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~92 Dr. C. V. Burton on the Kinetic 

The following table shows the readings : ~  

TABLn IX. 

Spark Lengths. 

3"0 l l l m .  

2"5 ,, 

1"5 ,, 
1'0 ,, 

1.0 ,, 
1"5 ,, 
2'0 ,, 
3"0 ,, 

Voltmeter Reading. 

1~o Air Blast. 

2"4 
2"4 
1 "85 
1'7 
1'65 
"75 

2.0 
2'1 
2'05 
2'3 

With Air Blast. 

2'7 
2"7 
2-2 
1"7 
2"0 
1'0 
2.25 
2'4 
2"35 
2"45 

The Table shows in every case an increase in the current 
circulating in the condenser circuit when the spark-gap is 
subjected to the air-blast, but does not indicate the much 
greater steadiness of the voltmeter-needle which is seen with 
the air-blast. Without  the air-blast the voltage was by no 
means constant, and the readings given in the first column 
are therefore a mean reading from which the extreme readings 
may differ by 10 per cent. 

The final result of the experiments is to show that when 
using spark-gaps, 1, 2, or 3 ram. in width, in a condenser 
circuit, for the purpose of exciting oscillations, much greater 
uniformity in the discharge current can be obtained if the 
spark-gap is subjected to an air-blast as described. 

L x I I I .  On a,e Kinetic Criterion of Potential Ener~ d. 
By C. V. BURTOI~ ~, D.•C.* 

1. ] [ N  a large nmnber of cases, if not in all, energy which 
$_ we find it justifiable and convenient to treat as 

potential is found on a closer scrutiny to be essentially 
kinetic ; and the object of this note is to supply an answer 
to the question : in what circumstances may kinetic energy 
be treated as potential .9 

* Communicated by the Author. 
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Crlte~ion of Pote~dial .Energy. 69"3 

2. The potential energy of a conservative dynamical 
system is sometimes defined as that portion of the total 
energy which is a function of the coordinates o[ the system 
only, and is independent of the rates of change of those 
coordinates. Such a definition, however, is too inclusive, for 
in the energy-expresslons of many dynamical systems there 
are terms which, although independent of the time-fluxes of 
the (working) coordinates*, do not fall into the category of 
potential energy. 

3. Before treating the question more generally, it will be 
convenient to consider an example. Fig. 1 represents What 

Fig. 1. 

\,, Bt 
may be shortly called a governor, though we are not here 
concerned with its capacity for "governing." The spindle 
A _& is frietionlessly journalled in a fixed frame B 13, and the 
only other freedom of the system corresponds go a motion of 
the block C lengthwise of the spindle, with accompanying 
motion at the pivots E, ~', G. For convenience of de- 
scription, suppose the axis A A  to be vertical, and as coor- 
dinates of the system take X defining the azimuth of the 
~'overnor, and z a length measured vertically downwards 
from a fixed horizontal plane to some point of the block C. 
Using dots over the coordinates to signify their time-fluxes~ 
the kinetic energy may be expressed in the form 

E--.~Mz + ~ I  X, . . . . . .  (1) 
where I, the moment of inertia about A A, is a function of z, 
and M (a coefficient or' the same kind as a mass) is also a 
function of z. 

4. Let the only external force acting be a vertical force Z 

Cf. w 8 below. 
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694 Err. C. u  Burton on the Kinetic 

(measured downward) on the block C ; then the equations of 
motion are 

d I"  0 ~ / ( X )  = , . . . . . . . .  (2) 

d ~ E  ~E  
dt" ~ ~z 

dM 1 ;~2 dl =~i::+.~ ~ ~ -  ~ ~= . . . . . .  (:~) 

d ( ~ i . ~  . d [1  ( I~ )~  

. & . . . . . . .  ( 4 )  

Hence, on the understanding that the differentiation with 
respect to z is to be pertbrmed with I:~ constant (that is, 
with no turning moment applied to the governor, as expressed 
by (2)), we may replace (~) by 

Z=M~" +iz~ 'dM+ *z ( ~ I f )  �9 (5) 
'2  dz dz " 

5. This is precisely the form which the equation of motion 
corresponding to the z-coordinate would take if the velocity 

were permanently zero, while the system, in place of the 
kinetic energy �89 2, possessed potential energy of like 
amount. In other words, provided the angular momentmn 
I~( remains constant, and so long as we confine our attention 
to the coordinate z, the energy of rotation may be treated as 
potential. The axial motion of the block C under given 
axial force (including of course the special case of free 
oscillations) will be the same as if the rotation were abolished, 
and suitable springs of negligible mass introduced; the 
equilibrium position of the governor under the action of such 
springs being approximately that shown in fig. 1. 

