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A CONSIDERABLE amount of attention has been devoted to the study
of the system of surfaces on which the lines of curvature are plane or
spherical, and the paper which follows is based on the exposition contained
in Darboux's TMorie Generate des Surfaces, Livre IV, Ch. ix and xi,
taken in conjunction with Lie's beautiful contact transformation, by which
spheres are transformed into straight lines. Lie's transformation was
first presented in his paper, " Uber Complexe, inbesondere Linien- und
Kugelcomplexe mit Anwendung auf die Theorie partieller Differential-
gleichungen," Math. Annalen, 5 Bd. (1872), p. 145. A most interesting
account of this line geometry and of the famous transformation will
be found in the Geometrie der Berilhrungstransformationen, Lie-Scheffers,
Vol. I ; and I would draw attention to chapters 7, 9, 10, and 14, and
in particular to Theorem 12 on p. 878, Theorem 25 on p. 689, and
the relations between the line and sphere geometry illustrated on pp. 654
and 655.

In what follows I give a brief account of Lie's transformation; and
show how by means of it he connects the geometry pi lines of curvature
with the geometry of asymptotic lines, and in particular the surfaces,
whose lines of curvature are spherical, with surfaces whose asymptotic
lines are such that the tangents to them belong to a system of linear
complexes. Readers who desire fuller information will refer to the
Berilhrungstransformationen. I then consider at much greater length
the latter class of surfaces, a knowledge of whose properties has been
shown to involve a knowledge of the properties of the first class, and
in this investigation I make considerable use of -the vectorial notation.
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1. Lie's contact transformation has the generating equations

x'+ty'+xz'+z = 0, x{x' — n/)—y—z' = 0,
leading to

-iy') = 0.

Each element of space x'y'z' can be expressed uniquely in terms of the
•corresponding element of space xyz. If, however, we wish to express an
•element of the latter space in terms of the first, we have two alternatives,
viz.,

p' + iq'x = r f * — or

but we keep to the first of these alternatives.
Eliminating x, y, z between the generating equations and the equations

of a straight line

a = mz—ny, ,8 = nx — lz, y= ly—mx,
we have

+(\y)-a= 0.

Writing the equation of this sphere in the form

x'2+y'*+z'2+2gx' + 2fy' + 2hz' + c = 0,

"we see that the line whose six coordinates are

I _ in _ n _ _o_ _ /3 _ y
1 ~ —g+if h—r ~ — c ~ —g—if~ h+r

corresponds to that part of the sphere for which

where r is the sphere's radius. We call this line the positive corre-
spondent of the sphere. The line deduced from the positive correspondent
by changing the sign of r is called the negative correspondent and
corresponds to the other hemisphere of the sphere. For a plane, regarded
as a sphere of infinite radius, we see that the corresponding lines will be
perpendicular to the axis of x.

2. If V, m', n', a', fi', y' are the coordinates of a linear complex it is
said to be special if „ , , ,o. . , . ~

c Va +m p'-\-n y' = 0.

If lly ?»-!, %, an /?!, yx and l2, m2»
 n2> a2> A» 7s are the coordinates of two
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linear complexes, and p and q are two parameters, the complexes whose
coordinates are

are said to form a pencil. In any pencil of complexes clearly there are
two special ones.

Consider now the pencil whose two special complexes are the positive
and negative correspondents of a sphere, viz.,

V, m't n\ a', /3\ y and V, w\ y', a', /3', n'%

then the general complex of the pencil has the coordinates

V, m', n cos2 -=- -f y BinJ —, a , #', y' cos2 -^ + » ' sin2 -~- •

We now see that if I, m, n, a, /@, y are the six coordinates of any line
which is the positive correspondent of a sphere, and if this line belongs to
the above general complex, the sphere will cut at an angle 6, the sphere of
which V, m\ n', a, ($', y' is the positive correspondent.

8. We know that the two spheres, which touch any surface and whose
radii are the principal radii of curvature of the surface at the point, touch
the surface at two consecutive points (Salmon, Solid Geometry, 4th edition,
p. 267). If we apply our contact transformation to the surface and the
spheres, we obtain in the other space a surface and two inflectional
tangents, and thus the lines of curvature are transformed into asymptotic
lines.

