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ON THE REPRESENTATION OF A FUNCTION BY SERIES OF
BESSEL’S FUNCTIONS

By E. W. Hossox.

[Received and Read December 10th, 1908.]

Tre method of investigation of the convergence of series which repre-
sent a function of a real variable in a given interval which I have
developed in my paper* ‘“On a General Convergence Theorem, and the
Theory of the Representation of a Function by Series of Normal Func-
tions,” is here applied to the case of series of Bessel’s functions. A
function f(2) defined for the interval (0, 1) may be represented in that

interval by a series El cadm (kn2), where mis a prescribed constant > 0,
n=

and the numbers %, are the positive roots of the equation
kJn(k)+HJ (k) = 0.

The real number H may have any assigned value including the value
zero, and we may regard the value H = o as applying to the case in
whick the equation is Jo.(k) =0

The coefficients ¢, are of known form.

It is here shewn that, if the function f(z) is such that 2*f(z) has a
Lebesgue integral in the interval (0, 1), the question whether the series
converges, or not, at any interior point of the interval, or also at the end-
point 1, depends only on the nature of the function f(2) in an arbitrarily
small neighbourhood of that point. It is moreover shewn that at such a
point the series converges to the value 3% {f(z+0)+f(2—0)}, if the
sufficient condition is satisfied, that a neighbourhood of the point z exists
in which the function is of limited total fluctuation (& variation bornée).
It is further shewn that, if f(2) be continuous in an interval (a, ) con-
tained in (0, 1), then the series converges uniformly in (@, b) to the value
f(2) in case (a, b) is contained in the interior of another interval (a', ')
in which the function is of limited total fluctuation ; the interval (a’, &)
may exceed (@, b) in length by an arbitrarily small amount.

* Proceedings, Ser. 2, Vol. 6, p. 349.
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The condition that 2z}f(z) should have a Lebesgue integral in the in-
terval (0, 1) is satisfied if f(2), whether it be limited or not, have a

Lebesgue integral in the interval, provided further that Y 2 (2) dz exists.
0

This last condition will be satisfied, in particular, if f(2) is infinite at
z =0, and of order less than 3, or, more generally, if any of the known
sufficient conditions for the convergence of such an integral are satisfied.

The case of the series of Bessel’s functions differs from that of the
geries of Sturm-Liouville functions considered in my former paper, on
account of the fact of the existence of the singularity at the point 2 =10
of the differential equation satisfied by the Bessel’s functions. It may be
remarked that the series of Bessel’s functions necessary for the represen- °
tation of a funection in an interval (@, b), where 0 < a < b, and in which
Bessel’s functions of both kinds occur, fall under the category of series of
Sturm-Liouville functions, since there is no singularity of the functions in
the interval (a, b). Such a mode of representation has accordingly been
fully considered in the former paper.

The particular case of the series considered in the present communica-
tion which arises when H = @, m = 0, has been treated* by Kneser for
the case of a function which is of limited total fluctuation in the whole
interval (0, 1), and is therefore a limited function. A study of Kneser’s
memoir has been of much assistance to me in the investigation which I
here present.

1. The differential equation
d (. d my
7 (1) + (=) v =0

is satisfied by the two Bessel’s functions of order m, and of argument Aiz.
If we make z? the independent variable in the equation, instead of z, and
then change 2z into z, we see that the differential equation

d d_y) _ml _
dz (4:1: dz ?y+)\y =0 W
is satisfied by the two Bessel's functions J,, (\z}), Y. (A z}).

We take as normal functions those solutions of this equation which
satisfy the conditions (1) that they are finite at the singular point z = 0,

* See his memoir, ‘ Die Theorie der Integralgleichungen und die Darstellung willkiirlicher
Funktionen in der mathematischen Physik,’ Math. Annalen, Vol. Lx11.
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and (2) that, at the point = = 1, the condition

4y =

e +4Hy =0

is satisfied ; the values of the parameter A being so determined that
such solutions exist. Assuming that m > 0, we see that only Bessel’s
functions of the first kind are admissible, and that the values of A are
determined by the equation

NI D+ HT (M) = 0, -

the normal functions being given by

1 !
(@) = Tn(Ahzh) {j {Tudah) e |,
0
where A, is the n-th of the roots of the equation (2) arranged in ascending
order of magnitude.

It can easily be shewn that

1 2 ™
j {Tm Aizh) |2 da =—>\—S a{In(a)}?da
0 0

1

=< TA—mB) JE A +AT2A\Y } 5

it then follows that ¢, (z) is given by

(({_m narzom !
(1 ) 2D+ T | ()

(@) = I (22
It has here been assumed that zero is not one of the characteristic values
of A. When A = 0, that solution of the differential equation (1) which is
finite at the point # = 0 is of the form Az*; and this can satisfy the
condition dy

for =1, only in case H+m =0. In this case the corresponding
normal function ¢, (z) is (m~+ 1)} z¥.

In order to investigate the validity of the representation of an
arbitrarily preseribed function by means of a series of the normal fune-
tions ¢.(2), in the interval (0, 1), it will be shewn that if F(z', x, n)
denote the expression

@z}t {$1(@) ¢1(") + Po (@) po(@)+ ...+ pa(@) pu ()},

then F(z', z, n) satisfies the conditions of the general coiwergence theorem
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given in my paper® “On a general Convergence Theorem, and on the
Representation of Functions by Series of Normal Functions.” The set of
points there denoted by G will in the present case consist of all the points
of an interval (£, 1), where ¢ is an arbitrarily small fixed positive number.

2. It is necessary for the purposes of the investigation here under-
taken to obtain some detailed properties of the Bessgel’s functions with
complex argument.

The two Bessel’s functions Jn(z), Yn(z), of order m, may be defined
for all real and complex values of z which do not lie on the negative part
of the real axis, by means of the formulse

»L’l { m2 m4 ]

In(2) = 2" TI(m) | _2.2m+2+2.4.2m+2.2m+"4_“‘ J !

! (I) — J-m(Z)_COS 7"/7er(1') .
" sin 2mm

where the expression z" is taken to denote »™ (cos m6+.sinmB); r de-
noting the modulus of x, and the argument 6 being restricted to values
between — and . It is understood that, when m is an integer, Y.(z)
is defined as the limit of the expression in the.second formula, as m
approaches such integral value. This definition of Y, (z) becomes
nugatory when m is half an odd integer. In this case we multiply both
sides of the equation by cosmw, and then write Y,.(z) for Y,(z)cosmm;
the new value of Y, (z) is then finite.

