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1. In a previous paper published in these Proceedings* I introduced a
direct method of considering oscillating series of functions. The success
of the method there adopted depended essentially on the remarkable way
in which certain of the properties of a continuous function are distributed
among the two wider classes of upper and lower semi-continuous functions
respectively. It was this fact that rendered it possible to enunciate and
prove theorems about the upper and lower functions of an oscillating series
precisely corresponding to known ones for the sum-function of a conver-
gent series. Moreover, with the introduction of the peak and chasm
functions, by myself, in an earlier papert on non-uniform convergence, it
became possible to carry over not only the notion of non-uniformity of
convergence, but the analytical machinery itself, to the discussion of the
modes of oscillation of non-converging series.

One great advantage of the introduction of the peak and chasm func-
tions, even when employed for the purpose of discussing converging series
only, is that they enable us to distinguish both what goes on on the right
and on the left, both above and below. This advantage was not exploited
to the full in either of the two papers above referred to. In the present
paper it will be found that these distinctions are fundamental. As regards
what goes on above and below, we have interesting results with respect to
each independently of the other, results therefore which from their very
nature are no longer mere generalizations of theorems already known for
converging series. As regards the distinction of right and left, everything
turns on this in the present paper: it is more especially with the right-
and left-handed peak and chasm functions that we work, and not the peak

• •* On Oscillating Successions of Continuous Functions," Proc. London Math. Soc.
(1908), Ser. 2, Vol. 6, pp. 298-328.

"f " On Uniform and non-Uniform Convergence and Divergence of a Series of Continuous
Functions and the Distinction of Right and Left," Proc. London Math. Soc. (1907), Ser. 2,
Vol. 6, pp. 29-52.
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and chasm functions par excellence, with functions, in short, whose be-
haviour is known on one side only.*

For the rest the importance of the distinction of right and left appears
in the fundamental theorem with which the paper begins. Just as the
property of a continuous function that it assumes its upper and lower
bounds is divided between the upper and lower semi-continuous functions, so
in the fundamental theorem in question we see that the property a continuous
function has of assuming in every interval every value between its values
at the ends of the interval is passed on to the functions which are lower
semi-continuous on the left and upper semi-continuous on the right, when
the value at the left-hand end-point is less than that at the right-hand end-
point and vice versa, while, on the other hand, the points at which such a
function is ^ k, and ^ k, form in the first class of functions a set closed
on the right and closed on the left respectively, and vice versa for the
second class of functions.

It will be found that these functions, which are at every point lower
semi-continuous on one side and upper semi-continuous on the other,
naturally arise in the theory of integration of the series we are con-
sidering.

The results obtained take, in the first instance, the form of inequalities,
not of equalities as in the case of converging series, and thus are not
directly available for purposes of calculation. In estimating the value,
however, of results of this kind from the point of view of their utility in
other parts of analysis, it should be borne in mind that it frequently
happens that we are presented with, or confronted by, a series or an
integral in the course of our work which we may, or may not, know to be
converging, and which may, or may not, happen to be known to be
summable in the Cesaro or Borel sense. In such a case we should
be landed in an impasse, if our only machinery consisted of theorems
which assumed the convergence of the series and integrals. That the
mathematician who uses series as a mere tool will not, in the ordinary
course, come across series or integrals which do not converge, is as much
and as little pertinent to the question of their utility as the fact that a
man who computes builder's quantities does not come across complex
numbers, bears on the question of the value of these numbers for mathe-
matical purposes.

In this connexion it should be noted that we also adopt as a matter of
course the generalised definition of integral, first given by Lebesgue. We

* It follows from a result of mine that their behaviour is also known on the other side,
except possibly at a countable set of points, see footnote to § 2.
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do not in this way add to the complexity of the theory, but the reverse.
On the other hand we do not specially consider the possihility of the series
oscillating more than finitely. No fresh ideas would present themselves
did we do so, and there is no difficulty in following out the consequences
of allowing this possibility to present itself.

The first main result of the present paper refers to the nature of the
oscillation of the series obtained by term-by-term integration of an
oscillating series of functions, and to the nature of the upper and lower
functions.

