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ON THE REPRESENTATION OF A FUNCTION BY SERIES OF
BESSEL'S FUNCTIONS

By E. W. HOBSON.

[Received and Read December 10th, 1908.]

THE method of investigation of the convergence of series which repre-
sent a function of a real variable in a given interval which I have
developed in my paper* " On a General Convergence Theorem, and the
Theory of the Representation of a Function by Series of Normal Func-
tions," is here applied to the case of series of Bessel's functions. A
function f(z) defined for the interval (0, 1) may be represented in that

GO

interval by a series 2 cnJm(knz), where in is a prescribed constaut ^ 0,
71 = 1

and the numbers kn are the positive roots of the equation

JcJ'm(k)+HJm(k) = 0.

The real number H may have any assigned value including the value
zero, and we may regard the value H = oo as applying to the case in
which the equation is T th\ — n

The coefficients cn are of known form.
It is here shewn that, if the function f(z) is such that z*f(z) has a

Lebesgue integral in the interval (0, 1), the question whether the series
converges, or not, at any interior point of the interval, or also at the end-
point 1, depends only on the nature of the function f(z) in an arbitrarily
small neighbourhood of that point. It is moreover shewn that at such a
point the series converges to the value £ |/0*+0) +f(z—Q) \, if the
sufficient condition is satisfied, that a neighbourhood of the. point z exists
in which the function is of limited total fluctuation (a variation bornee).
It is further shewn that, if f{z) be continuous in an interval (a, b) con-
tained in (0, 1), then the series converges uniformly in (a, b) to the value
f{z) in case (a, b) is contained in the interior of another interval (a', b')
in which the function is of limited total fluctuation; the interval (a', b')
may exceed (a, b) in length by an arbitrarily small amount.

* Proceedings, Set. 2, Vol. 6, p. 349.
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The condition that z*f{z) should have a Lebesgue integral in the in-
terval (0, 1) is satisfied if f(z), whether it be limited or not, have a

Lebesgue integral in the interval, provided further that I z*f(z) dz exists.
Jo

This last condition will be satisfied, in particular, if f(z) is infinite at
z = 0, and of order less than §, or, more generally, if any of the known
sufficient conditions for the convergence of such an integral are satisfied.

The case of the series of Bessel's functions differs from that of the
series of Sturm-Liouville functions considered in my former paper, on
account of the fact of the existence of the singularity at the point z = 0
of the differential equation satisfied by the Bessel's functions. It may be
remarked that the series of Bessel's functions necessary for the represen-
tation of a function in an interval (a, b), where 0 < a < b, and in which
Bes8er8 functions of both kinds occur, fall under the category of series of
Sturm-Liouville functions, since there is no singularity of the functions in
the interval (a, b). Such a mode of representation has accordingly been
fully considered in the former paper.

The particular case of the series considered in the present communica-
tion which arises when H = ao , vi = 0, has been treated* by Kneser for
the case of a function which is of limited total fluctuation in the whole
interval (0, 1), and is therefore a limited function. A study of Kneser's
memoir has been of much assistance to me in the investigation which I
here present.

1. The differential equation

d

is satisfied by the two Bessel's functions of order m, and of argument \*x.
If we make xa the independent variable in the equation, instead of x, and
then change x2 into x, we see that the differential equation

ie satisfied by the two Bessel's functions /m(X*a;4), YmQ^x*).
We take as normal functions those solutions of this equation which

satisfy the conditions (1) that they are finite at the singular point x = 0,

* See his memoir, " DieTheorieder Integralgleichungen und die Darstellung willkiirlicher
Funktionen in der mathematischen Physik," Math. Annalen, Vol. LXIII.
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and (2) that, at the point x = 1, the condition

is satisfied ; the values of the parameter X being so determined that
such solutions exist. Assuming that ?;&^0, we see that only Bessel's
functions of the first kind are admissible, and that the values of X are
determined by the equation

X*) = 0 , i-2)

the normal functions being given by

m n [ ) 0
 m "• j

where X?l is the w-th of the roots of the equation (2) arranged in ascending
order of magnitude.

It can easily be shewn that

P {JM{\W)\*dx = A [\{JTm(a)lada
Jo A Jo

X | V

it then follows that <f>n{x) is given by

<f>n(x) = Jm (X*s4) | ( l - ^ ) Jl(X*) + Jl (X4) !• ". (3)

It has here been assumed that zero is not one of the characteristic values
of X. When X = 0, that solution of the differential equation (1) which is
finite at the point x = 0 is of the form Ax*n; and this can satisfy the
condition 7

for x = 1, only in case H-\-m = 0. In this case the corresponding
normal function <px{x) is {m+l)* x*"\

In order to investigate the validity of the representation of an
arbitrarily prescribed function by means of a series of the normal func-
tions <j>n(%), in the interval (0, 1), it will be shewn that if F(x', x, n)
denote the expression

(xx'fi \4^(x) ^(x'J + fcte) <p2(x') +... + <pn(x) <pn(x')\,

then F{x', x, n) satisfies the conditions of the general convergence theorem
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given in my paper* " On a general Convergence Theorem, and on the
Representation of Functions by Series of Normal Functions." The set of
points there denoted by G will in the present case consist of all the points
of an interval (f, 1), where £ is an arbitrarily small fixed positive number.

2. It is necessary for the purposes of the investigation here under-
taken to obtain some detailed properties of the Bessel's functions with
complex argument.