In the following investigations, the case in which m is half an odd
integer is included, if we remember that, throughout the work, the factor
cos mm is to be in that case throughout rejected.

It is known that, when m is real and > — %, and when the real part
of z is positive,

Ym(x)“f‘;”r Jm(x)
H(_*—'m’) elAmm+im+a)e ‘1._ J'w —t,,m—-} w w-d
TUO(—d T, (1+5) e
Yi@)—3oer " I ()
cOos mr
H(_%'—m) (}mrr—}ﬂ-:cﬁ 1 Yn -y m- — fi‘_ w-d ’
= Sr=n ¢ =D B e~ u (1 2:1:) du.

* Proceedings, Ser. 2, Vol. 6, p. 350.
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In order to estimate the value of the two integrals

L eyt (1 + :2u> " du,

let 1t be first assumed that m—$ > 0. Using Darboux’s form of Taylor’s
theorem for functions of complex numbers, we have

j:e SET du=r e 1Eem—p) S (1£499) " a,

0

where 0 < 6 <1, and X is such that its modulus does not exceed unity.

Since wh U

where 7 denotes the modulus of z, we see that the integral on the left-
hand side differs from II(m—3%) by an amount of which the modulus does
not exceed

1 —_ =g 3 mt

5 m 5)50«3 * (1+ ) du
_1__ —_ ” —u,,m+th 3%

or = (n g;)joe w1t m—p L+

+ (.m,—%)(m—g)'... (m—%—s) <2z_c’>° (1+ %) ,n_.,“-.\.-] I

s

where €’ is such that 0 < 0'
If now s be taken to be the mteger next greater than m—3, or equal

to m—3§, we see that
elu m—g—s
5 <

hence the modulus does not exceed a number of the form
3
2+ A+t

where ay, a,, ..., @, are positive numbers. It has therefore been shewn
that

j:e‘“ "‘&(1-{-2) du—H(m_%)ll_}_u(z))

where a(x) denotés a number of which the modulus is less than some
fixed positive number independent of z, for all values of z of which the
moduli exceed an arbitrarily chosen positive number.
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We now see that, if m—3 > 0, Jn(z), Yau(z) are given by

1
J‘m(_v) = im "6' (!’"""*‘i"-‘)Pm (x)_i_e-;(x}anvr*'h—x)l)m(_z) } ,

Y,,.(.l)) = lE (_é":_n)‘ ™ sec M { _eg(»}lmr-{-}fr—.v)Pm (:1:) +e—t(!’m"+*ﬂ'—z) P,,,(-—.z:) } ,

(4)
%x), and « (z) denotes
two different numbers such that | a(z)| is less than a fixed number inde-
pendent of z, provided r is not less than some arbitrarily chosen positive
number . This result can now be extended to the case in which
m—%>0.

where P, (x), Pn(—z) are both of the form 1+

Since Jul) = -@ Ins1(@) — T2 (@),

and Yol@) = 2—"”7—” Yone1 (2)— Yoms2(2),

we find that, assuming the above expressions to hold for m+1, m+2,
they hold also for m, where

Pul@) = @Pﬂmmﬂﬁmm,

Pu(—2) = — %;*ﬁpml(—z)wm(—z).

It is then clear that P,(z), P.(—z) are of the form 14 @, since
Ppi(2), Prya(x), Pny1(—2), Phnyo(—z) are of this form.

In an exactly similar manner it is shewn that the theorem holds if
m—+3 >0, and generally for all real values of m. It has been shewn
that the functions J,.(z), Y. (z) are expressed by the formule (4), where
| P.u(z) | is less than some fixed number independent of z, provided mod z
i8 not less than an arbitrarily fixed positive number 5. Moreover, P (x)

is of the form 1+a_:.z:_)
same condition. The theorem has been proved on the hypothesis that
has a real positive part; and from the fact that the funciions are con-
tinuous on the imaginary axis it follows that the theorem also holds for
values of z of which the real part is zero. By using the known ex-
pressions for Jn(—=z), Ym(—2) in terms of Jn(z), Yn(z), it is seen that

, where a(z) has a similar property, subject to the
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the result holds for the whole plane of z, a section along the negative
part of the real axis being excluded.

The differential coefficients of J,,(z), ¥n(z) may be expressed by means
of the formule

m(z) = Z:ZL m(x) m+l(z)

m,(x) - Y (SC) m+1(x)

It follows that, when the real part of = is positive or zero,

Ta(z) = =1 T {e@rmiir=a B (g)f e~ Gmm+i-ag, ()},

27z

3
™
Y‘m(z) — L2 (E) "™ gee M { — gt G+ —2) Rm(x)+e—c(§1n1r+ivr—:) S () : ,

where R,.(z) = —Zﬁ Py (z)— tPpy1(x),

Su(@) = % Pu(—2) 4 (Pry1 (@).

It is then seen that, if mod z > », | Bw(z) |, | Sm(x)| are both less than
some fixed positive number mdependent of .

Since
m+§ zz x‘ )
"”J"‘(‘”)‘zmn(n)l T3 om¥2  Gdomtlomyd )
we see that, when m > — 4,
|2@) | < gt 1 L e e |
v 2"‘[[(171,) 1.2.8.4 0"

From this, it follows that, provided m > — 4, for all values of z, such
that mod z, or 7, is less than an arbitrarily chosen number 5, |z47.(z)| is
less than some fixed positive number N, independent of z.

If z = s+t, where ¢ is positive or zero, and s is positive or zero, we
see from the formula (4), that

1
2m)t

ngm (.’l:) — {e‘ (énm+}w-s)et.Pm(z) +e—¢(§mrr+gw—a)e—tpm (_x) } .

Since | Pn(x) |, | Pn(—x)| are less than fixed positive numbers inde-
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pendent of z for all values of z, such that mod z > 5, we see that
|2 (@) | < Myet+Mye™t < (M4, ¢,

for mod z > n; where M,, M, are positive numbers independent of z.
It now follows that |z!J.(z)| < Né', for all values of z (=s+f) of
which the real part is positive or zero; the number N being the greater

of the two numbers N,, M,4 M, and being therefore independent of
z, s, and ¢.

