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A CLASS OF DIFFRACTION PROBLEMS

By H. M. MacpoNaLD.

[Read January 14th, 1915.—Received, in revised form, February 19th, 1915.]

In the solution of the problem of the diffraction of electric waves by a
perfectly condueting right circular cone, the constants of the requisite
series were determined from the fact that these constants must be identical
with the constants in the series which represents the solution of the
corresponding potential problem, where both series are expressed in ferms
of the appropriate harmonie functions.* The solution of the problem of
the diffraction of electric waves by a perfectly conducting wedge was also
obtained in the same way.* The object of the present ecommunication is
to exhibit in analytical form the argument which demonstrates that the
constants are the same for the solution of the diffraction problem as for
the corresponding potential problem, and also to apply the method to the
solution of the diffraction of waves of sound by a rigid wedge. Solutions
of the corresponding potential problems are obtained in the form suitable
for comparison with the diffraction problem.

The solution of the diffraction problem depends on the solution of
linear partial differential equations of the form

Ew+r*0 =0, (D

where /£ is some operator, and w satisfies cerfain boundary conditions,
while the solution of the corresponding potential problem depends on the
solution of equations of the form

Ew =0, (2)
with the same boundary conditions. When the space for which the solu-

tions of (1) and (2) are required is the space bounded by £ =§, €= §&,;
n=n, n=mn; { =&, {=_; where & », { are coordinates determining

* Electric Waves, p. 90, 1902,
t Electric Waves, p. 187.



1915.] A (LASS OF DIFFRACTION PROBLEMS. 411

three families of surfaces, if the equations (1) and (2), when they are
transforméd to the new variables, take the form

Dyw+ Dyw+ Dyw+Pw [ fi(E)+fa)+ /)] = 0, (8)
Diw+ Dyw~+ Dyw =0, 4)

where D, involves only £ and operations with respect to £, D, involves
only » and operations with respect to », and D; involves only { and opera-
tions with respect to {, the solutions of (8), when the boundary condition
is that w or dw/on is given over the boundary, will be of the form

w=XL MN', 5)
and the solution of (4) will be of the form
w=ZLMN, {6)

wheve L', M', N', L, M, N are harmonic functions, and L', }M’, N’ assume
the values L, M, N when « vanishes.

The function L' satisfies a linear differential equation involving &
only, M’ satisties a linear differential equation involving » only, N’ satis-
fies a linear differential equation involving ¢ only, and when only one of
these three equations involves « the value of w which satisfies (8) can be
immediately obtained from the value of w which satisfies (4) with the
same boundary conditions. If the equation which is satisfied by L’ is
the one that involves «, then

M =M, N=N

for the differential equations, and the boundary conditions are the same
in both cases. Hence the solution of the problem is reduced to finding
the solution of the linear differential equation satisfied by L’, which satis-
fies the boundary conditions, and takes the value I, when « vanishes;
therefore, when the solution of (3) and (4) are expressed in terms of the
appropriate harmonie functions the constants in the two series are identical.
This applies when the space is that bounded by two concentric spheres,
two coaxial right circular cones, and two planes through the axis.

In order to apply the method to the solution of the problem of the
diffraction of waves of sound by a wedge it is necessary to obtain the solu-
tion of the corresponding potential problem in the appropriate form.
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Green’s Function for a Wedge.

Choosing polar coordinates r, 6, ¢, the potential V' at any point satis-
fies the differential equa.tion

2 ol 3 oV 1 %
31"“ + _’7_+ 7 ou (I_MQ)T-*_?'“ sin’f O¢? tHdmp =0, (7

where u 18 cos 0, p is the density of the inducing distribution at the point,
and the condition to be satisfied at the boundary is that ¥V vanishes.
Writing » = ae™?, equation (7) becomes

>V aV 1V - =
™o T 3 i ) O + Sin? 0 0¢® 55 Tamedem =0,
and, substituting V= Ue™,

the equation satisfied by Uis

;U 1

™" 10+ 2 a1 u’) T Uy 1 P a ¢2 +47rpa I~ = Q. (8)