The two Bessel's functions Jm(x), Yn(x), of order m, may be defined
for all real and complex values of x which do not lie on the negative part
of the real axis, by means of the formulae

X'"1 I X2 Xi )
Jm{x) = 2wII(m) \ l2.2m+2 + 2

v t-\ — .Mm J-m(x)—cos m-w Jm(x).
•* M W — 7re : — ,

sin Imir
where the expression x"1 is taken to denote rm (cosm6-\-i sinm6); r de-
noting the modulus of x, and the argument 6 being restricted to values
between — -K and ir. It is understood that, when m is an integer, Ym(x)
is defined as the limit of the expression in the. second formula, as m
approaches such integral value. This definition of Ym(x) becomes
nugatory when m is half an odd integer. In this case we multiply both
sides of the equation by cosra7r, and then write Ym(x) for Ym(x) cos mir;
the new value of Ym(x) is then finite.

In the following investigations, the case in which m is half an odd
integer is included, if we remember that, throughout the work, the factor
cos TMT is to be in that case throughout rejected.

It is known that, when m is real and > — £, and when the real part
of x is positive,

— Jm(x)
C0SW7T

Yn (x) — h-rr Jm {x)
cos mir

(2*)* Jo

1 C

Proceedings, Ser. 2, Vol. 6, p. 350.



1908.] REPRESENTATION OF A FUNCTION BY SERIES OF BESSEL'S FUNCTIONS. 363

In order to estimate the value of the two integrals

let it be first assumed that vi—f ^ 0. Using Darboux's form of Taylor's
theorem for functions of complex numbers, we have

where 0 ^ 6 ^ 1, and A is such that its modulus does not exceed unity.
Since

where r denotes the modulus of x, we see that the integral on the left-
hand side differs from II (m—£) by an amount of which the modulus does
not exceed

1

or 1- {,n-D

s! \Tr
0'w\'"-'-n
"27i J ,

where 0' is such that 0 < 6' < 1.
If now s be taken to be the integer next greater than m—f, or equal

to m—#, we see that

hence the modulus does not exceed a number of the form

where a0, av ..., as are positive numbers. It has therefore been shewn
that

f00 _„ m_i / m\m~* ! a(x) i
J() \ ~~ Ix) ~ I /• ) '

where a(x) denotes a number of which the modulus is less than some
fixed positive number independent of x, for all values of x of which the
moduli exceed an arbitrarily chosen positive number.
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We now see that, if ra—§ > 0, Jm{x), Ym(x) are given by

Jm{x) = (dx? iei(i"Mr+Jir"s)p

Ym(x) = j ^ ) " e - 1 seem*- | -6*«"-+*-^P1ll(a!)+c-<*1-+*—>Pw(-x)(,

(4)

where Pm(j), Pm(—x) are both of the form l-\ ^ , and a(x) denotes

two different numbers such that | a (x) | is less than a fixed number inde-
pendent of x, provided r is not less than some arbitrarily chosen positive
number *j. This result can now be extended to the case in which
m—£>0.

Since Jm(x) = m + Jn+dx)—J
x

n+d)n+2(x),x

and Ym(x) =

we find that, assuming the above expressions to hold for m + 1 ,
they hold also for m, where

Pm(x) =

Pm(-x) = - 2{m+1)lPm+1(-x)+Pm+2(-x).

It is then clear that Pm(x), Pm(—x) are of the form 1 + ^ — , since

Pm+i(x), Pm+2{x), Pm+i(—x), Pm+2(—x) are of this form.
In an exactly similar manner it is shewn that the theorem holds if

w + £ ^ 0. and generally for all real values of m. It has been shewn
that the functions Jm(x), Ym(x) are expressed by the formulae (4), where
| Pin(x) | is less than some fixed number independent of x, provided mod x
is not less than an arbitrarily fixed positive number »/. Moreover, Pm(x)

is of the form l-\ , where a{x) has a similar property, subject to the

same condition. The theorem has been proved on the hypothesis that x
has a real positive part; and from the fact that the functions are con-
tinuous on the imaginary axis it follows that the theorem also holds for
values of x of which the real part is zero. By using the known ex-
pressions for Jm(—x), Ym(—x) in terms of Jm{x), Ym{x), it is seen that
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the result holds for the whole plane of x, a section along the negative
part of the real axis being excluded.

The differential coefficients of Jm(x), Ym(x) may be expressed by means
of the formulae

Jm(x) = —Jm(x) — Jm+l(x),
X

Ym(x) = ^Ym(x)-Ym+Ax).
X

It follows that, when the real part of x is positive or zero,

Ym(x) = -i- Q 0 * emn sec m-jr { -*<***

where Bm(x) = — Pm(x)—tPm+i(x),
x

Sm{x) = — PJL-x)+tPM(x).
X

It is then seen that, if mod x ^ rj, \ Bm(x) |, | Sm(x) \ are both less than
some fixed positive number independent of x.

Since

ri T (r\ _ X I - i X * '
Um{ )~QmU(m)\

we see that, when m ^ — £,

xiJvi{x) I < 2wri(m) 1 1 + O + 1 . 2 . 3 . 4 + " ' I '

From this, it follows that, provided m > — £, for all values of x, such
that mod x, or r, is less than an arbitrarily chosen number »/lf | x*Jm(x) \ is
less than some fixed positive number Nx independent of x.

