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THE RESTRICTED PROBLEM OF THREE BODIES. 

By II 0 0 r g e 0. B i r k h 0 f I (Cambridge~ Mass.). 

Adunanza del 2J agosto I914, 

Thorough investigation of non-integrable dynamical problems is essential for the 
further progress of dynamics. Up to the present time only the periodic movements 
and certain closely allied movements have been treated with any degree of success in 
such problems, but the final goal of dynamics embraces the characterization of all 
types of movement, and of their interrelation. 

The so-called restricted problem of three bodies, in which a particle of zero mass 
moves subject to the attraction of two other bodies of positive mass rotating in circles 
about their centre of gravity, affords a typical and important example of a non-inte- 
grable dynamical system. It is this problem which I consider in the present paper. 

Part I ( ~  I-5) deals with the differential equations of the problem. 
As ordinarily given, the equations of motion (~ ~) admit of three singular points 

corresponding to the collision of the particle with either body and to its rejection to 
infinity. It was the notable achievement of LEvt-CIVITA ~) to have discovered that the 

t) T. LEvI-CIvlTA, Sur la rdsolution qualitative du problkme restreint des trois corps [Acta Mathe- 
matica, t. XXX (t9o6), pp. 305-327]. See also an earlier paper by the same author, Traiettorie singolari 

ed urti nel probIema ~'istretto dei tre corpi [Annali di Matematica, ser. III, vol. IX (19o4), pp. 1-32]. 
[Note added January ~I, r9I 4. As I have been kindly apprised by Professor LEvr-CIvIT.% he has 

found more recently that a regularization at collision with both bodies had been given by T. N. TttlELE, 
Rechercbes numdriques concernaut des solutions p~riodiques d'un cas spdcial du probl~me des trois corps 
(Troisi~me m~moire) [Astronomische Nachrichten, vol. CXXXVIII (I895), pp. 1-io], who, however, 
deduced no theoretical consequences therefrom. This regularization, less simple then that of LEvI-CIVlTA 
and also falling under the type treated by me in ~ 2, is entirely distinct from the algebraic regulariza- 
tion given in ~ 5, and used later in the paper. 

Dr. G. M. GREEN" and I have both noted that all of these forms of the equations of motion 

become canonical, for a given value C of the constant of JACOBt, if the variables of the first set are 

u, v (~ 2), and of the conjugate set are u, v, given by 

Reud. Circ. Matent. Palernto, t. XXXIX (s sere. 1915). - -  Stampato il 9 maggio 191 ~, 34 
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equations of motion admit of regularization so far as collision with a given one of the 
bodies is concerned. By the aid of this regularization it became possible to determine 
the character of the motion near collision without difficulty. 

On the basis of a new transformation of variables (~ 2) applicable to a consider- 
able range of dynamical problems, I obtain the well-known equations of normal and 
tangential displacement (~ 3), the equations of LEvI-CIvlTA although not in canonical 
form (~ 4), and a new form of the equations of motion in which the only singularity 
corresponds to the rejection of the particle to infinity (~ 5)- 

In Part II (w 6-8) the nature of the manifolds of states of motion is considered; 
by a state of motion I mean the position of the particle together with its vector velo- 

city at an instant. 
The new form of the equations affords a non-singular representation of the man- 

ifolds of states of motion for any value of the constant of JAcom, and allows one to 
represent the movements under consideration as the stream lines of a three-dimensional 
flow in non-singular steady motion (~ 6). 

In this way a characterization of the states of motion in the six possible cages 
may be made without difficulty ( ~  7, 8). For example, it is found that when the 
particle is confined to an oval of zero velocity about one of the bodies, the manifold 
is in one-to-one continuous correspondence with the points inside of and on a sphere, 

under the proviso that diametrically opposite points are counted as identical; under 
the same proviso, it turns out that, when the oval of zero velocity includes both 
bodies, the manifold of states of motion is in one-to-one continuous correspondence 
with the points between and on two concentric spheres. 

The case of the problem in which one of the two bodies is of mass zero admits 
of explicit solution. PoIXcARfi ~) generalized from this limiting case and was led to 
a representation in the space of inversion as long as the particle was confined to an 
oval of zero velocity containing one of the bodies. It was not seen by him however 
that this representation is two-to-one,'a fact in accord with the one-to-one representation 

by a sphere stated above a). 
The further restilts of the present paper are concerned only with the case in 

which the particle is confined to such an oval. 
The same generalization led POINCAR~ to the fundamental concept that the re- 

stricted problem of three bodies admits of reduction to the transformation of a ring 

while the principal function is 

I d x  2 I 

and the independent variable is "c]. 
2) H. POINCAR~, Les mdlbodes nouvelles de la Mdcanique Cdleste, vol. Ill (Paris, Gauthier-Vil- 

lars, I899), pp. 196-2oo, 372-38I. 
a) H. POINCAR~, Sur un tb~or~me de G~omdtrie [Rendizonti del Circolo Matematico di Palermo, 

t. XXXIII (I ~ semestre I9t2 ), pp. 375-407]. 
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into itself. Part II1 ( ~  9- I5 )  of the present paper is devoted to the further investigation 
of this concept. 

I commence with a consideration of the case in which one of the bodies is of 
mass zero, and arrive at a geometrical representation of the ring in this case ( ~  9, ~o). 

In order to generalize this interpretation certain properties of the family of direct 
and retrograde periodic orbits are established ( ~  i i ,  i2). As the constant of JAcoBt 
increases from the given value to infinity a continuous ring of such periodic orbits is 
obtained. The states of motion belonging to the ring for the given value of this con- 
stant are the states of positive tangency to these auxiliary orbits. If a particle be projected 
from any point K in the plane of the motion tangent to the auxiliary orbit through 
the point, the particle will become tangent again to other such orbits at points L, 
M, . . .  infinitely often. The transformation of the ring is defined as that which takes 
K into the first such point L (~ i3). 

In this manner a complete representation of the ring transformation in the plane 
of the motion becomes possible. The ring employed may of course also be thought 
of as situated in the space representing the manifold of states of motion. It differs from 
the ring obtained by POINCARb~ merely in its simple and more specific character. 

A fundamental property of this and similar transformations, noted by POINCAR~, 
is that an area integral is invariant. A further property, which I have found to hold 
in the restricted problem of three bodies, is that the transformation is the product of 
two involutory transformations (~ i4). The latter property is the important one for 
the present paper. 

The construction of a ring outlined above is valid only for suitably restricted 
values of the masses. A necessary and sufficient condition for the existence of a ring 
can be found on the hypothesis that direct and retrograde orbits of simple type, cor- 
responding to the two boundaries of the ring, exist (~ I5). 

Part 1V ( ~  I6-21) is given over to the consideration of the periodic orbits. Later 
I expect to publish the results which I have obtained concerning the general orbit. 

The question of the existence of periodic orbits is of great importance. The nota- 
ble work of HiLL 4) and DARWIn S) leaves no practical doubt that direct periodic or- 
bits of simple type continue to exist through wide ranges of values of the masses and 
of the constant of JACOBI~ Moreover, MOULTO~q ~) has observed that retrograde orbits 
cannot vary through a cusped form under certain conditions, and so seem to have a 
peculiar quality of permanence. His interesting conjectures concerning these orbits have 
been borne out by later computations made under his direction. 

r G. W. HILL, Researches in the Lunar Theory [American Journal of Mathematics, vol. 1 0878), 
pp. 5-26, I29-147, 245-26o]. 

s) G. H. DARWIN, Periodic Orbits [Acta Mathematica, vol. XXI (1897), pp. 99-242]. 
o) F. R. MOULTON, Relations among Families of Periodic Orbits in the Restricted Problem of Three 

Bodies [Proceedings of the fifth International Congress of Mathematicians, Cambridge, 1913, vol. II, 
pp. 182-1871. 
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Notwithstanding these facts, however, the existence of these direct and retrograde 
orbits has only been rigorously established for sufficiently small values of one of the 
masses, or for a sufficiently large value of the constant of J,tcoBt 7). 

By a simple method I have been able to demonstrate that, as long as the par- 
ticle is confined to an oval of zero velocity about one of the bodies, there necessarily 
exists at least one retrograde orbit of simple type ( ~  I6, i7, i8). �9 

The direct orbits do not appear to be amenable to a like attack. I have, however, 
been able to establish that, for sufficiently small values of one of the masses, the ring 
transformation of POINCAR~ may be replaced by the transformation of a discoid into 
itself whose only boundary corresponds to the retrograde orbit, and that, as long as 
this construction is possible, there will necessarily be one direct orbit of simple type 

The balance of evidence seems to render it probable that this new form of trans- 
formation continues to exist as long as there is an oval of zero velocity about each of 
the two masses. The ring transformation, on the contrary, necessarily breaks down 
when the direct orbit becomes unstable. 

In a last paper POINCARb. a) established, that, if a certain geometric theorem were 
true, the existence of a ring transformation carried with it the existence of an infinite 
number of periodic solutions of the restricted problem of three bodies. This geometric 
theorem was later proved by me s). The property of the ring used is that an area 
integral remains invariant under the transformation. Since the earlier work of Pom- 

CARb. had only established the existence of an arbitrarily large number of periodic so- 
lutions for sufficiently small values of one of the masses, this conclusion constituted a 
definite step in advance, made possible only by the reduction of the restricted problem 
to the transformation of a ring into itself. 

It was stated above that this transformation is the product of two involutory 
transformations. The existence of an infinite number of symmetric periodic orbits flows 
intuitively from this fact; by its means also very definite conclusions concerning the 
characteristic properties of these orbits, and concerning their distribution in the plane 
of the motion, may be reached (~ 20). 

The property used by POmCAR~ enters, however, into the proof of certain geome- 
tric facts (~ 2I). For example, as long as the ring exists, it may be proved that, for 
the given value of the constant of JACOBI and a given point in the plane, an initial 
direction of projection may be chosen in an infinite variety of ways so that the par- 
ticle passes through the initial point at a later time. 

7) A criterion for the existence of periodic orbits has been given by E. T. WHITTAKER, On Periodic 
Orbits in the Restricted Problem of Three Bodies [Monthly Notices of the Royal Astronomical Society, 
vol. LXII (I9oi-I9O2), pp. 346-352]. 

s) G. D. BIRKttOFF, Proof of POINCAR~-'S Geometric Theore,~ [Transactions of the American 
Mathematical Society, vol. XIV (19t3) , pp. 14-22], Dgmonstration du dernier Thdor~me de Giomdtrie de 

POINCAR~ [Bulletin de la Soci~t~ Math~matique de France, vol. XLII (i914) , pp. I-i2] (translation). 
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PART I. 

THE DIFFERENTIAL EQUATIONS OF THE PROBLEM. 

The  Usual  Fo rm of the  Equat ions  of Motion. 

The restricted problem of three bodies in its customary form deals with the rela- 
tive motion of a particle P of zero mass lying in one and the same plane with two 
bodies S and jr, which attract each other and P according to the Newtonian law, and 
rotate positively in circles about their center of gravity O. By a specialization of units 
the masses of S and J become ~. and I - -~.  respectively, while the distance from S 
to J, the angular velocity of S and J, and the gravitational constant, reduce to unity. 

If the rectangular co~Srdinates of P relative to rotating axes, taken along the line 
S / a n d  perpendicular to it at O, are x and y respectively (fig. i), and if t indicates 

/ 

o j 

(Fig .  I ) .  

the time, the differential equations of motion are 

d' x d y l~ (x, y), 
(I)  dt-~--  2 ~  - -  
where 

(2) 

d2 y d x ___ ~2(x, y), 
d t ~ + 2-d- [ . 

t ll(x, y) = + [ ( I  - -  v.)r~ + Izr~] + I - -  ~. + ~. r r 2 ' 

r ---- l/(x - -  ~)' -]- y', r, ---- l/(x -qt-I - -  i~) ~ + y'. 

In accordance with the notation for partial derivatives employed throughout the 
present paper, ~x(X, y) and fly(x, y) denote the partial derivatives of i~(x, y) as to 
x and y respectively. 

By multiplying the first and second equations ( I ) b y  2dx /d t  and 2dy/dt  respec- 
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tively, adding and integrating, we obtain the integral of JACOBI 

i 2 bax  i 2 a(x ,  c 
(3) k d t ]  = \ ~ ]  + \ d t ]  = 2 y ) - -  

where s measures the arc length along the orbit of P, and C is the constant of JACOBI. 
In what follows u,e consider invariably tbe totality of motions of P for which the 

constant C has a given value. This specialization amounts to a use of the integral of 
JAcoBI to reduce the system of differential equations (I)  from the fourth order to the 

third. 
A simple way of accomplishing this reduction depends on the introduction of the 

new variable 
3 

(4) ~ = arc tan ~x y 

representing the angle between the direction of motion at any instant and the direc- 
tion of the positive x-axis. We obtain at once from ( i )  and (3) 

dx X(x, -dr = (x, y) - -  C; cos ? = y, 

dy __ l/2laCx, y ) _  Csin~?-- r (x ,  y, ?), (s) ?7 
d ,  --ia~(x, y) sin q~ + L)y(x, y) cos ? = *(x ,  y, r 

-- 2 +  1/2V(x, y ) - -  c 

The first two equations result from the equations dx /ds=cos% d y / d s =  sin% and 
from (3). The last equation may be deduced by forming d?/dt, and eliminating dx/dt, 
dy/dt, d~x/dt =, d'y/dt ~ by the aid of the first two equations (5) and the equations 
(I). The equations (5) are equivalent to the equations (I)  joined with the integral 
(3), and form a system of the third order. 

If we observe that the right-hand members of the equations (5) do not involve 
the variable t, it becomes evident that this variable may be eliminated and a reduction 
to the second order effected. The resulting equations may be written 

dx dy d? 
X(x, y, ~?)-  Y(x, y, ~ ) -  ~,(x, y, ~)" 

Therefore, if x, y, r be taken as the rectangular co6rdinates of a point in space, 
the totality of curves of motion under consideration will be represented by a family of 

curves, one passing through each point of the cylindrical region L~(x, y)----: C ~ o  to 

which the motion is necessarily confined. 
This representation is singular only when the velocity is zero or infinite. The 

first of these two possibilities takes place when P is on the curve of zero velocity 

a(x,  y ) ~ - ~  C = o, and does not correspond to any singularity of the motion. The 

second takes place when P collides with S or ]. 
As time varies, each point of x, y, ~-space moves with a velocity, dependent on 
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position only, along its curve of motion. Thus the totality of motions will correspond 
precisely to the steady motion of a fluid, which is incompressible in virtue of the 
identity 
(6) X x (x, y, ~) -+- Yy (x, y, ~?) -Jr- % (x, y, ~?) = o. 

Although this representation gives us some idea of the nature of the problem, it 
is possible to eliminate entirely the singularities of the representation by a suitable 
choice of variables. Such an elimination will be effected in ~ 5- 

2.  

On the Transformation of Certain Differential Equations. 

Let us turn for a moment to the consideration of the type of differential system 

d = x ~ t  d= y d x 
(x') ~]=- - -  2X(x, y) __. = ~ ( x ,  y), dt ~ Jr- 2"h(x, Y)d7 - -  U?.(x, y), 

which constitutes a generalization of (I).  We shall regard t as the time, and x, y as 
the co6rdinates of a moving particle in the x, y-plane. 

We consider the triply infinite set of solutions of this system for which 

\at!la'  -laxx   ,giliaY 2 2U(x, (3') - -  ~-dT) -[- = Y)' 

where s measures length of arc. If now we introduce the variable q~ defined as in 
(4) we obtain without difficulty 

d x .= 1/2 U(x,  y) cos % g/  

(s') dy = 1/2 U(x,  y) sin ?, 
37 
dy  - -  Ux(x , y)sin q~ + U:.(x, y)cosy  

dt - -  2~.(x, y) + 1/2 U(x,  y) 

The curvature K of the orbit is d~/ds, which may be expressed in terms of x, 
y, ~ by the aid of (3') and the last one of the equations (5'):  

K - -  7 2 X (x, y) ~. - -  Ux (x, y) sin ~ -[- U (x, y) cos 

1/2 u (x, y) 2 U(x, y) 
This gives an intrinsic formulation of the characteristic geometrical property of the 
curves of motion. 

Let n be the distance measured along the normal to the curve of motion at (x, y) 
so chosen that the directions along which s and n increase are oriented like the. pos- 
itive x- and y-axes respectively. Since q~ denotes the angle between the instantaneous 
direction of motion and the positive x-axis, the angle between the instantaneous normal 

and the positive x-axis is qa -Jr- -~ ~. Thus the normal derivative of any function f ( x ,  y) 
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is - - f . ( x ,  y)sin ? + f , ( x ,  y)cos q~. Bearing this in mind we may formulate the fol- 
lowing conclusion : 

The totality of curves x - - x ( t ) ,  y - Y ( O  defined by the equations (i ' ) ,  (3') is the 
same as that defined by the equation 

d a r c t a n 2  2),(x, y) + - - ~ l o g  U ( x , I  y), 
(7) ds - -  f2  U(x, y) 2 

where s measures the arc of the curve and n is the distance measured along the instantan- 
eous normal. 

To complete a proof of this statement we need merely to show that we may 
pass conversely from (7) to 0 ' ) ,  (3'). But if we write 

dy f ds 
= arc tan d ~ '  t = 1/2 U(x, y) ' 

we deduce (5') at once from (7), and thence (I '),  (3'). 
Let us now consider the result of making a transformation from the x, y-to the 

u, v-plane defined by an equation z - - f ( w )  where Z - - x + l / ~ y ,  w - - u + l / ~ v ,  
and where f ( w )  is an analytic function of w. 

To effect this transformation of the totality of curves 0 ' ) ,  (3') we first note the 
relation 

dx + ~/Z idy = f ' ( w ) ( d u  + ff-~-~idv), 

in which f ' (w)  denotes the derivative of f (w) .  From this follows 

dv 
arc tan 2 = arc tan ~ n t- argf'  (w), 

and also 
d s = lf' (w)l d s , d n --" lf' (w)[ d n , 

where s z and n are measured along the transformed curve and. along its instantaneous 
normal respectively. Here we make use of familiar properties of a conformal transfor- 
mation K - - f ( w ) .  

Furthermore, inasmuch as log ]f'(w)] and argf '(w) are conjugate harmonic func- 
tions, we have 

arg/ '  (w) = : n  log ]f' (w)[ Os 

by the CAuCnY-RIEMA~N differential equations. 

(8) 

Making use of these relations we obtain from (7) 

dv 
d arc tan d-~ - -  2 [~, (x, y)if '  (w)l 2] + i 0 [log U(x, y)If' (w)r]. 

d s  - -  V2U(x,  y) l f ' (w) l  2 2 O n  

This is the intrinsic equation of the transformed curves, and is precisely of the form 
(7), with x, y, ?,(x, y), and U(x, y) replaced by u, v, ~.(x, y)lf '(w)l 2, and U(x, y) 
If' (w)l = respectively. 
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Accordingly, by the italicized principle above, the 
the co6rdinates u and v, satisfy the equations 

(9) 

curves of motion, referred to 

d . r ~  - -  2~.(x, y) lf ' (w)[  * = [U(x, y)If'(w)l*J,,, 

d * v du 
+ 2),(x, y) l f ' (w) l*~4  = [U(x,  y) [f'(w)l*]v, 

d "r ] = k-d-~x] 21- - -  = 2 U ( x ,  y ) I f '  ( w ) l "  

Moreover, since d s =  [ f ' ( w ) l d s ,  we infer at once that 

dt  
d'r d s 

dt  

By the transformation of variables 

d s  I 

d'r d s 
- - ' d T ~ ,  ----- If' (w)l ~. 

x -1- 1 /Z  i y ----- f (u -q- l/~---~i v), d t - -  If' (w)l * d % 

the totality of curves x -m-x( t ) ,  y ---. y( t)  defined by the equations (I ' ) ,  (3')  goes into 
the totality of curves defined by a similar set of equations (9) obtained from ( I ' ) ,  (3 ' )  
by replacing x, y, t, X(x, y), U(x, y) by u, v, r, ~.(x, y ) l f ' (w) l  *, U(x, y ) l f ' (w) l  ~ 
respectively. 

$3. 
The Equat ions  o f  Normal  and Tangential  Displacement .  

As a first application of this method of transformation, I shall derive the equa- 
tions of normal and tangential di@acement for the restricted problem of three bodies 9). 
These equations will be useful later in the paper. 

Let x(t), y( t )  be a solution of (r),  (3), and let us make a conformal transfor- 
mation of the x, y-plane which takes the corresponding orbit into the real axis in 
the transformed plane in such a way as to preserve arc lengths along the orbit. This 
transformation has the explicit form 

< ---~ f ( w )  = f , ( w )  d r- 1 / ~  I f : (w) ,  (x(t)  -= f ,  (s), y( t )  =f~(s)) .  

Owing to the fact that the transformation is conformal, normal derivatives along the 

given orbit are unaltered by it. For this reason we will write w = s - ~ - 1 / ~  I n. 
The application of the method of transformation to equations (I) ,  (3), for which 

~(x, y) = x and U(x, y) - -  ~ (x ,  y) - -  -~ C, with the above choice of f (w ) ,  gives 

9) Cf. DARWIN, 1OC. cit. S), pp. i33.i4i.  

1~eJul. Circ. ,%iralem. Palermo, t. XXXIX (l o sere. i915).--Stampato il 9 maggio t91 ~. 35 
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the equations 

d ~ s 
d.v ~ 

where 

d~n d s  
- - - - -  21f'@)l ~ --- F,0,  n), d e  + 21f'(~')l~ 

-d-~ ] "-1"- 2 F ( s, n ), 

F(s ,  n) ---- [fl(x, y) - -  ~;C]lf'(w)l ~. 

