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The properties of the Spherical Catenary, the curve assumed by a
chain wrapped on a globe or resting in a spherical bowl, have
been investigated by

Minding, Crelle, 11 and 12 ;
Gudermann, Crelle, 33, "De curvis catenariis sphsericis disser-

tatio";
Biennann, " Problemata quredam mechanica functionum ellipti-

carum ope soluta." Dissertatio inauguralis, 1865 ;
Clebsch, Crelle, 57, "TJeber die Gleichgewicht eines biegsamen

Fadens";
Fischer, " Die Kettenlinie auf der Kiigel," Brill's Catalogue of

Mathematical Models, No. 156;
Max Schlegel, Jahresbericht der K. Wilhelms Gymnasium in

Berlin, 1884;
Appell, Bulletin de la Societe Mathematique de France, ill., 1884,

Traite de mecanique rationnelle, I., p. 202.;
Routh, Analytical Statics, 1891;
Venske," Behandlung einiger Aufgaben der Variationsrechnung."

Inaugural-Dissertation, GOttingen, 1891.
Marcolongo, Rendiconti della B. Accademia della Scienze Fisiche

e Matematiche, Napoli, 1892.
The object of the present paper is to introduce a special form of

the elliptic integral of the third kind, required in the solution of this
problem, and to discuss the particular cases which arise when this
integral becomes pseudo-elliptic, in consequence of the parameter
being made equal to an aliquot part of the periods.

In this manner the only elliptic transcendent which remains in the
solution is the elliptic integral of the first kind; and, when by a
special numerical choice of the constants this term can be made to
disappear, the spherical catenary becomes a closed algebraical curve.
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1. Suppose the chain is wrapped upon a terrestrial globe, suspended
from its North Pole; then the general equation connecting î , the
longitude, with zt the sine of the latitude (south), can be expressed
by the integral

f ^ * L (1),

where Z - {l-zi){h-zf-Ai (2),

and A, h are the arbitrary constants of the problem.

For, if T denotes the tension of the chain, in gravitation measure,
w its weight per unit length,

T = w(h-z) (3),

where h denotes the depth below the centre of the sphere of the
directrix plane (Routh, Analytical Statics, I., p. 357), the tension at
any point being equal to the weight of the length of the chain which
will reach the directrix plane hanging vertically downwards.

Again, the moment of the tension round the vertical diameter
being constant,

Tr% -^ is constant = wA, suppose (4),
as

where s denotes the length of the chain measured from a fixed point,
and r denotes the distance from the vertical diameter; so that

**+*»= 1 "(5),

if the radius of the sphere is taken as unity.

Taking equation (4), which holds for any system of forces which
have no moment about the axis Oz, it may be transformed into

dz%_ ds* _ •• dr' + dz* _ , (dr* .\

where Z=^-A2 (7),

equations suitable for any surface of revolution.
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In the special case of the sphere given by equation (5),

so that, in conjunction with the value of T in a field of gravity given
by (3), equations (6) and (7) become

dz* r*z (l-^yz1

where Z- (1-«")(&-*)«-4",
as in (1) and (2).

ds d\b Tr*
2. Also ^ -

w

reducing for the spherical catenary to

ds h—z

so that the curve is rectified by the integral

3. If 0 denotes the angle at which the curve crosses a parallel of
latitude, on any surface of revolution,

, rd\b xo A , ,_ .
COS O = s = fl Q\

r ds Tr K h

so that, from (7), sin̂  = ~^- (13),

^ (U).

The angle <p is thus a maximum Avhen dZ/dz = t); this leads in
the spherical catenary from equation (2) to

* = h, or 2a2—hz—1 = 0 (15).
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4. Denoting by B the pressure per unit length on the outer surface
of the sphere, the equations of equilibrium of the chain may be written

=°

o (18),

where x% + y* + a* = 1 (19),

•X+yS+^=0 (20),

so that, multiplying (16) by z, (17) by y, and (18) by z, arid adding,

— T+R+wz = 0,

or JJ = r-«;a=M>(^-22!) (22).

The pressure B thus changes sign at a depth below the centre
greater than jh; the chain must then be supposed to rest on the
interior of the sphere, if it cannot be made to adhere to the exterior
surface.

5. Clebsch has shown, in Crelle 57, how the quartic Z in (2) can be
exhibited as the product of two quadratic or four linear factors, of
the form

Z = — (s3 + 2kz sin1 e + &* sin1 e— cos* e) («*—2hz cos8 e + h* cos* e — sin1 e)
(23),

= — {z + fcsu^eicosev^l — &2sin* e)}

X {z-&cos'e±sinev/(l-&*cos*e)} (24),

the arbitrary constants h and A being replaced by k and e, such that

h=kcos 2c (25),

4 = £(l-fc*)sin2e (26),

4»_fcs = (cos2 e-fc2 sin* e)(sin8 e-k% cos* e) (27),

and thence the solution of the problem can be given by means of the
Jacobian elliptic functions, the integral in equation (1) being com-
posed of two elliptic integrals of the third kind.
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By making
h sin e = 1, or k cos e = 1 (28),

two of the roots of the quartic Z become equal, and the elliptic
integrals degenerate into circular integrals; in this manner the
model No. 156 in the mathematical collection of Brill, of Darmstadt,
constructed by Herr Fischer, has been designed.

6. But it is the object of the present paper to bring out the con-
nexion between the integral (1) and the standard form of the elliptic
integral of the third kind, employed in my paper on " Pseudo-Elliptic
Integrals," Proc. Lond. Math. 8oc, Vol. xxv., expressed by the
notation, slightly altered by the omission of p,

(29),

where M*(s — o) =pu—pv (30),

and M-V«=S = 4s(s+a)2-{(l+y)s+ajy}9 ^31)>

J f - V « = 5 =4<r((T+a08-{(l+2/)<r+^}1 (32),

x and y being the quantities employed by Halphen (F.E., I., p. 102).

It is our object also to utilize the •pseudo-elliptic integrals for the
construction of degenerate, algebraical, cases of the spherical catenary.

Putting tfr-pu = x (33),
where p is constant, and

the associated elliptic integral of the first kind, so that

[ A-p

then it will be shown in the sequel (§ 8) that the integrals (1) and
(35) can be made to depend upon the integral (29) by putting

(36),

where 2 f = _ *JL± - (37),

and A2-h*=z2y + l (38),

V = _ & £ > ! _8y_l (39).
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We then find that

and tr — O (41),

so that, when the integral (29) is pseudo-elliptic and the parameter
v is an aliquot part, one /zth, of a period, we may put

v = ^ (42),

the parameter v = - ^ (43)

corresponding to a = — x (44).

7. Writing equation (1) in the form

if/ — I/'I^'/'J (45),

where ^, = 1̂ 4 .—-—g. (46),
J ( 1 —z) vZ

I 1 A f dZ /A1\

\f/% = ^ A I -; r—jy (47),

shows that if/ is given by the difference of two elliptic integrals of the
third kind, with Jacobian parameters vx and vit such that

u = vlt when z = + l ;

u = «2) when z — — 1;

and Legendre's theorem for the addition of these integrals shows that
\\i can be made to depend upon an elliptic integral of the third kind
with parameter

v = vx—v% (48).

. The parameters v, and vif and therefore also u, are each of the
form /<DS, fractions of the imaginary period <u3; because the real roots
of Z must lie between ± 1; and

z = ± 1 makes Z = — .42.

It will also be found that

z = h corresponds to u = -J (v, + u2).
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8. Comparing the general quartic

Z = az*+4<b2?+6cz>+>4dz+e (49)

and its invariants

& = ae-4&d + 3c2 (50),

g& = ace-\-2hcd—ad3—eh9—c8 (SI),

with our quartic Z, as given in equation (2),

o - - l , 6 = |ft,e = i ( 1 - ^ ) , e? = -*fc, e = fca-48 (52),

and we thus find

(53),

(54),

1728A = (12^)8-(216^3)8

= 1084* {(l-7i
8)8-(8+2O7i8-7i4) A*+16A'} (55).

