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ABSTRACT
We present an application framework that consumes streaming
positions from a large fleet of flying aircrafts monitored in real time
over a wide geographical area. Tailored for aviation surveillance,
this online processing scheme only retains locations conveying
salientmobility events along each flight, and annotates them as stop,
change of speed, heading or altitude, etc. Such evolving trajectory
synopses must keep in pace with the incoming raw streams so as to
get incrementally annotated with minimal loss in accuracy. We also
develop one-pass heuristics to eliminate inherent noise and provide
reliable trajectory representations. Our prototype implementation
on top of Apache Flink and Kafka has been tested against vari-
ous real and synthetic datasets offering concrete evidence of its
timeliness, scalability, and compression efficiency, with tolerable
concessions to the quality of resulting trajectory approximations.

CCS CONCEPTS
• Information systems→ Data streaming;

KEYWORDS
air traffic management, geostreaming, mobility events, trajectories
ACM Reference Format:
Kostas Patroumpas, Nikos Pelekis, and Yannis Theodoridis. 2018. On-the-fly
Mobility Event Detection over Aircraft Trajectories. In 26th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Sys-
tems (SIGSPATIAL ’18), November 6–9, 2018, Seattle, WA, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3274895.3274970

1 INTRODUCTION
Each year, commercial airlines allow hundreds of millions of pas-
sengers to travel for tourism or business. In Europe only, 26,000
flights take place every day. Air transport is a strategic industry
and is expected to grow by 5% annually until 2030⋆, raising con-
cerns about safety and its potentially serious impact on the already
congested skies. High competition and slim profit margins due to
labor and fuel costs, force airlines to carefully plan their schedules,
routes, maintenance services, crew rotations and ticket prices.

Air Traffic Management (ATM) systems employ flight plans as
the best representation of the intended route of aircrafts so as to
⋆https://ec.europa.eu/transport/modes/air_en
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Figure 1: Mobility events detected along a roundtrip flight

minimize direct operating costs. ATM systems necessitate accu-
rate and predictable aircraft trajectories and traditionally employ
a model-based approach, but this has certain limitations related
to inherent inaccuracies, diverse sources of error and the effect
of uncertainty (weather, traffic, etc.). Yet, modern technology en-
ables real-time tracking of aircrafts, either via Automatic Dependent
Surveillance – Broadcast (ADS–B) messages emitted by aircrafts or
through monitoring by terrestrial radar stations. So, a data-driven
approach to trajectory management may be advantageous to more
efficient ATM. With numerous aircrafts in the air, their flight plans
may often need adjustment due to traffic congestion or emergency
situations, so timely and reliable trajectory representation for all
ongoing flights in a wide geographical area is crucial.

Towards this goal, we propose a novel application framework for
real-time detection of mobility events over aircraft trajectories. We
cope with voluminous, fluctuating, and noisy surveillance streams
from large fleets of aircrafts reporting positions at varying frequen-
cies.We apply single-pass techniques to obtain succinct, lightweight
representation of trajectories without harming approximation qual-
ity. Except for adverse weather conditions, traffic regulations, con-
gestion or manoeuvres (a.k.a. holding patterns) near airports, air-
crafts expectedly follow almost straight, predictable routes in the
air. Instead of retaining every incoming location, we propose to
drop any predictable positions along trajectory segments of “nor-
mal” motion characteristics. As illustrated in Figure 1, we only keep
critical points conveying salient mobility events (annotated as stop,
slowmotion, change in heading, change of speed, change of altitude,
etc.) identified when the motion pattern of a given aircraft changes
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significantly. This process also involves eliminating inherent noise
in the streaming positions due to delayed messages, duplicate posi-
tions, crosswind drift, discrepancies in GPS measurements, etc.

Thus, a large amount of raw positional updates can be suppressed
with minimal loss in accuracy. This derived stream of trajectory
synopses must keep in pace with input streaming positions so as
to get incrementally annotated with important mobility events.
Such compressed trajectories can be particularly useful in efficient
online or offline post-processing (e.g., mobility analytics, statistics,
pattern mining, etc.), and facilitate their comparison irrespectively
of differing frequencies of updates among aircrafts.

Overall, we address the following major challenges in managing
positional data streams in aviation surveillance:
– Timeliness.Mobility event detection must be carried out in real-

time. Critical points concerning evolving trajectories of aircrafts
must be issued at operational latency (ideally within milliseconds,
or at most a few seconds) to enable immediate action if necessary.

– Compression. Trajectory synopses retain only notable mobility
events per aircraft and thus incur a small memory footprint. At
least 70% of the raw data in our tests was discarded as redundant;
and in case of frequent updates, compression attains 99%.

– Quality. Such light-weight representations are reliable enough
in reconstructing trajectories with small deviations (i.e., tolera-
ble approximation error) from original traces, also coping with
inherent stream imperfections (network delays, noise, etc.).

– Scalability. Not only do we verify that a centralized deployment
of our framework can handle scalable volumes of incoming posi-
tions at varying arrival rates, but we also demonstrate that it can
be also parallelized, thus offering even higher gains in efficiency.
To the best of our knowledge, this is the first trajectory-aware

application framework specifically tailored for real-time surveil-
lance over noisy, intermittent, geostreaming messages in aviation.
Our contribution can be summarized as follows:
• We prescribe a processing flow to detect important mobility
events online, and thus incrementally maintain succinct, reliable
representations of aircraft trajectories (Section 3).

• We introduce single-pass spatiotemporal rules and noise reduc-
tion heuristics against streaming positions from numerous flying
aircrafts, with significant benefits in compression and quality of
the resulting trajectory synopses (Section 4).

• We implement a prototype on Apache Flink [2] and Kafka [3]
that can sustain massive position updates from a fleet of aircrafts
and promptly detect changes in their mobility (Section 5).

• We empirically validate our prototype on performance and ap-
proximation quality with simulations against real datasets, as
well as synthetically enlarged data in scalability tests (Section 6).