When the space for which equation (8) is satisfied is the space bounded

by the spheres —a, r=ae™,

and the planes ¢ = b = ¢
the harmonic functions of A and ¢ which vanish at the boundary are

sin ﬂ gin T2

A0 ¢0 ’

where ! and  are positive integers, and the harmonic funection of u is the
function which satisfies the equation

0
a (1"‘1‘-2) l’-

_ mPr?
K3
where 7 is determined by the condition that y is finite for all values of u

in the space, that is, when

1—_%;—2 +nm41)y =0, (9)

1>5u>-—1.
Writing mar/¢, = m', the solution of (9), whieh is fimite when u = 1, 1is

y= P;™ (),

and n is restricted by the condition that P;™(u) is to be finite when
m#=—1. Now

- 1 1 m im' _ _
P (u) = r(1+m)(1+#) Fl—n, n+1, 14+n', 30—w)],
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and F[—n, n4-1, 14m', (1 —pu)]
= {30+ Fln+m'+1, m'—n, 1+m', 31 —w)];

(1 —u )Mn

om’ 11(1+ F[7l+?n +1 m' —n, 1+7n , %(1——,‘,)]

whence P;™(u) =
therefore, if P;™(—1) is finite, F(n+m'+1, m'—n, 1+m’, 1) must be
finite, and sinece the series diverges, it must consist of a finite number of
terms, that is, either n+m'+1 or m'—n is a negative integer. Again,
P-™ (u) and P;"™(u) are not different solutions of (9), therefore it is
sufficient to take the positive values of n for which n—m’ is a positive
integer. Henece the solution of equation (8) is

U=Z2 2 2 A me ginm'¢ Py™ (u),
l=0¢ m=0 n=w 0

where n—m/ is a positive integer, and
! -’ 2 2 FW
ixoq’oAlmn X {Pn (ﬂ-)}‘ d,u (n +%) + e
- 0

Ao o [1 ,

= 47a? J 5 J’ pe P sin L sin mr e P (uydhd¢p du,
0 Jo J-1 7\0 ¢'0

and therefore

2 w @ © Ao (o (1 ,
U= 16."-“ z sin it sin ——M(Z P;""(,u)g j j 1pe“}'\
0 0 -

¢ol0m(}nm >\o [1]

X 8in éﬁ';xs' 77};"4) P (') dN de' du' /l:(n+l) + [“7,- 5 (P (u')) 2du’,
0
(10)

and for the case of a point charge q at the point A, ¢y, uy, this becomes

16mget 5 Esmmsi trhy nm7r¢ o7 p P () Py ™ (uy)

>\o’ﬁoa I1=0 m=0 n=mw' 7\0 >\ $o

/ [(n+%)2+ 74:” P77 ()} 2du. (11)

U =

It is known that*

j P—m (,U.)P—m (M) d,u

1-—;40

dP;l’"
(711 —n)n,+n+1) [P T e ————

—P ;,_lm' (U-o)

d P,: n (,‘0)]
dpg ’

* Proc. London Math. Soc., Vol. xxxi, p. 265, 1900.
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therefore
' ' 1 L BPY(w) AP () dP—""(#)]
—1m 2 — —m n _ n n
jo (P2 )} i = an41 [Pn (ua) dudn du dn a=0
Now

IM{3(n—m'—1)}
{3(n+m"} I(—3)

X F[3(n—n'4+1), —3n+m'), 3, u*]

{3(n—m)}
H{%(n+m’—1)}, mpH“d—#

XF[3(n—m'+2), —+m'—1), 3, ],

P;™(u) = 2™ ecos §(n—m/) «

(1 —p?) 2

+2-* sin :(h—m") = 2y~
whence, when u =0,

M{t(n—m'—1)}
HGEm+mh} II(—1)’