Denoting by U and L the upper and lower functions of the integrated
series, and by sn(x) the sum of the first n terms of the original series, we
have :

If the point P is such that in its then the integral series oscillates
right-hand neighbourhood sn{x), uniformly above on the right
regarded as a function of x and at P, so that, in particular,
and n, is bounded above, U{x) is upper semi-continuous

on the right at P ;

if P is such that in its left-hand then the integral series oscillates
neighbourhood sn(x) is bounded uniformly below on the left at
above, P, so that L(x) is lower semi-

continuous on the left at P ;

if P is such that in its right-hand then the integral series oscillates
neighbourhood sn(x) is bounded uniformly below on the right
below, at P, so that L(x) is lower

semi-continuous on the right
at P ;

if P is such that in its left-hand then the integral series oscillates
neighbourhood sn(x) is bounded uniformly above on the left at
below, P, so that U(x) is upper semi-

continuous on the left at P.

The second main result of the paper refers to the error made in taking
the upper (lower) function of the integral series as representing the integral
of the upper (lower) function of the original series. Denoting these latter
integrals by H and G, we have

provided sn(x) is bounded above, while if sn(x) is bounded below,
G^L,

the error in each case increasing as x increases.
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Moreover, the results still hold when points in whose neighbourhood
respectively stl{x) is unbounded above or below, exist, provided they are
countable in number, and provided further L and U have the character-
istics which they would have if such points did not exist, viz., if U is
upper semi-continuous on the right and lower semi-continuous on the
left, and L is lower semi-continuous on the right and upper semi-
continuous on the left.

This extended result is obtained by applying the following extension
of Scheeffer's theorem, which is here proved :—

If a function lohich is

lower semi-continuous on the left,

and upper semi-continuous on the right,

have one of its derivates everywhere less than or equal to the corresponding
derivate of a function ivhich is

upper semi-continuous on the left,

and lower semi-continuous on the right,

except possibly at a countable set of points, the excess of the first function
over the second function is a monotone non-increasing function of x
throughout the interval.

It will be noted that the results given have been stated only for series,
but corresponding results are, of course, true for integrals.

2. The special case when the given series converges is, of course, of
special interest: in this case G and H coincide, but L and U do not
necessarily do so, so that the integral series need not converge.

Whether or not the original series converge, if its partial summations
are bounded above {below), the integral series, if it converges, represents a
function which is upper semi-continuous on one side and lower semi-
continuous on the other, and therefore is continuous except possibly at a
countable set of points ; while, if the infinite peaks of the original series
are all on the right {left), and the infinite chasms on the left {right), the
integral series, if it converges, represents an upper {lower) semi-continuous
function.

As regards the integration theorem, we may note that if both the
original series and the integral series converge, provided the points of
infinite non-uniform convergence of the original series are countable,
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term-by-term integration is alloivable only if the sum of the integral series
is a continuous function. If, for example, it is only

lower semi-continuous on the right,

and upper semi-continuous on the left,

its value will, in general, be too great; while, if it is

upper semi-continuous on the right,

and lower semi-continuous on the left,

its value will be too small.

If, on the other hand, only the original series is known to converge,
and not the integral series, we shall have, provided the points of infinite
non-uniform convergence of the original series are countable, the integral
of the sum-function of the original series = L, if L is continuous, = U,
if U is continuous; so that, if L and U are both continuous, the integral
series is bound to converge, and term-by-term integration is allowable.
The same is true if U is known to be

lower semi-continuous on the left,

and upper semi-continuous on the right,

while L is known to be

upper semi-continuous on the left,

and lower semi-continuous on the right,

so that again L and U would be equal and continuous.
Other results follow if we suppose the original series not to converge,

but the integral series to do so.

8. THEOREM 1.—If a function fix) is, at every point of a closed in-

' loioer semi-continuous on the left,

and upper semi-continuous on the right,

and if the value at the left-hand end-point a is less than the value at the
right-hand end-point b, then f(x) assumes ALL values between the two
values in question.

Let q be any value between f(a) and f(b) non-inclusive.

Since f(x) is lower semi-continuous on the left, the points at which

fix) < q

form a set closed on the right. Therefore there is a point at which this
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inequality holds, and which bounds the whole set on the right, and this
point is not b, since q is less than fib); let it therefore be denoted by xq.

It follows that at every point to the right of xq,

fix) > q,

so that all the right-hand limits of fix) at q are ^ q. But fix) is upper
semi-continuous on the right, hence

but we already had fixq) ^ q,

hence fixq) = q,

which shews that the value q is assumed, and so proves the lemma.

