999.tb01037.x; Williams EH, 2003, CAN J FISH AQUAT SCI, V60, P710, DOI 10.1139/F03-059 34 62 64 0 26 AMER ASSOC ADVANCEMENT SCIENCE WASHINGTON 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA 0036-8075 SCIENCE Science AUG 19 2005 309 5738 1236 1239 10.1126/science.1114488 4 Multidisciplinary Sciences Science & Technology - Other Topics 957TE WOS:000231395400044 16109879 2018-11-12 J Amdam, GV; Page, RP Amdam, GV; Page, RP Intergenerational transfers may have decoupled physiological and chronological age in a eusocial insect AGEING RESEARCH REVIEWS English Review intergenerational transfer; physiological and chronological age; eusocial insect BEES APIS-MELLIFERA; WORKER HONEY-BEES; DIVISION-OF-LABOR; JUVENILE-HORMONE; WEATHER CONDITIONS; CARNICA POLLMANN; NURSE BEES; LIFE-SPAN; VITELLOGENIN; SENESCENCE Life-history theory generally predicts that there should be no selection for longevity beyond the limit of reproductive capacity. However, the capacity to increase fitness may not end when individuals reach a state of functional sterility. Recent studies show that intergenerational transfers of resources from post-reproductive parents can increase the offspring's fitness, and analytical theory shows that age-trajectories of transfers may shape the course of senescence in social organisms. In eusocial insects, female roles are partitioned so that one phenotype or "caste" reproduces while another is responsible for resource transfers: the reproductive "queens" are arrested in a continuous reproductive mode, while transfer-activities such as hygienic behaviors, guarding, foraging and further food processing ("nursing") that increases the nutritional value of provisions are conducted by sterile ''workers". Worker honey bees normally perform these tasks in a sequence so that nursing inside the protected nest is conducted prior to more risky exterior hive activities such as guarding and foraging. However, foragers may revert to nurse-activity in response to demographic changes, and worker bees can also develop into a stress resistant survival form with a 10-fold increase in lifespan. This elastic division of parental functions is believed to increase colony fitness. Further, it generates a stage-dependent trajectory of senescence that is difficult to address with established theories of aging. In the following, we show how a recent theory that includes resource transfers can be used to elucidate patterns of senescence in eusocial, non-reproducing individuals like the honey bee worker. (c) 2005 Elsevier Ireland Ltd. All rights reserved. Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA; Norwegian Univ Life Sci, Dept Anim & Aquaculture Sci, N-1432 As, Norway Amdam, GV (reprint author), Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. gvamdam@ucdavis.edu NIA NIH HHS [P01 AG022500, P01 AG 22500, P01 AG022500-03, P01 AG022500-02] Amdam GV, 2004, EXP GERONTOL, V39, P767, DOI 10.1016/j.exger.2004.02.010; Amdam GV, 2004, J ECON ENTOMOL, V97, P741, DOI 10.1603/0022-0493(2004)097[0741:APIWHB]2.0.CO;2; Amdam GV, 2003, P NATL ACAD SCI USA, V100, P1799, DOI 10.1073/pnas.0333979100; Amdam GV, 2002, J THEOR BIOL, V216, P209, DOI 10.1006/jtbi.2002.2545; Amdam GV, 2004, SCI AGING KNOWL ENV, V26, ppe28; Chapuisat M, 2002, P ROY SOC B-BIOL SCI, V269, P909, DOI 10.1098/rspb.2002.1962; CRAILSHEIM K, 1992, J COMP PHYSIOL B, V162, P681, DOI 10.1007/BF00301617; Crailsheim K, 1998, APIDOLOGIE, V29, P97, DOI 10.1051/apido:19980106; CRAILSHEIM K, 1988, J INSECT PHYSIOL, V34, P1093, DOI 10.1016/0022-1910(88)90210-7; Crailsheim K, 1999, APIDOLOGIE, V30, P299, DOI 10.1051/apido:19990406; CRAILSHEIM K, 1990, ZOOL JAHRB ALLG ZOOL, V94, P303; EISCHEN FA, 1984, J APICULT RES, V23, P90, DOI 10.1080/00218839.1984.11100615; Engels W., 1990, Advances in Invertebrate Reproduction, V5, P495; ENGELS W, 1974, ROUX ARCH DEV BIOL, V174, P285, DOI 10.1007/BF00573233; FAHRBACH SE, 1995, NEUROBIOL LEARN MEM, V63, P181, DOI 10.1006/nlme.1995.1019; FINCH C, 1990, LONGEVITY SENESCENCE; FLURI P, 1982, J INSECT PHYSIOL, V28, P61, DOI 10.1016/0022-1910(82)90023-3; Free J. B., 1965, Symposia of the Zoological Society of London, V14, P39; GUIDUGLI KR, UNPUB FEBS LETT; HAYDAK MH, 1963, MINNESOTA AGR EXP ST, V5122, P101; Huang ZY, 1996, BEHAV ECOL SOCIOBIOL, V39, P147, DOI 10.1007/s002650050276; HUANG ZY, 1995, J COMP PHYSIOL B, V165, P18, DOI 10.1007/BF00264682; JAYCOX ER, 1974, ANN ENTOMOL SOC AM, V67, P529, DOI 10.1093/aesa/67.4.529; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Lee RD, 2003, P NATL ACAD SCI USA, V100, P9637, DOI 10.1073/pnas.1530303100; MEDAWAR PB, 1952, UNSOLVED PROBLEM BIO; MEESTERS EH, 1995, MAR ECOL PROG SER, V121, P203, DOI 10.3354/meps121203; Naiem ES, 1999, J COMP PHYSIOL B, V169, P271, DOI 10.1007/s003600050221; NEUKIRCH A, 1982, J COMP PHYSIOL, V146, P35, DOI 10.1007/BF00688714; Oster GF, 1978, CASTE ECOLOGY SOCIAL; Pinto LZ, 2000, J INSECT PHYSIOL, V46, P153, DOI 10.1016/S0022-1910(99)00111-0; Riessberger U, 1997, APIDOLOGIE, V28, P411, DOI 10.1051/apido:19970608; Rogers AR, 2003, P NATL ACAD SCI USA, V100, P9114, DOI 10.1073/pnas.1733942100; Rueppell O., 2004, SCI AGING KNOWL ENV, V5, ppe5; RUTZ W, 1976, J INSECT PHYSIOL, V22, P1485, DOI 10.1016/0022-1910(76)90214-6; SEEHUUS SC, UNPUB P NATL ACAD SC; Tatar M, 2001, EXP GERONTOL, V36, P723, DOI 10.1016/S0531-5565(00)00238-2; Tofilski A, 2000, ACTA NEUROBIOL EXP, V60, P35; TRENCZEK T, 1989, J INSECT PHYSIOL, V35, P475, DOI 10.1016/0022-1910(89)90054-1; Visscher PK, 1997, INSECT SOC, V44, P1, DOI 10.1007/s000400050017; WEBSTER TC, 1987, PHYSIOL ENTOMOL, V12, P225, DOI 10.1111/j.1365-3032.1987.tb00745.x; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Winston M. L., 1987, BIOL HONEY BEE; WOYKE J, 1977, J APICULT RES, V16, P84, DOI 10.1080/00218839.1977.11099866 47 55 56 2 12 ELSEVIER IRELAND LTD CLARE ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND 1568-1637 AGEING RES REV Ageing Res. Rev. AUG 2005 4 3 398 408 10.1016/j.arr.2005.03.007 11 Cell Biology; Geriatrics & Gerontology Cell Biology; Geriatrics & Gerontology 967OM WOS:000232100700005 16039913 Green Accepted 2018-11-12 J Dunlop, ES; Orendorff, JA; Shuter, BJ; Rodd, FH; Ridgway, MS Dunlop, ES; Orendorff, JA; Shuter, BJ; Rodd, FH; Ridgway, MS Diet and divergence of introduced smallmouth bass (Micropterus dolomieu) populations CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article LIFE-HISTORY EVOLUTION; CHINOOK SALMON; BACK-CALCULATION; SOMATIC GROWTH; YELLOW PERCH; K-SELECTION; R-SELECTION; BODY-SIZE; EGG SIZE; FISH We examine the degree and causes of divergence in growth and reproduction in two populations of smallmouth bass (Micropterus dolomieu) introduced a century ago. Despite a common source, the Provoking Lake population now has a higher population density and slower growing individuals than the Opeongo Lake population. Using this system, we test the predictions of life history theory that delayed maturation and reduced reproductive investment are expected in high density populations with slow individual growth rates. Observations on both populations run directly counter to the aforementioned expectations. Instead, Provoking males have smaller sizes and younger ages at nesting and higher gonad masses than Opeongo males; Provoking females have smaller sizes at maturity, larger egg sizes, and higher ovarian dry masses than Opeongo females. Temperature, food availability, diet ontogeny, young-of-the-year mortality, and adult mortality were examined as plausible contributors to the divergence. Results suggest that low food availability, likely caused or mediated by intraspecific competition for prey, and lack of large prey in the diet are contributing to the slow growth, increased reproductive investment, and higher mortality following reproduction in Provoking. This study provides insight into the processes that produce rapid divergence of life history in a species exhibiting parental care. Univ Toronto, Dept Zool, Toronto, ON M5S 3G5, Canada; Ontario Minist Nat Resources, Aurora Dist, Aurora, ON L4G 3G8, Canada; Ontario Minist Nat Resources, Aquat Res & Dev Sect, Harkness Lab Fisheries Res, Peterborough, ON K9J 8M5, Canada Dunlop, ES (reprint author), Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. dunlop@iiasa.ac.at Shuter, Brian/A-3991-2008 Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Aday DD, 2002, ECOL FRESHW FISH, V11, P190, DOI 10.1034/j.1600-0633.2002.00011.x; Carlander K. D., 1977, LIFE HIST DATA CENTR; Casselman J.M., 1987, P209; CHRISTIE WJ, 1957, BASS FISHERY LAKE OP; Dunlop ES, 2005, CAN J FISH AQUAT SCI, V62, P844, DOI 10.1139/F05-045; FOSTER JR, 1977, PROG FISH CULT, V39, P166, DOI 10.1577/1548-8659(1977)39[166:PGL]2.0.CO;2; FOX MG, 1994, ECOLOGY, V75, P1157, DOI 10.2307/1939439; FRANCIS RICC, 1990, J FISH BIOL, V36, P883, DOI 10.1111/j.1095-8649.1990.tb05636.x; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Haugen TO, 2001, GENETICA, V112, P475, DOI 10.1023/A:1013315116795; Haugen TO, 2000, J EVOLUTION BIOL, V13, P897, DOI 10.1046/j.1420-9101.2000.00242.x; HEATH D, 1987, T AM FISH SOC, V116, P98, DOI 10.1577/1548-8659(1987)116<98:TOGDIG>2.0.CO;2; Henderson BA, 2000, J FISH BIOL, V57, P122, DOI 10.1006/jfbi.2000.1293; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; KERR SJ, 2000, BASS STOCKING TRANSF; KERR SR, 1971, J FISH RES BOARD CAN, V28, P809, DOI 10.1139/f71-121; Koskinen MT, 2002, NATURE, V419, P826, DOI 10.1038/nature01029; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Mackereth RW, 1999, ENVIRON BIOL FISH, V56, P263, DOI 10.1023/A:1007580323816; Marteinsdottir G, 1998, J FISH BIOL, V52, P1241, DOI 10.1111/j.1095-8649.1998.tb00969.x; MARTIN NV, 1973, 24 GREAT LAK FISH CO; McCullagh P, 1989, GEN LINEAR MODELS; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Olson MH, 2003, T AM FISH SOC, V132, P1207, DOI 10.1577/T02-146; ORENDORFF JA, 1983, THESIS U TORONTO TOR; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Quinn GP, 2002, EXPT DESIGN DATA ANA; Quinn TP, 2004, T AM FISH SOC, V133, P55, DOI 10.1577/T03-032; Quinn TP, 2001, GENETICA, V112, P493, DOI 10.1023/A:1013348024063; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.2307/3071970; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Ricker W. E., 1975, FISHERIES RES BOARD, V191, P382; RICKER WE, 1992, CAN J FISH AQUAT SCI, V49, P1018, DOI 10.1139/f92-114; RIDGWAY MS, 1991, J ANIM ECOL, V60, P665, DOI 10.2307/5304; Ridgway MS, 2002, AM FISH S S, V31, P47; Roff Derek A., 1992; Sherwood GD, 2002, CAN J FISH AQUAT SCI, V59, P229, DOI 10.1139/F02-001; SHUTER BJ, 1990, T AM FISH SOC, V119, P314, DOI 10.1577/1548-8659(1990)119<0314:CPVATZ>2.3.CO;2; Shuter BJ, 2005, CAN J FISH AQUAT SCI, V62, P738, DOI 10.1139/F05-070; Shuter BJ, 2002, AM FISH S S, V31, P235; SHUTER BJ, 1987, CAN J FISH AQUAT SCI, V44, P229; Unwin MJ, 2000, J FISH BIOL, V57, P943, DOI 10.1006/jfbi.2000.1360; Ylikarjula J, 1999, EVOL ECOL, V13, P433, DOI 10.1023/A:1006755702230; Zhao Y, 2001, J FISH BIOL, V59, P569, DOI 10.1006/jfbi.2001.1666 50 22 23 1 23 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. AUG 2005 62 8 1720 1732 10.1139/F05-089 13 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 964NU WOS:000231888600004 2018-11-12 J Ardia, DR Ardia, DR Tree swallows trade off immune function and reproductive effort differently across their range ECOLOGY English Article breeding range; geographic variation; immune function; latitudinal gradients; life history trade-offs; offspring quality; parental investment; reproductive effort; self-maintenance; Tachycineta bicolor; Tree Swallow COMMON-GARDEN EXPERIMENT; GREAT TIT; LATITUDINAL VARIATION; TACHYCINETA-BICOLOR; LONG-TERM; EGG SIZE; BIRDS; SURVIVAL; COST; LIFE Latitudinal differences in life histories are believed to be underlain by differences in trade-offs between current and future reproduction. I report differences in tradeoffs between parent and offspring across the range of a widespread avian species, the Tree S wallow (Tachycineta bicolor). I manipulated parental effort and found that in Alaska, where yearly adult return rates are low, breeding females increase their reproductive investment to maintain offspring quality, whereas in Tennessee, where yearly adult return rates are high, breeding females are either unable or unwilling to increase reproductive investment and, consequently, raise offspring of lower quality. I further investigated a critical mechanism of self-maintenance that may underlie differences in survival among sites: immunocompetence. Females breeding in Alaska mounted weaker immune responses when raising enlarged broods, whereas females in Tennessee did not, further suggesting a strategy in Alaskan females to incur costs (i.e., reduce future reproduction) in order to maintain offspring quality. Insect availability increased as the breeding season progressed in both sites, but more food was available in Alaska than in Tennessee. This is among the first studies to report geographic differences in immune function consistent with life history theory, which predicts that individuals with higher survival probabilities should invest more in self-maintenance. Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14853 USA Ardia, DR (reprint author), Univ Massachusetts, Morrill Sci Ctr, Program Organism & Evolutionary Biol, Amherst, MA 01003 USA. ardia@bio.umass.edu Apanius V, 1998, ADV STUD BEHAV, V27, P133; Ardia DR, 2005, J ANIM ECOL, V74, P517, DOI 10.1111/j.1365-2656.2005.00950.x; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; Armbruster P, 2001, EVOLUTION, V55, P439; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; Dhondt AA, 2001, ARDEA, V89, P155; Encabo SI, 2002, IBIS, V144, P623, DOI 10.1046/j.1474-919X.2002.00099.x; Foster S. A., 1999, GEOGRAPHIC VARIATION; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Hanssen SA, 2003, OECOLOGIA, V136, P457, DOI 10.1007/s00442-003-1282-8; Hemborg C, 2001, OECOLOGIA, V129, P206, DOI 10.1007/s004420100710; Horak P, 1999, OECOLOGIA, V121, P316, DOI 10.1007/s004420050934; Kokita T, 2003, MAR BIOL, V143, P593, DOI 10.1007/s00227-003-1104-x; Lack D., 1966, POPULATION STUDIES B; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Martin LB, 2004, ECOLOGY, V85, P2323, DOI 10.1890/03-0365; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; McCarty JP, 1999, IBIS, V141, P286, DOI 10.1111/j.1474-919X.1999.tb07551.x; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; ROBERTSON RJ, 1992, BIRDS N AM, V11; Roff D. A., 2002, LIFE HIST EVOLUTION; ROITT IM, 1998, IMMUNOLOGY; Saino N, 1999, J ANIM ECOL, V68, P999, DOI 10.1046/j.1365-2656.1999.00350.x; Sanz JJ, 2004, J ANIM ECOL, V73, P441, DOI 10.1111/j.0021-8790.2004.00815.x; Sanz JJ, 2000, OECOLOGIA, V122, P149, DOI 10.1007/PL00008842; *SAS I, 2002, SAS P GLM VERS 8 02; Sears MW, 2003, ECOLOGY, V84, P1624, DOI 10.1890/0012-9658(2003)084[1624:LVITSL]2.0.CO;2; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Smits JE, 1999, ECOTOX ENVIRON SAFE, V44, P105, DOI 10.1006/eesa.1999.1806; Starck J. Matthias, 1998, V8, P247; Stearns S. C., 1992, EVOLUTION LIFE HIST; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; Winkler DW, 2004, CONDOR, V106, P768, DOI 10.1650/7634; Young BE, 1996, ECOLOGY, V77, P472, DOI 10.2307/2265623 38 103 104 3 42 ECOLOGICAL SOC AMER WASHINGTON 1707 H ST NW, STE 400, WASHINGTON, DC 20006-3915 USA 0012-9658 ECOLOGY Ecology AUG 2005 86 8 2040 2046 10.1890/04-1619 7 Ecology Environmental Sciences & Ecology 953KO WOS:000231075400009 2018-11-12 J Stoks, R; De Block, M; Van de Meutter, F; Johansson, F Stoks, R; De Block, M; Van de Meutter, F; Johansson, F Predation cost of rapid growth: behavioural coupling and physiological decoupling JOURNAL OF ANIMAL ECOLOGY English Article antipredator behaviour; growth/predation risk trade-off; life-history plasticity; physiological stress; time stress LIFE-HISTORY PLASTICITY; RISK TRADE-OFF; TIME CONSTRAINTS; MENIDIA-MENIDIA; ANTIPREDATOR BEHAVIOR; ENERGY ACQUISITION; FORAGING ACTIVITY; INTRINSIC GROWTH; PREY FISH; MORTALITY 1. Despite its prominent role in life-history theory, there is no direct empirical evidence for a behaviourally mediated predation cost of rapid growth. Moreover, we know little about how digestive physiology may also influence the shape of the growth/predation risk trade-off function. 2. We determined the role of behaviour and digestive physiology in experiments in which damselfly larvae were induced to grow slowly or rapidly by manipulating photoperiod (time stress), and exposure to a fish predator. 3. We showed that larvae under time stress grew more rapidly. Rapid-growing larvae had a higher foraging activity and a higher growth efficiency. 4. Under predation risk, larvae not only had a lower foraging activity but also a lower growth efficiency. 5. Rapid-growing larvae (i.e. those under time stress) balanced the growth/predation risk trade-off differently and took more risk in the presence of a predator, which resulted in a behaviourally mediated higher predation cost compared to slow-growing larvae. Their higher growth efficiency, however, made this cost smaller compared to a completely behaviourally mediated rapid-growth strategy. 6. Our results provide the first explicit experimental proof of a behaviourally mediated predation cost of rapid growth. Besides a behavioural coupling of growth and predation risk, resulting in the well-known trade-off, we also found a partial decoupling of these two processes by digestive physiology. Univ Louvain, Aquat Ecol Lab, B-3000 Louvain, Belgium; Univ Antwerp, Evolutionary Biol Grp, B-2020 Antwerp, Belgium; Umea Univ, Dept Ecol & Environm Studies, S-90187 Umea, Sweden Stoks, R (reprint author), Univ Louvain, Aquat Ecol Lab, Ch de Beriotstr 32, B-3000 Louvain, Belgium. robby.stoks@bio.kuleuven.be Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Altwegg R, 2002, ECOLOGY, V83, P2542, DOI 10.1890/0012-9658(2002)083[2542:PILHPU]2.0.CO;2; Anholt BR, 2000, ECOLOGY, V81, P3509, DOI 10.2307/177510; ANHOLT BR, 1995, ECOLOGY, V76, P2230, DOI 10.2307/1941696; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Billerbeck JM, 2000, OECOLOGIA, V122, P210, DOI 10.1007/PL00008848; Biro PA, 2003, ECOLOGY, V84, P2419, DOI 10.1890/02-0416; Biro PA, 2003, J ANIM ECOL, V72, P546, DOI 10.1046/j.1365-2656.2003.00724.x; Boonstra R, 1998, ECOL MONOGR, V68, P371, DOI 10.1890/0012-9615(1998)068[0371:TIOPIS]2.0.CO;2; Crowley PH, 2000, ECOLOGY, V81, P2592, DOI 10.2307/177477; De Block M, 2005, ECOLOGY, V86, P185, DOI 10.1890/04-0116; Flanagin VL, 2000, OECOLOGIA, V125, P162, DOI 10.1007/s004420000441; Gotthard K, 2000, J ANIM ECOL, V69, P896, DOI 10.1046/j.1365-2656.2000.00432.x; HOUSTON AI, 1993, PHILOS T ROY SOC B, V341, P375, DOI 10.1098/rstb.1993.0123; Jodicke R. A., 1997, BINSENJUNGFERN WINTE; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.1890/0012-9658(1999)080[1242:LHABRT]2.0.CO;2; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; JOHANSSON F, 1993, J INSECT BEHAV, V6, P253, DOI 10.1007/BF01051508; Lane SJ, 2002, J ANIM ECOL, V71, P780, DOI 10.1046/j.1365-2656.2002.00644.x; Lankford TE, 2001, EVOLUTION, V55, P1873, DOI 10.1111/j.0014-3820.2001.tb00836.x; Laurila A, 1999, J ANIM ECOL, V68, P1123, DOI 10.1046/j.1365-2656.1999.00354.x; Lima SL, 1999, AM NAT, V153, P649, DOI 10.1086/303202; Lima SL, 1998, ADV STUD BEHAV, V27, P215; McCormick MI, 1998, ECOLOGY, V79, P1873, DOI 10.1890/0012-9658(1998)079[1873:BIMSIA]2.0.CO;2; McPeek MA, 2004, AM NAT, V163, pE88, DOI 10.1086/382755; McPeek MA, 1998, ECOLOGY, V79, P867, DOI 10.2307/176586; McPeek MA, 2001, ECOLOGY, V82, P1535, DOI 10.2307/2679798; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Munch SB, 2003, EVOLUTION, V57, P2119, DOI 10.1554/02-711; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; PRESENT TMC, 1992, FUNCT ECOL, V6, P23, DOI 10.2307/2389767; Robinson SJW, 2001, J EVOLUTION BIOL, V14, P14, DOI 10.1046/j.1420-9101.2001.00259.x; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Scheuerlein A, 2001, P ROY SOC B-BIOL SCI, V268, P1575, DOI 10.1098/rspb.2001.1691; Slansky F., 1987, NUTR ECOLOGY INSECTS; Sokal R.R., 1995, BIOMETRY; Stoks R, 2003, ECOLOGY, V84, P3327, DOI 10.1890/02-0696; Stoks R, 2000, OIKOS, V91, P559, DOI 10.1034/j.1600-0706.2000.910318.x; Stoks R, 2000, ARCH HYDROBIOL, V147, P417; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; Werner EE, 2003, ECOLOGY, V84, P1083, DOI 10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2; WERNER EE, 1992, AM NAT S, V140, P5 42 138 140 4 42 BLACKWELL PUBLISHING OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND 0021-8790 J ANIM ECOL J. Anim. Ecol. JUL 2005 74 4 708 715 10.1111/j.1365-2656.2005.00969.x 8 Ecology; Zoology Environmental Sciences & Ecology; Zoology 946VQ WOS:000230601800015 Bronze 2018-11-12 J Siefferman, L; Hill, GE Siefferman, L; Hill, GE Male eastern bluebirds trade future ornamentation for current reproductive investment BIOLOGY LETTERS English Article sexual selection; life-history evolution; trade-offs; structural plumage; parental effort SECONDARY SEXUAL CHARACTER; VIABILITY COSTS; SELECTION; COLORATION; PRINCIPLE; HANDICAP; TRAITS; OFFS Life-history theory proposes that organisms must trade-off investment in current and future reproduction. Production of ornamental display is an important component of reproductive effort that has rarely been considered in tests of allocation trade-offs. Male eastern bluebirds (Sialia sialis) display brilliant ultraviolet-blue plumage that is correlated with mate acquisition and male competitive ability. To investigate trade-offs between current reproductive effort and the future expression of a sexually selected ornament, we manipulated the parental effort of males by changing their brood sizes. We found that parents provisioned experimentally enlarged broods more often than reduced broods. As predicted by life-history theory, the change in parental effort had a significant effect on the relative plumage ornamentation of males in the subsequent year: males with reduced broods significantly increased in plumage brightness. Moreover, this change in plumage coloration had a direct effect on the timing of breeding in the following season: males that displayed brighter plumage in the year following the manipulation mated with females that initiated egg laying earlier in the season. These data indicate that male bluebirds must trade-off conserving energy for production of future ornamentation versus expending energy for current reproduction. Auburn Univ, Dept Biol Sci, Auburn, AL 36849 USA Siefferman, L (reprint author), Auburn Univ, Dept Biol Sci, 331 Funchess Hall, Auburn, AL 36849 USA. siefflm@auburn.edu Siefferman, Lynn/0000-0002-9600-2902 NIAID NIH HHS [R01 AI49724] ANDERSSON M, 1994, SEXUAL SELECTION ANI; Griffith SC, 2000, P ROY SOC B-BIOL SCI, V267, P1115, DOI 10.1098/rspb.2000.1116; GUSTAFSSON L, 1995, NATURE, V375, P311, DOI 10.1038/375311a0; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Hoglund J, 1998, OIKOS, V83, P478, DOI 10.2307/3546675; KODRICBROWN A, 1984, AM NAT, V124, P309, DOI 10.1086/284275; Kokko H, 1998, EVOL ECOL, V12, P739, DOI 10.1023/A:1006541701002; Levin R., 1968, EVOLUTION CHANGING E; Mappes J, 1996, P ROY SOC B-BIOL SCI, V263, P785, DOI 10.1098/rspb.1996.0117; MOLLER AP, 1989, NATURE, V339, P132; MOLLER AP, 1994, EVOLUTION, V48, P1676, DOI 10.1111/j.1558-5646.1994.tb02204.x; PARTRIDGE L, 1985, NATURE, V316, P16; PINKOWSKI BC, 1978, WILSON BULL, V90, P84; RESNICK D, 1985, OIKOS, V44, P257; Shawkey MD, 2003, P ROY SOC B-BIOL SCI, V270, P1455, DOI 10.1098/rspb.2003.2390; SHAWKEY MD, IN PRESS BIOL J LINN; Sheldon BC, 1996, ANIM BEHAV, V52, P645, DOI 10.1006/anbe.1996.0207; Siefferman L, 2003, BEHAV ECOL, V14, P855, DOI 10.1093/beheco/arg063; Siefferman L, 2005, ANIM BEHAV, V69, P67, DOI 10.1016/j.anbehav.2003.12.026; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3 21 46 46 0 15 ROYAL SOCIETY LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 BIOL LETT-UK Biol. Lett. JUN 22 2005 1 2 208 211 10.1098/rsbl.2004.0274 4 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 968MR WOS:000232167100027 17148168 Green Published 2018-11-12 J Polishchuk, LV; Vijverberg, J Polishchuk, LV; Vijverberg, J Contribution analysis of body mass dynamics in Daphnia OECOLOGIA English Article body condition; clutch size; life history; resource allocation; zooplankton TABLE RESPONSE EXPERIMENTS; FOOD LIMITATION; ENERGY ALLOCATION; ALPINE LAKE; MAGNA; SIZE; REPRODUCTION; GALEATA; GROWTH; CARBON The concept of body mass dynamics can be viewed as part of life history theory, but its potential has remained largely untapped due to a lack of analytical methodology. We therefore propose a method, called contribution analysis, which enables us to decompose a change in body mass into contributions associated with variations in individual egg mass, clutch size, and standard somatic mass (somatic mass adjusted to body length). The advantage of contribution analysis is that various contributions are expressed in the same units (units of mass) and show the amount of resources committed to changes in the individual traits, while the traits themselves are measured in different units and thus incomparable on their own. The method is tuned to study zooplankton, and is applied to examine body mass dynamics in Daphnia galeata. We found that when recovering from a poor-resource environment just above the threshold food concentration, Daphnia primarily increase their standard somatic mass, that is, restore body condition. When the trophic environment improves further but remains below the incipient limiting level, resources are invested equally to enhance body condition and reproduction in terms of clutch size. Finally, when food is no longer a limiting factor, almost all resources are committed to increase clutch size. While individual egg mass also varies, it never attracts more resources than the shift in the most prioritized trait. We suggest that the significance of this shift in resource allocation priorities is to keep an adult female alive in a poor environment and thus to allow her to retain her reproductive potential for better conditions in the future. Contribution analysis of body mass dynamics may allow us to detect flexible allocation strategies in a changing natural environment. Netherlands Inst Ecol, Dept Food Web Studies, Ctr Limnol, NL-3631 AC Nieuwersluis, Netherlands; Moscow MV Lomonosov State Univ, Fac Biol, Dept Gen Ecol, Moscow 119899, Russia Polishchuk, LV (reprint author), Netherlands Inst Ecol, Dept Food Web Studies, Ctr Limnol, Rijksstr Weg 6, NL-3631 AC Nieuwersluis, Netherlands. leonard_polishchuk@hotmail.com Polishchuk, Leonard/I-9342-2012 Achenbach L, 1997, OIKOS, V79, P469, DOI 10.2307/3546889; Bizina EV, 2000, ZH OBSHCH BIOL, V61, P601; BOERSMA M, 1994, J PLANKTON RES, V16, P1793, DOI 10.1093/plankt/16.12.1793; BOERSMA M, 1995, ECOLOGY, V76, P1251, DOI 10.2307/1940932; Boersma M, 1996, FRESHWATER BIOL, V35, P25, DOI 10.1046/j.1365-2427.1996.00478.x; BOLGER T, 1989, J FISH BIOL, V34, P171, DOI 10.1111/j.1095-8649.1989.tb03300.x; CASWELL H, 1989, ECOL MODEL, V46, P221, DOI 10.1016/0304-3800(89)90019-7; Doksaeter A, 2001, HYDROBIOLOGIA, V442, P207, DOI 10.1023/A:1017537012727; Duncan A., 1985, Advances in Limnology, V21, P81; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; GLAZIER DS, 1992, ECOLOGY, V73, P910, DOI 10.2307/1940168; Glazier DS, 1998, FRESHWATER BIOL, V40, P87, DOI 10.1046/j.1365-2427.1998.00333.x; Glazier DS, 2002, EVOLUTION, V56, P1696; GLAZIER DS, 1992, OECOLOGIA, V90, P540, DOI 10.1007/BF01875448; GLIWICZ ZM, 1990, NATURE, V343, P638, DOI 10.1038/343638a0; HESSEN DO, 1990, J PLANKTON RES, V12, P1239, DOI 10.1093/plankt/12.6.1239; Jeppesen E, 2000, FRESHWATER BIOL, V45, P201, DOI 10.1046/j.1365-2427.2000.00675.x; Kooijman S. A. L. M, 2000, DYNAMIC ENERGY MASS; LAMPERT W, 1977, Archiv fuer Hydrobiologie Supplement, V48, P336; Lampert W., 1987, Memorie dell'Istituto Italiano di Idrobiologia Dott Marco de Marchi, V45, P143; Levin L, 1996, ECOL APPL, V6, P1295, DOI 10.2307/2269608; Manca M, 1997, AQUAT SCI, V59, P48; MCCAULEY E, 1990, ECOLOGY, V71, P703, DOI 10.2307/1940324; McCauley E., 1984, MANUAL METHODS ASSES, P228; Mehner T, 1998, J PLANKTON RES, V20, P1797, DOI 10.1093/plankt/20.9.1797; PERRIN N, 1990, OIKOS, V59, P70, DOI 10.2307/3545124; Peters R.H., 1983, P1; Polishchuk LV, 1999, ECOLOGY, V80, P721; POLISHCHUK LV, 1995, LIMNOL OCEANOGR, V40, P483, DOI 10.4319/lo.1995.40.3.0483; Roff Derek A., 1992; SALONEN K, 1998, CALANUS UNIVERSAL CA; Shertzer KW, 2002, ECOLOGY, V83, P2181, DOI 10.2307/3072050; Sibly RM, 1998, J ANIM ECOL, V67, P17, DOI 10.1046/j.1365-2656.1998.00178.x; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Sokal R.R., 1995, BIOMETRY; *STATSOFT, 2003, STAT WIND VERS 6; Stearns S. C., 1992, EVOLUTION LIFE HIST; Taylor B.E., 1985, Advances in Limnology, V21, P285; Tesch F. W., 1968, METHODS ASSESSMENT F, V3, P93; TESSIER AJ, 1991, ECOLOGY, V72, P468, DOI 10.2307/2937188; TESSIER AJ, 1982, LIMNOL OCEANOGR, V27, P707, DOI 10.4319/lo.1982.27.4.0707; Threlkeld S.T., 1987, Memorie dell'Istituto Italiano di Idrobiologia Dott Marco de Marchi, V45, P353; THRELKELD ST, 1979, LIMNOL OCEANOGR, V24, P601, DOI 10.4319/lo.1979.24.4.0601; URABE J, 1988, Bulletin of Plankton Society of Japan, V35, P159; URABE J, 1991, FUNCT ECOL, V5, P635, DOI 10.2307/2389482; VIJVERBERG J, 1989, FRESHWATER BIOL, V21, P317, DOI 10.1111/j.1365-2427.1989.tb01369.x; Winder M, 2001, HYDROBIOLOGIA, V442, P269, DOI 10.1023/A:1017589013636 48 21 21 1 7 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia JUN 2005 144 2 268 277 10.1007/s00442-005-0072-x 10 Ecology Environmental Sciences & Ecology 944VU WOS:000230459800010 15891835 2018-11-12 J Budden, AE; Beissinger, SR Budden, AE; Beissinger, SR Egg mass in an asynchronously hatching parrot: does variation offset constraints imposed by laying order? OECOLOGIA English Article asynchrony; brood-reduction; heritability; reproduction GREEN-RUMPED PARROTLETS; EARLY NESTLING GROWTH; NEOTROPICAL PARROT; PARENTAL QUALITY; CLUTCH SIZE; FORPUS-PASSERINUS; BROOD REDUCTION; SURVIVAL; BIRDS; CONSEQUENCES Life history theory predicts phenotypic trade-offs between the number and quality of offspring produced. Intraspecific variation in egg mass is common in birds and increased egg size can have positive effects on offspring fitness. However, evidence of a trade-off with clutch size is limited. We analyzed variation in mass of 5,743 Green-rumped parrotlet (Forpus passerinus) eggs laid over 15 years to evaluate the potential for facultative adjustment of egg mass and factors governing variation. Heavier eggs had an increased probability of both hatching and fledging but egg mass did not affect post-fledging recruitment. Offspring egg mass differed between populations and the potential for seasonal adjustment to egg mass may be related to environmental factors such as seed density. Egg mass was moderately heritable (h(2)=0.42) which accounts for some of the individual variation detected, and these results are likely attributable to strong maternal effects. We found an effect of female age on egg mass, but no effects of previous reproductive experience. Finally, egg mass was strongly governed by position within the laying sequence, independent of clutch size, and such adjustment may facilitate brood reduction under some conditions in this highly asynchronous species. Univ Calif Berkeley, Dept Environm Sci Policy & Management, Ecosyst Sci Div, Berkeley, CA 94720 USA Budden, AE (reprint author), Univ Calif Berkeley, Dept Environm Sci Policy & Management, Ecosyst Sci Div, 137 Mulford Hall, Berkeley, CA 94720 USA. aebudden@nature.berkeley.edu Budden, Amber/A-2829-2010; Beissinger, Steven/F-3809-2012 Budden, Amber/0000-0003-2885-3980; Amundsen T, 1996, J ANIM ECOL, V65, P545, DOI 10.2307/5735; AMUNDSEN T, 1995, CONDOR, V97, P345, DOI 10.2307/1369020; Beissinger S.R., 1992, P73; BEISSINGER SR, 1991, AUK, V108, P863; Bize P, 2002, OECOLOGIA, V132, P231, DOI 10.1007/s00442-002-0980-y; Blomqvist D, 1997, OECOLOGIA, V110, P18, DOI 10.1007/s004420050128; Budden AE, 2004, BEHAV ECOL, V15, P607, DOI 10.1093/beheco/arh052; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; CLARK AB, 1981, Q REV BIOL, V56, P253, DOI 10.1086/412316; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; Cotton PA, 1999, AM NAT, V153, P412, DOI 10.1086/303178; CURLEE AP, 1995, BEHAV ECOL, V6, P192, DOI 10.1093/beheco/6.2.192; Falconer D. S., 1996, INTRO QUANTATIVE GEN; Grant BR, 1996, EVOLUTION, V50, P2471, DOI 10.1111/j.1558-5646.1996.tb03633.x; Grenier JL, 1999, CONDOR, V101, P752, DOI 10.2307/1370062; KILNER R, 1995, P ROY SOC B-BIOL SCI, V260, P343, DOI 10.1098/rspb.1995.0102; Krebs EA, 1999, ANIM BEHAV, V57, P753, DOI 10.1006/anbe.1998.1029; Lack D., 1968, ECOLOGICAL ADAPTATIO; MAGRATH RD, 1992, IBIS, V134, P171, DOI 10.1111/j.1474-919X.1992.tb08394.x; MELLAND R, 2000, THESIS U N DAKOTA; Merila J, 2001, CURR ORNITHOL, V16, P179; NAGER RG, 1992, P ROY SOC B-BIOL SCI, V249, P259, DOI 10.1098/rspb.1992.0112; Palmer AR, 2000, ANNU REV ECOL SYST, V31, P441, DOI 10.1146/annurev.ecolsys.31.1.441; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; Potti J, 1999, EVOLUTION, V53, P279, DOI 10.1111/j.1558-5646.1999.tb05353.x; Price T, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P202; Ramsay SL, 1997, J ANIM ECOL, V66, P649, DOI 10.2307/5918; Reed WL, 1999, AUK, V116, P549; Reynolds SJ, 2003, OECOLOGIA, V134, P308, DOI 10.1007/s00442-002-1126-y; REZNICK D, 1981, EVOLUTION, V35, P941, DOI 10.1111/j.1558-5646.1981.tb04960.x; Risch TS, 2000, CAN J ZOOL, V78, P967, DOI 10.1139/cjz-78-6-967; Roff Derek A., 1992; Saino N, 2004, FUNCT ECOL, V18, P50, DOI 10.1046/j.0269-8463.2004.00808.x; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.1890/0012-9658(2000)081[1351:SROANP]2.0.CO;2; Sheridan JA, 2004, AUK, V121, P717, DOI 10.1642/0004-8038(2004)121[0717:WABMOH]2.0.CO;2; Siegel RB, 1999, BEHAV ECOL SOCIOBIOL, V45, P444, DOI 10.1007/s002650050583; SLAGSVOLD T, 1984, AUK, V101, P685, DOI 10.2307/4086895; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stoleson SH, 1999, J ANIM ECOL, V68, P951, DOI 10.1046/j.1365-2656.1999.00342.x; Stoleson SH, 1997, ECOL MONOGR, V67, P131, DOI 10.1890/0012-9615(1997)067[0131:HABRAF]2.0.CO;2; Styrsky JD, 1999, P ROY SOC B-BIOL SCI, V266, P1253, DOI 10.1098/rspb.1999.0771; SYDEMAN WJ, 1992, AUK, V109, P242, DOI 10.2307/4088192; TROTH RG, 1979, VERTEBRATE ECOLOGY N, P17; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WALTMAN JR, 1992, WILSON BULL, V104, P65; WEIMERSKIRCH H, 1992, OIKOS, V64, P464, DOI 10.2307/3545162; WIEBE KL, 1995, J ZOOL, V237, P285, DOI 10.1111/j.1469-7998.1995.tb02763.x; WILLIAMS TD, 1994, BIOL REV, V69, P35, DOI 10.1111/j.1469-185X.1994.tb01485.x 48 15 16 0 15 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia JUN 2005 144 2 318 326 10.1007/s00442-005-0054-z 9 Ecology Environmental Sciences & Ecology 944VU WOS:000230459800015 15800736 2018-11-12 J Rezende, EL; Gomes, FR; Ghalambor, CK; Russell, GA; Chappell, MA Rezende, EL; Gomes, FR; Ghalambor, CK; Russell, GA; Chappell, MA An evolutionary frame of work to study physiological adaptation to high altitudes REVISTA CHILENA DE HISTORIA NATURAL English Article adaptation; evolutionary processes; natural selection; life-history; oxygen availability; phenotypic plasticity CHAIN HEMOGLOBIN POLYMORPHISMS; LIFE-HISTORY; NATURAL-SELECTION; QUANTITATIVE GENETICS; INDIVIDUAL VARIATION; DEER MICE; PEROMYSCUS-MANICULATUS; POECILIA-RETICULATA; CHRONIC HYPOXIA; PARENTAL CARE How complex physiological systems evolve is one of the major questions in evolutionary physiology. For example, how traits interact at the physiological and genetic level, what are the roles of development and plasticity in Darwinian evolution, and eventually how physiological traits will evolve, remains poorly understood. In this article we summarize the current frame of work evolutionary physiologists are employing to study the evolution of physiological adaptations, as well as the role of developmental and reversible phenotypic plasticity in this context. We also highlight representative examples of how the integration of evolutionary and developmental physiology, concomitantly with the mechanistic understanding of physiological systems, can provide a deeper insight oil how endothermic vertebrates could cope with reduced ambient temperatures and oxygen availability characteristic of high altitude environments. In this context, high attitude offers a unique system to study the evolution of physiological traits, and we believe much call be gained by integrating theoretical and empirical knowledge from evolutionary biology, such as life-history theory or the comparative method, with the mechanistic understanding of physiological processes. Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA; Univ California, White Mt Res Stn, Bishop, CA 93514 USA Rezende, EL (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. enrico.rezende@email.ucr.edu Rezende, Enrico/B-8029-2012; Gomes, Fernando/C-5997-2012 Rezende, Enrico/0000-0002-6245-9605; ALEXANDER RM, 1982, OPTIMA ANIMALS; Altshuler DL, 2002, J EXP BIOL, V205, P2325; Bacigalupe LD, 2004, EVOLUTION, V58, P421, DOI 10.1111/j.0014-3820.2004.tb01657.x; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Badyaev AV, 1997, OECOLOGIA, V111, P365, DOI 10.1007/s004420050247; Bassett DR, 2000, MED SCI SPORT EXER, V32, P70, DOI 10.1097/00005768-200001000-00012; BEATTIE J, 1975, AM J PHYSIOL, V228, P1346; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; BRONSON MT, 1979, ECOLOGY, V60, P272, DOI 10.2307/1937655; Brutsaert TD, 2001, ADV EXP MED BIOL, V502, P133; CHAPPELL MA, 1984, P NATL ACAD SCI-BIOL, V81, P5484, DOI 10.1073/pnas.81.17.5484; Dohm MR, 2001, GENETICS, V159, P267; Dohm MR, 2002, FUNCT ECOL, V16, P273; Dzialowski EM, 2002, COMP BIOCHEM PHYS A, V131, P713, DOI 10.1016/S1095-6433(02)00009-0; FALCONER DS, 1989, INTRO QUANTITATIVE; Feder ME, 2000, ANNU REV ECOL SYST, V31, P315, DOI 10.1146/annurev.ecolsys.31.1.315; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FISHER R. A., 1930, GENETICAL THEORY NAT; Garland T, 2003, EXPTL BIOL REV, P23; Garland T, 2000, AM NAT, V155, P346, DOI 10.1086/303327; GARLAND T, 1994, ANNU REV PHYSIOL, V56, P579, DOI 10.1146/annurev.ph.56.030194.003051; Garland T, 2001, ADV EXP MED BIOL, V502, P107; GARLAND T, 1994, PHYSIOL ZOOL, V67, P797, DOI 10.1086/physzool.67.4.30163866; GARLAND T, 1991, ANNU REV ECOL SYST, V22, P193, DOI 10.1146/annurev.es.22.110191.001205; GARLAND T, IN PRESS J EXPT BIOL; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; GOULD SJ, 1991, J SOC ISSUES, V47, P43, DOI 10.1111/j.1540-4560.1991.tb01822.x; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; GRANT PR, 1995, EVOLUTION, V49, P241, DOI 10.1111/j.1558-5646.1995.tb02236.x; Hayes JP, 1997, J MAMMAL, V78, P274, DOI 10.2307/1382882; HAYES JP, 1992, FUNCT ECOL, V6, P5, DOI 10.2307/2389765; Hayes JP, 1999, EVOLUTION, V53, P1280, DOI 10.1111/j.1558-5646.1999.tb04540.x; HAYES JP, 1989, J COMP PHYSIOL B, V159, P453, DOI 10.1007/BF00692417; Hochachka PW, 2002, BIOCH ADAPTATION MEC; Hopkins SR, 2001, ADV EXP MED BIOL, V502, P153; Huey R. B., 1996, PHENOTYPIC EVOLUTION, P205; JAYNE BC, 1990, EVOLUTION, V44, P1204, DOI 10.1111/j.1558-5646.1990.tb05226.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LYNCH GR, 1976, PHYSIOL ZOOL, V49, P191, DOI 10.1086/physzool.49.2.30152539; MacMillen R.E., 1989, P143; McCall RD, 1997, BEHAV GENET, V27, P181, DOI 10.1023/A:1025649711626; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MONGE C, 1991, PHYSIOL REV, V71, P1135; Mortola JP, 2000, ANNU REV PHYSIOL, V62, P847, DOI 10.1146/annurev.physiol.62.1.847; Mueller P, 2001, P NATL ACAD SCI USA, V98, P12550, DOI 10.1073/pnas.221456698; Nespolo RF, 2003, REV CHIL HIST NAT, V76, P699, DOI 10.4067/S0716-078X2003000400012; Nespolo RF, 2003, EVOLUTION, V57, P1679; Rezende EL, 2004, EVOLUTION, V58, P1361; Rezende EL, 2004, J EXP BIOL, V207, P295, DOI 10.1242/jeb.00760; Rezende EL, 2003, FISIOLOGIA ECOLOGICA, P79; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Richardson RS, 2000, MED SCI SPORT EXER, V32, P89; Roff D. A., 2002, LIFE HIST EVOLUTION; ROFF DA, 1997, EVOLUTIONARY QUANTIA; ROSENMANN M, 1975, COMP BIOCH PHYSL A, V51, P881; Rupert JL, 2001, J EXP BIOL, V204, P3151; SCHLICHTING CD, 1993, AM NAT, V142, P366, DOI 10.1086/285543; SCHLICHTING CD, 1995, EVOL ECOL, V9, P154, DOI 10.1007/BF01237754; SNYDER LRG, 1988, EVOLUTION, V42, P689, DOI 10.1111/j.1558-5646.1988.tb02487.x; Spicer J. I., 1999, PHYSL DIVERSITY ITS; Spicer JI, 2003, ZOOLOGY, V106, P91, DOI 10.1078/0944-2006-00103; Stearns S. C., 1992, EVOLUTION LIFE HIST; Storz JF, 2004, EVOLUTION, V58, P1342; Storz JF, 2003, EVOLUTION, V57, P2628; Strohl KP, 1997, RESP PHYSIOL, V110, P269, DOI 10.1016/S0034-5687(97)00092-3; Tracy RL, 2001, J COMP PHYSIOL B, V171, P669, DOI 10.1007/s003600100218; Weathers WW, 2002, J EXP BIOL, V205, P2915; Wilson RS, 2002, TRENDS ECOL EVOL, V17, P66, DOI 10.1016/S0169-5347(01)02384-9; Wynne-Edwards KE, 1998, AM ZOOL, V38, P238; ZAMMUTO RM, 1985, ECOLOGY, V66, P1784, DOI 10.2307/2937374; Zamudio S, 2003, HIGH ALT MED BIOL, V4, P171, DOI 10.1089/152702903322022785 71 11 13 0 19 SOC BIOLGIA CHILE SANTIAGO CASILLA 16164, SANTIAGO 9, CHILE 0716-078X REV CHIL HIST NAT Rev. Chil. Hist. Nat. JUN 2005 78 2 323 336 14 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 940BH WOS:000230118200016 DOAJ Gold 2018-11-12 J Hanssen, SA; Hasselquist, D; Folstad, I; Erikstad, KE Hanssen, SA; Hasselquist, D; Folstad, I; Erikstad, KE Cost of reproduction in a long-lived bird: incubation effort reduces immune function and future reproduction PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article incubation cost; immune function; life history; precocial; trade-off; seabird EIDER SOMATERIA-MOLLISSIMA; FLYCATCHER FICEDULA-HYPOLEUCA; STARLINGS STURNUS-VULGARIS; BROOD SIZE MANIPULATION; TITS PARUS-MAJOR; CLUTCH-SIZE; COMMON EIDERS; ENERGY-EXPENDITURE; PIED FLYCATCHERS; TRADE-OFF Life-history theory predicts that increased current reproductive effort should lead to a fitness cost. This cost of reproduction may be observed as reduced survival or future reproduction, and may be caused by temporal suppression of immune function in stressed or hard-working individuals. In birds, consideration of the costs of incubating eggs has largely been neglected in favour of the costs of brood rearing. We manipulated incubation demand in two breeding seasons (2000 and 2001) in female common eiders (Somateria mollissima) by creating clutches of three and six eggs (natural range 3-6 eggs). The common eider is a long-lived sea-duck where females do not eat during the incubation period. Mass loss increased and immune function (lymphocyte levels and specific antibody response to the non-pathogenic antigens diphtheria and tetanus toxoid) was reduced in females incubating large clutches. The increased incubation effort among females assigned to large incubation demand did not lead to adverse effects on current reproduction or return rate in the next breeding season. However, large incubation demand resulted in long-term fitness costs through reduced fecundity the year after manipulation. Our data show that in eiders, a long-lived species, the cost of high incubation demand is paid in the currency of reduced future fecundity, possibly mediated by reduced immune function. Univ Tromso, Dept Biol, Fac Sci, N-9037 Tromso, Norway; Lund Univ, Dept Anim Ecol, S-22362 Lund, Sweden; Norwegian Inst Nat Res, Dept Arctic Ecol, Polar Environm Ctr, N-9296 Tromso, Norway Hanssen, SA (reprint author), Univ Tromso, Dept Biol, Fac Sci, N-9037 Tromso, Norway. sveinn.a.hanssen@nina.no Hanssen, Sveinn Are/C-9989-2009; Hasselquist, Dennis/M-5223-2014 Hanssen, Sveinn Are/0000-0003-1792-435X; Hasselquist, Dennis/0000-0002-0056-6616 BAILLIE SR, 1982, BIRD STUDY, V29, P55, DOI 10.1080/00063658209476738; BIEBACH H, 1981, ARDEA, V69, P141; BIEBACH H, 1984, PHYSIOL ZOOL, V57, P26, DOI 10.1086/physzool.57.1.30155963; BRUUN M, 2002, THESIS LUND U SWEDEN; BUSTNES JO, 1991, CAN J ZOOL, V69, P1538, DOI 10.1139/z91-216; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Cichon M, 2000, OECOLOGIA, V125, P453, DOI 10.1007/s004420000461; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; COLEMAN RM, 1988, BEHAV ECOL SOCIOBIOL, V23, P367, DOI 10.1007/BF00303710; COLEMAN RM, 1991, TRENDS ECOL EVOL, V6, P404, DOI 10.1016/0169-5347(91)90163-R; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; DEIN J, 1986, CLIN AVIAN MED, P178; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; DUFVA R, 1995, FUNCT ECOL, V9, P785, DOI 10.2307/2390253; Eadie JM, 1998, AM NAT, V151, P397, DOI 10.1086/286128; Engstrand SM, 2002, FUNCT ECOL, V16, P782, DOI 10.1046/j.1365-2435.2002.00681.x; Erikstad KE, 1998, ECOLOGY, V79, P1781; ERIKSTAD KE, 1995, OECOLOGIA, V103, P270, DOI 10.1007/BF00328614; FITZGERALD L, 1988, IMMUNOL TODAY, V9, P337, DOI 10.1016/0167-5699(88)91332-1; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; GOLET GH, 1998, J ANIM ECOL, V59, P269; GROSS WB, 1983, AVIAN DIS, V27, P972, DOI 10.2307/1590198; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; HAFTORN S, 1985, AUK, V102, P470; Hanssen SA, 2003, P ROY SOC B-BIOL SCI, V270, P531, DOI 10.1098/rspb.2002.2262; Hanssen SA, 2004, P ROY SOC B-BIOL SCI, V271, P925, DOI 10.1098/rspb.2004.2678; Hanssen SA, 2003, OECOLOGIA, V136, P457, DOI 10.1007/s00442-003-1282-8; Hanssen SA, 2003, OIKOS, V100, P105, DOI 10.1034/j.1600-0706.2003.12162.x; Hasselquist D, 1999, BEHAV ECOL SOCIOBIOL, V45, P167, DOI 10.1007/s002650050550; Hasselquist D, 2001, BEHAV ECOL, V12, P93, DOI 10.1093/oxfordjournals.beheco.a000384; HAY L, 1989, PRACTICAL IMMUNOLOGY; HEANEY V, 1995, P ROY SOC B-BIOL SCI, V261, P361, DOI 10.1098/rspb.1995.0160; Heaney V, 1996, P ROY SOC B-BIOL SCI, V263, P1719, DOI 10.1098/rspb.1996.0251; Horak P, 2003, BEHAV ECOL SOCIOBIOL, V54, P105, DOI 10.1007/s00265-003-0608-1; Ilmonen P, 2002, OECOLOGIA, V130, P199, DOI 10.1007/s004420100804; Ilmonen P, 2003, OECOLOGIA, V136, P148, DOI 10.1007/s00442-003-1243-2; JACOBSEN KO, 1995, ECOLOGY, V76, P1636, DOI 10.2307/1938164; JONES G, 1987, J ANIM ECOL, V56, P229, DOI 10.2307/4812; KEHOE FP, 1989, CAN J ZOOL, V67, P406, DOI 10.1139/z89-060; Larsen VA, 2003, J ANIM ECOL, V72, P784, DOI 10.1046/j.1365-2656.2003.00751.x; LAZARUS J, 1978, BEHAVIOUR, V65, P62, DOI 10.1163/156853978X00198; LAZARUS J, 1986, ANIM BEHAV, V34, P1791, DOI 10.1016/S0003-3472(86)80265-2; LEHMANN T, 1993, PARASITOL TODAY, V9, P8, DOI 10.1016/0169-4758(93)90153-7; Lessells C.M., 1991, P32; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; MAXWELL MH, 1993, WORLD POULTRY SCI J, V49, P34, DOI 10.1079/WPS19930004; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; Moller Anders Pape, 1997, P105; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; MORENO J, 1989, ORNIS SCAND, V20, P123, DOI 10.2307/3676879; MORENO J, 1994, J AVIAN BIOL, V25, P125, DOI 10.2307/3677030; Moreno J, 1999, P ROY SOC B-BIOL SCI, V266, P1105, DOI 10.1098/rspb.1999.0750; MORENO J, 1991, IBIS, V133, P186, DOI 10.1111/j.1474-919X.1991.tb04830.x; MUNRO J, 1977, AUK, V94, P759, DOI 10.2307/4085272; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; PARKER H, 1990, AUK, V107, P660, DOI 10.2307/4087996; PUGESEK BH, 1990, ECOLOGY, V71, P811, DOI 10.2307/1940332; Raberg L, 2003, EVOLUTION, V57, P1670, DOI 10.1554/02-417; Raberg L, 1998, P ROY SOC B-BIOL SCI, V265, P1637, DOI 10.1098/rspb.1998.0482; Raberg L, 2000, ECOL LETT, V3, P382, DOI 10.1046/j.1461-0248.2000.00154.x; Reid JM, 2000, FUNCT ECOL, V14, P560, DOI 10.1046/j.1365-2435.2000.t01-1-00446.x; Reid JM, 2000, P ROY SOC B-BIOL SCI, V267, P37, DOI 10.1098/rspb.2000.0963; REID WV, 1987, OECOLOGIA, V74, P458, DOI 10.1007/BF00378945; Roff Derek A., 1992; Saino N, 2002, BEHAV ECOL, V13, P169, DOI 10.1093/beheco/13.2.169; *SAS I INC, 1999, SAS ONLINEDOC VERS 8; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SIEGEL HS, 1985, WORLD POULTRY SCI J, V41, P36, DOI 10.1079/WPS19850003; SIIKAMAKI P, 1995, J AVIAN BIOL, V26, P76, DOI 10.2307/3677215; Skarstein F, 1996, OIKOS, V76, P359, DOI 10.2307/3546208; SMITH HG, 1989, ORNIS SCAND, V20, P156, DOI 10.2307/3676885; Stearns S. C., 1992, EVOLUTION LIFE HIST; SZEKELY T, 1994, IBIS, V136, P341, DOI 10.1111/j.1474-919X.1994.tb01105.x; TATNER P, 1993, J ZOOL, V231, P215, DOI 10.1111/j.1469-7998.1993.tb01913.x; Thomson DL, 1998, BIOL REV, V73, P293, DOI 10.1017/S0006323198005180; Trivers R. L., 1972, SEXUAL SELECTION DES, P1871; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; WATSON MD, 1993, CONDOR, V95, P869, DOI 10.2307/1369424; Westneat DF, 2003, BEHAV ECOL SOCIOBIOL, V53, P315, DOI 10.1007/s00265-003-0579-2; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WOOLLER RD, 1992, TRENDS ECOL EVOL, V7, P111, DOI 10.1016/0169-5347(92)90143-Y; Yoccoz NG, 2002, J APPL STAT, V29, P57, DOI 10.1080/02664760120108458 85 179 181 2 77 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. MAY 22 2005 272 1567 1039 1046 10.1098/rspb.2005.3057 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 941GS WOS:000230203900008 16024362 Green Published 2018-11-12 J Fessler, DMT; Navarrete, CD; Hopkins, W; Izard, MK Fessler, DMT; Navarrete, CD; Hopkins, W; Izard, MK Examining the terminal investment hypothesis in humans and chimpanzees: Associations among maternal age, parity, and birth AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Review maternal investment; life history; Homo sapiens; Pan troglodytes SUBSEQUENT MARITAL-STATUS; LIFE-HISTORY THEORY; REPRODUCTIVE SUCCESS; GESTATIONAL-AGE; FEMALE CHIMPANZEES; COGNITIVE FUNCTION; PRENATAL GROWTH; HUMAN LONGEVITY; BODY BUILD; WEIGHT The terminal investment hypothesis (Williams [1966] Adaptation and Natural Selection; Princeton, NJ: Princeton University Press) holds that reproductive effort should increase over time in iteroparous species in which reproductive value declines with age. Attempts to model this hypothesis and test it in various species have produced mixed results. Clutton-Brock ([1984] Am. Nat. 123:212-229) argued that simply testing for changes in propagule size with age fails to recognize that the costs of producing offspring of a given size may increase over the lifespan, hence absence of a positive correlation does not defeat the hypothesis. However, this interpretation is weakened by evidence of sequential increases in propagule size independent of age, as such changes reveal a capacity to increase absolute investment over time. Humans and chimpanzees meet the preconditions of the terminal investment hypothesis. Surveying the obstetrics literature, we show that the majority of published studies indicate that parity has a positive effect on birth weight, but age has no effect. Analyzing 436 captive chimpanzee births, we document a positive influence of parity and a negative influence of age. We therefore conclude that, though it is yet to be replaced by a more compelling alternative, the terminal investment hypothesis is not supported in these two species, as absence of a positive effect of age on birth weight cannot be interpreted in a manner congruent with the hypothesis. Am J Phys Anthropol 127:95-104, 2005. (c) 2004 Wiley-Liss, Inc. Univ Calif Los Angeles, Dept Anthropol, Los Angeles, CA 90095 USA; Emory Univ, Yerkes Reg Primate Res Ctr, Dept Psychobiol, Atlanta, GA 30322 USA; Alamogordo Primate Facil, Alamogordo, NM 88330 USA Fessler, DMT (reprint author), Univ Calif Los Angeles, Dept Anthropol, Los Angeles, CA 90095 USA. dfessler@anthro.ucla.edu Henrich, Joseph/A-2403-2009; Fessler, Daniel/G-8485-2012 Aiken L.S., 1991, MULTIPLE REGRESSION; Alvarez HP, 2000, AM J PHYS ANTHROPOL, V113, P435, DOI 10.1002/1096-8644(200011)113:3<435::AID-AJPA11>3.0.CO;2-O; Andersson SW, 2000, J EPIDEMIOL COMMUN H, V54, P269, DOI 10.1136/jech.54.4.269; [Anonymous], 1998, NAT FAM HLTH SURV NF; Bardham A, 1966, J Natl Med Assoc, V58, P194; Bellino FL, 2003, BIOL REPROD, V68, P10, DOI 10.1095/biolreprod.102.005215; BENTLEY DP, 1985, CLIN HAEMATOL, V14, P613; Black AJ, 2000, J BONE MINER RES, V15, P557, DOI 10.1359/jbmr.2000.15.3.557; BROADHUR.PL, 1965, FOLIA PRIMATOL, V3, P201, DOI 10.1159/000155029; Broussard DR, 2003, J ANIM ECOL, V72, P212, DOI 10.1046/j.1365-2656.2003.00691.x; CAMILLERI A P, 1970, Journal of Obstetrics and Gynaecology of the British Commonwealth, V77, P145; CARO TM, 1995, INT J PRIMATOL, V16, P205, DOI 10.1007/BF02735478; Central Statistical Authority [Ethiopia] and ORC Macro, 2001, ETH DEM HLTH SURV 20; CLEGG EJ, 1989, ANN HUM BIOL, V16, P25, DOI 10.1080/03014468900000132; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; DANG DC, 1992, FOLIA PRIMATOL, V59, P149, DOI 10.1159/000156652; DEROUSSEAU CJ, 1990, PRIMATE LIFE HIST EV; Dhall K., 1995, Indian Journal of Pediatrics, V62, P333, DOI 10.1007/BF02753598; Dufour DL, 2002, AM J HUM BIOL, V14, P584, DOI 10.1002/ajhb.10071; Dunson DB, 2002, HUM REPROD, V17, P1399, DOI 10.1093/humrep/17.5.1399; Ericsson G, 2001, ECOLOGY, V82, P1613, DOI 10.1890/0012-9658(2001)082[1613:ARREAS]2.0.CO;2; Eriksson M, 1997, J EPIDEMIOL COMMUN H, V51, P19, DOI 10.1136/jech.51.1.19; FABIA J, 1973, CAN J PUBLIC HEALTH, V64, P548; Feleke Y, 1999, E AFR MED J, V76, P468; FISHER R. A., 1930, GENETICAL THEORY NAT; Fragaszy DM, 1998, AM J PRIMATOL, V44, P197, DOI 10.1002/(SICI)1098-2345(1998)44:3<197::AID-AJP2>3.0.CO;2-R; Gavan JA, 1952, AM J PHYS ANTHROP-NE, V10, P23, DOI 10.1002/ajpa.1330100116; Goodall J., 1986, CHIMPANZEES GOMBE PA; GOULD KG, 1981, MATURITAS, V3, P157, DOI 10.1016/0378-5122(81)90007-4; GRAHAM CE, 1979, AM J PHYS ANTHROPOL, V50, P291, DOI 10.1002/ajpa.1330500302; Greendale GA, 1999, LANCET, V353, P571, DOI 10.1016/S0140-6736(98)05352-5; GUNDERSON VM, 1989, CHILD DEV, V60, P119, DOI 10.2307/1131077; Hawkes K, 2003, AM J HUM BIOL, V15, P380, DOI 10.1002/ajhb.10156; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hediger ML, 2002, PAEDIATR PERINAT EP, V16, P33, DOI 10.1046/j.1365-3016.2002.00393.x; Helle S, 2002, SCIENCE, V296, P1085, DOI 10.1126/science.1070106; Hill K, 2001, J HUM EVOL, V40, P437, DOI 10.1006/jhev.2001.0469; HOLLAN S, 1993, HAEMATOLOGIA, V25, P69; HOX JJ, 1995, APPL MULTILEVEL ANAL; Huffman M.A., 1990, P237; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; JONES NB, 1978, ANN HUM BIOL, V5, P487, DOI 10.1080/03014467800003141; Jones NGB, 2002, AM J HUM BIOL, V14, P184, DOI 10.1002/ajhb.10038; JONES NGB, 1992, AM J PHYS ANTHROPOL, V89, P159, DOI 10.1002/ajpa.1330890204; Juntunen KST, 1997, OBSTET GYNECOL, V90, P495, DOI 10.1016/S0029-7844(97)00269-X; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kappeler P. M., 2003, PRIMATE LIFE HIST SO; KARN MN, 1951, ANN EUGENIC, V16, P147, DOI 10.1111/j.1469-1809.1951.tb02469.x; Khan KS, 1998, ACTA OBSTET GYN SCAN, V77, P395, DOI 10.1034/j.1600-0412.1998.770407.x; King JC, 2003, J NUTR, V133, p1732S, DOI 10.1093/jn/133.5.1732S; Kirchengast S, 1996, J BIOSOC SCI, V28, P193; Kirchengast S, 1998, HUM BIOL, V70, P761; Kirchengast S, 1998, ANN HUM BIOL, V25, P17, DOI 10.1080/03014469800005402; Korpelainen H, 2000, P ROY SOC B-BIOL SCI, V267, P1765, DOI 10.1098/rspb.2000.1208; Kulmala T, 2001, Afr J Reprod Health, V5, P99, DOI 10.2307/3583328; Langley PA, 1998, FUNCT ECOL, V12, P866, DOI 10.1046/j.1365-2435.1998.00262.x; Leger J, 1998, PEDIATR RES, V43, P808, DOI 10.1203/00006450-199806000-00015; LOEB J, 1965, WEIGHT BIRTH SURVIVA, P51; Lycett JE, 2000, P ROY SOC B-BIOL SCI, V267, P31, DOI 10.1098/rspb.2000.0962; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; MACLEOD S, 1988, INT J GYNECOL OBSTET, V26, P11, DOI 10.1016/0020-7292(88)90191-9; MADEBO T, 1994, ETHIOPIAN MED J, V32, P255; Malik Sushma, 1997, Indian Journal of Pediatrics, V64, P373, DOI 10.1007/BF02845207; Matte TD, 2001, BRIT MED J, V323, P310, DOI 10.1136/bmj.323.7308.310; McIntire DD, 1999, NEW ENGL J MED, V340, P1234, DOI 10.1056/NEJM199904223401603; McKeown T, 1951, BR J SOC MED, V5, P98; MCMAHAN CA, 1976, LAB ANIM SCI, V26, P928; MILLIS J, 1954, ANN HUM GENET, V19, P58, DOI 10.1111/j.1469-1809.1954.tb01263.x; Muslimatun S, 2002, EUR J CLIN NUTR, V56, P947, DOI 10.1038/sj.ejcn.1601439; NAMBOODIRI NK, 1959, ANN HUM GENET, V23, P189, DOI 10.1111/j.1469-1809.1959.tb01463.x; National Statistical Office and ORC Macro, 2001, MAL DEM HLTH SURV 20; Nishida T, 2003, AM J PRIMATOL, V59, P99, DOI 10.1002/ajp.10068; Nishida T., 1990, CHIMPANZEES MAHALE M; NYARUHUCHA CNM, 1993, E AFR MED J, V70, P749; Peccei JS, 2001, AM J HUM BIOL, V13, P434, DOI 10.1002/ajhb.1076; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; PETERS TJ, 1983, BRIT J OBSTET GYNAEC, V90, P1040, DOI 10.1111/j.1471-0528.1983.tb06442.x; Petridou E, 1996, CHILD CARE HLTH DEV, V22, P37, DOI 10.1111/j.1365-2214.1996.tb00421.x; Phillips DIW, 2001, BRIT MED J, V322, P771, DOI 10.1136/bmj.322.7289.771; Pusey A, 1997, SCIENCE, V277, P828, DOI 10.1126/science.277.5327.828; REHAN NE, 1979, BRIT J OBSTET GYNAEC, V86, P443, DOI 10.1111/j.1471-0528.1979.tb10787.x; Richards M, 2002, INT J EPIDEMIOL, V31, P342, DOI 10.1093/ije/31.2.342; Roff D. A., 2002, LIFE HIST EVOLUTION; ROGERS MS, 1987, AUST NZ J OBSTET GYN, V27, P314, DOI 10.1111/j.1479-828X.1987.tb01017.x; Sear R, 2003, BIODEMOGRAPHY OF HUMAN REPRODUCTION AND FERTILITY, P135; SEIDMAN DS, 1988, OBSTET GYNECOL, V72, P158; SEIDMAN DS, 1993, ISRAEL J MED SCI, V29, P772; SELVIN S, 1971, BRIT J PREV SOC MED, V25, P12; Shami S A, 1980, J Pak Med Assoc, V30, P131; SHEFERAW T, 1990, ETHIOPIAN MED J, V28, P183; SILK J, 1993, INT J PRIMATOL, V14, P95, DOI 10.1007/BF02196505; Sorensen HT, 1997, BRIT MED J, V315, P401, DOI 10.1136/bmj.315.7105.401; Sorensen HT, 1999, AM J EPIDEMIOL, V149, P726; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; SUGIYAMA Y, 1994, AM J PRIMATOL, V32, P311, DOI 10.1002/ajp.1350320408; SUMNER DR, 1989, AM J PHYS ANTHROPOL, V79, P225, DOI 10.1002/ajpa.1330790210; Tracer DP, 2002, AM J HUM BIOL, V14, P621, DOI 10.1002/ajhb.10073; *UN DEP EC SOC AFF, 1999, DEM YB ANN DEM; Vagero D, 2002, BRIT MED J, V324, P398, DOI 10.1136/bmj.324.7334.398; VALERIO D A, 1969, Laboratory Animal Handbooks, V4, P223; VanSchaik CP, 1997, P ROY SOC B-BIOL SCI, V264, P1687, DOI 10.1098/rspb.1997.0234; Weladji RB, 2002, OECOLOGIA, V131, P79, DOI 10.1007/s00442-001-0864-6; Westendorp RGJ, 1998, NATURE, V396, P743, DOI 10.1038/25519; Williams GC, 1966, ADAPTATION NATURAL S; Winkvist A, 1998, AM J CLIN NUTR, V68, P656; YUDKIN PL, 1983, BRIT J OBSTET GYNAEC, V90, P291, DOI 10.1111/j.1471-0528.1983.tb08912.x 106 29 29 0 12 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 1096-8644 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. MAY 2005 127 1 95 104 10.1002/ajpa.20039 10 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 915UQ WOS:000228337200008 15386224 2018-11-12 J Aubret, F; Bonnet, X; Shine, R; Maumelat, S Aubret, F; Bonnet, X; Shine, R; Maumelat, S Energy expenditure for parental care may be trivial for brooding pythons, Python regius ANIMAL BEHAVIOUR English Article SEXUAL SIZE DIMORPHISM; VIPERA-ASPIS; VIVIPAROUS SNAKE; LITTER SIZE; MOLURUS-BIVITTATUS; CAPITAL BREEDER; HIDDEN COST; WEIGHT-GAIN; CLUTCH SIZE; FOOD-INTAKE Intensive parental care improves reproductive success. Why, then, do most animal species not provide parental care to their progeny? Life history theory suggests that the costs must be too high unless they are balanced by considerable fitness benefits. The notion that intensive parental care necessarily entails major costs is based both on intuition and on abundant empirical data. We monitored intensive parental care during brooding in 48 female ball pythons in equatorial Africa (south Togo). Female ball pythons remain coiled around their clutch for 2 months and refuse to feed during nest attendance. Surprisingly, brooding females lost less than 6% of their initial body mass over this 2-month period. The magnitude of mass loss was independent of the duration of brooding (experimentally manipulated to 0, 15 or 60 days) or clutch size (normal, enlarged and reduced clutch sizes). Maternal brooding substantially improved hatching success at little energy cost to the female. This paradoxical result reflects the high ambient temperatures in the study area, meaning that only rarely did nest-attending females need to shiver (a costly thermogenic behaviour observed in all python species). The presence of the mother tightly coiled on the clutch reduced water loss and avoided deleterious yolk desiccation. Thus, intensive brooding over a long period does not necessarily entail major energy expenditure for the mother, but none the less can significantly improve reproductive success. Maternal energy costs during brooding (direct expenditure and possible foregone foraging opportunities) were not influenced by clutch size, demonstrating fecundity-independent costs of reproduction. (c) 2005 The Association for the Study or Animal Behaviour. Published by Elsevier Ltd. All rights reserved. CNRS, Ctr Etud Biol Chize, F-79360 Bois Guillaume, France; Univ Sydney, Sydney, NSW 2006, Australia; CNRS, CEBC, Conseil Gen Deux Sevres, F-79360 Villiers En Bois, France; Univ Western Australia, Sch Anim Biol, Nedlands, WA 6009, Australia Bonnet, X (reprint author), CNRS, Ctr Etud Biol Chize, F-79360 Bois Guillaume, France. bonnet@cebc.cnrs.fr Shine, Richard/B-8711-2008 Bonnet, Xavier/0000-0001-6150-8199 Ackerman R. A., 1991, PHYS INFLUENCES EMBR, P193; Alcock J, 1993, ANIMAL BEHAV; Aubret F, 2003, BIOL J LINN SOC, V78, P263, DOI 10.1046/j.1095-8312.2003.00169.x; Aubret F, 2002, HORM BEHAV, V42, P135, DOI 10.1006/hbeh.2002.1793; AUBRET F, IN PRESS J HERPETOLO; Beaupre SJ, 1998, J COMP PHYSIOL B, V168, P497, DOI 10.1007/s003600050170; Bell G., 1986, COST REPROD; BELS VL, 1986, INT ZOOLOGICAL YB, V25, P231; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Bonnet