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Abstract—Predictive analysis on mobile network traf-
fic is becoming of fundamental importance for the next
generation cellular network. Proactively knowing the user
demands, allows the system for an optimal resource allo-
cation. In this paper, we study the mobile traffic of an
LTE base station and we design a system for the traffic
prediction using Recurrent Neural Networks. The mobile
traffic information is gathered from the Physical Downlink
Control CHannel (PDCCH) of the LTE using the passive
tool presented in [1]. Using this tool we are able to collect
all the control information at 1 ms resolution from the base
station. This information comprises the resource blocks, the
transport block size and the modulation scheme assigned
to each user connected to the eNodeB.

The design of the prediction system includes long short
term memory units. With respect to a Multilayer Perceptron
Network, or other artificial neurons structures, recurrent
networks are advantageous for problems with sequential
data (e.g. language modeling) [2]. In our case, we state
the problem as a supervised multivariate prediction of
the mobile traffic, where the objective is to minimize
the prediction error given the information extracted from
the PDCCH. We evaluate the one-step prediction and the
long-term prediction errors of the proposed methodology,
considering different numbers for the duration of the
observed values, which determines the memory length of
the LSTM network and how much information must be
stored for a precise traffic prediction.

I. INTRODUCTION

Understanding the dynamic of the traffic demands in
a wireless network represents a complex task, due to
the massive densification of the mobile devices attached
to the network. This is made more challenging by the
huge variety of devices available today, and by the
different typologies of service that they can offer. Within
few years, the fifth-generation (5G) cellular network
is promising to enable a plethora of new applications,
including M2M communications, autonomous driving
and virtual reality applications, which will require a boost
in the performance of the network in terms of latency,
capacity and context awareness [3].

To meet these strict requirements it is fundamental that
the network becomes aware of the traffic demands. The
analysis of the traffic and the precise forecast of the user
demands are essential for developing an intelligent net-
work. Knowing in advance the user demands makes the
network able to promptly manage the resource allocation
among the contending users. A smart optimization of the

physical resources is crucial to improve the users’ quality
of experience, but it is also beneficial for the energy
efficiency of the overall network.

In recent years, the development of cheaper and more
powerful hardware had made possible to unleash the
potential of machine learning algorithms, in particular
of deep-learning, for a wide range of applications (e.g.
objects identification, speech recognition, etc.). Using
modern GPUs, it is possible to run complex algorithms
on large scale datasets, with minimal efforts [4]. There
are numerous applications in which deep learning algo-
rithms show excellent results (e.g. in computer vision),
where the amount of data for the learning and for the
training tasks are widely available.

From an academic perspective, one major problem
related to the cellular networks, is the lack of traffic
datasets to be studied. Users traffic data are not always
made available by network operators or they can be
found but with very limited information [5]. Commonly,
the available datasets consist of the aggregated traffic
derived from the Call Detail Records (CDRs), where text,
voice and data are mixed without additional information
on the technology and on which base station the users
are attached to [6]. Therefore, no information on the
utilization of the physical resources or on the scheduling
optimization can be assessed.

Numerous efforts have been devised to understand
the dynamic of the cellular networks. The prediction of
mobile traffic patterns has been usually studied through
time-series analysis methods. Most of the works use
techniques such as Auto Regressive Integrated Mov-
ing Average (ARIMA) and its different flavours (e.g.
SARIMA, ARIMAX, mixed ARIMA), to capture the
trends of the temporal evolution of the mobile traffic,
[7], [8]. However, one of the known limitations of such
techniques is the poor robustness to the rapid fluctuations
of the time-series, since the prediction tends to over
reproduce the average of the past observed values [9].
Additionally, these methods work with homogeneous
time-series, where the input and the prediction are within
the same set of values.

In this paper, we exploit the exceptional abilities of
the Long-Short Term Memory (LSTM) units to present
a multistep predictive algorithm for the mobile data



traffic. LSTM units are the elementary parts to form
Recurrent Neural Networks (RNN), which are a par-
ticular extension of the FeedForward Neural Networks.
In particular, RNNs show outstanding results for time-
domain problems and sequential data, and they have
been heavily adopted for text prediction and machine
translation problems [2]. These neural network structures
perfectly fit our traffic prediction problem, where the col-
lected dataset is multivariate and presents heterogeneous,
non-linear information about the users communications.
Moreover, the time-domain characteristic of the mobile
traffic can be assisted by the LSTM properties, which are
able to capture the temporal trends of the data.

