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On the Reduction of a Linear Substitution to a Canonical Form.
By 1. J. T'A. BrouwicH. Received October 27th, 1899.
Read November 9th, 1899,

1. Introductory Remarks.

It will be seen at once that the main idea of the following note is
the same as that of Herr Netto's paper ‘ Zur Theorie der linearen

Substitutionen.”* That is to say, we pass from the case of a sub-
stitution whose characteristic determinant has a root a repeated
p times to the case of a substitution with p roots differing but little
from a, but all distinct. The change is made by increasing each
coefficiont of the substitution by a small arbitrary quantity ; and so
we reduce the substitution to the limiting case of one with all its
roots distinct.

The point of divergenco between my work and Herr Netto's is
that I have shown that it is unnecessary to retain these small
changes in the coefficients when we scek to detcrmine the linenr
functions which reduce the substitution to a canonical form. This
simplification will be found of considerable advantage in cases of
numerical caleulation ; from a purely theoretical point of view, it is
probably of less importance. To show that the difliculties of calcu-
lation are not great, I have worked out at length the particular
example given by Prof. Burnside in iHustration of hxs method for
reducing linear substitutions.t

_ 11,
Suppose we have the substitution
= a2+ Qg+ e + 0120,

’
Xy = a!l“‘ul+ bt +aﬂnmvu

’
T, = a2, + ... + @y T

¢ Aecta Mathematica, Vol. xvir., p. 266.
t Iroc. Lond. Math. Soe., Vol. xxx., p. 180.
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Then, forming the quantity
llm; + lim;'*' oo + lumr'n
we shall have that this is 6 times

Zlml + lgms+ oo +anll!
provided we have 4 .

(ay=0) hi+agly+... +anl, 0]
al!ll+(a’ﬂ_o) l2+---+amlu =0

. (1)

Qi ll +a,, Zs +... + ((Z,,,.—B) lu =0
‘Hence 6 is a root of the determinantal equation

A=|a,—0, ay, .. 6a =0.
Gy Aup—0, .., a.
Qyay [P seny a’m—'g

If the roots of this equation are all distinct, we have = values of 0,
and » corresponding determinations of the ratios
Lol

But this method breaks down if we find that any root of A =0,
say 0 = q, is repeated. The object of this note is to explain how we
can very easily extend our method so as to cover this case. Suppose,
then, that (6—a) is a p-times repeated factor of A and a g-times
repeated factor of every first minor of A ; so that (0 —«)”~? is a firstin-
variant-factor (Elementartheiler) of A. Solve for the ratios 7,11, ... i I,
from any (2—1) of the equations (1); we shall suppose the last (v —1)
to be selected, to avoid verbal confusion,the method of procedure being
the same whatever (n—1) equations are chosen. We now have

L_b_ _L
4, Ay T Ay

the capital letters being the first minors of the corresponding small
letters in A. Ivery one of the quantities 4,), ..., 4,; will contain the
. factor (6 —a)?; divide out by this and write 6 = a+£. We then
have 1, I, ..., I, expressed as polynomials in ¢; one at least of these
polynomials must have & term independent of ¢, which implies that
at least one of the minors 4,,, ..., 4,, is regular or is not divisible by
‘& higher power than 2%

* It this is not the case, we must use another set of (n—1) equations for the 7's.
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Now write = (ay—0) 1 +ayli+... +aul,
and eliminate Ll ool .
We obtain a determinant equal to zero, which only differs from A in

having a, replaced by an—§&/L, where k is any one of the numbers
1, 2, ..., n which satisfies the condition that 4, is regular.

Thus we have A—(fdn/l) =0,

and, replacing 8 by (a+t), we see that A contains ¢’ as a factor, and
Aji [l contains ¢, Hence £ contains $’-? as a factor. the remaining
factor not vanishing with 2. '

Thus we have the equations
aphtanl+...tanl, = (et+t) ],

+ terms of order -7 and higher orders,

a”ll“'amlg'*'.-- +au2lu = (a+t) lﬂ’

alnll+a2nl2+ “o +d;17llll = (a+t) Zu' .
Hence Laz+has+... +lue, = (a+8) (2, +Lay+ ... +La,)

+terms of order -9,
or, if we expand l,z,+... +1.2, in the form

X, 4+ X, b+ X, 0 .,
we shall have

X+ X+ X304 ... = (a+ (X, + Xt + X'+ ..0)
+ terms of order ¢"-9.
~Thus, equating coeflicients of corresponding powers of #,* we have
Xy =aX,
X, =X, + X,
X; =aX+X,,

.X;_q = QX,,_q+X -g-1

“* Thix step is legitimate, for ¢ is arbitrary, and the scrics on the two sides will
be terminated.
U2
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It should be observed that the vﬁ.lues of the X’s so determined are
not unique ; for we need not take