Next taking the cubic 8 of equation (31), and reducing it to the
form in which the coefficient of t% is zero,

4*8_ys*-y8 (56),

by putting s = t-^{8x-(y + \y} (57),

127i={(y + iy + 4xY-2ix(y + l) (58),

216y8 = {(y + l)a + 4^}8-36a- (y + 1) {(y + l)a + 4as} +216a;8 (59),

We can now make g% = M*y3, g$ = If67s 5

and therefore, from (34),

on comparison of (53) and (58), (54) and (59), by taking

l-7ta = -M* {(y + iy + ix] (Gl),

A* = -2A['x(y + l) (62),

A% = 4MV (63),

provided that Jip = _ K±i (37);

and therefore ^l8 = - &±-*il! = M* (y-f l)a (36),

(64),

y (38).
VOL. XX711.—NO. 543. K
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9. Next, let w,, ut denote the values of u corresponding to values
«„ zt of z; then, according to "Weierstrass's important formula, first
published in Biermann's thesis " Problemata queedam mechanica
functionum ellipticarum ope soluta," 1865,

$ " (65),

where JFfo, «,) = (azj+2fo,+c) zJ+2 (bz\+2czx+d)zi+cz\+2dzl+e

= (az\+2U%+e)z]+2(bzl+2czt+d) zx+cz\+2dzt+e

(66).

Therefore, putting z, = 1, «, = — 1 in our special form of Z,

^ ) - ^ 8 (67),

4» (68),

and p (v,-V j) = —Li ^

= -!(l-tf)-^a (69),

We also find ip' (w.-v,) = \A (^»-fe»-l) (71),

i-tt (72).

It is convenient to denote v%—vt by v, and vx+v2 by to; and now
equations (36), (61), and (69) show that

12pv_ 2 l - y qil'
I f > Ma M" *

(73).

But equation (57) shows that the relation between s, t, and pu is

^ (74),

so that, as <r denotes in (29) the value of 8 corresponding to

therefore <r = 0 (41).
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Thns, if the integral in (29) is a pseudo-elliptic integral, we may put

• = ±» (42),

Also, since « = — x then corresponds to u = $v (Proc. Lond. Math.
8oc, Vol. xxv., p. 205), therefore

ip'\v = \A (76).
From (69) and (70),

pw—pv = $A* (78),

10. If a factor z—boiZia known, then

4a=(l-&»)(fc-fc)8 (80),

and a well known formula of elliptic functions gives

„.. _ {$(.l-h')+h(h-b)} z+j(l-V)b-h+2b*h-b»
* 2 (z-b) K }'

Then z — h makes

^ = - ^ ( 5 + ^ - 6 6 ' ) , p2tt = - i ( l - t f ) (82),

so that u — \w = \ (u,+Vg) corresponds to z = ^ (83),

w =: J« = ^ (vi—v%) corresponds to z = ft—6+ — (84).

o

But, if c, the value of u which makes z = oo, is given, when

po = *(!-*")+*&(*-&) (86),
the quartic J? can be resolved into four linear factors, in the form

B-H=-&°- (86),

iP£^i (87),
I

pu—pc pc-ex

z-zi « _ ^ £ _ e^Zlis (88),
pu—pcpc—et

a-HSSJ&L-B»=b (89),
pu—pc pc—ez

ip'c being real, because o is a fraction of the imaginary period &>,.
K 2
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Then * * < £ * M *
du (pu—pcy

= ip (« + c) — ip (u—c) (90),
and integrating,

* - f ft = -»£ (tt+c) +tf («-c) +#2e (91),

(z-£ft)8 = - p (u+c)-p (u-c)-p2c (92).

Writing a; for z—^h, and X for the corresponding value of z, then
6p2c and 4dp'2c are the coefficients of as* and %, so that

(93),

»j/2e= i^ (94).

Thus c = f w8, if A = 0; and then w = |w8, or Wi+iw8>
 a s w e ^ 5 *ni8

is what Biermann calls the parabolic case of the spherical catenary.

Also p"2c = H l + 2fca)-f4s (95),

and c is the parameter required in the rectification of the catenary.

11. The values vx and v2 of u make z assume the values ±1 and
the value Ai; therefore, from (90),

and 1 - . = ' ^ P « = P J ! i L _ (98),
(pv,— pc)(pu—pc)

(99).
(pvi-pc)(pu—pc)

Therefore ^ = i ^ = -^P^i (P«*-Pc)
dw l—z (pvl—pc)(pu—pvl)

! +
pvl—pc

and integrating,

^ ^ t j i (101).
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and therefore

where B = ^(v1—

12. But the formula

Spherical Catenary.

l) a(u—
(u—vx)

133

(102);

(103),

(104).

1, pu,

1, pvu

1, pVfr

1, pu, pu

1, pu,, p\

1, pv9, p'vj

(105)

shows that, changing v2 into — % and writing « for t;,—1;2,

where 12 is a rational algebraical function of pu and p'tt, and there-
fore also of z and «/Z, of the form

(107),

(108).so that

G—Bip'u

£ log O = i tan"1 — p't

Equation (29), expressed by elliptic functions of u and v, gives

M*(S—<J) = pu-pv (109)

<r(u + v)
I(v) = !(o.3ftt—i« £« + !*'log

<r (w—f)

so that, with v = Vj—

a- (u — v)

(HO),

(HI),

and thus if/ = — (i £u—112*—^p^) u—I (v) + tan"1 -^- p'n (112).
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13. Now

p(v,+c)j (113).

But, taking z = =fc 1, 2̂  = oo, in equation (65),

^ = » a ± i . (115);
and therefore

(116),

—p («!—«,) —p (^+c) —p (v,+c) = 1 —A + £4'

and taking the square roots of opposite signs, equation (113) gives

i&—\M — — %A (118),

so that

^ = I (A +pM) M-I(v)+tan"> ^ p'tt (119),

or, as stated at the outset,

where p = t(A+PM) (40),

and then

X = - I ^ + t an -^p ' t t (120).

One great difficulty in these calculations is the determination of
the proper sign to employ when a square root is taken, or with an
imaginary quantity; in most cases this can be settled only by a
verification, or by an appeal to a special case.
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14. When I (v) is pseudo-elliptic, then nx is an angle such that
sin fi\ and cos fi\ are algebraical functions of z and SZ; and now,
putting

P l(A+M) (121),

(122),

so that P + Q = ju4 (123),

then n\ = fi^—Pu (124),

and the equation of the catenary can be written in either of the forms

(125),

(126),

where ra+z* = 1 (5),

both leading to the differential relation, equivalent to (1),

or n{\-z^^Z^-Pz% + Q (128).
dz

15. Squaring and adding (125) and (126), and equating coefficients,
leads to

W-V = (-1)"

_a = l (129),

and to other relations, theoretically sufficient, in conjunction with
the differentiations of (125) and (126), leading to (128), to determine
the other coefficients H and L in terms of P, Q, A, h, and p ; all
functions of a single parameter, when once the pseudo-elliptic form
of integral (29) for an assigned order p has been introduced.

But for values of fi above 6 the complication of this method
became so formidable that it was absolutely necessary to seek for
some other method of determining the leading coefficients H and L;
this was effected by a consideration of the form assumed when
z = co, in a manner to be explained in the Sequel (§ 30).
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16. Consider first the simplest case of

Then x = 0, and we must take y = — 1 to keep M finite (Proc.
Lond. Math. Soc, Vol. xxv., p. 210).

As the general expression in (29) then assumes an indeterminate
form, start ab initio with

v=i<o8 (130),

= cos * - ~ = sin * ^—r- . (131),
2s* 2s*

and

where flf = ^ - ( s - h c ) 9 (132).

Then, as in (58) and (59),
12y3 = l + 24c (133),

216y8 = 1+36c+216c9 (134),

so that we must take, as in (61), (62), (63),

l - f t 9 = -Ilf8 (135),

A* = - 2M*c (136),
A3 = 4JKV (137),

and therefore M*=A* = - j (138),

1—^2 = — A3, or &» = ^ ' + 1 (139),
and Z = -z*+2te+ ( 1 - ^ ) ^ - 2 ^ + 1 (140).

Equation (131), on comparison with (29), shows that we must
take 3p = — 1;
and thus

A (141),
2A (142),

and we have now to determine the values of the coefficients H and L
which will make the equations

(1 - s*)* cos 3 x = # s 3 + J V + 5 ^ + 53 (1 4 3) ,
(1-s3)* sin 3X = (Lz+Lx) yZ (144),

consistent, and make them both lead to the differential relation

3 ( l_s<VZ X̂ = A (j22 + 2) (145).
dz
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17. Differentiating (143) logarithmically,

3tan3X
1 - s 2 xdz

3z3 Jg+A J 7 dx _
ff"+JBl + H+JB" fccfc s * -

or SiLz + LMl^Szfy
dz

z-E3 (146),

and this must

= (Lz + 4 ) A (ss + 2) (147) ;

and therefore, equating coefficients

0 - El = AL (148),

-3E-2E9- ALX (149),

- 2 ^ , - 3 ^ 8 = 2AL (150),

- fl,- 0 = 2ALX (151).