Results in literature show that LSTM networks out-
perform other machine learning approaches for time-
series analysis in the traffic prediction. LSTM structures
have been proposed in [9]. Here, the datasets consist
of the spatio-temporal distribution of the mobile traffic
in different base stations. Spatial correlation has been
used to evidence similarities between neighbouring base
stations. Even though LSTM has been applied for the
traffic prediction, the input data consider only one metric
(e.g. the traffic, spatially distributed), and only a one-step
prediction is considered.

At the time of writing, to the best of our knowledge,
we are the first to present a complete methodology for
the data collection and for the design of a multistep
predictive network, which exploit the ability of the LSTM
to enhance the prediction accuracy. In particular, we use
directly the raw data obtained from the traffic control
channel, and only an aggregative operation is performed
to predict the traffic for multiple steps onwards. This is
critical in terms of speed of prediction, which can be done
with very little preprocessing of the data, with a limited
number of observations. Moreover, working with the raw
data, the forecast of the traffic can be accomplished with
a high time resolution, since we can capture the traffic
variation, which is large, even in a few milliseconds time
window.

The paper is organized as follows: in Section II we
describe how we collect the data from the LTE control
channel and how we aggregate the dataset. In Section
III we present the architecture for the mobile traffic
prediction, which includes LSTM units. Section IV and
V are devoted to the numerical results and to conclusions,
respectively.

II. THE LTE SCHEDULING TRAFFIC DATASET

A. LTE Control Channel

Using the methodology as done in [1] and [10], we
can collect the LTE scheduling information of the users
connected to a certain eNodeB. The advantage of this
tool is the richness of information and the temporal
granularity of the data. We can decode the Downlink
Control Information (DCI) messages from the PDCCH,

which contain the modulation and coding scheme (MCS),
the number of resource blocks and the transport block
size assigned to the users at each millisecond. This
information is available for both the downlink and the
uplink directions. Anonymity of data is ensured since the
users are identified by a limited number of Radio Net-
work Temporary Identifiers (RNTI), which are refreshed
after 10.15 seconds of inactivity. Only scheduling control
information are available: the PDCCH is unencrypted,
while downlink and uplink actual data are transmitted
over encrypted physical channels to secure the users
privacy.

B. Dataset Aggregation

The collected dataset consists of one-month of
scheduling information that we gathered by monitoring
different eNodeBs located in the city of Barcelona, Spain.
Let D = {Dc1 , Dc2 , ..} be the dataset, where Dck is the
set of measurements for the monitored cell k. Given a
Dck , for each connected user at the time t, temporary
identified by a RNTI r, we decode the DCI message
containing the resource blocks, the transport block size
and other scheduling information for the uplink and
the downlink directions. We store this information in a
measure sr(t), where t corresponds univocally to an LTE
subframe number, or TTI, which is 1 ms long.

We calculate the aggregate cell traffic measurements
for a given timeslot T , which is the sum of the traffic
generated by all the RNTIs connected during the timeslot
T , R(T )

S(T ) =
∑

r(t)∈R(T )

∑
t∈T

sr(t) (1)

Thus, S(T ) is the vector that contains the number
of resource blocks allocated in the uplink and in the
downlink directions, the number of the messages sent
in both the directions and the sum of the total transport
block sizes for a given timeslot T . Moreover, for each
timeslot T , we include the number of the attached users
to the eNodeB in the timeslot T . In our case we consider
T , as the number of TTIs for which we aggregate the
traffic.

III. A LONG-SHORT TERM MEMORY NETWORK

Recurrent neural networks are a generalization of
feedforward neural networks, that have been devised for
handling temporal and predictive problems. LSTM are
a particular kind of RNN, that have been introduced in
[11]. They have been explicitly designed to avoid the
long-term dependency issue, which is the cause of the
vanishing-gradient problem in normal RNNs [12].

The capability of learning long-term dependencies is
due to the structure of the LSTM units, which incor-
porates gates that regulate the learning process. In a
standard LSTM unit (see Fig.2), the basic operations
are accomplished by the input gate it, the forget gate



Fig. 1: Normalized weekly traffic signature of two mon-
itored LTE eNodeBs.

ft and the output gate ot. Moreover, the cell state ct
represents the memory of the unit and it is updated with
the information to be kept (or to be forgotten), provided
by the input gate (or forget gate).

