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Introduction

Beo is a model of heat flow in hot springs and hydrothermal systems. The model code uses the generic finite element code
escript (https://launchpad.net/escript-finley) to solve the advective and conductive heat flow equations in a 2D cross-section
of the subsurface. The modeled temperatures can be compared to temperature daat from thermal springs or subsurface
temperatures records from nearby boreholes. The resulting temperature history can also be used to calculate the apatite
(U-Th)/He thermochronometer. The modeled values of this thermochronometer can then be compared to measured values.
Beo also support automated model runs to explore which parameter values like fluid fluxes, fault geometry and age of the
hydrothermal system best match the thermochronometer data, as well as present-day spring temperature data or temperature
records in nearby boreholes.

Installing & running

e Install Escript

— get the code here: https://launchpad.net/escript-finley
— an installation guide can be found here: http://esys.geocomp.uq.edu.au/docs

e Unzip the beo source code

o Navigate to the directory where you have installed escript. Go to the subdirectory bin (python-escript/bin/) and run
Beo by executing the following command from the command line:

./run-escript beo_dir/beo.py

Where beo_dir is the directory where you have saved Beo.
Alternatively use the command

./run-escript -e

This will show you three lines that define environment variables that your system needs to be able to find the location of
escript. Add these lines to your .bashrc (Ubuntu linux) or profile file in your home directory. After adding these lines and
logging out and in again, you can start beo by going to the directory where the beo code is located (so not to the escript/bin
directory) and start beo.py like any regular python code:

python beo.py model_parameters/model_parameters.py



where model_parameters/model_parameters.py is a file containing all model parameters. An example file called
model_parameters.py is located in the directory model_parameters.

Required modules

o numpy: http://www.numpy.org/
o For creating figures (optional):

— scipy: http://scipy.org/scipylib/index.html
— matplotlib: http://matplotlib.org/downloads.html

These modules are available as standalone packages. For mac and windows an easy way to get a working version of python
and these modules is to install a full Python environemnt like Anaconda (https://www.anaconda.com/), Enthought Canopy
(https://www.enthought.com/products/canopy) or pythonxy (https://code.google.com/p/pythonxy/wiki/Welcome).

Beo was tested on Ubuntu 14.04 and 16.04

Model input & output

Input:

All model input parameters are contained in the file model_parameters.py located in the directory model parameters. The
class ModelParameters contains all parameters needed for a single model run. See the comments in this part of the file for a
brief explanation of what each parameter does.

Multiple model runs

Optionally you can start automated runs to test a range of parameter combinations. This is useful for automated sensitivity
or uncertainty analysis.

The model input file contains a class calle ParameterRanges. Any parameter value that is included in this class will
be used as input for a single model run. All results will be stored an written to a comma separated (.csv) file names
model_output/model_params_and_results_x_runs.csv.

You can include any model parameter in the automated runs. Simply copy a parameter from the ModelParameters class
into the ParameterRanges class and add _s to the parameter name. For instance to test multiple values of the thermal
gradient, add thermal_gradient_s = [0.03, 0.04, 0.05] to test the effect of geothermal gradients of 0.03, 0.04 and 0.05
C/m, respectively.

There are two options for running multiple model runs. The default is a sensitivity run. In each model run a single parameter will
be changed, while all other parameters are kept constant at the default value specified in the ModelParameters class. Alterna-
tively you can test all parameter combinations by changing parameter_combinations = False to parameter_combinations
= True. Note that this will generate a lot of model runs, testing ten parameter values for two parameters each will generate
10*10 = 100 model runs, for three parameters this increase to a 1000 model runs, etc. ..

Output

o After each model run, the modeled temperature field and (U-Th)/He data are stored in the directory model_output as
a .pck file, which can be read using Python’s pickle module.

e In addition, Beo saves a comma separated file containing the model parameters and a summary of the results for each
model run and each timestep in the same directory.

