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On the Flexure of an Elastic Plate. By HORACE LAMB,M. A., F.R.S.

[Read Bee. \2lh, 1889.]

The following paper, which was written out in substance more than
a year ago, is an attempt to put in as simple and straightforward a
form as possible the theory of the flexure of a plane elastic plate of
uniform isotropic substance, with comments and illustrations designed
to elucidate points of difficulty. I should hardly venture to submit
it to the Mathematical Society, except for a certain novelty in the
treatment of the boundary conditions, where attention is drawn to a
point of some importance not hitherto, I believe, noticed. It is hoped
that the method here given may help to remove some of the obscurity
which, if we may judge from some recent writings, is still held to
attach to this part of the subject.

In a future paper I hope to discuss the case of a curved plate or
shell, with special reference to the points in controversy between
Mr. A. B. H. Love and Lord Rayleigh.*

1. A few remarks on the nature of the problem may be in place at
the outset. It is one of a large class in mathematical physics, where
the difficulties of an exact solution are evaded by means of special
assumptions based either on observation or on a sort of induction
from the known results in such particular cases as admit of rigorous
treatment. As instances, we may cite the flexure of a stretched
membrane, the theory of " long" waves in canals, the conduction of
electricity in a wire of varying section, and so on. In many of these
questions, it is true, the auxiliary assumptions required are of so
obvious a character that no dispute about them is possible, and it is
therefore not always thought necessary to state them expressly. The
present problem is, however, by far the most difficult of its class, and,
although it has been the subject of many elaborate investigations,
there cannot be said to be at present any general agreement as to what
is the proper foundation for the theory. Without entering into a
detailed criticism of the investigations referred to, we may remark that
many of them,t at least as ordinarily presented, appear to set undue

• See Phil. Trans., 1888 (A), pp. 491-540, and Proc. Roy. Soc, Deo. 13, 1888,
p. 105.

f More especially those which start from the general equations of elasticity.
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limits to the scope of the theory by restrictions as to the continuity
of the distribution of impressed force, and the magnitude of its rate
of variation from point to point of the substance. For example, it
can make no sensible difference to the general form assumed by the
plate whether a given force be applied as a pressure on one face or
as a tension on the other, or whether it be a bodily force acting on a
small volume of the substance—whether, again, it be diffused and con-
tinuous, or concentrated and discontinuous, although the distribution
of strain in the immediate neighbourhood may be very different in the
several cases.

It appears most natural to regard as the object of the theory the
determination of the general form of the middle surface, ignoring such
minute features as may arise from the particular mode of application
of the external forces, in the manner indicated. With this view we
shall understand by the " deflection" at any point of the middle sur-
face the mean deflection over an area including this point, whose
dimensions are of the same order as the thickness of the plate. By
an " element" of the plate,we shall understand the portion cut off by
a cylindrical surface drawn through the contour of such an area
normal to the middle surface. In like manner, by an element of a
normal section we shall understand the portion corresponding to a
linear element on the middle surface, of length comparable with the
thickness.

This being premised, it will appear that a complete theory can be
based on the following principle:

If the external forces on each element of the plate are by them-
selves in equilibrium, the deflection will be everywhere zero, and the
stresses across any element of a normal section will be in equili-
brium.

By the method of superposition of stresses and strains, this is equi-
valent to the following:

The external forces on an element of the plate are suQiciently
represented by their force- and couple-resultants ; i.e., we need not
attend to the particular way in which the forces are distributed
within the element. The same applies to the stress across an element
of a normal section, and to the applied force on an element of the
boundary.

2. It is necessary, as various writers have insisted, to distinguish
between the state of things in the main body of the plate and that
which obtains near the edges. As regards the former, it is easy to
show, on the above principle, that the essential features of the defor-
mation can be represented by the superposition of two particular
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states of strain, to be described. The plan of the following investi-
gation is, first, to ascertain the distribution of applied force which
would accurately maintain the resnlting strains ; and then to show
that, if the functions at our disposal are properly chosen, the deflec-
tion will not sensibly alter when for the distribution in question we
substitute that which actually holds.