If x = s+tt, where t is positive or zero, and s is positive or zero, we
see from the formula (4), that

(2TT)4 '

Since \Pm(x)\, \Pm(—x)\ are less than fixed positive numbers inde-
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pendent of x for all values of x, such that mod x > rj, we see that

I x*Jn(x) I < MXJ+M2e~t < (itfx+ilf2) e\

for mod x > r\; where Mv J\f2 are positive numbers independent of x.
It now follows that \xiJm(x)\ < Ne\ for all values of x (=s + d) of

which the real part is positive or zero; the number N being the greater
of the two numbers Nv Mx + M.2) and being therefore independent of
x, s, and t.

8. The characteristic values of X are given as the roots of the equation

X^M+ffJ.M = 0,

which reduces to J'm(\h) = 0, in the case H = 0, and to /m(X4) = 0, in
the case H = oo, The value X = 0 is admissible only in the case
H = —m, when the equation is equivalent to Jm+iCX*) = 0. It is clear
that, if X- is a root of the equation, — X* is also a root; and thus we need
attend only to the positive roots.

We may use for Jm{Xh), J"m(X4), the expressions

2

where a (X) denotes in each case some number which is less in absolute
value than some fixed number independent of X, provided X exceeds some
fixed positive number as small as we please. The function a (X) does not
denote the same function in the fewo cases, and it will be used throughout
in this manner to denote a variety of functions which are all limited for
all sufficiently large values of the variable.

We can now write the characteristic equation in the form

sin (£m-7r + JTT—X4) = X"4a(X),

except that in the case H = oo, it takes the form

COS (\7Mr-\-\Tr — X*) = X~*a(X).

By considering large values of X, and then including all the values of
X in the same expression, we see that all the values X}, X|, ..., Xj, ... of
X- are given by

A4 = K+ntr-\-n~la{n), where K = %mTr-{-^Tr-\-STr, (5)

and s denotes a fixed positive or negative integer. In the case if = oo,
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the number K must be replaced by £ra7r+fx-t-ST. The number K is
independent of n, and a(n) is limited for all values of n.

Referring to the expression (3) for <pn(x), we see that

. , , , , 2 ! , a ( \ ) |
is of the form —rj | 1 + ~TjT\>

and therefore (pn(x) is of the form

On substitution of the value of /m(X*a;4), we find for <pn(x) the expression

^ {\-K—(<c+?i7r)*i[ +n~1a(?&, a)], (6)

where a (?i, a;) is limited for all values of n, and for all values of x in an
interval (e, 1), where e is a positive number. An expression for 0»(x) of
a more detailed character, which will be required later, is obtained from
the expression for 'Jm(x) obtained in § 2 ; we find that

COS

+ «&2*l sin {%m,Tr+\Tc—(K+mc)x*\\ (7)

4. If, in the differential equation

dx

we write X = /x+)82, where /3 is any fixed number, the differential equation
becomes •

in which we now regard n as the parameter. The characteristic values
of ix will be the values of X—/3a, where X has the values determined by
the equation (2), as in § 3.

In order to determine the nucleus of the integral equation for which
the values of /x are the characteristic values, we take

fix) = 07,08**), yjrix) = AJm(J3x*)+BYm(/3x*),

two independent solutions of the differential equation
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where the constants A, B, C are so determined* that

and that \f,f (x) + %Hyf, (x) = 0,

when x= 1. The first of these equations is equivalent to

and this reduces, by using the known relation between the two Bessel's
functions and their derivatives, to 2BC = fi"wirtcosmx. The other
equation is

A \pj'm(P)+HJm(!3)\+B{l3rm(P)+HYm(8)\ = 0,

and thus we may take

A = /3rm(J3)+HYm(P), B=-

i ,, , , n he~min cos m-K
and therefore we have C = — t

The value of the nucleus K{x, x'), for x < x' is <f>{x)\jr{x') or

8a?'*) Fm(/3)- 7,08*'*) /„>(£) [ ]. (8)

In case se' ̂  ĉ, an interchange of x with x' must be made in the ex-
pression.

It will now be shewn that, for all values of x and x' in any interval
(e, 1) which does not contain the point x = 0, the series

n = l

converges uniformly to the value K(x, x'). The number /3 is supposed
to have been so chosen that ixn is, for every value of n, different from
zero. This result does not follow immediately from the fundamental
theorem of the theory of integral equations for the representation of
the nucleus, because, as is seen from the expression (8), K(re, x') is not
continuous for x' = 0. It has, however, been shewn by Knesert that,
in order to establish it, we have only to verify (1) that the series

Z <t>n(x) 0 n (g ' )
2

* See Kneser, Math. Annalen, Vol. LXIII., p. 483.
f Ibid., pp. 487-489.
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converges uniformly for all values of x and x' in the interval (0, 1), and
(2) that the series

are both uniformly convergent for all values of x and x' in any interval
(e, 1), where e > 0.

To shew that the condition (1) is satisfied, we see from the expression
for <f>n{x), obtained in § 8, that the series is of the form

yjL ^ Jw(X^)Jr
w(X^) L ,a (X))

1 X )(X—/5T 1 X )

Since J^XM), JTO(XVS) are limited functions for all real positive values
of X*, x, and x' ; and, since X is of the form \K-\-nir-\-n~xa{n)\2 or
w.V2|l+w~1a(w)[, it is easily seen that the series converges uniformly
for all values of x and x' in the interval (0, 1), for any fixed value of /3
which does not coincide with a characteristice value of X̂ .