A
l, = —t-ql', &e.,

and it is only necessary to put

=0 BBut+AE+ ),

ls = /2:, (ﬁ|+ﬂzt+ﬁdt’+ )’

ln = 'A"l (ﬂl +ﬁﬂt+ﬁ8t’+ "')‘

s
Then we see that, if

(X 4+ Xt + X' 4 ) B+ Bot + 8582+ ...) = Y+ Yt + Y, '+ ..,
8o that Yo =B X+ 3 Xy + oo + B X |

the series of Y’s will satisfy the same equations as the X's; and the
Y’s contain (p—q) avbitrary constants. There may be a further
indeterminacy, nccording to the particalar line in equations (1)
whose minors give the l's. _

We now proceed to get more linear functions of 2, ...,z, which
possess similar properties.  Suppose that (f—a)" is & factor of every
second miinor of A, nnd, further, that this is the highest power of
(6 - «) that docs ocenr in every sccond minor.,

Solve for the ratios 1, : 1, 2 ... : I, from the last (n—2) equations®
of (1); the resulty will involve one avbitrary quantity (such as the
vatio 1,1 1,). We write § =«+¢, and express the ratios in powers
of ¢, dividing by ¢"; now put

§= (a,—90) ll+a‘2|li+ vt by,

1= agh+ (ap—0) +... +a,l,.

* Wo might usc cqually well any other (n—2) of tho cquations ; the proc-eaa of
noleetion ndopted heve is to cancel successively the fiest, socond, third, &o., of
oquations (1).
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Then we see that.

aylitanli—n, ay—6, .., au i =0,
al +anh, gy ey Caa '
al,.l, + (179 l‘, 127 | N 6 ;‘

where the two l's in the first column may be any two we pleage,
ulthough here one has been taken to be !, simply to save multiplicity
of distinguishing suffixes.

Expanding out this determinant, we have
7 (a second minor of A) = {, (a first minor) + I, (n first minor). -

Now, at least one of the second minors contains as a factor ¢ raised
to no higher power than ¢" (or is regular) ; we here suppose this to be
true for the minor obtained by deleting the first and second rows and
columns of A. All the first minors contain ¢ as a factor,  while
none of the I's contain negative powers of ¢. Hence the lowest power
of t in 5 i8 at least'#?""; the same result holds for &

Accordingly we have the equations
anli+anlyi+ ... +a,l, = (a+t) ]+ terms of order £,
agli+aply+ ... +a,l, = («+¢) 1,4+ terms of order ¢,
aglitaul+... +a,l, = (att)

apli+anly+ ... +al, = (att) 1.
I'hus, if with these values of I, L, ..., I, we write
Lo+ ...+, = X,,_q,.+tX,_q.,.+t'X,,_,,‘,+ e XL,
we shall have
Xpogn+ X, t 88X, pat . = (a+ ) (X, g0 +IX, gt )

+ terms of ovder #7°".
Hence X;)-q+l = axp-qrh

»
Xp-qoﬂ = “Xp-qoa'*'xp-qn!
e e

’ —
X]l-l‘ - aX,l-r + . p=r-1:

Just as before, we can construct a set of Y's which satisfy these eqna-
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tions and contain (q—r) arbitrary constants. But we may add to
Y,.q.x any term such as
NXitrnXiat .. +nX,

for X, X,, ..., Xi, ... satisfy the same relations as X,_;,;, X, 5.0 o0y
X,.qet ..., and 80 we get (g—7) more arbitrary constants. It should
be observed that the last (q—7) constants should include the one
arbitrary constant that appears in the original solution for
l,:1:...:1,. Wehave thus in the general reduction of these (q—r)
terms 2 (q—r) arbitrary constants.

1t is now easy to see how we can extend the method proposed so
as to deal with terms which arise from minors of higher ovders.
Suppose & denotes the diffcrence between the index of (—a) in the
greatest common measure of all the (k—1)" minors of A, and the
corresponding index for the ™ minors; so that (6—a)* is the i™
invariant-factor (LBlementartheiler) of A, We solve for I, : 1, : ... 1 1,
from the last (n—k) of equations (1)*; then we write § = a+{, and
divide by the extraneous power of ¢; the values of /, : ... : [, so found
will satisfy the first k of equations (1) up to terms in ¢*. Then we
expand Lz, +...+0a, up to terms in ', und so obtain k linear
functions of @,, ..., @, 88y Xopyy Xoozy ooy Xyune  These will satisfy

- -
4\“1 = aX,,1,

;
X =aX, o+ X,

’
Xl'oll = aX,+ Xu-ola—l'

The most general values which satisfy these equations can be con-
structed as before explained; and we see that they will contain hk
arbitraries, & from each of the %k groups of lincar functions
(Xp ooy Xpog)s (Xpogatr ooy o)y ooy (Xiny s Xoan)-

Our process goes on until we reach a minor of A which does not
contain (0 —a) as a factor. We shall then have found

(r—9)+(@@-n+(G—8)+..=p
linear functions of «,, ..., @, which reduce to canonical forms those
parts of the substitution which correspond to the root # =a of A =0.
Proceeding in this way for each root of A =0, we finally obtain
n linear functions which will reduce the given substitution to its
canonical form.

