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The properties of the Spherical Catenary, the curve assumed by a
chain wrapped on a globe or resting in a spherical bowl, have
been investigated by

Minding, Orelle, 11 and 12;

Gudermann, Crelle, 33, “ De curvis catenariis sphericis disser-
tatio” ; .

Biermann, “ Problemata queedam mechanica functionum ellipti-
carum ope soluta.” Dissertatio inauguralis, 1865 ;

Clebsch, Crelle, 57, *“ Ueber die Gleichgewicht eines biegsamen
Fadens ”;

Fischer, “ Die Kettenlinie auf der Kiigel,” Brill's Catalogue of
Mathematical Models, No. 156 ;

Max Schlegel, Jahvesbericht der K. Wilkelms Gymnasium in
Berlin, 1884

Appell, Bulletin de la Société Mathématique de France, 1., 1884,
Traité de mécanique rationnelle, 1., p. 202.;

Routh, Analytical Statics, 1891 ;

Venske, “ Behandlung einiger Aufgaben der Variationsrechnung.”
Inaugural-Dissertation, Gottingen, 1891.

Marcolongo, Rendiconti della R. Accademia della Scienze Fisiche
e Matematiche, Napoli, 1892.

The object of the present paper is to introduce a special form of
the elliptic integral of the third kind, required in the solution of this
problem, and to discuss the particular cases which arise when this
integral becomes psendo-elliptic, in consequence of the parameter
being made equal to an aliquot part of the periods.

In this manner the only elliptic transcendent which remains in the
solution is the elliptic integral of the first kind; and, when by a
special numerical choice of the constants this term can be made to
disappear, the spherical catenary becomes a closed algebraical curve.
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1. Suppose the chain is wrapped upon a terrestrial globe, suspended
from its North Pole; then the general equation connecting y, the

longitude, with 2, the sine of the latitude (south), can be expressed
by the integral

_ Adz
y= j‘ A=) V7 ),
where Z = (1) (h—z)'— A @),

and 4, & are the arbitrary constants of the problem.,

For, if 1" denotes the tension of the chain, in gravitation measure,
w its weight per unit length,

T=w(h—z2) . (3

where % denotes the depth below the centre of the sphere of the
dircctriz plane (Routh, Analytical Statics, 1., p. 357), the tension at
any point being equal to the weight of the length of the chain which
will reach the directrix plane hanging vertically downwards.

Again, the moment of the tension round the vertical diameter
being constant,

/K '35 is constant = w4, suppose 4),
where s denotes the length of the chain measured from a fixed point,
and r denotes the distance from the vertical diameter ; so that

rP+2=1 (),

if the radius of the sphere is taken as unity.

Taking equation (4), which holds for any system of forces which
have no moment about the axis Oz, it may be transformed into

T _ ds =1+ dr'+ds _ 1+(d1"+1) dz*

wrAE T FdPE Pdy d Py’
dr?
dy _ \dz +1) 4 |
or g = —— (6),
dz? 7
where Z = % —4° ™,

equations suitable for any surface of revolution.
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In the special case of the sphere given by equation (5),
d? 1
Hl=—; ®,

so that, in conjunction with the value of T in a field of gravity given
by (3), equations (6) and (7) become

dxb’ A?
d? ‘Z =)z
where Z = (1=2)(h—2)* -4},
as in (1) and (2).
dr ,
——+1)4
2. Also de _ de db _ Tr \/(‘l‘* )

dz  dy dz  wA rvZ

- ®),
reducing for the spherical catenary to

ds _ h—2z

Y (10),

s=Ih———-zdz (11).

3. If ¢ denotes the angle at which the curve crosses a parallel of
latitude, on any surface of revolution,

cos ¢ = T:ZZ:’ Q;,‘: (12),
so that, from (7), sin¢ = “’l‘g Z (13),
tan ¢ = *’TZ (14).

The angle ¢ is thus a maximum when dZ/dz =0; this leads in
the spherical catenary from equation (2) to

z2=h, or 2°—hz—1=0 (15).
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4. Denoting by R the pressure per unit length on the outer surface
of the sphere, the equations of equilibrium of the chain may be written

ad(,de

d—s(T £)+Rz =0 (16),
4 Qﬂ) =

ds(Tds +Ry =0 )
d(mdz '

L(r&)+retw=0 (18),

where 2+ 4 + 7 =1 (19),

L . .

zds+yds +zds 0 (20),
de  dy,  d%__ _

”@ﬂ’ds’ +zd—s;_ 1 (21),
so that, multiplying (16) by z, (17) by y, and (18) by 2, and adding,
—T+4+RB+4wz =0,
or BR=T~wz=w(h-22) (22).

The pressure B thus changes sign at a depth below the centre
greater than 3k ; the chain must then be supposed to rest on the
interior of the sphere, if it cannot be made to adhere to the exterior
surface.

5. Clebsch has shown, in Crelle 57, how the quartic Z in (2) can be
exhibited as the product of two quadratic or four linear factors, of
the form
7 = — (28 + 2kz sin® e + k* sin? e— cos? €) (z'— 2kz cos® e + &? cos® e —sin’ €)

(23),
= — {z+ksin*etcosev/(1—Ksin’e) }

X {z—k cos® esin ev/(1—K'cos’e) }  (24),
the arbitrary constants & and 4 being replaced by % and e, such that

h=kcos2¢ (25),
A=4(1—-Fk)sin2e (26),
A'—1* = (cos® e—&? sin’ e) (sin® e—%* cos® ¢) (27,

and thence the solution of the problem can be given by means of the
Jacobian elliptic functions, the integral in equation (1) being com-
posed of two elliptic integrals of the third kind.
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By making
ksine=1, or kcose=1 (28),
two of the roots of the quartic Z become equal, and the elliptic
integrals degemerate into circular integrals; in this manner the
model No. 156 in the mathematical collection of Brill, of Darmstadt,
constructed by Herr Fischer, has been designed.

6. But it is the object of the present paper to bring out the con-
nexion between the integral (1) and the ;standard form of the elliptic
integral of the third kind, employed in my paper on * Pseudo-Elliptic
Integrals,” Proc. Lond. Math. Soc., Vol." xxv., expressed by the
notation, slightly altered by the omission of p,

1) = [ Llz=R) g, @),

where M2 (s—0) = pu—pv (30),
and M= 8 = 4ds (s+a)—{(1+y) s +ay}® (31),
M09 = 3 = do (0 +2)'— {(1 +y) o +ay}* (32),

« and y being the quantities employed by Halphen (F.E., 1., p. 102).

It is our object also to utilize the pseudo-elliptic integrals for the
construction of degenerate, algebraical, cases of the spherical catenary.

Putting y—pu =x (33),
where p is constant, and

w= |2 (34)

vz ’

the associated elliptic integral of the first kind, so that

_(A=p(—2)
x= [ 4GP 35),

then it will be shown in the sequel (§ 8) that the integrals (1) and
(35) can be made to depend upon the integral (29) by putting

A=M(y+1) (365,
. = —y+l
where w=—tk 37,
and AR =2+1 (38),

" =_(y_';r;1)_'_2y_1 (39).
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Wo then find that

p=3(Mp+4) =3M (p+y+1) (40),

and c=0 (41),

so that, when the integral (29) is pseudo-elliptic and the parameter
v is an aliquot part, one u*, of a period, we may put

v = 42),
P (42)
2w,
the parameter v= . (43)
corresponding to c=—=z (44).
7. Writing equation (1) in the form
¥ == (45),
where = lAj dz (46)
VT ) (I VE ’
1 dz
4’8— QA]’ (—l—z) vZ (47)1

shows that ¢ is given by the difference of two elliptic integrals of the
third kind, with Jacobian parameters v, and v,, such that

w=wv, when z= +1;
u=wv, when z-=-1;

and Legendre’s theorem for the addition of these integrals shows that
¢ can be made to depend upon an elliptic integral of the third kind

with parameter
v =y, —, (48)

The parameters v, and v, and therefore also v, are each of the
form fu,, fractions of the imaginary period wg; because the real roots
of Z must lie between 4-1; and

z= 41 makes Z = — 4%

It will also be found that

2 =h corresponds to u =3} (v, +v,).
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8. Comparing the general quartic

4 = az*+4b3* + 60 +ddz+e (49)
and its invariants

g, = ae—4bd + 8 -(50),

¢s = ace+2bed—ad®—eb®—¢* (51),

with our quartic Z, as given in equation (2),
a=—=1,b=3%h c=31Q—-1), d=—3h e =H-4° (52),
and we thus find
129, = (1-r%)*+124° (53),
216g; = —(1—£*)*—18 (1 —#%) A*+ 54 4° (54),
17284 =  (12g,)°—(216g,)°
= 1084° {(1—7%)°— (84201 — h*) A>+164*} (55).

Next taking the cubic S of equation (31), and reducing it to the
form in which the coefficient of # is zero,

48— yyt—, (56),
by putting s =t—; {8z—(y+1)*} (57,
12y, = {(y+ 1)2+4\1;}84-2‘11 (y+1) (58),

216y, = {(y+1)*+40}* =362 (y+1) {(y+1)"+4a} +2162 (59),
We can now make g, = M'y,, g3 = Mb;;
and therefore, from (34},

=| 4 _1[ds

““j«z_MIvs (60),

“on comparison of (53) and (58), (54) and (59), by taking
1232 = — 2 {(y +1) +40} (61),
A= 2% (y+1) ©62),
A = 41 (63),
provided that =ttt @BN;

3
and therefore A=~ QL;—IL = M (y+1)? (36),
1-1 = WD 4o 41 (6%),
£

A= =2y +1 (38).

VOU. XXVIL.—NO. 543. K
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9. Next, let u,, u; denote the values of w corresponding to values
%, 7y of z; then, according to Weierstrass’s important formula, first
published in Biermann’s thesis * Problemats quedam mechanica
functionum ellipticarum ope soluta,” 1865,

p () = Tl T L0 0, (65),

where F (2, 2,) = (az;+2bz,+¢) 2,+2 (bz: +2¢2,+ d) 7, + ¢z, + 2dz, +
= (az;+2bz,+¢) 23+ 2 (b} + 22, + &) 7,4 ¢z, +2dz, +e

(66).
Therefore, putting z, = 1, 2, = — 1 in our special form of Z,
F(l, =1)=a—2¢c+e
=—4(1=K) -4 (67),
VI =%, = di (68),
and p(v—v) = 1 (l—hss)_ds_ﬁs
=—3 -1} (69),
p (ntv) =—1(1-4Y) (70).
We also find  ip’ (v,—v,) = 34 (4'—A'-1) (71),
W@ (v +v,) = 34k (72).

It is convenient to denote v,—v, by v, and v,+v, ‘by w; and now
equations (36), (61), and (69) show that

12pv 1-p' A}

i =2 5 i
= 2 (y+1)'+82—3 (y+1)*
=8z—(y+1)* (73).