F, ™ (0) = 27" cos § (n—m/)

a0 — 5w sin =) w A

et = —ama sy w i B
42" cos 3 (e—m)ar ‘% IIII:{ f ((;ll_:;b,,);—lll)(;) ,

T = mrenso—m) r T

d Hiin—m')}

42" sin %(n—m)vrTn T b —1)  TIG)’

and, since n—m' is an integer,

s BPT()  dP™(w) AP (M)]
[P"' (‘U') d" dn - df‘- dn p=0
= 1 2——21»@’ IT : %(n—m’)} 11 : %("—"ﬂl’ —_ 1) }
AT e m) it = 1) [ I(=HIG)
l " : 1 I e —m')
§ " g _
hence jo (P ()} 2du = T e

Again, when n—m' is an integer,

Py (—u) = cosn—m')m P;™ (u),

”
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therefore j’l {Pr™ () dp = 2 F{Pr:m’(ﬂ) A du,
-1 0
s ag. 2 IIn—m')
whence- 5—1{13“ W)} rdp = I+l dnFm)

The value of V is therefore given by
Q2 2 41 I (n4m)
2—0 n—zm’ 9 l"lr“‘ H(n-—m/)
I O TP LR N
U

A . loh, . mwd . MTPy 1 —

X 8in — sin sin sin P (w)P;™ (uy);
l Ao Ao Po Po '

V= _2. AG+A) 3

0¢0 =0 m

and effecting the summation for the values of I, this becomes
A+A)—cosh(n43A—A—A)

479 o 3 S II(n+m') cosh(n+3)Ny—
m=0 n=w I1(R—m') sinh (n+3)A,

V=
agy
XSID 71:7!'(}5 " ? P-—m (,U,) P;m’ (Ml)’
$o Po
when A > A,, and
v =49 goeny § 5 LOrtm)cosh@m+3 A=A +N)—cosh(+FAg—A—A)
a¢0 m=0 n=m' H(n— ’) sinh(n-}—%))\o
_"'_T_?_! P—"L (,u) P',:m’(l‘l),

X sm
0
when A << A,

When the space, for which the solution is required, is the space inside
the sphere » = @, bounded by the planes ¢ =0, ¢ = ¢,, the value of A,
is infinite, and the corresponding expressions for V arc

_ 4mq 3 3. OIn4m) ( ™ ™
T Po meo niw ILn—m’) 17T 7T
x sin 272 gin 71(%% P ) Pr™(uy)  (r < 1y),
o 0

2 % Oetm) (77 |
Z 2 T | Tn—?ﬁn

¢ m=0 n=m’
X sin mmp sin ﬁ(’flb_l Py () Pr™ (uy) (r > 7).
0

0
For the wedge, the space outside it being bounded by the planes

-
il
4]
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¢ =0, ¢ = ¢, the value of V is obtained by making a = ® in the
above, and therefore

_dng 3 3 Ladkm) 2 omrg ) powe <
V= ¢0 m§o 1r.=zm' H(n—m') '7';HHSIn ¢0 s ¢0 Pn ('u) " (ul) (r Tl)’

_4mq 3 % H(nAm') i . MTP . MTP; 1, 4 Py (r>1)
V= ¢0 mz=0 n=§7:n’ H(n——m') et H ¢0 s 4)0 P'n (ﬂ) " (Iul) ( !

These expressions can be simplified by observing that the origin of the
coordinates can be chosen so that the point charge is in the plane 6 = =,
then u, = 0, and the expressions for V become

O{tn+m—1} P

cos ¥ (n—m')mr ]
1

_4dmq § 5 ow
V= Po mé() n=2'm’2 I {i(m—m")} II(—3)

X 8in mmwep sin e, P (r < 7,
%o Po

» o 1 I__ ,r.1L
1,724;’{'!”9 T X 9» H{3(ntm —1)} eos%(n—m’)-:r;ﬁ;

¢0 m=0 n=m’ 11 {%(n_m,) ; H('—%)

ssin PEL gin TP P () (r > 1)
%o Po

or

_dmqg & & U +E—D) J 2k
V= Po mEU };§02 IL(k) 1IL(—3) cos km ,).11n’+2lc+1
X 8in mmp sin by P r <y
¢0 ¢o 2
o'+ 2k - (1 )
.