Fig. 2: Standard LSTM unit.

it = σ(Wi · (ht−1,xt) + bi)

ft = σ(Wf · (ht−1,xt) + bf )

ot = σ(Wo · (ht−1,xt) + bo)

c̃t = φ(Wc · (ht−1,xt) + bc)

ct = ft � ct−1 + it � c̃t

ht = ot � φ(ct)

In the previous equations, σ(·) is the sigmoid function
and φ is hyperbolic tangent function (tanh). W and b are
respectively the weight matrix and the bias of the gates

i, f , o or of the cell state c. The subscript t is the time
index and � is the element-wise multiplication.

Fig. 3: Single-layer LSTM network.

The LSTM unit combines the output of the previous
unit ht−1 with the current input xt using the input, the
output and the forget gates to update the memory of
the cell. The variables it and ft represent respectively
the information that need to be kept or to be forgotten
from the past and the current input. The cell state ct
is updated by summing the previous cell state ct−1 and
the candidate cell state c̃t, weighted respectively with ft
and it. Finally, we obtain the output ht applying the tanh
function to ct and multiplying it by ot. Then, the current
output ht is passed to next unit and combined with the
input at the next time index t+ 1.

Fig. 4: Proposed architecture for the mobile traffic pre-
diction.

Multiple LSTM units are concatenated to form one
layer of the LSTM network. Each unit computes the
operations on one time index and transfer the output
to the next LSTM unit. The number of concatenated
cells indicates the number of observations of the data
that are considered before making the prediction. In our
case, the input xt is the eNodeB traffic vector S(T ), and
the number of observations is the number of selected
timeslots T .

The proposed architecture for the mobile traffic pre-
diction is depicted in Fig. 4. In our design, we consider
multiple layers of basic LSTM units to form a stacked
LSTM network. The intuition is that the deep LSTM
network is able to learn the temporal dependencies of
the aggregate mobile traffic: the LSTM unit of each



layer extract a fixed number of features which are passed
to the next layer. The depth of the network (e.g. the
number of layers) is to increment the accuracy of the
prediction, which is done by the last fully connected
layer. For the one-step prediction we use a many-to-
one architecture, which means that the network observes
the mobile traffic for a fixed number of timeslots until
T and, then try to predict the traffic in the next time
slot T + 1. In the multi-step prediction, we delay the
prediction for a chosen number of timesteps, similarly
to what is done for language modeling problems when
they try to predict a sequence of words. Last, the output
of the LSTM network is passed to a fully connected
neural network, which performs the actual prediction.
The motivation for this last layer is for the regression
problem we are trying to solve: from an implementation
perspective, this feedforward layer applies the softmax
activation function, which is needed during the training
phase to optimize the weights of the network neurons.

IV. NUMERICAL RESULTS

A. Evaluation Setup

We use the set of mobile traffic data from two different
eNodeBs, that we collected during one month, to eval-
uate the performance of the proposed architecture. For
each eNodeB, we calculate the aggregate cell traffic, as
described in Section II-B.

We choose the Normalized Root Mean Square Error
(NRMSE) as the metric to measure the accuracy of the
prediction algorithm, which is given as

NRMSE =
1

x̄

√∑N
t=1(x̃t − xt)2

N
(2)

where N is the total number of points, x̃t and xt are the
predicted value and its correspondent observation at the
time t and x̄t is their mean. This same metric is used to
compare the accuracy of the proposed architecture with
the one obtained using other predictive algorithms.

The implementation of the mobile traffic prediction
algorithm is done in Python, using Keras and Tensorflow,
as backend. The chosen hyperparameters are reported in
Table 1. The number of hidden layers is fixed to 5: this is
one of the hyperparameters that need to be selected and
can affect the tradeoff between the prediction accuracy
and the time needed to train the network. A higher
number of layers may increase the precision of the
prediction, but we want to focus on the the relationship
between the number of past observed values and the
precision of the multi-step prediction, which determines
the quantity of information needed to be memorized and
utilized by the network. For the same reason, we fix the
number of epochs to 100. Three weeks of data are used
to train and to validate the architecture. Next results are
related to the last week. We use the Adam optimization

[13], to update the network weights iteratively based on
the training data.

B. Results Analysis

Next, we present the results of multi-step prediction,
that is when the output is delayed for a fixed number
of timeslots and the prediction is performed for later
time instants. We show how the accuracy decreases when
we try to predict the traffic data in future timesteps.
Furthermore, we analyze the effect of the number of
observations that the LSTM network can see, and the
duration of the timeslots T : these are design parameters
that need to be estimated, since they determine the
memory length of the LSTM network and how much
traffic information is needed to be stored for an accurate
prediction.

