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On the Reduction of a Linear Substitution to a Canonical Form.
By .T. J. FA. BROMWICH. Received October 27th, 1899,.
Read November 9th, 1899.

I. Introductory Remarks.

It will be seen at once that the main idea of the following note is
the same as that of Herr Netto's paper " Zur Theorie der linearen
Substitutionen."* That is to Bay, we pass from the case of a sub-
stitution whose characteristic determinant has a root a repeated
p times to the case of a substitution with p roots differing but little
from a, but all distinct. The change is made by increasing each
coefficient of the substitution by a small arbitrary quantity ; and so
we reduce the substitution to the limiting case of one with all its
roots distinct.

The point of divergence between my work and Herr Netto's is
that I have shown that it is unnecessary to retain these small
changes in the coefficients when we seek to determine the linear
functions which reduce the substitution to a canonical form. This
simplification will be found of considerable advantage in cases of
numerical calculation ; from a purely theoretical point of view, it is
probably of less importance. To show that the difficulties of calcu-
lation are not great, I have worked out at length the particular
example given by Prof. Burnside in illustration of his method for
reducing linear substitutions.!

II.

Suppose we have the substitution

+ ann xn.

• Aeta Mathematica, Vol. XVII., p. 266.
t 1'roe. Loud. Math. Soe., Vol. xxx., p. 180.
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Then, forming the quantity

we shall have that this is Q times

l
provided we have

(a,, — 0) Z, + a21Za+...+a(,jZ,,

—0) Z2+...+a,,2Z,,

= 0

= 0

ai» h + a*, Z2 +. . . + (a,m—0) ln = 0

Hence ^ is a root of the determinantal equation

(1)

A = a21, . . . , a,,i

J—6, . . . , a,,2

0.

If the roots of this equation are all distinct, we have n values of 6,
and n corresponding determinations of the ratios

k : V: ». : >»•
But this method breaks down if we find that any root of A = 0,

say 0 = a, is repeated. The object of this note is to explain how we
can very easily extend our method so as to cover this case. Suppose,
then, that (6 —a) is a p-times repeated factor of A and a g-times
repeated factor of every first minor of A ; BO that (6 — a)""9 is a first in-
variant-factor (Elementartheiler) of A. Solve for the ratios Z,: Z3: ... : Z,,
from any (n—1) of the equations (1); we shall suppose the last (» — 1)
to be selected, to avoid verbal confusion, the method of procedure being
the same whatever (n—1) equations are chosen. We now have

A n A 3 l '" AnX'

the capital letters being the first minors of the
letters in A. Every one of the quantities An,.
factor^ — a)*; divide out by this and write
have Z,, Z2, ..., ln expressed as polynomials in t
polynomials must have a term independent of
at least one of the minors ..I,,, ..., AnX is regular

•a higher power than f.*

corresponding small
., Ani will contain the
6 = u + t. We then

; one at least of these
t, which implies that
or is not divisible by

It' this is not the case, we must use another set of (»—1) equations for the fs.
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Now write £ = (au—0) Z, + an l2 +... + anl Zn,

and eliminate Zt : Z2 '. ... : Z,,.

We obtain a determinant equal to zero, which only differs from A in
having nkx replaced by akX—$/lk, where k is any one of the numbers
1, 2, ..., n which satisfies the condition that Akx is regular.

Thus we have & — (£Akl/lk) = 0,

and, replacing 6 by (a + f), we see that A contains f as a factor, and
Akl/lk contains P. Hence £ contains t'"9 as a factor, the remaining
factor not vanishing with t.

Thus we have the equations

auZ1 + os,Zl+...+aHiZll = (e+f) I,

+ terms of order V'~q and higher orders,

al2ll + a.22l.2+...+altiln — (a + t) Z2,

alnli+a>J2+ ... +a,Jn = (a + t) ln. .

Hence l^ + l^x',-^ ... +Z,,w', = («4-0(^1^1 + 2̂̂ 2+ ••• +Z,,.r)1)

+ terms of order £""%
or, if we expand lxxx-\- ...-\-lnxn in the form

we shall have

+ terms of order f~g.