6. The energy of rotation of the governor considered in 
the last three paragraphs is more palpably kinetic than 
anything which we are accustomed to classify as potential 
ene rgy ;  but when we come to consider the dynamical 
criterion of potential energy, we shall find that, under the 
limitations above defined, thee rotational energy in question is 
as much entitled to be called potential, as are the forms more 
commonly included under that designation. 
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Criterion of Potential Energy. 695 

7. I t  need hardly be pointed out that the potential energy 
(energy of rotation) .with which we are concerned in w w 3-5 
may lose its potential character if the conditions of the 
motion are modified: for example, i~ the governor is acted 
on by forces having a moment about its axis of rotation, so 
that the angular momentum about that axis no longer remains 
constant ; or if the axis A A is allowed to change its direction 
in space�9 In such cases the kinetic character of the rotational 
energy must be explicitly recognized in the dynamical 
equations. ~ 

3. In any conservative dynamical system let 5Y~ ~b, 0, . . .  be 
the coordinates which we employ to define the configuration 

at each instant, and let ~ ,  (~, tP~ �9 . .  stand for the time-fluxes 
of these wo@ing coordinates (as they may be called). Then 
the kinetic energy of the system as ordinarily understood 
may be expressed as a h.q.f.* of ~ ~, 0 , . . . ,  with coefficients 
!n general functions of ~ ,  ~b, 0 , . . . ,  while the potential energy 
is a function of ~ ,  +, 0 , . . .  only. As soon as we admit the 
kinetic nature of the energy which we treat as potential, we 
realize that in addition to the working coordinates ~ ,  4), 0,.o. 
there must be others (say) X, X r, X'~, "-- whose time-fluxes 

�9 " # " i t  %, Z ' X ' " "" are involved in this so-called potential energy, 
and which may be distinguished as "ignored coordinates "t. 

9. The Lagrangian function for any conservative dyna- 
mical system is the difference of the kinetic and potential 
energies, the energy (~)  being expressed in terms of the 
generalized velocities ~ ,  q~, (~ . . . .  ; on the other hand, the 
Hamiltonian reciprocal function is the sum of the kinetic and 
potential energies, the kinetic energy being expressed in terms 
of the momenta ~ ~ " ~ " In the first lace, then, �9 . - ,  / p <  , .  

at as apparent that potential energy is energy expressed i n  

tim Hamiltonian form, in terms of momenta, not in the 
Lagrangian forn b in terms of velocities. 

10. Suppose at the outset that the entire energy T is 
recognized as kinetic, and is expressed as a h.q.f, of ~ ,  6, ti, ... 
and the ~ ' s .  T is then the Lagrangian function for the 
system, and the equations of motion corresponding to 
~ ~, 0 , . . .  are of the type 

d ~T ~ T = , ~  . . . . . .  (6) 

W, ~ ,  O , . . .  being the impressed forces of types corre- 
sponding to ~ ,  ~, 0~. . .  respectively. 

* Here and Below h.q.f, stands for "homogeneous quadratic function." 
t Thomson (Kelvin) and Tait's ~ Natun~l Philosophy, Part 1. w 319. 
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696 Dr. C. V. Burton on the KiJ~etic 

11. Following Routh *, let us now modl/~ the function T 
with respect to the coordirmtes X, X~, �9 �9 ", the modified function 
will be 

BT BT . ~  
T ' = T - - ~ 2 - - ~ , ~ X - - . . . ,  . . . .  (7) 

the ~'s being supposed eliminated from the right-hand of (7) 
by means of the equations 

bT/b2=C, bT/bff=C',... (~) 

so that the C's are the momenta corresponding to the %'s 
respectively, 

12. In a system such as we contemplate, the energy is 
made up of 't;wo parts : one a h.q.f. (~)  of the velocities 
+ ,  4, 0 , "  ", and tho other (K) independent of those velo- 
cities ; that is 

T= +K . . . . . . . .  (9)  

In this ease ~; is the energy which we recognize as kinetic, 
and K is that which we call potential. 