Making figures

Currently there are two Python scripts that will generate figures of the model output:



o The script make_figures.py will make a single figure of the final temperature field for output files (with extension .pck)
found in the directory model_output. After running this script you will be prompted to select the output file that you
would like a figure of. The file model_parameters/figure_params.py contains a number of parameters that control
the figure, such as which timeslices to show, the min. and max. coordinates of the area to show, etc.. THe resulting
figure is saved as a .png file in the same directory as the model output file.

o make_figure_2models.py will make a figure with two panels containing the modeled temperatures and (U-
Th)/He data for two model runs. THe model runs are specified in the script itself, for example like this: files =
['model_output/T_field_model_run_14_(-3000.0, 0.03).pck', 'model_output/T_field model_run_32_(-6000.0,
0.03) .pck']. There are a number of parameters in line 62 to 103 in this script itself that you can adjust how the
resulting figure looks. The figure is saved to the model_output directory.

Model Background

Heat transport

Beo uses the generic finite element code escript to solve the heat flow equation and model conductive and advective heat
transport in and around hydrothermal systems. Escript is designed to solve a single partial differential equation (PDE):

—V(AVu+ Bu) + CVu+ Du=-VX +Y

Where u is the variable to be solved and A< B, C, D, X and Y are constants.

The heat flow equation used by Beo to model conductive and advective heat flow is given by:

or -
PoCh 5 = V&eVT — peep ¢ GVT

In which T is temperature (K), ¢ is time (sec), ¢ is heat capacity, p is bulk density (kgm=2), s is thermal conductivity

(Wm~1s™1), ¢ is porosity, p is density (kg m~3), c the heat capacity (Jkg~'K ') and ¥ is the flow velocity vector (m s=1).
Subscripts 3,  and ; denote properties of the bulk material, the fluid and the solid phase, respectively.

Implicit form

Beo solves the implicit form of the heat flow equation by discretization of the derivative of T' over time:

oT Tt+1 _ Tt
ot At
Which when inserted into heat transport equation yields:

Tt+1 _ Tt

ot = VKVTt—H — pfcp,fthTt—l_l

PoCo

which can be rearranged to:

—VAt VT 4 At dpre, ;qVTH 4 ppep TH = ppey T

Casting the implicit heat transport equation into the escript PDE yields:

~V At s VT + (Atpre ) VT + prey T = ppep T
A C D Y
with the following values for the escript constants:
u =Tt

A=Atk



C = Atpsesq
D = pycy
Y = prth

Steady-state

The initial (undisturbed) background temperature is calculated by solving the steady-state heat flow equation, i.e. the heat

aT
flow equation with the term — set to zero. For the initial temperatures the heat advection term is set to zero. In addition,

there is also an option to subsequently model steady-state temperaratures with advective heat flow included. The steady-state
heat flow equation solved in Beo is:

0=VkVT — prf(TVT

—~VEVT + pyepgVT =0

THe equation can be cast into the partial differential equation solvec by escript:

—V(AVuBu) + CVu+ Du=-VX+Y
Which can be cast into the same form as the escript PDE:
—V &k VT + (pses) VI =0
A c

This yields the following parameters that Beo passes on to escript:

u="T
A=k
C=pscsq

Surface heat flux

Temperatures and heat flux at the land surface are controlled by latent and sensible heat flux. Wa approximate latent and
sensible heat flux by assigning an artifically high value of thermal conductivity to the layer of air that overlies the land surface
in the model domain. Following Bateni and Entekhabi @[2012] the sensible heat flux H (W m-2) at the land surface is given
by:

H = pc/rq(Ty — Ts)
Where p is density (kg m™), c is the specific heat of air (J kgt K1), ra is the aerodynamic resistance (s m™), T, is the air

temperature at a reference level and Ty is the surface temperature. Rewriting this to the conductive heat flow equation gives
a value for the effective thermal conductivity (Ks) between the surface and the reference level z:

Ks = pe/rqoAz

Where Az is the difference between the surface and the reference level (m). Following Liu et al. (2007) the aerodynamic
resistance (ra) was set to a value of 80 s m™ at a reference level of 1.8 m above the surface.

Latent heat flux is given by (Bateni and Entekhabi 2012):

LE = pL/Ta(QS - Qa)



where LE is the latent heat flux (W m™), p is the density of air (kg m™3), L is the specific latent heat of vaporisation (J kg™!),
which is 334000 J kg!, qs is the saturated specific humidity at the surface temperature (kg kg™'), q. is the humidity of the air

(kg kg™).

