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Abstract

This paper presents the results of the research that led to the development

of ClawIO: a cloud synchronisation benchmarking framework. The framework

allows to build distributed and highly decoupled cloud File Synchronisation and

Sharing platforms in order to obtain performance metrics after being stressed

with different test suites. The framework introduces a flexible and extendable

layered distributed architecture.

We develop a testing scenario for the framework that understands own-

Cloud’s synchronisation protocol on top of a local filesystem. In this scenario,

we present various performance analysis related to the usage of filesystem ex-

tended attributes and in-memory databases. We also introduce the benefits of

using extended attributes for data consistency.
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1. Motivation

File synchronisation between user devices and sharing files within a group

of users, commonly known as File Sync and Share (FSS) services are among

the most demanded services in recent years1. Such services allow to share and

access data anywhere, from any device at any time, promoting data mobility

and network pervasiveness. The number of FSS has grown over last years and

the product catalog is now wider and more diverse than ever. For this reason,

researchers around the world started to benchmark FSS services to obtain met-

rics that facilitate the election of a particular service against others in terms of

synchronisation time, data and metadata consistency, and other features. Most

of these studies compare services across different vendors, while we propose a

study that measures the impact of the underlying technology that powers the

synchronisation of such services.

Although existing studies [1, 2] provide meaningful insights of product ca-

pabilities, the results of measurements of about synchronisation performance

and scalability are very vendor dependant, as the synchronisation client is not

the same from vendor to vendor. To overcome this bias, we provide ClawIO,

a cloud synchronisation benchmarking framework to test the performance and

scalability of synchronisation protocols against a matrix of databases and stor-

age backends; from the same benchmarking client.

2. Contributions

This study provides two meaningful contributions to the research communi-

ties working in the field of FSS services.

The first contribution is the development of ClawIO2, a flexible, extend-

able and technology agnostic cloud synchronisation benchmarking framework.

ClawIO is an undergoing development project to create a framework to test dif-

1Rise in cloud-based file sync-and-share services grabs IT’s attention, Rich Castagna
2http://clawio.github.io
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ferent synchronisation protocols against a matrix of databases and storage back-

ends to observe the impact of such technologies in the synchronisation process.

In this current phase of the project, the protocol tested is the synchronisation

protocol used by ownCloud (OSP)3, as ownCloud is one of the biggest players in

the open source market and has been included in Gartner’s first Magic Quadrant

for the extremely competitive Enterprise File Sync and Share solution4.

As a second contribution, this study also introduces how local filesystem ex-

tended attributes and in-memory databases can be used to handle the metadata

needed for synchronisation and how this new way of storing such data leads to

scalable, performant and reliable designs.

The remainder of this paper is organised as follows. Section 3 reviews related

work in the area of cloud benchmarking. In Section 4, we present our archi-

tecture and the technologies involved. In Section 5, we introduce the test bed

and the operations to be benchmarked (from a perspective of user actions). In

Section 6, we explain the results obtained. In Section 7, we give our conclusions

and outlook for further development and research.

3. Related Work

Over the last years, performance and feature comparative analysis have been

done on FSS platforms. Feature comparisons can be found with a quick search

in any search engine and vast amounts of results will appear 5. On the other

hand, data for the performance of different FSS platforms are hard to obtain.

Examples of the latter include: QuickSync[1] (shows the performance character-

istic of the DropBox synchronisation protocol), benchmarks led by Mr. Bocchi

and Mr. Drago [2, 3, 4] (present various performance metrics on known FSS

3OC Sync Protocol, https://git.io/vwZsI
4ownCloud is Youngest, Smallest and only Open Source Company to Reach Gartners First

Enterprise File Sync and Share Magic Quadrant, ownCloud, https://goo.gl/OWaKDe
5https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software,

https://www.getfilecloud.com/enterprise-file-sync-and-share-product-comparisons/,

http://www.pcmag.com/article2/0,2817,2413556,00.asp
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platforms), a couple of studies presented at the Cloud Services for Synchroni-

sation and Sharing conference6 [5, 6] and also previous analysis done by PhD.

Wang [7].

On the other hand, studies that measure the performance of a storage back-

end against a particular synchronisation protocol have not been found, therefore,

we aim to provide new results to the research community.