2 RELATEDWORK
Stream processing platforms like Apache Flink [2], Spark [4], or
Storm [5] offer powerful customizable and extensible capabilities
to ingest, process, and aggregate massive streams from diverse Big
Data sources. An overview and experimental study of their current
processing capabilities are discussed in [13] with a particular focus
on analytics. Besides, extensions to support spatial representation
and indexing, as well as topological queries have emerged for sev-
eral Big Data platforms, like SpatialHadoop [24], GeoSpark [11],

or Simba [27]. However, they focus on point locations and sim-
ple spatial features, ignoring entirely any spatiotemporal notions
concerning movement and lacking support for trajectory manage-
ment. Recently, UlTraMan [10] introduces support for storing and
querying historical trajectories over Spark. In contrast, we aim to
handle evolving trajectories online, hence we opt for Apache Flink
as stream processing engine and we add custom functionality.

Our approach on trajectory synopses over positional streams es-
sentially involves a kind of online path simplification. Hence, batch
(offline) algorithms like [17, 19] are ruled out, since they require
knowledge of all locations in advance. In online methods, retained
samples should keep each compressed trajectory as much closer to
the original one, chiefly by minimizing approximation error as in
trajectory fitting techniques [7, 18]. For instance, a sliding window
approach in [18] keeps discarding points until the error exceeds a
given threshold. The STTrace algorithm in [23] uses the concept of
safe areas to keep samples that deviate from predefined speed and
direction error bounds. Dead-reckoning policies like [26] and mobil-
ity tracking protocols in [14] can be employed on board of vehicles
to relay positional updates only upon significant deviations in their
known course. A bounded quadrant system suggested in [16] en-
ables estimation of various error bounds for trajectory compression
in ageing-aware fashion suitable for tracking devices of limited stor-
age. The one-pass, error-bounded algorithm in [15] involves local
distance checking and optimizations to achieve higher compression.
Although such generic data reduction techniques [28] could be ap-
plied on streaming aircraft trajectories, they entirely lack support
for mobility-annotated features in the retained samples.

In [21, 22] we introduced a maritime surveillance platform specif-
ically for tracking vessel trajectories and also recognizing complex
events (e.g., suspicious vessel activity). Applying a sliding window
over the streaming positions, that technique reported any detected
events periodically (i.e., upon window slides) with all recent “delta”
changes at a compression ratio better than 95% over the raw data.
Our current approach differs substantially, and not just because it
deals with aircrafts, i.e., locations with an extra z-ordinate; this is
not trivial, as it involves handling additional events (e.g., change
in altitude, takeoff, landing) and extra filters for noise elimination.
Mobility events with richer semantics (multiple annotations per lo-
cation) can now be emitted at minimal latency, instead of relying on
the slide step of windows. Finally, our new prototype is specifically
designed for scalable execution in modern cluster infrastructures.

Our approach is also distinct from either deterministic or proba-
bilistic techniques (e.g., [6]) towards predicting aircraft trajectories
(i.e., flight plans). Instead, we aim at a data-driven, online summa-
rization and semantic annotation of evolving trajectories, retaining
only salient information in a streaming fashion. To the best of our
knowledge, no other approach associates extra annotations like stop,
slow motion, turn, etc. to the incoming locations. Apart from data
compression, our approach can be further advantageous in post-
processing. Though segmentation, these annotated features may
yield semantic trajectories [20] for more advanced interpretation of
mobility patterns. Via suitably defined rules, our primitive mobility
events could also act as notifications to timely trigger detection
of more complex events [9], such as holding patterns near airports,
aircrafts in danger of collision, sudden deviations from flight plans,
etc., analogous to those applied by CEP-traj [25] over vessel traces.
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3 FRAMEWORK SPECIFICATIONS
Figure 2 depicts the processing flow of our framework. Input from
surveillance streams arrives as messages carrying 4-d timestamped
positions p = ⟨x ,y, z,τ ⟩ of aircrafts. Messages may be admitted via
external connectors to online surveillance sources or replayed from
historical files using custom data feeders from publish-subscribe
systems (e.g., Apache Kafka [3]). Without loss of generality, we
assume that altitude values z are expressed in feet, whereas (x ,y)
represent GPS longitude/latitude coordinates of known georefer-
ence (e.g., WGS1984). Timestamp values τ are considered as discrete,
totally-ordered time instants, e.g., UNIX epochs in milliseconds.

The Noise Reduction module provides distinct sequences of
timestamped positions per aircraft, after excluding any inherent
noise detected in the streaming positions due to e.g., delayed or
duplicate messages, GPS discrepancies, etc. Thus:

Definition 1. For a given aircraft o, its trajectoryTo is a possibly
unbounded, time-ordered sequence of tuples ⟨o,pi ⟩. Each successive
timestamped position pi consists of (xi ,yi , zi ) coordinates in 3-d
Euclidean space recorded at timestamp τi .

The resulting noise-free locations are issued as a derived stream
(marked #1 in Figure 2). Them latest of such positions per aircraft
are maintained as its persistent state by the Mobility States mod-
ule. This enables calculation of its mean velocity vector and other
spatiotemporal estimates (rate of turn, rate of climb, etc.).

The Mobility Event Detection module tracks changes along
each aircraft’s path, taking advantage of its mobility state to avoid
false alarms. For each aircraft, it digests a subset of its noise-free
locations as characteristic positions to incrementally maintain its
approximate trajectory synopsis. By effectively discarding redundant
locations along a “normal” course, this process instantly identifies
“critical points” to denotemobility events (stop, slowmotion, change
in altitude, etc.) along each trajectory. Currently, each aircraft is
examined in isolation from the rest; interaction among aircrafts
towards richer mobility semantics is left for future work. A detected
event may yield one, two or multiple critical points (e.g., the start
and end of a slow motion event), but always in a streaming fashion
(indicated as derived stream #2 in Figure 2). Formally:

Definition 2. Synopsis So over trajectory To of aircraft o con-
sists of a possibly unbounded, time-ordered sequence of critical
points, each represented as a tuple ⟨o,pi ,Ai ⟩, where ⟨o,pi ⟩ ∈ To and
Ai is a set of annotations denoting mobility events at position pi .