1
cos kr ST

:ﬂ E 5 sm’H(lm"-'_k—-%)
14 ‘/’o m=90 ICEOz H(k)H("'%)

x sin 2ZP gin BT i) (> 1)
Po Po .
These expressions give V in terms of the harmounic functions appropriate

to the space; the results can be obtained from them in fthe form pre-
viously given by the writer*® as follows.

1t is known that

o™ L (m' —3) IL(2K)

Prl () = H@m +26 1 (—3)

A —pd¥™ CpRiw),

* Proc. London Math. Soc., Vol. Xxv1, p. 160, 1895.
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where Cp*¥u) is the coefficient of z** in the development of
(1—2uz 4xhy™+t

in a series of powers of z, hence

; —44— o o0 (L w’ + 24 _ oum H(m'—%)ﬂ(k-—-%})
’ 716 m§=)0 /Eo r,) (L= cos ke ILon' + k)

X sin mT?"é gin ﬂgﬁ Cnttw) (r<<r,
0

0
where » and »; are interchanged, when » > r;. Writing

_ 2 (r\* I —HT(*k—})
S"‘“'z( ) II(m'+ %)

k=0 \ 7y

cos kr.Cptt(u),

it follows that

n 1
Sp= 2 5 (L —ud™ 0w 2% cos k. Cl+(w) du,

k=0 J~1

where z = 7/r;, hence

S = f (1 —u®y™ 5 du
Pm (1 —Quuau —xPud)™ 8

and, subsfituting

1—2uzu—z*u? = (1—ud) zsin 6.7,
this becomes
0 +y em’{; df

_ . —n
S = 2 (@ sin @ Ln —y 4/(2c8in 0 cos {—1—z%)’

where the path of integration lies wholly in the upper part of the {-plane
and passes between the origin and the branch point «{,, where

cosh {, = (142z%/2x sin 0

of the integrand which lies on the imaginary axis in the upper half, but
none of the other branch points + «{; + 2nx. Now

V = 4q % (L)m S, sin™ 6 sin Z—ngsin”—i}f—%‘ (r<r),
0 (1]

T1g m=0 \ 71
therefore
2ql ” o +y e""’";‘/(#\) d§ . 7n7l'é . ’m1r¢
=21 - — sin 8in ,
4 Po ,,Eo Sm —y A/(2rry8inBeos {—1*—r)) $o 1

gER. 2. voL. 14. wo. 1247. 2B
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R g
or V= 26, ,L, —y4/(2rr, 8in 6 cos {—1r*—1?)
y ‘ sin -?1)—5 3 gin ?f \’r ’
'( cos :Tf ——cos;— (p—¢y) cos ¢§ cos——- (¢+¢1)j
N 0 (i]
that is, writing for ¢, { and (;'2+rf)/2rr, 8in 0 = cosh »,
V= q dg
b/ (2rrysin 0) ), a/(cosh {—eosh #)
{ ginh ¢ sinh =<
| ¢0 — - ‘/’o E\; (13)
( cosh i —~co8 — (¢—¢;) cosh i —cos — {¢+ gbl))
0 0 Po ¢o

the resulf in its previons form.

The velocity potential of the motion of liquid, in the space bounded by
the planes ¢ =0, ¢ = ¢,, due to a source of strength ¢ at the point
ry 3w, @y, is immediately obtained in a similar way, and is given by

27q $ (T #* I(k— 4wq % o
'1¢07 =0 <7'1> H(k)n( )COSAWPQIC(#)-I_ 1¢0 mzl k§02
W' +k—3) (v \™%®__. mwep  mwey
X eos Icvr———~——H W= (—E) P, () cos % cos Y (r<<mny), (14)

and the corresponding expression with » and », interchanged, when » > r,.
These expressions can, as above, be transformed into

q ” d
P4/ (277 8in O) S,, 4/(cosh {—ecosh x)

( sinh gt sinh = )

b . ‘/’n + Po -

{ cosh ;:—f —co8 % (¢p—¢;) cosh 7—(;)—5; —co8 %0 (¢+¢1))
where cosh n = (4 1))/2rr, sin 6.