4. Architecture

FSS software provides synchronisation layer on top of a variety of backend

storages such as local filesystems and object storages. In case of some platforms,

such as ownCloud, a SQL database is used to support the synchronisation re-

quirements. We have tested how different backend technology configurations

impact the ownCloud HTTP-based synchronisation protocol. Performance and

scalability analysis were performed based on benchmarking the system with dif-

ferent end–user operations. The results have been produced using the ClawIO

framework prototype. This software provides a base architecture to stress dif-

ferent storage solutions against different cloud synchronisation protocols. This

architecture is influenced by two projects: the IETF Storage Sync Internet Draft

[8] and CERN EOS project [9, 10, 11]. Both sources agree that data and meta-

data operations must be handled by different components to increase scalability

through scale-out design. We achieve the separation of concerns by using highly

decoupled microservices [12] connected to each other with high performance

communication protocols such gRPC7 and efficient data serialisation formats

like Google Protobuf [13].

To broader the usage of ClawIO, it has been developed with four aspects in

mind:

• Composability: ClawIO follows the micro service design and every compo-

6http://cs3.ethz.ch
7http://www.grpc.io
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nent is encapsulated into a single logical unit with clear interfaces. There-

fore, every component can be easily deployed and connected to others.

• Universality: ClawIO is built on top of two universal technologies: HTTP

and gRPC. HTTP is used for binary data transfers and gRPC for inter

component metadata communication using Google Protocol Buffers data

format.

• Flexibility: every component inside ClawIO can be built with the technolo-

gies and programming languages, as long as the programming language is

able to create HTTP and gRPC connections.

• Scalability: ClawIO has been designed with scalability in mind. The de-

sign is based on CERNBox [14, 15, 11] and EOS, components that power

the synchronisation and sharing of huge amounts of scientific data from

the Large Hadron Collider [11]. Furthermore, every logical component can

be scaled–out with minimum effort.

FSS we analysed (Pydio8 and ownCloud9, and SeaFile10) have the following

logical components:

• Data component: responsible for data upload and download.

• Metadata component: responsible for metadata operations like listing the

contents of a directory or obtaining metadata like file size, modification

time (the last time an entry has been modified) or the type of the file

(commonly known as mime type, e.g. ”text/plain“ or ”image/png“).

• Authentication component: responsible for authenticating the user to use

the FSS platform.

8https://pydio.com/
9https://owncloud.org/

10https://www.seafile.com/en/home/
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• Synchronisation component: responsible for implementing the synchroni-

sation protocol used by the FSS platform. The implementation technology

varies depending on the vendor; in case of ownCloud, this component ex-

poses WebDAV [16, 17] endpoints.

• Share component: responsible for sharing data. ClawIO focuses on the

synchronisation side at this initial phase, thus the share component has

not being included in the demonstration architecture.

ownCloud bundles these components into one physical software product.

Others, like Seafile11, offer a more distributed approach, but at the time of

this writing, we have not found clear evidence of any FSS platform that splits

every logical unit into a separate service, thus making ClawIO a pioneer in this

distributed architecture.

11http://manual.seafile.com/overview/components.html
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Figure 1: ClawIO layered and distributed design.

Figure 1 shows ClawIO logical architecture. This architecture consists of

four layers:

• Core Clients Layer: this layer groups the clients that communicate directly

with the services offered by Core Units Layer using gRPC and HTTP.

• Core Units Layer: this layer contains the units that are the core of ClawIO.

They implement the minimum services required. These units are the au-

thentication, metadata, and data services that all FSS platforms have in

common. This layer contains the logic necessary to upload and download

files, create and list directories and copy, move and delete resources.
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• Service Units Layer: this layer embraces all the services built on top of

the Core Units to provide extra functionality like synchronisation, sharing,

REST APIs or other developer-defined services. This layer communicates

with the upper layer using gRPC and HTTP. The services in this layer can

expose arbitrary protocols for communication. For example, the Sync Unit

can expose a WebDAV endpoint in the case of ownCloud or a REST API

(architectural style of the World Wide Web [18, 19]) in case of DropBox12.

• Service Clients Layer: this layer embraces all the clients that communicate

with the services in the Service Units Layer.