For a given aircraft o, it holds that So ⊂ To ; ideally, such sum-
marization should provide a concise synopsis with |So | ≪ |To |, but
also minimal deviation from the original trajectory. Set Ai denotes
multiple annotations for a single timestamped location pi , acting
like a bitmap where setting a bit signifies that a particular mobility
event (e.g., a change in heading) was detected at that position.

Besides, this module also signals out possible disruptions in
communication. Typically in real-world surveillance streams, an
aircraft may cease relaying positions for quite a while (e.g., flights
over oceans). Importantly for mission-critical or emergency situa-
tions, its last reported location marks such a communication gap
and is emitted into a derived stream of notifications (denoted as #3
in Figure 2). Currently, we make no attempt to “fill-in” such gaps
either via interpolation, extrapolation, or historical patterns.

Figure 2: Online processing flow of the framework

Both noise reduction and mobility event detection on trajectories
are controlled by a user-specified parametrization. Choosing proper
parameter values strongly depends on dataset characteristics and
should be fine-tuned in order to trade compression efficiency with
quality of results, as detailed in our empirical validation in Section 6.

In the sequel, we suppose that a fresh tuple ⟨o,pcur ⟩ reports
pcur as the latest known location of a given aircraft o, whereas
pprev is its previously relayed position at time pprev .τ < pcur .τ .
In detecting significant motion changes per aircraft, we employ
an instantaneous velocity vector −→v cur over its two latest positions
pprev , pcur . In addition, we maintain the mean velocity −→vm per
aircraft to get its short-term course based onm recent positions in
its mobility state. In trajectory computations, we typically employ
linear interpolation [7] using Haversine distances, given that any
two consecutive positions (pprev ,pcur ) are generally close enough.

4 ONLINE PROCESSING OVER STREAMING
AIRCRAFT TRAJECTORIES

Next, we present the main modules in our framework, concerning
noise reduction from aviation surveillance streams (Section 4.1),
maintenance of mobility states (Section 4.2), and the rules guiding
detection of mobility events along aircraft trajectories (Section 4.3).

4.1 Online Noise Reduction
Despite their high value in aircraft surveillance, positional data
streams are not error-free, particularly ADS-B messages relayed
from aircrafts. Apart from spurious coordinates indicating impossi-
ble positions across a flight, also aircraft identifiers may be invalid,
inexistent or duplicate. Besides, timestamps are assigned upon re-
ception at a base station (or radar), so are subject to unsynchronized
clocks. Messages collected from a network of stations may not be
properly deduplicated (e.g., a message received by multiple stations)
and their timestamps may not be adjusted; thus, ordering of posi-
tions is distorted. In addition, satellite transmission problems may
lead to delayed or missing messages. There may be also glitches
in altitude values, usually measured by multiples of 100 feet. As
aircrafts fly at high speeds, granularity of timestamp values should
be the finest possible (in milliseconds). But in real-world aviation
data, several seconds may pass before receiving another fresh po-
sition from an aircraft, exacerbating deviations in spatiotemporal
estimations, especially altitude-related ones (e.g., rate of climb).

Avoiding costly offline cleansing, we apply online, single-pass
empirical filters upon admission of each streaming position. Since
we aim at lightweight trajectory representations, we can afford to
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(a) Off-course position (b) Zig-zag distortion

(c) Out-of-sequence positions

(d) Altitude perturbation

(e) Altitude discrepancy

Figure 3: Noise-related situations along aircraft trajectories

lose garbled, out-of-sequence positions and not consider correcting
their timestamps, since more fresh locations will arrive soon. Sub-
ject to a careful parametrization (Table 1), a noisy situation may be
identified if at least one of the following conditions apply:

• Off-course positions incur abrupt changes in velocity vector −→v cur .
Figure 3(a) illustrates such an outlier with an abnormal deviation
from known course as abstracted by mean velocity −→vm of the
aircraft over its previous m positions. In that case, it is most
probable that vcur > vmax , e.g., exceeding a speed limit of
vmax = 1000 knots is not expected by a commercial aircraft.

• Flying aircrafts normally take a turn smoothly, marked by a series
of transmitted locations. So, a position should be dropped if it
indicates an abrupt turn (e.g., ∆ϕ ≥ 120o ) with respect to the
known course. In adverse situations (e.g., a storm) a trajectory
may look like a ‘zig-zag’ with a series of considerable turns as
in Figure 3(b). Discarding those consecutive points as noise is
not typically correct; yet, in terms of data reduction this is quite
desirable, as the aircraft tries to keep to its planned course.

• Sometimes, an aircraft appears to accelerate far too much (over
δmax knots/hour), which is rather unusual in aviation. This is
typical for out-of-sequence messages with twisted timestamps.
As shown in Figure 3(c), all locations may be along the flight
course, but due to the late arrival of the three red spots to the
base station, the aircraft looks like suddenly retracting backwards
at an unrealistic speed.

• Identical locations from the same aircraft in the air should be
considered as noise. Agitations in GPS readings when an aircraft

Table 1: Parameters for noise reduction
Symbol Threshold description Default value
vmax Max speed of movement for any aircraft 1000 knots
δmax Max rate of change in speed 50000 knots/h
∆ϕ Max difference between successive headings 120o

ρmax Max rate of turn between successive positions 10o /sec
γmax Max rate of climb between successive positions 200 feet/sec
h0 Max altitude to consider an aircraft as landed 100 feet

is stationed are normal, but coincidental coordinates in succes-
sion are almost certainly duplicate messages received by multiple
base stations and assigned with slightly differing timestamps.

• Distinct messages from a given aircraft may have the same times-
tamp but report different coordinates. To resolve such conflicts
in timestamping, we arbitrarily keep one of these messages.

• Upon a sudden surge in the rate of turn, e.g., exceeding a given
threshold ρmax ≥ 10o /sec, the current location is dropped as
noise. Very sharp turns are unusual for large-sized airplanes.

• To filter out discrepancies in altitude, we take advantage of the
mobility state maintained per aircraft over its latestm positions.
Computing a moving average in the rate of climb generally elim-
inates false indications regarding altitude change, as the one in
Figure 3(d). These are mainly caused by the lack of precision in
altitude measurements usually reported at discrete flight levels
(multiples of 100 feet). This rule can also filter out small deviations
in altitude not actually qualifying as mobility events as shown
in Figure 3(e), where two consecutive locations are reported at
29800 feet while the aircraft has clearly started its descent.