3. The characteristic values of A are given as the roots of the equation
NI+ HI, (W) = 0,

which reduces to J,,(A\}) = 0, in the case H =0, and to J,.(\}) =0, in
the case H = ®. The value A =0 is admissible only in the case
H = —m, when the equation is equivalent to Jn+1(A) = 0. It is clear
that, if A? is a root of the equation, —A! is also a root ; and thus we need
attend only to the positive roots.

We may use for J,(AY), J,(\}), the expressions

2\t ( a(\))
(W) Lc08 (%mvr+ivr—>\°)+v’[ ,

aA) )

<—2)é [ sin Gmmtir—N+ 550 L

Al
where a () denotes in each case some number which is less in absolute
value than some fixed number independent of A, provided A exceeds some
fixed positive number as small as we please. The function a(A) does not
denote the same function in the two cases, and it will be used throughout
in this manner to denote a variety of functions which are all limited for
all sufficiently large values of the variable.

We can now write the characteristic equation in the form

sin @mm+ir—2A) = A ta (D),
except that in the case H = =, it takes the form
cos (3ma—+Lr—AH) = A~ta(N).

By considering large values of A, and then including all the values of

A in the same expression, we see that all the values A}, A3, ..., \}, ... of
A} are given by '
AP = k4nr+n~ta(n), where & = tmaw+im+-sm, (5)

and s denotes a fixed positive or negative integer. In the case H = »,
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the number « must be replaced by 3mw+g§r+swr. The number « is
independent of 7z, and a(n) is limited for all values of n.
Referring to the expression (3) for ¢.(z), we see that

(- ”i) T4 00 +T2 0

a(7\)l

. 2
18 of the form ! “l N

and therefore ¢,(z) is of the form

a(A))

(5 =) e {14552

On substitution of the value of J,(\!z}), we find for ¢.(z) the expression

z~%[cos {mm+ i —(k+nm) 2t} +-n"la(n, 2)], 6)

where a(n,z) is limited for all values of n, and for all values of z in an
interval (e, 1), where ¢ is & positive number. An expression for ¢,.(z) of
a more detailed character, which will be required later, is obtained from
the expression for J,(z) obtained in § 2; we find that

Pu(2) = — [114— aln, x)\\ cos {imr+im—(k+nw) 2t}

+ a(?;; ) sin {%m—,.-q—}ﬂr—(x-i-nw)x*}]. W)

4. If, in the differential equation

(e B+ -5y =0

we write A = u+ 3%, where 8 is any fixed number, the differential equation
becomes d

2
7 (12 )+ (=) vtm =0
in which we now regard u as the parameter. The characteristic values
of u wiil be the values of A—f3?% where A has the values determined by
the equation (2), as in § 8.
In order to determine the nucleus of the integral equation for which
the values of u are the characteristic values, we take

¢@) = CJu(B2zY, (@)= AJu(Bx)+BY. (B,

two independent solutions of the differential equation

£ (a8 +(5-)s =0,
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where the constants 4, B, C are so determined * that
4z {¢' (@) ¥ (@) — @) ' (1)} = 1,
and that V' @+3Hy () = 0,
when z = 1. The first of these equations is equivalent to
282 BC {J,,(Bz?) Y (Bzh)—J, (Bz}) YV, (Bt} = 1,

and this reduces, by using the known relation between the two Bessel's
functions and their derivatives, to 2BC = e ™" cosmw. The other
equation is

AT B+HI.(B} + B {BYn(®+HY.B)} =0,

and thus we may take

4 =BY.8)+HY.B), B=—{BJ.@B)+HI.@B)},

C = e~ ™" cog mw

T BIL.BFHT.G)
The value of the nucleus K(z, z'), for z < z' is ¢ (x) Y (z') or

—3e™™ cos mar

) "y’ — 4]
Bfm(ﬁ)+HJ1n(,8) I (B.’t ) [ﬁ {Jm(ﬂx ) Ym(ﬂ) Ym(Bx ) J:,;(,B)}
+H {Jm(ﬁx'&) Ym(ﬂ)_ Ym(ﬁxlb) Jm(ﬂ)}]- (8)

In case z' <, an interchange of z with z' must be made in the ex-
pression.

It will now be shewn that, for all values of = and z' in any interval
(¢, 1) which does not contain the point z = 0, the series

3 @ @) 5 ¢n(T) P (@)

n=1 M, n=1 Kn—ﬁﬂ
converges uniformly to the value K(z, z'). The number 8 is supposed
to have been so chosen that u, is, for every value of =, different from
zero. This result does not follow immediately from the fundamental
theorem of the theory of integral equations for the representation of
the nucleus, because, as is seen from the expression (8), K(z,z') is not
continuous for z' = 0. It has, however, been shewn by Kunesert that,
in order to establish it, we have only to verify (1) that the series

§ @ (Z) Palz’)

n=1 ,LL?'

and therefore we have

¢ See Kneser, Math. Annalen, Vol. Lx11., p. 483.
t Ibid., pp. 487-489.
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converges uniformly for all values of z and z' in the interval (0, 1), and
(2) that the series

3 $22) $ulx) 3 $u(@) $u(@)

n=1 'u,i ’ n=1 M
are both uniformly convergent for all values of z and z' in any interval
(¢, 1), where ¢ > 0.

To shew that the condition (1) is satisfied, we see from the expression

for ¢n(z), obtained in § 8, that the series is of the form

S3mad Jﬂ.(x%.vh'g;)(;\*x*) 4 +a(>«)J

Since J,(\izY), J,.(A\iz?) are limited functions for all real positive values
of A}, z, and z'; and, since X is of the form {x+nw+n~lam)}? or
n*r? {14n~'a(n)}, it is easily seen that the series converges uniformly
for all values of z and z' in the interval (0, 1), for any fixed value of 8
which does not coincide with a characteristice value of A%

To shew that the series X ”(xL n(@) is uniformly convergent for

= n

all values of z and z' in an interval (¢, 1), where ¢ > 0, we see from the
the expression (6), for ¢,(z), that the series takes the form

1 w0
i 2 7 {14 222 [cos {3+ dr— (bt} + 222

I:cosv{§1n7r+3;-,,-_(x+,t.,,.)$r.§ L4 a(ﬂ,;-'r’)].