Following this logical layout, Figures A.10a, A.10b and A.10c (inside Ap-

pendixA) illustrate the three different implemented architectures that were

tested: alpha, beta and gamma. The three architectures share the Core Clients,

Service Units and Service Clients Layers. The Core Clients Layer contains a

command line tool (clawio) to interact with the data and metadata services

and also the clawiobench tool to launch benchmarks against the Core Units

Layer. In the Service Units Layer, the only service currently implemented is the

Sync service, which implements the synchronisation protocol of ownCloud and

exposes a WebDAV interface for clients in the bottom layer. The Service Clients

Layer groups the ownCloud desktop and command–line synchronisation clients,

cURL (a command line tool to perform HTTP requests), davfs2 (a Linux tool

for connecting to WebDAV shares as though they were local disks) and any

other WebDAV-talking clients. The Core Units Layer is the one that changes

from one architecture to another, but still maintains the Authentication Unit,

which authenticates users against an SQLite3 database. The changes are in the

implementation of the data and metadata services.

Before explaining the three possible storage configurations, the synchroni-

sation protocol used by ownCloud (OSP), implemented by the Sync Unit, is

briefly explained to understand what metadata need to be kept in the metadata

12https://www.dropbox.com/developers-v1/core/docs
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backend.

We have chosen this protocol because ownCloud is one of the most used open

source FSS platforms and because we had previous experience with it, therefore

speeding up the process to obtain preliminary results. ClawIO validates its

implementation of the OSP using the SmashBox tool13, part of the CERNBox

project to ensure the reliability and quality of the service.

The OSP is state-based and it has a cycle of three clearly defined phases [20]

that are triggered periodically:

• Discovery phase: its objective is to collect metadata on the remote server

to build a tree of remote changes to be compared with the local tree that

represents the state of the synchronisation client.

• Reconciliation phase: given the remote and local trees, the ownCloud

Sync Client has to decide what to do with each file based on the collected

metadata. The result of this phase if a propagation list that specifies what

to do to make the two sets the same.

• Propagation phase: it is the how-to-do-it phase. This phase executes the

jobs to achieve the required changes specified in the propagation list.

OSP uses WebDAV as the underlying protocol for synchronisation but it has

been extended to improve efficiency. Theses extensions are as follows:

• File ID: it is an unique identifier that is attached to a resource (the concept

is similar to an inode number — it points to an structure that represents

a filesystem object) and it does not change when resources are moved

to another location. This identifier is needed to track remote moves in

the sync clients to perform a local rename instead expensive delete and

download operations.

• ETag: it is an opaque unique identifier that is given to all resources to

identity versions of the resource. As a consequence, when a resource ever

13https://github.com/cernbox/smashbox
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changes, it is assigned a new ETag that has not been previously used.

Whenever an ETag changes, all the ancestor directories up to the home

directory of the user update their own ETag to reflect the path of changes.

This propagation allows clients to construct a partial tree with just the

changed branches.

• Mtime: the modification time of a resource. This attribute is also prop-

agated like the ETag along the path to solve a corner case when a sync

client looses its sync journal and has to decide which file to kept in case

of conflict.

Apart from these metadata, the following is also used in ClawIO:

• Size: the size of the resource in bytes.

• Resource type: specifies if the resource is a file or a directory.

• Mime type: identifies the format of the file.

• Checksum: fingerprint of resource data.

After having identified the metadata used in the three architecture (Figures

A.10a, A.10b and A.10c), we focus now on the differences between them.

The Alpha architecture (Figure A.10a) uses MySQL to save the file ID, ETag,

Mtime and checksum. The MySQL database is also used for keeping track of

the propagation of ETags and Mtimes. The size, mime type, resource type

and children are retrieved directly from the filesystem with operating system

commands.

The Beta architecture (Figure A.10b) changes the way it retrieves the file ID

and checksum attributes. Instead of obtaining them from the MySQL database,

they are obtained from EXT4 extended attributes, i.e. they are attached to the

file. This change brings two important consequences:

• The file ID update is atomic. Traditional FSS platforms obtain the file

hierarchy from an intermediate component between the filesystem and

10



the user, which is often a SQL database. In these platforms the move

operation has to be performed both on the filesystem (physical move)

and in the database (logical move — to update the path the file ID is

pointing to after the physical move), hence losing the atomicity of the

file ID update operation and reducing the consistency of the platform. In

filesystems with support for extended attributes (ext2, ext3, ext4, XFS,

JFS, reiserfs ...) the file ID will be attached to the resource, and when

moved, the xattrs will continue to be attached to the resource (ensured

by the filesystem), therefore making the update of file ID atomic and

increasing the consistency of the system.