• Another case of noise concerns ascents or descents at a rate more
than γmax (e.g., 200 feet/sec) between successive locations. We
discard such temporary steep changes in altitude, usually caused
by false timestamping or imprecise altitude measurements.

• An aircraft cannot be stopped in the air, so it cannot have a speed
vcur � 0 at an altitude above a threshold h0 (e.g., 100 feet); under
h0 an aircraft may be safely considered as landed to the ground.
As we experimentally verified (cf. Section 6), noise may concern

up to 13% of received positions, qualifying to any of the afore-
mentioned cases, so data cleaning is a necessary step before any
further processing of aircraft trajectories. Crucially, accepting noisy
positions would drastically distort the resulting synopses (as in Fig-
ure 3(a)), and also hamper proper detection of mobility events.

4.2 Mobility State Maintenance
To assist mobility event detection, the most recent portion of each
evolving trajectory To is continuously maintained as a sequence of
m noise-free, chronologically ordered position updates ⟨o,pi ⟩. We
call this trajectory portion the current mobility state for aircraft o,
maintained in memory as a count-based sliding window ranging
over itsm recent locations;m is a small integer (e.g.,m = 10), chosen
according to the reporting frequency of aircrafts. From information
available in this state, mean velocity vector −→vm of that aircraft can
be calculated, as well as several spatiotemporal estimates (such as
distance, travel time, overall change in heading, rate of turn, rate of
climb, etc.). To avoid considering obsolete locations in computations,
we also set a maximum timespan of ω units (e.g., 15 minutes in the
past) for positions retained in the state.

Table 2: Mobility events detected along aircraft trajectories
Mobility Event Parameter Critical point(s)

(x
,
y
)

Stop vmin (knots) Start point & End point
Slow Motion vθ (knots) Start point & End point

Change in Heading ∆θ (o ) One or multiple points
Change of Speed α (%) Start point & End point

Communication Gap ∆T (sec) Start point (notifications)
& End point (synopses)

z
Change in Altitude ∆γ (ft/sec) One or multiple points

Takeoff h0 Start point
Landing h0 Start point
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(a) Stop (b) Slow motion (c) Changes in heading (d) Change of speed

(e) Communication gap (f) Changes in altitude (g) Takeoff (h) Landing

Figure 4: Mobility events (of one, two, or multiple critical points) detected along the trajectory of a flying aircraft

4.3 Mobility Event Detection
Next, we specify intuitive heuristics to capture mobility events
along aircraft trajectories. As depicted in Table 2, some types of
events occur on the (x ,y) plane (e.g., stops or changes in heading),
while others in the z dimension, like changes in altitude. Depending
on the type of a mobility event, one, two or multiple critical points
may be issued to fully describe it. For example, stops are character-
ized by their start and end points to indicate the duration of this
event. Instead, when a significant change in heading is observed,
then a single critical point marks this location as a turning point in
the trajectory; and in case of smooth turns, a series of such critical
points may be emitted in order to better capture this event.

Stop indicates a stationary aircraft (e.g., at airport gates) over a
period of time, so actually several nearby positions may be received
due to GPS discrepancies. To capture its duration, two critical points
should be emitted as shown in Figure 4(a):

Start of stop annotates a fresh location once vcur ≤ vmin ,

where vmin is an appropriately chosen speed threshold for de-
noting immobility (e.g., 1 knot). Any subsequent locations also
validating this condition are not emitted as critical with respect to
stop, implying that this phenomenon is still ongoing. Hence:

End of stop is identified once vcur > vmin and also this aircraft
was previously stopped (i.e., a Start of stop had been issued).

Slow Motion indicates an aircraft moving at a very low speed
below a threshold vσ (e.g., 5 knots) over some time. Essentially,
this concerns a subtrajectory on the ground, e.g., while taxiing on
runways. Provided that sufficient position reports exist (scarcely
the case in real-world data), the first and the last positions in this
subsequence (Figure 4(b)) should be emitted as critical points:

Start of slow motion in case that (vcur ≤ vσ ) ∧ (vprev > vσ ).

Subsequent positions also having a speed below vσ are not emitted
as critical with respect to slow motion, since this pattern still holds.

End of slow motion is issued either when the aircraft stops (i.e.,
concurrently with a Start of stop annotation) or it holds that
(vcur > vσ ) ∧ (vprev ≤ vσ ), so it no longer moves slowly.

Change inHeadingmay be spotted according to a given threshold
angle ∆θ ; e.g., if there is a difference of ∆θ > 10o between the
current and previous bearing values. To avoid false alarms caused
by occasional GPS errors, we detect such changes in heading by
checking for large deviations between instantaneous velocity −→v cur
from mean velocity −→vm as retained in the aircraft’s state:

Change in Heading is detected once arccos(
−→v cur ·−→vm

∥−→v cur ∥ ∥−→vm ∥ ) ≥ ∆θ .

Although such a change is detected upon receiving current lo-
cation pcur , the previous one pprev must be actually annotated as
critical point; this offers a more precise trajectory approximation,
as at pcur the aircraft already moves along a changed course.

In addition, we also need to checkwhether the cumulative change
of instantaneous headings across a few previous positions exceeds
threshold ∆θ (as we applied in [21] for vessels). As illustrated in
Figure 4(c), a series of such critical points offers a more reliable
piecewise approximation of the actual flight, as aircrafts usually
make smooth turns or manoeuvres. Of course, the lesser the angle
threshold ∆θ , the more the critical points denoting such slight
changes in heading. The last critical point in the series denotes that
the aircraft is about to follow a straight course afterwards.

Change of Speed occurs once current speed vcur deviates by
more than α% from mean speed vm . Given a parameter α , which
quantifies a cutoff threshold for ignoring occasional perturbations
in speed estimations due to GPS error, wind drift, etc., a pair of
critical points (Figure 4(d)) should be annotated:

Start of speed change occurs once it holds |vcur−vmvm | > α .