The solution of the problem of the diffraction of waves of sound due to a
source at the point 7, 7, ¢; is obtained as follows. The linear differential
equation that involves x, where 2x/x is the wave length, is

2 dL n(n—l—l)b
d7’2+r dr+{K2 woL=0
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and the solutions of this equation are required which tend to the value
r*/ri*l, when r < r;, and to the value #7/r**!, when » > »,. Since L is
finite when » = 0, the solution, when » << r,, is

L = Ar=3, 59,
and, since the waves are all travelling ontwards at infinity, the solufion,
when r > ry, is L = BrtKo,; (xr) ;
and, since the two solutions are identical, when » =,
L = Cr 4 (er) Kugy (ery) (0 << 1),

L= Cr 3T r) Kooy (er)  (n> 1),

Now, when x = 0,

C ,'.n __("4_1)1,”
L= 2n+1 " ) (r <),
C e , g
therefore Y T wipim — T
o In¥1 riEe FEat
whence C = 2n+41) eDimprd,

and, if the velocity potential due to the source alone is ¢*“ ®/R at a
distance R from it, where a is the velocity of sound, the veloeity potential
of the wave motion is Ue**, where

M (k—

H———-——-——( D=5 Pyu)

U= ?l’—w k20(4k + 1)+ dmp=dypmb T (00 Kager 3 (i) cos
0 =
+; il ]2 2™ (2m/ +4k+41) e+ B+ Bimy ”?'1—% m’+21c+§(157')If1:L'+2k+5(lK7'1)
0 in=1 k=

m' +5~— 2) P—mok(ﬂ) OB ———tm 7)&7T¢ —i (when » < ’rl)’ (15)

X cos kT T TI(—) L %

and the corresponding expression with » and #, interchanged, when »>>r,.
Now*

I +2k43 k1) K +ok+3 (1kry)

x27'7'1> ds

49
m+..k+§( s s

2
€~

— %e—(wn’+2k +8) dme 50 et}s—x’ (r3+r12)'2s I

* Proc. London Math, Soc., Vol. xxx11, p. 155, 1900.
2 g 2
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2., WLty
and* § STV (K Wl) = —3 5 ’ grtrms-omran kb gf
*\ s 27 Juoety !
where 2r >y> T, 0> vy > —m,

hence, writing

Su = 2% T (Qm' 44k41) % +Dim
k=0

IHm' +5k—3 ,
X cos ]ff"ﬂ'Jm’+2k+§l (kc7) Km’+2k+; (excry) —I%) qu’q-,: 2%k (),

that is,
Eu = % sin™ 6 T (2m' +4k+1) e B+ Dim
k=0

Hon'—4H) 1N (k— .
X cos k'ﬂ'Jm’+2k+§ (x7) K‘m’+2k+&)(““'1) (777/II (,’;2’)r+§‘.) %) 072’;;+é(/")’

it follows that

Sy = 1 sin™ 0 E 2m'4-4k4-1)
x=0

47

X cos kr II(m'—%)H(k—%) J'O qu—y eis—x!/Zs(r’+r1=_2rrxcos§)+(m’+2k+§)§L

II(m' 4 k)

c—wiJoity

X s~1d¢ds O+ (u),
or, integrating by parts with respect to ¢,

= ein”0 3 ' =) ;=) sy 2y f rw
Sm - 271'21, sin 6 ,Eocos k?r H("b’-I-k) Czk (l-") K°TTy S

X e§s~xs/2s(r=+nl-2n~l cos §)+(m +2k+8) e sin §d§ is_ R
SZ
Now, by the above,

THon'—3H HE—D)
I +k)

= 3. (¢S sin G)~™ 5

kEO cos kw ¢ O+ ()

