LXXVII. Note on the theory of permutations

A. Cayley

To cite this article: A. Cayley (1849) LXXVII. Note on the theory of permutations, Philosophical Magazine Series 3, 34:232, 527-529, DOI: 10.1080/14786444908646287

To link to this article: http://dx.doi.org/10.1080/14786444908646287

Published online: 30 Apr 2009.

Submit your article to this journal

Article views: 16

View related articles

Citing articles: 3 View citing articles
moist summers to account for the production of gigantic glaciers upon land. This last hypothesis is at variance even with the physical phenomena in and around the Alps, whilst it is in entire antagonism to the much grander and clearly established distribution of erratics of the North during the glacial period. The effect in each case is commensurate with the cause. The Scandinavian chain, from whence the blocks of central Europe radiated, is of many times larger area than the Alps, and hence its blocks have spread over a much greater space. All the chief difficulties of the problem vanish when it is admitted, that enormous changes of the level of the land in relation to the waters have taken place since the distribution of large erratics; the great northern glacial continent having subsided, and the bottom of the sea further south having been elevated into dry land, whilst the Alps and Jura, formerly at lower levels, have been considerably and irregularly raised.

LXXVII. Note on the Theory of Permutations. By A. Cayley*.

\mathbf{I}^{T}T seems worth inquiring whether the distinction made use of in the theory of determinants, of the permutations of a series of things all of them different, into positive and negative permutations, can be made in the case of a series of things not all of them different. The ordinary rule is well known, viz, permutations are considered as positive or negative according as they are derived from the primitive arrangement by an even or an odd number of inversions (i. e. interchanges of two things) ; and it is obvious that this rule fails when two or more of the series of things become identical, since in this case any given permutation can be derived indifferently by means of an even or an odd number of inversions. To state the rule in a different form, it will be convenient to enter into some preliminary explanations. Consider a series of n things, all of them different, and let $a b c \ldots$ be the primitive arrangement; imagine a symbol such as $(x y z)(u)(v w) \ldots$ where x, y, \&c . are the entire series of n things, and which symbol is to be considered as furnishing a rule by which a permutation is to be derived from the primitive arrangement $a b c \ldots$ as follows, viz. the ($x y z$) of the symbol denotes that the letters x, y, z in the primitive arrangement $a b c \ldots$ are to be interchanged x into y, y into z, z into x. The (u) of the symbol denotes that the letter u in the primitive arrangement $a b c, .$. is to remain unaltered. The $(v w)$ of the symbol denotes that the letters x, y in the primitive arrangement are to be interchanged x into y and y into x, and so on. It is easily seen that any permutation

* Communicated by the Author.
whatever can be derived (and derived in one manner only) from the primitive arrangement by means of a rule such as is furnished by the symbol in question*; and moreover that the number of inversions requisite in order to obtain the permutation by means of the rule in question, is always the smallest number of inversions by which the permutation can be derived. Let $\alpha, \beta \ldots$ be the number of letters in the components ($x y z$), (u) (vw) \&c., λ the number of these components. The number of inversions in question is evidently $\overline{\alpha-1}+\overline{\beta-1}+\& c$., or what comes to the same thing, this number is $(n-\lambda)$. It will be convenient to term this number λ the exponent of irregularity of the permutation, and then $(n-\lambda)$ may be termed the supplement of the exponent of irregularity. The rule in the case of a series of things, all of them different, may consequently be stated as follows: "a permutation is positive or negative according as the supplement of the exponent of irregularity is even or odd." Consider now a series of things, not all of them different, and suppose that this is derived from the system of the same number of things abc... all of them originally different, by supposing for instance $a=b=\& c$., $f=g=\& c$. A given permutation of the system of things not all of them different, is of course derivable under the supposition in question from several different permutations of the series $a b c .$. . Considering the supplements of the exponents of irregularity of these last-mentioned several permutations, we may consider the given permutation as positive or negative according as the least of these numbers is even or odd. Hence we obtain the rule, "a permutation of a series of things not all of them different, is positive or negative according as the minimum supplement of irregularity of the permutation is even or odd, the system being considered as a particular case of a system of the same number of things all of them different, and the given permutation being successively considered as derived from the different permutations which upon this supposition reduce themselves to the given permutation." This only differs from the rule, "a permutation of a series of things, not all of them different, is positive or negative according as the minimum number of inversions by which it can be obtained is even or odd, the system being considered, \&c.," inasmuch as the former enunciation is based upon and indicates a direct method of deternining the minimum number of inversions requisite in order to obtain a given permutation; but the latter is, in simple cases, of the easiest application. As a very simple

[^0]example, treated by the former rule, we may consider the permutation 1212 derived from the primitive arrangement 1122. Considering this primitive arrangement as a particular case of $a b c d$, there are four permutations which, on the suppositions $a=b=1, c=d=2$, reduce themselves to 1212 , viz. $a c b d, b c a d$, $a d b c$, bdac, which are obtained by means of the respective symbols $(a)(b c)(d) ;(a b c)(d) ;(a)(b d c) ;(a b d c)$, the supplements of the exponents of irregularity being therefore $1,2,2,3$, or the permutation being negative; in fact it is obviously derivable by means of an inversion of the two mean terms.
58 Chancery Lane, June 1849.

L.XXVIII. Proceedings of Learned Societies.

ROYAL SOCIETY.
[Continued from p. 469.]
Feb. 22, ESCRIPTION of an Infusory Animalcule allied to 1849. Dhe genus Notommata of Ehrenberg, hitherto undescribed. By John Dalrymple, Esq., F.R.C.S.

The examination of various specimens of the animalcule described by the author, disclosed the diocious character of one of the more highly organized of the rotiferous class of Infusoria, hitherto supposed to be androgenous. This discovery was first made by observing the difference in the form and development of the embryo while still enclosed in the ovisac of the parent animal. From the extreme transparency of this form of rotifer, it is possible to trace the progressive development of the young from the Graffian vesicle in the ovary to the period of mature gestation, when the embryo is expelled, the whole machinery of whose organs has been perfected while still within the body of the female.

Thus, although the young one observed in the ovisac, when nearly ready to be expelled, was in the great majority of instances a miniature portrait of the parent, yet occasionally an embryo was seen of a different aspect, within whose body a vesicle was discovered filled with actively moving spermatozoa.

A further investigation of the subject brought clear evidence of the functions performed by this male,-its copulation with the young females; but it also displayed the singular fact, that although the organs of reproduction and locomotion were highly developed, there was a total absence of those of assimilation; in fact, that neither mouth, nor stomach, nor other digestive cavity or glands, were present in its curious organization.

In the early part of the paper the author describes the anatomy of the female, which differs from the family of Notommata of Ehrenberg, in the absence of intestine and anal orifice, and forcipated or caudal foot. In every other respect the organization is so similar to that class, that the author believes the proper place for this animalcule to be in a sub-genus of Notommata.

Phil. Mag. S. 3. No. 232. Suppl. Vol. 34.

[^0]: * See on this subject Cauchy's Mémoire sur les Arrangemens, \&c., Exercices d’Analyse et de Physique Mathématique, t. iii. p. 151.