Note.—Bearing in mind the fact that there is no distinction of right
and left in the nature of the discontinuities of a function except at most
at a countable set of points,* we see that the type of function here con-
sidered is continuous except at a countable set of points.

4. THEOREM 2.—If fix) is, at every point of a closed interval (a, b),

lower semi-continuous on the left,

and upper semi-continuous on the right,

and if the value at the left-hand end-point a is less than the value at the
right-hand end-point b, then the points at which any one of the four
derivates of fix) is positive inot zero) have the potency of the continuum.

Let A and B be the points of the locus

y =/(*) ,
corresponding to the values a and 6 of x.

Take any point a on the ordinate of A, higher
than A and lower than B, and any point (3 on the
ordinate of B, higher than a but lower than B.

Then the intercept between this line and the FIG. I.
locus is positive at x = b, and negative at x = a ;
also, since it only differs from fix) by a linear function of x, it is a func-
tion of the same type as / itself. Hence, by the preceding theorem, it
assumes the value zero between a and b, and the set of these zeros

* Cf. W. H. Young, " On the Distinction of Right and Left at Points of Discontinuity,"
Quar. Jour., Vol. xxxix, 1907, pp. 67-83 ; cf. also W. H. Young, " Sulle due funzioni a piu
valori costituite dai limiti d'una funzione d'una variabile realc a destra e a sinistra di ciascun
punto," Rend. d. R. Ace. dei Lincei, 1908. Vol. xvn, Serie 5, pp. 582-7.
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possesses an extreme right-hand point x, which also bounds on the right
the points at which the intercept is ^ 0. Thus the locus cuts the line
a/3 at the corresponding point X, and to the right of this point lies above
that line. It follows that the limiting directions of chords of the locus
through X and on the right of it are at least as steep as a/3, so that the
right-hand derivates o(f(x) at this point x are positive.

Now it is evident that, corresponding to each different choice of :$ie
point /3, we get a different point x, since X cannot lie on more than
one line through a. Since the point /3 was any point on the ordinate of
J3, higher than a and lower than B, this shews that the potency of the
points x, and therefore of the points at which either right-hand derivate
is positive, is that of the continuum.

On the other hand, the zeros in question possess an extreme left-hand
point x', which also bounds on the left the points at which the intercept
is ^ 0. It follows that, at the corresponding point X' of the locus, the
limiting directions on the left are at least as steep as a/3, so that the left-
hand derivates of f(x) at this point are positive. As before, the potency
of those points x' is that of the continuum, so that the same is true of the
points at which either left-hand derivate is positive.

COR.—If f{x) is, at every point of a closed interval,

lower semi-continuous on the left,

and upper semi-continuous on the right,

and if one of the four derivates is known to be everyiohere «^ 0, except at
a countable set of points, then f(x) is a monotone non-increasing function
of x throughout the interval, so that at the exceptional points also the
derivates are ^ 0.

5. The two preceding theorems have, of course, their correlatives
interchanging greater and less. These theorems, which are stated below,
result most simply from those already proved by putting

f(x) = -F{x).

THEOREM 1'.—If a function f{x) is, at every point of a closed interval,

upper semi-continuous on the left,

and lower semi-continuous on the right,

and if the value at the left-hand end-point is greater than the value at
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the right-hand end-point, then f(x) assumes all values between the two
values in question.

THEOREM 2'.—Under the same hypothesis as in the preceding theorem,
the points at which any one of the four derivates of f(x) is negative have
the potency of the continuum.

COR.—Iff(x) is, at every point of a closed interval,

upper semi-continuous on the left,
and lower semi-continuous on the right,

and if one of the four derivates is known to be everywhere ^ 0, except at
a countable set of points, thenf(x) is a monotone non-deer easing function
of x throughout the interval, so that at the exceptional points also the
derivates are ^ 0.

6. An immediate consequence of the results of the preceding articles
is the following :—

The set of points, if any, at which any one of the four derivates of a
continuous function is > a, and the set of points, if any, at which it is
< a, have for all values of a each of them the potency of the continuum.