X, 1999, EVOL ECOL, V13, P485, DOI 10.1023/A:1006712713698; Bonnet X, 1999, BIOL CONSERV, V89, P39, DOI 10.1016/S0006-3207(98)00140-2; Bonnet X, 2002, ECOLOGY, V83, P2124, DOI 10.2307/3072044; Bonnet X, 2001, OIKOS, V92, P297, DOI 10.1034/j.1600-0706.2001.920212.x; BONNET X, 1994, GEN COMP ENDOCR, V93, P424, DOI 10.1006/gcen.1994.1047; BONNET X, 1998, P ROY SOC LOND B BIO, V265, P1; BULL JJ, 1979, AM NAT, V114, P296, DOI 10.1086/283476; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; COGGER H. G., 1960, PROC LINN SOC N S WALES, V85, P328; ELLIS TM, 1987, J COMP PHYSIOL B, V157, P393, DOI 10.1007/BF00693366; EPSTEIN HT, 1978, J NUTR, V108, P120; FINCH C, 1990, LONGEVITY SENESCENCE; FITCH HENRY S., 1954, UNIV KANSAS PUBL MUS NAT HIST, V8, P1; Garcia-Berthou E, 2001, J ANIM ECOL, V70, P708, DOI 10.1046/j.1365-2656.2001.00524.x; HARLOW P, 1984, COPEIA, P959; Houston AI, 1999, MODELS ADAPTIVE BEHA; HUTCHISON VH, 1966, SCIENCE, V151, P694, DOI 10.1126/science.151.3711.694; Johnson MS, 2001, J EXP BIOL, V204, P1925; Ladyman M, 2003, PHYSIOL BIOCHEM ZOOL, V76, P497, DOI 10.1086/376420; Lagarde F, 2002, CAN J ZOOL, V80, P493, DOI 10.1139/Z02-032; LOGAN T, 1973, Journal of the Herpetological Association of Africa, V10, P5; Lourdais O, 2004, J COMP PHYSIOL B, V174, P383, DOI 10.1007/s00360-004-0424-6; Lourdais O, 2003, J ZOOL, V259, P123, DOI 10.1017/S0952836902003059; Lourdais O, 2002, J EXP ZOOL, V292, P487, DOI 10.1002/jez.10065; Luiselli L, 1998, ITAL J ZOOL, V65, P183, DOI 10.1080/11250009809386744; Madsen T, 2000, AUSTRAL ECOL, V25, P670, DOI 10.1046/j.1442-9993.2000.01067.x; Madsen T, 1999, ECOLOGY, V80, P989, DOI 10.2307/177032; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; MORENO J, 1989, BIOL J LINN SOC, V37, P297, DOI 10.1111/j.1095-8312.1989.tb01907.x; NOBLE GK, 1935, COPEIA, P1; OBRIEN RG, 1985, PSYCHOL BULL, V97, P316, DOI 10.1037//0033-2909.97.2.316; Oftedal OT, 2002, J MAMMARY GLAND BIOL, V7, P225, DOI 10.1023/A:1022896515287; Oftedal OT, 2002, J MAMMARY GLAND BIOL, V7, P253, DOI 10.1023/A:1022848632125; Olsson M, 1997, J EVOLUTION BIOL, V10, P369, DOI 10.1046/j.1420-9101.1997.10030369.x; Packard G. C., 1991, PHYS INFLUENCES EMBR, P213; PACKARD GC, 1988, BIOL REPTILIA, V16, P423; PACKARD MJ, 1982, HERPETOLOGICA, V38, P136; Pitman C. R. S., 1974, GUIDE SNAKES UGANDA; POLIS GA, 1981, ANNU REV ECOL SYST, V12, P225, DOI 10.1146/annurev.es.12.110181.001301; PRINCE PA, 1981, CONDOR, V83, P238, DOI 10.2307/1367315; RAHN H, 1974, CONDOR, V76, P147, DOI 10.2307/1366724; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; Robin JP, 1998, AM J PHYSIOL-REG I, V274, pR746, DOI 10.1152/ajpregu.1998.274.3.R746; SECOR SM, 1995, J EXP BIOL, V198, P1315; Shine R, 1997, ECOLOGY, V78, P1713; Shine R, 2001, BIOL J LINN SOC, V72, P555, DOI 10.1006/bijl.2000.0516; Shine R, 1987, BIOL REPTILIA, V16, P275; SLIP DJ, 1988, J ZOOL, V216, P367; SOMMA LA, 1989, ZOOL J LINN SOC-LOND, V95, P245; SOMMA LA, 1990, SMITHSONIAN HERPETOL, V81, P1; Somma Louis A., 2003, Bulletin of the Chicago Herpetological Society, V38, P217; Somma Louis A., 2003, Linnean, V19, P42; *STATS INC, 2003, STAT DAT AN SOFTW SY; Stearns S. C., 1992, EVOLUTION LIFE HIST; VANMIEROP LHS, 1978, COPEIA, P615; Veasey JS, 2001, J ANIM ECOL, V70, P20, DOI 10.1046/j.1365-2656.2001.00476.x; VLECK CM, 1981, CONDOR, V83, P229, DOI 10.2307/1367313; VLECK CM, 1991, PHYS INFLUENCES EMBR, P285; WALLS JG, 1998, LIVING PYTHONS; WEBB DR, 1987, CONDOR, V89, P874, DOI 10.2307/1368537; Weeks SC, 1996, OIKOS, V75, P345, DOI 10.2307/3546263; Williams Joseph B., 1996, P375; WODINSKY J, 1977, SCIENCE, V198, P948, DOI 10.1126/science.198.4320.948; WURTMAN JJ, 1976, J NUTR, V106, P697; YORK DS, 1988, HERPETOL J, V6, P210 76 14 14 0 22 ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 ANIM BEHAV Anim. Behav. MAY 2005 69 5 1043 1053 10.1016/j.anbehav.2004.09.008 11 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 928NP WOS:000229278800005 2018-11-12 J Marshall, DJ; Keough, MJ Marshall, DJ; Keough, MJ Offspring size effects in the marine environment: A field test for a colonial invertebrate AUSTRAL ECOLOGY English Article carry-over effects; egg size; maternal effect POST-METAMORPHIC PERFORMANCE; LARVAL SWIMMING DURATION; BUGULA-NERITINA BRYOZOA; EGG SIZE; POSTSETTLEMENT MORTALITY; FERTILIZATION KINETICS; VARIABLE ENVIRONMENTS; MATERNAL SIZE; EVOLUTION; QUALITY A central tenet of life-history theory is the presence of a trade-off between the size and number of offspring that a female can produce for a given clutch. A crucial assumption of this trade-off is that larger offspring perform better than smaller offspring. Despite the importance of this assumption empirical, field-based tests are rare, especially for marine organisms. We tested this assumption for the marine invertebrate, Diplosoma listerianum, a colonial ascidian that commonly occurs in temperate marine communities. Colonies that came from larger larvae had larger feeding structures than colonies that came from smaller larvae. Colonies that came from larger larvae also had higher survival and growth after 2 weeks in the field than colonies that came from smaller larvae. However, after 3 weeks in the field the colonies began to fragment and we could not detect an effect of larval size. We suggest that offspring size can have strong effects on the initial recruitment of D. listerianum but because of the tendency of this species to fragment, offspring size effects are less persistent in this species than in others. Univ Melbourne, Dept Zool, Parkville, Vic 3052, Australia Marshall, DJ (reprint author), Univ New S Wales, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia. d.marshall@unsw.edu.au Marshall, Dustin/A-4185-2008 DAVIS AR, 1988, J EXP MAR BIOL ECOL, V123, P269, DOI 10.1016/0022-0981(88)90047-0; Delany J, 2003, MAR ECOL PROG SER, V249, P207, DOI 10.3354/meps249207; Einum S, 2002, AM NAT, V160, P756, DOI 10.1086/343876; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; GEORGE SB, 1994, J EXP MAR BIOL ECOL, V175, P121, DOI 10.1016/0022-0981(94)90179-1; HAVENHAND JN, 1993, MAR ECOL PROG SER, V97, P247, DOI 10.3354/meps097247; Hendry AP, 2001, AM NAT, V157, P387, DOI 10.1086/319316; HUGHES TP, 1987, AM NAT, V129, P818, DOI 10.1086/284677; Hunt HL, 1997, MAR ECOL PROG SER, V155, P269, DOI 10.3354/meps155269; KARLSON RH, 1986, MAR ECOL PROG SER, V28, P245, DOI 10.3354/meps028245; KEOUGH MJ, 1995, J EXP MAR BIOL ECOL, V185, P235, DOI 10.1016/0022-0981(94)00154-6; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LEVITAN DR, 1993, AM NAT, V141, P517, DOI 10.1086/285489; LEVITAN DR, 2000, ECOLOGY, V82, P464; Marshall DJ, 2003, ECOLOGY, V84, P3131, DOI 10.1890/02-0311; Marshall DJ, 2003, MAR ECOL PROG SER, V259, P139, DOI 10.3354/meps259139; Marshall DJ, 2003, MAR ECOL PROG SER, V246, P153, DOI 10.3354/meps246153; Marshall DJ, 2002, ECOL LETT, V5, P173, DOI 10.1046/j.1461-0248.2002.00257.x; Marshall DJ, 2003, MAR ECOL PROG SER, V255, P145, DOI 10.3354/meps255145; Marshall DJ, 2000, MAR ECOL PROG SER, V195, P305, DOI 10.3354/meps195305; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; Moran AL, 2001, ECOLOGY, V82, P1597, DOI 10.1890/0012-9658(2001)082[1597:OSAPIV]2.0.CO;2; Ng TYT, 2003, MAR ECOL PROG SER, V257, P77, DOI 10.3354/meps257077; Pechenik JA, 1996, J EXP MAR BIOL ECOL, V199, P137; Pechenik JA, 1998, BIOSCIENCE, V48, P901, DOI 10.2307/1313294; Phillips Alan J. L., 2002, Phytopathologia Mediterranea, V41, P3; Phillips NE, 2002, ECOLOGY, V83, P2562, DOI 10.1890/0012-9658(2002)083[2562:EONMLC]2.0.CO;2; Podolsky RD, 1996, AM NAT, V148, P160, DOI 10.1086/285916; Podolsky RD, 2001, EVOLUTION, V55, P2470; RAMIREZLLODRA ER, 2002, ADV MAR BIOL, V43, P88, DOI DOI 10.1016/S0065-2881(02)43004-0; Sakai S, 2001, AM NAT, V157, P348, DOI 10.1086/319194; Shima JS, 2002, MAR ECOL PROG SER, V235, P303, DOI 10.3354/meps235303; Sinervo B, 1996, EVOLUTION, V50, P1314, DOI 10.1111/j.1558-5646.1996.tb02371.x; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; Styan CA, 1998, AM NAT, V152, P290, DOI 10.1086/286168; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Underwood AJ, 2001, MARINE COMMUNITY ECOLOGY, P183; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; Wendt DE, 1998, BIOL BULL-US, V195, P126, DOI 10.2307/1542820; Wendt DE, 1996, BIOL BULL-US, V191, P224, DOI 10.2307/1542925 42 21 21 0 8 BLACKWELL PUBLISHING ASIA CARLTON 54 UNIVERSITY ST, P O BOX 378, CARLTON, VICTORIA 3053, AUSTRALIA 1442-9985 AUSTRAL ECOL Austral Ecol. MAY 2005 30 3 275 280 10.1111/j.1442-9993.2005.01463.x 6 Ecology Environmental Sciences & Ecology 921GN WOS:000228752300004 2018-11-12 J Vigil, JM; Geary, DC; Byrd-Craven, J Vigil, JM; Geary, DC; Byrd-Craven, J A life history assessment of early childhood sexual abuse in women DEVELOPMENTAL PSYCHOLOGY English Article child development; child sexual abuse; menarche; life history theory; evolution MALTREATMENT RESEARCH; FATHER ABSENCE; AGE; INTERCOURSE; SOCIALIZATION; STRATEGIES; EXPERIENCE; MENARCHE; GIRLS; PSYCHOPATHOLOGY Life history theory provided a framework for examining the relations among child sexual abuse (CSA), childhood adversity, and patterns of reproductive development and behavior. A community survey that assessed CSA, life history variables (e.g., age of menarche), and social and family background was administered to 623 women (mean age = 26.9 years). Independent of social and family background, CSA was associated with earlier age of (a) menarche, (b) first sexual relationship, (c) desire to have children, (d) first childbirth, and (e) lower self-evaluated physical attractiveness. Cluster analyses revealed different patterns of experiential correlates of reproductive development within the group of abused women, suggesting CSA may operate in combination with other childhood circumstances to modify the timing and pattern of individual maturation. Univ Missouri, Dept Psychol Sci, Columbia, MO 65211 USA Vigil, JM (reprint author), Univ Missouri, Dept Psychol Sci, 210 McAlester Hall, Columbia, MO 65211 USA. jmv427@mizzou.edu Vigil, Jacob/D-6044-2013 Alexander R. D., 1987, BIOL MORAL SYSTEMS; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bereczkei T, 2001, INT J BEHAV DEV, V25, P501, DOI 10.1080/01650250042000573; Bogin B, 1999, ANNU REV ANTHROPOL, V28, P109, DOI 10.1146/annurev.anthro.28.1.109; Brown J, 2004, J DEV BEHAV PEDIATR, V25, P77, DOI 10.1097/00004703-200404000-00001; Charnov Eric L., 1993, P1; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Comings DE, 2002, CHILD DEV, V73, P1046, DOI 10.1111/1467-8624.00456; DILL DL, 1991, COMPR PSYCHIAT, V32, P166, DOI 10.1016/0010-440X(91)90009-2; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; ELLIS BJ, 2002, PENNSYLVANIA STATE U, P161; FINKELHOR D, 1987, PSYCHIAT ANN, V17, P233, DOI 10.3928/0048-5713-19870401-06; Geary DC, 2001, PARENT-SCI PRACT, V1, P5, DOI 10.1207/S15327922PAR011&2_2; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Geary DC, 2004, J SEX RES, V41, P27, DOI 10.1080/00224490409552211; GERONIMUS AT, 1991, FAM RELAT, V40, P463, DOI 10.2307/584905; HARRIS JR, 1995, PSYCHOL REV, V102, P458, DOI 10.1037//0033-295X.102.3.458; HERMANGIDDENS ME, 1988, AM J DIS CHILD, V142, P431, DOI 10.1001/archpedi.1988.02150040085025; Herrenkohl EC, 1998, J ADOLESCENCE, V21, P291, DOI 10.1006/jado.1998.0154; Hoier S, 2003, HUM NATURE-INT BIOS, V14, P209, DOI 10.1007/s12110-003-1004-2; HOTTE JP, 1992, CHILD ABUSE NEGLECT, V16, P273, DOI 10.1016/0145-2134(92)90034-O; Hulanicka B., 1999, J REPROD INFANT PSYC, V17, P119; Kendall-Tackett K, 2004, CHILD ABUSE NEGLECT, V28, P723, DOI 10.1016/j.chiabu.2004.02.002; KENDALLTACKETT KA, 1988, CHILD ABUSE NEGLECT, V12, P73, DOI 10.1016/0145-2134(88)90009-9; Kim K, 1998, J ADOLESCENCE, V21, P231, DOI 10.1006/jado.1998.0149; Kirk KM, 2001, EVOLUTION, V55, P423; Lange A, 1999, J NERV MENT DIS, V187, P150, DOI 10.1097/00005053-199903000-00004; Li NP, 2002, J PERS SOC PSYCHOL, V82, P947, DOI 10.1037//0022-3514.82.6.947; MENKEN J, 1986, SCIENCE, V233, P1389, DOI 10.1126/science.3755843; Mitchell K, 1998, J ADOLESCENCE, V21, P717, DOI 10.1006/jado.1998.0191; Molnar BE, 2001, AM J PUBLIC HEALTH, V91, P753, DOI 10.2105/AJPH.91.5.753; Must A, 2002, AM J EPIDEMIOL, V155, P672, DOI 10.1093/aje/155.7.672; PALAZZI S, 1990, J ADOLESCENCE, V13, P53, DOI 10.1016/0140-1971(90)90041-5; Pedersen W, 2003, J SEX RES, V40, P333, DOI 10.1080/00224490209552199; ROMANS SE, 2003, PSYCHOL MED, V35, P933; Rosenthal DA, 1999, ARCH SEX BEHAV, V28, P319, DOI 10.1023/A:1018796612231; Rowe DC, 2002, EVOL HUM BEHAV, V23, P365, DOI 10.1016/S1090-5138(02)00102-2; Rucibwa NK, 2003, AM J HEALTH BEHAV, V27, P63, DOI 10.5993/AJHB.27.1.7; Schvaneveldt PL, 2001, ADOLESCENCE, V36, P767; Steel J, 2004, CHILD ABUSE NEGLECT, V28, P785, DOI 10.1016/j.chiabu.2003.12.004; Tang CSK, 2002, CHILD ABUSE NEGLECT, V26, P23, DOI 10.1016/S0145-2134(01)00306-4; Thornhill R., 2000, NATURAL HIST RAPE BI; TRICKETT PK, 1993, PSYCHOL SCI, V4, P81, DOI 10.1111/j.1467-9280.1993.tb00465.x; Turner PK, 1999, J REPROD INFANT PSYC, V17, P111, DOI DOI 10.1080/02646839908409091; Widom CS, 2004, CHILD ABUSE NEGLECT, V28, P715, DOI 10.1016/j.chiabu.2004.03.009; Wilsnack SC, 2002, CHILD ABUSE NEGLECT, V26, P139, DOI 10.1016/S0145-2134(01)00313-1; Wu LL, 2001, J MARRIAGE FAM, V63, P682, DOI 10.1111/j.1741-3737.2001.00682.x 47 37 40 0 4 AMER PSYCHOLOGICAL ASSOC/EDUCATIONAL PUBLISHING FOUNDATION WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0012-1649 DEV PSYCHOL Dev. Psychol. MAY 2005 41 3 553 561 10.1037/0012-1649.41.3.553 9 Psychology, Developmental Psychology 929HD WOS:000229331800009 15910162 2018-11-12 J Vorburger, C Vorburger, C Positive genetic correlations among major life-history traits related to ecological success in the aphid Myzus persicae EVOLUTION English Article cost of acquisition; genetic correlations; heterozygosity; life-history evolution; microsatellites; Myzus persicae; resources; trade-offs PEACH-POTATO APHID; LARVAL COMPETITIVE ABILITY; HOST PLANT ADAPTATION; TRADE-OFF; DROSOPHILA-MELANOGASTER; PARASITOID RESISTANCE; DAPHNIA-PULEX; EVOLUTION; SPECIALIZATION; MUTATION Life-history theory is based on the assumption that evolution is constrained by trade-offs among different traits that contribute to fitness. Such trade-offs should be evident from negative genetic correlations among major life-history traits. However, this expectation is not always met. Here I report the results of a life-table experiment designed to measure the broad-sense heritabilities of life-history traits and their genetic correlations in 19 different clones of the aphid Myzus persicae from Victoria, Australia. Most individual traits, as well as fitness calculated as the finite rate of increase from the life table, exhibited highly significant heritabilities. The pattern of genetic correlations revealed absolutely no evidence for life-history trade-offs. Rather, life histories were arranged along an axis from better to worse. Clones with shorter development times tended to have larger body sizes, higher fecundities, and larger offspring. The fitness of clones estimated from the life table in the laboratory tended to be positively associated with their abundance in the field. Fitness also increased significantly with heterozygosity at the seven microsatellite loci that were used to distinguish clones and estimate their frequencies in the field. I discuss these findings in light of a recent proposition that positive genetic correlations among life-history traits for which trade-offs are expected can be explained by genetic variation for resource acquisition ability that is maintained in populations by a cost of acquisition, and I propose ways to test for such a cost in M. persicae. La Trobe Univ, Dept Genet, Bundoora, Vic 3086, Australia Vorburger, C (reprint author), Univ Zurich, Inst Zool, Winterthurerstr 190, CH-8057 Zurich, Switzerland. chrisvor@zool.unizh.ch Vorburger, Christoph/A-1650-2008 Vorburger, Christoph/0000-0002-3627-0841 Becker W A., 1992, MANUAL QUANTITATIVE; Blackman RL, 2000, APHIDS WORLDS CROPS; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; Edwards OR, 2001, ENTOMOL EXP APPL, V100, P21, DOI 10.1023/A:1019202917690; Falconer DS, 1996, INTRO QUANTITATIVE G; Fellowes MDE, 1999, EVOLUTION, V53, P1302, DOI 10.1111/j.1558-5646.1999.tb04544.x; Ferrari J, 2001, EVOLUTION, V55, P1805; Fry JD, 1996, AM NAT, V148, pS84, DOI 10.1086/285904; GILLESPIE JH, 1989, GENETICS, V121, P129; Hawthorne DJ, 2001, NATURE, V412, P904, DOI 10.1038/35091062; HEDRICK PW, 1986, ANNU REV ECOL SYST, V17, P535; HENTER HJ, 1995, EVOLUTION, V49, P427, DOI 10.1111/j.1558-5646.1995.tb02275.x; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Houle D, 1996, GENETICS, V143, P1467; HOULE D, 1994, GENETICS, V138, P773; Hufbauer RA, 1999, EVOLUTION, V53, P1435, DOI 10.1111/j.1558-5646.1999.tb05408.x; JAENIKE J, 1990, ANNU REV ECOL SYST, V21, P243, DOI 10.1146/annurev.es.21.110190.001331; JOSHI A, 1995, EVOL ECOL, V9, P82, DOI 10.1007/BF01237699; Kraaijeveld AR, 1997, NATURE, V389, P278; Kraaijeveld AR, 2001, P ROY SOC B-BIOL SCI, V268, P259, DOI 10.1098/rspb.2000.1354; LANDE R, 1975, GENET RES, V26, P221, DOI 10.1017/S0016672300016037; LENSKI RE, 1982, ECOLOGY, V63, P655, DOI 10.2307/1936785; LYNCH M, 1985, EVOLUTION, V39, P804, DOI 10.1111/j.1558-5646.1985.tb00422.x; Lynch M, 1999, EVOLUTION, V53, P645, DOI 10.1111/j.1558-5646.1999.tb05361.x; LYNCH M, 1988, GENET RES, V51, P137, DOI 10.1017/S0016672300024150; Lynch M, 1998, GENETICS ANAL QUANTI; Mackenzie A, 1996, EVOLUTION, V50, P155, DOI 10.1111/j.1558-5646.1996.tb04482.x; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Roff D. A., 1997, EVOLUTIONARY QUANTIT; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; Roff Derek A., 1992; ROSE MR, 1984, AM NAT, V123, P565, DOI 10.1086/284222; Schmidt MH, 2003, P ROY SOC B-BIOL SCI, V270, P1905, DOI 10.1098/rspb.2003.2469; SERVICE PM, 1985, EVOLUTION, V39, P943, DOI 10.1111/j.1558-5646.1985.tb00436.x; SERVICE PM, 1982, EVOLUTION, V36, P1276, DOI 10.1111/j.1558-5646.1982.tb05496.x; Simon JC, 2002, TRENDS ECOL EVOL, V17, P34, DOI 10.1016/S0169-5347(01)02331-X; Sloane MA, 2001, GENET RES, V77, P251, DOI 10.1017/S0016672301005018; Sokal R.R., 1995, BIOMETRY; SPITZE K, 1991, EVOLUTION, V45, P1081, DOI 10.1111/j.1558-5646.1991.tb04376.x; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tessier AJ, 2000, ECOLOGY, V81, P826, DOI 10.1890/0012-9658(2000)081[0826:AFTOIR]2.0.CO;2; Van Buskirk J, 2000, ECOLOGY, V81, P2813, DOI 10.1890/0012-9658(2000)081[2813:TCOAID]2.0.CO;2; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Via S, 2002, AM NAT, V159, pS76, DOI 10.1086/338374; VIA S, 1991, EVOLUTION, V45, P827, DOI 10.1111/j.1558-5646.1991.tb04353.x; Vorburger C, 2004, ECOL ENTOMOL, V29, P498, DOI 10.1111/j.0307-6946.2004.00625.x; Vorburger C, 2003, ECOL LETT, V6, P1091, DOI 10.1046/j.1461-0248.2003.00536.x; Vorburger C, 2003, MOL ECOL, V12, P3493, DOI 10.1046/j.1365-294X.2003.01998.x; WEBER G, 1986, ENTOMOL EXP APPL, V40, P161, DOI 10.1111/j.1570-7458.1986.tb00498.x; WEBER G, 1985, ENTOMOL EXP APPL, V38, P49, DOI 10.1111/j.1570-7458.1985.tb03497.x; Wilson ACC, 2004, MOL ECOL NOTES, V4, P104, DOI [10.1046/j.1471-8286.2004.00584.x, 10.1046/j.1471-8286.2003.00584.x]; Wilson ACC, 2003, BIOL J LINN SOC, V79, P115, DOI 10.1046/j.1095-8312.2003.00176.x; Wilson ACC, 2002, HEREDITY, V88, P258, DOI [10.1038/sj.hdy.6800037, 10.1038/sj/hdy/6800037]; WOHRMANN K, 1989, ELECTROPHORETIC STUD, P203 58 43 45 1 29 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution MAY 2005 59 5 1006 1015 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 930ZY WOS:000229456800008 16136800 2018-11-12 J Friedl, TWP; Edler, R Friedl, TWP; Edler, R Stress-dependent trade-off between immunological condition and reproductive performance in the polygynous red bishop (Euplectes orix) EVOLUTIONARY ECOLOGY English Article among-season variability; condition-dependent trade-off; heterophile/lymphocyte ratio; male quality; stress-induced immunosuppression BROOD SIZE MANIPULATION; HEALTH STATE INDEXES; MALE BARN SWALLOWS; IMMUNE-RESPONSE; GREAT TITS; PIED FLYCATCHERS; ECOLOGICAL IMMUNOLOGY; EVOLUTIONARY ECOLOGY; FICEDULA-HYPOLEUCA; HIRUNDO-RUSTICA According to life-history theory, a condition-dependent trade-off between reproductive performance and immune function might be expected, with only superior individuals being able to allocate many resources into reproduction without having detrimental effects on their immune system. However, little attention has been paid to the possibility that annual variations in environmentally and socially induced stress levels modify this trade-off. We analysed haematological parameters and investigated the relationship between male immunological condition and reproductive performance as measured by reproductive effort and success in a colony of the highly polygynous red bishop (Euplectes orix) for five consecutive breeding seasons. Haematological parameters can be used to assess an individuals' stress level, and especially the heterophile/lymphocyte ratio (H/L ratio) is known to increase in response to a wide variety of stressors. Relative basophile counts, heterophile counts, lymphocyte counts, absolute leukocyte counts and H/L ratios of territorial males varied significantly among seasons. Both relative heterophile counts and H/L ratios were significantly positive related to overall breeding activity within the colony as measured in terms of total number of nests accepted and total number of eggs laid in the study colony within a breeding season. The relationship between immunological condition (as assessed by relative lymphocyte and heterophil counts and the H/L ratio) and both male reproductive effort (as measured by the number of nests built by the territorial males) and reproductive success (as measured by the number of nests accepted) varied considerably among seasons, ranging from significant negative to significant positive correlations. Across seasons, we found a significant negative relationship between the within-season correlation coefficients of individual H/L ratios against reproductive performance and the average H/L ratio of all territorial males in that season. Thus, a positive association between the immunological condition of a male and his reproductive performance (indicated by a negative correlation between H/L ratio and reproductive performance) exists only in seasons with high average H/L ratios (i.e. high average stress levels). We conclude that the trade-off between immunological condition and male reproductive performance might be important only in seasons with an overall reduced level of male immunological condition due to environmentally and/or socially induced stress and immunosuppressive conditions. Carl von Ossietzky Univ Oldenburg, AG Zoophysiol & Verhalten, Inst Biol & Umweltwissensch, D-26111 Oldenburg, Germany Friedl, TWP (reprint author), Carl von Ossietzky Univ Oldenburg, AG Zoophysiol & Verhalten, Inst Biol & Umweltwissensch, POB 2503, D-26111 Oldenburg, Germany. thomas.friedl@uni-oldenburg.de Friedl, Thomas/K-5305-2013 Friedl, Thomas/0000-0002-4773-8067 Acquarone C, 2002, J ORNITHOL, V143, P351, DOI 10.1046/j.1439-0361.2002.02015.x; Apanius V, 1998, ADV STUD BEHAV, V27, P133; Birkhead TR, 1998, BEHAV ECOL SOCIOBIOL, V44, P179, DOI 10.1007/s002650050530; Bonneaud C, 2003, AM NAT, V161, P367, DOI 10.1086/346134; Bortz J., 1990, VERTEILUNGSFREIE MET; CAMPBELL TW, 1995, AVIAN HEMATOLOGY CYT; Christe P, 2002, J AVIAN BIOL, V33, P321, DOI 10.1034/j.1600-048X.2002.330317.x; Crawley MJ, 1993, GLIM ECOLOGISTS; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; Duffy DL, 2002, P ROY SOC B-BIOL SCI, V269, P847, DOI 10.1098/rspb.2002.1956; Friedl TWP, 1999, BEHAV ECOL SOCIOBIOL, V46, P387, DOI 10.1007/s002650050634; Friedl TWP, 2002, OSTRICH, V73, P181, DOI 10.1080/00306525.2002.11446748; GROSS WB, 1983, AVIAN DIS, V27, P972, DOI 10.2307/1590198; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Hanssen SA, 2004, P ROY SOC B-BIOL SCI, V271, P925, DOI 10.1098/rspb.2004.2678; Hoi-Leitner M, 2001, BEHAV ECOL SOCIOBIOL, V49, P333, DOI 10.1007/s002650000310; Horak P, 1998, FUNCT ECOL, V12, P750, DOI 10.1046/j.1365-2435.1998.00244.x; Horak P, 2002, CAN J ZOOL, V80, P636, DOI 10.1139/Z02-038; Ilmonen P, 2002, OECOLOGIA, V130, P199, DOI 10.1007/s004420100804; Ilmonen P, 2003, OECOLOGIA, V136, P148, DOI 10.1007/s00442-003-1243-2; Kilpimaa J, 2004, P ROY SOC B-BIOL SCI, V271, P245, DOI 10.1098/rspb.2003.2568; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; LOCHMILLER RL, 1993, AUK, V110, P503, DOI 10.2307/4088414; Lozano GA, 2003, P ROY SOC B-BIOL SCI, V270, P1203, DOI 10.1098/rspb.2002.2309; Martin LB, 2003, P ROY SOC B-BIOL SCI, V270, P153, DOI 10.1098/rspb.2002.2185; MAXWELL MH, 1993, WORLD POULTRY SCI J, V49, P34, DOI 10.1079/WPS19930004; Maxwell MH, 1998, WORLD POULTRY SCI J, V54, P155, DOI 10.1079/WPS19980012; Moller AP, 2002, BEHAV ECOL, V13, P248, DOI 10.1093/beheco/13.2.248; Moreno J, 1999, P ROY SOC B-BIOL SCI, V266, P1105, DOI 10.1098/rspb.1999.0750; Moreno J, 2002, ECOSCIENCE, V9, P434, DOI 10.1080/11956860.2002.11682731; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Ots I, 1998, FUNCT ECOL, V12, P700, DOI 10.1046/j.1365-2435.1998.00219.x; Ots I, 1996, P ROY SOC B-BIOL SCI, V263, P1443, DOI 10.1098/rspb.1996.0210; Ots I, 2001, P ROY SOC B-BIOL SCI, V268, P1175, DOI 10.1098/rspb.2001.1636; Raberg L, 2000, ECOL LETT, V3, P382, DOI 10.1046/j.1461-0248.2000.00154.x; Saino N, 1997, BEHAV ECOL, V8, P364, DOI 10.1093/beheco/8.4.364; Saino N, 1995, BEHAV ECOL, V6, P397, DOI 10.1093/beheco/6.4.397; Saino N, 2002, BEHAV ECOL, V13, P169, DOI 10.1093/beheco/13.2.169; Saks L, 2003, OECOLOGIA, V134, P301, DOI 10.1007/s00442-002-1125-z; Samour J., 2000, AVIAN MED; SAPOLSKY R M, 1992, P287; Schmid-Hempel P, 2003, P ROY SOC B-BIOL SCI, V270, P357, DOI 10.1098/rspb.2002.2265; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SIEGEL HS, 1995, BRIT POULTRY SCI, V36, P3, DOI 10.1080/00071669508417748; Siegel S, 1988, NONPARAMETRIC STAT B; Sokal R.R., 1995, BIOMETRY; Stearns S. C., 1992, EVOLUTION LIFE HIST; Svensson E, 1998, FUNCT ECOL, V12, P912, DOI 10.1046/j.1365-2435.1998.00271.x; Verhulst S, 1998, FUNCT ECOL, V12, P132, DOI 10.1046/j.1365-2435.1998.00165.x; Verhulst Simon, 2002, Avian Science, V2, P199; Westneat DF, 1998, P ROY SOC B-BIOL SCI, V265, P1065, DOI 10.1098/rspb.1998.0400; Whitaker S, 2002, OIKOS, V99, P161, DOI 10.1034/j.1600-0706.2002.990116.x; Zar J.H, 1999, BIOSTATISTICAL ANAL; Zuk M, 1998, P ROY SOC B-BIOL SCI, V265, P1631, DOI 10.1098/rspb.1998.0481 55 12 13 0 10 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. MAY 2005 19 3 221 239 10.1007/s10682-005-0509-z 19 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 964LF WOS:000231881900002 2018-11-12 J Uller, T; Eklof, J; Andersson, S Uller, T; Eklof, J; Andersson, S Female egg investment in relation to male sexual traits and the potential for transgenerational effects in sexual selection BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article differential allocation; maternal effect; sexual selection DIFFERENTIAL-ALLOCATION HYPOTHESIS; MALE ATTRACTIVENESS; YOLK TESTOSTERONE; BIRDS; EVOLUTION; BENEFITS; HORMONES; QUAIL; DOMESTICUS; MECHANISMS Life-history theory predicts that individuals should increase their reproductive effort when the fitness return from reproduction is high. Females mated with high-quality males are therefore expected to have higher investment than females mated with low-quality males, which could bias estimates of paternal effects. Investigating the traits females use in their allocation decisions and the aspects of reproduction that are altered is essential for understanding how sexual selection is affected. We studied the potential for differential female allocation in a captive population of a precocial bird, the Chinese quail, Coturnix chinensis. Females paired with males with large sexual ornaments laid larger, but not more, eggs than females paired with males with small sexual ornaments. Furthermore, female egg mass was also significantly positively affected by male testis size, probably via some unknown effect of testis size on male phenotype. Testis size and ornament size were not correlated. Thus, both primary and secondary male sexual traits could be important components of female allocation decisions. Experimental manipulation of hormone levels during embryonic development showed that both male and female traits influencing female egg size were sensitive to early hormone exposure. Differences in prenatal hormone exposure as a result of maternal steroid allocation to eggs may explain some of the variation in reproductive success among individuals, with important implications for nongenetic transgenerational effects in sexual selection. Gothenburg Univ, Dept Zool, S-40530 Gothenburg, Sweden Uller, T (reprint author), Univ Wollongong, Dept Biol Sci, Wollongong, NSW 2522, Australia. uller@uow.edu.au ADKINSREGAN E, 1982, HORM BEHAV, V16, P259, DOI 10.1016/0018-506X(82)90026-5; Andersson M., 1994, SEXUAL SELECTION; Andersson S, 2004, J EVOLUTION BIOL, V17, P501, DOI 10.1111/j.1420-9101.2004.00706.x; Bernardo J, 1996, AM ZOOL, V36, P216; Birkhead T, 2000, TRENDS ECOL EVOL, V15, P86, DOI 10.1016/S0169-5347(99)01803-0; Buchanan KL, 2001, P ROY SOC B-BIOL SCI, V268, P1337, DOI 10.1098/rspb.2001.1669; BURLEY N, 1986, AM NAT, V127, P415, DOI 10.1086/284493; BURLEY N, 1988, AM NAT, V132, P611, DOI 10.1086/284877; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; Clark MM, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P261; CLARK MM, 1992, ANIM BEHAV, V43, P215, DOI 10.1016/S0003-3472(05)80217-9; Cunningham EJA, 2000, NATURE, V404, P74, DOI 10.1038/35003565; DELHOYO J, 1994, HDEB BIRDS WORLD, V2; DICKINSON S L, 1990, Journal of Psychopharmacology, V4, P90, DOI 10.1177/026988119000400207; Dufty AM, 2002, TRENDS ECOL EVOL, V17, P190, DOI 10.1016/S0169-5347(02)02498-9; Gil D, 2004, HORM BEHAV, V45, P64, DOI 10.1016/j.yhbeh.2003.08.005; Gil D, 1999, SCIENCE, V286, P126, DOI 10.1126/science.286.5437.126; Gil D, 2003, ARDEOLA, V50, P281; Hackl R, 2003, J COMP PHYSIOL B, V173, P327, DOI 10.1007/s00360-003-0339-7; Jennions MD, 2000, BIOL REV, V75, P21, DOI 10.1017/S0006323199005423; Kimball RT, 1999, AM NAT, V154, P182, DOI 10.1086/303228; Kolm N, 2001, P ROY SOC B-BIOL SCI, V268, P2229, DOI 10.1098/rspb.2001.1792; Kotiaho JS, 2003, AM NAT, V161, P852, DOI 10.1086/375173; Lovern MB, 2003, J EXP ZOOL PART A, V295A, P206, DOI 10.1002/jez.a.10225; Mazuc J, 2003, BEHAV ECOL, V14, P340, DOI 10.1093/beheco/14.3.340; Moller AP, 1999, P ROY SOC B-BIOL SCI, V266, P85, DOI 10.1098/rspb.1999.0607; Moller AP, 2001, NATURWISSENSCHAFTEN, V88, P401, DOI 10.1007/s001140100255; Moore AJ, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P22; Moore IT, 2002, GEN COMP ENDOCR, V129, P13, DOI 10.1016/S0016-6480(02)00563-4; Muller W, 2002, P ROY SOC B-BIOL SCI, V269, P2249, DOI 10.1098/rspb.2002.2159; Nishibori M, 2002, J HERED, V93, P439, DOI 10.1093/jhered/93.6.439; OWENS IPF, 1995, TRENDS ECOL EVOL, V10, P44, DOI 10.1016/S0169-5347(00)88967-3; PETRIE M, 1993, P ROY SOC B-BIOL SCI, V251, P127, DOI 10.1098/rspb.1993.0018; Petrie M, 2001, NATURE, V412, P498, DOI 10.1038/35087652; Pizzari T, 2003, BEHAV ECOL, V14, P593, DOI 10.1093/beheco/arg048; Quinn GP, 2002, EXPT DESIGN DATA ANA; Qvarnstrom A, 1998, TRENDS ECOL EVOL, V13, P498, DOI 10.1016/S0169-5347(98)01513-4; Qvarnstrom A, 2001, TRENDS ECOL EVOL, V16, P95, DOI 10.1016/S0169-5347(00)02063-2; Rodriguez-Teijeiro JD, 2003, ETHOLOGY, V109, P291, DOI 10.1046/j.1439-0310.2003.00873.x; Roff Derek A., 1992; Rohde PA, 1999, ETHOLOGY, V105, P651, DOI 10.1046/j.1439-0310.1999.00444.x; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Ryan BC, 2002, NEUROSCI BIOBEHAV R, V26, P665, DOI 10.1016/S0149-7634(02)00038-6; SAAL FSV, 1989, J ANIM SCI, V67, P1824; Saether SA, 1999, P ROY SOC B-BIOL SCI, V266, P1227, DOI 10.1098/rspb.1999.0767; SCHWABL H, 1993, P NATL ACAD SCI USA, V90, P11446, DOI 10.1073/pnas.90.24.11446; Sheldon BC, 2000, TRENDS ECOL EVOL, V15, P397, DOI 10.1016/S0169-5347(00)01953-4; Sockman KW, 2000, P ROY SOC B-BIOL SCI, V267, P1451, DOI 10.1098/rspb.2000.1163; Staub NL, 1997, GEN COMP ENDOCR, V108, P1, DOI 10.1006/gcen.1997.6962; Stearns S. C., 1992, EVOLUTION LIFE HIST; Uller T, 2004, EVOLUTION, V58, P2511; Vezina F, 2002, PHYSIOL BIOCHEM ZOOL, V75, P377, DOI 10.1086/343137; Wedell N, 2002, TRENDS ECOL EVOL, V17, P313, DOI 10.1016/S0169-5347(02)02533-8; WILLIAMS TD, 1994, BIOL REV, V69, P35, DOI 10.1111/j.1469-185X.1994.tb01485.x; Young RL, 2004, J EVOLUTION BIOL, V17, P1355, DOI 10.1111/j.1420.9101.2004.00762.x 55 72 72 1 40 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. APR 2005 57 6 584 590 10.1007/s00265-004-0886-2 7 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology 924RF WOS:000228997300007 2018-11-12 J Reznick, DN; Ghalambor, CK Reznick, DN; Ghalambor, CK Can commercial fishing cause evolution? Answers from guppies (Poecilia reticulata) CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article; Proceedings Paper Symposium on Building on Bevertons Legacy - Life History Variation and Fisheries Management AUG 11-14, 2003 Quebec City, CANADA LIFE-HISTORY EVOLUTION; NATURAL-POPULATIONS; TRINIDADIAN GUPPIES; RAPID EVOLUTION; MARINE FISHES; GENETIC-BASIS; NORTH-SEA; PREDATION; SELECTION; RECOVERY Life history theory predicts that high adult mortality rates select for earlier maturity and increased reproduction. If such evolution occurs in response to the commercial exploitation of natural fish populations, then the correlated reduction in body size would reduce the yield of the fishery. Earlier maturity and reduced body size are seen in commercially exploited populations. Here, we compare the life histories of natural populations of guppies (Poecilia reticulata) from Trinidad that live in either high- or low-predation environments, which serve as surrogates for the presence or absence of commercial fishing. We can quantify mortality rate and life history variables, including age and size at maturity, in the laboratory and in nature. We have manipulated mortality rates in nature and measured the rate of evolution. High mortality selects for earlier maturity at a smaller size, as observed in commercial fisheries and as predicted by theory. Furthermore, the nature and magnitude of predator-induced mortality are comparable to those caused by commercial fishing. The rate of evolution in guppies predicts similar evolution in commercial fisheries on a time scale of decades. These attributes support arguments that humans, like predators, have acted as an agent of selection when exploiting populations of fish. Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA Reznick, DN (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. david.reznick@ucr.edu Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Bryant MJ, 2004, AM NAT, V163, P55, DOI 10.1086/380650; CARVALHO GR, 1991, BIOL J LINN SOC, V42, P389, DOI 10.1111/j.1095-8312.1991.tb00571.x; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Darwin C., 1859, ORIGIN SPECIES MEANS; De Roos AM, 2002, P NATL ACAD SCI USA, V99, P12907, DOI 10.1073/pnas.192174199; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; FAJEN A, 1992, EVOLUTION, V46, P1457, DOI 10.1111/j.1558-5646.1992.tb01136.x; Falconer DS, 1996, INTRO QUANTITATIVE G; Gardmark A, 2003, EVOL ECOL RES, V5, P239; GINGERICH PD, 1983, SCIENCE, V222, P159, DOI 10.1126/science.222.4620.159; Greenstreet SPR, 1996, J ANIM ECOL, V65, P577, DOI 10.2307/5738; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Haugen TO, 2001, GENETICA, V112, P475, DOI 10.1023/A:1013315116795; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Hendry A. P., 2001, MICROEVOLUTION RATE; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; Hilborn R, 2003, SCI MAR, V67, P15, DOI 10.3989/scimar.2003.67s115; Hutchings JA, 2004, BIOSCIENCE, V54, P297, DOI 10.1641/0006-3568(2004)054[0297:MFPCCF]2.0.CO;2; Hutchings JA, 2001, J FISH BIOL, V59, P306, DOI 10.1006/jfbi.2001.1756; Hutchings JA, 2000, NATURE, V406, P882, DOI 10.1038/35022565; Jennings S, 1999, J ANIM ECOL, V68, P617, DOI 10.1046/j.1365-2656.1999.00312.x; Jennings S, 1998, ADV MAR BIOL, V34, P201, DOI 10.1016/S0065-2881(08)60212-6; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Matsuda H, 2004, CAN J FISH AQUAT SCI, V61, P175, DOI 10.1139/F03-147; Mertz G, 1998, CAN J FISH AQUAT SCI, V55, P478, DOI 10.1139/cjfas-55-2-478; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; Reznick D, 2001, EXP GERONTOL, V36, P791, DOI 10.1016/S0531-5565(00)00241-2; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; Reznick DN, 1997, EXP GERONTOL, V32, P245, DOI 10.1016/S0531-5565(96)00129-5; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; RIJNSDORP AD, 1993, OECOLOGIA, V96, P391, DOI 10.1007/BF00317510; RIJNSDORP AD, 1991, EXPLOITATION EVOLVIN, P19; Rodd FH, 1997, ECOLOGY, V78, P405; Roff Derek A., 1992; Stearns S. C., 1992, EVOLUTION LIFE HIST; Thompson JN, 1998, TRENDS ECOL EVOL, V13, P329, DOI 10.1016/S0169-5347(98)01378-0 49 85 91 0 34 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. APR 2005 62 4 791 801 10.1139/F05-079 11 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 930LB WOS:000229416200008 2018-11-12 J Rijnsdorp, AD; Grift, RE; Kraak, SBM Rijnsdorp, AD; Grift, RE; Kraak, SBM Fisheries-induced adaptive change in reproductive investment in North Sea plaice (Pleuronectes platessa)? CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article; Proceedings Paper Symposium on Building on Bevertons Legacy - Life History Variation and Fisheries Management AUG 11-14, 2003 Quebec City, CANADA COD GADUS-MORHUA; LIFE-HISTORY EVOLUTION; BEAM-TRAWL EFFORT; REACTION NORMS; SOMATIC GROWTH; TRADE-OFFS; MATURATION; FECUNDITY; SIZE; AGE Life history theory predicts that fishing may select for increased reproductive investment. A model of the reaction norm for reproductive investment in a capital breeder was developed to disentangle changes in reproductive investment from changes in growth rate in North Sea plaice (Pleuronectes platessa). Trends in reproductive investment since 1960 were estimated as (i) the decrease in body weight of mature males and females between the start and end of the spawning period, (ii) the difference in weight of ripe and spent females, and (iii) the ovary weight of prespawning females. These estimates were related to somatic growth estimated by back-calculation of otoliths and temperature. The ovary weight and weight loss of females that had just started and just finished spawning did not reveal any trends. There was a significant increase in weight loss over the spawning season in both sexes, but much of this increase was likely due to changes in environmental conditions. Evidence for a fisheries-induced change in reproductive investment from our analyses thus remained inconclusive. However, fecundity and ovary-weight data from previous studies tentatively suggest that an increase in reproductive investment occurred between the late 1940s and the 1960s. Such an increase is consistent with a fisheries-induced evolutionary change. Univ Wageningen & Res Ctr, Netherlands Inst Fisheries Res, Anim Sci Grp, NL-1970 AB Ijmuiden, Netherlands Rijnsdorp, AD (reprint author), Univ Wageningen & Res Ctr, Netherlands Inst Fisheries Res, Anim Sci Grp, POB 68, NL-1970 AB Ijmuiden, Netherlands. adriaan.rijnsdorp@wur.nl Rijnsdorp, Adriaan/A-4217-2008 Rijnsdorp, Adriaan/0000-0003-0785-9662 Barot S, 2004, ECOL APPL, V14, P1257, DOI 10.1890/03-5066; BARR WA, 1963, GEN COMP ENDOCR, V3, P197, DOI 10.1016/0016-6480(63)90014-5; Bolle LJ, 2004, J SEA RES, V51, P313, DOI 10.1016/j.seares.2004.01.001; Burton M. P., 1995, P INT S N PAC FLATF, P73; BURTON MP, 1984, CAN J ZOOL, V62, P2563, DOI 10.1139/z84-374; Candolin U, 1998, P ROY SOC B-BIOL SCI, V265, P1171, DOI 10.1098/rspb.1998.0415; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; CUSHING DH, 1969, J CONSEIL, V33, P81; DAWSON AS, 1980, J FISH BIOL, V16, P493, DOI 10.1111/j.1095-8649.1980.tb03729.x; FONDS M, 1992, NETH J SEA RES, V29, P127, DOI 10.1016/0077-7579(92)90014-6; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; GUSTAFSSON L, 1986, AM NAT, V128, P761, DOI 10.1086/284601; Harding D., 1978, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V172, P102; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 1999, J EVOLUTION BIOL, V12, P423; HORWOOD JW, 1986, PROC R SOC SER B-BIO, V228, P401, DOI 10.1098/rspb.1986.0061; HORWOOD JW, 1989, J MAR BIOL ASSOC UK, V69, P81, DOI 10.1017/S0025315400049122; HOUGHTON RG, 1975, J CONS INT EXPLOR ME, V36, P1209; JORGENSEN T, 1990, J CONSEIL, V46, P235; Kjesbu OS, 1998, J SEA RES, V40, P303, DOI 10.1016/S1385-1101(98)00029-X; Kurita Y, 2003, J SEA RES, V49, P203, DOI 10.1016/S1385-1101(03)00004-2; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Marshall CT, 1999, NATURE, V402, P288, DOI 10.1038/46272; McIntyre TM, 2003, CAN J FISH AQUAT SCI, V60, P1111, DOI 10.1139/F03-090; Nielsen E, 2004, J SEA RES, V51, P219, DOI 10.1016/j.seares.2003.08.005; PRICE T, 1991, EVOLUTION, V45, P853, DOI 10.1111/j.1558-5646.1991.tb04354.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; RICKER WE, 1978, 820 CAN FISH MAR SER; Rijnsdorp A.D., 1993, Lecture Notes in Biomathematics, V99, P19; RIJNSDORP AD, 1989, J FISH BIOL, V35, P401; Rijnsdorp AD, 1996, ICES J MAR SCI, V53, P1170, DOI 10.1006/jmsc.1996.0142; RIJNSDORP AD, 1992, MAR ECOL PROG SER, V88, P19, DOI 10.3354/meps088019; RIJNSDORP AD, 1993, OECOLOGIA, V96, P391, DOI 10.1007/BF00317510; Rijnsdorp AD, 1998, ICES J MAR SCI, V55, P403, DOI 10.1006/jmsc.1997.0326; RIJNSDORP AD, 1990, NETH J SEA RES, V25, P279, DOI 10.1016/0077-7579(90)90027-E; Rijnsdorp AD, 1996, ICES J MAR SCI, V53, P1199, DOI 10.1006/jmsc.1996.0145; RIJNSDORP AD, 1989, J CONSEIL, V46, P35; RIJNSDORP AD, 1991, ICES J MAR SCI, V48, P253, DOI 10.1093/icesjms/48.3.253; RIJNSDORP AD, 2005, BIOL FLATFISH, P68; RIJNSDORP AD, 1999, ICES CM 1999 X, V6; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; Roff Derek A., 1992; SAS Institute Inc, 1999, SAS STAT US GUID VER; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Siems DP, 1998, ENVIRON BIOL FISH, V53, P319, DOI 10.1023/A:1007407925835; Simpson A. C., 1951, Fish Invest, V17, P1; SIMPSON AC, 1959, FISH INVEST LOND 2, V22, P111; Sinclair AF, 2002, CAN J FISH AQUAT SCI, V59, P361, DOI 10.1139/F02-015; Solmundsson J, 2003, FISH RES, V61, P57, DOI 10.1016/S0165-7836(02)00212-6; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stokes T. K., 1993, LECT NOTES BIOMATHEM, V99; Todd RA, 1914, FISHERIES INVESTIGAT, V2, P131; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; TYLER CR, 1994, FISH PHYSIOL BIOCHEM, V13, P309, DOI 10.1007/BF00003435; VANDERLAND MA, 1991, NETH J SEA RES, V27, P277, DOI 10.1016/0077-7579(91)90030-5; WITTHAMES PR, 1995, AQUAT LIVING RESOUR, V8, P91, DOI 10.1051/alr:1995007 59 52 52 0 20 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. APR 2005 62 4 833 843 10.1139/F05-039 11 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 930LB WOS:000229416200012 2018-11-12 J Drilling, CC; Grober, MS Drilling, CC; Grober, MS An initial description of alternative male reproductive phenotypes in the bluebanded goby, Lythrypnus dalli (Teleostei, Gobiidae) ENVIRONMENTAL BIOLOGY OF FISHES English Article accessory gonadal structure; parasite; sneaker; density; sperm competition ZOSTERISESSOR-OPHIOCEPHALUS TELEOSTEI; CORAL-REEF FISH; SWORDTAIL XIPHOPHORUS-NIGRENSIS; MALE BLUEGILL SUNFISH; SPERM COMPETITION; SALARIA-PAVO; GRASS GOBY; SEX-CHANGE; MEDITERRANEAN WRASSE; ANTHIAS-SQUAMIPINNIS Contrary to the generally accepted life history theory regarding sequential hermaphroditism ('size-advantage model'), we have recently identified "Cymini males" in Lythrypnus dalli, the bluebanded goby. These are small (female-sized) fish that appear male based on their external genitalia. We investigated the reproductive anatomy and demography of these mini males. Based on their small size and the sexual plasticity of this species, we expected that mini males are not actually reproductively functioning males. However, when we examined their gonad anatomy, with particular attention to the male-typical accessory gonadal structure (AGS), we found that mini males have gonads that are comparable to those of nesting males in relative size and the percentage of tissue that is 'male' (testicular and AGS). Although this is contradictory to theories of sperm competition in alternative male phenotypes, reproductive strategies of these two types of males were clearly distinguishable based on their AGS content - as described in other examinations of differing ejaculate quality in alternative male phenotypes in the Gobiidae. Regular sampling of the L. dalli population showed that mini males make up a small fraction of the small size classes and that as the breeding season progressed, mini male frequency decreased and standard length increased significantly - thus allowing us to discuss their role within the social system. Based on these findings as well as comparisons with other species with multiple male phenotypes, we can begin to categorize L. dalli males as either bourgeois or parasitic, primarily based on their secondary sex characteristics and AGS contents. Georgia State Univ, Dept Biol, Atlanta, GA 30303 USA Drilling, CC (reprint author), Georgia State Univ, Dept Biol, MSC 8L0389,33 Gilmer St SE Unit 8, Atlanta, GA 30303 USA. mgrober@gsu.edu ALMADA VC, 1995, ANIM BEHAV, V49, P1125, DOI 10.1006/anbe.1995.0142; ALMADA VC, 1994, J FISH BIOL, V45, P819, DOI 10.1111/j.1095-8649.1994.tb00947.x; Alonzo SH, 2000, EVOL ECOL RES, V2, P997; Alonzo SH, 2000, BEHAV ECOL, V11, P56, DOI 10.1093/beheco/11.1.56; AVISE JC, 1986, EVOLUTION, V40, P1051, DOI 10.1111/j.1558-5646.1986.tb00572.x; Barni A, 2001, J FISH BIOL, V58, P1557, DOI 10.1006/jfbi.2001.1560; BASS A, 1992, TRENDS NEUROSCI, V15, P139, DOI 10.1016/0166-2236(92)90356-D; BASS AH, 1989, J COMP NEUROL, V286, P141, DOI 10.1002/cne.902860202; BEHRENTS KC, 1987, J EXP MAR BIOL ECOL, V107, P45, DOI 10.1016/0022-0981(87)90122-5; BEHRENTS KC, 1983, THESIS U SO CALIFORN; Carlisle SL, 2000, J FISH BIOL, V57, P445, DOI 10.1006/jfbi.2000.1320; COLE KS, 1988, B MAR SCI, V42, P317; Cole KS, 2001, ENVIRON BIOL FISH, V61, P161, DOI 10.1023/A:1011032228716; DOMINEY WJ, 1980, NATURE, V284, P546, DOI 10.1038/284546a0; Fishelson L., 1989, Senckenbergiana Maritima, V20, P147; FISHELSON L, 1991, JPN J ICHTHYOL, V38, P17; Forrester GE, 1999, CORAL REEFS, V18, P85, DOI 10.1007/s003380050159; Gage MJG, 1995, PHILOS T ROY SOC B, V350, P391, DOI 10.1098/rstb.1995.0173; GHISELIN MT, 1969, Q REV BIOL, V44, P189, DOI 10.1086/406066; Grober Matthew S., 1998, Acta Ethologica, V1, P3; GROSS MR, 1991, PHILOS T R SOC B, V332, P59, DOI 10.1098/rstb.1991.0033; GROSS MR, 1980, P NATL ACAD SCI-BIOL, V77, P6937, DOI 10.1073/pnas.77.11.6937; Hartney KB, 2002, OECOLOGIA, V131, P506, DOI 10.1007/s00442-002-0908-6; LAHNSTEINER F, 1992, ZOOMORPHOLOGY, V111, P239, DOI 10.1007/BF01633012; Leach B, 2000, BEHAV ECOL SOCIOBIOL, V49, P31, DOI 10.1007/s002650000268; Mazzoldi C, 2000, MAR BIOL, V137, P1041, DOI 10.1007/s002270000417; MILLER DJ, 1972, FISH B CALIFORNIA DE, V157; Miller P.J., 1984, P119; Oliveira RF, 2001, BRAIN BEHAV EVOLUT, V58, P28, DOI 10.1159/000047259; PARKER GA, 1982, J THEOR BIOL, V96, P281, DOI 10.1016/0022-5193(82)90225-9; PARKER GA, 1990, P ROY SOC B-BIOL SCI, V242, P127, DOI 10.1098/rspb.1990.0115; PARKER GA, 1970, BIOL REV, V45, P525, DOI 10.1111/j.1469-185X.1970.tb01176.x; Reavis Robert H., 1999, Acta Ethologica, V2, P51, DOI 10.1007/PL00012232; RUCHON F, 1995, J FISH BIOL, V47, P826, DOI 10.1111/j.1095-8649.1995.tb06005.x; RYAN MJ, 1992, AM NAT, V139, P21, DOI 10.1086/285311; RYAN MJ, 1990, BEHAV ECOL SOCIOBIOL, V26, P231; RYAN MJ, 2001, FISH AMPHIBIAN REPTI, P133; SADOVY Y, 1987, COPEIA, P136, DOI 10.2307/1446046; Scaggiante M, 1999, J EXP ZOOL, V283, P81, DOI 10.1002/(SICI)1097-010X(19990101)283:1<81::AID-JEZ9>3.0.CO;2-9; SCHREIBMAN MP, 1977, J EXP ZOOL, V200, P277, DOI 10.1002/jez.1402000209; SHAPIRO DY, 1981, J ZOOL, V193, P105; SHAPIRO DY, 1984, FISH REPROD STRATEGI, P103; Soljan T., 1930, Zeitschrift fuer Morphologie und Oekologie der Tiere Berlin, V17, P145, DOI 10.1007/BF00406256; Steele MA, 1997, ECOLOGY, V78, P129, DOI 10.1890/0012-9658(1997)078[0129:TRIOPA]2.0.CO;2; Steele MA, 1996, J EXP MAR BIOL ECOL, V198, P249, DOI 10.1016/0022-0981(96)00011-1; STMARY CM, 1993, COPEIA, P1062; StMary CM, 1997, AM NAT, V150, P73, DOI 10.1086/286057; STMARY CM, 1994, BEHAV ECOL, V5, P304; Stockley P, 1997, AM NAT, V149, P933, DOI 10.1086/286031; Taborsky M, 2001, J HERED, V92, P100, DOI 10.1093/jhered/92.2.100; TABORSKY M, 1987, BEHAVIOUR, V102, P82, DOI 10.1163/156853986X00063; TABORSKY M, 1994, ADV STUD BEHAV, V23, P1, DOI 10.1016/S0065-3454(08)60351-4; VANDENBERGHE EP, 1989, ANIM BEHAV, V38, P875, DOI 10.1016/S0003-3472(89)80119-8; WARNER R, 1978, SMITHSON CONTRIB ZOO, V255, P1; WARNER RR, 1995, P ROY SOC B-BIOL SCI, V262, P135, DOI 10.1098/rspb.1995.0187; WARNER RR, 1984, AM SCI, V72, P128; WARNER RR, 1975, AM NAT, V109, P61, DOI 10.1086/282974; WARNER RR, 1991, BIOL BULL-US, V181, P199, DOI 10.2307/1542090; WARNER RR, 1988, TRENDS ECOL EVOL, V3, P133, DOI 10.1016/0169-5347(88)90176-0; WILEY JW, 1976, SAN DIEGO SOC NAT HI, V18, P169; Wilson J, 2002, OECOLOGIA, V130, P205, DOI 10.1007/s004420100784; ZAR JH, 1996, BIOSTATISTICAL ANAL 62 27 27 0 8 SPRINGER NEW YORK 233 SPRING STREET, NEW YORK, NY 10013 USA 0378-1909 ENVIRON BIOL FISH Environ. Biol. Fishes APR 2005 72 4 361 372 10.1007/s10641-004-2590-5 12 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 922ZI WOS:000228878000001 2018-11-12 J Poorter, L; Zuidema, PA; Pena-Claros, M; Boot, RGA Poorter, L; Zuidema, PA; Pena-Claros, M; Boot, RGA A monocarpic tree species in a polycarpic world: how can Tachigali vasquezii maintain itself so successfully in a tropical rain forest community? JOURNAL OF ECOLOGY English Article demography; life history; matrix population model; monocarpy; reproduction; Tachigali vasquezii; tropical rain forest VERSICOLOR; BALANCE; TRAITS; SEED 1 Although monocarpy is rare among long-lived plant species that grow in stable habitats, one monocarpic species, Tachigali vasquezii, is extremely abundant in the rain forests of the Bolivian Amazon. We analyse how T. vasquezii is able to maintain itself successfully by comparing its life-history traits with those of polycarpic tree species of the same community. We then evaluate the relative importance of such traits using population matrix models. 2 Monocarpic species are expected to have a high fecundity. Seed production per basal area for T. vasquezii is indeed nearly twice that of an average polycarpic species, but this is not sufficient to maintain stable populations. 3 Life-history theory predicts that a monocarpic strategy is advantageous if juvenile survival rates are high compared with adult survival. Although seedlings of T. vasquezii have a lower mortality rate than polycarpic species, its sapling have higher mortality. 4 We found that the success of T. vasquezii is due to its very high diameter growth rates in the larger size classes, which are four times higher than that of an average, co-occurring polycarpic species. Fast diameter growth is enabled by investment in large, leafy crowns and by a low wood density. Applying this high diameter growth in a population model yielded a population growth rate close to that of polycarpic species. Life table response experiment analysis of Tachigali and polycarp models showed that higher growth compensated for the negative demographic effect of 100% adult mortality following reproduction. 5 Rapid growth enables T. vasquezii to reach reproductive maturity in only 49 years, compared with 79 years for an average polycarpic species. It also reduces the risk of dying before reproducing, and 50% more seedlings survive to maturity for T. vasquezii compared with polycarpic species. 6 The dramatic negative demographic consequences of one-time flowering can therefore be completely balanced by taking a shorter time to reach maturity. Taking a time perspective, it appears that Tachigali vasquezii has an advanced, rather than a delayed, reproduction. Univ Wageningen & Res Ctr, Forest Ecol & Forest Management Grp, NL-6700 AA Wageningen, Netherlands; Univ Utrecht, Dept Plant Ecol, NL-3508 TB Utrecht, Netherlands; PROMAB, Roberalta, Bolivia; IBIF, Santa Cruz, Bolivia; Trop Int, NL-6700 AE Wageningen, Netherlands Poorter, L (reprint author), Univ Wageningen & Res Ctr, Forest Ecol & Forest Management Grp, POB 47, NL-6700 AA Wageningen, Netherlands. lourens.poorter@wur.nl Zuidema, Pieter/C-8951-2009 Zuidema, Pieter/0000-0001-8100-1168 ALVERSON WS, 2000, 1 FIELD MUS RAP BIOL; Caswell H, 2001, MATRIX POPULATION MO; CLARK DA, 1992, ECOL MONOGR, V62, P315, DOI 10.2307/2937114; COCHRAN ME, 1992, ECOL MONOGR, V62, P345, DOI 10.2307/2937115; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; Forget PM, 1999, J TROP ECOL, V15, P61, DOI 10.1017/S026646749900067X; FOSTER RB, 1977, NATURE, V268, P624, DOI 10.1038/268624b0; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GUTIERREZROJAS VH, 2000, SERIE TECNICA, V11; Hunt R, 1978, PLANT GROWTH ANAL; JANZEN DH, 1976, ANNU REV ECOL SYST, V7, P347, DOI 10.1146/annurev.es.07.110176.002023; KITAJIMA K, 1989, ECOLOGY, V70, P1102, DOI 10.2307/1941379; Metcalf JC, 2003, TRENDS ECOL EVOL, V18, P471, DOI 10.1016/S0169-5347(03)00162-9; MULLERLANDAU HC, 2001, THESIS PRINCETON U P; Pena-Claros M, 2003, BIOTROPICA, V35, P450; PENACLAROS M, 2001, PROMAB SCI SERIES, V3; Poorter H, 1998, INHERENT VARIATION IN PLANT GROWTH, P309; Poorter L, 2003, PLANT ECOL, V166, P295, DOI 10.1023/A:1023295806147; Poorter L, 2004, PLANT BIOLOGY, V6, P746, DOI 10.1055/s-2004-821269; Poorter L, 1999, AM J BOT, V86, P1464, DOI 10.2307/2656927; Poorter L, 1999, FUNCT ECOL, V13, P396, DOI 10.1046/j.1365-2435.1999.00332.x; POORTER L, 2001, 2 PROMAB; Richards P.W., 1996, TROPICAL RAIN FOREST; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; Strauss-Debenedetti Silvia, 1996, P162; VANULFT B, 1998, THESIS UTRECHT U UTR; Veneklaas EJ, 1998, INHERENT VARIATION IN PLANT GROWTH, P337; Walters MB, 1999, NEW PHYTOL, V143, P143, DOI 10.1046/j.1469-8137.1999.00425.x; WELDEN CW, 1991, ECOLOGY, V72, P5; Whitmore TC, 1990, INTRO TROPICAL RAIN; Zuidema PA, 2001, J ECOL, V89, P995, DOI 10.1046/j.0022-0477.2001.00621.x 32 17 20 0 20 BLACKWELL PUBLISHING LTD OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DG, OXON, ENGLAND 0022-0477 J ECOL J. Ecol. APR 2005 93 2 268 278 10.1111/j.1365-2745.2005.00958.x 11 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology 907ME WOS:000227721400004 2018-11-12 J Livnat, A; Pacala, SW; Levin, SA Livnat, A; Pacala, SW; Levin, SA The evolution of intergenerational discounting in offspring quality AMERICAN NATURALIST English Article offspring quality; parent-offspring conflict; inclusive fitness; maternal effects; intergenerational effects; mutation-selection balance HYENA CROCUTA-CROCUTA; NATURAL-SELECTION; OPTIMAL RATES; CLUTCH-SIZE; REPRODUCTIVE SUCCESS; MATERNAL INHERITANCE; DISPERSAL STRATEGIES; COLLARED FLYCATCHER; SOCIAL-ORGANIZATION; SEX-RATIO Intergenerational effects occur when an individual's actions affect not only its own survivorship and reproduction but also those of its offspring and possibly later descendants. In the presence of intergenerational effects, short-term and long-term measures of success ( such as the expected numbers of surviving offspring and of farther descendants, respectively) may be in conflict. When such conflicts occur, life-history theory normally takes long-term measures to predict the outcome of selection. This ignores the fact that, because traits change in time - through mutation, sex, and recombination long- term relations disintegrate. We study this issue with numerical simulations and analytical models combining intergenerational effects and evolutionary change. In the models, the parental investment per offspring, as well as the total reproductive effort, stand for investments in future generations. The models show that the rate of evolutionary change determines the level of those investments. Higher rates of mutation and of sexual as opposed to parthenogenetic reproduction favor lower parental investment per offspring and lower total reproductive effort. It follows that the level of investment of ancestors in descendants responds to the genetic relatedness between the generations of the lineage, in a manner unaccounted for by preexisting theory. Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA Livnat, A (reprint author), Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA. alivnat@princeton.edu; pacala@princeton.edu; slevin@princeton.edu Alberts B., 1994, MOL BIOL CELL; Altmann J, 2003, OFFSPRING, P140; ANDERSSON M, 1978, AM NAT, V112, P762, DOI 10.1086/283317; Apaloo J, 1997, THEOR POPUL BIOL, V52, P71; AXELROD R, 1981, SCIENCE, V211, P1390, DOI 10.1126/science.7466396; Axelrod Robert M., 1984, EVOLUTION COOPERATIO; BALKAU BJ, 1973, GENETICS, V74, P171; Barrett SCH, 1996, PHILOS T ROY SOC B, V351, P1271, DOI 10.1098/rstb.1996.0110; Barrett SCH, 1990, BIOL APPROACHES EVOL, P229; Barton NH, 1998, SCIENCE, V281, P1986, DOI 10.1126/science.281.5385.1986; BENGTSSON BO, 1978, J THEOR BIOL, V73, P439, DOI 10.1016/0022-5193(78)90151-0; BUSS L, 1987, EVOLUTION INDIVIDUAL; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; COMINS HN, 1980, J THEOR BIOL, V82, P205, DOI 10.1016/0022-5193(80)90099-5; CROW J F, 1970, P591; Durrett R, 1997, J THEOR BIOL, V185, P165, DOI 10.1006/jtbi.1996.0292; Eshel I, 1998, J THEOR BIOL, V191, P391, DOI 10.1006/jtbi.1997.0597; ESHEL I, 1981, THEOR POPUL BIOL, V19, P420, DOI 10.1016/0040-5809(81)90029-0; FALCONER D. S., 1965, Genetics today. Proceedings of the XI International Congress of Genetics, The Hague, the Netherlands, September, 1963., V3, P763; FELDMAN MW, 1982, AM NAT, V119, P285, DOI 10.1086/283909; FRANK LG, 1986, ANIM BEHAV, V34, P1510, DOI 10.1016/S0003-3472(86)80221-4; FRANK LG, 1986, ANIM BEHAV, V34, P1500, DOI 10.1016/S0003-3472(86)80220-2; GODFRAY HCJ, 1995, NATURE, V376, P133, DOI 10.1038/376133a0; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; HAMILTON WD, 1977, NATURE, V269, P578, DOI 10.1038/269578a0; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HASTINGS A, 1983, THEOR POPUL BIOL, V24, P244, DOI 10.1016/0040-5809(83)90027-8; HAUSFATER G, 1982, SCIENCE, V217, P752, DOI 10.1126/science.217.4561.752; HOLEKAMP KE, 1991, AM ZOOL, V31, P306; Holling C. S., 1968, P47; Kerr B, 2002, NATURE, V418, P171, DOI 10.1038/nature00823; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D., 1966, POPULATION STUDIES B; Lack D., 1954, NATURAL REGULATION A; LANDE R, 1985, EVOLUTION, V39, P24, DOI 10.1111/j.1558-5646.1985.tb04077.x; LANDE R, 1990, GENET RES, V55, P189, DOI 10.1017/S0016672300025520; Leimar O, 1996, BEHAV ECOL, V7, P316, DOI 10.1093/beheco/7.3.316; LEVIN SA, 1984, THEOR POPUL BIOL, V26, P165, DOI 10.1016/0040-5809(84)90028-5; Levin SA, 2000, EVOL ECOL RES, V2, P409; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; May RM, 1973, STABILITY COMPLEXITY; Maynard Smith J., 1973, Nature London, V246, P15; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; McNamara JM, 2004, NATURE, V428, P745, DOI 10.1038/nature02432; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MOTRO U, 1982, THEOR POPUL BIOL, V21, P394, DOI 10.1016/0040-5809(82)90026-0; MOTRO U, 1982, THEOR POPUL BIOL, V21, P412, DOI 10.1016/0040-5809(82)90027-2; MOTRO U, 1982, THEORETICAL POPULATI, V23, P159; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; OLIVIERI I, 1995, AM NAT, V146, P202, DOI 10.1086/285795; Pusey A, 1997, SCIENCE, V277, P828, DOI 10.1126/science.277.5327.828; RIDDINGTON R, 1995, IBIS, V137, P371, DOI 10.1111/j.1474-919X.1995.tb08035.x; Riley MA, 1999, TRENDS MICROBIOL, V7, P129, DOI 10.1016/S0966-842X(99)01459-6; ROFF DA, 1975, OECOLOGIA, V19, P217, DOI 10.1007/BF00345307; Rossiter MC, 1996, ANNU REV ECOL SYST, V27, P451, DOI 10.1146/annurev.ecolsys.27.1.451; Rousset F, 2002, J EVOLUTION BIOL, V15, P515, DOI 10.1046/j.1420-9101.2002.00430.x; SCHELLING TC, 1995, ENERG POLICY, V23, P395, DOI 10.1016/0301-4215(95)90164-3; SCHLUTER D, 1993, EVOLUTION, V47, P658, DOI 10.1111/j.1558-5646.1993.tb02119.x; Silk J.B., 1987, P318; Silk JB, 2003, SCIENCE, V302, P1231, DOI 10.1126/science.1088580; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH JM, 1978, EVOLUTION SEX; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TRIVERS RL, 1974, AM ZOOL, V14, P249; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; Tucker A.W, 1950, 2 PERSON DILEMMA; Verhulst S, 1997, ECOLOGY, V78, P864; WAAGE JK, 1984, J ANIM ECOL, V53, P401, DOI 10.2307/4524; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; YAHARA T, 1992, EVOLUTION, V46, P557, DOI 10.1111/j.1558-5646.1992.tb02059.x 73 19 19 0 12 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. MAR 2005 165 3 311 321 10.1086/428294 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 904RY WOS:000227516600004 15729662 2018-11-12 J De Block, M; Stoks, R De Block, M; Stoks, R Pond drying and hatching date shape the tradeoff between age and size at emergence in a damselfly OIKOS English Article ADAPTIVE PHENOTYPIC PLASTICITY; LIFE-HISTORY PLASTICITY; WATER HABITAT GRADIENT; BODY-SIZE; TIME CONSTRAINTS; RANA-TEMPORARIA; AMPHIBIAN METAMORPHOSIS; QUANTITATIVE GENETICS; INSECT COMMUNITIES; REACTION NORMS The trade off between age and size at emergence, which plays a central role in life history theory, is hypothesized to be more pronounced under stressful conditions, especially when these conditions are combined. Empirical evidence for this is equivocal. We tested the hypothesis by imposing combinations of two types of time stress (pond drying and late hatching date) in larvae of the damselfly Lestes viridis. Larvae from a temporary pond and a permanent pond population were reared in outdoor tubs from egg hatching until emergence. Unexpectedly, larvae did not accelerate their life history in response to simulation of pond drying. Instead, larvae reared in temporary tubs generally had a slower development and growth than larvae reared in permanent tubs. Probably deteriorating growth conditions in temporary tubs associated with higher densities and lower food levels caused this pattern. In agreement with a higher time stress in late hatched larvae, they generally had faster development and growth than larvae that hatched early in the season. Drying regime and hatching date shaped the covariation pattern between age and size at emergence, but the tradeoff was only apparent when time stress was relaxed. The tradeoff between age and size at emergence was only present in early hatched larvae, especially in permanent tubs (lowest time stress). Conversely, in late hatched larvae there was a strongly negative relationship between age and size at emergence, especially in temporary tubs (highest time stress). Our results support an alternative hypothesis that deteriorating growth conditions (i.e. pond drying) may decouple the tradeoff under time stress. The absence of a tradeoff in more time-stressed late hatched larvae can be explained by their higher intrinsic growth rates, independent of deteriorating growth conditions. We hypothesize that the pattern of less clear tradeoffs under the imposed types of time stress may be general. Dartmouth Coll, Dept Sci Biol, Hanover, NH 03755 USA; Univ Antwerp, Dept Biol, Evolut Biol Grp, BE-2020 Antwerp, Belgium; Katholieke Univ Leuven, Lab Aquat Ecol, BE-3000 Louvain, Belgium De Block, M (reprint author), Dartmouth Coll, Dept Sci Biol, Hanover, NH 03755 USA. marjan.deblock@dartmouth.edu Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; ALFORD RA, 1988, AM NAT, V131, P91, DOI 10.1086/284775; Altwegg R, 2002, ECOLOGY, V83, P2542, DOI 10.1890/0012-9658(2002)083[2542:PILHPU]2.0.CO;2; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Batzer DP, 1996, ANNU REV ENTOMOL, V41, P75, DOI 10.1146/annurev.en.41.010196.000451; Blanckenhorn WU, 1998, EVOLUTION, V52, P1394, DOI 10.1111/j.1558-5646.1998.tb02021.x; Blanckenhorn WU, 1999, EVOL ECOL, V13, P395, DOI 10.1023/A:1006741222586; Brady LD, 2000, J ZOOL, V252, P61; Brodin T, 2002, OECOLOGIA, V132, P316, DOI 10.1007/s00442-002-0938-0; Carriere Y, 1996, OIKOS, V75, P463, DOI 10.2307/3545887; CHODOROWSKI A, 1969, POL ARCH HYDROBIOL, V16, P79; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; De Block M, 2004, OIKOS, V106, P587; Denver RJ, 1997, HORM BEHAV, V31, P169, DOI 10.1006/hbeh.1997.1383; Denver RJ, 1998, ECOLOGY, V79, P1859, DOI 10.1890/0012-9658(1998)079[1859:APIAMR]2.0.CO;2; Fischer K, 2002, BIOL J LINN SOC, V75, P173, DOI 10.1046/j.1095-8312.2002.00014.x; FISCHER Z., 1960, POLSKIE ARCH HYDROBIOL, V7, P125; FORREST TG, 1987, OECOLOGIA, V73, P178, DOI 10.1007/BF00377505; GOTTHARD K, 1995, OIKOS, V74, P3, DOI 10.2307/3545669; GOTTHARD K, 1994, OECOLOGIA, V99, P281, DOI 10.1007/BF00627740; GOTTHARD K, 2001, ANIMAL DEV ECOLOGY, P287; Higgins L, 2000, OECOLOGIA, V122, P51, DOI 10.1007/PL00008835; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Jodicke R. A., 1997, BINSENJUNGFERN WINTE; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.1890/0012-9658(1999)080[1242:LHABRT]2.0.CO;2; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; JULIANO SA, 1994, OECOLOGIA, V97, P369, DOI 10.1007/BF00317327; Kause A, 2001, EVOLUTION, V55, P1992; Kause A, 1999, J EVOLUTION BIOL, V12, P471, DOI 10.1046/j.1420-9101.1999.00045.x; Klingenberg CP, 1997, ECOL ENTOMOL, V22, P55, DOI 10.1046/j.1365-2311.1997.00031.x; Laurila A, 2002, EVOLUTION, V56, P617; Leips J, 2000, ECOLOGY, V81, P2997, DOI 10.1890/0012-9658(2000)081[2997:ROTLTD]2.0.CO;2; Loman J, 2003, EVOL ECOL RES, V5, P179; Merila J, 2000, ECOSCIENCE, V7, P18, DOI 10.1080/11956860.2000.11682566; NEWMAN RA, 1992, BIOSCIENCE, V42, P671, DOI 10.2307/1312173; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Nylin S, 1996, EVOLUTION, V50, P1351, DOI 10.1111/j.1558-5646.1996.tb02377.x; NYLIN S, 1993, ECOLOGY, V74, P1414, DOI 10.2307/1940071; PFENNIG DW, 1991, ECOLOGY, V72, P2240, DOI 10.2307/1941574; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; Roff Derek A., 1992; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; *SAS I, 2000, SAS STAT US GUID VER; Simons AM, 1998, J EVOLUTION BIOL, V11, P721, DOI 10.1046/j.1420-9101.1998.11060721.