Along the curve of motion we have 

[ f ' ( w ) l =  dd ; - -  

= f,,(s, ~), 

so that d t = d'r along this curve. Moreover this curve corresponds to the solution 

S ~ S  o('r), n ~ n o ~ o 

of the transformed equations. 

Substituting in these values for If'@)l, ~, s, n, we obtain 

dso ~__F (So, o), dso _ 1 / 2 F ( s  o o), d~s~ F (so, o), 2-d- [- d t  d t ~ - -  - -  ' 

from which we deduce the condition 

-~ F.(So, o) = r  F (So, o). 

Suppose now that we consider a varied solution s ~ s o -+- ~ as, n ~ ~ n where 
8 n  as ~ ap- is a constant which is to approach zero. The limiting forms of as, 

proaches zero are obtained as the solutions of the equations 

2F,(so, o) ~n, 
d~aSdt ~ - -  2 d~ndt - -  F" ( s~  o )as  -q 1/2F(So, o) 

-dtT-~-2 -[-21/2F(so, o) ~lf ' (So)l  ~ a,~ zF~Oo, o)a ,+F, ,~6o,  o)an, 
r F(So, o) 

r F (So, o) ~ = F (So, o) 8, + 2 r F 0o, o) a n, 

deduced by the usual method of variation. Here we have made use of the equations 

noted above and also of the equation 

i%(So, o ) - -  2 F ( S o ,  o) 
1/2 F(so, o) 

derived directly from them. 
The first of the three equations for as, an may be obtained from tile last by 

differentiation. This is to be expected in consequence of the fact that 0 )  and (3) are 
not independent. 

By combination of the second and third equations we can eliminate as. Thus 
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there results the final form of the equations of displacement 

d28n [ 03 ] 
"~ 4 + 2 ] / 2 F ( s o ,  o ) ~ ] f ' ( S o ) [ '  - -  F..(So, o) 8n ~--- o, 

( I O )  d~s Fs(so, O) ~5 = 2~n. 
dt  1/2 F(so,  o) 

If we agree to let R(?)  denote the real part of p, and to let I (p)  denote the 

coefficient of 1 / ~ I  in p, the functions f ( w )  and F(s ,  n ) w h i c h  enter are given explic- 
itly by the equations 

( I I )  f ( w ) = x ( t ) + l / - - I  y ( t ) ,  F(s ,  n) = [l~.(R[f(w)], I [ f ( w ) ] ) - - - ~ C ] l f ' ( w ) [  ~, 

where t is the function of w ~ s -~- l / Z  I n such that 

s  / t  2 
[ d Y ( t )  ~ d t  
 at! " 

Moreover s o is the arc length taken along the orbit. 
The first and second equations ( Io)  may be termed the differential equations of 

normal and tangential displacement respectively along the orbit x -~ x( t ) ,  y ~--y( t ) .  
Every slightly varied orbit yields a normal and tangential displacement which are re- 
presented to terms of higher order by ~Sn, ,Ss  where ~ is an infinitesimal; and con- 
versely. 

The precise relation of the equation of normal displacement to the orbits is es- 
sentially contained in the usual theorems of the Calculus of Variations. In fact it is 
well-known that the parametric problem of lninimizing the integral 

leads at once to a set of extremals which are precisely the orbits in the restricted 
problem of three bodies for the given C. This becomes immediately obvious if the 
paranleter t is so chosen that the integral relation (3) holds. The equation of normal 
displacement is the differential equation of JACOBi for this Calculus of Variations problem. 

Levi-Civita's F o r m  of  the Equations  of  Motion. 

The form of (I) ,  (3) due to LEvI-CIvITA results from the following transforma- 
tion of variables 

(13) x - -  F - -  p2 __ q=, y - -  2pq ,  d t  = 4(p  2 -~- q')d-r. 

This may be written 

Z = f ( w )  --- I* + W~, d t - -  If' (w)[' a v 

where Z : x -i t- t / -  iy ,  w : p  + 1 /Z i q, and fails under the type of transformation 
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considered in ~ 2. If applied to (I) ,  (3) we 
o f  LEVI -CWITA 

d2p ~,dq 
d.~, 8(p" + q )~- 4 - -  

d*q , ,dp 
(i4) U ~  + 8 (F  + ~ ))-~- = 

dp .~ 
\d-~ ] - -  

obtain at once essentially the equations 

[ 4 ( l l ( P ' - - q  ', 2 p q ) - - ~ - C ) ( P * - J - q ~ ) ] t  

[( ] 4 a ( F - - q ~ ,  2 p q ) - - s - c  ( F + q ~ )  
q 

8 P.(p~ --  q~, 2pq) - -  ~ -  

in accordance with the results of ~ 2. 

By this transformation the point J goes into the origin in the p, q-plane, which 
is not a singular point. In fact the term (i  - -  F)/r  or ( i  - -  ~)/(p~ + q*) in a, which 
becomes infinite, appears multiplied by a factor (p~-i t- q~). 

At p = q = o the third equation (14) shows that the square of the velocity is 
8 ( I -  ~.)for  the possible orbits. Hence the curves of motion are analytic curves 
without singularity near the origin. 

In consequence of these facts it is apparent that the orbits approach a cusped form 
near collision with S, and likewise with J '). 

The singularities of the transformed equations lie at o~ and at the two images of 
the point S in the p, q-plane. 

5 s .  

A N e w  Form of  the Equat ions  o f  Motion. 

In the present paragraph we shall use a similar transformation to remove the 
singularities at both S and J [see ~), Note]. The resultant fol"m of equations yields 
essential aid in Part II, and is undoubtedly of definite theoretical interest. Nevertheless, 
in Parts III and IV of the present paper, the simpler equations of LEvI-CIvITA turn 
out to be more convenient. 

In order to completely regularize the equations of motion, we proceed to effect 
the transformation of (I) ,  (3) corresponding to 

( I5)  ~ = f ( w )  = 2 w +  i - - 2 W  

The transformation from K to w admits of the alternative form 

( I 6 )  ~[ "~- 1 - -  ~L --~-~ ( w  + 1 - -  ~ )  2" { - - l e .  q . v - - ~  

From the equation (I5) we find at once 

(~, _ ~)2 @ + i - -  ~)2 
( I 7 )  K - -  ~/" ----- 2 w  AV I _ _  2 u  " , ~- "~'- I - -  ~" = 2 w  . j_ i _ _  2~/" , 
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and also 
(t8) f'(w) = 2 ( w -  I*)(w-Jr- i --t*) 

( 2 w  + t - -  2 t , )  ~ 

The explicit transformation from x, y, 1 to u, v, "~ is (~ 2) 

+ '  ( ~ ) +  " - _ , ~  i I l 
X = -- U ~. 2 a 

= , v( , ,  + + _  ~) + v  ~' 

__t v t V 
( Y ' ( I9 )  y - - -  ~ 8 u_[_~___I ,  + v= 

dt -~ [(u - -  ~.)~ -~- v~] [(u -~- I - -  ~.)~ -~- V~Jd.r 
4[ (  u + -~ - -  t,.) ~ + vJ  4 

(20) 

where 

The  resultant form of equations is then 

d~- ~ A p : d v  _ ~<(,,, v), 
d~. ~ 2 ?~ d' :  

(du V 

d ' - v  I ~p~ d u  - -  U * ( R ,  V),  

dv * -~- 2 P'~ dz" 

= 2 P* 04 v), 

2--''+ ++ ( ) ] 
( 21  ) ~* (,,, V) = P' P= I V - -  V') 04 + V" r V" I - -  V" I C 

4 p i g  80~ o r -20~ ~ - 3  t- 0,2 - - T  ' 

0 , = r  =, p ~ = r  ', p , = l / ( , , + + - ~ y + v  2. 
To obtain these equations we apply the method of ~ 2 for l ( x ,  y ) =  I and 

I i U(x,  y ) - ~ - q ( x ,  y ) - - 7 C ;  we need only express If '(w)l and a ( x ,  y ) -  7 c  in 
terms of the new variables u, v, and substitute these values together with X(x, y ) =  I 
in equation (9). By ( I8)  we find 

If' (w)l = e, P= 2 " 
20~ 

Also by ( i7 )  we find 
2 

, 203  , r= = ] Z ' J -  I - - ~ 1  = 203  

From (2) and these last equations we derive 

' C i ( i - - ~ . ) 0  : + ~ P :  ( ' - - "  '* ) - - J L c .  
q(x ,  y) - -  T ---- - 7  4P~ -{- 203 _ 0~ -Jl-" ~ _ 2 

The points w = B  and w - - - - I - { - p ,  correspond to the points Z--~, .  and 
= - -  t n t- p. respectively. Now ia*(u+ v) is analytic at these two points in the u, 

v-plane. The coefficients of d u/d'v and d v/d'r in the equations (20) are also analytic. 
Thus  the new equations have an ordinary point at (B, o) and ( - -  I -}-~., o) in the 
u, v-plane corresponding to (~., o) and ( - -  I + ~., o) in the x, y-plane. The  nature 
of the solutions at these points is given by the customary fundamental existence theo- 
rems for ordinary differential equations. 

The same examination shows that the only finite singular point of the new equa- 
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tions is at (--=2_ _]_ ~x, o) when p3 is zero. This point w - - - - - -  --'= n t-ix, and also w = - c o ,  

correspond to Z = ~.  
The equations (2o) remain regular so long as the particle P is not rejected to infin- 

ity in the x, y-plane. 
The  importance of the new form of equations consists in the fact that u, v, 

u' = du/d% v' = d v / d ,  form an adequate set of co6rdinates of the motion under 

all circumstances. Any set of values u, v, u', v' satisfying the relation 

( = )  ,,'~ + v '~ - -  ~ a*(, , ,  v) = o 

will be termed a state of motion. 
For each state of motion we have a unique set of values x, y, dx /d t ,  dy /d t  

satisfying (_3) provided that the point (x, y )  does not coincide with S or ]. In these 
exceptional cases it has been noted (9 4) that the motion is represented by a cusped 
orbit in the x, y-plane with cusp at S or J. T o  each u', v' corresponds a possible di- 

rection of the axis of the cusp. 
W e  shall agree to refer the state 

tide moves, and we shall proceed to 
exist always two and only two distinct 

If we denote by w and w the 
between these values the relation 

of motion to the x, y.plane in which the par- 
establish that for a given state of motion there 
sets of values n, % u'~ v'. 
two values of w for a given Z, there subsists 

I I 
( 2 3 )  2 - -  - - -  - - -  o .  w + : - - ~ .  w 2 + : - - V .  

This relation may be obtained directly f rom ( I6) .  The  transformations from Z to % 

and w 2 are analytic. 
Let "~i and % be the variables "r corresponding to w and w ,  derived by the 

method given in ~ 2. In accordance with our previous notation it is natural to write 

g.lJ = l, + r  I V  , "Ud2 = /J2 + C Z  IVa 
and also 

d ~  /d ,  = ,,; + r  ~ vl, a ~ / d , ~  = ,;  + r  ~ v;. 

These transformations from Z to w and w 2 lead us of course to the equations 
(20),  ( 2 I )  in which u, v, "r are replaced by u ,  v ,  "q and u2, %, % respectively. 

The  relation between % and ~'~ is furnished by the equations 

But we  have identically 

so that 

and thus we  find 

(24)  

where 

d t = If' (%)1 = d v, - -  If' (w,)[ = d v=. 

:( --- f ( w , )  = f ( w = )  

f" ( % ) d w ,  - -  f" ( w , ) d w , ,  

f , ( w  ) ~ , : _  f ' @ 3 ~ ;  

i f '  ( ~ , ) l  ~ - If'  ( ~ 3 7  ' 

w I = d w,/d v,, w'~ : d w]d'%. 
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The equations (23) and (24) give explicitly the relation between the two sets 
' v' and u~, v ,  u'~, v~' which correspond to the same state of motion. ~ 1 '  VI~ U ~ i 

It is evident that these sets are distinct as long as w and w~ are distinct. N o w  
w and w~ only coincide at ~ or - -  I -~ -~ .  If w approaches w~ in this way  we 
obtain 

lim ~ f (w=)(w) __-- lira dZVd~ - -  I 

from (23). Hence we infer that 
+ - o .  

If w I and w', were equal they would reduce to zero for w, - "  w - -  8- or - -  I -{- 8-, 
in contradiction to (22). This establishes that the two sets are distinct in all cases. 

We note in passing that the analytic transformation from w to w is of the 
type considered in ~ 2. It may be verified without difficulty that this transformation 
takes the equations (20) into themselves. At the same time it may be observed that 
the non-analytic transformation which replaces u, v, ~" by u, - - v ,  - - v  also leaves 

the equations invariant in form. 

PART If. 

ANALYSIS SITUS OF THE MANIFOLDS OF STATES OF MOTION.  

Geometric Representation. 

We are now in a position to form a satisfactory geometric representation of the 

totality of motions given by 0 ) ,  (3). Conceive of u, v, u', v' as the rectangular 
co6rdinates of a four-dimensional space, and consider the three-dimensional manifold or 
manifolds (22) lying in that space. These manifolds comprise all of the points repre- 
sentative of possible states of motion, and no others. 

The three-dimensional manifolds of states of motion are without singularity unless C 
has one of five particular values. 

In fact, since the left-hand member of (22) is analytic for any conceivable set of  
such values, it follows that the equations for a singularity are 

( 2 s )  u ' =  o,  v' = o ,  w (u, v )  = o,  v )  = o.  

The first two equations imply that ~2(x, y ) - - ~ C  is zero at the corresponding point (x, y), 
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since the function P.*(u, v) does not vanish at S or J and can vanish elsewhere only 

when la (x, y ) -  ~ C vanishes. The last two equations imply that ~.~ (x, y)-~P.fx, y)--o.  
These last equations may be written [see (2)] 

t (~ - ~.)(x - ~) ~,.(~ + ~ - -  ~.) U ( x , y ) ~ x - -  - -  = o ,  
r a (26)  rl ' 

a ( x ,  y ) ~ y  x r~ ' rl 

It is verified without difficulty that there are five solutions (x, y): 

i P m-(x  , o), P,~_(x , ,  o), P 3 ~ ( x 3 ,  o) ( x , < - - i + v . < x , < ~ < x 3 )  ' 

(27) P4~-~(--I-3vV-, ~-l/3), P ~ ( - - ' - ~ t " , - - ~ 1 / 3 )  ,o). 

Thus there is a singularity of such a manifold only when C has one of the five 

values necessary to make P.(x, y) - -  ~ C  vanish at PI,  P=, P~, P4 or Ps" At these 

values, for the corresponding u, v and for u' - -  v' = o, two of the manifolds (22) 
are about to unite or separate. We shall exclude these values of C from consideration, 
so that in all remaining cases the manifold is non-singular and any small part of it 
may be represented in ordinary space. 

To each point of a manifold of states of motion there will correspond one and only 
one curve of motion. This will pass througb the point with a definite direction which is 
an analytic function of position in the space. 

In fact, we have from (2o) 

du dv du' dv' 

- ~ , e ,  + n : (u ,  v) ~ ~ : 0 ~ 7 ~ , , ' + , a * ( , , ,  v) 

Our statement is certainly valid unless all four denominators can vanish simultaneously. 
In this case four equations, essentially the same as the four equations for a singularity 
of the manifold, are obtained. These have been proved inconsistent unless "C has one 
of the five excluded values. 

The totality of states of motion may thus be thought of as given by the steady 
motion of a three-dimensional flow occupying a non-singular manifold in four-dimen- 
sional space. As v changes, each point moves along a non-singular stream line which 
represents the orbit in the x, y-plane. 

This motion leaves unaltered the volume integral 

(28, f f 2 ~-~* (u, v) 

extended over a part or the whole of the three-dimensional manifold (22). For, if we 
write 4, = arc tan dv/du and employ (22), it is clear that the above integral becomes 

xo) Cf. C. L. CHARLIER, Die Mechanik des Himmels (Leipzig,  Veit ,  i9o7)  , vol. II, pp. io2-I  17. 
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(30)  

But we 

Now our equations of motion (20) may be written [compare with (5')] 

du 
= l12~-~*(u, v ) c o s +  = u( , , ,  v, +), 

dv 
-= 1/2-q*(u, v)s in ,~ : V(u, v, +), 

aA - _ L P~P~ + - ~-'*~(", v) sin + + ~*(, , ,  v) cos + 
d'r - -  2 i~ 1/2 ~* (u, v) 

have 

so that 

= u,(u,  v, +). 

v (,,, v, + ) +  v (,,, v, + ) +  %(, , ,  v, +)=_ o, 

the integral (29).does remain invariant. 

w  

On the Regions of Motion. 

It is of primary importance to determine the nature of the three-dimensional man- 
ifolds of states of motion. Prior to doing this we need to consider the nature of 

the regions ~(x,  y) - -  ~- C ~ o in the x, y-plane, and of the corresponding regions 

~*(u, v ) ~  o in the u, v-plane in which, by (3) and the last equation (2o), motion 
is only possible. The  essential facts concerning the regions in the x, y-plane are well- 
known and will only be outlined. 

We have observed [see (26) and ('27) ] that the simultaneous equations l!x (x, y ) =  o, 
~.-~,(x, y ) =  o are satisfied at five points P ,  P ,  P ,  P ,  P5 of the x, ),-plane. The  
first three of these lie on the axis of x on the three segments into which S and J 
divide that axis. The  last two points form the remaining vertex of the two equilateral 
triangles which have S and jr as vertices. Also q(x ,  y) becomes infinite at S, at J, 
and at infinity, and is everywhere positive. 

Consider the family of algebraic curves fl (x, 3') - -  ~- C = o which form the boun- 
daries of the regions under consideration. For each pair of points (x, y), (x, - - y )  we 
get one and only one value of C. Therefore if C be made to decrease from -~-oo 
to zero, each member of the family of curves generated is symmetric with respect to 
tile x-axis, and one of the curves passes through each point of the x~ y-plane. 

For C large and positive we obtain obviously two small approximately circular 
ovals about S and J, and a large approximately circular oval containing S and f. For 
such values of the constant C the ,notion takes place either within one of the smaller 
ovals (Case I) or outside of the hlrge oval containing S and J (Case II), inasmuch 

as P.(x, y ) - - ' ~ - C  must be positive by (3)- 

As C diminishes, the small ovals expand and the large one contracts until the 
two smaU ovals unite at P= along the axis. 

In fact, it can be established without difficulty that at P4 and P5 the function 
Rend. Circ. 3[atem. Palermo, t. XXXIX (L o sere. 19*5).--Stampato il 9 maggio zgt 5. ~6 
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l~-(x, y) has its absolute minimum. It can also be established that the absolute minimum 
of i~(x, y) within the segment SJ of the x-axis exceeds the value of fl(x, y) at the 
same distance from S or ] but outside of this segment. Consequently l.~(x, ).) has a 
greater value at P~ than at P ,  P ,  P4, P~, aud the two smaller ovals will unite at 
P2 as stated. 

Within the double oval about S and J, so formed, motion may take place (Case III), 
At the ,lext stage the large outer oval and the double oval unite at P (or P3) 

into a horse-shoe shaped oval cutting the x-axis twice to the right of J (or the left 
of S). Motion may take place outside of this oval (Case IV). 

If C be decreased further, this oval breaks up into two symmetrical ones on 
opposite sides of the x-axis by passage through P3 (or P), and motion takes place out- 
side of these two ovals (Case V). 

These two ovals diminish to the points P4' P5 and vanish, as C decreases further 
to 3. For C <~ 3 motion is possible throughout the plane (Case VI). 

These are the well-known facts which we shall need to use x,). 
Let us now inquire into the nature of these regions of motion as represented in 

the u, v-plane. The transformation from the x, y-plane to the u, v-plane is given by 
(16). This equation shows that a suitable representation of the transformation may be 
obtained by taking a RIEMaNN surface of two leaves in the x, )'-plane with branch 
points at S and J, and making one value of w correspond to each point of this sur- 
face. 

It may be observed at once that the ovals in the u, v-plane are symmetric with 
respect to the real axis, inasmuch as the ovals in the x, ),-plane are symmetric with 
respect to the axis of reals in that plane, and conjugate values of Z. yield conjugate 
pairs of values of w. 

In Case I the region of motion including J may be deformed into a small oval 
about J in this RtEMANN surface without passing over the branch points S and ]. 
Hence in the u, v-plane the region of possible motion will be the interior of an oval 
about w --- p.. 

In Case II the region of motion may be deformed (under the same restriction) 
into the exterior of two superimposed large ovals about ; ( - -oo  including 5 and J, 
one in each leaf of the REEMA,XN surface. These regions correspond to the interior of an 

oval about w ~ ~ p. and to the exterior of an oval about zt, = oo in the u, v-plane. 

The motion may be represented in either region. 
In Case III the region of motion may be deformed into the interior of two 

large superimposed ovals about Z - - - ~  in the RtEslAxx surface. In the u, v-plane the 
region of motion will accordingly consist of the ring lying between an oval about 

w ~ •  and an oval about w-- 'oo .  The points w ~ - -  I +IJ .  and w - - 8 .  2 

lie one on each of the two segments of the u-axis within the ring. 

t t )  LOC. r Io). 
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In Case IV we have two superimposed ovals in the RIU.MANN surface, each of 
which can be deformed to a point. Hence in the u, v-plane there will be two ovals. 
Since, at the two intersections of tlle oval with the x-axis in tlle x, y-plane, the ratio 
(Z "or- I ~ ,t,.)/(Z - -  ~.) is real and positive, each of the ovals in the u, v-plane intersects 
the real axis twice. The fraction ( w - [ -  I - -  ~,.)/(w - -  ~*) is positive for one oval and 
negative for the other; the first oval cuts the u-axis to the left of w - -  - -  I -[-?., or 
to the right of w - - ~ ,  and the second oval cuts the u-axis between w - -  ~ I -[-I* and 

! 
w ---~ ~,. on the same side of w --- ~ -; -~-/*. The region of possible motion is the 

region exterior to these ovals. 
In Case V the two ovals in the x, y-plane will yield four ovals superimposed in 

pairs in tile R[EMANN surface, all of which can be detbrmed to a point. The region 
of motion in the u, v-plane will therefore be the part of the plane exterior to four 
ovals. Inasmuch as the ovals in the x, y-plane do not cut the real axis, the ovals in 

the u, v-plane will not cut the real axis, and the four ovals are two-by-two symme- 
trically placed with respect to that axis. 