• Checksum resides along the data. Traditional FSS platforms with check-

sum support keep the checksum in an intermediate component as in the

previous case. When a new file is uploaded, the file is saved to disk and

then the checksum is kept in the database, but in the time period between

these operations the file could have been already modified, thus saving a

wrong checksum. Keeping the checksum in an extended attribute guaran-

tees that the checksum will correspond to the contents of the file.

The Gamma architecture (Figure A.10c) replaces the MySQL database with

Redis [21], an in-memory database in order to increase the performance of the

metadata operations as it will be shown in next section.

Another aspect to highlight is the way of obtaining directory entries (listing

the contents of a folder) in ClawIO, as it differs from the way is done in tradi-

tional FSS platforms. While other FSS platforms use the database for storing

the file tree hierarchy, ClawIO uses for another approach with local filesystems.

As the local filesystem implements a file hierarchy itself, we believed there was

no need to maintain a cached copy of the file catalog in the database. As a

consequence, the filesystem–to–database synchronisation job is avoided, thus

allowing access to the underlying storage via external actors and still allow-

ing users to see the latest state of their data, without having to wait until a

filesystem–to–database synchronisation job finishes.
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Before diving into the testing section, Figure A.11a, A.11b and A.11c (inside

AppendixA) show the flow of some end–user actions (upload, mkdir and stat)

between the different components that forms ClawIO.

5. Testing environment

To test the storage configurations, each unit runs in its own virtualised

Docker14 container. Therefore, all units have been encapsulated into Dockerfiles

read by Docker Compose15 to orchestrate the setup. All the containers run in

the same physical machine (specifications reflected in Table 1) to avoid including

network saturation biasses in the results.

CPU 64 cores Intel(R) Xeon(R) CPU E5-4640 v2 @ 2.20GHz

RAM 64 GB

DISK SAS-3 12 Gb/s 4 TB Seagate ST4000NM3401 (RAID6)

OS CentOS 6.7

Table 1: Hardware specifications of the testing machine.

The system was stressed against with two operations (stat and upload),

on different levels of concurrency to reach the maximum possible number of

requests. Both operations are defined as follows:

• Stat operation: this operation is similar to a Unix ’stat‘ command16 or a

WebDAV PROPFIND request17 with depth zero. It retrieves the meta-

data from the database and the filesystem. For each level of concurrency

10000 requests are triggered and the test is repeated 5 times to avoid

biasses. This operation runs the clawiobench tool against the metadata

server of each storage configuration using gRPC for communication.

14https://www.docker.com/
15https://docs.docker.com/compose/
16http://man.he.net/?topic=stat&section=all
17https://msdn.microsoft.com/en-us/library/aa142960(v=exchg.65).aspx
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• Upload operation: this operation uploads a file randomly chosen from a

fixed set of 100 files. File sizes in this sample follow a distribution of file

sizes in production system CERNBox [22]. The chosen file is uploaded

5000 times per concurrency level to random target destinations to avoid

overwrites. The benchmark is repeated 5 times. This operation is run by

clawiobench tool against the data servers of each storage configuration and

uses HTTP/1.1 for communication. Furthermore, this operation triggers

the propagation of metadata for each uploaded file.

6. Results

All plots shown below measure concurrency in the x–axis and the frequency

(number of requests per second) in the y–axis.

6.1. Stat results

Figure 2: ’stat‘ rate against Alpha storage configuration.
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Figure 2 shows the plot obtained after running the stat operation against the

Alpha storage configuration, i.e. local filesystem with MySQL. The maximum

number of requests per second observed with this configuration was around

3200. It is observed a linear increase until a concurrency of 256. Afterwards,

the system stabilises.

Figure 3: ’stat‘ rate against Beta storage configuration.

Figure 3 shows the plot obtained after running the same operation against

the Beta storage configuration, i.e. local filesystem with extended attributes

and MySQL. The maximum frequency is around 3400 Hz. It is observed similar

shape as in the Alpha case: linear increase until 256 and stabilisation towards

the end.
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Figure 4: ’stat‘ rate against Gamma storage configuration.