On account of the factors iﬂ, is, —1;1—
n’ nt ow
general term of the series, it is clear that the series is uniformly con-
vergent.
To shew that the series 2 M is uniformly convergent for

n

, in the different parts of the

all values of z and z' in the interval (e, 1), we see that the series is of
the form

1 = 1 . y
s 2, s {1+ 2 [sin {3 —(enmat) 4+ 202 |

[cos {3mar 4 Lo —(+nm)z'| + a(‘lf;lx")] :

it is clear that this series is uniformly convergent on account of the

l“ ... in the different parts of the general term.

factors —1—3 )
n?’ n

SER. 2. VOL. 7. No. 1028, 2 B
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It has now been established that, for any fixed real value of 8, which
i not equal to one of the characteristic values of A}, the series

§ @0 () Pa(a’)
n=1 A,L—'Bg

converges to the value K(z, z') for all values of z and 2’ in the interval
(0, 1) except the value zero.

o !
5. From the fact that the series @l ?l(;—)_‘%g—) converges to the

value K (z, ') for any real value of 8 such that 8* is not equal to A, for
any value of n, we infer that, for complex values of B of which the real
part is positive, the series also converges to the value

—3e™™ cos mm

) ) — 13
+H {Tn (82" Yn(B)— Y (B2 Tu(B)}],

provided z < 2'.
For a value of 8 on the negative side of the imaginary axis, the series
converges to the same value as for the value —8. The series

. 1 1
£ w0 (it )

consequently represents the function —2B8K(z,z'), for 0 < z < 2’, and

for all values of B of which the real part is positive or zero. By the
r=n

theory of residues we see that 221 ¢ () ¢, (2') is equal to ﬁ times the

integral taken round a closed contour which includes in its interior the
2n points +A}, £}, ..., £} of the function F(B) which is represented
by —2BK (z, «') for values of B of which the real part is positive or zero,
and which is such that F(—B) = — F(B). Taking as the path of in-
tegration the rectangle of which the corners are the four points + o + 7,
and which encloses exactly 27 of the characteristic points +A?, and
making use of the fact that conjugate values of F(B) correspond to con-
jugate values of 3, and that F(—pB) =— F(B), we see that

Z (@) $ee)
is equal to the real part of

51— f Flo+d)di— - JvF(s+n-)ds.
™ Jo 2me Jo

Thence we see that :g ¢ (@) ¢r(z")
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. 1 1 (°
is less than o j; | F(o+1t)|dt+ o L | F(s+7)|ds,

where F(8) denotes the expression

—e™™ cos m

BT B ET.@ P02 [B{Jn(Ba™) Yo (B)— Yul(Be Tn(B)}
+H {Ju(Ba"®) Y (B)— Yo Bz Ju(B) ).

Let us now assume that o is chosen to be x«4nw-+3%w, 2 being
chosen so large that n»~!a(n) in the expression k+nw+n"ta() for A} is
numerically less than 37. The side of the rectangle thus avoids the
neighbourhood of the point A%.

We have now, for 8 = o+, where £>0,

(271‘6)&{],”(8)-'- % m(ﬁ)} == i ‘ei [Z’Bl Pm(ﬁ)'—le+l(B)]

F et [%b- Pm(“6)+le+1(:B)]
£ 16 Pa(B) 4 % Pu(—B)

=t e[ Pan@+ L Pug)]

+e! [P7n+1(ﬁ)+l E‘Bﬂ Pm(—le)]

It has been shewn, in § 2, that P,:(8) has the limit unity as | 3] is
indefinitely increased ; we thus see that, for a sufficiently large value of
B, the expression on the right-hand side has a real part of the form
Q40 e (14, where n and { are numerically less than an
arbitrarily chosen number as small as we please. It follows that

| @B {706+ % w8} |

exceeds e (14e2+n+{e~ ).

If, now, o exceed some fixed value, we shall have |n+{e~%| < } for
for all positive values of ¢; it then follows that

| @=8p {78+ & 1B} | > 1.
2 B2
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In the case H = =, we can shew in a similar manner that
|(27"ﬂ)a Jm(,B) l > %éy

for all positive values of ¢, provided o is sufficiently large.

When we take B = s+, where T is fixed, and s varies between 0 and
o, we have

(2rR) {J:,.(,B)-{- % m(,B)} = e‘“.m“*”—s) [Zg_ P, (:3)"'le+1(3)]

+e—f e-‘(}m""h_") [%@_ Pm(—lg) +le+l (B)]

+g7 g lhmmtir—s) P, (B)+¢ e itmrtin-ap (—B);
hence we find that

@nB? (Tn@+ T 1B = de'+Be,
where | 4|, |B| can be made as nearly equal to unity as we please by
taking a large enough value of . Also |B| is less than some fixed
positive number p, if | 3| exceeds a fixed value. We thus see that

| @8 {78+ 5 u0)

for all values of s, provided = is sufficiently large. If now T be further
increased, if necessary, so that pe=% < 1, we see that

> %e'r_pe-'r’

> 1o,

(ZWB)’l 'lJ:n (ﬁ‘) + % Jm (B)J[

provided = have a sufficiently large value; and this holds for all positive
values of s.

In the case H = o, we can prove in a similar manner that
I (277'[3)é Jm(:B) I > ie'r’

for all sufficiently large values of +, and for all positive values of s.
An inferior limit for the values of

| @ty {70+ 5 76} |

or in the case H = o, of |(27PB)?}J.(3)|, has now been found for its
values as they occur in the integrands of the two integrals

£ | F(o+2) | dt, ﬂ | F(s+ )| ds,
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provided the values of o and = are subject to the conditions indicated
above.

It has been shewn in § 2 that | Bzt J,.(BzY) | < Ne'*!, where 8 = s+,
and N is independent of B and of z, and 0 <z << 1. Let it now be
assumed that z'—z > &, where u is some fixed positive number; we
have then

gh—at > m > 3

We now see that, on substitution of the values of the functions given

in § 2,

{8 7, (Bx'Y) BAY, (B) — B4t Y (Bz') B4 7 (B)}

* zBI_ 1Bt I (Bz"%) B4Y 1 (8) — 842" Y (Bi'"t) B4 T (B) ;

takes the form

3ie™ sec mar [e#C =2 P.. (82"} S (B) — e~ #1-7H P, (—Bz") R.(8)]
+ % 3™ sec mw [P =P, (Bz") P,,(— B)—e= B0~ P,.(—BL™P,.(B)].