It will be noted that this theorem does not demand that the derivates
should be bounded or even finite, and that therefore in every case the
upper and lower bounds of the derivates are, whether these bounds be
finite or infinite, unaltered, if in determining them we omit the derivates
at a countable set of points.

7. THEOREM 3 (Extension of Scheeffer's Theorem).—If g(x) and h(x)
be two functions, of which the first is, throughout a given interval,

lower semi-continuous on the left,

and upper semi-continuous on the right,

and the latter is upper semi-continuous on the left,

and lower semi-continuous on the right,

and if one of the four derivates of g (x) be everywhere less than the corre-
sponding derivate of h{x), or equal to it and finite, except possibly at a
countable set of points, then

g(x) — h{x),

is a monotone non-increasing function of x throughout the interval.
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= g(x)'-h(x)t

so that f(x) is lower semi-continuous on the left,

and upper semi-continuous on the right.

Then, since denoting by / + (x) and / + (a;) the upper and lower right-hand
derivates of f(x), . . .

JK f(x)
and also < g+ (x)—h+ (x),

with similar inequalities on the left, we see that, whether it is the upper
or lower derivates alluded to in the statement of the theorem, we have, in

e i t h e r o a s e > /+«*>< o,

except at a doubtful countable set, whence the result follows by Theorem 2,
Cor.

8. LEMMA.—If S{x) denote the integral (generalised or Lebesgue in-
tegral) of s (x), the upper and lower bounds of the derivates of S (x) in any
interval lie between the upper and lower bounds of s(x) in the same interval

For
h h

so that, if B is the upper bound of s(x) in the interval considered, the
left-hand side of the preceding equation is less than or equal to the right-
hand side when we replace s(x) by B. That is,

S(x + h) — 8(x) B

h ^ '

Hence the upper bound of the derivates of S(x), being the same as
that of the incrementary ratio on the left of the preceding inequality, is
less than or equal to B. This proves the statement; about the upper
bounds, and similar reasoning proves the statement about the lower
bounds.

COR.—Hence, for each fixed value of n, the upper bound of s,i,(x) is
greater than or equal to the upper bound of the derivates of Sn(x).

Hence also Sn(x) regarded as a function of x and n has necessarily an
upper bound which is not less than that of the derivates of Sn(x), when
these derivates are regarded as functions of x and n.

9. THEOREM 4.—If a sequence of functions of a single variable x,
slt s2, ... is such that sn{x) regarded as a function ofn and x for all values
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of x in a certain closed interval (a, b), and all positive integral values of
n has a finite upper bound, then the corresponding sequence of integrals,
taken from a to x, viz., the continuous functions Sx, S2, ... oscillates uni-
formly above on the right and uniformly below on the left, so that in
particular its upper function XJ is upper semi-continuous on the right, and
its lower function L is lower semi-continuous on the left.

A corresponding statement, mutatis mutandis, holds, of course, when
sn{x) has a finite lower bound.

By the definition of the right-hand peak function of Sv S2, ..., it
follows that, if P were a point at which it were greater than V{x)-\-A,
there would be a sequence of points to the right of P, xx, x2, ... with P as
limiting point, and a corresponding sequence of constantly increasing
integers n, such that ^ M > U(x)+A (1)

But, from the definition of the upper function U{x), it follows that we can
determine an integer m, such that, for all values of n ^ m,

U(x)>Sn(x)-iA,

so that Sa.(xd > S (x)+%A ;

and therefore, by the Theorem of the Mean, if applicable*

(Xi^x)4-Sn.(y)>^A, (2)
dy

at some point y = iji internal to the interval (x, Xi).

That is, since Xi—x is positive,

where yx, y2, ..., like xx, x2, ..., form a sequence on the right of x, having
x as limit.

If the Theorem of the Mean is not applicable, we only have to interpret

the symbol -=— Sn.iyd to mean one of the derivates of Sni, and the same
ay%

holds.!

* For instance, if slt {x) is a continuous function of x.
t E. W. Hobson, Functions of a Real Variable, §219, p. 290, Camb. Univ. Press,

1907. W. H. and G. Chisholm Young, " On Derivates and the Theory of the Mean," Quar.
Jour., 1908, p. 12, et alt. loc.
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Hence, in the neighbourhood of the point P this differential coefficient,

or derivate, -j-Sn(x), regarded as a function of n and x, has no finite

upper bound, so that, by the lemma, sn(x), regarded as a function of n and
•x, has in the neighbourhood of the point P, no finite upper bound, con-
trary to the data.