13. I t  is of course understood, when ~b., ~b, 0 , . . .  are tile 
only " w i n ' k i n g  coordinates," that the system is acted upon 
by no external forces except ~ ,  alp, O, . . . ;  in these circum- 
stances it is shown in Kelvin and Tait that (9) will be fulfilled 
provided the X.'s do not appear in the coefficients of the 
energy expressmn T ; and it is easy to show that (9) will not 
be fulfilled otherwise. Hence in i~lace of (9) we may write 
the conditions 

~ T / ~ x = 0 ,  ~ T / ~ x ' . ~ O  , . . . . . .  (9a) 

14. Kelvin and TaWs analysis t relating to the ignoration 
of coordinates is therefore applicable, and we have 

C, C', . . �9 all constant ; . . . .  (10) 

while K is a h.q.f, of the C's. 
15. From the modified function T' tlle equations of motion 

of the system may be obtained in the form 

d bT~_ bT" =W, . . . . .  (11) 
dt 

with similar equations for cp, |  ; and these by a process 

* ' Rigid Dynamics,' vol. i. chap. viii. 
t Zoc. cit. 
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Criterion of Potential Fneryy. 697 

similar to that followed in Kelvin and Tail, may be reduced 
to the ibrm in which they are obtained in that treatise, 
namely, 

+o  

+c, i (b  M, b s , ~ $ + / b ~ c _ ~ . o , ~ 0 + . . . } +  bK' 
{ ~ b +  - ~ - ]  \b0  b e /  " " + ~ -  

_-~- ~ I  t ' 

0 2 )  

Here M, N, 0 , . . .  M', ZN', 0 ' , . .  �9 are best defined for our 
purpose by the relations 

�9 bK ~ 5K +:s (say), 
x -  ~ - ( ~ ! ;  +N$ +0g + . . . , =  be 

�9 , b K  . - , -  b K  +:s  (13) 

lg. It is clear that (12) are precisely the equations of 
of motion of a system in which ~ is the kinetic and K the 
potential energy, provided tl~at./br all values qt" ~ ,  dp, 0 , . . -  

~C~tbM bN �9 ?b~r bo �9 

~ e , c t  b~  bM �9 bo �9 

5 e ~ \ ~  ~ ) ~ + ~  be �9 

(14) 

Let m be the number of the working coordinates qr, r 0 ... .  ; 
then since in each of the m equations (14) the coefficients o[ 
~ ,  r ~, ... will have to vanish separately, and since ~ is 
absent from the first equation, ~ from the second, and so on, 
we obtain re(m--l)  equations which must be satisfied if K is 
to be treated as the potential energy of the system. These 
conditional equations, however, are not all independent, but 
consist of ira(m--l)independent equations, each occurring 
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~98 Dr. C. V. Burton on the Kinetic 

twice ; thus the conditions sought for, in addition to (9 a), are 

=eva [ 
( 1 5 )  

XC{BN ~O 

17. Special Class i. An interesting case is that in which 
there is but a single working coordinate, say 4/,; so that the 
system, regarded from our standpoint, has only one degree 
of freedom. In this case the sole equation of motion is 

~ i \ - ~ : - ~ +  ~ = , ;  . . . .  (16) 

which indicates that the energy K, due to the " ignored ' '  
momenta, necessarily behaves as potential energy, without 
any condition having to be satisfied beyond those expressed 
by (9a). 

18. Returning now to (7) and making use of (8) and (13), 
we see that 

TI__T__c~K ~ , ~ K  
- ~ ( ;  - ' J  g07,, " 

+ C(M~.+ ~4 +...1 + C'CM'~ + ~'~ +...) + . . .  

--T c ~ K - - c  ' ~ K  -- ~c- })c~-...-c~-c~/-... (!7) 

Remembering that K is a h.q.f, of C, C ' , . . . ,  we have 
accordingly 

T ' =  T-- 2K -- C )~',~-- C'p~' - . . .  

= ~ - - K -  c~- (")~, ' - . . . ,  (18) 

by (9). Thus t h e  modified function T', from which the 
equations of motion (11) are derived, becomes identical 
with ~ - - K  provided 

C)~ 1 --~ C'XI '  --~- . . . .  0 ; . . . . .  ( 1 9 )  

that is, provided 

~ c ( ~ i q , + ~ r  (19a) 
a condition which is the same as 

~CM+~C~+ . . . .  0. (198) 
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Criterion of Potential Energy. 699 

So long as this condition is satisfied, we may treat K as 
the potential energy of the system. 