Rewriting this yield the heat transfer coefficient for latent heat flux:

Kl — pLAZ qs — qa
roe Ts—T,
The saturated specific humidity (qs) was calculated as (Monteith 1981):

s = 0.622¢,/P,

where e is saturated air vapor pressure (Pa), P, is surface air pressure (Pa). The saturated air vapor pressure was calculated
using the Magnus equation (Alduchov and Eskridge 1996):

17.625T
es = 0.61094 exp ( )

T +243.04

Air pressure was assumed to be 1 x 10° Pa.

The thermal conducivity assigned in the air layer is the sum of the heat transfer coefficient for latent heat flux (K;) and
sensible heat flux (Kj).

Explanation of model parameters

The parameters that control Beo are stored in a python file called model_parameters.py in the class ModelParams. The
following section describes each of the model parameters.

Data types

The parameters can be several python data types:

e boolean: this is a variable that can either be True or False. Used to control model options, such as create_mesh_fig =
True

o numbers: numbers can be either float (2.3) or integers (2).

e strings: text that is bracketed by ” or “”, like this: “this is a string”.

o lists: a list of numbers, strings (text) or a mixture of these. Example: phiO = [0.45, 0.65, 0.45]

e numpy arrays: arrays containing numbers. Similar to lists, but can only contain numbers. Arrays can ei-
ther look like this: example_array = np.array([1, 2, 3]), which means an array of three numbers 1, 2
and 3. Other options are creating a range of numbers: Ls = np.arange(2500, 52500, 2500), which cre-
ates an array called Ls that contains a range of numbers from 2500 to 52500, with steps of 2500. See
the numpy documentation (https://docs.scipy.org/doc/numpy /user/basics.creation.html#arrays-creation and
https://docs.scipy.org/doc/numpy /reference/routines.array-creation.html#routines-array-creation) for more options to
create arrays.

General parameters

e output_folder: string. directory to store model output

e output_fn_adj: string, name to add to output files generated by Beo = ‘beowawe’

o steady_state: boolean, option to choose a steady state (no changes over time) or transient model. note that regardless
of this setting, the initial condition of transient model is the steady-state solution without any advection

e n_iterations_steady_state: integer number. Number of iterations to use for the steady-state model. This is needed
if the vapour correction or variable thermal conductivity of air are used. The steady-state model is then run several
times, each time with updated temperatures to account for the boiling temperature and/or updated themral conductivity
of the air layer to account for changes in surface temperature.



e vapour_correction: boolean, use a function to keep the temperature below the maximum temperature in the vapour
pressure curve. Note that this simply limits temperature and calculate where phase changes to vapour would happen,
there is no vapour transport and the effect of phase changes on the energy/enthalpy budget are also not taken into
account.

e T_change_report: list of numbers, size of area with temperature change to report compared to initial temperatures
without advective fluid flow.

Model dimensions and mesh parameters

o width: number, width of the model domain on either side of the first fault (m)

o total_depth: number, depth of the model domain (m)

e air_height: number, height of the layer of air that is included in the model domain above the land surface (m). This
layer is included for a more accurate simulation of land surface temperature as opposed to the traditional specified
temperature or specified heat fluxes at the land boundary.

o z_fine: number, depth to fine discretization near surface (m)

o cellsize: number, default cellsize (m)

o cellsize_air: number, cellsize in the air layer (m)

o cellsize_surface: number, cellsize at surface layers (m)

o cellsize_fine: number, fine cellsize near surface (up to depth = z_fine) (m)

o cellsize_fault: number, cellsize in fault zone (m)

o cellsize_base: number, cellsize at the lower left and right corners of the model domain (m)

e use_mesh_with_buffer: boolean, Use a buffer zone around fault with the same cell size as the fault. this is to reduce
model instability.

o fault_buffer_zone: number, size of the buffer zone around the fault (m)

Exhumation parameters

e add_exhumation: boolean, add exhumation or not. If set to True, the land surface is lowered over time to model erosion
or exhumation.

o exhumation_rate: number, exhumation rate in m/yr

e exhumation_steps: integer number, number of grid layers between initial and final surface level, the more layers, the
more smooth and accurate the exhumation history, but this also slows the model down somewhat

e min_layer_thickness: number, minimum layer thickness, if the exhumation steps result in surfaces that are less than
the min thickness apart, the number of steps is reduced default value is 1.0 m, reduce this value if gmsh returns an error
while creating the mesh