Hence for no positive value of A does the inequality (1) hold, so that
the right-hand peak function is not greater than the upper function. But
the right-hand peak function is never less than the upper function,
whence the right-hand peak function is equal to the upper function.

Q.E.D.
Since the right-hand peak function is upper semi-continuous on the

right, it follows, in particular, that the same is true of the upper function
U(x). Q. E. D.

Similarly, if there were a point at which the chasm function were less
than L{x)—A, where L{x) is the lower function, we should at such a
point have a sequence of n'a for which

whence, as before, we get

and therefore, bearing in mind that (Xi—x) is negative,

chji • x—Xi

Thus, as before, we get to a contradiction, and so prove the remainder of
the statement of the theorem. Q. E. D.

COR.—If the functions sn(x) are continuous functions of x, and the
sequence has no points at which the peak (chasm) function is infinite, the
statement in the theorem holds.

For, by the definition of the peak function, it is the limit, when the
interval PQ shrinks up to the point P, of Mq, where MQ is the upper
limit of Mn,Q, the upper bound of sn(x) in the interval PQ. Hence it
follows that round each point x we can, if the peak function is always
finite, describe an interval throughout which s,t (x) is less than B, if B is
greater than the upper bound of the peak function, provided n ^ m,
where m is a certain integer, varying in general with the point P.

By the Heine-Borel theorem a finite number of these intervals suffices
to cover the whole closed continuum in which we are working. Choosing
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M to be the largest of the corresponding values of m, sn(x) is less than B,
for all integers n ^ M, and all points x of the closed continuum considered.
Hence, since slt s2, ...,sM-\ are bounded functions, sn{x), regarded as a
function of n and x, has a finite upper bound, and therefore the result of
the theorem holds.

10. The preceding theorem deals with uniform oscillation and semi-
continuity throughout an interval, but it is clear from the proof that we
can enunciate a corresponding theorem which deals with these concepts at
a point only.

THEOREM 5.—If a sequence of functions of a single variable sv s2, ...,
be such that sn{x), regarded as a function of n and x, has a finite upper
double limit at the point P on the right {left), then the corresponding
sequence of integrals oscillates uniformly above {below) on the right {left)
at the point P.

COR.—If the functions sn {x) are continuous functions of x, and the
right {left) hand peak function is finite at P, the sequence of integrals
oscillates uniformly above {beloio) on the right {left) at the point P.

We have here two alternate statements, and we get two more by
assuming at P a finite lower double limit, or chasm function, inter-
changing the words above and below, viz.,

THEOREM 5'.—If sn{x) has a finite lower double limit at the point P on
the right {left), then the corresponding sequence of integrals oscillates
uniformly below {above) on the right {left) at the point P.

COR.—If the functions sn{x) are continuous, and the right {left) hand
chasm function is finite at P, the sequence of integrals oscillates uniformly
below {above) on the right {left) at the point P.

Corresponding to these results, we have in particular the following
table, giving the characteristics of the upper and lower functions of the
integrals.

When there are no points at which

TTR = -|- oo , UR = U is upper semi-continuous on right ;

TTL = + oo, XL = L „ lower „ left;

XR = — co, XR = L „ lower „ right;

XL = — oo , l i t = U „ upper „ left.
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11. THEOREM 6.—If the partial summations sn(x), regarded as func-
tions of n and x, have a finite upper {lower) bound, the limits of their
integrals are less (greater) than or equal to the integral of the upper
(lower) function.

We proceed to give the proof of the first of these alternative theorems;
the proof of the other merely requires the change of " lower" into
" upper " and " less " into " greater."

For, denoting by wn the function whose value at any point is the
upper bound of all the functions sn(x), sn+i(x), ..., we clearly have

^ (1)

so that sn(x) dx < wn(x)dx ;

and therefore upper limit of I sn(x)dx ^ upper limit of \wn (x) dx. (2)
11=79 J n=m J

But the quantities wn(x) form a monotone decreasing sequence, and their
integrals are finite, since wn(x) is a bounded function of x; for, by (1) the
lower bound of wn is not less than that of sn and is therefore finite,
and, since sn (x), regarded as a function of n and x, is, by hypothesis, less
than a finite quantity, say B, it follows from the definition that wn (x) is
also always less than or equal to B.