Since |Bz'*| is always greater than some fixed positive number, in
consequence of the fact that x'* > }u, and since |P,(+8z'%|, | R.(B)I,
| Sw(B)| are, as has been shewn in § 2, all less than fixed positive numbers
independent of 8 and z', we see that, for B8=s-+t, the modulus of the
expression is less than A4e(~*"'+4 Be=0-"" where 4 and B are positive
numbers independent of z' and B. It follows that the modulus of the
expression is less than Ke“"‘")‘, where K = A+ B. In the case H = »,
we can prove, in a similar manner, that

I ﬁiz,} Jm(,B.'E’a) 13! Ym(IB)—";Bba:’k Ym(ﬂz’ﬁ) ,Bb Jm(ﬁ) | < K'e(""'")‘,

where K' is a positive number, independent of =’ and .

We have now, by the use of the inequalities which have been
established,

@) 2 4o(e) o(a)

< L S' e—(af‘-z')tdt_i_]‘[a_e—(m'i_xl),.’
0

where L and M ave fixed positive numbers. This has been proved on the
assumption that n is greater than some fixed value n,, so that the values
of ¢ and T are sufficiently great for the validity of the inequalities
employed. If ¢ have a fixed value, we may choose a value of =, in-
dependent of £ and ., such that Mae=¢"'=™" is less than a tixed positive
number m, since x4 —ux? > u.
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—p—(@t=zh)
Also, since f e~@-Mt g — 1—e ™ < 2

0 L't —gd w’
we see that L j e~@-M gy < %
0 1
It follows that, if n > n,,
(@z')t 521 (@) ¢r (@) | < m+ %

which is independent of z and z'. It has been assumed that z > 0,
2'—x > pn; but the inequality clearly holds also for « =0, z'—x > u,
since

(el 3 po(e) ()

vanishes when & = 0. As the number of values of the expression for
n < v, 18 finite, it follows that, for all values of n,

@) S $,(0) o)

is less than some fized posittve number, independent of = and z', for all
values of x and x' in the interval (0, 1) and such that z'—z > u.
Since x, ' may be interchanged, the last condition may be replaced
by |&'—z| > n.

6. In order to shew that the general convergence theorem already
referred to is applicable to the function

F' o,n) = (e’ % ¢ (2) ¢e(2),
it is necessary to shew that, if & be now confined to an interval (¢, 1),
8
where 0 < £ <1, and if a, B are in the interval (0, 1), 5 F&', x, n)ds'

is numerically less than a tixed positive number 4,, independent of a, 3,
and z, provided z is not interior to the interval (a—u, B8+u), and is in
the interval (£, 1), all the points of which then constitute the set G of
the general convergence theorem. This is equivalent to shewing that,
if ¢ be a fixed positive number, arbitrarily small, a value n, of n can be
determined such that

j F(z's z, 'n)d:z:’ < €,

for every value of n > n,, for all values of a, 8 in (0, 1), and for all values
of z in (£, 1) and not interior to the interval (a—u, B+wu).
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Since < F,

(e rg (@) ¢r(z")

if |[z—2z'|> u, we see that, if <—€-:,
I | > u 1<,%

then

f F@', z,n)dx’ \ < %e,
0

for all values of n, and for all values of 2 > n+u. It is clear that » can
be so chosen as to be less than u. In case 0 < a <7 < B, we have

< 3e+

8
S F(z', z, n)dz'

]

S F(' z, n)dx' |;
n

and, if 0 < a < B <1, we have

[:]
‘ s F', z,n)dz' | < 3,

for all values of #n. It will therefore be sufficient to prove that

< %Gs

r F(', z,n)dz'

for n > n,;, where a is now restricted to be > ».
Using Bonnet's form of the second mean value theorem, we see that

r=n

B r=n
[[@'s s@orae = et | Z o0 a1,

where y is some number such that « <y <B. Since @B} < 1, it will
be sufficient for our purpose if we prove that

I
for n>n, o> |lz—z'|>u, f<$<1-
By using the differential equation satisfied by the funciions ¢,(z), we have

i%: ¢,-($) ¢,(z’)dz' l < e,
=

B r=n

|02 #ute) gulanaa

‘ ﬁ, iy r 3 ’ d { [ ne ’
=S s ?;(:”—) (Z—l,—ﬁ?) Pr(d)— 55 14 q»(z);]dx

o =1 dw'

z' My

— Sﬁl (’”_Lz _‘Bﬂ) :g: ¢r(£) fr(z’) dz'

I SRCTI R PACTYE
r My r=1 me )’

=1

wher e 8 danotes a fixed number, as in § 4, and u, = A, — B2
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It has already been shewn that, if z' is in the interval (3, 1), and
£ in the interval (¢, 1), é} _,(z)“ (@) converges uniformly, as n is
indefinitely increased, to the value K(z,z'). It will here be shewn that,
for all such values of z and z', which also satisfy the condition
|z—2'| > u, the series é‘,l '(z)M (@) converges, as 7 is indefinitely
dK (z, z")

dz' -

! !
The series '_2_‘.1 ’(z)# »(z') is of the form

increased, uniformly to the value

o 5 1+ %)
r r

(czht Qwz'd =1

[cos (Gmw+4m) cos (k+7m) 28 +sin Fmr +3w) sin (c+rm)zd+ E'(r'—)]

[sin @mr 1) co8 (c-+rm) 2 —cos Gmar+ L) sin (c+rm)z'+ 9‘(r—’):|
Of the different portions into which this series may be split up, the series
b % cos (rr+«) (2} £ z'), b % sin (rr=+«) (d +2')

are uniformly convergent, since 0 < 3u < |si+uc®| < 2—3u. The re-
maining series formed by multiplying out the above product are uniformly
convergent in the whole interval (0, 1). It follows that El $r(@) prie)

oy
is uniformly convergent for all values of &' in the interval (4, 1), and of

z in (£, 1), such that |z—2') > u. Hence, by a well known theorem, the

sertes converges for all such values of z and z' to the value %, Kz, z".