The first of the two states of strain referred to is that assumed by
Kirchhoff as the basis of his first memoir on the subject, and after-
wards employed by Thomson and Tait. It is defined by the proper-
ties (i.) that the middle surface is unextended, (ii.) that the particles
originally in a line normal to this surface still form a straight line
normal to it in the strained condition, and (iii.) that there is no
traction across planes parallel to the middle surface.

Taking, as usual, the axes of x, y in the middle surface, in the un-
strained condition, let w denote the deflection at any point (x, y) of
this surface. In the state of strain above defined, the coordinates of
any point of the substance are changed from («, y, z) to (x, y, z"),
where

, dw / dw
x = x— — z, y = y— — z,

dx dy

so that the projections of a linear element (dx, dy, 0) become

i , d*w i . /1 d^w \ jdy =——j-z.dx + 1 1— -TTZ) dV'dxdy \ dy1 I

We have here neglected the square of the angle which the normal to
the middle surface makes with its original direction. Hence, for the
elongations parallel to x, y, we have

e « = ~ TT zt ew = TT zt

dx dy
while the shear in the plane xy is

e*v ~ ~ 2TITdxdy

The elongation eM parallel to z is to be found from the condition
that there is no traction across any plane parallel to the middle
surface, that is

0 =plt = (A + 2/ti) e« + \ (exz+eV9),
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the notation for the elastic constants being that introduced by Lame,
and now generally accepted by continental writers.* Substituting
the value of e«, hence obtained, in the expressions for the remaining
component tractions, we find

4 f X-f M) n
= — - ~

where <r, = A./2 (\+/x), is Poisson's ratio.

The applied forces necessary to maintain this state of strain are,
per unit volume,

\ CM; ay az

dv%

dx '

( 4 ^ + ^ d v ,
v f \ + 2n dy

where V2 =

Replacing these by their force- and couple-resultants X, Y, Z and

* A few words on this difficult question of notation. As regards the elastic con-
stants, a special symbol for the rigidity is in any case required, whilst it is com-
paratively unimportant in what manner the second elastic constant is defined. So
many combinations of the two constants are needed—e.g., the cubical compressi-
bility, Young's modulus, Foisson's ratio, &c—that it is impossible to devise a
notation which shall give simple expressions to them all. Lame's notation is con-
venient, and has found wider acceptance than any other. That of Thomson and
Tait is in itself very neat, but is open to the objection that the letters in, n are BO
often wanted in other senses.

With respect to strains and stresses, some form of double suffix notation appears
to the writer to be for many purposes almost indispensable. Such forms have at all
events the advantage that they define themselves, and so give no trouble to readers
who are accustomed to other notations. F. Neumann's symbols for the component
stresses (Xx, Xv, Xe, Sec.) are very expressive, but the corresponding notation
devised by Kirchhoff for the strains (xx, xv, xt, &c.) seems far less happy.
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Jy, M, .AT, reckoned per unit area of the plate, we find

X = f* (X) dz = 0, T = 0, ~Z= 0,
J-ft

4£?«;,

ay

M= (* z(X)dz = A-V\o,

where 27i is the thickness, and

Next, for the stresses across normal sections of the plate. The
stresses across a section perpendicular to x reduce to a couple whose
components are, per unit length,

Gxx = -[ Pxvzdz = (l-<r) A p?-t about Ox,

and Gxv= {" pxxzdz=-A (f^+o-f?), about Oy.

In like manner the stresses across a section perpendicular to y reduce-
to a couple whose components are

f* A f&w , d*w\
A + ]

and Gn = pxyzdz = — (1—<r) A-——, about Oy.*
J-ft dxdy

We notice that
aa;

dx dy ' "\N

as evidently ought to be the case, since the stresses on the boundary
of any portion of an elastic solid must balance the applied forces on

* In the notation of Thomson and Tait,
Gxx — — GVJ) = IT, .
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the interior, the portion considered in the present instance being the
element of the plate corresponding to the rectangular element dxdy
of the middle surface.