In Case V[ motion is possible throughout the u, v-plane. 

A Problem in Ana lys i s  Situs.  

We are now in a position to consider the nature of the three-dimensional mani- 
folds of states of motion, and we begin with Case I. The point (u, v) is restricted to 
lie in an oval about J in the u, v-plane. Any such pair of values u, v together with 
values u', v' subject to (22) yields a possible state of motion. 

But to any point ( u ,  v,) in this oval there is a point (u=, %), also within it, 

such that the two associated points in the RmMANN surface given by ( I 6 ) l i e  one 
above the other. The corresponding values % and w= of w are related by (23). This 
equation makes it certain either that one of the points ( u ,  %), (u=, %) lies in the 
upper half plane and the other in the lower half plane, or else that both lie along 
the real axis. 

Let us therefore confine ourselves to the upper half plane v ~ o. By doing so 
we obtain a single representation of each state of motion for v =7~ o. A double repre- 
sentation of each state of motion v = o will be obtained. 

Now, given u, v~_o,  and u' such that l u ' [ ~ l / 2 ~ * ( u ,  v ) ,  there will correspond 

two values of v' equal in magnitude and opposite in sign such that u, v, u', v' satisfy 

(22). These values of v' coincide and become zero for lu'l = r  v). 
Thus the manifold in question (v ~ o) is in two-to.one continuous correspon- 

dence with the three-dimensional manifold 

2 (,,, v) o,  v o,  - 1,'2 (,,,-v) A , c / "  (,,, v ) .  

The two values coincide along the surface ]u'] = 1/2~a*(u, v). 
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Taking into account the fact that 1/2L'*(u, v) is positive within the oval and 
zero along its boundary, we see that tile above u, v, u'-m:lnifold is in one-to-one con- 

tinuous correspondence with the u, 'v, u'-manifold 

- -  ,7 2 - -  ~ ~ o, g ~  o, - -  1/~ - -  7,; - -  ~ ~= L~'I ~ l '/~ - -  ,5 ~ - -  v ~. 

If u, v, u' be taken as rectangular co6rdinates of a point, this l epresents a hemisphere. 
The manifold of states of motion which we are considering (v ~ o) and the 

points of this hemisphere, doubly taken except along the spherical surface, are in one- 
to-one continuous correspondence. The states of motion .v = o will be represented by 

points of the plane surface v = o. 
It follows that the states of motion in question are in one-to-one continuous cor- 

respondence with the points of a sphere. This sphere may be conceived of as formed 
from the two henfispheres by reflecting one of the hemispheres in its spherical boundary, 
leaving points of that boundary invariant, and by- cffecting a suitable distortion. 

The bounding surface of tile sphere so obtained is compounded of two hemispher- 
ical parts coming from the doubly taken plane boundary of the hemisphere. These 
parts are in one-to-one continuous correspondence with the manifold u, v - - o ,  u', 
v ' ~ .  o and the manifold u, z, = o, u', v ' / "  o respectively, and have in common 
the bounding circle for which v ' - - o .  

If we employ the notation of ~ 5 to represent the pair of points (u, v, u', v') 
giving the same state of motion, it is clear that w and zc, are real for v ~ o; also 
from (23) it appears that the ratio of w' to zc,' is real and negative in this case. 
Hence each point of one part of the bounding surface is paired with a point of the 
other part of the surface which represents the same state of motion. Along the 
common circle, a point u ,  v = o ,  u ' ,  v; = o  will be paired with a point n,, v=---o, 
u;, v; = o of the same boundary, and no pair of points coincide in one (see ~ 5)- 
This property shows that the pairing along the boundary is essentially equiwllent to 
that obtained by pairing opposite points of the circle and may be reduced to it by 
distortion. 

By a second distortion each point in one bounding hemispherical surface of the 
sphere may be made to lie diametrically opposite the point with which it is paired in 
the other hemispherical surface. 

In Case I, when the motion takes place in an oval of zero velocity about J, the 

states of motion are in one-to-one continuous correspondence with the points of a sphere 

on wbich opposite points are taken as identical. 
a 

Let x~ -l- x~ q- x 3 - -  t be the equation of this sphere, where x ,  x~, x 3 are rect- 
angular co6rdinates; if then we write 

- -  _ _  X x - -  ~ X 2 - -  - -  X 1 
X ---- /--2 X~ 2 ' X2 ~ X3 ~ a I - -  . 2  x, + + x~ r + x; + x~' ;/x~ + x~ + ~ 

the points x ,  x~, x~ and x., x~, x 3 of the space of inversion are so paired that the 
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interior of the sphere corresponds to the exterior of  the sphere, and opposite points 
on the sphere are paired. It follows that the manifold of states of motion in Case I 
is in two.to one continuous correspondence with tile points of  tile space of inversion 'a). 

In Case II it has been noted that for any point in tile oval in the x, y-plane 
1 there is but one point of the oval about z t , - - - - T - [ - ~ *  in the u, v-plane. Moreover  

the point w _ ~ -~-~. corresponds to the singular point a~ = oo. By (22) the man- 

ifold of states of motion will be in one-to-one continuous correspondence with a 
man if old 

7'~ + v ' ~  = I - - , 5 ~ - - v  ~ 

i from which the sets of values u = v = % corresponding to zv = - -  ~- qt_/a., are 

excluded. But this is the surface of a hypersphere in four-dimensional space from which 

the closed line u = v = o, u'-' + v '~ ~- I is excluded. Either this fact or a direct 

analysis of the u~ v, u', v'-manifold leads to tile conclusion: 
iu Case I1, when the motion takes place iu the exterior of an oval including, S 

amt J, the states cf  motiou are in oue to-oue conlinuo,s correspomtence with the points of 
the space of inversion exclusive of a closed singular line whose neighborhood corresponds 
to the neighborhood of infinity in the x, y-plane. 

By an expansion of the singular line into a closed tube and an inversion of  space 
about an interior point of the tube it is possible to obtain a representation in tim in- 
terior of an anchor ring whose boundary corresponds to the neighborhood of infinity. 

It would have been possible to obtain the results for Case I somewhat  more 
simply from the equations of LEvFCIVlTA, and for Case II from the equations ( t ) .  

To  deal with Case III we proceed much as in Case I. As in Case I we have 
two points in the three-dimensional manifold u, v, ~d, v' representative of  each state 
of motion. This appears from the fact that superimposed points within the double 
oval in the RIE~AN~/ surface correspond to distinct points in the single ring-shaped 
region in the u, v[plane. 

Moreover, as before, we  obtain a single representation of each state of  motion 
by taking v " ~ o ,  with the exception of the states of motion v = o ,  which are doubly 

represented. For a given n, v ~ o and u' such that l u ' l / 1 / 2 1 ~ * ( u ,  v), we have t w o  
values of v' equal in magnitude but opposite in sign. These values merge and become 

zero for [u' I -~-1/25a*(u, v). 
The function ~a*(u, v) is positive within the ring-shaped region of motion in the 

u, v-plane, and vanishes along the two boundaries. Let u, v, u' be taken as rectang- 
ular co6rdinates of a point. If  we bear in mind the condition v ~ o, it is clear that 

the states of motion under consideration are in two-to-one continuous correspondence 

i.~) Cf. H. POINCARI~, loc. cit. 2), p. i99. Also a), p. 380. Professor O. VEBLEN has called my  
attention to the fact that the space of projective geometry also affords an equivalent representing space. 

This is not, however, the space of  the co6rdinates. 
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with ttle half of an anchor ring whose curved surface corresponds to I"'i = 1/2~-~*( u, v), 
and whose bounding meridian plane corresponds to v = o. The two states of motion 
merge along the curved surface. 

This region may be deformed into tile region of space between two concentric 

hemispheres so that the spherical surfaces correspond to the two sections of the anchor 
ring by the meridian plane, and the plane boundary corresponds to the curved bound- 

ing surface of the anchor ring. To each point of this hemispherical solid corresponds 

two states of motion, which merge along the bounding plane. 
Hence, if we consider this solid as doubly taken, and make a reflection of one 

of the solids about this plane leaving the points of the plane invariant, we obtain a 
representation of the states of motion in the region between two concentric spheres, 
which is one-to-one and continuous save along the two bounding spherical surfaces 
where it is two-to-one. But these two surfaces are each of the same nature as the 
similar spherical surface in Case I. Thus we reach the following conclusion: 

In Case III, when the motion takes place in the interior of an oval of zero velocity 
containing S and J, the states of motion are in one-to-one continuous correspondence with 
the points between two concentric spheres on each o f  which opposite points are taken as 
identical. 

The original manifold u, v, u', v' represents each state of motion twice. We may 
unite two solids each bounded by a pair of concentric spheres in such wise that they 
form a like solid and give a one-to-one continuous representation of the u, v, u', v' 
manifold. Similarly placed points on the two bounding spherical surfaces are to be 
taken as identical. A complete representation of the motion in ordinary space is obtained 
by joining an infinite number of such solids so as to fill all of space except the origin. 
An infinite set of points will, however, correspond to the same state of motion in 

this representation. 
With the aid of entirely similar methods the remaining cases can be discussed. 
In Case IV, when the motion takes place outside of a~l oval containing neither S 

or J, the states of motion are in one-to-one continuous correspondence with the points 
between two concentric spheres on each of which opposite points are taken as identical, 
provided that two oppositely placed non-intersecting closed lines on one of the spheres are 
excluded. The neighborhood of these lines corresponds to the ~leigbborhood of infinity in 
the x, y-plane. 

The treatment of Case IV is of course based on the nature of the region of 

motion in the u, v-plane. This region is a ring from which two points w - -  ~ ~ F ,  

w - - c ~  are to be excluded. The treatment can be made essentially as in Case III. 
In Case I1, when the motion takes place outside of two symmetric ovals containing 

neither S nor ], the states of motion are in two-to-one continuous correspondence with the 
points of a right circular cylinder from which two smaller circular cylinders with parallel 
axes have been removed. The two states of motion merge along all the boundaries save 
the lateral boundary of the given cylinder. Along this boundary two points representing 
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states of motion from the two different sets are taken as identical if the), lie along gene- 
rators symmetric with respect to a fixed plane through the axis, and are at equal distances 
from opposite bases. The neighborhood of two symmetric singular generators corresponds 
to the neighborhood of infinity in the x, y-plane. 

The fairly complicated geometrical representation in Case V is obtained by con- 
sidering the states of  motion v ~ o. If u, v, u' are taken as rectangular co6rdinates 
of  a point in space, we obtain at once the representation given. 

The stated correspondence in pairs of the states of motion v -~- o, which yield 
the generators of the given right circular cylinder, is easily verified under the following 
conventions. To  each generator corresponds a single u (inclusive of the singular gen- 

erators u -  ~ ~-Is., u ~ oo). Let 7. denote the angle between the n-axis and the 

direction of motion at (u, o) in the u, v-plane. The ends of the doubly taken gen- 

erator (v '  = o) correspond to Z = o, Z = w and to Z - -  7:, Z = 2~.  
N o w  the values of u for v = o are paired by (23), in such wise that as one 

point (u, o) goes from S to J along the segment S J  of the u-axis, the other traverses 

the two outer segments S o o, and ooJ ;  the two points (u, o) coincide at S and J. 
By a suitable deformation corresponding paired generators may be placed symmetrically 

about a plane through the two generators u = ~ i -I- ~" and u = ~. 
Paired generators yield the same point in the x, y-plane. In order that the values 

of 7. for paired values of (u, o) give the same state of motion, these values must 
differ by x. This conclusion results at once from the fact that the transformation from 
one value of w to the other is analytic, and the further fact that associated points are 

arranged in opposite order on the line v = o in the n, v-plane. 
Hence the correspondence along the generators is essentially as stated. 
In Case VI, when the motion is unrestricted, the states of motion are in one4o-one 

continuous correspondence with the points of an anchor ring on which points symmetric 
with respect to the center are tal~'en as identical. The neighborhood of one of the two 
singular closed lines forming the intersection of the anchor ring and the central plane 
corresponds to the neighborhood of infinity in the x, y-plane. 

In Case VI, as in all the other cases, we consider the states of motion as repre- 
sented by co6rdinates u, v, u' for which we have v ~_o. This yields two states of 

motion for a given u, v, u', merging for [u' I --~ l/2f~*(u, v). 
Since u and v are unrestrictcd except for the condition v ~_ o we obtain a two- 

to-one representation by a right circular cylinder as in Case V, except that here no 
part of  the cylinder is removed. Moreover the correspondence along the generators 

is the same are in Case V. 
The  representation by a double cylinder so obtained is clearly equivalent to the 

representation stated. 

The  results above show that the restricted problem of three bodies presents fund- 

amentally different aspects for different values of the constant of  JacoBI. 
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There are other problems of analysis situs, such as a partial classification of the 
possible types of periodic orbits, which can be based on the above results. But the 
conclusions to be obtained are not sufficiently definite for our purposes. 

In the remainder of the present paper I shall confine attention to Case I. Of the 
other cases, only Case I1 appears not to present difficulties beyond those of Case I. 

PART I I I .  

INVESTIGATION OF POINCARI~'S RING TRANSFORMATION.  

R e p r e s e n t a t i o n  o f  t h e  S t a t e s  o f  M o t i o n  for  ~. - -  o. 

The greater simplicity in Case I is closely associated with the fact that here we 
have an approximation to the two body problem, at least for ~ sufficiently small or 
for C sufficiently large. Let us therefore commence with a consideration of the extremely 
instructive limiting case ~, = o ~a). 

Tim body J is of mass t and lies at the origin in the x, y-plane while the body 
S is of mass zero and lies at ( - -  I, o). 

d~x dv ( I )  d~y d x  ( I ) 
(31) dt.~ - -  2 ~ ---~ x I rV , dt~ -~- 2 d7 = 3, I rg  , 

2 
(32) v 2 = U ( r )  ~ r= q C, 

r 

where we have written r = I'x:--~-y ~, and where v denotes the relative velocity of P 
in the rotating x, ),-plane. These equations are directly integrable. In fact the particle 
will move attracted to the fixed boJy J of mass unity according to the Newtonian 
law, and its relative motion in the x, ),-plane will be in a conic section with focus 
at J which appears to rotate in a negative sense with unit angular velocity. 

If we restrict attention to the case C2> 3 there will be two circles of radii r' ~ I 
and r " >  I along which the relative velocity will be zero. The particle may move 
within the smaller circle or without the larger circle. These facts come at once from 

the equation (32). We will confine ourselves to the first cas% in which the particle 

*a) Much of the material presented in this and the following paragraph is given in a different 
form by PO~NCARg" see u). 

The differential equations and the integral of J.r take the form 
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necessarily moves in a rotating ellipse, whose senti-major axis and eccentricity we will 

denote by a and e respectively. 
If 0 measures the angle between the radius vector from the J to P and the posi- 

tive direction of the x-axis, the same angular co6rdinate relative to a fixed line through 
J is 0 _3;_ t. Thus, by the law of areas for elliptic motion, we get 

(33) r2JT(O ~t_ t) = + t/aO --  e~), 

since the mass of f is unity. The positive or negative sign is to be taken according 
as the motion is direct or retrograde with respect to fixed axes. At an apsidal passage 
we have dr/dt--o.  Hence the relative velocity v in the x, y-plane is rdO/dt. If now 
we note that at a lower apsis we have r ~ a ( i - - e ) ,  the above equation yields at once 

I/' § ~ (34) v = __+. _ .) 

Substituting this value in (32) and simplifying, we find 

(35 )  b - - -  C - 21/Y + T1/a" 
The quantity b here introduced designates the semi-minor axis taken positively or neg- 
atively according as the motion with reference to fixed axes is direct or retrograde. 

The relation (35), which imposes a single condition upon the elliptic motion, 
yields us all possible types of motion for the given value of C, and no others. In fact 
by retracing steps it may readily be shown that if(35)obtains,  the relation (32)holds  
true at lower apsidal passage for the given C and thus holds always for the same C. 

The function V(a) forming the right-hand member of (35) is negatively infinite 
for a = o and is zero for a = I 'C.  Its first derivative as to a is constantly positive 
and its second derivative is constantly negative. Furthermore for a - - t  we find 

b ~ - ~ ( C - - I )  > I. Hence the curve b= V(a), where a and b are taken as rectang- 

a 

O 

(Fig. #. 
Rend. Circ. Ma~em. Palermo, t. X X X I X  O o sere. x915) , - -S tampato  il 9 maggio 1915. 37 
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ular co6rdinates of a point in the plane (fig. 2), has as asymptote the negative /'-axis. 

As a increases, /, increases. The curve is constantly concave toward the a-axis; it 

crosses the line h - - -  a once, and the line b ~---a twice, once for a ~ i and once 

for a ~  i.  We will denote the values of a ~ I  for which / ' = - - a  and b = + a  

by a and a 2 respectively. 
The part of the curve a ~ a ~ a for which Ib[ ~< a comprises all points cor- 

responding to a possible elliptic motion which lies within the oval r = r', and no 
others. In fact, if a ~ I such a motion cannot lie wholly outside of the oval r - -  r " ;  

and if a ~ i it cannot lie wholly inside of the oval r = r'. 

It is therefore obvious that the totality of orbits to be taken into account cor- 
responds to the range a ~ a ~ a 2 giving a segment M N  of the curve, where M 

and N are the first points of intersection of the curve with /' = - -  a and b = -o r- a 

respectively. 
A circular motion is characterized by the condition b = ! a and we will have 

the + sign if the motion is direct with respect to fixed axes, and the - -  sign if it is 

retrograde. Since the particle P lies nearer to J than S does ( r / "  r' ~ i )  the mean 

angular velocity of P with respect to fixed axes will exceed that of S. Consequently 

according as we have the-o r- o r -  sign the motion is direct or retrograde with 

respect to moving axes also. 
The form of the curve b - -  V ( a )  shows that we have two and only- two possible 

circular motions, one retrograde of radius a and the other direct of radius a .  The 

first corresponds to the minimum value of a and the second to the maximum value 

o f  a.  

The fact that the segment M N  may be described continuously by a point passing 

from M to N indicates that the possible types of motion may be arranged in a contin- 
uously varying series beginning with the direct circular and ending with the retrograde 

circular motion. The value I /C  of a corresponds to an orbit of ejection which is thought 

of as continued analytically after the collision. 

From (35) we find at once 

__C 

(36) i C1/-a" 

Also if ~ stands for either a, 

and hence that 

a 2 

or a= we find that 

c = +__ 21/-g + - -  
I 

d C  i i 
Q 

This quantity is negative for 0c ,~  I. Thus we can state the following conclusion, 

service to us later: 

of 
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As C decreases from oo to 3 the radii a, and a2(a ' ~ a ~ I) of the retrograde 
I and direct circular orbits increase from o to 7 and I respectively. 

We shall now inquire into the structure of the three-dimensional manifold of 
states of motion, which, by the results of ~ 8, is equivalent to a sphere on which 
opposite points are taken as identical. 

A satisfactory set of variables in this connection is furnished by the semi-major axis 
a of the rotating ellipse, the longitude 0 of the line of apsides of the ellipse with 
reference to the x-axis, and the mean anomaly ~b of the particle reckoned in the same 

sense as the motion. 

The variable a ranges from a, to a determining a unique b, and thus the figure 
of the ellipse and the sense of the motion. The variable 0 determines tile instantaneous 
position of tile moving ellipse in the x, ),-plane. The variable ,~ determines the instan- 
taneous position of the particle in its ellipse. 

Evidently any a, 0, + determines a unique state of motion so long as a is not 
equal to one of its extreme values a ,  a 2. In this case 0 and ~. become indeterminate. 
Conversely, any state of motion not corresponding to one of the circular orbits yields 
a unique a, 0, +, where it is understood of course that 0 and + are angular variables 
of period 2~. With these co6rdinates collision does not present any singularity. 

Let us exclude for the moment the states of motion along the circular orbits, and 
take a, 0, + as cylindrical co6rdinates of a point in space. The totality of states of 
motion is then represented in a one-to-one and continuous way upon the interior of 
the hollow cylinder a ~ a  ~ a ,  o ~ + ~ 2 7 : .  Opposite points on the two bases 

+ = o and + - -  2~  represent the same state of motion. This solid is therefore of  
the same nature as an anchor ring. 

As t changes, the variables a, 0, + change in accordance with the equations 

3 

(37) a - - ao ,  0 = - t + 0 o ,  +=ao  t++o 

in which ao, 0o, +o stand for the values of a, 0, + at t = o. These relations are 
obvious from the definitions of a, 0, + and from the fact that the mean angular ve- 
locity n of P fulfills the relation n 2a 3 = I, the mass of J being unity. 

Hence we see that the curves representative of motion in a, 0, hb-space are the 
3 

spirals on the cylinders a - - c o n s t a n t  which have pitch - - a  ~ 

Along the boundary of the cylinders the representation fails. To make plain what is 
happening here, we observe that a given state of motion on the direct circular motion 
determines 0-[-+ although it determines neither 0 nor +. The spirals 0 + + --- constant 
on the outer bounding cylinder correspond accordingly to the individual states of 
motion along the direct circular orbit. Likewise the spirals 0 -  + = constant on the 

inner cylinder correspond to the individual states of motion along the retrograde circular 
orbit. 
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I O .  

The Ring Transformation for ~, . - -o .  

(38) 
where a, 0, o are 

Isle (37)]- 

In the special case H" ~---o, and also in the general case p. # o, the restricted 
problem of three bodies admits of a species of reduction, observed by POnqCAR~ ~), by 

which the representation as a steady flow in three dimensions is replaced by a repre- 
sentation depending on a discrete transformation of a two-dimensional ring into itself. 
We will treat the extremely instructive case H" = o in the present paragraph. 