Differentiating (144) logarithmically, we find in a similar manner

or 3(Ezs+E1z*+Eaz+E!i)A(zi+2)

dz

-(Lz+LlXzi-l){-2z*+3hz>+(l-h'i)z -h] (152),

and therefore, equating coefficients,

3AE - hL-Lx (153),

= L-ZiL, (154).

From these equations we find

E=A, E1==-Ah, E% = -2A, E3 = 0,

L = h, 4 = 1; (155);
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so that the equation of the catenary may be written

(I-**)*e3* = A (zs-hzi-2z) +i (hz+1) VZ (156),

with 3x = 3t//-ilM, and h =

and now squaring and adding equations (143) and (144) will lead to
a verification, when the conditions obtained above are satisfied.

Equation (139) gives, in conjunction with Clebsch's notation of
(25), (26), (27),

TA O1.4 t KTA

2 '

ft = 4.

18. Herey = 0, and v — w8;

but, from (38), ^l8 = ^ + 1 (157),

Z = -a*4-2A2»+(l-^) 2»-2^2- l

= _ tf—hg-lY-* (158),

so that \ / ^ is imaginary, and the catenary also.

^ = 5.

19. Here we must put
x — y = -c,

suppose (Proc. Lond. Math. 8oc, Vol. xxv., p. 213) ; and now

(160),
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.=0=^-1+20
2c

Now, with v = |w8,

we may write (29) in the form

where 8 = 4s ( s - c ) s - {(1-c) s+cs}8 (163),

5p = l + 3c (164),

so that P = 1 (4+.Mp) = M (3-c) (165),

Q = | (A-MP) = 2M(l-2c) (166),

P + Q = 5M(l-c) =5^1 (167).

The equation of the catenary is now of either of the forms

(1-s8)* cos 5X = EzS+E^+E^+E^+EiZ+Ei (168),

(l-sa)*sin5x= (LJ+L^+LtZ+LJSZ (169),

leading to the relation

^ (170),
dz

also V—E} = 1 (171).

20. A straightforward verification of (170) by logarithmic dif-
ferentiation of (168) and (169) leads to the following values of the
coefficients

E = 2 ~ 5 c + c i A f (172),
c

E = (3-c)(2-c)
1 c
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S, = '-'fa+W-^jf (174),
c

Mh (175),

Jff4 = - 2 i i ^ i 2 i j f (176),

(177),

(178),

(179),

(180),

(181).

The verification is rather long, but the work is given herewith, as
a type of the calculations required.

Differentiating (168) logarithmically,

L

A

A

c

c

2-6c+3c8

c8

-1"~2ch

l - 2 c
~ c8

that is, 5 tan5X ^ or 5 ^ ^ fe

24+4fl"z8+ MO,v

or

) (184);

and therefore, equating coefficients of z8, z5, ...,

0+PL = 0 - H, (185),

0+PL, = - 5H-2H, (186),

= - 4fli-3fl", (187),
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QL.+PL, = - 3 5 , - 4 5 , (188),

QL,+ 0 = -2Ea-5E6 (189),

QL&+ 0 = - Ht- 0 (190).

Differentiating (169) logarithmically,

—hz _ - , K t Z X _

1-s 8 ^ ^ " ^ A a
(191),

... J _ _5^_ . 3Xg+... ,
1z

%+... VZ dz ~ 1—z* £«•+... -2?

(192),

h2)z-h} (193),

and equating coefficients,

0 +PE = hL-Lt (194),

0 +PEi = — (4S+W) L+3hL1-2Li (195),

QE +PHj = 6hL—2 (1 + ft8) i,+5fti3—3£8 (196),

(197),

(198),

(199),

Qfl"4+ 0 =-2(Ai-h?)Ll-3hLi-(5A2-4<Jis-l)Li (200),

Q£T6+ 0 = - ( 4 2 - / i 2 ) i a - / i L 8 (201).

Put - ^ = as (202),
X/

so that, when a; is found, the values of E and L can be inferred from
(171),

ff= / * ^ (203),

^ = - 7 7 ^ (204).
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21. Then,from (185), ^ = - P (205),
JJ

from (194), ^ = h-Px (206),
L

from (186), 2^* = _ 5 o ; - P ^ = (P%-5)x-Ph (207),
Jj JJ

from (195), 2 ^ = - 4 - f e s + 3 A ^ - p S
JJ L JJ

8 2 4 (208),

(209),

from (187), 3^5 = - 4 ^ i - Q -
Jj L

from (196), 3 -̂8 =6^-2 ( l+t f )^+5*^Q»p
iy -b JJ JJ

from (188), 4 ^ * = - 3 f s -
X/ JJ

(210),

^ (211),

and from (190), ^ + Q^s = 0 (212),

so that - 9 ( F - 5 ) a - 6Q (fe

] ] = 0 (213),

the equation to determine x; thence

_

where, from the values of If, 7i, P, Q, ... given in (159)—(167), with

4Q-P = 5(l-3c)M- (215),

we find, after reduction and cancelling a common factor,

5-14C + 6C3,
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of the numerator and denominator,

X~ 2 - c h
so that, from (203) and (204),

L=^h (178),

and thence the values of Hlt £f2, Hs, JB"4, flj, Lu L%, Lt are readily

inferred from equations (185)—(201).

Putting z = =fc 1 in (184), we obtain

(179),

(180),

so that, in conjunction with (167),

AiLt+LJ+H+Ht+H^O (181),

A(L +Li) + H1 + Hs+H6 = 0 (182),
useful as verifications; and the same can be obtained by putting
z - ± 1 in (193).

t* = 6.

22. The equation of the catenary can be reduced to the same form
as for ft = 3, namely, combining (143) and (144),

(l-s2)*^ = HJ+H^+HtZ+Ht+iiLz+LJSZ (217).

Referring to the Proc. Lond. Math. Soc, Vol. xxv., p. 216,

7a = 0 (218),

or y-x-y%-0 (219),
is satisfied by taking

y = — c, x = —c—<? (220),

and then ^ ^ ( l + o) ( 2 2 1 ) '

2c(l + c) ^ J '
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The pseudo-elliptic form of (29) can now be written, with

v = > 8 (224),

2s'

0 (225),

and thus 3p = l + 3c (226),

P=%(A+Mp) = 2M (227),

Q = -| (A-MP) = ( l -3c) if (228),

P + Q = 34 (229),

and the differential relation to be satisfied by (217) is

3 (1-s3) -/Z^ = Ps3+Q (230).
dz

23. Differentiating (217) logarithmically and equating coefficients,
as in the case of fx = 3, the resulting equations are

0 - HX = PL (231),

-2H-2Hi-PLl (232),

— 2M1—3Ha = QL (233),

- H3- 0 = QL, (234),

PH =hL-Lx (235),

(236),

(237),

(238),

0 = (239),

0 = (240).

From (231) and (233), eliminating Eu

3Ha = (2P-Q)L,

or Hs = (l+c)ilL (241).
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From (232) and (234), eliminating JET,,

3H=(2Q-P)LU

or H = -^2cMLl (242).

Substituting in (235),

^ = l + £?= l
Li Li

= l-4cMa = 1 - 2 ^ = - ^ - ° (243) ;
1+c 1 + c v "

and therefore - = - 2cM ̂  = 2c
1—dc

= o 1±£ y{(
l - 3 c 2c (1 + c)

Also, by squaring and adding (143) and (144),

tf-jgr2 = I (245),
and thence

g 8 ^ - ^ (l-c)(l-2c-c8) (l-c)(l-2c-c8)
i a - H s l -3c-( l -c)( l -2c-c s ) -c8(l + c)

( 2 4 6 ) >

—1 —c

(247),

il=£Ki=M} (248),
7

c (1 + c
= " 2clf = ; - 7 V (-32c

^ ^ c c 8 ) | ( 2 5 0 ) >

The verifications obtained by putting z = ± 1 in (146) are

O (252),

0 (253),

and these are found to be satisfied.



146 Mr. A. G. Greenhill on the [May 9,

24. When ft is even, the cubic S can be resolved into factors; and
therefore Z also can be factorized.

Proceeding in Clebsch's manner (Crelle, 57, p. 105), and writing
k for Clebsch's p, we put

+ (1—7i2) £-2

and this is the case provided that

or (fcs-l)»(Jfc«-fc«)-4il8Al=0 (255),

a cubic equation for AJ; and Z then breaks up into the quadratic
factors Zx and Zv where

^ l l ^±1 (256),

(257).