We shall require, presently, expressions for the stress-couples across
any normal section. Let the normal to the plane of the section make
an angle f with the axis of x, and let the component couples about
this normal and about the line in which the plane of the section meets
the middle surface be SR and X, respectively. Considering the equili-
brium of a triangular element of the plate bounded by this soction,
and by sections perpendicular to x and y, respectively, we find, taking
moments about Ox, Oy,

G.xx cos <{> + Gyx s i n <p = 01 cos <p—% s i n (j>,

Gxy COS <j) + Gyy tilTi (j> = 9l Bill <j> "f X COS f,

whence

01 = (l-a)A (cos"*-si
dxdy ' K~ "' r " Vdtf dx

~ , d?w . d w\
X = — crAl —T + 3-5-

\dx* dy* I

^ c o s 0 s i n ^ + | ^
dxdy dif

3. The second state of strain which we shall consider is as follows.
Keeping the middle surface fixed, let the particles on either side
undergo displacements relative to it whose components are of the
forms

where P, Q are functions of x and y as yet undetermined. We will
further suppose that the variations of P, Q, when x and y receive in-
crements of the order h, may be neglected in comparison with the
values of these functions themselves. This is to be regarded merely
as a provisional assumption which may be justified a posteriori
in any particular problem. On this supposition we may write, for
the components of stress,

P*x = 0 , pWJ = 0, pzz — 0 ,

and we find that the stresses across an element of a normal section
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perpendicular to x reduce practically to a force parallel to z, whoso
value per unit length is

Similarly, the action across an element of a normal section perpen-
dicular to y reduces to a shearing force

per unit length. Hence the above formulae for a, /8, y may be written

V 3fcVf ^ ~ 4 > T 8tf/f V ~

By considering a triangular element of the plate as before, and re-
solving parallel to 2, we find that the shearing force 3 across a section
the normal to which makes an angle 0 with Ox is, per unit length,

3 = Pxz cos <p + Pyz s in <f>.

The shearing forces on the whole contour of an element dxdy
reduce to a force

normal to the plate, and to a couple whose components are

Pv, dx. dy, — Pxz dy . dx, 0.

Since the values of a, /3 have been chosen so as to give zero stress on
the two faces, this force and couple represent the stresses on the whole
boundary of an element of the plate. Hence, if we reverse the signs,
we get the force- and couple-resultants of the system of applied forces
which must act on the interior of the element in order to maintain
the strain in question.

4. Combining our results, we learn that the strain resulting from
the superposition of the two states described in §§2 and 3, respec-
tively, requires for its maintenance a certain distribution of applied
force which is equivalent, for the element dx dy, to a force whose
components are

and a couple (L — Pvt)dxdy, (M+Pn)dxdy> 0.
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In virtue of our fundamental assumption, no sensible change in the
general form of the middle surface, or in the resultant stress across
an element of a normal section, will ensue when for this distribution
we substitute that which actually obtains, provided

dPxz | dPvz = z

dx dy

L-Pvz = L,

M+Pxz = M,

where Z represents the applied force normal to the plate, and L, M
the components of applied couples about Ox, Oy, per unit area of the-
middle surface, in the sense explained in § 1.*

The last two equations give

dy

and, substituting in the former, we obtainf

, H r. . dM dL
AV*w = Z+ — —,

ax dy
the usual differential equation.

We have also, for tho shearing force across any normal section,

3 = P*z c o s <t> + -Ptfs sin f
= — A j — V2w. cos <p+ — V2w. sin f > -f- Mcos <f>—Lsin<f>.

5. Wo come now to the boundary conditions. The difficulty here
is, that in the immediate neighbourhood of the edge the mean state of
strain is no longer represented, even approximately, by the assump-

* The most general specification of applied force would consist of forces A', Y, Z
and couples L, At, 0 ; but the group Z, L, M acts quite independently of the group
X, Y, the former producing curvature of tho plate without extension of the middle
surface, tho latter extension without curvature. As wo are here concerned only
with tho theory of flexure, wo suppose X, Y to be zero. A like restriction is made
as to tho applied forces on the boundary.