19. The condition (19), (19a) or (19b) necessarily implies 
(14), which must in any case be fulfilled if the energy K is 
to be treated ~ls potential; in general, however, it includes 
more than is strictly demanded. But in most of the examples 
which readily present themselves, and in which K behaves 
as potential e,ergy, the condition in question is in fact 
satisfied. If  (19b) is to hold good without any ~'estriction 
being imposed on the velocities ~ ,  dp, . . . ,  we shall have 

XCM=0,  X C N = 0  . . . . .  (20) 

20. The C's being constants, it is evident that (14) will be 
satisfied provided 

ECM, Z C N , . . .  arc all independent of ~ ,  ~b; (21) 

which relations, though in general expressing more than the 
requisite conditions (14), impose less restriction than do (20). 

21. Special Class it. A simple case, illustrating the con- 
dition (20), is when the M's, 2q's,...  all vanish, or in other 
words when, for given values oi ~ the working coordinates 
+,  ~b, 0 , . . .  the velocities 5~, X%... of the ignored coor- 
dinates are determined solely, by. the momenta C, C ' . . . ,  
independently of the velocities 4f, ~b, ~, . . .  

22. Special Class iii. Another simple case is when the state 
of the system, as defined by the working coordinates ~ ,  ~b, t?,..., 
is one of continued rest. For when a~, ~b, t~,.., are all 
constantly zero, (14) are satisfied. In any system, therefore, 
for whicl~ (9 a) hold good, the energy K- -due  to the momenta 
of the ignored coordinates--may be treated as potential 
energy in computing what forces, corresponding to the 
working coordinates, must be applied to the system to 
maintain i~ "a t  rest." If, however, the system is moved 
from one configuration to another, even infinitely slowly, 
although at each instant the generalized forces required to 
maintain (infinitely nearly) equilibrium will only differ infi- 
nitesimally from ~ K / ~ ,  ~K/'O~b,... yet the time-integrals 
~)f the forces in question will in general be finitely different 
from those o~ 3 K / ~ ,  3K/3q) , . . .  unless (20), or failing 
that (21), or in any case unless (14) are satisfied. 

23. Though the  rotational energy of the governor repre- 
sented in fig. 1 can no longer be treated as potential when 
the frame B]3 is permitted to turn without restriction of 
direction, it is easy to devise a pair of governors carried by a 
single frame, and so connected or so set in motion that their 
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700 Dr, C. V. Burton on the Kinetic 

energy of rotation may properly be treated as potentiat 
energy. In fig. 2 let B be a rigid frame, and let there be 

Fig. 2. 

two equal and similar governors journalled in this frame, so 
as to be capable of rotation about a common (geometrical) 
axis. The construction of the governors A C E  F G t I ,  
A'C'E'F'G'H' is essentially similar to that of the governor 
shown in fig. 1, like letters indicating like parts. Each 
governor, however, has tbur arms (instead of only two), 
each carrying a ball, and all symmetrically arranged about 
the axis AA.  The rotatable system which constitutes the 
governor proper has of course moments of inertia which vary 
according to the inclination of the arms E H ; but the axis 
A A is always a principal axis of inertia, and the moment of 
inertia is the same about all axes which intersect A A perpen- 
dicularly at a given point. This condition has to be fulfilled 
in order that the angular coordinates %, X' (defining the 
integral angular rotations of the governors relatively to the 
frame) may not appear in the coefficients of the expressiol~ 
for the kinetic energy of" the system. 
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Criterwu qf Potenti~tl ];Jte~:(/y. 701 

24. The collar K can partake of the axial motion of the 
block C, as the latter slides lengthwise of' the axis A A; K is 
incapable of rotating with respect to the frame B, but is so 
connected to C as not to interfere with C's rotation. The 
parts in the second governor are indicated by accented letters, 
and are in all respects equal and similar to those in the first 
governor. The guides QQ are integral with the frame B 
on the one hand, and with the inner frame 1~ on the other 
hand, and upon these guides the blocks P P can slide without 
xotation. The pieces P KP~K / are connected up as shown 
by the four links M M M'M', which are equivalent to a 
jointed parallelogram. For the present we leave out of 
consideration the mitre-gears S S T T/, to which reference 
will be made later. 