But, putting, with Halphen's notation of x and y,

-A* = - 2 !±y , - l _2y (258),

(259),

} (260),

the cubic equation (255) for k2 becomes transformed into

4s(8+xy-{(l+y)8+xyy = 0, or 8=0 (31);

and therefore the quartic Z can be resolved when we know a root,
say 0j, of equation (31).
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25. Clebsch's sin 2c or x (which we change into £ to avoid con-
fusion of notation) is connected with k by -the relation

cosa2e = l - ^ = | - (261),

and it is connected with the s above in (258)—(260) by the relation

t=M(-2S8+l+y) = -2MSs+A (262).

For Clebsch's m is our h, and his 6 is our A; so that his resolvent
cubic (Grelle, 57, p. 105)

(aj-26)(l—re2) -m%x = 0 (263)

becomes (*- 2A)(l - ? ) -hK = 0,

or ? - S L U ' + ( l - A ' ) l + 2 4 = 0 (264),

and, putting { = M (—2t+l +y) (265),
this reduces (264) to

2<«-(1+^)^+2x^-^ = 0 (266),

or, putting t — </s, to

} = 0 (31).

26. In the case of /* = 6, we find that

*,=?* = <:' (267),

and then Â  = - l + 2 c + 2 i = ^ c f = ^-=^- (268),
c+</ —1— c

h* __ 1 —2c—ca

1? " -2c

and the quadratic factors Z, and Z, of Z are thus determined.

Putting Zx = (*,-*)(*-*„) (272),

so that z = z, and a = zj give parallels of latitude between which a
branch of the catenary lies, then, as 'z grows from *0 to «,, the
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variable u may be taken to grow from 0 to w^ the real period of the
elliptic functions, such that

If K denotes the corresponding quarter-period of the associated
Jacobian elliptic functions, then (Klein, Math. Ann., xiv., p. 118)

,cY*)22r (274).

At the same time/iy grows from 0 to jJT, or pty from 0 to Pwj+£w;
so that, if P<i», can be made an exact multiple of \ir, the catenary will
close in upon itself, and form a closed curve.

27. The simplest mode of effecting this closure is to make P vanish;
but, in the case of p = 6, this requires A to vanish also, and the
catenary degenerates into a vertical great circle.

Calculating the invariants g2 and g9 of the quartic Z in this case of
p = 6, we find, from (53) and (54),

1 2 = (1-c) 2 ( l + 3c)(l+9c+3ca+3c8)
4c2(l+c)2

8c8(l+c)8 :

8 = 4s (s-c-&y- {(1-c) s+c'+c8}

= 4(5-Sl)(«-53)(s-*3) (277),

suppose; and, with s, > st > sv

(l+c)3(H-9c)

and thus, from (274),

j ^ _ *
2K V l (

r» OIT 4K • 2 K V ( * K ) / o u n

Pw, = 2M<a. = -^- = — ^ — ' (281).
y{(lf)8(l+9)} c» v
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To construct a closed catenary we must search, by a tentative
process, for values of c which will make

i'jQ = 1, 2, 3, ... (282),

where KK is given by (278).

The formula given by Klein (Math. Ann., xiv., p. 119),

| ^ o r i + 2402
2 (283),

will perhaps assist in obtaining a first approximation; or otherwise
the curve which is the graph of (282) must be plotted, preferably
with logarithmic coordinates.

28. With negative discriminant

two of the roots of the quartio Z and also of the cubic S, are
imaginary; and now

4 . ,2 _ (l+9c)
564c5

the reciprocal of the preceding value of 4»cV2 in (278) ; and

so that c is now negative, or y = — c positive.

With negative discriminant, suppose

Z a = (* -m) 2 +n 2 (288),

and Z, as before in (272); then, from (256) and (257),

Zo+h = h + k (289),

&2-l , h
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(291),

(292),

» - l ) (293).

In the special case of p = 6, from (269), (270), and (271), with

(294),

and then

(295).

But since (1—y)(l—9y) is now negative, or l > y > i , -Sf is nega-
tive, and the catenary is imaginary.

,x = 7.

29. Here the first relation to be satisfied is

y7 = 0 (296),

or (y—x) cc-y* = 0 (297),

the equation of a unicursal cubic, in which we can put

(298),

(299),

and now M> = £ = ~ £ , (300),

(302),
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(303)-

The integral (29) is now (Proc. Lojid. Math. Soc, Vol. xxv., p. 226),
with

« = >» (304),

( 3 0 5 ) )

where 7p = 3+9c+5c2 (306),

(307),

(308),

(309),

. C = - ( l + c)8(l+3c) (310),

JD = c2(l+c)« (311),

P = i (A+MP) = (5+c-c2) itf (312),

Q - 1 (^-Mp) = 2 (1 - 4 c - 3 c ' ) Jlf (313),

P + Q = 7̂ L (314).

The equation of the catenary is now of the form

(l-zi^e^i = Hz7+H1^+...+H1+i(L^+Llz
i+...+Li)y/Z (315),

but when it was attempted to employ the differential relation

7 (1 -a1) x/Z ^C _ pz« + Q (3i6)

for the detennmation of the iT's and L's, in the manner illustrated
above, the complication became so formidable that another method
had to be sought for to determine the leading H and L, connected
by the relation

U-IP^l (317),

upon which the other coefficients depend.



152 Mr. A. G. Greenhill on the . [May 9,

30. The clue was obtained by noticing that the value z = oo makes,
in the general case, in, (125) and (126),

(318),

or W = *tan-1^ = i log |± |=log(X+H) (319),

L+H =<?**, £±^=e2*" (320).

By means of the formulas

P (« -V\)—P (u—Vj) _

equation (103) may be replaced by

and now, supposing that

M2s = $>2u-pv (324),
in equation (29), then

^ ^ (325),

or uXi = i log \ P)u-vj£±V!Zh) - W(t>) (326).

With the special value of z = oo and « = c, suppose 8 becomes
0, and in (29),

= tan"1 Q.

Then
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But, from (114) and (115),

V^i-c)-p(vt-c) = h+A (329),

= h~A

so that ^ - ( j r j ) ( F T G T P O ) ) ( 3 3 1 ) l

T (W-^'-CF'+ffC)' v

31. If H denotes the Hessian of the general qnartic in (49),

by Hermite's transformation ; also, from (49) and (52),

i l = -{ | (1-f t 2 ) +&}**+... (334),

so that, taking 2 = 00 and u = c,

p2c = - i ( l - t f ) - £ t f (335),

and from (69),
p2c-*M> = !(42-fc8) (336),

so that the corresponding value of s is given by

Aa (339),

a n d 0 = - ^ , V(-0)=& (340).

82. In a similar manner we may employ the special value z = 0,

to determine the ratio of the final coefficients JB], and L^2.
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Now, from (65), denoting by e the value of u corresponding to z—0,

(„, ± e) = «+M+«*yQ + 8») (342),
. 2

so that p (v,-e)-^>(r2-e) = -^ -^^ (1+2? / ) (344),

p(v1 + e)-p(v2+e) = - 7 i + ̂ y ( l + 22/) (345).

Also (noting the two meanings of the letters c and e)

,a. = _-=£ = _i(i_tf)_Jtf- (346),

p2e-p!) = J ^ - I i ^ - (347),

and the value of s corresponding to z = 0 is given by

and, if IS denotes the corresponding value of 8, we shall find, after
reduction,

Thence, as in equations (331), (332), we shall find

(352),

or, since Ml~L\^ (1+2?/) = 1 (353),

*)}> ( 354 ) .
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33. As a preliminary test of these new methods, we apply them to
the cases of \i = 3 and fi = 5, already worked out independently.

Thus, for instance, with ft = 3, we find z = oo makes

s = -\x, < / ( -0) = | ^ (355),

J? = s+x = |a;, (? = 1 (356) ;

, , , F-GJ(—O) h-A ,QK»,
and therefore TO., „ ,) ^ = ^ ^ (357),

so that, m (331), J^H= Kh^A.) (h + l)

= £3 (358),

thus giving Jff = il, and L = h,
as before, in (155).

34. With /x = 5, and taking equation (162),

F— G y / ( — (7) \I-COG) s —\w TV j a TV —ye—1> j y y — ^ ; /PQ5Q'\

with s = £f"' ^ ~ ^ = : ' " | | (360 '̂
so that, from (160) and (161),

h+A _ y ^x—WTII / — ^ /TV-1—^) v yj-—^^ ^S61^

(362),
and thus equation (331) gives

H= (h±A\* (h±A F
H \hA/ i h A F

l-c)-l-y(l-5c+7c8 - c8)
VA-^l/ ( l -«

(~2^)V(l-5"c+"7c2-c3)-(2"^'- ' - n y / 1 -̂  ( 3 6 3 ) '
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T " (2 -cV( l -5c+7c a -c 8 ) ^ j>

so that

JEf= if (172),
c

L = ^ h (178),
c

as before.