To shew that the series 2 ' ^ — is uniformly convergent for

all values of x and x' in an interval (e, 1), where e > 0, we see from the
the expression (6), for <f>n(x), that the series takes the form

11 IT / 1 \ i) 1 a(n,x)1 v 1 (1 1 a(w)l f

[cos .

On account of the factors —?r, — ,̂ —r, in the different parts of the
w w tr

general term of the series, it is clear that the series is uniformly con-
vergent.

To shew that the series 2 rn^x'rn{<x> j s uniformly convergent for

all values of x and x' in the interval (e, 1), we see that the series is of
the form

it is clear that this series is uniformly convergent on account of the

factors -§•, —4, ... in the different parts of the general term.

SBR. 2. VOL. 7. NO. 1028. 2 B
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It has now been established that, for any fixed real value of /3, which
is not equal to one of the characteristic values of X*, the series

converges to the value K(x, x') for all values of x and x' in the interval
(0, 1) except the value zero.

5. From the fact that the series 2 rn rn}$ converges to the

value K(x, x') for any real value of /3 such that /32 is not equal to X,, for
any value of n, we infer that, for complex values of /3 of which the real
part is positive, the series also converges to the value

+H\Jn(j3x'i) Yn(P)-Ym(l
provided x < x'.

For a value of /3 on the negative side of the imaginary axis, the series
converges to the same value as for the value — /3. The series

consequently represents the function — Z/3K(x, x'), for 0 < x < x\ and
for all values of ft of which the real part is positive or zero. By the

theory of residues we see that 2 2 <f>r (x) <f>r {x') is equal to «— times the

integral taken round a closed contour which includes in its interior the
2?i points +X}, ±X*, ..., ±X* of the function F(fi) which is represented
by — 2(3K(x, x') for values of /3 of which the real part is positive or zero,
and which is such that F(—fi) = —F(fi). Taking as the path of in-
tegration the rectangle of which the corners are the four points ± <r ± IT,
and which encloses exactly 2?i of the characteristic points ±X4, and
making use of the fact that conjugate values of F(fi) correspond to con-
jugate values of /3, and that F{—fi) = — JP(/8), we see that

^ <f>r(x) (pr(x')

is equal to the real part of

Thence we see that
r= l

<pr(x) <pr(x')
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is less than -!- f \F(cr+it)\dt+^- I \F(s+tT)\ds,
Air Jo Air Jo

where F(/3) denotes the expression

+H {Jm<fix'h) Yn (ft - rw (j8x'») JM} ]•

Let us now assume that o- is chosen to be /c+?^7r-f-̂ 7r, n being
chosen so large that n~1a(n) in the expression K-\-nir-\-n~la(n) for A$ is
numerically less than %TT. The side of the rectangle thus avoids the
neighbourhood of the point A*.

We have now, for /3 = o-{-it, where t > 0,

J

It has been shewn, in § 2, that Pm+i(/3) has the limit unity as | /3 | is
indefinitely increased; we thus see that, for a sufficiently large value of
(3, the expression on the right-hand side has a real part of the form
±e'(l+)/) ±e~"'(l-f-£)> where 17 and £ are numerically less than an
arbitrarily chosen number as small as we please. It follows that

exceeds e'(l+e-2'+»7+£r2').

If, now, a- exceed some fixed value, we shall have
for all positive values of t; it then follows that

<2»ftM.rm<ft+

~2<| < £ for

2 B 2
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In the case H = oo, we can shew in a similar manner that

for all positive values of t, provided a- is sufficiently large.
When we take /3 = s-\-tr, where T is fixed, and s varies between 0 and

<r, we have

J(

hence we find that

where | i l | , \B\ can be made as nearly equal to unity as we please by
taking a large enough value of T. Also \B\ is less than some fixed
positive number p, if |/3| exceeds a fixed value. We thus see that

5 > ier-

for all values of s, provided T is sufficiently large. If now r be further
increased, if necessary, so that pe~iT < J, we see that

> \e\

provided T have a sufficiently large value ; and this holds for all positive
values of s.

In the case H = oo , we can prove in a similar manner that

for all sufficiently large values of r, and for all positive values of s.
An inferior limit for the values of

or in the case H = oo, of \(2-7rf3)h Jm{fi)\, has now been found for its
values as they occur in the integrands of the two integrals

\F{<r+d)\dt, T \F(8+ir)\dstJo
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provided the values of a- and T are subject to the conditions indicated
above.

It has been shewn in § 2 that {fix* Jn(fix*)\ < AY1', where (3 = s+tt,
and N is independent of /3 and of x, and 0 ^ x <^ 1. Let it now be
assumed that X'—X^/UL, where /J. is some fixed positive number; we
have then

r '4_T4 >̂ tL

We now see that, on substitution of the values of the functions given
in § 2,

TT
4- _ \Rhr'il

takes the form

Since Iftx'^l is always greater than some fixed positive number, in
consequence of the fact that x'h > i/u, and since |Pm(±/3x'4)|, \Rm{fi)\,
| Sm(/3) | are, as has been shewn in § 2, all less than fixed positive numbers
independent of ft and x', we see that, for (3=s+it, the modulus of the
expression is less than Aef-1'^1-^Be'^1'^1, where A and B are positive
numbers independent of x' and /3. It follows that the modulus of the
expression is less than Ke{1~xi)t, where K = A-\-B. In the case H = oo ,
we can prove, in a similar manner, that