Let K be any point of the ring + = o in the representing cylinder (~ 9), aud let 
L be the point in which the curve of motion through I( first meets the ring '~, = 2.x. 
Corresponding points of these two congruent rings represent the same state of motion. 
Thus the transformation which takes K to L defines a transformation T of the ring 

+ - -  o into itself, 
3 

a '  ~ a ,  fJ' ~ 0 - -  2 ~ a  2 ,  

the co6rdinates of K, and a' ,  0' ,  2,-: are the co6rdinates of L 

To the essential properties of this transformation (which is a rotation) there cor- 
respond properties of the curve of motion, and vice versa .  For instance, if the motion 
is periodic, the point K is taken into itself by a certain number k of repetitions of T. 
If at the same time 0 diminishes by 21r., we find, as the necessary and sufficient 
condition for this type of periodic motion, 

3 

0 Ik) - -  0 ~ 2 ~ k a  2 - -  0 - -  2 1 ~ .  

Here we let 0 ~k~ denote the value of 0 after k repetitions of T. We thus obtain 
3 

k / l  ~-~ a - ~  as the condition upon a which makes the motion periodic. Inasmuch as a 
varies between a and a, ,  any k / l  is possible for which 

3 3 

a 2 ~ < k / l  < a 2 

The detaih.d treatment of the periodic orbits in this case offers no difficulty. We 
content ourselves with noting two salient facts. The quantity, k / l  is the mean angular 
velocity of the particle in fixed space referred to the angular velocity of the moving 
axes as unit; k circuits of the apparently rotating ellipse are made while that ellipse 
undergoes 1 complete revolutions. After a single circuit of the ellipse the line of apsides 
has regressed through an angle 21"z/k .  

The transformation T admits of a simple geometrical interpretation in the x ,  

),-plane. To obtain this interpretation we first observe that the condition + = o cor- 
responds to lower apsidal passage. Now at apsidal passage the direction of motion in 
fixed space is at right angles to the radius vector to the origin. The rotation of the 
x, y-plane is also at right angles to this radius vector. Hence the direction of relative 
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motion is at right angles to tile radius vector in the x, y-plane at apsidal passage (the 

case of zero velocity is included). The converse is also seen to hold. 

To  distinguish between higher and lower apsidal passage we note that, for r > a=, 

motion at right angles to the radius vector in the x, y-plane will necessarily correspond 
to higher passage inasmuch as the distance from the origin exceeds the maximum semi- 

major axis. Similarly, for r / Q  a ,  motion at right angles to the radius vector must 

correspond to lower passage. 
Suppose now that we consider the continuous series of states of motion y = o, 

dx/dt~o in the x, y-plane. Here we let x increase from a s to r' with d),/dt~o, then 

decrease ft'om r' to zero with dy/dt ~ o, and finally increase from zero to a 2 with 

d)./dt~ o. It is clear that the series of states of motion thus obtained is represented by 

a continuous line in the u, v, u', v'-space of ~ 6 or any equivalent space. For, at 

x =  r' we have dy /d t=o  as well as dx /d t~o ,  while at .v-a- o we have 0 = o ,  

-----o; hence the apparently distinct series merge at the extreme limits for x. 
As the orbit passes through this series of forms, the states of motion at first 

corresponds to a higher apsis. This will not change to a lower apsis until the state of 

motion belongs to one of the two circular motions. This only happens after a has 

decreased from r '  to a .  This part of the series corresponds to higher apsidal passage. 
Likewise, if we commence with the other end of the series, we are led to the 

conclusion that as x diminishes from a to zero and increases to a~ we have lower 

apsidal passage. 
In other words, if we imagine two series of auxiliary circles drawn with J as 

center in the x, y-plane, the first of retrograde sense and of radius less than a ,  the 

second of direct sense and of radius less than as, the states of motion corresponding 

to lower apsidal passage +--~--o may be characterized as those for which the path be- 

comes positively tangent to a member of this double series of circles. 

It is necessary to make the convention that the null circle r = o is a member 

of both families and is tangent to any orbit of collision through it in the direction 

perpendicular to the axis of the cusp at collision. To such a direction corresponds an 

ideal point of the null circle. 
When this convention is made, a complete representation of the states of motion 

= o will be given by the points of this double series of circles which is obviously 
of the nature of a ring. The ring may be regarded as given by a species of surface 

of two leaves in the x, y-plane. One of these leaves extends to the circle a - - - a , ,  the 

other to the circle a = a , ;  and the two leaves are joined together at the origin along 

a single infinitude of ideal points as specified above. 
Accordingly this ring is in one-to-one continuous correspondence with the ring 

+ = o  in the a, 0, + space. The explicit nature of the correspondence is obvious also; 

for, the lines 0--- constant correspond to the radial lines making an angle 0 with the 

x-axis. If  a varies from a to a= while 0 is fixed, the point in the x, y-plane moves 

from the circle of radius a, to the origin and out to the circle of radius a~ along the 

appropriate radial line; the distance from the origin for a given a is a - -  1/~ - -  b ~. 
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Now let K be a point of the ring, represented in the x, ),-plane, and consider 
the orbit in that plane positively tangent to an auxiliary circle through the point 
(,~ - -  o). The associated point L into which K goes by the transformation T is 
then the first subsequent point of positive tangency of the same orbit with one of 
these circles (~ m_ 2~). The specific form (38) of the transformation shows that the 
successive points of positive tangency lie on one land the same circle r = constant, 
and are displaced through equal negative angles about the origin. 

Thus  our results may be given in the following form: 
For ~. ~- o and C ~ 3 there exists a retrograde circular orbit of radius a, and a 

direct circular orbit of radius a ( a  ~ a: ~ I) about J as center in the x, ),-plane. If  we 
construct a family of concentric retrograde circles of radius less than a and a similar 
series of direct circles of radius less than G,  these circles may be regarded as forming 
a ring of two leaves joined together at the origin in the x, y-plane, each leaf being 
given by one family of circles. For any point K of a circle of the ring v'e have a posit- 
ively tangent orbit .which will again become positively tangent at a point L for the first 
time. In this zvay a one-to-one continuous transformation of the ring into itself, taking 
an), point K into the corresponding point L, is obtained which leaves radial distances 

3 

a ~ from J unchanged and regresses each point by a central angle 2,x about J, where a 
is lhe semi-major axis of the ellipse of motion of the particle. 

Let us visualize these results in the representing sphere of states of motion (~ 8) 
by associating with each point of the ring the point of the sphere which represents 
the state of motion of the positively tangent orbit at the point. 

To  the direct and circular orbits correspond two stream lines traversing the 
sphere and joining opposite points of its surface. In fact, in the u, v-plane (~ 5) this 
orbit makes a complete cycle of J before re-entering. During half of this cycle we 
have v ~ o and during the other half we have v ~ / o .  In the representing sphere of 

7, therefore, the beginning and end of the first half cycle (which corresponds to 
a complete cycle in the x, y-plane) will not be represented by a closed line in the 
ordinary sense but must be represented as stated. 

The  intermediate circles correspond to a family of similar lines varying contin- 
uously from the first to the second line and forming a ring. 

No stream line is an).where tangent to the ring. For, employing the co6rdinates 
x, y, 9 (~ I ) f o r  the orbit and for the intermediate circles, we conclude that the 
equation of the ring is 

x c o s ?  -[- y sin ? = o. 

These co6rdinates fail for x = y - - o  and we exclude this case for the moment. If 
dx, dy, d? are the differentials of x, y, ? along the orbit, the condition for'tangency is 

cos?dx  -[- sin ? d y  - - x s i n ?  de e -{-y c o s ? d ?  - -  o. 

But, if we let s stand for the variable arc along the orbit and recall that the orbit 
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is positively tangent to the circle, we get from the preceding equation, 

d~_ i • 
d s  - x s i n ? - -  y c o s ?  r 

That is, the curvature of the orbit and circle coincide. This is impossible, for from 
this fact alone it would follow that the auxiliary circle itself represents a circular 
orbit for the given C. 

If we employ the regularizing transformation of LEvI-CIwTA (S 4) in order to 
consider the case x ~ y  ~ o, the family of auxiliary circles with J as center is carried 
over into itself, while the orbits near J become approximately rectilinear. The curvature 
of the small auxiliary circles is large. Hence every orbit passing near J is positively 
tangent to an auxiliary circle once and only once. The stream lines must all cut the 
ring in the same sense for x and y small. 

The points which at t ~ o lie on the ring form a surface, which will traverse 
the whole of the sphere as t increases and each point moves along its stream line. In 
this way, when t has increased by a suitable amount, any point of the ring will be 
taken into another. The transformation of the ring so obtained is clearly the same as 
that given above. 

When account is taken of the fact that the circular periodic orbits vary analytically 
with p., considerations of continuity render the existence of a similar ring for ~s. ~ o 
highly probable. To preserve the essentials of the above construction it is only neces- 
sary to vary the ring in the representing space with ~ so that it remains bounded by 
the two varied periodic orbits for the given C, and does not become tangent to any 
of the stream lines. It is apparent that if such a ring is given it may be subjected to 

deformation. 
These considerations of continuity guided POI~iCAR~ to a large extent in his analytic 

construction of a similar ring. 
It may be stated in passing that an infinitude of essentially different rings can be 

formed. One of these, which has a particular importance, is introduced later (~ I9). 

SIi. 

Analytic Continuation of the Circular Orbits. 

We shall establish that the simple and entirely explicit construction for the ring 
in the plane of the motion which has been obtained above in the case ,~. = o  admits 

of complete extension to the case ~ :?~ o. 
The circles concentric with the origin in the x, y-plane which have been employed 

in this construction have also appeared as the totality of circular orbits for all greater 
values of C (w 9)- In generalizing the ring construction we shall make use of some 
properties of the analytic continuation of these orbits developed in the present and 

following[paragraph. 
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We shall first demonstrate the existence of such a continuation by a method of 
more geometrical cast than a similar method developed by F. R. MOULTON '4). 

Consider the orbits belonging to the given value of C which cross the x-axis 
perpendicularly in the direct sense ( , t ) , / d t ~  o) at t ~  o, with abscissa nearly equal to 

a .  Let the abscissa of crossing be denoted by x. The orbit will coincide with the 

circular orbit for x ~ a and ~ ~ o; in this case the first following crossing will lie 

at x - -  - -  a and will be at right angles to the x-axis. If ~ (~') denotes the value of 

d x / d t  at this second crossing it is clear that ,~(x) is analytic in x and ~.. This is an 

immediate corollary of the fact that, when two analytic curves intersecting at an angle 

different from zero depend analytically upon parameters, the coCrdinates of the point 

of intersection, the slopes of the curves at the same point, etc. vary analytically with 

these parameters. The parameter along the curves is assumed to be regular. 

Hence we may write +(x)  as a power series in x ~ a ~  and Is., without constant 

term : 
= - + + , , , ( x  - + . . . .  

If % is not zero, that is if d +/dx  :f i  o for V- = o, the curve Z - -  q, (.7) crosses the 

x-axis in the x, ~-plane at an angle different from zero for ~. ~ o. In this event it is 

apparent that the abscissa of the point where the curve Z ~ '~ (x) cuts the x--axis va- 

ries analytically from - - a  as ? varies front zero. But the equation of this abscissa is 

+(x) = o. This condition insures precisely that the orbit which intersects the x-axis 
perpendicularly at x = a= in the x, y-plane~ intersects perpendicularly at the first fol- 

lowing crossing. In this way we obtain the analytic and only continuation of the 

upper half of the circular orbit into another which intersects the x-axis perpendicularly 

twice in succession. 
The differential equations ( I )  and the integral (3) are unchanged if x, y, t are 

replaced by x, - - y ,  - - t  respectively. Therefore one concludes that this continuation 
together with its reflection in the x-axis constitutes a complete symmetric periodic or- 

bit, the analytical continuation of the direct circular orbit. 

It remains only to consider the condition % ~ - o  which enters essentially into 

the above reasoning. To  this end we consider the function +(x)  for g. = o, which 
by definition denotes the component of the velocity in the direction of the positive 

x-axis in the rotating x~ y-plane at the second crossing. Inasmuch as a change in the 

velocity of rotation about the origin at J does not affect this component, +(x)  may 

x 4) F. R. MOULTON, A Class of Periodic Solutions of the Problem of Three Bodies with Application 
to the Lunar Theory [Transactions of the American Mathematical Society, vol. VII (I9O6), pp. 537-~77]. 
The possibility of continuation was first established by H. PO~NCAR~, Les mgthodes nouvelles de la M~- 
canique Cgleste (.Paris, Gauthier-Villars, I892), vol. I, pp. 79-Ii9, and somewhat later in a paper by 
T. LEv>CIvITA, Sopra alcuni criteri di instabilitd [Annali di Maternatica, ser. III, voL V (I9oo), 
pp. z2I-3o7] , in particular pp. 282-289. 
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be interpreted as the radial velocity toward J in the fi.aved plane at the time t of  the 
second crossing. 

The particle P in the fixed plane moves in an ellipse with focus at ], whose  prin- 
cipal axis at the time of first crossing coincides with the x-axis since the particle crosses 
in both the fixed and moving plane at right angles. Let w denote the angle between 
the radius vector from J to the moving particle and tile principal axis of the ellipse, 
taken in the same sense as the x-axis. Let e denote its eccentricity and a its senti-major 
axis. The  equation of the ellipse is then 

(39) r - 
I "31- e c o s ' w  

where the + or - -  sign is required according as the first crossing corresponds to 

lower or higher apsis. From this equation and the above interpretation of + ( x ) w e  get 

(40) +(~) = 7tar ~=,, = _-g (~(I~ • ~-cos~) sin ~, a ~ , ~ , ) ~  a t ,=," 

We wish to obtain d+(x) / 'dx  for x ~ - - a .  In this case +(x)  vanishes, while a 

and b reduce to a for x = a = .  Moreover we have for any x 

a 4-- 1/a= - -  b~ = x ,  

since the first crossing is at an apsis. If we write 

a = a -~- .~a, b = a= + • x =  a= -~- , i x  

this relation becomes 

(4 I) ~ a  T 1/( •  - -  •  qt_ -ia 2 r- /Ib) = _ix. 

But d b/da is positive and greater than I at a = a= while a a is of course negative 
(see fig. 2). The term •  is therefore an infinitesimal of the first order in ~ a. 
It follows from the proceding equation that -ia, -ib and - i a -  _i b are of the second 

order in _ix, and that 

lim T 1/a= - -  b= - -  l i r a  + a e  _ _  I .  

;=o~ _ix ;=~ _ix 

Dividing through the equation for .4~(~) by _ix and utilizing tile fact just deduced 

we find 

% - -  lim ,~b (x) __ a, sin w - ~  . 
~=,,~ a x  ,=,,* 

Here t* denotes the value of  t at second crossing in tile x, ),-plane along the direct 

circular orbit. 
Thus  the coefficient % vanishes if and only if tile time t* required for the par- 

ticle in the circular orbit to pass from one crossing of the x-axis to the next is a 
multiple of the half period in the fixed plane (i. e. if w is a multiple of ,x). 

If we had commenced with the retrograde circular orbit and had introduced the 

Reud. Cite, Matem. Palermo, t. XXXIX (t  ~ sere. 191$).-- Stampato il 9 maggio x91 i. 38 
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coefficient %, defined precisely as % was defined, we should have been led to the 
same condition for the vanishing of %. 

Denote by n the mean angular velocity (taken positively) in the direct or retro- 
grade orbit relative to fixed axes. Relative to moving axes the mean angular velocity 
is then n T I, the upper or lower sign to be taken according as we have the direct 
or retrograde circular motion. The defining equation for ff is (n ~ i)t* ~ 7: and 
the condition that % vanishes is that nt* ~--- k~. The condition upon n is therefore i 

n -~- +___ k/(k ~ I). The lower sign corresponding to retrograde motion yields no pos- 
sible values of n which is positive by definition. 

The upper sign corresponding to direct circular motion gives us 2/I, .3/2, . . .  as 
the exceptional values of n. The relation n ~a~ =: i together with the second equation 
(36) determine the corresponding values of C. We observe that the greatest value of 

n yields the least a~, and thus the greatest exceptional value of C (w 9), namely 1 ~ .  
Our conclusion is that analytical continuation of the retrograde circular orbits is 

possible for any C ~ 3, while analytic continuation of the direct circular orbits is 
possible for any C not one of these exceptional values. 

1 2 .  

Further Properties of the Direct and Retrograde Orbits. 

For our purposes it is essential to go somewhat further into the study of the 
analytic continuation of the circular orbits. We shall establish the following result: 

3 _ _  
For C ~ _  C, ~ 1/32, analytic continuation of the direct and retrograde circular 

orbits under consideration is possible for 8. su~ciently small and independent of C. The 
distortion of the x, y.pIane required to take the limiting circular orbits for  8. ~ o into 
their analytic continuation for  the same C so that corresponding points have the same 
mean anomaly may be represented in the form 

tp , - p(1/  - 8. + 8 . e l ( p ,  o, 
(42) 0 ' - -  0 -{- F p2g(?, O, 8.), 

where ?~, 0 are polar co~rdinates for  ~. = o, and ?'~, O' are similar cobrdinates for  
~,. ~ o, and where f and g are analytic in ?, O, 8. and periodic in 0 of period 2 ~= for  
~,. sufficiently small. The quantities ?, ?' are taken positively or negatively according as 
(?~, 0), (?'~, 0') are points of a direct or retrograde orbit. 

Let us begin the proof by noting that the argument of ~ II shows that con- 
tinuation of the circular orbit is possible throughout any restricted range of values of 
C ~ C if 8. is sufficiently small. For, ~ and % are analytic functions of ~. not zero 

for C in this range, and we may solve the equation +(x)  _~_ o for x as an analytic 
function of 8- and C, for 8" sufficiently small, in consequence. 

In order to demonstrate the frst  italicized statement it suffices then to establish 
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that analytic continuation is possible for all values of C sufficiently large and for 
sufficiently small but independent of C. Our method will be very similar to that em- 

ployed in ~ II .  
To  do so we write )2 = I /C  and make the change of  variables 

x - -  ,~ ~ ) 2  ~ ,  y --- X 2 ~, t ~ ) ) v  

which reduce the equations ( i ) ,  (3)  to the form 

where 

(44)  t + ( c . , - a ) = ~ - [ p . + 2 y . ) , 2 ~ - ] - ) , 4 + - - ] - > 4 " ~ ' ] +  +--P+ ]- ~)2 
2 2" 

T o  ] in the x, y-plane corresponds the origin in the ~, ?>plane. The  transformation 
effects a translation together with a change in the units of length and time. 

The effect of changing ), to - -~ .  in these equations in the same as changing v 
to - - v .  It follows that we may confine our attention to the continuation of the direct 
circular orbits for ), positive or negative. The negative value of  ), for a given C will 
then yield retrograde orbits in the x, ).-plane for positive ),. 

Referring back to the interpretation of the case ~ . - - o  in the x, y-plane, we infer 
that, for ~. --- o, the motion is in an ellipse 

- e) 

(45)  P - -  x -4- e cos w 

in the fixed plane. Here % expressed in the same units as ~, ~,, and ~ denote the 
semi-major axis o f  the ellipse and its eccentricity respectively; e denotes the radius 
vector from the particle to the origin in the same units, and w is the angle between 
this radius vector and the instantaneous position of the t-axis at "r = o. It is obvious 
that the semi-axes ~ and } of  this ellipse in these units are ) -2  times the corresponding 
semi-axes a and b in the former units. By means of this fact we  obtain the equation 

I _ _  
(46 ) 1/~- 1/~_ 2 )3 [~ 

directly from (35). This is the necessary and sufficient condition that motion is pos- 

sible in a rotating ellipse of  semi-axes ~ and }, for the given value of  ~.. 
In the limiting case ), - -  o, ( C  = o~), ~. = o the condition becomes = - -  i i .e.  

the ellipses have a unit semi-major axis but are otherwise unrestricted. There is then 

a circular orbit of  radius unity. 
N o w  consider a series of orbits in the 6, .~,-plane in which the particle is projected 

from the F,-axis perpendicularly at v - - o  with abscissa ~, and let Z(~,) denote the 
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~.-component of the velocity at the first following intersection with the {-axis ~s). If 

~,. ---~ o, ~. -~- o, ~ = I we have )r ~ )  = o inasmuch as tile motion is in tile circular 

orbit of radius I ;  and in the neighborhood of this set of values 1,.(~) is analytic in 

Is., ~, ,~ and may be written as a power series in ~., X, "~ - -  I. 

For ), = o the equations (43) of motion reduce to the equations of motion for 

a particle at ({, "~) in a fixed ~., -~-plane attracted by a body of mass I - - ~ .  at the 

origin. The  series of orbits we are considering will be ellipses in this plane whose 

focus is at the origin and whose principal axis is the ~-axis. We conclude that Z(~-) 

is identically zero for ), = o. 

Now the initial conditions at t - - - o  are 

d ~  d't~ --_ r  O) - -  I ; 
~--- ~, "~ - ~  o, d [ == o, d t "" 

these are analytic in ; ,  (z and )~. Moreover in the differential equations every term 

which involves ), involves ), to at least tile third power. Therefore if we put k ~ o 

in the differential equation alone and not in the initi~d conditions, the ~-component of 

the velocity at the time of second crossing of the x-axis will be affected only in terms 

of at least the third order in ),. But this component becomes now identically zero. 