t I t is here assumed that L, At are continuous functions of x and y; Z, on the
other hand, may ho discontinuous. I t is to bo remembered that these functions
merely express, as it were, the average distribution of applied force in tho neighbour-
hood of the point (x, y).
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tions of §§ 2, 3. In particular, a line of particles originally normal
to the middle surface will not, in general, be normal to it after the
deformation ; it will not, in general, even remain straight. On the
other hand, this exceptional state of things is practically confined to
a narrow zone of the plate whose breadth is only a very moderate
multiple of the thickness; beyond this region the statements in
question apply, in the sense already explained..*

Now let PQ be an element ds of the boundary, and draw parallel
to it, at a sufficient distance to fall outside the zone referred to, a
line P'Q', and let PP', QQ! be at right
angles to the edge. The boundary con-
ditions are obtained by considering the
equilibrium of the element PQQ'P' of the
plate. Across P'Q' we have a shearing
force 3ds, and couples dlds, Xds, whose
values are given by the formula) of § 2,
in which f now denotes the angle which
the normal to the edge makes Avith the
axis of x. At the edge PQ we have the .
external forces, which may be specified
by a force %ods parallel to z, and couples #lods, %ods whose axes are
the normal and tangent to the edge respectively. Across PP' (and
this appears to be the key to the whole matter) we have a shearing
force £ which, unlike the shearing forces in the body of the plate, is
specified not by its amount per unit length, but by its integral over
a line extending inwards from the edge. This integral is finite in
spite of the infinitely short length PP' over which it is taken.f The

* Soo Thomson and Tuit, §§ 727-9.
t This point, which does not appear to have been hitherto expressly noted, is

illustrated by the problem discussed in ThomBon and Tait, he. cit. I t is there
shown that, if a certain distribution of force, constituting a uniform couple 9]n per
unit length, bo applied to the plane edge (y = 0) of an otherwise infinite plate
bounded by the planes s = ± h, the component displacements o, j3, y at any point
(x, y, z) are given by

« = 3 *2 [ I V s e B i n
fih \ir I {2«+1)3 1h

0 = 0 , 7 = 0;
the plate being supposed to lie on the positive side of the plane zx. (The notation
has been modified to correspond to that of this paper.) Hence

da , . 96m ^1-rttotDnP*

^ ^ 2

where TJ stands for the breadth PP in the above figure. Since e~10 = -0000454, we
see that, if i\ exceeds three or four times the thickness, the series practically reduces
to 2 (2« + I )"4 , or 7r4/9G, so that

<8 8 the argument in the text, applied to this particular case, would indicate.
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corresponding shearing force across QQ' is £ + d£/ds. ds. Hence,
resolving parallel to z,

3.-3+f=0,
and taking moments about the tangent and normal, respectively,

If we substitute the values of 91, 3!, 3> given in §§ 2, 4, in the equa-
tions which remain after elimination of £ viz., in

as as

wo obtain Kirchhoff's boundary conditions.

It was pointed out by Thomson and Tait that, if 3o and d$lQ/ds be
increased by equal amounts, the state of things beyond the immediate
neighbourhood of the edge is unaltered ; and this remark forms the
basis of their treatment of the boundary conditions.* We now see
that the effect is on the distribution of the shearing force which we
have denoted by £; viz., if <p' (s) be the common increment of the
above functions, then £ is increased by — $ (s).

The precise character of the boundary conditions laid down by
Poisson and Kirchhoff respectively has often been discussed, and
there is, perhaps, even yet room for comment on the subject. It is
certainly remarkable, as a point of mathematical history, that the
exceptional state of strain near the edge, on which, as we have seen, so
much depends, should not have been recognized by either writer.