Subsequent positions where this condition still holds (i.e., the
aircraft keeps speeding up or slowing down) are not emitted as
critical with respect to speed change, as long as the aircraft is
considered to continue moving by the same pattern.

End of speed change occurs once |vcur−vmvm | ≤ α and a critical
point has been earlier annotated as Start of speed change.

This end point indicates that aircraft speed practically stabilizes
close to the mean vm based on its mobility state. Such events may
be further distinguished into acceleration or deceleration, effectively
by taking the sign (+/–) of the fraction in the aforementioned rules.
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CommunicationGap occurs often in long-haul flights over oceans
when contact with base stations is lost. As illustrated in Figure 4(e),
when nomessage is received from an aircraft for at least a time inter-
val ∆T , e.g., over the past 10 minutes, its actual course is unknown.
Such gaps might be also caused by accidents or other suspicious
situations (e.g., hijacks). Obviously, this event is concluded once
contact is restored, sometimes after a period much longer than ∆T .
To maintain trajectory synopses in append-only fashion at opera-
tional latency, current location pcur is promptly annotated as

End of communication gap if (pcur .τ − pprev .τ > ∆T )

by checking with the time elapsed from previous location pprev .
Still, a notification may be also issued concerning the location at

which contact was lost, i.e., position pprev is annotated as

Start of communication gap once (τnow − pprev .τ > ∆T ).

However, such notifications cannot be issued promptly, but with
at least ∆T time units delay from system time τnow . To avoid dis-
rupting temporal ordering of other critical points in trajectory
synopses, notifications are derived as a separate stream (Figure 2).

Change in Altitude identifies a transition to a different cruise
level, as depicted in Figure 4(f). Due to occasional spurious jumps in
reported altitudes (Figure 3(d)), we avoid checking directly against
altitude values. Instead, we detect positions with significant change
at the rate of climb (or descent) γ of the aircraft. This is the vertical
speed (in feet/sec) between successive locations when ascending
(respectively, descending):

γ =
pcur .z−pprev .z
pcur .τ−pprev .τ .

Our goal is to identify positions where changes in this rate start
or cease to take place. On first sight, by setting a threshold ∆γ > 0
for significant changes in this rate (e.g., more than 20 feet/sec), a
critical point should be issued once it is found that |γcur | > ∆γ ,
where γcur expresses the rate of climb (or descent) of the aircraft at
timestamp pcur .τ . As with changes in heading, note that actually
the previous location pprev must be annotated as critical, because at
current locationpcur the aircraft is already on its ascent (or descent).
In addition, we should avoid characterizing as critical all locations
along such a climb (or descent), as long as there is no significant
change in the previously calculated rate γprev . Moreover, to avoid
emitting potentially invalid critical points caused by numeric im-
precision in timestamp and altitude values, we may conservatively
detect such changes by also checking with themean rate of climb (or
descent) γm computed over them most recently reported locations
of the aircraft available in its mobility state. Overall, we propose to
annotate location pprev as

Change in Altitude if (|γprev | ≤ ∆γ < |γcur |) ∧ (|γcur − γm | ≥ ∆γ ).

Note that a series of such critical points may need be issued to
approximate a smooth ascent (or descent) more reliably.

Takeoff concerns the last location along a flight that reports the
aircraft still on the ground. To overcome discrepancies in measure-
ments, altitude values should be compared against a threshold h0
denoting the highest altitude at which an aircraft may be considered
as landed (e.g., h0 = 100 feet). Thus,

Takeoff is issued once (pcur .z > h0) ∧ (pprev .z ≤ h0).

Note that previous location pprev gets annotated as takeoff, so
as to provide a better trajectory approximation (Figure 4(g)).

Landing concerns the location at which an aircraft touches the
ground (Figure 4(h)). With a rationale similar to takeoffs, we check
against threshold h0, so current location pcur is annotated as

Landing in case that (pcur .z ≤ h0) ∧ (pprev .z > h0).

5 PROTOTYPE IMPLEMENTATION ON FLINK
We implemented an application prototype using the DataStream
API of Apache Flink [2] with Apache Kafka [3] as broker for stream-
ing messages. Flink adopts a tuple-at-a-time model for its pipelined
stream operators, offering results at low latency and achieving
higher throughput [8, 12] compared to the micro-batch approach
in Spark Streaming [4]. Flink also supports exactly-once semantics
for fault tolerance, guaranteeing that each tuple will be processed
to ensure correct results. This is particularly important for our
application, as losing tuples may completely alter spatiotemporal
estimates (e.g., distance, speed) and distort identification of events.

5.1 Custom Support for Trajectory Management
Flink currently lacks native support for spatial entities (e.g., points,
polygons), let alone spatiotemporalmoving objects and relatedmeth-
ods (speed, heading, acceleration, etc.). Thus, we had to introduce
custom data structures in Scala for maintaining trajectories and
support all mobility operations required in our processing flow (Sec-
tion 4). We also specified an extensible attribute schema in Avro [1]
with all spatiotemporal properties involved in aircraft trajectories.
This is used to hold all attributes in the original messages (identi-
fiers, locations, timestamps, indications of various aircraft sensors,
etc.), but also spatiotemporal properties dynamically calculated
during our processing (e.g., travelled distance, rate of climb, etc.).
Further, we defined specific topics in Kafka, for handling messages
from input surveillance sources and the derived streams (Figure 2).

Flink offers powerful partitioning features for its operators. It
automatically distributes streaming items by a key (in our case, this
is a unique identifier per aircraft or flight) into parallel instances of
each operator, each maintaining its own local state. In our case, this
feature caused more trouble than benefit, exactly because it is es-
tablished at operator level. Indeed, our processing strategy needs to
maintain a mobility state per aircraft, i.e., its most recent trajectory
locations. Once a fresh position is admitted, it must be processed by
a pipeline of operators (Figure 5) that actually encapsulate our cus-
tom methods. Thus, we need to keep a separate persistent state per
aircraft across all operators in the entire pipeline, and not rely on
operator states. As Flink did not provide any flexibility to maintain
a globally accessible state, we resorted to implementing a custom
hashing scheme in Scala. Based on aircraft identifiers (key), it keeps
a small numberm of recent locations per aircraft (itsmobility state),
as well as certain flags that immediately reflect its current status
(e.g., is stopped, in slow motion, has changed speed). Of course, this
incurs some overhead (once a fresh location arrives, the state must
be updated) and housekeeping (discard obsolete items), but other-
wise trajectory-aware processing would not have been possible.
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Figure 5: Pipeline of utilized Flink and Kafka operators

Most importantly for real-world applications, Flink provides
support for event time semantics, i.e., using timestamps generated by
the data sources. In our case, timestamp values in aircraft positions
are assigned upon reception to a base station or when captured by
radars. In real-world aviation surveillance streams, delayedmessages
are not the exception, but rather the norm. In order to tolerate
delayed messages from aircrafts in the pipeline, we specify a lag
value for maximum delays (say, 30 seconds) behind the latest known
timestamp and accordingly reorder messages chronologically.