Since Z $: (@) $ () converges uniformly in the interval (3, 1) of 2’
My :
to the value K(z, z'), a value ny of # can be so chosen that

[ ) soae— [ () § 280 ] <

r \ D 2' r

for # > n,, and for all values of o', B’ in the interval (y, 1).
Also, a value 73 of % can be so chosen that
| 4’ 'i" ¢r(z) $r(B) 4o 'i" ¢r(z) Pr(a’)
r=1 My r=1 My

4 Zdﬁ" K, B)+4d = K(z,d)| < te
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for all values of o, B' in the interval (s, 1), and for all values of = belong-
ing to the interval (£, 1), and not interior to the interval (a'—u, 8'+w),
provided 7 > ng.

If, now, n; denote the greater of the two integers ng, 7, we see that

j ) é-‘l ¢+ (2) . () B2’

differs from r (%2 —-,6”) K (z,z)dz'—48 2%, K(z, B')+4a'% K(z, a)

by less than je, if n>n,;
The last expression is equal to

5 1 K(.c )} de/— 4B'EE;K(L,B)+4a"i—Cfl1 K, d)

or to zero, since K(z, ) satisfies the differential equation

LB (-2)i=o

It has thus been shewn that

g’ r=n
[ 3 s@e@ar

for n > n,, and for all values of a, B8 in the interval (4, 1), where z is
in the interval (¢, 1) and is not interior to the interval (a'—u, 8'+wu).
Therefore

(:] r=n !
S @z} T ¢r(@) pr(@) dz'| <e
for all values of a and B in the interval (0, 1), where = is in (£, 1) and
not interior to the interval (a—u, B+u), provided » > n,. Since =, is

8
dependent only on ¢, the theorem relating to the values of j F(z,z,n)dx

has been completely established, for the case in which the interval (0, 1)
is the interval of definition of an arbitrary function, and in which the set
G consists of all the points of the interval (£, 1), where £ is an arbitrarily
fixed positive number.

It follows, in virtue of the general convergence theorem, that, if x(@
is any function which has a Lebesgue integral in the interval (0, 1), then

Su- x (&) (£L) rg ¢+ () P (L) de
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converges, as n s wndefinitely increased, uniformly to zero, for all values
of £ (> u) belonging to an interval (£, 1), where £ > 0. Also

1 r=mn
[[ x@) et 3 g guarae
T+p r=
converges, as n s indefinitely increased, uniformly to zero, for all values
of x in the interval (£, 1) and not exceeding 1—pu.

Thes result holds whatever positive values may be assigned to the
numbers u, £.

7. The theorem just established shews that the question of the con-
vergence, as 7 is indefinitely increased, of the integral

1 r=n
L X@) @z T ¢ (@) ¢r(z)do’

for any particular value of z in an interval (£, 1), can be answered by
examining the nature of the function x(z) in an arbitrarily small neigh-
bourhood (z—gu, £+u) of the point z concerned ; the function x(z) being
outside that neighbourhood only restricted by the condition that it shall
have a Lebesgue integral in the whole interval (0, 1).

Now let x¥ Xx(z) = ®(z), and let us consider the integral

J: ¢ () ’g ¢, (x) po(x) d2,

where ®(r) is a function such that z-*®(z) has a Lebesgue integral in the
interval (0, 1).
The theorem established in § 6 shews that

[ 2@ E pwseras, |

L+

@) 5 $,(0) pole)d

converge uniformly to zero, as » is indefinitely increased, for all values
of z in the interval (§, 1); where also z > u in the first integral, and
z < 1—u in the second integral.

It will now be shewn that the conditions stated in §§ 4, 5 (pp. 360-862,
loc. cit.) of my paper on the general convergence theorem are satisfied by
the function

r=n

F@',z,n) = Z ¢r() Pe(@).
It will first be shewn that

“tp r=n < r=n
s 2 ¢.(2) po(2)de, S Z ) ¢.(x')d7'.
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where « has a fixed value, converge uniformly to fixed values independent
of z for all values of z in an interval interior to the interval (£, 1).
We have, as in § 6 above,

e ren e 2 r_n
["Sowswe =" (5-) T e0ed,
—4(@z+p :g‘ () “r(ziﬂ) +4z 'g' Qr(z‘)‘@'-(:v) )

As before, the first term on the right-hand side converges uniformly to
the value d

4’ ag K(z, B")— 4a e K(x, a),
where o =c+f = J:-hu.
The series :g ¢ (@) Q:(:c+ M)

converges uniformly to the value diB' K(x, '), where 8 = z+u. There

remains for consideration the series

'E"’ ¢ () ¢r(x) )
r=1 Moy
This consists of a part
(—1)™ 'E" cos 2 (k+rm)zh
d7r r=1 r

’

which converges uniformly in an interval of z interior to (£, 1), and of
other parts which converge uniformly for all. values of z in (£, 1). It

follows that 2 —2——-&— converges uniformly to the value 3 dKéZ’ 2).

Hence 2R ren
j 'S .0 pla) da’

£

converges uniformly to the value

dK@, o) _ d :
1 (3 BeD 4 g, a)},

where o' = z+40. It will be shewn that this last expression is equal
to 4. For d
o K(z, z) = ¢' (@) ¥ @)+ ¢(x) ' (),

with the notation of § 4; also

|7 K “’)L,zm = ¢p@) ' @);



880 Dx. E. W. Hosson [Dec. 10,

and thus
dK (z, d N ’ ,
4z I:‘} —-tg x) —{ZI_’ K(zx, a') Eﬁa'=:+o:| = 2z {q) @) Y (@)— p () ' (z) )

and the expression on the right-hand side is, in accordance with § 4,
equal to 3.
It has now been shewn that, for a fixed value of u,

+i r=n

Z $r(2) pr(z")dz’

converges to the value %, uniformly for all values of z in an interval
interior to the interval (£, 1).
It may, in a precisely similar manner, be shewn that

[ = ¢to) prda

converges uniformly to 3 in a similar interval ; « being so chosen that
z—u i8 > 0 in the interval of uniform convergence.
At the point z = 1, we have to consider the limit of

1 =R
L- 2 ¢r(@) pr(a")da'.

r=n

The series 2 Qﬂ:;¢,(1) is equivalent to —3H E —ML, except in

the cases H = ©, H = 0, when the series vanishes. We have then
1 r=n
lim j S ¢(D) go(e')da’
n=o Jy_, 1=
a , _ _ d ,
4[d_ﬁ' K, B)]Bﬂ sa-w [ L Kq, Q)Ll_“

4 F BB oy F S0 E0=

r=1 My

= 4/ (1) ¢'()+2HK(1, 1)
= 4{y Q) ¢'D)—9pD) ' (1)}
=1.