35. The preceding verifications for /i = 3 and n = 5 having served
to settle the doubtful signs in the expressions, we now resume the
case of

employing this new procedure.

With a = oo, equations (298)-(303) show that

N 3 1 — 2 c — 2 c 2 /oflK\

) T=w" (365)'

21 = ^ I (366)'

-(l+c)8(l+6c+13c2+5c8)s2

+ C2(l + c)8(2 + 6c+c2)3-c4(l+c)9 (367),

0= s
8 - ( l + c)8(H-3c)s+c2(l+cV (368),

and proceeding as before, we shall find, after considerable redaction,

h+A F-
h-A

( l + c ) ( l_4 c + c 2 + 3c 8 )

-4c + c* + 3c8)
c-c 2 ) v / ( l -5c+0 + 15c8 + 12c4 + c5-c

(369),
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L+H_ (h+A\* ( h+A F-GS(-O)) *
L-H~\h-A> \h-A F+Go/(-O))

which reduces to

I j j . + (4-10c-15ca+5c8 + 10c4+c5--c8V(l--c-c2)
L-B" (4-2c-5ca+0+c4)y(l-5c+0+15c8 + 12c4+c5-c6)

-(4-10c-15c2+5c8+10c4+c5-cfl)y(l-c-c2)

(371),

H - 4-10c~15c2+5c8+10c4+cB--c8 if

Also i » - H a = 1

and (4-2c-5ca+0+c*)>a-(4-10c-15c2+5c8+10c*+c5-ce)ailf8

= c4(H-c)4 (373),

.g = 4 - 1 O C " 1 5 ^ 1
5 ; ^ ) }<»+'-* U (374),

36. The leading coefficients H and L being now determined, the
remainder are readily found from the identities obtained by the
logai'ithmic differentiation of (315) and a comparison with (316),
namely,

0 +PL = 0 - Hx (376),

0 +PLt = -7H ~2B"2 (377),

QL +PX, = -6 f f , -3g , (378),

SHt-Wi (379),

-4£r8-5H6 , (380),

-3£T4-6H8 (381),

QL4+ 0 = ^2£r5-7IT7 . (382),

QL..+ 0 = - F a - 0 . (383),

as in (185) to (190), and
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0 + P # = \l-Lx (384),

0 +Pff, = -(6+tf) L^ShLl-2Li (385),

QB +PH, = 10hL-2 (2+V) £1+5&£8-3£8 (386),

(387),

..; ... ... ... (388),

(389),

.„ ... (390),

QH,+PH7 = (391),

QH»+ 0 = ... ... (392),

QH+ 0 = (393).

I am indebtei to Mr. T. I. Dewar for the calculation of these
coefficients, and for a general verification of the work; his results are

g , = -PL = - <»+c-<EK4-*.-W+O+*0Mh (394),
<? (1+cy

„ _ 20-65c-l'3cl+190c8+307c4+20c8-151c8-63c7+8c8+6c9
1tf

Hi : ?OT^ M

(395),
„ -20+35c+139cl+28c8-167c4-134c5-7cfl+23c7-t-c

8

_ 5-45c+5£c2+217c8-80c4-459c5-276c6+59c7+99c8+24c<>
 lr

(397),

( 3 9 8 ) '

- OT - 2 ( 1 - 4 0 - 3 ^ ( 1 - 4 0 4 - 0 + 6 ^ + 3 ^ ) , ,

= 2 ~ 1 + ^ c + - iia (400),
c

(401),

_12-c-36ca-21c8+16c4+17cB+4c9
7,

: ^ ( 1 ) 5
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-4+20c-3c2-64c8-19c'+60cl>+51cfl+12cy

= ^

l_4c+O+6c8+3oi

—TTT
and the verifications obtained by putting z = ± 1,

J ( i + J&l+Ii4)+.Hl+ff,+fl"B+.H'7 = 0 (406),

4 (Ẑ  + J^+La) + # +38+^4+^8 = 0 (407),

are found to be satisfied.

Try putting P = 0; then
c* -c -5=0 , C = ± - | A 2 1 ) (408),

taking the negative root, as this makes

1—c—c* and l -5c + 0 + 15c8+12c4 + c8-c? negative,

and therefore MJ and &s positive ; and now, from (299)-(303),

30 '

- -82+18^/(21) , , _ 83-12^(21)
- 15 ' * " - 15~*

37. In this case the parameter

* = > 8 (409),

and the equation of the catenary will reduce to either of the forms

(l-z%) cos 2X = (Hz-HJ VZX (410),

( l-z1)sin2x= {Lz-Lx)s/Z% (411),

leading to the differential relation

2(l-z*)VZp>=Pz*+Q (412),
clz

where Zu Zit the quadratic factors of the quartic Z, are given in
(256), (257).



160 Mr. A. G. Greenhill on the [May 9,

The pseudo-elliptic form of (29) to be employed here must be
taken from p. 229 of the article on " Pseudo-Elliptic Integrals," and,
referring to p. 226, replacing the z employed there by £ (1+c), we
must take

(413),

(414),
—c

1 + y = !=*>=* (415),
1—c

IP = 1 ~ 2 c " f (416),
c (1—cs)

_ (r-c-c
2)(l-6c-f8c2+6c3-c4)

(1-c)8

(419),

1 c e (420),

8P = ^ (422),

P = 1 (24+Jfp) = ̂ = ^ Jlf (423),
1—c

Q = 1 (2̂ -Jtfp) = i -^ -^ i f (424),
1—c

P+Q=2A (425).

The coefficients Jff, Hu X, Jr, can now be determined in a straight-
forward manner by differentiation and verification; in this way we
find

L ' - H 8 = l (426),
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(428),

(429),

(430).

If we try to make this catenary a purely algebraical curve, by
putting P = 0, c = §, we' find

;V2 = - i (431),

so that the catenary becomes imaginary.

38. This case has been worked out by Mv. T. I. Dewar, making
use of the second method of § 30 for the determination of the leading
coefficients II and L; the numerical calculations were extremely
laborious, and the leading steps only ai*e indicated here; the results
•satisfy the tests of accuracy that have been applied so far.

The equations are now of the form

(l-22)*cos9x= IIJ>+Hls
i + ...+H» (432),

( l -a 8 )»s in9 x = (Lz7 + L1z° + ...+L7)</Z (433)",

leading to the relation

9 (1 -z>) VZ& =Pz* + Q (434).

it z

Referring to " Pseudo-Elliptic Integrals," p. 232, we take

*=l^ ( l -p ) ( l - j>+j i 1 ) (435),
y=2>

3(l-p) (43d),
1+7/ = 1 + 0 + ^ - / (437),

VOL. XXVII.—NO. 5 4 5 . JI
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and the pseudo-elliptic form employed for (29) is

v = > 8 (438),

a n d

where 9p = 1 + 0 - 3 / + 7 / (440),

<r = - / ( 4 - l l p + l l / + 4 p 8 - 1 7 / + 1 4 / ) (441),

r = /(l-i)+/)(6-23^+37i3
2-24p8-2p*+7i)

ls) (442),

T = - y 2 (1 -p)2 (1 - p +p2)' ( 4 - 9 ? + ¥ + / ) (443),

7 = .p18(l-p)4(l-jp+2>2)8 (444),

0 = — 3p* (I -2p + 2p5) (445),

D= /(l-p+p^^-V+V) (446),

(447),

(448),

(449),

(450).

39. When 2 = co,

fi" ^2+22/ 2 ( l + 0 + ^ - p 8 ) ^ ;>

v / ( -S )= * 7l

the expression requiring the enox*mous algebraical labour for its
reduction.
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Mr. Dewar first calculated

and found that it was a perfect square; its root was then multiplied by

h+A
h-A

(455)

four times in succession, large common factors making their appear-
ance each time in the numerator and denominator, and thus he found
finally that, using detached coefficients,

(4-0 +14-16+ 21-26+ 19-13+ 6-p9)v/(-l +0 -5+ 7-11+ 20-20 + 15-7+^9)
I + ff ^ + (4-0 + 22-28 + 55-96 + 114 —124_+ 101 r 63 + 31 - 9 + px%/{^l +0+p*-p*)
L-H (4- 0 + 14-16 + 21-26 + 19—13 + 6-jt/»)V(-1 + 0-5~+T- 11 + 20 -20 + 15- l'+p9)

- (4-0 + 22-28 + 55-96 + 114-124 + 101 -63 + 31 - 9 +pli) {-l + 0+p*-p)

(456),
4 -0 + 22-28+ 55-96+114-124+ 101-63 +31-9+j»1V(- l + 0+^1-^3)