5.2 Processing through a Pipeline of Operators
Figure 5 illustrates the pipeline of Kafka and Flink operators utilized
in our prototype implementation, each working as follows:

Kafka Consumers: To simulate streaming input into our applica-
tion, we have built data feeders in Scala that can parse historical
records of aircraft traces and push positional messages to a specified
Kafka topic. Records are replayed either according to their original
arrival rate or consumed by a user-specified fixed stream rate (e.g.,
10000 messages/sec). A custom consumer subscribes to a particular
Kafka topic and starts receiving timestamped stream messages.

Map: Each incoming message is mapped to the attribute schema.
Afterwards, it travels through the pipeline as a tuple; annotations
may be assigned upon checking by following operators.

Filter: Discards noisy locations, which are not further considered.
In case that a fresh location concerns an aircraft currently not being
monitored, itsmobility state is initialized; otherwise, this location is
appended to the existing state evicting the oldest location therein.

Timestamp Extractor: We employ time watermarks in Flink to
allow processing of delayed messages up to a given lag value.

Keyed Windowing: Flink offers several types of windows, which
split a stream into temporary finite “pieces” used in computations.
We employed count-based sliding windows over the latest two tu-
ples keyed by aircraft identifier, in order to calculate instantaneous
spatiotemporal estimates (distance, heading, rate of turn, altitude
change, etc.) between consecutive locations. This way, spatiotem-
poral computation is streamlined with the arrival of each fresh
message and the resulting estimates can be assigned to the tuple as
it is being processed by all subsequent operators in the pipeline.

Reduce: The core of our application logic is encapsulated in a
series of custom functions under this generic operator. Essentially,
Reduce takes a pair of consecutive locations (pprev ,pcur ) of a given
aircraft and triggers evaluation of the detection rules in Section 4.
If a location qualifies as a critical point for an event, the respective
bit in its annotation is set; eventually, multiple bits may be set.

Kafka Producers: Output is promptly pushed into distinct Kafka
topics by three producers, each dealing with a derived stream (noise-
free raw locations, trajectory synopses, notifications).

Table 3: Datasets used in the simulations
Dataset #air- Reports Time- Spatial
(O: original; S: synthetic) #messages crafts every span coverage
(O) FlightAware ADS-B 3701966 24416 68 sec 1 day Europe
(O) ADSBHub ADS-B 4291620 5516 28 sec 1 day Europe
(O) EnAire IFS tracklogs 24180100 36939 5 sec 1 week Spain
(S) FlightAware ADS-B 50019756 13591 1 sec 6 hours Europe
(S) EnAire IFS tracklogs 16165671 5066 1 sec 1 day Spain

6 EMPIRICAL VALIDATION
In this Section, we report experimental results from an extensive
validation of our prototype against aviation surveillance streams.

6.1 Experimental Setup
Our prototype runs entirely in main memory to efficiently cope
with volatile, asynchronously updated, streaming locations from
thousands of aircrafts. Apart from its centralized execution with
one instance handling all incoming data, we also examined its
parallelization for advanced efficiency against scalable arrival rates.
By design, each trajectory is examined in isolation from the rest.
Hence, in parallelization tests we employ a varying number of
concurrent threads, each monitoring a disjoint subset of aircrafts.

In these tests, it is not the total volume of input data that matters,
but the arrival rate of position updates, i.e., how frequently each
aircraft reports a fresh position. As this is actually rather low in all
available original aviation data, we also created synthetic datasets
at a very high rate in order to verify robustness and scalability of
the prototype. Datasets simulated in our study (Table 3) include:
– FlightAware original ADS-B dataset. Aircraft positions over Eu-

rope were collected via the FlightAware API1 during one full day
and were replayed in our simulations at their original arrival rate;
on average, each aircraft reports its position every 68 seconds.

– ADSBHub original ADS-B dataset. Aircraft positions over Europe
were collected via ADSBHub2 during one full day. Again, we
performed simulations at the original arrival rate; on average,
each aircraft relays a position message every 28 seconds.

– EnAire original IFS radar tracklogs. Aircraft positions over Spain
were tracked by International Flight Support secondary radars
during aweek (courtesy: Air Navigation Service Provider EnAire3).
Locations of flying aircrafts are captured every 5 seconds on av-
erage, admittedly the best stream rate among original datasets.

– FlightAware synthetic ADS-B dataset. For a subset of FlightAware
data during a 6-hour interval, we inflated each flight with extra
positions at every second via interpolation between each pair of
consecutive raw positions. We avoided taking samples when air-
crafts are not flying or are out of contact, by setting the maximum
timespan between successive original locations to 5 minutes.