'This result holds also in the case H = 0. In the case H = o, it does
not hold, but ¢,(1) is then zero, for all values of r, and the series of
normal functions then converges to the value zero.
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8. Lastly, it will be shewn that the integrals j“ Fx 4+t z, n)dt are,

) My
for a sufficiently small fixed value of u, both numerically less than fixed

positive numbers, for all values of u, such that 0 < u, <, and for all
values of z in an interval (£, 1—£"); where F(z', z, n) denotes the sum

T 3@ prla).

The number x can be so chosen that & > u, & > u.

In order to estimate the value of the integral j“ F(x+t¢, z,n)dt, we

"y
employ the expression (7) of §8, for ¢.(z+¢), and we can consider

geparately the various terms of this expression. We have

W1 = (g ‘|
L mf% cos {—21 + j} — (c4rw) @+ [ ¢ @)dt

= (u+a)t j T 3 08 { 2T+ T — (cbrm@t ot o at

r=u

_(,u+z)i2 2sm1% _;l (K+,.,,)(w+t)ﬂ] ¢,(a:)

K+’I’7l’ rw 1

Since

we see, on substitution of ¢, (z) as given by the form (7) of § 8, that this
part of the sum consists partly of uniformly convergent series of which
the 7-th term contains the factor 1/7%, and partly of terms involving series
such as

3 Ssin {274 T (ebrm)etug | cos {57+ T —(ctrmat]

with a similar expression with x instead of u,.
This series is the sum of the two series

' o sin {mrt-dr— (et rm{@Hugi+at]), @

r=n 1 .

2 — gy sin {(etrm [@+ug =i} ®
It is known that the series TZn cos:w-:r’ :g Eﬁ:ﬁ'ﬂ are uniformly con-

vergent if % is confined to an interval (3, 2—7#'), where » and »' are positive
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numbers. Since (z+uy)3+2? is between 2£% and (1—£+ (1 —£"4 ),
this condition is satisfied for the two series into which the first of the
above series may be split up.

Again, it can be shewn* that the expression él sin(ptnw

is

T
numerically less than a fixed positive number, independent of = and w,
if » is in an interval (0, 2r—»"). Since (z+uy)*—z* is in the interval
(0, w), it follows that the expression (B8) is less than a fixed positive
number.

We have next to consider that portion of j“ Fx+1t, z, n) dt which is
(5%

* To prove this, we see that, instead of the expression

"z" gin (p+r) LS

rul r
R ran oy
we may consider 3 sin p( 2::) u
rel

since the difference of these expressions is a series which converges uniformly.

If sn (%) denotes s Si_ni%".’_')_’_",
r=1
we have dsa(u) _ sin{p+n+3)u—sin(p+3) “,
u 2sinfu |
and therefore s, (u) = J' ﬂ(?_‘“’:_i‘i)_u dum J" sin (p+3)u g,
0 sin 32 ¢ sin %u

= ((enlpenrd)u gy ['IRELEY gy o 1, - L)
. ” . w " 0

)
_ j‘”’"i “ginu du J‘fﬂ*l)" 51nudu+1"(u) -1, (),

0
- —2sin {u
h I (w) = u
where ' (1) I;sxn(p+n+§)u Susiniu

On integration by parts, we have

I (u)= _Uu—2sinju cos(p+n+j)u +J‘“cos(p+n+§)u 4 sin® fu— ufcosﬁud
2usm5u p+n+i o DP+n+i 4u?sin® Lu

If u be confined to the interval (0, b), where b < 2=, the two expressions

u—3sindu 4sih®iu—ulocosiu
Qusin ju ’ 4u¥sin’ ju

are limited, and therefore I, (u) <«

prn+d’

where 4 is a fixed number, Also F §h:—“ du is well known to be limited for all positive values
o U
of A. Hence the result has been established.
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of the forms

j“ 1 ’E’L [a(r, x, t) cos (mm
w @40 =1 r snl 2

and which is equivalent, on using the mean-value theorem, to

+ = -(x+77r)(w+t)*; ¢,(z)] at,

a(r, z, t) cos (mm

(ot Lg(z+t)*721[ i L T T krmEt s ¢~,-(x)]dt.

This expression may be integrated by parts, and we have then an ex-
pression containing » (k4rw) in the denominator of the general term.
Remembering that a (r, z, t) and its differential coefficient are both limited
for all values of 7, and for all the values of z and ¢ concerned, we see that
this part of the integral satisfies the required condition.

("
The case of s F(x—t, z, n) dv may be treated in a precisely similar
manner. e

It can also be shewn that, except in the case H = =, for the point

x =1, the condition is satisfied, that Y F(1—t, 1, n)dt is numerically
“
less than a fixed positive number, for all values of u, such that

o< m<m
In this case the portion of the expression corresponding to (a) and (8) is

r=n

5 L {’”—2” + -’;'4— — (et rm) (L —pp) } cos { ’%’ + —’;4'- — (k477 } .

r=1 2r
Except when H = o, we have

mm

_—--|- +87r,

therefore this expression ma.y be written

r=a

=z 2— sin { (k477 [1— (1 —p)?]},

and this is numerically less than a fixed positive number, independent of
r and u, for all values of u; << u, as has been shewn above.

When H = o, we have
—mr 8=
5 + ) + s,

and the series takes the form

r=n

; 3 cos {(etrm) [1—(1—wm)*]},



384 Dk. E. W. Hosson [Dec. 10,

which is divergent when w, =0, and therefore the expression is not
limited.

The remaining part of r F(1—t, 1, n)dt may, as before, be shewn to

1%
be numerically less than fixed positive numbers.

9. It is now convenient to replace z and z' by z* and 2'* respectively.
The variables 2, 2’ will be taken to be positive, and they are in the interval
0, 1).

If | z—2'| J

)

vV Vv

we have | z—2'| > u.

It follows, from the result obtained in § 5, that

r=n

(zz 2 Sbr 3) ¢r(zm)‘

is less, for all values of n, than a fixed positive number N, for all values
of z and 2’ in the interval (0, 1) which are such that | z—2'| > ut.
From another result in § 6, it follows that

< Je,

5 (22")? g ¢ (2% pr (') 2'd2’

for all values of a, B in the interval (0, 1), and for a,ll values of 7z in an
interval (£, 1), and not interior to the interval (a—ub, B+wud); for n >n,,
where 7, depends only on u, €, and £'.