where K' is a positive number, independent of x' and /3.
We have now, by the use of the inequalities which have been

established,

' i f 4>r(x) <j>r{x') < L T e-r=1 Jo

where L and M are fixed positive numbers. This has been proved on the
assumption that n is greater than some fixed value nv so that the values
of <r and T are sufficiently great for the validity of the inequalities
employed. If a- have a fixed value, we may choose a value of T, in-
dependent of x and x', such that M<re~(> ~X)T is less than a fixed positive
number m, since x'*—x4 > £,u.
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Also, since

we see that

It follows that, if n > %,

r=l

which is independent of x and x'. It has been assumed that x > 0,
X'—X^/J.; but the inequality clearly holds also for x = 0, X'—X^/J.,

since

r=l
r(x')

vanishes when a; = 0. As the number of values of the expression for
n ^ n^ is finite, it follows that, for all values of n,

{XX')k 2

is less than some fixed positive number, independent of x and x', for all
values of x and x' in the interval (0, 1) and such that x'—x > /A.
Since x, xf may be interchanged, the last condition may be replaced
by \x'—x\^ti.

6. In order to shew that the general convergence theorem already
referred to is applicable to the function

F(x', x, n) = ORB')* ¥ 0r(x) 0r(x'),

it is necessary to shew that, if x be now confined to an interval (£, 1),
rp

where 0 < £ < l , and if a, /3 are in the interval (0,1), 1 F(x',x,n)dx'
Ja

is numerically less than a fixed positive number An, independent of a, /?,
and x, provided x is not interior to the interval (a—/*, /3+AO> and is in
the interval (£, 1), all the points of which then constitute the set G of
the general convergence theorem. This is equivalent to shewing that,
if e be a fixed positive number, arbitrarily small, a value nx of n can be
determined such that

F{x', x, n)dx'

for every value of n ^ nx, for all values of a, fi in (0, 1), and for all values
of x in (i, 1) and not interior to the interval (a—/A,
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Since ')* V <f>r(x) <t>r(x')
r= l

if | x—x' | > M> we see that, if 17 < —-,
2F

then

for all values of n, and for all values of * ^ i+n. It is clear that r\ can
be so chosen as to be less than M- In case 0 < a < r\ < ft, we have

HI F{x',x, n)dx'F(x', x, n)dx'

and, if 0 ^ a <. ft < y, we have

1 F{x\ x, n)dx'

for all values of n. It will therefore be sufficient to prove that

F{x',x,n)dx' < £e,

for n ^ nv where a is now restricted to be ^ rj.

Using Bonnet's form of the second mean value theorem, we see that

(xx1)* S 0r(ic) <pr(x')dx' = (#/3)1 | S <pT{x) <f>r(.x') dx't

a r = 1 J7 P—1

where y is some number such that a s^ y ^ ft. Since (xft)* < 1, it will
be sufficient for our purpose if we prove that

I f <t>r(x)<t>r{x')dx'

for n > %, a' > >/, | a;—x' | > /x, ^ < a; < 1.

By using the differential equation satisfied by the functions <pr(x), we have

P 'z <j>r{x)<pr{x')dxf

Ja' r=l

dx,

Mr

where ]8 danotes a fixed number, as in § 4, and Mr = K—
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It has already been shewn that, if x' is in the interval (>;, 1), and

x in the interval (£ 1), 2 * ^r—- converges uniformly, as n is

indefinitely increased, to the value K(x, x'). It will here be shewn that,
for all such values of x and x', which also satisfy the condition
I ; I ̂  , u • ^ 0 r ( x ) <j>'r{x') . . , , . . , . ,

\x—x'\^fi, the aeries 2, ^ r converges, as n is indefinitelyfXr

increased, uniformly to the value — , . x .
ax'

The series 2 ^x)^x) is of the form
r=l Hr

v 1 [x | air)}
y

cos (^m7r+|7r) cos (x+rx jx^s in (im7r-J-J-7r) sin (*+r7r)x4+ ^-^

8in(̂ W7r-f̂ <n-) cosU+yirJa;'4—cos(im7r4-57r) sin(ic+rTr)iB'i+ ^ ^ .

Of the different portions into which this series may be split up, the series

2 — cos (rTr+tH^+z'*), 2— ain(nr+K)(xi±x'i)

are uniformly convergent, since 0 < ^/JL ^. |x4 + xri | ^ 2—J/x. The re-
maining series formed by multiplying out the above product are uniformly

convergent in the whole interval (0, 1). It follows that 2 --- ^—-
r=l fjir

is uniformly convergent for all values of x' in the interval (»/, 1), and of
x in (i, 1), such that | x—x' | ;> /*• Hence, by a well known theorem, the

series converges for all such values of x and x' to the value -=—. K(x, x').
ax

Since 2 -̂  rjj^L} converges uniformly in the interval (»/, 1) of x'
Mr

to the value K{x, x'), a value n2 of n can be so chosen that

for n ^ ?i2» aQd ^or aU values of a', /3' in the interval (>/, 1).
Also, a value % of ?& can be so chosen that
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for all values of a, /3' in the interval (n, 1), and for all values of x belong-
ing to the interval (£ 1), and not interior to the interval (a— /JL, /3'-
provided n ]> nQ.

