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ABSTRACT 

In the present paper , we obtain analytical

equations by using Optimal Homotopy Asymptotic method

compared with some other powerful and

perturbation method (HPM) and

simple computations with quite acceptable approximate solutions, which has close agreement

with exact solutions. The accuracy and efficiency of OHAM approach

illustrated by presenting four test examples that satisfy the

ADM and HPM methods. 
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1 INTRODUCTION 

 Many problems in science and engineering such as solid state physics, plasma

physics, fluid mechanics, chemical kinetics and mathematical biology lead to nonlinear

singular Volterra integral equations of Abel type as
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In the present paper , we obtain analytical-approximate solution of Abel

equations by using Optimal Homotopy Asymptotic method (OHAM).This approach has been 

compared with some other powerful and efficient methods such as He’s homotopy 

and Adomian decomposition method (ADM).

with quite acceptable approximate solutions, which has close agreement

The accuracy and efficiency of OHAM approach

illustrated by presenting four test examples that satisfy the power of OHAM compared to 

Nonlinear singular Volterra integral equations of Abel type, Optimal Homotopy

Asymptotic method , Least square method , Homotopy Perturbation method

behavior, Adomian Decomposition method. 

65R20, 45E10, 45D05 

Many problems in science and engineering such as solid state physics, plasma

physics, fluid mechanics, chemical kinetics and mathematical biology lead to nonlinear

egral equations of Abel type as: 
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approximate solution of Abel Volterra integral 

(OHAM).This approach has been 

efficient methods such as He’s homotopy 

(ADM). This method uses 

with quite acceptable approximate solutions, which has close agreement 

The accuracy and efficiency of OHAM approach is compared and 

of OHAM compared to 

Nonlinear singular Volterra integral equations of Abel type, Optimal Homotopy 

, Homotopy Perturbation method, Asymptotic 

Many problems in science and engineering such as solid state physics, plasma 

physics, fluid mechanics, chemical kinetics and mathematical biology lead to nonlinear 
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( ) ( ) ( ) ( , , ( ))           u x f x x t g x t u t dt  

in which ( )f x   is leading term

functional and 0 1.   

 In recent years researchers have turned their attention towards solving Volterra 

integral equations with 0 1 

Also, many powerful and applicable methods have been proposed and applied

approximate many types of non

applications [19, 20, 42, 44].  

was studied by zeilon [53]. 

 Abel Volterra integral equations

equation was applied by Niels Abel in 1823 to describe a sliding point mass in a vertical

plane on a unknown curve under gravitational force. The point mass starts its motion

initial velocity from a point which has a vertical distance 

[45]. Using the work-energy theorem, the equation of the unknown

well-known Abel integral equation

where ( )f x is a given function and  

 In this paper, we articulate the concept of OHAM to express a reasonable and reliable

method to solve weakly singular integral equations of Abel typ

established by Marinca and Herisanu [22, 32].

presented in [33, 34, 35, 36] to show the ability of OHAM

implement it to solve a vast domain of non linear problems

in convergence criteria which are similar to HAM

by Iqbal et al [23] Iqbal and Javed [24]

generalization and reliability of this method

application in science and engineering.

with different examples in the subsequent section.
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0
( ) ( ) ( ) ( , , ( ))           

x
u x f x x t g x t u t dt   (1)  

is leading term, ( )u x  is known function , ( , , ( ))g x t u t  is unknown nonlinear

0 1.

ars researchers have turned their attention towards solving Volterra 

0 1   and have represented different methods [10, 11, 30,31]. 

Also, many powerful and applicable methods have been proposed and applied

approximate many types of non-linear singular integral equations with

 Also, the generalized Abel integral equation on a finite interval 

Volterra integral equations have been proposed in first and second types. This 

as applied by Niels Abel in 1823 to describe a sliding point mass in a vertical

plane on a unknown curve under gravitational force. The point mass starts its motion

a point which has a vertical distance x from the lowest

energy theorem, the equation of the unknown curve that obtained is the 

known Abel integral equation 

0

( )
( ),            

x g t
dt f x

x t


  (2)  

is a given function and  ( )g t  is an unknown function. 

In this paper, we articulate the concept of OHAM to express a reasonable and reliable

method to solve weakly singular integral equations of Abel type. This approach was

established by Marinca and Herisanu [22, 32]. Afterwards, they published some papers

presented in [33, 34, 35, 36] to show the ability of OHAM to expand their ideas in

implement it to solve a vast domain of non linear problems. The advantage of

in convergence criteria which are similar to HAM but more flexible. Also

by Iqbal et al [23] Iqbal and Javed [24] and Haq [15] have proved

generalization and reliability of this method and obtained solutions of currently important 

application in science and engineering. In order to explain reliability of the method, we deal 

with different examples in the subsequent section. 
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(1) 

( , , ( )) is unknown nonlinear 

ars researchers have turned their attention towards solving Volterra 

and have represented different methods [10, 11, 30,31].  

Also, many powerful and applicable methods have been proposed and applied successfully to 

linear singular integral equations with a wide range of 

, the generalized Abel integral equation on a finite interval 

have been proposed in first and second types. This 

as applied by Niels Abel in 1823 to describe a sliding point mass in a vertical 

plane on a unknown curve under gravitational force. The point mass starts its motion without 

from the lowest point of the curve 

curve that obtained is the 

In this paper, we articulate the concept of OHAM to express a reasonable and reliable 

e. This approach was 

hey published some papers 

to expand their ideas in order to 

The advantage of OHAM is built 

Also ,a series of papers 

and Haq [15] have proved the effectiveness, 

of currently important 

of the method, we deal 
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 Finally, numerical comparison between OHAM and other existing 

efficiency of OHAM. Comparison graphs of exact solutions and approximate solutions

also plotted to visualize the performance of OHAM 

of a non linear problems, we may go for approximate analy

 Many asymptotic techniques are used for solving non linear problems

this fact in mind, we have presented a powerful technique OHAM which is generalized

of HPM and HAM. OHAM is simple, straight

existence of any small or large parameter as do traditional perturbation

successfully applied to a number of non

engineering by various researchers. This proves the validity and

useful technique [25, 38, 39, 43]

 In this paper , we propose Semi

 (1) Adomian decomposition method(ADM).

 (2) Homotopy perturbation method(HPM).

 (3) Optimal Homotopy Asymptotic method 

 We compare Optimal Asymptotic Homotopy Perturbation method to two other 

different methods namely, He’s homotopy perturbation method (HPM)

Decomposition method (ADM) to solve weakly singular Abel Volterra integral equations

the second kind. 

 Then , we present four different test examples to show the ability of OHAM method

rather  to classic ADM and HPM.

the power of OHAM rather to other two compared methods

versions of ADM and HPM are not p

for some special cases, these methods give us the closed form of the

two iterations. But, it is not applicable to all types of t

 To empower ADM and HPM , researchers usually use a combination of Classic Semi

Analytical methods along with some tools such as pad´

transformations and so on in order to reach to the best approximation just by modifyi

in one or two iterations. But
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Finally, numerical comparison between OHAM and other existing 

efficiency of OHAM. Comparison graphs of exact solutions and approximate solutions

sualize the performance of OHAM .Since there is a paucity of exact

of a non linear problems, we may go for approximate analytic solutions.  

Many asymptotic techniques are used for solving non linear problems

this fact in mind, we have presented a powerful technique OHAM which is generalized

of HPM and HAM. OHAM is simple, straightforward technique and does n

existence of any small or large parameter as do traditional perturbation methods. OHAM has 

successfully applied to a number of non-linear problems arising in the science and 

engineering by various researchers. This proves the validity and acceptabilit

[25, 38, 39, 43]. 

In this paper , we propose Semi-Analytical methods respectively as follows:

(1) Adomian decomposition method(ADM). 

(2) Homotopy perturbation method(HPM). 

(3) Optimal Homotopy Asymptotic method (OHAM). 

We compare Optimal Asymptotic Homotopy Perturbation method to two other 

, He’s homotopy perturbation method (HPM)

Decomposition method (ADM) to solve weakly singular Abel Volterra integral equations

Then , we present four different test examples to show the ability of OHAM method

rather  to classic ADM and HPM. Also, the results have been compared to each other to

r to other two compared methods. Its noticed that 

versions of ADM and HPM are not possible to be used all the time. However

these methods give us the closed form of the equation in just one or 

not applicable to all types of these equations. 