But equation (57) shows that the relation between s, ¢, and pu is
=t =st3 {8 (y+1)’} (74),
go that, as o denotes in (29) the value of s corresponding to

U=V =V, =0,

therefore o=0 (41),
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Thus, if the integral in (29) is a pseudo-elliptic integral, we may put

v =2 (42),
I
Algo, since 8 = — z- then corresponds to v = }v (Proc. Lond. Math.
Soc., Vol. xxv., p. 205), therefore

v =7 (-1 (75),
pio=14 (76).
From (69) and (70),
pr—pv = 14° (18),
pw+pv = —} (1—h)—14* (79).

10. If a factor z—b of Z is known, then
4= (1=t (h—0) (80),

and a well known formula of elliptic functions gives
w= {3Q=m)+b(h—b)} 2+§ (1—A") b—h+26h—¥°

P 5 =3 (81).
Then 2 =% makes
pu=—15 G+#—-60"), p2u=—3(1-H) (82),
80 that v = 3w =} (v,+v,) corresponds to z=1 (83),
u = {v = } (v;—~v,;) corresponds to z =h—b+ -—15- (84).
Baut, if ¢, the value of « which makes z = w0, is given, when
po =15 (1=4) +3b (h-D) (85),
the quartic Z can be resolved into four linear factors, in the form
—y = —®C_
i St (86),
ey = W pu—g _
S Sl (87,
= W pu—e
A Pt po—e, (88),
gmgy = PO PU—G (89),
pu—pc pc—e,

sp’c being real, because ¢ is a fraction of the imaginary period w,.
K2
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Then VZ= % =— —————(;g;’ii):),
=i (u+c)—ip (u—c) (90),
and integrating,
2—3h = —i¢ (utc) +4¢ (u—c) +1L2 CION
(= 30) = —p (u+)—p (u—c)—p2 92).

Writing « for z—4h, and X for the corresponding value of z, then
6p2c and 4¢p"2¢ are the coefficients of 2! and z, so that

P 2=—3 2+ (93),
W= 1k (94).

Thus ¢ = 3w, if 2 = 0; and then w = }w;, or w,+3w,, as well ; this
is what Biermann calls the pamboh'c case of the spherical catenary.

Also 92 = 3 (1+24") —14 (95),
3—4h344n8 1+2h2
po =— 3=y QA2 o L (96),

and ¢ is the parameter required in the rectification of the catenary.

11. The values », and .'v, of » make z assume the values 41 and
+/Z the value 47 ; therefore, from (90),

— _popn . _plepln
4= n—py ~ o—poy S

and l—z=— 160 C(S’-’u—ﬁovl) 98 ,
(pv,—pc)(pu—pc) ©%)
—l—z= 259 c (P“"S"’”z) 99).
(pv;—pc)(pu—pc) ©9)
Wt _ 304 _ —3p'n (pu—gpo)
Therefore 18— 242 T Hh WY Teo) |
du  1—z  (pyv—po)(pu—pv)
=2fn | —ip'y
pu—pc  pu—pv,
~ 3¢ ('Ul'—c) -3 (v, +0) + v,
— 3 (u—v) + 3 (u+v)— o, (100),

and integrating,

.¢li=—-§{Z(v,‘—c)+Z(v,+c)}u+&logs%:%% (101).
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Similarly,
Yt = =3 {L(05=0) + L (g4 ) Jut 3 log ZL2F %) E“jzsg (102);
and therefore
—_1 1 o (u+) o(u—vy)
Vi == Rut} log Tt e (103),
where R ={(n,—0)+{(vn+c)—{(v,—0)—{ (v;+0) (104).
12. But the formula
1, pu, p'u 1, pu, pu
2 (utv) ”('f‘fij{z) 2(v,+,) =11, po, plo |+ |1, pv, pu

o(u+v,4v,) cuov,ov,

1, poy, P'v 1, poy, v
= { (u+v,+vy) —Lu—Lv,— {v, (105)
shows that, changing v, into —w;, and writing v for v,—uv,

3o o(u+v,) o (u+v,) — MQ (106),

vy o(a—v)  * Ea(u—)

where Q is a rational algebraical function of pu and p'v, and there-
fore also of z and +/Z, of the form

_O+Bip'u
T 0—Bigu aon,
so that LlogQ =7 tan™? —‘g— P'u (108).

Equation (29), expressed by elliptic functions of » and v, gives

M3 (s—0) = pu—pv (109)
I(v) = dpMu—sulv+3i log TV (110),
a(u—v)
8o that, with V= U=y,
oi(&v) = —ulv+ipMiu—:iI (v) 111),
[ u—'l)

and thus ¢ = — (i fo—23 Ri—3pM) n—I (v) + tan™ %p’u (112).
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13. Now
i—iBi= ¥ {{ ()~ (—0)~L (n—0)}
+4 {¢ (=) =L (1 +0) = (0, +0)}
= 1/ -p (=w—p (=) —p (4—0)}
+3v{—p (—v)—p (n+0)—p (n+0)} (113).
But, taking s = £ 1, 7, = », in equation (65),
—1+h+i(1—h)+ 4

p(ryxc)= 5 (114),
P (nte)= —l_h+%§1_h’)*‘1 (115) ;
and therefore
—p (n—v) —p (u—0)—p (n—c) = 1+ 4+}4
= (1+34) (116),
= (n—v) =@ (n+0)—p (v +o) = 1-4+34'
= (1-34) (117),
and taking the square roots of opposife signs, equation (113) gives
ito—3Ri=—34 18),
8o that
| V=1 (4+pM) u—I(v)+tan“% Pu 119),
or, ag stated at the outset,
¢ =putx (33),
where p =1 (4+oM) (40),
and then
x = —I(v)+tan™ %p’u (120).

One great difficulty in these calculations is the determination of
the proper sign to employ when a square root is -taken, or with an
imaginary quantity ; in most cases this can be settled only by a
verification, or by an appeal to a special case.
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14. When I(v) is pseudo-elliptic, then ux is an angle such that
sin ux and cos ux are algebraical functions of z and +Z; and now,
putting

P=pp=1iu(4d+Mp) (121),
Q = g = tu (A—Mp) (122),
so that P+Q=p4d (123),
then px = pp—Pu (124),

and the equation of the catenary can be written in either of the forms
rcospx = Hr+H,#'+...+H, (125),
reinpx = (L *+ Liz*+ ...+ L, )) V2 (126),
where r+2=1 (%),
both leading to the differential elation, equivalent to (1),

dx _ _PF+Q
b= - vz azn,

or p(l—2) V2 ‘% =Pi+Q (128).

15. Squaring and adding (125) and (126), and equating coefficients,
leads to )
B-I = (-1)

(XY} ooe XY .o ess eve y

B—(2y+1) I, =1 (129),

and to other relations, theoretically sufficient, in conjunction with
the differentiations of (125) and (126), leading to (128), to determine
the other coefficients H and L in terms of P, Q, A, h, and p; all
functions of a single parameter, when once the pseudo-elliptic form
of integral (29) for an assigned order p has been introduced.

But for values of u above .6 the complication of this method
became so formidable that it was absolutely necessary to seek for
some other method of determining the leading coefficients H and L ;
this was effected by a consideration of the form assumed when
z = 0, in a manner to be explained in the dequel (§ 30).
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16. Consider first the simplest case of
p=3.

Then z =0, and we must take y = —1 to keep M finite (Proc.
Lond. Math. Soc., Vol. xxv., p. 210).

As the general expression in (29) then assumes an indeterminate
form, start ab initio with

v = 4w, v (130),
and 3I(v) = -}jl _:;83 © ds
= cos-*sé*s'—; = gin™" iz/;‘f- @asy),
where 8 = 48— (s+¢)? (132).
Then, as in (58) and (59),
12y, = 1+24¢ (133),
216y, = 1+ 36¢+°16¢* (134),
8o that we must take, as in (61), (62), (63),
1-1 = — M (135),
A = —-2M*% (136),
A= 4M%° (137),
and therefore M7= A'=— 2%; (138),
1—AW = —A4% or MW=A+1 (139),
and 7 = — 2+ 2k + (1—18) 7 —2hz+1 (140).
Equation (131), on comparison with (29), shows that we must
take Sp=-1;
and thus
P=3(A+Mp)=4 (141),
Q=14 (4—Mp) =24 (142),

and we have now to determine the values of the coefficients H and L
which will make the equations

(1 -2t cos 3y = H*+ H,2*+ Hyz + H, (143),
Q=2)tsin 3y = (Lz+ L) V2 (144),
consistent, and make them both lead to the differential relation

31— =)uz%= A (F#+2) (145).
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17. Differentiating (143) logarithmically,

-3z dy __3HZ+2H,2+H,
g e = Ea Bt Har B

3 Lot I, spdx_ 8 _ SHA+2Hs+H,

or

Hf+HA+Hyz+H, ~dz 2—1 HZ+Hz7+Hz+H,’
or 3(Lz+L)1-)VZ %
= —3z(HA+ H,2*+ Hyz + Hy) + (8Hz* +2H, 2+ Hy) (7 —1)
= —H,/—(3H+2H,) *~(2H,+3H,) z— H, (146),
and this must
= (Lz+ L) 4 (2*+2) (147) ;
and therefore, equating coefficients
0— H = AL (148),
—3H —2H,= AL, (149),
—2H,—3H, = 24L (150),
— H;— 0 =24L, (151).

Differentiating (144) logarithmically, we find in a similar manner
3 (HA+H, @+ Hyo+ H)(1—2) V2 %,
or 3 (HA+H,”+Hy;s+ H,) 4 (#+2)
=3 (Le+ L) Z-L = 1) I—(La+ L)P=1) $ 22

= (2LA+3Lz+ L) {— A+2h+(1—1%) F—2ha+1}

—(Lz+ L) (#—1){ —27+ 8k’ + 1 —1") z —h} (152),

and therefore, equating coefficients,
34H = hL—L, (153),
64H, = L—iIL, (154).

From these equations we find
H=A4, H =—A4h H;=-24, H;=0,
L=k L=1; (155) ;
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so that the equation of the catenary may be written
A=) e* = A (P —hs*~22) +7 (ha+1) V' 2 (156),
with 3x =3¢y—4u, and h = V(A*+1),

and now squaring and adding equations (143) and (144) will lead to
a verification, when the conditions obtained above are satisfied.

Equation (139) gives, in conjunction with Clebsch’s notation of

(25), (26), (27),
cos 2e = ¥ K= 2%+ 5) sin%e =2 Y kﬁ_l),
B+l P+1

_ B—2K 45K
N CES Y
g_(ka—l)a
T @+
P41+ J/(H—2K+5 B-14+ V(-2 +5
_a B +k§+1 +5) , _K-1+ (2 +)}

s Bl /(P20 45), | Bel— /(K2 +5)
o+ I ha+ 2 }

’

hl

=

p=4
18. Here'y = 0, and v = u,;
but, from (38), A =41 157),
Z = —2*4+2h2 4+ (1—1°) 2 —2hz—1
= — (@ —hs—1f—2 (158),

so that +/Z is imaginary, and the catenary also.

p=95.