@i+y) em’{,; d§1
wimy, (26%8in6 cos —1—e*)t’

where the extremities of the path of integration lie in the upper half of
the plane, and the path encloses the branch point of the integrand that
is continuous with the branch point of the integrand on the positive

* Electric Waves, p. 191, 1902.
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imaginary axis when { is a pure imaginary, therefore

2., 0 Bty oty
S _ Kk ! 18- x2{28 (724 72— 211 e0s {)+ M5
m — P e

47° Joen,

Lty Joi—y

X 274 (sin 6 cos {; —cos {) "t sin { d¢, ds dg

whence, changing the order of integration, and integrating with respect to ¢,

0 wity”
S,=— (2.’,.)—% K(rrl)5 j j' ! els— 2 (P4 ri2 vy sin @ o8 1)+ Gy o—4 dg—l ds,
C=Wemi=—y;
where Qr >y >w, T>¥H>0;

or, replacing the integral with respect to s by its known value,

1 R v ; .
S, = 2_7r (,'.rl)é e u\/(r2+;,s-2m‘smOcos{l)-;»,n{“(;ﬂ__‘_’.f_27.,r1 smOcosfl)"*d{l,

wi=~y
and, substituting this result in the expression for U, it becomes

1 Be-yy _
U= —— e—un/(:?-(-r, 2ivy 8in @ cos 1) (,’.2+' _27)1 sin ] cos Sl)

¢o wetyy
X (1 42 3 et oo MTP o5 ?"'l‘él) aé,,
1

%o )
that is,

L ®tmNn Ak 2 2 i .
U=-"- 5 e—u\/(r’+712 271y 8in 6 ¢os §)) ('.2_’_,,.?_2”.1 sin O cos S;l) -3

2¢0 Wity
( sm—g-1 Siﬂ'w—g-1 I
X - ) + %o *
(cos—% —cos%(qﬁ-—%) OOS%} "GOS% (¢+¢1)J

When ¢y = «/n, where n is an integer, the result agrees with that
obtained by the method of images, for

n sin né "z‘:‘ sin {
cosn{—cosn(gp+¢;) ;o cos {—cos(p* ¢ —2kw/n)’

* In the particular case when ¢, = 2w, this result is equivalent to that given by Carslaw
Proc. London Math. Soc., Vol. xxx, p, 189, 1898,
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and each term of the sum is immediately integrable, giving

-1
U = nz [e—mv{wwl'-zm sin 8 co8(p—g1 —2kn/n)}
L=0
2 9 -
X {72412 —2rr sin 0 cos(p— ¢, — 2k /n)} ~?]
_I__e—u\/{r?+r,’-2rr, sin g cos (¢+¢|—2k1r/n)}

X {413 —2rr, sin 0 cos(¢p+ ¢, —2kw/n)} ~H

For the case of the straight edge or half plane ¢, = 2=, and

@i—y1

L . A .

U — __.j 6—¢n/(r’+112—2rr1 sin@ cosd) (rz ' 7.12 2,'.,'.1 sin 6 cos g-)—é
4 Dty

{ sin 3¢ sin §¢ )
X\ cos 3{—cos 3 (p—¢yp + cos 3{—cos 3 (p+¢y)) a5,

which can be expressed in terms of integrals between real limits in a form
suitable for approximation as follows. Writing

¢ (=™
I —weV (724 112=2rr] 5in 8 coR §)
Wiyl

sin 3¢ dt.

24 29y gi -
X @4 ri—2rr;8in 6 cos {) cos 3¢ —cos (p—¢y)

it follows that

’

Lyl r eés—x"ﬂs (rd+7)2—2rr1 8in @ cos §) sin %g d§ @
c=o0t s

I=— 11;‘;:(2#)‘*5 cos 3{—cos 3 (p—¢py)

wt+yl

and writing

W —_ jam—wn 6x2rr1\s sin # cos¢ Sil] 7}§ df
wetyy cos 3¢ —cos 3 (p—epy)

this becomes, on substituting

cos 3 = tcos 2 (p—oy),

% dt
W=2 gn’m/s gin 6 (23 cos* 4 (b —1) - 1]
to -
where, when cos 3(¢p— ¢, is positive,
ta=1c¢'+oy Lh=—c¢—®;y

and the path of integration erosses the positive real axis to the right of
the point ¢ = 1, since, when { is a pure imaginary ¢ is greater than unity;
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when cos 3 (¢—¢,) is negative,
ly=—¢'—®¢, tH=c+woy,

and the path of integration cuts the real axis to the left of the origin since
¢ is negative when { is a pure imaginary. Hence, when cos 3 (¢p—¢,) is
positive,