To empower ADM and HPM , researchers usually use a combination of Classic Semi

Analytical methods along with some tools such as pad´e approximant

so on in order to reach to the best approximation just by modifyi

But, OHAM uses a direct method in two steps by adding
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Finally, numerical comparison between OHAM and other existing methods shows the 

efficiency of OHAM. Comparison graphs of exact solutions and approximate solutions are 

.Since there is a paucity of exact solution 

Many asymptotic techniques are used for solving non linear problems. So by keeping 

this fact in mind, we have presented a powerful technique OHAM which is generalized form 

forward technique and does not require the 

methods. OHAM has 

in the science and 

ceptability of OHAM as a 

Analytical methods respectively as follows: 

We compare Optimal Asymptotic Homotopy Perturbation method to two other 

, He’s homotopy perturbation method (HPM) and Adomian 

Decomposition method (ADM) to solve weakly singular Abel Volterra integral equations of 

Then , we present four different test examples to show the ability of OHAM method 

, the results have been compared to each other to show 

Its noticed that using modified 

However, it seems that 

equation in just one or 

To empower ADM and HPM , researchers usually use a combination of Classic Semi-

approximant, Laplace 

so on in order to reach to the best approximation just by modifying them 

, OHAM uses a direct method in two steps by adding 
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optimization parameters to homotopy equation that enables us to use it for all types

and non linear problems too. 

 

2 ADOMIAN DECOMPOSITION METHOD

 The Adomian decomposition method (ADM)

method for solution of linear or non

including ordinary differential equations (ODEs), partial differential

integral equations, integro-differential equations, etc. The ADM is

which provides efficient algorithms for analytic approximate

simulations for real-world applications in the applied sciences

of the analytic approximate solutions obtained by ADM, can be verified by direct 

substitution. Advantages of the ADM over Picard’s iterated

[41]. More advantages of the ADM over the variational

[49, 50]. Adomian and co-workers have solved

class of nonlinearities, including product

[4], hyperbolic [5], composite [6],

nonlinearities [9]. 

 We find that the ADM solves nonlinear operator equations for any analytic 

nonlinearity, providing us with an easily computable and rapidly convergent sequence of

analytic approximate functions.

 In Adomian decomposition method, we consider the functional equation of Abel 

integral equation of the form 

where N  is a nonlinear operator and

infinite series for the unknown function

and then we decompose the non linear term
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optimization parameters to homotopy equation that enables us to use it for all types

ADOMIAN DECOMPOSITION METHOD 

decomposition method (ADM) [46, 47, 48] is a well

method for solution of linear or non-linear and deterministic or stochastic operator

including ordinary differential equations (ODEs), partial differential 

differential equations, etc. The ADM is a powerful technique, 

which provides efficient algorithms for analytic approximate solutions and numeric 

world applications in the applied sciences and engineering. The acc

of the analytic approximate solutions obtained by ADM, can be verified by direct 

substitution. Advantages of the ADM over Picard’s iterated method were demonstrated in 

[41]. More advantages of the ADM over the variational iteration method were presen

workers have solved nonlinear differential eq

linearities, including product [1], polynomial [2], exponential [3], trigonometric 

composite [6], negative-power [7], radical [8] and even decimal

We find that the ADM solves nonlinear operator equations for any analytic 

providing us with an easily computable and rapidly convergent sequence of

analytic approximate functions. 

mposition method, we consider the functional equation of Abel 

 

( ) ( )           u f x N u  (3 )  

is a nonlinear operator and f  is a given function. We assume the solution as

infinite series for the unknown function ( )u x , given by 

0

( ) ( )          n
n

u x u x




  4  

and then we decompose the non linear term Nu into a series 
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optimization parameters to homotopy equation that enables us to use it for all types of linear 

is a well-known systematic 

linear and deterministic or stochastic operator equations, 

 equations (PDEs), 

a powerful technique, 

solutions and numeric 

and engineering. The accuracy 

of the analytic approximate solutions obtained by ADM, can be verified by direct 

method were demonstrated in 

iteration method were presented in 

nonlinear differential equations for a wide 

[1], polynomial [2], exponential [3], trigonometric 

] and even decimal-power 

We find that the ADM solves nonlinear operator equations for any analytic 

providing us with an easily computable and rapidly convergent sequence of 

mposition method, we consider the functional equation of Abel 

ssume the solution as 



VOLUME 

 

where the nA , depending on

obtained for the nonlinearity Nu f u

1

!n kA f u n
n


 



 We list the formulas of the first several Adomian polynomials for the one

simple analytic nonlinearity 

reference as 

0 0

1 0 1

2 0 2 0

3 0 3 0 1 2 0

4 0 4 0 1 3 0 0

( )

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ,

A f u

A f u u

A f u u f u

A f u u f u u u f u

A f u u f u u u f u f u




  

   

     

and so on.Substituting Eq.4 and 

0 0n n

 

 
 

         The components 0 1( ), ( ),...u x u x

relation: 

0 1 0 1( ) ( ), ( ) , ,..., .          u x f x u x A u u u 

Having determined the components

determined in the form of a rapid con

components  in Eq.8. Thus in order to implemen

form of equation : 
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0

              n
n

Nu A




   5  

, depending on 0 1 2, , , , nu u u u  are called the Adomian polynomials and are

( )Nu f u  by the definitional formula: 

0 0

1
( ) , 0,1, 2,...          

!

n
k

n kn
k

A f u n
n 






 

      
  6  

We list the formulas of the first several Adomian polynomials for the one

 ( ( ))Nu f u x  from 0A  through 4A , inclusively, for con

1 0 1

2
1

2 0 2 0

3
(3) 1

3 0 3 0 1 2 0

2 2 4
(3) (4)2 1 2 1

4 0 4 0 1 3 0 0

( )

( )

( ) ( )
2!

( ) ( ) ( )
3!

( ) ( ) ( ) ( ) ,
2! 2! 4!

A f u u

u
A f u u f u

u
A f u u f u u u f u

u u u u
A f u u f u u u f u f u

  

   

 
      

 

and Eq.5 into Abel’s integral equation of the form

0 0

( ) ( ) ( )              n n
n n

u x f x A x
 

 

    7  

0 1( ), ( ),...u x u x
 are usually determined by using the recurrence

 0 1 0 1( ) ( ), ( ) , ,..., .          n n nu x f x u x A u u u   8  

Having determined the components 0 1, , , nu u u , the solution 

the form of a rapid convergent power series by substituting the derived

in order to implement ADM on Abel integral equation
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are called the Adomian polynomials and are 

6

We list the formulas of the first several Adomian polynomials for the one-variable 

, inclusively, for convenient 

2 2 4
2 1 2 1

4 0 4 0 1 3 0 0( ) ( ) ( ) ( ) ,
2! 2! 4!

u u u u
A f u u f u u u f u f u

 

into Abel’s integral equation of the form Eq.3 , we get: 

are usually determined by using the recurrence 

8

 ( )u x  of Eq.4 is 

vergent power series by substituting the derived 

t ADM on Abel integral equation, weuse this 
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Substituting Eq.4  into Eq.9

n n
n n

u x f x k x t u t dt 

Then, we can use the following recursive relation to evaluate the various iterations

1 2 1, , , nu u u 
  as follows : 

0 1( ) ( ), ( ) ( , ) ( ) .          u x f x u x k x t u t dt

Here, we assume that the kernel

k x t a x b

 

3 BASIC IDEA OF HOMOTOPY PERTURBATION METHOD

 In this method, using the homotopy technique of topology, a homotopy is constructed

with an embedding parameter 

 This method became very popular among the scientists and engineers, even

involves continuous deformation of a simple problem into a more difficult

consideration. Most of the 

perturbation parameter but many nonlinear problems have no small

all. Many new methods have been proposed in the late

equation devoid of such small p

[14], He [16, 17], Liao [27, 28].

combination of the classical perturbation technique

topology), but not restricted to small

methods. This method can be done

the homotopy theory is coupled

tool to solve non linear problems. A review of recently developed methods of nonlinear 
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0
( ) ( ) ( , ) ( ) .             

x
u x f x k x t u t dt    9  

into Eq.9, results: 

0
( ) ( ) ( , ) ( ) .             

x

n n
n n

u x f x k x t u t dt    10

we can use the following recursive relation to evaluate the various iterations

0 1 0
( ) ( ), ( ) ( , ) ( ) .          

x

n nu x f x u x k x t u t dt    11

, we assume that the kernel ( , )k x t  to be Abel’s kernel i.e. 