Hence 7.(~.) contains no terms of less than the third order in k, and we have neces- 

sarily 

The necessary and sufficient condition that the second crossing be at right angles 

is Z(~) ~ o. If  tile factor ),3 be removed, it appears that analytic continuation of the 
circular orbits into an orbit which cuts twice at right angles will be possible provided 

that 0% is not zero. Also the equations (43) are unaltered if ~.,; 't b m be replaced by 

~, ~ -t b ~ -r so that orbits for which Z('~) ~ o yield symmetric periodic orbits in the 

~., -~ plane. 
It is necessary then to evaluate ~3" To  this end we put V. ~ o and write 

1 

~ - ~  I -[- ),~ in order that the first term of the series for Z( [ )  becomes the principal 

term. Thus we obtain 

(47) ~3 - "  l imZ 7 , ~ I - - } - ) , * ,  [,. = o). 
~.=o )~-  

Since we have F - - o ,  we find from (45) [compare with (4o)] 

- - ~ ( I  ~ U )  s i n w d w  
(48) 7 .~ )  = q" (I - -  ~ c o ~ - 5  ~ -d~ ~ , ,  

where T is the time of second crossing of the ~-axis. But, as ), approaches zero, 

xs) It is obvious that Z ( ~  )~'~(k-2~) where ~ is the function defined in S ix. 
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approaches I by (46), and the orbit approaches a circular orbit of radius uni ty;  hence 
approaches zero, w approaches x, and d w/d~. approaches unity. 

Also we have by definition of ~ [compare with ( 4 0 ]  

(49) ~ ~ ~ [/(.k ~ - -  .k ~) (2 -~- ~ ~ -~- ,.k ~) = ).2, 

where we have written ~ - - - I - ~ - •  ~ = i + _ k ~ ,  ~ =  x-~-) .~.  N o w  the equation 
(46) shows that . i s  is of the third order in ).. Consequently from (49)  we  infer 

that the radical T 1/~s - -  ~= or ~ ~ has the same principal part as ).~. Combining 
these results we are able to write 

.. sin wl 
(50) ~ = Jlm~.=o - F -  ~=~," 

The significance of  w should be recalled. The particle P for H ' -=~ and the given 

~. is projected from the point ~ = x -{- ).~, "o - -  o of the ~.-axis perpendicularly to that 
axis a t ' r = o  and crosses it again near to ~ - - = ~  I, " o - - o .  The angle w is the 
true anomaly relative to fixed axes at the instant of second crossing measured from 
the position of the ~-axis at ": = o. 

If v be the mean angular velocity of the particle in the fixed plane its mean 
angular velocity relative to the moving ~, "n-plane is v - - ) ,  3, since the ~, "n-plane rotates 
at angular velocity V. Consequently, when the true anomaly is = in the fixed plane, 
the corresponding angle is , x ( i - - ) . 3 / v )  in the moving plane, and the difference is ).3/v. 
Since this difference is of  the third order in k, and since the difference remains ap- 

proximately unaltered through a small interval of time, it is apparent that at the time 
of the second crossing the value of w is ~ ( I  -~- ),i/v) to terms of higher order. In 
consequence the quantity sin w has the principal part )3 ~. Returning now to (50),  we 
find that ~ has the value ~.. 

3 
I 

Hence analytic continuation is possible for I?,1 . ~  C ~ (i. e. C ~ C,) and ~,. suf- 
ficiently small. It remains to demonstrate the second part of the italicized statement 
and this can be done very simply. 

According to what has been proved above w e  may write the equations of  the 
family of periodic orbits in the form 

- - -A() . ,  /x, .:), "0 = B(;t, F, "), 

where A and B are analytic in )., ~,., v and periodic in "~ for Fq f C, = and V- suf- 
ficiently small. For ). = o the equations of motion have been noted to reduce to those 

obtained when a body of  mass t - -H" at the origin attracts a particle at (~, "o) in a 
fixed ~, "n-plane, in which case the family of periodic orbits above becomes circular, 
and the equations of  the circular motion are 

= ( I  - -  ~L) COS ( I  - -  ~ / . ) - '  , ,  "tl - -  (i  - -  W) sin (I - -  ~ ) - '  ,r, 

by the equations (43).  
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The variable ~. occurs to no lower power  than the second in the differential 

equations and initial conditions. We infer that the above :quations may be written 

~ = ( ~ - ~ ) c o s ( i - - ~ ) - ~ + x 2 / , ( ~ ,  ~,., T), ~ = 0  - ~.)sin(i - e . ) - 'T+~:e~(~ ,  ,~., ~) 

where f ,  and g, are analytic in their arguments and periodic in "~. 
For ~.--~ 0 the period T reduces to 2 , ~ ( i - - p . ) ;  the difference T - - 2 r . ( i - - p + )  

is analytic in ~., p., and will contain a factor ),'. N o w  let us introduce the mean 
anomaly 

2 ~ T  "C'* _ _  
T 

which differs from (~ - -  ~+)-~'~ by terms of the second order in ~.. When -~ is ex- 
pressed in terms of "~* in the equations for ~, "a they retain a similar form: 

= (I  - -  p.) cosy* o r- >.=f=(),, F-, ~*), "~ ---- (I  - -  p.) sin's* --]- ),=g~(),, F-, "~*). 

These equations may be modified as follows: 

1/~ -1-- ",~ ~--I - -  F- -1- ~'=f3 (~', ?+, z*), arc tan " ~  = v* -1- ),=g, ()., p., "r - +. 
Here f=, g~, f3 ,  g3 are analytic in all their arguments and periodic of period 2 ,'v in v*. 

Let ?'=, 6' denote polar co6rdinates in the x, ).-plane with J as origin, so that 

p' = k -1- -~=, -~- arc tan - -  . 

The  above equations may be written 

e ' ~ =  x + ( I - t +  + x%(>, +, ~*~), o ' =  ~* + x2g+(x, e., ~*). 
But for p+ : o the values p', 0 of 8'=, 0' reduce to 

e = = x=( i  + x % ( x ,  o, ~*)), 0 = ~* + x % ( x ,  o, ~*). 

Here p is really independent of v* since the motion is circular; and 0 is equal to w*, 
the mean ,anomaly.+ Taking note of these facts and solving for ),, "~*, we obtain 

X = e ( I  + ?% (~) ) ,  ~* = 0, 
where f4 is analytic in ~. 

Let us associate (e, 0) with (e', 0') so that these correspond to the same value 
of  ), and "r (i. e. C is the same for the disturbed and circular orbitg and the mean 
anomaly is, the same at associated points). If we eliminate ~. and "~* by the aid of  

the last equations we get 

- -  = o o + e=g+(e, o, ~,.). p ' =  e(1/I ~ + P Is(,' 0, ?)), 0 ' =  
But this reduces to an identity for p' ~ p, 0' ---_ 0 and F- = o. We  conclude that f~ 
and gs contain a factor F'- This leads us to the final form (4 2) of equations valid for 
C ~ C and F- sufficiently small. 

The  relation of  p, p' to ), makes it clear that positive values of p, p' correspond 
to direct orbitg and that negative values correspond to retrograde orbits. 
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As 8- varies from zero we may conceive of the family of retrograde and direct 
orbits as obtained by suitable distortions of the plane from the family of retrograde and 
direct circular orbits respectively. This fact is at once apparent from (42), which 
closely prescribes the nature of the distortions. 

T h e  R i n g  T r a n s f o r m a t i o n  for  ~ =;~ o. 

For a given value C, of C and for ~. = o we were led in ~ Io to conceive of 
the families of direct and retrograde circular orbits for C ~ C as generators of the 
two leaves of a ring. The two leaves were joined along corresponding radial lines at 
the origin. 

For F. --5 g: o we shall consider the family of auxiliary curves formed by the ana- 
lytic continuation of the direct and retrograde orbits for C ~ C, as constituting a 
similar ring. According to the results obtained in the preceding paragraphs this exten- 

sion is possible for C ~ l/f2 if F- be taken sufficiently small. 
The parameters defining a point (p', 0') of the ring (~ I2) will be taken to be 

p and 0; here ~" and 0' are the polar coordinates of a point with reference to the 
body ]', while p2 is the radius of the undisturbed circular orbit ( ~ - - o ) w i t h  the same 
C as the orbit on which (t~", 0') lies, and 0 represents the mean anomaly of the 
particle P in its orbit measured from the crossing of the x-axis. The variables ,~ and ?' 
by convention are positive or negative according as (?'", 0') belongs to a direct or 
retrograde orbit. The parameters ?, 0 will range over the values 

- 1/< L p L o L O L 2 = ,  

where a and a, denote the radii of the retrograde and direct orbits respectively for 

the given value C, of C. 
As a first step toward generalizing the transformation of the ring into itself we 

observe that for ~J. sufficiently small every orbit becomes positively tangent to one of the 
aaxiliary carves of the ring within a suitable interval of time % where -r is independent 
of the orbit. 

The statement holds so far as it refers to the case IJ. = o since every rotating 
ellipse becomes positively tangent to one of the circular orbits of the ring at every 
lower apsidal passage. 

If the statement is not true there exist orbits, for I* arbitrarily- small, which do 
not become positively tangent to the curves of the ring in an arbitrarily long interval 
": of time. Let L be some limiting position of the particle, distinct from J, near the 
beginning of the intervals v for a sequence of orbits such that lim t,. ~ o, lim v--" oo. 

Any limiting orbit of the scquence through L is either a rotating ellipse which 
becomes tangent to an auxiliary circular orbit at regular intervals, or else it coincides 

with one of the circular orbits which limit the ring. 
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The first case cannot arise. For, if that alternative held, a small segment of the 
limiting orbit could be selected lying within the ring for ~ . = o  and cutting across 
the circles in opposite senses at its two extremities. A nearby segment of one of the 
series of orbits, for some I* :5 ~ o but small, could then be found lying within the ana- 
lytic continuation of the ring whose extremities cut the auxiliary curves in opposite 
senses. But this would imply an intermediate point of tangency to one of these curves. 
Such a point does not exist, by hypothesis. 

In making this argument I have purposely ignored the possibility that the limiting 
orbit is ejectional. To understand the nature of this case it is convenient to recur to 

the equations of L~vt-CtvITA (~ 4)" The conformal transformation (z3) from the x, 
y-plane to the p, q-plane which lead to these equations yields transformed orbits analytic 
near the origin, while the family of auxiliary curves goes over into a family of curves 

4__ 
about the origin which are approximately circular. In fact ?' ~--- l/x ~ Jr_ 3, * is the radius 
vector while 0'/2 is the vectorial angle in the p, q-plane, so that equations (4 2) yield 
this fact directly. By the phrase c~ approximately circular }~ I shall mean that by a suitable 
magnification about the origin these direct and the retrograde curves may be transformed 
into two families of similar curves which go over analytically into the unit circle. 

As the orbit in the #, q-plane is allowed to vary through the origin the radial 
lines to the point of tangency of the orbit with the auxiliary periodic orbit clearly 
comes to a definite limiting position and determines a limiting normal direction. This 

limiting position corresponds to the polar co6rdinates p' - -  o, 0' -~_ ' 0 or ' 0 Y o T o ' J u  ~ 

in the p, q-plane. There is a unique corresponding direction in the x, ),-plane given by 
the polar co6rdinates p ' : =  o, 0 ' =  0o. The orbit through the origin thus obtained 
will be defined to be tangent at the ideal point (o, %) to the null auxiliary curve. 

With this convention the possibility that the limiting orbit is an orbit of ejection 
is also to be excluded since any orbit passing near J for I* small clearly becomes 
positively tangent to an auxiliary curve. 

To exclude the second case we need to make use of a fundamental property of 
the first equation (Io)  of normal displacement which was found in ~ 3. 

The coefficients in this linear differential equation of the second order in 8n are 
analytic in the parameter V', provided that the orbit of reference varies analytically with 
~,.. If then, for a particular value of ,% say I-%, all of the solutions of the differential 
equations for an vanish at least once for t o < t < t ,  all of the solutions an will 
continue to vanish in the same interval of time for ! , ~ -  ~"ol sufficiently small. This 
conclusion applies in particular to a periodic orbit of reference. Here the coefficients of 
the equation are necessarily periodic, having the period of the orbit. 

Owing to the interpretation of the actual normal displacement of a varied orbit 
as equal to e an (~ small) to terms of higher order, we may infer that, if all the so- 
lutions of the equation of normal displacement along a periodic orbit vanish for H'=~*o 
within some interval "r, then all slightly varied orbits for [~a. - -  H'ol small will cut the 
analytic continuation of the periodic orbit at least once within the same interval ":. 
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Hence, if for ~. - -  o the direct or retrograde circular orbit lead to an equation 
for normal displacement whose solutions vanish, every orbit for ~ =/: o lying sufficiently 
near to the continuation of that orbit will cut that [continuation arbitrarily often. Be- 
tween three successive points of cutting there is necessarily at least one point of pos- 
itive tangency to the family of auxiliary periodic orbits, namely a point on the seg- 
ment of the orbit lying within the ring. Hence the second possibility will also be ex- 
cluded if the equation of normal displacement for apt has the stated property. 

The precise meaning to be attached to the phrase (( one orbit is near another ~ 
is that x, y ,  dx /c l t ,  d y / d t  for the two orbits differ by a small quantity throughout 

the interval under consideration. 
But the equations of normal displacement of the direct and retrograde circular 

orbits are readily found from the equations ( io) ,  (x~) and ( 1 2 )  tO be 

d 'Sn  d ' a n  
( 5 0  d t  ~ + a ~ n = o  and d t - - ~ - - + a ~ S n = o  

respectively, whose familiar solutions obviously vanish as required. 
To derive the first of these equations we write first the equation of the circular 

orbit 
x (t) = a, cos ~ t, y (t) = G sin ~ t. 

From these equations we find 
atl. _'C'7 

f ( w )  = G e , 

where t is the function of w defined by (I2)  i.e. t = w / a , ~ .  

Putting w - -  s n t- I / ~  I n we find 

"( f ( w ) - - - ~ a  e ~' cos s _ s _ + l / Z  Isin s 
a 2  

and thence 
4 ~t ~t C 2~i 

F (s, n)  = I , - ~  x -~-S G _ _  G e .qt_ - -  e - -  - -  e �9 
2 a 2 2 

Substituting these values for f and F in the first equation (IO), and eliminating C by 
means of the second equation (36), we obtain the equation of normal displacement along 
the direct circular orbit as given above. The equation of normal displacement along the 

retrograde orbit is found in precisely the same way. 
We have thus ontlined a complete proof that for lz small any orbit has a point 

of positive tangency to an auxiliary curve of the ring within some interval "r of time. 

Thus there will be an infinite number of such points on each orbit. 
For a given y., taken suj~ciently smal l ,  no points of pos~tiv" tangen~y on an orbit 

can coincide or disappear as the orbit undergoes contintious variation. This property holds 
for H - ~ ~  since successive points of tangency arise at successive lower apsidal positions 

of the particle. 
If lJ. :7(= o we proceed by first observing that it is not necessary to consider the 

immediate vicinity of J. For,  the use of the variables p, q of LEvt-CzvtTA (w 4) makes 

l~end. Circ. Malem. Palermo, t. XXXIX (x ~ sem. 19tS) . - -S tampato  il 9 maggio 191 ~. ~,j 
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it geometrically clear that the nearly rectilinear orbit in the p, q-plane is positively 
tangent to one and only one of the small approximately circular direct or retrograde 
auxiliary curves about J, and that with variation of the orbit this point of tangency 
varies continuously in the ring. 

Furthermore, if the curvature of the orbit at the point of positive tangency does 
not equal that of the auxiliary orbit, the statement holds. For if ?(x, y) denotes the 
angle which the tangent to the auxiliary curve through (x, y) makes with the x-axis, 
the condition of positive tangency is 

) - f [  cos q~ - -  -d-t- sin ? -~ o cos q~ -[- -~- sin q, > o , 

where ), denotes the parameter on which variation of the orbit depends. If dW(t, ),)/dt 
vanishes also, we should have a double point of tangency. Barring this possibility for 
the moment, we see that W(t, ?,)~ o will have a simple root varying continuously 
with ),. 

If we let ?, denote the angle between the tangent to the orbit and the x-axis the 
condition for a double point of tangency may be written 

'/ [vsin(~ - -  %)] = o, dt 

where v denotes the velocity (not zero in  the case that e" is small), and where ? equals 
9, at the instant of tangency. From this form of condition we obtain d~?/dt.~d?,/dt. 
But, because of the tangency, d?,/dt is equal to cl?/ds multiplied by ds/dt where s, 
and s denote the arc length along the auxiliary curve and the given orbit respectively. 
Thus d?/ds and d?,/ds are equal, and the condition d W(t, ).)~dr--~ o is precisely 
the condition for equality of curvatures along the given orbit and the tangent auxiliary 
c u r v e .  

We may deduce an explicit form for this condition. The curvature d?/ds at a 

point of an orbit is 
2 - -  ~x (x, y) sin q0 -[- ~ (x, y) cos ? 

--1/2 fl(x, y ) -  C --[- 2 l](X, y ) -  C 

by equations (5). If C' is the value of the constant of JAco13t along the a~axiliary 
orbit, at a point where the curvature is the same as for the positively tangent orbit 
with the given C, the angle ? is the same for both curves, and we obtain readily the 

desired condition 

( - - t~x (x  , ) , ) s in? - -  I - a (x, y ) c o s ? )  1/21~(x, y ) _ _  C-1 t- l / 2 a ( x  ' Y) __ C' = 2. 

We shall only use this equation to note that for C ~ C' this condition can only 
hold if we have d~p/dt~--I  by (5). Now for ~ ~-o,  and along the circular orbits, 
I Jr- d?/dt is the angular velocity relative to a fixed plane and cannot be zero. There- 
fore for V" small~ and for orbits near the analytic continuations of the circular orbits 
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forming the boundaries of the ring equality of curvatures will not be possible; in fact 
under these conditions C' is nearly equal to C. 

It is easily seen further that near tile two boundaries of the ring the difference 
in the curvatures of the auxiliary curve and tile positively tangent orbit is of the same 
order as the difference C' - -  C. 

It has now been established that equality of curvatures is not possible near to J 
or the boundaries of the ring, although the difference in curvatures approaches zero 
here. Since the curvatures of the auxiliary curves and of the orbits are continuous 
functions of x, y, d x/dt,  dy /d t  and 8., except at J, and since the curvatures are 
unequal for 8. ~ o, it follows that tile curvatures are unequal throughout the ring for 
sufficiently small values of 8.. 

The periodic orbits for different values of C have been computed by HILL and 
by DARWIN. Their results indicate that all the conditions which have been imposed in 
the present paragraph are fulfilled for a wide range of values of 8" and C~. 

Let ?, 0 be the parametric co6rdinates of any point K of the ring defined above. 
The orbit positively tangent to the auxiliary curve at K will again be positively tangent 

at a first following point L whose parametric co6rdinates may be denoted by ?, 0. 
In this way a transformation T of the ring into itself, taking each point K to L is 
obtained; for 8" = o the transformation takes the explicit form [see (38)] 

3 

p - - -  t~, 0 - - -  0 ~ 2 ~ a  ~ 

where l~, 0 are polar coordinates, and where a is the function of ? defined by the 

equation a - - 1 / a ~ b ~ = ~  taken in conjunction with (35). This yields the approximate 
form of the transformation for 8. small. 

The transformation T thus defined is evidently a precise generalization of the trans- 
formation given in ~ i o for the case ~ - -  o. 

It remains to give a brief treatment of the transformation T along the boundary 
of the ring. At a point of positive tangency in the neighborhood of this boundary the 
orbit under consideration lies near to the continuation of the circular orbits, and the 
normal displacement (see ~ 4) is approximately represented by e 3n, where ~ is a small 
constant and 8n is a solution of the differential equation of normal displacement. On 
the other hand the normal displacement of an auxiliary periodic orbit from the periodic 
orbit forming the boundary of the ring is approximately of the form q~(t)8 C, where 

C is the difference between the value of the constant of JAco/3I for the auxiliary orbit 
and for the orbit forming a boundary of the ring, and where ~ ( 0  is not zero and 
is periodic. The approximate form of the condition for tangency of the given orbit 
with an auxiliary curve given by an auxiliary periodic orbit is that ~ C can be found 
so that 

dSn d~(t)  ~ C. 
dt  dt 

It is understood of course that all terms but those of the first order are omitted in 

these equations. 
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Tile condition for this is precisely 

d~(t)  . .  d~ n 
8n dt *e(t)~-  t --- o. 

Under the restriction that has been obtained upon the curvature of the auxiliary 

curves, these will have curvature differing from that of a positively tangent orbit near 

the boundary of tile ring by terms of the same order as 8 C above. Thus none of the 
roots of the above equation can be multiple. 

This leads us to tile conclusion that, if the orbit of the particle lies near the limit- 

ing orbit of the ring and is positively tangent to a curve of the auxiliary family at 

t = t  o, a root of the above equation lies in the vicinity of t = t o. We are also led 

to the conclusion that the first following point of tangency at t =  t occurs for t 

in the vicinity of the succeeding root of the above equation. 

Consequently, if we choose an  proportional to that solution of the linear dif- 

ferential equation of normal displacement which makes tile left-hand member of tile 

above equation vanish at t = to, and if t = t is the first following root of this equa- 

tion, the point of the boundary of the ring corresponding to t m_ t o may be defined 

as carried into the point corresponding to t = t , .  By this convention the transformation 
T becomes one-to-one and continuous over the ring inclusive of the boundary. 

Every one-to-one and continuous transformation of a simple closed curve into 

itself is associated with a uniquely determined number = such that if the transforma- 

tion be repeated m times (m = o ,  ___+ I, + 2, . . . ) ,  every point of the curve has made 

a number of complete circuits lying between tile greatest integer less than and the 

least integer greater than m z. This fact is apparent if the transformation is the distor- 

tion of a rotation, when ~ is merely the angular rotation effected by the transforma- 

tion. We shall term this number =, first considered by POINCAR#. m), the coefficient of 
rotation. 