In Fig. 5, we show the results of the mobile traffic
prediction for two cells: since they are located into
two different areas, the monitored eNodeBs present two
distinct traffic profiles in terms of profile and traffic
magnitude. We can see that the prediction is precise
for the whole week, despite the oscillating behaviour of
the traffic. In this case, the prediction is one-step ahead,
that means that we use a fixed number of past values
(K = 10) to predict the traffic for the next timeslot.

In Fig.6 and in Fig.7 we evaluate the prediction error
with respect to past observed values. It is relevant also
to consider different values for the timeslot duration of
T , which affects the calculation of the aggregated traffic
S(T ) from the raw LTE traces. Figures are related to the
first eNodeB (results are comparable for eNodeB 2). In
Fig. 7, we see that the NRMSE is larger for a higher
duration of T and, as expected, the error decreases with
a larger number of observations. To emphasize the effect
of the number of past observations, we plot the increasing
accuracy (with respect to observing only one past value)
for different values of T . We can observe that the major
increase in percentage is given for larger values of T .
For 10 past observed timesteps the accuracy can increase
more than 40%.

TABLE I: Training Hyperparameters

Initial Learning Rate 0.001

Num. of Epochs 100

LSTM Hidden States 64

LSTM Hidden Layers 5

Feedforward Hidden Layers 1

Optimization Algorithm Adam

Loss Function MAE



Fig. 5: Prediction of the weekly mobile traffic for two
different eNodeBs.

In Fig.8 we show the prediction for 15 timesteps ahead.
We fix K = 10 and T = 10 TTIs. At first, the prediction
almost corresponds to the measured values, while after
some steps the prediction error is more dominant. In Fig.
9, we plot the increasing error with respect to future
prediction steps. As expected, longer prediction causes
an increment in the accuracy of the algorithm. The error
increases with different trends and it is around 40% when
we predict for 15 steps ahead. This is similar to what
happens in the problem of language synthesis for the
prediction of long sentences: for further words prediction,
the number of candidate words is larger, therefore there is
more uncertainty in the correct choice. Conversely to the
number of past observations, changing the duration of the
timeslot T , does not give useful insight on the prediction
error: for longer periods, the variability of the mobile
traffic is larger, leading to an oscillating and randomic
error for future predictions.

Finally, we compare the proposed architecture with
two time-series prediction methods: an ARIMA model is
a well-established technique for the time-series analysis,
and it is defined by 3 parameters (p, d, q) that determine
the auto-regression, the differentiation and the moving
average, respectively. Here, we use a (10, 1, 5) model.
Also, note that we use only one variable for the prediction
(i.e. the aggregate traffic), instead of multiple information
obtained by the raw data. The other traffic prediction
is obtained using a deep FeedForward Neural Network
(FFNN), where we replace the LSTM neural network
with a network of fully connected neurons. For a fair
comparison, we use the same number of hidden layers.
Figure 10 shows the traffic prediction on the same time

Fig. 6: Prediction error versus number of past observed
values.

Fig. 7: Percentage of accuracy gaining versus number of
past observed values.

Fig. 8: Lookup for the predicted mobile traffic vs.
ground-truth measurements for 15 steps ahead (T = 10).

window using these two techniques. The accuracy using
the ARIMA model is lower, since the prediction tends
to be closer to the average value of the traffic. On the
other hand, the FFNN is able to follow the periodic trend
and the traffic oscillations, but it still lack of a high
precision. Also, we compare the average error for the
three prediction methods on the two traffic profiles: as



Fig. 10: Traffic prediction obtained with different model and errors.

Fig. 9: Percentage of error increasing versus number of
predicting timesteps.

expected, thanks to the LSTM properties, the proposed
algorithm captures the temporal characteristics of the
mobile traffic, and it provides superior accuracy with
respect to the FeedForward Neural Network or to the
classic ARIMA model.

V. CONCLUSION

In this work, we study the effectiveness of recurrent
neural networks applied to the prediction of the mobile
traffic. The choice of using LSTM network is imposed
by the dataset characteristics, since we use multivariate
traffic information that derive directly from the DCI of
the LTE control channel. The LSTM units succeed in
capturing the temporal correlation of the traffic even for
distant timeslots. Applying the prediction of the traffic
using raw aggregate data from the physical channel, is
fundamental in time-critical applications and avoids the
need for additional resources to process the traffic data.
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