E_ = - 1 + 0-5 +7- 11 + 20-20 + 15-7 +p°
L = 4-0 + 14-16 + 21-26 + 19-

4 - 0 + 22-28+ 55-96+ 114-124+ 101-63+ 31-9-i-y2 M ,.,-v
> h K h

arid, since V—H3 = 1,

(4-0 + 14-16 + 21-26 + 19-13-6-i>9)2A2

- (4 -0 + 22-28 + 55-96 + 114-124 + 101-63 + 31-9+p»)Jf3 = p8(l-i?)6(l-i)+j;5)3 (458);

therefore, finally,

XT_ 4 - 0 + 22-28-f 55-96 + 114-124-t-101-63 + 3 1 -

T _ 4 - 0 + 1 4 - 1 6 + 2 1 - 2 6 + 1 9 - 1 3 + 6-E>° . , f J , m

" ~ VO^p)* ( 1 P + P 4 ) (4b0)'

40. The determination of the remaining coetlicients is now comparatively an
easy matter, and Mr. Dewar finds

H PL (6-0 + 3-l)(4-10+14-16 + 21-26 + 19-13 + 6-j>») 3n

-20 + 0-166 + 190-626+1169-1946 + 3141-4161 + 5003
•• -5262 + 4610-3453 + 205)2-1011 + 371-

M 2
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20-10 + 175-210 + 642-1123 + 1842-2619 + 3043-3177
+ 2738-2010 +1247-608 + 237-65 + 8p»« , , , ,,fl,v

5 + 5 + 90-45 + 489-877 +1296-3946 + 6401 -10002 +13532
^ -16302 +17394-15762 + 12194-7806 + 3974 -1558 + 406-48p» M

-1-2-39-8-220 + 283-575 + 1206-1582 + 2080-2194

- 4 - 4 - 6 4 + 40-288 + 636-1076 + 2320-3580 + 4980-6515
rr + 7091 -6698 + 5294-3258 + 1551-512 + 80/>» w ,.Rr,

*> F o ^ - i r q ? ^ 5 ) * (466)>

H = 1 2 ~ 0 i f 68-120 + 160-400 + 524-520 + 517-348 + 157 - 65 + 16p18jf̂  /46?x

rr nr 2 (2-0 +3-4)(2-0+ 8-14 +16-30 + 34-26 +15-4p9) i r M P a x

Ms = - QL7 pT(i~^pT6 ( ) }

^ (1-^)5

8-Q-t-54-60+ 164-284+ 389-542+ 575-544+ 440-274+139-48+ 7pu

A l l B •"" Wi-W-jT+ji2)8"

r _ o - 4 •• 0-23 + 22-57 + 82-100 + 132-120 + 100-64 + 30-11 + 2 / 3 ̂

z 2 - 3 • 7i=mi=F??)*

- 4 - 4 - 4 8 + 16-185 + 299-541 + 1009-1365 + 1807-2000
L = + 18G0 - 1516 +1)74-487 + 175 - 30p16 . ^

T 1 +1 + 2 3 - 15 + 9 7 - 1GI + 28G-43G + 5G0-G54 + .598-470 + '294-130 + 4 6 - 10p18 , M 7 ^

. 3 + 3 + 30 -

L - 2 + 0 - 8 +14-1C +30-34 +26-15+ 4p» / 4 7 6 )
7= PQ-P)*

. Dewar has also performed the verification of showing that

A (L +£,+£,+!,„)•+!/, +Jff,+J/6+J/7+If, = 0 (477),

0 (478).
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A* = 10.
41. This investigation was interesting as affording the first case of

a purely algebraical Spherical Catenary, shown in the stereographic
and stereoscopic projections of the accompanying diagrams (pp. 170,
171), drawn to scale and in perspective by Mr. T. I. Dewar.

The equations to be satisfied are

(479),

leading to 5 (1 -z2) JZ f* = Pz> + Q (480),

as in the case of fi = 5.

Referring to the Proc. Land. Math. Soc, Vol. xxv., p. 235, the
relation *.„-.*

7.o = 0 (481),
.the equation of a unicursal quintic curve, is satisfied by

x - -
(l

(1 —a)(l —a—a2)

and thence

( 4 8 3 ) -

(484),

(486),

o ) ( l - a ) r ( l - o - a 8 )

The pseudo-elliptic integral to employ for (29) is

v = |w8,

= i tan-' ~ ^ - ^ — v/S = \ tan-1 ^ i (4SS),
bpir vs + r F



166 Mr. A. G. Greenhill on the [May 9,

where » = n ^ , \ C 4 8 9 ) '
(1— a)(l—a—a")

(490),
(1—a)8(l—a—a2)8

(491),
( l - a ) 4 ( l - a - a 2 ) 5

0 £L±^!—_ (492).
(1—a)2 (1—a—a2)*

Thence P = f (4+Mp) = 2 f = ^ 3f (493),
1—a

Q = | (4-irp) = / r 9 " " 8 o t + 8 " ' M (494),
(1 —a)( l — a — a)

(495).

We take J, = „ _N 9 /f _ _axa (496),

£ (497),

- (498).
fc1 2a(l-a-a2)

42. Corresponding to z = oo,

= 2 (l-a)(l-a-a2)(l-3a-a1+a8) ^ 4 "^ '

2(l-a)(l-a-a8)2 A

"Working with these values, Mr. Dewar found, after a long
calculation,

L±H == ( $
L-H \h-Al Ih-A F+GS(-S)

(501),
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E. - (2-4a-aa+a8V(-l4-3a+a2-a8)y(l-6a+3a>+8a8-3a4-2a'1+a8)
L ' ( l-a-a2)(2-6a + 0 + 3as-a4) ' / (- l + 5a + aJ-a8)

(502);
and therefore

__ 2 -4a -a 8 + a8 / f ( - l + 3 a + a3-a8)(l-6a-3ai-f 8a8—3a4-2qB+ae)
a2(l + a ) ( l - a ) V I l + o

(503),
T. - ( l - a - a 2 ) ( 2 - 6 a + 0 + 3a8-a4) / /

a«(l + a ) ( l - a ) V V

Thence the other coefficients follow, and writing

a for - l + 3a + a2-a8,

/3 for — l + 5a+a2-a8,

y for — 1 + a+a2,

5 for 1 - 6a + 3a2 + 8as-3a4-2a5 + a8,

a/3y

7T - 12-60a + 32a2+91o5-23a1 -30a5 + 8a6 + 3a7-a8 / /_a5_\
2 ~ 2 « ( l ) ' " ( l ) \\l + a)

(506),

//a/3y\
a3(l+a)8(l-a) \J \ 2a )

(507),
w - nr (l-9a-3a8 + 3a!')(l-3a-2a8) / / a5 \ .-r8x
H4 — % = ~ ~ - ^ ^ (IT-) (508),

„ _ l - 4 a - a 2 + 2a8 //a/3y

T - 6 + 16a+10a2-7a3-2a44-aB l(yh
X = T ^ V ^

l(

V
_ (1-a-as)(3-9a-6a3+8a3+2a4-2as) / / /3 \ . . . , .

and these values verify the equations
il ( i +i2)+/I1+JJ3+iT5 = 0 (513),

A (Lt + LJ+H +7JT2+IT4 = 0 (514).
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43. Here we can make P vanish by taking

a = 2,

and this gives real numerical values to the coefficients, namely,

H-1 It1?) II-O # - - 1 I(VL) H - - 2 5

and the equation of the catenary can be written in either of the forms

_ 48A/(51)gB-120v/(51)s3--200g8+62y(51)s-fl50
~ 864

g 3 +70y(15)z-
432

so that its projection on the equatorial plane is a closed algebraical
curve, with pentagonal symmetry.

With a = 2, fc9 = f,

^ ) (518),
15

The roots of ?̂2 = 0 are imaginary, but the roots of Zx = 0 are

s0 = - 0-9982585 (520),

z, = 0-8975022 (521),

giving the limits of latitude between which the catenary lies, namely,

86° 37'5" N. and 63°49'54" S.
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The curve crosses the twenty prime meridians, at intervals of 18°,.
at the points corresponding to the roots h^, h2, hs, h4, of the quintic

= 0 (522),.

and to the roots, Z,, Zj, Z8, of the cubic

= 0 (523)..

These roots have been calculated by Mr. Dewar, employing
Homer's method, and the results are tabulated in the following
columns ; it will be observed that, near the upper N. pole, the roots
are crowded together, and the disentanglement of these roots caused
some trouble.