In the work of Poisson the fundamental assumption is, that when
the various functions expressing the strain are expanded in powers
of z, the distance from the middle surface, all terms after the first two
may be neglected; and it is shown that, in the absence of stress on the
two surfaces of the plate, the state of strain will then everywhere
conform to the description given above in § 2. If this state is to hold
right up to the edge, the three boundary conditions given by Poisson,
viz. (in our notation)

3 = 3 , , £ = S0, 3fl = 3*0,

* [April, 1890. The argument is presented in a very clear form by Boussinesq
in his book entitled Application des Eotentiels d V&tude do ly£quilibre.... des Solides
jjlastiques, §§ 71, 72.]
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are certainly neoessary. It has been proved, however, by Kirchhoff
that it is, in general, impossible to satisfy three independent boundary
conditions. We infer that, with arbitrary values of 3o> ô> ô>
thero will, in general, be the peculiar state of strain near the edge,
and, the accompanying distribution of the shearing force £, above
described. That Poisson's assumption may be here violated is
well shown in the case worked out by Thomson and Tait, to which
reforenoe has already been made, where the variation of strain
tlirongh the thickness is given by circular functions of irz/2h.

Kirchhoff, in his original investigation, begins by postulating the
state of strain of § 2, and proceeds to calculate the potential energy
iu terms of the curvature of the middle surface. He then applies

p the encigy condition of equilibrium, equating the increment of
potential energy in any slight change of deformation to the work
done by the applied forces. In this process the internal forces, in-
cluding the shearing force £, do not, of course, explicitly appear; but
to make the ai*g\iment accord with our pi-esent knowledge it would be
necessary to recognize the existence of a narrow zone along the edge to
which the fundamental postulates do not apply, and to assume that
the potential energy of this zone may be neglected in comparison with
that of the rest of the plate.

6. A simple but very instructive illustration of the point to which
spocial attention lias beou directed ubove is furnished by a problem
disciwsed by Thomson and Tait (§ 056) from a somewhat different
point of view. Taking tho case of a rectangular plate whose edges
are parallel to x and y, let us ascertain what is the simplest* system
of applied forces which will produce the uniform anticlaBtic curvature

to — Gxij.

It appears at once that we may suppose PJ:, Pv,t 3> 2, L, M to be zero.
Again, at an edge perpendicular to x, wo have

91= (l-(r)AG, X = 0,

whilst at an edge perpendicular to y

dl = -(!-*) AO, $=0;

* Tho problem, to find a system of forces which will produce a given deformation,
iu of course indotcrmiuato, tho only conditions being that

7dM dl ~ a tfDto
dx dy . da

aro to havo preacribed values.
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so that the boundary conditions arc satisfied by Zo — 0, £ft0 = 0,
30 = 0, except at the actual corners. These points must be excepted
on account of the term d$l/ds in the second condition, which is there
infinite. If wo suppose the corners to be rounded off, and integrate
the condition in question over an infinitely short length of the edge
including a corner, we find

the square brackets being used to indicate that the difference of the
values of 91 at the two limits is to be taken. For one corner these
limits will correspond to ip = 0, <j> = ir/2; for a second to <p = w/2,
<j> = 3TT/2 ; and so on. Hence

[zods= ±2(1-0-) AC;

so that we have the case of a plate bent by two contrary pairs of
equal forces at the extremities of
the two diagonals. If we consider r
the equilibrium of a portion of the \
plate cut off by a line AB drawn \
as in the figure, the applied force \
at the corner is balanced by the
shearing forces which we have
denoted by £ [ = (1—a-) AC] acting \ ^
at the points A, B, and by the *%->
flexural couples across the dotted
line.

' 7. The number of problems which have been solved in the pBesasasfc
subject is so small that I may be allowed to append a diseiwssfom of
one or two very simple questions. . -

In the first place, let us take the case of waves propagated along
an infinitely long band bounded by straight parallel edges y = =fc 6,
there being no external forces. The boundary conditions then
reduce to

dy (dy" ' , dx j

d?w •, d?w n
dy1 dx% "" '

The general differential equation is, by d'Alembevt's principle,

VOL. xxi.—NO. 375.
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where c* — A/(>, p being the mass per unit area. If we assume

w = Qelfc(x"*,

where Q is a function of y only, this gives

The solution of this, appropriate to our present purpose, is

Q = 0x cosh Wj y + 03 cosh m4 y,

where wij, w2 are determined by

fe 2
c

The boundary conditions then give

0,«i, {?»,—(2 —o)^2} sinh m^ + Ojfn-jj [m^ —(2—<r) #"] sinh wij6 = 0,

0, (w, —<rA;2) cosh 9nj64- CaC â—ff^1) c o s b »Ĵ& = 0,

whence, remembering that Trij + wij, = 2/ca, we find
wi (ma"" ^ 2 ) 2 tanh Tiij 6 = m3 (mj — ffA;3)2tanh ?)i, if;,

the equation to determine v, the velocity of propagation.