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stevens DJ, 2000, P ROY SOC B-BIOL SCI, V267, P1511, DOI 10.1098/rspb.2000.1172; Stoks R, 2003, ECOLOGY, V84, P3327, DOI 10.1890/02-0696; Stoks R, 2003, ECOLOGY, V84, P1576, DOI 10.1890/0012-9658(2003)084[1576:PALHSL]2.0.CO;2; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANNOTE RL, 1980, AM NAT, V115, P667, DOI 10.1086/283591; Verbeke G., 1997, LINEAR MIXED MODELS; Wellborn GA, 1996, ANNU REV ECOL SYST, V27, P337, DOI 10.1146/annurev.ecolsys.27.1.337; WIGGINS G B, 1980, Archiv fuer Hydrobiologie Supplement, V58, P97; Wissinger S, 2004, OECOLOGIA, V138, P39, DOI 10.1007/s00442-003-1397-y 55 27 29 3 18 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos MAR 2005 108 3 485 494 10 Ecology Environmental Sciences & Ecology 895XQ WOS:000226898200006 2018-11-12 J Schmidt, KA; Whelan, CJ Schmidt, KA; Whelan, CJ Quantifying male Wood Thrush nest-attendance and its relationship to nest success CONDOR English Article age-specific mortality; Hylocichla mustelina; life-history theory; nest guarding; nest predation; Wood Thrush LIFE-HISTORY EVOLUTION; PREDATION RISK; DEFENSE; BIRDS; POPULATIONS; FLYCATCHER; RESPONSES; BEHAVIOR; REMOVAL Male Wood Thrushes (Hylocichla mustelina) attend their nests by perching near its rim, a behavior common to many species and presumed to be for the purpose of guarding eggs or young in the nest. We classified nests into two groups based on whether or not we observed an attending male during any nest inspection. We found that nests attended by male Wood Thrushes had higher success rates (i.e., lower predation rates) than unattended nests in Illinois where Blue Jays were a dominant nest predator. In contrast, there was no significant difference in nest success between attended and unattended nests in New York where rodents (mice and chipmunks) and raptors, such as the Sharp-shinned Hawk, were important predators on nests and adults, respectively. Despite differences in risk to adults and nests between the two sites, the frequency of observing attendant males did not differ between sites. In contrast to studies in the literature, the frequency of nest-attendance in the New York population was negatively related to year-to-year variation in chipmunk density, an independent measure of the risk of nest predation. Texas Tech Univ, Dept Biol Sci, Lubbock, TX 79409 USA; Illinois Nat Hist Survey, Wilmington, IL 60481 USA Schmidt, KA (reprint author), Texas Tech Univ, Dept Biol Sci, MS 3131, Lubbock, TX 79409 USA. kenneth.schmidt@ttu.edu Whelan, Christopher/0000-0001-7511-2603 Bennett P. M., 2002, EVOLUTIONARY ECOLOGY; BLANCHER PJ, 1982, ANIM BEHAV, V30, P929, DOI 10.1016/S0003-3472(82)80167-X; Dale S, 1996, BEHAV ECOL SOCIOBIOL, V39, P31, DOI 10.1007/s002650050264; DAVIS D. E., 1954, AUK, V71, P331; DEVORE JL, 1991, PROBABILITY STAT ENG; Ghalambor CK, 2000, ANIM BEHAV, V60, P263, DOI 10.1006/anbe.2000.1472; Ghalambor CK, 2002, BEHAV ECOL, V13, P101, DOI 10.1093/beheco/13.1.101; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Hatch MI, 1997, CONDOR, V99, P282, DOI 10.2307/1369934; KNIGHT RL, 1986, ANIM BEHAV, V34, P561, DOI 10.1016/S0003-3472(86)80125-7; KNIGHT RL, 1986, ANIM BEHAV, V34, P887, DOI 10.1016/S0003-3472(86)80075-6; Komdeur J, 1999, BEHAV ECOL, V10, P648, DOI 10.1093/beheco/10.6.648; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; MARTIN TE, 1992, ECOLOGY AND CONSERVATION OF NEOTROPICAL MIGRANT LANDBIRDS, P455; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; MAYFIELD HF, 1975, WILSON BULL, V87, P456; Meilvang D, 1997, J AVIAN BIOL, V28, P331, DOI 10.2307/3676947; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; Olendorf R, 2000, IBIS, V142, P365, DOI 10.1111/j.1474-919X.2000.tb04432.x; Popiel SA, 1996, COPEIA, P649, DOI 10.2307/1447529; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; ROTH RR, 1996, BIRDS N AM, V284; Sasvari L, 2000, FOLIA ZOOL, V49, P211; Schmidt KA, 2003, ECOLOGY, V84, P406, DOI 10.1890/0012-9658(2003)084[0406:SPIFEP]2.0.CO;2; Schmidt KA, 1999, OIKOS, V85, P151, DOI 10.2307/3546801; Schmidt KA, 2001, ECOLOGY, V82, P2927, DOI 10.2307/2679971; Schmidt KA, 1999, OIKOS, V87, P65, DOI 10.2307/3546997; SEALY SG, 1994, CAN FIELD NAT, V108, P41; SLACK RD, 1976, AUK, V93, P292; SPSS Inc, 2000, SYSTAT STAT VERS 10; WALTON LM, 1994, THESIS U DELAWARE; WHELAN CJ, 1994, AUK, V111, P945, DOI 10.2307/4088826; WOODWARD JD, ANIMAL BEHAV, V57, P105 35 17 17 0 11 COOPER ORNITHOLOGICAL SOC LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0010-5422 CONDOR Condor FEB 2005 107 1 138 144 10.1650/7582 7 Ornithology Zoology 896UV WOS:000226960300015 2018-11-12 J Kuzawa, CW Kuzawa, CW Fetal origins of developmental plasticity: Are fetal cues reliable predictors of future nutritional environments? AMERICAN JOURNAL OF HUMAN BIOLOGY English Article; Proceedings Paper 29th Annual Meeting of the Human-Biology-Association APR 14-15, 2004 Tampa, FL Human Biol Assoc INTRAUTERINE GROWTH-RETARDATION; THRIFTY PHENOTYPE HYPOTHESIS; MATERNAL FEED RESTRICTION; OFFSPRING BIRTH-WEIGHT; MONKEY MACACA-MULATTA; SUPPLY-DEMAND MODEL; LIFE-HISTORY TRAITS; ADULT GUINEA-PIG; GESTATIONAL-AGE; HUMAN-PREGNANCY Evidence that fetal nutrition triggers permanent adjustments in a wide range of systems and health outcomes is stimulating interest in the evolutionary significance of these responses. This review evaluates the postnatal adaptive significance of fetal developmental plasticity from the perspective of life history theory and evolutionary models of energy partitioning. Birthweight is positively related to multiple metabolically costly postnatal functions, suggesting that the fetus has the capacity to distribute the burden of energy insufficiency when faced with a nutritionally challenging environment. Lowering total requirements may reduce the risk of negative energy balance, which disproportionately impacts functions that are not essential for survival but that are crucial for reproductive success. The long-term benefit of these metabolic adjustments is contingent upon the fetus having access to a cue that is predictive of its future nutritional environment, a problem complicated in a long-lived species by short-term ecologic fluctuations like seasonality. Evidence is reviewed suggesting that the flow of nutrients reaching the fetus provides an integrated signal of nutrition as experienced by recent matrilineal ancestors, which effectively limits the responsiveness to short-term ecologic fluctuations during any given pregnancy. This capacity for fetal nutrition to minimize the growth response to transient ecologic fluctuations is defined here as intergenerational "phenotypic inertia," and is hypothesized to allow the fetus to cut through the "noise" of seasonal or other stochastic influences to read the "signal" of longer-term ecologic trends. As a mode of adaptation, phenotypic inertia may help the organism cope with ecologic trends too gradual to be tracked by conventional developmental plasticity, but too rapid to be tracked by natural selection. From an applied perspective, if a trait like fetal growth is designed to minimize the effects of short-term fluctuations by integrating information across generations, public health interventions may be most effective if focused not on the individual but on the matriline. (C) 2004 Wiley-Liss, Inc. Northwestern Univ, Dept Anthropol, Evanston, IL 60208 USA Kuzawa, CW (reprint author), Northwestern Univ, Dept Anthropol, Evanston, IL 60208 USA. kuzawa@northwestern.edu ADAIR LS, 1985, AM J CLIN NUTR, V41, P948; Adair LS, 2001, CIRCULATION, V104, P1034, DOI 10.1161/hc3401.095037; ALBERMAN E, 1991, ANN HUM BIOL, V18, P127, DOI 10.1080/03014469100001472; Alberman E, 1992, Paediatr Perinat Epidemiol, V6, P134, DOI 10.1111/j.1365-3016.1992.tb00755.x; Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; BARKER DJP, 1989, BRIT MED J, V298, P564, DOI 10.1136/bmj.298.6673.564; Barker DJP, 1994, MOTHERS BABIES DIS L; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; BEDI KS, 1982, BRIT J NUTR, V47, P417, DOI 10.1079/BJN19820053; Bogin B., 1999, PATTERNS HUMAN GROWT; CAHILL GF, 1976, CLIN ENDOCRINOL META, V5, P397, DOI 10.1016/S0300-595X(76)80028-X; Cameron Noel, 2002, Am J Phys Anthropol, VSuppl 35, P159; Ceesay SM, 1997, BMJ-BRIT MED J, V315, P786; CHANDRA RK, 1975, SCIENCE, V190, P289, DOI 10.1126/science.1179211; Charnov Eric L., 1993, P1; Chen S T, 1990, J Singapore Paediatr Soc, V32, P102; Cicognani A, 2002, J PEDIATR-US, V141, P376, DOI 10.1067/mpd.2002.126300; Coe CL, 2004, PEDIATR RES, V55, P914, DOI 10.1203/01.PDR.0000125259.45025.41; Cole TJ, 2000, P NUTR SOC, V59, P317, DOI 10.1017/S0029665100000355; Cresswell JL, 1997, EARLY HUM DEV, V49, P143, DOI 10.1016/S0378-3782(97)00028-5; CROWLEY D, 1989, GENETICS, V122, P193; Da Silva P, 2001, REPRODUCTION, V122, P375, DOI 10.1530/rep.0.1220375; Dabelea D, 2001, J PEDIATR ENDOCR MET, V14, P1085; Delemarre-van de Waal HA, 2002, HORM RES, V57, P15, DOI 10.1159/000058095; Dennison EM, 2001, PAEDIATR PERINAT EP, V15, P211, DOI 10.1046/j.1365-3016.2001.00350.x; DOSSANTOS SI, 2004, BRIT J CANCER, V91, P519; Drake AJ, 2004, J ENDOCRINOL, V180, P1, DOI 10.1677/joe.0.1800001; Dufour DL, 2002, AM J HUM BIOL, V14, P584, DOI 10.1002/ajhb.10071; ELLISON PT, 1993, HUM REPROD, V8, P2248, DOI 10.1093/oxfordjournals.humrep.a138015; ELLISON PT, 2001, FERTILE GROUND NATUR; EMANUEL I, 1992, BRIT J OBSTET GYNAEC, V99, P836, DOI 10.1111/j.1471-0528.1992.tb14416.x; Emanuel I, 2004, INT J EPIDEMIOL, V33, P1236, DOI 10.1093/ije/dyh269; Engelbregt MJT, 2004, BONE, V34, P180, DOI 10.1016/j.bone.2003.04.001; Eriksson J, 2003, CLIN GENET, V64, P366, DOI 10.1034/j.1399-0004.2003.00150.x; Eriksson M, 2004, J INTERN MED, V255, P236, DOI 10.1046/j.1365-2796.2003.01289.x; FAO/WHO/UNU, 1985, WHO TECHN REP SER, V724; FISHER R. A., 1930, GENETICAL THEORY NAT; Fogel RW, 1986, HUMAN GROWTH COMPREH, P263, DOI DOI 10.1007/978-1-4615-7198-8_13; Fok TF, 2003, ARCH DIS CHILD, V88, P229; FOLEY RA, 1993, SOC ST HUM, V35, P17, DOI 10.1017/CBO9780511600517.003; FRISANCH.AR, 1973, AM J PHYS ANTHROPOL, V39, P255, DOI 10.1002/ajpa.1330390216; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GALLER JR, 1981, BRIT J NUTR, V45, P251, DOI 10.1079/BJN19810101; GARROW JS, 1967, LANCET, V1, P1; Getty T, 1996, AM NAT, V148, P378, DOI 10.1086/285930; Gluckman PD, 1997, ACTA PAEDIATR, V86, P153; Gluckman PD, 2004, PEDIATR RES, V56, P311, DOI 10.1203/01.PDR.0000135998.08025.FB; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; HALES CN, 1992, DIABETOLOGIA, V35, P595, DOI 10.1007/BF00400248; Harvey P.H., 1987, P181; Hawkes K, 2003, AM J HUM BIOL, V15, P380, DOI 10.1002/ajhb.10156; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hop LT, 2003, ASIA PAC J CLIN NUTR, V12, P266; Hurtado A. M., 1996, ACHE LIFE HIST ECOLO; Hypponen E, 2004, PAEDIATR PERINAT EP, V18, P168, DOI 10.1111/j.1365-3016.2004.00556.x; Hypponen E, 2004, BIOMED PHARMACOTHER, V58, P72, DOI 10.1016/S0753-3322(03)00042-8; Ibanez L, 2000, J CLIN ENDOCR METAB, V85, P2624, DOI 10.1210/jc.85.7.2624; Institute of Medicine, 1990, NUTR PREG 1; Jablonka E, 1995, PHILOS T R SOC B, V350, P133, DOI 10.1098/rstb.1995.0147; Jablonka E., 1995, EPIGENETIC INHERITAN; Janson Charles H., 1993, P57; Kind KL, 2002, EXP PHYSIOL, V87, P469, DOI 10.1111/j.1469-445X.2002.tb00060.x; Kind KL, 1999, AM J PHYSIOL-REG I, V277, pR1675, DOI 10.1152/ajpregu.1999.277.6.R1675; Kind KL, 2003, AM J PHYSIOL-REG I, V284, pR140, DOI 10.1152/ajpregu.00587.2001; KLEBANOFF MA, 1987, J PEDIATR-US, V111, P287, DOI 10.1016/S0022-3476(87)80089-6; Koziel S, 2002, J PAEDIATR CHILD H, V38, P268, DOI 10.1046/j.1440-1754.2002.00793.x; KRAMER MS, 2000, COCHRANE DATABASE SY; KUH D, 1989, INT J EPIDEMIOL, V18, P663, DOI 10.1093/ije/18.3.663; Kuzawa CW, 2004, J NUTR, V134, P194; Kuzawa CW, 2004, EUR J CLIN NUTR, V58, P438, DOI 10.1038/sj.ejcn.1601826; Kuzawa CW, 1998, YEARB PHYS ANTHROPOL, V41, P177; Kuzawa CW, 2003, AM J CLIN NUTR, V77, P960; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; Lang U, 2003, EUR J OBSTET GYN R B, V110, pS55, DOI 10.1016/S0301-2115(03)00173-8; LASKER GW, 1969, SCIENCE, V166, P1480, DOI 10.1126/science.166.3912.1480; LECHTIG A, 1978, TROP PEDIAT ENV CHIL, V24, P217; Lee RD, 2003, P NATL ACAD SCI USA, V100, P9637, DOI 10.1073/pnas.1530303100; LEVINS R, 1965, EVOLUTION CHANGING E; Lewontin R., 1970, ANNU REV ECOL SYST, V1, P1, DOI DOI 10.1146/ANNUREV.ES.01.110170.000245; Li HJ, 2003, AM J CLIN NUTR, V77, P1498; Lienhardt A, 2002, HORM RES, V57, P88, DOI 10.1159/000058108; LJZERMAN R, 2003, CIRCULATION, V108, P566; Lummaa V, 2003, AM J HUM BIOL, V15, P370, DOI 10.1002/ajhb.10155; Martin RM, 2004, EPIDEMIOLOGY, V15, P308, DOI 10.1097/01.ede.0000120042.16363.e3; MARTORELL R, 1989, HUM ORGAN, V48, P15, DOI 10.17730/humo.48.1.x20u5450x51h5211; MCCANCE RA, 1974, PROC R SOC SER B-BIO, V185, P1, DOI 10.1098/rspb.1974.0001; McDade TW, 2001, AM J CLIN NUTR, V74, P543; Mellemkjaer L, 2003, CANCER CAUSE CONTROL, V14, P61, DOI 10.1023/A:1022570305704; Moore SE, 1997, NATURE, V388, P434, DOI 10.1038/41245; MORA JO, 1979, AM J CLIN NUTR, V32, P455; MOUSSEAU T, 1998, MAT EFFECTS ADAPTATI; Newsome CA, 2003, DIABETIC MED, V20, P339, DOI 10.1046/j.1464-5491.2003.00871.x; OUNSTED M, 1968, NATURE, V220, P599, DOI 10.1038/220599a0; OUNSTED M, 1986, ANN HUM BIOL, V13, P143, DOI 10.1080/03014468600008281; Paltiel O, 2004, CANCER EPIDEM BIOMAR, V13, P1057; Potts R, 1998, YEARB PHYS ANTHROPOL, V41, P93; Potts R, 1996, SCIENCE, V273, P922, DOI 10.1126/science.273.5277.922; Potts R., 1996, HUMANITYS DESCENT CO; PRADER A, 1963, J PEDIATR-US, V62, P646, DOI 10.1016/S0022-3476(63)80035-9; Prentice AM, 2000, AM J CLIN NUTR, V71, p1226S, DOI 10.1093/ajcn/71.5.1226s; Price KC, 1999, OBSTET GYNECOL, V94, P128, DOI 10.1016/S0029-7844(99)00269-0; Price KC, 2000, HUM REPROD, V15, P452, DOI 10.1093/humrep/15.2.452; Ramakrishnan U, 1999, J NUTR, V129, p544S, DOI 10.1093/jn/129.2.544S; Reik W, 2003, J PHYSIOL-LONDON, V547, P35, DOI 10.1113/jphysiol.2002.033274; SANDERSON M, 1995, PAEDIATR PERINAT EP, V9, P391, DOI 10.1111/j.1365-3016.1995.tb00162.x; SCRIMSHA.NS, 1965, NEW ENGL J MED, V272, P193, DOI 10.1056/NEJM196501282720406; Seckl JR, 2001, MOL CELL ENDOCRINOL, V185, P61, DOI 10.1016/S0303-7207(01)00633-5; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stein AD, 2000, HUM BIOL, V72, P641; Stein AD, 2004, PEDIATRICS, V113, pE270, DOI 10.1542/peds.113.3.e270; Stein AD, 2003, AM J CLIN NUTR, V78, P162; Strauss RS, 1997, J PEDIATR-US, V130, P95, DOI 10.1016/S0022-3476(97)70316-0; WADE GN, 1992, NEUROSCI BIOBEHAV R, V16, P235, DOI 10.1016/S0149-7634(05)80183-6; Waterland RA, 2004, NUTRITION, V20, P63, DOI 10.1016/j.nut.2003.09.011; Weaver ICG, 2004, NAT NEUROSCI, V7, P847, DOI 10.1038/nn1276; Wells JCK, 2003, J THEOR BIOL, V221, P143, DOI 10.1006/jtbi.2003.3183; Williams GC, 1966, ADAPTATION NATURAL S 120 185 191 1 36 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 1520-6300 AM J HUM BIOL Am. J. Hum. Biol. JAN-FEB 2005 17 1 5 21 10.1002/ajhb.20091 17 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 884SD WOS:000226105500002 15611967 2018-11-12 J Jones, JH Jones, JH Fetal programming: Adaptive life-history tactics or making the best of a bad start? AMERICAN JOURNAL OF HUMAN BIOLOGY English Article; Proceedings Paper 29th Annual Meeting of the Human-Biology-Association APR 14-15, 2004 Tampa, FL Human Biol Assoc DEVELOPMENTAL PLASTICITY; POPULATION-DYNAMICS; VARIABLE ENVIRONMENTS; BIRTH-WEIGHT; ICE-CORE; AGE; EVOLUTION; ORIGINS; CLIMATE; GROWTH Fetal programming is an ontogenetic phenomenon of increasing interest to human biologists. Because the downstream consequences of fetal programming have clear impacts on specific life-history traits (e.g., age at first reproduction and the general age-pattern of reproductive investments), a number of authors have raised the question of the adaptive significance of fetal programming. In this paper, I review in some detail several classical models in life-history theory and discuss their relative merits and weaknesses for human biology. I suggest that an adequate model of human life-history evolution must account for the highly structured nature of the human life cycle, with its late age at first reproduction, large degree of iteroparity, highly overlapping generations, and extensive, post-weaning parental investment. I further suggest that an understanding of stochastic demography is essential for answering the question of the adaptive significance of fetal programming, and specifically the finding of low birth weight on smaller adult body size and earlier age at first reproduction. Using a stage-structured stochastic population model, I show that the downstream consequences of early deprivation may be "making the best of a bad start" rather than an adaptation per se. When a high-investment strategy entails survival costs, the alternate strategy of early reproduction with relatively low investment may have higher fitness than trying to play the high-investment strategy and failing. (C) 2004 Wiley-Liss, Inc. Stanford Univ, Dept Anthropol Sci, Stanford, CA 94305 USA Jones, JH (reprint author), Stanford Univ, Dept Anthropol Sci, Bldg 360, Stanford, CA 94305 USA. jhjl@stanford.edu Jones, James/0000-0003-1680-6757 ALBON SD, 1987, J ANIM ECOL, V56, P69, DOI 10.2307/4800; ANKLIN M, 1993, NATURE, V364, P203; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Bowlby J., 1969, ATTACHMENT LOSS, V1; CASWELL H, 1978, THEOR POPUL BIOL, V14, P215, DOI 10.1016/0040-5809(78)90025-4; Caswell H., 2000, MATRIX POPULATION MO; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Coall DA, 2003, SOC SCI MED, V57, P1771, DOI 10.1016/S0277-9536(03)00022-4; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; COLWELL RK, 1974, ECOLOGY, V55, P1148, DOI 10.2307/1940366; Crespi EJ, 2005, AM J HUM BIOL, V17, P44, DOI 10.1002/ajhb.20098; DANSGAARD W, 1993, NATURE, V364, P218, DOI 10.1038/364218a0; EARLY JD, 1990, POPULATION DYNAMICS; ELLISON PT, 1981, AM J PHYS ANTHROPOL, V54, P337, DOI 10.1002/ajpa.1330540306; FISHER RA, 1958, GEN THEORY NATURAL S; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gluckman PD, 2004, SCIENCE, V305, P1733, DOI 10.1126/science.1095292; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Horton TH, 2005, AM J HUM BIOL, V17, P34, DOI 10.1002/ajhb.20092; HOWELL N, 1979, DEMOGRAPHY DOBE; Hurtado AM, 1996, ACHE LIFE HIST; KAPLAN H, 2000, ZEUS SALMON BIODEMOG, P175; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; LANDE R, 1988, P NATL ACAD SCI USA, V85, P7418, DOI 10.1073/pnas.85.19.7418; Lang C, 1999, SCIENCE, V286, P934, DOI 10.1126/science.286.5441.934; Livi- Bacci M., 1997, CONCISE HIST WORLD P; Lotka AJ, 1907, SCIENCE, V26, P21, DOI 10.1126/science.26.653.21-a; Madsen M, 1999, J ANTHROPOL ARCHAEOL, V18, P251, DOI 10.1006/jaar.1999.0342; McDade TW, 2001, AM J CLIN NUTR, V74, P543; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; Phillips DIW, 1998, DIABETES CARE, V21, pB150; Richerson PJ, 2001, AM ANTIQUITY, V66, P387, DOI 10.2307/2694241; Robinson SM, 2002, P NUTR SOC, V61, P537, DOI 10.1079/PNS2002189; Sayer AA, 1998, AGE AGEING, V27, P579, DOI 10.1093/ageing/27.5.579; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCOTT S, 1998, HUMAN DEMOGRAPHY DIS; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; TANNER JM, 1990, FETUS MAN PHYSICAL G; THOMPSON WR, 1931, B ENTOMOL RES, P22; Tuljapurkar S, 2000, ECOL MODEL, V133, P143, DOI 10.1016/S0304-3800(00)00288-X; Tuljapurkar S., 1990, LECT NOTES BIOMATHEM, V85; TULJAPURKAR SD, 1980, THEOR POPUL BIOL, V18, P314, DOI 10.1016/0040-5809(80)90057-X; TULJAPURKAR SD, 1982, THEOR POPUL BIOL, V21, P114, DOI 10.1016/0040-5809(82)90009-0; Wells JCK, 2003, J THEOR BIOL, V221, P143, DOI 10.1006/jtbi.2003.3183; WOOD JW, 1994, DYNAMICS HUMAN REPRO 47 51 52 1 16 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 1520-6300 AM J HUM BIOL Am. J. Hum. Biol. JAN-FEB 2005 17 1 22 33 10.1002/ajhb.20099 12 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 884SD WOS:000226105500003 15611978 2018-11-12 J McDade, TW McDade, TW Life history, maintenance, and the early origins of immune function AMERICAN JOURNAL OF HUMAN BIOLOGY English Article; Proceedings Paper 29th Annual Meeting of the Human-Biology-Association APR 14-15, 2004 Tampa, FL Human Biol Assoc AGE-RELATED-CHANGES; C-REACTIVE PROTEIN; PRENATAL UNDERNUTRITION; POSTNATAL ENVIRONMENTS; ECOLOGICAL IMMUNOLOGY; HUMAN THYMUS; TRADE-OFFS; EVOLUTION; GROWTH; INVOLUTION There is compelling evidence to suggest that early environments are important determinants of immune function over the life course. While current research focuses on proximate mechanisms and clinical implications, an adaptationist perspective may contribute a theoretical basis for explaining, rather than merely describing, the long-term impact of early environments. Life history theory in particular, with its emphasis on the life cycle and investment in maintenance effort-of which immune function is a central component-provides a predictive framework for identifying prenatal and early postnatal factors that are likely to shape immunity. Key life history issues at these stages include avoiding death from infectious disease, investing in immune defenses that are appropriate for the local disease ecology, and optimizing competing demands for investment in immune function and growth. A series of hypotheses derived from these issues are proposed and evaluated with data from ongoing research in the Philippines and Bolivia. Ecologically-informed research on immunity is in its earliest stages, and life history theory has the potential to make important contributions to our understanding of the development and function of this critical physiological system. (C) 2004 Wiley-Liss, Inc. Northwestern Univ, Dept Anthropol, Lab Human Biol Res, Evanston, IL 60208 USA McDade, TW (reprint author), Northwestern Univ, Dept Anthropol, Lab Human Biol Res, 1810 Hinman Ave, Evanston, IL 60208 USA. t-mcdade@northwestern.edu BALLOU SP, 1992, ADV INTERNAL MED, V37, P313; BEACH RS, 1982, SCIENCE, V218, P469, DOI 10.1126/science.7123244; BEISEL WR, 1984, PROG FOOD NUTR SCI, V8, P43; Billington WD, 1992, IMMUNOLOGICAL OBSTET, P290; Blackburn S.T., 1992, MATERNAL FETAL NEONA; Bogin B., 1999, PATTERNS HUMAN GROWT; CHANDRA RK, 1975, AM J DIS CHILD, V129, P450, DOI 10.1001/archpedi.1975.02120410038013; CHANDRA RK, 1975, SCIENCE, V190, P289, DOI 10.1126/science.1179211; Chandra RK, 1988, NUTR IMMUNOLOGY; CHANROV EL, 1993, LIFE HIST INVARIANBT; Charnov EL, 2001, EVOL ECOL RES, V3, P521; Chatrath R, 1997, J TROP PEDIATRICS, V43, P345, DOI 10.1093/tropej/43.6.345; Chisari AN, 2001, NEUROIMMUNOMODULAT, V9, P41, DOI 10.1159/000049006; Coe CL, 2000, ANN NY ACAD SCI, V917, P468; ELIA M, 1992, ENERGY METABOLISM, P61; ELLISON PT, 1994, ANNU REV ANTHROPOL, V23, P255, DOI 10.1146/annurev.anthro.23.1.255; FERGUSON AC, 1978, J PEDIATR-US, V93, P52, DOI 10.1016/S0022-3476(78)80599-X; George AJT, 1996, IMMUNOL TODAY, V17, P267, DOI 10.1016/0167-5699(96)80543-3; GERSHWIN ME, 2000, NUTR IMMUNOLOGY; GOLDSBY RA, 2000, KUBY IMMUNOLOGY; HICKS MJ, 1983, AM J CLIN PATHOL, V80, P159; HICKS MJ, 1983, ARCH PATHOL LAB MED, V107, P518; HOLLIDAY MA, 1986, HUMAN GROWTH COMPREH; Hurtado AM, 1996, ACHE LIFE HIST; JANOFF EN, 1990, WESTERN J MED, V152, P253; Kirkwood T.B.L., 1981, P165; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KLEIN JO, 1990, INFECT DIS, P1; Kuzawa CW, 1998, YEARB PHYS ANTHROPOL, V41, P177; LAMPL, 1996, AM J PHYS ANTHR S, V22, P145; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Martin LB, 2003, P ROY SOC B-BIOL SCI, V270, P153, DOI 10.1098/rspb.2002.2185; MARTORELL R, 1975, AM J DIS CHILD, V129, P1296, DOI 10.1001/archpedi.1975.02120480022007; MATA L, 1992, AM J TROP MED HYG, V47, P16, DOI 10.4269/ajtmh.1992.47.16; McDade TW, 1999, AM J HUM BIOL, V11, P705, DOI 10.1002/(SICI)1520-6300(199911/12)11:6<705::AID-AJHB1>3.0.CO;2-G; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; McDade TW, 2004, CLIN EXP ALLERGY, V34, P44, DOI 10.1111/j.1365-2222.2004.01834.x; McDade TW, 2003, AM J HUM BIOL, V15, P273; McDade TW, 2001, J NUTR, V131, P1225; McDade TW, 2001, AM J CLIN NUTR, V74, P543; Moore SE, 1999, INT J EPIDEMIOL, V28, P1088, DOI 10.1093/ije/28.6.1088; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; MULLERHERMELINK HK, 1982, ADV EXP MED BIOL, V149, P303; PANTERBRICK C, 2000, BR J NUTR, V85, P1; PAUL WE, 1998, FUNDAMENTAL IMMUNOLO; Read AF, 2000, SCIENCE, V290, P1104, DOI 10.1126/science.290.5494.1104; ROITT IM, 2001, ESSENTIAL IMMUNOLOGY; Rook GAW, 1998, IMMUNOL TODAY, V19, P113, DOI 10.1016/S0167-5699(97)01204-8; Scammon R. E., 1930, MEASUREMENT MAN, P171; Scrimshaw NS, 1981, TXB PEDIAT NUTR, P229; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEINMANN GG, 1985, SCAND J IMMUNOL, V22, P563, DOI 10.1111/j.1365-3083.1985.tb01916.x; SUSKIND RA, 2001, NUTR IMMUNITY INFECT; TANNER JM, 1990, FOETUS MAN PHYSICAL; TOSI P, 1982, CLIN EXP IMMUNOL, V47, P497; WILSON CB, 1990, INFECT DIS, P17; Yazdanbakhsh M, 2002, SCIENCE, V296, P490, DOI 10.1126/science.296.5567.490 59 66 68 0 11 WILEY-LISS HOBOKEN DIV JOHN WILEY & SONS INC, 111 RIVER ST, HOBOKEN, NJ 07030 USA 1042-0533 AM J HUM BIOL Am. J. Hum. Biol. JAN-FEB 2005 17 1 81 94 10.1002/ajhb.20095 14 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 884SD WOS:000226105500008 15612049 2018-11-12 J Worthman, CM; Kuzara, J Worthman, CM; Kuzara, J Life history and the early origins of health differentials AMERICAN JOURNAL OF HUMAN BIOLOGY English Article; Proceedings Paper 29th Annual Meeting of the Human-Biology-Association APR 14-15, 2004 Tampa, FL Human Biol Assoc LOW-BIRTH-WEIGHT; BETA-HYDROXYSTEROID DEHYDROGENASE; PLASMA-CORTISOL CONCENTRATIONS; THRIFTY PHENOTYPE HYPOTHESIS; IMPAIRED GLUCOSE-TOLERANCE; HUMAN-PREGNANCY; ADULT DISEASE; INSULIN-RESISTANCE; PRENATAL STRESS; FETAL GROWTH Current epidemiologic models concerning the fetal origins of later health risk are evaluated from the perspectives of evolutionary and developmental biology. Claims of adaptive value for and biological status of fetal programming are critically examined. Life history theory is applied to identify key trade-offs in adaptive strategies that constrain developmental design to use information from the environment to guide ontogeny and establish cost-benefit trade-offs that weigh early survival advantage against remote or unlikely future costs. Expectable environments of evolutionary adaptedness, particularly of gestation, are characterized and their impact on human adaptive design discussed. The roles of neuroendocrine mechanisms in scaffolding life course development, negotiating ongoing cost-benefit trade-offs, and mediating their long-term impacts on function and health are reviewed in detail. Overviews of gestational biology and the postnatal physiologic, cognitive-affective, and behavioral effects of gestational stress identify a shared central role for the hypothalamic-pituitary-adrenal (HPA) axis. Rather than merely mediating stress responses, the axis emerges an agent of resource allocation that draws a common thread among conditions of gestation, postnatal environments, and functional and health-related outcomes. The preponderance of evolutionary and developmental analysis identifies environments as agents on both sides of the health risk equation, by influencing vulnerabilities and capacities established in early and later life course development, and determining exposures and demands encountered over the life course. (C) 2004 Wiley-Liss, Inc. Emory Univ, Dept Anthropol, Atlanta, GA 30322 USA Worthman, CM (reprint author), Emory Univ, Dept Anthropol, Atlanta, GA 30322 USA. worthman@emory.edu Worthman, Carol M/0000-0002-5397-2298 Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; Andrews PW, 2002, BEHAV BRAIN SCI, V25, P489; Barker D. J. P., 1998, MOTHERS BABIES HLTH; BARKER DJP, 1991, CIBA F SYMP, V156, P3; BARKER DJP, 1990, BRIT MED J, V301, P1111, DOI 10.1136/bmj.301.6761.1111; Barker DJP, 2002, INT J EPIDEMIOL, V31, P1235, DOI 10.1093/ije/31.6.1235; Barker DJP, 2001, BRIT MED BULL, V60, P69, DOI 10.1093/bmb/60.1.69; BARKER DJP, 1991, FETAL INFANT ORIGINS; Barker DJP, 2001, BRIT MED J, V323, P1; Barnes AI, 2003, ANIM BEHAV, V66, P199, DOI 10.1006/anbe.2003.2122; Barrett R, 1998, ANNU REV ANTHROPOL, V27, P247, DOI 10.1146/annurev.anthro.27.1.247; Benediktsson R, 1997, CLIN ENDOCRINOL, V46, P161, DOI 10.1046/j.1365-2265.1997.1230939.x; BJORNTORP P, 1995, INT J OBESITY, V19, pS6; Blum A, 2003, PROG NUCLEIC ACID RE, V75, P173, DOI 10.1016/S0079-6603(03)75006-5; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; Bonner J. T, 1974, DEV BIOL FORM; Bowlby J., 1969, ATTACHMENT LOSS, V1; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; BROWN PJ, 1987, ANN NY ACAD SCI, V499, P29, DOI 10.1111/j.1749-6632.1987.tb36195.x; Byrne CD, 2001, BRIT MED BULL, V60, P153, DOI 10.1093/bmb/60.1.153; Challis JRG, 2000, ENDOCR REV, V21, P514, DOI 10.1210/er.21.5.514; CHALLIS JRG, 1995, PLACENTA, V16, P481, DOI 10.1016/S0143-4004(05)80001-3; CHANGEUX JP, 1985, NEURONAL MAN; CHANROV E, 1993, LIFE HIST INVARIANTS; Clark PM, 1996, CLIN ENDOCRINOL, V45, P721, DOI 10.1046/j.1365-2265.1996.8560864.x; DALLMAN MF, 1993, FRONT NEUROENDOCRIN, V14, P303, DOI 10.1006/frne.1993.1010; Davies MJ, 2002, TRENDS ENDOCRIN MET, V13, P386, DOI 10.1016/S1043-2760(02)00691-4; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; Denenberg VH, 2000, BRAIN LANG, V73, P274, DOI 10.1006/brln.2000.2307; Dodic M, 1999, TRENDS ENDOCRIN MET, V10, P86, DOI 10.1016/S1043-2760(98)00125-8; Drake AJ, 2004, J ENDOCRINOL, V180, P1, DOI 10.1677/joe.0.1800001; Eaton SB, 1997, EUR J CLIN NUTR, V51, P207, DOI 10.1038/sj.ejcn.1600389; Edelman G. M., 1987, NEURAL DARWINISM THE; Eveleth P. B., 1990, WORLDWIDE VARIATION; Finch C, 2000, CHANCE DEV AGING; FINCH C, 1990, LONGEVITY SENESCENCE; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Geary DC, 2001, PARENT-SCI PRACT, V1, P5, DOI 10.1207/S15327922PAR011&2_2; Glazier DS, 1999, EVOL ECOL, V13, P539, DOI 10.1023/A:1006793600600; Gluckman PD, 2004, TRENDS ENDOCRIN MET, V15, P183, DOI 10.1016/j.tem.2004.03.002; Godfrey K M, 2001, Public Health Nutr, V4, P611; GOODMAN AH, 1988, YEARB PHYS ANTHROPOL, V31, P169; GOODMAN AH, 1989, WORLD ARCHAEOL, V21, P225, DOI 10.1080/00438243.1989.9980103; Gottlieb G, 1998, PSYCHOL REV, V105, P792, DOI 10.1037/0033-295X.105.4.792-802; GOTTLIEB G, 1991, DEV PSYCHOL, V27, P4, DOI 10.1037/0012-1649.27.1.4; GOTTLIEB G, 1992, IND DEV EVOLUTION GE; Gould S.J., 1977, ONTOGENY PHYLOGENY; GOULD SJ, 1982, PALEOBIOLOGY, V8, P4, DOI 10.1017/S0094837300004310; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; HALES CN, 1992, DIABETOLOGIA, V35, P595, DOI 10.1007/BF00400248; HALES CN, 1991, BMJ-BRIT MED J, V303, P1019, DOI 10.1136/bmj.303.6809.1019; Hales CN, 2001, BRIT MED BULL, V60, P5, DOI 10.1093/bmb/60.1.5; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Herman JP, 1997, TRENDS NEUROSCI, V20, P78, DOI 10.1016/S0166-2236(96)10069-2; Herman JP, 2003, FRONT NEUROENDOCRIN, V24, P151, DOI 10.1016/j.yfrne.2003.07.001; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill K, 1995, ACHE LIFE HIST ECOLO; HOE MW, 1984, NEODARWINISM INTRO N, P267; HOFER MA, 1978, PERSPECTIVES ETHOLOG, V2, P135; Holt RIG, 2002, TRENDS ENDOCRIN MET, V13, P392, DOI 10.1016/S1043-2760(02)00697-5; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; Irons W, 1998, EVOL ANTHROPOL, V6, P194, DOI 10.1002/(SICI)1520-6505(1998)6:6<194::AID-EVAN2>3.0.CO;2-B; Jablonka E, 2002, ANN NY ACAD SCI, V981, P82; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H., 1997, ZEUS SALMON BIODEMOG, P175; Keller EF, 2002, ANN NY ACAD SCI, V981, P189; Lander ES, 2001, NATURE, V409, P860, DOI 10.1038/35057062; Lauren L, 2003, INT J EPIDEMIOL, V32, P862, DOI 10.1093/ije/dyg201; LAW CM, 1991, ARCH DIS CHILD, V66, P1291, DOI 10.1136/adc.66.11.1291; LeVine R. A., 1989, CHILD DEV TODAY TOMO, P52; LEVINE S, 1967, SCIENCE, V156, P258, DOI 10.1126/science.156.3772.258; Levitt NS, 2000, J CLIN ENDOCR METAB, V85, P4611, DOI 10.1210/jc.85.12.4611; Levitt P, 1998, PREV MED, V27, P180, DOI 10.1006/pmed.1998.0273; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; LUCAS A, 1991, CIBA F SYMP, V156, P38; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; Maleszka R, 1998, P NATL ACAD SCI USA, V95, P3731, DOI 10.1073/pnas.95.7.3731; MARTORELL R, 1989, HUM ORGAN, V48, P15, DOI 10.17730/humo.48.1.x20u5450x51h5211; Martorell R, 1996, NUTR REV, V54, pS15; MASCIETAYLOR CGN, 1991, J BIOSOC SCI, V23, P113; Matthews SG, 2000, PEDIATR RES, V47, P291, DOI 10.1203/00006450-200003000-00003; Matthews SG, 2002, TRENDS ENDOCRIN MET, V13, P373, DOI 10.1016/S1043-2760(02)00690-2; McDade TW, 1999, AM J HUM BIOL, V11, P705, DOI 10.1002/(SICI)1520-6300(199911/12)11:6<705::AID-AJHB1>3.0.CO;2-G; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; Meaney MJ, 2001, ANNU REV NEUROSCI, V24, P1161, DOI 10.1146/annurev.neuro.24.1.1161; Melvin Konner, 2002, TANGLED WING BIOL CO; Mesiano S, 1997, ENDOCR REV, V18, P378, DOI 10.1210/er.18.3.378; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Miklos GLG, 2000, NAT NEUROSCI, V3, P424, DOI 10.1038/74786; Murphy VE, 2003, PLACENTA, V24, P739, DOI 10.1016/S0143-4004(03)00103-6; Nilsson C, 2002, EUR J ENDOCRINOL, V146, P251, DOI 10.1530/eje.0.1460251; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; OYAMA S, 2000, ONTOGENY INFORMATION; PAARLBERG KM, 1995, J PSYCHOSOM RES, V39, P563, DOI 10.1016/0022-3999(95)00018-6; Pacak K, 2001, ENDOCR REV, V22, P502, DOI 10.1210/er.22.4.502; Phillips DIW, 1998, J CLIN ENDOCR METAB, V83, P757, DOI 10.1210/jc.83.3.757; Phillips DIW, 2000, HYPERTENSION, V35, P1301, DOI 10.1161/01.HYP.35.6.1301; PHILLIPS DIW, 1993, Q J MED, V86, P247; PHILLIPS DIW, 1993, ACTA ENDOCRINOL-COP, V129, P134, DOI 10.1530/acta.0.1290134; Phillips DIW, 2002, TRENDS ENDOCRIN MET, V13, P363, DOI 10.1016/S1043-2760(02)00696-3; PHILLIPS DIW, 1994, DIABETOLOGIA, V37, P150, DOI 10.1007/s001250050086; POPPITT SD, 1994, AM J OBSTET GYNECOL, V171, P118, DOI 10.1016/S0002-9378(94)70087-7; Prentice AM, 1996, EUR J CLIN NUTR, V50, pS82; Prentice AM, 2000, AM J CLIN NUTR, V71, p1226S, DOI 10.1093/ajcn/71.5.1226s; PROMISLOW D, 1990, J ZOOL SOC LOND, V220, P41; REEVE HK, 1993, Q REV BIOL, V68, P1, DOI 10.1086/417909; Reynolds RM, 2001, J CLIN ENDOCR METAB, V86, P245, DOI 10.1210/jc.86.1.245; Rose MR, 1998, AM J HUM BIOL, V10, P409, DOI 10.1002/(SICI)1520-6300(1998)10:4<409::AID-AJHB2>3.0.CO;2-B; Ross C, 1998, EVOL ANTHROPOL, V6, P54, DOI 10.1002/(SICI)1520-6505(1998)6:2<54::AID-EVAN3>3.3.CO;2-D; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; SAPOLSKY RM, 1998, ZEBRAS DONT GET ULCE; Schneider ML, 2000, MINN SYM CHILD PSYCH, V31, P201; Schneider ML, 2002, PSYCHONEUROENDOCRINO, V27, P285, DOI 10.1016/S0306-4530(01)00050-6; Seckl JR, 1997, STEROIDS, V62, P89, DOI 10.1016/S0039-128X(96)00165-1; Seckl JR, 1998, CLIN PERINATOL, V25, P939; Seckl JR, 2000, KIDNEY INT, V57, P1412, DOI 10.1046/j.1523-1755.2000.00984.x; Shanley DP, 2000, EVOLUTION, V54, P740, DOI 10.1111/j.0014-3820.2000.tb00076.x; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Symonds M. E., 2003, Archives of Physiology and Biochemistry, V111, P45, DOI 10.1076/apab.111.1.45.15141; Takahashi LK, 1998, INT J DEV NEUROSCI, V16, P199, DOI 10.1016/S0736-5748(98)00020-3; TEMPEL DL, 1994, J NEUROENDOCRINOL, V6, P479, DOI 10.1111/j.1365-2826.1994.tb00611.x; Trevathan WR, 1999, EVOLUTIONARY MED; ULIJASZEK SJ, 1996, LONG TERM CONSEQUENC, P25; VALSINGER J, 1997, CULTURE DEV CHILDREN; Van Speybroeck L, 2002, ANN NY ACAD SCI, V981, P61; Venter JC, 2001, SCIENCE, V291, P1304, DOI 10.1126/science.1058040; Waddington C.H, 1957, STRATEGY GENES; Wadhwa PD, 1996, PSYCHOSOM MED, V58, P432, DOI 10.1097/00006842-199609000-00006; Wadhwa PD, 1997, ANN NY ACAD SCI, V814, P276, DOI 10.1111/j.1749-6632.1997.tb46163.x; Wadhwa PD, 1998, AM J OBSTET GYNECOL, V179, P1079, DOI 10.1016/S0002-9378(98)70219-4; Weinstock M, 2001, PROG NEUROBIOL, V65, P427, DOI 10.1016/S0301-0082(01)00018-1; Weinstock M., 1996, NEUROSCI BIOBEHAV R, V21, P1; Welberg LAM, 2001, J NEUROENDOCRINOL, V13, P113, DOI 10.1046/j.1365-2826.2001.00601.x; Whitaker RC, 1998, J PEDIATR-US, V132, P768, DOI 10.1016/S0022-3476(98)70302-6; WHO, 1995, PHYS STAT US INT ANT; Worthman C., 1999, HORMONES HLTH BEHAV, P47; Worthman C. M., 1999, EVOLUTIONARY MED; WORTHMAN CM, 1990, MG PRIMATOL, V13, P187; Worthman CM, 2003, OFFSPRING, P289; WORTHMAN CM, 2002, LIFE COURSE APPROACH, P197; WORTHMAN CM, 2005, SOC SCI MED, DOI DOI 10.1016/J.SOCSCIMED.2004.08.052; Young JB, 2002, TRENDS ENDOCRIN MET, V13, P381, DOI 10.1016/S1043-2760(02)00661-6; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 145 89 94 0 11 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1042-0533 AM J HUM BIOL Am. J. Hum. Biol. JAN-FEB 2005 17 1 95 112 10.1002/ajhb.20096 18 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 884SD WOS:000226105500009 15611966 2018-11-12 J Low, BS Low, BS Women's lives there, here, then, now: a review of women's ecological and demographic constraints cross-culturally EVOLUTION AND HUMAN BEHAVIOR English Review women's status; mating systems; marriage patterns; life history theory; sex differences; demography; ecology REPRODUCTIVE SUCCESS; 19TH-CENTURY SWEDEN; EVOLUTIONARY PERSPECTIVE; PARENTAL INVESTMENT; OCCUPATIONAL-STATUS; FERTILITY DECLINE; SEX-RATIO; POLYGYNY; FEMALE; INFANTICIDE Around the world and across time, women's lives and opportunities vary-but this is patterned variation, produced by the interplay of natural selection (life history theory) and ecological and social constraints. Our evolutionary background (e.g., evolution of anisogamy) and phylogenetic constraints (female mammals' specialization for postnatal care) create different costs and benefits for males and females. These interact with environmental conditions to produce patterned variation in mating and marriage systems, degree of male parental investment, for example. Here, I review how, in response to these conditions, women's strategies (reproductive, resource, coalitional, and political) vary. (C) 2005 Elsevier Inc. All rights reserved. Univ Michigan, Sch Nat Resources & Environm, Ctr Populat Studies, Ann Arbor, MI 48109 USA Low, BS (reprint author), Univ Michigan, Sch Nat Resources & Environm, Ctr Populat Studies, Ann Arbor, MI 48109 USA. bobbilow@umich.edu Acs G, 1996, J HUM RESOUR, V31, P898, DOI 10.2307/146151; Alexander R.D., 1974, Annual Rev Ecol Syst, V5, P325, DOI 10.1146/annurev.es.05.110174.001545; Alexander R. D., 1987, BIOL MORAL SYSTEMS; Alexander R. D., 1979, DARWINISM HUMAN AFFA; Alexander R. D., 1979, EVOLUTIONARY BIOL HU, P402; ALEXANDER RD, 1990, HOW DID HUMANS EVOLV, V1, P1; ALEXANDER RD, 1971, P ROYAL SOC VICT MEL; ALEXANDER RD, 1997, 97 U MICH POP STUD C; ALEXANDER RD, 1988, HUMAN REPROD BEHAV D, P317; ALEXANDER RD, 1977, CHANGING SCENCES NAT, V12; ALEXANDER RD, 1978, SEXUAL SELECTION REP, P402; Anderson KG, 2003, BIODEMOGRAPHY OF HUMAN REPRODUCTION AND FERTILITY, P57; BIRDSALL N, 1980, POPUL BULL, V35, P3; BIRDSALL NM, 1988, J POLICY MODEL, V10, P29, DOI 10.1016/0161-8938(88)90034-8; Boone JL, 1999, EVOL HUM BEHAV, V20, P257, DOI 10.1016/S1090-5138(99)00011-2; BORGERHOFFMULDE.M, 1992, HUMAN NATURE, V3, P45; Browne KR, 2002, BIOL WORK; Bugos P., 1984, INFANTICIDE COMP EVO, P503; Campbell A, 1999, BEHAV BRAIN SCI, V22, P203; Campbell A., 2002, MIND OWN EVOLUTIONAR; Cashdan E, 1998, BRIT J SOC PSYCHOL, V37, P213, DOI 10.1111/j.2044-8309.1998.tb01166.x; Clarke AL, 2001, POPUL DEV REV, V27, P633, DOI 10.1111/j.1728-4457.2001.00633.x; CLARKE AL, 1993, HUM NATURE-INT BIOS, V4, P109, DOI 10.1007/BF02734113; Clutton-Brock T. H., 1991, EVOLUTION PARENTAL C; CORDS M, 1986, PRIMATE SOC, P98; Cowlishaw G, 1996, ETHOL SOCIOBIOL, V17, P87, DOI 10.1016/0162-3095(95)00127-1; CRONK L, 1991, AM ANTHROPOL, V93, P345, DOI 10.1525/aa.1991.93.2.02a00040; CRONK L, 1991, J BIOSOC SCI, V23, P229; Cronk L, 1991, Hum Nat, V2, P387, DOI 10.1007/BF02692198; Cronk L., 2000, ADAPTATION HUMAN BEH; Cronk L., 2004, MUKOGODO MAASAI ETHN; Daly M, 1996, CURR DIR PSYCHOL SCI, V5, P77, DOI 10.1111/1467-8721.ep10772793; Daly M., 1983, SEX EVOLUTION BEHAV; Das Gupta M, 1999, DEV CHANGE, V30, P619, DOI 10.1111/1467-7660.00131; DASGUPTA M, 1996, SEX PREFERENCES CHIL, P115; DAVIES NB, 1989, ANIM BEHAV, V38, P226, DOI 10.1016/S0003-3472(89)80085-5; Dawkins R., 1989, SELFISH GENE; Dawkins R, 1982, EXTENDED PHENOTYPE G; de Waal Frans, 1982, CHIMPANZEE POLITICS; Dickemann M., 1979, EVOLUTIONARY BIOL HU, P331; DIGBY L, 1995, BEHAV ECOL SOCIOBIOL, V37, P51, DOI 10.1007/BF00173899; Drake M, 1969, POPULATION SOC NORWA; Fisher R. A., 1958, GENETICAL THEORY NAT; FLINN MV, 1986, ECOLOGICAL ASPECTS; GARENNE M, 1989, POP STUD-J DEMOG, V43, P267, DOI 10.1080/0032472031000144116; Gaulin S. J. C., 1997, HUMAN NATURE CRITICA, P372; Gaulin SJC, 1997, HUM NATURE-INT BIOS, V8, P139, DOI 10.1007/s12110-997-1008-4; GAULIN SJC, 1990, AM ANTHROPOL, V92, P994, DOI 10.1525/aa.1990.92.4.02a00080; GAULIN SJC, 1991, AM J PHYS ANTHROPOL, V85, P61, DOI 10.1002/ajpa.1330850108; Geronimus AT, 1996, SOC SCI MED, V42, P589, DOI 10.1016/0277-9536(95)00159-X; Geronimus AT, 1996, NEW ENGL J MED, V335, P1552, DOI 10.1056/NEJM199611213352102; Gowaty P., 1997, FEMINISM EVOLUTIONAR, P1; Hames R, 1996, ETHOL SOCIOBIOL, V17, P181, DOI 10.1016/0162-3095(96)00003-9; HAMES RB, 1988, HUMAN REPROD BEHAV D, P192; Hamilton W, 1975, ASA STUDIES BIOSOCIA, P133; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HAMILTON WD, 1980, OIKOS, V35, P282, DOI 10.2307/3544435; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; HAMILTON WD, 1964, J THEOR BIOL, V1, P1; HARTUNG J, 1982, CURR ANTHROPOL, V23, P1, DOI 10.1086/202775; Hartung J., 1997, HUMAN NATURE CRITICA, P344; HILL E, 1991, ETHOL SOCIOBIOL, V13, P35; HILL K, 1996, ACHE LIFE HIST ECOL; HRDY S, 1999, MOTHER NATURE; HRDY SB, 1979, ETHOL SOCIOBIOL, V1, P13, DOI 10.1016/0162-3095(79)90004-9; HUGHES AL, 1986, SOC BIOL, V33, P109; Hurtado A M, 1992, Hum Nat, V3, P185, DOI 10.1007/BF02692239; IRONS W, 1983, SOCIAL BEHAVIOR FEMA, P169; IRONS W, 1979, EVOLUTIONARY BIOL HU, P257; JOSEPHSON SC, 1993, ETHOL SOCIOBIOL, V14, P391, DOI 10.1016/0162-3095(93)90027-F; JUDGE DS, 1995, HUM NATURE-INT BIOS, V6, P291, DOI 10.1007/BF02734204; JUDGE DS, 1992, ETHOL SOCIOBIOL, V13, P495, DOI 10.1016/0162-3095(92)90014-U; Kaplan H., 1997, ZEUS SALMON BIODEMOG, P175; KAPLAN H, 1999, ADAPTATION HUMAN BEH, P283; KAPLAN HS, 2000, ADAPTATION HUMAN BEH, P283; KAPLAN HS, 1995, HUMAN REPROD DECISIO, P96; KNODEL J, 1990, POPUL DEV REV, V16, P31, DOI 10.2307/1972528; Knodel J, 1997, J SEX RES, V34, P292, DOI 10.1080/00224499709551895; KNODEL J, 1988, DEMOGRAPHIC BEHAV PA, P96; Lazaro-Perea C, 2000, BEHAV ECOL SOCIOBIOL, V48, P137, DOI 10.1007/s002650000215; le Boeuf B.J., 1988, P344; LOW B, 1993, EVOLUTIONARY ANTHR, P106; LOW B, 2000, WHY SEX MATTERS, P323; LOW B, 2004, EVOLUTION MONOGAMY, P161; Low B., 1990, J CONT PSYCHOL, V27, P45; LOW BS, 1988, CURR ANTHROPOL, V29, P189, DOI 10.1086/203627; LOW BS, 1990, AM ANTHROPOL, V92, P457, DOI 10.1525/aa.1990.92.2.02a00130; LOW BS, 1994, HUM NATURE-INT BIOS, V5, P223, DOI 10.1007/BF02692153; LOW BS, 1992, ETHOL SOCIOBIOL, V13, P463, DOI 10.1016/0162-3095(92)90013-T; LOW BS, 1991, J FAM HIST, V16, P117, DOI 10.1177/036319909101600202; LOW BS, 1991, ETHOL SOCIOBIOL, V12, P411, DOI 10.1016/0162-3095(91)90024-K; Low BS, 2003, BIODEMOGRAPHY OF HUMAN REPRODUCTION AND FERTILITY, P105; Low BS, 2002, AM J HUM BIOL, V14, P149, DOI 10.1002/ajhb.10043; LOW BS, 1992, POPUL DEV REV, V18, P1, DOI 10.2307/1971857; LOW BS, 1992, POLIT LIFE SCI, V11, P63; LOW BS, 1989, J COMP PSYCHOL, V103, P311, DOI 10.1037/0735-7036.103.4.311; Low BS, 1998, HANDBOOK OF EVOLUTIONARY PSYCHOLOGY, P131; LOW BS, 1990, AM ZOOL, V30, P325; LOW BS, 1988, HUMAN REPRODUCTIVE B, P115; Low BS, 1990, RISK UNCERTAINTY TRI, P229; LOW BS, 2000, ADAPTATION HUMAN BEH, P323; MAC ARTHUR ROBERT H., 1967; MACE GM, 1990, FOLIA PRIMATOL, V55, P156, DOI 10.1159/000156511; Mace R, 1998, PHILOS T R SOC B, V353, P389, DOI 10.1098/rstb.1998.0217; Mace R, 1996, BEHAV ECOL SOCIOBIOL, V38, P75, DOI 10.1007/s002650050219; MACE R, 2000, ADAPTATION HUMAN BEH, P261; Mahendra P. K., 2001, ECON POLIT WEEKLY, V36, P1875; MULDER MB, 1995, CURR ANTHROPOL, V36, P573, DOI 10.1086/204405; Mulder MB, 1998, TRENDS ECOL EVOL, V13, P266, DOI 10.1016/S0169-5347(98)01357-3; Mulder MB, 1998, HUM NATURE-INT BIOS, V9, P119, DOI 10.1007/s12110-998-1001-6; Murdock George, 1981, ATLAS WORLD CULTURES; MURDOCK GP, 1969, ETHNOLOGY, V8, P329, DOI 10.2307/3772907; PACKER C, 1983, AM NAT, V121, P716, DOI 10.1086/284097; Parry J. P., 1979, CASTE KINSHIP KANGAR; RANK MR, 1989, AM SOCIOL REV, V54, P296, DOI 10.2307/2095797; Rao V, 1997, SOC SCI MED, V44, P1169, DOI 10.1016/S0277-9536(96)00252-3; REICHARD U, 2004, MONOGAMY MATING STRA, P3; ROFF DA, 2001, EVOLUTION LIFE HIST, P3; Schofield R. S., 1986, STATE POPULATION THE, P1; Sellen D., 2000, ADAPTATION HUMAN BEH, P91; SICHONA FJ, 1993, J BIOSOC SCI, V25, P473; SIKES G, 1998, EIGHT BALL CHICKS; Smith E. A., 2000, ADAPTATION HUMAN BEH, P27; SMITH EA, 1995, CURR ANTHROPOL, V36, P658, DOI 10.1086/204411; SMITH EA, 1994, CURR ANTHROPOL, V35, P595, DOI 10.1086/204319; SMUTS B, 1995, HUM NATURE-INT BIOS, V6, P1, DOI 10.1007/BF02734133; Smuts B, 1992, Hum Nat, V3, P1, DOI 10.1007/BF02692265; Stearns S. C., 1992, EVOLUTION LIFE HIST; Strassmann B., 2000, ADAPTATION HUMAN BEH, P49; Strassmann BI, 1997, CURR ANTHROPOL, V38, P688, DOI 10.1086/204657; TASIRAN AC, 1995, FERTILITY DYNAMICS S, P49; TIMAEUS IM, 1988, POPULATION STUD, V52, P145; TORRES A, 1988, FAM PLANN PERSPECT, V20, P169, DOI 10.2307/2135792; Vandermassen G, 2004, EUR J WOMENS STUD, V11, P9, DOI 10.1017/1350506804039812; VOLAND E, 1990, ETHOLOGY, V84, P144; VOLAND E, 1990, BEHAV ECOL SOCIOBIOL, V26, P65; VOLAND E, 1995, HUM NATURE-INT BIOS, V6, P33, DOI 10.1007/BF02734134; VOLAND E, 1991, ETHOL SOCIOBIOL, V12, P105, DOI 10.1016/0162-3095(91)90016-J; Wasser SK, 1983, SOCIAL BEHAV FEMALE; WATTS DP, 1989, ETHOLOGY, V81, P1; WHITE DR, 1988, AM ANTHROPOL, V90, P871, DOI 10.1525/aa.1988.90.4.02a00060; WHYTE MK, 1978, ETHNOLOGY, V17, P211, DOI 10.2307/3773145; Williams G. C., 1975, SEX EVOLUTION; Williams GC, 1966, ADAPTATION NATURAL S; WILLIAMS GC, 1992, NATURAL SELECTION DO; Wilson E. O., 1978, HUMAN NATURE; WILSON EO, 2005, SOCIOBIOLOGY NEW SYN; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Yanca C, 2004, EVOL HUM BEHAV, V25, P9, DOI 10.1016/S1090-5138(03)00065-5; Zuk M., 2002, SEXUAL SELECTIONS WH 150 21 22 1 16 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 EVOL HUM BEHAV Evol. Hum. Behav. JAN 2005 26 1 64 87 10.1016/j.evolhumbehav.23004.08.011 24 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences 892ZJ WOS:000226688200004 2018-11-12 J Maes, J; Limburg, KE; Van de Putte, A; Ollevier, F Maes, J; Limburg, KE; Van de Putte, A; Ollevier, F A spatially explicit, individual-based model to assess the role of estuarine nurseries in the early life history of North Sea herring, Clupea harengus FISHERIES OCEANOGRAPHY English Article estuarine fish migration; feeding behavior; habitat selection; herring; life-history theory; predation risk COD GADUS-MORHUA; FISH ASSEMBLAGE; GASTRIC EVACUATION; ZEESCHELDE ESTUARY; ELBE ESTUARY; BARENTS SEA; GROWTH; SIZE; ATLANTIC; DYNAMICS Herring (Clupea harengus) enter and remain within North Sea estuaries during well-defined periods of their early life history. The costs and benefits of the migrations between offshore spawning grounds and upper, low-salinity zones of estuarine nurseries are identified using a dynamic state-variable model, in which the fitness of an individual is maximized by selecting the most profitable habitat. Spatio-temporal gradients in temperature, turbidity, food availability and predation risk simulate the environment. We modeled predation as a function of temperature, the optical properties of the ambient water, the time allocation of feeding and the abundance of whiting (Merlangius merlangus). Growth and metabolic costs were assessed using a bioenergetic model. Model runs using real input data for the Scheldt estuary (Belgium, The Netherlands) and the southern North Sea show that estuarine residence results in fitter individuals through a considerable increase in survival probability of age-0 fish. Young herring pay for their migration into safer estuarine water by foregoing growth opportunities at sea. We suggest that temperature and, in particular, the time lag between estuarine and seawater temperatures, acts as a basic cue for herring to navigate in the heterogeneous space between the offshore spawning grounds at sea and the oligohaline nursery zone in estuaries. Katholieke Univ Leuven, Aquat Ecol Lab, B-3000 Louvain, Belgium; SUNY Coll Environm Sci & Forestry, Syracuse, NY 13210 USA Maes, J (reprint author), Katholieke Univ Leuven, Aquat Ecol Lab, Ch De Beriotstr 32, B-3000 Louvain, Belgium. joachim.maes@bio.kuleuven.ac.be Limburg, Karin/M-8380-2013; Van de Putte, Anton/F-6877-2012 Van de Putte, Anton/0000-0003-1336-5554; Maes, Joachim/0000-0002-8272-1607 AKSNES DL, 1993, ECOL MODEL, V67, P233, DOI 10.1016/0304-3800(93)90007-F; Andersen NG, 1998, J FISH BIOL, V52, P743, DOI 10.1111/j.1095-8649.1998.tb00817.x; Attrill MJ, 2002, NATURE, V417, P275, DOI 10.1038/417275a; BENAKA LR, 1999, AM FISH SOC S, V22; Blaber S. J. M., 1997, FISH FISHERIES TROPI; BOESCH DF, 1984, ESTUARIES, V7, P460, DOI 10.2307/1351627; BRANDT SB, 1992, FISHERIES, V17, P23, DOI 10.1577/1548-8446(1992)017<0023:SMOFGR>2.0.CO;2; CLARK CW, 1988, AM NAT, V131, P270; CLARK CW, 2000, DYNAMIC STATE VARIAB; Day J., 1989, ESTUARINE ECOLOGY; DUMONT HJ, 1975, OECOLOGIA, V19, P75, DOI 10.1007/BF00377592; ELLIOTT JM, 1975, OECOLOGIA, V19, P195, DOI 10.1007/BF00345305; ELLIOTT M, 1990, HYDROBIOLOGIA, V195, P89, DOI 10.1007/BF00026816; FIKSEN O, 1995, FISH OCEANOGR, V4, P193, DOI 10.1111/j.1365-2419.1995.tb00143.x; Fogarty MJ, 2001, ICES J MAR SCI, V58, P952, DOI 10.1006/jmsc.2001.1108; GIBSON RN, 1992, J FISH BIOL, V40, P577, DOI 10.1111/j.1095-8649.1992.tb02607.x; GIBSON RN, 1988, J FISH BIOL, V32, P949, DOI 10.1111/j.1095-8649.1988.tb05438.x; Giske J, 1998, REV FISH BIOL FISHER, V8, P57, DOI 10.1023/A:1008864517488; GREGORY RS, 1993, CAN J FISH AQUAT SCI, V50, P233, DOI 10.1139/f93-026; Hanson PC, 1997, WISCUT97001 U WISC S; Hansson S, 1996, ICES J MAR SCI, V53, P107, DOI 10.1006/jmsc.1996.0010; Hare JA, 1996, LIMNOL OCEANOGR, V41, P1264, DOI 10.4319/lo.1996.41.6.1264; Heath M, 1997, J SEA RES, V38, P413, DOI 10.1016/S1385-1101(97)00045-2; HENDERSON PA, 1989, J MAR BIOL ASSOC UK, V69, P145, DOI 10.1017/S002531540004916X; Holling C. S., 1959, Canadian Entomologist, V91, P385; Horbowy J, 1996, CAN J FISH AQUAT SCI, V53, P2115, DOI 10.1139/cjfas-53-9-2115; HOUDE ED, 1997, EARLY LIFE HIST RECR, P173; Hunter CM, 2000, ECOL MODEL, V134, P299, DOI 10.1016/S0304-3800(00)00344-6; KITCHELL JF, 1977, J FISH RES BOARD CAN, V34, P1922, DOI 10.1139/f77-258; KNIJN RJ, 1993, ICES COOP RES REP, V194, P268; Kristiansen TS, 2001, ICES J MAR SCI, V58, P172, DOI 10.1006/jmsc.2000.1000; LAURENCE GC, 1976, FISH B-NOAA, V74, P218; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Limburg KE, 1996, ESTUARIES, V19, P794, DOI 10.2307/1352298; Maes J, 1999, J FISH BIOL, V54, P1329; Maes J, 2001, ARCH FISH MAR RES, V49, P27; Maes J, 2000, CAN J FISH AQUAT SCI, V57, P1404, DOI 10.1139/cjfas-57-7-1404; Maes J, 1998, J FISH BIOL, V52, P534, DOI 10.1111/j.1095-8649.1998.tb02015.x; Mangel M., 1988, DYNAMIC MODELING BEH; Marshall S, 1998, ESTUAR COAST SHELF S, V46, P175, DOI 10.1006/ecss.1997.0268; Miller J.M., 1985, Contributions in Marine Science, V27, P338; Miller JM, 2000, CONCEPTS AND CONTROVERSIES IN TIDAL MARSH ECOLOGY, P315; MILLER TJ, 1988, CAN J FISH AQUAT SCI, V45, P1657, DOI 10.1139/f88-197; MOSER ML, 1989, ESTUARIES, V12, P35, DOI 10.2307/1351448; MUNK P, 1992, MAR ECOL PROG SER, V80, P149, DOI 10.3354/meps080149; PAULY D, 1980, J CONSEIL, V39, P175; Pedersen J, 1999, J FISH BIOL, V55, P1096, DOI 10.1006/jfbi.1999.1112; Pihl L, 2002, FISHES IN ESTUARIES, P10, DOI 10.1002/9780470995228.ch2; POTTER IC, 1986, MAR ECOL PROG SER, V32, P217, DOI 10.3354/meps032217; Power M, 2000, J FISH BIOL, V56, P1408; Ross SW, 2003, FISH B-NOAA, V101, P384; RUDSTAM LG, 1988, KIELER MEERESFORSCH, V6, P312; Schindler DE, 1999, CAN J FISH AQUAT SCI, V56, P61, DOI 10.1139/cjfas-56-S1-61; SOETAERT K, 1993, MAR ECOL PROG SER, V97, P47, DOI 10.3354/meps097047; STEWART DJ, 1986, T AM FISH SOC, V115, P643, DOI 10.1577/1548-8659(1986)115<643:DOCAFC>2.0.CO;2; THIEL R, 1995, J FISH BIOL, V46, P47, DOI 10.1111/j.1095-8649.1995.tb05946.x; Thiel R, 2001, MAR BIOL, V138, P603, DOI 10.1007/s002270000491; Utne-Palm AC, 1999, J FISH BIOL, V54, P1244, DOI 10.1111/j.1095-8649.1999.tb02052.x; VANDENBROEK WLF, 1979, ESTUAR COAST MAR SCI, V9, P1, DOI 10.1016/0302-3524(79)90002-1; VINYARD GL, 1976, J FISH RES BOARD CAN, V33, P2845, DOI 10.1139/f76-342; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141 61 19 20 1 11 BLACKWELL PUBLISHING LTD OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DG, OXON, ENGLAND 1054-6006 FISH OCEANOGR Fish Oceanogr. JAN 2005 14 1 17 31 10.1111/j.1365-2419.2004.00300.x 15 Fisheries; Oceanography Fisheries; Oceanography 882RG WOS:000225955400002 2018-11-12 J Chisholm, JS; Quinlivan, JA; Petersen, RW; Coall, DA Chisholm, JS; Quinlivan, JA; Petersen, RW; Coall, DA Early stress predicts age at Menarche and first birth, adult attachment, and expected lifespan HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Review age at first birth; age at menarche; attachment theory; expected lifespan; father absence; life history theory; time preference; women's reproductive strategies FATHER-ABSENCE; SEXUAL-ABUSE; REPRODUCTIVE STRATEGY; PUBERTAL MATURATION; TEENAGE PREGNANCY; HISTORY THEORY; RECALLED AGE; EVOLUTIONARY; GIRLS; RISK Life history theory suggests that in risky and uncertain environments the optimal reproductive strategy is to reproduce early in order to maximize the probability of leaving any descendants at all. The fact that early menarche facilitates early reproduction provides an adaptationist rationale for our first two hypotheses: that women who experience more risky and uncertain environments early in life would have (1) earlier menarche and (2) earlier first births than women who experience less stress at an early age. Attachment theory and research provide the rationale for our second two hypotheses: that the subjective early experience of risky and uncertain environments (insecurity) is (3) part of an evolved mechanism for entraining alternative reproductive strategies contingent on environmental risk and uncertainty and (4) reflected in expected lifespan. Evidence from our pilot study of 100 women attending antenatal clinics at a large metropolitan hospital is consistent with all four hypotheses: Women reporting more troubled family relations early in life had earlier menarche, earlier first birth, were more likely to identify with insecure adult attachment styles, and expected shorter lifespans. Multivariate analyses show that early stress directly affected age at menarche and first birth, affected adult attachment in interaction with expected lifespan, but had no effect on expected lifespan, where its original effect was taken over by interactions between age at menarche and adult attachment as well as age at first birth and adult attachment. We discuss our results in terms of the need to combine evolutionary and developmental perspectives and the relation between early stress in general and father absence in particular. Univ Western Australia, Sch Anat & Human Biol, Crawley, WA 6009, Australia; Univ Melbourne, Royal Hosp Women, Parkville, Vic 3052, Australia Chisholm, JS (reprint author), Univ Western Australia, Sch Anat & Human Biol, Mail Bag Delivery Point M309,35 Stirling Highway, Crawley, WA 6009, Australia. jchisholm@anhb.uwa.edu.au Quinlivan, Julie/0000-0003-4706-2412; Coall, David/0000-0002-0488-2683 *A GUTTM I, 1998, INTO NEW WORLD YOUNG; Adair LS, 2001, AM J PUBLIC HEALTH, V91, P642, DOI 10.2105/AJPH.91.4.642; BARKOW J, 1984, J ANTHROPOLOGICAL RE, V40, P373; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bereczkei T, 2001, INT J BEHAV DEV, V25, P501, DOI 10.1080/01650250042000573; BERGSTENBRUCEFORS A, 1976, ANN HUM BIOL, V3, P71, DOI 10.1080/03014467600001151; Bowlby J., 1973, ATTACHMENT LOSS, V2; Bowlby J., 1969, ATTACHMENT LOSS, V1; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Burton L M, 1990, Hum Nat, V1, P123, DOI 10.1007/BF02692149; Carter CS, 1998, PSYCHONEUROENDOCRINO, V23, P779; Charmandari E, 2003, HORM RES, V59, P161, DOI 10.1159/000069325; Charnov Eric L., 1993, P1; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; Chisholm JS, 2003, MACQUARIE MG COG SCI, P125; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 1999, DEATH HOPE SEX STEPS; CHROUSOS GP, 1992, JAMA-J AM MED ASSOC, V267, P1244, DOI 10.1001/jama.267.9.1244; Cicchetti D, 2001, DEV PSYCHOPATHOL, V13, P677, DOI 10.1017/S0954579401003145; COALL D, 1999, ANN M HUM BEH EV SOC; Coall DA, 2003, SOC SCI MED, V57, P1771, DOI 