Some intermediate points were also calculated, for the purpose of
plotting the curve with accuracy on a globe; and, denoting the lati-
tude (South) by X, the following table embodies the numerical
results:—

z

H
K
h

h

K
0
\h

h
h

ein\

-0-9982585

9980756

9973452

9949993

9824577

3436408

o-
+ 0-5951190

7895648

8805984
8975022

1-4561185

cos \

0-0589918

0619599

0728175

0998841

1864859

9391010
1-

0-8036694
6136251

4738620
4410099

tan i (90° -\)

-0-0295

0311

0365

0501
0941

6989
1-

0-5038

3430

2520
2324

\

86°37' 5"N.
86 26 42

85 49 27
84 16 3

7915 8

20 5 56N.

0 0 0

36 31 12 S.
52 8 42
61 42 53
63 49 54

O 1 II

0 0 0
18 0 0

36 0 0.

54 0 0

72 0 0

'90 0 0
91 59 50
98 45 0

108 0 0
126 0 0
144 0 0

The curve crosses the equator at an angle 83° 46'24", and it
makes a maximum angle, 86° 56' 45", with the parallel of latitude
28°0'31"]Sr.

Below the depth \h from the centre, that is, in latitude greater
than 36° 31'12" S., the pressure changes sign, and the chain must be
supposed to rest on the inside of a spherical surface.
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The stereoscopic photograph can be made to show the solid figure,
in the absence of a stereoscope, either by fixing the eyes on a distant
object, and then raising the card into the line of sight at the distance
of distinct vision; or else by holding the card at a distance of about
the arm's length, and focussing the eyes on a point half way; a
smaller image is now formed, and the tesselated background, repre-
senting the directrix plane, is now seen as a network in front of
the solid sphere.

44. Here the parameter of (29) is

v = §«, (524),

and the equation of the catenary may be written

( l - s 2 ) 1 ^ ' = (Hz>+HiZ+H2)SZi+i(Lzi+Liz+Li)y/Zl (525),

leading to (l-z*)SZ^=pzi+q (526).
dz

Referring to " Pseudo-Elliptic Integrals," p. 248,

- « ( l + p ) ( l + a + o ) (528),
I — a

•. . 1— 2a—2a2—2a8 — a4 /coo\
l+y= = (529),

1—a
M* - ( l - a ) ( l -2a -2a 8 -2a 8 -a 4 )

~ 2 ( l )(l a2)(l+a+a8)

Clebsch's x or f, is given by (265), so that, with

= -«fl±£±23 (531),
1—a

) (532),

and

& 8 __ _
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But

A" = A*-l-2y
_(l-4a-4a8-4a8-a4)(l-4a-4aa-4a8--2a4-|-2a'>+2a84-2a7 + a8)

2a(l-a*)( )
(534),

so that .

72 1— 4a—4a8—4a*—a4

k = j—j

and the same value of k2 is obtained from formula (258) with

(1—a)

,, . ft'-l l - 2 a - 2 a * - 2 a 8 — a * ,-<>„,
so that ——— = j (537),

2 1—a*

45. The chief difficulty here is the determination of the appropriate
valû e of p to employ in (29), which we distinguish as p ($w8); but
this is given by the general formula

=—(1 + 2/) (539),

and with fi — 12,

12p (>3) = - 2 (5 + 3a+3aJ+a8) (540),

(Proc. Lond. Math. Soc, Vol. xxv., p. 251); so that

1ol-2a-2a8-2a8-q*
1-a

(541),
1-a

Next

+f1-a - i—a

(542),.

\(A i r \ 11/f-l-10a-12a'-10a»-5a* ' ,KAOS

= f {A—Mp) = \M -— (543),

• A (544).



174 Mr. A. G. Greenhill on the [May 9,

The integral (29) now assumes the pseudo-elliptic form

3 J ds

= i tan'1 W'-h) (545)r

< v { 4 ( a ) }
where F = 2,- ( l l ^ O ^ ^ t ^ ) " ( 5 4 6) ,

(1 a)

a = Q±a±^!
1—a

46. Proceeding to the value z = oo,

where

$ 2+2y 2(l-a)i(l-2a-2ai-2ai-ai)
(549).

Writing o for 1 -2a- 2a8- 2a8- a* (550),

0 for l -4a-4a 8 -4a 8 -a 4 (551),

y for l-4a-4a8-4a8-2ai+2a5+2a8+2a7+a8 (552),

80 that M* = 2a(l + a)a + <lla(l+a+a>) (553)>

^« u (554)

tf = % _ (555),

/ i 8 ft1

h-A S(f}y)-aVa ''
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Then B-S -
lhen 8 s t -

l - a -a 8 -5a 8 -7a 4 -6a 5 -4a° -a 7

(560),

and finally, after considerable reduction, Mr. Dewar finds

T XT

where m = 4-10a-3a2-3a8+9a4+12aB+9a8+5a7+a8 (562),

n- ( l -a) (4-2a-5a 8 -10a 8 - l la 4 -7a 5 -4a 8 -a 7 ) (563),

and thence the coefficients H and Ii can be inferred.

Putting L = cosh A, H — sinh A (564),

t h e n e = ̂  /.. „ /,Ja\ (565)»

and tanh 2\ = n ^ a / 3 ) (566),
mvy

^M) (567),

where I = aJ(l+a)s (l + as)(l + a+a3) (568),

S = - 2 a ( l + a + a») (569)}

and Xa = * (cosh 2X + 1) = ^ ^ Y * (570),

JT- = * (cosh 2A-1) = m^]-1/* . (571),

L tjTt/l (572)'

(573)'
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These values of S and L have been checked by Mr. Dewar by a
straightforward verification, but the work was very long.

This catenary will be an algebraical curve if we can make P = 0,
and then

4+( l+a ) 8 =0 , o = - l - y 4 (574);

this makes # = 1—IV4 (575),

but a = —|(*/2 + l),

so that the catenary is imaginary.

47. It will be noticed now that, in general,

(576),

so that an algebraical catenary requires as a first condition that

afterwards we must examine the reality of the catenary by finding
out if M3, A3, h3, A;2, ... are positive.

Taking, for example, the case of

(Proc. Lond. Math. Soc, VoL-xxv., p. 257), and the formula (p. 206)

or —fjipx = | (qiqa + —) — (/*— 2) x(l + y) (578),

where qT.x = 2(sr—s,) = — 2 a 1 £ = ± | ^ (579),

^ - a (580),
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we find (Proc. Lond. Math. Soc, Vol. xxv., p. 199)

xy (581),

a-y (582),

(585),

i ^ y f t y X y Q y ] 3 .(y-«) '+y'(y-a0>-2!B3/(y-a;-y8)
7 xy-J-tf y{*(y-*-tf)-(y-xy}

(586),

where tf9 = « {(y-aO8

48. With î = 14, 3 l , = 0 (Abel), and

9 « = : 9n 9io = 9a> 9o = 9s> 9s = 9i> 97 = ft (588),

(589),78xy—af—y

xy—x'—y*

= y + 2 + c(z-p) (590),

and, with the values of yf 2| y given ou p. 257, Proc. £oNd. Math. Soc,
Vol. xxv., this reduces to

7 p = ( 5 9 1 ) >

where C = c (1 + 2c) (4 + 5c + 2c8) (592).

Then p, and therefore P, vanishes if

2c8) = 0,
VOL. XXVII.—NO. 546.
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or (1 + c)(4 + 4c+6c8+3c8) = 0,

or (c+l){(3c+2)8+28}=0 (593),

3c+2 = - 4/(28).

With a = ?/(28) = 2».7*,

«« G~A /n 14+5a—26
we nna vli' = ,

y, a 28 + 26 + 7a ,KaA.
and ? = yor g l ^ (594);

but these values make M* negative, and the catenary"is imaginary.

49. So also, with
fi = 18, « as f «„

3i« = 0. ?i6 = 2i> ^I* = 2JI Sis = 28 (595),

reducing ultimately to (Proc. Loud. Math. Soc, Vol. xxv., p. 265)

(598).

Therefore f> and P vanish, if

(g'-Sg'-Gg-lSy-gQ = 0 (599),

or 3
8 + 3r/+69

4+l(y-32l-15g-20 = 0 (600).

This sextic equation has only two real roots
+ 1-21921268, and -2301874537 (601),

which were calculated by Mr. Dewar, with Homer's method; he has
calculated the remaining quartic factor

(602),
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and has resolved the sextic into its cubic factors in the two ways

(g8+3-914721g»+5*278g+3'464) (g8 - 0-914721g'+43629g- 5772)

(603),

(g8 + 260635g9+5-43504g + 10"898)(g" + 0-39365g9-046117g -1-8352)

(604).

If we had obtained a simple rational root, as in the case of f* = 10,
it would have been worth while to go on with the calculation of this
algebraical catenary, which would possess the symmetry of the
nonagon, the prime meridians being 10° apart.