If a sphere can be described through a line of curvature it will intersect
the surface everywhere along that line at the same angle, and, therefore,
all of the spheres of one system at the same angle. This is but a
particular case of the well known theorem that two surfaces intersect
at a constant angle if their line of intersection is a line of curvature
on both surfaces. Conversely it must be shown that if a sphere intersects
all of the spheres which have stationary contact with a surface along a
line of curvature at the same angle, then the line of curvature is spherical,
that is, lies on a sphere.

Let the surface, referred to its lines of curvature, be given vectorially
by the equations . 7 .

where the surface is traced out by the extremity of the vector z which
depends on the two. parameters u and v, and where X is a unit vector
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parallel to the normal. The suffix 1 denotes that the vector or scalar to
which it is attached is the derivative of that vector or scalar with respect
to u, and the suffix 2 has a similar meaning; a and b are scalars, which
are the principal radii of curvature. The equation of the sphere which
has stationary contact with the surface along the v = constant, direction
may be written

z' = z—

V being the vector to any point of it and p a unit vector.
Let , ,

z = y+c/x

be a fixed sphere of radius c, y be the vector to its centre, and /JL' a unit
vector, and suppose that this sphere cuts all the spheres, obtained by
varying u only in the equation

z' = z—a\-\-ain,
at the same angle 6.

From first principles we have

(z—ak— y)2+o.2+c2—2ac cos 0 = 0,

and therefore, differentiating with respect to u and remembering that

zx = a\v

we get axS(z —a\—y)X—aax-\-axc cos 6 = 0,

or S(z—y)X+c cos# = 0.

Differentiating again with respect to u and remembering that S^X is zero,
we see that o, ^ A

S(z—yjXj = 0.

It follows that a sphere whose centre is at the extremity of y can be
described through the line of curvature along which only u varies.

4. From the theorem just proved it follows that if all the inflectional
tangents along an asymptotic line belong to a linear complex whose
coordinates are

V, m', ri cos2|- + / sin2 - | , a', 0', y' cos2 i - +» ' sin2-| ,

then, in the transformed surface, the corresponding line of curvature will
be spherical. Conversely, from the original theorem, a spherical line
of curvature will transform into an asymptotic line, all the tangents to
which will belong to a linear complex of the kind we have discussed. If
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the line of curvature is plane, the corresponding linear complex will have
the special mark that V is zero.

If the line of curvature is circular two spheres can be described
through it, and therefore the inflectional tangents in the corresponding
asymptotic^line will belong to two linear complexes.

Suppose that all the lines of curvature of one system are spherical,
then, in the corresponding surface, all the asymptotic lines along which v
is constant will have the property that the corresponding inflectional
tangents belong to a linear complex whose coordinates are functions of v
only, and conversely.

5. Instead, therefore, of investigating the surfaces with plane or
spherical lines of curvature, we investigate the surfaces whose systems
of inflectional tangents belong to systems of linear complexes, and, on
transforming back again, we have the surfaces with plane or spherical
lines of curvature.

The equations
a = viz—-7iy> /3 = nx — lz, y = ly—mx,

representing a straight line whose six coordinates are I, m, n, a, /8, y, the
line belongs to the linear complex whose coordinates are I', m', n't a', /3', y'}
When a'l+P'm+y'n+l'a+m'P+n'y = 0.

We can express the theory of the linear complex simply by aid of the
vector notation. Let i, j , k be three unit vectors mutually at right
angles, and let

a' = il'+jm'+leri, V = ia'+jfi'+ky',

a = il+jm+kn, b = ia+jfi+ky;

then we say that the vectors a and b are the coordinates of the line, and
a', b' are the coordinates of the linear complex.

If x and y are any two vectors, I find it more convenient to denote the
vectorial part of xy by the symbol xy than by the more usual symbol
Vxy, and the scalar part by xy rather than by Sxy.

The two coordinates of a straight line a and b are connected by the
equation ab = Q>

and, if the straight line belongs to the linear complex whose coordinates

are a' and b', we have ab'+ba'=0.