10.1016/S0277-9536(03)00022-4; COHEN S, 1993, J PERS SOC PSYCHOL, V64, P131, DOI 10.1037//0022-3514.64.1.131; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CONGER RD, 1994, CHILD DEV, V65, P541, DOI 10.1111/j.1467-8624.1994.tb00768.x; DAMON A, 1969, HUM BIOL, V41, P161; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Eisenberger NI, 2004, TRENDS COGN SCI, V8, P294, DOI 10.1016/j.tics.2004.05.010; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; ELLISON PT, 1994, HUM NATURE-INT BIOS, V5, P155, DOI 10.1007/BF02692159; Eveleth P. B., 1990, WORLDWIDE VARIATION; FISCHBEIN S, 1977, ACTA GENET MED GEMEL, V26, P151, DOI 10.1017/S0001566000009946; FURSTENBERG FF, 1989, AM PSYCHOL, V44, P313, DOI 10.1037/0003-066X.44.2.313; GARDNER W, 1993, ADOLESCENT RISK TAKI, P66; GARN SM, 1986, SCH AGE PREGNANCY PA, P77; Geronimus A., 1994, POWER DECISION SOCIA, P77; GERONIMUS A, 1987, POPUL DEV REV, V12, P245; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; Grainger S, 2004, HUM NATURE-INT BIOS, V15, P133, DOI 10.1007/s12110-004-1017-5; Gubernick D.J., 1981, P243; Gunnar MR, 1998, PREV MED, V27, P208, DOI 10.1006/pmed.1998.0276; Hamann SB, 1999, NAT NEUROSCI, V2, P289, DOI 10.1038/6404; Harpending HC, 1990, DIS POPULATIONS TRAN, P251; HAZAN C, 1987, J PERS SOC PSYCHOL, V52, P511, DOI 10.1037//0022-3514.52.3.511; Heim C, 2000, JAMA-J AM MED ASSOC, V284, P592, DOI 10.1001/jama.284.5.592; HERMANGIDDENS ME, 1988, AM J DIS CHILD, V142, P431, DOI 10.1001/archpedi.1988.02150040085025; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hofer M. A., 1999, HDB ATTACHMENT THEOR, P162; Hrdy S., 2005, HUNTER GATHERER CHIL, P65, DOI DOI 10.1177/1754073911430141; Hrdy S. B., 1999, MOTHER NATURE HIST M; INSEL TR, 2000, REV GEN PSYCHOL, V4, P176, DOI DOI 10.1037/1089-2680.4.2.176); JOHNSTON FE, 1974, HUM BIOL, V46, P159; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; KAPRIO J, 1995, HUM BIOL, V67, P739; KELSEY JL, 1993, EPIDEMIOL REV, V15, P36, DOI 10.1093/oxfordjournals.epirev.a036115; Keyfitz N., 1977, INTRO MATH POPULATIO; Khan AD, 1996, AM J HUM BIOL, V8, P717, DOI 10.1002/(SICI)1520-6300(1996)8:6<717::AID-AJHB3>3.0.CO;2-Q; Klopfer P.H., 1981, P1; Kobak R., 1999, HDB ATTACHMENT THEOR, P21; Koo MM, 1997, ANN HUM BIOL, V24, P61, DOI 10.1080/03014469700004782; Krieger N, 2003, AM J PUBLIC HEALTH, V93, P194, DOI 10.2105/AJPH.93.2.194; LANCASTER JB, 1997, FEMINISM EVOLUTIONAR, P466; Legro RS, 2003, J CLIN ENDOCR METAB, V88, P215, DOI 10.1210/jc.2002-020256; LEIGH JP, 1986, J POST KEYNESIAN EC, V9, P17, DOI 10.1080/01603477.1986.11489597; LEVINE NE, 1987, POPUL DEV REV, V13, P281, DOI 10.2307/1973194; Lewis Oscar, 1967, VIDA PUERTO RICAN FA; LIVSON N, 1962, HUM BIOL, V34, P218; McEwen Bruce S., 1995, P1117; McPherson CP, 1996, AM J EPIDEMIOL, V143, P1195; MISCHEL W, 1961, J ABNORM SOC PSYCH, V62, P543, DOI 10.1037/h0039842; MISCHEL W, 1961, J ABNORM SOC PSYCH, V63, P116, DOI 10.1037/h0046877; MISCHEL W, 1989, SCIENCE, V244, P933, DOI 10.1126/science.2658056; MISCHEL W, 1958, J ABNORMAL SOCIAL PS, V62, P543; Mulder M Borgerhoff, 1992, EVOLUTIONARY ECOLOGY, P339; Must A, 2002, AM J EPIDEMIOL, V155, P672, DOI 10.1093/aje/155.7.672; Netherton C, 2004, PSYCHONEUROENDOCRINO, V29, P125, DOI 10.1016/S0306-4530(03)00150-6; PANKSEPP J, 1998, AFFECTIVE NEUROSCI F; Parra FC, 2003, P NATL ACAD SCI USA, V100, P177, DOI 10.1073/pnas.0126614100; Power C, 2002, SOC SCI MED, V55, P1989, DOI 10.1016/S0277-9536(01)00325-2; PRESSER H, 1978, SOC BIOL, V5, P94; PROMISLOW D, 1991, ACTA OECOL, V12, P94; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Putnam FW, 1997, ANN NY ACAD SCI, V821, P150, DOI 10.1111/j.1749-6632.1997.tb48276.x; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Quinlivan JA, 1999, AUST NZ J PSYCHIAT, V33, P864, DOI 10.1046/j.1440-1614.1999.00592.x; Reymert ML, 1940, CHARACT PERSON, V8, P292; ROBERTSON AF, 1991, FAMILY SOCIAL ORG HU; Sapolsky R., 1996, STRESS, V1, P1, DOI DOI 10.3109/10253899609001092; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; SARASON IG, 1978, J CONSULT CLIN PSYCH, V46, P932, DOI 10.1037/0022-006X.46.5.932; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; SCHOLL TO, 1989, ANN HUM BIOL, V16, P335, DOI 10.1080/03014468900000462; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; SMITH V, 2001, AM ECON REV, V91, P1127; Stack Carol B., 1974, ALL OUR KIN STRATEGI; Stearns S. C., 1992, EVOLUTION LIFE HIST; Susman EJ, 1997, J RES ADOLESCENCE, V7, P283, DOI 10.1207/s15327795jra0703_3; Trickett P. K., 1998, VIOLENCE CHILDREN FA, P39; TRICKETT PK, 1993, PSYCHOL SCI, V4, P81, DOI 10.1111/j.1467-9280.1993.tb00465.x; Trivers R., 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; TRYGGVADOTTIR L, 1994, ANN HUM BIOL, V21, P179, DOI 10.1080/03014469400003202; UDRY JR, 1982, DEMOGRAPHY, V19, P53, DOI 10.2307/2061128; VITZTHUM VJ, 2001, REPROD ECOLOGY HUMAN, P179; Waaktaar T, 2004, J ADOLESCENCE, V27, P153, DOI 10.1016/j.adolescence.2003.09.006; WELLENS R, 1990, ANN HUM BIOL, V17, P145, DOI 10.1080/03014469000000892; Whiting JW, 1986, SCH AGE PREGNANCY PA, P273; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; WINGFIELD J, 2003, J NEUROENDOCRINOL, V16, P711; Woodward LJ, 1999, DEV PSYCHOPATHOL, V11, P127, DOI 10.1017/S0954579499001984; Worthman CM, 1999, EVOLUTIONARY MEDICI NE, P135; YOUNG H, 1963, AM J DIS CHILD, V106, P78; ZABIN LS, 1986, DEMOGRAPHY, V23, P595, DOI 10.2307/2061353 118 145 151 1 33 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 2005 16 3 233 265 10.1007/s12110-005-1009-0 33 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 979NU WOS:000232952900001 26189749 2018-11-12 J Mills, MSL; Boix-Hinzen, C; Du Plessis, MA Mills, MSL; Boix-Hinzen, C; Du Plessis, MA Live or let live: life-history decisions of the breeding female Monteiro's Hornbill Tockus monteiri IBIS English Article BODY CONDITION INDEXES; ESTIMATING FITNESS; MOLT; BIRDS; COST Life-history theory maintains that long-lived species such as hornbills (Bucerotiformes) maximize lifetime fecundity by ensuring adult survival, rather than investing in current reproductive output. Unusually, female Tockus hornbills are sealed into the nest cavity during breeding, placing a large burden on the male who feeds her and the nestlings for up to 9 weeks. Early departure to help feed young may improve nestling survival, but could reduce female survival if moult is incomplete. We investigated whether departure time of the female Monteiro's Hornbill Tockus monteiri is more strongly related to measures of female fitness or juvenile condition. Departure was independent of nestling development and growth, instead depending on female state. At departure, variability in condition between females was smaller than at any other stage, implying a strong stabilizing selection on optimal female departure condition. Similarly, moult showed signs of being completed, and variability in the state of moult between females was lowest at departure. Both predictions were met in favour of the hypothesis that Monteiro's Hornbills would base the timing of their departure from the nest on maximizing their own survival. Thus, as predicted, future reproductive potential takes precedence over current reproductive output in a trade-off decision in this species. Univ Cape Town, Percy FitzPatrick Inst African Ornithol, ZA-7701 Rondebosch, South Africa Du Plessis, MA (reprint author), Univ Cape Town, Percy FitzPatrick Inst African Ornithol, ZA-7701 Rondebosch, South Africa. morne@botzoo.uct.ac.za BROWN CR, 1985, J COMP PHYSIOL B, V155, P515, DOI 10.1007/BF00684682; Erikstad KE, 1998, ECOLOGY, V79, P1781; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; HOHMAN WL, 1993, CAN J ZOOL, V71, P2224, DOI 10.1139/z93-312; HURLBERT SH, 1984, ECOL MONOGR, V54, P187, DOI 10.2307/1942661; Jakob EM, 1996, OIKOS, V77, P61, DOI 10.2307/3545585; KEMP A C, 1972, Annals of the Transvaal Museum, V27, P255; Kemp A. C, 1995, THE HORNBILLS; KLAASSEN M, 1995, OECOLOGIA, V104, P424, DOI 10.1007/BF00341339; Klaassen M, 2003, AUK, V120, P866, DOI 10.1642/0004-8038(2003)120[0866:FWHDPA]2.0.CO;2; Kotiaho JS, 1999, OIKOS, V87, P399, DOI 10.2307/3546755; LANGLEY R, 1968, PRACTICAL STAT; Marshall SD, 1999, OIKOS, V87, P401, DOI 10.2307/3546756; MENDELSOHN JM, 2003, ATLAS NAMIBIA CARTOG; RIDLEY M, 1993, EVOLUTION; Roff D. A., 2002, LIFE HIST EVOLUTION; Stanback M, 2002, ANIM BEHAV, V63, P787, DOI 10.1006/anbe.2001.1975; STANBACK M, 1999, P INT ORNITHOL C, V22; Stearns SC, 1993, EVOLUTION LIFE HIST; Zar J.H, 1999, BIOSTATISTICAL ANAL 20 1 1 0 6 BLACKWELL PUBLISHING LTD OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DG, OXON, ENGLAND 0019-1019 IBIS Ibis JAN 2005 147 1 48 56 10.1111/j.1474-919x.2004.00340 9 Ornithology Zoology 889XT WOS:000226476900006 2018-11-12 J Kraus, C; Thomson, DL; Kunkele, J; Trillmich, F Kraus, C; Thomson, DL; Kunkele, J; Trillmich, F Living slow and dying young? Life-history strategy and age-specific survival rates in a precocial small mammal JOURNAL OF ANIMAL ECOLOGY English Article altricical-precocial dichotomy; cavies; fecundity-juvenile survival trade-off; small mammals; slow-fast continuum CAPTURE-RECAPTURE DATA; MORTALITY-RATES; MARKED ANIMALS; DEMOGRAPHIC TACTICS; PLACENTAL MAMMALS; MODEL SELECTION; BODY SIZE; POPULATION; EVOLUTION; PREDATION 1. Mammalian life histories can be ordered along a slow-fast continuum from slow-developing, long-lived species with low reproductive rates at one end to rapidly developing, short-lived species with high reproductive rates at the other. Body size and mortality rate are strong correlates of the slow-fast axis, whereby juvenile and adult mortality rates correlate positively but are linked to certain life-history traits with differing strengths. The strong covariation of life-history traits renders it difficult to evaluate the adaptive value of single life-history elements. Species that deviate from the common pattern might help to identify specific selected strategies. 2. Caviomorph rodents show an unusual combination of life-history traits. Like slow-living mammals, they produce few precocial young after long gestation periods, but they have the early maturation potential of their fast-living counterparts. This combination of life-history traits suggests low levels of juvenile mortality but high adult mortality rates, and thus an unusually low ratio of juvenile to adult mortality compared to other small mammals. To test these predictions, we modelled age-specific survival probabilities using capture-recapture data from a wild population of Cavia magna. 3. Patterns of age-specific survival rates were in accordance with the predictions, but atypical for small mammals. Levels of adult survival were low, and comparable to those of much smaller rodent species. Juvenile survival probabilities were high relative to those reported for other small mammals and reached adult levels after only 1 month. The ratio of adult to early juvenile survival depended strongly on the date of birth. Whereas survival of young from the first birth cohort in spring did not differ from that of adults, early survivorship of later cohorts was lower. 4. Our results fit expectations from life-history theory and suggest that high levels of adult mortality selected for the early onset of reproduction in wild cavies. The comparatively low juvenile mortalities are probably a consequence of the precocial state of the cavy offspring. We suggest that the reproductive strategy of cavies represents a different solution to the trade-off between fecundity and juvenile survival compared to altricial small mammals. Univ Bielefeld, Dept Anim Behav, D-33501 Bielefeld, Germany; Max Planck Inst Demog Res, D-18057 Rostock, Germany Kraus, C (reprint author), Univ Bielefeld, Dept Anim Behav VHF, POB 100131, D-33501 Bielefeld, Germany. Cornelia.Kraus@uni-bielefeld.de ANDERSON DR, 1985, J ANIM ECOL, V54, P89, DOI 10.2307/4622; ANDERSON DR, 1994, ECOLOGY, V75, P1780, DOI 10.2307/1939637; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Buckland ST, 1997, BIOMETRICS, V53, P603, DOI 10.2307/2533961; Burnham K. P., 1998, MODEL SELECTION INFE; Calder W. A., 1984, SIZE FUNCTION LIFE H; CASSINI MH, 1991, OIKOS, V62, P20, DOI 10.2307/3545441; CAUGHLEY G, 1983, OECOLOGIA, V59, P7, DOI 10.1007/BF00388066; CAUGHLEY G, 1977, ANAL VERTEBRATE POPU; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1986, OIKOS, V47, P129, DOI 10.2307/3566037; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Cooch E, 1999, MARK INTRO GUIDE; CORMACK RM, 1964, BIOMETRIKA, V51, P429, DOI 10.1093/biomet/51.3-4.429; Crespin L, 2002, OIKOS, V98, P467, DOI 10.1034/j.1600-0706.2002.980311.x; DERRICKSON EM, 1992, FUNCT ECOL, V6, P57, DOI 10.2307/2389771; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; Eisenberg JF, 1981, MAMMALIAN RAD; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; GAILLARD JM, 1994, EVOLUTION, V48, P509, DOI 10.1111/j.1558-5646.1994.tb01329.x; Gambarotta Juan Carlos, 1999, Relevamientos de Biodiversidad, V3, P1; Gillis EA, 1998, CAN J ZOOL, V76, P1949, DOI 10.1139/cjz-76-10-1949; Harvey P.H., 1989, Oxford Surveys in Evolutionary Biology, V6, P13; HARVEY PH, 1991, NATURE, V350, P23, DOI 10.1038/350023a0; JAKSIC FM, 1986, REV CHIL HIST NAT, V59, P209; JOLLY GM, 1965, BIOMETRIKA, V52, P225, DOI 10.2307/2333826; Kraus C, 2004, OIKOS, V105, P489, DOI 10.1111/j.0030-1299.2004.12941.x; Kraus C, 2003, ANIM BEHAV, V66, P225, DOI 10.1006/anbe.2003.2192; Lambin X, 1998, J ANIM ECOL, V67, P1, DOI 10.1046/j.1365-2656.1998.00181.x; Lambin X, 2001, J ANIM ECOL, V70, P191, DOI 10.1046/j.1365-2656.2001.00494.x; LARSEN KW, 1994, ECOLOGY, V75, P214, DOI 10.2307/1939395; LAURIENKEHNEN C, 2002, THESIS U BIELEFELD G; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Marboutin E, 1998, J WILDLIFE MANAGE, V62, P772, DOI 10.2307/3802354; Marboutin E, 1995, J APPL ECOL, V32, P809, DOI 10.2307/2404820; MCNAB BK, 1983, J ZOOL, V199, P1; MCNAB BK, 1980, AM NAT, V116, P106, DOI 10.1086/283614; MESERVE PL, 1993, OECOLOGIA, V94, P153, DOI 10.1007/BF00341311; MESSIER F, 1990, ECOLOGY, V71, P822, DOI 10.2307/1940334; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MILLAR JS, 1983, ECOLOGY, V64, P631, DOI 10.2307/1937181; Negus N.C., 1988, EVOLUTION LIFE HIST, P65; Nowak, 1999, WALKERS MAMMALS WORL; ODONOGHUE M, 1994, ECOLOGY, V75, P1582, DOI 10.2307/1939619; PARADIS E, 1993, J WILDLIFE MANAGE, V57, P158, DOI 10.2307/3809012; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PONTIER D, 1993, OIKOS, V66, P424, DOI 10.2307/3544936; Prevot-Julliard AC, 1999, J ANIM ECOL, V68, P684, DOI 10.1046/j.1365-2656.1999.00307.x; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PURVIS A, 1995, J ZOOL, V237, P259, DOI 10.1111/j.1469-7998.1995.tb02762.x; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Rood J.P., 1972, Animal Behav Monogr, V5, P1; SACHER GA, 1974, AM NAT, V108, P593, DOI 10.1086/282938; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SEBER GAF, 1965, BIOMETRIKA, V52, P249; Sibly RM, 1997, J ZOOL, V243, P1, DOI 10.1111/j.1469-7998.1997.tb05751.x; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; SUTHERLAND WJ, 1986, NATURE, V320, P88, DOI 10.1038/320088a0; TELFER S, 2002, J ANIM ECOL, V71, P588; WESTERN D, 1982, OECOLOGIA, V54, P281, DOI 10.1007/BF00379994; White GC, 1999, BIRD STUDY, V46, P120; White GC, 2002, J APPL STAT, V29, P103, DOI 10.1080/02664760120108476; XIMENEZ A, 1980, Revista Nordestina de Biologia, V3, P145 68 48 48 0 38 BLACKWELL PUBLISHING LTD OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DG, OXON, ENGLAND 0021-8790 J ANIM ECOL J. Anim. Ecol. JAN 2005 74 1 171 180 10.1111/j.1365-2656.2004.00910.x 10 Ecology; Zoology Environmental Sciences & Ecology; Zoology 890MC WOS:000226514300019 Bronze 2018-11-12 J Stauss, MJ; Burkhardt, JF; Tomiuk, J Stauss, MJ; Burkhardt, JF; Tomiuk, J Foraging flight distances as a measure of parental effort in blue tits Parus caeruleus differ with environmental conditions JOURNAL OF AVIAN BIOLOGY English Article FLYCATCHER FICEDULA-ALBICOLLIS; DOUBLY-LABELED WATER; GREAT TIT; ENERGY-EXPENDITURE; CLUTCH SIZE; REPRODUCTIVE SUCCESS; COLLARED FLYCATCHER; BREEDING SUCCESS; BROOD SIZE; FOOD AVAILABILITY Life-history theory predicts that parental effort in nestling provisioning is optimised in relation to the quality of individuals and/or their habitat. We studied the investment of breeding pairs of blue tits Parus caeruleus for their reproduction during three breeding seasons in deciduous (high quality) vs. mixed (low quality) habitats in order to quantify to what extent habitat quality affects parental effort. Parental effort (costs) was related to their feeding rates and flight distances during foraging. In the deciduous habitat flight distances between nest and foraging patch were shorter than in the mixed habitat (22 in and 40 m, respectively), but the feeding rates did not differ between the habitats. The total flight distance per breeding pair from the first day after hatching until the 17th day of the nestling period was about half of the distance observed in the mixed habitat (375 km and 674 km, respectively). As the quality of fledglings did not differ between habitats, the higher number of fledglings per brood reflects better rewards per foraging trip in the deciduous than in the mixed habitat. Considering the parental foraging effort (costs) and, the quality and number of offspring (benefits), the benefit-cost-ratio was 2-3 times higher in the deciduous than in the mixed woodland. Univ Tubingen, Inst Anthropol & Human Genet, D-72074 Tubingen, Germany Stauss, MJ (reprint author), Inst Behav Ecol, Vor Kreuzberg 28, D-72070 Tubingen, Germany. m-stauss@gmx.de BLONDEL J, 1987, ARDEA, V75, P21; Bryant DM, 1988, FUNCT ECOL, V2, P23, DOI 10.2307/2389456; BRYANT DM, 1991, IBIS, V133, P236, DOI 10.1111/j.1474-919X.1991.tb04565.x; CARLSON A, 1992, AUK, V109, P389, DOI 10.2307/4088212; COWIE RJ, 1987, ARDEA, V75, P81; DHONDT AA, 1984, IBIS, V126, P388, DOI 10.1111/j.1474-919X.1984.tb00260.x; Dias PC, 1996, IBIS, V138, P644, DOI 10.1111/j.1474-919X.1996.tb04766.x; DRENT RH, 1980, ARDEA, V68, P225; EKMAN J, 1986, EVOLUTION, V40, P159, DOI 10.1111/j.1558-5646.1986.tb05727.x; GIBB JOHN, 1955, BRITISH BIRDS, V48, P49; GRIECO F, 2002, ANIM BEHAV, V63, P517; GRUNDEL R, 1987, CONDOR, V89, P319, DOI 10.2307/1368484; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; LALONDE RG, 1991, AM NAT, V138, P680, DOI 10.1086/285242; LESSELLS CM, 1983, ANIM BEHAV, V31, P238, DOI 10.1016/S0003-3472(83)80194-8; LIMA SL, 1987, ECOLOGY, V68, P1062, DOI 10.2307/1938378; LINDEN M, 1992, ECOLOGY, V73, P336, DOI 10.2307/1938745; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; Maigret JL, 1997, BEHAV ECOL, V8, P250, DOI 10.1093/beheco/8.3.250; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; Moreno J, 1997, OIKOS, V79, P559, DOI 10.2307/3546900; Naef-Daenzer B, 1999, J ANIM ECOL, V68, P708, DOI 10.1046/j.1365-2656.1999.00318.x; Naef-Daenzer B, 2000, ANIM BEHAV, V59, P989, DOI 10.1006/anbe.1999.1380; Naef-Daenzer L, 2000, J AVIAN BIOL, V31, P206, DOI 10.1034/j.1600-048X.2000.310212.x; NAEFDAENZER B, 1994, ARDEA, V82, P335; NORRIS K, 1993, J ANIM ECOL, V62, P287, DOI 10.2307/5360; Nour N, 1998, OECOLOGIA, V114, P522, DOI 10.1007/s004420050476; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; NUR N, 1984, J ANIM ECOL, V53, P497, DOI 10.2307/4530; Nur N., 1987, P457; Nur N., 1990, NATO ASI Series Series G Ecological Sciences, V24, P281; NUR N, 1986, J ANIM ECOL, V55, P983, DOI 10.2307/4428; PERRINS CM, 1991, IBIS, V133, P49, DOI 10.1111/j.1474-919X.1991.tb07668.x; PERRINS CM, 1975, J ANIM ECOL, V44, P695, DOI 10.2307/3712; PETTIFOR RA, 1993, J ANIM ECOL, V62, P145, DOI 10.2307/5489; Przybylo R, 2001, J AVIAN BIOL, V32, P214, DOI 10.1111/j.0908-8857.2001.320302.x; REYER HU, 1985, BEHAV ECOL SOCIOBIOL, V17, P363, DOI 10.1007/BF00293214; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; SAETRE GP, 1995, J ANIM ECOL, V64, P21, DOI 10.2307/5824; Sanz JJ, 2000, OECOLOGIA, V122, P149, DOI 10.1007/PL00008842; *SAS I INC, 1987, SAS STAT US GUID; SLAGSVOLD T, 1995, J ANIM ECOL, V64, P563, DOI 10.2307/5800; SMITH HG, 1988, BEHAV ECOL SOCIOBIOL, V22, P447, DOI 10.1007/BF00294983; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; Sokal R.R., 1995, BIOMETRY; Stauss M. J., 1995, Vogelwarte, V38, P10; Stearns S. C., 1992, EVOLUTION LIFE HIST; TATNER P, 1986, AUK, V103, P169; Tinbergen JM, 2000, J ANIM ECOL, V69, P323, DOI 10.1046/j.1365-2656.2000.00395.x; TINBERGEN JM, 1994, FUNCT ECOL, V8, P563, DOI 10.2307/2389916; TINBERGEN JM, 1990, J ANIM ECOL, V59, P1113, DOI 10.2307/5035; VANBALEN JH, 1973, ARDEA, V61, P1; VANBALEN JH, 1990, NATO ASI SERIES, V24; VERHULST S, 1995, ECOLOGY, V76, P2392, DOI 10.2307/2265815; Verhulst S, 1997, ARDEA, V85, P111; WESTERTERP KR, 1986, ACT 13 C INT ORN 198; WHITTINGHAM LA, 1994, ETHOLOGY, V96, P260; WIGGINS DA, 1994, OIKOS, V70, P359, DOI 10.2307/3545773; WINKLER DW, 1987, AM NAT, V130, P526, DOI 10.1086/284729 59 55 55 1 37 BLACKWELL MUNKSGAARD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0908-8857 J AVIAN BIOL J. Avian Biol. JAN 2005 36 1 47 56 10.1111/j.0908-8857.2005.02855.x 10 Ornithology Zoology 894UT WOS:000226817800008 2018-11-12 J Hernaman, V; Munday, PL Hernaman, V; Munday, PL Life-history characteristics of coral reef gobies. I. Growth and life-span MARINE ECOLOGY PROGRESS SERIES English Article longevity; growth; body size; life history; gobiidae; otolith VALENCIENNEA-STRIGATA GOBIIDAE; GREAT-BARRIER-REEF; SEXUAL SELECTION; SAND GOBY; INTERSPECIFIC COMPETITION; POMATOSCHISTUS-MINUTUS; TEMPORAL VARIATION; AGE-DETERMINATION; PISCES GOBIIDAE; NATURAL-HISTORY Life-history theory predicts that small species will exhibit short life-spans and fast growth rates; however, previous studies indicate that a positive relationship between size and maximum age may not be universally applicable to coral reef fishes. Here, we investigate the growth and life-span of 5 small species of coral reef goby (family Gobiidae): Istigobius goldmanni, Asterropteryx semipunctatus, Amblygobius bynoensis, Amblygobius phalaena and Valenciennea muralis. All 5 species were relatively short-lived, with the oldest individual sampled ranging from 11 to 16 mo depending on species and sex. Rapid growth occurred over much of the size range of all 5 species and, in contrast to most reef fishes, relatively little or no time was spent at an asymptotic size. Patterns of growth were best described by a Broken Stick model for L goldmanni, and by either a Broken Stick modi l or the von Bertalanffy growth function for the other 4 species. Summer-growing individuals had higher growth rates than winter-growing individuals, but this did not affect the overall patterns of growth. Sex-specific differences in growth were evident for L goldmanni and A. semipunctatus, with males growing faster and attaining a larger maximum size than females. In contrast, there was no significant difference in growth between male and female A. bynoensis, A. phalaena and V muralis. This pattern may be related to interspecific differences in intensity of sexual selection, mating system, and reproductive behaviour. Overall, the patterns of growth and life-span of these 5 small species conformed to traditional concepts of life-history theory. Victoria Univ Wellington, Sch Biol Sci, Wellington, New Zealand; Univ Otago, Dept Marine Sci, Dunedin, New Zealand; James Cook Univ N Queensland, Sch Marine Biol & Aquaculture, Townsville, Qld 4811, Australia Hernaman, V (reprint author), Victoria Univ Wellington, Sch Biol Sci, POB 600, Wellington, New Zealand. vhernaman@xtra.co.nz Munday, Philip/F-5443-2011 Munday, Philip/0000-0001-9725-2498 Ackerman JL, 2000, MAR ECOL PROG SER, V206, P227, DOI 10.3354/meps206227; ARRUDA LM, 1993, ESTUAR COAST SHELF S, V37, P509, DOI 10.1006/ecss.1993.1070; BEGON M, 1981, POPULATON ECOLOGY UN; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Bouchereau JL, 1998, OCEANOL ACTA, V21, P503, DOI 10.1016/S0399-1784(98)80034-0; BREITBURG DL, 1987, ECOLOGY, V68, P1844, DOI 10.2307/1939876; Campana SE, 2001, J FISH BIOL, V59, P197, DOI 10.1006/jfbi.2001.1668; Charnov Eric L., 1993, P1; CHEN Y, 1992, CAN J FISH AQUAT SCI, V49, P1228, DOI 10.1139/f92-138; Choat J. Howard, 2002, P57; Choat JH, 1996, MAR ECOL PROG SER, V134, P15, DOI 10.3354/meps134015; Clark E, 2000, ENVIRON BIOL FISH, V57, P131, DOI 10.1023/A:1007648611429; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; FORRESTER GE, 1995, OECOLOGIA, V103, P275, DOI 10.1007/BF00328615; Forsgren E, 1996, EVOLUTION, V50, P646, DOI 10.1111/j.1558-5646.1996.tb03875.x; GIBSON RN, 1970, J FISH BIOL, V2, P281, DOI 10.1111/j.1095-8649.1970.tb03286.x; Gill HS, 1996, MAR BIOL, V125, P453; GLADSTONE W, 1988, ENVIRON BIOL FISH, V21, P207, DOI 10.1007/BF00004864; GROSSMAN GD, 1980, OECOLOGIA, V45, P261, DOI 10.1007/BF00346467; GROSSMAN GD, 1979, ENVIRON BIOL FISH, V4, P207, DOI 10.1007/BF00005479; Gust N, 2002, MAR BIOL, V140, P1039, DOI 10.1007/s00227-001-0773-6; Hart AM, 1996, MAR ECOL PROG SER, V136, P25, DOI 10.3354/meps136025; Hernaman V, 2000, MAR BIOL, V137, P715, DOI 10.1007/s002270000387; HERNAMAN V, 2003, THESIS U OTAGO DUNED; HILL KT, 1988, B MAR SCI, V42, P424; Iglesias M, 1997, MAR BIOL, V129, P279, DOI 10.1007/s002270050168; Kamler E, 1992, FISH FISHERIES SERIE, V4; KIMURA DK, 1980, FISH B-NOAA, V77, P765; KINGSFORD MJ, 1992, CORAL REEFS, V11, P193, DOI 10.1007/BF00301993; Kovacic M, 2001, J FISH BIOL, V59, P795, DOI 10.1006/jfbi.2001.1686; Kritzer JP, 2002, ENVIRON BIOL FISH, V63, P211, DOI 10.1023/A:1014278319097; Kuwamura T, 1996, BEHAV ECOL SOCIOBIOL, V38, P365, DOI 10.1007/s002650050253; LEIS JM, 1983, LARVAE INDOPACIFIC C; LINDSTROM K, 1992, MAR BIOL, V113, P475, DOI 10.1007/BF00349174; LINDSTROM K, 1992, BEHAV ECOL SOCIOBIOL, V30, P53; MACNEILL DB, 1990, COPEIA, P164; MAGNHAGEN C, 1993, MAR BEHAV PHYSIOL, V23, P79, DOI 10.1080/10236249309378858; Mazzoldi C, 2002, MAR ECOL PROG SER, V233, P231, DOI 10.3354/meps233231; McCormick MI, 1998, MAR BIOL, V132, P9, DOI 10.1007/s002270050367; Meekan MG, 2001, MAR ECOL PROG SER, V212, P223, DOI 10.3354/meps212223; MILLER P. J., 1984, FISH REPROD STRATEGI, P120; MILLER PJ, 1961, J MAR BIOL ASSOC UK, V41, P737; Miller PJ, 1996, SYM ZOOL S, P175; Miller PJ, 1979, S ZOOLOGICAL SOC LON, V44, P263; MOREIRA F, 1991, J FISH BIOL, V39, P433, DOI 10.1111/j.1095-8649.1991.tb04374.x; Munday PL, 1998, OCEANOGR MAR BIOL, V36, P373; Munday PL, 1997, J FISH BIOL, V51, P931, DOI 10.1006/jfbi.1997.0498; Munday PL, 2001, OECOLOGIA, V128, P585, DOI 10.1007/s004420100690; Newman SJ, 1996, MAR FRESHWATER RES, V47, P575, DOI 10.1071/MF9960575; Newman SJ, 2000, FISH RES, V48, P263, DOI 10.1016/S0165-7836(00)00184-3; NORRIS JE, 1988, P 6 INT COR REEF S, V2, P107; PARRISH JD, 1986, CONT STUDIES FISH FE, P285; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PAULY D, 1980, J CONSEIL, V39, P175; Randall JE, 1997, FISHES GREAT BARRIER; Reavis RH, 1998, BEHAV ECOL SOCIOBIOL, V43, P229, DOI 10.1007/s002650050487; Reavis RH, 1997, ENVIRON BIOL FISH, V49, P247, DOI 10.1023/A:1007320708862; Reavis RH, 1997, ENVIRON BIOL FISH, V49, P239, DOI 10.1023/A:1007372725701; Robertson DR, 1996, ECOLOGY, V77, P885, DOI 10.2307/2265509; Robertson DR, 1998, AUST J ECOL, V23, P226, DOI 10.1111/j.1442-9993.1998.tb00724.x; ROFF DA, 1980, CAN J FISH AQUAT SCI, V37, P127, DOI 10.1139/f80-016; Roff Derek A., 1992; Sano M, 1997, J EXP MAR BIOL ECOL, V214, P67, DOI 10.1016/S0022-0981(97)00019-1; SCHNUTE J, 1981, CAN J FISH AQUAT SCI, V38, P1128, DOI 10.1139/f81-153; SHAFER DJ, 1998, THESIS U HAWAII HONO; Stearns S. C., 1992, EVOLUTION LIFE HIST; SWEATMAN HPA, 1984, COPEIA, P187; Takegaki T, 1999, ICHTHYOL RES, V46, P115, DOI 10.1007/BF02675429; WARNER RR, 1984, EVOLUTION, V38, P148, DOI 10.1111/j.1558-5646.1984.tb00268.x; WORTHINGTON DG, 1995, CAN J FISH AQUAT SCI, V52, P233, DOI 10.1139/f95-023; Wotton R. J., 1998, ECOLOGY TELEOST FISH, V386; YANAGISAWA Y, 1982, JPN J ICHTHYOL, V28, P401 72 25 26 0 18 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2005 290 207 221 10.3354/meps290207 15 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 925UW WOS:000229079800017 Bronze 2018-11-12 J Hernaman, V; Munday, PL Hernaman, V; Munday, PL Life-history characteristics of coral reef gobies. II. Mortality rate, mating system and timing of maturation MARINE ECOLOGY PROGRESS SERIES English Article maturity; mortality; life history; body size; gobiidae; mating system VALENCIENNEA-STRIGATA GOBIIDAE; GREAT-BARRIER-REEF; COMMON GOBY; REPRODUCTIVE-BEHAVIOR; RECRUITMENT PATTERNS; SEXUAL SELECTION; NATURAL-HISTORY; MATE FIDELITY; FISH; AGE High adult mortality rate is expected to select for early maturation. However, physiological constraints or size-related reproductive benefits might select for delayed maturation, especially in small-bodied species. Additionally, the mating system and the relative intensity of mate competition can modify the timing of maturation. Here, we investigate the influence of mortality rate and mating system on the timing of maturation in 5 species of small coral reef goby that are either polygynous (Asterropteryx semipunctatus and Istigobius goldmanni) or monogamous pair-spawners (Amolygobius bynoensis, Amblygobius phalaena and Valenciennea muralis). All 5 species experienced high annual adult mortality rates with annual survivorship of <= 2.3%. The mean size at maturity, compared to maximum adult size, was smaller than is typical for fishes, indicating selection for earls maturity in all of these species. The season of growth had little effect on size at maturity, but had a considerable effect on age at maturity, with summer-growing individuals exhibiting a younger mean age at maturity than winter-growing individuals. As predicted, males of the 3 monogamous pair-spawning species matured earlier and smaller than females (A. bynoensis and A, phalaena) or at the same time as females (V muralis), but contrary to expectation, males of the 2 polygynous species (A. semipunctatus and I. goldmanni) did not mature later and at a larger size than females. Overall, the timing of maturation in these species is consistent with predictions from general life-history theory, however, the sex-specific timing of maturation may be influenced by body size constraints and the mating system. Victoria Univ Wellington, Sch Biol Sci, POB 600, Wellington, New Zealand; Univ Otago, Dept Marine Sci, Dunedin, New Zealand; James Cook Univ N Queensland, Sch Marine Biol & Aquaculture, Townsville, Qld, Australia Hernaman, V (reprint author), Victoria Univ Wellington, Sch Biol Sci, POB 600, Wellington, New Zealand. vhernaman@xtra.co.nz Munday, Philip/F-5443-2011 Munday, Philip/0000-0001-9725-2498 Ackerman JL, 2000, MAR ECOL PROG SER, V206, P227, DOI 10.3354/meps206227; Berglund Anders, 1997, P237; Caley MJ, 1998, AUST J ECOL, V23, P241, DOI 10.1111/j.1442-9993.1998.tb00726.x; Charnov Eric L., 1993, P1; CHEN Y, 1994, AQUAT SCI, V56, P206, DOI 10.1007/BF00879965; CINQUETTI R, 1987, B ZOOL, V54, P233, DOI 10.1080/11250008709355589; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; Fishelson L., 1989, Senckenbergiana Maritima, V20, P147; FORRESTER GE, 1995, OECOLOGIA, V103, P275, DOI 10.1007/BF00328615; Greenfield DW, 1999, COPEIA, P251, DOI 10.2307/1447470; Gust N, 2002, MAR BIOL, V140, P1039, DOI 10.1007/s00227-001-0773-6; Hernaman V, 2005, MAR ECOL PROG SER, V290, P207, DOI 10.3354/meps290207; HERNAMAN V, 2003, THESIS U OTAGO DUNED; Hixon M.A., 1991, P475; HOENIG JM, 1983, FISH B-NOAA, V81, P898; Holbrook SJ, 2002, ECOLOGY, V83, P2855, DOI 10.1890/0012-9658(2002)083[2855:CFSSCD]2.0.CO;2; Hosmer D. W., 2000, APPL LOGISTIC REGRES; Jones G.P., 1991, P294; King M., 1995, FISHERIES BIOL ASSES; KINGSFORD MJ, 1992, CORAL REEFS, V11, P193, DOI 10.1007/BF00301993; Kritzer JP, 2002, ENVIRON BIOL FISH, V63, P211, DOI 10.1023/A:1014278319097; Kritzer JP, 2001, CAN J FISH AQUAT SCI, V58, P1557, DOI 10.1139/cjfas-58-8-1557; KUITER RH, 1996, GUIDE SEA FISHES AUS; LEIS JM, 1983, LARVAE INDOPACIFIC C; LUCKHURST BE, 1977, CAN J ZOOL, V55, P681, DOI 10.1139/z77-089; M Begon, 1981, POPULATION ECOLOGY U; MAGNHAGEN C, 1992, ANIM BEHAV, V44, P182, DOI 10.1016/S0003-3472(05)80772-9; Magnhagen C, 1998, J FISH BIOL, V53, P130, DOI 10.1006/jfbi.1998.0689; MEEKAN MG, 1988, 6TH P INT COR REEF S, V2, P779; MILLER P. J., 1984, FISH REPROD STRATEGI, P120; Munday PL, 1998, OCEANOGR MAR BIOL, V36, P373; NAGAHAMA Y, 1983, FISH PHYSIOL, V9, P223; Newman SJ, 1996, MAR FRESHWATER RES, V47, P575, DOI 10.1071/MF9960575; NORRIS JE, 1988, P 6 INT COR REEF S, V2, P107; PARRISH JD, 1986, CONT STUDIES FISH FE, P285; Randall JE, 1997, FISHES GREAT BARRIER; Reavis RH, 1997, ENVIRON BIOL FISH, V49, P247, DOI 10.1023/A:1007320708862; Reavis RH, 1997, ENVIRON BIOL FISH, V49, P239, DOI 10.1023/A:1007372725701; Ricker W. E., 1975, FISHERIES RES BOARD, V191, P382; Roff Derek A., 1992; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SMITH C, 1995, REV FISH BIOL FISHER, V5, P7, DOI 10.1007/BF01103363; SMITH C L, 1972, Natural History Museum of Los Angeles County Science Bulletin, V14, P125; SPONAUGLE S, 1994, MAR BIOL, V120, P133; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stewart BD, 2001, MAR BIOL, V138, P383, DOI 10.1007/s002270000468; Svensson O, 1998, ANIM BEHAV, V56, P175, DOI 10.1006/anbe.1998.0769; SWEATMAN HPA, 1984, COPEIA, P187; Takashima F, 1995, ATLAS FISH HISTOLOGY; Takegaki T, 1999, ICHTHYOL RES, V46, P115, DOI 10.1007/BF02675429; Taru M, 2000, B MAR SCI, V66, P507; WARNER RR, 1984, EVOLUTION, V38, P148, DOI 10.1111/j.1558-5646.1984.tb00268.x; WEST G, 1990, AUST J MAR FRESH RES, V41, P199; Wilson DT, 1999, MAR BIOL, V134, P29, DOI 10.1007/s002270050522; Wootton R.J., 1998, ECOLOGY TELEOST FISH; Yamana H, 2001, RADIOACTIV ENVIRONM, V1, P31 56 14 15 0 9 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2005 290 223 237 10.3354/meps290223 15 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 925UW WOS:000229079800018 Bronze 2018-11-12 J Angilletta, MJ; Niewiarowski, PH; Dunham, AE; Leache, AD; Porter, WP Angilletta, MJ; Niewiarowski, PH; Dunham, AE; Leache, AD; Porter, WP Bergmann's clines in ectotherms: Illustrating a life-history perspective with sceloporine lizards AMERICAN NATURALIST English Article body size; Bergmann's rule; ectotherms; latitude; Sceloporus; temperature. BODY-SIZE VARIATION; GEOGRAPHIC-VARIATION; GROWTH-RATES; COMPARATIVE DEMOGRAPHY; LATITUDINAL VARIATION; ALTITUDINAL GRADIENT; THERMAL ENVIRONMENT; WIDESPREAD LIZARD; UTA-STANSBURIANA; MORTALITY-RATES The generality and causes of Bergmann's rule have been debated vigorously in the last few years, but Bergmann's clines are rarely explained in the context of life-history theory. We used both traditional and phylogenetic comparative analyses to explore the causes of latitudinal and thermal clines in the body size of the eastern fence lizard (Sceloporus undulatus). The proximate mechanism for larger body sizes in colder environments is delayed maturation, which results in a greater fecundity but a lower survival to maturity. Life-history theory predicts that a higher survivorship of juveniles in colder environments can favor the evolution of a Bergmann's cline. Consistent with this theory, lizards in colder environments survive better as juveniles and delay maturation until reaching a larger body size than that of lizards in warmer environments. We expect similar relationships among temperature, survivorship, and age/size at maturity exist in other ectotherms that exhibit Bergmann's clines. However, life-history traits of S. undulatus were more strongly related to latitude than they were to temperature, indicating that both abiotic and biotic factors should be considered as causes of Bergmann's clines. Nonetheless, analyses of the costs and benefits of particular body sizes in different thermal environments will enhance our understanding of geographic variation. Indiana State Univ, Dept Life Sci, Terre Haute, IN 47809 USA; Univ Akron, Dept Biol, Akron, OH 44325 USA; Univ Penn, Dept Biol, Philadelphia, PA 19104 USA; Univ Calif Berkeley, Museum Vertebrate Zool, Berkeley, CA 94720 USA; Univ Wisconsin, Dept Zool, Madison, WI 53711 USA Angilletta, MJ (reprint author), Indiana State Univ, Dept Life Sci, Terre Haute, IN 47809 USA. m-angilletta@indstate.edu; phn@uakron.edu; adunham@sas.upenn.edu; leache@socrates.berkeley.edu; wporter@mhub.zoology.wisc.edu Adolph SC, 1996, OIKOS, V77, P267, DOI 10.2307/3546065; Agostinelli C, 2001, STAT SINICA, V11, P499; Angilletta MJ, 2003, AM NAT, V162, P332; Angilletta MJ, 2002, J THERM BIOL, V27, P249, DOI 10.1016/S0306-4565(01)00094-8; Angilletta MJ, 2001, PHYSIOL BIOCHEM ZOOL, V74, P11; Angilletta MJ, 2001, ECOLOGY, V82, P3044, DOI 10.1890/0012-9658(2001)082[3044:TAPCOE]2.0.CO;2; ANGILLETTA MJ, 2004, IN PRESS INTEGRATIVE, V44; Arnett AE, 1999, J BIOGEOGR, V26, P275, DOI 10.1046/j.1365-2699.1999.00271.x; Ashton KG, 2000, AM NAT, V156, P390, DOI 10.1086/303400; Ashton KG, 2003, EVOLUTION, V57, P1151, DOI 10.1111/j.0014-3820.2003.tb00324.x; Ashton KG, 2002, GLOBAL ECOL BIOGEOGR, V11, P505, DOI 10.1046/j.1466-822X.2002.00313.x; Ashton KG, 2002, CAN J ZOOL, V80, P708, DOI 10.1139/Z02-049; Ashton KG, 2001, EVOLUTION, V55, P2523; Ashton Kyle G., 2001, Diversity and Distributions, V7, P289, DOI 10.1046/j.1366-9516.2001.00115.x; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Atkinson D., 1996, ANIMALS TEMPERATURE, P183; BALLARD KP, 1981, REG STUD, V15, P213, DOI 10.1080/09595238100185221; BALLINGER RE, 1981, AM MIDL NAT, V106, P157, DOI 10.2307/2425145; BALLINGER RE, 1979, ECOLOGY, V60, P901, DOI 10.2307/1936858; BALLINGER RE, 1973, ECOLOGY, V54, P269, DOI 10.2307/1934336; Belk MC, 2002, AM NAT, V160, P803, DOI 10.1086/343880; Bergmann C, 1847, GOTTINGER STUDIEN, V1, P595; Bernardo J, 2002, OIKOS, V97, P398, DOI 10.1034/j.1600-0706.2002.970310.x; BERRIGAN D, 1994, OIKOS, V70, P474, DOI 10.2307/3545787; Blackburn Tim M., 1999, Diversity and Distributions, V5, P165, DOI 10.1046/j.1472-4642.1999.00046.x; Camp CD, 2000, CAN J ZOOL, V78, P1702, DOI 10.1139/cjz-78-10-1702; CONOVER DO, 1992, J FISH BIOL, V41, P161, DOI 10.1111/j.1095-8649.1992.tb03876.x; Cooper WE, 2000, BEHAVIOUR, V137, P1175, DOI 10.1163/156853900502583; CRENSHAW JOHN W., 1955, AMER MIDLAND NAT, V54, P257, DOI 10.2307/2422568; CURRIE DJ, 1991, AM NAT, V137, P27, DOI 10.1086/285144; Downes SJ, 2001, EVOLUTION, V55, P605, DOI 10.1554/0014-3820(2001)055[0605:GVIATT]2.0.CO;2; Dunham A. E., 1981, MISC PUBL MUS ZOOL, V158, P1; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FERGUSON GW, 1980, COPEIA, P259, DOI 10.2307/1444002; FERGUSON GW, 1980, ECOLOGY, V61, P313, DOI 10.2307/1935190; Freckleton RP, 2003, AM NAT, V161, P821, DOI 10.1086/374346; Garland T, 1999, AM ZOOL, V39, P374; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; Gasser M, 2000, EVOLUTION, V54, P1260; GILLIS R, 1992, OECOLOGIA, V89, P236, DOI 10.1007/BF00317223; GRANT BW, 1992, AM ZOOL, V32, P154; GRANT BW, 1990, ECOLOGY, V71, P1765, DOI 10.2307/1937584; Heinze J, 2003, ECOGRAPHY, V26, P349, DOI 10.1034/j.1600-0587.2003.03478.x; Hokit DG, 2001, CONSERV BIOL, V15, P1102, DOI 10.1046/j.1523-1739.2001.0150041102.x; HUEY RB, 1979, AM ZOOL, V19, P357; Huey RB, 2000, SCIENCE, V287, P308, DOI 10.1126/science.287.5451.308; Jackson D. A., 1993, ECOLOGY, V74, P2205; JAKSIC FM, 1984, OIKOS, V42, P407, DOI 10.2307/3544414; JONES SM, 1987, ECOLOGY, V68, P1828, DOI 10.2307/1939874; KOZLOWSKI J, 2004, IN PRESS INTEGRATIVE, V44; Leache AD, 2002, SYSTEMATIC BIOL, V51, P44, DOI 10.1080/106351502753475871; MARION KR, 1970, THESIS WASHINGTON U; Markatou M, 1998, J AM STAT ASSOC, V93, P740, DOI 10.2307/2670124; Martin J, 2001, BEHAV ECOL, V12, P386, DOI 10.1093/beheco/12.4.386; MARTINS EP, 2003, COMPARE VERSION 4 5; MCCULLOUGH EC, 1971, ECOLOGY, V52, P1008, DOI 10.2307/1933806; McGarigal K, 2000, MULTIVARIATE STAT WI; MCKINNEY RB, 1982, THESIS U ALABAMA BIR; Meiri S, 2003, J BIOGEOGR, V30, P331, DOI 10.1046/j.1365-2699.2003.00837.x; Miles DB, 2002, HERPETOLOGICA, V58, P277, DOI 10.1655/0018-0831(2002)058[0277:GRAPOS]2.0.CO;2; Morrison C, 2003, J ANIM ECOL, V72, P270, DOI 10.1046/j.1365-2656.2003.00696.x; Mousseau TA, 1997, EVOLUTION, V51, P630, DOI 10.1111/j.1558-5646.1997.tb02453.x; Niewiarowski Peter H., 1994, P31; Niewiarowski PH, 2004, EVOLUTION, V58, P619, DOI 10.1111/j.0014-3820.2004.tb01684.x; NIEWIAROWSKI PH, 1993, ECOLOGY, V74, P1992, DOI 10.2307/1940842; Niewiarowski PH, 1995, HERPETOLOGICA, V51, P487; Niewiarowski PH, 2001, AM NAT, V157, P421, DOI 10.1086/319321; NIEWIAROWSKI PH, 1992, THESIS U PENNSYLVANI; Palkovacs EP, 2003, OIKOS, V103, P37, DOI 10.1034/j.1600-0706.2003.12502.x; PARKER WS, 1994, COPEIA, P136; Partridge L, 1997, EVOLUTION, V51, P632, DOI 10.1111/j.1558-5646.1997.tb02454.x; PARTRIDGE L, 1994, EVOLUTION, V48, P1269, DOI 10.1111/j.1558-5646.1994.tb05311.x; Perrin N, 1988, FUNCT ECOL, V2, P283, DOI 10.2307/2389399; Porter WP, 2002, INTEGR COMP BIOL, V42, P431, DOI 10.1093/icb/42.3.431; Porter WP, 2000, AM ZOOL, V40, P597, DOI 10.1668/0003-1569(2000)040[0597:CCEOBA]2.0.CO;2; PORTER WP, 1973, OECOLOGIA, V13, P1, DOI 10.1007/BF00379617; *R DEV COR TEAM, 2003, R LANG ENV STAT COMP; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff D. A., 2002, LIFE HIST EVOLUTION; ROFF DA, 1986, BIOSCIENCE, V36, P316, DOI 10.2307/1310236; Rohr DH, 1997, J ANIM ECOL, V66, P567, DOI 10.2307/5950; Sears MW, 2003, ECOLOGY, V84, P1624, DOI 10.1890/0012-9658(2003)084[1624:LVITSL]2.0.CO;2; SIBLY RM, 1994, FUNCT ECOL, V8, P486, DOI 10.2307/2390073; SINERVO B, 1994, ECOLOGY, V75, P776, DOI 10.2307/1941734; SINERVO B, 1991, J EXP BIOL, V155, P323; Smith Geoffrey R., 1996, Transactions of the Nebraska Academy of Sciences, V23, P85; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; SWOFFORD DL, 2001, PHYLOGENETIC ANAL US; TINKLE D W, 1972, Herpetologica, V28, P351; TINKLE DW, 1993, ECOLOGY, V74, P2413, DOI 10.2307/1939592; TINKLE DW, 1986, COPEIA, P1; TINKLE DW, 1972, ECOLOGY, V53, P570, DOI 10.2307/1934772; TURNER FB, 1982, COPEIA, P835; VINEGAR MB, 1975, AM MIDL NAT, V93, P388, DOI 10.2307/2424171; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; Wiens JJ, 1999, EVOLUTION, V53, P1884, DOI 10.1111/j.1558-5646.1999.tb04570.x; Wiens John J., 1997, Herpetological Monographs, V11, P1, DOI 10.2307/1467007; WILSON BS, 1991, ECOL MONOGR, V61, P393, DOI 10.2307/2937048 100 109 111 5 42 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 AM NAT Am. Nat. DEC 2004 164 6 E168 E183 16 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 882VR WOS:000225968000002 29641924 2018-11-12 J Berner, D; Korner, C; Blanckenhorn, WU Berner, D; Korner, C; Blanckenhorn, WU Grasshopper populations across 2000 m of altitude: is there life history adaptation? ECOGRAPHY English Article EMBRYONIC-DEVELOPMENT TIME; CHORTHIPPUS-BRUNNEUS; GEOGRAPHIC-VARIATION; BODY-SIZE; EUROPEAN GRASSHOPPERS; SEASONAL ENVIRONMENT; EGG DEVELOPMENT; ORTHOPTERA; ACRIDIDAE; PLASTICITY Life history differentiation along climatic gradients may have allowed a species to extend its geographic range. To explore this hypothesis, we compared eleven Omocestus viridulus (Orthoptera: Acrididae) populations along an altitudinal gradient from 410 to 2440 m in Switzerland, both in the field and laboratory. In situ temperature records indicated a striking decline in available heat sums along the gradient, and field populations at high altitudes reached egg hatching and adulthood much later in the year than at low elevation. The reproductive period at high altitude is thus severely limited by season length, especially during a cool year. However, controlled environment experiments revealed that intrinsic rates of embryonic and juvenile development increased with the populations' altitude of origin. This countergradient variation is largely genetic and conforms to predictions of life history theory. No corresponding differentiation in the overwintering egg stage, a pivotal determinant of phenology, was found. This trait seems conserved within the gomphocerine grasshopper subfamily. Although we found evidence for altitudinal adaptation in development, the potential of O. viridulus to adapt to cool alpine climates appears restricted by a phylogenetic constraint. Swiss Fed Res Stn Agroecol & Agr, Agroscope FAL Reckenholz, CH-8046 Zurich, Switzerland; Univ Basel, Inst Bot, CH-4056 Basel, Switzerland; Univ Zurich, Museum Zool, CH-8057 Zurich, Switzerland Berner, D (reprint author), Swiss Fed Res Stn Agroecol & Agr, Agroscope FAL Reckenholz, Reckenholzstr 191, CH-8046 Zurich, Switzerland. daniel.berner@fal.admin.ch Berner, Daniel/C-3461-2014; Korner, Christian/B-6592-2014 Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; AYRES MP, 1994, ECOL MONOGR, V64, P465, DOI 10.2307/2937146; BEGON M, 1983, ECOL ENTOMOL, V8, P361, DOI 10.1111/j.1365-2311.1983.tb00516.x; BERVEN KA, 1983, AM ZOOL, V23, P85; BLANCKENHORN WU, 1995, J EVOLUTION BIOL, V8, P21, DOI 10.1046/j.1420-9101.1995.8010021.x; Blanckenhorn WU, 1997, OECOLOGIA, V109, P342, DOI 10.1007/s004420050092; BRADFORD MJ, 1995, OECOLOGIA, V103, P319, DOI 10.1007/BF00328620; Carriere Y, 1996, OIKOS, V75, P463, DOI 10.2307/3545887; Carron Gilles, 1996, Articulata, V11, P49; CHAPPELL MA, 1983, OECOLOGIA, V56, P126, DOI 10.1007/BF00378228; CHERRILL A, 1991, HOLARCTIC ECOL, V14, P225; CHERRILL AJ, 1987, THESIS U LIVERPOOL; COHEN D, 1976, AM NAT, V110, P801, DOI 10.1086/283103; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Danks H. V., 1994, INSECT LIFE CYCLE PO; Danks HV, 1987, INSECT DORMANCY ECOL; DINGLE H, 1990, OECOLOGIA, V84, P199, DOI 10.1007/BF00318272; DINGLE H, 1994, OECOLOGIA, V97, P179, DOI 10.1007/BF00323147; GOTTHARD K, 1995, OIKOS, V74, P3, DOI 10.2307/3545669; GOULD SJ, 1989, EVOLUTION, V43, P516, DOI 10.1111/j.1558-5646.1989.tb04249.x; GROETERS FR, 1992, EVOLUTION, V46, P245, DOI 10.1111/j.1558-5646.1992.tb01999.x; HADLEY NF, 1985, COMP BIOCHEM PHYS A, V80, P307, DOI 10.1016/0300-9629(85)90042-8; HILBERT DW, 1983, ENVIRON ENTOMOL, V12, P1; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; INGRISCH S, 1983, DEUT ENTOMOL Z, V30, P1; Ingrisch S., 1998, HEUSCHRECKEN MITTELE; Kingsolver JG, 1998, AM ZOOL, V38, P545; Kohler G., 1983, Zoologische Jahrbuecher Abteilung fuer Systematik Oekologie und Geographie der Tiere, V110, P31; Kohler G., 1991, Zoologische Jahrbuecher Abteilung fuer Systematik Oekologie und Geographie der Tiere, V118, P323; LAMB RJ, 1987, OECOLOGIA, V72, P170, DOI 10.1007/BF00379263; Leather SR, 1993, ECOLOGY INSECT OVERW; MASAKI S, 1967, EVOLUTION, V21, P725, DOI 10.1111/j.1558-5646.1967.tb03430.x; Merila J, 2000, ECOGRAPHY, V23, P457, DOI 10.1034/j.1600-0587.2000.230408.x; MOUSSEAU TA, 1989, EVOLUTION, V43, P1483, DOI 10.1111/j.1558-5646.1989.tb02598.x; NYLIN S, 1994, SERIES ENTOM, V52, P41; Orr MR, 1996, EVOLUTION, V50, P704, DOI 10.1111/j.1558-5646.1996.tb03880.x; PICKFORD R, 1966, CAN ENTOMOL, V98, P1145, DOI 10.4039/Ent981145-11; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff D. A., 2002, LIFE HIST EVOLUTION; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Schlichting C. D., 1998, PHENOTYPIC EVOLUTION; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; SLATKIN M, 1987, SCIENCE, V236, P787, DOI 10.1126/science.3576198; Stearns S. C., 1992, EVOLUTION LIFE HIST; TANAKA S, 1983, CAN J ZOOL, V61, P1986, DOI 10.1139/z83-262; TANAKA S, 1994, SERIES ENTOM, V52, P173; Tatar M, 1997, OECOLOGIA, V111, P357, DOI 10.1007/s004420050246; Tauber M.J., 1986, SEASONAL ADAPTATIONS; Taylor F., 1986, EVOLUTION INSECT LIF; Telfer MG, 1999, OECOLOGIA, V121, P245, DOI 10.1007/s004420050926; Thorens P., 1997, DOCUMENTA FAUNISTICA, V16; VANWINGERDEN WKRE, 1991, OECOLOGIA, V87, P417, DOI 10.1007/BF00634600 52 42 46 1 39 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0906-7590 ECOGRAPHY Ecography DEC 2004 27 6 733 740 10.1111/j.0906-7590.2005.04012.x 8 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 882XY WOS:000225974900005 2018-11-12 J Gotthard, K Gotthard, K Growth strategies and optimal body size in temperate Pararginii butterflies INTEGRATIVE AND COMPARATIVE BIOLOGY English Article; Proceedings Paper Annual Meeting of the Society-for-Integrative-and-Comparative-Biology JAN 05-09, 2004 New Orleans, LA Soc Integrat & Comparat Biol LIFE-HISTORY PLASTICITY; YELLOW DUNG FLY; REACTION NORMS; COUNTERGRADIENT VARIATION; SEASONAL PLASTICITY; TIME CONSTRAINTS; PHENOTYPIC PLASTICITY; STARVATION RESISTANCE; SATYRINE BUTTERFLIES; LEPIDOPTERAN LARVAE In temperate insects the evolution of growth strategies and the optimal age and size at maturity will depend strongly on seasonal variation in temperature and other resources. However, compared to photoperiod, temperature itself is a relatively poor predictor of seasonal change and timing decisions in insects are often most strongly influenced by the photoperiod. Here I review the evolution of seasonal growth strategies in the butterfly tribe Pararginii (Satyrinae: Nymphalidae) and relate it to life history theory. The results indicate that individual larvae may adjust their growth trajectories in relation to information on time horizons obtained from the photoperiod. The growth strategies can be characterized by a set of state-dependent decision rules that specify how an individual should respond to its internal state and external circumstances. These decision rules may also influence how individual growth change with a rise in temperature, showing that the standard expectation of increased growth rates with increasing temperatures may not always be true. With less time available individual larvae increase growth rates and thereby achieve shorter development times, most often without any effects on final sizes. One reason for the apparent optimization of growth rate seems to be that growing fast may incur costs that larvae developing under lower time limitations chose to avoid. The patterns of growth found in these and many other studies are difficult to reconcile with common assumptions of what typically determines optimal body size in insects. In particular it seems as if there should be some costs of a large body size that, so far, have been poorly documented. Univ Stockholm, Dept Zool, S-10691 Stockholm, Sweden Gotthard, K (reprint author), Univ Stockholm, Dept Zool, S-10691 Stockholm, Sweden. Karl.Gotthard@zoologi.su.se Gotthard, Karl/F-1163-2011 Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Anholt BR, 1998, EVOL ECOL, V12, P729, DOI 10.1023/A:1006589616931; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Bernays EA, 1997, ECOL ENTOMOL, V22, P121, DOI 10.1046/j.1365-2311.1997.00042.x; Blanckenhorn WU, 1998, EVOLUTION, V52, P1394, DOI 10.1111/j.1558-5646.1998.tb02021.x; Blanckenhorn WU, 1997, OECOLOGIA, V111, P318, DOI 10.1007/s004420050241; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; BLAU WS, 1981, OECOLOGIA, V48, P116, DOI 10.1007/BF00346997; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; Chippindale AK, 1996, EVOLUTION, V50, P753, DOI 10.1111/j.1558-5646.1996.tb03885.x; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; D'Amico LJ, 2001, P ROY SOC B-BIOL SCI, V268, P1589, DOI 10.1098/rspb.2001.1698; Davidowitz G, 2004, INTEGR COMP BIOL, V44, P443, DOI 10.1093/icb/44.6.443; Denlinger DL, 2001, EXPTL BIOL REV, P235; Esperk T, 2004, PHYSIOL ENTOMOL, V29, P56, DOI 10.1111/j.1365-3032.2004.0365.x; FAGERSTROM T, 1982, OECOLOGIA, V52, P164, DOI 10.1007/BF00363830; Gotthard K, 1998, J EVOLUTION BIOL, V11, P21; Gotthard K, 1999, OIKOS, V84, P453, DOI 10.2307/3546424; Gotthard K, 2000, J ANIM ECOL, V69, P896, DOI 10.1046/j.1365-2656.2000.00432.x; Gotthard K, 2001, EXPTL BIOL REV, P287; GOTTHARD K, 1994, OECOLOGIA, V99, P281, DOI 10.1007/BF00627740; Gotthard K., 2000, P ROY SOC LOND B BIO, V267, P1; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.1890/0012-9658(1999)080[1242:LHABRT]2.0.CO;2; JONES RE, 1982, AUST J ZOOL, V30, P223, DOI 10.1071/ZO9820223; KARLSSON B, 1990, FUNCT ECOL, V4, P609, DOI 10.2307/2389728; Kingsolver JG, 2004, INTEGR COMP BIOL, V44, P450, DOI 10.1093/icb/44.6.450; KRISTENSEN CO, 1994, J APPL ENTOMOL, V117, P92, DOI 10.1111/j.1439-0418.1994.tb00712.x; LEATHER SR, 1988, OIKOS, V51, P386, DOI 10.2307/3565323; Leimar O, 1996, OIKOS, V76, P228, DOI 10.2307/3546194; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; Masaki S., 1978, P72; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Munch SB, 2003, EVOLUTION, V57, P2119, DOI 10.1554/02-711; Munch SB, 2004, EVOLUTION, V58, P661, DOI 10.1111/j.0014-3820.2004.tb01689.x; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; NYLIN S, 1992, BIOL J LINN SOC, V47, P301, DOI 10.1111/j.1095-8312.1992.tb00672.x; NYLIN S, 1989, ECOL ENTOMOL, V14, P209, DOI 10.1111/j.1365-2311.1989.tb00771.x; Nylin S, 1996, EVOLUTION, V50, P1351, DOI 10.1111/j.1558-5646.1996.tb02377.x; NYLIN S, 1995, BIOL J LINN SOC, V55, P143, DOI 10.1006/bijl.1995.0033; NYLIN S, 1993, ECOLOGY, V74, P1414, DOI 10.2307/1940071; NYLIN S, 1994, P ROY SOC B-BIOL SCI, V257, P215, DOI 10.1098/rspb.1994.0182; NYLIN S, 1994, SERIES ENTOM, V52, P41; Ratte H. T., 1985, ENV PHYSL BIOCH INSE, P31; ROFF DA, 1992, EVOLUTION LIFE HIST; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Schultz ET, 1996, FUNCT ECOL, V10, P366, DOI 10.2307/2390285; SHREEVE TG, 1986, ECOL ENTOMOL, V11, P325, DOI 10.1111/j.1365-2311.1986.tb00309.x; Sibly RM, 1986, PHYSL ECOLOGY ANIMAL; Stearns S. C., 1992, EVOLUTION LIFE HIST; STOCKHOFF BA, 1991, OECOLOGIA, V88, P422, DOI 10.1007/BF00317588; Tammaru T, 1996, OIKOS, V77, P561, DOI 10.2307/3545946; Tammaru T, 2002, OECOLOGIA, V133, P430, DOI 10.1007/s00442-002-1057-7; Tauber M.J., 1986, SEASONAL ADAPTATIONS; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WICKMAN PO, 1990, HOLARCTIC ECOL, V13, P238; WIKLUND C, 1991, OIKOS, V60, P241, DOI 10.2307/3544871; WIKLUND C, 1977, OECOLOGIA, V31, P153, DOI 10.1007/BF00346917; WIKLUND C, 1983, ECOL ENTOMOL, V8, P233, DOI 10.1111/j.1365-2311.1983.tb00503.x 62 39 41 0 15 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 1557-7023 INTEGR COMP BIOL Integr. Comp. Biol. DEC 2004 44 6 471 479 10.1093/icb/44.6.471 9 Zoology Zoology 893LU WOS:000226721400009 21676733 Green Published, Bronze 2018-11-12 J Stjernman, M; Raberg, L; Nilsson, JA Stjernman, M; Raberg, L; Nilsson, JA Survival costs of reproduction in the blue tit (Parus caeruleus): a role for blood parasites? PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article cost of reproduction; reproductive effort; parasite intensity; survival; Haemoproteus; Parus caeruleus GREAT TIT; ECOLOGICAL IMMUNOLOGY; PLUMAGE COLORATION; OXIDATIVE STRESS; SOCIAL-DOMINANCE; IMMUNE-RESPONSE; PIED FLYCATCHER; TRADE-OFFS; BIRDS; PREVALENCE One of the central tenets in life-history theory is that there is a trade-off between current and future reproduction (i.e. a cost of reproduction). The mechanism for this cost of reproduction is, however, largely unknown. One hypothesis is that the high workload during reproduction compromises resistance to parasites and that the resulting increase in parasitaemia has negative effects on the prospects of future survival. Although empirical evidence for a negative relationship between reproductive effort and parasite resistance exists, the causal relationships between reproductive effort, parasite resistance and future reproduction are still unclear. We use a path analytical approach to investigate whether a change in parasite resistance (as measured by intensities of infections by the blood parasite Haemoproteus) after manipulation of reproductive effort, translates into altered survival in female blue tits. Our results show a negative relationship between reproductive effort and parasite resistance, although evident only in first-year breeders. Moreover, we found survival costs of reproduction in first-year breeders. These costs were, however, not mediated by the blood parasite studied. Lund Univ, Dept Anim Ecol, S-22362 Lund, Sweden; Univ Edinburgh, Inst Cell Anim & Populat Biol, Edinburgh EH9 3JT, Midlothian, Scotland Stjernman, M (reprint author), Lund Univ, Dept Anim Ecol, Ecol Bldg, S-22362 Lund, Sweden. martin.stjernman@zooekol.lu.se Allander K, 1997, FUNCT ECOL, V11, P358, DOI 10.1046/j.1365-2435.1997.00095.x; ALLANDER K, 1994, J AVIAN BIOL, V25, P69, DOI 10.2307/3677296; Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; APANIUS V, 1998, AVIAN GROWTH DEV EVO, V8, P203; Atkinson CT, 1991, BIRD PARASITE INTERA, P19; BEHNKE JM, 1992, INT J PARASITOL, V22, P861, DOI 10.1016/0020-7519(92)90046-N; BENNETT GF, 1982, HOST PARASITE CATALO; BIOZZI G, 1984, ADV IMMUNOL, V36, P189, DOI 10.1016/S0065-2776(08)60902-5; Brown Margaret E., 1996, Current Ornithology, V13, P67; Cichon M, 2001, ACTA OECOL, V22, P71, DOI 10.1016/S1146-609X(00)01094-8; Dawson RD, 2000, AUK, V117, P373, DOI 10.1642/0004-8038(2000)117[0373:EOHPOC]2.0.CO;2; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; DESSER SS, 1993, PARASITIC PROTOZOA, V4, P273; EBERT D, 1994, SCIENCE, V265, P1084, DOI 10.1126/science.265.5175.1084; Erf GF, 2004, POULTRY SCI, V83, P580, DOI 10.1093/ps/83.4.580; Finch C. E., 1994, LONGEVITY SENESCENCE; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; Gosler A, 1999, J AVIAN BIOL, V30, P447, DOI 10.2307/3677017; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Horak P, 2001, OECOLOGIA, V126, P166, DOI 10.1007/s004420000513; JANEWAY CA, 1996, IMMUNOBIOLOGY IMMUNE; Jankovic D, 2001, TRENDS IMMUNOL, V22, P450, DOI 10.1016/S1471-4906(01)01975-5; KINGSOLVER JG, 1991, TRENDS ECOL EVOL, V6, P276, DOI 10.1016/0169-5347(91)90004-H; KLAASSEN M, 1995, OECOLOGIA, V104, P424, DOI 10.1007/BF00341339; Kraaijeveld AR, 1998, PARASITOLOGY, V116, pS29, DOI 10.1017/S0031182000084924; Lahti K, 1996, IBIS, V138, P539, DOI 10.1111/j.1474-919X.1996.tb08075.x; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; LINDSTROM A, 1993, PHYSIOL ZOOL, V66, P490, DOI 10.1086/physzool.66.4.30163805; Lively CM, 1999, AM NAT, V153, pS34, DOI 10.1086/303210; Merino S, 2000, P ROY SOC B-BIOL SCI, V267, P2507, DOI 10.1098/rspb.2000.1312; Mitchell RJ, 2001, DESIGN ANAL ECOLOGIC, P217; Nilsson JA, 2002, P ROY SOC B-BIOL SCI, V269, P1735, DOI 10.1098/rspb.2002.2071; NILSSON JA, 1994, J ANIM ECOL, V63, P200, DOI 10.2307/5595; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; NORRIS K, 1994, J ANIM ECOL, V63, P601, DOI 10.2307/5226; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Perez-Campo R, 1998, J COMP PHYSIOL B, V168, P149, DOI 10.1007/s003600050131; RICHNER H, 1995, P NATL ACAD SCI USA, V92, P1192, DOI 10.1073/pnas.92.4.1192; Sanz JJ, 1999, BEHAV ECOL, V10, P598, DOI 10.1093/beheco/10.5.598; Sanz JJ, 2002, OIKOS, V96, P299, DOI 10.1034/j.1600-0706.2002.960212.x; *SAS I INC, 1999, SAS ONL DOC V8; Senar Juan Carlos, 2002, Avian Science, V2, P19; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Siikamaki P, 1997, FUNCT ECOL, V11, P176, DOI 10.1046/j.1365-2435.1997.00075.x; SIIKAMAKI P, 1994, FUNCT ECOL, V8, P587, DOI 10.2307/2389919; Sol D, 2000, ECOGRAPHY, V23, P307, DOI 10.1034/j.1600-0587.2000.d01-1639.x; Sol D, 2003, OECOLOGIA, V135, P542, DOI 10.1007/s00442-003-1223-6; Sundberg J, 1995, OIKOS, V74, P331, DOI 10.2307/3545664; Svensson E, 1997, BEHAV ECOL, V8, P92, DOI 10.1093/beheco/8.1.92; Svensson L., 1992, IDENTIFICATION GUIDE; Verhulst S, 1998, FUNCT ECOL, V12, P132, DOI 10.1046/j.1365-2435.1998.00165.x; von Schantz T, 1999, P ROY SOC B-BIOL SCI, V266, P1; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 55 40 41 0 22 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. NOV 22 2004 271 1555 2387 2394 10.1098/rspb.2004.2883 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 878KK WOS:000225645500011 15556892 Green Published 2018-11-12 J Bize, P; Roulin, A; Tella, JL; Bersier, LF; Richner, H Bize, P; Roulin, A; Tella, JL; Bersier, LF; Richner, H Additive effects of ectoparasites over reproductive attempts in the long-lived alpine swift JOURNAL OF ANIMAL ECOLOGY English Article Apus melba; cost of plasticity; ectoparasite; hatching asynchrony; Hippoboscidae; life history theory; trade-off between current and future reproduction LIFE-HISTORY; BLUE TITS; PARASITISM; BIRDS; HIPPOBOSCIDAE; DIPTERA; HOSTS; CHICK; COST; COMPENSATION 1. Parasitism is a non-negligible cost of reproduction in wild organisms, and hosts are selected to partition resources optimally between current and future reproduction. While parents can compensate for the cost of parasitism by increasing their current reproductive investment, such change in resource allocation is expected to carry-over costs on future reproduction. 2. Life history theory predicts that because long-lived organisms have a high residual reproductive value, they should be more reluctant to increase parental effort in response to parasites. Also, when rearing successive infested broods, the cost of parasitism can cumulate over the years and hence be exacerbated by past infestations. 3. We tested these two predictions in the alpine swift Apus melba, a long-lived colonial bird that is infested intensely by the nest-based blood sucking louse-fly Crataerina melbae. For this purpose, we manipulated ectoparasite load over 3 consecutive years and measured reproductive parameters in successive breeding attempts of adults assigned randomly to 'parasitized' and 'deparasitized' treatments. 4. In current reproduction, fathers of experimentally parasitized broods produced a similar number of offspring as fathers from the deparasitized treatment, but the rearing period was prolonged by 4 days. Fathers that were assigned to the parasitized treatment in year x produced significantly fewer fledglings the following year x + 1 than those of the deparasitized treatment. The number of young produced by fathers in year x + 1 was correlated negatively with the number of days they cared for their brood in the previous year x. We also found a significant interaction between treatments performed over 2 successive years, with fathers of parasitized broods suffering a larger fitness loss if in the past they had already cared for a parasitized brood rather than for a deparasitized one. Similar effects of parasitism, although partly non-significant (0.05 < P-values > 0.10), were found in mothers. 