The  transformation T takes either boundary of the ring into itself. We will let 

~ and - -  p stand for the coefficients of rotation along the direct and retrograde 
3 3 

boundaries of the ring respectively. For V" = 0 we have ? = 2 ~ a, ~ , , ~--- 27=. a ;  according 
to the results of ~ I0. 

Our  main conclusions may now be summarized as follows: 

For ~* sufficiently small and for each value of C ~ C, > 1 /~  there exists a re- 
trograde periodic orbit and a direct periodic orbit about ] in the x, y-plane, analytic con- 
tinuations of the retrograde and direct circular orbits for ~. = o respectively. These orbits 
may be regarded as forming a ring of two leaves in the x, y-plane joined together at the 
point J, one leaf being given by the family of retrograde periodic orbits for C ~  C,, and 
the other by the family of direct periodic orbits for C ~  C,. For any point K of a periodic 

x6) H. POINCARt~, Sur les r ddfinies par les tquations cliffdrentieZles (jme partie) [Journal de 
Math~matlques pures et appliqu6es, 4 me s~rie, t. I 0885),  pp. I67-244]; in particular pp. 220-244. 
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orbit of the ring we have a unique positively tangent orbit, for the given value C, of C, 
which will again become positively tangent at a point L for the first time. In this way 
a one-to-one continuous transformation T of the ring into itself, taking any point K into 
the corresponding point L, is obtained. The transformation T may be so defined as to be 
continuous along the two periodic orbits for C----- C, which form the boundaries of the 
ring, and varies contimtously with lz from the transformation for ~ ~ o obtained in ~ io. 

If, as in ~ IO, we represent the totality of orbits by the non-singular stream lines 
of a certain non-singular three-dimensional flow~ a transformation of variables may be 
interpreted as a continuous deformation of these stream lines, and does not alter the 
nature of the dynamical problem. The ring given above may also be represented in 
this space; the points of the ring will correspond to the states of motion of the orbits 
at positive tangency whith an auxiliary curve of the ring. This ring may also undergo 
continuous deformation, each point of it being moved along the stream line on which 
it lies. By such deformations the transformation is readily seen to be essentially unal- 
tered. 

From this point of view the transformation T determines the dynamical problem. 

T w o  Propert ies  of  the Trans format ion  T. 

The fact that a volume integral remains invariant in the representing space (see 
~ 2, 6) is reflected directly in a fundamental property of the transformation T: the 

transformation T leaves a ce,'tain area integral ~ ' i f * C ? ,  O)d~dO invariant where 
t i t #  

�9 (p, o) > o % 
This may be at once seen as follows: Consider the stream lines passing near an 

interior point K of the ring represented in the three-dimensional manifold of states of 
motion. All of the stream lines will cut the ring in one and the same sense (cs ~ IO) 
and will form a tube. Prolong this tube until the immediately following intersection 
of each stream line with the ring. Denote the area of one base of this tube by • A 

and the area of the other by ,~ J .  The points (~, 0) of the second base are obtained 
from the points (~, 0) of the first base by the transformation T. 

Now let t change to t q-  • t where • t is small. The tube of stream lines is trans- 
ferred along itself to a new position. If we let F(p, 0) denote the rate at which a 
point moves along its stream line away from the ring at (f~, 0) when t changes, a 
point of either base will be approximately F(?~ 0).xt units away from the ring. 

The invariant volume integrals taken over the tube between either base in its 

x T) H. POINCAR~, Les m~tbodes nouvelles de la Mgcanique Cileste, vol. III (Paris, Gauthier-Vil- 
lars, I899 ), pp. ~75-I78. 
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first and its displaced position must be equal. IffffMd (dvtheelementofvol- 
ume) is the invariant volume integral, these two volumes are approximately 

MF(p, o)  at, O)a2at 
where M and /l~ stand for the value of M at a point of the first and second base re- 
spectively. By letting the dimensions of the base of the tube and the increment • t of 

time approach zero, we see that _ f t ' M F ( ~ ,  O)dA taken over any part-s of the ring 

has the same value as when it is taken over the part ~ into which ": goes by the 
transformation T. This integral is the invariant area integral. 

Furthernmre, we may observe that F(~, 0) vanishes along the boundaries of the 
ring since the stream lines approach coincidence with the stream line which forms the 
boundary of the ring, and the rate F(fl, 0) at which a point moves away from the 
ring is approaching zero. 

POINCA~ a) conjectured that a transformation T of a ring possessing such an 
invariant integral left two points of the ring invariant if the coefficients of rotation 
were of opposite sign. Upon this basis [see s)] he was able to infer that there existed 
an infinite number of periodic solutions in the restricted problem of three bodies for ~. 
sufficiently small. 

But there is a second property of T which, as will be seen later, may be made 
to yield an immediate proof that there exist an infinite number of symmetric periodic 
orbits, and upon which a classification of the symmetric orbits may be based: 

The transformation T is the product of two transformations R, U, each of period 2, 
of u,hich th e first is a reflection in the x-axis. 

It is the fact that the equations of motion O) ,  (3) are unaltered when x, y, t are 
replaced by x, - - y ,  ~ t respectively which leads to the above additional property. 

This is immediately seen. Let K be a point of positive tangency with one of the 
auxiliary orbits of the ring; let R be the transformation by reflection in the x-axis which 
takes the ring into itself. We may denote by L ~ T (K)  the first following point of 
positive tangency (fig. 3)- The positively tangent orbit at L ' = R ( L )  will then be the 

(Fig. 3). 
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point of positive tangency of an orbit first tangent again at K' = T ( L ' )  = T R  T ( K ) .  
But a reflection brings K' into coincidence with K on account of the symmetry noted. 

That is, we have 
R T R T = I  

where I is the transformation which leaves every point invariant. 
Hence the operation R T is of period 2 and will be denoted by U. The trans- 

formation R and its inverse are identical so that from R T = U we get 

T = R U, (R* = U = ----- I). 

I5. 

On the Existence of a Transformation T. 

Suppose now that we postulate merely the existence of a retrograde periodic orbit 

M and a direct periodic orbit N about J without double points or points of intersection. 
In the representing sphere these appear as two lines joining opposite points of its 

surface (~ zo). If either of these lines be varied continuously into the other while its 
extremities remain always opposite, a ring is formed bounded by the two closed lines 

corresponding to the retrograde and direct periodic orbits. 
The ring belonging to the transformation T is precisely of this type, and is cut 

by every stream line in the same sense and infinitely often. 
In the present paragraph we shall obtain a necessary and sufficient condition for 

the existence of a ring belonging to a transformation T with these properties. 
Let there be given any family of auxiliary retrograde curves of continuous curv- 

ature contracting from M to a null curve at jr, and a family of auxiliary direct curves 

expanding from this null curve to N. It will be assumed that the two families are 
without any positive tangency, and may be simultaneously deformed into two families 

of concentric circles about J without introducing such a point of tangency. Furthermore 
it will be assumed that the small auxiliary curves approach a circular form about J as 

center. 
Let a positive tangency of an orbit to one of these curves be defined as exterior 

or interior according as the orbit lies outside of or inside of the curve at the point. 
The necessary and sufficient condition that a ring bounded by M and N shall exist in 
the representing space, cut by all the stream lines in the same sense and infinitely often, 
is that along every orbit the points of exterior tangency to the auxiliary curves exceed 
those of interior tangency in a sufficiently large fixed interval of time. 

We shall begin by assuming that a family of auxiliary curves satisfying the con- 
ditions stated exists, and shall prove that this implies the existence of a ring transfor- 

mation T. 
With each point of an auxiliary curve let us associate the positively tangent state 

of motion. Then an auxiliary curve is represented by" a line joining opposite points of 
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the representing sphere, and the family of lines thus obtained corresponds to a ring 
limited by the lines which correspond to M and N. 

The manifold of states of motion for 8. F~- o may be continuously deformed into 
the like manifold for 8---o,  since both are equivalent to a sphere on which opposite 
points are taken as identical. This may be effected by deforming the region of motion 
for Is. F~- o, into the circular region of motion for 8- - -  o, so that J goes into itself, 

and by letting each state of motion correspond with the one with which it coincides 
in position and direction after the deformation. 

Moreover the ring above obtained may deformed into the ring of~  io for 8 . = 0  

at the same time. In fact, we may take the family of direct auxiliary curves into the 

family of direct circular orbits for 8- - -  o by continuous deformation, and likewise the 
family of retrograde auxiliary curves into the family of direct circular orbits. If it is 
assumed that each point of a curve is associated with the positively tangent state of 
motion, it is apparent that in this way we have defined a continuous deformation of 
the given ring into the ring of ~ Io for ,J. = o. On account of the hypothesis about 
the auxiliary families of curves it is clear that no points of common positive tangency 
need be introduced during this deformation; consequently the same deformation of the 
ring may be effected by a continuous deformation of the representing space. 

Hence we may represent the states of motion for the given ~ by means of the 
space between two circular cylinders with common axis as in ~ Io, so that M and N 
correspond to the surface of the outer and inner cylinder respectively, and so that the 
given ring of auxiliary curves is represented by a plane perpendicular to the axis. 

Furthermore the states of motion along M and N will correspond to spirals winding 
in opposite senses but toward the same end of the axis along the cylinders. Points at 
distance 2= on one and the same line parallel to the axis of the cylinder represent 

the same state of motion. 
The given ring divides the infinite cylinder into two parts which may be termed 

(~ upper ~ and (~ lower ~. 
Take now two fixed points and join them by any line in the hollow cylinder. 

If the points are on the same side of the ring, the ring will necessarily be cut equally 
many times in either sense by such a line. If the points are on opposite sides of the 
ring there will be one more cutting in one sense than in the other. 

Consider next a segment of a stream line. If d be the distance between the two 
limiting planes perpendicular to the axis which include this segment between them, 
it is clear that only at most d/2 ~: rings congruent to the given ring cut this segment, 

and that the excess of total crossings of the first kind over total crossings of the sec- 
ond kind cannot exceed d/2x. 

But our hypothesis ensures that along any orbit the number of points of exterior 
tangency to an auxiliary curve ultimately exceeds those at interior tangency by any 
prescribed integer. Exterior and interior tangency in the plane correspond, however, 
to the two senses of crossing of the ring by the stream line in our geometrical re- 
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presentation. For~ tangency to the ring in the representing space means equality of  
curvature. This fact may be established just as a similar fact has been in the case 

= o (cf. w io). Also, over the direct or retrograde leaf of the ring taken 
separately, any exteriorly tangent curve may be continuously varied into any other 
through a series of such curves. To each such curve corresponds a line of the posit- 
ively tangent states of motion in the representing space. Hence all of these lines cross 
in one and the same sense, so far as either leaf alone is concerned. But orbits near 
to J are always exteriorly tangent to the auxiliary curves, since the curvature of the 
approximately parabolic orbit is about one half that of the approximately circular orbit 
at tangency. Hence one sense of crossing corresponds to one kind of tangency through- 
out. Thus after a sufficiently long interval of time the excess of crossings of one 
kind over those of the other becomes arbitrarily large. 

When this excess has attained to d/2,-:, one can affirm that the terminal point of 
the stream line lies always at least d units from the plane containing the initial point 
and perpendicular to the axis. It becomes apparent in this way that as t increases from 

oo to + oo all the points pass from the one end of the cylinder to the other along 
their stream lines. 

Now let us take each stream line and continue it from t - - -  ~o until it first 
cuts the ring. Remove all half stream lines of this kind which will lie in the first of 
the two parts into which the cylinder is divided. There will be exposed a ring-shaped 

surface made up of two kinds of regions: parts of the ring cut by a stream line in 
one and the same sense, and regions made up of segments of stream lines. 

But any point of a boundary of the first kind of region is paired with a similar 
point of a similar region, namely the second point on the segment of the stream line 

forming part of the boundary and passing through the first point. By a distortion in 
which each point is moved along its stream line and paired points are made to coincide, 

a ring is obtained cut always by the trajectories in one and the same sense by every 

stream line. This ring has the desired properties and belongs to a transformation T. 
It is readily seen that the stated condition is necessary. Let us again represent 

the states of motion by means of the space between two cylinders. We may assume 
that a ring exists belonging to a transformation T, and this ring may be taken as lying 
in a plane perpendicular to the axis of the cylinders. 

But any family of curves having the properties stated Will yield a second ring 
representing the states of motion at positive tangency to these curves. This ring may 
be deformed into the first plane ring. The stream lines which pass from one end of 
the cylinder to the other will cross this ring and its congruent images with increasing 
excess of crossings of one kind over those of the other. Since the two kinds of cross- 
ings correspond to the two kinds of tangency, this family of curves will satisfy the 

required conditions. 

Rend. Circ. Maiem. Palermo, t. XXXIX (t  o sem. i g l 5 ) . - - S t a m p a t o  il 9 maggio tg l  ~. 4 ~ 
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PART IV. 

PERIODIC ORBITS. 

16. 

Existence of  Retrograde Periodic Orbits. Hill's Case. 

A question of fundamental importance for the restricted problem of three bodies 
concerns the existence of the periodic orbits of simplest type for all values of ~ and 
C. This is also the problem whose solution is preliminary to the determination of 
the range of validity of the ring transformation. Up to the present time these orbits 
have only been considered for sufficiently small values of ~ and for sufficiently large 

values of C. 
I shall now pass on to establish that the retrograde periodic orbits do in fact 

always exist if there is a closed oval of zero velocity about ], and then by the aid of 
these results shall consider the more difficult problem afforded by the direct orbits. Let 
us begin with the limiting case of the restricted problem of three bodies treated by 
HILL [see r which is especially simple. 

The equations of motion in this case may be given the form 

d 'x  dy ( i ) ( r  ___ 1 / x ~ - ~ ) ,  
dt-'--~--2-d7 - - -x  3 - - - - ~ -  , 

d~y dx  y 
(52) d t ~ -{- 2 d--t - -  - -  r -T' ' 

_37)+ = 3 x 2 q  2 
r 

In passing to this limiting case the units of length, mass and time have been altered. 
The body J has been brought to the origin and is now of unit mass, the body S has 
moved out indefinitely to infinity in the direction of the negative x-axis while at the 
same time the ratio of the mass S to that of J has indefinitely increased. The x, y-plane 
rotates with the bodies at unit angular velocity as before. 

These equations enter into the category treated in w 2, with 

X(x, y ) - -  I, 

If we apply the transformation 

x - -  p~ ~ q~, 

3x2+I IC. 
U ( x ,  y )  - -  5 -  r 2 

y -~- 2pq, dt  = 4(p 2 n t-- q')dv, 

which is essentially that of LEVI-CIVlTA, the principles of ~ 2 enable us to write the 
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transformed equations at once 

- -  8(p~ + q ) ~ u  = Vp(p, q), d.r2 + 8(p2 + q ))-~ --- Vq(p, q), 

03) {de'is [ dqV 
l,a ! + = 2V(p, q), 

where 

(54) V(p,  q) = 4 (P~ - -  q~)" + p~ + q~ 2 

This form of equation is only necessary for our purposes in order to establish 
a simple fact, evident from physical considerations: 

I f  the orbit of a particle P passes through the neighborhood of ] there will be one 
and only one point Q of this part of the orbit for which the distance from J is a mini- 
mum. The orbit will be approximately a parabola with Q as vertex and J as focus. I f  
the orbit is retrograde near J, it will be of loop form and cut the axis Q J  at points 
before and after Q, and near to J, at a small angle. 

The existence of a unique point Q and the approximately parabolic form of the 
orbit follow at once from the approximately rectilinear form in the p, q-plane, and the 
transformation employed. 

We shall therefore pass at once to the proof of the loop form of the retrograde 
orbits. Here we shall confine attention to the typical case in which the point Q lies 
along the x-axis. Under these circumstances the orbit cuts the x-axis at right angles. 
There will be two cases; in one case the point Q lies to the left of J, and in the 
other to the right of J. Inasmuch as the treatment is the same in both cases we shall 
consider only the first, in which the particle is projected from a point Q of the x-axis 
to the left of J in the direction of the positive ),-axis. We have merely to establish that 
the particle cuts the x-axis before and after projection at a small angle, near and to 
the right of J. 

With the aid of the transformed differential equations a rigorous analytical proof 
is at once made. The transformation from the x, y-to the p, q-plane takes the positive 
x-axis into the positive p-axis, the negative x-axis into the positive q-axis, and the upper 
half of the x, y-plane into the first quadrant p, q-plane. The positive y-axis appears as 
the half line p --- q in this quadrant. 

Since the transformation is conformal, the orbit in the p, q-plane begins at a 

point (qo, o) near the origin on the positive q-axis with a velocity nearly 21/2 by the 
last equation (53). For qo ~-" o the orbit in the p, q-plane starts from the origin in the 
direction of the positive p-axis. If this orbit lies at first below the p-axis, then, for qo 
small and positive, the orbit will obviously cut the positive and negative p-axis near 
the origin in the p, q-plane at a small angle. The orbit will thus have the desired 
properties in the x, y-plane. 

But for qo = o the initial conditions are 
d4q 

d q d~ q dS q - -  o, - -  256 t/2. 
c1r = o, dr" - -  o, d.~3 d.~4 
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Hence q is negatively immediately before and after projection i.e. the orbit in the 
p, q-plane does lie at first below the p-axis. 

Thus  a proof has been given under the stated circumstances. 
Tile same considerations make it obvious that, in the limiting cusped form, which 

corresponds to collision, the particle P, as seen from J, lies to the left of the axis of 
the cusp before collision, and to the right of that axis after collision. 

4 

For our present purposes we shall restrict attention to the case C~> 3 3 In this 
case only there will be a closed oval, 

2 
3 x~ + - -  - -  C = o ,  

r 

about J', synmyetric with respect to both axes, in which motion is possible and along 
whose boundary the velocity is zero. It is easily seen that this oval lies within a circle 

I 1 

of radius 3 3 about J as center', for if we have r =  3 T, the left-hand side of the 
above equation is necessarily negative. �9 

Let us suppose now that the particle is projected at an 3 , point K ~  (x,,, o) to 
the left of the origin at right angles to the x-axis and toward the positive y-axis; let 
x, y denote the co6rdinates of the point at the time t, and let t ~ - o  be the time of 
projection. 

From the first equation (52)  we obtain 

dx  2y --- x 3 - -  dt, 
d t  7 i- 

by integration between the instant t ~ - o  of projection and any value of t. As long 
as x is negative the integral on the right is a positive increasing function of t. There- 
fore while 3 , ~ o ,  the velocity d x/dt  will exceed a positive increasing quantity. Con- 
sequently a time "~ may be assigned in advance such that either y ~---o or x = o for 
some t < v. Let the corresponding point of the orbit be L ;  the point L lies on the 
negative x-axis or the positive ),-axis; along K L we have d x/d t ~ o. 

It is clear that for K near to ], the point L lies on the ),-axis, and that the di- 
rection of the orbit at L is never parallel to the ),-axis. 

As K moves to the left along the x-axis to its extreme position, the point L va- 
ries continuously' as long as no new root y = o appears along the segment KL,  and 
L does not approach the origin J'. 

But a root y - - o  cannot appear within K L for at the same point we should 
have dx /d t  > o, d y / d t - - o ,  d~y/dt2~_~ o, which is impossible by the second equa- 

tion (52). 
In consequence the point L and the segment K L vary continuously with K, at 

least until L coincides with J. 
As the abscissa x o of the point of projection diminishes from zero to its extreme 

negative value, the point K moves from the origin to the oval of zero velocity along 

the negative x-axis. At the outset dy/dt  is positive at L, since the approximately para- 
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bolic orbit cuts the ),-axis at a slope approximately 1. At the terminal position of K 
on the oval of zero velocity we have 

dy __ d=y d~y 
y - -  o, 7 }  - -  o, - -  o, ,~  o, d t* d t 3 

from the differential equations (52). The particle is projected at velocity zero and 
moves below the axis in this case; the arc K L  has necessarily passed through J earlier. 

There is thus an intermediate position of K at which L lies at the origin for 
the first time, and the orbit has cusp form with the axis of the cusp in the second 
quadrant (x / o, y ~ o). In the nearby approximately parabolic form the axis of 
the parabola is essentially in the same direction as that of the cusp. Bearing this in 
mind we see that in any possible position of the axis the slope of the orbit at L lies 

between - -  r and - -  I approximately (fig. 4). This fact may be proved at once by 

\, 
' \  

(Fig. 4). 

a transformation to the variables p, q, .r Hence, previous to the passage of L through 

the origin~ the arc K L  cuts the y-axis with negative slope. 
That is, dy /d t  at L has changed from positive to negative as K passes from the 

origin to the position for which E coincides with the origin. 
At some intermediate position we will have dy/dt  = o, and K L  cuts the y-axis 

as well as the x-axis perpendicularly. 

The differential equations remain unchanged if x, y, t be replaced by x, - - y ,  - - t  

or - - x ,  3', - - t  respectively. Therefore K L with its successive reflections in the x- 
and y-axes constitutes a complete retrograde periodic orbit. 

Now we note that dy /d t  does not vanish between K and L. For, at one of two 
successive roots of dy /d t  = o, we have necessarily d2y/dt 2 "x o which is impossible 
by the second equation (52) when d x / d t  D o. 

In the limiting case of the restricted problem of three bodies treated by HILL, there 
4 

exists for C ~ 3 T a retrograde periodic orbit which makes a single circuit of J witt, in 
the oval of zero velocity about J, which is symmetric with respect to both axes and such that 
d x/d t, d y/dt  do not vanish except along the intersection with the x- and y-axes respectively. 

The expression for the curvature along the orbit together with the facts just 

stated make it obvious that the oval formed by the orbit is convex. 
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It is clear that the nature of the preceding 
4 

the restriction C ~ 3 T. 

argument is largely independent of 

S o m e  P r o p e r t i e s  o f  t h e  C u r v e s  fix (x,  y)  : o a n d  f i  (x, y)  = o. 