1918.] SURFACES WITH SPHERICAL LINES OF CURVATURE. 877

The equation of the straight line whose coordinates are a, b is

az' = b,

z' being a vector drawn, as all the other vectors, from the origin, its
extremity traces out the line. If the extremity of a vector z traces out
any curve in space, we may take, as the two coordinates of any tangent
line to this curve,

a = zlf b = z~z,

where u is the parametric coordinate of any point on the curve and zx

denotes the first derivative of z with respect to u. The equation of the
tangent line to the curve will now be

Z*Z ' ' Z* Z*

If we now denote by a and b the coordinates of a linear complex, all
the tangent lines to the curve traced out by the extremity of the vector z
•will belong to this linear complex if

Szx(az+b) = 0.

If a and b are fixed, this, then, is the equation of the curve whose tangent
lines belong to the given complex.

6. Suppose next that we have a surface and that we choose the

parametric coordinates so that the curves

v = constant, u = constant

are the asymptotic lines, then, if the surface is traced out by the extremity
of the vector z, we have

where the suffix 2 attached to any vector denotes the derivative of that
vector with respect to v. This is true for any surface, and is for many
purposes the most convenient way of studying the properties of the surface.
The vector I depends on the two parametric coordinates u and v of the
surface and is clearly parallel to the normal to the surface at the
point it, v.

Since zn = z.21,

we must have ll12 = 0 ;
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and therefore the vector I must satisfy the Laplacian equation

l12 = pi,
where p is a scalar.

This equation is Baid to be of the first rank if p is zero. If it is not of
the first rank let .«>,

, crlogp
P ~P a a »

and let I' = llf

then we see that l[» = &- l!>+pl'.

The Laplacian invariants of this new equation are p and p'. If p' is
zero we can solve the original equation by quadratures, and it is said
to be of the second rank. If it is neither of the first or second rank, let

then we see that $ = p'V, f[2 = p[ V +p'l[,

so that t[2- ~- log {pp') ti-pT = 0.

The invariants of this Laplacian equation in I" are

If the second invarianc is zero, the original equation

hi = V1

is said to be of the third rank.
The above is a brief sketch of Laplace's transformations in so far

as they will be required for the purpose of this paper. The method
is fully explained in Darboux's Theory of Surfaces, II, p. 23 and onwards,
as also in Forsyth's Theory of Differential Equations, Part IV, § 191, &c.

The fact that we are dealing with a vectorial equation

ln = pi

rather than with a scalar one makes no real difference, for if
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the vectorial equation is equivalent with the three scalar ones

ffia = P%> yl2 = py, zn = pz.

7. Suppose now that the surface has the property that the intiectional
tangents which touch the asymptotic line v = constant belong to a linear
complex whose coordinates a and b are functions of v, and that this is
true for all values of v, we shall prove that the equation

is of the first, second, or third rank. We have for any surface which
satisfies our condition

Sgx(as+b) = 0;

and therefore, differentiating with respect to u,

Szn(az+b).

Now the parametric lines being asymptotic, we have

zn = mz-L+nzi,
where m and n are scalars.

If n is zero we see at once that

z = ra+0,

where r is a scalar and a and (3 are vectors depending only on v ; that
is, the surface is a ruled one. A ruled surface obviously satisfies the
condition of the question, and the coordinates a and b of the linear
complex only need to satisfy one condition. It is also easily seen that
for a ruled surface 7 7

hi = V1

must be of the first or second rank.

Again, if ln = m

where m and 5 are scalars, we have, since

Zy = Hi,

and therefore the surface is ruled.
We shall not further consider the case of ruled surfaces, and therefore

we may assume in future that

ln =fc mlx-\-sl and ln =£ mzv
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J8. Leaving aside the particular case of ruled surfaces, we shall prove
that not only must 7 ,

be of one of the first three ranks, but that, when the surface is given, the
coordinates of the complex a and b are determined.

We shall also see that, if the equation is of the necessary rank,
we cannot take any value of I which satisfies the equation, but only
those which satisfy a particular further condition.

Since zn = mzx-\-nz2,

and n is not zero, we have also

Sz2(az+b) = 0.