25. I t  is evident that, in addition to any freedom of motion 
which the frame B may have, and exclusive of the rotational 
motions of the governors, the system made up of the two 
governors and the parallelogram linkwork has one degree of 
freedom, corresponding to a motion of each of the blocks P P 
(say) towards the centre of the framework, with simultaneous 
motion of K K' away from the centre, and increase of the 
angle ~ which the arm E H makes with the axis A AL This 
angle ~ may conveniently be taken as the coordinate corre- 
sponding to the freedom just defined. For the rgmaining 
coordinates of the system we may take x, y, z, the Cartesian 
coordinates of the eentroid, and three angular coordinates 
defining the orientation of the frame B, together with the 
angles X, X ~ (measured from a standard configuration) through 
which the respective governors E t t  G, EPILOG ~ have turned 
with respect to the frame B. 

26. Let the system, with the exception of the rotatable 
governors, have the moment of inertia I1 about the axis A A', 
and at any instant (t) let the frame B be turning about the 
axis A A ~ with angular velocity w 1. Let I~ be the moment of 
inertia of the whole system includi~y the governors about the 
axis Q Q; and w2 the angular velocity of the frame B about 
the instantaneous axis Q Q; [3, w3 being the correspondinz 
quantities referred to an axis through the centrold of the 
system perpendicular to the plane of fig. 2. If M is the 
mass of the entire system, and ~ the moment of inertia of 
either governor about its mechanical axis, the kinetic energy 
may be written 

,r = ~ M(~+~)~+  p ) +  ~T ... -~_~t T ,.,~ _o ~ . ~  , ~ . ~ . ~  + ~ I~%~ + ~ I 0 ~  

+ ~ ~(~+ o,0~+ ~ ( ~ '  + o , ~  . . . . . . .  ( ~ )  

27. Here I0 is a quantity of the same nature as a moment 
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702 Dr. C. V. Burton on the Kinetic 

modify with respect to the coordinates X, X z" 
momenta of the governors about their axis are 

of inertia, and it is to be understood that tO1, ffl2, fO 3 are to be 
replaced by their values in terms of the time-fluxes of the 
angular coordinates of the system. Of the coefficients, 
M and I1 alone are constants, Ie, I3, I0, and ]~ being functions 
of g. In the absence of any external forces acting on the 
system, T is the Lagrangian function, which we proceed to 

The angular  

b T / b ~  =]k(~ -t-eo~)=C ~ ,, J ; (23) 

Thus 

~-~,, ~ - ~  . . . . . .  (2~) 

The modified Lagrangian function is thus 

T'=T-C~-C'x' 
= ,~ M(~: + ~ + -:) + .~ I ~  + �89 I~:~ + �89 I ~  + ~ I0~ -~ 

1C 2 1C'~ , C'__col\;] 

i. e. 

T ' = ~ M ( ; ' + ~ ' + - ' )  ' -~ * = I~,~=+ITotJ ~ +~-It~,~ t +~I~o~ +,~ 
1 C ~ 1 C '2 

+ (C + C')~ . . . . . .  (25) 

28. Since the rotatable governors are acted upon by no 
forces having a moment about the axes A A  or AIA r, and 
since the coordinates X, %r do not appear in the coefficients 
of the expression T, the whole kinetic energy may be divided 
into two parts : one (to be. called ~ )  being a h.q.f, of the 
velocities ~:, .~, -, ~o~, eel, co3, 8, al~d the other (to be called K) 
being a function of the coordinate 8, and involving besides 
only the constant momenta C, C r. (25) may in fact be 
written 

T ' - ~ : - - K  + (C + C')col ; . . . .  (26). 

and we shall accordingly be able to treat the rotational 
energy K of the governors as potential, provided the constant 
angular momenta C, C ~ are equal and opposite. 

2~. Alternatively, instead of the two governors being ro- 
tatable independently of one another, we may suppose them to 
be positively connected in such a way that their rotations with 
respect to the frame B are always equal and opposite. The 
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Criterion of Potential J~ner~y. 703. 

mitre-wheels T, T l, fixed upon the spindles A A, AtA I re- 
spectively and gearing with a mitre-wheel S, would effect 
this result ; a fourth mitre-wheel S being introduced for the 
sake of symmetry and balance. Though the omission is not 
essential to the case now considered, it will be assumed for 
simplicity that the rotational energy of the mitre-wheels S, S 
is relatively small enough ~o be left out of account. 