If, now, ft! denote the greater of the two integers n^, n^, we see that

10' r=n
^ <j>r(x) </>r(x) dx

differs from [" (7^-^]K{x,x')dx-^ 4o< KtoP)+4a'4nKto *)
Ja' \X / dp da

by less than £e, if n ^ n^.

The last expression is equal to

4 J4X/, Z(*,*)!tfV-^-L K{fi,p)+Aa41a- ax I ax J dp da

or to zero, since K{x,x) satisfies the differential equation

It has thus been shewn that

if•0' r=n

2
, r = l

for n > nlf and for all values of a', j3' in the interval (»;, 1), where x is
in the interval (f, 1) and is not interior to the interval (a— n, (3'-\-/x).

Therefore (fi

(XX)± 2 (f>r{x)<pr(x)dx <€
IJa r=1

for all values of a and j3 in the interval (0, 1), where x is in (£ 1) and
not interior to the interval (a—/*, /3+/A), provided n ^ nx. Since nx is

dependent only on e, the theorem relating to the values of I F(x, x\ n)dx

has been completely established, for the case in which the interval (0, 1)
is the interval of definition of an arbitrary function, and in which the set
G consists of all the points of the interval (f, 1), where £ is an arbitrarily
fixed positive number.

It follows, in virtue of the general convergence theorem, that, if x to
is any function which has a Lebesgue integral in the interval (0,1), then

fc~iJL r—n
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converges, as n is indefinitely increased, uniformly to zero, for all values
of x ( > n) belonging to an interval (£, 1), ichere f > 0. Also

converges, as n is indefinitely increased, uniformly to zero, for all values
of x in the interval (£ 1) and not exceeding 1—ytx.

This result holds whatever positive values may be assigned to the
numbers n, £.

7. The theorem just established shews that the question of the con-
vergence, as n is indefinitely increased, of the integral

(1 r=n

')* 2 (pM<j>r{x)dx
for any particular value of x in an interval (£, 1), can be answered by
examining the nature of the function xO*0 in &n arbitrarily small neigh-
bourhood (x—M, x+fx) of the point x concerned ; the function x(x) being
outside that neighbourhood only restricted by the condition that it shall
have a Lebesgue integral in the whole interval (0,1).

Now let xix(») = 3>(aO, and let us consider the integral

(=1
<pr(x)<pr(x)dx,

where $(x) is a function such that x~^${x) has a Lebesgue integral in the
interval (0, 1).

The theorem established in § 6 shews that

$(X) 2 <f>r(x)d>r(x)dx, \ $(x) 2 <j>r(x)<f>r(x)dx
0 r = 1 Jx+» r=l

converge uniformly to zero, as n is indefinitely increased, for all values
of x in the interval (g, 1); where also x > n in the first integral, and
x < 1— n in the second integral.

It will now be shewn that the conditions stated in §§ 4, 5 (pp. 360-362,
loc. dt.) of my paper on the general convergence theorem are satisfied by
the function r=7l

F(x',x,n) = 2 <t>r(x) <pr(x).

r= l

It will first be shewn that

fx+»* r=n f* r=n

J . l=l T ' Jr-p r = 1
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where n has a fixed value, converge uniformly to fixed values independent
of x for all values of x in an interval interior to the interval (£ 1).

We have, as in § 6 above,

ix r=\ T T Jx \X I r=l fxr

fXr

As before, the first term on the right-hand side converges uniformly to
the value j -,

where a' = x-\-fi' = X+/JL.

'I*The aeries I
r = l

converges uniformly to the value -r^, K(x, ft'), where /3 = x-\-fi. There

remains for consideration the series

r=\ fXr

This consists of a part

y

which converges uniformly in an interval of x interior to (£ 1), and of
other parts which converge uniformly for all. values of x in (£ 1). It

follows that 2 -*- I- converges uniformly to the value £ —-= .
r=l fxr dX

Hence rx+n r=n

2 </>r{x)<p{x')dx'
Jx r - 1

converges uniformly to the value

) A

where a' = x+O. It will be shewn that this last expression is equal
to £. For ,

^ K(x,x) = <f>' ' )

with the notation of § 4 ; also

a'=x+o
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and thus

4 n dKM_{d K{Xi(t,)\ 1 = 2x\i>'(x)yl,(x)-<p(x)yl,'(x)\,
L ax {aa ) a'=r+o J

and the expression on the right-hand side is, in accordance with § 4,
equal to £.

It has now been shewn that, for a fixed value of /z,

x r = 1

converges to the value £, uniformly for all values of x in an interval
interior to the interval (£ 1).

It may, in a precisely similar manner, be shewn that

r=n
2 <t>r(%) <t>r(x')dxf

r=l r

converges uniformly to £ in a similar interval; n being so chosen that
x—fji is > 0 in the interval of uniform convergence.

At the point x = 1, we have to consider the limit of

!

1

r=1

The series l.WP-^SJ is equivalent to - £ # ¥ ^A1))\ except in
r=l fXr * r= l fxr

 r

the cases H = oo, H = 0, when the series vanishes. We have then

(1 r=n
2

1-u r = 1

A

_ 4 0,(1)^(1) + 4 ( 1 j Y
r=l / i r r=l

= 1.