5. Altogether, our results show that parasites can modify resource allocation between current and future reproduction in long-lived hosts, and that the cost of parasitism can cumulate over the years. It emphasizes the fact that effects of parasites can depend on past infestations and become apparent in future reproduction only. Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland; Univ Bern, Inst Zool, CH-3012 Bern, Switzerland; Estac Biol Donana, Dept Appl Biol, E-41013 Seville, Spain; Univ Neuchatel, Inst Zool, CH-2007 Neuchatel, Switzerland Bize, P (reprint author), Univ Lausanne, Dept Ecol & Evolut, Biol Bldg, CH-1015 Lausanne, Switzerland. pierre.bize@ie-zea.unil.ch Tella, Jose/I-3707-2015; Richner, Heinz/B-1659-2008; Bersier, Louis-Felix/G-8018-2011; CSIC, EBD Donana/C-4157-2011 Tella, Jose/0000-0002-3038-7424; Richner, Heinz/0000-0001-7390-0526; Bersier, Louis-Felix/0000-0001-9552-8032; CSIC, EBD Donana/0000-0003-4318-6602 Arn H, 1960, BIOL STUDIEN ALPENSE; BAKER JR, 1967, J PARASITOL, V53, P412, DOI 10.2307/3276603; Bequaert J., 1953, ENTOMOL AM, V32-33, P1; Bize P, 2003, J ANIM ECOL, V72, P633, DOI 10.1046/j.1365-2656.2003.00734.x; Bize P, 2002, OECOLOGIA, V132, P231, DOI 10.1007/s00442-002-0980-y; Bize P, 2003, P ROY SOC B-BIOL SCI, V270, pS114, DOI 10.1098/rsbl.2003.0037; Bouslama Z, 2002, IBIS, V144, pE73, DOI 10.1046/j.1474-919X.2002.00070_5.x; Christe P, 1996, BEHAV ECOL, V7, P127, DOI 10.1093/beheco/7.2.127; Christe P, 1996, ANIM BEHAV, V52, P1087, DOI 10.1006/anbe.1996.0256; Clayton D. H., 1997, HOST PARASITE EVOLUT; DELOPE F, 1993, OIKOS, V67, P557, DOI 10.2307/3545368; DELOPE F, 1993, OECOLOGIA, V95, P234, DOI 10.1007/BF00323495; Dufva R, 1996, IBIS, V138, P772, DOI 10.1111/j.1474-919X.1996.tb08835.x; Ellegren H, 1996, P ROY SOC B-BIOL SCI, V263, P1635, DOI 10.1098/rspb.1996.0239; Fitze PS, 2004, J ANIM ECOL, V73, P216, DOI 10.1111/j.0021-8790.2004.00799.x; FORBES MRL, 1993, OIKOS, V67, P444, DOI 10.2307/3545356; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; Hurtrez-Bousses S, 1998, ECOL LETT, V1, P17, DOI 10.1046/j.1461-0248.1998.00017.x; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; MALACARNE G, 1987, SITTA, V1, P175; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; MOLLER AP, 1994, ETHOLOGY, V97, P215; MOLLER AP, 1993, J ANIM ECOL, V62, P309, DOI 10.2307/5362; NEWTON I, 1966, IBIS, V108, P41, DOI 10.1111/j.1474-919X.1966.tb07251.x; Nilsson JA, 2003, BEHAV ECOL, V14, P175, DOI 10.1093/beheco/14.2.175; Perrin N, 1996, OIKOS, V75, P317, DOI 10.2307/3546256; Richner H, 1999, OIKOS, V86, P535, DOI 10.2307/3546657; Roulin A, 2003, J ANIM ECOL, V72, P75, DOI 10.1046/j.1365-2656.2003.00677.x; ROULIN A, 2001, BEHAV ECOLOGY, V12, P111; Sall J., 1996, JMP START STAT GUIDE; SCHEW WA, 1998, AVIAN GROWTH DEV EVO, P288; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tella JL, 1998, J PARASITOL, V84, P198, DOI 10.2307/3284563; Tella JL, 1995, ARDEA, V83, P435; Tripet F, 1997, OIKOS, V78, P557, DOI 10.2307/3545617 36 34 35 2 19 BLACKWELL PUBLISHING LTD OXFORD 9600 GARSINGTON RD, OXFORD OX4 2DG, OXON, ENGLAND 0021-8790 J ANIM ECOL J. Anim. Ecol. NOV 2004 73 6 1080 1088 10.1111/j.0021-8790.2004.00880.x 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology 866ZW WOS:000224812900007 Bronze 2018-11-12 J Kortet, R; Vainikka, A; Rantala, MJ; Myntti, J; Taskinen, J Kortet, R; Vainikka, A; Rantala, MJ; Myntti, J; Taskinen, J In vitro embryo survival and early viability of larvae in relation to male sexual ornaments and parasite resistance in roach, Rutilus rutilus L. JOURNAL OF EVOLUTIONARY BIOLOGY English Article 'good genes' hypothesis; fish; offspring viability; parasitism; sexual selection GRAY TREE FROGS; GOOD-GENES; MATE CHOICE; RHIPIDOCOTYLE-FENNICA; IMMUNOCOMPETENCE HANDICAP; CALL DURATION; TRADE-OFFS; SELECTION; FISH; IMMUNOLOGY According to the 'good genes' hypothesis, sexual ornaments provide an indication of the 'quality' of the bearer. In roach, Rutilus rutilus, breeding tubercles (BTs) may signal resistance against the digenean parasite, Rhipidocotyle campanula. Life history theory predicts that there should be a trade-off between parasite resistance and other life history traits. In roach, this could imply a trade-off between parasite resistance in mature fish and some larval feature. We studied embryo survival and the early viability of larvae of male roach in relation to expression of BTs and parasite resistance in maternal half-sibling families. Highly ornamented males had higher resistance against R. campanula than less ornamented males, but the BTs were not related to either embryo survival or larval viability. However, sires having higher resistance to R. campanula had lower larval viability. These results suggest that BTs of male roach do not indicate 'quality' in terms of early survival or viability, but rather in terms of adult parasite resistance. Univ Jyvaskyla, Dept Biol & Environm Sci, Jyvaskyla, Finland Kortet, R (reprint author), Univ Calif Davis, 1 Shields Ave, Davis, CA 95616 USA. rkortet@cc.jyu.fi Kortet, Raine/J-5027-2012 Kortet, Raine/0000-0003-3749-1096; Vainikka, Anssi/0000-0002-0172-5615 Aaltonen TM, 1997, PARASITOLOGY, V114, P285, DOI 10.1017/S0031182096008499; Barber I, 2001, P ROY SOC B-BIOL SCI, V268, P71, DOI 10.1098/rspb.2000.1331; BATURO B, 1977, Acta Parasitologica Polonica, V24, P203; Braum E., 1978, P102; Brooks R, 2000, NATURE, V406, P67, DOI 10.1038/35017552; Chapman T, 2003, TRENDS ECOL EVOL, V18, P41, DOI 10.1016/S0169-5347(02)00004-6; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DIAMOND M, 1985, Aquaculture and Fisheries Management, V16, P359, DOI 10.1111/j.1365-2109.1985.tb00078.x; Doty GV, 2001, BEHAV ECOL SOCIOBIOL, V49, P150, DOI 10.1007/s002650000291; FISHER R. A., 1930, GENETICAL THEORY NAT; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; GIBSON DI, 1992, SYST PARASITOL, V23, P67, DOI 10.1007/BF00008011; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Hillgarth Nigella, 1997, P78; HOFFMANN R W, 1990, Angewandte Parasitologie, V31, P95; Karjalainen J, 2000, J FISH BIOL, V56, P837, DOI 10.1006/jfbi.1999.1206; Kokko H, 2002, P ROY SOC B-BIOL SCI, V269, P1331, DOI 10.1098/rspb.2002.2020; Kokko H, 2001, ECOL LETT, V4, P322, DOI 10.1046/j.1461-0248.2001.00224.x; Kokko H, 2003, P ROY SOC B-BIOL SCI, V270, P653, DOI 10.1098/rspb.2002.2235; Kortet R, 2004, BIOL J LINN SOC, V81, P111, DOI 10.1111/j.1095-8312.2004.00275.x; Kortet R, 2004, ECOL FRESHW FISH, V13, P119, DOI 10.1111/j.1600-0633.2004.00039.x; Kortet R, 2003, BIOL J LINN SOC, V78, P117, DOI 10.1046/j.1095-8312.2003.00136.x; KORTET R, 2003, THESIS U JYVASKYLA; Kurtz J, 1999, P ROY SOC B-BIOL SCI, V266, P2515, DOI 10.1098/rspb.1999.0954; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Moller AP, 1999, P ROY SOC B-BIOL SCI, V266, P85, DOI 10.1098/rspb.1999.0607; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; PARKER GA, 1970, BIOL REV, V45, P525, DOI 10.1111/j.1469-185X.1970.tb01176.x; Pomiankowski A, 1998, P NATL ACAD SCI USA, V95, P5106, DOI 10.1073/pnas.95.9.5106; Rantala MJ, 2003, BIOL J LINN SOC, V79, P503, DOI 10.1046/j.1095-8312.2003.00202.x; Rantala MJ, 2002, P ROY SOC B-BIOL SCI, V269, P1681, DOI 10.1098/rspb.2002.2056; REYNOLDS JD, 1992, P ROY SOC B-BIOL SCI, V250, P57, DOI 10.1098/rspb.1992.0130; Roff Derek A., 1992; Sheldon BC, 1997, P ROY SOC B-BIOL SCI, V264, P297, DOI 10.1098/rspb.1997.0042; Sheldon BC, 2003, J EVOLUTION BIOL, V16, P1288, DOI 10.1046/j.1420-9101.2003.00606.x; Spivak EG, 1979, J ICHTHYOL, V19, P75; Stearns S. C., 1992, EVOLUTION LIFE HIST; TASKINEN J, 1991, SYST PARASITOL, V19, P81, DOI 10.1007/BF00009906; Taskinen J, 2002, EVOL ECOL RES, V4, P919; Taskinen J, 1998, J PARASITOL, V84, P345, DOI 10.2307/3284493; TASKINEN J, 1994, INT J PARASITOL, V24, P877, DOI 10.1016/0020-7519(94)90014-0; Uglem I, 2001, BEHAV ECOL SOCIOBIOL, V50, P511, DOI 10.1007/s002650100392; Wakelin Derek, 1997, P30; Watt PJ, 2001, J FISH BIOL, V59, P843, DOI 10.1006/jfbi.2001.1699; Wedekind C, 2001, J EVOLUTION BIOL, V14, P980, DOI 10.1046/j.1420-9101.2001.00349.x; WEDEKIND C, 1992, P ROY SOC B-BIOL SCI, V247, P169, DOI 10.1098/rspb.1992.0024; Wedekind C, 1996, BEHAVIOUR, V133, P681, DOI 10.1163/156853996X00422; Welch AM, 1998, SCIENCE, V280, P1928, DOI 10.1126/science.280.5371.1928; Westneat DF, 1998, P ROY SOC B-BIOL SCI, V265, P1065, DOI 10.1098/rspb.1998.0400; Wiley M. L., 1970, B AM MUS NAT HIST, V143, P145; Zar J.H, 1999, BIOSTATISTICAL ANAL 51 23 25 0 4 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. NOV 2004 17 6 1337 1344 10.1111/j.1420.9101.2004.00760.x 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 864QA WOS:000224646800023 15525418 2018-11-12 J Ellis, BJ Ellis, BJ Timing of pubertal maturation in girls: An integrated life history approach PSYCHOLOGICAL BULLETIN English Review BREAST-CANCER RISK; FEMALE REPRODUCTIVE DEVELOPMENT; WOMENS MENSTRUAL CYCLES; 1ST SEXUAL INTERCOURSE; ORAL-CONTRACEPTIVE USE; COTTON-TOP TAMARINS; FOR-GESTATIONAL-AGE; LOW-BIRTH-WEIGHT; MENARCHEAL AGE; SPONTANEOUS-ABORTION Life history theory provides a metatheoretical framework for the study of pubertal timing from an evolutionary-developmental perspective. The current article reviews 5 middle-level theories-energetics theory, stress-suppression theory, psychosocial acceleration theory, paternal investment theory, and child development theory-each of which applies the basic assumptions of life history theory to the question of environmental influences on timing of puberty in girls. These theories converge in their conceptualization of pubertal timing as responsive to ecological conditions but diverge in their conceptualization of (a) the nature, extent, and direction of environmental influences and (b) the effects of pubertal timing on other reproductive variables. Competing hypotheses derived from the 5 perspectives are evaluated. An extension of W. T. Boyce and B.J. Ellis's (in press) theory of stress reactivity is proposed to account for both inhibiting and accelerating effects of psychosocial stress on timing of pubertal development. This review highlights the multiplicity of (often unrecognized) perspectives guiding research, raises challenges to virtually all of these, and presents an alternative framework in an effort to move research forward in this arena of multidisciplinary inquiry. Univ Arizona, Div Family Studies & Human Dev, Tucson, AZ 85721 USA Ellis, BJ (reprint author), Univ Arizona, Div Family Studies & Human Dev, POB 210033, Tucson, AZ 85721 USA. bjellis@email.arizona.edu Abioye-Kuteyi E. A., 1997, Nutrition and Health (Bicester), V11, P185; ADADEVOH SWK, 1989, INT J GYNECOL OBSTET, V30, P63, DOI 10.1016/0020-7292(89)90217-8; ADAIR, 2001, PEDIATRICS, V107, pE59; Adair LS, 2001, AM J PUBLIC HEALTH, V91, P642, DOI 10.2105/AJPH.91.4.642; Adak Dipak Kr., 2001, Journal of Human Ecology, V12, P279; ADAMS N, 1987, BEHAV NEURAL BIOL, V48, P368, DOI 10.1016/S0163-1047(87)90931-9; ALANSARY LA, 1995, J COMMUN HEALTH, V20, P491, DOI 10.1007/BF02277065; Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; ALLMAN J, 1982, HUM ORGAN, V41, P350, DOI 10.17730/humo.41.4.b32q74w640x49628; Amato PR, 1996, J MARRIAGE FAM, V58, P628, DOI 10.2307/353723; AMOAH EA, 1984, ANIM PROD, V38, P141, DOI 10.1017/S0003356100041477; ANN TB, 1983, MALAYSIAN J REPROD H, V1, P91; APTER D, 1983, J CLIN ENDOCR METAB, V57, P82, DOI 10.1210/jcem-57-1-82; Apter D, 1996, EUR J CANCER PREV, V5, P476; APTER D, 1985, CLIN ENDOCRINOL, V22, P753, DOI 10.1111/j.1365-2265.1985.tb00165.x; APTER D, 1989, INT J CANCER, V44, P783, DOI 10.1002/ijc.2910440506; ATTALLAH NL, 1978, ANN HUM BIOL, V5, P185, DOI 10.1080/03014467800002781; Ayatollahi SMT, 2002, ANN HUM BIOL, V29, P355, DOI 10.1080/03014460110086817; Bailey JM, 2000, J PERS SOC PSYCHOL, V78, P537, DOI 10.1037//0022-3514.78.3.537; Barber N, 2001, J CROSS CULT PSYCHOL, V32, P259, DOI 10.1177/0022022101032003001; BARBER N, 2003, J COMP SOCIAL SCI, V37, P163; Barry III H, 1991, ADOLESCENCE ANTHR IN; BELMAKER E, 1982, ANN HUM BIOL, V9, P321, DOI 10.1080/03014468200005821; Belsky J, 1998, DEV PSYCHOPATHOL, V10, P301, DOI 10.1017/S095457949800162X; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P127; BELSKY J, 2004, ORIGINS SOCIAL MIND, P139; BENNETT NG, 1995, DEMOGRAPHY, V32, P47, DOI 10.2307/2061896; BERCOVITCH FB, 1993, BEHAV ECOL SOCIOBIOL, V33, P313; Bercovitch FB, 2002, ANNU REV ANTHROPOL, V31, P45, DOI 10.1146/annurev.anthro.31.040202.105553; Berkey CS, 2000, AM J EPIDEMIOL, V152, P446, DOI 10.1093/aje/152.5.446; BERKOWITZ GS, 1981, AM J EPIDEMIOL, V113, P81, DOI 10.1093/oxfordjournals.aje.a113068; BIELICKI T, 1986, HUMAN GROWTH, V3, P283; Bingham C R, 1990, J Adolesc Res, V5, P18, DOI 10.1177/074355489051004; Biro FM, 2003, J PEDIATR-US, V142, P643, DOI 10.1067/mpd.2003.244; Bjorklund D. F., 2002, ORIGINS HUMAN NATURE; BLACK C, 1985, ADOLESCENCE, V20, P281; Blanchard RJ, 2001, PHYSIOL BEHAV, V73, P261, DOI 10.1016/S0031-9384(01)00449-8; Bogin B., 1999, PATTERNS HUMAN GROWT; Booth W.D., 1992, Oxford Reviews of Reproductive Biology, V14, P263; BORGERHOFF MM, 1989, BEHAV ECOL SOCIOBIOL, V24, P145; Boyce WT, 1998, HEALTH PSYCHOL, V17, P285, DOI 10.1037//0278-6133.17.3.285; BOYCE WT, IN PRESS DEV PSYCHOP; BRACKEN MB, 1985, ANN HUM BIOL, V12, P525, DOI 10.1080/03014468500008101; BRONSON FH, 1989, MAMMALIAN REPRODUCTI, P138; BROOKSGUNN J, 1987, CHILD DEV, V58, P829, DOI 10.2307/1130220; BROOKSGUNN J, 1986, DEV REV, V6, P224, DOI 10.1016/0273-2297(86)90013-4; BROOKSGUNN J, 1988, J ADOLESCENT HEALTH, V9, P365, DOI 10.1016/0197-0070(88)90030-7; BROOKSGUNN J, 1988, ANN HUM BIOL, V15, P35, DOI 10.1080/03014468800009441; BROUDE GJ, 1990, ETHOS, V18, P103, DOI 10.1525/eth.1990.18.1.02a00040; BRUDEVOLL JE, 1979, ANN HUM BIOL, V6, P407, DOI 10.1080/03014467900003801; BURGER J, 1985, MED HYPOTHESES, V17, P39, DOI 10.1016/0306-9877(85)90018-0; Butler LM, 2000, CANCER CAUSE CONTROL, V11, P451, DOI 10.1023/A:1008956524669; Cameron JL, 1997, SEMIN REPROD ENDOCR, V15, P37, DOI 10.1055/s-2008-1067966; CAMERON JL, 1990, ADOLESCENCE PUBERTY, V3, P9; CAMPBELL BC, 1995, J BIOSOC SCI, V27, P127; CARETTA CM, 1995, PHYSIOL BEHAV, V57, P901, DOI 10.1016/0031-9384(94)00344-5; CASAGRANDE JT, 1982, AM J EPIDEMIOL, V115, P481, DOI 10.1093/oxfordjournals.aje.a113329; CASEY VA, 1991, ANN HUM BIOL, V18, P155, DOI 10.1080/03014469100001492; CASPI A, 1991, J PERS SOC PSYCHOL, V61, P157, DOI 10.1037//0022-3514.61.1.157; Caspi A, 2003, SCIENCE, V301, P386, DOI 10.1126/science.1083968; Caspi A, 2002, SCIENCE, V297, P851, DOI 10.1126/science.1072290; CHAKRAVORTY R, 1970, J SOC RES, V13, P82; CHARNOW EL, 1993, LIFE HIST INVARIANTS; Chasiotis A, 1998, HUM NATURE-INT BIOS, V9, P321, DOI 10.1007/s12110-998-1008-z; CHERN MM, 1980, MENSTRUAL CYCLE SYNT, P123; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 1999, DEATH HOPE SEX STEPS; Chrousos G., 1998, ANN NY ACAD SCI, V851, P311, DOI DOI 10.1111/J.1749-6632.1998.TB09006.X; Cizza G, 2001, HORM METAB RES, V33, P138, DOI 10.1055/s-2001-14927; Clark MM, 2002, J COMP PSYCHOL, V116, P363, DOI 10.1037//0735-7036.116.4.363; Clavel-Chapelon F, 2002, HUM REPROD, V17, P228, DOI 10.1093/humrep/17.1.228; Coall DA, 2003, SOC SCI MED, V57, P1771, DOI 10.1016/S0277-9536(03)00022-4; COLMENARES F, 1988, FOLIA PRIMATOL, V50, P157, DOI 10.1159/000156343; Comings DE, 2002, CHILD DEV, V73, P1046, DOI 10.1111/1467-8624.00456; CONTRERAS ML, 1981, ARCH LATINOAM NUTR, V31, P740; Cooper C, 1996, BRIT J OBSTET GYNAEC, V103, P814, DOI 10.1111/j.1471-0528.1996.tb09879.x; Creel S, 2001, TRENDS ECOL EVOL, V16, P491, DOI 10.1016/S0169-5347(01)02227-3; CRISTESCU M, 1975, J HUM EVOL, V4, P521, DOI 10.1016/0047-2484(75)90151-7; Crognier E, 1998, ANN HUM BIOL, V25, P479, DOI 10.1080/03014469800006712; CUTLER WB, 1986, HORM BEHAV, V20, P463, DOI 10.1016/0018-506X(86)90008-5; Daly M., 1988, HOMICIDE; DAMON A, 1969, HUM BIOL, V41, P161; DAVANZO J, 1984, SOC SCI MED, V18, P387; De Bellis MD, 1999, BIOL PSYCHIAT, V45, P1259, DOI 10.1016/S0006-3223(99)00044-X; DECOURCYWHEELER RHB, 1995, PAEDIATR PERINAT EP, V9, P431; DELLOVADE TL, 1995, NEUROENDOCRINOLOGY, V62, P385, DOI 10.1159/000127028; DEMUINCK, 2001, HUMAN REPROD UPDATE, V7, P287; DERIDDER CM, 1991, AM J CLIN NUTR, V54, P805; Dick DM, 2001, J YOUTH ADOLESCENCE, V30, P385, DOI 10.1023/A:1010471015102; Dick DM, 2000, DEV PSYCHOL, V36, P180, DOI 10.1037//0012-1649.36.2.180; Dobson H, 2003, REPRODUCTION, V125, P151, DOI 10.1530/rep.0.1250151; Dorn LD, 1999, J YOUTH ADOLESCENCE, V28, P283, DOI 10.1023/A:1021680726753; Dorn LD, 2003, J YOUTH ADOLESCENCE, V32, P157, DOI 10.1023/A:1022590818839; Dorn LD, 1999, ARCH PEDIAT ADOL MED, V153, P137; DORN LD, 1990, DEV PSYCHOL, V26, P322, DOI 10.1037/0012-1649.26.2.322; Dorn LD, 1997, SEMIN REPROD ENDOCR, V15, P19, DOI 10.1055/s-2008-1067965; Doughty D, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P169; Douglas J W, 1966, Sci Basis Med Annu Rev, P91; DOUGLAS JWB, 1964, MILBANK FUND Q, V42, P20, DOI 10.2307/3348625; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; DREIZEN S, 1967, J PEDIATR-US, V70, P256, DOI 10.1016/S0022-3476(67)80420-7; DRICKAMER LC, 1978, DEV PSYCHOBIOL, V11, P63, DOI 10.1002/dev.420110110; Dunbar R. I. M., 1988, PRIMATE SOCIAL SYSTE; Dunne MP, 1997, PSYCHOL SCI, V8, P211, DOI 10.1111/j.1467-9280.1997.tb00414.x; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2000, J PERS, V68, P525, DOI 10.1111/1467-6494.00105; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; ELLIS BJ, IN PRESS DEV PSYCHOP; ELLIS BJ, 2002, PENNSYLVANIA STATE U, P161; ELLIS NB, 1991, J EARLY ADOLESC, V11, P221; Ellison PT, 1996, AM J HUM BIOL, V8, P725, DOI 10.1002/(SICI)1520-6300(1996)8:6<725::AID-AJHB4>3.0.CO;2-S; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; ELLISON PT, 2001, FERTILE GROUND NATUR; Elmlinger Martin W., 2002, Clinical Chemistry and Laboratory Medicine, V40, P1151, DOI 10.1515/CCLM.2002.202; ENQUIST M, 1990, ANIM BEHAV, V39, P1, DOI 10.1016/S0003-3472(05)80721-3; Eveleth PB, 1990, WORLD WIDE VARIATION; Farber S. L., 1981, IDENTICAL TWINS REAR; Ferin M, 1999, J CLIN ENDOCR METAB, V84, P1768, DOI 10.1210/jc.84.6.1768; FISHER MW, 1995, ANIM SCI, V60, P503, DOI 10.1017/S1357729800013394; FLANNERY DJ, 1993, J ADOLESCENT RES, V8, P21, DOI DOI 10.1177/074355489381003; FOSTER A, 1986, SOC BIOL, V33, P183; French Jeffrey A., 1997, P34; FRISCH RE, 1972, PEDIATRICS, V50, P445; FURSTENBERG FF, 1989, AM PSYCHOL, V44, P313, DOI 10.1037/0003-066X.44.2.313; GALLER JR, 1985, PEDIATR RES, V19, P518, DOI 10.1203/00006450-198506000-00003; GARDNER J, 1983, ANN HUM BIOL, V10, P31, DOI 10.1080/03014468300006161; Garland M, 1998, AM J EPIDEMIOL, V147, P636; GARN SM, 1986, SCH AGE PREGNANCY PA, P77; Ge XJ, 1996, CHILD DEV, V67, P3386, DOI 10.1111/j.1467-8624.1996.tb01919.x; Geary DC, 2001, PARENT-SCI PRACT, V1, P5, DOI 10.1207/S15327922PAR011&2_2; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; GEARY DC, IN PRESS EVOLUTIONAR; GELL PA, 1998, PALAEOCLIMATES, V3, P83; Georgopoulos N, 1999, J CLIN ENDOCR METAB, V84, P4525, DOI 10.1210/jc.84.12.4525; GERONIMUS AT, 1994, POPUL DEV REV, V20, P585, DOI 10.2307/2137602; GOLDEN WL, 1981, ACTA GENET MED GEMEL, V30, P91, DOI 10.1017/S000156600000773X; Goldsmith H. H., 1993, NATURE NURTURE PSYCH, P325, DOI DOI 10.1037/10131-016; Graber JA, 1997, J AM ACAD CHILD PSY, V36, P1768, DOI 10.1097/00004583-199712000-00026; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.2307/1131582; GRABER JA, 1996, TRANSITIONS ADOLESCE, P23; GRAYSON DA, 1989, BEHAV GENET, V19, P593, DOI 10.1007/BF01066256; GRUMBACH MM, 2003, WILLIAMS TXB ENDOCRI, P1115; Hacklander K, 2003, ANIM BEHAV, V65, P1133, DOI 10.1006/anbe.2003.2159; Hajn V., 1985, ANTHROPOLOGIE, V23, P5; HELM P, 1995, ACTA OBSTET GYN SCAN, V74, P718, DOI 10.3109/00016349509021181; HELM P, 1989, SCAND J PRIM HEALTH, V8, P59; Hennessy E, 1998, PAEDIATR PERINAT EP, V12, P61, DOI 10.1046/j.1365-3016.1998.0120s1061.x; HermanGiddens ME, 1997, PEDIATRICS, V99, P505, DOI 10.1542/peds.99.4.505; HERMANGIDDENS ME, 1988, AM J DIS CHILD, V142, P431, DOI 10.1001/archpedi.1988.02150040085025; Hetherington E. M., 2002, BETTER WORSE DIVORCE; HETHERINGTON EM, 1992, MONOGR SOC RES CHILD, V57, pR5; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; HOEL DG, 1983, AM J EPIDEMIOL, V118, P78, DOI 10.1093/oxfordjournals.aje.a113619; HOFER MA, 1994, ACTA PAEDIATR, V83, P9, DOI 10.1111/j.1651-2227.1994.tb13260.x; Hoier S, 2003, HUM NATURE-INT BIOS, V14, P209, DOI 10.1007/s12110-003-1004-2; HOOGLAND JL, 1982, SCIENCE, V215, P1639, DOI 10.1126/science.215.4540.1639; HOPWOOD NJ, 1990, ADOLESCENCE PUBERTY, P29; Hughes PE, 1997, ANIM REPROD SCI, V46, P159, DOI 10.1016/S0378-4320(96)01594-1; HUGHES PE, 1994, ANIM REPROD SCI, V35, P111, DOI 10.1016/0378-4320(94)90011-6; HUGHES RE, 1985, ANN HUM BIOL, V12, P325, DOI 10.1080/03014468500007851; Hulanicka B, 2001, AM J HUM BIOL, V13, P771, DOI 10.1002/ajhb.1123; Hulanicka B., 1999, J REPROD INFANT PSYC, V17, P119; Hwang JY, 2003, ANN HUM BIOL, V30, P434, DOI 10.1080/0301446031000111393; IBANEZ L, 1992, J CLIN ENDOCR METAB, V74, P254, DOI 10.1210/jc.74.2.254; Izard M. K., 1983, Pheromones and reproduction in mammals., P253; Jankowiak W, 2000, EVOL HUM BEHAV, V21, P125, DOI 10.1016/S1090-5138(00)00027-1; JOHNSON EO, 1992, NEUROSCI BIOBEHAV R, V16, P115, DOI 10.1016/S0149-7634(05)80175-7; JONES B, 1972, MED J AUSTRALIA, V2, P533; Jorm AF, 2004, AM J MED GENET B, V125B, P105, DOI 10.1002/ajmg.b.20114; Kadlubar FF, 2003, CANCER EPIDEM BIOMAR, V12, P327; Kanazawa S, 2001, EVOL HUM BEHAV, V22, P329, DOI 10.1016/S1090-5138(01)00073-3; KANTERO RL, 1971, ACTA OBSTET GYNECO S, V14, P7; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; KAPLAN HS, 2003, NATL RES COUNCIL FER, P170; KAPLAN JR, 1986, AM J PRIMATOL, V11, P181, DOI 10.1002/ajp.1350110209; Kaplowitz PB, 2001, PEDIATRICS, V108, P347, DOI 10.1542/peds.108.2.347; KAPRIO J, 1995, HUM BIOL, V67, P739; KEISS W, 1995, PEDIATR RES, V37, P502; KELSEY JL, 1993, EPIDEMIOL REV, V15, P36, DOI 10.1093/oxfordjournals.epirev.a036115; Ketelaar T, 2000, PSYCHOL INQ, V11, P1, DOI 10.1207/S15327965PLI1101_01; Khan AD, 1996, AM J HUM BIOL, V8, P717, DOI 10.1002/(SICI)1520-6300(1996)8:6<717::AID-AJHB3>3.0.CO;2-Q; KHAN AD, 1995, J NUTR, V125, pS1090; Kiernan KE, 1997, POP STUD-J DEMOG, V51, P41, DOI 10.1080/0032472031000149716; Kim K, 1998, INT J BEHAV DEV, V22, P729, DOI 10.1080/016502598384144; Kim K, 1997, EVOL HUM BEHAV, V18, P109, DOI 10.1016/S1090-5138(96)00114-6; Kim K, 1998, J ADOLESCENCE, V21, P231, DOI 10.1006/jado.1998.0149; Kirchengast S, 2000, SOC BIOL, V47, P114; Kirchengast S, 1994, ANTHROPOLOGIE, V32, P205; KIRKWOOD RN, 1981, ANIM PROD, V32, P211, DOI 10.1017/S0003356100025022; KIRKWOOD RN, 1987, P NUTR SOC, V46, P177, DOI 10.1079/PNS19870026; KISSINGER DG, 1987, NUTR RES, V7, P471, DOI 10.1016/S0271-5317(87)80003-9; KOMURA H, 1992, EUR J OBSTET GYN R B, V44, P201, DOI 10.1016/0028-2243(92)90099-K; Konner M, 1986, SCH AGE PREGNANCY PA, P325; Koo MM, 2002, PUBLIC HEALTH NUTR, V5, P353, DOI [10.1079/PHN2002261, 10.1079/PHN2001261]; Koprowski C, 1999, BRIT J CANCER, V79, P1907, DOI 10.1038/sj.bjc.6690303; Koziel S, 2002, J PAEDIATR CHILD H, V38, P268, DOI 10.1046/j.1440-1754.2002.00793.x; KULIN HE, 1984, J PEDIATR-US, V105, P325, DOI 10.1016/S0022-3476(84)80141-9; KUNSTADTER P, 1992, HUM BIOL, V64, P821; Lam TH, 2002, ARCH SEX BEHAV, V31, P359, DOI 10.1023/A:1016228427210; Lancaster J. B., 2000, ADAPTATION HUMAN BEH, P179; Lancaster J. B, 1986, SCH AGE PREGNANCY PA, P17; Legro RS, 2003, J CLIN ENDOCR METAB, V88, P215, DOI 10.1210/jc.2002-020256; Li Y J, 1990, Zhonghua Liu Xing Bing Xue Za Zhi, V11, P229; LIESTOL K, 1980, AM J EPIDEMIOL, V111, P753, DOI 10.1093/oxfordjournals.aje.a112953; LINDGREN G, 1976, ANN HUM BIOL, V3, P501, DOI 10.1080/03014467600001781; LINHARES EDR, 1986, AM J CLIN NUTR, V44, P552; LIVSON N, 1962, HUM BIOL, V34, P218; LOMBARDI JR, 1977, SCIENCE, V196, P545; Lounana J, 2002, SCI SPORT, V17, P17, DOI 10.1016/S0765-1597(01)00107-1; LUSTER T, 1993, PARENTING ECOLOGICAL, P69; MacDonald K, 1999, POPUL ENVIRON, V21, P223; MACLURE M, 1991, AM J CLIN NUTR, V54, P649; MACMAHON B, 1982, INT J CANCER, V29, P13, DOI 10.1002/ijc.2910290104; MADRIGAL L, 1991, AM J HUM BIOL, V3, P625, DOI 10.1002/ajhb.1310030612; MALINA RM, 1994, ANN HUM BIOL, V21, P417, DOI 10.1080/03014469400003432; Malina RM, 1997, MED SCI SPORT EXER, V29, P99, DOI 10.1097/00005768-199701000-00014; MALINA RM, 1998, HUMAN BIOL SOCIAL IN; Manlove J, 1997, J MARRIAGE FAM, V59, P263, DOI 10.2307/353469; Marcus MD, 2001, FERTIL STERIL, V76, P310, DOI 10.1016/S0015-0282(01)01921-5; Marlowe FW, 2000, BEHAV PROCESS, V51, P45, DOI 10.1016/S0376-6357(00)00118-2; Marlowe FW, 2003, CROSS-CULT RES, V37, P282, DOI 10.1177/1069397103254008; Marshall LM, 1998, FERTIL STERIL, V70, P432, DOI 10.1016/S0015-0282(98)00208-8; MARTIN EJ, 1983, AM J EPIDEMIOL, V117, P634, DOI 10.1093/oxfordjournals.aje.a113587; MAYAUX MJ, 1983, AM J EPIDEMIOL, V117, P377, DOI 10.1093/oxfordjournals.aje.a113554; McClintock MK, 1996, CURR DIR PSYCHOL SCI, V5, P178, DOI 10.1111/1467-8721.ep11512422; MCCORMICK MC, 1985, NEW ENGL J MED, V312, P82, DOI 10.1056/NEJM198501103120204; McEwen BS, 1998, NEW ENGL J MED, V338, P171, DOI 10.1056/NEJM199801153380307; McPherson CP, 1996, AM J EPIDEMIOL, V143, P1195; Meaney MJ, 2001, ANNU REV NEUROSCI, V24, P1161, DOI 10.1146/annurev.neuro.24.1.1161; MEKOS D, 1992, PSYCHOSOCIAL ANTECED; MERZENICH H, 1993, AM J EPIDEMIOL, V138, P217, DOI 10.1093/oxfordjournals.aje.a116850; Meyer F, 1990, Epidemiology, V1, P377, DOI 10.1097/00001648-199009000-00007; MEYER JM, 1991, AM J MED GENET, V39, P148, DOI 10.1002/ajmg.1320390207; Mezzich AC, 1997, DRUG ALCOHOL DEPEN, V44, P157, DOI 10.1016/S0376-8716(96)01333-6; Midyett LK, 2003, PEDIATRICS, V111, P47, DOI 10.1542/peds.111.1.47; Mikach SM, 1999, EVOL HUM BEHAV, V20, P141, DOI 10.1016/S1090-5138(98)00045-2; Miller BC, 1997, YOUTH SOC, V29, P54, DOI 10.1177/0044118X97029001003; Miller BC, 1998, J EARLY ADOLESCENCE, V18, P27, DOI 10.1177/0272431698018001002; MILLER EM, 1994, MANKIND QUART, V34, P297; Miller WB, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P183; MOERMAN ML, 1982, AM J OBSTET GYNECOL, V143, P528, DOI 10.1016/0002-9378(82)90542-7; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; MOISAN J, 1990, AM J EPIDEMIOL, V132, P953, DOI 10.1093/oxfordjournals.aje.a115738; MOISAN J, 1990, CANCER CAUSE CONTROL, V1, P149, DOI 10.1007/BF00053166; Montero P, 1999, ANN HUM BIOL, V26, P243, DOI 10.1080/030144699282741; Monti-Bloch L, 1998, ANN NY ACAD SCI, V855, P373, DOI 10.1111/j.1749-6632.1998.tb10595.x; Mul D, 2002, HORM RES, V57, P1, DOI 10.1159/000057939; MULDER MB, 1989, J BIOSOC SCI, V21, P179; Must A, 2002, AM J EPIDEMIOL, V155, P672, DOI 10.1093/aje/155.7.672; Nappi R E, 2003, Arch Womens Ment Health, V6, P83, DOI 10.1007/s00737-002-0152-4; Netherton C, 2004, PSYCHONEUROENDOCRINO, V29, P125, DOI 10.1016/S0306-4530(03)00150-6; ODUNTAN SO, 1976, ANN HUM BIOL, V3, P269, DOI 10.1080/03014467600001431; OLIVIER G, 1983, J BIOSOC SCI, V15, P379; Otor SCJ, 1998, SOC BIOL, V45, P246; Overpeck MD, 1998, NEW ENGL J MED, V339, P1211, DOI 10.1056/NEJM199810223391706; Pacak K, 2001, ENDOCR REV, V22, P502, DOI 10.1210/er.22.4.502; Padez C, 2003, AM J HUM BIOL, V15, P415, DOI 10.1002/ajhb.10159; PARAZZINI F, 1991, INT J EPIDEMIOL, V20, P157, DOI 10.1093/ije/20.1.157; Parazzini F, 1997, EPIDEMIOLOGY, V8, P681, DOI 10.1097/00001648-199710000-00012; Peccei JS, 2000, HUM NATURE-INT BIOS, V11, P43, DOI 10.1007/s12110-000-1002-6; PETERSEN AC, 1988, J YOUTH ADOLESCENCE, V17, P117, DOI 10.1007/BF01537962; Petridou E, 1996, INT J CANCER, V68, P193, DOI 10.1002/(SICI)1097-0215(19961009)68:2<193::AID-IJC9>3.0.CO;2-T; Pettit GS, 1997, CHILD DEV, V68, P908, DOI 10.1111/j.1467-8624.1997.tb01970.x; PHINNEY VG, 1990, ADOLESCENCE, V25, P321; Plant TM, 2004, HUM REPROD UPDATE, V10, P67, DOI 10.1093/humupd/dmh001; PRADO C, 1990, AM J HUM BIOL, V2, P691, DOI 10.1002/ajhb.1310020612; PRADO C, 1984, ANN HUM BIOL, V11, P165, DOI 10.1080/03014468400007021; Prebeg Z, 2000, AM J HUM BIOL, V12, P503; PRETI G, 1986, HORM BEHAV, V20, P474, DOI 10.1016/0018-506X(86)90009-7; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PROOS LA, 1991, ACTA PAEDIATR SCAND, V80, P852, DOI 10.1111/j.1651-2227.1991.tb11960.x; QAMRA S R, 1990, Indian Pediatrics, V27, P1051; QAMRA S R, 1991, Indian Pediatrics, V28, P147; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; RILEY AP, 1994, ANN NY ACAD SCI, V709, P86, DOI 10.1111/j.1749-6632.1994.tb30390.x; RIVIER C, 1991, BIOL REPROD, V45, P523, DOI 10.1095/biolreprod45.4.523; ROBERTS DF, 1975, BRIT J PREV SOC MED, V29, P31; Rockhill B, 1998, CANCER CAUSE CONTROL, V9, P447, DOI 10.1023/A:1008832004211; Roff Derek A., 1992; Romans SE, 2003, PSYCHOL MED, V33, P933, DOI 10.1017/S0033291703007530; ROSENBERG M, 1991, ANN HUM BIOL, V18, P207, DOI 10.1080/03014469100001532; Rowe DC, 1999, CHILD DEV, V70, P1151, DOI 10.1111/1467-8624.00084; Rowe DC, 2002, EVOL HUM BEHAV, V23, P365, DOI 10.1016/S1090-5138(02)00102-2; Rowe DC, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P147; ROWE DC, 2000, EVOL HUM BEHAV, V21, P347; Saltzman W, 1997, AM J PRIMATOL, V41, P159, DOI 10.1002/(SICI)1098-2345(1997)41:3<159::AID-AJP1>3.0.CO;2-W; Sanchez-Andres A, 1997, Anthropol Anz, V55, P69; SANDERS SA, 1990, ADOLESCENCE PUBERTY, V3, P50; SANDLER DP, 1984, AM J EPIDEMIOL, V119, P765, DOI 10.1093/oxfordjournals.aje.a113797; SATYANARAYANA K, 1979, ANN HUM BIOL, V6, P163, DOI 10.1080/03014467900003501; SCHADLER MH, 1983, BIOL REPROD, V28, P1137, DOI 10.1095/biolreprod28.5.1137; SCHOLL T, 1987, AM J EPIDEMIOL, V126, P746; SCHOLL TO, 1989, ANN HUM BIOL, V16, P335, DOI 10.1080/03014468900000462; SCHWARTZ S M, 1985, Nutrition and Behavior, V2, P225; Segalowitz SJ, 1999, BEHAV BRAIN SCI, V22, P904, DOI 10.1017/S0140525X99442207; SELLERS TA, 1992, NEW ENGL J MED, V326, P1323, DOI 10.1056/NEJM199205143262004; Sharma M. B., 1995, Journal of Human Ecology, V6, P209; Shonkoff J. P., 2000, NEURONS NEIGHBOURHOO; SIGG H, 1982, Primates, V23, P473, DOI 10.1007/BF02373959; SINGH SP, 1988, ANN HUM BIOL, V15, P77, DOI 10.1080/03014468800009481; Snieder H, 1998, J CLIN ENDOCR METAB, V83, P1875, DOI 10.1210/jc.83.6.1875; Solomon NG, 1996, BIOL REPROD, V54, P1038, DOI 10.1095/biolreprod54.5.1038; SORIGUER FJ, 1995, ACTA OBSTET GYN SCAN, V74, P455, DOI 10.3109/00016349509024409; SREEDHAR R, 1983, HUM NUTR-CLIN NUTR, V37, P373; Stavrou I, 2002, HUM REPROD, V17, P1101, DOI 10.1093/humrep/17.4.1101; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEINBERG L, 1988, DEV PSYCHOL, V24, P122, DOI 10.1037/0012-1649.24.1.122; Stern K, 1998, NATURE, V392, P177, DOI 10.1038/32408; Stoolmiller M, 1999, PSYCHOL BULL, V125, P392, DOI 10.1037//0033-2909.125.4.392; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; STROBINO DM, 1995, AM J EPIDEMIOL, V142, P504, DOI 10.1093/oxfordjournals.aje.a117668; Sulloway F. J., 1996, BORN REBEL BIRTH ORD; SURBEY MK, 1990, MG PRIMATOL, V13, P11; Surbey MK, 1998, HUM NATURE-INT BIOS, V9, P67, DOI 10.1007/s12110-998-1012-3; Syamala T. S., 2001, Indian Journal of Pediatrics, V68, P1111, DOI 10.1007/BF02722920; Tahirovic HF, 1998, EUR J PEDIATR, V157, P978, DOI 10.1007/s004310050981; TANNER JM, 1990, FETUS INTO MAN; Tanner JM, 1962, GROWTH ADOLESCENCE; THOMPSON LH, 1978, J ANIM SCI, V47, P1141; TRELOAR AE, 1974, HUM BIOL, V46, P89; TRELOAR SA, 1990, AM J HUM GENET, V47, P137; Turkheimer E, 2003, PSYCHOL SCI, V14, P623, DOI 10.1046/j.0956-7976.2003.psci_1475.x; Turkheimer E, 2000, PSYCHOL BULL, V126, P78, DOI 10.1037//0033-2909.126.1.78; Turner PK, 1999, J REPROD INFANT PSYC, V17, P111, DOI DOI 10.1080/02646839908409091; UDRY JR, 1979, J BIOSOC SCI, V11, P433; UDRY JR, 1982, DEMOGRAPHY, V19, P53, DOI 10.2307/2061128; VANDENAKKER OBA, 1987, ACTA GENET MED GEMEL, V36, P541, DOI 10.1017/S0001566000006929; Vandenbergh J.G., 1983, P95; VANNOORD PA, 1944, ANN HUM BIOL, V18, P57; VAREA C, 1993, AM J HUM BIOL, V5, P297, DOI 10.1002/ajhb.1310050308; VERONESI FM, 1994, ANN HUM BIOL, V21, P187, DOI 10.1080/03014469400003212; VIHKO R, 1984, J STEROID BIOCHEM, V20, P231, DOI 10.1016/0022-4731(84)90209-7; Voland E, 1998, ANNU REV ANTHROPOL, V27, P347, DOI 10.1146/annurev.anthro.27.1.347; WALLACE RB, 1978, CANCER RES, V38, P4021; Wang DL, 2002, J BIOSOC SCI, V34, P349, DOI 10.1017/S0021932002003498; WARREN MP, 1983, ENDOCR REV, V4, P363, DOI 10.1210/edrv-4-4-363; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; Waynforth D, 2002, HDB FATHER INVOLVEME, P337; WELLENS R, 1990, ANN HUM BIOL, V17, P145, DOI 10.1080/03014469000000892; WELLENS R, 1992, AM J HUM BIOL, V4, P913; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WIDOWSKI TM, 1992, AM J PRIMATOL, V26, P97, DOI 10.1002/ajp.1350260204; WIDOWSKI TM, 1990, ANIM BEHAV, V40, P731, DOI 10.1016/S0003-3472(05)80702-X; WIERSON M, 1993, ADOLESCENCE, V28, P913; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Worthman CM, 1999, EVOLUTIONARY MEDICI NE, P135; WU ML, 1988, AM J EPIDEMIOL, V128, P1216, DOI 10.1093/oxfordjournals.aje.a115076; WYSHAK G, 1983, ANN HUM BIOL, V10, P69, DOI 10.1080/03014468300006191; Xu BZ, 1997, EARLY HUM DEV, V49, P183, DOI 10.1016/S0378-3782(97)00031-5; Yehuda R, 2002, NEW ENGL J MED, V346, P108, DOI 10.1056/NEJMra012941; ZIEGLER TE, 1990, MG PRIMATOL, V13, P113 357 410 425 3 93 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0033-2909 1939-1455 PSYCHOL BULL Psychol. Bull. NOV 2004 130 6 920 958 10.1037/0033-2909.130.6.920 39 Psychology; Psychology, Multidisciplinary Psychology 866MT WOS:000224778300004 15535743 2018-11-12 J Rolff, J; Van de Meutter, F; Stoks, R Rolff, J; Van de Meutter, F; Stoks, R Time constraints decouple age and size at maturity and physiological traits AMERICAN NATURALIST English Article damselflies; development; ecological immunology; life-history traits; physiological traits; time constraints LIFE-HISTORY PLASTICITY; DROSOPHILA-MELANOGASTER; EVOLUTIONARY ECOLOGY; TENEBRIO-MOLITOR; MEALWORM BEETLE; IMMUNE FUNCTION; REACTION NORMS; GROWTH-RATES; BODY-SIZE; RESISTANCE Life-history theory predicts changes in age and size at maturity in response to constraints in animals with complex life cycles. A critical underlying assumption is that only these traits are optimized during ontogeny. However, it is not clear how altered life histories mechanistically translate into survival and fecundity. Here we present data from damselflies reared from egg to adult under day lengths mimicking the start or end ( time constrained) of the season at high and low food level. These data show that an important component of immunity is suppressed under time-constrained development as well as under low food conditions and that fat storage is affected only by food availability. Intriguingly, the physiological responses are partly decoupled from age and size at maturity, which indicates that the predictive value of traits such as age and size at maturity might well be restricted. Katholieke Univ Leuven, Aquat Ecol Lab, B-3000 Louvain, Belgium; Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England Stoks, R (reprint author), Katholieke Univ Leuven, Aquat Ecol Lab, Charles Beriotstr 32, B-3000 Louvain, Belgium. jor@sheffield.ac.uk; frank.vandemeutter@bio.kuleuven.ac.be; robby.stoks@bio.kuleuven.ac.be Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Arendt JD, 2000, J EXP ZOOL, V288, P219, DOI 10.1002/1097-010X(20001015)288:3<219::AID-JEZ3>3.3.CO;2-3; Barnes AI, 2000, P ROY SOC B-BIOL SCI, V267, P177, DOI 10.1098/rspb.2000.0984; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Braun A, 1998, P NATL ACAD SCI USA, V95, P14337, DOI 10.1073/pnas.95.24.14337; Chippindale AK, 1998, EVOLUTION, V52, P1342, DOI 10.1111/j.1558-5646.1998.tb02016.x; CHOE JL, 1997, MATING SYSTEMS INSEC; CLUTTONBROCK TH, 1988, REPROD SUCCESS; Cohen J, 1988, STAT POWER ANAL BEHA; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; De Block M, 2003, J EVOLUTION BIOL, V16, P986, DOI 10.1046/j.1420-9101.2003.00581.x; DEBLOCK M, IN PRESS ECOLOGY; DEBLOCK M, 2004, OIKOS, V160, P587; Feder D, 1997, J INSECT PHYSIOL, V43, P513, DOI 10.1016/S0022-1910(97)00010-3; Fellowes MDE, 2000, HEREDITY, V84, P1, DOI 10.1046/j.1365-2540.2000.00685.x; Gotthard K, 2001, EXPTL BIOL REV, P287; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.1890/0012-9658(1999)080[1242:LHABRT]2.0.CO;2; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Kraaijeveld AR, 2001, P ROY SOC B-BIOL SCI, V268, P259, DOI 10.1098/rspb.2000.1354; MORAN NA, 1994, ANNU REV ECOL SYST, V25, P573, DOI 10.1146/annurev.es.25.110194.003041; Moret Y, 2003, P ROY SOC B-BIOL SCI, V270, P2475, DOI 10.1098/rspb.2003.2511; Nigam Y, 1997, J INVERTEBR PATHOL, V69, P279, DOI 10.1006/jipa.1996.4652; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Nylin S, 1996, EVOLUTION, V50, P1351, DOI 10.1111/j.1558-5646.1996.tb02377.x; Plaistow S, 1996, P ROY SOC B-BIOL SCI, V263, P1233, DOI 10.1098/rspb.1996.0181; Plaistow S, 1999, ANIM BEHAV, V58, P659, DOI 10.1006/anbe.1999.1171; POTVIN C, 2001, DESIGN ANAL ECOLOGIC, P63; Quinn GP, 2002, EXPT DESIGN DATA ANA; Rolff J, 2003, SCIENCE, V301, P472, DOI 10.1126/science.1080623; Rolff J, 2002, P NATL ACAD SCI USA, V99, P9916, DOI 10.1073/pnas.152271999; Rolff J, 2002, EVOL ECOL RES, V4, P931; ROLFF J, 2004, IN PRESS P ROYAL S B; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Ryder JJ, 2001, J EVOLUTION BIOL, V14, P646, DOI 10.1046/j.1420-9101.2001.00302.x; *SAS I, 2000, SAS US GUID REL 8 02; Schmid-Hempel P, 2003, P ROY SOC B-BIOL SCI, V270, P357, DOI 10.1098/rspb.2002.2265; Siva-Jothy MT, 2002, PHYSIOL ENTOMOL, V27, P206, DOI 10.1046/j.1365-3032.2002.00286.x; Siva-Jothy MT, 1999, ECOL ENTOMOL, V24, P465, DOI 10.1046/j.1365-2311.1999.00222.x; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; Wiggles worth V.B., 1965, PRINCIPLES INSECT PH 41 71 72 0 21 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 AM NAT Am. Nat. OCT 2004 164 4 559 565 10.1086/423715 7 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 856XR WOS:000224079900013 15459885 2018-11-12 J Flatt, T; Kawecki, TJ Flatt, T; Kawecki, TJ Pleiotropic effects of methoprene-tolerant (Met), a gene involved in juvenile hormone metabolism, on life history traits in Drosophila melanogaster GENETICA English Article allelic variation; Drosophila melanogaster; genetic correlation; juvenile hormone; pleiotropy; trade-off BRISTLE NUMBER; TRADE-OFFS; CAENORHABDITIS-ELEGANS; CORRELATED RESPONSES; SPONTANEOUS MUTATION; FITNESS COMPONENTS; MOLECULAR ACTIONS; MUTANT RESISTANT; SELECTION; EVOLUTION Life history theory assumes that there are alleles with pleiotropic effects on fitness components. Although quantitative genetic data are often consistent with pleiotropy, there are few explicit examples of pleiotropic loci. The Drosophila melanogaster gene Methoprene-tolerant ( Met) may be such a locus. The Met gene product, a putative juvenile hormone receptor, facilitates the action of juvenile hormone (JH) and JH analogs; JH affects many life history traits in arthropods. Here we use quantitative complementation to investigate effects of Met mutant and wildtype alleles on female developmental time, onset of reproduction, and fecundity. Whereas the alleles did not differ in their effects on developmental time, we detected allelic variation for the onset of reproduction and for age-specific fecundity. Alleles influenced phenotypic covariances among traits ( developmental time and onset of reproduction; onset of reproduction and both early and late fecundity; early and late fecundity), suggesting that alleles of Met vary in their pleiotropic effects upon life history. Furthermore, the genetic covariance between developmental time and early fecundity attributed to alleles of Met was negative, indicating consistent pleiotropic effects among alleles on these traits. The allelic effects of Met support genetic models where pleiotropy at genes associated with hormone regulation can contribute to the evolution of life history traits. Brown Univ, Dept Ecol & Evolutionary Biol, Providence, RI 02912 USA; Univ Fribourg, Dept Biol, Unit Ecol & Evolut, CH-1700 Fribourg, Switzerland Flatt, T (reprint author), Brown Univ, Dept Ecol & Evolutionary Biol, Box G-W, Providence, RI 02912 USA. thomas_flatt@brown.edu Flatt, Thomas/A-7384-2009; Kawecki, Tadeusz/K-5466-2015 Kawecki, Tadeusz/0000-0002-9244-1991; Flatt, Thomas/0000-0002-5990-1503 Adam G, 2003, DEVELOPMENT, V130, P2397, DOI 10.1242/dev.00460; Arantes-Oliveira N, 2002, SCIENCE, V295, P502, DOI 10.1126/science.1065768; Ashburner M., 1989, DROSOPHILA LAB HDB; Ashok M, 1998, P NATL ACAD SCI USA, V95, P2761, DOI 10.1073/pnas.95.6.2761; BARTON NH, 1989, ANNU REV GENET, V23, P337, DOI 10.1146/annurev.ge.23.120189.002005; Belgacem YH, 2002, P NATL ACAD SCI USA, V99, P15154, DOI 10.1073/pnas.232244199; BOWNES M, 1982, Q REV BIOL, V57, P247, DOI 10.1086/412802; CASPARI E, 1952, EVOLUTION, V6, P1, DOI 10.2307/2405500; Cheverud JM, 2001, CHARACTER CONCEPT EV, P411; DESALLE R, 1986, GENETICS, V112, P877; Dubrovsky EB, 2000, DEV BIOL, V224, P486, DOI 10.1006/dbio.2000.9800; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Gilbert Lawrence I., 1996, P59; Gilbert LI, 2000, INSECT BIOCHEM MOLEC, V30, P617, DOI 10.1016/S0965-1748(00)00034-5; GROMKO MH, 1995, EVOLUTION, V49, P685, DOI 10.1111/j.1558-5646.1995.tb02305.x; Gurganus MC, 1999, GENETICS, V152, P1585; Haag ES, 2001, EVOLUTION, V55, P1077; Harris RJ, 1985, PRIMER MULTIVARIATE; Hartfelder K, 2000, BRAZ J MED BIOL RES, V33, P157, DOI 10.1590/S0100-879X2000000200003; Herman WS, 2001, P ROY SOC B-BIOL SCI, V268, P2509, DOI 10.1098/rspb.2001.1765; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Houle D, 1998, GENETICA, V102-3, P241, DOI 10.1023/A:1017034925212; HOULE D, 1994, GENETICS, V138, P773; HUDAK MJ, 1989, ANIM BEHAV, V38, P344, DOI 10.1016/S0003-3472(89)80095-8; JOHNSON TE, 1997, ZEUS SALMON BIODEMOG, P108; JONES G, 1995, ANNU REV ENTOMOL, V40, P147, DOI 10.1146/annurev.ento.40.1.147; JOWETT T, 1980, DEV BIOL, V80, P225, DOI 10.1016/0012-1606(80)90510-2; KETTERSON ED, 1992, AM NAT S, V140, P33; Knight CG, 2001, EVOLUTION, V55, P1795; Leroi AM, 2001, TRENDS ECOL EVOL, V16, P24, DOI 10.1016/S0169-5347(00)02032-2; Lin YJ, 1998, SCIENCE, V282, P943, DOI 10.1126/science.282.5390.943; Long AD, 1996, GENETICS, V144, P1497; Lyman RF, 1998, GENETICS, V149, P983; Mackay TFC, 1996, GENETICS, V144, P671; MANNING A, 1967, ANIM BEHAV, V15, P239, DOI 10.1016/0003-3472(67)90006-1; MARTORELL C, 1998, GENETICA, V103, P315; MINKOFF C, 1992, GENETICS, V131, P91; Nijhout H. F., 1994, INSECT HORMONES; Palsson A, 2000, DEV GENES EVOL, V210, P617, DOI 10.1007/s004270000107; Partridge L, 1999, P ROY SOC B-BIOL SCI, V266, P255, DOI 10.1098/rspb.1999.0630; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; Pigliucci M, 1999, J EVOLUTION BIOL, V12, P551, DOI 10.1046/j.1420-9101.1999.00057.x; Pigliucci M, 1998, TRENDS PLANT SCI, V3, P485, DOI 10.1016/S1360-1385(98)01343-0; Pursley S, 2000, INSECT BIOCHEM MOLEC, V30, P839, DOI 10.1016/S0965-1748(00)00056-4; Restifo LL, 1998, DEV GENET, V22, P141, DOI 10.1002/(SICI)1520-6408(1998)22:2<141::AID-DVG4>3.0.CO;2-6; RIDDIFORD LM, 1994, ADV INSECT PHYSIOL, V24, P213, DOI 10.1016/S0065-2806(08)60084-3; Riddiford Lynn M., 1996, P223; ROCKWELL RF, 1978, AM MIDL NAT, V99, P361, DOI 10.2307/2424813; Roff D. A., 1997, EVOLUTIONARY QUANTIT; Rolff J, 2002, P NATL ACAD SCI USA, V99, P9916, DOI 10.1073/pnas.152271999; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; ROSE MR, 1981, GENETICS, V97, P187; Sall J., 1996, JMP START STAT GUIDE; Salmon AB, 2001, EVOLUTION, V55, P1600, DOI 10.1111/j.0014-3820.2001.tb00679.x; *SAS I, 2000, SAS STAT US GUID VER; Schmitt J, 1995, AM NAT, V146, P937, DOI 10.1086/285832; SHEMSHEDINI L, 1990, P NATL ACAD SCI USA, V87, P2072, DOI 10.1073/pnas.87.6.2072; SHEMSHEDINI L, 1990, J BIOL CHEM, V265, P1913; Silbermann R, 2000, EVOLUTION, V54, P2038; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; SMITH JM, 1958, J EXP BIOL, V35, P832; Sokal R.R., 1995, BIOMETRY; Soller M, 1999, DEV BIOL, V208, P337, DOI 10.1006/dbio.1999.9210; Stearns S. C., 1992, EVOLUTION LIFE HIST; Stearns SC, 1996, EVOLUTION, V50, P795, DOI 10.1111/j.1558-5646.1996.tb03889.x; Stearns SC, 2001, HDB BIOL AGING, P353; Tatar M, 2001, SCIENCE, V292, P107, DOI 10.1126/science.1057987; Tatar M, 2003, SCIENCE, V299, P1346, DOI 10.1126/science.1081447; Tatar M, 1996, GENETICS, V143, P849; Tatar M, 2001, AM NAT, V158, P248, DOI 10.1086/321320; Tatar M, 2001, EXP GERONTOL, V36, P723, DOI 10.1016/S0531-5565(00)00238-2; Teal PEA, 2000, P NATL ACAD SCI USA, V97, P3708, DOI 10.1073/pnas.060034397; Templeton AR, 1978, SCREW WORM PROBLEM, P83; Truman JW, 2002, ANNU REV ENTOMOL, V47, P467, DOI 10.1146/annurev.ento.47.091201.145230; vanTienderen PH, 1996, AM J BOT, V83, P169; Von Ende C. N., 2001, DESIGN ANAL ECOLOGIC, P134; Wheeler DE, 2003, BIOESSAYS, V25, P994, DOI 10.1002/bies.10337; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wilson TG, 1998, P NATL ACAD SCI USA, V95, P14040, DOI 10.1073/pnas.95.24.14040; WILSON TG, 1986, DEV BIOL, V118, P190, DOI 10.1016/0012-1606(86)90087-4; WILSON TG, 1982, ROUX ARCH DEV BIOL, V191, P257, DOI 10.1007/BF00848413; WILSON TG, 1983, J INSECT PHYSIOL, V29, P249, DOI 10.1016/0022-1910(83)90091-4; WRIGHT S, 1968, EVOLUTION GENETICS P, V1; Wyatt GR, 1996, ADV INSECT PHYSIOL, V26, P1, DOI 10.1016/S0065-2806(08)60030-2; Zera AJ, 1999, EVOLUTION, V53, P837, DOI 10.1111/j.1558-5646.1999.tb05377.x; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zhao ZW, 2002, P NATL ACAD SCI USA, V99, P16829, DOI 10.1073/pnas.262533999; ZWAAN B, 1995, EVOLUTION, V49, P635, DOI 10.1111/j.1558-5646.1995.tb02300.x 89 19 19 0 5 KLUWER ACADEMIC PUBL DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0016-6707 GENETICA Genetica OCT 2004 122 2 141 160 10.1023/B:GENE.0000041000.22998.92 20 Genetics & Heredity Genetics & Heredity 852QI WOS:000223771100004 15609573 2018-11-12 J Westneat, DF; Weiskittle, J; Edenfield, R; Kinnard, TB; Poston, JP Westneat, DF; Weiskittle, J; Edenfield, R; Kinnard, TB; Poston, JP Correlates of cell-mediated immunity in nestling house sparrows OECOLOGIA English Article ecological immunology; immunocompetence; parasitism; Passer domesticus; phytohaemagglutinin FLEDGLING AMERICAN KESTRELS; GREAT TIT NESTLINGS; RED-BLOOD-CELLS; ANTIBODY-RESPONSES; PASSER-DOMESTICUS; BODY CONDITION; ZEBRA FINCH; TRADE-OFFS; IMMUNOCOMPETENCE; SIZE Cell-mediated immunity is an important vertebrate defense against pathogens, but components of this response may vary in quality. Such variation could arise through the effects of ecology on optimal immunocompetence. We used injections of phytohaemagglutinin (PHA) to measure the factors influencing T-cell proliferation in nestling house sparrows (Passer domesticus). Bivariate analyses revealed positive associations with nestling mass and size, but no effect of ectoparasites. The response to PHA was, however, strongly affected by brood identity. A mixed model with brood identity as a random factor and nestling mass, size, number of ectoparasites, parental feeding rate, clutch size, brood size at hatching, and date uncovered significant positive correlations between PHA response and both nestling mass and the brood size at hatching. Because many of these variables are related hierarchically, we used path analysis to explore the relationships in more detail. We found that a nestling immune response was affected by several indirect paths. Brood size at hatch had both positive and negative paths, and date in the season had several indirect negative effects through its effect on brood size and nestling mass. The approach used and the results obtained offer some new ideas for incorporating immune responses into life history theory. Univ Kentucky, Dept Biol, Lexington, KY 40506 USA Westneat, DF (reprint author), Univ Kentucky, Dept Biol, 101 Morgan Bldg, Lexington, KY 40506 USA. biodfw@uky.edu Westneat, David/0000-0001-5163-8096 Alonso-Alvarez C, 2001, CAN J ZOOL, V79, P101, DOI 10.1139/cjz-79-1-101; Birkhead TR, 1999, P ROY SOC B-BIOL SCI, V266, P385, DOI 10.1098/rspb.1999.0649; Brinkhof MWG, 1999, P ROY SOC B-BIOL SCI, V266, P2315, DOI 10.1098/rspb.1999.0925; Christe P, 1998, OIKOS, V83, P175, DOI 10.2307/3546559; Christe P, 2000, HEREDITY, V85, P75, DOI 10.1046/j.1365-2540.2000.00732.x; Frank S. A., 2002, IMMUNOLOGY EVOLUTION; HATCH MI, 2003, PARENTAL CARE LIFE H; Hein WK, 2003, ANIM BEHAV, V65, P1211, DOI 10.1006/anbe.2003.2132; Hoi-Leitner M, 2001, BEHAV ECOL SOCIOBIOL, V49, P333, DOI 10.1007/s002650000310; Horak P, 1999, OECOLOGIA, V121, P316, DOI 10.1007/s004420050934; IMONEN P, 2003, OECOLOGIA, V136, P148; KINNARD TB, 2002, THESIS U KENTUCKY LE; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; LOCHMILLER RL, 1993, AUK, V110, P503, DOI 10.2307/4088414; Merino S, 1999, ANIM BEHAV, V58, P219, DOI 10.1006/anbe.1999.1127; Navarro C, 2003, OIKOS, V101, P291, DOI 10.1034/j.1600-0706.2003.11663.x; PARMENTIER HK, 1993, POULTRY SCI, V72, P1679, DOI 10.3382/ps.0721679; PARMENTIER HK, 1994, POULTRY SCI, V73, P825, DOI 10.3382/ps.0730825; Poiani A, 2000, BEHAV ECOL SOCIOBIOL, V47, P230, DOI 10.1007/s002650050660; Raberg L, 1998, P ROY SOC B-BIOL SCI, V265, P1637, DOI 10.1098/rspb.1998.0482; Royle NJ, 2003, FUNCT ECOL, V17, P472, DOI 10.1046/j.1365-2435.2003.00752.x; Saino N, 1997, J ANIM ECOL, V66, P827, DOI 10.2307/5998; Saino N, 1998, OIKOS, V81, P217, DOI 10.2307/3547043; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Smits JE, 1999, FUNCT ECOL, V13, P567, DOI 10.1046/j.1365-2435.1999.00338.x; Sokal R. R., 1981, BIOMETRY; Sorci G, 1997, P ROY SOC B-BIOL SCI, V264, P1593, DOI 10.1098/rspb.1997.0222; Tella JL, 2000, P ROY SOC B-BIOL SCI, V267, P891, DOI 10.1098/rspb.2000.1086; Tella JL, 2002, P ROY SOC B-BIOL SCI, V269, P1059, DOI 10.1098/rspb.2001.1951; Tella JL, 2001, P ROY SOC B-BIOL SCI, V268, P1455, DOI 10.1098/rspb.2001.1688; Tella JL, 2000, OECOLOGIA, V123, P453, DOI 10.1007/s004420000331; Tschirren B, 2003, J ANIM ECOL, V72, P839, DOI 10.1046/j.1365-2656.2003.00755.x; Westneat DF, 1998, P ROY SOC B-BIOL SCI, V265, P1065, DOI 10.1098/rspb.1998.0400; WESTNEAT DF, 2002, CONDOR, V106, P598; Zuk M, 1998, P ROY SOC B-BIOL SCI, V265, P1631, DOI 10.1098/rspb.1998.0481 35 20 21 0 7 SPRINGER NEW YORK 233 SPRING STREET, NEW YORK, NY 10013 USA 0029-8549 OECOLOGIA Oecologia SEP 2004 141 1 17 23 10.1007/s00442-004-1653-9 7 Ecology Environmental Sciences & Ecology 849SC WOS:000223560000003 15309608 2018-11-12 J Helle, S; Lummaa, V; Jokela, J Helle, S; Lummaa, V; Jokela, J Accelerated immunosenescence in preindustrial twin mothers PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article immune function; cost of reproduction; longevity; reproductive effort; tuberculosis LIFE-HISTORY TRAITS; TRADE-OFFS; NATURAL-SELECTION; IMMUNE DEFENSE; ECOLOGICAL IMMUNOLOGY; REPRODUCTIVE EFFORT; LONGEVITY; EVOLUTION; COSTS; WOMEN Life-history theory predicts a trade off between reproductive effort and lifespan. it has been suggested that this tradeoff is a result of reproductive costs accelerating senescence of the immune system, leading to earlier death. Longevity costs of reproduction are suggested for some human populations, but whether high reproductive effort leads to impaired immune function is unknown. We examined how reproductive effort affected postreproductive survival and the probability of dying of an infectious disease in women born in preindustrial Finland between 1702 and 1859. We found that mothers delivering twins had reduced postreproductive survival after age 65. This effect arose because mothers of twins had a higher probability of succumbing to an infectious disease (mainly tuberculosis) than mothers delivering singletons. The risk among mothers of twins of dying of an infectious disease was further elevated if mothers had started reproducing early. In contrast, neither female postreproductive survival nor the risk of succumbing to an infectious disease was influenced by the total number of offspring produced. Our results provide evidence of a long-term survival cost of twinning in humans and indicate that the mechanism mediating this cost might have been accelerated immunosenescence. Turku Univ, Dept Biol, Sect Ecol, FIN-20014 Turku, Finland; Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; Oulu Univ, Dept Biol, FIN-90014 Oulu, Finland Helle, S (reprint author), Turku Univ, Dept Biol, Sect Ecol, FIN-20014 Turku, Finland. samuli.helle@utu.fi Group, JJ/G-2466-2011; Jokela, Jukka/F-8626-2010 Jokela, Jukka/0000-0002-1731-727X Allison PD, 1995, SURVIVAL ANAL USING; Andersson T, 2000, ACTA OBSTET GYN SCAN, V79, P679, DOI 10.1034/j.1600-0412.2000.079008679.x; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; Buchanan KL, 2000, TRENDS ECOL EVOL, V15, P156, DOI 10.1016/S0169-5347(99)01812-1; Collett D, 2003, MODELLING SURVIVAL D; Doblhammer G, 2003, P ROY SOC B-BIOL SCI, V270, P1541, DOI 10.1098/rspb.2003.2400; Flynn JL, 2001, INFECT IMMUN, V69, P4195, DOI 10.1128/IAI.69.7.4195-4201.2001; GABLER S, 1994, HUM BIOL, V66, P699; Gavazzi G, 2002, LANCET INFECT DIS, V2, P659, DOI 10.1016/S1473-3099(02)00437-1; Ginaldi L, 2001, MICROBES INFECT, V3, P851, DOI 10.1016/S1286-4579(01)01443-5; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; HAUKIOJA E, 1989, AM NAT, V133, P572, DOI 10.1086/284936; Helle S, 2002, SCIENCE, V296, P1085, DOI 10.1126/science.1070106; HELLE S, 2004, EVOLUTION LAWRENCE, V52, P430; HELLE S, 2002, J EVOLUTION BIOL, V56, P803; Hosmer D. W., 1994, APPL LOGISTIC REGRES; Humphries KH, 2001, STROKE, V32, P2259, DOI 10.1161/hs1001.097224; Kaar P, 1996, P ROY SOC B-BIOL SCI, V263, P1475, DOI 10.1098/rspb.1996.0215; KARSKELA S, 2001, NONFICTION BOOK GENE; Kelsey JL, 1996, ANNU REV PUBL HEALTH, V17, P47, DOI 10.1146/annurev.pu.17.050196.000403; Kirk KM, 2001, EVOLUTION, V55, P423; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; LAHDENPERA M, 2004, NATURE, V482, P178; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Lummaa V, 1998, NATURE, V394, P533, DOI 10.1038/28977; LUMMAA V, 2002, P R SOC LONDON B, V268, P1977; Lycett JE, 2000, P ROY SOC B-BIOL SCI, V267, P31, DOI 10.1098/rspb.2000.0962; MAAS AHE, 2004, MATURITAS, V47, P225; MARTIN LB, 2002, P ROY SOC LOND B BIO, V270, P153; Martin TE, 2001, P NATL ACAD SCI USA, V98, P2071, DOI 10.1073/pnas.98.4.2071; Meyer KC, 2004, AGEING RES REV, V3, P55, DOI 10.1016/j.arr.2003.07.002; Mikkola TS, 2002, CARDIOVASC RES, V53, P605, DOI 10.1016/S0008-6363(01)00466-7; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Partridge L, 2002, NAT REV GENET, V3, P165, DOI 10.1038/nrg753; Rajagopalan S, 2001, CLIN INFECT DIS, V33, P1034, DOI 10.1086/322671; Rigby MC, 2000, P ROY SOC B-BIOL SCI, V267, P171, DOI 10.1098/rspb.2000.0983; Roff D. A., 2002, LIFE HIST EVOLUTION; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Salami KK, 2003, TWIN RES, V6, P55; Sandland GJ, 2003, TRENDS PARASITOL, V19, P571, DOI 10.1016/j.pt.2003.10.006; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Skinner HG, 2003, CANCER EPIDEM BIOMAR, V12, P433; SOININEN AM, 1974, OLD TRADITIONAL AGR; Stearns S. C., 1992, EVOLUTION LIFE HIST; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Wick G, 2003, EXP GERONTOL, V38, P13, DOI 10.1016/S0531-5565(02)00161-4; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 47 22 22 0 9 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. AUG 17 2004 101 33 12391 12396 10.1073/pnas.0402215101 6 Multidisciplinary Sciences Science & Technology - Other Topics 847QN WOS:000223410100087 15295101 Bronze, Green Published 2018-11-12 J Javois, J; Tammaru, T Javois, J; Tammaru, T Reproductive decisions are sensitive to cues of life expectancy: the case of a moth ANIMAL BEHAVIOUR English Article EGG LOAD; OVIPOSITION BEHAVIOR; POPULATION-DYNAMICS; TERMINAL INVESTMENT; FRUIT-FLIES; CLUTCH SIZE; FECUNDITY; AGE; RESPONSES; BUTTERFLIES Life history theory predicts that reproductive effort should increase as life expectancy decreases. Empirical evidence in support of this hypothesis is still fragmentary. We measured the effects of different potential indexes of mortality risk on oviposition in a geometrid moth Scotopteryx chenopodiata L. We conducted two experiments: in one we manipulated mortality risk by clipping wings or depriving the moths of food; in the other we studied the effect of incidental injuries, and varied host quality and food availability. Physical injuries led to a higher oviposition rate and shorter latency (i.e. a shorter discrimination period before oviposition) on both a high-ranked and a low-ranked host. High mortality risk was associated with a shorter latency to oviposit on the low-ranked, but not on the high-ranked host. These effects remained significant when we controlled for the influences of estimated adult age and eggload. Insects deprived of food as adults increased oviposition activity in the first experiment but not in the second. Our results suggest that certain cues of an adverse environment, as well as the individual's terminal condition, can increase reproductive effort and reduce host selectivity in insects. (C) 2004 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. Univ Tartu, Inst Zool & Hydrobiol, EE-51014 Tartu, Estonia; Estonian Agr Univ, Inst Zool & Bot, EE-51014 Tartu, Estonia Javois, J (reprint author), Univ Tartu, Inst Zool & Hydrobiol, Vanemuise 46, EE-51014 Tartu, Estonia. juku@ut.ee Adamo SA, 1999, ANIM BEHAV, V57, P117, DOI 10.1006/anbe.1998.0999; Agnew K, 2000, OIKOS, V88, P533, DOI 10.1034/j.1600-0706.2000.880309.x; Agnew P, 2000, MICROBES INFECT, V2, P891, DOI 10.1016/S1286-4579(00)00389-0; BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; Bernays E. A., 1994, HOST PLANT SELECTION; BOGGS CL, 1986, ECOL ENTOMOL, V11, P7, DOI 10.1111/j.1365-2311.1986.tb00274.x; BRABY MF, 1995, OIKOS, V72, P189, DOI 10.2307/3546221; Burkhard DU, 2002, ECOL ENTOMOL, V27, P514, DOI 10.1046/j.1365-2311.2002.00453.x; Candolin U, 1999, ANIM BEHAV, V58, P1261, DOI 10.1006/anbe.1999.1259; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; COURTNEY SP, 1989, OIKOS, V55, P55, DOI 10.2307/3565872; Dixon AFG, 2002, ECOL ENTOMOL, V27, P433, DOI 10.1046/j.1365-2311.2002.00429.x; FLETCHER JP, 1994, P ROY SOC B-BIOL SCI, V258, P163, DOI 10.1098/rspb.1994.0157; Fox SF, 2000, OECOLOGIA, V122, P327, DOI 10.1007/s004420050038; GELLER JB, 1990, J EXP MAR BIOL ECOL, V136, P77, DOI 10.1016/0022-0981(90)90101-H; Hayes EJ, 1999, PHYSIOL ENTOMOL, V24, P1, DOI 10.1046/j.1365-3032.1999.00104.x; Kight SL, 2000, ANN ENTOMOL SOC AM, V93, P340, DOI 10.1603/0013-8746(2000)093[0340:TDPIIT]2.0.CO;2; KOCH M, 1984, WIR BESTIMMEN SCHMET; Langley PA, 1998, FUNCT ECOL, V12, P866, DOI 10.1046/j.1365-2435.1998.00262.x; Leather SR, 1987, FUNCT ECOL, V1, P331, DOI 10.2307/2389789; MANGEL M, 1987, J MATH BIOL, V25, P1, DOI 10.1007/BF00275885; MIKKOLA K, 1989, MITTARIT, V2; MINKENBERG OPJM, 1992, OIKOS, V65, P134, DOI 10.2307/3544896; Muller HG, 2001, P ROY SOC B-BIOL SCI, V268, P445, DOI 10.1098/rspb.2000.1370; Olvido AE, 1998, ANN ENTOMOL SOC AM, V91, P488, DOI 10.1093/aesa/91.4.488; PAUL A, 1993, INT J PRIMATOL, V14, P105, DOI 10.1007/BF02196506; Polak M, 1998, P ROY SOC B-BIOL SCI, V265, P2197, DOI 10.1098/rspb.1998.0559; PROKOPY RJ, 1993, ANN ENTOMOL SOC AM, V86, P362, DOI 10.1093/aesa/86.3.362; Riessen HP, 1999, CAN J FISH AQUAT SCI, V56, P2487, DOI 10.1139/cjfas-56-12-2487; Roff Derek A., 1992; ROITBERG BD, 1993, NATURE, V364, P108, DOI 10.1038/364108a0; ROITBERG BD, 1992, BEHAV ECOL, V3, P156, DOI 10.1093/beheco/3.2.156; Rosenheim JA, 1999, EVOLUTION, V53, P376, DOI 10.1111/j.1558-5646.1999.tb03773.x; *SAS I INC, 2000, SAS 8 1; SINGER M C, 1986, P65; SINGER MC, 1992, ANIM BEHAV, V44, P463, DOI 10.1016/0003-3472(92)90056-F; Sirot E, 1997, BEHAV ECOL, V8, P226, DOI 10.1093/beheco/8.2.226; SKOU P, 1986, GEOMETRID MOTHS N EU; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tammaru T, 1996, OIKOS, V77, P407, DOI 10.2307/3545931; Tammaru T, 2000, ENVIRON ENTOMOL, V29, P1002, DOI 10.1603/0046-225X-29.5.1002 41 58 60 1 20 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. AUG 2004 68 2 249 255 10.1016/j.anbehav.2003.10.022 7 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 850LW WOS:000223614300003 2018-11-12 J Tieleman, BI; Williams, JB; Ricklefs, RE Tieleman, BI; Williams, JB; Ricklefs, RE Nest attentiveness and egg temperature do not explain the variation in incubation periods in tropical birds FUNCTIONAL ECOLOGY English Article incubation behaviour; life-history evolution; tropics LIFE-HISTORY EVOLUTION; PREDATION; TIME 1. The wide range in incubation periods among bird species has puzzled biologists for decades, because an extended egg-phase increases time-dependent mortality of the eggs. 2. We investigated a recently proposed mechanistic explanation inspired by life-history theory, suggesting that adults may increase their own survival by reducing nest attentiveness, the percentage of daytime spent incubating eggs, in exchange for reduced offspring (egg) survival due to a longer incubation period. Incubation behaviour and egg temperatures (T-egg) of 14 bird species in the humid lowland tropics were studied to test the hypothesis that lower nest attentiveness and reduced T-egg cause longer incubation periods. 3. Increased nest attentiveness correlated with higher average T-egg. However, neither nest attentiveness nor average T-egg was associated with the length of the incubation period. Longer off-bouts resulted in lower T-egg, but neither number of off-bouts nor off-bout length was associated with incubation period. In addition, we reanalysed a previously published negative association between T-egg and incubation period based on literature data from temperate passerine birds using a larger data set and found no significant correlation. 