30. The expression for the whole kinetic energy is obtained 
from (22 )by  subst i tu t ing--X for Zt; while the momentum 
corresponding to the )/-coordinate is now 

BT/~jt=2]i2.=u (say); . . . .  (27~ 

and the modified Lagrangian function is accordingly 
T ' = T - - u ~  

- + 
- -  -,2- • ~X -r- 

"2 1 ?~2 
+ � 8 9  . . . . . . . . . .  (28) 

If  the momentum u remains constant, the last term on the 
ri~ht-hand of (28) is the energy of rotation of the governors 
about their axes, With sign reversed. When u is given, this 
term is a function of 0 only, and T ~, given by (28), may 
accordingly be taken as made up of the difference of the 
kinetic and potential energies of the system. As regards 
the equations of motion corresponding to the working coor- 
dinates, the present example differs from that of w 28 in that 
the moment of inertia I1 of the frame B about the axis A A r 
is now effectively increased by 2tt, the sum of the moments of 
inertia of the two governors about their axes A A, AIA '. 

31. An interesting example of potential energy is furnished 
by a system of perforated solids, immersed in a frictionless 
incompressible fluid which is circulating irrotationally through 
their various apertures. Let  each of the solids be in the form 
of a thin rigid wire or wires, forming a closed loop or a 
framework. Then, provided no two solids approach one 
another very closely, the component of fluid motion con tributed 
by any one of the solids is due ahnost exclusively to the cyclic 
constants of circulation associated with that solid, and is appre- 
ciably the same as if the remaining solids were non-existent. 
In  the presen~ case the working coordinates are any such as 
serve to define at each instant the position and orientation of 
every one of the solids, and each of the coordinates (it, X t . . . .  ) 
to be subsequently ignored is the volume of liquid which, 
starting from a definite configuration, has flowed across" one 
of the ideal geometrical surfaces required to close the various 
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704 Dr. C. V. Burton on the Kinetic 

at)ertnres in the solids. We shall be able to treat the energy 
of the circulation-momenta as potential if certain conditions 
are satisfied which are equivalent to (9a) and (19). The 
condition (ga) ( that  the coordinates X shall not appear in the 
coefficients of the expression for the total kinetic energy of 
the system) is obviously realized. But (19) will only be 
consistently fulfilled when the sum of the C:~l's for each solid 
is always zero ; the momentum C corresponding to the coor- 
dinate X being Kp where tr is the cyclic constant of circu- 
lation for the aperture in question, and p is the density of' 
the liquid[. 

32. For each solid therefore there is a condition to bc 
satisfied of the form 

~ p ~ = O ,  . . . . . .  (29) 

the ~/l's being homogeneous linear functions of a~:, if, ~ to1, ~02,to~, 
where to1, oJ2, to 3 are the angular velocities of the solid about 
axes instantaneously coincident with a set of rectangular axes 
moving with the solid, and ~e~ y, z are the Cartesian coordinates 
o[ the origin of those moving axes. For the particular solid 
under consideration, let 

21= [,~] ~"~- [y]ff"~ [,~],~ -4- Er fiOl"]- [OJ2] ('02-'~- !riO3] 033 "~. (30) 
. . J  

Then (19)o r  (19b)for  that solid is equivalent to the six 
conditions 

O=~'~P[~] =:~P[')] =:~P[~]' ~ (31) 
O=~p[~,~] =~;~p[~,~] = ~p[~,~].J 

33. :Let S, SF, . . .  be geometrical surfaces invariably re- 
lated to the solid with which we are dealing, and sufficing 
to close all its apertures. Then since [~]~, [ 2 ] % , . . .  are the 
volumes of liquid flowing per unit time past the surfaces 
S, S ' , . . ,  owing to the velocity-component ~ of the body, we 
easily see that 

[ l=-Seos,ds, (32) 
where v is the angle which the positively drawn normal at 
any point of the surface S makes with the axis of .v, and so on. 
Thus the first of the conditions (31) may be written 

~ .  ~pj'cos u d S = 0  . . . . . .  (33) 

3~t. Remembering that the top's measure the impulsive 
pressures which must be applied over the surfaces S, ~ , . . .  to 
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Criterion of" Potential El~ergy. 705 

produce the circulations K, we see that (33) amounts to this : 
that when all the impulsive pressures top are so applied, there 
must, on the whole, be no component of impulse parallel to 
the axis of x (or of course to the axis of y or of z). 