Since, if az-\~b = 0,

the surface is ruled, we need only consider the other alternative that it is
parallel to the normal, and therefore

az-\-b = kl,

where k is some scalar which cannot be zero. Differentiate this equation
y/ith respect to u, and we obtain

Vallx = klx-\-kxl,

that is, l1al—lal1 = k1l+k1l,

so that al = k, kx = — al^.

Differentiating the first of these equations with respect to ut we see that

kx = alx = — alx;

therefore kx must be zero ; that is, & is a function of v only. As k is
not zero we may by a transformation of the form

v' = 0 (y)

take it to be minus unity, and we thus have

By differentiation we now obtain

lxa = 0, ^a2 =p,
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9. We first consider the possibility that

where A is a scalar function of u. The vector a would then be fixed
in direction and p would be zero, so that the equation would be of the first
rank. We then have , , o

where a is a vector depending on u only and v a vector depending on v
only.

Since a must be a vector fixed in direction we may say that

a = mk,

where i, j , k are unit vectors, mutually at right angles, and m a scalar
function of v. If f(u) and <p (v) are respectively the coefficients of k in a
and fi, then, in order that we may have

al+1 = 0,

it is necessary and sufficient that

[ W ] = 1 .

This involves f{u) being a mere constant and defines m in terms of u, and
thus the vector a.

We now leave aside the particular hypothesis as regards a. If,
however, the equation is still of rank 1 we have

and therefore ln — — llt

which leads to a ruled surface.

10. Differentiating with respect to u, the equation

p Ia2+Zi%j = p ^ log p,

we get pp' = ^lxa^—ln

p -

where ^ = p _

If the equation is of the second rank so that p' is zero, then, from what
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we have said about Laplace's transformation, we know that

when £ is a vector depending on u only. We therefore have, from what
we have just proved, the further fact about this vector £, viz., that

£a.22 = 0.

But lta = 0, lna = 0, lna2 = plf ha2 = p ;

and therefore also £a = 0, £a2 = 0.

We leave aside the case where £ is zero as we have already considered it,
since then

i -Elih. - p h-

The vectors a, a2, and a^ being each perpendicular to £ must be
coplanar, and therefore . . ~.

a-22 = Aa2-\-Ba,
where A and B are scalars. It follows that the vector aa2 is fixed in
direction in space ; for this direction does not depend on w, and we have
now seen that in the particular case before us it does not depend on v
either.

It follows that y denoting a unit vector in this fixed direction

f = my,

where m is a scalar depending on u only. By a transformation of the
form 7 , . ,

chC = y m du
we can therefore bring the equations

i y and ll2 = pi,

to the respective forms

hi— r h = y

where p' = pm~h.

We now omit accent on p and have to find the most general common
integral of

p.- - = y and ll2 — pi,
ou p '
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, . (Ploap .

Let 0i=—,
v

then the first equation gives us

where n is a vector depending on v only.
Differentiating with respect to v and remembering that

l12 = pi,

we see that I = (—
>p ' "I ' ' p

and it is easily verified that this value of I satisfies the condition of being
the common integral of the two equations

ln— l\ = y and l12 =pl.

In order that we may also have

al+1 = 0,

where a depends on v only, we see that it is necessary and sufficient that
the vector a should satisfy the three conditions

ay = 0, a*t = 0, arj.2-\-l = 0 ;

for we saw from the definition of y that the first of these equations must
be true, and the second follows from the fact that alx = 0. We thus have
the solution required of the important particular case of

ln = pi
being of the second rank.

It may be noticed in passing that it is only when the equation is of the
first or second rank that the vectors a, a.2> «22»

 a n d therefore all the other
derived vectors a222, ..., are coplanar.

11. We now assume that p' is not zero, and by differentiating with
respect to v the equation

P ^ 2 2 1L 23
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(obtained at the beginning of § 10), and remembering that

a
we have pp' ^ logpp' = ^- ka-s&—

Let

where A, B, C are scalars depending on v only, then since

^•lia.2—lua.2 = 0,
p ~

— Zta — Zua = 0,

we see that

Differentiating once more with respect to w, we immediately deduce from
the equation

PP' = Y JiOaa—

that p' =

so that the equation must be of the third rank.