19. Here we must put
zT=y=—c¢,

suppose (Proc. Lond. Math. Soc., Vol. xxv., p. 213) ; and now

=g 10 an,

A3 = (1;0")” (160),
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1= 4'=2y—1
= Qz:c_)_” 1142
C

—1=5c+ 7c}—c*
2c
Now, with v = %,

we may write (29) in the form

BI(v) = %jgl+3c) s—5c’ds

sv8
—_— -1 (s—-c’) ‘\/S
= BT T80 7= (2004 &) s 4
where 8 =4s(s—c)'—{(—c) s+'}
5 =1+3¢
so that P=23%(A+Mp) =M (3—c)

=& (4—Mp) =2M (1-2¢)
P+Q= 5M(l—c) =54
The equation of the catenary is now of either of the forms
QA—2*) cos 5x = HZ? +.le‘+ HZ+H,+Hs+H,
QA=-P)sin by = (L2 + L2+ Lya+ L) V2
leading to the relation
5(1—2) JZ% =PF+Q

also IP—-H'=1

139

(161).

(162),

(163),
(164),
(165),
(166),
(167).

(168),
(169),

(170),

(171).

20. A straightforward verification of (170) by logarithmic dif-
ferentiation of (168) and (169) leads to the following values of the

coefficients
H - 2'— 56 + C’ M'
c

g, = 8=9C=0

Q72),

(173),
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H = 3~15¢420c'— 4c’M

= (174),

H,=- 1—"9;"—;*4“’11111 (175),
=—2=20y (176),
H=—2m a7),
L =— 2%? 3 (178),
I, =— %-_65___;*30’ (179),
I, = I—'Z_‘ﬁh (180),
I, =1=% Qs

The verification is rather long, but the work is given herewith, as
a type of the calculations required.

Differentiating (168) logarithmically,

-5z dx . SHA+4H 2+ ...
= —Stan 5X = HAv B+ ... (182),
. dx L2+ L2 +.
that is, 5 tan 5x @ or 5H_z7+-H—z—-+__ vz
_ =5z _SHX+4H S+ ... (183)
’

T 1-72 H+Hi'+...
5(Lz'+L,z=+...)(1—z=)¢z‘-f-i§ or (LA+LA+..)(PA+Q)

= =58z (H+H2*+ ... )+ (F—1)(6HA+4H,2+...) (184);
and therefore, equating coefficients of 2, 2 ...,
0+PL= 0 — H, (185),
0+4PL, = -5H —2H, (186),
QL +PL, = —4H,—3H; (187),
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QL,+PL, = — 3H,—4H, (188),
QL+ 0 =—2H,-5H, (189),
QL+ 0 =— H,— 0 (190).

Differentiating (169) logarithmically,

—5z _ dy _ 3LA+2Lz+L, | —2243h+(1—h)z—h
=7 X G T Ty Lot Lot T, T Z
(191),
s He+Hz+... 1 dx_ 52 +3Lz’+...+-2z’+3hz’+...
LA+ L2 +... ~¥Z dz~ 1—2  Li+... Z
(192),

5(Hz°+H,z‘+...)(1—z’).\/Zg—zx or (HA+H,A+..)(PA+Q)

= {514+ 5L, +5L,2+ 5Lz — (" —1) 3L+ 2L,z + L)} Z
— (A1) (LA + L2+ Lz + T ) { =27+ 31+ (1—F) z—h} (193),

and equating coefficients,

0 +PH =hL—1I, (194),
0 + PH, = — (4+1*) L+3hL,—2L, (195),

QH +PH, = 6hL—2 (1 +4%) L+ 5hL,—3L, (196),
QEAPH, = . o e o (197),
QH,A+PH, = o o e e e (198),
QH4+PH, = .o oo e e e (199),
QH+ 0 =—2(4—h)L,—3hLy— (54— 42 —1) L, (200),
QH,+ 0 = —(4'—)IL,—hL, (201).
Put %:az (202),

so that, when z is found, the values of H and L can be inferred from
amny,

X
L 1 (204).

~ V(A=)
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21. Then, from (185), —-= —P (205),
I
from (194), h=h-Po (206),
H L s
from (186), 2= —5a—PY = (P-5)a—Ph  (200),
Ly pemnbi_pE
from (195), 22 = —4—i+ 3P —PD
= —3Phz+ P+ 2K —4 (208),
gy _4H_o _pl
from (187), 3= 42 _q-p2
= $Pha—1 P +6P—Q— Pi} (209),
from (196), 3% = 6h— 2(1+h’) Ly snls —Qz—P%
= 6h—2 (1+ 1) (h— Pa)
3% (—3Pha+ PP+ 21 —4)
—Qu—1(P—5P) 2+ 3} P (210),
g, pls
from (188), 4+=-35_oh _ph
= —3 (P*—5) 2—Q (h—Pz) -p% (211),
and from (190), Zirel=0 (212),

go that —9 (P*—5) z—-6¢ (h—Pz)
+(4Q—P) [h {12—4(1+27) +5 (P + 21" —4)+ P}
—z{P—5P—4(1+r) P+15PK*} | =0 (213),
the equation to determine 2; thence

(4Q—P)(6P*+ 61 —12) —6Q
= 9(P=5)- 6PQ+(4Q—P) (P —9+11%*) P

where, from the values of M, &, P, Q, ... given in (159)—(167), with
4Q—-P=5(1-3c) M (215),
we find, after reduction and cancelling a common factor,

5 —14c+6¢%

ho(2l4),
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of the numerator and denominator,

_2-8¢c+ M _
=T % (216),
so that, from (203) and (204),
H= g.—_ic_'tﬁ’M (172),
r=2=% a78),

(4

and thence the values of H,, H,, Hy, H, Hy, L, L;, L, are readily
inferred from equa.tions' (185)—(201).

Putting z =<1 in (184), we obtain
( L+L+ L+ L)(P+Q) = —5( H+H+..+H) (179),
(—L+L—L+L)(P+Q) = 5(—H+H,—..+H) (180),
go that, in conjunction with (167),
A(L+L)4 T+H+H =0 (181),
A(L +L)+H +H,+H,=0 (182),

useful as verifications; and the same can be obtained by putting
g=1 in (193).

u =6,

22. The equation of the catenary can be reduced to the same form
a8 for p = 3, namely, combining (143) and (144),

(A=At = HA+ H 2+ Hyz+ Hy+4 (Le+ L) /Z  (217).
Referring to the Proc. Lond. Math. Soc., Vol. xxv., p. 2186,

Ye=0 (218),
or y—a—y' =0 (219),
is satisfied by taking
y=—¢ z=-—c—c (220),
P 1—c¢
and then M =S dto) (221),
i (1 —023
=540 (222),
p={1=3901 —2c—c") (223).

2¢ (1+0)
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The pseundo-elliptic form of (29) can now be written, with

v = 2w (224),

—_ 1| Q+30)s—3c (1+¢)

3I(v) =1 ! 78 - ds
= cos-! (1+3¢)s—c(14+¢)
Qs
= gin-1 V8

= sin -2-3*- (225),
and thus 3p=1+3c (226),
P=3(4+Mp)=2M (227),
=3(4-Mp) = (1-3c) M (228),
P+Q=34 (229),

and the differential relation to be satisfied by (217) is

3 (l—z”)J"Z—: =PA+Q (230).

23, Differentiating (217) logarithmically and equating coefficients,
as in the case of p = 3, the resulting equations are

0 — H,=PL (231),
- 8H —2H, = PL, (232),
—2H,—3H, = QL (233),
—- H- 0 =QI (234),

PH =1L-I, (235),

PH,=.. .. - (236),
QH +PH,= ... .. (237),
QH,+PH,= ... .. (238),
QH+ 0 =.. .. (239),
QH,+ 0 =.. .. (240).

From (231) and (233), eliminating H,,
3H,= (2P—-Q) L,
or Hy= (1+¢) ML (241).
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From (232) and (234), eliminating H,,

= (2Q—-P) Ly,
or H=—2cML, (242).
Substituting in (235),
rL PH
—= =1 =1-
I, + = I, 2cPM
_ 3 — 1—c - 1— 36 .
=1—dcM*=1— 21+c— Tre (243) ;
and therefore F_ —2qM1,—-" =2 1 10
L —3c
g, Lo J{(l—c)(l 30)(1-2—c")}
1—-3¢ 2c (1+¢)
_ ( —¢)(1—2¢—¢%)
- \/{ 13 } (240).
Also, by squaring and adding (143) and (144),
p-m=1 (245),
and thence
Hi= " — _ (1=0)(1—=2—0") = A—=0)(1—=2c—¢")
L*—H' 1-3c—(1—c)(1—-2¢—c") —c'(1+c)
1 (1=c)(1=2—¢
S{EETED) 40,
=21 \/ 1 3c (247),
2 (l—c)(l 3c)
H=—-PL=—-2ML=-— 248), .
PL=—2M (1+c)\/{ (248),
—_H __ 1 l 2c—c
L= 2011[ - —2c (249),
— _ o1 =13 _f (l—c)(l-—2c—c’) o=
B=-qr, =173, [{ (=9C-2e=d)) (250),
_ _1 [[QA=c)(1—30) .
Hy=(1+o) ML =" \/{ Umallodn (251).
The verifications obtained by puttiﬁg z= =1 in (146) are
AL+ H, +H;=0 (252),
AL+H +H,=0 (253),

and these are found to be satistied.



146 Mr. A. G. Greenhill on the [May 9,

24. When p is even, the cubic S can be resolved into. factors ; and

therefore Z also can be factorized.
Proceeding in Clebsch’s manner (Crelle, 57, p. 105), and writing

k for Clebsch’s p, we put

om(pem ) (e £ 22

= — 2+ 202+ (1—1*) 2*—2hz

- (5B () o

and this is the case provided that

P12 (k1

A = (

or (B =1)} (I3 =18)— 44 = 0 (255),

a cubic equation for #'; and Z then breaks up into the quadratic
factors Z, and Z,, where
¥-=1_h K+1

ZI=-—ZQ+(h+k)z-——2———k— —é_ (256),

F-=1 » K1
Z, = —(h— LI -
s 2—(h—k) z+ 3 Pl (257).

Baut, putting, with Halphen's notation of z and ,

= s A = —2 %ys—l—&/ (258),
Bl ==2 (1+y)‘%fc (259),
Bk = A% — 4" = 3 {49—(1+y)'} (260),

the cubic equation (255) for 4* becomes transformed into
4s(s+z)'— {(1+y)s+2y}*=0, or §=0 (31);

and therefore the quartic Z can be resolved when we know a root,
say &, of equation (31).
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25. Clebsch’s sin 2¢ or z (which we change into ¢ to avoid con-

fusion of notation) is connected with % by the relation

h;z
cos’2¢ = 1—¢§° ='-F

(261), -

and it is connected with the s above in (258)—(260) by the relation

¢=M(—2vs+1+y) =—2Mvs+4

(262).