Figure 4 shows the plot obtained after stressing the same stat operation

against the Gamma storage configuration, i.e. local filesystem with extended

attributes and Redis. The maximum number of requests per second observed

with this configuration was around 8200, almost three times more as in the

Alpha and Beta cases. The shape changes a little bit respect to the other plots.

There is a pronounced linear increase until a concurrency level of 64 (the number

of available processors), then a stabilisation phase until concurrency level 512

is reached, followed by a smooth continuous decay.
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6.2. Upload results

Figure 5: Upload rate against Alpha storage configuration.

Figure 5 shows the plot obtained after running the upload operation against

Alpha storage configuration, i.e. local filesystem with MySQL. The maximum

number of uploaded files per second observed with this configuration was close

to 700. There is a linear increase until a concurrency of 512; afterwards, the

system stabilises.
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Figure 6: Upload rate against Beta storage configuration.

Figure 6 shows the plot obtained after running the same operation against

the Beta storage configuration: local filesystem with extended attributes and

MySQL. the maximum frequency is around 900 Hz. There is the same plot

shape as in Alpha case: linear increase until 1024 concurrency and stabilisation

afterwards.
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Figure 7: Upload rate against Gamma storage configuration.

Figure 7 shows the plot obtained after stressing the same upload operation

against the Gamma storage configuration, i.e. local filesystem with extended

attributes and Redis. The maximum number of requests per second observed

with this configuration was close to 1000. There is a linear increase until a

concurrency of 1024 followed by a stabilisation.

18



6.3. Analysis of the resutls

Figure 8: Average rate of ’stat‘ operation of Alpha, Beta and Gamma storage configurations.

Figure 8 shows a plot with the means of the stat operations previously shown

in Figures 2, 3 and 4. Analysing this plot we conclude the following:

• The use of extended attributes for retrieving file IDs does not impact the

performance of the system and makes the system more consistent because

move operations are now atomically as explained in Section 4.

• The use of the Redis in-memory database almost triples the performance

of the system when dealing with the stat operations, the most common

request made from ownCloud clients – ownCloud clients poll every 30

seconds for server updates.

• Redis has memory footprint of 70 bytes per entry (including the meta-

data). This allows to fit large namespaces directly into memory, for ex-

ample, with 64 GB RAM the system could handle close to 109 files.
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Figure 9 shows a plot with the means of the stat operations previously shown

in figures 5, 6 and 7. From this plot we can affirm the following:

• Independently of the database type and usage or not of extended file

attributes, the upload operation is mostly constraint by the underlying

filesystem.

Figure 9: Average rate of upload operations of Alpha, Beta and Gamma storage configurations.

The results obtained also show that ClawIO has been designed to scale, as

within one single physical machine it can handle vast amounts of requests across

multiple microservices, thus maintaining the flexibility and scale-out features.

During the benchmarking phase, we had encountered a series of challenges.

In the first place, the sixteen microservices used in the testing scenario run in

the same physical box, therefore the number of used file descriptors grew linearly

regarding the number of connections, thus exhausting the available memory. For
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this reason, we decided to run the concurrency tests until 4096 to not exhaust

the number of available file descriptors.

In the second place, most plots show a stabilisation phase at the end except

the ’stat‘ test against Redis (Figure 4). The decay at the end is caused by a

bottleneck, but we are still not sure if it was the filesystem or Redis; further

investigation is needed.

7. Conclusion and Future Work

This study has introduced ClawIO as a useful framework to benchmark

synchronisation protocols from storage perspective. In this phase of the project,

we have observed how it is possible to build high-performance and consistent

FSS platforms using in-memory databases to track fast data updates and file

system extended attributes to ensure data consistency. Also, we have seen

how we can provide real time access to the underlying filesystem without using

intermediate namespace components like a SQL database.

Some future research challenges are as follows: benchmarking the system in

different physical boxes may yield better results as the number of connections are

not constrained as in one single box. Another challenge is to run the benchmark

against a cluster of machines (most ClawIO components scale out) to yield even

higher frequencies. Also, the storage backends were local filesystems (EXT4),

but there are other alternatives like object storages or miscellaneous systems

like CERN EOS being worth to be tested. It is also important to benchmark

more operations and intercalations between them.
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AppendixA.
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Figure A.10: ClawIO Storage Architectures
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