1
( , ) ,            

( )
k x t a x b

x t   


       12  

BASIC IDEA OF HOMOTOPY PERTURBATION METHOD

In this method, using the homotopy technique of topology, a homotopy is constructed

meter p ∈[0,1], which is considered as a small parameter.

This method became very popular among the scientists and engineers, even

involves continuous deformation of a simple problem into a more difficult

 perturbation methods depend on the existence

perturbation parameter but many nonlinear problems have no small perturbation parameter at 

all. Many new methods have been proposed in the late nineties to solve such nonlinear 

h small parameters, Dehghan and Shakeri [12, 13],

[14], He [16, 17], Liao [27, 28]. The homotopy perturbation method is considered as a 

combination of the classical perturbation technique and the homotopy (whose origin is in the 

but not restricted to small parameters as occur with traditional perturbation 

This method can be done in few iterations to obtain highly accurate solutions.

the homotopy theory is coupled with perturbation theory ,it provides a powerful mathema

linear problems. A review of recently developed methods of nonlinear 
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 10  

we can use the following recursive relation to evaluate the various iterations 

( ) ( ), ( ) ( , ) ( ) .          11  

      12

BASIC IDEA OF HOMOTOPY PERTURBATION METHOD 

In this method, using the homotopy technique of topology, a homotopy is constructed 

[0,1], which is considered as a small parameter. 

This method became very popular among the scientists and engineers, even though it 

involves continuous deformation of a simple problem into a more difficult problem under 

perturbation methods depend on the existence of a small 

perturbation parameter at 

nineties to solve such nonlinear 

and Shakeri [12, 13], Ganji and Rajabi 

perturbation method is considered as a 

and the homotopy (whose origin is in the 

parameters as occur with traditional perturbation 

in few iterations to obtain highly accurate solutions. When 

with perturbation theory ,it provides a powerful mathematical 

linear problems. A review of recently developed methods of nonlinear 
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analysis can be found in He [18]. To figure out the basic concept of HPM, consider the 

following nonlinear functional equation

A u f r r

with the following boundary conditions:

B u r

where A is a general differential operator,

function, and  is the domain boundary for

where L is linear and N  is non linear so that Eq.13

              Generally, a homotopy function can be constructed as

( , ) (1 ) ( ) ( ) 0   H U p p L U L u p L U N u f r            

or 

( , ) ( ) ( ) 0   H U p L U L u p L U N u f r     

where p is a homotopy parameter, whose values are within range of 0 and 1, and

first approximation for the solution of Eq.13

 Assuming that solution for Eq.13 or Eq.15

U p p

Substituting Eq.18 into Eq.16 or Eq.17

found values for the sequence 

for Eq.13 in the form 

 

4 BASIC FORMULATION OF OPTIMAL HOMOTOPY ASYMPTOTIC 

METHOD (OHAM) 

 We apply the OHAM to Eq.13
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be found in He [18]. To figure out the basic concept of HPM, consider the 

nonlinear functional equation 

( ) ( ) 0,               A u f r r      13  

with the following boundary conditions: 

, 0,                
u

B u r
n

     
  14  

is a general differential operator, B is a boundary operator, ( )f r

is the domain boundary for  . A can be divided into two operators

non linear so that Eq.13 can be rewritten as 

( ) ( ) ( ) 0           L u N u f r    15  

Generally, a homotopy function can be constructed as 

     0( , ) (1 ) ( ) ( ) 0   H U p p L U L u p L U N u f r            

     0( , ) ( ) ( ) 0   H U p L U L u p L U N u f r        17

a homotopy parameter, whose values are within range of 0 and 1, and

ation for the solution of Eq.13 that satisfies the boundary conditions.

ssuming that solution for Eq.13 or Eq.15 can be written as a power 

2
0 1 2         U p p         18  

Substituting Eq.18 into Eq.16 or Eq.17 and equating identical powers of p

found values for the sequence 0 1 2, , ,   . When 1p  , it yields in the approximate solution 

0 1 2         U        19  

BASIC FORMULATION OF OPTIMAL HOMOTOPY ASYMPTOTIC 

We apply the OHAM to Eq.13 as follows: 
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be found in He [18]. To figure out the basic concept of HPM, consider the 

( )f r  a known analytic 

can be divided into two operators L and N, 

( , ) (1 ) ( ) ( ) 0                 16  

( , ) ( ) ( ) 0   17  

a homotopy parameter, whose values are within range of 0 and 1, and 0u
 is the 

that satisfies the boundary conditions. 

can be written as a power series of p  

p term, there can be 

approximate solution 

BASIC FORMULATION OF OPTIMAL HOMOTOPY ASYMPTOTIC 
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( ( )) ( ) ( ( )) 0,   , 0         L u x f x N u x B u   

where L is a linear operator, N

a non-linear operator and B is 

 By means of OHAM , one first constructs a family of equation [37];

 (1 ) ( , ) ( ) ( ) ( , ) ( ) ( , )      

                                 ( , ), 0

p L u x p f x H p L u x p f x N u x p

B u x p

          

where  0,1p  is an embedding parameter

(0) 0H   and ( , )u x p  is an unknown function

( ,0) ( ), ( ,1) ( )          u x u x u x u x

respectively. Thus,asp increases from 0 to 1, the solution 

solution ( )u x , where 0( )u x
 is obtained from Eq.21

 0 ( ) ( ) 0     ( , ) 0       L u x f x B u

 We choose auxiliary function 

 ( ) ,             H p pc p c p c

where  1 2, ,c c are constants, which can be determined latter. Let us consider the

Eq.21 in the form 

( ; , ) ( ) , , 1,2,        i k iu x p c u x u x c p i

 Now substituting Eq.26 into Eq.

we obtain the governing equation of

( )ku x
 as follows : 

 1 1 0 1( ) ( ) ,  ( , ) 0               L u x c N u x B u
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( ( )) ( ) ( ( )) 0,   , 0         
du

L u x f x N u x B u
dx

     
 

 20

N is unknown function and ( )f x is known function,

B is a boundary operator. 

By means of OHAM , one first constructs a family of equation [37];

   (1 ) ( , ) ( ) ( ) ( , ) ( ) ( , )      

( , )
                                 ( , ), 0

p L u x p f x H p L u x p f x N u x p

du x p
B u x p

dx

          
   
 

is an embedding parameter, ( )H p is a non-zero auxiliary function

is an unknown function. Obviously when p = 0 and p 

0 1( ,0) ( ), ( ,1) ( )          u x u x u x u x    (23)  

increases from 0 to 1, the solution ( , )u x p varies from

( ) is obtained from Eq.21 for p = 0. 

