Conference paper Open Access

Dynamic Functional Split Selection in Energy Harvesting Virtual Small Cells Using Temporal Difference Learning

Temesgene, Dagnachew, A.; Miozzo, Marco; Dini, Paolo


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-09-09</subfield>
  </datafield>
  <controlfield tag="005">20200120170655.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">grant TEC2017-88373-R (5G-REFINE). © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.</subfield>
  </datafield>
  <controlfield tag="001">2525718</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:2525718</subfield>
  </datafield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">9-12 September 2018</subfield>
    <subfield code="g">PIMRC</subfield>
    <subfield code="a">IEEE  International Symposium on Personal, Indoor, and Mobile Radio Communications</subfield>
    <subfield code="c">Bologna, (Italy)</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Flexible functional split in Cloud Radio Access Network (CRAN) is a promising approach to overcome the capacity and latency challenges in the fronthaul. In such architecture, the baseband processing takes place partially at local base stations and the remaining processes are executed at the central cloud. On the other hand, we have seen a recent trend of powering base stations with ambient energy sources to achieve both environmental sustainability and profit advantages. As the base stations become smaller and deployed in densified manner, it is evident that baseband processing power consumption has a huge share in the total base station power consumption breakdown. Given that such base stations are powered by energy harvesting sources, energy availability conditions the decision on where to place each baseband function in the system. This work focuses on applying reinforcement learning techniques, in particular Q-learning and SARSA, for optimal placement of baseband functional split options in virtualized small cells that are solely powered by energy harvesting sources. In addition, a comparison of such online optimization solution with respect to offline performance bounds is provided.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)</subfield>
    <subfield code="a">Miozzo, Marco</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)</subfield>
    <subfield code="a">Dini, Paolo</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">224251</subfield>
    <subfield code="z">md5:8e3d0e4c033fa2124bebfdef668a1638</subfield>
    <subfield code="u">https://zenodo.org/record/2525718/files/Dynamic Functional Split Selection in Energy Harvesting.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)</subfield>
    <subfield code="a">Temesgene, Dagnachew, A.</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">energy harvesting</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">virtual small cells</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">functional split</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">CRAN</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Reinforcement learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">SARSA</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Q-learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">temporal difference</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/PIMRC.2018.8580970</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Dynamic Functional Split Selection in Energy Harvesting Virtual Small Cells Using Temporal Difference Learning</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">675891</subfield>
    <subfield code="a">Sustainable CellulAr networks harVEstiNG ambient Energy</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
</record>
52
57
views
downloads
Views 52
Downloads 57
Data volume 12.8 MB
Unique views 51
Unique downloads 53

Share

Cite as