For Clebsch’s m is our &, and his b is our 4 ; so that his resolvent

cubic (Crelle, 57, p. 105)
(z—-20)(1—2*)—m’z2 =0

becomes (¢-24)(1-8)—hr%t =0,
or B-2484+(1-1")¢4+24 =0
and, putting E=M(—2t+1+y)

this reduces (264) to
26— (1+y) £+2at—ay =0
or, putting ¢ = /s, to
45 (s +2)—{(1+y)s+2y}' =0

26. In the case of u =6, we find that

f=y=¢
1—¢ 1-3¢
h ==1424+2"—"c'=
and then ¥ +2c4+ c+c’° gy iyt
F—-1_ 1—¢
2 T —1—c¢
Prl_ %
2 T 14¢
» =1—2c—c’I
i —2¢

and the quadratio factors Z, and Z, of Z are thus determined.

Putting 2, = (5,—2)(z—z,)

(263)

(264),
(265),

(266),

(31).

(267),

(268),

(269),

 (270),

(@7),

(272),

80 that 2 = ¢, and 2=z give parallels of latitnde between which a
branch of the catenary lies, then, as z grows from g, to z, the
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variable # may be taken to grow from Oto w,, the real period of the
elliptic functions, such that
* dz
=| — 273).
©, [zo \/Z ( )
If K denotes the corresponding quarter-period of the associated
Jacobian elliptic fanctions, then (Klein, Math. Ann., X1v., p. 118)

(124, w, = /(1 —e%*) 2K (274).

At the same time ux grows from 0 to 4=, or py from 0 to Pw,+37;
80 that, if Pw, can be made an exact multiple of 4, the catenary will
close in upon itself, and form a closed curve.

27. The simplest mode of effecting this closure is to make P vanish;
but, in the case of u =6, this requires 4 to vanish also, and the
catenary degenerates into a vertical great circle.

Calculating the invariants g; and g, of the quartic Z in this case of
p# = 6, we find, from (53) and (54),

— (1=0)* (1 +3c) (1 +9c+3¢+3)
12, = P (it oy (275),
— (1=0)* (1+6c—3¢") (1 + 126+ 30¢+ 360+ 9c*)
2169, 8F (140 (276)

8 = 4s (s—c—2)'— {(1—c) s+ +}?
= {4 — (A +c)(A+5¢) s+¢* (1 +¢)*} (s—¢)

= 4(=a)(=n)(e—a) @m),
suppose ; and, with 8 > 8 > &
22— (51—8) (55— 89) _ 162 8
T T ey T @’ (1499 (278),
.2 (A +3c)(1+9¢c+3c*+3¢%)
= = o (T4 0) 219),

and thus, from (274),

W . 4c?
= V{a=oraraases ) (280,
Pu, =2Mu, = 4K = 2K /() (281).

V{4 (149} ¢
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To construct a closed catenary we must search, by a tentative
process, for values of ¢ which will make

K/() _y 9.3 ... (282),

gmct
where ««” is given by (278).
The formula given by Klein (Math. Ann., x1v., p. 119),
' ‘ 3 3 4
e 4 2
129,(”.) 1+240(1_q,+1_q,+...)

:1+%i_'i§2 or 1+4240¢ (283),

will perhaps assist in obtaining a first approximation; or otherwise
the curve which is the graph of (282) must be plotted, preferably
with logarithmic coordinates.

28. With negative discriminant

— 3_ona_ (1=¢c)°(A+9

two of the roots of the quartic Z and also of the cubic S, are
imaginary ; and now

]
4o = (L4050 (285),

the reciprocal of the preceding value of 4" in (278) ; and
Q=3 14 6c—3¢

286
Ty (286),
146c—3c"
T=3+ 287
R Ty (287),
go that ¢ is now negative, or y = — ¢ positive.
With negative discriminant, suppose
Zy= (z—m)' 0 (288),
and Z, as before in (272); then, from (256) and (257),
2ta = htk (289),
=1, b F+1
W =g + % 32 (290),
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2m = h—k (291),

Y By 2

) % o (292),

so that, in the general case,
{Gomm)+at () +a) = =1+ (1- B) =) (299).

In the special case of u =6, from (269), (270), and (271), with
c=—y,

{(z—m)*+ 07} { (—m)*+n }—4( ) 4,11_+£l

l+y 294
=4y(=2 ) (294),
and then
" dz 2K
Po, =2M| — =2M
v J.,o 74 V{(z—m)+n’ . (z,—m) +n'}
=2K [(l—y
=2 \/(1+y) (295).

But since (1—y)(1—9y) is now negative, or 1>y>1, M? is nega-
tive, and the catenary is imaginary.

p="
29. Here the first relation to be satisfied is
¥y, =0 (296),
or (y—z)z—y*=0 297),
the equation of a unicuis&ﬂ cubic, in which we can put
z=—c(l+c)? (298),
y=—c(l+c) (299),
s _ l—c—¢
and now M= e (i) aro (300),
s _ (1—'0"'0 )3
4= wtiro (301),

A1 =1-2c—2¢ (302),
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s _1=5c+0+152+12c*+ " ~¢?

K= 2c (1+¢) (303).
The integral (29) is now (Proc. Lond. Math. Soc., Vol. xxv., p. 226),
with :

v = %u, (304),

71 (v) =1} [(3+9°+5°:) ;;70’ A+o)’
= tan! 7%0%{’%{_‘3 (305),
where 7% = 34+9c+5¢* (306),
o=~ (1+c)* (1+6c+135+5¢) (807),
1= (1+¢)* (2+60+c") (308),
p=—c'(1+0c)’ (809),
0 =—(1+0) (1+30) (310),
D=¢(1+0)" (1),
P=4(A+Mp) = (3+o—c) M (312),
Q=1(A—Mp) =2(1—4c—3") M (313),
P+Q= ;IA (314).

The equation of the catenary is now of the form
(1-MNied = Hf + H\ P+ ...+ Hy+i (LP+ L2 +...+ L) vVZ  (315),
but when it was attempted to employ the differential relation

7 (=) V7 Z—f =P +Q (316)

for the determination of the H's and L’s, in the manner illustrated
above, the complication became so formidable that another method
had to be sought for to determine the leading H and L, connccted
by the relation

I~rr=1 (317),

upon which the other coefficients depend.
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30. The clue was obtained by noticing that the value z = co makes,

in the general case, in, (125) and (126),

tanpx—éz'
T H

-1 LZ +H

T %logL

or pxt =1 tan =log (L+H)
L+H

H=e¢"
L+ N T

2pxt
.—.e»x

By means of the formnlas

o Qu+v,+vy) o (v,—1y)
o (u+v)) o® (u+vy)

p (uto)—p (utv) = —

pu—m)—pu—ov) _  oQu—v—1v) o’ (utv)c*(u+v,)
p(utv)—p@utn) o (2utnty) o (u—v)e (u—v)

equation (103) may be replaced by

= —1Ru+1l o(2u+v) 11] @ (u—v)—p (u—0v,)
b= 8 ) T B p uF ) —p (uF o)
and now, supposing that
M = p2u—pov
in equation (29), then

.1 —1 1o R (e—0)—p (v—1,)
¥i = — s Rutulv+ipMui—3il (v) +ilog S — Sy

or pxs =} log {gEZ:Z:g:Z gz:::g } ”—ém'I(v)

(318),
(319),

(320).

(321),

(322),

(323),

(324),

(325),

(326).

With the special value of z =c0 and » =c¢, suppose S becomes

0, and in (29),
pI(v) = tan™ % ~/0
F+Gv(-0)
Then

. L+H _, P(l’l—c)—ﬁ’(”s_c)}»
Xty OF %logL_H_ 4 log {ﬁ) (ﬂ‘+6)t:§o(vﬁ+c)

L F—GY(=C)
+4 198 5 E/(=0)

(327).

(328).
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g (a—c)—p (n—c) =h+4
P (n+c)—p (n+ec) =h—4

so that

Lo T \h—4

L+H=

L1 o A (F—G/(—O)
(h F+@v/(—0)

(h+A)» {F—G~(—0)}}

=2 (F+ GOy

81. If H denotes the Hessian of the general quartic in (49),

p2u=——g

~ by Hermite’s transformation ; also, from (49) and (52),
H=—{:(1—F) +1h'} a*+...

so that, taking z = and u=c¢,

92 =—3 (Q—h)—1A
and from (69),
ple—pv =1 (4'—F)

so that the corresponding value of s is given by

R
M? 242y
- X
St = ey

A+y)stay =—4z

and 0=_ﬂ" J(=0) =%

153

(329),
(330),

(331,

(382).

(333),

(334),

(835),

(336),

(337),

(338),
(339),

(340).

82. In a similar manner we may employ the special value 2 =0,

when

7 =/ (=4 = /(~1=2)

to determine the ratio of the final coefficients H, and L,_,.

(341),
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Now, from (65), denoting by e the value of « corresponding to z=0,

p(v,;{:e)=c+2d+ei‘4‘/(l+2y) (342)
2 ’
2 b
go that @ (v,—e)—p (1,—e) = —h— 4 V(1 +29) (344),
P (0,+¢)—p (03 €) = — h+ 4 /(1 +2y) (345).
Also (noting the two meanings of the letters ¢ and e)
ol S B T 1
02 = =} (1-% Ty (346),
P %e—pv = 1AT— i1 (347),

142y

~ and the value of s corresponding to z = 0 is given by

s=1 (A’ 3 )—2-'" — —2(1+2y) +y QA +y)° (348),

T 142y 14y 2(+y)(1+2)
—1,1+2y  y(1+y)’
stz=1ix Tty +2(1+2y) (349),
A+y) s+ay =—3z (1-29)+ 2 (1+2y) (850),

and, if F denotes the corresponding value of S, we shall find, after
reduction,
s+ —y Q4w

8= (1+2)° yE

(351).

Thence, as in equations (331), (332), we shall find

HAL ,vQ1+2) _ {h+A v (14+2y) } e {F-—GJ(-—E)}‘

H—~L,,/(1+2) (h—A4V/(1+20) F+GV(—E)

(352),
or, since H-LI_,(1+42) =1 (353),

{h+4v1+2) ¥ (F-GV (=B}
{R—4(1+2)}* (F'+GE)}

H+L,_,/(142) = (354).
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33. As a preliminary test of these new methods, we apply them to
the cases of p = 3 and p = 5, already worked out independently.

Thus, for instance, with ¢ = 3, we find z = 0 makes

h
s=—fn V(=0)=37 (355),
F=stz=1%z, G=1 (356) ;
and therefore F-G/(=0) _hr—4 (357),

F+Gv/(—=0)  h+4
L+H _ (h+A)a (h-—A)*

so that, in (331), - \n—4 h+A

_ht+4d

thus giving H=A4, and L=k4,
as before, in (155).
34. With u = 5, and taking equation (162),

F—Gy/(=0) _ (1430) =26+ ") s+ —(s—¢) /(=0) (359)
F+GQv/(-0) (143¢)8—(2+f)s+ct+(s—c)v/(—0) !

with o= ;—:.:‘321: , (=0 =—2 (360),
8o that, from (160) and (161),
h+A4A _ /(A =5c+7~)+(1—c)/(1—¢) (361)
h—4~ /(Q—=5c+7~)—(1—c)/(1—c) ’
F-G/(-0)
F+GV/(=0)

_ (1—=5c+6c*+2¢% /(1 —c)+(1—4c+2c*) /(1 —5¢c+ 7 —c")
T (A=5c+6+2¢%) v (1—c)— (1 —4c+2¢") /(1 =5c+7c" = ¢)
(362),

and thus equation (331) gives

L+H _ (h+A)’ {h+A F-G/(=0) };
L-H \h—A4/ (h—A F+G/(-0)

_ (7L+A)’ (1-3c)v/(A—c)+ V(1 —=5c+ 7 =c%)
“\n—=24/ 030 /(A=c)—J/(I—50+7¢—¢)
— (2—c) V(1 =8¢+ 7¢*=c") +(2-5c+¢*) /(1—0)
T (=) V(A=5c+7=)—(2—5c+¢*) vV (1—c)

(363),
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% = (2(-25 f/ca i)s‘c/g;;c—) ) (364),
H= 2—5jﬁM (172),
L= gc:“ B (178),

35. The preceding verifications for p =3 and p =5 having served
to settle the doubtful signs in the expressions, we now resume the

case of

r=T,

employing this new procedure.