Thus, equating coefficients of corresponding powers of t* we have

.X,' = aX,,

X3 = aXs + X2,

* Thin Btep is legitimate, for t is arbitrary, and the series on the two sides will
be terminated.

u2
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It sliould be observed that the values of the X's so determined are
not unique ; for wo need not take

and it is only necessary to put

Then we see that, if

so that Ym = /3,XM+/3,XM_1 + ...+/3MX1,

the Heries of Y's will satisfy the flame equations as the X's ; and the
Y's contain (p— q) arbitrary constants. There may bo a further
indeterminacy, according to the particular lino in equations (1)
whose minors give tlio i's.

Wo now proceed to gut more linear functions of a;,, ...,JC,, which
possess similar ])ropcrtios. Supposo that {$—a)r is a factor of every
second minor of A, and, further, that this is the highest power of
{6 —a) that docs occur in every second minor.

Solve for the ratios /, : /2 : ... : I,, from the last (n —2) equations*
of (1) ; the results will involve one arbitrary quantity (such as the
ratio /, : lt). Wo write 0 — u-H, and express the ratios in powers
of t, dividing by f; now put

$= (vu-t

V =

• Wo iniglit URO ciiually well any other (» —2) of t.ho equations; tho proccHa of
Holoc.tiou adopted licvo in to cancel RucccsHivcly thn firnt, socond, third, ftc, of
oquutionfl (1).



1899.] a Linear Substitution to a Canonical Form.

Then we see that.

293

i — 6, ..., anl = 0,

where the two Z's in the first column may be any two we please,
although here one has been taken to be /„ simply to save multiplicity
of distinguishing suffixes.

Expanding out this determinant, we have

ij (a second minor of A) = Z, (a first minor) + lk (a first minor).

Now, at least one of the second minors contains as a factor t raised
to no higher power than tr (or is regular); we here suppose this to be
true for the minor obtained by deleting the first and second rows and
columns of A. All the first minors contain f as a factor, while
none of the Z's contain negative powers of t. Hence the lowest power
of tin r\ is at least f'"; the same result holds for (.

Accordingly we have the equations

an Z, + aiX Zj 4-... + «,,i ln = (a+t)lx + terms of order /*"'",
auZ, + a22 Z2 +. . . + a,t2ln =• (n + t)L + terms of order F~r,

Thus, if with these values of Zu lt, ..., ZH, we write

we shall have

Hence

+ terms of order tq~

Just as before, we can construct a set of Y's which satisfy these uqna-
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tions and contain (g—r) arbitrary constants. But we may add to
Y,,-q+k any term such as

+ ...+ykX,

for X,, X3, ..., Xk, ... satisfy the same relations as Xp_qiV X,,.,+2, ...,
Xp.q>k ..., and so we get (q—r) more arbitrary constants. It should
be observed that the last (q —r) constants should include the one
arbitrary constant that appears in the original solution for
tx : l3 : ... : ln. We have thus in the general reduction of these (q—'r)
terms 2(g —r) arbitrary constants.

It is now easy to see how we can extend the method proposed so
as to deal with terms which arise from minors of higher orders.
Suppose h denotes the difference between the index of (6—a) in the
greatest common measure of all the (/c — l) t h minors of A, and the
corresponding index for the kth minors ; so that (6—a)* is the 7rth

invariant-factor (Elemcntartliciler) of A. We solve for lt '. lt '....'. I,,
from the last (n — h) of equations (1)* ; then we write 6 = a + f, and
divide by the extraneous power of t; the values of Z, : ... : I,, so found
will satisfy the first h of equations (1) up to terms in th. Then we
expand lxxx + . . . +l,,x,l up to terms in th'\ and so obtain h linear
functions of a;,, ...,.»:„, say Xf)+1, Xe+2, •••> Xv+h. These will satisfy

A',',,1 = aX,,+i,

The most general values which satisfy these equations can be con-
structed as before explained; and we see that they will contain hk
arbitraries, h from each of the h groups of linear functions
( A , , ..., Xv_g), (-Xp-g+i, ..., A p . r ) , ..., (JC,,+1, ..., Xvth).

Our process goes on until we reach a minor of A which does not
contain (0 — a) as a factor. We shall then have found

s) + ••• =p
linear functions of #„ ..., x,, which reduce to canonical forms those
parts of the substitution which correspond to the root () = a of A = 0.

Proceeding in this way for each root of A = 0, we finally obtain
n linear functions which will reduce the given substitution to its
canonical form.