This result holds also in the case H = 0. In the case H = <x>, it does
not hold, but <pr(l) is then zero, for all values of r, and the series of
normal functions then converges to the value zero.
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8. Lastly, it will be shewn that the integrals I F(x ± 1 , x, n)dt are,

for a sufficiently small fixed value of n, both numerically less than fixed
positive numbers, for all values of /xj such that 0 ^ ^ <. /*, and for all
values of x in an interval (^, 1—£"); where F(x', x, n) denotes the sum

'z <pr(x)<pr(x').

The number ft can be so chosen that £' > /x, £" > /x.
P*In order to estimate the value of the integral I F(x + t, x,n)dt, we

employ the expression (7) of § 8, for <pr(x-\-t), and we can consider
separately the various terms of this expression. We have

cos { x + T
2 si

i L
sin , -jT- H- — - (*+rir)(

o- 1 I f - . a(r))Since —r-— = — \l-\ ,
K

we see, on substitution of <pr (x) as given by the form (7) of § 8, that this
part of the sum consists partly of uniformly convergent series of which
the r-th term contains the factor 1/r3, and partly of terms involving series
such as

^2 — sin I - 2 ~ + ^—M-r7r)(a;+*i3)Jj-cos | _ + _

with a similar expression with /u. instead of /x2.

This series is the sum of the two series

2 rr- sin |?tt7r+i7r — (K-\-r7r)Ux-{-/j.^-\-xiil\, (a)
r = l "ZT

r=n 1

2 — — sin {Oc+r7r) [r=i 2r

It is known that the series 2 —, 2 — are uniformly con-
r=l r r=\ r

vergent if u is confined to an interval (n, 2—»/'), where 17 and >/' are positive
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numbers. Since (x+ni)
h+x* is between 2f* and (1—f)4+(l—?

this condition is satisfied for the two series into which the first of the
above series may be split up.

. . . . , , * ,, , ,. . %n ain{p+r)u .Again, it can be shewn* that the expression 2 is

numerically less than a fixed positive number, independent of n and u,
if u is in an interval (0, 2TT—tj"). Since (x+n^—x* is in the interval
(0, /JL), it follows that the expression (/3) is less than a fixed positive
number.

We have next to consider that portion of 1 F{x+t, x, n)dt which i

* To prove this, we see that, instead of the expression
r"n sin (j) + r) u
2 >

r.i r

we may consider 2 s m W + r' u,
,-.\ p + r

since the difference of these expressions is a series which converges uniformly.

If snlu) denotes T —1

IS

we have Sn (w) ==du 2 sin %u

, .. , . v , f" sin ip + n + i ) u , i f'sin (p + h)u ,
and therefore sn {u) = i — -̂.—-—az_ du—h\ —¥~s- duZJO sin^tt Jo sin|%

n

= f(p-^>«sin« dM_f("+*)" sinu
Jo « Jo «

where !„ (M) = f sin (p + n + A) u " ~ 2 s i n , g M dw.
Jo 2t*sin£«

On integration by parts, we have

, >_ u—2sin 4M cos(p + n + l)u f»cos(p + n + 4)« 4sin2^M—M2COS*-« ,
\U) — -~—— : — — - + I ; :—=—;—5-5 UU.

SusinAu p + n + h Jo
p + n + % Jo p + n + % 4u? sin3 ̂ «

If w be confined to the interval (0, b), where b < 2*-, the two expressions

u—2 sin \u 4 sin2 |tt—w3 cos | «
2u sin | u ' 4w3 sin2 | M

are limited, and therefore /„ (u)

where A is a fixed number. Also | sinu du is well known to be limited for all positive values
Jo «*

of A. Hence the result has been established.
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of the forms

( * 1 %n Vaix, x, t) cos {mir , -K
Ji L V sin IT + T

and which is equivalent, on using the mean-value theorem, to

L 1 r=n\~a(r,x,t) coa {mir . x , | n

This expression may be integrated by parts, and we have then an ex-
pression containing r(K-\-rir) in the denominator of the general term.
Remembering that a (r, x, t) and its differential coefficient are both limited
for all values of r, and for all the values of x and t concerned, we see that
this part of the integral satisfies the required condition.

The case of I F(x — t, x, n)dx may be treated in a precisely similar
manner.

It can also be shewn that, except in the case H = <x>, for the point
(V

x = 1, the condition is satisfied, that I F(l — t, 1, n)dt is numerically

less than a fixed positive number, for all values of /J.X such that
0 < to < M.

In this case the portion of the expression corresponding to (a) and (/3) is

r^,u 1 • f mir . it . , . ... . i ) f mir . 7r . . .1

rS ¥rsin I T + T "(f+^d-^i)*) cos 1 T + T -<«+r7r> i
Except when H = oo, we have

mx . it ,

therefore this expression may be written

r=l 2'/*

and this is numerically less than a fixed positive number, independent of
r and fi, for all values of MI < /*» as has been shewn above.

When H = co, we have

, 87T

and the series takes the form
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which is divergent when fix = 0, and therefore the expression is not
limited.

fMThe remaining part of F(l — t, 1, n)dt may, as before, be shewn to

be numerically less than fixed positive numbers.

9. It is now convenient to replace x and x' by z2 and z'2 respectively.
The variables z, z' will be taken to be positive, and they are in the interval
(0, 1).

If | * - * ' | > / i * f

we have | x —x'\ ^ fx.