0 ( ) ( ) 0     ( , ) 0       
du

L u x f x B u
dx

     (24)  

We choose auxiliary function ( )H p in the form 

2 3
1 2 3( ) ,             H p pc p c p c      (25)  

are constants, which can be determined latter. Let us consider the

 0
1

( ; , ) ( ) , , 1,2,        k
i k i

k

u x p c u x u x c p i


    (26)  

Now substituting Eq.26 into Eq.21 and equating the coefficients of 

we obtain the governing equation of 0( )u x , given by Eq.24, and the governing

  1
1 1 0 1( ) ( ) ,  ( , ) 0               

du
L u x c N u x B u

dx
  (27)  

 

ISSN: 2595-8402 
10.5281/zenodo.2529459 

56 

20  

is known function,  ( )N u x is 

By means of OHAM , one first constructs a family of equation [37]; 

(1 ) ( , ) ( ) ( ) ( , ) ( ) ( , )      p L u x p f x H p L u x p f x N u x p      
   21  

zero auxiliary function for 0p  , 

p = 1, then it holds 

varies from 0( )u x  to the 

  (25)

are constants, which can be determined latter. Let us consider the solution of 

(26)  

and equating the coefficients of  like powers of p  

, and the governing equation of 

(27)
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 So, we can obtain general iterative relation as follows :





1 0 0

0 1 1

( ) ( ) ( ) [ ( )           

( ), ( ), , ( ) ,  ( , ) 0,  2,3,

k k k i k i

k i k k

L u x u x c N u x c L u x

N u x u x u x B u k

 

 

  

  

where  0 1( ), ( ), , ( )m mN u x u x u x

in series with respect to the embedding parameter 

   0 0 0 1; , ( ) , , , , 1,2, ,       i m mN u x p c N u x N u u u p i m  

where ( ; , )iu x p c  is given by Eq.26

by the linear Eqns.24, 27 and Eq.29

original problem, which can be

depends upon the auxiliary constants

( , ) ( ) ( , )          u x c u x u x c

 Therefore, the solution of Eq.20

mu x c u x u x c

 Substituting Eq.31 into Eq.20

( ; ) ( , ) ( ) ( , ) , 1, 2, ,      m m
i i iR x c L u x c g x N u x c i m   

 If ( ; ) 0iR x c   then m iu x c

of auxiliary constants , 1,2, ,ic i m

Ritz Method, Least Squares Method and Collocation Method. Ge

arise for nonlinear problems. 

square method as follows: 
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we can obtain general iterative relation as follows : 

    



1

1 0 0
1

0 1 1

( ) ( ) ( ) [ ( )           

( ), ( ), , ( ) ,  ( , ) 0,  2,3,

k

k k k i k i
i

k
k i k k

L u x u x c N u x c L u x

du
N u x u x u x B u k

dx



 


 

  

  



 

 (28)

( ), ( ), , ( )m mN u x u x u x  is the coefficient of
mp , obtained by expanding

pect to the embedding parameter p : 

   0 0 0 1
1

; , ( ) , , , , 1,2, ,       m
i m m

m

N u x p c N u x N u u u p i m


    

is given by Eq.26. It should be emphasized that ku for 

and Eq.29 with the linear boundary conditions that

can be easily solved. The convergence of the series

depends upon the auxiliary constants 1 2, , , mc c c . If it is convergent at p 

0
1

( , ) ( ) ( , )          i k i
k

u x c u x u x c


      30  

on of Eq.20 can be determined approximately in the form:

   0
1

, ( ) ,           
m

m
i k i

k

u x c u x u x c


  (31)  

into Eq.20, it results the following residual: 

  ( ; ) ( , ) ( ) ( , ) , 1, 2, ,      m m
i i iR x c L u x c g x N u x c i m    

( , )m iu x c  happens to be the exact solution. For the determination

, 1,2, ,c i m  , there are different methods like Galerkin’s

Ritz Method, Least Squares Method and Collocation Method. Generally such

 So in this case, we can minimize the functional

   2 ;  ,         
b

i ia
J c R x c dx   (33)  
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( ) ( ) ( ) [ ( )           

( ), ( ), , ( ) ,  ( , ) 0,  2,3, 

 (28)  

obtained by expanding  ; , iN u p c

; , ( ) , , , , 1,2, ,       N u x p c N u x N u u u p i m  (29)  

for 0k  are governed 

with the linear boundary conditions that come from 

easily solved. The convergence of the series equation 4.6 

1p  , one has  

can be determined approximately in the form: 

( ; ) ( , ) ( ) ( , ) , 1, 2, ,      R x c L u x c g x N u x c i m (32)  

For the determination 

, there are different methods like Galerkin’s Method, 

nerally such case will not 

in this case, we can minimize the functional by using Least 
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where a and b are two values, depending on the given problem. The unknown constants

, 1,2, ,ic i m 
 can be optimally identified from the conditions

 With these known constants, the approximate solution

well-determined. The constants

if  , ,  1,2, ,k a b i m   and substituting

 1 2, , , , 1,2, ,     i i m iR k c R k c R k c i m   

 Therefore, we can propose advantages and disadva

 

(1)  OHAM sometimes consume a lot of time to evaluate the residual when 

increasing number of convergence

 Hence, computing of more than three or four convergence constants is not

such cases. As a computational 

[29] and [40, 51]. 

 

(2)  Although OHAM gives 

solution because of the involvement of the convergence constants

( )H p . 

 

5 APPLICATION OF OHAM TO SOLVE ABEL VOLTERRA WEAKLY 

SINGULAR INTEGRAL EQUATIONS

 

 In this section, we implement OHAM on general form of weakly singular integral

equations of Abel type. Let us co

( ) ( )   ,  0,       u x f x dt x X  
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are two values, depending on the given problem. The unknown constants

can be optimally identified from the conditions 

1 2

0.     
m

J J J

c c c

  
   

  
   (34)  

With these known constants, the approximate solution (of order 

determined. The constants ic
 can be determined in another forms, for example,

and substituting ik  into Eq.32, we obtain the equati

   1 2, , , , 1,2, ,     i i m iR k c R k c R k c i m      (35)

can propose advantages and disadvantages of the method as follows

OHAM sometimes consume a lot of time to evaluate the residual when 

increasing number of convergence constants in the auxiliary function. 

computing of more than three or four convergence constants is not

As a computational point, time-consuming problems have also been observed by 

Although OHAM gives best approximations but it will not give the closed

solution because of the involvement of the convergence constants ic in the auxiliary function

APPLICATION OF OHAM TO SOLVE ABEL VOLTERRA WEAKLY 

EQUATIONS 

, we implement OHAM on general form of weakly singular integral

Let us consider the equation in the form: 

 
0

( )
( ) ( )   ,  0,       

( )

x u t
u x f x dt x X

x t   
  (36)  
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are two values, depending on the given problem. The unknown constants 

(of order m) Eq.31 is 

can be determined in another forms, for example, 

, we obtain the equation :  

 (35)  

ntages of the method as follows: 

OHAM sometimes consume a lot of time to evaluate the residual when there are 

computing of more than three or four convergence constants is not feasible in 

also been observed by 

best approximations but it will not give the closed form 

the auxiliary function

APPLICATION OF OHAM TO SOLVE ABEL VOLTERRA WEAKLY 

, we implement OHAM on general form of weakly singular integral 

 (36) 
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 Now, we construct an optimal h

satisfies in: 

   ( , ) 1 ( , ) ( ) ( ) ( , ) ( , ) ( )      H u p p L u x p f x H p L u x p N u x p f x     

where [0,1]p  is an embedding parameter

constants in which must be identified through numerical optimization

the approximate solution of the problem

follows: 

( ; ; ) , ;         u x p c u x t u x c p

 Substituting Eq.38 in Eq.37

a series of general governing equations as follows

 
 

 

0
0

1
1 1

: ( ) ( )

: ( )  

: ( ) 1 ( ) ( )j
j j i j i k

O p u x f x

O p u x c dt

O p u x c u x c u x c dt







 By substituting the solutions 

approximate solution of our problem.

present and unknown in this series of solution.

parameters, we form the following residual 

 ; ( ( ; )) ( )  .       i iR x c L u x c f x dt  

 If ( ; ) 0iR x c    then  

not arise for nonlinear problems,
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, we construct an optimal homotopy function ( , ) : 0,1u x p R 

    ( , ) 1 ( , ) ( ) ( ) ( , ) ( , ) ( )      H u p p L u x p f x H p L u x p N u x p f x     

is an embedding parameter, 
1

( )
n

i
i

i

H p p c


 and , 1,2, ,ic i n

in which must be identified through numerical optimization methods. So 

oximate solution of the problem, we use Taylor’s series expansion around 

   0
1

( ; ; ) , ;         k
i k i

k

u x p c u x t u x c p




    (38)  

Substituting Eq.38 in Eq.37 and equating the coefficients of like powers of 

equations as follows: 

 

0
1 1 0

1

1 1 0
2 1

: ( ) ( )

( )
: ( )  

( )

( )
: ( ) 1 ( ) ( )

( )

x

j j x j k
j j i j i k

i k

O p u x f x

u t
O p u x c dt

x t

u t
O p u x c u x c u x c dt

x t








 
 






   




  

By substituting the solutions of the above equations in Eq.36, we obtain an 

solution of our problem. Here, we note that the constants

present and unknown in this series of solution. Thus, for finding these constants

the following residual equation: 

0

( ; )
; ( ( ; )) ( )  .       