In order to generalize the argument of the preceding paragraph we need to know 
the nature of the part of the curves qx(x, y) ---- o, ~l (x,  y) ----- o which lies within 
the oval of zero velocity about J. For the limiting case of S I6 these curves reduce 
to the y- and x-axes respectively. 

The simpler equation to consider is ~-~y(X, y ) =  o or 

( I--~ tz ) = o .  (55)  y I r 3~ r~ 3 

There are no branches of this curve other than y ---- o within the oval. This is 
obvious in the case ~.----o. Since the oval does not pass through a point 

la. (x, y) = *~, (x, y) = o 

(see ~ 7), the equation l~(x, y ) =  o is the condition that the tangent to the oval be 
parallel to the y-axis. If an additional root of this equation along an oval about J be 
introduced as the ovals vary with ~z, it will correspond to a point of inflection with 
vertical tangent (i. e. a tangent parallel to the ),-axis). 

A point of inflection cannot lie along the x-axis unless t I . ( x ,  y)  vanishes along 
that axis; and this condition implies that the coefficient of y in (55)  vanishes along the 
x-axis within the oval: 

i--Ft 
I ~-0. 

Ix- Ix+ - 

This is not possible. In the first place if the point (x, o) lies between S and J both 
of the denominators in the left-hand member of this last equation are numerically less 
than i. The two fractions are greater than I--IS. and Ft respectively in consequence, 
and the left-hand member is negative. To treat the possibility x > ~ or x .~  - -  I + Is., 
we note that L)~ (x, y) may be written in the alternative forms [see (26)] 

- ) : Ft Y" q- f*  I - -  
3 I f3x fa 

(x - Ft) ( 

o r  06) 

( ) I - - F  ~ - - O - - F )  i - -  ( x +  i - F )  i , , 
r~ r z 

The first of these two forms shows us that {~x(x, y) reduces to V.(~ - -  I/r3~) at a 

point of inflection along the x-axis, and is therefore positive for x ~  Ft. But {~x(x, y) 
is negative for x--l-~ positive and small, and first vanishes at P3 (see ~j 6). The pos- 
sibility x ~ Ft, and likewise x ~ - -  I -{- y., is accordingly to be excluded. 

At a point y ~ o of the oval a vertical point of inflection arises also if the 
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equations lay(x, y) = o, i~yy(X, y) - -  o are simultaneously satisfied. Hence the partial 
derivative of ~y (x, y)/y as to y will vanish. But this ratio is the coefficient of y in 
the left-hand member of (55), and the partial derivative of this coefficient as to y 
consists of two positive terms. Hence a point of inflection for y ~> o cannot exist. 

If now we observe that in the vicinity of ] for y ~ o the function lay(x, y) is 
negative, we can conclude that the function ~ (x, y) vanishes only along the line y -~ o 
in the oval oJ ~ero velocity about J, and is negative for y ~ o in that oval. 

Considerations of symmetry establish that fly(x, y) is also negative in the part 
y ~ o of the oval about S. 

The second equation to be considered is i~x(x, y ) - - o ,  and may be written 

(57) x - -  (I - -  8.)(x - -  8.) _ 8.(x -a F- I - -  8-) _~_ o. r' 
If we employ the first alternative form (56) for O.(x, y) we see that this function 
is positive in the part of the oval about J between the line x - - 8 .  = o  and the circle 
r 2 =  i ;  for, this is the region r 2 ~  7, x - - ~ . ~ o  and the coefficient of x - - 8 .  is 
fly(X, y)/y ~ o. Likewise from the second alternative form we see that La(x, y) is 
negative in the part of the oval about S between the line x +  I ~ 8 . = o  and the 
circle r, ----- I. 

As the constant C of JACOBI diminishes from -~-~o it is clear that at first f l ( x ,  y)  

vanishes at two and only two points along the oval ~(x,  y ) -  ~C- - -o  which is ap- 

proximately a small circle about J as center (see ~ 7); these points will be the points 
at which the tangent to the oval is parallel to the x-axis, and are symmetrically placed 
with respect to that axis. A single curve branch of the curve f l ( x ,  y ) - -  o must there- 
fore pass through J, with a vertical tangent. 

It has already been noted that for x ~-8- and y = o the first root of ~ (x, y ) =  o 

lies at P3 ~ (x3' O) outside the oval, and that ~a~(x, y) is negative along the part of 
the x-axis in the oval. As y increases from zero, l i  (x, y) increases, since we have 

(58) ~ y ( x ,  y ) =  3(7 - -  ~'.)(x - -  + 3 ~(x -AI -ri2I - -  ~)y 

Now for any positive x and for large enough y, the function l ) ( x ,  y) is positive. 
Consequently there is one and only one point on the curve ~ (x, y)~---o for a 
given ~z ~ x  ~ x~ above the x-axis. In this way we obtain a closed branch of this 
curve which will of course be symmetric with respect to the x-axis. 

Any radial line from ] will cut this branch in one and only one point. Otherwise 

a radial line will be tangent to the curve at some point. This implies 

y ~ y  (x, y)  -[- (x - -  8.) llxx (x, y) ~- o, 
o r  

Fi -{L 2 ( 1  r'-- 8.) + r:_12-~] -{- 3'Y25 - -  o, (x 
! r2 

which is not possible for x ~ 8.. 
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There is a closed branch of the curve fix(x, y ) - - o ,  within the oval of zero velocity 
about J and lying in the strip ~ . ~ x ~  x , intersected by each line parallel to the y-axis 
within the strip, in two points symmetrically placed with respect to the x-axis. This branch 
passes through f vertically but through no other point of the x-axis within the oval, and 
is cut by a radial line from f in one and only one point. The function ~ (x, y) is 
negative to the right of this branch and positive to the left of this branch. 

Considerations of symmetry establish that there is a similar branch through S 
to the left of the line x ~ - -  I + ~,.. 

I shall now pass on to prove that this branch of the curve ~ (x~ y) - -  o is the 
only branch within the oval of zero velocity about J. 

For x ~ - -  I -{- ,~. and x ~ ~. we have already excluded the possibility of addi- 
tional branches in the ovals about S and f beyond those already obtained. Furthermore 

we have noted that L~ x (x, y) is positive for x ~ ~z, r= ~ I and negative for x ~ - -  I -{- 8., 

r, > I. Hence we need only consider the region r, ~ I, r ~_~ I which will contain 
all further parts of the curve ~x(x, y ) - - o  which can lie within the oval about S or f. 

For t z = o  we have the limiting branch r - - I  in this region, and for ~ z ~ i  we 

have the limiting branch r ~ I [see (57)]. In each intermediate position the branch 

passes through r = r  - -  I i.e. through P4" For Ez = +  we have a branch x - - o .  

Moreover for any ~. we have one arid only one point of a branch f l  (x, y ) - -  o 

along SJ, namely the point P~ corresponding to the particular ~. (see ~ 6)~ and this 

point varies from S to f as & varies from o to I. 

Now if we make the change of variables x - - ~  = x ,  y - - ' y a n d  in this way 
transfer the origin to f for any ~., the equation ~ (x, y) ~ o becomes linear in t~.. 

Consequently each point of the region r ~ / I ~  r ~ I in the x, y-plane lies on a 

branch li (x, y ) ~  o for at most one value of ~.. 
Neglecting certain details of demonstration, we conclude that as ~. varies from o 

to I, the branches of fix(x, y ) =  o in the x, y-plane form a regular pencil of curves 
through r = r= = I varying from r~ - -  I to r --- I, passing through each point of 
the region under consideration once and only once. The curves are clearly symmetric 

with respect to the x-axis and intersect it perpendicularly. 
In this way we have proved that there exists one and only one branch of ~ ( x ,  y)---o 

in the region r . ~  I, r~ ,~  I, and have determined its general character. It remains 
to prove that this branch is exterior to the ovals about S and f for any value of ~.. 

Let us pass circles with S and f as centers through P and let their radii be t~ 
and p~ respectively. We shall establish that for any ~ the branch of ~ . (x ,  y)-----o is 

exterior to the circles, and that the ovals about S and f lie wholly within them for 

r I ~ I ,  r 2 ~ /  I 1 and thus complete the proof. 
In the first place if the branch lies partly within one of these ovals~ the one 

about f for instance, it will necessarily intersect the circle about J through P~, in 
another point Q, since the terminal point P4 lies outside of this circle. At this point 
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we have r, --- fl, by definition of p,, and the condition f~x (x, y) - -  o may be written 

(r - -  p.)(X - -  F) ~ - -  + F ( X + r - - F )  i - -  = o .  

Also at P we have ~ . - - x : r  : p , ,  x q - - r - - e . : r 2 : r  so that similarly 

- - ( r - - l O p ,  i - -  +~p~ 1- -  = o .  

Comparing these equations we obtain 

x + i - - ~ ( ~  ) p ~ ( ~  ) 
F - x ~ r  - - -  ~-~ - -  I ; 

it is to noted that x-q- I - - g .  and F - - X  are positive at Q. Now the left-hand side 
of this equation will be increased if r~ is replaced by the smaller quantity x -}- r - -  F. 
By doing this and at the same time replacing p, by its equal I - -  p~ in the right-hand 
side, we deduce the inequality 

I I I I + r. 

(x  + ~ - e.) 2 + (x + r - -  ~) + ~ > p-[ + P-7 

But we have also x-Jr-r-- t~.  ~ p~ at Q since every point on the circle about ] lies 
to the right of P .  Therefore this inequality is impossible. 

It remains to prove that the ovals of zero velocity are interior to these circles in 
the region r ~ r, r~ ~ I. 

The least value C o of the constant C of JACOBi yielding an oval of the type un- 
der consideration is 2{~(x~, o) which corresponds to the limiting ovals through P .  
The ovals to be considered lie in the region 2~(x ,  y ) ~ C o ~ O .  This inequality may 
be written 

( ( 0 ( r - - F )  r : +  r~ - - -p  -- -{-F r : - f  ~ ,~- -  _2~_o. 

Outside of the two circles of radii p2 and p, about S and J respectively in the region 
under consideration, both r and r: are increased beyond their values p, and p~ at P .  
Both terms of the left-hand member of this inequality are thereby diminished, and be- 
come negative, since r I and r2 are less than r. In consequence this inequality cannot 
hold outside of these circles. 

The proof is now complete. 

18. 

Existence of Retrograde Orbits. General Case. 

We are now in a position to establish the existence of a retrograde periodic orbit 
for the general restricted problem of three bodies under the hypothesis that for the 
given value of C the particle lies wkhin a closed oval of zero velocity about J. 

We shall prove first: If  the particle P within the oval of zero velocity abo;;t J be 
Rend. Circ. Matem. Palermo, t. XXXIX ( i  o sere. 1915). - -  Stampato il lo maggio 19t 5. 4t  



~, '~ G E O R G E  D. B I R R H O F F .  

projected from the x-axis to the left of J in the direction of the positive y-axis, the con- 
dition d x / d t  ~ o will hold at least until one of the conditions ~x(x, y) - -  o or y = o 

is satisfied. 
To prove this we observe first that so long as t l ( x ,  y) is positive (~ I7) we 

have by the first equation ( i )  
d2x dy 
dP 2 7 [  ~ ~ 

Integrating between the time t = o of projection at K, when we have dx/dt-----y = o, 
and the time t, we find 

dx  
dt  2y > o, 

so that d x /d t  remains positive as long as y "-. o and ~ ( x ,  y ) " x  o. 
Thus by ~ 17 the orbit satisfies the condition d x / d t  ~ o either until a point L 

for which x - - ? . - - o ,  y" - . .o  is reached, or until we have y----o,  x - - ~ , . ~ o ;  it 
is clear that one of these alternatives actually arises, since we cannot have d x / d t ~ o  
permanently. For K near to J there is such a point L. 

Let -r ( - -  r:/2 < -r < ,'v/2) denote the angle which the direction of motion at L 
makes with the positive x-axis. As K varies from J to its limiting position on the oval 
o~ zero velocity, the point L will also vary in such a way that the angle -r and the 
ordinate y at L vary analytically. As has been seen above, this variation can only 
terminate if either y becomes zero at an interior point of K L, or if L coincides with 
J. But the first possibility may be excluded, inasmuch as the conditions d x /dl  > o, 
d~y/dt22~_ o are incompatible with the second equation ( I )  by ~ 17. Hence the var- 
iation will actually terminate by coincidence of L with J, for in its limiting position 
on the left the projected particle falls at once below the x-axis (of. ~ i6). 

If we recall that for K near to J the value of -r is nearly ~./4 on account of the 
form of the orbit (~ x6), and note that in the terminal position, the axis of the final 
cusped orbit is inclined at an angle 0 (rW2 ___~ 0 ~ =) to the positive x-axis, we can infer 
that the curve r representing the values of "r, y in rectangular co6rdinates is a cont- 

inuous curve lying wholly inside of the rectangle - -  ~/2 < -r ~ x,'2, o / y < Yo 
(Yo being the ordinate of the point with abscissa x = p. on the oval of zero velocity 
about J),  except for an initial point @/4, o) and a terminal point ( - - ~ : / 4 -  d, o) 

where o < d . / x / 4  (fig. S). 

jv 

FC 
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0 rr 

4 2 
(F~g. s). 

% 
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The equality signs have been excluded on account of the character of the retro- 
grade cusped orbit at J ;  the particle before collision lies to the left of the axis of the 
cusp as seen from ]. A rigorous consideration of the nature of the orbit near collision 

is easily made precisely as in ~ I6, by a use of the equations of LEVI-CiVlTA, and 
leads to the same conclusions. 

We shall now pass to the consideration of the orbits terminating at a point R 
on the x-axis to the right of ] ,  and shall prove: I f  the particle P be projected to a 

terminal position R on the x-axis to the right of J in the direction of the negative y.axis, 

the condition d x / d t ~  o will hold before K,  at least until one of the conditions lax(X , . y ) =  o 

or y = o is satisfied. I f  K is suficiently near to J, the conditions d x / d t  ~ o, y ~ o 

will hold until an earlier instant for  which x ~ .  becomes negative. 

Here we observe that, as long as l-[~(x, y) is negative (~ I7), we have by the 
first equation ( i )  

d~x dy 
d t  ~ ~ 2 d 7  < o .  

Integrating between the time t and the terminal time t =  o when we have d x / d t - - - y  = o 

we conclude that 
d x  
d t  2y ~ o 

as before. If now we recall the approximately retrograde parabolic form of orbit for 

i~ near to J, with ] as focus and ~" as vertex, the truth of the last italicized statement 
becomes manifest also. 

Let now 7~ denote the first earlier point of the orbit ending at k" for which x - - t z  

reduces to zero. The point /7 will certainly exist and will vary analytically with /~, 

at least for i~ near to J. In fact it is apparent that it will vary in this way so long 

as the conditions d x/d  t ~ o, y > o continue to hold along L K. We shall denote the 

angle which the direction of motion at L makes with the positive x-axis by v, and 

the ordinate of Z by y. Also we shall let F denote the curve formed by the set of 

values ,r, y w h e n / (  is varied from J to the extreme position for which the conditions 

above enumerated hold. 

It will be proved that the curve F necessarily intersects the curve F (fig. 5). 

This is apparent if the extreme position of K is one for which we have a col- 

lision at J. For in this case by the preceding methods we may establish that I" is a 
closed curve lying within the rectangle in which I" lies save for an initial point 

( ~  ~/4, o) and a terminal point (,7/4-[--e, o) where o < e l  ~r/4 (fig. 5)- The 

curve F-extends from a point on one side of the curve F to a point on the other side. 
We have further to consider the case for which L remains distinct from J during 

the period of variation while, however, at the terminal point of I', some point of 

L K  satisfies either the condition y = o, or the condition d x / d t  --- o. 
The possibility y = o may be excluded, for at such a point we must have si- 
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multaneously d x / d t ~ o ,  d2),/dt2"~o which is in contradiction to the second equation 

( i )  (see S I7)- 
Hence we  may restrict attention to the possibility" d x/dt-~-o, y > o at some 

point of L K .  W e  may exclude the point K as not one for which a further root 

d x/d t ~ o appears, since the first equation ( I )  establishes that d ~x/dt 2 is negative at K. 

If  this point is /~, the terminal value of ": is + =/2, and the curve i ~ extends 
from the point ( m  =/4'  O) on one side of the curve F to a point (___+ =/2, y)  on the 

other side of l" (fig. 5)- The curves 1 ~ and i" will intersect in this case also. 
It is, however,  impossible for the conditions d x/dt = o, y > o to be satisfied 

first at an interior point M of L K .  If this impossibility be established it is clear that 

1" and I" always intersect. 
In order to establish it we make a division of cases according as dy/dt > o or 

dy/'dt ~ o at M, the first of which I shall now consider. 

Let us multiply the first equation ( i )  by y, the second bv x - -  8. and subtract the 
two resulting equations, member for member, from each other. We shall thus obtain 

i) 
If r has the same meaning as before, and if 0 is the angle which the line J P  makes 
with the x-axis, this equation may be written 

At L on the line x - -  ~,. -~- o it is clear that dO,'dt < o, while at M it is clear 

that d O / d t ~ o .  There is thus a point N on L M  for which dO,/'dt=o, d=O,/dt2~o. 
Also from the equation x - - t z  = r cos 0 we infer that the condition 

ax  
dt r sin 0 _[_ dr~ _ _  , 3 7  c o s  0 ~ o 

holds at such a point, from which we have accordingly d r,/dt "~ o. 
But the right-hand member of (59) is positive at N, while the left-hand member 

reduces to - - r ~ d " O , / d t  ~ -- 2 r d r / d t  which is negative or zero at N, so that a con- 

tradiction has been reached in this case. 
In the case where we have dx /d t - -o ,  y > o  and d y / d t / o  at an interior point 

M of L K  we make use of the conditions d *x/dt ~--=o, d ~x/dt 3 ~ . o  which must 

clearly obtain since the condition d x/dt ~ o holds along L K. From the differential 
equations ( I )  we  infer 

d'x  ( dx ) dx dy 
d t - W  -~ 2 --  u-d- f + i~.~ (x, y) + l ~ ( x ,  y ) 3 7  -q- ~ (x, y) . 

At M we find therefore that d 3x/dt 3 reduces to 

2 i l  (x, y) + (x, y) " 
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Since ~.(x,  y) is negative for y ~ o and since dy /d t  is negative or zero, it follows 
that ~:~.~(x, y) must be negative if d ~x/'dt 3 is to be positive or zero. This is not pos- 

sible for from (58) 12~, (x, y) is positive at M. 

Thus the curves 1" and F obtained will necessarily intersect at one or more points. 
If the particle P passes through the corresponding point Q of the line x = / s .  

with the proper value of % its orbit before the point is reached constitutes an arc 

K L ,  and its orbit after the point is reached constitutes an arc L K. These two arcs 
together form a retrograde half oval about J along which dx/'dt is positive, intersecting 

the x-axis perpendicularly at K and/4,  and becoming parallel to the x-axis only once; 
in fact if there were more than one point dy /d t  = o, the conditions d2y/dt  "- ~ o, 
d x / d t  ~ o would hold at one of them, which is impossible by the first equation ( i ) .  

Since the differential equations of motion are unchanged if x, y, t be replaced by 

x, - -  y, - -  t respectively, we conclude that the arc / f K  thus obtained, together with 
its reflection in the x-axis, constitutes a retrograde symmetric periodic orbit. 

For any value of C for which there is a closed oval of ~ero velocity about ], there 
will exist at least one periodic orbit making a single retrograde circuit of J, symmetric 
with respect to the x-axis, zz~ith tangents parallel to the ),-axis at two points of the x-axis, 
and with tangents parallel to the x-axis at two symmetrical points. 

It is obvious that similar methods will lead to a proof of the existence of retro- 
grade periodic orbits in more general cases. 

I 9 .  

A n  A l t e r n a t i v e  F o r m  of  T r a n s f o r m a t i o n .  Direct  Orbits .  

We shall now return briefly to the case / ~ = o  in order to establish the fact that 

it is possible to make a reduction of the restricted problem of three bodies to the transfor- 
mation of a discoid (by a discoid I mean a two-dimensional region deformable into a 
circle) into itself. 

When /z is zero, the parameters a, 0, + (~ 9) serve to represent the states of 
motion for a given C. These parameters were taken as the cylindrical co6rdinates of 
a point in space. The totality of states of motion was then represented by the points 
of a hollow cylinder a / a / a 2 ,  o ~ + ~ / 2 r r  where opposite points of the bases 

- -  o and + = 2 x were taken as identical by convention. 

It is convenient for us to replace the variables a, O, ~ by 

a _ -  , 
a a 2 

where a, 0, + are again taken as cylindrical co6rdinates. The region of representation 

is now the ordinary cylinder a / ( a  2 - -  a ) / a  a ,  o = / ~ / / 2  ,x under a similar con- 

vention. 

In the a, 0, q~ representation the outer and inner cylindrical surfaces correspond 
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to the direct and retrograde circular orbits respectively; the spirals 0 -}- + = constant 
and 0 - -  + _-= constant on these respective surfaces correspond to the individual states 

of motion. 

It the a, 0, + representation the surface of the outer cylinder corresponds to the 

retrograde circular orbit and the spirals 20 q _ 7 ~ -  constant on that cylinder correspond 

to the individual states of motion along the orbit. The axis a = o of the cylinder 
corresponds to the direct circular orbit, and to an individual state along that orbit 

corresponds the point a = o, ~ = constant. 
Here then the parametric representation is only singular along the surface of the 

outer cylinder which corresponds to the retrograde circular orbit. 

By (37) the orbits will have the equations 
3 

[( ] ; = a o ,  a= i + t + } o  

in these new variables. As t increases indefinitely, each representative point moves in 

a spiral up the cylinder (i. e. lira { = - [ - o ~ ) .  

A point (a, 0, o) of the base } - =  o of the cylinder will thus be taken into a 

definite point (a', 0', 2w) of-+ = 2r~ in such a way that 
3 ]-, 

( 6 0 )  a '  = a, 5 '  = - -  2 =  a a a  I + I + O. 