• We asBumo that ono at least of the minors formed from these («—fc) equations
is regular.
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III.

To give a numerical illustration, and to compare the method with
Prof. Burnside's (Proc. Lond. Math. Soc, Vol. xxx., p. 191), let us
take his example,

x[= — 2xl — <ca—a:8 + 3a54+2;r5,

x2 — — 4cct -f x2—xs+3xt + 2xs,

%3 = ffi-f «"2 — 3#4—2a:6 ,

a-4 = — 4a;, — 2xi—xi + 5rc4 + JB8,

rcj = 4^!+ aj2H-a!8—3a;4.

Wo find the equations for the Z's,

— 'l — '2 — P̂ 8 — V 5̂ = ^j

3Z8+'(5-tf) Z4-3Z5 = 0,

and these give A =s - (6 +1)2 (fl-2)8.

Tlie minors of the elements of the first row are found to be, in order,

so that (fl —2) is a factor of all these, but (0 + 1) is not. As a matter
of fact (6—2) is a factor of every first minor; so that for (0 — 2) the
second and fifth of the above are regular; for (9 + 1), the first and
third. To proceed put 0 = — 1 +1, and, the corresponding difference
(p—q) being equal to 2, we have to expand only as far as the terms
in t. After dividing by —3 (0—2), we find, neglecting terms in t2

and higher powers of t, in agreement with our rule,

lt = y* = 0,

Z3 = i (3-0 J =3-2*,
lt = t(3-t) = 'St,
I6 = \t(9~2t) = St.
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Hence X, = 3 (x{+xs),
X, = - 5a3,-2a-8+3 (xt+x6).

We shall not have to proceed to the second minors, as (0+1) i§
not a factor of all the first minors.

We next put 6 = 2 + tf, and divide by (—30; then

= 0 ,

= 3+2*,

= 0 ,

Z8 = £(3 + 0(3-20 = 3 - / ,

where we expand only to terms in £, because the difference (p — q) is 2.

Thus X 8 = 3(O:3+.T8),

X4 = 2ars—3sr4—*8.

In this case we have to go on to solve the last three equations in the
VB ; but we may simply write 0 = 2 , and drop the t, for the difference
(q—r) is 1; so that the VB need only be calculated to the term inde-
pendent of t. Hence we take

giving. lt = 0, lA = 0, i, + Z, = 76.

Hence X6 = /, (tc, + a;8) + h (a?2+tc8),

and /, must not vanish, for, if so,

3X8 = /jX,.

We now have the given substitution reduced to

X'2 = — X2

Xi = 2X8,

X8 = 2X5,

which is a canonical form of the substitution. We see that the
classification of any substitution is given by the indices of the in-
variant-factors, and hence this substitution is typified by [(2. I), 2].
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We may take the generalized reducing functions

where fiv /3a, y,, ya, <5, are arbitrary.
Prof. Burnside's two reductions are given by

( i . ) / 3 , = - 3 , ft = 0, y, = - 3 , y, = 0, Zs = -Z, .
(ii.) ft = | , /3, = | , Yi — h 7% ~ — | . *3 = — *i-

[February 15th.—Since completing the above I have seen Mr. A. C.
Dixon's paper (p. 170 of this volume). His method is quite different
from mine.]

Notes on the Theory of Automorphic Functions. By A. C. DIXON.

Received November 8th, 1899. Communicated November
9th, 1899. Received, in revised form, January 9fch, 1900.

Under the above heading I propose to make some remarks on
certain points in the theory of automorphio functions, from the
point of view taken by Poincare in his memoirs (Acta Mathematica,
Vols. i., in., iv., v.).

In the first place, I show how the theorem given by him that a
PucliRian function exists of the second family and of class 0, and
taking assigned values at singular points, may be used to establish
the existence theorem on a Riemann surface, so far at least as that
theorem relates to uniform functions of position on the surface.

Next I give expressions for Abelian integrals of the first two kinds
in terms of series of the type used by Poincare. Series of the same
type are also used to form factorial functions.

It is also shown that a uniform function of the automorphic class
exists which will serve as a prime function in the expression of
Fuchsian functions as the product of factors. Such have been con-
Rtructed for automorphic functions existing all over the plane. That
which is here given serves for the other class.


