Dataset Open Access

Dakar population estimates at 100x100m spatial resolution - grid layer - Dasymetric mapping

Grippa Taïs


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.2525672</identifier>
  <creators>
    <creator>
      <creatorName>Grippa Taïs</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-9837-1832</nameIdentifier>
      <affiliation>Université Libre de Bruxelles</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Dakar population estimates at 100x100m spatial resolution - grid  layer - Dasymetric mapping</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>Dakar</subject>
    <subject>Dasymetric mapping</subject>
    <subject>Population modeling</subject>
    <subject>Population estimates</subject>
    <subject>Grid</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-12-24</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/2525672</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.2525671</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This dataset contains the a raster layer with the population estimates obtained using a dasymetric mapping procedure (top-down approach). For a detailed description of the methodology, please refer to the following paper:&lt;/p&gt;

&lt;p&gt;Grippa, Ta&amp;iuml;s, Catherine Linard, Moritz Lennert, Stefanos Georganos, Nicholus Mboga, Sabine Vanhuysse, Assane Gadiaga, and El&amp;eacute;onore Wolff. 2019. &amp;ldquo;Improving Urban Population Distribution Models with Very-High Resolution Satellite Information.&amp;rdquo; &lt;em&gt;Data&lt;/em&gt; 4 (1): 13. &lt;a href="https://doi.org/10.3390/data4010013"&gt;https://doi.org/10.3390/data4010013&lt;/a&gt;.&lt;/p&gt;

&lt;p&gt;Funding and aknowledgement:&amp;nbsp;&lt;/p&gt;

&lt;p&gt;This dataset was&amp;nbsp;produced in the frame of two research project : MAUPP (&lt;a href="http://maupp.ulb.ac.be/"&gt;http://maupp.ulb.ac.be&lt;/a&gt;)&amp;nbsp;and REACT (&lt;a href="http://react.ulb.be/"&gt;http://react.ulb.be&lt;/a&gt;), funded by the&amp;nbsp;Belgian Federal Science Policy Office (&lt;a href="http://eo.belspo.be/About/Stereo3.aspx"&gt;BELSPO&lt;/a&gt;).&lt;/p&gt;

&lt;p&gt;The authors gratefully thanks the \href{http://assess-sn.org/}{ASSESS project}, funded by the \href{https://www.ares-ac.be}{ARES-CDD}, that provided the access to the census data.&lt;/p&gt;</description>
  </descriptions>
</resource>
105
23
views
downloads
All versions This version
Views 105105
Downloads 2323
Data volume 3.4 MB3.4 MB
Unique views 9797
Unique downloads 2121

Share

Cite as