With 2z = w0, equations (298)-(303) show that

. 1=2 31~20—2¢ .
' m2+2y—%c(l+c) l—c—¢ (365),

)= T __,00+0 .
V(=0= g =T ¢ em (366),

F=(34+9%+5¢) & —(14c)*(1 +6c+13c* +5c*) &

G=

+6 (1+0)*(2+6c+c")s—c* (L+0)° (367),
#—(1+0)* (1 +30¢) s+6 (1+0)° (368),

and proceeding as before, we shall find, after considerable reduction,

h+d F—G/(=0)
h—4 F+G/(=0)

(A+c)(A—4c++3¢%) 2

+ v/ —c—c) V(1 —5c+0+1568+12c!+ 5 — ")

(A+c)(A—4c+c*+38c%)

—V/Q—c=c) v 1=5c+0+15+12¢*+°—¢")
(369),
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L+H _ (h+A)‘ h+A4 F-—G/(-—O)}‘

L—H \h—A4! Lh—A F+Gv(—0) (370),

which reduces to

(4—2c—5c24+0+¢") /(1 =5¢c+0+415c2+1264 4+ —¢?)

L+H _ + (4—=10c—15¢+5¢"4+10c* + & —¢%) »/ (1 —c—¢?)
L—H  (4—2—58+0+¢*)/(1—=5¢+0+15¢ +12¢* + & —c)
—(4—10c—15¢"+ 5¢*+10¢* + & —¢%) /(1 —c—¢?)

(3,
. H _ 4—10c—15+53+10'+ &~ M
or L~ 4—2c—5¢"+0+¢* T (372).
Also I~-H'=1

and (4—2c—>5¢*+0+¢*) B — (4= 100—15¢* + 56+ 106} + ¢ — )3 M

= (1+c)* (373),
4—10c—15¢*+ 5c® 4 1004 4 ¢ — ¢?
h = : ;
80 that H T T0) M (374),

4=20—5040+¢
L=2=% (1°+ j), +e (375).

36. The leading coefficients H and L being now determined, the
remainder are readily found from the identities obtained by the
logarithmic differentiation of (315) and a comparison with (316),
namely,

0+PL = 0-— H, (376),
0 +PL, = —7H —2H, 377),
QL +PL, = —6H,—3H, (378),
QL+ PL, = —5H,—4H, (879),
QL+ PL, = —4H,—5H; (380),
QL,+PL, = —3H,—6H, (381),
QL+ 0 =—2H,~7H, (382),
QL+ 0 =— H,-0 (383),

as in (185) to (190), and
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0 +PH =hL—L, (384),
0 +PH, = —(6+4) L+83kL,—2L, (385),
QB + PH, = 10hL—2 (2+4°) L,+5hL,~3L,  (386),
QH,+PH,= .. . (387),
QH,+PH,= .. . (388),
QH,+PH,= ... . (389),
QH,+PH,= .. . (390),
QH.+PH,= .. - . (39D),
QH+ 0= .. " . (892),
QH+ 0= .. . (393).

I am indebtel to Mr. T. I. Dewar for the calculation of these
coeficients, and for a general verification of the work; his results are

— Pl = _ (O+c—c")(4—2—5c'+0+c)
H =—~PL= 7+ Mh (394),
_ 20—-65c—3¢'+190c®+307¢* + 20c® — 151¢®—63¢” + 8¢5+ 6¢°
Hﬂ - ) 4 M
¢ (1+¢)
(395),
_ —20435¢-+139c'+ 286 —167c*—134c°—7c* + 23 + &
g,= e it (396),
_ 5—dbc+5%c*+217c"—80c* — 459¢° —276¢° 4+ 5907 + 99 + 24¢°
Hl - 4 4 M
¢t (1+¢)
(397),
_ =1+419¢—33"—46c"+21c* + 35c"+ 9% 4,
H,= e M (398),
e AT — 20 —4c—3c")(1—4c+0+6c'+3¢)
Ha - QLG - ot (1 +c)2 M (399)’
B =2 14240, (400),
_ —8422c+ 34¢'—35c'—60c* —10c® + 14c* 457
Ll - ca (1_,_0){ (4’01)’
I,= 12—0—366’—210"‘-}-160‘+l7c‘+4¢;°h (402),

& (1+c)
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—4+20c—3c*—64c*~19¢* + 60c° + 515+ 127

I’B = ct (1 + G)‘ (403)!
— 1—8c4+4¢'+10¢*+ 3¢*

L‘ - é& (1 +c)4 (404)s
1—4c+046c6°+ 3¢

L=

L] P (1.+ o)’ (4‘05)’
and the verifications obtained by putting z = £ 1,

AL +L+L)+H +H+H+H,=0 (406),
A(Li+Ly+Ly)+H +H,+H+H, =0 (407),

are found to be satisfied.
Try putting P = 0; then
d—c=5=0, c=3—-1v(21) (408),
taking the negative root, as this makes
1—c—c' and 1—5c+0+15c*+12c*+c*—¢® negative,
and therefore M? and 7* positive ; and now, from (299)-(303),

2= :w y=—6++(21),
i = V@D
30
4= —82+18v(21) ,,_ 83-12//(21)
) 15 ! 15
. p=8.
37. In this case the parameter
v = doy (409),
and the equation of the catenary will reduce to either of the forms
(1—2% cos 2x = (Hz—H)) vV Z, (410),
(A=-2)sin2x = (Ls— L)V Z, (411),
leading to the differential relation
2(—F)vZ %‘,: PA4+Q (412),

where Z,, Z, the quadratic factors of the quartic Z, are given in
(256), (257).
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The pseudo-elliptic form of (29) to be employed here must be
taken from p. 229 of the article on  Pseudo-Elliptic Integrals,” and,
referring to p. 226, replacing the z employed there by § (1+c), we .
must take

z=—3c(1+c¢) (413),
= g ltoe 414
y c 1_0 ( )’
1—-2¢—¢
l+y= 415),
+y T | (415)
s 1—8¢c—¢* 1
M= iy (416),
1= _(1=2c=c)" (417)
¢c(I+c)(1—c)® '
i = (L=c=) (1 —6c+8c'+ 66— o) 418),
s+ =0 @9
6=} (+o) (419),
B = 4Mis—1—2y = 1_:__z—_°_’ (420),
B _ 1—6c+8c'+ 68 —¢
BT Q+od=cp (2h,
= 2¢
8= 2 (422)
P=j(24+Mp) ==2H (423),
Q=i@a-Mp) =122 y (424),
P+Q=24 (425).

The coefficients H, H,, L, L, can now be determined in a straight-
forward manner by differentiation and verification ; in this way we
find

D-H'=1 (426),

2~3c—c &

3 3 > h
D+ =20 o

(427),
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H__(Q+9(1=30) L
7 G-of L (428),
. h
—de—c? y— L) Wil
I _ 1—c Loy (429)
2¢ (14+¢)(1—3c) M ’
I 3 l1—4c—+(1—-¢Y) ;:-
L _ (430).
T~ % (1—0) T

If we try to make this catenary a purely algebraical curve, by
putting P =0, ¢ =}, we'find

M= (431),

so that the catenary becomes imaginary.

p=29

38. This case has been worked out by Mr. T. I. Dewar, making
use of the second method of § 30 for the determination of the leading
coefficients II and L; the numerical caleulations were extremely
laborious, aud the leading steps only arve indicated here; the results
satisfy the tests of anccuracy that have been applied so far.

The equations are now of the form
(A-2)tcos 9x = I+ H,*+..+H, (432),
(A=) sin9x = (L7 + L2 +...+ L) /2 (433),
leading to the relation

9(1-2) vzg§=P:3+Q (434).

Referring to “ Pseudo-Elliptic Integrals,” p. 232, we take

z=p A=—p)(A—p+p) (435),
y=2"(1-p) (436),
14y =140+p'—p* (437),

VOL, XXVII,—NO. 545. N
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and the pseudo-elliptic form employed for (29) is

v = 4w, (438),
_ 1 [es—=y
I(w)= I +/8 ds
_ a2 40538+ Ds+FE _ aG
= } tan o Fot t T 4 ToF V«/S—{, tan /S (439),
where 9p=1+0-3p*+7p° (440),
o = —p*(4—11p+11p* +4p°—17p* + 145" (441),
r= p(1—p+p°)(6—23p+37p'—24p°—2p*+7p%) (442),
T=—p"(1=p)(A—p+p') (4—9p+6p'+p") (443),
V= p"(1-p)Q-p+py (444),
C = —3p* (1 ~2p+2p%) (443),
D= p(1—p+p")(3—Tp+5p") (446),
E=—p"(1—p)(1—p+p')’ (447),
P=4(94+Mp)= (5+0+3p*—p) M (448),
=1(94—Mp) =22 +0+3p"—4") M (449),
P4+Q=94 (450).
39. When 2=,
_ . 1=2y_ P (1—p)(1—p+p)(1+0+2p'—p")
s=—azTol o (451),

3
v(=8)= 2+3y M

_ P (1—p)(1—p+pY)
2 (1+0+p"—p")

—140—5p + 7 —11p* + 20p° — 205+ 15 — Tp* + p°
x\/( o ) (s2),

and

the expression requiring the ‘enormous algebraical labour for its
reduction.
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Mpr. Dewar first calculated

h+A4 F—Q./(—S8)
h—4 F+GJ/(-8) (454),

and found that it was a perfect square; its root was then multiplied by

h+d
= (455)

four times in succession, large common factors making their appear-
ance each time in the numerator and denominator, and thus he found
finally that, using detached coefficients,

(4=0+14—16421—264+19—13+6—p%)/(—1+0—5+T—11+20—20+ 15— 7 4 p3)
L+H +(4=0+22-28+55—-96+114—124+101-63+31 - 9+p')/(=1+0+p7~p%)
I-H (3—0414—16421-26+19—13+6—=p%)/(—=1+0—5+T—11+20~20+ 15— 7 +9)
—(4=0+22—28+55-96+114—-124 4101 =63 +31 -9+ ') (—1+0+p3—p)

(456)
4-0+422-28+55~96+114—124 +101 —63+31 -9+ p3,/(~140+p?=p?) ’
H _ ) —140-5+7=11+20—20+15—7 +°
L 4-0+14-16+21—-26+19-134+6—°
=.4—0+22-28+55-—96+114—124+101—63i31—9 +p1? ]!_[ 457)
4-0+14—16+21—-26+19—1346~p° h !
and, since LI—H*=1,

(4=0+14—16 +21 =26 + 19~ 13 -6 —p)2 ?
—(4~0+922—28+56—96+114—124+101-634+31—-9+p) M3 =3 (1—p)f (1-p+p%)? (458);
therefore, finally,
_ 4—0+22—284+55—96+114—124+101—63+31—9 +p"
H= s ) 3 A
?A=p)P(A—p+p’)
L =4=0+14—16+21-26+19-13+6—p°
P (l=p) (1—p+p")

(459),

(460).

