Preprint Open Access

Unveiling Movement Uncertainty for Robust Trajectory Similarity Analysis

Andre Salvaro Furtado; Luis Otavio Campos Alvares; Nikos Pelekis; Yannis Theodoridis; Vania Bogorny


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Movement Similarity, Raw Trajectory Similarity, Elliptical Trajectory Representation, Dynamic Threshold Similarity, Parameter free Similarity Measure</subfield>
  </datafield>
  <controlfield tag="005">20191111070904.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">Andre Salvaro Furtado, Luis Otavio Campos Alvares, Nikos Pelekis, Yannis Theodoridis &amp; Vania Bogorny (2018) Unveiling movement uncertainty for robust trajectory similarity analysis, International Journal of Geographical Information Science, 32:1, 140-168, DOI: 10.1080/13658816.2017.1372763</subfield>
  </datafield>
  <controlfield tag="001">2532989</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">PPGCC, INE, Universidade Federal de Santa Catarina, Florianopolis, Brazil</subfield>
    <subfield code="a">Luis Otavio Campos Alvares</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Piraeus, Piraeus, Greece</subfield>
    <subfield code="a">Nikos Pelekis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Piraeus, Piraeus, Greece</subfield>
    <subfield code="a">Yannis Theodoridis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">PPGCC, INE, Universidade Federal de Santa Catarina, Florianopolis, Brazil</subfield>
    <subfield code="a">Vania Bogorny</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">4151800</subfield>
    <subfield code="z">md5:b2a2f59d27e0c70019d668a0c60f8a51</subfield>
    <subfield code="u">https://zenodo.org/record/2532989/files/tGISguide.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-09-10</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-h2020_datacron</subfield>
    <subfield code="o">oai:zenodo.org:2532989</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Instituto Federal de Santa Catarina, Xanxere, Brazil</subfield>
    <subfield code="0">(orcid)0000-0002-3714-7167</subfield>
    <subfield code="a">Andre Salvaro Furtado</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Unveiling Movement Uncertainty for Robust Trajectory Similarity Analysis</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-h2020_datacron</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">687591</subfield>
    <subfield code="a">Big Data Analytics for Time Critical Mobility Forecasting</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Trajectory data analysis and mining require distance and similarity measures, and the quality of their results is directly related to those measures. Several similarity measures originally proposed for time-series were adapted to work with trajectory data, but these approaches were developed for well-behaved data, that usually do not have the uncertainty and heterogeneity introduced by the sampling process to obtain trajectories. More recently, similarity measures were proposed specifically for trajectory data, but they rely on simplistic movement uncertainty representations, such as linear interpolation. In this article we propose a new distance function, and a new similarity measure that uses an elliptical representation of trajectories, being more robust to the movement uncertainty caused by the sampling rate and the heterogeneity of this kind of data. Experiments using real data show that our proposal is more accurate and robust than related work.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1080/13658816.2017.1372763</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">preprint</subfield>
  </datafield>
</record>
38
38
views
downloads
Views 38
Downloads 38
Data volume 157.8 MB
Unique views 34
Unique downloads 35

Share

Cite as