( )

x
i

i i

u t c
R x c L u x c f x dt

x t   
 (39)  

( ; )m iu x c will be the exact solution. Generally

arise for nonlinear problems, but we can minimize the functional 

 2

0
( ) ; .       

x

i iJ c R x c dx       (40)  
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 ( , ) : 0,1u x p R  which 

( , ) 1 ( , ) ( ) ( ) ( , ) ( , ) ( )      H u p p L u x p f x H p L u x p N u x p f x       (37)  

, 1,2, ,c i n   are auxiliary 

methods. So for finding 

series expansion around p as 

  (38)

and equating the coefficients of like powers of p , we get 

( )

( )
j ku t

O p u x c u x c u x c dt
x t 

 

we obtain an analytic 

we note that the constants , 1,2,ic i 
 are 

for finding these constants as optimal 

(39)

Generally, such a case will 
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 The unknown constants

conditions given in section (4).These conditions form a set of normal equations that can

solved by mathematical packages

set of complex and real values of constants

this set of obtained parameters 

solutions. 

 

6 NUMERICAL EXAMPLES

 In this section, we have presented four examples that can be solved by means of

ADM, HPM and OHAM. The obtained numerical results based on mentioned methods

illustrated to compare proposed methods with each other.

to computations till fourth iterations for each method to be compared with

regarding accuracy of approximations by obtaining series of solutions.

 

6.1. Example 1. We consider the Lin

presented in [21]: 

1 ( )
( ) ,0 1.      

2
u x x x dt t x      

 The exact solution is u x x

 Case 1 : Adomian decomposition method

 From the recursive relation (11)
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The unknown constants , 1,2, ,ic i m   can be optimally identified from the 

given in section (4).These conditions form a set of normal equations that can

solved by mathematical packages such as Mathematica, Maple and Matlab that

set of complex and real values of constants ic . So by choosing optimal real parameters

set of obtained parameters ic, we can achieve the best approximation for the series of 

NUMERICAL EXAMPLES 

, we have presented four examples that can be solved by means of

The obtained numerical results based on mentioned methods

ed methods with each other. It’s noticed that we have

to computations till fourth iterations for each method to be compared with

regarding accuracy of approximations by obtaining series of solutions. 

We consider the Linear Volterra integral equation with algebric singularity

0

1 ( )
( ) ,0 1.      

2

x u t
u x x x dt t x

x t
      

   (41)

( )u x x .  

: Adomian decomposition method: 

From the recursive relation (11), we obtain  
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can be optimally identified from the 

given in section (4).These conditions form a set of normal equations that can be 

, Maple and Matlab that provide us a 

real parameters from 

on for the series of 

, we have presented four examples that can be solved by means of 

The obtained numerical results based on mentioned methods are 

It’s noticed that we have continued 

to computations till fourth iterations for each method to be compared with each other 

ear Volterra integral equation with algebric singularity 

  (41)  
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0

1

2

3

4

( ) ( )

( ) 4 3 ,

( ) 3 8 ,

( ) 16 15 ,

( ) 5 16

u x f x x

u x dt x x

u x x x

u x x x

u x x x

 Then, we have: 



4

0

2 2

( ) ( ) 5 16 3 8       

1 1
16 15 4 3

60 6 2

i
i

u x u x x x x x

x x x x x 



    

     



 Case 2: Homotopy Perturbation method

 A homotopy perturbation eq

( , ) ( )                H u p u x x p dt   

 Now, we can try to obtain a solution for Eq.41

0 1 2( ) ( ) ( ) ( )                   u x u x pu x p u x   

Where ( ), 0,1,iu x i 
  are functions which must be determined

the approximations ( )iu x
 are as follows :
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 

 
 

 

0

0
1 0

3

2
2

2 2
3

5
2 2

4

( ) ( )
2

( ) 1
( ) 4 3 ,

6

1
( ) 3 8 ,

12
1

( ) 16 15 ,
60

1
( ) 5 16

60

x

x
u x f x x

u t
u x dt x x

x t

u x x x

u x x x

u x x x





 



 

  

    


 

  

 



 

   

  

5 3
2 2 2

2 2

1 1
( ) ( ) 5 16 3 8       

60 12

1 1
16 15 4 3

60 6 2

u x u x x x x x

x
x x x x x

   

 

    

     

: Homotopy Perturbation method 

A homotopy perturbation equation can be written for Eq.41 as follows:

0

( )
( , ) ( )                

2

xx u t
H u p u x x p dt

x t


   

    (43)

to obtain a solution for Eq.41 in the form of 

2
0 1 2( ) ( ) ( ) ( )                   u x u x pu x p u x    (44)  

are functions which must be determined. From the Eqns.43

( ) are as follows : 
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( ) ( ) 5 16 3 8       u x u x x x x x
(42)  

follows: 

   (43)  

(44)

From the Eqns.43 and 44, 
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 

 

 

 

 

0
0

1
1 1

2 2 2
2

3 2 2 2
3

4 2
4

: ( )

: ( ) 0 ( )

: ( )

: ( )

: ( ) 5 16

O p u x x x

O p u x dt u x x x

O p u x x x

O p u x x x

O p u x x x

 Then, the series solution is given by :

4

0

( ) ( ) 5 16 .          i
i

u x u x x x x x


    

 Case 3: Optimal Homotopy Asymptotic method

 The OHAM formulation of the above example is

 The linear section is considered as

L u x p u x x x

and the non-linear section is defined as

( ( , ))               N u x p dt

and the leading term f (x) is: 

which satisfies in the homotopy function as follows

 

 2 3
1 2 3

( , ) 1 ( )                          H u p p u x x x

pc p c p c u x x x dt

      
 

     
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 

0

3
0 2

1 10

3
2 2 2 2

2

5
3 2 2 2 2

3

5
4 2 2

4

: ( )
2

( ) 1 2
: ( ) 0 ( )

2 3

1 2
: ( )

4 3

1 4
: ( )

4 15

1
: ( ) 5 16

60

x

O p u x x x

u t
O p u x dt u x x x

x t

O p u x x x

O p u x x x

O p u x x x



 

 

 

 

 

     


 

  

 



, the series solution is given by : 

 
5 5

2 22 2
1 4

( ) ( ) 5 16 .          
60 15

u x u x x x x x      

imal Homotopy Asymptotic method: 

ulation of the above example is: 

linear section is considered as: 

 1
( ; ) ( )       

2
L u x p u x x x        46  

linear section is defined as: 

0

( )
( ( , ))               

x u t
N u x p dt

x t


       (47)  

1
( )                 

2
f x x x    (48)  

which satisfies in the homotopy function as follows: 

2 3
1 2 3 0

1
( , ) 1 ( )                          

2

1 ( )
( )           

2

x

H u p p u x x x

u t
pc p c p c u x x x dt

x t





      
 

       
 
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3

2O p u x dt u x x x 

 

( ) ( ) 5 16 .           (45)  

( )           

  (49)  
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 By equating the coefficients of like powers of 

 as follows: 

 

 

0
0

1 0
1 1 10

1
: ( )

2
( )

: ( ) (3 4 )
x

O p u x x x

u t
O p u x c dt c x x

x t

 

  


 

 

2 2
2 1

2 2 3/2
1 1 1 2

1 2 1

1 1 1 1
3 4 3 4 8 3 3 4

6 6 12 6

1
: ( ) ( ) (3 4 )

6
O p u x u x c x x c dt c dt

c x x c x x c x x c x x



    

 

                    
    

     


 

 

2 2 3/2
1 1

3
3 2 3

3 3

1 1 1 1
3 4 3 4 8 3 3 4

6 6 12 6

1 1 1
3 4 8 3 8 3

( ) : ( ) (

6

)

c x x c x

O p u x u x c x c dt c dt c dt

c x c x x c c x x c

    

   

                    
 

     

     
            
  

 3 3/2 3 2 2 3/2
1 1 2 1

1 1 1
8 3 15 16 8 3

12 60 12
c x x c x x c c x x                  

     
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By equating the coefficients of like powers of p , we get a sequence of solutions

1 1 1

( ) 1
: ( ) (3 4 )

6

O p u x x x

O p u x c dt c x x
x t

    
 