Now, the generalised integral of the limit of a monotone sequence is
the unique limit of the integrals of the constituent functions, so that

Lt I wn(x)dx = I u(x)dx,
(1=00 J J

since u(x) is the limit of the sequence wx(x), w.2(x), ....

Hence, by (2), upper limit of I sn(x)dx ^ I u(x)dx,

which proves the theorem.*

COR. 1.—If the functions sn(x) are continuous, and the sequence lias
no points at which the peak (chasm) function is infinite positively (nega-
tively), the result of the theorem holds

* The following example snews that, without further assumptions, the theorem states the
utmost that can be proved. Divide the interval (0, 1) by continued bisection and call the
successive intervals d,, d2, .... Let fn(x) = 1 at every point of the closed interval dn, and be
zero elsewhere. Here u(x) = 1, but U(x) = L(x) = 0. Here/'(x) is discontinuous, but can
easily be made continuous by rounding off the end-points of d,, suitably.
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COR. 2.—If both the peak and the chasm functions are bounded, the
limits of the integrals lie between the integrals of the lower and upper
functions.

This statement, which is an immediate result of the above theorem,
can be proved independently by a method already employed to prove the
corresponding result* in the case of convergent series, using one of my
theorems in the theory of sets of points.!

12. In Theorems 4 and 5 we have shewn that the upper function of
the integrals Sn(x) is, under the conditions there enumerated, upper semi-
continuous on the right. If we suppose further that the upper function
of the original sequence has a finite integral,! we can go a step further
and assert that the upper function U of the integrals is not only upper
semi-continuous on the right, but also lower semi-continuous on the lefb.

We have, in fact, the following theorem :—

THEOREM 7.—If in addition to the condition of Theorem 4, that sn(x)
has a finite upper bound, we assume that the upper function u{x) has a
finite integral, then the upper function of the integrals, U(x), is lower
semi-continuous on the left as well as upper semi-continuous on the right,
and the same is true of the lower function L(x).

If on the other hand the lower function l{x) has a finite integral,
while sn(x) has a finite lower bound, the lower function of the integrals
L (x) is upper semi-continuous on the left and lower semi-continuous on
the left, and the same is true of the upper function.

If therefore sn{x) is bounded both above and below, both U(x) and L(x)
are continuous functions.

For

lower limit of (A—B) ^ upper limit of A — upper limit of B

<; upper limit of (A—B),

since we can get a limit of (A— B) which is greater (less) than the middle
member of this inequality, by proceeding along a sequence which gives
for A. (or B) its upner limit.

* E. W. Hobson, Theory of Functions of a Real Variable, pp. 539 et seq.
t Idem, § 93, Proc. London Math. Soc, Ser. 2, Vol. 2, p. 25.
X If the upper function u had infinite negative discontinuities, as may well be the case

even when the sequence oscillates finitely everywhere, and s,, (x) has a finite upper bound, u
might not have a finite integral. As to this restriction see, however, a forthcoming paper by
the author " On Homogeneous Oscillation of Successions of Functions," where also further
results in the theory of the integration of oscillating series will be found.
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Hence

I f*
sn{x) dx ^ I u{x)dx,

— h Jsr—h

the last inequality resulting from the above theorem.
This shews that, as h decreases towards zero, U(x)—U(x—h) has no

positive limit, so that U{x) is, as stated, lower semi-continuous on the left.
Again,

lower limit of (A — B) ^ lower limit of A— lower limit of B

^ upper limit of {A— B).
Whence

)x+h fx+h

sn(x)dx ^ I u(x)dx,
x Jx

which shews that L(x) is upper semi-continuous on the right. Q.E.D.
Similarly the alternative statements may be proved.

13. In the case when the functions s,t(x) are continuous, the points at
which there is non-uniform oscillation either above or below form a set of
the first category, so that the points at ivhich the peak and chasm func-
tions are infinite* which form a closed set, are dense noiohere.

Hence the closed intervals throughout which the peak and chasm
functions are bounded fill up a set of open intervals dense everywhere.
It follows at once from the preceding article that throughout the interior
of this set of intervals dense everywhere both L and U are continuous,
and the integral series oscillates uniformly both above and below.