4. In conclusion, our results do not support the hypothesis that longer incubation periods are caused by reduced nest attentiveness and corresponding lower T-egg. Univ Missouri, Dept Biol, St Louis, MO 63121 USA; Ohio State Univ, Dept Ecol Evolut & Organismal Biol, Columbus, OH 43210 USA Tieleman, BI (reprint author), Univ Missouri, Dept Biol, 8001 Nat Bridge Rd, St Louis, MO 63121 USA. tielemani@umsl.edu Abouheif E, 1999, EVOL ECOL RES, V1, P895; BOERSMA PD, 1982, AM NAT, V120, P733, DOI 10.1086/284027; BOERSMA PD, 1979, CONDOR, V81, P157, DOI DOI 10.2307/1367282; BOWMAN R., 2002, BIRDS N AM; CAREY C, 2002, AVIAN INCUBATION BEH, P238; Conway CJ, 2000, EVOLUTION, V54, P670; Cramp S., 1988, HDB BIRDS EUROPE MID; Cramp S, 1994, HDB BIRDS EUROPE MID; CRITTENDEN L, 1961, POULTRY SCI, V40, P1736, DOI 10.3382/ps.0401736; DAVIS SD, 1984, AUK, V101, P556; Drent R, 1975, AVIAN BIOL, V5, P333; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; Geffen E, 2000, J ANIM ECOL, V69, P59, DOI 10.1046/j.1365-2656.2000.00370.x; Ghalambor CK, 2002, BEHAV ECOL, V13, P101, DOI 10.1093/beheco/13.1.101; GITTLEMAN JL, 1990, SYST ZOOL, V39, P227, DOI 10.2307/2992183; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Harvey P. H., 1991, COMP METHOD EVOLUTIO; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Lack D., 1968, ECOLOGICAL ADAPTATIO; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; MORENO J, 1989, ARDEA, V77, P107; POOLE A, 1992, BIRDS N AM, V1; POOLE A, 1993, BIRDS N AM, V40; RAHN H, 1974, CONDOR, V76, P147, DOI 10.2307/1366724; REEVE J, 1999, PHYLOGENETIC INDEPEN; Reid J. M., 2002, AVIAN INCUBATION BEH, P314; RICKLEFS RE, 1992, P NATL ACAD SCI USA, V89, P4722, DOI 10.1073/pnas.89.10.4722; RICKLEFS RE, 1984, AM NAT, V123, P710, DOI 10.1086/284232; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; RICKLEFS RE, 1983, AUK, V100, P926; RICKLEFS RE, 1987, J EXP ZOOL, P309; RICKLEFS RE, 1998, AVIAN GROWTH DEV EVO, P31; Ricklefs Robert E., 1993, Current Ornithology, V11, P199; Robinson WD, 2000, J AVIAN BIOL, V31, P151, DOI 10.1034/j.1600-048X.2000.310207.x; Roff D., 1993, EVOLUTION LIFE HIST; Sibley CG, 1990, PHYLOGENY CLASSIFICA; Skutch A. F., 1976, PARENT BIRDS THEIR Y; Skutch A. F, 1960, LIFE HIST CENTRAL AM, VII; Skutch A. F, 1969, LIFE HIST CENTRAL AM, VIII; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SKUTCH AF, 1954, LIFE HIST CENTRAL AM; SKUTCH AF, 1985, NEOTROPICAL ORNITHOL, P575; Stearns S. C., 1992, EVOLUTION LIFE HIST; WEBB DR, 1987, CONDOR, V89, P874, DOI 10.2307/1368537; WESTOBY M, 1995, J ECOL, V83, P531, DOI 10.2307/2261605; WILLIAMS JB, 1984, PHYSIOL ZOOL, V57, P118, DOI 10.1086/physzool.57.1.30155974; Williams Joseph B., 1996, P375; WILLIS EDWIN, 1961, CONDOR, V63, P479, DOI 10.2307/1365280 51 33 33 2 31 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. AUG 2004 18 4 571 577 10.1111/j.0269-8463.2004.00882.x 7 Ecology Environmental Sciences & Ecology 839YT WOS:000222821900011 Bronze 2018-11-12 J Seal, JN; Hunt, JH Seal, JN; Hunt, JH Food supplementation affects colony-level life history traits in the annual social wasp Polistes metricus (Hymenoptera, Vespidae) INSECTES SOCIAUX English Article annual life cycle; food supplementation; life history; Polistes; sex ratio PAPER WASP; COLD-HARDINESS; SIZE; EXCLAMANS; CONSEQUENCES; COMPETITION; BEHAVIOR; FUSCATUS; CASTES; HORNET A field population of Polistes metricus Say near St. Louis, Missouri was supplemented with dilute Apis mellifera honey and Trichoplusia ni caterpillars during the entire colony development period. Offspring were collected at two times to coincide with emergence of worker and reproductive broods. Food supplementation had no effect on nest size, the number of worker offspring, or the size of workers. Supplemented colonies did produce more females in August but female size was unaffected by supplementation. Supplementation had no effect on the number of males produced, but males were slightly larger on supplemented nests. We interpret these findings in the context of social insect life history theory. Univ Missouri, Dept Biol, St Louis, MO 63121 USA Seal, JN (reprint author), Florida State Univ, Dept Biol Sci, B-157, Tallahassee, FL 32306 USA. seal@bio.fsu.edu Seal, Jon/M-7396-2018; Hunt, James/D-1740-2009 Seal, Jon/0000-0001-8013-1438; Bourke A. F. G., 1995, SOCIAL EVOLUTION ANT; Clapperton BK, 1997, NEW ZEAL J ZOOL, V24, P9, DOI 10.1080/03014223.1997.9518101; DUMAN JG, 1978, COMP BIOCHEM PHYS A, V59, P69, DOI 10.1016/0300-9629(78)90308-0; EICKWORT K, 1969, INSECT SOC, V16, P67, DOI 10.1007/BF02224464; GIBO DL, 1976, CAN ENTOMOL, V108, P801, DOI 10.4039/Ent108801-8; Harper J. L., 1977, POPULATION BIOL PLAN; Hodges AC, 2003, ANN ENTOMOL SOC AM, V96, P61, DOI 10.1603/0013-8746(2003)096[0061:PAPOPM]2.0.CO;2; Hunt J.H., 1991, P426; Hunt JH, 1996, J KANSAS ENTOMOL SOC, V69, P362; Hunt JH, 2003, J INSECT PHYSIOL, V49, P785, DOI 10.1016/S0022-1910(03)00115-X; Hunt JH, 1998, ANN ENTOMOL SOC AM, V91, P466, DOI 10.1093/aesa/91.4.466; Hunt JH, 2002, ECOL ENTOMOL, V27, P467, DOI 10.1046/j.1365-2311.2002.00369.x; Hunt JH, 2001, ANN ENTOMOL SOC AM, V94, P555, DOI 10.1603/0013-8746(2001)094[0555:OOTNSF]2.0.CO;2; HUNT JH, 1982, EVOLUTION, V36, P1318, DOI 10.1111/j.1558-5646.1982.tb05501.x; JEANNE RL, 1995, NATURWISSENSCHAFTEN, V82, P296, DOI 10.1007/BF01134530; LIN N, 1972, P ENTOMOL SOC WASH, V74, P148; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; METCALF RA, 1980, AM NAT, V116, P642, DOI 10.1086/283655; NOONAN KM, 1978, SCIENCE, V199, P1354, DOI 10.1126/science.199.4335.1354; Oster GF, 1978, CASTE ECOLOGY SOCIAL; PAGE RE, 1989, AM NAT, V134, P731, DOI 10.1086/285008; POLAK M, 1993, BEHAV ECOL, V4, P325, DOI 10.1093/beheco/4.4.325; REED HC, 1991, ANN ENTOMOL SOC AM, V84, P628, DOI 10.1093/aesa/84.6.628; Reeve H.K., 1991, P99; ROSSI AM, 1988, ECOL ENTOMOL, V13, P437, DOI 10.1111/j.1365-2311.1988.tb00376.x; SCHAAL BA, 1981, AM NAT, V118, P135, DOI 10.1086/283809; SIBLY R, 1988, J THEOR BIOL, V133, P13, DOI 10.1016/S0022-5193(88)80021-3; StatSoft I, 2003, STATISTICA DAT AN SO; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEIN KJ, 1992, ENVIRON ENTOMOL, V21, P148, DOI 10.1093/ee/21.1.148; STOREY KB, 1990, PHILOS T ROY SOC B, V326, P635, DOI 10.1098/rstb.1990.0036; STRASSMANN JE, 1984, INSECT SOC, V31, P291, DOI 10.1007/BF02223613; Turnbull LA, 1999, J ECOL, V87, P899, DOI 10.1046/j.1365-2745.1999.00405.x 33 6 6 1 5 BIRKHAUSER VERLAG AG BASEL VIADUKSTRASSE 40-44, PO BOX 133, CH-4010 BASEL, SWITZERLAND 0020-1812 INSECT SOC Insect. Soc. AUG 2004 51 3 239 242 10.1007/s00040-004-0733-5 4 Entomology Entomology 848KM WOS:000223466300007 2018-11-12 J Cam, E; Monnat, JY; Royle, JA Cam, E; Monnat, JY; Royle, JA Dispersal and individual quality in a long lived species OIKOS English Article CHAIN MONTE-CARLO; BLACK-LEGGED KITTIWAKE; LIFE-HISTORY THEORY; MODELING HETEROGENEITY; BREEDING BIOLOGY; PAIR-BOND; REPRODUCTIVE SUCCESS; POPULATION-DYNAMICS; REGRESSION-ANALYSIS; MAXIMUM-LIKELIHOOD The idea of differences in individual quality has been put forward in numerous long-term studies in long-lived species to explain differences in lifetime production among individuals. Despite the important role of individual heterogeneity in vital rates in demography, population dynamics and life history theory, the idea of "individual quality" is elusive. It is sometimes assumed to be a static or dynamic individual characteristic. When considered as a dynamic trait, it is sometimes assumed to vary deterministically or stochastically, or to be confounded with the characteristics of the habitat. We addressed heterogeneity in reproductive performance among individuals established in higher-quality habitat in a long-lived seabird species. We used approaches to statistical inference based on individual random effects permitting quantification of heterogeneity in populations and assessment of individual variation from the population mean. We found evidence of heterogeneity in breeding probability, not success probability. We assessed the influence of dispersal on individual reproductive potential. Dispersal is likely to be destabilizing in species with high site and mate fidelity. We detected heterogeneity after dispersal, not before. Individuals may perform well regardless of quality before destabilization, including those that recruited in higher-quality habitat by chance, but only higher-quality individuals may be able to overcome the consequences of dispersal. Importantly, results differed when accounting for individual heterogeneity (an increase in mean breeding probability when individuals dispersed), or not (a decrease in mean breeding probability). In the latter case, the decrease in mean breeding probability may result from a substantial decrease in breeding probability in a few individuals and a slight increase in others. In other words, the pattern observed at the population mean level may not reflect what happens in the majority of individuals. Univ Toulouse 3, Lab Evolut & Divers Biol, F-31062 Toulouse 04, France; US Fish & Wildlife Serv, Patuxent Wildlife Res Ctr, Laurel, MD 20708 USA Cam, E (reprint author), Univ Toulouse 3, Lab Evolut & Divers Biol, Bat 4R3,Salle 209,118 Route Narbonne, F-31062 Toulouse 04, France. emmacam@cict.fr Royle, Jeffrey/0000-0003-3135-2167 AEBISCHER NJ, 1995, IBIS, V137, P19, DOI 10.1111/j.1474-919X.1995.tb03215.x; AGRESTI A, 1990, CATEGORICAL DATA ANA; BJORNSTAD ON, 1994, OIKOS, V69, P167, DOI 10.2307/3545298; BRADLEY JS, 1990, J ANIM ECOL, V59, P487, DOI 10.2307/4876; BROOKE MDL, 1978, J ANIM ECOL, V47, P477, DOI 10.2307/3795; Brooks SP, 1998, J COMPUT GRAPH STAT, V7, P434, DOI 10.2307/1390675; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; Bryk AS, 1992, HIERARCHICAL LINEAR; Burnham K. P., 1998, MODEL SELECTION INFE; BURNHAM KP, 1993, BIOMETRICS, V49, P1194, DOI 10.2307/2532261; CADIOU B, 1996, BIRD STUDY, V43, P157; Cam E, 2000, OIKOS, V90, P560, DOI 10.1034/j.1600-0706.2000.900314.x; Cam E, 2000, J ANIM ECOL, V69, P380, DOI 10.1046/j.1365-2656.2000.00400.x; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; Cam E, 2002, J APPL STAT, V29, P163, DOI 10.1080/02664760120108502; CAM E, 1997, THESIS U P M CURIE P; Catry P, 1999, OIKOS, V84, P473, DOI 10.2307/3546426; Chan JSK, 1997, BIOMETRICS, V53, P86, DOI 10.2307/2533099; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHOUDHURY S, 1995, ANIM BEHAV, V50, P413, DOI 10.1006/anbe.1995.0256; CLARK CW, 1993, TRENDS ECOL EVOL, V8, P205, DOI 10.1016/0169-5347(93)90100-4; CLARK CW, 2000, DYNAMIC STATE VARIAB; CLOBERT J, 2000, DISPERSAL; Clutton-Brock TH, 1988, REPROD SUCCESS, P472; COHEN JE, 1986, AM STAT, V40, P32, DOI 10.2307/2683114; Conner Mary M., 1999, Natural Resource Modeling, V12, P109; Cooch EG, 2002, J APPL STAT, V29, P19, DOI 10.1080/02664760120108421; COULSON JC, 1968, NATURE, V217, P478, DOI 10.1038/217478a0; COULSON JC, 1966, J ANIM ECOL, V35, P269, DOI 10.2307/2394; COULSON JC, 1980, P INT ORNITHOL C, V17, P822; Cowles MK, 1996, J AM STAT ASSOC, V91, P883, DOI 10.2307/2291683; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; Danchin E, 1998, ECOLOGY, V79, P2415, DOI 10.1890/0012-9658(1998)079[2415:CRSABH]2.0.CO;2; Danchin E, 2002, BEHAV ECOL SOCIOBIOL, V51, P153, DOI 10.1007/s00265-001-0423-5; DANCHIN E, 1992, Ardea, V80, P171; DHONDT AA, 1994, J ANIM ECOL, V63, P979, DOI 10.2307/5274; Endler JA, 1986, NATURAL SELECTION WI; ENS BJ, 1995, AM NAT, V146, P625, DOI 10.1086/285818; ENS BJ, 1993, ANIM BEHAV, V45, P1199, DOI 10.1006/anbe.1993.1142; Erkanli A, 1999, BIOMETRICS, V55, P1145, DOI 10.1111/j.0006-341X.1999.01145.x; FAIRWEATHER JA, 1995, COLON WATERBIRD, V18, P30, DOI 10.2307/1521396; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Forslund P, 1991, BEHAV ECOL, V2, P116, DOI 10.1093/beheco/2.2.116; Forstmeier W, 2002, J ANIM ECOL, V71, P1, DOI 10.1046/j.0021-8790.2001.00569.x; FREED LA, 1987, AM NAT, V130, P507, DOI 10.1086/284728; GELMAN A, 1997, BAYESIAN DATA ANAL; Hastie TJ, 1990, GEN ADDITIVE MODELS; Hedeker D, 1996, COMPUT METH PROG BIO, V49, P157, DOI 10.1016/0169-2607(96)01720-8; HEDEKER D, 1994, BIOMETRICS, V50, P933, DOI 10.2307/2533433; Hedeker D, 2000, STAT METHODS MED RES, V9, P161, DOI 10.1191/096228000667253473; HEDEKER D, 1999, J STAT SOFTW, V4, P1; HOUGAARD P, 1991, J APPL PROBAB, V28, P695, DOI 10.2307/3214503; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; JOHNSON DH, 1986, P INT BIOM C, V13; JOHNSTON V H, 1987, Colonial Waterbirds, V10, P16, DOI 10.2307/1521226; LEBRETON JD, 1995, BIRD STUDY, V46, P1009; Link WA, 2002, J WILDLIFE MANAGE, V66, P277, DOI 10.2307/3803160; Link WA, 2002, J APPL STAT, V29, P207, DOI 10.1080/02664760120108700a; Littell RC, 1996, SAS SYSTEM MIXED MOD; Marrow P, 1996, PHILOS T R SOC B, V351, P17, DOI 10.1098/rstb.1996.0002; Mau B, 1999, BIOMETRICS, V55, P1, DOI 10.1111/j.0006-341X.1999.00001.x; MAUNDER JE, 1972, AUK, V89, P789; McDonald DB, 1996, ECOLOGY, V77, P2373, DOI 10.2307/2265739; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MILLS JA, 1973, J ANIM ECOL, V42, P147, DOI 10.2307/3409; Morrell CH, 1998, BIOMETRICS, V54, P1560, DOI 10.2307/2533680; Morris DW, 1998, OIKOS, V83, P518, DOI 10.2307/3546679; Newton I., 1989, P441; NICHOLS JD, 1994, ECOLOGY, V75, P2052, DOI 10.2307/1941610; Ollason J.C., 1988, P263; PART T, 1989, J ANIM ECOL, V58, P305, DOI 10.2307/5002; Pen I, 2000, AM NAT, V155, P512, DOI 10.1086/303338; Pledger S, 2002, J APPL STAT, V29, P315, DOI 10.1080/02664760120108737; SCHOENBERG R, 1985, SOCIOL METHODOL, P213; SCOTT DK, 1988, REPROD SUCCESS, P220; Service PM, 2000, AM NAT, V156, P1, DOI 10.1086/303371; SPIEGELHALTER D, 1996, BUGS 0 5 BAYESIAN IN; Spiegelhalter DJ, 2002, J ROY STAT SOC B, V64, P583, DOI 10.1111/1467-9868.00353; Spiegelhalter DJ, 1996, MARKOV CHAIN MONTE C, P1; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steele BM, 1996, BIOMETRICS, V52, P1295, DOI 10.2307/2532845; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VAUPEL JW, 1985, AM STAT, V39, P176, DOI 10.2307/2683925; VAUPEL JW, 1985, SOCIOL METHODOL, P180; Verbeke G., 2000, LINEAR MIXED MODELS; White GC, 2000, METH C CONS, P288; WOOLLER RD, 1992, TRENDS ECOL EVOL, V7, P111, DOI 10.1016/0169-5347(92)90143-Y; ZACK S, 1992, BEHAVIOUR, V123, P194, DOI 10.1163/156853992X00020 90 28 28 0 10 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos AUG 2004 106 2 386 398 10.1111/j.0030-1299.2003.13097.x 13 Ecology Environmental Sciences & Ecology 834QC WOS:000222424600018 2018-11-12 J Forbis, TA; Doak, DF Forbis, TA; Doak, DF Seedling establishment and life history trade-offs in alpine plants AMERICAN JOURNAL OF BOTANY English Article demography; elasticity; life history; longevity; matrix model; perennial; seedling; trade-off POPULATION-DYNAMICS; DEMOGRAPHY; HERB; REPRODUCTION; PATTERNS; GROWTH; CONSEQUENCES; ELASTICITY; VIABILITY Seedling establishment is central to population maintenance for nonclonal plant species. Plants with low recruitment rates are expected to have high survival rates, and life history theory indicates there should be a single curve for the trade-off between recruitment and mortality that applies to most or all plant species. Alpine perennials are thought to have extraordinarily low recruitment rates because of the harsh environment, but the importance of recruitment in the life history of these plants is unknown. Two alpine cushion plant species, Minuartia obtusiloba and Paronychia pulvinata, were used to (1) determine the role of recruitment in population maintenance and (2) determine whether the fecundity/mortality trade-off for these alpine plants falls on or off of the curve for other perennial plant species. Using size-based population projection matrices, we determined that the life history of Minuartia and Paronychia emphasizes recruitment less than that of any other nonclonal species in a literature survey. Estimated maximum life spans of these two species are 200 and 324 yr, respectively, and a regression with other perennial species from the literature indicated that the relationship between fecundity and mortality in these alpine species is consistent with the predicted trade-off curve for perennial species from other environments. Univ Colorado, Niwot Ridge Long Term Ecol Res Program, Boulder, CO 80309 USA; Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95064 USA Forbis, TA (reprint author), Univ Colorado, Niwot Ridge Long Term Ecol Res Program, Boulder, CO 80309 USA. tforbis@tnc.org Arft AM, 1999, ECOL MONOGR, V69, P491, DOI 10.1890/0012-9615(1999)069[0491:ROTPTE]2.0.CO;2; BELL KL, 1980, ARCTIC ALPINE RES, V12, P1, DOI 10.2307/1550585; Berg H, 2002, ECOGRAPHY, V25, P233, DOI 10.1034/j.1600-0587.2002.250211.x; BILLINGS WD, 1968, BIOL REV, V43, P481, DOI 10.1111/j.1469-185X.1968.tb00968.x; Caswell H, 2001, MATRIX POPULATION MO; CHAMBERS JC, 1989, J RANGE MANAGE, V42, P304, DOI 10.2307/3899499; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov EL, 1997, NATURE, V387, P393, DOI 10.1038/387393a0; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; CHARRON D, 1991, J ECOL, V79, P431, DOI 10.2307/2260724; Cipollini M. L., 1993, Plant Species Biology, V8, P117, DOI 10.1111/j.1442-1984.1993.tb00063.x; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; Doak D., 2002, POPULATION VIABILITY; Doak DF, 1999, ECOLOGY, V80, P1537, DOI 10.2307/176545; Ehrlen J, 2002, OIKOS, V98, P308, DOI 10.1034/j.1600-0706.2002.980212.x; Ehrlen J, 2000, ECOLOGY, V81, P1675, DOI 10.2307/177316; ERIKSSON O, 1988, J ECOL, V76, P522, DOI 10.2307/2260610; Forbis TA, 2003, AM J BOT, V90, P1197, DOI 10.3732/ajb.90.8.1197; Franco M, 1996, PHILOS T R SOC B, V351, P1341, DOI 10.1098/rstb.1996.0117; Guardia R, 2000, J ECOL, V88, P950, DOI 10.1046/j.1365-2745.2000.00504.x; Harvey P.H., 1989, Oxford Surveys in Evolutionary Biology, V6, P13; Heppell SS, 2000, ECOLOGY, V81, P654, DOI 10.1890/0012-9658(2000)081[0654:LHAEPP]2.0.CO;2; HORVITZ CC, 1995, ECOL MONOGR, V65, P155, DOI 10.2307/2937136; Kaye TN, 2001, ECOL APPL, V11, P1366, DOI 10.1890/1051-0761(2001)011[1366:TEOFOT]2.0.CO;2; Kendall BE, 1998, ECOL APPL, V8, P184, DOI 10.2307/2641320; KINOSHITA E, 1987, PLANT SPEC BIOL, V2, P15; Kiviniemi K, 2002, PLANT ECOL, V159, P153, DOI 10.1023/A:1015506019670; KOMARKOVA V, 1979, FLORA VEGETATIO, V7; Monson DH, 2000, P NATL ACAD SCI USA, V97, P6562, DOI 10.1073/pnas.120163397; Morris WF, 1998, AM J BOT, V85, P784, DOI 10.2307/2446413; Morris WF, 2002, QUANTITATIVE CONSERV; Oostermeijer JGB, 1996, J ECOL, V84, P153, DOI 10.2307/2261351; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; REES M, 1994, AM NAT, V144, P43, DOI 10.1086/285660; REES M, 1993, NATURE, V366, P150, DOI 10.1038/366150a0; SHEA K, 1994, J ECOL, V82, P951, DOI 10.2307/2261457; Silva JF, 2000, GLOBAL ECOL BIOGEOGR, V9, P403, DOI 10.1046/j.1365-2699.2000.00187.x; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; Silvertown J, 1996, EVOL ECOL, V10, P77, DOI 10.1007/BF01239348; SOKAL RR, 1995, BIOMETRY PRINCIPLES; SOYRINKI N., 1938, Annales Botanici Societatis Zoologicae Botanicae Fennicae 'Vanamo', Helsinki, V11, P1; SVENSSON BM, 1993, J ECOL, V81, P635, DOI 10.2307/2261662; Tremblay Raymond L., 1997, Selbyana, V18, P160; Williams GC, 1966, ADAPTATION NATURAL S 44 52 55 1 40 BOTANICAL SOC AMER INC COLUMBUS OHIO STATE UNIV-DEPT BOTANY, 1735 NEIL AVE, COLUMBUS, OH 43210 USA 0002-9122 AM J BOT Am. J. Bot. JUL 2004 91 7 1147 1153 10.3732/ajb.91.7.1147 7 Plant Sciences Plant Sciences 841XC WOS:000222964400014 21653470 Bronze 2018-11-12 J Blanckenhorn, WU; Heyland, A Blanckenhorn, WU; Heyland, A The quantitative genetics of two life history trade-offs in the yellow dung fly in abundant and limited food environments EVOLUTIONARY ECOLOGY English Article environmental stress; food limitation; genetic correlation; heritability; propagule size; Scathophaga stercoraria BODY-SIZE; EGG SIZE; OFFSPRING SIZE; DROSOPHILA-MELANOGASTER; SCATHOPHAGA-STERCORARIA; PHENOTYPIC CORRELATIONS; CORRELATED CHARACTERS; LARVAL PERFORMANCE; SEXUAL SELECTION; DAPHNIA-MAGNA The trade-offs between body size and development time and between egg size and egg number ( clutch size) are central to life history theory, but evidence for them, particularly in terms of genetic correlations, is equivocal. For the yellow dung fly Scathophaga stercoraria ( Diptera: Scathophagidae), we investigated variation in phenotypic and genetic variances and covariances, i.e. heritabilities and genetic correlations, of these life history traits ( plus diapause) in benign and stressful larval field or adult laboratory food environments. We found both trade-offs to be weak, as evidenced by low phenotypic and genetic correlations, but stronger in the food limited environments. Broad sense heritabilities were generally significant for all traits considered, whereas the narrow sense heritabilities for egg and clutch size were nil. With regard to the question of how environmental stress affects heritabilities, we found a whole range of responses within one single species depending on the traits considered. All three possible patterns occurred, i.e. increased h(2) due to increased V-G or decreased V-P, decreased h(2) due to increased V-P, and no change in h(2) due to increased V-G and V-P. These can be explained by the particular ecological circumstances yellow dung flies face in their natural environment. Nevertheless, the majority of patterns was consistent with the idea that stressful conditions amplify phenotypic differences between genotypes. Such variable responses of traits even within one organism underscores the complexity of this issue and may well explain the multiple patterns found in various organisms. Univ Zurich, Zool Museum, CH-8057 Zurich, Switzerland; Univ Florida, Dept Zool, Gainesville, FL 32611 USA Blanckenhorn, WU (reprint author), Univ Zurich, Zool Museum, Winterthurerstr 190, CH-8057 Zurich, Switzerland. wolfman@zoolmus.unizh.ch Heyland, Andreas/0000-0002-7592-4473 Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; ALATALO RV, 1990, AM NAT, V135, P464, DOI 10.1086/285056; Amano K., 1983, Japanese Journal of Sanitary Zoology, V34, P165; ARNOLD SJ, 1984, EVOLUTION, V38, P720, DOI 10.1111/j.1558-5646.1984.tb00345.x; Becker W A., 1992, MANUAL QUANTITATIVE; BENNETTOVA B, 1981, J INSECT PHYSIOL, V27, P403, DOI 10.1016/0022-1910(81)90019-6; Blanckenhorn WU, 1998, EVOLUTION, V52, P1394, DOI 10.1111/j.1558-5646.1998.tb02021.x; Blanckenhorn WU, 1999, EVOL ECOL, V13, P395, DOI 10.1023/A:1006741222586; Blanckenhorn WU, 1997, OECOLOGIA, V109, P342, DOI 10.1007/s004420050092; Blanckenhorn WU, 2002, GENETICA, V114, P171, DOI 10.1023/A:1015181516827; CARRIERE Y, 1995, OECOLOGIA, V102, P389, DOI 10.1007/BF00329806; CHEVERUD JM, 1988, EVOLUTION, V42, P958, DOI 10.1111/j.1558-5646.1988.tb02514.x; CRNOKRAK P, 1995, HEREDITY, V75, P530, DOI 10.1038/hdy.1995.169; Czesak ME, 2003, EVOLUTION, V57, P1121; Davidowitz G, 2004, EVOL ECOL RES, V6, P49; DeMoed GH, 1997, GENET RES, V70, P35, DOI 10.1017/S0016672397002930; EBERT D, 1993, HEREDITY, V70, P335, DOI 10.1038/hdy.1993.48; EBERT D, 1993, ARCH HYDROBIOL, P453; FALCONER DS, 1989, INTRO QUANTITATIVE G; FOSTER W, 1967, SCIENCE, V158, P1596, DOI 10.1126/science.158.3808.1596; FOX CW, 1994, HEREDITY, V73, P509, DOI 10.1038/hdy.1994.149; FRY JD, 1992, EVOLUTION, V46, P540, DOI 10.1111/j.1558-5646.1992.tb02057.x; GEBHARDTHENRICH SG, 1991, J EVOLUTION BIOL, V4, P341, DOI 10.1046/j.1420-9101.1991.4030341.x; GIBBONS D S, 1980, Entomologist's Monthly Magazine, V116, P25; Grill CP, 1997, HEREDITY, V78, P261; Hoffmann A.A., 1991, EVOLUTIONARY GENETIC; Hoffmann AA, 1999, TRENDS ECOL EVOL, V14, P96, DOI 10.1016/S0169-5347(99)01595-5; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Jann P, 1999, FUNCT ECOL, V13, P51, DOI 10.1046/j.1365-2435.1999.00269.x; Jann P, 2000, J EVOLUTION BIOL, V13, P927, DOI 10.1046/j.1420-9101.2000.00230.x; Kause A, 1999, J EVOLUTION BIOL, V12, P471, DOI 10.1046/j.1420-9101.1999.00045.x; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Lazarevic J, 1998, FUNCT ECOL, V12, P141, DOI 10.1046/j.1365-2435.1998.00166.x; LESSELLS CM, 1989, J EVOLUTION BIOL, V2, P457, DOI 10.1046/j.1420-9101.1989.2060457.x; Lynch M, 1998, GENETICS ANAL QUANTI; Mappes T, 2004, EVOLUTION, V58, P645, DOI 10.1111/j.0014-3820.2004.tb01686.x; Merila J, 1997, EVOLUTION, V51, P526, DOI 10.1111/j.1558-5646.1997.tb02440.x; MOLLER A. P., 1997, ASYMMETRY DEV STABIL; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; OJANEN M, 1979, ORNIS SCAND, V10, P22, DOI 10.2307/3676340; PRICE T, 1992, TRENDS ECOL EVOL, V7, P307, DOI 10.1016/0169-5347(92)90229-5; Roff D. A., 1997, EVOLUTIONARY QUANTIT; Roff DA, 1996, EVOLUTION, V50, P1392, DOI 10.1111/j.1558-5646.1996.tb03913.x; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; ROFF DA, 1995, HEREDITY, V74, P481, DOI 10.1038/hdy.1995.68; Roff Derek A., 1992; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; Schwarzkopf L, 1999, AM NAT, V154, P333, DOI 10.1086/303242; SHINE R, 1988, AM NAT, V131, P124, DOI 10.1086/284778; SIMONS AM, 1994, EVOLUTION, V48, P1637, DOI 10.1111/j.1558-5646.1994.tb02201.x; Sinervo B, 1996, EVOLUTION, V50, P1314, DOI 10.1111/j.1558-5646.1996.tb02371.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SNYDER RJ, 1991, COPEIA, P526; Stearns S. C., 1992, EVOLUTION LIFE HIST; Su GS, 1997, AQUACULTURE, V154, P115, DOI 10.1016/S0044-8486(97)00050-1; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VIA S, 1984, EVOLUTION, V38, P896, DOI 10.1111/j.1558-5646.1984.tb00360.x; Weigensberg I, 1996, EVOLUTION, V50, P2149, DOI 10.1111/j.1558-5646.1996.tb03605.x; WOOTTON RJ, 1979, S ZOOL SOC LOND, V44, P133; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 62 22 23 0 17 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. JUL 2004 18 4 385 402 10.1007/s10682-004-2680-z 18 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 918GM WOS:000228530300006 2018-11-12 J Griebeler, EM; Bohning-Gaese, K Griebeler, EM; Bohning-Gaese, K Evolution of clutch size along latitudinal gradients: revisiting Ashmole's hypothesis EVOLUTIONARY ECOLOGY RESEARCH English Article clutch size; cost of reproduction; density dependence; fecundity; seasonality of resources; survival; tropical vs temperate TITS PARUS-CAERULEUS; BROOD-MANIPULATION EXPERIMENTS; AVIAN LIFE-HISTORIES; SPECIES RICHNESS; PIED FLYCATCHERS; SURVIVAL RATES; CLIMATE-CHANGE; PARENTAL CARE; TRADE-OFF; REPRODUCTION Birds display a latitudinal gradient in clutch size. Ashmole's hypothesis explains this geographic pattern by differences in seasonality of resources resulting in different levels of winter mortality. Ashmole assumed that populations are strongly limited by resources during the non-breeding season. and the level of resources available in the breeding season relative to the non-breeding season determines clutch size. The main problem with Ashmole's hypothesis is that it does not take into consideration trade-offs of reproduction. Applying a simulation approach and concepts of life-history theory, we therefore re-evaluate the hypothesis. In particular, we analyse four alternative mechanisms that may generate a gradient in clutch size: (1) differences in levels of seasonality of resources causing winter mortality and no cost of reproduction (= Ashmole's hypothesis): (2) differences in levels of seasonality of resources and a cost of reproduction that may act on juveniles and/or adults (3) no differences in levels of seasonality of resources but there is a cost of reproduction: and (4) no differences in levels of seasonality of resources and no cost of reproduction. To model cost of reproduction, three general cost functions were assumed: linear, hyperbolic or exponential decrease in future survival of individuals for increasing clutch sizes. Whereas the mechanisms implemented in alternatives (1), (3) and (4) did not generate a gradient in clutch size, those given in alternative (2) were able to generate this pattern. This suggests that Ashmole identified seasonality of resources as one important mechanism for geographic variation in clutch size, but did not recognize cost of reproduction as a second mechanism. In particular. we observed the gradient in our simulations in two situations: (i) linear or hyperbolic cost of reproduction for offspring and no costs for parents, and (ii) linear or hyperbolic cost of reproduction for offspring together with any type of cost of reproduction for parents. In these situations, widely accepted differences and correlations among life-table variables of tropical and temperate avian species did hold. Our results are valid for a wide range of geographic clutch size variation that may be the result of adaptation to seasonal environments. Univ Mainz, Zool Inst, Dept Ecol, D-55099 Mainz, Germany Griebeler, EM (reprint author), Univ Mainz, Zool Inst, Dept Ecol, POB 3980, D-55099 Mainz, Germany. griebel@oekologie.biologie.uni-mainz.de ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Bauer H.-G., 1995, VOGEL BADEN WURTTEMB; Bell CP, 1996, BIRD STUDY, V43, P333, DOI 10.1080/00063659609461026; Blondel J, 1998, OECOLOGIA, V117, P80, DOI 10.1007/s004420050634; Bohning-Gaese K, 2000, EVOL ECOL RES, V2, P823; Brown J.H., 1998, BIOGEOGRAPHY; Brown WP, 2002, ECOLOGY, V83, P958, DOI 10.2307/3071905; Cardillo M, 2002, J ANIM ECOL, V71, P79, DOI 10.1046/j.0021-8790.2001.00577.x; CAVE A J, 1968, Netherlands Journal of Zoology, V18, P313; Cody M. L., 1971, P461; DeAngelis D.L., 1992, INDIVIDUAL BASED MOD; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Fargallo JA, 1999, ARDEA, V87, P261; Golet GH, 1999, OECOLOGIA, V120, P530, DOI 10.1007/s004420050887; Griebeler EM, 2002, ECOL MODEL, V156, P43, DOI 10.1016/S0304-3800(02)00131-X; Hemborg C, 1999, J ANIM ECOL, V68, P429, DOI 10.1046/j.1365-2656.1999.00295.x; Hurlbert AH, 2003, AM NAT, V161, P83, DOI 10.1086/345459; Johannesen E, 2003, J AVIAN BIOL, V34, P198, DOI 10.1034/j.1600-048X.2003.03007.x; Johnston JP, 1997, AM NAT, V150, P771, DOI 10.1086/286093; KAISER H, 1979, FORTS ZOOL, V25, P109; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; LACK D, 1948, EVOLUTION, V2, P95, DOI 10.2307/2405371; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D., 1968, ECOLOGICAL ADAPTATIO; LACK D, 1954, NATURAL REGULATION A; Law R, 1979, POPULATION DYNAMICS, P81; Lemoine N, 2003, CONSERV BIOL, V17, P577, DOI 10.1046/j.1523-1739.2003.01389.x; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; MAY RM, 1986, THEORETICAL ECOLOGY; MEBS TH, 1964, J ORNITHOL, V105, P247, DOI 10.1007/BF01672243; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; MURPHY MT, 2000, AUK, V117, P909; MURRAY BG, 1985, ORNITHOL MONOGR, V36, P505; Newton I, 1979, POPULATION ECOLOGY R; NORRIS K, 1994, J ANIM ECOL, V63, P601, DOI 10.2307/5226; NORSTROM G, 1963, ORNIS FENNICA, V48, P81; Olsson V., 1958, Acta Vertebratica, V1, P91; Orell M, 2002, J ANIM ECOL, V71, P55, DOI 10.1046/j.0021-8790.2001.00575.x; Peach WJ, 2001, OIKOS, V93, P235, DOI 10.1034/j.1600-0706.2001.930207.x; Pearl R, 1935, Q REV BIOL, V10, P60, DOI 10.1086/394476; PETTIFOR RA, 1993, J ANIM ECOL, V62, P131, DOI 10.2307/5488; PETTIFOR RA, 1993, J ANIM ECOL, V62, P145, DOI 10.2307/5489; RICKLEFS RE, 1980, AUK, V97, P38; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; RICKLEFS RE, 1997, ECOL MONOGR, V67, P22; Russell EM, 2000, EMU, V100, P377, DOI 10.1071/MU0005S; Sanz JJ, 2003, ECOGRAPHY, V26, P45, DOI 10.1034/j.1600-0587.2003.03251.x; SCHAEFER HC, 2003, ECOGRAPHY, V26, P45; Schifferli A., 1964, Ornithologische Beobachter, V61, P81; SIIKAMAKI P, 1994, FUNCT ECOL, V8, P587, DOI 10.2307/2389919; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Skutch AF, 1967, LIFE HIST CENTRAL AM; SKUTCH AF, 1985, NEOTROPICAL ORNITHOL, P575; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tavecchia G, 2001, ECOLOGY, V82, P165, DOI 10.1890/0012-9658(2001)082[0165:SAARVI]2.0.CO;2; Van Zyl AJ, 1999, OSTRICH, V70, P127, DOI 10.1080/00306525.1999.9634527; Veasey JS, 2001, J ANIM ECOL, V70, P20, DOI 10.1046/j.1365-2656.2001.00476.x; Vygodskaya N, 1995, J BIOGEOGR, V22, P433, DOI 10.2307/2845940; Yom-Tov Y, 2002, EVOL ECOL RES, V4, P673 60 20 21 0 24 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 EVOL ECOL RES Evol. Ecol. Res. JUL 2004 6 5 679 694 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 833TK WOS:000222362000003 2018-11-12 J Milonoff, M; Poysa, H; Runko, P; Ruusila, V Milonoff, M; Poysa, H; Runko, P; Ruusila, V Brood rearing costs affect future reproduction in the precocial common goldeneye Bucephala clangula JOURNAL OF AVIAN BIOLOGY English Article LESSER SNOW GOOSE; AVIAN CLUTCH SIZE; EGG-PRODUCTION; PARENTAL INVESTMENT; CANADA GEESE; TRADE-OFF; INCUBATION; BEHAVIOR; FITNESS; BUFFLEHEAD Life-history theory assumes a trade-off between current reproductive effort and future reproductive success. There are a large number of studies demonstrating reproductive trade-offs in different animal taxa, particularly in birds. Most bird studies have focused on the costs of chick rearing in altricial species. These costs have been assumed to be low in precocial species, but this aspect has been little studied. We used long-term individual reproductive data from the common goldeneye Bucephala clangula, an iteroparous precocial duck with uniparental female care, to examine whether brood rearing carries costs that affect future reproductive performance. All females were experienced breeders, and possible differences in female quality were ruled out. We compared within-individual (between-year) changes in clutch size, hatching date and body mass between females that had reared a brood in the previous year and females that had not. It turned out that brood rearing involved a cost in terms of clutch size and hatching date the next year, but not in terms of body mass: females that had reared a brood in the previous year laid relatively smaller clutches and laid relatively later than females that had not reared a brood. Our results show that normal brood rearing in a precocial species involves costs that affect future reproduction. Joensuu Game & Fisheries Res, Finnish Game & Fisheries Res Inst, FIN-80100 Joensuu, Finland Poysa, H (reprint author), Joensuu Game & Fisheries Res, Finnish Game & Fisheries Res Inst, Kauppakatu 18-20, FIN-80100 Joensuu, Finland. hannu.poysa@rkt1.fi Poysa, Hannu/C-2601-2014 Ahlund M, 2001, NATURE, V414, P600, DOI 10.1038/414600b; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Cohen J, 1988, STAT POWER ANAL BEHA; DOW H, 1983, J ANIM ECOL, V52, P681, DOI 10.2307/4447; DOW H, 1984, J ANIM ECOL, V53, P679, DOI 10.2307/4543; Eadie J.M., 1995, Birds of North America, V170, P1; Eadie JM, 1998, AM NAT, V151, P397, DOI 10.1086/286128; EADIE JM, 1989, THESIS U BRIT COLUMB; FORSLUND P, 1993, ANIM BEHAV, V45, P965, DOI 10.1006/anbe.1993.1115; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; HEANEY V, 1995, P ROY SOC B-BIOL SCI, V261, P361, DOI 10.1098/rspb.1995.0160; Heaney V, 1996, P ROY SOC B-BIOL SCI, V263, P1719, DOI 10.1098/rspb.1996.0251; Lessells C.M., 1991, P32; LESSELLS CM, 1987, ARDEA, V75, P189; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; Loonen MJJE, 1999, J ANIM ECOL, V68, P753, DOI 10.1046/j.1365-2656.1999.00325.x; MALLORY ML, 1993, CONDOR, V95, P849, DOI 10.2307/1369422; Milonoff M, 2002, IBIS, V144, P585, DOI 10.1046/j.1474-919X.2002.00098.x; Milonoff M, 1998, WILDLIFE BIOL, V4, P73; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; Monaghan P, 1998, P ROY SOC B-BIOL SCI, V265, P1731, DOI 10.1098/rspb.1998.0495; MONAGHAN P, 1995, P ROY SOC B-BIOL SCI, V259, P189, DOI 10.1098/rspb.1995.0027; Nager RG, 2001, J AVIAN BIOL, V32, P159, DOI 10.1034/j.1600-048X.2001.320209.x; Poysa H, 1997, BEHAV ECOL SOCIOBIOL, V40, P101, DOI 10.1007/s002650050321; POYSA H, 1992, BEHAVIOUR, V123, P247, DOI 10.1163/156853992X00048; Reid JM, 2000, P ROY SOC B-BIOL SCI, V267, P37, DOI 10.1098/rspb.2000.0963; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Rohwer Frank C., 1992, P486; Ruusila V, 1998, ANIM BEHAV, V55, P307, DOI 10.1006/anbe.1997.0630; SAVARD JPL, 1987, CAN J ZOOL, V65, P1548, DOI 10.1139/z87-239; SAVARD JPL, 1989, CONDOR, V91, P198, DOI 10.2307/1368163; SAVARD JPL, 1982, CAN J ZOOL, V60, P3439, DOI 10.1139/z82-433; SEDDON LM, 1994, CAN J ZOOL, V72, P533, DOI 10.1139/z94-071; SIIKAMAKI P, 1995, J AVIAN BIOL, V26, P76, DOI 10.2307/3677215; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Steidl RJ, 1997, J WILDLIFE MANAGE, V61, P270, DOI 10.2307/3802582; Thomson DL, 1998, BIOL REV, V73, P293, DOI 10.1017/S0006323198005180; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; Wiebe KL, 2000, BEHAV ECOL SOCIOBIOL, V48, P463; WILKINSON L, 1992, SYSTAT SYSTEM STAT; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILLIAMS TD, 1994, AUK, V111, P563; Winkler D.W., 1983, Current Ornithology, V1, P33; Zicus MC, 1996, WILSON BULL, V108, P61 46 29 29 1 17 BLACKWELL MUNKSGAARD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0908-8857 J AVIAN BIOL J. Avian Biol. JUL 2004 35 4 344 351 10.1111/j.0908-8857.2004.03215.x 8 Ornithology Zoology 843LR WOS:000223085900008 2018-11-12 J Karvonen, A; Kirsi, S; Hudson, PJ; Valtonen, ET Karvonen, A; Kirsi, S; Hudson, PJ; Valtonen, ET Patterns of cercarial production from Diplostomum spathaceum: terminal investment or bet hedging? PARASITOLOGY English Article transmission; life-history; terminal investment; bet hedging; parasite-induced mortality; Diplostomum spathaceum; Trematoda; Lymnaea stagnalis SCHISTOSOMA-MANSONI CERCARIAE; BIOMPHALARIA-GLABRATA; TREMATODE CERCARIAE; REPRODUCTIVE EFFORT; HALIPEGUS-OCCIDUALIS; HELISOMA-ANCEPS; LIFE-CYCLES; TRANSMISSION; EMERGENCE; BEHAVIOR In the production of the infective cercariae of trematodes, the terminal investment hypothesis of life-history theory predicts that the rate of host exploitation and cercarial production should increase during the period of cercarial shedding since the reproductive value of the parasite decreases during this period. In contrast, a bet hedging hypothesis that focuses Oil the success of transmission when host contact rate is variable predicts that cercarial production should decrease in an attempt to keep the host alive for longer and thus would increase the probability Of Successful transmission. We examined these two hypotheses tinder laboratory conditions and recorded the production of Diplostomum spathaceum cercariae from naturally infected snail hosts, Lymnaea stagnalis. The average number of cercariae produced per day decreased as the snail]test approached death counter to the terminal investment hypothesis. The finding supports the prediction of the bet hedging hypothesis and implies that the pattern of cercarial production may be explained by reduced virulence of the parasite within the snails to ensure extended total production time of cercariae. Nevertheless, survival of infected snails was still lower than uninfected snails suggesting that ultimately the infection still increased snail mortality rate. Cercarial production varied between days but was not cyclic, probably because of the physiology of the sporocysts within snails. Fewer cercariae were released at night, which may increase transmission efficiency to diurnally-active fish hosts. The mechanisms associated with daily cercarial production are discussed. Univ Jyvaskyla, Dept Biol & Environm Sci, FI-40014 Jyvaskyla, Finland; Penn State Univ, Dept Biol, Mueller Lab 208, University Pk, PA 16802 USA; Univ Stirling, Dept Biol Sci, Stirling FK9 4LA, Scotland Karvonen, A (reprint author), Univ Jyvaskyla, Dept Biol & Environm Sci, POB 35, FI-40014 Jyvaskyla, Finland. anskarv@bytl.jyu.fi Anderson RM, 1991, INFECT DIS HUMANS DY; ASCH HL, 1972, EXP PARASITOL, V31, P350, DOI 10.1016/0014-4894(72)90096-3; BECKER W, 1980, Z PARASITENKD, V63, P101, DOI 10.1007/BF00927526; Boissier J, 2003, J PARASITOL, V89, P429, DOI 10.1645/0022-3395(2003)089[0429:ABOTSB]2.0.CO;2; BURROUGH RJ, 1978, J FISH BIOL, V13, P19, DOI 10.1111/j.1095-8649.1978.tb03409.x; Candolin U, 2000, ANIM BEHAV, V60, P417, DOI 10.1006/anbe.2000.1481; Chappell L.H., 1994, P59; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; COMBES C, 1994, PARASITOLOGY, V109, pS3, DOI 10.1017/S0031182000085048; COMBES C, 2001, PARASITISM ECOLOGY E; Ericsson G, 2001, ECOLOGY, V82, P1613, DOI 10.1890/0012-9658(2001)082[1613:ARREAS]2.0.CO;2; Fenton A, 2002, OIKOS, V96, P92, DOI 10.1034/j.1600-0706.2002.960110.x; Fried B, 1997, ADV TREMATODE BIOL; Fried Bernard, 1997, P1; GOATER TM, 1989, J PARASITOL, V75, P553, DOI 10.2307/3282905; HAAS W, 1994, PARASITOLOGY, V109, pS15, DOI 10.1017/S003118200008505X; Helfman G.S., 1986, P366; Jokela J, 1999, OECOLOGIA, V119, P320, DOI 10.1007/s004420050792; Karvonen A, 2003, PARASITOLOGY, V127, P217, DOI 10.1017/S0031182003003561; KENWARD R, 1987, WILDLIFE RADIO TAGGI; Lauckner G., 1986, P391; LEWIS MC, 1989, PARASITOLOGY, V99, P215, DOI 10.1017/S0031182000058662; McCarthy HO, 2002, J PARASITOL, V88, P910, DOI 10.1645/0022-3395(2002)088[0910:LHALCP]2.0.CO;2; MEULEMAN E A, 1972, Netherlands Journal of Zoology, V22, P355; Parker GA, 2003, NATURE, V425, P480, DOI 10.1038/nature02012; PENNYCUICK L, 1971, PARASITOLOGY, V63, P407, DOI 10.1017/S0031182000079932; REES G, 1948, PARASITOLOGY, V38, P228, DOI 10.1017/S0031182000023179; Rizzoli A., 2002, ECOLOGY WILDLIFE DIS; SHOSTAK AW, 1990, J PARASITOL, V76, P790, DOI 10.2307/3282796; Stearns S. C., 1992, EVOLUTION LIFE HIST; THERON A, 1984, J PARASITOL, V70, P652, DOI 10.2307/3281744; Valtonen ET, 1997, ANN ZOOL FENN, V34, P47; Vayrynen T, 2000, ANN ZOOL FENN, V37, P189; Weladji RB, 2002, OECOLOGIA, V131, P79, DOI 10.1007/s00442-001-0864-6; WIESER W, 1991, CYPRINID FISHES SYST, P426; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WOOTTEN R, 1974, J HELMINTHOL, V48, P73, DOI 10.1017/S0022149X00022628; Wootton R. J., 1990, ECOLOGY TELEOST FISH 38 41 42 0 11 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0031-1820 1469-8161 PARASITOLOGY Parasitology JUL 2004 129 1 87 92 10.1017/S0031182004005281 6 Parasitology Parasitology 842BI WOS:000222977100009 15267115 2018-11-12 J Guinnee, MA; West, SA; Little, TJ Guinnee, MA; West, SA; Little, TJ Testing small clutch size models with Daphnia AMERICAN NATURALIST English Article clutch size; Daphnia magna; egg size; litter size; resource allocation; trade-off OPTIMAL OFFSPRING SIZE; LIFE-HISTORY; 1ST REPRODUCTION; MATERNAL SIZE; SEX-CHANGE; AGE; ALLOCATION; CONSEQUENCES; PLASTICITY; INVARIANTS Life-history theory predicts that for small clutches, variance in egg size (between individuals) should decrease in a predictable invariant manner as clutch size increases. To test this, we studied Daphnia magna at 350 different food treatments and recorded the number of eggs and the volume of each egg for their first clutch. As predicted, we found that the relationship between clutch size and resources devoted to reproduction was linear, variance in egg volume decreased with increasing clutch size, and resources were shared relatively equally between the eggs in a clutch. However, we found that the rate at which the range of egg volumes decreased with clutch size was slower than predicted. We discuss possible explanations for this discrepancy, including a lower limit on the volume of eggs that are produced and selection for smaller eggs when food is abundant. Consistent with this, we found that mean egg volume decreased with increasing clutch size. Univ Edinburgh, Inst Cell Anim & Populat Biol, Edinburgh EH9 3JT, Midlothian, Scotland Guinnee, MA (reprint author), Univ Edinburgh, Inst Cell Anim & Populat Biol, W Mains Rd, Edinburgh EH9 3JT, Midlothian, Scotland. meghan.gannon@ed.ac.uk; stu.west@ed.ac.uk; tom.little@ed.ac.uk West, Stuart/M-3608-2014; Little, Tom/B-7890-2009 West, Stuart/0000-0003-2152-3153; Little, Tom/0000-0002-8945-0416 Wellcome Trust Allsop DJ, 2003, J EVOLUTION BIOL, V16, P921, DOI 10.1046/j.1420-9101.2003.00590.x; Allsop DJ, 2003, NATURE, V425, P783, DOI 10.1038/425783a; BELL G, 1983, OECOLOGIA, V60, P378, DOI 10.1007/BF00376855; BOERSMA M, 1995, ECOLOGY, V76, P1251, DOI 10.2307/1940932; BRADLEY MC, 1991, BIOL J LINN SOC, V44, P325, DOI 10.1111/j.1095-8312.1991.tb00623.x; Charnov EL, 2000, EVOL ECOL RES, V2, P1067; CHARNOV EL, 1995, EVOL ECOL, V9, P57, DOI 10.1007/BF01237697; CHARNOV EL, 1995, NATURE, V376, P418, DOI 10.1038/376418a0; Charnov EL, 1997, NATURE, V387, P393, DOI 10.1038/387393a0; Charnov EL, 2001, EVOL ECOL RES, V3, P521; Charnov Eric L., 1993, P1; Downhower JF, 1998, P NATL ACAD SCI USA, V95, P6208, DOI 10.1073/pnas.95.11.6208; EBERT D, 1994, ECOLOGY, V75, P568, DOI 10.2307/1939560; EBERT D, 1993, ARCH HYDROBIOL, P453; Gemmill AW, 1999, J EVOLUTION BIOL, V12, P1148, DOI 10.1046/j.1420-9101.1999.00117.x; GLAZIER DS, 1992, ECOLOGY, V73, P910, DOI 10.2307/1940168; GLIWICZ AM, 1992, OECOLOGIA BERLIN, V9, P463; Godfray HCJ., 1994, PARASITOIDS BEHAV EV; GOULDEN CE, 1987, OECOLOGIA, V72, P28, DOI 10.1007/BF00385040; GREEN J, 1966, J ANIM ECOL, V35, P77, DOI 10.2307/2691; HOOD G, 2002, POPTOOLS VERSION 2 5; HUTCHINSON G. E., 1951, ECOLOGY, V32, P571, DOI 10.2307/1931745; KLUTTGEN B, 1994, WATER RES, V28, P743, DOI 10.1016/0043-1354(94)90157-0; LAMPERT W, 1993, ECOLOGY, V74, P1455, DOI 10.2307/1940074; Little TJ, 2002, J EVOLUTION BIOL, V15, P796, DOI 10.1046/j.1420-9101.2002.00436.x; Little TJ, 2001, EVOLUTION, V55, P1146; LYNCH M, 1989, ECOLOGY, V70, P246, DOI 10.2307/1938430; Mayhew PJ, 1998, BEHAV ECOL, V9, P54, DOI 10.1093/beheco/9.1.54; Rees M, 1997, OIKOS, V78, P116, DOI 10.2307/3545807; RICE WR, 1994, P NATL ACAD SCI USA, V91, P225, DOI 10.1073/pnas.91.1.225; Roff Derek A., 1992; SAS Institute, 1999, SAS SYST VERS 8 0; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; STIBOR H, 1994, FUNCT ECOL, V8, P97, DOI 10.2307/2390117; TESSIER AJ, 1991, ECOLOGY, V72, P468, DOI 10.2307/2937188; TESSIER AJ, 1989, OIKOS, V56, P269, DOI 10.2307/3565347; THRELKELD ST, 1979, LIMNOL OCEANOGR, V24, P601, DOI 10.4319/lo.1979.24.4.0601; WEIDER LJ, 1993, OIKOS, V67, P385, DOI 10.2307/3545351; West SA, 2001, BEHAV ECOL, V12, P577, DOI 10.1093/beheco/12.5.577; WESTOBY M, 1992, TRENDS ECOL EVOL, V7, P368, DOI 10.1016/0169-5347(92)90006-W 41 20 20 0 7 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. JUN 2004 163 6 880 887 10.1086/386553 8 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 832LE WOS:000222268200010 15266385 2018-11-12 J Ledder, G; Logan, JD; Joern, A Ledder, G; Logan, JD; Joern, A Dynamic energy budget models with size-dependent hazard rates JOURNAL OF MATHEMATICAL BIOLOGY English Article dynamic energy budget models; predation; life history theory GROWTH; ALLOCATION; STRATEGIES; REPRODUCTION; EVOLUTION We formulate and analyze two dynamic energy budget models, a net assimilation model with constant allocation strategy and a net production model with a 2-stage allocation strategy, with the objective of determining strategies that maximize the expected lifetime reproductive energy. The per capita death rate depends on the organism's size, as for example when the main cause of death is predation. In the analysis of the net production model, the size at maturity is calculated along with the probability of reaching that size. We show that a small probability of survival to maturity is incompatible with the simple assumption of an exponential survival probability. We demonstrate that when the hazard rate is significantly greater for small individuals than large ones, it is possible for the optimum strategy to be for an individual to grow to a large size in spite of an arbitrarily small probability of survival to maturity. Numerical simulations indicate how the optimal allocation strategies depend on the parameter values. Univ Nebraska, Dept Math, Lincoln, NE 68588 USA; Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA Ledder, G (reprint author), Univ Nebraska, Dept Math, Lincoln, NE 68588 USA. gledder@math.unl.edu COHEN D, 1971, J THEOR BIOL, V33, P299, DOI 10.1016/0022-5193(71)90068-3; GURNEY WSC, 1998, ECOLOGICAL DYNAMICS; KING D, 1982, THEOR POPUL BIOL, V22, P1, DOI 10.1016/0040-5809(82)90032-6; Kooijman S. A. L. M, 2000, DYNAMIC ENERGY MASS; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; LEON JA, 1976, J THEOR BIOL, V60, P301, DOI 10.1016/0022-5193(76)90062-X; Lika K, 2000, J MATH BIOL, V41, P361, DOI 10.1007/s002850000049; MIRMIRANI M, 1978, THEOR POPUL BIOL, V13, P304, DOI 10.1016/0040-5809(78)90049-7; Nisbet RM, 2000, J ANIM ECOL, V69, P913, DOI 10.1046/j.1365-2656.2000.00448.x; Noonburg EG, 1998, FUNCT ECOL, V12, P211, DOI 10.1046/j.1365-2435.1998.00174.x; Pearl R, 1935, Q REV BIOL, V10, P60, DOI 10.1086/394476; PERRIN N, 1992, AM NAT, V139, P1344, DOI 10.1086/285390; Roff Derek A., 1992; ROSS AH, 1990, FUNCT ECOL, V4, P777, DOI 10.2307/2389444; SIBLY RM, 1986, EVOLUTIONARY PHYSL E; STEARNS SC, 1992, EVOLUTON LIFE HIST; VINCENT TL, 1980, THEOR POPUL BIOL, V17, P215, DOI 10.1016/0040-5809(80)90007-6; ZIOLKO M, 1983, MATH BIOSCI, V64, P127, DOI 10.1016/0025-5564(83)90032-9 18 5 6 0 4 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0303-6812 1432-1416 J MATH BIOL J. Math. Biol. JUN 2004 48 6 605 622 10.1007/s00285-003-0263-1 18 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology 823VV WOS:000221642700002 15164225 2018-11-12 J Steer, BLM; Jackson, GD Steer, BLM; Jackson, GD Temporal shifts in the allocation of energy in the arrow squid, Nototodarus gouldi: sex-specific responses MARINE BIOLOGY English Article FLEXIBLE REPRODUCTIVE STRATEGIES; CALAMARY SEPIOTEUTHIS-AUSTRALIS; SHORT-FINNED SQUID; ILLEX-ILLECEBROSUS; IDIOSEPIUS-PYGMAEUS; LOLIGO-FORBESI; PHOTOLOLIGO SP; CEPHALOPODA; OMMASTREPHIDAE; MATURATION Squid typically display considerable intra-specific plasticity in size and age-at-maturity in response to ambient environmental conditions, yet little is known of the mechanisms driving these variations. We examined the intra-specific variability in Nototodarus gouldi reproductive traits to determine patterns of energy allocation between somatic and reproductive processes over short temporal scales. Females caught during the cool months of May and July were larger, had slower lifetime growth, lower gonad investment, and better somatic condition than females caught during the warmer months, suggesting a trade-off between gonad investment and somatic condition in females. On the other hand, males showed a tight coupling between somatic condition and gonad investment for most months, with increases in somatic and gonad tissue occurring concurrently. In male squid, an increase in lifetime growth rate was coupled with an increase in the relative weights of somatic and reproductive structures, whereas in females, percent increase in body weight per day was correlated only with gonad development. Patterns of repro-somatic investment in mature females had implications for spawning strategies, since female squid with higher levels of gonad investment apparently released batches of eggs together as a group, regardless of body size, whereas females with low gonad investment possibly spawned their eggs independently of one another. In terms of life-history theory, male squid were able to respond rapidly to environmental fluctuations without compromising either the gonad or the soma. However, although mature females did not appear to respond as quickly to ambient conditions, female squid possibly produced two different reproductive strategies, possibly to maximise offspring survival in either a stable or a variable environment. It seems from our study that monthly variations in ambient conditions may have large effects on life-history strategies. Univ Tasmania, Inst Antarctic & So Ocean Studies, Hobart, Tas 7001, Australia Steer, BLM (reprint author), Univ Tasmania, Inst Antarctic & So Ocean Studies, Private Bag 77, Hobart, Tas 7001, Australia. bmcgrath@utas.edu.au Arkhipkin A, 2000, ICES J MAR SCI, V57, P31, DOI 10.1006/jmsc.1999.0488; BOYLE PR, 1995, MAR BIOL, V121, P501, DOI 10.1007/BF00349459; BOYLE PR, 1990, FISH RES, V8, P303, DOI 10.1016/0165-7836(90)90001-C; Boyle PR, 1996, PHILOS T ROY SOC B, V351, P985, DOI 10.1098/rstb.1996.0089; Butler A., 2002, ASSESSMENT CONSERVAT; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; Calow P, 1987, CEPHALOPOD LIFE CYCL, VII, P351; CHAI FS, 1974, THAL JUGOSLAVICA, V10, P121; COLLINS MA, 1995, J MAR BIOL ASSOC UK, V75, P621, DOI 10.1017/S0025315400039059; Forsythe J.W., 1987, P135; Gonzalez AF, 1996, SARSIA, V81, P107, DOI 10.1080/00364827.1996.10413616; Green AJ, 2001, ECOLOGY, V82, P1473, DOI 10.2307/2680003; HARMAN RF, 1989, MAR BIOL, V101, P513, DOI 10.1007/BF00541653; Hopper KR, 1999, ANNU REV ENTOMOL, V44, P535, DOI 10.1146/annurev.ento.44.1.535; HUGHES RN, 1980, OECOLOGIA, V47, P130, DOI 10.1007/BF00541788; JACKSON GD, 1993, FISH B-NOAA, V91, P260; Jackson GD, 1997, CAN J FISH AQUAT SCI, V54, P2907, DOI 10.1139/cjfas-54-12-2907; Jackson GD, 2002, MAR BIOL, V140, P747, DOI 10.1007/s00227-001-0746-9; Jackson GD, 2003, MAR BIOL, V142, P925, DOI 10.1007/s00227-002-1005-4; Juanico M., 1983, FAO Fisheries Technical Paper, V231, P341; LEWIS AR, 1993, CAN J FISH AQUAT SCI, V50, P20, DOI 10.1139/f93-003; Mangold K., 1987, P157; Maxwell MR, 2000, MAR ECOL PROG SER, V199, P159, DOI 10.3354/meps199159; McGrath BL, 2002, MAR BIOL, V141, P699, DOI 10.1007/s00227-002-0864-z; Moltschaniwskyj NA, 2000, J ZOOL, V251, P307, DOI 10.1111/j.1469-7998.2000.tb01081.x; MOLTSCHANIWSKYJ NA, 1995, MAR BIOL, V124, P127, DOI 10.1007/BF00349154; ODOR RK, 1986, AM MALACOL BULL, V4, P55; ODOR RK, 1977, BIOL BULL, V153, P322, DOI 10.2307/1540438; Pecl G, 2001, MAR BIOL, V138, P93, DOI 10.1007/s002270000452; PHILIPPI T, 1989, AM NAT, V115, P623; Rocha F, 2001, BIOL REV, V76, P291, DOI 10.1017/S1464793101005681; Rochet MJ, 2000, ICES J MAR SCI, V57, P228, DOI 10.1006/jmsc.2000.0641; RODHOUSE PG, 1990, PHILOS T R SOC B, V329, P229, DOI 10.1098/rstb.1990.0167; Roff Derek A., 1992; ROWE VL, 1975, J EXP MAR BIOL ECOL, V17, P157, DOI 10.1016/0022-0981(75)90028-3; Semmens JM, 2000, MAR ECOL PROG SER, V193, P135, DOI 10.3354/meps193135; Stearns S. C., 1992, EVOLUTION LIFE HIST; Steer MA, 2003, MAR ECOL PROG SER, V261, P175, DOI 10.3354/meps261175; Steer MA, 2003, MAR FRESHWATER RES, V54, P217, DOI 10.1071/MF02107; STEER MA, 2004, THESIS U TASMANIA; Tafur R, 2001, FISH RES, V54, P33, DOI 10.1016/S0165-7836(01)00379-4; TRIANTAFILLOS L, 2004, IN PRESS ICES J MAR; Yampolsky LY, 1996, AM NAT, V147, P86, DOI 10.1086/285841 43 10 10 0 10 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0025-3162 1432-1793 MAR BIOL Mar. Biol. JUN 2004 144 6 1141 1149 10.1007/s00227-003-1289-z 9 Marine & Freshwater Biology Marine & Freshwater Biology 825IZ WOS:000221751300010 2018-11-12 J Doherty, PF; Schreiber, EA; Nichols, JD; Hines, JE; Link, WA; Schenk, GA; Schreiber, RW Doherty, PF; Schreiber, EA; Nichols, JD; Hines, JE; Link, WA; Schenk, GA; Schreiber, RW Testing life history predictions in a long-lived seabird: a population matrix approach with improved parameter estimation OIKOS English Article NINO-SOUTHERN OSCILLATION; CAPTURE-RECAPTURE DATA; EL-NINO; BREEDING PROBABILITIES; ELASTICITY ANALYSES; TEMPORAL VARIATION; LARGE HERBIVORES; MARKED ANIMALS; SURVIVAL; AGE Life history theory and associated empirical generalizations predict that population growth rate (lambda) in long-lived animals should be most sensitive to adult survival; the rates to which lambda is most sensitive should be those with the smallest temporal variances; and stochastic environmental events should most affect the rates to which lambda is least sensitive. To date, most analyses attempting to examine these predictions have been inadequate, their validity being called into question by problems in estimating parameters, problems in estimating the variability of parameters, and problems in measuring population sensitivities to parameters. We use improved methodologies in these three areas and test these life-history predictions in a population of red-tailed tropicbirds (Phaethon rubricauda). We support our first prediction that lambda is most sensitive to survival rates. However the support for the second prediction that these rates have the smallest temporal variance was equivocal. Previous support for the second prediction may be an artifact of a high survival estimate near the upper boundary of 1 and not a result of natural selection canalizing variances alone. We did not support our third prediction that effects of environmental stochasticity (El Nino) would most likely be detected in vital rates to which lambda was least sensitive and which are thought to have high temporal variances. Comparative data-sets on other seabirds, within and among orders, and in other locations, are needed to understand these environmental effects. Colorado State Univ, Dept Fishery & Wildlife Biol, Ft Collins, CO 80523 USA; Natl Museum Nat Hist, Washington, DC 20560 USA; USGS, Patuxent Wildlife Res Ctr, Laurel, MD 20708 USA; GA Schenk, Alexandria, VA 22306 USA Doherty, PF (reprint author), Colorado State Univ, Dept Fishery & Wildlife Biol, Ft Collins, CO 80523 USA. doherty@cnr.colostate.edu AINLEY DG, 1988, P 19 INT ORN C NAT M; ANDERSON DJ, 1989, MAR ECOL PROG SER, V52, P209, DOI 10.3354/meps052209; BAILEY EP, 1972, CONDOR, V74, P215, DOI 10.2307/1366292; Beadell JS, 2003, AUK, V120, P811, DOI 10.1642/0004-8038(2003)120[0811:SOBBSL]2.0.CO;2; Benton TG, 1996, AM NAT, V147, P115, DOI 10.1086/285843; Benton TG, 1999, TRENDS ECOL EVOL, V14, P467, DOI 10.1016/S0169-5347(99)01724-3; Boersma PD, 1998, CONDOR, V100, P245, DOI 10.2307/1370265; BRAULT S, 1993, ECOLOGY, V74, P1444, DOI 10.2307/1940073; Brichetti P, 2000, WATERBIRDS, V23, P147; Burnham K. P., 2002, MODEL SELECTION MULT; Burnham KP, 1987, AM FISH SOC MONOGR, V5; Cairns D.K., 1992, Current Ornithology, V9, P37; CANE MA, 1983, SCIENCE, V222, P1189, DOI 10.1126/science.222.4629.1189; Caswell H, 2001, MATRIX POPULATION MO; CLOBERT J, 1994, BIOMETRICS, V50, P375, DOI 10.2307/2533381; CORMACK RM, 1964, BIOMETRIKA, V51, P429, DOI 10.1093/biomet/51.3-4.429; DUFFY DC, 1990, GLOBAL ECOLOGICAL CO, P563; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Franklin AB, 2000, ECOL MONOGR, V70, P539, DOI 10.1890/0012-9615(2000)070[0539:CHQAFI]2.0.CO;2; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Glantz M. H., 1996, CURRENTS CHANGE EL N; Gould WR, 1998, ECOLOGY, V79, P2531, DOI 10.2307/176841; HATCH SA, 1987, WILSON BULL, V99, P468; Heppell SS, 1998, COPEIA, P367, DOI 10.2307/1447430; Heppell SS, 2000, ECOLOGY, V81, P654, DOI 10.1890/0012-9658(2000)081[0654:LHAEPP]2.0.CO;2; Hines J. E., 1989, 24 US FISH WILDL SER; HODDER J, 1985, CONDOR, V87, P535, DOI 10.2307/1367954; Hunter CM, 2000, ECOL MODEL, V134, P299, DOI 10.1016/S0304-3800(00)00344-6; JOLLY GM, 1965, BIOMETRIKA, V52, P225, DOI 10.2307/2333826; KILADIS GN, 1988, MON WEATHER REV, V116, P120, DOI 10.1175/1520-0493(1988)116<0120:TSOPVM>2.0.CO;2; Lebreton JD, 2003, OIKOS, V101, P253, DOI 10.1034/j.1600-0706.2003.11848.x; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Legendre S, 1995, J APPL STAT, V22, P817, DOI 10.1080/02664769524649; LINK WA, 1994, OIKOS, V69, P539, DOI 10.2307/3545869; Link WA, 2002, ECOLOGY, V83, P3299, DOI 10.2307/3072080; MERLEN G, 1985, EL NINO GALAPAGOS IS, P113; Nelson B., 1979, SEABIRDS THEIR BIOL; Nur Nadav, 1999, VVolume 15, P149; Olesiuk P.F., 1990, Reports of the International Whaling Commission Special Issue, P209; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Pradel R, 1999, BIRD STUDY, V46, P74; RASMUSSON EM, 1983, SCIENCE, V222, P1195, DOI 10.1126/science.222.4629.1195; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Schreiber E. A., 2001, BIOL MARINE BIRDS; SCHREIBER EA, 1989, NATL GEOGR RES, V5, P64; SCHREIBER EA, 1994, COLON WATERBIRD, V17, P105, DOI 10.2307/1521289; SCHREIBER EA, 1993, BIRDS N AM, V43; SCHREIBER EA, 2000, BREEDING BIOL ECOLOG; SCHREIBER RW, 1984, SCIENCE, V225, P713, DOI 10.1126/science.225.4663.713; Schwarz CJ, 2000, BIOMETRICS, V56, P59, DOI 10.1111/j.0006-341X.2000.00059.x; SEBER GAF, 1965, BIOMETRIKA, V52, P249; Skalski J. R., 1992, TECHNIQUES WILDLIFE; Spendelow JA, 2002, J APPL STAT, V29, P385, DOI 10.1080/02664760120108764; STEARNS SC, 1994, EVOLUTION, V48, P1438, DOI 10.1111/j.1558-5646.1994.tb02186.x; Trenberth KE, 1998, J GEOPHYS RES-OCEANS, V103, P14291, DOI 10.1029/97JC01444; Trenberth KE, 1997, B AM METEOROL SOC, V78, P2771, DOI 10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2; WHITE GC, 1983, J WILDLIFE MANAGE, V47, P716, DOI 10.2307/3808607; Williams B. K., 2002, ANAL MANAGEMENT VERT; Wisdom MJ, 2000, ECOLOGY, V81, P628, DOI 10.2307/177365; Work TM, 1999, J WILDLIFE DIS, V35, P487, DOI 10.7589/0090-3558-35.3.487; WYRTKI K, 1975, J PHYS OCEANOGR, V5, P572, DOI 10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2 62 36 38 3 38 BLACKWELL MUNKSGAARD COPENHAGEN 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK 0030-1299 OIKOS Oikos JUN 2004 105 3 606 618 13 Ecology Environmental Sciences & Ecology 821CT WOS:000221438100015 2018-11-12 J McNamara, JM; Welham, RK; Houston, AI; Daan, S; Tinbergen, JM McNamara, JM; Welham, RK; Houston, AI; Daan, S; Tinbergen, JM The effects of background mortality on optimal reproduction in a seasonal environment THEORETICAL POPULATION BIOLOGY English Article optimal annual routines; life history theory; mortality; reproduction; condition; entrainment OPTIMAL LIFE HISTORIES; FOOD-CACHING BIRDS; DYNAMIC-MODEL; ECOLOGICAL IMMUNOLOGY; FAT RESERVES; CLUTCH SIZE; TRADE-OFFS; PREDATION; EVOLUTION; SENESCENCE We consider optimal annual routines of reproductive behaviour in a seasonal environment. In our model the condition of the organism is adversely affected by hard work, but can recover during easy periods. Our analysis concentrates on the effects of background mortality (i.e., mortality that cannot be avoided) on the optimal strategy and how often an organism following this strategy breeds. In particular, we are concerned with whether reproduction occurs at specific times of year (entrained to the annual cycle), and if so then how many reproductive bouts occur per year. We find that an increase in background mortality can have various effects. If the animal is entrained to the annual cycle and has one breeding attempt per year, then breeding tends to occur earlier and there may be two breeding attempts per season. Another possible outcome is that breeding is no longer entrained. If the animal is entrained but sometimes skips reproduction so that it does not breed every year, then an increase in mortality may make it more likely that the animal breeds every year. We show that as background mortality increases the resultant increase in the frequency of breeding contributes to the increase in annual mortality. We also explore the effects of mortality on the timing of reproduction within a year, highlighting the tension between the interests of the parent and that of the young. (C) 2004 Elsevier Inc. All rights reserved. Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England; Univ Bristol, Sch Biol Sci, Bristol BS8 1UG, Avon, England; Univ Groningen, Zool Lab, NL-9750 AA Haren, Netherlands McNamara, JM (reprint author), Univ Bristol, Dept Math, Univ Walk, Bristol BS8 1TW, Avon, England. john.mcnamara@bristol.ac.uk Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Abrams PA, 1995, EVOLUTION, V49, P1055, DOI 10.1111/j.1558-5646.1995.tb04433.x; ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; Bernard RTF, 1997, Q REV BIOL, V72, P253, DOI 10.1086/419859; Carnes BA, 1997, EXP GERONTOL, V32, P615, DOI 10.1016/S0531-5565(97)00056-9; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Cichon M, 2000, EVOL ECOL RES, V2, P857; CLARK CW, 2000, DYNAMIC STATE VARIAB; Clarke J. R., 1981, Oxford Reviews of Reproductive Biology, V3, P244; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; DAAN S, 1989, ACT 19 INT C ORN U O; Daan Serge, 1997, P311; Daan Serge, 2001, Handbook of Behavioral Neurobiology, V12, P7; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; Deerenberg C, 1999, ANIM BEHAV, V58, P173, DOI 10.1006/anbe.1999.1123; HIGGINS LV, 1993, J MAMMAL, V74, P270, DOI 10.2307/1382381; HOUSTON AI, 1993, PHILOS T ROY SOC B, V341, P375, DOI 10.1098/rstb.1993.0123; HOUSTON AI, 1993, ORNIS SCAND, V24, P205, DOI 10.2307/3676736; Houston AI, 1999, MODELS ADAPTIVE BEHA; Immelmann K., 1971, P341; Jouventin P, 2002, P ROY SOC B-BIOL SCI, V269, P1955, DOI 10.1098/rspb.2002.2080; Kirkwood TBL, 1997, PHILOS T ROY SOC B, V352, P1765, DOI 10.1098/rstb.1997.0160; Kirkwood TBL, 2002, MECH AGEING DEV, V123, P737, DOI 10.1016/S0047-6374(01)00419-5; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Madsen T, 1999, J ANIM ECOL, V68, P571, DOI 10.1046/j.1365-2656.1999.00306.x; Mangel M, 2001, J THEOR BIOL, V213, P559, DOI 10.1006/jtbi.2001.2431; Mangel M., 1988, DYNAMIC MODELING BEH; MARCHETTI K, 1989, BIOL REV, V64, P51, DOI 10.1111/j.1469-185X.1989.tb00638.x; MCNAMARA JM, 1991, THEOR POPUL BIOL, V40, P230, DOI 10.1016/0040-5809(91)90054-J; MCNAMARA JM, 1994, AM NAT, V144, P978, DOI 10.1086/285721; McNamara JM, 1998, J AVIAN BIOL, V29, P416, DOI 10.2307/3677160; MCNAMARA JM, 1994, J AVIAN BIOL, V25, P287, DOI 10.2307/3677276; MCNAMARA JM, 1990, ACTA BIOTHEOR, V38, P37, DOI 10.1007/BF00047272; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MCNAMARA JM, 1993, ACTA BIOTHEOR, V41, P165, DOI 10.1007/BF00712164; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Pedersen BK, 2000, PHYSIOL REV, V80, P1055; PERRINS CM, 1970, IBIS, V112, P242, DOI 10.1111/j.1474-919X.1970.tb00096.x; PITTENDRIGH CS, 1981, HDB BEHAVIORAL NEURO, V4, P95; Pravosudov VV, 2001, BEHAV ECOL SOCIOBIOL, V50, P239, DOI 10.1007/s002650100361; Pravosudov VV, 2000, J AVIAN BIOL, V31, P463, DOI 10.1034/j.1600-048X.2000.310405.x; PRINCE PA, 1994, IBIS, V136, P50, DOI 10.1111/j.1474-919X.1994.tb08131.x; RACEY PA, 1982, ECOLOGY PATS; Racey Paul A., 2000, P363, DOI 10.1016/B978-012195670-7/50010-2; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Stearns S. C., 1992, EVOLUTION LIFE HIST; TAYLOR HM, 1974, THEOR POPUL BIOL, V5, P104, DOI 10.1016/0040-5809(74)90053-7; Tickell W.L.N., 2000, ALBATROSSES; WEATHERS WW, 1989, ECOL MONOGR, V59, P223, DOI 10.2307/1942600; Weber TP, 1998, EVOL ECOL, V12, P377, DOI 10.1023/A:1006560420310; WEIMERSKIRCH H, 1987, J ANIM ECOL, V56, P1043, DOI 10.2307/4965; WELHAM RK, 2003, THESIS U BRISTOL; Welton NJ, 2002, ACTA BIOTHEOR, V50, P39, DOI 10.1023/A:1014761227478; Welton NJ, 2001, J THEOR BIOL, V213, P275, DOI 10.1006/jtbi.2001.2419; Williams PD, 2003, EVOLUTION, V57, P1478 64 26 26 1 8 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0040-5809 1096-0325 THEOR POPUL BIOL Theor. Popul. Biol. JUN 2004 65 4 361 372 10.1016/j.tpb.2003.10.006 12 Ecology; Evolutionary Biology; Genetics & Heredity; Mathematical & Computational Biology Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity; Mathematical & Computational Biology 823OF WOS:000221621800005 15136011 2018-11-12 J Hunt, J; Bussiere, LF; Jennions, MD; Brooks, R Hunt, J; Bussiere, LF; Jennions, MD; Brooks, R What is genetic quality? TRENDS IN ECOLOGY & EVOLUTION English Review GRAY TREE FROGS; SEXUAL SELECTION; MATE CHOICE; ENVIRONMENT INTERACTION; PHENOTYPIC PLASTICITY; OLD-AGE; EVOLUTION; VARIANCE; TRAITS; SURVIVAL Mate choice is favored by indirect selection if choosy females mate with males of high genetic quality. We believe, however, that testing hypotheses about indirect selection has been constrained by how we conceptualize and therefore empirically measure male genetic quality. Here, we argue that genetic quality is the breeding value of an individual for total fitness. We can therefore learn little about genetic quality from measures of only a few fitness components. We explain breeding value for total fitness, drawing on concepts from life-history theory and quantitative genetics, and suggest how approaches incorporating these insights might result in empirical progress. Univ New S Wales, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia; Australian Natl Univ, Sch Bot & Zool, Canberra, ACT 0200, Australia Hunt, J (reprint author), Univ New S Wales, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia. john.hunt@unsw.edu.au Bussiere, Luc/T-2134-2018; Brooks, Robert/A-1251-2008; Jennions, Michael/C-7560-2009; Hunt, John/F-1279-2014 Bussiere, Luc/0000-0001-8937-8381; Brooks, Robert/0000-0001-6926-0781; Jennions, Michael/0000-0001-9221-2788; ANDERSSON M, 1986, EVOLUTION, V40, P804, DOI 10.1111/j.1558-5646.1986.tb00540.x; Andersson M., 1994, SEXUAL SELECTION; Barber I, 2001, P ROY SOC B-BIOL SCI, V268, P71, DOI 10.1098/rspb.2000.1331; Brooks R, 2000, NATURE, V406, P67, DOI 10.1038/35017552; David P, 2000, NATURE, V406, P186; Dawkins R, 1982, EXTENDED PHENOTYPE; ENDLER JA, 1987, ANIM BEHAV, V35, P1376, DOI 10.1016/S0003-3472(87)80010-6; FALCONER DS, 1996, INTRO QUANTITATIVE; FISHER R. A., 1930, GENETICAL THEORY NAT; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; Griffith SC, 1999, NATURE, V400, P358, DOI 10.1038/22536; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Hansen TF, 1995, J EVOLUTION BIOL, V8, P759, DOI 10.1046/j.1420-9101.1995.8060759.x; Hine E, 2002, P ROY SOC B-BIOL SCI, V269, P2215, DOI 10.1098/rspb.2002.2149; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Jia FY, 2000, EVOLUTION, V54, P953; Jia FY, 1997, P ROY SOC B-BIOL SCI, V264, P1057, DOI 10.1098/rspb.1997.0146; Kokko H, 1998, EVOL ECOL, V12, P739, DOI 10.1023/A:1006541701002; Kokko H, 2002, P ROY SOC B-BIOL SCI, V269, P1331, DOI 10.1098/rspb.2002.2020; Kokko H, 2003, P ROY SOC B-BIOL SCI, V270, P653, DOI 10.1098/rspb.2002.2235; Kotiaho JS, 2003, AM NAT, V161, P852, DOI 10.1086/375173; Kruuk LEB, 2002, EVOLUTION, V56, P1683; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1981, P NATL ACAD SCI-BIOL, V78, P3721, DOI 10.1073/pnas.78.6.3721; LYNCH M, 1997, GENETICS ANAL QUANTI; Moller AP, 1999, P ROY SOC B-BIOL SCI, V266, P85, DOI 10.1098/rspb.1999.0607; PETRIE M, 1994, NATURE, V371, P598, DOI 10.1038/371598a0; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; ROBERTSON A, 1959, BIOMETRICS, V15, P469, DOI 10.2307/2527750; Rodriguez RL, 2003, EVOLUTION, V57, P1304; Roff D. A., 2002, LIFE HIST EVOLUTION; ROFF DA, 1996, EVOLUTIONARY QUANTIT; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Sheldon BC, 2003, EVOLUTION, V57, P406; Tomkins JL, 2004, TRENDS ECOL EVOL, V19, P323, DOI 10.1016/j.tree.2004.03.029; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Veen T, 2001, NATURE, V411, P45, DOI 10.1038/35075000; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Welch AM, 2003, EVOLUTION, V57, P883; Welch AM, 1998, SCIENCE, V280, P1928, DOI 10.1126/science.280.5371.1928; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3; Zeh JA, 2003, ETHOLOGY, V109, P929, DOI 10.1046/j.1439-0310.2003.00945.x 42 263 264 3 71 ELSEVIER SCIENCE LONDON LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. JUN 2004 19 6 329 333 10.1016/j.tree.2004.03.035 5 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 832XU WOS:000222301800014 16701279 2018-11-12 J Strayer, DL; Downing, JA; Haag, WR; King, TL; Layzer, JB; Newton, TJ; Nichols, SJ Strayer, DL; Downing, JA; Haag, WR; King, TL; Layzer, JB; Newton, TJ; Nichols, SJ Changing perspectives on pearly mussels, North America's most imperiled animals BIOSCIENCE English Article Unionidae; endangered species; spatial structure; food and feeding; life history FRESH-WATER MUSSELS; JUVENILE RAINBOW MUSSELS; ELLIPTIO-COMPLANATA; REPRODUCTIVE STRATEGY; MICROHABITAT USE; EXTINCTION DEBT; LIFE-HISTORY; UNIONIDAE; BIVALVIA; RIVER Pearly mussels (Unionacea) are widespread, abundant, and important in freshwater ecosystems around the world. Catastrophic declines in pearly in mussel populations in North America and other parts of the world have led too flurry of research on mussel biology, ecology, and conservation. Recent research on mussel feeding, life history, spatial patterning, and declines has augmented, modified, or overturned long-held ideas about the ecology of these animals. Pearly mussel research has begun to benefit from and contribute to current ideas about suspension feeding, life-history theory, metapopulations, flow refuges, spatial patterning and its effects, and management of endangered species. At the same time, significant gaps in understanding and apparent paradoxes in pearly mussel ecology have been exposed. To conserve remaining mussel populations, scientists and managers must simultaneously and aggressively pursue both rigorous research and conservation actions. Inst Ecosyst Studies, Millbrook, NY 12545 USA; Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA; US Forest Serv, USDA, So Res Stn, Oxford, MS 38655 USA; US Geol Survey, Leetown Sci Ctr, Kearneysville, WV 25430 USA; Tennessee Technol Univ, Tennessee Cooperat Fishery Res Unit, USGS, Cookeville, TN 38505 USA; USGS, Upper Midwest Environm Sci Ctr, La Crosse, WI 54603 USA; USGS, Great Lakes Sci Ctr, Ann Arbor, MI 48105 USA Strayer, DL (reprint author), Inst Ecosyst Studies, POB AB, Millbrook, NY 12545 USA. strayerd@ccostudies.org Strayer, David/H-3788-2011 Strayer, David/0000-0002-6767-4486; Newton, Teresa/0000-0001-9351-5852 Amyot JP, 1998, FRESHWATER BIOL, V39, P351, DOI 10.1046/j.1365-2427.1998.00289.x; Anthony JL, 2001, FRESHWATER BIOL, V46, P1349, DOI 10.1046/j.1365-2427.2001.00755.x; Anthony JL, 2001, CAN J FISH AQUAT SCI, V58, P2071, DOI 10.1139/cjfas-58-10-2071; Arbuckle KE, 2002, CAN J FISH AQUAT SCI, V59, P310, DOI 10.1139/F02-006; Barfield ML, 1998, TRIANNUAL UNIONID RE, V16, P22; BAUER G, 1987, J ANIM ECOL, V56, P691, DOI 10.2307/5077; Bauer G., 2000, ECOLOGY EVOLUTION FR; Bayne B. L., 1985, EFFECTS STRESS POLLU; Berg DJ, 1998, J SHELLFISH RES, V17, P1365; BURLA H, 1974, OECOLOGIA, V17, P131, DOI 10.1007/BF00346276; BUTMAN CA, 1987, OCEANOGR MAR BIOL, V25, P113; Caraco NF, 1997, ECOLOGY, V78, P588, DOI 10.1890/0012-9658(1997)078[0588:ZMIIAL]2.0.CO;2; CLAASSEN C, 1994, HIST ARCHAEOL, V28, P1; COKER RE, 1919, B EUR FISH, V36, P15; Cowlishaw G, 1999, CONSERV BIOL, V13, P1183, DOI 10.1046/j.1523-1739.1999.98433.x; Dame RF, 1996, ECOLOGY MARINE BIVAL; Dillon R. T., 2000, ECOLOGY FRESHWATER M; DOWNING JA, 1989, J N AM BENTHOL SOC, V8, P92, DOI 10.2307/1467405; DOWNING JA, 1993, J N AM BENTHOL SOC, V12, P148, DOI 10.2307/1467344; Eackles MS, 2002, MOL ECOL NOTES, V2, P559, DOI 10.1046/j.1471-8278.2002.00323.x; Frazier BE, 1996, ENVIRON TOXICOL CHEM, V15, P92, DOI 10.1897/1551-5028(1996)015<0092:TAVDOT>2.3.CO;2; Gatenby CM, 1997, AM MALACOL BULL, V14, P57; Haag WR, 1999, FRESHWATER BIOL, V42, P35, DOI 10.1046/j.1365-2427.1999.00454.x; Haag WR, 2003, J N AM BENTHOL SOC, V22, P78, DOI 10.2307/1467979; Haag WR, 2000, ANIM BEHAV, V60, P879, DOI 10.1006/anbe.2000.1549; Haag WR, 1995, FRESHWATER BIOL, V34, P471, DOI 10.1111/j.1365-2427.1995.tb00904.x; Hanski I., 1999, METAPOPULATION ECOLO; Hastie LC, 2001, BIOL CONSERV, V98, P107, DOI 10.1016/S0006-3207(00)00152-X; Heinricher JR, 1999, AM MIDL NAT, V141, P140, DOI 10.1674/0003-0031(1999)141[0140:RBIOAN]2.0.CO;2; Henley WF, 2001, N AM J AQUACULT, V63, P144, DOI 10.1577/1548-8454(2001)063<0144:DAEORW>2.0.CO;2; HUNTER PR, 1997, WATERBORNE DIS EPIDE; Jones JW, 2002, J N AM BENTHOL SOC, V21, P76, DOI 10.2307/1468301; KAT P W, 1982, Malacological Review, V15, P119; King J, 1999, AM INDIAN ALASKA NAT, V8, P1; LAYZER JB, 1995, REGUL RIVER, V10, P329, DOI 10.1002/rrr.3450100225; LELLIS WA, 1998, TRIANNUAL UNIONID RE, V16, P22; Master Lawrence L., 2000, P93; MCLAIN DC, 2004, IN PRESS J N AM BENT; NAIMO TJ, 1995, ECOTOXICOLOGY, V4, P341, DOI 10.1007/BF00118870; Neves Richard J., 1997, P43; Nichols SJ, 2000, CAN J ZOOL, V78, P871, DOI 10.1139/cjz-78-5-871; Payne BS, 2000, AM MIDL NAT, V144, P328, DOI 10.1674/0003-0031(2000)144[0328:ROFEBU]2.0.CO;2; Poff NL, 2003, FRONT ECOL ENVIRON, V1, P298, DOI 10.1890/1540-9295(2003)001[0298:RFAWWE]2.0.CO;2; Poole KE, 2004, J N AM BENTHOL SOC, V23, P114, DOI 10.1899/0887-3593(2004)023<0114:RODMBT>2.0.CO;2; Raikow DF, 2001, LIMNOL OCEANOGR, V46, P514, DOI 10.4319/lo.2001.46.3.0514; Roberts AD, 1999, J N AM BENTHOL SOC, V18, P477, DOI 10.2307/1468380; Roditi HA, 2000, NATURE, V407, P78, DOI 10.1038/35024069; Rogers CL, 2003, J PARASITOL, V89, P51, DOI 10.1645/0022-3395(2003)089[0051:AROBSL]2.0.CO;2; Rogers SO, 2001, J N AM BENTHOL SOC, V20, P582, DOI 10.2307/1468089; Shelton D.N., 1997, CONSERVATION MANAGEM, P26; Sietman BE, 2001, J FRESHWATER ECOL, V16, P273, DOI 10.1080/02705060.2001.9663813; Silverman H, 1997, CAN J ZOOL, V75, P1857, DOI 10.1139/z97-815; STRAYER D, 1980, NAUTILUS, V94, P142; STRAYER DL, 1994, FRESHWATER BIOL, V31, P239, DOI 10.1111/j.1365-2427.1994.tb00858.x; STRAYER DL, 1993, J N AM BENTHOL SOC, V12, P247, DOI 10.2307/1467459; Strayer DL, 1999, J N AM BENTHOL SOC, V18, P468, DOI 10.2307/1468379; Strayer DL, 1999, J N AM BENTHOL SOC, V18, P74, DOI 10.2307/1468010; TILMAN D, 1994, NATURE, V371, P65, DOI 10.1038/371065a0; Vaughn CC, 2000, ECOGRAPHY, V23, P11, DOI 10.1034/j.1600-0587.2000.230102.x; Vaughn CC, 1997, ECOGRAPHY, V20, P107, DOI 10.1111/j.1600-0587.1997.tb00352.x; Vaughn CC, 2001, FRESHWATER BIOL, V46, P1431, DOI 10.1046/j.1365-2427.2001.00771.x; Vaughn CC, 2000, P 1 FRESHW MOLL CONS, P225; Veinott GI, 1996, CAN J FISH AQUAT SCI, V53, P372, DOI 10.1139/cjfas-53-2-372; Walters Carl, 1986, ADAPTIVE MANAGEMENT; Watters G. T., 1994, ANNOTATED BIBLIO REP; Wildish D, 1997, BENTHIC SUSPENSION F; YEAGER MM, 1994, J N AM BENTHOL SOC, V13, P217, DOI 10.2307/1467240 67 312 331 2 64 AMER INST BIOLOGICAL SCI WASHINGTON 1444 EYE ST, NW, STE 200, WASHINGTON, DC 20005 USA 0006-3568 BIOSCIENCE Bioscience MAY 2004 54 5 429 439 10.1641/0006-3568(2004)054[0429:CPOPMN]2.0.CO;2 11 Biology Life Sciences & Biomedicine - Other Topics 820TJ WOS:000221411900011 Bronze 2018-11-12 J Barclay, RMR; Ulmer, J; MacKenzee, CJA; Thompson, MS; Olson, L; McCool, J; Cropey, EE; Poll, G Barclay, RMR; Ulmer, J; MacKenzee, CJA; Thompson, MS; Olson, L; McCool, J; Cropey, EE; Poll, G Variation in the reproductive rate of bats CANADIAN JOURNAL OF ZOOLOGY English Article LIFE-HISTORY CHARACTERISTICS; PIPISTRELLUS-PIPISTRELLUS; MYOTIS-LUCIFUGUS; BRITISH-COLUMBIA; ECOLOGY; MAMMALS; CHIROPTERA; POPULATION; PREGNANCY; LONGEVITY In many respects, bats have relatively slow life histories. However, the reproductive rate of bats (i.e., the proportion of females that reproduce in any breeding season) has not been critically examined. We compiled data on the reproductive rates of bats to test predictions based on life-history theory. Among 257 samples from 103 species, reproductive rate varied considerably and was typically under 100%. Temperate-zone species had significantly lower and more variable reproductive rates than did tropical species. Reproductive rate also varied among families, with species in the Vespertilionidae having particularly high rates. As predicted based on life-history theory, reproductive rate was negatively correlated with longevity, and among vespertilionids, species with larger litters had higher reproductive rates. Thus, the data suggest that bats have relatively slow reproductive rates and, as in other life-history traits, fall at the "slow" end of the fast-slow life-history continuum found among mammals. Female bats, especially those in temperate regions, appear to adjust their allocation of resources to reproduction, and at times forego reproduction, perhaps in relation to their body condition, prey availability, and weather conditions. Univ Calgary, Dept Biol Sci, Calgary, AB T2N 1N4, Canada Barclay, RMR (reprint author), Univ Calgary, Dept Biol Sci, 2500 Univ Dr 1 NW, Calgary, AB T2N 1N4, Canada. barclay@ucalgary.ca Barclay, Robert/D-5514-2012 AUSTAD SN, 1991, J GERONTOL, V46, P47; Barclay RMR, 2003, BAT ECOLOGY, P209; BARCLAY RMR, 1994, AM NAT, V144, P1021, DOI 10.1086/285723; BARKALOW FREDERICK S., 1962, JOUR WILDLIFE MANAGEMENT, V26, P32, DOI 10.2307/3798165; BONACCORSO F J, 1979, Bulletin of the Florida State Museum Biological Sciences, V24, P359; Cardillo M, 2002, J ANIM ECOL, V71, P79, DOI 10.1046/j.0021-8790.2001.00577.x; Chruszcz BJ, 2002, FUNCT ECOL, V16, P18, DOI 10.1046/j.0269-8463.2001.00602.x; Cryan PM, 2000, J MAMMAL, V81, P719, DOI 10.1644/1545-1542(2000)081<0719:EOEODO>2.3.CO;2; DAVIS RB, 1962, ECOL MONOGR, V32, P311, DOI 10.2307/1942378; Deanesly R, 1939, P ZOOL SOC LOND A-GE, V109, P57; DINERSTEIN E, 1986, BIOTROPICA, V18, P307, DOI 10.2307/2388574; FENTON MB, 1980, CAN FIELD NAT, V94, P416; GRINDAL SD, 1992, AM MIDL NAT, V128, P339, DOI 10.2307/2426468; HERD RM, 1983, CAN J ZOOL, V61, P2029, DOI 10.1139/z83-268; HOLMES DJ, 1994, J MAMMAL, V75, P224, DOI 10.2307/1382255; HOLROYD SL, 1993, THESIS U CALGARY CAL; Hoyle SD, 2001, AUSTRAL ECOL, V26, P80, DOI 10.1111/j.1442-9993.2001.01092.pp.x; HUMPHREY S. R, 1976, SPECIAL PUBLICATION, V4, P1; HUMPHREY SR, 1975, J MAMMAL, V56, P321, DOI 10.2307/1379364; HUMPHREY SR, 1970, J MAMMAL, V51, P339; Kerth G, 1999, BEHAVIOUR, V136, P1187, DOI 10.1163/156853999501711; KHIRITANKOV AM, 2001, PLECOTUS, V4, P20; Kunz TH, 1995, SYM ZOOL S, P123; Kunz TH, 1998, ECOSCIENCE, V5, P8, DOI 10.1080/11956860.1998.11682443; Kunz TH, 2003, BAT ECOLOGY, P3; Lack D., 1954, NATURAL REGULATION A; LEWIS SE, 1993, CAN J ZOOL, V71, P1429, DOI 10.1139/z93-197; LUMSDEN LF, 1995, WILDLIFE RES, V22, P217; Martino A, 1998, MAMMALIA, V62, P69, DOI 10.1515/mamm.1998.62.1.69; McWilliam A.N., 1987, P324; Morrison C, 2003, J ANIM ECOL, V72, P270, DOI 10.1046/j.1365-2656.2003.00696.x; MUTERE F A, 1973, East African Wildlife Journal, V11, P271; Olsson K, 2002, J EVOLUTION BIOL, V15, P983, DOI 10.1046/j.1420-9101.2002.00457.x; PEARSON OP, 1952, J MAMMAL, V33, P273, DOI 10.2307/1375769; POMEROY D, 1990, BIOL J LINN SOC, V40, P53, DOI 10.1111/j.1095-8312.1990.tb00534.x; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Racey P.A., 1982, P57; RACEY PA, 1981, J REPROD FERTIL, V61, P123; RACEY PA, 1969, J REPROD FERTIL, V19, P465; RAKHMATULINA I K, 1971, Ekologiya (Moscow), V2, P54; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; *SAS I INC, 2000, SAS STST WUBD VERS 8; SCHOWALTER DB, 1979, CAN FIELD NAT, V93, P48; SCHOWALTER DB, 1979, CAN FIELD NAT, V93, P243; SOKAL RR, 1995, BIOMETRY PRINCIPLES; THOMPSON MJA, 1987, J ZOOL, V211, P209, DOI 10.1111/j.1469-7998.1987.tb01529.x; Vivier L, 1997, J ZOOL, V243, P507, DOI 10.1111/j.1469-7998.1997.tb02797.x; WESTERN D, 1982, OECOLOGIA, V54, P281, DOI 10.1007/BF00379994; Wilkinson GS, 2002, AGING CELL, V1, P124, DOI 10.1046/j.1474-9728.2002.00020.x; Wilson D. E., 1991, SMITHSONIAN CONTRIBU, V511, P43; WIMSATT WA, 1945, J MAMMAL, V26, P23, DOI 10.2307/1375029; Zar JH, 1984, BIOSTATISTICAL ANAL 52 22 27 2 32 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0008-4301 1480-3283 CAN J ZOOL Can. J. Zool. MAY 2004 82 5 688 693 10.1139/Z04-057 6 Zoology Zoology 869YO WOS:000225021400002 2018-11-12 J Gluckman, PD; Hanson, MA Gluckman, PD; Hanson, MA The developmental origins of the metabolic syndrome TRENDS IN ENDOCRINOLOGY AND METABOLISM English Review IMPAIRED OXIDATIVE-PHOSPHORYLATION; GROWTH-RETARDED RATS; FOR-GESTATIONAL-AGE; LOW-BIRTH-WEIGHT; INSULIN-RESISTANCE; FETAL ORIGINS; UTEROPLACENTAL INSUFFICIENCY; FOLATE SUPPLEMENTATION; HYPERCALORIC NUTRITION; VASCULAR DYSFUNCTION Both epidemiological and clinical evidence suggest relationships between the antenatal environment and the risk of developing insulin resistance and associated cardiovascular disease (part of the metabolic syndrome) in middle age. However, interpretation of these findings has been controversial. Recent experimental observations provide considerable evidence for a causal model linking adaptive responses to early environmental cues and the later risk of disease. Evolutionary and life history theory provide possible explanations of why these phenomena have persisted and how they might cause disease. In this article, we review the clinical and experimental perspectives on the 'developmental origins of disease' model in the context of these new concepts. Univ Auckland, Liggins Inst, Auckland 1, New Zealand; Natl Res Ctr Growth & Dev, Auckland 1, New Zealand; Univ Southampton, Ctr Dev Origins Hlth & Dis, Princess Anne Hosp, Southampton SO16 5YA, Hants, England Gluckman, PD (reprint author), Univ Auckland, Liggins Inst, 2-6 Pk Ave,Private Bag 92019, Auckland 1, New Zealand. pd.gluckman@auckland.ac.nz Hanson, Mark/0000-0002-6907-613X Agrawal AA, 1999, NATURE, V401, P60, DOI 10.1038/43425; Barker DJP, 1999, BRIT MED J, V318, P1477; Barker DJP, 2002, INT J EPIDEMIOL, V31, P1235, DOI 10.1093/ije/31.6.1235; Barker M, 1997, ARCH DIS CHILD, V77, P381, DOI 10.1136/adc.77.5.381; Bavdekar A, 1999, DIABETES, V48, P2422, DOI 10.2337/diabetes.48.12.2422; Bellinger L, 2003, PEDIATR RES, V53, p38A; Bertram CE, 2001, BRIT MED BULL, V60, P103, DOI 10.1093/bmb/60.1.103; Brawley L, 2004, J PHYSIOL-LONDON, V554, P497, DOI 10.1113/jphysiol.2003.052068; Brawley L, 2003, PEDIATR RES, V53, p37A; Brawley L., 2003, Archives of Physiology and Biochemistry, V111, P23, DOI 10.1076/apab.111.1.23.15138; Dance CS, 2003, PEDIATR RES, V53, p19A; Desai M, 1997, AM J PHYSIOL-GASTR L, V272, pG1083; Eriksson JG, 2003, DIABETOLOGIA, V46, P190, DOI 10.1007/s00125-002-1012-5; Eriksson JG, 2002, DIABETES, V51, P2321, DOI 10.2337/diabetes.51.7.2321; GLUCKMAN PD, 1992, J ENDOCRINOL, V134, pR1, DOI 10.1677/joe.0.134R001; Gluckman PD, 2004, FETAL MATRIX EVOLUTI; Gluckman PD, 1984, FETAL PHYSL MED, P511; Hales CN, 2001, BRIT MED BULL, V60, P5, DOI 10.1093/bmb/60.1.5; Hill DJ, 2000, PEDIATR RES, V48, P269, DOI 10.1203/00006450-200009000-00002; Hofman PL, 1997, J CLIN ENDOCR METAB, V82, P402, DOI 10.1210/jc.82.2.402; Huxley R, 2002, LANCET, V360, P659, DOI 10.1016/S0140-6736(02)09834-3; Ibanez L, 2000, PEDIATR RES, V47, P575, DOI 10.1203/00006450-200005000-00003; Jaquet D, 2003, HORM RES, V59, P1, DOI 10.1159/000067940; Lacey EP, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P54; Lane RH, 2001, AM J PHYSIOL-REG I, V280, pR183; LangleyEvans SC, 1996, CLIN SCI, V91, P607, DOI 10.1042/cs0910607; LEE TM, 1988, AM J PHYSIOL, V255, pR831; LEE TM, 1989, BIOL REPROD, V40, P495, DOI 10.1095/biolreprod40.3.495; Leeson CPM, 2001, CIRCULATION, V103, P1264; Lumey L H, 1992, Paediatr Perinat Epidemiol, V6, P240, DOI 10.1111/j.1365-3016.1992.tb00764.x; MACKENZIE HS, 1995, AM J KIDNEY DIS, V26, P91, DOI 10.1016/0272-6386(95)90161-2; Martin JF, 2000, J NUTR, V130, P741; Merezak S, 2001, J ENDOCRINOL, V171, P299, DOI 10.1677/joe.0.1710299; Neel JV, 1999, NUTR REV, V57, pS2; Ong KKL, 2002, PEDIATR RES, V52, P863, DOI 10.1203/01.PDR.0000036602.81878.6D; Osmond C, 2000, ENVIRON HEALTH PERSP, V108, P545, DOI 10.2307/3454545; Ozanne SE, 2003, J ENDOCRINOL, V177, P235, DOI 10.1677/joe.0.1770235; Peterside IE, 2003, AM J PHYSIOL-ENDOC M, V285, pE1258, DOI 10.1152/ajpendo.00437.2002; Petrik J, 1999, ENDOCRINOLOGY, V140, P4861, DOI 10.1210/en.140.10.4861; Pham TD, 2003, AM J PHYSIOL-REG I, V285, pR962, DOI 10.1152/ajpregu.00201.2003; Power C, 2002, INT J EPIDEMIOL, V31, P413, DOI 10.1093/ije/31.2.413; Ravelli ACJ, 1998, LANCET, V351, P173, DOI 10.1016/S0140-6736(97)07244-9; RAVELLI GP, 1976, NEW ENGL J MED, V295, P349, DOI 10.1056/NEJM197608122950701; Selak MA, 2003, AM J PHYSIOL-ENDOC M, V285, pE130, DOI 10.1152/ajpendo.00322.2002; SIMMONS RA, 1993, ENDOCRINOLOGY, V133, P1361, DOI 10.1210/en.133.3.1361; Stettler N, 2000, AM J CLIN NUTR, V72, P378; Stoffers DA, 2003, DIABETES, V52, P734, DOI 10.2337/diabetes.52.3.734; Stride A, 2002, ANN MED, V34, P207, DOI 10.1080/713782136; Tsirka AE, 2001, J ENDOCRINOL, V169, P373, DOI 10.1677/joe.0.1690373; Vickers MH, 2000, AM J PHYSIOL-ENDOC M, V279, pE83; Vickers MH, 2003, AM J PHYSIOL-REG I, V285, pR271, DOI 10.1152/ajpregu.00051.2003; Vickers MH, 2003, PEDIATR RES, V53, p39A; Wintour EM, 2003, J PHYSIOL-LONDON, V549, P929, DOI 10.1113/jphysiol.2003.042408; Wolff GL, 1998, FASEB J, V12, P949; Yajnik CS, 2001, NUTR REV, V59, P1 55 342 352 4 63 ELSEVIER SCIENCE LONDON LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 1043-2760 1879-3061 TRENDS ENDOCRIN MET Trends Endocrinol. Metab. MAY-JUN 2004 15 4 183 187 10.1016/j.tem.2004.03.002 5 Endocrinology & Metabolism Endocrinology & Metabolism 822RI WOS:000221557200010 15109618 2018-11-12 J Morris, WF; Doak, DF Morris, WF; Doak, DF Buffering of life histories against environmental stochasticity: Accounting for a spurious correlation between the variabilities of vital rates and their contributions to fitness AMERICAN NATURALIST English Article demographic buffering; elasticity; environmental stochasticity; sensitivity; Silene acaulis POPULATION-GROWTH RATE; PROJECTION MATRICES; RELATIVE IMPORTANCE; SURVIVORSHIP; ELASTICITY; PARAMETERS; SELECTION; PATTERNS; VARIANCE Life-history theory predicts vital rates that on average make large contributions to the annual multiplication rate of a lineage should be highly buffered against environmental variability. This prediction has been tested by looking for a negative correlation between the sensitivities (or elasticities) of the elements in a projection matrix and their variances (or coefficients of variation). Here, we show by constructing random matrices that a spurious negative correlation exists between the sensitivities and variances, and between the elasticities and coefficients of variation, of matrix elements. This spurious correlation arises in part because size transition probabilities, which are bounded by 0 and 1, have a limit to their variability that often does not apply to matrix elements representing reproduction. We advocate an alternative analysis based on the underlying vital rates (not the matrix elements) that accounts for the inherent limit to the variability of zero-to-one vital rates, corrects for sampling variation, and tests for a declining upper limit to variability as a vital rate's fitness contribution increases. Applying this analysis to demographic data from five populations of the alpine cushion plant Silene acaulis, we provide evidence of stronger buffering in the vital rates that most influence fitness. Duke Univ, Dept Biol, Durham, NC 27708 USA; Univ Calif Santa Cruz, Dept Ecol & Evolut, Santa Cruz, CA 95064 USA Morris, WF (reprint author), Duke Univ, Dept Biol, Box 90338, Durham, NC 27708 USA. wfmorris@duke.edu; doak@biology.ucsc.edu Cade B., 2001, USER MANUAL BLOSSOM; Cade BS, 1999, ECOLOGY, V80, P311; Caswell H, 1996, ECOLOGY, V77, P870, DOI 10.2307/2265507; CASWELL H, 1978, THEOR POPUL BIOL, V14, P215, DOI 10.1016/0040-5809(78)90025-4; Caswell H, 2001, MATRIX POPULATION MO; Crone EE, 2001, EVOLUTION, V55, P2611; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; DOAK D, 1994, ECOL APPL, V4, P446, DOI 10.2307/1941949; GILLESPIE JH, 1974, GENETICS, V76, P601; Gould WR, 1998, ECOLOGY, V79, P2531, DOI 10.2307/176841; Heppell SS, 2000, ECOLOGY, V81, P654, DOI 10.1890/0012-9658(2000)081[0654:LHAEPP]2.0.CO;2; Kendall BE, 1998, ECOL APPL, V8, P184, DOI 10.2307/2641320; LEWONTIN RC, 1969, P NATL ACAD SCI USA, V62, P1056, DOI 10.1073/pnas.62.4.1056; Morris WF, 1998, AM J BOT, V85, P784, DOI 10.2307/2446413; MORRIS WF, 2004, IN PRESS ECOLOGICAL; Morris WF, 2002, QUANTITATIVE CONSERV; NICHOLS JD, 1992, ECOLOGY, V73, P306, DOI 10.2307/1938741; Oli MK, 2003, AM NAT, V161, P422, DOI 10.1086/367591; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; Sokal R.R., 1995, BIOMETRY; TULJAPURKAR SD, 1982, THEOR POPUL BIOL, V21, P141, DOI 10.1016/0040-5809(82)90010-7; White GC, 2000, METH C CONS, P288 25 99 100 0 57 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. APR 2004 163 4 579 590 10.1086/382550 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 813SE WOS:000220926000009 15122504 2018-11-12 J [Anonymous] [Anonymous] Challenges of ecological complexity ECOLOGICAL COMPLEXITY English Article Complexity poses enormous challenges in ecology. In order to study complexity or factor it into our theories or models, a better understanding of complexity is needed. Complexity has at least six dimensions in ecology: spatial, temporal, structural, process, behavioral, and geometric. These six sources of complexity are discussed. Issues and approaches to the study of complexity are also discussed. It is argued that our vocabulary for describing complexity is deficient in many areas. Scaling is a successful technique that has been used to simplify complex relationships. Model reduction is shown to be a powerful technique that applies when either ensembles of objects behave as aggregate wholes or conservation laws constrain overall behaviors. It is argued that experimental frames need more attention when dealing with complex ecosystem attributes. Life history theory and metapopulation models are two areas where further development of the subject depends on the ability to handle complexity properly. It is concluded that explicit study of complexity is both necessary and timely. NCASI, 552 S Washington St,224, Naperville, IL 60540 USA. 0 5 5 0 3 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1476-945X 1476-9840 ECOL COMPLEX Ecol. Complex. MAR 2004 1 1 3 6 4 Ecology Environmental Sciences & Ecology 926SH WOS:000229142400002 2018-11-12 J Mappes, T; Koskela, E Mappes, T; Koskela, E Genetic basis of the trade-off between offspring number and quality in the bank vole EVOLUTION English Article antagonistic pleiotropy; litter size; mammal; maturation; phenotypic and genetic correlations; trade-off between offspring size and number LITTER SIZE MANIPULATION; LIFE-HISTORY EVOLUTION; REPRODUCTIVE SUCCESS; ANTAGONISTIC PLEIOTROPY; OPTIMAL ALLOCATION; EGG SIZE; COSTS; HERITABILITY; CONSTRAINTS; POPULATIONS One of the main tenets of modern life-history theory is the negative relationship (trade-off) between the number and quality of offspring produced. Theory predicts a negative genetic correlation between these traits since both are closely related to fitness of individuals. However, the genetic basis of the trade-off has only been tested to a limited extent in natural populations. We examined whether size and quality of offspring are negatively related to litter size in the bank vole Clethrionomys glareolus. First, we found a significant negative phenotypic correlation between the number and size of offspring at birth in both laboratory and field populations of the bank vole. Second, a larger size at birth decreased the maturation age of female offspring in the laboratory, and increased the probability of breeding and the size of the first litter in the field. Furthermore, manipulation of offspring size at weaning indicated that structural effects of birth size in mammals have a more profound effect on the expression of life-history traits than weaning size. Finally, in addition to the phenotypic negative correlation between the number and size of offspring, we found evidence for a negative genetic correlation between these two traits, which confirms the genetic basis of the trade-off. This negative genetic covariation may have considerable effects on the rate and direction of evolution of the two related life-historical traits. Univ Jyvaskyla, Dept Biol & Environm Sci, FIN-40014 Jyvaskyla, Finland Mappes, T (reprint author), Univ Jyvaskyla, Dept Biol & Environm Sci, POB 35, FIN-40014 Jyvaskyla, Finland. tmappes@cc.jyu.ufi Mappes, Tapio/B-9780-2013 Koskela, Esa/0000-0002-9418-5733 BECKER WA, 1985, MANUAL QUANTITATIVE; BUJALSKA G, 1988, EVOLUTION LIFE HIST, P75; Bujalska G., 1973, J REPROD FERT S, V19, P461; CARRIERE Y, 1995, OECOLOGIA, V102, P389, DOI 10.1007/BF00329806; CASWELL H, 1982, AM NAT, V120, P317, DOI 10.1086/283993; CHARNOV EL, 1995, NATURE, V376, P418, DOI 10.1038/376418a0; Charnov EL, 1997, NATURE, V387, P393, DOI 10.1038/387393a0; CURTSINGER JW, 1994, AM NAT, V144, P210, DOI 10.1086/285671; Falconer DS, 1996, INTRO QUANTITATIVE G; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; HAMMOND K, 1972, THEOR APPL GENET, V42, P97, DOI 10.1007/BF00583409; HOULE D, 1992, GENETICS, V130, P195; Jonsson P, 2002, EVOL ECOL, V16, P455, DOI 10.1023/A:1020854525220; Koivula M, 2003, ECOLOGY, V84, P398, DOI 10.1890/0012-9658(2003)084[0398:CORITW]2.0.CO;2; Koskela E, 1998, OECOLOGIA, V115, P379, DOI 10.1007/s004420050531; Koskela E, 1998, P ROY SOC B-BIOL SCI, V265, P1129, DOI 10.1098/rspb.1998.0408; Lambin X, 2001, J ANIM ECOL, V70, P191, DOI 10.1046/j.1365-2656.2001.00494.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LYNCH M, 1997, GENETICS ANAL QUANTI; MAPPES T, 1995, P ROY SOC B-BIOL SCI, V261, P19, DOI 10.1098/rspb.1995.0111; MAPPES T, 1995, ECOLOGY, V76, P1276, DOI 10.2307/1940934; MAYNARDSMITH J, 1985, Q REV BIOL, V60, P265, DOI DOI 10.1086/414425); Merila J, 2000, AM NAT, V155, P301, DOI 10.1086/303330; MORRIS DW, 1987, OIKOS, V49, P332, DOI 10.2307/3565769; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Oksanen TA, 2002, EVOLUTION, V56, P1530; Oksanen TA, 2001, P ROY SOC B-BIOL SCI, V268, P661, DOI 10.1098/rspb.2000.1409; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; Prevot-Julliard AC, 1999, J ANIM ECOL, V68, P684, DOI 10.1046/j.1365-2656.1999.00307.x; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff D. A., 1997, EVOLUTIONARY QUANTIT; Roff D. A., 2002, LIFE HIST EVOLUTION; Roff DA, 1996, EVOLUTION, V50, P1392, DOI 10.1111/j.1558-5646.1996.tb03913.x; Roff Derek A., 1992; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; Sikes RS, 1998, EVOL ECOL, V12, P179, DOI 10.1023/A:1006531728971; SIMERVO B, 2000, ADAPTIVE GENETIC VAR, P41; Sinervo B, 1999, AM NAT, V154, pS26, DOI 10.1086/303281; SINERVO B, 1991, J EXP ZOOL, V257, P252, DOI 10.1002/jez.1402570216; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SLATKIN M, 1990, GENETICS, V125, P207; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SNYDER RJ, 1991, COPEIA, P526; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052 44 42 42 0 11 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution MAR 2004 58 3 645 650 10.1111/j.0014-3820.2004.tb01686.x 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 810LC WOS:000220704800018 15119447 Bronze 2018-11-12 J Einum, S; Fleming, IA Einum, S; Fleming, IA Environmental unpredictability and offspring size: conservative versus diversified bet-hedging EVOLUTIONARY ECOLOGY RESEARCH English Article environmental variation; life-history evolution; Oncorhynchus; physiological constraints; Salmo salar EGG-SIZE; MATERNAL INFLUENCES; PROPAGULE SIZE; CLUTCH SIZE; FITNESS; EVOLUTION; NUMBER; PLASTICITY; FISHES; SALMON Classic life-history theory and extensions thereof can readily explain variation in egg size among populations and individuals. However, most such models assume that there is some degree of predictability in offspring environment. Offspring provisioning when environments vary unpredictably is more problematic and may lead to bet-hedging (i.e. reducing variance in fitness). Bet-hedging may involve the production of fewer and larger offspring (conservative) or of variable-sized offspring (diversified). The use of diversified bet-hedging theory to explain within-clutch variation is common but controversial, and simulation models have shown that the fitness benefits of such variability depend critically on the shape of the egg size-offspring fitness curve. Here, we use one of the few empirically derived egg size-offspring fitness functions (from Atlantic salmon) in conjunction with simulations to examine the plausibility for the evolution of such bet-hedging strategies. We show that conservative bet-hedging can be a viable strategy for dealing with unpredictable environments, while diversified bet-hedging is rarely selectively advantageous (i.e. only under extremely variable environments), and then only for purely annual organisms. This is supported by empirical evidence from iteroparous Atlantic (n = 37 populations) and semelparous Pacific (n = 26 populations) salmon where less than 3% of the variation in egg size among wild fish is due to within-clutch variability. Only under novel (rare) rearing conditions, such as captive rearing to maturity in freshwater, was a significant increase in within-clutch variation observed. These patterns in conjunction with the modelling results indicate that within-clutch variation, at least in salmon, is more likely a reflection of the direct influences of the rearing environment on a female's ability to allocate resources evenly than of evolutionary adaptation. Future work in the area of egg size evolution in unpredictable environments may benefit from a stronger focus on conservative rather than diversified bet-hedging. Norwegian Inst Nat Res, N-7485 Trondheim, Norway; Oregon State Univ, Hatfield Marine Sci Ctr, Coastal Oregon Marine Expt Stn, Newport, OR 97365 USA; Oregon State Univ, Hatfield Marine Sci Ctr, Dept Fisheries & Wildlife, Newport, OR 97365 USA Einum, S (reprint author), Norwegian Inst Nat Res, Tungasletta 2, N-7485 Trondheim, Norway. sigurd.einum@nina.no Fleming, Ian/I-7217-2012 Einum, Sigurd/0000-0002-3788-7800 CAPINERA JL, 1979, AM NAT, V114, P350, DOI 10.1086/283484; Chambers RC, 1996, AM ZOOL, V36, P180; CRUMP ML, 1981, AM NAT, V117, P724, DOI 10.1086/283755; Einum S, 2002, P ROY SOC B-BIOL SCI, V269, P2325, DOI 10.1098/rspb.2002.2150; Einum S, 2002, AM NAT, V160, P756, DOI 10.1086/343876; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; FLEMING IA, 1987, CAN J FISH AQUAT SCI, V44, P1957, DOI 10.1139/f87-240; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Hendry AP, 2001, AM NAT, V157, P387, DOI 10.1086/319316; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; KAPLAN RH, 1984, AM NAT, V123, P393, DOI 10.1086/284211; KERFOOT WC, 1974, ECOLOGY, V55, P1259, DOI 10.2307/1935454; Koops MA, 2003, EVOL ECOL RES, V5, P29; LACEY EP, 1983, AM NAT, V122, P114, DOI 10.1086/284122; LALONDE RG, 1991, AM NAT, V138, P380; Lips KR, 2001, OECOLOGIA, V128, P509, DOI 10.1007/s004420100687; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; MCGINLEY MA, 1989, EVOL ECOL, V3, P150, DOI 10.1007/BF02270917; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SVARDSON GUNNAR, 1949, REPT INST FRESHWATER RES DROTTNINGHOLM, V29, P115 25 111 114 2 43 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 EVOL ECOL RES Evol. Ecol. Res. MAR 2004 6 3 443 455 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 810DU WOS:000220685800008 2018-11-12 J Fitze, PS; Tschirren, B; Richner, H Fitze, PS; Tschirren, B; Richner, H Life history and fitness consequences of ectoparasites JOURNAL OF ANIMAL ECOLOGY English Article Ceratophyllus gallinae; ectoparasite; great tit; hen flea; host-parasite interaction; life history; lifetime reproductive success; Parus major GREAT TIT; CLIFF SWALLOWS; PARUS-MAJOR; ROOST SITES; HOST; CHOICE; BIRDS; FOOD; REPRODUCTION; PARASITES 1. For iteroparous organisms life-history theory predicts a trade-off between current and future reproduction, and therefore the evolution of host responses to current parasite infestation that will maximize lifetime reproductive success. The parasite-induced variation in reproductive success is thus not the net result of parasite infestation alone, but the parasite-mediated outcome of optimal resource allocation among current and future reproductive events. Understanding the importance of parasites for the evolution of host life history therefore requires an experimental investigation of the effects of parasites over the host's life span. Such studies are currently scant. 2. We manipulated the load of an ectoparasite, the hen flea (Ceratophyllus gallinae), in the nests of its most common host, the great tit (Parus major), over a period of 4 years and recorded, the components of current and future reproductive success including survival, divorce, breeding dispersal and various reproductive parameters. Finally we assessed, for females only as paternity of males was unknown, the lifetime reproductive success as a close correlate of Darwinian fitness. 3. For current reproduction, our experiment demonstrates that parasites reduce current reproductive success via an increase in the probability of nest failure during incubation and the nestling period. In the presence of fleas, clutch size and the number of fledglings were reduced while the incubation and the nestling period were prolonged. Thus parasitism led to an increase in parental effort but nevertheless reduced current reproductive success. 4. For future reproduction, the experiment shows that females breeding in infested nests dispersed over longer distances between breeding attempts. The divorce rate following infestation, the probability of breeding locally in the future and residual reproductive success were not affected significantly by ectoparasites. The study thus suggests that hen fleas play a minor role in shaping the trade-off between current and future reproduction. 5. Lifetime reproductive success of females, measured as the total number of locally recruiting offspring over the 4 experimental years, was reduced significantly by ectoparasites. The negative effect of parasites arose by a reduction of the number of fledglings per breeding attempt rather than by a reduction of the number of breeding attempts. Univ Paris 06, CNRS, Ecol Lab, F-75252 Paris 05, France; Univ Bern, Dept Zool, CH-3012 Bern, Switzerland Fitze, PS (reprint author), Univ Paris 06, CNRS, Ecol Lab, 7 Quai St Bernard,Case 237, F-75252 Paris 05, France. patrick.fitze@esh.unibe.ch Fitze, Patrick/A-4719-2011; Richner, Heinz/B-1659-2008; Tschirren, Barbara/F-8202-2011; Fitze, Patrick/C-1377-2011 Fitze, Patrick/0000-0002-6298-2471; Richner, Heinz/0000-0001-7390-0526; Tschirren, Barbara/0000-0003-4806-4102; Fitze, Patrick/0000-0002-6298-2471 Allander K, 1998, CAN J ZOOL, V76, P19, DOI 10.1139/cjz-76-1-19; BEATH K, 2000, GLM STAT VERSION 5 2; BORTZ J, 2000, VERTEILUNGSFREIE MET; Boulinier Thierry, 2001, P169; BROWN CR, 1986, ECOLOGY, V67, P1206, DOI 10.2307/1938676; Brown CR, 1995, P ROY SOC B-BIOL SCI, V262, P313, DOI 10.1098/rspb.1995.0211; BROWN CR, 1992, ECOLOGY, V73, P1718, DOI 10.2307/1940023; CHRISTE P, 1994, ANIM BEHAV, V47, P895, DOI 10.1006/anbe.1994.1121; Christe P, 1996, BEHAV ECOL, V7, P127, DOI 10.1093/beheco/7.2.127; Christe P, 1996, ANIM BEHAV, V52, P1087, DOI 10.1006/anbe.1996.0256; Clayton D. H., 1997, HOST PARASITE EVOLUT; Cohen J, 1988, STAT POWER ANAL BEHA; DHONDT AA, 1994, J ANIM ECOL, V63, P979, DOI 10.2307/5274; Gosler A., 1993, GREAT TIT; Heeb P, 1999, NATURE, V400, P63, DOI 10.1038/21881; Jenni L, 1994, MOULT AGEING EUROPEA; JOLLY GM, 1965, BIOMETRIKA, V52, P225, DOI 10.2307/2333826; LEHMANN T, 1993, PARASITOL TODAY, V9, P8, DOI 10.1016/0169-4758(93)90153-7; LINDEN M, 1991, AM NAT, V138, P1039, DOI 10.1086/285267; Martin TE, 2001, P NATL ACAD SCI USA, V98, P2071, DOI 10.1073/pnas.98.4.2071; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MERILA J, 1995, ETHOLOGY, V99, P53; Moller Anders Pape, 1997, P105; MOLLER AP, 1993, J ANIM ECOL, V62, P309, DOI 10.2307/5362; MOLLER AP, 1989, OIKOS, V56, P421, DOI 10.2307/3565628; OPPLIGER A, 1994, BEHAV ECOL, V5, P130, DOI 10.1093/beheco/5.2.130; Perrin N, 1996, OIKOS, V75, P317, DOI 10.2307/3546256; Richner H, 1999, OIKOS, V86, P535, DOI 10.2307/3546657; RICHNER H, 1995, OIKOS, V73, P435, DOI 10.2307/3545973; Roff Derek A., 1992; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; Sokal R. R., 1981, BIOMETRY; Stearns S. C., 1992, EVOLUTION LIFE HIST; Tripet F, 1997, OIKOS, V78, P557, DOI 10.2307/3545617; Tripet F, 1999, J INSECT BEHAV, V12, P159, DOI 10.1023/A:1020958615191; White GC, 1999, BIRD STUDY, V46, P120; White GC, 2000, PROGRAM MARK 37 86 88 2 54 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. MAR 2004 73 2 216 226 10.1111/j.0021-8790.2004.00799.x 11 Ecology; Zoology Environmental Sciences & Ecology; Zoology 778UD WOS:000189258400002 2018-11-12 J Nisbet, ICT; Arnold, JM; Galbraith, H; Hatch, JJ Nisbet, ICT; Arnold, JM; Galbraith, H; Hatch, JJ Responses of known-aged Common Terns to experimental shortening of the wings WATERBIRDS English Article age; Common Tern; handicapping; ptilochronology; reproductive effort; reproductive success; Sterna hirundo LONG-LIVED SEABIRD; PARENTAL EFFORT; MANIPULATION; REPRODUCTION; QUALITY; PETREL; GROWTH; FLIGHT; COSTS; PRION Fourteen male Common Terns (Sterna hirundo) of known age (3-21 yr) were handicapped by shortening their wings early in the incubation period, and were then followed through chick-raising. The study was conducted at Bird Island, Massachusetts, USA, in 1996, a year when chick growth and survival appeared to be limited by food availability. Chick growth and survival were used as indirect measures of allocation of resources to current reproduction. Rates of change of body-mass and feather re-growth (ptilochronology) were used as indirect measures of allocation of resources to self-maintenance. The birds' mates were studied similarly, but were not handicapped. Experimental birds and pairs were compared to controls matched for laying date and clutch-size. Handicapped males re-grew tail-feathers pulled for ptilochronology significantly more slowly than controls. They and their mates raised significantly more young than controls. Older handicapped males lost more body-mass during chick-raising than their matched controls, whereas younger males lost less. These results conflict with the prediction of life-history theory that long-lived birds faced with increased costs of reproduction should allocate these costs to their offspring rather than to themselves. However, we point out several problems in using handicapping to test such predictions. The assumed effects of handicapping on the cost of flight and on foraging ability have not been verified or measured. Changes in reproductive effort are not measured directly, and the end points that have been investigated are often ambiguous. The assumption that older individuals consistently have lower residual reproductive value than younger individuals may be incorrect if there is selective survival of high-quality individuals within the study population. Galbraith Environm Sci, Newfane, VT 05345 USA; Univ Massachusetts, Dept Biol, Boston, MA 02125 USA; I C T Nisbet & Co, N Falmouth, MA 02556 USA Nisbet, ICT (reprint author), I C T Nisbet & Co, 150 Alder Lane, N Falmouth, MA 02556 USA. icnisbet@cape.com ARNOLD JM, IN PRESS J AVIAN BIO; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; FINCH C, 1990, LONGEVITY SENESCENCE; Galbraith H, 1999, J AVIAN BIOL, V30, P85, DOI 10.2307/3677247; GRUBB TC, 1989, AUK, V106, P314; Kvist A, 2001, NATURE, V413, P730, DOI 10.1038/35099556; LIND J, 2001, P ROYAL SOC LOND B, V368, P1915; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; Nisbet I.C.T., 1984, Colonial Waterbirds, V7, P117, DOI 10.2307/1521090; Nisbet I.C.T., 2002, BIRDS N AM, V618; Nisbet ICT, 2002, J FIELD ORNITHOL, V73, P117, DOI 10.1648/0273-8570-73.2.117; NISBET ICT, 1995, CONDOR, V97, P335, DOI 10.2307/1369019; Nisbet ICT, 2002, J APPL STAT, V29, P65, DOI 10.1080/02664760120108467; NISBET ICT, 1972, BIRD BANDING, V43, P97, DOI 10.2307/4511853; PART T, 1992, AM NAT, V140, P868, DOI 10.1086/285445; Pennycuick C.J, 1989, BIRD FLIGHT PERFORMA; Roff Derek A., 1992; SAETHER BE, 1993, BEHAV ECOL SOCIOBIOL, V33, P147, DOI 10.1007/BF00216594; Sanz JJ, 2000, J ANIM ECOL, V69, P74, DOI 10.1046/j.1365-2656.2000.00373.x; SLAGSVOLD T, 1990, ECOLOGY, V71, P1258, DOI 10.2307/1938263; *STATS INC, 1998, STAT WIND; VAUPEL JW, 1985, AM STAT, V39, P176, DOI 10.2307/2683925; Weimerskirch H, 2000, IBIS, V142, P103, DOI 10.1111/j.1474-919X.2000.tb07689.x; Weimerskirch H, 1999, J AVIAN BIOL, V30, P165, DOI 10.2307/3677126; WEIMERSKIRCH H, 1995, BEHAV ECOL SOCIOBIOL, V36, P11; Weimerskirch H., 2001, BIOL MARINE BIRDS, P115; Wendeln H, 1999, J ANIM ECOL, V68, P205, DOI 10.1046/j.1365-2656.1999.00276.x; WRIGHT J, 1989, BEHAV ECOL SOCIOBIOL, V25, P171, DOI 10.1007/BF00302916 28 7 7 1 6 WATERBIRD SOC WASHINGTON NATL MUSEUM NATURAL HISTORY SMITHSONIAN INST, WASHINGTON, DC 20560 USA 1524-4695 1938-5390 WATERBIRDS Waterbirds MAR 2004 27 1 13 20 10.1675/1524-4695(2004)027[0013:ROKCTT]2.0.CO;2 8 Ornithology Zoology 803NU WOS:000220238600003 2018-11-12 J Lardies, MA; Carter, MJ; Bozinovic, F Lardies, MA; Carter, MJ; Bozinovic, F Dietary effects on life history traits in a terrestrial isopod: the importance of evaluating maternal effects and trade-offs OECOLOGIA English Article life history; maternal effects; food quality; herbivores; terrestrial isopod ARMADILLIDIUM-VULGARE; FOOD QUALITY; REPRODUCTIVE ALLOCATION; PHENOTYPIC PLASTICITY; PORCELLIO-SCABER; PROPAGULE SIZE; FEEDING RATES; GROWTH-RATES; EGG SIZE; CRUSTACEA Studies of life history aim to explain patterns in the evolution of reproductive investment, growth, and survival. Trade-offs between traits are a fundamental component of life history theory. In herbivorous arthropods life history traits are often responsive to variation in numerous environmental factors, especially diet quality. Using three artificial diets under controlled laboratory conditions, we examined changes in life history traits (i.e. growth rate, offspring number, offspring size, incubation period), trade-offs between traits, and maternal effect on the growth rate of offspring, in the common woodlouse (terrestrial isopod), Porcellio laevis. The high protein diet had significant impacts on offspring production, triggering a smaller-sized offspring, and demonstrating a trade-off between these last two traits. The high carbohydrate diet seldom exerted a significant effect on incubation period. The quality of dietary items evidently has important consequences on the life history of the mother and, thus, on offspring growth; the directions of these effects, however, were opposite. Mothers fed diets with high protein concentrations presented significant maternal effects, measured as offspring growth rate during later ontogeny. Our results support the notion that protein, rather than carbohydrate, concentrations in the diet limit herbivorous arthropods, and have significant consequences on life history traits, as was seen for P. laevis. Clearly, the change in phenotypic correlations between incubation period and offspring number from negative to positive is an empirical demonstration of the context dependence of life history trait trade-offs. Pontificia Univ Catolica Chile, Fac Ciencias Biol, Dept Ecol, Ctr Adv Studies Ecol Biodivers, Santiago, Chile Lardies, MA (reprint author), Pontificia Univ Catolica Chile, Fac Ciencias Biol, Dept Ecol, Ctr Adv Studies Ecol Biodivers, CP 6513677, Santiago, Chile. mlardies@genes.bio.puc.cl Carter, Mauricio/C-3099-2013 Lardies, Marco/0000-0003-3525-1830 Aron S, 2001, J ANIM ECOL, V70, P831, DOI 10.1046/j.0021-8790.2001.00545.x; Awmack CS, 2002, ANNU REV ENTOMOL, V47, P817, DOI 10.1146/annurev.ento.47.091201.145300; Bernardo J, 1996, AM ZOOL, V36, P216; BRODY MS, 1984, OECOLOGIA, V61, P55, DOI 10.1007/BF00379089; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; CAPINERA JL, 1979, AM NAT, V114, P350, DOI 10.1086/283484; CAREFOOT T, 1993, COMP BIOCH PHYSL A, V87, P989; CAREFOOT TH, 1993, COMP BIOCHEM PHYS A, V106, P413, DOI 10.1016/0300-9629(93)90235-V; Coll M, 2002, ANNU REV ENTOMOL, V47, P267, DOI 10.1146/annurev.ento.47.091201.145209; Congdon J.D., 1982, Biology of Reptilia, V13, P233; COREY S, 1991, CRUSTACEANA, V60, P270, DOI 10.1163/156854091X00056; Cuzon G., 2000, AVANCES NUTR ACUICOL; David JF, 2001, OECOLOGIA, V127, P343, DOI 10.1007/s004420000599; DAVIS RC, 1978, ECOLOGY, V58, P1079; DUNHAM AE, 1978, ECOLOGY, V59, P770, DOI 10.2307/1938781; FolkerHansen P, 1996, ECOTOX ENVIRON SAFE, V33, P207, DOI 10.1006/eesa.1996.0027; Fox CW, 2000, ECOLOGY, V81, P3029, DOI 10.1890/0012-9658(2000)081[3029:NSOSBE]2.0.CO;2; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Fox CW, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P159; GRUNDY AJ, 1989, HOLARCTIC ECOL, V12, P112; HARRISON K E, 1990, Journal of Shellfish Research, V9, P1; Helden AJ, 1998, ISRAEL J ZOOL, V44, P379; HINES AH, 1992, AM ZOOL, V32, P503; HOESE B, 1989, MONOGR, V4, P153; Jaksic F., 2001, REV CHIL HIST NAT, V74, P459; Joern A, 1997, OECOLOGIA, V112, P201, DOI 10.1007/s004420050301; Jordan MA, 2002, OECOLOGIA, V130, P44, DOI 10.1007/s004420100776; KAROWE DN, 1989, J INSECT PHYSL, V35, P669; Lavy D, 2001, PHYSIOL ENTOMOL, V26, P18, DOI 10.1046/j.1365-3032.2001.00211.x; LAWLOR LR, 1976, EVOLUTION, V30, P775, DOI 10.1111/j.1558-5646.1976.tb00958.x; Leistikow Andreas, 1999, Revista Brasileira de Zoologia, V16, P1; LUCAS A, 1991, CIBA F SYMP, V156, P38; McGinley MA, 1988, EVOL ECOL, V2, P77, DOI 10.1007/BF02071590; MCNEILL S, 1978, BIOCH ASPECTS PLANT, P77; MERRIAM HG, 1971, CAN J ZOOLOG, V49, P667, DOI 10.1139/z71-105; MOUSSEAU TA, 1991, ANNU REV ENTOMOL, V36, P511, DOI 10.1146/annurev.en.36.010191.002455; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Niewiarowski PH, 2001, AM NAT, V157, P421, DOI 10.1086/319321; Ozalp P, 2001, J APPL ENTOMOL, V125, P177, DOI 10.1046/j.1439-0418.2001.00528.x; Reznick D, 1996, AM ZOOL, V36, P147; Roff D. A., 2002, EVOLUTION LIFE HIST; Romeis J, 2002, PHYSIOL ENTOMOL, V27, P148, DOI 10.1046/j.1365-3032.2002.00281.x; Rose Michael R., 1996, P221; ROSSI AM, 1991, ENVIRON ENTOMOL, V20, P1349, DOI 10.1093/ee/20.5.1349; RUSHTON SP, 1983, OECOLOGIA, V57, P415, DOI 10.1007/BF00377189; RUSHTON SP, 1983, OECOLOGIA, V57, P257, DOI 10.1007/BF00379587; Schlichting C. D., 1998, PHENOTYPIC EVOLUTION; SCHULTZ JC, 1982, AM J BOT, V69, P753, DOI 10.2307/2442965; SLANSKY F, 1977, ECOL MONOGR, V47, P209, DOI 10.2307/1942617; Sokal R.R., 1997, BIOMETRY PRINCIPLES; Spicer J. I., 1999, PHYSL DIVERSITY ITS; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STOCKHOFF BA, 1993, ECOLOGY, V74, P1939, DOI 10.2307/1940837; SUNDERLAND KD, 1976, J ANIM ECOL, V45, P487, DOI 10.2307/3887; Surbida KL, 2001, PHYSIOL BIOCHEM ZOOL, V74, P894, DOI 10.1086/324474; Taylor B.E., 1985, Advances in Limnology, V21, P285; Townsend CR, 1981, PHYSL ECOLOGY EVOLUT; TUOMI J, 1993, ECOLOGY, V56, P427; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Wall R, 2002, PHYSIOL ENTOMOL, V27, P267, DOI 10.1046/j.1365-3032.2002.00296.x; Warburg M.R., 1987, Advances in Ecological Research, V17, P187, DOI 10.1016/S0065-2504(08)60246-9; Warburg MR, 1996, INVERTEBR REPROD DEV, V29, P213, DOI 10.1080/07924259.1996.9672515; WARBURG MR, 1993, EVOLUTIONARY BIOL LA; WHITE TCR, 1993, INADEQUATE ENV NITRO; WILLOWS RI, 1987, J ANIM ECOL, V56, P331, DOI 10.2307/4818; Withers P., 1992, COMP ANIMAL PHYSL; YANG Y, 1994, FUNCT ECOL, V8, P36, DOI 10.2307/2390109; Zera AJ, 2001, J INSECT PHYSIOL, V47, P1147, DOI 10.1016/S0022-1910(01)00096-8; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zimmer M, 1997, BIOL FERT SOILS, V24, P435, DOI 10.1007/s003740050269 71 29 30 0 17 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 OECOLOGIA Oecologia FEB 2004 138 3 387 395 10.1007/s00442-003-1447-5 9 Ecology Environmental Sciences & Ecology 766QM WOS:000188387100008 14685846 2018-11-12 J Lopes, I; Baird, DJ; Ribeiro, R Lopes, I; Baird, DJ; Ribeiro, R Genetic determination of tolerance to lethal and sublethal copper concentrations in field populations of Daphnia longispina ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY English Article METAL-ADAPTED POPULATIONS; LIFE-HISTORY; CHIRONOMUS-RIPARIUS; MAGNA STRAUS; WATER-COLUMN; RESISTANCE; CADMIUM; RESPONSES; ENVIRONMENT; HYPOTHESIS In order to study the effects of environmental pollution on the genetic diversity of natural populations, two field populations of the cladoceran Daphnia longispina were sampled: one in a reference site (uncontaminated) and the other in a site historically stressed with acid mine drainage (AMD). Five hypotheses were formulated: (1) the stressed population presents a higher tolerance to lethal levels of copper than the reference population, (2) differences in tolerance to lethal levels, observed between the two populations, are due to the loss of sensitive lineages, (3) differences in tolerance to lethal levels of copper between the two populations are due to the appearance of new genotypes, (4) the acquisition of tolerance to lethal levels of copper involved changes in life-history patterns and fitness costs under optimal conditions, and (5) historical contamination by AMD resulted in tolerance differences to sublethal levels between populations, within categories similarly tolerant to lethality, specifically, lineages with similar tolerance to lethal levels from both populations show differences in tolerance to sublethal levels, the stressed population being more tolerant to sublethal levels of contamination than the reference population. Over 125 acclimated cloned lineages, from each population, were exposed to different copper concentrations for 24 hours. At the end of each assay, mortality and feeding inhibition were monitored. Life-cycle traits under optimal conditions were also monitored (time to first brood, number of neonates per brood, inter-brood time, body length, and ingested algae). At lethal levels of copper, significant differences were found in the frequency of sensitive lineages between the two populations. The stressed population did not include the most sensitive lineages, though the most tolerant ones were also present in the reference population. Thus, the hypothesis of presence of new genotypes in the stressed population resulting in an overall increase tolerance of the population at lethal levels was rejected. Changes in life-history patterns were detected, though they were not fully consistent with predictions of life-history theory. Furthermore, these changes in life-history patterns did not involve fitness costs. The fifth hypothesis was rejected since, at sublethal levels of copper, no significant differences were found between the feeding inhibitions of similarly lethal tolerant lineages of the two populations, with only one exception. Therefore, the present study further confirmed the genetic erosion hypothesis and gave further support to the incorporation of genetic diversity measurements into risk assessments. Univ Coimbra, Dept Zool, Inst Ambiente & Vida, P-3004517 Coimbra, Portugal; Univ Stirling, Inst Aquaculture, Environm Grp, Stirling FK9 LA4, Scotland Ribeiro, R (reprint author), Univ Coimbra, Dept Zool, Inst Ambiente & Vida, Largo Marques de Pombal, P-3004517 Coimbra, Portugal. Lopes, Isabel/C-2858-2009; Baird, Donald/A-5267-2009; Ribeiro, Rui/C-7788-2012 Ribeiro, Rui/0000-0002-0883-1939; Lopes, Isabel/0000-0002-9325-0329 *ASTM, 1994, ANN BOOK AM SOC TEST; Baird D. J, 1989, P 1 EUR C EC LYNGB D, P144; BAIRD DJ, 1990, FUNCT ECOL, V4, P399, DOI 10.2307/2389602; Barata C, 2000, ENVIRON TOXICOL CHEM, V19, P2314, DOI 10.1897/1551-5028(2000)019<2314:DGRACF>2.3.CO;2; Barata C, 1998, FUNCT ECOL, V12, P442, DOI 10.1046/j.1365-2435.1998.00201.x; BODAR CWM, 1990, AQUAT TOXICOL, V16, P33, DOI 10.1016/0166-445X(90)90075-Z; Castro BB, 2003, ENVIRON POLLUT, V125, P325, DOI 10.1016/S0269-7491(03)00120-9; DONKER MH, 1993, OECOLOGIA, V96, P316, DOI 10.1007/BF00317500; Falconer DS, 1996, INTRO QUANTITATIVE G; FORBES VE, 1997, ENV STRESS ADAPTATIO; GAD SC, 1992, PRINCIPLES METHODS T; Groenendijk D, 1999, ENVIRON TOXICOL CHEM, V18, P1225, DOI 10.1897/1551-5028(1999)018<1225:ESOAMD>2.3.CO;2; Guillemaud T, 1998, EVOLUTION, V52, P443, DOI 10.1111/j.1558-5646.1998.tb01644.x; HOFFMANN AA, 1994, EVOLUTIONARY GENETIC; KLERKS PL, 1987, ENVIRON POLLUT, V45, P173, DOI 10.1016/0269-7491(87)90057-1; Lam PKS, 1999, ECOL APPL, V9, P449; Lopes I, 1999, ECOTOX ENVIRON SAFE, V44, P207, DOI 10.1006/eesa.1999.1825; LOPES I, 1999, TOXICOL ENVIRON CHEM, V70, P441, DOI DOI 10.1080/02772249909358768; MACNAIR MR, 1997, ENV STRESS ADAPTATIO; MALTBY L, 1987, ANN SOC ROY ZOOL BEL, V117, P105; Monni S, 2000, ENVIRON POLLUT, V109, P221, DOI 10.1016/S0269-7491(99)00264-X; Nordal I, 1999, FOLIA GEOBOT, V34, P471, DOI 10.1007/BF02914923; Pereira AMM, 2000, ECOTOX ENVIRON SAFE, V47, P27, DOI 10.1006/eesa.2000.1926; Pereira AMM, 1999, ENVIRON TOXICOL CHEM, V18, P1956, DOI 10.1897/1551-5028(1999)018<1956:TCATPF>2.3.CO;2; PEREIRA EG, 1995, MAR FRESHWATER RES, V46, P145; POSTHUMA L, 1993, OIKOS, V67, P235, DOI 10.2307/3545468; POSTMA JF, 1995, ENVIRON TOXICOL CHEM, V14, P117, DOI 10.1897/1552-8618(1995)14[117:LCAZSI]2.0.CO;2; Reinecke SA, 1999, ECOTOX ENVIRON SAFE, V42, P75, DOI 10.1006/eesa.1998.1731; Ribeiro Rui, 1995, Ciencia Biologica Ecology and Systematics, V15, P33; Shirley MDF, 1999, EVOLUTION, V53, P826, DOI 10.1111/j.1558-5646.1999.tb05376.x; TESCHNER M, 1995, HYDROBIOLOGIA, V307, P33, DOI 10.1007/BF00031995; van Straalen NM, 2002, HUM ECOL RISK ASSESS, V8, P983, DOI 10.1080/1080-700291905783; VANSTRAALEN NM, 1994, NETH J ZOOL, V44, P112; ZAR JH, 1996, BIOSTATISTICAL ANAL 34 54 54 1 20 SPRINGER-VERLAG NEW YORK 175 FIFTH AVE, NEW YORK, NY 10010 USA 0090-4341 ARCH ENVIRON CON TOX Arch. Environ. Contam. Toxicol. JAN 2004 46 1 43 51 10.1007/s00244-003-2143-5 9 Environmental Sciences; Toxicology Environmental Sciences & Ecology; Toxicology 759WR WOS:000187774600006 15025163 Green Published 2018-11-12 J Oli, MK Oli, MK The fast-slow continuum and mammalian life-history patterns: an empirical evaluation BASIC AND APPLIED ECOLOGY English Review elasticity analysis; life-history theory; matrix population models; population dynamics; tempo of life-histories POPULATION-GROWTH RATE; AGE STRUCTURE; GROUND-SQUIRRELS; DEMOGRAPHIC PARAMETERS; RELATIVE IMPORTANCE; SEXUAL-MATURITY; MORTALITY-RATES; FEMALE MAMMALS; CYCLE ANALYSIS; K-SELECTION The history patterns exhibited by biological populations, but the quantification and population-dynamic consequences of the continuum has remained unclear. I used the ratio of fertility rate to age at first reproduction (F/alpha ratio) to quantify the tempo of life-history of 138 populations of mammals, and investigated the life-history and population-dynamic consequences of being "fast" or "slow". "Fast" mammals (F/alpha > 0.60) were characterized by early maturity, short lifespans, low survival. rates, and high fertility and projected population growth rate (lambda) compared to "slow" (F/alpha < 0.15) mammals. In "fast" populations, lambda was overwhelmingly most sensitive to changes in reproductive parameters (age at first reproduction and fertility rates) and relativety insensitive to changes in survival rates. In "slow" populations, lambda was very sensitive to changes in juvenile or adult survival rates, and relatively insensitive to changes in reproductive parameters. The pattern of relationships between the F/alpha ratio and (life-history variables, lambda, and elasticity of lambda, to changes in life-history variables persisted even after the effects of body size and phylogeny were statistically removed. These results suggest that fast-slow continuum in mammalian life-history is independent of body size or phylogeny, that the F/alpha ratio adequately quantifies the position of a population along a fast-slow continuum, and that the tempo of life-histories has substantial population-dynamic consequences. (C) 2004 Elsevier GmbH. All rights reserved. Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL 32611 USA Oli, MK (reprint author), Univ Florida, Dept Wildlife Ecol & Conservat, 110 Newins Ziegler Hall, Gainesville, FL 32611 USA. olimadan@wec.ufl.edu AHMAD E, 1995, ACTA THERIOL, V40, P163, DOI 10.4098/AT.arch.95-17; ATTWELL CAM, 1982, AFR J ECOL, V20, P147, DOI 10.1111/j.1365-2028.1982.tb00286.x; BARKALOW FS, 1970, J WILDLIFE MANAGE, V34, P489, DOI 10.2307/3798852; BARLOW J, 1991, MAR MAMMAL SCI, V7, P50, DOI 10.1111/j.1748-7692.1991.tb00550.x; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Bester Marthan N., 1994, P85; BOBEK B, 1973, Acta Theriologica, V18, P403; BOER AH, 1988, J WILDLIFE MANAGE, V52, P21, DOI 10.2307/3801051; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; BRONSON MT, 1979, ECOLOGY, V60, P272, DOI 10.2307/1937655; CALKINS DG, 1982, 243 RU AL DEP FISH G; Caswell H, 2001, MATRIX POPULATION MO; CAUGHLEY G, 1970, Mammalia, V34, P194, DOI 10.1515/mamm.1970.34.2.194; CAUGHLEY G, 1966, ECOLOGY, V47, P906, DOI 10.2307/1935638; CAUGHLEY G, 1977, ANAL VERTEBRATE POPU; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHEN J, 1991, Acta Theriologica Sinica, V11, P138; Cheney D.L., 1988, P384; CHOQUENOT D, 1991, ECOLOGY, V72, P805, DOI 10.2307/1940583; Clutton-Brock T.H., 1988, P325; CluttonBrock TH, 1997, AM NAT, V149, P195, DOI 10.1086/285987; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; CORBET GB, 1991, HDB BRIT MAMMALS; COURTENAY J, 1989, FOLIA PRIMATOL, V52, P167, DOI 10.1159/000156395; COWAN DP, 1985, J ZOOL, V207, P607; Crockett CM, 1996, AM J PRIMATOL, V40, P343, DOI 10.1002/(SICI)1098-2345(1996)40:4<343::AID-AJP4>3.0.CO;2-Y; CROWE DM, 1975, J MAMMAL, V56, P177, DOI 10.2307/1379615; CROXALL JP, 1983, J APPL ECOL, V20, P19, DOI 10.2307/2403373; Cully JF, 1997, J MAMMAL, V78, P146, DOI 10.2307/1382647; DAVIS WH, 1966, J MAMMAL, V47, P383, DOI 10.2307/1377679; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; Dobson FS, 2001, AM NAT, V158, P236, DOI 10.1086/321322; DUNBAR RIM, 1980, J ANIM ECOL, V49, P485, DOI 10.2307/4259; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; Eberhardt LL, 1995, POPULATION BIOL FLOR, P269; FALK JW, 1987, CAN J ZOOL, V65, P568, DOI 10.1139/z87-088; Fleming T. H., 1971, Miscellaneous Publs Mus Zool Univ Mich, VNo. 143, P1; Fleming T. H., 1988, SHORT TAILED FRUIT B; FLEMING TH, 1974, ECOLOGY, V55, P493, DOI 10.2307/1935142; Franco M, 1996, PHILOS T R SOC B, V351, P1341, DOI 10.1098/rstb.1996.0117; FRITZELL EK, 1985, J WILDLIFE MANAGE, V49, P901, DOI 10.2307/3801366; GAGE TB, 1988, AM J PRIMATOL, V16, P305, DOI 10.1002/ajp.1350160403; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Gaisler J, 1979, ECOLOGY SMALL MAMMAL, P281; GARROTT RA, 1990, J WILDLIFE MANAGE, V54, P603, DOI 10.2307/3809357; Gottdenker N, 1998, J ZOOL, V245, P423, DOI 10.1111/j.1469-7998.1998.tb00116.x; HARRIS S, 1987, J APPL ECOL, V24, P75, DOI 10.2307/2403788; HARVEY PH, 1989, COMP SOCIOECOLOGY, P305; Hawkins BA, 2004, BASIC APPL ECOL, V5, P1, DOI 10.1078/1439-1791-00214; HELLE E, 1993, J MAMMAL, V74, P936, DOI 10.2307/1382432; HELLGREN EC, 1995, J WILDLIFE MANAGE, V59, P153, DOI 10.2307/3809128; HINDELL MA, 1991, J ANIM ECOL, V60, P119, DOI 10.2307/5449; HOEFS M, 1983, CAN J ZOOL, V61, P1346, DOI 10.1139/z83-181; HOOGLAND JL, 1995, BLACK TAILED PRAIRIE; Horvitz C., 1997, STRUCTURED POPULATIO, P247, DOI [10. 1007/978-1-4615-5973-3, DOI 10.1007/978-1-4615-5973-3]; HOYLE JA, 1986, CAN FIELD NAT, V100, P537; HUMPHREY SR, 1976, AM SOC MAMMAL SPECIA, V4, P38; JARVIS JUM, 1973, J ZOOL, V171, P1; JEZIERSKI W, 1977, ACTA THERIOL, V22, P337, DOI 10.4098/AT.arch.77-31; JIANG H, 1989, Acta Theriologica Sinica, V9, P254; Jiang Zhaowen, 1993, Acta Theriologica Sinica, V13, P16; Johannesen E, 1998, CAN J ZOOL, V76, P763, DOI 10.1139/cjz-76-4-763; Kelly MJ, 1998, J ZOOL, V244, P473, DOI 10.1017/S0952836998004014; KEMP GA, 1970, ECOLOGY, V51, P763, DOI 10.2307/1933969; KNIGHT RR, 1985, ECOLOGY, V66, P323, DOI 10.2307/1940382; Kohn Bruce E., 1993, Wisconsin Department of Natural Resources Technical Bulletin, V183, P1; LANDER RH, 1981, FISH RES, V1, P55, DOI 10.1016/0165-7836(81)90007-2; LARSON JS, 1967, J MAMMAL, V48, P408, DOI 10.2307/1377773; LAWS R. M., 1966, EAST AFR WILDLIFE J, V4, P1; le Boeuf B.J., 1988, P344; Leader-Williams N., 1988, REINDEER S GEORGIA; Li Jinhua, 1995, Acta Theriologica Sinica, V15, P31; Lima M, 1997, J MAMMAL, V78, P914, DOI 10.2307/1382951; LODAL J, 1985, ACTA ZOOL FENN, V173, P279; LORD REXFORD D., 1961, JOUR WILDLIFE MANAGEMENT, V25, P33, DOI 10.2307/3796988; LORD REXFORD D., 1961, JOUR WILDLIFE MANAGEMENT, V25, P28, DOI 10.2307/3796987; LOWE VPW, 1969, J ANIM ECOL, V38, P425, DOI 10.2307/2782; LUO J, 1990, J MAMMAL, V71, P364, DOI 10.2307/1381947; MAC ARTHUR ROBERT H., 1967; Macpherson A. H., 1969, Canadian Wildlife Service Report Series, VNo. 8, P1; MANSFIELD AW, 1977, FISH MAR SERV TECH R, V704, P1; MCLEAN PK, 1994, INT C BEAR RES MAN, V9, P254; Medin D. E., 1979, WILDLIFE MONOGR, V68, P1; MERTENS H, 1985, REV ECOL-TERRE VIE, V40, P33; MESSIER F, 1988, ARCTIC, V41, P279; MICHOD RE, 1980, ECOLOGY, V61, P265, DOI 10.2307/1935184; MILES DB, 1992, AM NAT, V139, P848, DOI 10.1086/285361; MILLAR JS, 1972, CAN J ZOOLOG, V50, P229, DOI 10.1139/z72-033; MONAKHOV VG, 1983, ZOOL ZH, V62, P1398; NELSON BB, 1982, Z SAUGETIERKD, V47, P296; Oli MK, 2003, AM NAT, V161, P422, DOI 10.1086/367591; Oli MK, 1999, OIKOS, V86, P557, DOI 10.2307/3546660; Oli MK, 2001, OIKOS, V93, P376, DOI 10.1034/j.1600-0706.2001.930303.x; Oli MK, 2001, J MAMMAL, V82, P573, DOI 10.1644/1545-1542(2001)082<0573:PCISMT>2.0.CO;2; Oli MK, 2001, ECOLOGY, V82, P1180, DOI 10.1890/0012-9658(2001)082[1180:PLCAAM]2.0.CO;2; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; Packer C., 1988, P363; PARKER GR, 1986, ARCTIC, V39, P145; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PAYNE NF, 1984, J WILDLIFE MANAGE, V48, P117, DOI 10.2307/3808459; PERRYMAN P, 1987, J MAMMAL, V68, P435, DOI 10.2307/1381493; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIELOWSKI Z, 1984, ACTA THERIOL, V29, P17, DOI 10.4098/AT.arch.84-2; PRICE MV, 1994, CONSERV BIOL, V8, P810, DOI 10.1046/j.1523-1739.1994.08030810.x; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PURVIS A, 1995, J ZOOL, V237, P259, DOI 10.1111/j.1469-7998.1995.tb02762.x; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; REIJNDERS PJH, 1978, NETH J SEA RES, V12, P164, DOI 10.1016/0077-7579(78)90003-0; Richard AF, 1985, PRIMATES NATURE; ROBINSON JG, 1991, AM NAT, V138, P1173, DOI 10.1086/285276; RODGERS WA, 1984, MAMMALIA, V48, P327, DOI 10.1515/mamm.1984.48.3.327; Roff D. A., 2002, LIFE HIST EVOLUTION; Rogers LM, 1997, J ZOOL, V242, P705, DOI 10.1111/j.1469-7998.1997.tb05821.x; ROLLEY RE, 1985, J WILDLIFE MANAGE, V49, P283, DOI 10.2307/3801517; SALTZ D, 1995, ECOL APPL, V5, P327, DOI 10.2307/1942025; *SAS I, 1999, SAS STAT US GUID VER, V1; Schwartz OA, 1998, J ZOOL, V246, P337, DOI 10.1111/j.1469-7998.1998.tb00163.x; SHERMAN PW, 1984, ECOLOGY, V65, P1617, DOI 10.2307/1939140; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; SIMMONS NM, 1984, J WILDLIFE MANAGE, V48, P156, DOI 10.2307/3808463; Sinclair A. R. E., 1977, AFRICAN BUFFALO STUD; SLADE NA, 1974, ECOLOGY, V55, P989, DOI 10.2307/1940350; SMITH AT, 1974, ECOLOGY, V55, P1112, DOI 10.2307/1940361; SMITH GW, 1985, ECOLOGY, V66, P171, DOI 10.2307/1941317; SPINAGE CA, 1970, J ANIM ECOL, V39, P51, DOI 10.2307/2889; SPINAGE CA, 1972, ECOLOGY, V53, P645, DOI 10.2307/1934778; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1984, AM NAT, V123, P56, DOI 10.1086/284186; STEPHENSON A B, 1977, Canadian Journal of Zoology, V55, P1577, DOI 10.1139/z77-206; THOMPSON MJA, 1987, J ZOOL, V211, P209, DOI 10.1111/j.1469-7998.1987.tb01529.x; TRYON CA, 1973, J MAMMAL, V54, P145, DOI 10.2307/1378877; VANAARDE RJ, 1987, J ZOOL, V213, P205, DOI 10.1111/j.1469-7998.1987.tb03694.x; VANSICKLE J, 1987, J WILDLIFE MANAGE, V51, P941; WARNER RE, 1985, J WILDLIFE MANAGE, V49, P340, DOI 10.2307/3801527; WASER P. M., 1995, SERENGETI, P421; WASER PM, 1991, ECOLOGY, V72, P771, DOI 10.2307/1940579; Watson R. M., 1969, Journal of Reproduction and Fertility Suppl, VNo. 6, P287; WEBER D, 1989, Z JAGDWISS, V35, P86, DOI 10.1007/BF02242094; Wegge P., 1979, Journal of Asian Ecology, V1, P10; WEI F, 1989, Acta Theriologica Sinica, V9, P81; WESTERN D, 1982, OECOLOGIA, V54, P281, DOI 10.1007/BF00379994; WESTERN D, 1983, OECOLOGIA, V59, P269, DOI 10.1007/BF00378847; WESTERN D, 1979, AFR J ECOL, V17, P185, DOI 10.1111/j.1365-2028.1979.tb00256.x; WILLNER GR, 1983, Z SAUGETIERKD, V48, P19; WOODGERD WESLEY, 1964, J WILDLIFE MGMT, V28, P381, DOI 10.2307/3798103; YANG Q, 1990, Acta Theriologica Sinica, V10, P255; YODZIS P, 1986, J WILDLIFE MANAGE, V50, P602, DOI 10.2307/3800970; ZAMMUTO RM, 1987, ECOLOGY, V68, P1351, DOI 10.2307/1939219 150 67 68 6 58 URBAN & FISCHER VERLAG JENA BRANCH OFFICE JENA, P O BOX 100537, D-07705 JENA, GERMANY 1439-1791 BASIC APPL ECOL Basic Appl. Ecol. 2004 5 5 449 463 10.1016/j.baae.2004.06.002 15 Ecology Environmental Sciences & Ecology 888RU WOS:000226392700007 2018-11-12 B Kramer, PA Meldrum, DJ; Hilton, CE Kramer, PA The behavioral ecology of locomotion FROM BIPED TO STRIDER: THE EMERGENCE OF MODERN HUMAN WALKING, RUNNING, AND RESOURCE TRANSPORT English Proceedings Paper Symposium From Biped to Strider - The Emergence of Modern Human Walking held at the 69th Annual Meeting of the AAPA APR 15, 2000 San Antonio, TX AUSTRALOPITHECUS-AFARENSIS; POSITIONAL BEHAVIOR; ENERGY-EXPENDITURE; PAN-TROGLODYTES; EVOLUTION; HOMINIDS; WALKING; AFRICANUS; ANATOMY; HOMO One of the cornerstones of modern evolutionary biology is the insight that an individual that is more tailored to his environment should have a higher survival and reproductive potential than his less adapted neighbors. Behavioral ecology attempts to explain behaviors as adaptive, or not, only in particular ecological contexts. And life history theory highlights that the developmental stage of an individual is an integral part of the environment and that development is an inherently sequential process. But how do these seminal ideas help us understand the evolution of hominid bipedality? Bipedality can be thought of as a suite of possible styles, with different forms optimizing diverse traits. The locomotor form of an individual can be optimized for many characteristics, including 1) efficient use of energetic. thermal. temporal and water budgets; 2) range; 3) velocity or acceleration; 4) endurance, fatigue and injury protection; and 5) burden carrying. All could be important in different ecological circumstances and, indeed, many may act in concert with others, but which ones? when? how? and how can We tell from the fossil record? While female australopithecines appear to have excelled at slow speeds and short distances, the locomotor form of Homo seems to be oriented toward relatively long distance travel and endurance walking and running. Understanding these aspects of the locomotor regime does not. however, inform about the other elements of the behavioral repertoire, nor does it elucidate why the transition took place and what the functional implications of it are. The task of understanding bipedality as a fundamental adaptation of Hominidae can only be a truly fruitful endeavor if we keep in mind that males and females may have different ecological perspectives; children, adolescents. and adults may interact with the environment in different ways; and the environment is a complex set of interacting, dynamic factors. Univ Washington, Dept Anthropol, Seattle, WA 98104 USA ABITBOL MM, 1995, AM J PHYS ANTHROPOL, V96, P143, DOI 10.1002/ajpa.1330960204; ALTMANN J, 1992, BEHAV ECOL SOCIOBIOL, V29, P391; BENTLEY G, 1984, HUM ECOL, V13, P79; Bogin B., 1999, PATTERNS HUMAN GROWT; Borgerhoff-Mulder A., 1992, EVOLUTIONARY ECOLOGY, P339; CAVAGNA GA, 1977, AM J PHYSIOL, V233, P243; Crompton RH, 1996, AM J PHYS ANTHROPOL, V99, P547, DOI 10.1002/(SICI)1096-8644(199604)99:4<547::AID-AJPA3>3.0.CO;2-R; Dahlberg F., 1981, WOMAN GATHERER; DARWIN C, 1872, ORIGIN SPECIES MEANS; DORAN DM, 1993, AM J PHYS ANTHROPOL, V91, P83, DOI 10.1002/ajpa.1330910106; DUNCAN AS, 1994, AM J PHYS ANTHROPOL, V93, P67, DOI 10.1002/ajpa.1330930105; Ellison P. T., 2001, FERTILE GROUND; Elton S, 1998, ANN HUM BIOL, V25, P523, DOI 10.1080/03014469800006762; Fisher R. A., 1958, GENETICAL THEORY NAT; Foley R.A., 1992, P131; Grausz H.M., 1988, P127; HILTON CE, 2000, AM J PHYS ANTHROPOL, V30, P179; HUNT KD, 1992, AM J PHYS ANTHROPOL, V87, P83, DOI 10.1002/ajpa.1330870108; INMAN VT, 1981, HUMAN WALKING; ISAAC G, 1978, SCI AM, V238, P90, DOI 10.1038/scientificamerican0478-90; Isbell LA, 1998, AM J PHYS ANTHROPOL, V105, P199, DOI 10.1002/(SICI)1096-8644(199802)105:2<199::AID-AJPA7>3.0.CO;2-Q; JOHANSON DC, 1982, AM J PHYS ANTHROPOL, V57, P373, DOI 10.1002/ajpa.1330570402; JUNGERS WL, 1982, NATURE, V297, P676, DOI 10.1038/297676a0; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; KRAMER P, 1998, THESIS U WASHINGTON; Kramer PA, 1998, AM J PHYS ANTHROPOL, V107, P71; Kramer PA, 1999, J EXP BIOL, V202, P2807; Kramer PA, 2000, J HUM EVOL, V38, P651, DOI 10.1006/jhev.1999.0375; LATIMER B, 1987, AM J PHYS ANTHROPOL, V74, P155, DOI 10.1002/ajpa.1330740204; LATIMER B, 1989, AM J PHYS ANTHROPOL, V78, P369, DOI 10.1002/ajpa.1330780306; Lee R.B., 1968, MAN HUNTER; Lee RB, 1979, KUNG SAN MEN WOMEN W; LOVEJOY CO, 1988, SCI AM, V259, P118, DOI 10.1038/scientificamerican1188-118; LOVEJOY CO, 1973, AM J PHYS ANTHROPOL, V38, P757, DOI 10.1002/ajpa.1330380315; MALOIY GMO, 1986, NATURE, V319, P668, DOI 10.1038/319668a0; MCHENRY HM, 1983, AM J PHYS ANTHROPOL, V62, P187, DOI 10.1002/ajpa.1330620208; MCHENRY HM, 1975, AM J PHYS ANTHROPOL, V43, P39, DOI 10.1002/ajpa.1330430107; McHenry HM, 1998, J HUM EVOL, V35, P1, DOI 10.1006/jhev.1997.0197; Meriam J. L., 1978, DYNAMICS; *NASA, 1978, ANTHROPOMETRIC SOURC; PANDOLF KB, 1977, J APPL PHYSIOL, V43, P577; POHL O, 2002, TIMES, P3; POTTS R, 1988, EARLY HOMINID OLDUVA; RAK Y, 1991, J HUM EVOL, V20, P283, DOI 10.1016/0047-2484(91)90011-J; Reeder C E, 1993, Pharmacoeconomics, V4, P92, DOI 10.2165/00019053-199304020-00004; REMIS M, 1995, AM J PHYS ANTHROPOL, V97, P413, DOI 10.1002/ajpa.1330970408; ROBINSON JT, 1972, EARLY HOMINID POSTUR; ROSENBERG K, 2000, AM J PHYS ANTHROPOL, V30, P264; SMITH EA, 1983, CURR ANTHROPOL, V24, P625, DOI 10.1086/203066; SMITH EA, 1992, EVOLUTIONARY ECOLOGY, P25; Steams S. C., 1992, EVOLUTION LIFE HIST; STERN JT, 1983, AM J PHYS ANTHROPOL, V60, P279, DOI 10.1002/ajpa.1330600302; TAGUE RG, 1992, AM J PHYS ANTHROPOL, V88, P1, DOI 10.1002/ajpa.1330880102; TAYLOR PJ, 1982, POLITICAL GEOGRAPHY, V1, P1; van Schaik CP, 1999, J HUM EVOL, V36, P719, DOI 10.1006/jhev.1999.0304; WATERS RL, 1983, DEV MED CHILD NEUROL, V25, P184; WATERS RL, 1988, J ORTHOPAED RES, V6, P215, DOI 10.1002/jor.1100060208; WHEELER PE, 1991, J HUM EVOL, V21, P107, DOI 10.1016/0047-2484(91)90002-D; WHEELER PE, 1993, J HUM EVOL, V24, P13, DOI 10.1006/jhev.1993.1003; WHITE TD, 1980, AM J PHYS ANTHROPOL, V53, P487, DOI 10.1002/ajpa.1330530405; Winter D. A., 1987, BIOMECHANICS MOTOR C; Zihlman A, 1978, EARLY HOMINIDS AFRIC, P361; Zihlman A.L., 1984, P179; ZIHLMAN AL, 1992, J HUM EVOL, V22, P315, DOI 10.1016/0047-2484(92)90062-E; ZIHLMAN AL, 1978, FOLIA PRIMATOL, V29, P86, DOI 10.1159/000155830; Zihlman AL, 1979, YEARB PHYS ANTHROPOL, V22, P132 66 9 9 0 0 KLUWER ACADEMIC/PLENUM PUBL NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0-306-47999-0 2004 101 115 15 Anatomy & Morphology; Anthropology; Paleontology Anatomy & Morphology; Anthropology; Paleontology BY88P WOS:000189486700007 2018-11-12 J Bock, J; Johnson, SE Bock, J; Johnson, SE Subsistence ecology and play among the Okavango Delta peoples of Botswana HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article Botswana; children's play; human evolutionary ecology; life-history theory; time allocation PARENTAL INVESTMENT; LIFE-HISTORY; EVOLUTION; CHILDREN; FERTILITY Children's play is widely believed by educators and social scientists to have a training function that contributes to psychosocial development as well as the acquisition of skills related to adult competency in task performance. In this paper we examine these assumptions from the perspective of life-history theory using behavioral observation and household economic data collected among children in a community in the Okavango Delta of Botswana where people engage in mixed subsistence regimes of dry farming, foraging, and herding. We hypothesize that if play contributes to adult competency then time allocation to play will decrease as children approach adult levels of competence. This hypothesis generates the following predictions: (1) time allocated to play activities that develop specific productive skills should decline in relation to the proportion of adult competency achieved; (2) children will spend more time in forms of play that are related to skill development in tasks specific to the subsistence ecology in which that child participates or expects to participate; and (3) children will spend more time in forms of play that are related to skill development in tasks clearly related to the gender-specific productive role in the subsistence ecology in which that child participates or expects to participate. We contrast these expectations with the alternative hypothesis that if play is not preparatory for adult competence then time allocated to each play activity should diminish at the same rate. This latter hypothesis generates the following two predictions: (1) time allocation to play should be unaffected by subsistence regime and (2) patterns of time allocation to play should track patterns of growth and energy balance. Results from multiple regression analysis support earlier research in this community showing that trade-offs between immediate productivity and future returns were a primary determinant of children's activity patterns. Children whose labor was in greater demand spent significantly less time playing. In addition, controlling for age and gender, children spent significantly more time in play activities related to tasks specific to their household subsistence economy. These results are consistent with the assertion that play is an important factor in the development of adult competency and highlight the important contributions of an evolutionary ecological perspective in understanding children's developmental trajectories. Calif State Univ Fullerton, Dept Anthropol, Fullerton, CA 92834 USA Bock, J (reprint author), Calif State Univ Fullerton, Dept Anthropol, Fullerton, CA 92834 USA. jbock@fullerton.edu BARBER N, 1991, Q REV BIOL, V66, P129, DOI 10.1086/417142; Bekoff M., 1998, ANIMAL PLAY EVOLUTIO; Bird DW, 2002, HUM NATURE-INT BIOS, V13, P269, DOI 10.1007/s12110-002-1010-9; Bird RB, 2002, HUM NATURE-INT BIOS, V13, P239, DOI 10.1007/s12110-002-1009-2; Bjorklund D. F., 2002, ORIGINS HUMAN NATURE; Blurton Jones N, 1989, COMP SOCIOECOLOGY BE, P367; Bock J, 2002, HUM NATURE-INT BIOS, V13, P161, DOI 10.1007/s12110-002-1007-4; Bock J, 2002, HUM NATURE-INT BIOS, V13, P153, DOI 10.1007/s12110-002-1006-5; Bock J, 2002, AM J HUM BIOL, V14, P206, DOI 10.1002/ajhb.10040; BOCK J, 2004, IN PRESS CULTURE ECO; BOCK J, 1995, THESIS U NEW MEXICO; Bock J., 1998, BOTSWANA NOTES RECOR, V30, P27; Bock J., 2002, ENDANGERED PEOPLES A, P151; Bock J., 2001, INT ENCY SOCIAL BEHA, P5557; Bock J., 2002, HDB FATHER INVOLVEME, P308; Bogin B., 1999, PATTERNS HUMAN GROWT, V23; BULATAO RA, 1977, RELATIONSHIPS VALUE; CAIN MT, 1977, POPUL DEV REV, V3, P201, DOI 10.2307/1971889; Caldwell J. C., 1982, THEORY FERTILITY DEC; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; COHEN D, 1987, DEV PLAY; FAGEN R, 1981, ANIMAL PLAY BEHAV; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; JOENS NGB, 1999, COMP PRIMATE SOCIOEC, P140; Johnson SE, 2004, HUM NATURE-INT BIOS, V15, P45, DOI 10.1007/s12110-004-1003-y; Jones NB, 2002, HUM NATURE-INT BIOS, V13, P199, DOI 10.1007/s12110-002-1008-3; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.3.CO;2-Z; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; Kaplan Hillard S., 2001, INT ENCY SOCIAL BEHA, P5561; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; Lancy D, 1996, PLAYING MOTHER GROUN; LARSON TJ, 1970, BOTSWANA NOTES RECOR, V2, P29; Lee RD, 2002, POPUL DEV REV, V28, P475, DOI 10.1111/j.1728-4457.2002.00475.x; Leigh SR, 2001, EVOL ANTHROPOL, V10, P223, DOI 10.1002/evan.20002; MARTIN P, 1985, ADV STUD BEHAV, V15, P59, DOI 10.1016/S0065-3454(08)60487-8; Pellegrini AD, 2004, HUM NATURE-INT BIOS, V15, P23, DOI 10.1007/s12110-004-1002-z; Power T. G., 2000, PLAY EXPLORATION CHI; SLAUGHTER DT, 1989, ECOLOGICAL CONTEXT C, P282; SMITH PK, 1982, BEHAV BRAIN SCI, V5, P139, DOI 10.1017/S0140525X0001092X 40 29 30 0 41 ALDINE DE GRUYTER DIVISION WALTER DE GRUYTER INC HAWTHORNE 200 SAW MILL RIVER, HAWTHORNE, NY 10532 USA 1045-6767 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. 2004 15 1 63 81 10.1007/s12110-004-1004-x 19 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences 819FC WOS:000221299000005 26190294 2018-11-12 J Beauchamp, KC; Collins, NC; Henderson, BA Beauchamp, KC; Collins, NC; Henderson, BA Covariation of growth and maturation of lake whitefish (Coregonus clupeaformis) JOURNAL OF GREAT LAKES RESEARCH English Article lake whitefish; life history traits; growth; maturation LIFE-HISTORY; NATURAL MORTALITY; FISH STOCKS; REPRODUCTION; PARAMETERS; SIZE; POPULATIONS; EVOLUTION; MATURITY; MODEL Covariations of growth, age and size at maturity, and adult natural mortality rates are described for 22 Great Lakes stocks and 28 inland lake populations of lake whitefish (Coregonus clupeaformis). An understanding of these covariations could be used to modify the expectations of sustainable yields. Age at maturity was inversely related to pre-reproductive growth rates (omega = L-infinity k). Size at age 1 was significantly correlated with pre-reproductive growth rates, indicating that omega is a realistic index of early growth. Age, but not length at maturity was inversely correlated with pre- reproductive growth rates. Asymptotic sizes (L-infinity) were not correlated with age at maturity, however the time required to achieve asymptotic size was positively correlated with age at maturity. Pre-reproductive growth rates and asymptotic sizes were larger for Great Lakes whitefish than for inland lake whitefish. Great Lakes stocks matured at a younger age apparently due to higher pre- reproductive growth rates. Natural mortality rates were inversely related to age at maturity. These intraspecific covariations of growth and maturity are consistent with life history theory developed from interspecific analyses. Life history theory derived from interspecific analyses can, therefore, be applied to intraspecific variations in life history traits. Lake Huron Fisheries Res Unit, Owen Sound, ON N4K 2Z1, Canada; Univ Toronto, Dept Biol, Mississauga, ON L5L 1C6, Canada Beauchamp, KC (reprint author), Lake Huron Fisheries Res Unit, 1450 7th Ave E, Owen Sound, ON N4K 2Z1, Canada. dave.m.anderson@mnr.gov.on.ca Collins, Nicholas/0000-0002-6901-6604 BEAUCHAMP KC, 2002, THESIS U TORONTO TOR; Beverton R. J. H., 1963, Rapport Conseil Exploration Mer, V154, P44; Beverton R. J. H., 1959, CIBA FDN C AGEING, V5, P142, DOI DOI 10.1002/9780470715253.CH10; BROWN JS, 1993, LECT NOTES BIOMATH, V99, P140; CERRATO RM, 1990, CAN J FISH AQUAT SCI, V47, P1416, DOI 10.1139/f90-160; Charnov Eric L., 1993, P1; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Day T, 1997, AM NAT, V149, P381, DOI 10.1086/285995; FISHER R. A., 1930, GENETICAL THEORY NAT; Frisk MG, 2001, CAN J FISH AQUAT SCI, V58, P969, DOI 10.1139/cjfas-58-5-969; GALLUCCI VF, 1979, T AM FISH SOC, V108, P14, DOI 10.1577/1548-8659(1979)108<14:RFATAS>2.0.CO;2; GUNDERSON DR, 1988, J CONSEIL, V44, P200; HEALEY MC, 1980, CAN J FISH AQUAT SCI, V37, P255, DOI 10.1139/f80-033; HEALEY MC, 1975, J FISH RES BOARD CAN, V32, P427, DOI 10.1139/f75-053; Heath DD, 2002, CAN J FISH AQUAT SCI, V59, P77, DOI 10.1139/F01-192; HEATH DD, 1985, CAN J FISH AQUAT SCI, V42, P164; Henderson BA, 1998, J FISH BIOL, V52, P1078, DOI 10.1006/jfbi.1997.0631; Jennings S, 1999, J ANIM ECOL, V68, P617, DOI 10.1046/j.1365-2656.1999.00312.x; JENSEN AL, 1981, J FISH BIOL, V19, P557, DOI 10.1111/j.1095-8649.1981.tb03822.x; KENNEDY W. A., 1953, JOUR FISH RES BD CANADA, V10, P413; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Lester NP, 2000, LIFE HIST VARIATION; Lotka A. J., 1913, J WASH ACAD SCI, V3, P289; Lucena FM, 2001, FISH B-NOAA, V99, P432; MILLS KH, 1985, CAN J FISH AQUAT SCI, V42, P129, DOI 10.1139/f85-016; Mills KH, 1995, ERGEB LIMNOL, V46, P361; PAULY D, 1980, J CONSEIL, V39, P175; PRESENT TMC, 1992, FUNCT ECOL, V6, P23, DOI 10.2307/2389767; RATKOWSKY DA, 1986, CAN J FISH AQUAT SCI, V43, P742, DOI 10.1139/f86-091; RICKER WE, 1969, J FISH RES BOARD CAN, V26, P479, DOI 10.1139/f69-051; Rochet MJ, 2000, OIKOS, V91, P255, DOI 10.1034/j.1600-0706.2000.910206.x; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; Roff Derek A., 1992; SHINE R, 1988, EVOLUTION, V42, P17, DOI 10.1111/j.1558-5646.1988.tb04104.x; Shuter BJ, 1998, CAN J FISH AQUAT SCI, V55, P2161, DOI 10.1139/cjfas-55-9-2161; Siems DP, 1998, ENVIRON BIOL FISH, V53, P319, DOI 10.1023/A:1007407925835; Smith EB, 1997, CAN J FISH AQUAT SCI, V54, P2025, DOI 10.1139/f97-110; Stamps JA, 1998, AM NAT, V152, P470, DOI 10.1086/286183; Stearns S. C., 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; von BERTALANFFY LUDWIG, 1938, HUMAN BIOL, V10, P181; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Woltereck R., 1909, VER DTSCH ZOOL GESEL, P110 47 16 19 1 10 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0380-1330 J GREAT LAKES RES J. Gt. Lakes Res. 2004 30 3 451 460 10.1016/S0380-1330(04)70361-5 10 Environmental Sciences; Limnology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 862BB WOS:000224463400010 2018-11-12 J Garamszegi, LZ; Torok, J; Michl, G; Moller, AP Garamszegi, LZ; Torok, J; Michl, G; Moller, AP Female survival, lifetime reproductive success and mating status in a passerine bird OECOLOGIA English Article collared flycatcher; fitness; Mark-recapture analysis; polygyny; secondary female FLYCATCHERS FICEDULA-HYPOLEUCA; MALE PARENTAL CARE; ALREADY-MATED MALES; PIED FLYCATCHER; CAPTURE-RECAPTURE; MARKED ANIMALS; DECEPTION HYPOTHESIS; POLYGYNY; COMPETITION; AGGRESSION In facultatively polygynous birds, secondary females of polygynously mated males typically have reduced annual reproductive success, because polygynous males provide less paternal care than monogamous males. Life history theory predicts that, as a result of increased reproductive investment, secondary females should suffer from reduced survival and lifetime reproductive success, but previous studies provided only weak support for this hypothesis. We used 7 years of data to study the fitness of female collared flycatchers Ficedula albicollis in relation to mating status by estimating survival and lifetime reproductive success. Taking differences in recapture probability into account, a mark-recapture analysis revealed that females observed at least once to breed as secondary female had higher survival than other females. This relationship was not confounded by laying date, because when we assessed the impact of laying date on survival, we found similar survival patterns. Females of polygynous males had reduced breeding success in terms of number of young fledged during the current reproductive event. However, during their lifetime females found at least once in primary or secondary mating status produced significantly more eggs, and at least the same number of fledglings and recruits as monogamous females. Thus, in the collared flycatcher, females of polygynously mated males seem to suffer from mating status during the most recent reproductive event, but considering survival and lifetime reproductive success, the apparently disadvantageous mating event is not necessarily associated with reduced residual reproductive value. Univ Antwerp, Dept Biol, B-2610 Antwerp, Belgium; Eotvos Lorand Univ, Dept Systemat Zool, Behav Ecol Grp, Budapest, Hungary; Univ Paris 06, Lab Parasitol Evolut, Paris, France Garamszegi, LZ (reprint author), Univ Antwerp, Dept Biol, Univ Pl 1, B-2610 Antwerp, Belgium. lgaramsz@uia.ac.be Torok, Janos/C-6144-2008; Garamszegi, Laszlo/M-1488-2015; Garamszegi, Laszlo/B-5089-2011 Torok, Janos/0000-0002-4799-5522; Garamszegi, Laszlo/0000-0001-8920-2183; Akaike H, 1985, CELEBRATION STAT; Alatalo RV, 1990, BEHAV ECOL, V1, P171, DOI 10.1093/beheco/1.2.171; ALATALO RV, 1982, ANIM BEHAV, V30, P585, DOI 10.1016/S0003-3472(82)80072-9; ALATALO RV, 1984, ANN ZOOL FENN, V21, P217; ALATALO RV, 1981, AM NAT, V117, P738, DOI 10.1086/283756; Bensch S, 1996, J ANIM ECOL, V65, P283, DOI 10.2307/5875; Bensch S, 1997, J AVIAN BIOL, V28, P345, DOI 10.2307/3676949; Both C, 2002, ARDEA, V90, P129; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; BUCKLAND ST, 1991, BIOMETRICS, V47, P255, DOI 10.2307/2532510; Burnham K. P., 1998, MODEL SELECTION INFE; BURNHAM KP, 1987, AM FISH SOC MONOGR, V5, P1; CORMACK RM, 1964, BIOMETRIKA, V51, P429, DOI 10.1093/biomet/51.3-4.429; Dale S, 1996, AUK, V113, P849, DOI 10.2307/4088863; Dale S, 1996, BEHAVIOUR, V133, P903, DOI 10.1163/156853996X00305; EENS M, 1995, J AVIAN BIOL, V26, P267, DOI 10.2307/3677330; Frank SA, 1996, Q REV BIOL, V71, P37, DOI 10.1086/419267; GARAMSZEGI LZ, 2003, IN PRESS BIRD STUDY; Gustafsson L., 1989, P75; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; JOHNSON LS, 1993, J ANIM ECOL, V62, P669, DOI 10.2307/5387; JOLLY GM, 1965, BIOMETRIKA, V52, P225, DOI 10.2307/2333826; KEMPENAERS B, 1995, ANIM BEHAV, V49, P1047, DOI 10.1006/anbe.1995.0134; Kral M, 1996, FOLIA ZOOL, V45, P153; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LIFJELD JT, 1989, ORNIS FENNICA, V66, P3; Lubjuhn T, 2000, BEHAV ECOL SOCIOBIOL, V48, P12, DOI 10.1007/s002650000208; Lundberg A, 1992, PIED FLYCATCHER; Moreno J, 2002, ANIM BEHAV, V64, P197, DOI 10.1006/anbe.2002.3060; NUR N, 1988, EVOLUTION, V42, P589; ORIANS GH, 1969, AM NAT, V103, P589, DOI 10.1086/282628; PART T, 1989, J ANIM ECOL, V58, P305, DOI 10.2307/5002; POLLOCK KH, 1990, WILDLIFE MONOGR, P1; POTTI J, 1993, BIRD STUDY, V40, P31, DOI 10.1080/00063659309477126; RATTI O, 1995, ANIM BEHAV, V50, P850, DOI 10.1016/0003-3472(95)80145-6; Searcy WA, 1996, J AVIAN BIOL, V27, P225, DOI 10.2307/3677226; SEARCY WA, 1989, AM NAT, V134, P323, DOI 10.1086/284984; SEARCY WA, 1995, POLYGYNY SEXUAL SELE; SEBER GAF, 1965, BIOMETRIKA, V52, P249; SLAGSVOLD T, 1994, AM NAT, V143, P59, DOI 10.1086/285596; SLAGSVOLD T, 1995, ANIM BEHAV, V50, P847, DOI 10.1016/0003-3472(95)80144-8; SLAGSVOLD T, 1994, BEHAV ECOL SOCIOBIOL, V34, P239, DOI 10.1007/BF00183474; Smith HG, 1998, OIKOS, V83, P484, DOI 10.2307/3546676; STENMARK G, 1988, ANIM BEHAV, V36, P1646, DOI 10.1016/S0003-3472(88)80105-2; TOROK J, 1998, P INT ORNITHOL C, V22, P337; VERNER J, 1964, EVOLUTION, V18, P252, DOI 10.2307/2406398; VERNER J, 1966, ECOLOGY, V47, P143, DOI 10.2307/1935753; WEATHERHEAD PJ, 1979, AM NAT, V113, P201, DOI 10.1086/283379; WHEELWRIGHT NT, 1992, BEHAV ECOL SOCIOBIOL, V31, P279; White GC, 1999, BIRD STUDY, V46, P120; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams GC, 1966, ADAPTATION NATURAL S 52 31 31 3 27 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 OECOLOGIA Oecologia JAN 2004 138 1 48 56 10.1007/s00442-003-1408-z 9 Ecology Environmental Sciences & Ecology 750EM WOS:000186978400007 14566556 2018-11-12 J Marshall, DJ; Bolton, TF; Keough, MJ Marshall, DJ; Bolton, TF; Keough, MJ Offspring size affects the post-metamorphic performance of a colonial marine invertebrate ECOLOGY English Article bryozoan; Bugula neritina; carryover effect; maternal effect; reproductive success BRYOZOAN BUGULA-NERITINA; LARVAL SWIMMING DURATION; EGG SIZE; QUALITY; GROWTH; REPRODUCTION; MORTALITY; PATTERNS; FIELD The positive relationship between offspring size and offspring fitness is a fundamental assumption of life-history theory, but it has received relatively little attention in the marine environment. This is surprising given that substantial intraspecific variation in offspring size is common in marine organisms and there are clear links between larval experience and adult performance. The metamorphosis of most marine invertebrates does not represent a "newbeginning," and larval experiences can have effects that carry over to juvenile survival and growth. We show that larval size can have equally important carryover effects in a colonial marine invertebrate. In the bryozoan Bugula neritina, the size of the non-feeding larvae has a prolonged effect on colony performance after metamorphosis. Colonies that came from larger larvae survived better, grew faster, and reproduced sooner or produced more embryos than colonies that came from smaller larvae. These effects crossed generations, with colonies from larger larvae themselves producing larger larvae. These effects were found in two populations (in Australia and in the United States) in contrasting habitats. Univ Melbourne, Dept Zool, Melbourne, Vic 3010, Australia; Marine Environm Sci Consortium, Dauphin Isl, AL 36528 USA Marshall, DJ (reprint author), Univ Melbourne, Dept Zool, Melbourne, Vic 3010, Australia. d.marshall@zoology.unimelb.edu.au Marshall, Dustin/C-3450-2016; Marshall, Dustin/A-4185-2008 Bernardo J, 1996, AM ZOOL, V36, P216; Bertram DF, 1998, ECOLOGY, V79, P315, DOI 10.1890/0012-9658(1998)079[0315:EOMALN]2.0.CO;2; Davidson SK, 1999, BIOL BULL, V196, P273, DOI 10.2307/1542952; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; George SB, 1996, OCEANOL ACTA, V19, P297; Hunt HL, 1997, MAR ECOL PROG SER, V155, P269, DOI 10.3354/meps155269; Jones HL, 1996, J EXP MAR BIOL ECOL, V202, P29, DOI 10.1016/0022-0981(96)00029-9; KEOUGH MJ, 1986, ECOLOGY, V67, P846, DOI 10.2307/1939807; KEOUGH MJ, 1987, ECOLOGY, V68, P199, DOI 10.2307/1938820; KEOUGH MJ, 1989, BIOL BULL, V177, P277, DOI 10.2307/1541942; Marshall DJ, 2002, ECOL LETT, V5, P173, DOI 10.1046/j.1461-0248.2002.00257.x; Marshall DJ, 2000, MAR ECOL PROG SER, V195, P305, DOI 10.3354/meps195305; Moran AL, 2001, ECOLOGY, V82, P1597, DOI 10.1890/0012-9658(2001)082[1597:OSAPIV]2.0.CO;2; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Pechenik JA, 1998, BIOSCIENCE, V48, P901, DOI 10.2307/1313294; Pechenik JA, 1999, MAR ECOL PROG SER, V177, P269, DOI 10.3354/meps177269; Quinn GP, 2002, EXPT DESIGN DATA ANA; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; REZNICK D, 1981, EVOLUTION, V35, P941, DOI 10.1111/j.1558-5646.1981.tb04960.x; Sakai S, 2001, AM NAT, V157, P348, DOI 10.1086/319194; Sinervo B, 1996, EVOLUTION, V50, P1314, DOI 10.1111/j.1558-5646.1996.tb02371.x; SINVERO B, 1990, EVOLUTION, V44, P279; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S. C., 1992, EVOLUTION LIFE HIST; Underwood AJ, 2001, MARINE COMMUNITY ECOLOGY, P183; Wendt DE, 1998, BIOL BULL-US, V195, P126, DOI 10.2307/1542820; Wendt DE, 1996, BIOL BULL-US, V191, P224, DOI 10.2307/1542925; WILLIAMS TD, 1994, BIOL REV, V68, P35, DOI DOI 10.1111/J.1469-185X.1994.TB01485.X 28 125 126 0 47 ECOLOGICAL SOC AMER WASHINGTON 1707 H ST NW, STE 400, WASHINGTON, DC 20006-3915 USA 0012-9658 ECOLOGY Ecology DEC 2003 84 12 3131 3137 10.1890/02-0311 7 Ecology Environmental Sciences & Ecology 762LN WOS:000187973500004 2018-11-12 J Coall, DA; Chisholm, JS Coall, DA; Chisholm, JS Evolutionary perspectives on pregnancy: maternal age at menarche and infant birth weight SOCIAL SCIENCE & MEDICINE English Review birth weight; age at menarche; evolutionary theory; psychosocial stress BODY-MASS INDEX; FETAL-GROWTH; BLOOD-PRESSURE; GESTATIONAL-AGE; REPRODUCTIVE DEVELOPMENT; CHILDHOOD EXPERIENCE; PROSPECTIVE COHORT; GENETIC CONFLICTS; ADULT OBESITY; CHINESE GIRLS We present a novel evolutionary analysis of low birth weight (LBW). LBW is a well-known risk factor for increased infant morbidity and mortality. Its causes, however, remain obscure and there is a vital need for new approaches. Life history theory, the most dynamic branch of evolutionary ecology, provides important insights into the potential role of LBW in human reproductive strategies. Life history theory's primary rationale for LBW is the trade-off between current and future reproduction. This trade-off underlies the prediction that under conditions of environmental risk and uncertainty (experienced subjectively as psychosocial stress) it can be evolutionarily adaptive to reproduce at a young age. One component of early reproduction is early menarche. Early reproduction tends to maximise offspring quantity, but parental investment theory's assumption of a quantity-quality trade-off holds that maximizing offspring quantity reduces quality, of which LBW may be the major component. We therefore predict that women who experienced early psychosocial stress and had early menarche are more likely to produce LBW babies. Furthermore, the extension of parent-offspring conflict theory in utero suggests that the fetus will attempt to resist its mother's efforts to reduce its resources, allocating more of what it does receive to the placenta in order to extract more maternal resources to increase its own quality. We propose that LBW babies born to mothers who experience early psychosocial stress and have early menarche are more likely to have a higher placental/fetal weight ratio. We review evidence in support of these hypotheses and discuss the implications for public health. (C) 2003 Elsevier Ltd. All rights reserved. Univ Western Australia, Sch Anat & Human Biol, Crawley, WA 6009, Australia Coall, DA (reprint author), Univ Western Australia, Sch Anat & Human Biol, 35 Stirling Highway, Crawley, WA 6009, Australia. dcoall@anhb.uwa.edu.au Coall, David/0000-0002-0488-2683 Acheson D., 1998, INDEPENDENT INQUIRY; Adair LS, 2001, PEDIATRICS, V107, DOI 10.1542/peds.107.4.e59; AnderssonEllstrom A, 1996, ACTA OBSTET GYN SCAN, V75, P484, DOI 10.3109/00016349609033359; Barker DJP, 1999, ANN MED, V31, P3, DOI 10.1080/07853890.1999.11904392; BARKER DJP, 1990, BRIT MED J, V301, P259, DOI 10.1136/bmj.301.6746.259; Barker DJP, 1997, ACTA PAEDIATR, V86, P78; Barker DJP, 1994, MOTHERS BABIES DIS L; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1996, DEV PSYCHOL, V32, P905, DOI 10.1037//0012-1649.32.5.905; Bowlby J., 1969, ATTACHMENT LOSS, V1; CAMPBELL BC, 1995, J BIOSOC SCI, V27, P127; Charnov Eric L., 1993, P1; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 2001, INT J EPIDEMIOL, V30, P206, DOI 10.1093/ije/30.2.206; Chisholm JS, 1999, DEATH HOPE AND SEX; CHISHOLM JS, 1995, PERSPECTIVES HUMAN B; COALL DA, 1999, 11 ANN M HUM BEH EV; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Cole TJ, 2000, P NUTR SOC, V59, P317, DOI 10.1017/S0029665100000355; Daan Serge, 1997, P311; DAVANZO J, 1984, SOC SCI MED, V18, P387; Davey Smith G, 2001, BMJ, V322, P184, DOI 10.1136/bmj.322.7280.184; Davey-Smith G, 1996, AM J PUBLIC HEALTH, V86, P497; DAVEYSMITH G, 1996, AM J PUBLIC HEALTH, V86, P486; DREIZEN S, 1967, J PEDIATR-US, V70, P256, DOI 10.1016/S0022-3476(67)80420-7; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; ELLISON PT, 1990, AM ANTHROPOL, V92, P933, DOI 10.1525/aa.1990.92.4.02a00050; Flinn Mark V, 1999, HORMONES HLTH BEHAV, P105; FONAGY P, 2000, SOC POPULATION HLTH, V2, P104; FONAGY P., 1996, J CLIN PSYCHOANALYSI, V5, P67; FRISCH RE, 1988, SCI AM, V258, P88, DOI 10.1038/scientificamerican0388-88; GARN SM, 1986, AM J CLIN NUTR, V43, P879; Godfrey K, 1996, BRIT MED J, V312, P410; Godfrey KM, 2002, PLACENTA, V23, pS20, DOI 10.1053/plac.2002.0773; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.2307/1131582; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; Haig D, 1999, EVOLUTION IN HEALTH AND DISEASE, P77; Haig D, 1996, AM J REPROD IMMUNOL, V35, P226; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HARPENDING H, 1990, DIS POPULATIONS TRAN; Hart J, 1996, DEV PSYCHOPATHOL, V8, P201, DOI 10.1017/S0954579400007045; Hennessy E, 1998, PAEDIATR PERINAT EP, V12, P45, DOI 10.1046/j.1365-3016.1998.0120s1045.x; Henriksen T, 1999, ACTA PAEDIATR, V88, P4, DOI 10.1080/080352599750029862; HERMANGIDDENS ME, 1988, AM J DIS CHILD, V142, P431, DOI 10.1001/archpedi.1988.02150040085025; HERTSGAARD L, 1995, CHILD DEV, V66, P1100, DOI 10.1111/j.1467-8624.1995.tb00925.x; Hertzman C., 2000, ISUMA, V1, P11; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Kim BJ, 1999, J VAC SCI TECHNOL A, V17, P133, DOI 10.1116/1.581562; Kim K, 1998, INT J BEHAV DEV, V22, P729, DOI 10.1080/016502598384144; Kim K, 1997, EVOL HUM BEHAV, V18, P109, DOI 10.1016/S1090-5138(96)00114-6; Kingdom J, 2000, EUR J OBSTET GYN R B, V92, P35, DOI 10.1016/S0301-2115(00)00423-1; Kirchengast S, 2000, SOC BIOL, V47, P114; Kogan MD, 1995, J ROY SOC MED, V88, P611; Kramer MS, 2000, AM J EPIDEMIOL, V152, P605, DOI 10.1093/aje/152.7.605; KRAMER MS, 1987, B WORLD HEALTH ORGAN, V65, P663; Kramer MS, 1996, LANCET, V348, P1254, DOI 10.1016/S0140-6736(05)65750-9; Laitinen J, 2001, AM J CLIN NUTR, V74, P287; LAW CM, 1991, ARCH DIS CHILD, V66, P1291, DOI 10.1136/adc.66.11.1291; Leon DA, 1996, BRIT MED J, V312, P401; LIN WS, 1992, ANN HUM BIOL, V19, P503, DOI 10.1080/03014469200002332; LOW BS, 1978, AM NAT, V112, P197, DOI 10.1086/283260; LOW WD, 1982, HUM BIOL, V54, P539; Lumey LH, 1998, PLACENTA, V19, P105; Lupien SJ, 2000, BIOL PSYCHIAT, V48, P976, DOI 10.1016/S0006-3223(00)00965-3; Marris P., 1996, POLITICS UNCERTAINTY; MARSHALL W, 1986, HUMAN GROWTH COMPREH; Mathews F, 1999, BRIT MED J, V319, P339, DOI 10.1136/bmj.319.7206.339; MATTHES JWA, 1994, BRIT MED J, V308, P1074, DOI 10.1136/bmj.308.6936.1074; MCCORMICK MC, 1985, NEW ENGL J MED, V312, P82, DOI 10.1056/NEJM198501103120204; MCEWEN BS, 1999, SOCIOECONOMIC STATUS; MCEWEN BS, 1995, COGNITIVE NEUROSCIEN; MCLOYD VC, 1990, CHILD DEV, V61, P311, DOI 10.1111/j.1467-8624.1990.tb02781.x; MERZENICH H, 1993, AM J EPIDEMIOL, V138, P217, DOI 10.1093/oxfordjournals.aje.a116850; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.2307/1130900; Moore VM, 1999, J HYPERTENS, V17, P883, DOI 10.1097/00004872-199917070-00003; Moore VM, 1996, ARCH DIS CHILD, V74, P538, DOI 10.1136/adc.74.6.538; Morabia A, 1998, AM J EPIDEMIOL, V148, P1195; Mulder M Borgerhoff, 1992, EVOLUTIONARY ECOLOGY, P339; Persson I, 1999, AM J EPIDEMIOL, V150, P747; Petridou E, 1996, CHILD CARE HLTH DEV, V22, P37, DOI 10.1111/j.1365-2214.1996.tb00421.x; Phillips DIW, 1998, DIABETES CARE, V21, pB150; PROMISLOW D, 1990, J ZOOLOGICAL SOC LON, V220, P437; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; Repetti RL, 2002, PSYCHOL BULL, V128, P330, DOI 10.1037//0033-2909.128.2.330; ROBINSON J, 1995, REPROD FERT DEVELOP, V7, P333, DOI 10.1071/RD9950333; ROBINSON JS, 1994, AUST NZ J OBSTET GYN, V34, P240, DOI 10.1111/j.1479-828X.1994.tb01065.x; Robinson JS, 2000, EUR J OBSTET GYN R B, V92, P13, DOI 10.1016/S0301-2115(00)00421-8; ROBINSON JS, 1994, EARLY FETAL GROWTH D; Roosa MW, 1997, J MARRIAGE FAM, V59, P119, DOI 10.2307/353666; RYDER NB, 1971, REPROD US 1965; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; SCHOLL TO, 1989, ANN HUM BIOL, V16, P335, DOI 10.1080/03014468900000462; Sen A., 1992, INEQUALITY REEXAMINE; Sen A., 1999, DEV FREEDOM; SHERMAN B, 1981, J CLIN ENDOCR METAB, V52, P488, DOI 10.1210/jcem-52-3-488; Stearns S. C., 1992, EVOLUTION LIFE HIST; STROBINO DM, 1995, AM J EPIDEMIOL, V142, P504, DOI 10.1093/oxfordjournals.aje.a117668; SURBEY MK, 1990, MG PRIMATOL, V13, P11; Tanner J.M., 1962, GROWTH ADOLESCENCE G; TANNER JM, 1968, SCI AM, V218, P21, DOI 10.1038/scientificamerican0168-21; TRIVERS RL, 1974, AM ZOOL, V14, P249; Trivers Robert L., 1972, SEXUAL SELECTION DES, P5297; UDRY JR, 1979, J BIOSOC SCI, V11, P433; UDRY JR, 1982, DEMOGRAPHY, V19, P53, DOI 10.2307/2061128; Wahlbeck K, 2001, ARCH GEN PSYCHIAT, V58, P48, DOI 10.1001/archpsyc.58.1.48; WELLENS R, 1992, AM J HUM BIOL, V4, P783, DOI 10.1002/ajhb.1310040610; WHEELER T, 1994, LANCET, V343, P511, DOI 10.1016/S0140-6736(94)91461-3; WIERSON M, 1993, ADOLESCENCE, V28, P913; WILKINOSN RG, 1994, UNHEALTHY SOC AFFLIC; Wilkinson RG, 1997, BRIT MED J, V314, P591, DOI 10.1136/bmj.314.7080.591; Williams LA, 1997, BRIT MED J, V314, P1864, DOI 10.1136/bmj.314.7098.1864; Worthman C., 1999, HORMONES HLTH BEHAV, P47; Worthman CM, 1999, EVOLUTIONARY MEDICI NE, P135; Xu BZ, 1997, EARLY HUM DEV, V49, P183, DOI 10.1016/S0378-3782(97)00031-5; Xu BZ, 1995, SOC BIOL, V42, P175, DOI 10.1080/19485565.1995.9988899 119 50 51 0 10 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0277-9536 SOC SCI MED Soc. Sci. Med. NOV 2003 57 10 1771 1781 10.1016/S0277-9536(03)00022-4 11 Public, Environmental & Occupational Health; Social Sciences, Biomedical Public, Environmental & Occupational Health; Biomedical Social Sciences 728MF WOS:000185720400001 14499504 2018-11-12 J Clarke, A Clarke, A Costs and consequences of evolutionary temperature adaptation TRENDS IN ECOLOGY & EVOLUTION English Editorial Material GLOBAL ENVIRONMENTAL-CHANGE; METABOLIC-RATE; BODY-MASS; LATITUDINAL VARIATION; MOLECULAR CHAPERONES; DROSOPHILA-SERRATA; GEOGRAPHIC RANGE; SEASONAL-CHANGES; SOUTHERN BORDER; MARINE COPEPODS Temperature affects everything that an organism does. Although we have an increasingly sophisticated understanding of evolutionary adaptation to temperature at the molecular level for some cellular processes, we still know little about evolutionary temperature adaptation in gene expression, cell-cycle control or growth, all of which influence organism performance and fitness. Recent studies have shown that the physiological costs of evolutionary temperature adaptation vary with body temperature. Here, I argue that this macroecological pattern has powerful consequences for life-history theory, and probably also for food-web dynamics, biological diversity and biotic response to climate change. The relationships among evolution, temperature and ecology are multivariate, hierarchical and complex making evolutionary physiology at the macroecological scale an exciting and challenging agenda for the next decade. British Antarctic Survey, Div Biol Sci, Cambridge CB3 0ET, England Clarke, A (reprint author), British Antarctic Survey, Div Biol Sci, HIgh Cross,Madingley Rd, Cambridge CB3 0ET, England. accl@bas.ac.uk Natural Environment Research Council [bas010008, bas010007] Allen AP, 2002, SCIENCE, V297, P1545, DOI 10.1126/science.1072380; ANGUILLETTA JJ, 2003, TRENDS ECOL EVOL, V18, P234; ARCHER SD, 1991, PHYSIOL ZOOL, V64, P242, DOI 10.1086/physzool.64.1.30158522; BALDWIN JE, 1981, NATURE, V291, P381, DOI 10.1038/291381a0; BARNES DKA, 1995, POLAR BIOL, V15, P335; Bennett K., 1997, EVOLUTION ECOLOGY PA; BERVEN KA, 1979, EVOLUTION, V33, P609, DOI 10.1111/j.1558-5646.1979.tb04714.x; BREY T, 1993, ANTARCT SCI, V5, P253; Brodeur JC, 2003, J EXP BIOL, V206, P1011, DOI 10.1242/jeb.00204; Brown JH, 1996, ANNU REV ECOL SYST, V27, P597, DOI 10.1146/annurev.ecolsys.27.1.597; BROWN JH, 1993, AM NAT, V142, P573, DOI 10.1086/285558; Chown SL, 1997, FUNCT ECOL, V11, P365, DOI 10.1046/j.1365-2435.1997.00096.x; Chown SL, 1999, BIOL REV, V74, P87, DOI 10.1017/S000632319800526X; CLARKE A, 1993, PALEOBIOLOGY, V19, P499; CLARKE A, 1993, FUNCT ECOL, V7, P139, DOI 10.2307/2389880; Clarke A, 1999, J ANIM ECOL, V68, P893, DOI 10.1046/j.1365-2656.1999.00337.x; CLARKE A, 1991, AM ZOOL, V31, P81; CLARKE A, 1987, MAR ECOL PROG SER, V38, P89, DOI 10.3354/meps038089; CLARKE A, 1983, OCEANOGR MAR BIOL, V21, P341; CONNELL JH, 1961, ECOLOGY, V42, P710, DOI 10.2307/1933500; CURRIE DJ, 1991, AM NAT, V137, P27, DOI 10.1086/285144; Davis AJ, 1998, J ANIM ECOL, V67, P600, DOI 10.1046/j.1365-2656.1998.00223.x; Davis AJ, 1998, NATURE, V391, P783, DOI 10.1038/35842; Elser JJ, 2000, J EVOLUTION BIOL, V13, P845; Feder ME, 2000, ANNU REV ECOL SYST, V31, P315, DOI 10.1146/annurev.ecolsys.31.1.315; Feder ME, 1999, ANNU REV PHYSIOL, V61, P243, DOI 10.1146/annurev.physiol.61.1.243; Fraser KPP, 2002, J EXP BIOL, V205, P3077; GASTON K, 2001, PATTERN PROCESS MACR; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Gotthard K, 2000, J ANIM ECOL, V69, P896, DOI 10.1046/j.1365-2656.2000.00432.x; Guderley H., 1998, Society for Experimental Biology Seminar Series, V66, P58; HARRINGTON RJ, 1987, VELIGER, V30, P148; Hirsh AE, 2001, NATURE, V411, P1046, DOI 10.1038/35082561; Hirst AG, 2003, ADV MAR BIOL, V44, P1, DOI 10.1016/S0065-2881(03)44002-9; HOCHACHKA PW, 2002, BIOCHEMICAL ADAPTATI; Hodkinson ID, 1999, J ANIM ECOL, V68, P1259, DOI 10.1046/j.1365-2656.1999.00372.x; Hoffmann A.A., 1991, EVOLUTIONARY GENETIC; HOFMANN GE, 1995, J EXP BIOL, V198, P1509; Hofmann GE, 2002, INTEGR COMP BIOL, V42, P808, DOI 10.1093/icb/42.4.808; HUNTLEY ME, 1992, AM NAT, V140, P201, DOI 10.1086/285410; Ikeda T, 2001, MAR BIOL, V139, P587, DOI 10.1007/s002270100608; IVLEVA IV, 1980, INT REV GES HYDROBIO, V65, P1, DOI 10.1002/iroh.19800650102; JABLONSKI D, 1995, SCIENCE, V268, P389, DOI 10.1126/science.11536722; JEFFREE EP, 1994, FUNCT ECOL, V8, P640, DOI 10.2307/2389927; Jenkins NL, 1999, EVOLUTION, V53, P1823, DOI [10.1111/j.1558-5646.1999.tb04565.x, 10.2307/2640443]; Jenkins NL, 2001, AUST J ENTOMOL, V40, P41, DOI 10.1046/j.1440-6055.2001.00197.x; Jensen AJ, 2000, J ANIM ECOL, V69, P1010, DOI 10.1046/j.1365-2656.2000.00457.x; Jeong H, 2000, NATURE, V407, P651, DOI 10.1038/35036627; JOHNSTON IA, 1994, J EXP BIOL, V195, P293; JOHNSTON IA, 1991, MAR BIOL, V109, P191, DOI 10.1007/BF01319386; Johnston IA, 1998, J EXP BIOL, V201, P1; Kock K. - H., 1992, ANTARCTIC FISH FISHE; Lawton JH, 1999, OIKOS, V84, P177, DOI 10.2307/3546712; LAWTON JH, 1993, TRENDS ECOL EVOL, V8, P409, DOI 10.1016/0169-5347(93)90043-O; Lovegrove BG, 2000, AM NAT, V156, P201, DOI 10.1086/303383; Moerland Timothy S., 1995, Biochemistry and Molecular Biology of Fishes, V5, P57; Neargarder G, 2003, FUNCT ECOL, V17, P213, DOI 10.1046/j.1365-2435.2003.00722.x; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Parmesan C, 1999, NATURE, V399, P579, DOI 10.1038/21181; Peck LS, 2000, GEOL SOC SPEC PUBL, V177, P441, DOI 10.1144/GSL.SP.2000.177.01.29; Pimm S. L., 2002, FOOD WEBS; Pither J, 2003, P ROY SOC B-BIOL SCI, V270, P475, DOI 10.1098/rspb.2002.2275; Purchase CF, 2000, CAN J FISH AQUAT SCI, V57, P2223, DOI 10.1139/cjfas-57-11-2223; Riehle MM, 2001, P NATL ACAD SCI USA, V98, P525, DOI 10.1073/pnas.021448998; Rolfe DFS, 1997, PHYSIOL REV, V77, P731; Russell NJ, 2000, EXTREMOPHILES, V4, P83, DOI 10.1007/s007920050141; Sagarin RD, 1999, ECOL MONOGR, V69, P465, DOI 10.1890/0012-9615(1999)069[0465:CRCIAI]2.0.CO;2; Sagarin RD, 2002, J BIOGEOGR, V29, P985, DOI 10.1046/j.1365-2699.2002.00705.x; Schultz ET, 1996, FUNCT ECOL, V10, P366, DOI 10.2307/2390285; SEBENS KP, 2002, INTEGR COMP BIOL, V42, P597; Somero GN, 2002, INTEGR COMP BIOL, V42, P780, DOI 10.1093/icb/42.4.780; Spicer J. I., 1999, PHYSL DIVERSITY ITS; Srere Paul A., 1998, P131; Tucker CL, 2001, TRENDS CELL BIOL, V11, P102, DOI 10.1016/S0962-8924(00)01902-4; Wagner A, 2001, P ROY SOC B-BIOL SCI, V268, P1803, DOI 10.1098/rspb.2001.1711; Wagner A, 2003, P ROY SOC B-BIOL SCI, V270, P457, DOI 10.1098/rspb.2002.2269; Wagner A, 2001, MOL BIOL EVOL, V18, P1283, DOI 10.1093/oxfordjournals.molbev.a003913; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; WATT WB, 1983, GENETICS, V103, P725; Wethey DS, 2002, INTEGR COMP BIOL, V42, P872, DOI 10.1093/icb/42.4.872; Woodward FI, 1997, J ECOL, V85, P899, DOI 10.2307/2960610; Wright David H., 1993, P66; Yang ZH, 2000, TRENDS ECOL EVOL, V15, P496, DOI 10.1016/S0169-5347(00)01994-7; Zimmermann Christopher, 1998, P163 84 265 273 4 143 ELSEVIER SCIENCE LONDON LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. NOV 2003 18 11 573 581 10.1016/j.tree.2003.08.007 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 738WP WOS:000186311100008 2018-11-12 J Kaspari, M; O'Donnell, S Kaspari, M; O'Donnell, S High rates of army ant raids in the Neotropics and implications for ant colony and community structure EVOLUTIONARY ECOLOGY RESEARCH English Article ants; army ants; Ecitoninae; latitudinal gradient; life history; litter; predation; soil; tropics SPECIES RICHNESS; PREDATION; GRADIENTS; ASSEMBLAGES; HYMENOPTERA; ECITONINAE; FORMICIDAE; PATCHINESS; ALLOCATION; DIVERSITY Army ants form nomadic insect colonies whose chief food is other social insects. Here we compare the rate of army ant raids with the average density of their potential prey from 28 New World subtropical and tropical localities. We estimate that army ant raids occur at the rate of 1.22 m(2) per day in tropical forests. Army ant raid rates increased with primary productivity, and with the density of potential prey (litter-nesting ant colonies), across sites. Our estimates of raid rates for army ant guilds are much higher than previously published estimates based solely on surface-raiding Eciton. Life-history theory predicts that high rates of predation on insect societies will select for both smaller average colony sizes and indeterminate colony growth, and these traits have been documented for tropical ant litter-nesting ants. Our results suggest that army ant predation can affect both patterns. Univ Oklahoma, Dept Zool, Norman, OK 73019 USA; Univ Washington, Dept Psychol, Seattle, WA 98195 USA Kaspari, M (reprint author), Univ Oklahoma, Dept Zool, Norman, OK 73019 USA. Berghoff SM, 2002, INSECT SOC, V49, P133, DOI 10.1007/s00040-002-8292-0; COVER SP, 1990, SOCIAL INSECTS ENV, P31; FITTKAU E J, 1973, Biotropica, V5, P2, DOI 10.2307/2989676; Franks N. R., 1983, Tropical rain forest; ecology and management, P151; Franks Nigel, 1996, P389; HERBERS JM, 1985, INSECT SOC, V32, P224, DOI 10.1007/BF02224913; Hermann HR, 1982, SOCIAL INSECTS, V4, P157; JEANNE RL, 1979, ECOLOGY, V60, P1211, DOI 10.2307/1936968; JEANNE RL, 1975, Q REV BIOL, V50, P267, DOI 10.1086/408564; KASPARI M, 1995, AM NAT, V145, P610, DOI 10.1086/285758; Kaspari M, 2003, AM NAT, V161, P459, DOI 10.1086/367906; KASPARI M, 1995, BEHAV ECOL SOCIOBIOL, V37, P255, DOI 10.1007/s002650050189; Kaspari M, 1996, OIKOS, V76, P443, DOI 10.2307/3546338; Kaspari M, 1996, OECOLOGIA, V107, P265, DOI 10.1007/BF00327911; Kaspari M, 2000, AM NAT, V155, P280, DOI 10.1086/303313; Kaspari M, 2000, P ROY SOC B-BIOL SCI, V267, P485, DOI 10.1098/rspb.2000.1026; Kaspari M, 2001, GLOBAL ECOL BIOGEOGR, V10, P229, DOI 10.1046/j.1466-822X.2001.00214.x; Kaspari M., 2000, MEASURING MONITORING, P9; Kistner D. H., 1982, Social insects. Vol. III, P1; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; LaPolla JS, 2002, INSECT SOC, V49, P251, DOI 10.1007/s00040-002-8310-2; Longino JT, 2002, ECOLOGY, V83, P689, DOI 10.1890/0012-9658(2002)083[0689:TAFOAT]2.0.CO;2; MENGE BA, 1981, ECOL MONOGR, V51, P429, DOI 10.2307/2937323; MIRENDA JT, 1980, BEHAV ECOL SOCIOBIOL, V7, P119, DOI 10.1007/BF00299517; ODONNELL S, 1990, J TROP ECOL, V6, P507, DOI 10.1017/S0266467400004958; Perfecto Ivette, 1992, Psyche (Cambridge), V99, P214, DOI 10.1155/1992/47525; PIANKA ER, 1966, AM NAT, V100, P33, DOI 10.1086/282398; RETTENMEYER CARL W., 1963, UNIV KANSAS SCI BULL, V44, P281; RETTENMEYER CW, 1983, SOCIAL INSECTS TROPI, P59; SIH A, 1985, ANNU REV ECOL SYST, V16, P269, DOI 10.1146/annurev.es.16.110185.001413; Swartz MB, 1998, BIOTROPICA, V30, P682, DOI 10.1111/j.1744-7429.1998.tb00110.x; TSCHINKEL WR, 1991, INSECT SOC, V38, P77, DOI 10.1007/BF01242715; Watkins J. F., 1976, IDENTIFICATION DISTR; WATKINS JF, 1982, J KANSAS ENTOMOL SOC, V55, P197; WATKINS JF, 1985, J KANSAS ENTOMOL SOC, V58, P479; WHEELER W. M., 1910, ANTS THEIR STRUCTURE; Wilson EO, 1990, ANTS 37 54 57 0 15 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 EVOL ECOL RES Evol. Ecol. Res. OCT 2003 5 6 933 939 7 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 725NW WOS:000185550100009 2018-11-12 J Margraf, N; Gotthard, K; Rahier, M Margraf, N; Gotthard, K; Rahier, M The growth strategy of an alpine beetle: maximization or individual growth adjustment in relation to seasonal time horizons? FUNCTIONAL ECOLOGY English Article growth rate; life history; phenotypic plasticity; photoperiod; seasonality LIFE-HISTORY PLASTICITY; LEAF BEETLE; BUTTERFLIES; RATES 1. Life-history theory typically predicts that juvenile growth rate should be maximized and consequently juvenile period minimized. However, in several examples it has been shown that insect larvae do not always grow as fast as they can and this has been explained by costs of high growth rate, typically higher juvenile mortality rate. Hence, some insect larvae have the ability to adaptively adjust growth rate to catch up if development is delayed. 2. The presence of such ability was tested for in the alpine beetle Oreina elongata Suffrian. In this species, the favourable period for development is relatively short and of unpredictable length, and individuals are chemically defended against predation; factors that could affect the balance between the benefits and costs of high growth rate. 3. Here it is shown that when time stressed, O. elongata larvae were able to increase growth rate, accelerate development and reach the normal final weight. 4. Hence, individual growth rate adjustment was present in a situation where its adaptive value appeared to be relatively weak, which supports the notion that flexible growth strategies are a common phenomenon in temperate insects. Univ Neuchatel, Inst Zool, Lab Ecol Anim & Entomol, CH-2007 Neuchatel, Switzerland Margraf, N (reprint author), Univ Neuchatel, Inst Zool, Lab Ecol Anim & Entomol, Rue Emile Argand 11, CH-2007 Neuchatel, Switzerland. nicolas.margraf@unine.ch Gotthard, Karl/F-1163-2011 Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Ballabeni P, 2003, OIKOS, V101, P70, DOI 10.1034/j.1600-0706.2003.12569.x; DOBLER S, 1994, J CHEM ECOL, V20, P555, DOI 10.1007/BF02059597; DOBLER S, 1994, OECOLOGIA, V97, P271, DOI 10.1007/BF00323160; Gotthard K, 1998, J EVOLUTION BIOL, V11, P21; Gotthard K, 1999, OIKOS, V84, P453, DOI 10.2307/3546424; Gotthard K, 2000, J ANIM ECOL, V69, P896, DOI 10.1046/j.1365-2656.2000.00432.x; Gotthard K, 2001, EXPTL BIOL REV, P287; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Leimar O, 1996, OIKOS, V76, P228, DOI 10.2307/3546194; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; Nylin S, 1996, EVOLUTION, V50, P1351, DOI 10.1111/j.1558-5646.1996.tb02377.x; Roff Derek A., 1992; Stearns S. C., 1992, EVOLUTION LIFE HIST 16 33 34 0 4 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. OCT 2003 17 5 605 610 10.1046/j.1365-2435.2003.00775.x 6 Ecology Environmental Sciences & Ecology 726JL WOS:000185595900005 Bronze 2018-11-12