12. Now we have seen that if

-pT = 0 ;

and therefore if the original equation is of the third rank a first integral
of this equation is

where £ is a vector depending on u only. But we have just seen that

l"a = 0, V'a^ = 0, l"an +ppf = 0 ;
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and therefore £a = 0, £a2 = 0, ^ = 0.

It follows, since Saa^a^ =£ 0,

that £ must be zero.

We can now find I, for

l^B. 2,-f i t h. = P2Z,,_3 i!_ _ B J L 4 . JL JL .
p2 3u jp jp5 dv p p pp' dv pp''

*\
and, since .pp'# = j p (p.pf) Z",

where £ is a vector depending on v only; we therefore have

| | (t+f |

or say Z =

where A and JB are scalars defined by

A = dv l o S ^ ' ' B=folo^^ ^ log J3>'+ ^ s

We have seen that

Z»« = 0, iy2 = 0, roa+Rp' = 0 ;

and therefore fc = 0, |a2 = 0, ^22+1 = 0.

It follows that the vector a is determined by the equations

We have now seen how to determine the vectors a and I which satisfy the
three equations % = ^

and seen that the latter equation must be of rank 1, 2 or 8 that this may
be possible, and that this necessary condition is also sufficient.

Having obtained a and I we can find z by quadratures from

We now see that az-\-l

is a vector which depends on v only, since it vanishes on differentiation
with respect to u; it is, therefore equal to —6, and we have thus found

BEB. 2 . VOL. 13 . NO. 1214. 2 C
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the vectors a and h uniquely which fit the particular surface. We notice
that for a ruled surface, and only for a ruled surface, are these in-
determinate.

18. We now pass on to consider the properties of surfaces, both of
of whose systems of inflectional tangents belong to linear complexes, and
we shall slightly change our notation for the sake of symmetry.

Let A = ;c- log rrv', A' = •*

And let a denote a vector depending on u only, and /3 a vector depending
on v only. We are assuming, for the sake of brevity from this onwards,
that the surface is not ruled and that the equation

la=pl
is of the third rank.

If l = an+Aal-\-A'a,

then the surface, given by

will have the property that its inflectional tangents of the u system will
belong to a linear complex system which we can determine. If I can also
be written in the form

then the inflectional tangents of the v system will also belong to a linear
complex system which we can determine.

Let i= an-\-Aax+A'a,

•we must try if a vector /8 can be found such that

Noticing that Bx = p, B[=p-~- logpp',

we see that £ = p$2+p ^ logpp'/3;
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and therefore p'B = *- —,
r du p

, <?log pp'
since v' = —~ ^ .

* ouov
P) 1 *) c

We must therefore have -5 rr ^ = 0;
OM p ou p

that is, we see that £m—^fn+&C4'—AJ = 0.

If we can find a i to satisfy this equation, then taking

r ^ ou <p

we see that /5 is a vector depending on v only ; and, remembering that

£12 = Vt

we see that £x = pfi2+p *r- logp//3,

and differentiating this with respect to v, we see that

We have therefore only to see if we can choose a, so that

where £ = an-\-Aax-\-A'a.

Expanding the first equation we see that if is necessary and sufficient that
a vector a depending on u only should be found such that

+ (Am+dA'n-AAn-2AA[+A''2-A2
l)a1

'Al-A1A'i)-a = 0.

This equation may be written

auin + 2aam + 8a1a11 + (a11 + 2a')a14-aia = 0,

where 2a = 2 ^ 1 + 2 ^ ' - ^ 2 , 2a' = 2^n~

It may easily be verified that, from the definitions of A and A' and the
2 c 2
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fact that the equation is of the third rank, a and a' are functions of
u only. The only additional condition necessary in order that the
surface generated from

by ' *i = % *a = — U*

may have both systems of inflectional tangents belonging to systems of
linear complexes, is that a, instead of being an arbitrary vectorial function
of u, must be one which satisfies the equation

aiiiii+2aa111+8a1a11+(a11+2a')cti-{-aict = 0.

When a has been obtained, /3 is given uniquely, as we have seen.