 

   

0 1

2 2 3/2
1 1 1 2

1 2 10 0

1 1 1 1
3 4 3 4 8 3 3 4

6 6 12 6

( ) ( )1
: ( ) ( ) (3 4 )

6

x xu t u t
O p u x u x c x x c dt c dt

x t x t

c x x c x x c x x c x x



    

 

                    
    

     

 

   

   

 

2 2 3/2

0 1 2

1 2

3/2 2

3 2 10 0

1 1

0

2

1 1 1 1
3 4 3 4 8 3 3 4

6 6 12 6

1 1 1
3 4 8 3 8 3

( ) ( ) ( )

12 12

x x x

c x x c x

u t u t u t
O p u x u x c x c dt c dt c dt

x t x t x

x c x x c x x

c x c x x c c x x c

t

    

   

                    

     

     
            
  





   



  3 3/2 3 2 2 3/2
1 1 2 1

1 1 1
8 3 15 16 8 3

12 60 12
c x x c x x c c x x



    

 
 
 

              
     
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, we get a sequence of solutions 

 1 1 1 2

1 1 1 1
3 4 3 4 8 3 3 4

6 6 12 6

( )
O p u x u x c x x c dt c dt

x t x t

c x x c x x c x x c x x                        

    

  

 

 1 2

1 1 1 1
3 4 3 4 8 3 3 4

6 6 12 6

3 4 8 3 8 3

( ) ( )u t u t
O p u x u x c x c dt c dt c dt

x c x x c x x

t

                        

     

     

      

 

 



3/2

3 3/2 3 2 2 3/28 3 15 16 8 3

x x

c x x c x x c c x x



    

   
 

     
     
     
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  
 

 

4 3 4 3 2 1

1 1 1 1

2 2 3 3/2
1 2 1

4

3/2
2 1

( ) : ( ) ( )

1 1 1 1
3 4 3 4 8 3 8 3

6 6 6 12
1 1 1

15 16 3 4 8 3
60 6 6
1

5 8 3 2 20 15 8
06

O u x u x c x c c c

x xc x xc x

x x c x xc x

p dt dt dt

x c x c

     

   

  

  

      

     

   




 

 
  

3 3 3 1 1

3
1 1 2

2 3 4

1 1 1
3 4 8 3 ( 40 45 32

6 12 60

15 32 5 5 8 3 2 15 16

5 8 3 6 8 3 )

xc x xc x x c xc x x x c

x x x c c x x x xc

x x c x x c xc

     

   

 

       

      

      

 Our experience shows that after fourth 

solution. Then, the series solution is given by

4

0

3
2 4 22

( ) ( ) 120 105 64

(15 32 5 ) 2 (45(1 4 )

(20 30 24 ) ) 5 (6 3 4 ) 6(8 3 )

( 6 8 3 ) ) 5(6 (3 4 ) (8 3 )

3( 8 4 8 ) 4(3 3 2

i
i

u x u x x x x x c

x x x c xc x x

x x x c xc x x x c

x x c x x c x xc

x x x c x

   

   

   

   



   

     

       

       

       



 

and by using Least square method presented in section 4

, 1,2,3,4ic i
 among a set of co

1 2

3 4

0.0024038192517472404, 0.5036184105906896

0.061276454393664505, 0.2369720849104333

c c

c c




 Therefore, the series solution till fourth term 
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   
   

4 3 4 3 2 1

2 3/2 2 3/2 3
1 1 1 1

2 2 3 3/2
1 2 1

31 2

0 0 0

2

2 1

(

1 1 1 1
3 4 3 4 8 3 8 3

6 6 6 12
1 1 1

15 16 3 4 8 3
60 6 6

5 8 3 2 20 15 8

)( )( )x x x
O u x u x c x c c c

x xc x xc x

u

x c x x c

x x c x xc x

tu t u t
p dt dt dt

x t x t x

x c c

x c x c

t

x

     

   

  

  

      

     

   

 
 



  

    
   
     
  

2
1 2

3/2 2
3 3 3 1 1

3
1 1 2

2 3 4

5 8 3

1 1 1
3 4 8 3 ( 40 45 32

6 12 60

15 32 5 5 8 3 2 15 16

5 8 3 6 8 3 )

x c x c

xc x xc x x c xc x x x c

x x x c c x x x xc

x x c x x c xc

 

     

   

 

 

       

      

      

ows that after fourth iteration, we will reach to favorite approximate

, the series solution is given by: 

   3
1

2 4 2
1 1

3

2
2 1 2

2
3 2 2

3
2 2

3

1
( ) ( ) 120 105 64

60

(15 32 5 ) 2 (45(1 4 )

(20 30 24 ) ) 5 (6 3 4 ) 6(8 3 )

( 6 8 3 ) ) 5(6 (3 4 ) (8 3 )

3( 8 4 8 ) 4(3 3 2

u x u x x x x x c

x x x c xc x x

x x x c xc x x x c

x x c x x c x xc

x x x c x

  

   

   

   

   

   

     

       

       

        43 ))),x c 

e method presented in section 4, we find real optimal parameters

a set of complex and real roots as follows: 

1 2

3 4

0.0024038192517472404, 0.5036184105906896

0.061276454393664505, 0.2369720849104333

c c

c c 


, the series solution till fourth term is given by: 
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2 3/2 2 3/2 3
1 1 1 1

(

3 4 3 4 8 3 8 3

)

x c x x c

t
p dt dt dt

x t x t x t

           



 




1 2

3/2 2
3 3 3 1 13 4 8 3 ( 40 45 32

x c x c

xc x xc x x c xc x x x c            

 

, we will reach to favorite approximate 

2 1 2(20 30 24 ) ) 5 (6 3 4 ) 6(8 3 )x x x c xc x x x c

x x c x x c x xc

          

3 ))),

 

, we find real optimal parameters 

0.0024038192517472404, 0.5036184105906896

0.061276454393664505, 0.2369720849104333
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4

0

( ) ( ) 0.0000228307  0.924054   

+8.627314064854607.10 . + 0.456388 + 0.5874

i
i

u x u x x x




 So, the result of approximate solution obtained by OHAM is compared to solutions of

ADM and HPM along with exact solution in Fig.1.

 

Fig. 1 - Graph of approximate and exact solutions of

 

6.2. Example 2. We consider the singular V

( ) 2 ,0 1         u x x dt x   

which has ( ) 1 xu x e erfc x 

function erfc  is defined as  

 Case 1: Adomian Decomposition 

 For this problem, the components 

0 1 2 3 4( ) 2 , ( ) , ( ) , ( ) , ( )u x x u x x u x x u x u x x     
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5 3

2 2

11 3 2

( ) ( ) 0.0000228307  0.924054   

+8.627314064854607.10 . + 0.456388 + 0.587427 + 0.885581

u x u x x x

x x x x

 

, the result of approximate solution obtained by OHAM is compared to solutions of

ADM and HPM along with exact solution in Fig.1. 

 
Graph of approximate and exact solutions of Example 1  

We consider the singular Volterra integral equation in the form [52]

0

( )
( ) 2 ,0 1         

x u t
u x x dt x

x t
   

    (51)  

u x e erfc x  as the exact solution, where the complementary

22
( ) .u

x
erfc x e dy



    

ian Decomposition Method: 

For this problem, the components ( )iu x
 are obtained as follows: 

3 52 2
2 2

0 1 2 3 4

4 8
( ) 2 , ( ) , ( ) , ( ) , ( )

3 2 15

x
u x x u x x u x x u x u x x

       
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27 + 0.885581x x x x

 (50)  

, the result of approximate solution obtained by OHAM is compared to solutions of 

olterra integral equation in the form [52] 

   (51)

, where the complementary error 

3 5
22 2

4 8
( ) 2 , ( ) , ( ) , ( ) , ( )

3 2 15
u x x u x x u x x u x u x x         
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 The general series solution is obtain

 
0

1 2

1

( ) ( ) 2

( 1)
1 1 ,

1
2

i
i

r
r

r

u x u x x x x x x x x

x
E x e erfc x

r

     











        


     

   
 





where ( )u x  is the exact solution. 