14. THEOREM 8.—If there is at most a countably infinite number of
points in the neighbourJiood of which sa{x), regarded as a function of x
and n, has no finite upper bound,\ and if further U(x) is the same type
of function as it would be if there were no such points, \ viz., if U(x) be
lower semi-continuous on the left and upper semi-continuous on the right
everywhere, then ,

I u(x)dx—U{x)

is a positive non-decreasing function of x.

* Or ^ k, or ^ k.
t In particular this condition is fulfilled if we know that s,, (x), regarded as a function

of n and x, has at each point a finite upper double limit on the right or on the left; in other
words, if there are no points in the neighbourhood of which s,, (x) is unbounded above on both
sides.

J Supposing u (x)dx finite.

BBR. 2. VOL. 8. NO. 1043. I
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It is obvious that the countable set of exceptional points form a closed
set. Hence, taking any point x not belonging to that set, it is internal to
an interval throughout which the conditions of Theorem 7 hold. As in
the proof of Theorem 7, we obtain the inequalities

PE-W i p
h ^ h Jx-h

and uy*-r» j -u W ^ j_
h . h

the point x — h and the point x-\-h both lying in this interval.

Hence at such a point x each derivate of U{x) is less than or equal

to the corresponding derivate of 1 u(x)dx.

Hence, by Theorem 3, the required result follows.
The alternative theorem, in which, instead of making the above

assumption about U(x), we assume that L (x) is the same type of function
as it loould be if there toere no such exceptional points,* states, of course,
that ,

u{x)dx—L (x)

is a positive non-decreasing function of x.

If, on the other hand, toe assume that the lower, instead of the upper,
bound of s^x), regarded as a function of n and x, is finite except at points
not having the potency of the continuum, then according as U(x) or L (x)
is the same type of function as it would be if there were no exceptional
points,^ viz., tipper semi-continuous on the left and lower semi-continuous
on the right everywhere, we get

U(x)-il{x)dx,

or L(x)—\l(x)dx

is a positive non-decreasing function of x.

Both these possibilities may, of course, take place simultaneously.

* Supposing u (x) dx finite.

f Supposing l(x)dx finite.
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Combining these theorems, we obtain the following corollary:—

If there is at most a countable number of points in the neighbourhood
of which sn(x), regarded as a function of n and x, has not both its upper
and its lower bound finite, and if, further, U(x) or L{x), or_ both, is the
same type of function as it would be if there were no exceptional points,*
viz., continuous everywhere, then •

\u(x)dx—U(x) and U(x)—\l(x)dx,

\ u (x) dx—L (x) and L (x) — \l (x) dx,or

or all these, are positive non-decreasing functions of x. Hence, in
particular, U(x) or L{x) or both, lie between the integrals of the upper
and lower functions u(x) and l(x).

15. Denoting I l(x)dx by G and I u(x)dx by H, we easily see that any

one of the following scheme of inequalities may hold:—

G < L < U < H,
G<L <H< U,
G<H<L < U,
L<G<U <H,
L<G<H<U,
L<U <G <H,

where the sign of inequality may anywhere become the sign of equality.

16. From the preceding theorems we at once deduce the following,
which, on account of its importance, is here stated as a separate theorem.

THEOREM 9.—If the points in the neighbourhood of which sn(x), re-
garded as a function of x and n, is unbounded, are at most countably
infinite, and if u(x) and l(x) differ only at a set of content zero, while U{x)
and L (x) are continuous, the integral series converges to the continuous
function constituted by the common integral of l(x) and u(x).

* Supposing I (x) and u(x) to have finite integrals, which will of itself be fulfilled if both
bounds are finite.

i 2
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This result is, of course, a very special case of those we have just
given ; it includes, however, all previous results of the kind given by other
writers.

We notice, moreover, that in this case, when u(x) and l(x) differ only
at a set of content zero, if the points in the neighbourhood of which sn(x),
regarded as a function of x and n, is unbounded, have the potency of the
continuum, but those in the neighbourhood of which the upper bound is
+ °o are not of this potency, then the result of term-by-term integration,
if not what we should wish it to be, is too small. On the other hand, if
those points where the lower bound is — oo are not of the potency of the
continuum, the result, if not the desired one, is too great.

It is only when both these types of points have the potency of the
continuum that we can assert nothing.


