Conference paper Open Access

Comparison of Fine-tuning and Extension Strategies for Deep Convolutional Neural Networks

Pittaras, Nikiforos; Markatopoulou, Foteini; Mezaris, Vasileios; Patras, Ioannis


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/4eab5448-51d0-40cd-aaaa-9eaa11369f69/mmm17_1_preprint.pdf"
      }, 
      "checksum": "md5:a0fcfbb9f6eec5eb87e83b1dde238408", 
      "bucket": "4eab5448-51d0-40cd-aaaa-9eaa11369f69", 
      "key": "mmm17_1_preprint.pdf", 
      "type": "pdf", 
      "size": 255006
    }
  ], 
  "owners": [
    26037
  ], 
  "doi": "10.1007/978-3-319-51811-4_9", 
  "stats": {
    "version_unique_downloads": 31.0, 
    "unique_views": 30.0, 
    "views": 30.0, 
    "downloads": 33.0, 
    "unique_downloads": 31.0, 
    "version_unique_views": 30.0, 
    "volume": 8415198.0, 
    "version_downloads": 33.0, 
    "version_views": 30.0, 
    "version_volume": 8415198.0
  }, 
  "links": {
    "doi": "https://doi.org/10.1007/978-3-319-51811-4_9", 
    "latest_html": "https://zenodo.org/record/240853", 
    "bucket": "https://zenodo.org/api/files/4eab5448-51d0-40cd-aaaa-9eaa11369f69", 
    "badge": "https://zenodo.org/badge/doi/10.1007/978-3-319-51811-4_9.svg", 
    "html": "https://zenodo.org/record/240853", 
    "latest": "https://zenodo.org/api/records/240853"
  }, 
  "created": "2017-01-12T14:56:51.852602+00:00", 
  "updated": "2019-04-10T03:57:58.836916+00:00", 
  "conceptrecid": "728055", 
  "revision": 6, 
  "id": 240853, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.1007/978-3-319-51811-4_9", 
    "description": "<p>In this study we compare three different fine-tuning strategies in order to investigate the best way to transfer the parameters of popular deep convolutional neural networks that were trained for a visual annotation task on one dataset, to a new, considerably different dataset. We focus on the concept-based image/video annotation problem and use ImageNet as the source dataset, while the TRECVID SIN 2013 and PASCAL VOC-2012 classification datasets are used as the target datasets. A large set of experiments examines the effectiveness of three fine-tuning strategies on each of three different pre-trained DCNNs and each target dataset. The reported results give rise to guidelines for effectively fine-tuning a DCNN for concept-based visual annotation.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Comparison of Fine-tuning and Extension Strategies for Deep Convolutional Neural Networks", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "728055"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "240853"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "687786", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::687786"
        }, 
        "title": "In Video Veritas \u2013 Verification of Social Media Video Content for the News Industry", 
        "acronym": "InVID", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [
            "EC"
          ], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "communities": [
      {
        "id": "ecfunded"
      }, 
      {
        "id": "invid-h2020"
      }
    ], 
    "publication_date": "2016-12-31", 
    "creators": [
      {
        "affiliation": "Information Technologies Institute (ITI), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece", 
        "name": "Pittaras, Nikiforos"
      }, 
      {
        "affiliation": "Information Technologies Institute (ITI), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece", 
        "name": "Markatopoulou, Foteini"
      }, 
      {
        "affiliation": "Information Technologies Institute (ITI), Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece", 
        "name": "Mezaris, Vasileios"
      }, 
      {
        "affiliation": "Queen Mary University of London, Mile end Campus, UK", 
        "name": "Patras, Ioannis"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }
  }
}
30
33
views
downloads
Views 30
Downloads 33
Data volume 8.4 MB
Unique views 30
Unique downloads 31

Share

Cite as