– EnAire synthetic IFS radar tracklogs.We applied a similar interpo-
lation over positions in EnAire original IFS logs on a full day.
Evidently, the online detection process is sensitive to parametriza-

tion, which is a trade-off between reduction efficiency and approx-
imation accuracy. Table 4 lists such parameters used in our tests
(default values in bold). For their suitable calibration, apart from
consulting domain experts, we conducted exploratory tests on sub-
sets of available surveillance data. If data reduction is the primary
1https://flightaware.com/commercial/data/adsb/
2http://www.adsbhub.org/
3https://www.enaire.es/services

https://flightaware.com/commercial/data/adsb/
http://www.adsbhub.org/
https://www.enaire.es/services
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Table 4: Parameters involved in mobility event detection
Symbol Description Values
vmin Minimum speed for asserting movement 1 knot
vσ Maximum speed for asserting slow motion 5 knots
∆θ Threshold for asserting change in heading 2.5o , 5o , 7.5o ,10o
α Minimum rate for asserting speed change 10%
∆T Minimum time interval for asserting gaps 1, 2, 5, 10 minutes
∆γ Threshold for asserting changes on rate of climb 10, 20, 30 feet/sec
m Positions retained in each aircraft’s state 5, 10

goal, a more relaxed parametrization should be applied (e.g., a larger
angle ∆θ to keep fewer turning points) without much harm in ac-
curacy. With more strict thresholds, additional mobility events can
be detected, thus capturing slighter changes along trajectories but
also reducing the compression ratio in the resulting synopses.

Next, we report indicative results from an extensive experimen-
tal study with parametrizations as listed in Table 1 and Table 4.
Simulations were conducted on a machine running Linux Ubuntu
16.04.2 LTS with Intel® Xeon® 24-core CPU at 3.07GHz and 48GB
RAM. Unless otherwise specified, performance results on time and
throughput are averaged over the entire duration of each stream.
Compression ratio and approximation quality are averages over all
trajectories throughout their varying timespans in each dataset.

6.2 Experimental Results
6.2.1 Timeliness. In these simulations against original data at their
original arrival rate, we measure throughput, i.e., the amount of
input messages per second that may be handled by the prototype
concerning the entire operator pipeline. We also measure average
latency, i.e., the average time that a tuple remains in the pipeline
since its admission until it is issued in a derived stream (or discarded
as noise). These performance results concern a centralized instance
(i.e., single thread) of the prototype without any data partitioning.

Figure 6 illustrates results with a varying angle threshold ∆θ
(affecting detection of turning points); results by varying other
parameters are similar. It is clear from Figure 6(a) that even on
a single-threaded instance, our framework can effectively cope
with several thousand messages/sec. Fluctuations in throughput
among datasets should be attributed to the differing number of
aircrafts, as well as their diverse reporting frequencies. Besides,
critical points are emitted at operational latency (in milliseconds)
in all cases (Figure 6(b)). Thanks to the increased arrival rate in IFS
radar tracklogs, mobility events are detected almost instantly (less
than 40ms on average). The more frequently an aircraft reports an
update, the more rapidly a potential critical point may be issued.
Even with the other two datasets of inferior sampling rates, latency
always remains at operational level (<500ms), although clearly
increased. By and large, these tests confirm that our prototype can
timely detect mobility events for thousands of aircrafts in real-world
scenarios even without parallelization.

6.2.2 Scalability with Increased Arrival Rates. For a more stringent
assessment of the prototype in terms of scalability, we performed
extra simulations against synthetic datasets (Section 6.1).

The fact that the framework maintains each trajectory in iso-
lation from the rest, offers great opportunities for parallelization.
So, we employed a varying number of concurrent threads, each one
monitoring a distinct subset of aircrafts according to a simple data
partitioning scheme. For simplicity, this subdivision is based on
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Figure 6: Timeliness against original datasets (single thread)
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Figure 7: Scalability over synthetic data (multiple threads)

simple hashing over the identifier of each aircraft, such that its posi-
tions are always propagated to the same thread so as to consistently
establish connected trajectory segments.

Quite expectedly, latency is far better when multiple threads
are employed, as plotted in Figure 7(b). With respect to through-
put (Figure 7(a)), higher performance of up to 40,000 messages/sec
may be achieved via data partitioning. Regarding the interpolated
FlightAware dataset, note that throughput drops with 8 threads.
This is mostly caused by imbalanced assignment of aircrafts into
partitions, as our hash-based scheme ignores other important fac-
tors, such as duration of flights, arrival rate per partition, etc. But,
even this simplified data partitioning confirms that the prototype
is capable of handling scalable volumes of streaming positions and
has great potential for parallelization and advanced load balancing.

6.2.3 Compression Efficiency. As every data reduction process, ef-
fectiveness of trajectory summarization can be assessed via its com-
pression ratio. This is the percentage (%) of positions dropped from
the approximate trajectory synopses over the raw ones originally
obtained, or equivalently:

compression ratio = 1 − #cr it ical points
#or iдinal posit ions .

The higher this ratio, the more lightweight the resulting syn-
opses. A ratio close to 1 implies stronger data reduction, as the vast
majority of raw locations are dropped and few critical points suffice
to represent each trajectory. The red line in the plots of Figure 8
depicts this ratio with varying parameters so as to quantify their
effect on compression. In particular, we examine how compression
varies with angle threshold ∆θ (affecting changes in heading) and
threshold ∆γ on rate of climb (capturing changes in altitude). Bar
plots show breakdowns of annotated critical points and how much
each event type weighs in trajectory synopses, since variations in
parameters affect detection for certain types of mobility events.
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(a) FlightAware: varying angle
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(b) FlightAware: varying rate of climb
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(c) ADSBHub: varying angle
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(d) ADSBHub: varying rate of climb
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(e) IFS: varying angle
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(f) IFS: varying rate of climb

Figure 8: Compression ratio over original datasets

2.5 5 7.5 10

2

4

6

8
x 10

5

∆θ (degrees)

#
 c

ri
ti
c
a
l 
p
o
in

ts

 

 

0.6

0.7

0.8

0.9

1

C
o
m

p
re

s
s
io

n
 r

a
ti
o

 

 

compression ratio

landing

takeoff

change in altitude

gap

slow motion

speed change

stop

change in heading

Figure 9: Compression ratio for synthetic IFS data

Figures 8(a), 8(c), and 8(e) illustrate the effect of varying angle
thresholds on trajectory summarization against the three original
datasets. Quite expectedly, relaxing parameter ∆θ leads to increased
compression, since less turning points get detected. Actually, the
achieved compression ratio reflects the reporting frequency in the
original data sources. Messages from ADSBHub and FlightAware
arrive less frequently, so they have more chances to indicate an
important change in mobility (particularly in heading, speed, or
altitude) and thus be singled out as critical. In IFS logs, positions are
reported more often, so many more may get discarded as “normal”
leading to an increased compression close to 85%.

