Journal article Open Access

COMPARISON OF OPTIMAL HOMOTOPY ASYMPTOTIC METHOD WITH ADOMIAN DECOMPOSITION AND HOMOTOPYPERTURBATION METHODSTO SOLVE WEAKLY SINGULAR VOLTERRA INTEGRAL EQUATIONS OF ABEL TYPE

KASMAEI, Hamed Daei


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.2529459">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.2529459</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.2529459"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>KASMAEI, Hamed Daei</foaf:name>
        <foaf:givenName>Hamed Daei</foaf:givenName>
        <foaf:familyName>KASMAEI</foaf:familyName>
      </rdf:Description>
    </dct:creator>
    <dct:title>COMPARISON OF OPTIMAL HOMOTOPY ASYMPTOTIC METHOD WITH ADOMIAN DECOMPOSITION AND HOMOTOPYPERTURBATION METHODSTO SOLVE WEAKLY SINGULAR VOLTERRA INTEGRAL EQUATIONS OF ABEL TYPE</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2018</dct:issued>
    <dcat:keyword>: Nonlinear singular Volterra integral equations of Abel type, Optimal Homotopy Asymptotic method , Least square method , Homotopy Perturbation method, Asymptotic behavior, Adomian Decomposition method.</dcat:keyword>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2018-12-31</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/2529459"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/2529459</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.2529458"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/0622"/>
    <dct:description>&lt;p&gt;In the present paper , we obtain analytical-approximate solution of Abel Volterra integral equations by using Optimal Homotopy Asymptotic method (OHAM).This approach has been compared with some other powerful and efficient methods such as He&amp;rsquo;s homotopy perturbation method (HPM) and Adomian decomposition method (ADM). This method uses simple computations with quite acceptable approximate solutions, which has close agreement&amp;nbsp;with exact solutions. The accuracy and efficiency of OHAM approach is compared and illustrated by presenting four test examples that satisfy the power of OHAM compared to ADM and HPM methods.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.2529459"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL>https://doi.org/10.5281/zenodo.2529459</dcat:accessURL>
        <dcat:byteSize>1188936</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/2529459/files/Art00013.pdf">https://zenodo.org/record/2529459/files/Art00013.pdf</dcat:downloadURL>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
50
42
views
downloads
All versions This version
Views 5050
Downloads 4242
Data volume 49.9 MB49.9 MB
Unique views 4444
Unique downloads 3737

Share

Cite as