—C =0

W = 26_"'"‘“’ sinoj e?x’w;/st-’sinbcos”é(d»—m) dt

4w t—]- ?

that is, deforming the path so as to make it coincide with the imaginary
axis, singe it passes over the singularity ¢t =1,

W = —4m e—x‘rry’a sin @ cos(¢—¢1)+26—x’¢r1fs sin g J_w ' e‘zxﬂrrl stisin 6 cos? § (¢ — 1) ; dfl
. - L dt
now writing W = 5 e =1
wi ght? r' e~Mdt

. (N —_ —_—
it follows that W = 250 oy at = 2 . BF1
or W= mj s e~ PrIE-v gt dy = Mvrj e (h+u)~tdu,

0 JO 0
that is, writing htu = w?2s,

gince the real part of s is always positive,

o0

W= i (@m) j e~ 5=,

o

where wy = (2sh)t;
therefore
W =— 471_‘8—;%-1/3 sin am(¢~¢1>+ 2 (2W)§s—5exwrnlssino cos (p—~o1) J' e—w',r‘.m dac.
wq
where wy = 2« (rry sin 6)} cos 3 (p— ¢y,
Hence

I -_—— (27")—§K 5“ ek—"’m {7“""‘1"2"'1 sin @ m(“¢l)}s_§ ds

C—me

e—ot

.
J eis—n’/;!s {r3+1‘1’—2r7‘1 8in @ cos (¢—¢1)}—w’/2s 3—2 ds dw,
Wo

+(2vr)-1xf
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and writing R? = P*4-13—2rr, 5in 0 cos(¢p—¢y),

where R is the distance of the point (r, 8, ¢) from the source, this becomes

_ e (7 Ky (/PR ) |
I=—g—= L V@B
that i 1—"_"1{—‘~’5ij( R cosh &) d¢
at 18 =% - ) 1« R cos »
where sivh £, = 2R~'(rr, sin O)t cos 3 (p— o)) ;
b —weB
now % j_m K, (xR cosh &) d§ = 8R ,

therefore the result ean be written in the form

I="{" K («Boosh&)d
=) KilxEcos 8)dE.

Again, when cos 4(¢p—¢,) is negative,

'+
W = Ze—x’m[ssino sc > 62x2rr1/s sin @ cos? § (¢—od1) 42 dt

—¢'—we t_l'

and, deforming the path of integration so as to make it eoincide with the
imaginary axis, since it does not pass over the pole of the integrand

?

a0 L 3 dt
W =2 5 e?x’rr;/a 8in 6 cos® § (p—¢a) 8 _ 1LV

—0i

whence, by the above,

W = — 2((27) g—tg*rrssing cos (b—¢1) r e~ Y% dap,
where wy = — 2 (rry 8in B cos T (p— ) ;
and therefore I= %{'- j; K, (kR cosh £)dE,
where sinh £y = — 2R~ (rr; sin 0)% cos 3 (p—¢)),

and this can be written

™

[ £o K
= — 1{(«cR eosh £)dE,

where sinh £, = 2B~ (rr, 8in 0)* cos 1 (p—¢y).
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Similarly, writing

® =y - : . . s
I, = i— j gurt+r=2rmisingcosl) (031 ,2__ 9y, gin @ cos ¢)
w

@ity
sin 3¢
d
X cos e—cos } p— g0 %"
&
it follows that IL = fr'fj K, (xR’ cosh £)dE,
where R = 9412 —2rr, 8in 0 cos (p+¢y),

sinh £ = 2R’ (»r; sin 0): cos 3 (p+ @),

and R’ is the distance of the point (r, 8, ¢) from the image of the source
in the plane ¢ = 0. Hence

o 1
U= J' KR cosh £ df+ = |" K, (xR’ cosh £)dg.