Temperature boundary conditions

e air_temperature: number, specified temperature at the top of the air layer (degrees C)

o thermal_gradient: number, goethermal gradient (degrees C / m). new version: calculate bottom T using a fixed
geothermal gradient./r

o basal_heat_flux: number, specified heat flux at the bottom of the model domain (W m-2). Set to None if T bnd is
used

Model layers

o layer_bottom: list of numbers, elevation of layers either side of the fault. structured like this: [[depth layer 1 left,
depth layer 1 right], [depth layer 2 left, depth layer 2 right], [depth layer 3 left, depth layer 3 right], etc...]. Layers
are counted from bottom to top. leave depth of first layer at arbitrarily high value to make sure the entire model
domain is covered. note that currently only 1 fault is taken into account.... example: layer_bottom = [[-20000.0,
-20250.0], [-810.0, -1060.0],[-530.0, -780.0], [-440.0, -690.0], [-210.0, -460.0]]

Thermal parameters

Note that only thermal conductivity and porosity are varied between layers, the other parameters are constant. note K_ air is
not used if variable K air is set to True



e porosities: list of numbers, porosity for each layer

o K_solids: list of numbers, thermal conductivity of the solid matrix for each layer (W m-1 K-1)

o K_air: number, thermal conductivity of air (W m-1 K-1)

e K_water: number, thermal conductivity of pore water (W m-1 K-1)

e rho_air : number, density of air (kg m-3)

o rho_f: number, density of pore water (kg m-3)

o rho_s : number, density of the solid matrix (kg m-3)

e c_air: number, heat capacity of air (J kg K-1)

e c_f: number, heat capacity of pore water (J kg K-1)

o c_s: number, heat capacity of the solid matrix (J kg K-1)

e variable_K_air: boolean, option to use a fixed thermal conductivity for air or to use a variable thermal conductivity
that depends on the surface temperature and that is used to approximate the actual sensible and latent heat flux at the
land surface.

e ra: number, aecrodynamic resistance, see Liu et al. (2007)

e dz: number, measurement height for aerodynamic resistance (m)

Timesteps and output

e N_outputs: list of numbers, number of steps at which output files are generated. this is not used when exhumation >
0, in this case output is generated once each new surface level is reached. the number of surfaces is controlled by the
exhumation_steps parameter

o dt: number, size of a single timestep (sec)

o durations: list of numbers, duration of each timestep slice (sec). Note that you can define one or more different
timeslices, for instance to first model 500 years of heating and then 1000 years of recovery by setting durations =
[500.0, 1000.0]. You can define different fluid fluxes in faults or horizontal aquifers in the parameters fault_fluxes
or aquifer_fluxes below.

e repeat_timeslices: integer, number of times the durations, fault_fluxes and aquifer_ fluxes are repeated. For instance
if you specifiy two timeslices, with a duration of 1000 and 10000 years, with a hydrothermal flux in the first period
and no flux in the second period, specifying repeat_timeslices = 10 will repeat this sequence of episodic heating ten
times.

e target_zs: list of numbers, target depth slices for calculating temperature and U-Th/He. In case of exhumation, this
values is overridden and set equal to each exhumation step layer. In this way one can track the AHe response to each
layer that comes to the surface in a longer time period. Note, values should go from low/bottom to high/top

Fault parameters

Beo simulates advective heat transport in faults. Note that beo does not model actual fluid flow, ie it does not solve Darcy’s
law or include permeability or such. Fluid flow is simply a fixed advective flux that is prescribed by the user.

o fault_xs: list of numbers, x location of fault (m):

e fault_widths : list of numbers, width of the fault zone (m)

o fault_angles : list of numbers, angle of the fault zone (degrees).

o fault_bottoms: list of numbers, elevation of bottom of fault (m)

o fault_segments: list of numbers, different segments of the fault, list of the top bnd of each segments starting from
the bottom, nested list: [[segment_topl_faultl, segment_top2_faultl], [segment_topl_fault2, segment_top2_fault2],
etc...]. This is used to be able to assign a different fluid flux to different parts of a single fault (for instance below and
above a connected aquifer)

o fault_fluxes, list of numbers, fluid advection rates in faults (m2/sec). This is a nested list that is structured as follows:
[[[faultl_segmentl_t1, faultl_segment2_t1], [fault2_segmentl_t1, fault2_segment2_t1], etc...]. Note that the flux in
specified in m2/sec, i.e., the integrated flux over the entire width of the fault zone. t1 and t2 refer to different time
periods defined in the parameter durations.