4

0

( ) ( ) 2          i
i

u x u x x x x x x


     

 Case 2: Homotopy  perturb

 The homotopy perturbation func

( , ) ( ) 2       H u p u x x p

 The components ( ), 0,1,2,iu x i

0 1 2 3 4( ) 2 ,  ( ) ,  ( ) , ( ) , ( )u x x u x x u x x u x u x x     

 Therefore, the general series solution is given as follows

 
0

1 2

1

( ) ( ) 2      

( 1)

1
2

i
i

r

r

u x u x x x x x x

x

r











      


     

   
 





where 
0

( ) , 0
( 1)

r

r

z
E z

r 






 
 

is the exact solution. 

 Then, the series solution till fourth term is given as

4

0

( ) ( ) 2 .     i
i

u x u x x x x x x


     

 Case 3: Optimal Homotopy Asymptotic method
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The general series solution is obtained as: 

   

3 5 7
2 2 2 3 3 32 2 2

1

2

4 1 8 1 16

3 2 15 6 105

1 1 ,x

u x u x x x x x x x x

E x e erfc x

     

 

        

     

is the exact solution. Thus, the series solution till fourth iteration is given

3 5
2 2 22 2

4 1 8
( ) ( ) 2          

3 2 15
u x u x x x x x x        

perturbation method: 

The homotopy perturbation function is constructed from Eq.51 as follows

0

( )
( , ) ( ) 2       

x u t
H u p u x x p

x t
  

   (54)  

( ), 0,1,2,u x i 
  are computed sequentially as follows

3 52 2
2 2

0 1 2 3 4

4 8
( ) 2 ,  ( ) ,  ( ) , ( ) , ( )

3 2 15

x
u x x u x x u x x u x u x x

      

, the general series solution is given as follows: 

   

3 5
2 2 22 2

2

1

2

4 1 8
( ) ( ) 2      

3 2 15

1 1 ,
1

r

x

u x u x x x x x x

x
E x e erfc x

   


 

      

     
   
 



( ) , 0
( 1)

   is the Mittag-Leffler function in one parameter and

on till fourth term is given as: 

3 5
2 2 22 2

4 1 8
( ) ( ) 2 .     

3 2 15
u x u x x x x x x         (56) 

Optimal Homotopy Asymptotic method 
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3 5 7
2 2 2 3 3 32 2 2

4 1 8 1 16

3 2 15 6 105
u x u x x x x x x x x             

 (52)  

the series solution till fourth iteration is given by 

( ) ( ) 2          (53)  

as follows: 

omputed sequentially as follows: 

3 5
22 2

4 8
( ) 2 ,  ( ) ,  ( ) , ( ) , ( )

3 2 15
u x x u x x u x x u x u x x        

( ) ( ) 2      

(55)  

Leffler function in one parameter and ( )u x

( ) ( ) 2 .     (56)  
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 The OHAM formulation of the above example is

 The linear section is considered as

L u x p u x x

and the non-linear section is defined as

and the leading term f (x) is: 

which satisfies in the homotopy function as fol



 2 3
1 2 3

( , ) 1 ( ) 2                         H u p p u x x

pc p c p c u x x dt

   

    

 The same as process which was done in example 1,

, 1,2,3,4ic i
 among a set of co

1 2

3 4

3.1590023647687975 2.28938783997985,

0.0063142350250252

c c

c c 


 So,  the series solution is given as follows

4

0

( ) ( ) 5.26379 +10.2671 12.2235 4.55633 +2 .    i
i

u x u x x x x x x


   

 The graph of approximate and exact solutions till fourth iteration is given in Fig.2.

Fig. 2 - Graph of approximate and exact solutions of Example 2 
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ulation of the above example is: 

linear section is considered as: 

( ( ; )) ( ) 2         L u x p u x x      (57)  

linear section is defined as: 

0

( )
( ( , ))    

x u t
N u x p dt

x t


   (58)  

( ) 2        f x x     (59)  

which satisfies in the homotopy function as follows: 

 
2 3

1 2 3 0

( , ) 1 ( ) 2                         

( )
( ) 2

x

H u p p u x x

u t
pc p c p c u x x dt

x t

   

      
 

    (60)

process which was done in example 1, we find optimal parameters

among a set of complex and real roots as follows:  

1 2

3 4

3.1590023647687975 2.28938783997985,

0.0063142350250252

,     

,  66 2.5452866240998273 

c c

c c  


s solution is given as follows: 

5 3
22 2( ) ( ) 5.26379 +10.2671 12.2235 4.55633 +2 .    u x u x x x x x x   

The graph of approximate and exact solutions till fourth iteration is given in Fig.2.

 
Graph of approximate and exact solutions of Example 2  
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    (60)  

we find optimal parameters 

3.1590023647687975 2.28938783997985,

66 2.5452866240998273
 

( ) ( ) 5.26379 +10.2671 12.2235 4.55633 +2 .    u x u x x x x x x   (61)   

The graph of approximate and exact solutions till fourth iteration is given in Fig.2. 



VOLUME 

 
6.3. Example 3. Consider the linear generalized Abel’s integral equation

( )          u x x x dt

 The exact solution is y x x

 Case 1: Adomian decomposition method

 After computations, the components 

2 ( )u x x x

3( ) 1173u x   

4 ( ) .u x

 Then the series solution till fourth term is given by
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Consider the linear generalized Abel’s integral equation 

 

8
2 3

10
3

27 ( )
( )          

40

x u t
u x x x dt

x t
  


   (62)  

2( )y x x .  

Adomian decomposition method: 

, the components ( ), 0,1, ,iu x i  
 are given as follows

8
2 3

0

27
( )

40
u x x x   

2

8 10

3 3
1

2
27 3

( ) 2
1340
3

u x x x

   
   
   
 

 

2
23 193
6 6

2

11
27

864.2 3 3
( )

2521505 40
6

u x x x



  
  

   
 

 

2 2
11 3 3
3

29
256.2 3

27 6
( ) 1173

16172040
3

x
x

u x



    

    
      

 

253
2 29 62

23 6

14
81

5184.2 3 3
( ) .

31623645
440

6

x
x

u x



  
  

   
 

 

on till fourth term is given by: 
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are given as follows: 

 
 
 
 
 
 
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2 2
4 3 3

0

2

3

5184.2 3 864.2 3
( ) ( )

623645 21505

29
256.2 3

627 + 1173
16
3

172040

i
i

u x u x x x x






    

    
  

           



 Case 2: Homotopy perturbation method

 A homotopy perturbation functio

( , ) ( )    H u p u x x x p dt   

 So, the various components 

2u x x
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3
2 2 2

29 23 2523 3
6 6 6

2

11 1

3

14 11
81 27

5184.2 3 864.2 3 3 3
31 25623645 21505 440 40
6 6

29
627 + 1173

2
2

3
13172040
3

u x u x x x x

x x

 
 

       
       
       
   

  
  

  
      
    

  
 

0 19

3 6

11
27

3
25

40
6

x x
   

  
  
 

: Homotopy perturbation method: 

A homotopy perturbation function can be constructed as follows: 

 

8
2 3

10
3

27 ( )
( , ) ( )    

40

x u t
H u p u x x x p dt

x t

 
    

  
  (63)  

, the various components ( ), 0,1,iu x i are obtained as: 

8
23

0

210

3
8 10

3 3
1

27
( ) ,

40

2
2

27 3
( )

1340
3

u x x x

x
u x x x

 

  
   

  
 

 

3
4

2

2 11
27

1 23 3
( ) ,

13 12 340
3

u x x

                   
 
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29 23 25

6 6 6

14 11
81 27

3 3
31 25

440 40
6 6

u x u x x x x
        

       
       
   

0 19
23 6

11

x x

 
 
  

 
 
 

 

 (63)  
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3

4

u x x

u x x x

 So, the series solution till fourth term is given by

5 3

2

10

3

2 2 2 11
2 243 27

3 3 3 3
( )           (64)

19 13

3 3

2
2

1 23
13 12 3 18480
3

u x x x x

x x x x

                 
         
       
   

   
       
   
 

 Case 3: Optimal Homotopy Asymptotic method

 The OHAM formulation of the above example is

 The linear section is conside

L u x p u x x x

and the non-linear section is defined as

( ( , ))                   N u x p dt

and the leading term f (x) is: 

f x x x

which satisfies in the homotopy function
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32

3

4
3

5 3

16 14

3 3
4

2
729 1540

3
( ) ,

18480

2 2
2 243

3 3
( )

19 6160
3

x

u x x

u x x x

       
   

       
     
   
 

 

on till fourth term is given by: 

5 3

16 14 10

3 3 3

32

3
3

4 2 4

2 2 2 11
2 243 27

3 3 3 3
( )           (64)

19 136160
40

3 3

2
729 1540

31 2
.