A varying threshold∆γ on the rate of climb seems to have negligi-
ble impact on compression for ADS-B data, as shown in Figures 8(b)
and 8(d). Indeed, sharp fluctuations on this rate are scarce given
the infrequent updates from those aircrafts. In contrast, with IFS

normal: 65%

landing: < 1%

slow motion: < 1%

change in altitude: 4%

change in
heading: 13%

noise: 13%

gap: < 1%
stop: < 1%

takeoff: < 1%

speed change: 4%

Figure 10: Annotated positions in originalADSBHub dataset

tracklogs (Figure 8(f)) the amount of critical points concerning alti-
tude keeps diminishing considerably with a more relaxed threshold.
The reason is twofold and has to do with precision in the original
data. First, altitudes are measured in hundreds of feet, so even slight
perturbations (as in Figure 3(d)) may incur changed indications.
Moreover, timestamps in IFS logs have a granularity of seconds and
not milliseconds; given the relatively high frequency of updates
(every 5 sec), this may yield sudden spikes in the rate of climb.

Despite relaxed parametrizations, compression ratio over orig-
inal datasets is rather moderate (never exceeds 85%) because of
the generally low arrival rate in position updates. Thus, we also
measured compression ratio over synthetic (interpolated) data con-
sistently yielding a reduction over 95% (Figure 9). Intuitively, when
positions are relayedmore often, a larger proportion of them expect-
edly qualifies as “normal”, and hence can be safely excluded from
the synopses. The detected critical points are practically those iden-
tified also in the original dataset, as they concern the same events
along trajectories (changes in altitude, heading, etc.). Typically,
small variations in compression ratio depend on parametrization,
as indicatively shown with angle tolerance ∆θ . But overall, we
can clearly conclude that with a higher reporting frequency in the
original surveillance streams, compression would have been more
dramatic, soaring close to 99% as this experiment testifies.

Figure 10 depicts a breakdown of annotations assigned to all
locations in the original ADSBHub dataset (similar results were
obtained with the other two datasets). About two thirds of those
positions are considered “normal” and thus suppressed as redundant
from trajectory synopses. There is also a lot of noise (13%) that
must be discarded altogether from raw surveillance data (we also
observed a lesser, yet significant noise in the other two data sources).
But what is really striking is the almost complete lack of mobility
events on the ground (i.e., stop, slow motion, takeoff, landing),
something definitely caused by insufficient raw positions in airport
areas. In total, we identified 847 takeoffs and 2129 landings in this
dataset, but this is far from ideal, given that tens of thousands of
flights take place across Europe daily. It turns out that, unless more
streaming positions become available in airport areas, such events
cannot be safely captured with a fair possibility.

6.2.4 ApproximationQuality. Preserving only critical points in tra-
jectory synopses incurs a lossy approximation. To assess the quality
of such compressed trajectories, we estimated their deviation from
original ones, by computing the pairwise Haversine distance H on
(x ,y) plane between synchronized locations from an original trajec-
tory (composed of noise-free locations) and its synopsis (consisting
of critical points). If an original location pi at timestamp τi is not
critical, then its corresponding time-aligned p′i in the synopsis is
estimated via linear interpolation along the path that connects the
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Figure 11: Quality of trajectory approximation

two critical points before and after τi . Similarly, for each original
altitude zi reported at timestamp τi from an aircraft, we estimate
via linear interpolation a time-aligned altitude z′i in its trajectory
synopsis. Finally, for each aircraft that reportedM raw positions in
total, we estimated the Root Mean Square Error between the original
and synchronized sequences of its locations on the (x ,y) plane and
over its respective altitudes in the z dimension:

RMSExy =

√√√
1
M ·

M∑
i=1

(H (pi ,p′i ))
2 , RMSEz =

√√√
1
M ·

M∑
i=1

(zi − z′i )
2.

For each trajectory, RMSExy is in meters, while RMSEz is in feet.
We take averages of these error measures over each trajec-

tory dataset. A rather surprising remark from Figure 11(a) is that
RMSExy is considerable. By cross-checking flights and their respec-
tive synopses on the (x ,y) plane, we found that their linear paths
are almost identical. But due to inherent flaws in timestamp preci-
sion and reporting frequency, discrepancies in speed estimates are
inevitable, so a time-aligned location p′i lies either ahead or behind
w.r.t. original pi along the same path. Error is much less in original
IFS data (updated every 5 seconds), but is still considerable even for
the synthetic IFS data, so more frequently relayed positions cannot
remedy the problem alone. More precision is required in timestamp
values (as well as on locations and altitude) to cope with fast moving
aircrafts and promptly catch significant mobility events. Anyway,
this error is less than a nautical mile (�1852 meters) and can safely
ensure horizontal separation of flights, significantly lower than the
limit of 3 miles specified by international regulations.

Quality of synopses in the z dimension is far better, as testified
in Figure 11(b). Thanks to a moderate reporting frequency in IFS
data, it seems that our rules can successfully capture most, if not
all, changes in altitude events. But error deteriorates with ADS-
B data, mostly because of the lack of precision (by 100 feet) in
altitude values. With a finer precision, we could expect significant
decrease in this error, minimizing information loss and improving
the fidelity of synopses. Yet, such error on altitude estimates is
more than acceptable, as international aviation standards specify a
vertical separation between commercial flights at 1000 feet.

7 CONCLUSIONS AND FUTUREWORK
We introduced a novel application framework that can identify mo-
bility events online along evolving trajectories from large fleets of
aircrafts. So, trajectory synopses can retain only important changes
in their movement with significant savings in space and processing
costs. Performance results indicate that our prototype achieves low

latency and tolerable error, while efficiently coping with scalable
volumes of positional updates from aviation surveillance streams.

Deployment in a distributed cluster infrastructure is under way,
expecting significant performance gains. We intend to explore adap-
tive detection and auto-calibrated parametrization of events, also
correlating with contextual information (weather, air traffic control
areas, etc.). Finally, handling other mobility data streams (e.g., ves-
sels, merchandise) may be possible with suitable rule specifications.
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