* Wo assume that one at least of the minors formed from these (n—/c) equations
is regular.
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III.

"T'o give a numerical illustration, and to compare the method with
Prof. Burnside's (Proc. Lond. Math. Soc., Vol. xxx., p. 191), let us
take his example,

@ = — 2m,— @y~ g+ 3y + 2,
2y = —da,+ ;—a,+ 3z, + 2,
m= ot a, —3r—2,
2y = — 4o, —~ 2wy —wy+ D, + 7,
vy = 4da,+ z,+2,—3m,
We find the equations for the I's,
—(240) L, — 41,4+ l,—4l,+ 4l = O,
—L+Q=0)1, + 1,=2,+ =0,
b= ly— L+ =0,
31, + 8y — 3l + (5—6) L, — 3l = 0,
21, + 21, — 2l + 1,— 6l = 0,

and these give A=—(0+1)(0-2)"

The minors of the elements of the first row are found to be, in order,
0 (6—2)%,
—(6+1)* (6-2),
—(6-2)",

3(6+1)(6-2)?,

(0+1)(0—2)(20-17),
8o that (8—2) is a factor of all these, but (0+1) is not. As a matter
of fact (6—2) is o factor of every first minor; so that for (6 —2) the
second and fifth of the above are regular; for (6+1), the first and
third. To proceed put § = —1+¢, and, the corresponding difference
(p—q) being equal to 2, we have to expand only as far as the terms
in £. After dividing by —3 (#—2), we find, neglecting terms in ¢
and higher powers of ¢, in agreement with our rule,

=3 (1—t)(3—t)* = 3~5¢,

Iy =3¢ =0,
l,=1(3-1t)! = 3-2¢,
L,=t(3—1) = 3,

l,=3t(9~2) = 3t



296 Reduction of Linear Substitution to Oanonical Form. [Nov.9,

Hence X, =3 (2,+2,),
X, = — b, — 224+ 3 (2, + ;).

We shall not have to proceed to the second minors, as (6+1) is
not a factor of all the first minors.

We next put § = 2+¢, and divide by (~3t) ; then

L=—i@+) =0,
lLL=%(3+1)* = 3+2,
ly=40 =0,
l,=—t(3+¢) = —3t,

Ii=1313+t)(3—2t) =3~
where we expand only to terms in ¢, because the difference (p—g) is 2.
Thus Xy = 3 (2 +ay),
X = 20— 3x,—ay.
In this case we have to go on to solve the last three equations in the
U's; but we may simply write 8 = 2, and drop the ¢, for the difference

(g—7) is 1; so that the I’s need only be calculated to the term inde-
pendent of ¢, Hence we take

—(L+l) -2 —1l+ 1, =0,
G+L)= L+i— L, =0,
2(L+1)+2,+1,~2l, =0,
giving. L=0, §,=0, L+h=1;
Hence X, =1, (z,425) +1, (23 +5),
and !, must not vanish, for, if so,
3%, =1, X,

We now have the given substitution reduced to

X =-X,
X:=—X,+X,
X; = 2X,,
X{= 2X,+ X,
X; = 2X,,

which is a canonical form of the substitution. We see that the
classification of any substitution is given by the indices of the in-
variant-factors, and hence this substitution is typified by [(2. 1), 2].
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We may take the generalized reducing functions

Y, =B,X,
Y, = B1X2+ﬂsX17
Y,= X,
Y, = Y|X¢+'Y:Xm
Y, = 6, X,

where B,, B;, v1, v 6, are arbitrary,
Prof. Burnside’s two reductions are given by
() By=-38, =0, vy=-3, y,=0, L=-1,.
Gi) Bi=13, Bi=% n=1 n=—% bL=—hL
[February 15¢h.—Since completing the above I have seen Mr. A. C.

Dixon’s paper (p. 170 of this volume). His method is quite different
from mine.] ‘

Notes on the Theory of Automorphic Functions. By A. C. Dixon.
Received November 8th, 1899. Communicated November
9th, 1899. Received, in revised form, January 9th, 1900.

Under the above heading I propose to make some remarks on
certain points in the theory of automorphic functions, from the
point of view taken by Poincaré in his memoirs (Acta Mathematica,
Vols. 1., 11, 1v., v.).

In the first place, I show how the theorem given by him that a
IPuchsian function exists of the second family and of class O, and
taking assigned values at singular points, may be used to establish
the existence thecorem on a Riemann surface, so far at least as that
theorem relates to uniform functions of position on the surface.

Next I give expressions for Abelian integrals of the first two kinds
in terms of series of the type used by Poincaré. Series of the same
type are also used to form factorial functions, .

It is also shown that a uniform function of the automorphic class
exists which will serve ns a prime function in the expression of
Fuchsian functions as the product of factors. Such have been con-
structed for automorphic functions existing all over the plane. That
which is here given serves for the other class.