H = 16.

50. The parameter of the associated pseudo-elliptic integral
assumed by (29) is in this case

v = £o»8 (605),

and the catenary will be given by an equation of the form

(606),

leading to 4 ( l - * 8 ) v / £ ^ = Pz*+Q (607).

According to p. 262 of " Pseudo-Elliptic Integrals," we must now
take

2a8(a»-2a-l)
(608),

V 2a6(a + l)(a*-2a-l)

where'

A'= (a*-l)(a9-2a-l) (610),

2a*(a+T) {af^%T-

N 2
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, , (a8 + l ) ( a 8 -3 )
where 4/>3 = — *—•—^ '-

a

(615),

(616),

1(617),

4 (»-Q(«-^) = tf- ( ^ - 1 ) ( » 4 - ^ - D ^ + feLzli: g; (618).
a A

Better therefore take

i - = «' (619)

as variable; and then

A' I a*— I i

The condition p = 0 thus gives

0 (622),

leading to the sextic equation

15afl + 3Oa5 + 15a* + l2a5 + 9 a 2 - 2 a - 7 = 0 (623),

which, according to Mr. Dewar, has two real roots

+ 0-551764 and -155711472 (624),

but this does not at present look promising enough to make it worth
while to investigate the corresponding catenary.
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51. Clebsch extends his investigations to the case where the
spherical surface is made to spin about the vertical axis with con-
stant angular velocity n; and now, changing to the absolute unit
of force in the C.Gr.S. system, the tension

T = wg ( A - 2 ) + O T J (bs-r2) (625),

together with 2V ̂  = IT (626).
as

Equation (6) now becomes perfectly intractable, and of hyper-
elliptic character, when gravity and centrifugal whirling are both
taken into account; but when gravity is neglected in comparison
with the whirling effect, by putting g = 0, equation (6) becomes

J

or, putting if = ton-A (628),

and taking r2 for independent variable,

AW
j

(629),

an elliptic integral of the third kind.

(ty H
so that the arc

c _

introducing elliptic integrals of the second kind.

r>2. Clebsch (Crelle, 57, p. 106) puts

R = (b2_r2)2r2_^2 = (,.!_p2)(,.2

where 262 = p2 + a2 + r2 • (633),

6* V V p V (634),

(635);
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and therefore (p2+<ry+r2)2-4 (<rV+ry+p2«r2) = 0 (636),

or ( p + ( 7 + r ) ( p _ o . _ r ) ( _ p + ( r _ r ) ( _ p _ ( r + r ) = : 0 (637),

so that, taking p = CT+T (638),

and therefore 62 = a2+err + r2 (639),

E = ra-(<r + r)2.r2-(T2.r2-r2 (640),

T = ra2 (a2 + ar+Tt-r) (641),

and the integral is reduced to the standard form (29) by putting

(642),

(643),

But we shall find that these integrals are essentially the same as
those required for the catenary assumed by a chain wrapped on a
vertical paraboloid, whether spinning about its axis, or at rest; the
investigation of this new problem had better be reserved for another
paper.

\ Additional Note, 7th May, 1896.

The algebraical case of the Spherical Catenary for fi = 7, indicated
in (408), p. 159, has now been completed by Mr. Dewar, and the
figure obtained is similar to that on p. 170, but having heptagonal
instead of pentagonal symmetry.

The numerical data, exhibited in a tabular form, similar to that
on p. 169, are given in the table on next page.

The disentanglement of the roots z0, hu lu \ , .., near the North
Pole is facilitated by drawing the osculating plane of the catenary at
its highest point, and calculating by spherical trigonometry the
points where the osculating small circle cuts the. prime meridians ;
these points will be indistinguishable from points on the catenary
for some considerable distance.
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2

*0

* 1

h

h

h

0

h

*.

s,

Bin A

-0-9970939

9969428

9964255

9952666

9926029

9850008

9479943

3250447

o-
+ 0*6789442

6832409

8414974

8915966

9110921

9164583

1-5496647

A.

85°37-85 N.

31-12

9-24

84 25-35

83 1-60

80 3-83

71 26-44

18 58-13

0

42 45-67 S.

43 5-84

57 15-91

63 4-47

65 39-40

66 24-82

*

0

9 0°
. . 7

180
7

270
7

450
~ 7 ~
5 4O
~7~
90°

92° 20'-30

720°
7

810
7 •

9 0 0
7

9 9 0
7

1 0 8 0
7

The angular radius 0 of the osculating small circle at any point,
or p = sin 6, the radius of absolute curvature, is given by the
simple expressions

(h-zy

or A

this follows from equations (16)-(22), for

<L(h-z) ^ = -K(JI-2Z),
as as
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so that

ff \ Cb Z OiZ UZ t-t n \

Squaring and adding,

' ds t

^ih-zy + l-z*-^,

or, from (11),

Z

Knowing the angular radius $ of the osculating small circle, and
also 0, the angle at which the catenary crosses a parallel of latitude,
from § 3, it is possible, to employ Mr. C. V. Boys's method of drawing
the curve by means of a celluloid scale, bent to the radius of the
sphere, and pivoted instantaneously at the centre of the osculating
small circle.

The angles 0 and <f> are connected with X, the latitude, by the
relations

or sec <p sec X =

A

. .^ cos'X (h—sin A.)1 •,tan'f = ^ *- _ 1 ,

h—sin\

tan 6 = (h — sin X) secX sec0

= A sec'X sec2^>.
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Suppose we put, in § 8,

msa
2 '

(1— 2m) a
(a—TO)2' a—tn

we now find that a root of equation (31) is

_ ntV
(a—my

so that, in § 24,

(4a-l){2ag-2(m-H)a
~ 2a (a-m)

fe8 _2a9~2(m-f-l)a + l
fe8 2a (a-m)

A. — m .]

Thursday, January 9th, 1896.

Major MACMAHON, R.A., F.R.S., President, in the Chair.

Miss Grace Chisholm, Ph.D. Gftttingen, and Dr. Robert Bryant,,
were elected members.

Prof. Elliott, by a method used in connexion with seminvariants,.
showed how to obtain a criterion as to whether or not a rationa
integral homogeneous function of y, a function of x, and its deriva-
tives, is an exact differential, and further showed that, if it is, its
integral can be found by differential operations only.

The President announced the title of a paper by Prof. Lloyd
Tanner, viz., " On a certain Ternary Cubic." The paper, in the*
absence of the author, was taken as read.

Mr. S. H. Burbury made a further communication " On Boltz-
mann's Minimum Function."

Mr. Love communicated " Some Examples illustrating Lord
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Rayleigh's Theory of the Stability or Instability of certain Fluid
Motions."

Messrs. Cunningham and Larmor spoke on the subject of the
papers.

The following presents to the Library were received:—

"Beiblatter zu den Annalen der Phyeik und Chemie," Bd. xix., St. 11;
Leipzig, 1895.

" Nautical Almanac for the Year 1899," 8vo ; London, 1896.
11 Bulletin des Sciences Mathcmatiques," Tome xix., Nov. et Dec. 1895 :

Paris.
" Bulletin of the American Mathematical Society," 2nd Series, Vol. n., No. 3 ;

New York, 1895.
" Memorias y Revista de la Sociedad Cientifica Mexico," Tomo vin. (1894-5),

Nos. 1-2, 3-4 ; Mexico.
" Nachrichten von der Kiinigl. Gesellschaft der Wiflsenschaften zu Gottingen,"

Geschaftliche Mittheilungen, 1895, Heft 2 ; Mathematisch-Physikalische Klasse,
1895, Heft 3, 1895.

"Rendiconto dell' Accademia delle Scienze Fisiche e Matematiche," Serie 3,
Vol. i., Fasc. 11 ; Napoli, November, 1895.

" Memoires de la Socicte des Sciences Physiques et Naturelles de Bordeaux,"
4e Serie, Tome v. ; Paris, 1895.

Rayet, G.—"Observations Pluviometriques et Thennometriques faites dans la
Gironde de Juin 1893 a Mai 1894," 8vo ; Bordeaux, 1894.

Peter, B.—" Beobachtungen am Sechsziilligen Repsoldfichen Heliometer der
Leipziger Sternwarte," roy. 8vo; Leipzig, 1895.

His, "W.—"Anatomische Forschungen iiber Johann S. Bach's Gebeine und
Antlitz," roy. 8vo; Leipzig, 1895.

"Atti della Reale Accademia dei Lincei—Rendiconti," Sem. 2, Vol. rv., Fasc.
10, 11 ; Roma, 1895.

" Educational Times," January, 1896.
" Indian Engineering," Vol. xvin., Nos. 2.1, 22.


