Conference paper Open Access

Dynamic Functional Split Selection in Energy Harvesting Virtual Small Cells Using Temporal Difference Learning

Temesgene, Dagnachew, A.; Miozzo, Marco; Dini, Paolo


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/2525718</identifier>
  <creators>
    <creator>
      <creatorName>Temesgene, Dagnachew, A.</creatorName>
      <affiliation>Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)</affiliation>
    </creator>
    <creator>
      <creatorName>Miozzo, Marco</creatorName>
      <givenName>Marco</givenName>
      <familyName>Miozzo</familyName>
      <affiliation>Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)</affiliation>
    </creator>
    <creator>
      <creatorName>Dini, Paolo</creatorName>
      <givenName>Paolo</givenName>
      <familyName>Dini</familyName>
      <affiliation>Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Dynamic Functional Split Selection in Energy Harvesting Virtual Small Cells Using Temporal Difference Learning</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>energy harvesting</subject>
    <subject>virtual small cells</subject>
    <subject>functional split</subject>
    <subject>CRAN</subject>
    <subject>Reinforcement learning</subject>
    <subject>SARSA</subject>
    <subject>Q-learning</subject>
    <subject>temporal difference</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-09-09</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/2525718</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/PIMRC.2018.8580970</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Flexible functional split in Cloud Radio Access Network (CRAN) is a promising approach to overcome the capacity and latency challenges in the fronthaul. In such architecture, the baseband processing takes place partially at local base stations and the remaining processes are executed at the central cloud. On the other hand, we have seen a recent trend of powering base stations with ambient energy sources to achieve both environmental sustainability and profit advantages. As the base stations become smaller and deployed in densified manner, it is evident that baseband processing power consumption has a huge share in the total base station power consumption breakdown. Given that such base stations are powered by energy harvesting sources, energy availability conditions the decision on where to place each baseband function in the system. This work focuses on applying reinforcement learning techniques, in particular Q-learning and SARSA, for optimal placement of baseband functional split options in virtualized small cells that are solely powered by energy harvesting sources. In addition, a comparison of such online optimization solution with respect to offline performance bounds is provided.&lt;/p&gt;</description>
    <description descriptionType="Other">grant TEC2017-88373-R (5G-REFINE). © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/675891/">675891</awardNumber>
      <awardTitle>Sustainable CellulAr networks harVEstiNG ambient Energy</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
52
55
views
downloads
Views 52
Downloads 55
Data volume 12.3 MB
Unique views 51
Unique downloads 51

Share

Cite as