If wijft, ma6 are small, this reduces to

whence we easily find v = (1 —a8)*, ftc2.

This coincides with the velocity of propagation of waves of length
2irjk along a uniform straight bar, as might have been anticipated
from the fact that we have virtually assumed the wave-length to be
great in comparison with the width of the band. Continuing the
approximation a stage further, we find

vs/A;V = 1 - <r8 + f (1 - a) a W .

If, on the other hand, mi 6, «ia6 are moderately large, we may put

tanh m, 6 = 1, tanh ms& = 1,

BO that ml{m\—ah3)3 = w9(Wj—<rA )̂a.

Rearranging, dividing by m^—m^ and putting

we get mlml+2 (1—a) Jci'mlmi—aik* = 0,
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a quadratic to determine Wjm2. Since we have virtually taken '•
mi, ma to be positive, the positive root of this is to be chosen, and the •'
wave-velocity is then given by

The following table gives, in the second column, the values of v/kc*
—i.e., the ratio of the velocity of propagation to that of waves of the
same length in an infinite plate—for various values of a. The fourth
column enables us to estimate the ratio which the breadth of the

a

0
•1
'2
•3
•4
•5

v/kc*

1-000000
•999984
•999697
•998102
•992639
•978318

m,/fc

1-4142
1-4142
1-4141
1-4135
1-4116
1-4065

mjk

•0000
•0040
•0174
•0436
•0858
•1472

band must bear to the wave-length in order that the above approxi-
mation may be valid. Thus, since tanh ir falls short of unity by
about 1/150000, we see that for a = \ the approximation is ample so
soon as the breadth exceeds three or four times the wave-length.
For smaller values of a much higher values of the ratio may be
required. It is to be noticed that, however short the waves may bo
in comparison with the breadth, the velocity of propagation (except
in the extreme case a = 0) falls below its value for an unlimited
plate by a finite, though not a very great, amount. The circum-
stances are, in fact, different; owing to the occurrence of the hyper-
bolic functions of mxy, may in the value of w, the amplitude increases
as we pass outwards from the centre of the band towards either
edge, instead of remaining uniform. Thus the ratio of the ampli-
tudes at the edge and at the centre is

(7) cosh m, b -f C<j cosh m3 b

, . , i]—n?a) cosh viyb . cosh m2b

(mi — ak2) cosh m, b — (ms—ale") cosh m2 b
This is sensibly equal to unity iu the case first considered, where
-wijfe, ma5 were small; but when »«i&, m3b are considerable, and m,

o 2



84 Prof. Horace Lamb on [Dec: 12,

large in comparison with m9, it is of the order em**, and therefore
large.* It appears that the waves propagated in the form of cylindrical
corrugations, which are contemplated in the investigation for.an
infinite plate, form an ideal case which cannot be realized in a plate
of finite dimensions, except in so far as the extensions (neglected in
the above theory) which are called into play by the increase of
amplitude towards the edges tend to keep this increase in check.

8. The vibrations of a rectangular plate have not yet been investi-
gated in a rigorous manner. Part of the difficulty is in satisfying
the conditions at the corners. It may be worth while to write down
these conditions, as one conclusion of some interest can at once be
drawn. Taking the origin at a corner, and the axes of «, y along the
edges which meet there, we have, as before, for all points of the axis
of a;,

dy L dy* dx* )

d*w
^ " '

whilst, along the axis of y,

dx C d
d?w __ n

The further condition to be satisfied at the corner has already been
obtained in § G, viz., it is

whence -—— = 0
dxdy

at the origin. Sinco the first pair of boundary conditions may be
differentiated with respect to », and the seoond with respect to y, it
easily follows that the differential coefficients of w of the second and

* The case, at which we hare virtually arrived, of wares travelling along the
etraight edge of an othorwiBe unlimitod plate may bo treated more directly by taking
the origin in this edge (y = 0), and assuming

The results coincide with those found above.
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third orders all vanish at the origin. Hence near the corner the fora
of the plate will differ from a plane by small quantities of the fottrth
order. This may be compared with the state of things at the frve
end of a bar.