Aquifer parameters

In Beo aquifers are used for modeling horizontal advective flow, for instance horizontal flow in a permeable layer connected to
a fault. Use aquifer_top = [None] to not use this. For multiple aquifers start at the lowest aquifer



o aquifer_tops: list of numbers, elevation of the top of one or more aquifers (m). Use aquifer_top = [None] to not
use aquifers in your model run.

o aquifer_bottoms: list of numbers, elevation of the bottom of one or more aquifers (m).

o aquifer_fluxes: list of numbers, nested list of the fluid fluxes each aquifer (m s-1). The list is structured like this:
[[lux_aquiferl t1, flux_aquiferl t1], [flux_aquifer2 t2, flux_aquifer2 t2]]. t1 and t2 refer to different time periods
defined in the parameter durations.

e aquifer_left_bnds: list of numbers, left hand side of aquifer. right hand bnd is assumed to be the fault zone

Borehole temperature data

e analyse_borehole_temp: boolean, option to calculate temperature data for one or several boreholes. note that there
seems to be a bug in the output timesteps for the temperature calculation, avoid using this for now. ..

e temperature_file: string, name of the file that contains temperature data.

e borehole_names: list of strings. Names of the boreholes to include in your analysis.

e report_borehole_xcoords, boolean. Report the coordinates of the top of the borehole over time. For debugging
purposes.

e borehole_xs: list of numbers, x-coordinates of boreholes with temperature data (m), note location is now relative to
the location of the first fault ie, -100 m means 100 m to the left of the fault. the model code automatically calculates
the correct position to take into account the changing position of the fault surface over time due to exhumation

Apatite U-Th/He params

e calculate_he_ages: boolean, option to model AHe ages or not. Ages are modeled for the depths specified in the
parameter target_zs or at the land surface if exhumation is turned on.

e model_AHe_samples: boolean, model the AHe ages of specified samples, each with a different apatite radius, U238 and
Th232 concentration.

e AHe_data_file: string. Filename of the file containing the AHe data.

e profile_number: integer number, number of the profile to include in modeling AHe ages. This can be used to not
model all the AHe samples in a single datafile, but only those for which the entry in the profile column in the datafile
equals profile_number. If the profile number cannot be found in the AHe data file, Beo will go sequentally through all
the profile numbers in the datafile and calculate model statistics for each of the numbers.

e save_AHe_ages: boolean, save the AHe ages at the surface to a separate file

e AHe_method: string, method to calculate helium diffusivity, use Wolf1996, Farley2000 or RDAAM

e AHe_timestep_reduction, integer number. Use temperature at each x timestep for the calculation of AHe ages. This
should be an integer. Ideally this should be 1, but higher numbers significantly speed up the model code

o t0: number, crystallization age (sec), the age of the apatite crystal (which may be older than the age of the hydrothermal
system)

o TO: number, temperature of apatites after crystallization and before hydrothermal heating (degrees C)

o T_surface : number, temperature at the surface (degrees C)

o radius: number, radius of the default apatite (m)

o U238: number, concentration uranium-238 for the default apatite (ppm?)

o Th232: number, concentration thorium-232 for the default apatite (ppm?)

e alpha_ejection: boolean, model alpha ejection or not.

e stopping_distance: number, alpha ejection stopping distance (um), see Ketcham, Gautheron, and Tassan-Got (2011)
for estimates

e partial_reset_limit: number, relative limit to consider a sample partial reset or not, ie if 0.95 a sample will be
considered partially reset if the modeled uncorrected AHe age is less than 0.95 x the maximum age in the system.

o reset_limit: number, absolute age limit (My) below which samples are considered reset (ie. AHe age ~0 My)
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