The corresponding expression for the velocity potential of the liquid
motion in the space due to a source of unit strength is obtained from this
by substituting « == 0, and gives

Lfo df + 1 551 df
#R )_. coshé ' wR'}_,, ecosh &’

L (12, SR TRE IS O ST 180
that is £ 13 -+ - tan~! (tanh %fo)J +R’ |2 + — tan~! (tanh 251)) ,
and the corresponding expression for Green’s function is

101 02, . V_ Ll 2 2y 1

712 + — tan~! (tanh &) i TR + - tan~! (tanh }&,) L

a known result.

The expression given above for U is in a form suitable for approxima-
tion. When R is small, that is, when the point (», 0, ¢) is near to the
source, &, is very large and tends to infinity as B tends to zero, hence the
value of the first integral tends to ¢***/R. When the point (», 0, ¢) is
not near to the source, R is finite and R cosh £ is not small within the
range of integration, hence K (xR cosh £) can be replaced by its asymptotic
expansion, and the principal part of the first integral is given by

o £o
I= % S_w K, (xR cosh £)df = « (ZWR)”ée*"‘J e~ EcoshE (aogh £)~2 dE,

—®

that is, writing (2¢R)* sinh 3£ = w,
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", —

o 2\ —4 3 3
by W‘iR-—leim—mR‘( <l+ ;(%) (1+ E%R) e“"’du,
where Uy = & &/ {(0P+7r24-2rr sin O} —R} o,

and the upper or lower sign of the radical is taken according as cos 3(¢p—¢y)
is positive or negative, hence the principal value of I is I, where

I_ = W—iR-—le}m—-mR S 6—tu"du.

—w

In the second integral the Bessel’s function can always be replaced by its
asymptotic expansion, since as R’ tends to zero, R’ cosh £ is always finite
within the range of integration, being always not less than

(412427, 8in 6),

its value at the upper limit £&;; hence the principal part of I, is

b getm— ek jun (u2+KRI) -3 @‘uﬂ-}-KR') —% g du,

where wy = + A/ { P+ 7242rr, sin 0 — R’} ob,

and the upper or lower sign of the radical is taken according as cos(¢p—¢,)

is positive or negative, therefore the value of the principal part of I, is 1,
where

_ , (m
I1 — T—le—leim—mR 5 e““‘*du,
— a0

when R’ is not small, and I, tends to the value

—uy
2 w"*xe*’”s u2e~"*du,

where uy = /(2xry),
when R’ tends to zero. When 7, is very large, %, and «, tend to the values

»/(2xr sin 6) cos 3 (p—¢1),  A/(2«7 8in 6) cus (¢ + ¢y,
and the result becomes that for plane waves agreeing with the kunown
result.
Similar forms of the solution can be obtained for the case of a line
source parallel to the edge of the half plane at a finite distance from it;
the method of reduction of the integrals in the known solution* is identical

* Klectric Waves, pp. 192, 195.
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with the preceding investigation, and the results are, when the electric
force due to the line source in the line (r, ¢,), is

Ky {uch/[P+72—2rr; cos (p—g¢)] | =7,
the resulting electric force is given by Ze*"*, where
Z =__}550 g— xR cosh § df—3 551 . i,

where h
Rsinh £, = 2(rr)tcos 3 (p—¢y), R sinh & = 2(rr) cos 3 (p+¢y),
R? = 412 —2rry cos(p—¢py), R® =+ —2rry cos (p+¢y) ;
when the magnetic force due to the line source on the line (r,, ¢,) is
Ky {uca/[7P 1] —2rr; cos (p—¢y)] } e,

the resulting magnetic force is given by ye*”*, where

y=#|" eromiagy|

(31
-0

e—s:R’ cosh ¢ df