40. The determination of the remaining coeflicients is now comparatively an
easy matter, and Mr. Dewar finds

H =—PL =_(5—0+3-—1)(4—12+14-—3!6+21—‘226+|9—l3+6—p’)1[}.
P(1=pP(l=p+p?)

—~20 40 —166+ 190 —626 + 1169 — 1946 + 3141 — 4161 + 5063
— 6262 + 4610 — 3453 +2092— 1011 + 371 — 84 4 8,7
H S 2T S 3%
= (=) (1=p+ ) A (e,
M 2

(o1),
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20~10+175—210+ 642—1123 + 1842—2619 + 30433177
- +2738—2010 + 1247 — 608 + 237 — 65 + 5pt6

P (1=-p)i(1=p+p?)?

MA  (463),

5+5+90—45+489—877 +1296—3946 + 6401 ~10002 + 13532

-— — — - - 19
H, = 16302 + 17394 ul5762t12194 7“8206+3974 1558 + 406~ 48pY , - (464),
2 (1=pf(1-p+p7)
—=1-2-39-8—220 +283—575 + 1206 — 1582 + 2080 — 2194
D J—.
H= +1852—1378 + 772330 + 114 - 209 , 0 (465),

P(1=p)(1~p+29)

—4=4-64+40—288 + 636~ 1076 + 2320~ 3580 + 4980~ 6515

H = +7091—~ 6698 + 5294 — 3258 + 1551 512+ 80pY 5 (4o
’ 2 (=-p)P{(1-p+p?) (466),
- 92 : - 13
H = 12—0+68—120+ 160~ 400+5r4 .,23+51_7 —348 + 157 ~ 65+ 160" 50 (61,
#(1-p)
= -0, = 2(2.-0+3-4)(2—o+8—614+ 166—30+34—26+1_5—4p9)M (468),
»#(1-p)
2(1=1+1)(2—=0+4—-8+4—2+,%)
Hy=— Mh 469
! P (=P (469,
8—0+ 54— 60+ 164 — 284 + 389 — 542 + 575 — 544 + 440 — 274 + 139 —48 + Tp!
L, = SRS Ne T (470),
PP(1=p) (I=—p+p)?
- - - - 3219 —G4430—114+2p1
L, =3T440-23422 57482100 +132—120 +100—64 +30—11+215 , “n,

P(=pl (l~p+p?)?

—4—4—48+16—185 +299— 541 + 1009 — 1365 + 1807 — 2000
I,= + 1860 — 1516 + 971 —487 + 175 — 30p1 “2)
z B ]

PA=pp (1=p+p)F

141+23—15+97— 161 + 286 — 436 + 560~ 654 + 598~ 470 +204— 130 + 46 —10p'8 , 3
L= 5 5 3 (473),
(1 —pp (1=p+ )
I 343430-15487—192+246—468 + 618660 + 672 — 516 + 306 — 138 + 30p™ @74
= Y . ?
? PU-p)f (1-p+p)
— -— ¢ -— 9
Lﬂ - 6+0 16 + 30— §0+426 46+22 l]+4p k (475)’
»(1-p)
-— - — p— - 39
I = 2+0-8+14 1:54—30 634+26 15 +4p (476).
»#1-p)

Mr. Dewar has also performed the verification of showing that
A(L + L+ L+ L) + Hy+ Hy+ 1+ IL+ 1, = 0 (477),
AL+ L+ Li+ L)+ H + L, + U+ Hy+1I; =0 (478).
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g =10.

4]1. This investigation was interesting as affording the first case of
. a purely algebraical Spherical Catenary, shown in the stereographic
and stereoscopic projections of the accompanying diagrams (pp. 170,
171), drawn to scale and in perspective by Mr. T. I. Dewar.

The equations to be satisfied are

A-2) et =(HE+H e + ...+ H) +i(LA+ LA +...+ L) V2 (479),

leading to 50— v2 f% = PA+Q (480),
as in the case of pu = 5.

Referring to the Proc. Lond. Math. Soc., Vol. xxv., p. 235, the

relation Yo =0 (1),
the equation of a unicursal quintic curve, is satisfied by
_ —a(l+a)
= 0o (—a—d) (482),
=__—o(+a)
y= (l-—a)(l—a,—az) (483)’
_ 1-3a—a’4+d
1ty = (1-a)(1-a—a?) (484),
and thence
s _ (l—a—a®)(1—3a—a’+a%)
M= 2¢ 1+a) (485),
. (1—3a—a*+ ) .
T 2 (14+a)1=c)(1l—a—0a) (486),
s _ (1=5a—a’+a*)(1—6a+3a*+8a’—3a'—2¢"° + a*) 7
K= 2a (1+a)y(1—a) (1—a—0d’) (487).
The pseudo-elliptic integral to employ for (29) is
v = 2w,
=1|08=,
Ie) =3 [ PV
= 1tan-! __,'Psfigh /S = 1 tan~! ﬁl}{ﬁ (488),
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where Sp = m—%—:% (489),
o= " ff);)gl(ffﬁﬁ ; @’) (490),

= (1-;1;4((11?3‘—@2)6 (491),

0= (1—a)(21&i):-a2)' (492).

Thence P =% (4+Mp) =2 ;“ M (493),
Q= (4-1p) = JSe Sl yy (494),

P+Q =54 (495).

Wetake &= ;s (;’_a_a,), (496),
K= 4Ms,—1—2y = :(L.ig)“(ﬁ_’T—);‘f (497),

1;_: _ —1+6a—2‘3:’(ﬁftf§+2a°_ae (198)

42. Corresponding to z = o,

142y _  a(i+a)(1—4a—2a'+d")
TT3¥%y  2d-o)(—e—a)(—Ba—ata) (O

mh a(l+a) h
V=8 == A==y 4 (500).

Working with these values, Mr. Dewar found, after a long
calculation,

L"-tH= (]L+A)2 {h+A F—-G,/(—s)};
L-H h—A h—4 F+G/(—8)

(1—0—a")(2—-6a+0+3c*—a*) /(—1+5a+a*—a®)

+(2—da—a'+0*) /(=1+3a+0’-a") /(1 —6a+3a"+8a’—3a*—2a° +a°)
(l—a— a®)(2—6a+0+3c>—a*) /(-1 +5a+a’—a)

—(2—4e—d*+a’) v/ (—1+43e+a’—a’) V(1 —6a+3a*+8a*—3a*—2a°+a%)

(501),
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= (2—4a—d'+a’) /(—1+3a+d’—a’) /(1 —6a+3a’+8d*—3a'—2a° +a)
(1—a—a?)(2—6a+043a*—a*) v/ (—14+5a+a’—ad)

(502) ;
and therefore

H = 2—%e—d'+a’ {(—1+3a+af"-—as)(1—6a—3a’+8a’—3a‘-—2a°+a°)}

T ad(l+a)(1-a) l+a
(503),
I = (l1—a2—a")(2~6a+0+3a’—a*) —~14+5a+a*—a®
& (1+a)(1—a) l+a ) (504).
Thence the other coefficients follow, and writing
a for —1+4+3a+a’—a,
B for —1+5a+a*—a,
y for —l4a+a?,
o for 1-6a+3a>+8a*—3a'—2a*+a’,
_ _2(2—a)(Q—a—0ad")(2—6a+0+3a°—a) afy
H = - a—ba+0 ) /(LY
! & (1+a) (1—a)! ( 2a ) (505),
H = 12—60a + 324 +91a’ ~23a* — 300" 4 84® + 30’ —a® ( ad )
P 2a° (1+a)? (1-a) l4+a
(506),
H = — 44280 —28a’— 64 + 37a* + 360 — 182’ — 647 + 3a° (@)
3 @ (1+a)*(1—a) 2a
(507),
- (1—9a—3c*+ 34’ )(1 —3a—2d")
H, QL = 2a* (1+a)’ \/ l+a (508),
1—4a—d’+24 aBy
H,= F(Q+a) \/( 20,) (509),
_ —6+16a+10a’—7*—2a* + " vé
L| - a? (1+a)2 J(QE) (510),
_ (1~a—0a*)(3—9a—6a’+8a’+ 2a* —2a%)
Z, = a (1+a)’ l+a (511),
_ —(1—a)(1—3a—2a?) y_B
L, = @ (14a)? \/ 2a) (512),
and these values verify the equations
AL +L)+IL+0,+H; =0 (513),

A (In+ L) + 1T +1T,+11, =0 (514).
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43. Here we can make P vanish by taking
a=2,

and this gives real numerical values to the coefficients, namely,

wed (), mme e (). mmn B

65 (17 25

T=gy (3) B=1g

=3 [ 5 =_5 =3 /5 7 13

and the equation of the catenary can be written in either of the forms

48+/(51) 2#—120./(51) #2002’ +62,/(51) 2+ 150

r®cos Sy = 561 (515),
# gin By = —120 v(15) ﬂ’—GOJ(Si);Sz2’+ 70,/(15) 2—39./(85)

0= [(E)-]-&) @

so that its projection on the equatorial plane is a closed algebraical
curve, with pentagonal symmetry.

With a=2 K=3,
. V/(85)
e 1 2=
E=—}/(5), - 1o (517),
7,= -y LONZ2VA5) 41 2/(89) (518),
. 6 15
Z,= @&+ ——-———‘/(51)4-.2‘/(15) P 2/(85) (519).
6 15
The roots of Z, = 0 are imaginary, but the roots of Z, = 0 are
2, = — 0°9982585 (520),
5= 08975022 (521),

giving the limits of latitude between which the catenary lies, namely,
86°37' 5”N. and 63°49° 54" S.
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The curve crosses the twenty prime meridians, at intervals of 18°,
at the points corresponding to the roots h,, hy, ks, k, of the quintic

HA+H\2+...+Hy =0 (522),
and to the roots, 1, &, I, of the cubic
LA+ L2+ Lyz+ L, =0 (523)..