It follows, from the result obtained in § 5, that

is less, for all values of n, than a fixed positive number N, for all values
of z and z' in the interval (0, 1) which are such that | z—z' | ^ /A

From another result in § 6, it follows that

I f <
for all values of a, (3 in the interval (0, 1), and for all values of z in an
interval (£', 1), and not interior to the interval (a—/x5, /S+z**); for n ^nv

where nx depends only on fx, e, and £'.
We have now, by employing the second mean-value theorem,

- 1 j («')» ^5 <f>r

where a < ^8' < /8. The expression on the right-hand side is numerically
less than e/2a, if the conditions stated above are satisfied. We have now

if z is not in the interval (>;'—/xJ, >7+MS)- Let »; be now arbitrarily
chosen ; then, if n ^ a, we have

r=n
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and, if a < »/, we have

(**')* T tf>,(*2) <f>r(z'2) dz' ! < | - +Nr,,

for n ^ nx. Now, let e' be an arbitrarily small fixed number; we tnay
then choose n to be £N~V. We may then choose % so great that e is
equal to £2V~V2; it then follows that

is numerically less than the arbitrarily chosen positive number e', pro-
vided n > nlt for all values of a and /3 in (0, 1), if z is in the interval
(£', 1), and not interior to (a—in2, /3+M2)-

If, now, we let F(z', z, n) denote the expression

W) r - l

we see that the conditions of the general convergence theorem are satisfied,
the set G to which z is confined consisting of all the points of the interval
((•', 1). The number £' is arbitrarily small.

It follows that, for all values of z in this interval (£', 1),

Jo ' - 1

and

converge uniformly to zero, where x(^) denotes any function which has a
Lebesgue integral in the interval (0, 1).

Now, let xfc) = zfifiz); it then follows that the convergence of

depends only on that of

and of the similar integral with the limits z, z—fx', the rest of the integral
converging uniformly to zero, as n is indefinitely increased, for all values
of z in the interval (£', 1).

STSR. 2. VOL. 7. NO. 1029. 2 C
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It has been shewn, in $ 8, that

( z+u! r=n
2 <t>A

z r = 1

Jz-u.' r~l

converge each to the value \, uniformly for all values of z in the interval
(£, 1).

It has also been shewn that

f Y

converges to the value £, as n is indefinitely increased.
It has further been shewn that the integrals

are, for a sufficiently small fixed value of M, both numerically less than
fixed positive numbers, for all values of M-I such that 0 ̂  /JLX < fi, and for
all values of z in an interval (&, 1—&)•

It has also been shewn that, except when K = oo,

[^ c/>r{(l-t)2\ Cj>r(l)a-t)dt,

is numerically less than a fixed positive number, for all values of px such
that 0 < tix < /x.

It follows, from the results established in §§ 4, 5 of my earlier paper,
that n

\f(z') 2 trtftrb^z'dz'

Jo '

converges to the value J \f(z-\-0) 4-/(^—0) •,
for any interior point z of the interval (0, 1), which is such that a neigh-
bourhood of z exists in which f(z) has limited total fluctuation.

It also follows that the convergence to the value %f(z) is uniform in
any interval (a, b) in which f(z) is continuous, and which is interior to
another interval in which f(z) is of limited total fluctuation.

Also, at the point z = 1, the integral converges to the value %f(l—0)
in case the point has a neighbourhood (1—»j, 1) in which the function is
of limited total fluctuation. The only exception to this is in the case
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K = QO , in which the integral vanishes for z = 1. Remembering that

[|JW
'Jo

where Xj is here denoted by kr, we have now established the following
result.

Let f{z) be any function defined for the interval (0, 1), and let it he
such that, whether it be limited or not, in the interval, z*f{z) has a
Lebesgue integral in the interval (0, 1). Let klf k2, ..., kn, ... denote the
positive roots of the equation

where m has any real value ^ 0, and H is a constant which may have
the value zero, in which case the equation is

^ ( X ) = 0 ;

or H may have the value infinity, in which case the equation is

The series S CrJm(krz) f(z') Jm(krz') z'dz',
r~l Jo

in tohich Cr denotes I {Jm{krz')\2z'dz'\ ,

converges to the value J \f(z-\-O)-\-f(z—0)\ at any point z in the interior
of the interval (0, 1) which is such that a neighbourhood of z exists in
which the function f(z) is of limited total fluctuation (a variation bornee).

Moreover, in any interval {a, b) in which f(z) is continuous, and ivhich
is contained in the interior of another interval in which the function is of
limited total fluctuation, the convergence of the series to the value f(z)
is uniform.

Except in the case H = oo, the series converges at the point z = 1 to
the value f (1—0), in case a neighbourhood (1—e, 1) of that point exists in
which the function is of limited total fluctuation. In the case H = oo ,
the series converges to the value zero at the point z = 1.

At the point z = 0, the series converges to zero, except in the case
m •=. 0. In this case m = 0, the convergence at the point z = 0 has not
been investigated.

2 c 2
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The value kx = 0 occurs among the values of kT only in the case
H — — m, wlien the values of h,. are the positive roots of the equation

In this case the first term of the series is

*™[f(z')zm+ldzt.
Jo

2 A:".
The value of the constant Cr is ro-3_i_7,2_—an < j (r.\ t'a > exceP*> when

H = oo , in which case Cr = , 2.

o
When H = — m, C,. = -p-

It may be remarked that, in the special case in which m = \, H = ao,

2 \ * sin z

the series becomes the Fourier's sine-series after multiplication by z-t and
replacing z\f{z) by f{z).