We have now, by employing the second mean-value theorem,

r=n

Sﬁ (z2")} :g ¢ (2D ¢, (2" d2' =—‘]; 5 (zz')* 2 ¢, (&%) pr(2") 2 d2',

where a < 8’ < B. The expression on the right-hand side is numerically
less than e/2q, if the conditions stated above are satisfied. We have now

I

if z is not in the interval (5 —u}, n+u?). Let » be now arbitrarily
chosen ; then, if 7 < a, we have

r=n

(22 3 ¢r(2)pe(c™) | dz' < N,

8 r,‘_;T=n 2 12 ' €
@S o pear| <,
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and, if a < 5, we have

jﬂ @2 i e | < £ 4N,

for n >n,. Now, let ¢ be an arbitrarily small fixed number; we may
then choose  to be 3N~'¢’.  We may then choose 7, so great that e is
equal to 3N~'¢’?; it then follows that

r (22" g}ﬂ ¢: (&) P (2D d2'

is numerically less than the arbitrarily chosen positive number €', pro-
vided #> n,, for all values of « and B in (0, 1), if z is in the interval
(€, 1), and not interior to (a—u?, B-Fu?.

If, now, we let F'(2', 2, n) denote the expression

@) S 9ol o),

we see that the conditions of the general convergence theorem are satisfied,
the set G to which 2 is confined consisting of all the points of the interval
(¢, 1). The number & is arbitrarily small.

It follows that, for all values of z in this interval (£, 1),

f_" XE NS @) (™) de’

0
r

t -
and j (@22 S ¢, ¢ d2,
ot pd r-1

converge uniformly to zero, where x(z) denotes any function which has a
Liebesgue integral in the interval (0, 1).
Now, let x(2) = 2} (2) ; it then follows that the convergence of

1 r=un
PO 2 12 2!

J’nf(d ) = ¢r (&%) (/)r(‘- ) 2
depends only on that of

T ren .

j f@) Z (&) $r(a"%) 7 A2

and of the similar integral with the limits z, z—u’, the rest of the integral
converging uniformly to zero, as » is indefinitely increased, for all values

of z in the interval (£, 1).
SER. 2. voL. 7. No. 1029. 2¢
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It has been shewn, in § 8, that

Z4p r=n
L Z, 9@ pr(e?) 2 de,

F g e(2") Pr(2)2'de',
-

Z—

converge each to the value %, uniformly for all values of z in the interval

€, 1.

It has also been shewn that
1 r=n

j 2 ¢.(1) p(a) 2" d2
1-p' r=1

converges to the value 4, as » is indefinitely increased.
It has further been shewn that the integrals

[ Z s 1o g6t 0a,

are, for a sufficiently small fixed value of u, both numerically less than
fixed positive numbers, for all values of u; such that 0 < #; < g, and for
all values of 2z in an interval (£;, 1—§)).

It has also been shewn that, except when K = o,

j” :E; ¢r 1 (1—8} () (1—0) @8,
1
is numerically less than a fixed positive number, for all values of u, such
that 0 < 1y < .

It follows, from the results established in §§ 4, 5 of my earlier paper,
that ren
Ff (@) 2, ¢n(d) ¢, (") 2" '

(1]

converges to the value 1 fe+0)+f(z—0)},

for any interior point z of the interval (0, 1), which is such that a neigh-
bourhood of z exists in which f(2) has limited total fluctuation.

It also follows that the convergence to the value 3f(2) is uniform in
any interval (@, b) in which f(2) is continuous, and which is interior to
another interval in which f(2) is of limited total fluctuation.

Also, at the point 2 = 1, the integral converges to the value %f(1—0)
in case the point has a neighbourhood (1—#, 1) in which the function is
of limited total fluctuation. The only exception to this is in the case
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K = o, in which the integral vanishes for z = 1. Remembering that
I (kv 2)
f_; ’
{r [ { Jm(er) }2 2z dZ:I :
0

(2D =

where A} is here denoted by %,, we have now established the following
result.

Let f(2) be any function defined for the interval (0, 1), and let it be
such that, whether it be limited or mot, in the interval, 2f(z) has a
Lebesgue tntegral in the interval (0, 1). Let ky, ky, ..., kn, ... denote the
posttive roots of the equation

kJw(k)+HJw (k) = 0,

where m has any real value > 0, and H is a constant which may have
the value zero, in which case the equation s

In) =0;
or H may have the value infinity, in which case the equation s

Jn(A) = 0.

» 1
The series El C’,Jm(krz)s f&) In(k,2') 2’ d2’,
r= . 0

1 -1
wn which C, denotes U { T kr2) 22 dz’:] ,
0

converges to the value § {f(z+0)+f(z—0)} at any point z tn the interior
of the interval (0, 1) which is such that a neighbourhood of z exists wn
which the function f(2) ts of limited total fluctuation (a variation bornée).

Moreover, in any interval (a, b) in which f(2) is continuous, and whach
18 contained in the interior of another interval wn which the function is of
limited total fluctuation, the convergence of the series to the value f(2)
s uniform.

Ezcept tn the case H = o, the series converges at the point z = 1 to
the value f(1—0), in case a netghbourhood (1—e, 1) of that point exists in
which the function is of limited total fluctuation. In the case H = o,
the series converges to the value zero at the point z = 1.

At the point z = 0, the series converges to zero, except in the case
m = 0. In this case m = 0, the convergence at the point z = 0 has not

been investigated.
2¢ 2
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The value k, = 0 occurs among the values of k. only in the case
H = —m, when the values of k. are the positive roots of the equation

Jm+l (k) = 0

In this case the first term of the series is

1
2(m—+1) z"’j [ 2™+dz.
0

The value of the constant C, s (T k‘%—zoﬁ‘i] T except when
Y 2
H = o, in which case C = T T
- When H= —m, C, = —2——7
N m(kr)"

It may be remarked that, in the special case in which m =}, H = o,

!
70 = (2)'tine
™ F4

Hl

the series becomes the Fourier’s sine-series after multiplication by 2}, and
replacing 2¥/(2) by f(2).