12 3 18480

u x x x x

x

x x x x

                 
         
       
   

       
          

 

imal Homotopy Asymptotic method: 

ulation of the above example is: 

The linear section is considered as: 

 
8

2 3
27

; ( ) ,           (65)
40

L u x p u x x x    

linear section is defined as: 

0

( )
( ( , ))                   

x u t
N u x p dt

x t


   (66)  

8
2 3

27
( )                  

40
f x x x      (67)  

which satisfies in the homotopy function as follows: 
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4 2 4

( )           (64)

.x x x x
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

 2 3 2
1 2 3

( , ) 1 ( )                  H u p p u x x x

pc p c p c u x x x dt

    

     

 After computations, we

complex and real roots as follows

1 2

3 4

0.6793587312516111 1.9291411777146121,

3.127385017446066 7.44054118988

c c

c c


 Then, the series solution is g

4
2

0

2

3

( ) ( ) (0.0133399 - 0.0402786  - 0.0214071    

+0.00373266  + 0.0446198  + 1).

i
i

u x u x x x x x

x x



 

 

Fig. 3 - Graph of approximate and exact solutions of Example 3 

 The graph of approximate and exact solutions till fourth iteration is given in Fig.3. In

this example, we observe that the c

coincidence on each other. Also

is more than ADM and HPM.

phenomena can be asymptotic behavio

that has been comprehensively studied in [26].

be done till fourth iteration to obtain suitable approximate

all three compared methods. 
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



8
2 3

8
2 3 2 3

1 2 3 0

27
( , ) 1 ( )                  

40

27 ( )
( )

40

x

H u p p u x x x

u t
pc p c p c u x x x dt

x t

 
     

 
 

      
 



     (68)

computations, we find optimal real parameters , 1,2,3,4ic i

mplex and real roots as follows: 

1 2

3 4

0.6793587312516111 1.9291411777146121,

3.127385017446066 7.44054118988

,  

,  75 19

c c

c c 


the series solution is given by: 

10 8 4
2 3 3 3

2

( ) ( ) (0.0133399 - 0.0402786  - 0.0214071    

+0.00373266  + 0.0446198  + 1).

u x u x x x x x

x x

 

 
Graph of approximate and exact solutions of Example 3  

 

The graph of approximate and exact solutions till fourth iteration is given in Fig.3. In

, we observe that the curves of approximate and exact solutions roughly

Also, we can conclude that the power of OHAM in 4

is more than ADM and HPM. It should be noted that the best reason to justify

phenomena can be asymptotic behavior of singular Volterra integral equations

that has been comprehensively studied in [26]. Also, its noticed that the computations must 

be done till fourth iteration to obtain suitable approximate solutions close to exact solu
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 
 
 

     (68)  

, 1,2,3,4
 among a set of 

0.6793587312516111 1.9291411777146121,

19
 

10 8 4

3 3 3( ) ( ) (0.0133399 - 0.0402786  - 0.0214071       u x u x x x x x
 (69)  

The graph of approximate and exact solutions till fourth iteration is given in Fig.3. In 

urves of approximate and exact solutions roughly 

, we can conclude that the power of OHAM in 4-th iteration 

It should be noted that the best reason to justify this 

r of singular Volterra integral equations when 1

2
   

the computations must 

solutions close to exact solution for 
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6.4. Example 4. Consider the singular Volterra integral equation

1 ( )
( ) ,0 1,             u x dt x    

which has 
1

( )u x
x

 as the exact solution.

 Case 1: Adomian decomposition method

 After computations, the components 

 Then, the series solution is given by

4
2 2 2

0

1 1
( ) ( ) 3 8 8 6     

6i
i

u x u x x x x x x   


      

 Case 2: Homotopy perturbation method :

 A homotopy perturbation function can be constructed as follows

( , ) ( )           H u p u x p dt   

 So, the sequence of solutions
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Consider the singular Volterra integral equation 

0

1 ( )
( ) ,0 1,             

x u t
u x dt x

x x t
    

   (70)  

as the exact solution. 

: Adomian decomposition method 

, the components ( ), 0,1,iu x i 
  are given as follows

 
 

0

1

2

3
2 2

3

4
3 21

15 1

1
( ) ,

( ) 2 ,

( ) 2 ,
2

1
( ) 8 3 ,

6

( ) 6
30

u x
x

u x x

x
u x x

u x x x

u x x x



 


 

 

  

   
 

 

 



 

the series solution is given by: 

   
3

2 2 22
1 1

( ) ( ) 3 8 8 6     
6

u x u x x x x x x
x

   
 

       
 

: Homotopy perturbation method : 

y perturbation function can be constructed as follows: 

0

1 ( )
( , ) ( )           

x u t
H u p u x p dt

x x t
   

   (72)  

, the sequence of solutions ( )iu x ,  i = 1,2, ···  are given as follows
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  (70)

are given as follows: 

1 1
( ) ( ) 3 8 8 6     

x
         (71)  

  (72)

are given as follows: 
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 Then, we have series s

4

0

( ) ( ) 3 8 .       i
i

u x u x x x x


    

 Case 3: Optimal Homotopy Asymptotic method 

 The OHAM formulation of the above example is

 The linear section is considered as

L u x p u x

and the non-linear section is defined as

N u x p dt

and the leading term f (x) is: 

which satisfies in the optimal homotopy function as follows



 2 3 2
1 2 3

( , ) 1 ( )                           H u p p u x

pc p c p c u x x x dt

    

     

 After computations, we find optimal real parameters

complex and real roots as follows
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 

0

1

2
2

3
2 2 2

3

3
2 2

4

1
( ) ,

( ) 2 ,

( ) 2 ,

4
( )

3

1
( ) 3 8

6

u x
x

u x x

u x x x

u x x x

u x x x





 

 

 

 

  

 

  

  

 

, we have series solution as follows: 

 
3 3

2 22 2
1 4 1

( ) ( ) 3 8 .       
6 3

u x u x x x x
x

        (73)

mal Homotopy Asymptotic method  

ulation of the above example is: 

linear section is considered as: 

  1
; ( ) ,       L u x p u x

x
       (74)  

linear section is defined as: 

  
0

( )
;       

x u t
N u x p dt

x t


    (75)  

1
( )            f x

x
   (76)  

which satisfies in the optimal homotopy function as follows: 




8

2 3 2 3
1 2 3 0

1
( , ) 1 ( )                           

27 ( )
( )

40

x

H u p p u x
x

u t
pc p c p c u x x x dt

x t

 
     

 
 

      
 



(77)

we find optimal real parameters , 1,2,3,4ic i

mplex and real roots as follows: 
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( ) ( ) 3 8 .        (73)  

pc p c p c u x x x dt
 
 
 

(77)  

, 1,2,3,4
 among a set of 
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1 2

3 4

0.11452179930429117 0.6018928997443851,

0.5453895225845069 0.256248

c c

c c

 
 

 Then, after computations

4

0

3

2

( ) ( )                                     

0.223526 0.00266669 0.990074 1.63856 0.74375
1.14823 1

1.14823 1.14823 1.14823 1.14823

i
i

u x u x

x x x x



 

 
     

 



 The graph of approximate and exact solutions till fourth iteration is given in Fig.

 

 

Fig. 4 - Graph of approximate and exact solutions of Example 4 

 

7  RESULTS AND DISCUSSION

 The purpose of the present paper is to propose the power of OHAM in order to

the solutions of weakly singular Volterra integral equations of Abel type rather to

HPM methods. We implemented all computations in a laptop by processor

could handle them in OHAM till 4
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integral equations of Abel type. Obtained results demonstrate efficiency of OHAM rather to 

ADM and HPM. We can conclude that the power of OHAM is enough to obtain approximate 

solutions with best accuracy, Whereas ADM and HPM methods need to use many iterations 
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