These roots have been calculated by Mr. Dewar, employing
Horner's method, and the results are tabulated in the following
columns ; it will be observed that, near the upper N. pole, the roots
are crowded together, and the disentanglement of these roots caused
some trouble. :

Some intermediate points were also calculated, for the purpose of
plotting the curve with accuracy on a globe; and, denoting the lati-
tude (South) by A, the following table embodies the numerical
results :—

F sin A €08 A tan 3 (90°—A) A ¥

% | —09982585 | 0-0589918 | —0-0205 | 8637 sN.| 0" ¢ ¢
A 9980756 | 0619599 0311 | 862642 18 0 0
4 9973452 | 0728175 0365 | 854927 36 0 0.
Ay 9949993 | 0998841 0501 | 8416 3 64 0 0
A 9824577 | 1864859 0941 | 79156 8 72 0 0
Ay 3436408 | 9391010 6989 | 20 556N.| ‘90 0 0
0 0 1 1- 000 9159 50
$h | 405951190 | 0-8036694 05038 | 3631128.| 9845 0
2 7895648 | 6136251 3430 | 52 842 108 0 0
by 8805984 | 4738620 2520 | 614253 126 0 0
o 8975022 | 4410099 2324 . 6349654 144 0 0
hy | 1-4561185 '

The curve crosses the equator at an angle 83°46°24”, and it
makes a maximum angle, 86° 56 45", with the parallel of latitude
28°0° 31" N.

Below the depth 44 from the centre, that is, in latitude greater
than 36°31°12” S., the pressure changes sign, and the chain must be
supposed to rest on the inside of a spherical surface.
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The stereoscopic photograph can be made to show the solid figure,
in the absence of a stereoscope, either by fixing the eyes on a distant
object, and then raising the card into the line of sight at the distance
of distinet vision; or else by holding the card at a distance of about
the arm’s length, and focussing the eyes on a point half way; a
smaller image i8 now formed, and the tesselated background, repre-
senting the directrix plane, is now seen as & network in front of
the solid sphere.

p=12
44. Here the parameter of (29) is
v =}, (524),
and the equation of the catenary may be written

(1—2)i e = (B + Hyz+ Hy) v Zy+i (L2 + Lz + L) V2, (525),

leading to 1—2) ng—"- =pit+q (526).
¥

Referring to * Pseudo-Elliptic Integrals,” p. 248,

_ _a(l+a)(1+a*)(1+a+d’)
z = Gy (527),
y=—2(tqCtete) (528),
—20—=20%—=2a% —
14y = 1—2a ?(_L_a 2a* —a' (529),
M= (l—c.z)&—2a—2a’—2aa—a,‘)
2a (1+a)(1+a’)(1+a+a?) (530),
Clebsch’s z or & is given by (265), so that, with
t=_2Q+atd) (531)
l—@a ’
t=MA+a)(l+d) (532),
and
B _ 1 _pa___ 1—4a—40’—40"— 20" +2a°+20° + 2"+ o° "
B 1-&= ' 2 (1+a+a?) (533).
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But
BW=A=-1-2y

(1 —4da—4a® —4a—a*)(1 —4da—4a®—4a® — 2a* + 2a° + 208+ 207 4 a°)
2a 1—a')(1+a+a’)

(534),
so that .
3 _1—da—dd’—da’—a}
= = (535),
and the same value of }? is obtained from formula (258) with
_a_d(+ata)) "
s=t= (l—a,)’ ( 36):
B—1_ 1—2¢—24'—2d'—a’
so that 5 = - (537),
3
KAl _ gpliatd (538).

2 1—at

45. The chief difficulty here is the determination of the appropriate
valye of p to employ in (29), which we distinguish as p (3w;); but
this is given by the general formula

(“ﬂ+2( ) =-+y) (539),
and with p=12,

120 (2uwg) = —2(54+3a+3a’+a%) (540),
(Proc. Lond. Math. Soc., Vol. xxv., p. 251) ; so that
1—2a—2a"—2a®—q*

12p (Fuwg) = 4 (54 3u+3u’+ «*)—-12

l—a
2\8
=g(hetel (s40),
Next
1 1 1-20~20"~2a"—a*  , (1+a+a’)’}
B e e e
= 1M (5+3a+8d*+4 (542),
—1%2a%— S Bat.

g=1(4- M)='M1 —10a 1121a 10a® = 5a (543),

p+g=4 (544).
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The integral (29) now assumes the pseudo-elliptic form

3 (1+a+a’)’_3 a*(1+a)(1+a*)(1 +a+a’)

TGy = ;-l 1-a — 1—a ds
— -1 FJ-(S-S,) 4.
¥ tan GV {4(s—5)(s—s)} (545),
where F = gs— (1+a) (1(“; “’)§}+“+“’)’ (546),
G = (L*iﬂ_iaﬁ’_)’ (547).

46. Proceeding to the value z= o0,

L+H _ (h+A)§ { FJ/(s—5)—QvV(—4.5—5.5—s5) } i (548)
L—-H \h—A4 F/(s—5)+ G/ (—4.5—5.5—5) ’
where
s=1t2y_oa (14+a)(1+a®)(1+a+a*)(1—3a—4a* —4a’—2a%)
242y 2 (1-a) (1—2a¢—2a'—24"—a')
(549).
Writing « for 1—22—2¢'-2d*~a' (550),
B for 1—4a—4d'—4a*—a' (551),
y for l—4a—4a’—4a*—2a*+2a°+2a%+2d"+a® (552),
1 (1—a)a 55
so that M= Tt (1t (ITata) (553),
A = « 554
T 2a(1—at)(1 +a+a?) (554),
- By 555
B 2a(1=a"(I+ata) (555),
A o
L -2 556
hﬂ ﬁ‘y ( )’
htd _ /(Br)tava (557).

=4~ V(Py)—ava



1895.] Spherical Oatenary. 175

: - .
Then o—8y = %Jﬁ—j)‘:) f— (558),
1 2 1 9\3 1 2
—4(o—s)(o—g) = 2L QLI L ratd)y (559),
F/(s—s) — 1—a—a’-—5a°—7a‘—6a°—4a°—a7\/ _@)
GV (—4.5—5.5—8) (1—a)® (ay
(560),
and finally, after considerable reduction, Mr. Dewar finds
L+H _ my+n./(aff)
s Sl A bvemew ] (560,

where  m = 4—10a—30’~3a’+9a*+12a°+ 9a’+ 507 +a®  (562),
n = (1—a)(4—2a —50°—10a° — 11a*—7a* ~4a® — a”) (563),

and thence the coefficients H and I can be inferred.

Putting L = coshA, H =sinhA (564),
PP '"“/7‘*'?7-«/(0@)
then e = My 71/ (a) (565),
— 1/ (aB)
and tanh 2\ = Ty v (566),
_ my . _n/(af)
cosh 2\ = 173 sinh 2A = W (567),
where l=a"(1+a) 1+a")(A+a+a?) (568),
d=—2a(1+a+d’) (569),
and  I'=} (cosh 2A+1) = ’bizl{—}gﬁ (570),
_ 1y _mVy=1l/8
H* =} (cosh 2\ ]T) =175 (57),
p= Ymsrtnd/ @B ]+ v mdy=n/E@B] ()
24/1%0
'H= /[1nJ7+nJ(uB)]—J[mJy-—n/(aB)] (573).

2V
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These values of H and L have been checked by Mr. Dewar by a
straightforward verification, but the work was very long.

This catenary will be an algebraical curve if we can make P =0,
and then

441 +a)}=0, a=-1-y4 (574) ;
this makes B=1-31¥4 (575),
but a=—3%(¥2+1),

.80 that the catenary is imaginary.

47. Tt will be noticed now that, in general,

P = juttp (22) (576),

80 that an algebraical catenary requires as a first condition that

o (?’_“"s) =0 (677);

afterwards we must examine the reality of the catenary by finding
out if M?, A% &% K, ... are positive.

Taking, for example, the case of
p= 14
(Proc. Lond. Math. Soc., Vol. xxv., p. 257), and the formula (p.206)

pepv=3 (@t 0 %+t..+ Gu-49,-3)— (p—2) p"v,

or —ppr =5 (gt )—(p—2) 2 (1+y) (578),
where ga=2(5—5) =— 2.'1:"!'2'—2-'—'il (579),
grgrr = 4ot Y= Yend (580),

YrYre1









1895.] Spherical Catenary. 177
we find (Proc. Lond. Matk. Soc., Vol. xxv., p. 199)

s =23y (581),
log =L (582),
y
"] 3,
tngo= =2 (583),
mﬂ 3

fag =t - (584),

v ay ay{(y—a)(y—2)+¢'}

1259 _y_a:_ya my_xs__ys (585):

10,0, = BLE—DY=2) 4] (y—2)'+4" (y—a)'~ 20y (y—2—y")

19097 my—w’—y‘ y{fb (y_m_yi) (J .’B)’}
(586),

1g,qp = & Y=Yy —2) — 2y’ (y—z—y") N,

= y{z(y—2—y")—(y—2)'} ¥ (y—a—y)—(y—2)’

where Ny = & {(y—2)*—3ay (y—=)"+24°} (587).

48. With u = 14, ¢,, = 0 (Abel), and

U=q =0 D=®b =% G=¢ (588),
~lpz = ,¢;+ 4.0+ 49+ 48+ 359 — 122 (1 +7)

— o) — Ay Y—2N (Y — 21)+y 25(1 4
=4 (1+7)—day P —12z(1+y) (589),

. (y—2)(y—22) +4°
T —
te=2(1+y)+y ay—ai— g

=y+2+ ﬂl )
g a—y
= y+2+c(a—p) (590),
and, with the values of p, 2, y given on p. 257, Proc. Lond. Math. Soc.,
Vol. xxv., this reduces to
Vo = d4dc+3t+28+cv/ 0
P =
l+¢
where O=c(14+2c)(4+5c+2¢% (592).

(591),

Then p, and therefore P, vanishes if

(444c+3+268) - (1 +20) (4 +5¢+28) = 0,
VOL, XXVII.—NO. 546. N
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or (1 +c)(4+4c+6c°+3c*) =0,
or (c+1) {(8c+2)*+28}.=0 (593),
80+2 = — ¥/(28).
With a=3/(28)=2. M,

b=Y(98) = 2.7,
VO = 14+5a—2b

find
we 9 ’
and p= 3’7— or ‘Z_S_t%_liﬂg (594) ;

but these values make M’ negative, and the catenary is imaginary.

49. So also, with

=18, v = 3w,
06=0, ¢Gs=¢ W=q wW=40 (595),
18z = q,¢;+ @305+ ... + 9,9, —162 (1 +y)

=4z (1+y)—4 3 —16z (1+y)  (596),

N
- Y y—e—y)—(y-2)
$p=3(1+y)+ N . (597),
¥ (y—z—y)—(y—2)
reducing ultimately to (Proc. Lond. Math. Soc., Vol. xxv., p. 265)

p=3+y—z (I—Tc)

=—¢"+3¢’+16¢+13-3vQ (598).
Therefore p and P vanish, if

('—3¢'—69—13)'~9Q =0 (599),
or ¢*+3¢°+6¢*+10¢°—3¢q*~15¢—20 = 0 (600).

T'his sextic equation has only two real roots
+1-21921268, and —2:301874537 (601),

which were calculated by Mr. Dewar, with Horner’s method ; he has
also calculated the remaining quartic factor

¢*+1'917338143¢* + 6:730647¢* + 8:09394q +7-1264 (602),
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and has resolved the sextic into its cubic factors in the two ways
(¢®+8914721¢" + 5:278¢ + 3:464)(g*— 0914721 ¢* + 436299 —5'772)
(603),
(¢*+2:60635¢* + 5:435049 +10:898)(¢* + 0-39365¢° —0-46117¢ —1-8352)
(604).