APPIHWX.

In the paper as originally drafted, there followed a discasBioa of
one or two problems which can be worked out rigorously from the
general equations of elasticity, and so serve in some measure ai a toet
of the assumptions made in the theory of thin plates. The most
important of these, viz., the propagation of waves in. an infinite
plate, has been fally treated by Lord Ray lei gh in a paper* which hae
in the meantime appeared; I therefore confine myself to the following
problem, which may serve as an illustration of the action of appKed
force:

An infinite plate, bounded by the planes « = i h, is subject to a
force 0 oos hx per Knit area of the middle surface, parallel to *; to
find the deformation.

We assume for the component displacements

. - * + £ , ,3 = 0, y = * - g (1),
dx ae dz ax

where $, if/ do not contain y. . Let *s first suppose that the extew»l
force is applied ia the way of a bodily force of amount C/2k. oos kx
per unit volume. Th« eqmatioaa to be satisfied in the interior of the
plate then are

, s da. . Ay
where $ = — + -p-,

dx de
and V1 now etaads for #/dx*+ tf/dS. By difPerea^uitioa we

V'S « 0,

* Lond. Math. Soc. Trot., April, 1889.
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or, if we assume that a or sin kx, y a cos kx,

(3).

A particular solution is

0 = (F sink kz + Gkz coah. kz) coakx, )

0 (*)J
/̂ = — 2 3,sin lex + (ZTcos &0+.O;ysinh kz) sin foe, )

and on substitution we find that the original equations (2) are also
satisfied, provided

(\+2/x) G = fxK (5).

The boundary conditions are

2 ) t , = O, Pxs = 0 (6) ,

or XS+2,^0, ^ + ^ = 0,

dz dz dx

for z = ±h. The first of these gives, in conjunction with (5),

(F-H)sinhkh+(G-K) khcoshkh=0 (7),

whilst the second leads to

(F-H) cosh kh + (G-K)(coah lch+kh sinhhh) + •—- - O...(8).

Solving,

(9).
G—-K = — ^ sinh kh/kh

4/u.k* ' sinh kh cosh. k7i—kh'
After a little reduction the consequent expressions for the displace-
ments are found to be

^ f ^ c o s h f e + ̂ s i n h f e ) ] sin Ax
kh \ /)

-r {sinh kh cosh kh—hh] (10),

7 =

-frUoah. kh. cosh kz - aJ^J^. (kz sinh kz - r^-~ cosh kz) |cos kx
4pkL kh \ A+/i l>

-f- {sinh kh cosh kh.— kh] (11).
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If kh be small—i.e., if the variation of the applied force within a
space compared with the thickness may be neglected—we find, to a
first approximation,

(12).

The latter formula agrees with the result given by the ordinary
theory, viz.,

W = rr—; COS kx,

h*A

where A has the value given in § 2. We further notice that
dy
ax

so that a line of particles originally straight and normal to the middle
surface retains these properties after the flexure^ This statement
needs correction when we proceed to a second approximation; but,
since o is an odd function of z, the curve into which such a line of
particles is deformed has a point of inflexion where it crosses the
middle sui'face; moreover, it is orthogonal at its extremities to the
faces of the plate, since the shear in the plane zx there vanishes. It
follows that the correction in question is very slight for moderate
values of Jch.

The formulae for the component stresses give, on substitution
from (10), (11),

0 (2sinhA;7i . , , sink kh 7 , , , , . . , , ) 7

TT i —r;— sinhfazH— . kz cosh kz—cosh kh. sinh kz {• cos«»
2 (. kh kh )

-j- {sinh kh cosh hh—kh] (13),

da ,

Of sinh kh/kh .(cosh Jcz + kz sinh hz) — cosh kh cosh kz 1 ~) . ,
2 ( sinh kh cosh hh—kh kh)

(14),
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— ~7T \ c o s h kh. siuh kz— 515-1— . fo cosh kz [ cos foe
2 (. «7z. ;

—kh}

For small values of kh these reduce to

3 °
2 VV

... (16).