35. Similarly Z~p[o)l] = 0 ,  which is one of the conditions 
(31), may be put in the form 

. pS cos  ls=0, . . . . .  (35) 
where r is the perpendicular distance of any point on the 
surface S from the axis about which o)1 is measured, and 5 is 
the angle which the normal to S at the point in question 
makes with a line perpendicular both to r and to the axis 
of o)1, the positive direction of this latter line correspondine" 
(let us suppose for definiteness) to the positive sense of the 
angular velocity co,. Now (35) expresses the condition that, 
when all the impulsive pressures ir act over the surfaces S, 
there shall be no resultant impulsive moment about the axis 
of o)1 (or of course about the axis of o).. or of o)3). 

36. The results obtained in w167 31-35 may be summarized 
as follows : i f  in a frictionless liquid free from vortex motion 
a number of solids are immersed, each consisting of a rigid 
framework of thin wires, then the energy of the circulation- 
momenta may be treated as potential energy, provided that 
for each single solid the impulses required to initiate all the 
circulations of that solid are such as, being applied to a rigid 
body, would be in equilibrium. 

37. A dynamical system of the kind just considered may 
also be made to furnish an example of the fulfilment of the 
conditions (21). With  our previous stipulation as to the 
thinness of the wires of which the solids are built up, it is 
evident that  (21) will be satisfied, provided only that each 
body of the system is limited to translational freedom, without 
the possibility of rotation. In this case, no matter what may 
be the values of the circulation-momenta, the energy due to 
those momenta may be treated as potential energy, althou_~h 
in general the translational movement of anj~ solid w~ll 
involve reactions against the constraints arising from what 
may be cMled " waut of balance " o f  the circulation-momenta. 

38. The case of a mass of gas whose pressure is varied 
adiabatically may serve as a final example; isothermal con- 
ditions are excluded from consideration, as in such case 
the system is not properly Speaking conservative, although 
simulating a conservative system in its general dynamical 
behaviour. For simplicity let the gas be monatomie and be 
contained in a fixed cylinder, in which works a gas-tight 

Phil. Mat. S. 6. Vol. 17. No. 101. Ma~j 1909. 3 B 
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706 Mr. R. J. A. Barnard on Direct Application of 

frictionless piston, both cylinder and piston being imper- 
meable to heat, and the axis of the cylinder being vertical 
with the piston uppermost. If, as a first approximation, 
we neglect the inertia of the gas in comparison with that of 
the piston, the single working coordinate is the height (z) of 
the piston above the bottom of the cylinder, the kinetic 
energy being made up of }M? ~ (where IV[ is the mass of the 
piston) and the ?~'s, the X'S being the coordinates necessary 
for the complete specification of the distribution of gas- 
molecules when z is given. On differentiating with respect, 
to the various ~/'s it is evident that the momenta thus obtained 
are homogeneous linear functions of the 9~" '~, so that the X's 
are likewise homogeneous linear functions of the momenta, 
and the whole kinetic energy is equal to�89 together with 
a h.q.f, of the x-momenta. The further condition which is 
sufficient to ensure that the energy of the x-momenta shall 
have the potential character is that, when these momenta are 
given, none of the X's shall involve J (though they may and 
do involve z). This is consonant with the assumptions which 
we make when we propose to treat as potential energy the 
translational energy of the gas-molecules. 

39. Similar considerations are readily applied to a differ- 
ential volume-element of a gas through which sound-waves 
are travelling. That energy of the element which we com- 
monly treat as kinetic is its energy of translational motion, 
corresponding to velocity-components ~, ~), 2 of its mass- 
centre : while the energy of the momenta corresponding to 
the remaining (ignored) coordinates of the gas-molecules 
which make up the element is independent of a), ~/, -, as are 
also the velocities of the ignore:l coordinates when the corre- 
sponding momenta have assigned values. 

LXIV.  Direct Application of the Electron Theory to Induction 
Currents. B~j R. J. A. BARNARD, 2tl.A., klelbourne * 

n MOVING charge of electricity in a magnetic field is 
acted on by the electromagnetic force e(v• in 

Gibbs's Vector notation, where v is the velocity. Conse- 
quently, if electrons are moving about in a conductor, even 
when no current is flowing an electromagnetic force is acting 
on each electron when there is an external magnetic field. 
But since the electrons are moving in such a case impart.ially 
in all directions, there can be no resultant effect produced by 
these forces. Even if a current is flowing, the resultant 
effect of the electromagnetic force will be perpendicular to 

�9 Communicated by the Author. 
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