If we had obtained a simple rational root, as in the case of 4 =10,
it would have been worth while to go on with the calculation of this
algebraical catenary, which would possess the symmetry of the
nonagon, the prime meridians being 10° apart.

p=16.

50. The parameter of the associated pseudo-elliptic integral
assumed by (29) is in this case

v = }u, (605),

and the catenary will be given by an equation of the form
(=2 e = (HA+H,z* + Hyz+ H) v Z,+7 (L + L2+ Lyz+ L) v/ Z,
| (606),
leading to 41— *)ng—;‘ =P#+Q (607).

According to p. 262 of ¢ Pseudo-Elliptic Integrals,” we must now
take
o= (a=1)(a*+1)(a*—a’+ a*+3a+ 1)+ (a*—a’ + a*—a—1) v 4'
2a%(a*—2a—1)

(608),
_(a+D)(a*=1)(a’*—2a—1)+(a*—2a—1) vV 4’ o
y= 2 (@t 1) (@—2a—1) (609),
where-

A' = (a*=1)(a*—2a—1) (610),
s & —a®—3a’+a*'—3a’+3a’+5a+1+(a*+4a+1) VA4’

M= 4o (a*-1) (611),

_(a®—a'—3a—-1+(2a+1)vd4")? o
= { ey} (612),
2 —(at+1)(a*~1)(a'—2a 1) +4av/ A’ (613),

—(a+1)(a*=1)(@=2a—1)
N 2
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I(o) =} B2

_ a(5+0)V/(4.5—s,.5—s,)
=T e B G (©14)

3 2
where 4p, = — (a +ll @’=3) /5

a*—a*—3a—1+(2a+1) V4’
2a° (a+1)(a’*—2a—1)

=—(a'+1)(@~3)

(615),
B=- @D +1)y (616),
0=-4+1 1(617),

a?

4 (5—5)(5—s5;) = ds'— (“‘—1)(“;,‘4“"1) 55, + (“‘;;1)’ & (618).

Better therefore take

S =y (619)
83
as variable ; and then
— A ¥ a‘—l H 620
xy—a(a°—2a—1) = a (620),
=2y - _ -1 621).
V(88) = 23: = 52 5 (621)

The condition p =0 thus gives

~4@EDE@=3) 16014y =0 (622),

leading to the sextic equation
15a°+ 30a® +15a* + 12a° 4 92’ ~2a—7 =0 (623),
which, according to Mr. Dewar, has two real roots
+0551764 and —155711472 (624),

but this does not at present look proinising enough to make it worth
while to investigate the corresponding catenary.
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51, Clebsch extends his investigations to the case where the
spherical surface is made to spin about the vertical axis with con-
stant angular velocity »; and now, changing to the absolute unit
of force in the C.G.8. system, the tension

T = wg (h—z)+wn® (B —1°) (625),

together with Tr*';_‘s” =H (626).

Equation (6) now becomes perfectly intractable, and of hyper-
elliptic character, when gravity and centrifugal whirling are both
taken into account; but when gravity is neglected in comparison
with the whirling effect, by putting g = 0, equation (6) becomes

— Hdz
Y= f "‘2\/{'10211‘ (bz_,.s)e,',s_ﬂq} (627),

or, putting H = wn*d (628),

and taking »* for independent variable,

—_1 Adnr?
v _?J'r’\/(l_,ri) J{(b’— 2)2 ,rz_Ag} (629),

an elliptic integral of the third kind.

ds _Tr' _ (B~ "
Also WEET A (630),

so that the arc

=1 (VP —2%) dr?
s ”j/(l —F)/{(bz—r’)’r’—m} (631),

introducing elliptic integrals of the second kind.

52. Clebsch (Crelle, 57, p. 106) puts

R = ('—r")r"— 4 = (*—p") (' =) (r*~ 1) (632),
where  20* =p’+o’+7° (633),
b = o’r'+rp' +p%" (634),

A = plo'r" (635);
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and therefore (p*+ 0%+ 1)’ —4 (o’ + 0’ +p%,) =0 (636),
or (p+o+r)(p—o—r1)(—pt+o—1)(—p—0c+7) =0  (637),
so that, taking =0+ (638),
and therefore 4 = o’+or+r? (639),
R=r—(o+r).r"—o .71 (640),
T = wn® (o +or +1°—127) (641),

and the integral is reduced to the standard form (29) by putting

A= zz’:g"c’ (642),

1—7 = z__z:% (643),
.y P

R=\ Py (644).

But we shall find that these integrals are essentially the same as
those required for the catenary assumed by-a chain wrapped on a
vertical paraboloid, whether spinning about its axis, or at rest; the
investigation of this new problem had better be reserved for another

paper.

[ Additional Note, 7th May, 1896.

The algebraical case of the Spherical Catenary for p="7, indicated
in (408), p. 159, has now been completed by Mr. Dewar, and the
figure obtained is similar to that on p. 170, but having heptagonal
instead of pentagonal symmetry. '

The numerical data, exhibited in a tabular form, similar to thnt
on p. 169, are given in the table on next page.

The disentanglement of the roots z, &, I, %y, ... near the North
Pole is facilitated by drawing the osculating pla,ne of the catenary at
its highest point, and calculating by spherical trigonometry the
points where the osculating small circle cuts the.prime meridians ;
these points will be indistinguishable from points on the catenary
for some considerable distauce.
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z sin A A ¢
% | —0-9970939 | 85°37'85N. 0

Ay 9969428 31-12 90
4 9964255 9-24 180
Ay 9952666 | 84 26-35 270
A 9926029 | 83 160 .5:!;2
By 9850008 | 80 3-83 450
A 9479943 | 71 26-44 540
R, 3250447 | 18 5813 90°
0 0- 0 92° 20’30
I, | +0°6789442 | 42 45°67S. 120°
3 6432409 | 43 584

hg 8414974 | 57 1591 810
A 8915066 | 63 4-47 290
h 9110921 65 39-40 &%Q
2 9164583 | 66 24-82 1080
Ay 1-5496647

The angular radius 6 of the osculating small circle at any point,
or p=sinf, the radius of absolute curvature, is given by the
simple expressions

1 _ 1 _ A?
Pl Rk e
or tan 8 = M;
A
this follows from equations (16)-(22), for
d dz __ _o.
E‘; (h_z) | ;i—s = ® (h 20),
d ., ~dy__ _ s
L) W=y r-2),
d dz _ _ 1 _oN_
-dvs (h—z) -£ = 2 (h 22) 1,
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so that

)Py ds_
(h Z) dsg _ds y (h 22)1

ds
_dz dz
Squaring and adding,
(h-z)z_:; =92 | (h—2:y—2 d” dz L 42 (h-29+1
dz

= (h—2)'+1-2"— =

3

or, from (11),

21 _ Y I O Z
(h—32) 5= (h—~z)*'+1-2 T2y
Aﬁ
(h—2)"

Knowing the angular radius 8 of .the osculating small circle, and
also ¢, the angle at which the catenary crosses a parallel of latitude,
from § 3, it is possible to employ Mr. C. V. Boys’s method of drawing
the curve by means of a celluloid scale, bent to the radius of the
sphere, and pivoted instantaneously at the centre of the osculatmg
small circle.

The angles 6 and ¢ are connected with XA, the latitude, by the

= (h—2)'+

relations
3 2
tan 8 = Q;;m
tan'p = cos’ A gh-—smM’
l—sin A
or sec o sec)«:"—%p-,

tan @ = (h—sin A) secX sec ¢

= A sec’ A sec’ ¢.
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Suppose we put, in § 8,

mia =_(Q=2m)a

wz_(a—m)” y a—m

we now find that a root of equation (31) is

_ mid
el v
so that, in § 24,
k= 4a-1,
j_ (Ge=D) {2a'—2(m+1) a+1}
- 2a (a—m) ’

B _ 28—2(m+1)a+l
B 2a(a—m)
£-__m
M a—m'

Thursday, January 9th, 1896.
Major MACMAHON, R.A,, F.R.S., President, in the Chair.

Miss Grace Chisholm, Ph.D. Géttingen, and Dr. Robert Bryant,.
were elected members.

Prof. Elliott, by a method used in connexion with seminvariants,
showed how to obtain a criterion as to whether or not a rationa
integral homogeneous function of y, a function of z, and its deriva-
tives, is an exact differential, and further showed that, if it is, its
integral can be found by differential operations only.

The President announced the title of a paper by Prof. Lloyd
Tanner, viz., “ On a certain Ternary Cubic.” The paper, in the
absence of the author, was taken as read.

Mr. S. H. Burbury made a further communication “On Boltz--
mann's Minimum Function.”

Mr. Love communicated * Some Examples illustrating Lord
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Rayleigh’s Theory of the Stability or Instability of certain Fluid
Motions.”

Messrs. Cunningham and Larmor spoke on the subject of the
papers.

The following presents to the Library were received :—

‘¢ Beiblitter zu den Annalen der Physik und Chemie,”” Bd. x1x., St. 11;
Leipzig, 1895.

¢ Nautical Almanac for the Year 1899,’’ 8vo; London, 1896.

“ Bulletin des Sciences Mathématiques,”” Tome xix., Nov. et Déc. 1895
Paris.

¢ Bulletin of the American Mathematical Society,”’ 2nd Series, Vol. m., No. 3;
New York, 1895.

¢t Memorias y Revista de la Sociedad Cientifica Mexico,” Tomo v, (1894-5),
Nos. 1-2, 3-4 ; Mexico.

*¢ Nachrichten von der Konigl. Gesellachaft der Wissenschaften zu Gittingen,"’
Geschiiftliche Mittheilungen, 1895, Heft 2 ; Mathematisch-Physikalische Klaase,
1895, Heft 3, 1895.

“‘Rendiconto dell’ Accademia delle Scienze Fisiche e Matematiche,” Serie 3,
Vol. 1., Fasc. 11 ; Napoli, November, 1895.

¢ Mémoires de la Société des Sciences Physiques et Naturelles de Bordeaux,"
4¢ Serie, Tome v. ; Paris, 1895.

Rayet, G.—¢‘ Observations Pluviométriques et Thermométriques faites dans la
Gironde de Juin 1893 & Mai 1894,”’ 8vo ; Bordeaux, 1894.

Peter, B.—‘‘ Beobachtungen am Sechszilligen Repsoldschen Heliometer der
Leipziger Sternwarte,”’ roy. 8vo; Leipzig, 1895.

His, W.—'* Anatomische Forschungen iiber Johann 8., Bach’s Gebeine und
Antlitz,”’ roy. 8vo; Leipzig, 1895.

«“Atti della Reale Accademia dei Lincei—Rendiconti,’”” Sem. 2, Vol. 1v., Fasc.
10, 11 ; Roma, 1895,

¢¢ Educational Times,”’ January, 1896.

¢¢ Indian Engineering," Vol. xvin., Nos. 21, 22.