In the case ~ ~ o the restricted problem of three bodies may be associated with the 

one-to-one continuous transformation of a circular discoid into itself. 
It may be noted that, if we refer the states of motion to the space of inversion 

in which the representation is two-to-one, the circular disc is replaced by a discoid 
bounded by the closed curve which represents the retrograde circular orbit. 

Now it is clearly possible to establish a one-to-one continuous correspondence 
between the states of motion in the case ~. -7(= o when a closed oval of zero velocity 
surrounds J, and the states of motion in the case ~. --- o, in such wise that the re- 
trograde orbit for ~,.-76 o of the type established to exist in the preceding paragraph 
corresponds to the retrograde circular orbit for g~.=o. For example, if one continuously 
deforms the region of possible motion for g. -76- o, leaving the vicinity of the singular 
point J unaltered, so that the oval of zero velocity becomes the circle of zero velocity 
for ~,. = o, and so that the retrograde orbit for ~ 76 o becomes the retrograde circular 
orbit for ~ --- o, any state of motion for tz --# o may be set in continuous correspon- 
dence with the state of motion for ~, ~---o with which it coincides in position and di- 
rection after deformation. 

That is, we are entitled to use the representation of the states of motion in the 

cylinder a ~ (a= - -  a , ) / a  a ,  o ~ - +  ~ 2 % for V- --~ o also, where the surface of the 
cylinder is to correspond to the known retrograde orbit, and the individual states of 

motion along this orbit correspond to the lines 2 0-}--q~ --constant .  
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Incidentally let us apply this representation to define the term direct periodic orbit 
oJ simple type. It is manifestly desirable to include all those orbits which make a single 
direct circuit of J in the x, y-plane, and also orbits obtained by continuous defornaation 

of such a direct orbit. But in the case ~ = o  the axis a = o  corresponds to the direct 
circular orbit. A direct periodic orbit (with respect to the given retrograde periodic 
orbit) of simple type may thus be defined as one which corresponds to a stream line 

joining the point (a, 0, +) with the point (a, 0, ~ -t- 2 ,-:). In general a periodic orbit 

is represented by a line joining (a, O, +) with (a, 0, + -I- 2k,x). Under these cir- 
cumstances the periodic orbit wilt be said to make k circuits of the given retrograde 
orbit. A direct periodic orbit of simple type is accordingly one which makes a single 
positive circuit of the retrograde orbit (k ----- I). 

For ~ - - o  every point of the cylinder moves from one end to the other as time 

increases (d -~ /d t~  o). This property will certainly continue to hold for /J. sufficiently 
small. We see that, as long as this is the case, it is possible to construct a discoid 
across the cylinder which is cut by every stream line in the same sense. To prove 
this we may use the method used in ~ I5 for establishing the corresponding theorem 
for the transformation of a ring into itself. 

The transformation 7" which takes a point K of one of these discoids into a point 
of the congruent discoid displaced upward by a distance 2 ,x constitutes clearly a one- 
to-one continuous transformation of a discoid into itself of the same general character 
as the transformation T of a ring-shaped region into itself, and effecting an entirely 
analogous reduction of the restricted problem of three bodies. 

It is not difficult to see that other transformations of the variable a, 0, + can be 

used to lead us to an infinite number of transformations like :T. The transformation T 
is the only one, however, whose construction depends on a retrograde periodic orbit 
alone. 

If it be recalled that a transformation of a discoid into itself ahvays possesses an 

invariant point .s) it is clear that T possesses an invariant point. To such a point 
corresponds necessarily a direct periodic orbit of simple type. Now the transformation 

7" will exist if and only if every orbit in a sufficient interval of time makes an arbi- 
trary number of positive circuits of the retrograde periodic orbit (cf. ~ I5). 

If  the total number of positive circuits of the retrograde periodic orbit by an arbitrary 
orbit increases indefinitely zvitb the time t there necessarily exists a transformation T, and 
at least one direct periodic orbit of simple type. 

As ~,. increases from zero, the direct orbit which is the continuation of the direct 
circular orbit may become unstable by uniting with another direct orbit. This means 

merely that tWO invariant points of 7" coincide, but presents no other special feature 

xs) L. E. J. BROUWER, Ober eineindeutige, stetige Transformationen yon Fl~ichen in sich [Mathe- 
matische Annalen, Vol. LXIX (t9io), pp. i76-i8o ]. 
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of interest so far as T is concerned. The transformation T of POtNCkR~, on the con- 
trary, depends essentially upon the stability of both the direct and retrograde orbits, 
and will no longer exist after the direct orbit becomes unstable. 

This state of affairs seems to me to make it probable that the restricted problem 
of three bodies admit of reduction to the transformation of a discoid into itself as 
long as there is a closed oval of zero velocity about J,  and that in consequence there 
always exists at least one direct periodic orbit of simple type. 

2 0 .  

The Symmetric Periodic Orbits. 

We shall now restrict ourselves to the case when y. is so small that the trans- 

formation T exists and may be represented in the explicit form given in ~ I3, although, 
in reality, it is only the existence of a transformation T in which the boundaries of 
the ring correspond to two orbits symmetric with respect to the x-axis that is essential 

for our purposes. 
We  propose to make application of the concept of the ring to prove the existence 

of  infinitely many symmetric periodic orbits, and at the same time to develop briefly 

their mutual relation. 
In order to treat the periodic orbits symmetric with respect to the x-axis, we 

observe first that such an orbit crosses the x-axis twice and only twice at right angles. 
For if the orbit crosses at t ~ t o and t ~ t, successively at right angles the complete 
orbit is obtained by a reflection in the x-axis and has only two crossings at right 
angles. Hence there are at most two such crossings. 

Moreover if at t ~ t o and t ~ t we have symmetric crossings at one and the 
same point, it is clear that at t' - ~  ( t  o + t , ) / 2  we have one crossing at right angles; 
also if there is one crossing at right angles at t ~ t' which is made again at t ~ t" 
for the first time, there will be a similar crossing at (t '  -~  t") /2.  Hence there are pre- 

cisely two crossings at right angles. 
N o w  the crossings at right angles may be divided into four classes. The first class 

corresponds to the states of motion x D Y-, y ~ o of the ring; guiding ourselves by 
the analogy with the case y. ~ o we shall term these states of motion lower passage 
at opposition; for P is in opposition to S. The second class corresponds to crossing at 
right angles for x ) ~ ,  y ~ o  not along the ring; this state of motion may be termed 
higher passage at opposition. The third and fourth classes (x ( y . ,  y ~ o )  may likewise 
be termed lower and higher passage at conjunction according as the state of motion 

belongs to the ring or not. 
W e  shall represent the transformation T on an ordinary ring. This ring may be 

conceived of as obtained from the ring of ~ 13 by a continuous distortion such that 
the points in the x-axis are carried into points of a new axis and such that pairs of 
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points symmetrical with respect to that axis are carried over into pairs symmetrical 
with respect to the new axis. The transformation T may still be written R U where 
R is a reflection in the axis and U is another transformation of period 2 having es- 
sentially the same character as R. 

7 \  . . cx. 

(Fig. 6). 

The lower crossings at right angles will be represented by segments ~ or y~ 
of the axis according as the crossing is of the first or third class (fig. 6). Here we 
shall choose ~, "r on the boundary corresponding to the direct orbit, and ~, 8 on the 
boundary corresponding to the retrograde orbit. 

Higher crossings of the second and fourth classes are not represented in the ring. 
However we may associate with each such crossing the first later state of motion 
along the same orbit which lies on the ring; these form two continuous lines ~' ~', 
,~t 8w t r  r r  (fig. 7)- Two  lines ~"~ , 7"8 , symmetrically placed with respect to ~'~',  y '8 ' ,  
correspond to the first earlier state of motion along these orbits represented by a point 
of the ring (fig. 7). 

In the case V------o we are in a position to completely determine the position of 
the curves a' ~', y'~',  ~",~", y"8" .  Let us employ the variables a, 0, + of ~ IO. We 
first note that higher passage at opposition corresponds to 0 = ~, + = w. Also equa- 
tions (37) show us that the motion of a particle for which 0 = ~ ,  + = n  at t = o  is 
given by 

3 

a' ~ -  a, O' --~ - -  t - { -  ~, + ' =  a 2 t -~ -  ~. 

The first point of the ring for t ~  o is attained for hb'----- 2,% and the curve ~ '~ '  
has the equation 

3 

0 = - -  a ' ) .  

This curve lies between x ~ ( 0 - - o )  and y 8 ( 0 - - , x ) ;  for large values oi-the constant 
C of JACOBt a is small and the segment x'~' nearly coincides with yS. Likewise the 
equation of y' 8' is found to be 

3 

0 ~ - - ~ a  2 . 

Thus y '8 '  lies between y8 and x i3 ; for large values of C, T'8'  nearly coincides with 0t 9. 
The curves x' ~' and y' ~' vary only slightly from these positions when ~ is small. 

Rend. Circ. •Iatern. Palermo, t. XXXlX ( i  ~ sere. I g I S ) . - - S t a m p a t o  il xo maggio 19I 5. 4 2 
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The points of the curves ~" 9" and 7" 8" are invariant under U. In fact a point of 
0~"9" or 7"8" is carried over into the symmetrical point of ~'9' or "1,'8' by the 
transformation T; for such points are successive points of positive tangency to the 
auxiliary curves. If, however, we write T = R U we see that the reflection R alone 
effects this transformation so that U leaves each point of ~ " ~ "  and 7"8"  invariant. 

By the aid of this fact we may conceive of U as a distorted reflection of the ring 
. into itself, the axis of the reflection being composed of the segments ~" 9" and 7"8"" 

What is the condition for a symmetric periodic orbit? Such an orbit is com- 
pletely characterized by the fact that it has two states of motion, and only two, repre- 
sented by points on the segments ~9, 7 ~, ~' 9', 7'~', corresponding to the two cros- 
sings at right angles. Hence if a point K of one of these segments is taken into a 
point L of such a segment by k-fold repetition of T, the corresponding orbit is sym- 

metric and periodic. 
It is seen at once that there exist an infinite number of symmetric periodic orbits with 

right angle crossings of assigned classes, at least if 8" be small. 
In fact let - -~  and - - ~  be the coefficients of rotation along the boundaries of the 

ring corresponding to the retrograde and direct periodic orbits respectively (see ~ 13). 
3 

Since for /z~___o we have 8 ~ 2 ~ a ] - ,  a ~ 2 ~ r a f i t  is clear that ~ and a are unequal 
(~ ~ )  for small tz. After m applications of T the rotation of 9, 9', 8, ~' and , ,  ~', 
y, y' will be represented by ~ m ?  and --m~ respectively. For m large enough, m8 and 
m o will differ by an arbitrarily large quantity. The ruth images of z ~, 7~, ~' 9', 7'8' 
will wind around the ring arbitrarily often. To each crossing of these lines themselves 
by the ruth images of any one of the four lines corresponds a symmetric periodic orbit. 

I shall now proceed to develop more explicit results concerning the existence and 
distribution of the symmetric periodic orbits. In order to do so it is first necessary to 
define two characteristic integers corresponding to each such orbit. It will be assumed 
in the present paragraph that ~ is so small that the inequalities o ~ ~ ~ 2 7 :  hold. 
Under this condition no two points of a symmetric pair 0~ ~ ~" or 9', 9" or y', 7" 
or ~', ~" can coincide, for such a coincidence would imply that either ~ or ~ was a 
multiple of 2 ~; it must be recalled that 0c', ~', y', 8' are derived from ~.", ~", 7", 8" 
respectively by an application of the transformation T. Hence ~', 9', 7", 8'' continue 
to lie in the upper half of the ring as at 8- ~ o, and , " ,  9", 7', 8' continue to lie in 
its lower half for the same reason (fig. 7). 

Suppose that K is a point in which a given symmetric periodic orbit is positively 
tangent to an auxiliary curve of the ring. Furthermore suppose that k is the least inte- 
ger such that Tk(K) - - 'K  so that the orbit is positively tangent to an auxiliary curve 
of the ring k times before re-entering. Then k will be termed the first characteristic 
integer of the symmetric periodic orbit; in the case IJ. ~ o, k stands for the number 
of circuits of the rotating ellipse made. before the orbit closes in the x, y-plane. 

After k applications of T the point K will have rotated about the ring a certain 
number of times I. The integer I will be termed the second characteristic integer of the 
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symmetric periodic orbit; in the case 8. - -  o, 1 stands for the number of rotations of 
the moving x, y-plane during a complete circuit of the orbit in that plane. 

The quotient k/l measures the mean angular velocity of the particle P about J 
with reference to fixed axes. 

We have now to consider the possible combinations of pairs of the four classes 
of right angle crossings which may arise, and to ask in the ten possible cases what  
values of k and I correspond to existing periodic orbits. Inasmuch as the treatment in 
all cases is essentially the same, the results will only be derived in full for the case 
in which both crossings are of the first class (lower, at opposition). 

Suppose first that T k(K) - -  L where K and L are distinct points of ~i~ corre- 
sponding to the two right angle crossings. Then we have 

K -~ T-k(L)  : [UR]~(L) -~- U(R U) ~-' [R(L)].  

But since R ( K ) ~  K, R(L)- -~  L, this yields at once K - -  T~(L). Hence we have 
T ~ ( K ) - ~ - K ,  as is to be expected. It is also clear that the equation T Z ( K ) - - - g  has 
). ~ 2 k as its least positive integral solution. 

But after k repetitions of T the points ~ and ~ regress from their initial positions 
by k ~ and k? along the inner and outer boundaries of the ring respectively. Conse- 
quently, if 21r~ lies between k~ and k ~, one necessarily infers that the line ~ in its 
final position will have some point K which regresses in an angular sense by exactly 
21=, that is lies at a point L of ~15. 

The corresponding periodic orbit will have 2k and 2 l, or equal submultiples 
there of, 2k/~, and 21/X, for first and second characteristic integers. 

For any k and 1 such that 
k~o ~ 21~ ~ k* 

there exists a symmetric periodic orbit with 2 k and 21 (or equal submultiples thereof) 
for first and second characteristic integers respectively, and with both right angles crossings 
of the same class. 

The argument given above is made only in the case in which both crossings are 
lower and at opposition, but applies to the four similar cases without any modification. 

Suppose next that T~(K) - -  L where K lies on ~ and L on "i'~. Here we find 
at once T ~ k ( K ) ~  K as before. But after k repetitions of 7", ~ and t5 regress by k~ 
and k? along the boundaries of the ring, and so there will be a point of ~[~ which 
regresses by precisely (21 + r )~  if ( 2 1 +  I )~  lies between k? and k~. Such a point 
appears as a point L of "I" 8. 

Strictly speaking, the existence of a point which regresses by (21 2 I- r),-= in an 
angular sense has not been proved. If, however, we compare T-k(~) and Tk(oO, 
noting that 

T-k(~) --- [R U]k(x) ---~ [R U]kR(~) : REUR]~(~) - -  R T-k(~), 

it appears that if T k(~) has regressed from a by less than ( 2 l +  i)r:  in an angular 
sense, the T-k(~r has advanced from ,-: by the same amount. But then the application 
of T ~k to T-~(00 regresses the point T-k(~) by less than 21-[-  I complete cycles. 
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Hence by the fundamental property of coefficients of rotation such as ~ (w i3) , we 
have 

< ( 2 1 +  
which is impossible. 

For any k and l such that 
k~ < (21 + I )~ < kq 

there exists a symmetric periodic orbit with 2k and 21--~ I (or equal submultiples 
thereof) for first and second characteristic integers respectively and with right angle crossings 
of the first and third, or second and fourth classes. 

The two similar cases are included in this statement. 
In the third place let us suppose that Tk(K)  - -  L where K is a point of ~ 

and L is a point of ~'~'. Here we have 

K = T - k ( L ) =  [ U R ] k ( L ) =  U T k - ' ( R L ) =  U Tk-2(L), 

since R ( L )  = U R ( L )  - -  T- ' (L) .  Consequently we have K =  R(K)  = T k-' (L), and 
thus finally T 2k-'(K) = K. That is, 2 k - -  I is the first characteristic integer. 

Sufficient conditions for such a symmetric periodic orbit with second characteristic 
integer 21 -1- 2 are 

< ( 2 l +  (21 + < 
For, if these conditions are satisfied, after k repetitions of T the point ~ regresses by 
k ~ which will be more than 1 + I complete rotations (see above). Similarly "1" regresses 

by less than I -~- ~- rotations. The kth image of a point K of ~ ~ will therefore surely 

fall at a point L of ~'~', so that K has regressed by (21 --[- i),x 71- d, (d < ~). By 
an application of 7"-" this point goes to the symmetrical point of ~" ~," ; in this position 
K has regressed by (21 -[-- i ) x  - -  d. Now because of the symmetry of T and T -~ 
noted above, a further application of T ~ will advance the point by ( 2 l +  2)~,--]-d 
more. Hence, in all, the angular regress of K after 2 k - -  I applications of T is precisely 

(41 + 2)~. 
For any k and 1 such that 

kp .< (21 -[- I)~, (21 --~ 2)7= < k~ 

there exists a symmetric periodic orbit with 2 k - -  I and 21 + i (or equal submultiples 
thereof) for first and second characteristic integers and with right angle crossings of the 
first and second, or third and fourth classes. 

In precisely similar manner we may prove the following result. 
For any k and I such that 

]~[3 < 21=, (21 + I)rg < k0' 

there exists a symmetric periodic orbit with 2 k ~ I and 21 (or equal submultiples thereof) 
for first and second characteristic integers, and with right angle crossings of the first and 
fourth or second and third classes. 

The method above employed can be made to yield a variety of results concerning 
the distribution of the symmetric periodic orbits. We shall confine ourselves here to 
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noting a salient fact concerning the order in which these orbits cross the x-axis at 
right angles. For convenience we shall use the four auxiliary curves ~ [5, ~.~, =' [5', y' 8', 
corresponding to the four types of crossing, in stating the results. 

/ f  ( k ,  I,) and (k2, I~) are pairs of first and second characteristic integers for two 
symmetric periodic orbits belonging to points K, and K~ of one of the four curves ~ ~, 
y ~, ~' ~5', 7' ~' for bt = o, then symmetric periodic orbits with the same first and second 
characteristic integers (or equal sitbmultiples thereof.) continue to exist with K, and K in 
the same order unless, as ~,. varies from zero to the given value, one of the rotation num- 
bers o, ~ passes through the value 2 7: I l k ,  2 rr l=/k~ respectively. 

For V" = o it has been proved that if a (the semi-major axis of the rotating ellipse) 
be taken as parameter along the lines ~ }, 7~, x' }', 7'8', then those orbits are periodic 

3 

which belong to the states of ,notion for which a ~ is rational, and that then the ratio 
3 

of the characteristic numbers k/l is precisely a ~ (~ io). 
But these periodic orbits can also be regarded as follows: the k th image of a 

certain point on one of the lines x~, 7a, :~ .... e ,  7' ']' is taken into a certain point of 
one of these lines after making 1 circuits of the ring. To this pair of points corresponds 
the symmetric periodic orbit. For ~ = o the intersection of the image and curve is 
unique. 

Now let ~ vary from zero. As long as the two curves continue to intersect there 
will be a periodic orbit with the given k, 1. An intersection will necessarily exist until 
a point of intersection passes to the boundary of the ring, since the curves cross but 
once for V" = o. 

At / * = o  there will be but a single point K and K with the stated characteristic 
ratios. When V" varies from zero a point K cannot vary through K= for then we should 
have k / 1 - - - k = / l .  Moreover an even number of points K, ,  K~ will be introduced or 
disappear by coincidence, corresponding to the intersections of the curve ~ }, 7~, ~' ~", 
T' ~' and the images above obtained. Hence points in the same relative order will con- 
tinue to exist under the specified circumstances. 

S 2 I .  

S o m e  Geometr ica l  Consequences .  

In conclusion I wish to take cognizance of some obvious but curious geometrical 
consequences of the existence of the ring transformation and the fact that it posseses 
an invariant area integral (see w i4). 

All of these are corollaries of the following fact: 
I f  ~ is taken so small that a transformation T exists, and if F be any closed curve 

(not a closed stream line) in the representing sphere (w 7) there will necessarily exist an 
infinite number of stream lines which pass through a point of F twice. 
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The proof is immediate. If we pass along a stream line from a point K of F to 

the first point L of intersection with the ring and then allow K to describe 1", the 
point L will describe either an area enclosing curve F', or an arc of a curve nmltiply 
taken, or a single point. The last case is excluded by the hypothesis that I TM is not a 
closed stream line. In the second case the truth of the statement made is obvious. 

There remains only the first case to consider in which the image F' of F divides 
the ring in two or more parts. Now consider the successive image of 1" in the ring 
under the transformation T. Because of the existence of a positive integral area in- 

variant over the ring we can infer that T may be repeated so often that some k th 
image of F' overlaps an I th image of r ' ( k  ~ I). It follows then that the (k - -  1)th 

image of F' overlaps F'. Such an image cannot lie wholly within or without P' for 
that would be in contradiction to the existence of a positive integral area invariant. 
Through each point of intersection of the boundary of P' and such an image will 
pass a stream line which intersects P twice. 

By this process I" is broken up into smaller regions (or is transformed into itself, 
when the statement to be proved is obviously true). Applying again the same argu- 
ment to these smaller regions we are led to the conclusion that there exist an infinite 
number of stream lines passing through p twice. 

We include (by convention) the case in which a single orbit cuts P infinitely 
often. 

We have at once the following corollaries: 
a) infinitely many of the orbits pass twice through any given point of the x, 

y-plane not on the oval of zero velocity, 
b) infinitely many of the orbits pass twice through a point of the oval of zero 

velocity, 
c) infinitely many of the orbits pass through ] twice. 
For in each case the totality of states of motion under consideration will cor- 

respond to a closed line in the representing sphere. 
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