The value of £>** agrees with that obtained on the assumption of
§ 2; that of ;£>« is small in comparison, whilst pzz is of a still higher
order of smallness. The second forms (in terms of to) are given on
account of their greater generality; they hold for any distribution of
bodily force which depends on x only,* since any such distribution
can be expressed by Fourier's theorem in a series of terms of the
forms cos Jtx, sin kx.

Let us next suppose that the external forces act on the two faces
of the plate, and are equally divided between them, so that the surface
conditions (6) ate replaced by

ptt = |Ccos kx, for z = +7i,'

= — \OooBkx, for z= —h, (17).

The equations to be satisfied in the interior now are

(18);

whence

(£-»)'•-* (S-
* Provided, of courso, that its rate of variation within a space comparable with h

may be neglected.
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Assuming
<p = (Fsinh kz+ Gkz cosh kz) cos kx,~\

\j/ = (ITcosh kz+Kkz sinh kz) sin kx,)

we find, as before, that the equations (18) are satisfied, provided

Taking account of this, the boundary conditions (17) give

(F-H)B\nhkh+(G—K)khcoshkh —
t . . .(19);

(F—H) cosh kh+ (G—K) (cosh kh + kh sinh kh) — 0, )

whence
„ _ G cosh kh + kh sinh 7c7t

4/i/c2' sinh kh cosh kh—kli
(20).

_ _ 0 cosh 7cfc

~~ 4fik*' sinh TcTicosh kh—kli! _

The values of the displacements are found to be
« = 7—r i cosh7Ji [—— sinh7c2 + ^cosh7<;2!) — 7c7i sinh kh. sinh kz ^sinita;

4/ift t \A+f* / J

-~ [sinhkhcoahkh—kh] (21)»

y = T-r j cosh^Tif- "^coshkz—kzsinhTcz) +/c7isinhkhcosh7cz [cosfoe
4/u/c C \ A+/«, / )

-f- [sinh/cTi cosh 7c7i—7c7i] (22).

These may be compared with (10) and (11). When kh is small, the
values of a and y to a first approximation coincide with those given in
(12). The stresses pzx, pxz are also found on examination to retain the
-same approximate values (1G) as before, whilst for^j« I find
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We might also consider the case where the forces on the two faces-
are eqnal and opposite, so that the boundary conditions are

n
P-.z= -gcoslcx, pn = 0 (24),.

for z — =fc h. We should find

<p = (.Pcosh kz + 0. kz sinh kz) cos kx,

4* = (IT sinh kz + K. kz cosh kz) sin lex,

where, as before,

and the rest of the solution is obtained by simply interchanging the
functions cosh kh, sinh kh, in equations (19). Hence

F _ JJ — 0 sinh kh-\-kh cosh kh \
4/x/c2 " sinh kh cosh kh+kh* I

p_ jr _ __ G sinh kh f
4/i/c8 ' sinh kh cosh kh + kti )

When kh is small, these lead to

a = — • . . Binkx, y = 0 (27),
87c (\+/x)/tt

at the middle surface, as might have been found by a much more
elementary process. The effect of the given distribution is to produce
an extension of the plate, but the displacement a is of the order k*ha

as compared with the value (12) of y in the former case.
By superposition we can obtain from this case and the preceding

the exact solution of the problem when the applied force is divided in
any constant ratio between the two faces, but the resulting deformation
is seen to be practically the same as in the case of an equal division.

The fundamental assumption of § 1 may be examined by taking kh
large. In the case of a bodily force the formula (11) makes

nearly, at the middle surface; i.e., it varies ultimately as the square
of the wave-length. When the force is applied to the two faces, we
learn from (22) that y is of the order e'kh at the middle surface ; in
fact, the stress is now confined to a thin superficial stratum on each
side.
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