Conference paper Open Access

Near-Duplicate Video Retrieval by Aggregating Intermediate CNN Layers

Kordopatis-Zilos, Giorgos; Papadopoulos, Symeon; Patras, Ioannis; Kompatsiaris, Yiannis


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Near-duplicate</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Video retrieval</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">CNNs</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Bag of keyframes</subfield>
  </datafield>
  <controlfield tag="005">20190410035753.0</controlfield>
  <controlfield tag="001">240645</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">January 4-6, 2017</subfield>
    <subfield code="g">MMM2017</subfield>
    <subfield code="a">23rd International Conference on Multimedia Modeling</subfield>
    <subfield code="c">Reykjavik, Iceland</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI, Thessaloniki, Greece</subfield>
    <subfield code="a">Papadopoulos, Symeon</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Queen Mary University of London, UK</subfield>
    <subfield code="a">Patras, Ioannis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI, Thessaloniki, Greece</subfield>
    <subfield code="a">Kompatsiaris, Yiannis</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1545254</subfield>
    <subfield code="z">md5:956387b9cf4f35a7240a1da13b902a58</subfield>
    <subfield code="u">https://zenodo.org/record/240645/files/duplicate-video-retrieval.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://mmm2017.ru.is/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2016-12-31</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-invid-h2020</subfield>
    <subfield code="p">user-ecfunded</subfield>
    <subfield code="o">oai:zenodo.org:240645</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI, Thessaloniki, Greece / Queen Mary University of London, UK</subfield>
    <subfield code="a">Kordopatis-Zilos, Giorgos</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Near-Duplicate Video Retrieval by Aggregating Intermediate CNN Layers</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ecfunded</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-invid-h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">687786</subfield>
    <subfield code="a">In Video Veritas – Verification of Social Media Video Content for the News Industry</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The problem of Near-Duplicate Video Retrieval (NDVR) has attracted increasing interest due to the huge growth of video content on the Web, which is characterized by high degree of near duplicity. This calls for efficient NDVR approaches. Motivated by the outstanding performance of &lt;em&gt;Convolutional Neural Networks&lt;/em&gt; (CNNs) over a wide variety of computer vision problems, we leverage intermediate CNN features in a novel global video representation by means of a layer-based feature aggregation scheme. We perform extensive experiments on the widely used CC_WEB_VIDEO dataset, evaluating three popular deep architectures (AlexNet, VGGNet, GoogLeNet) and demonstrating that the proposed approach exhibits superior performance over the state-of-the-art, achieving a mean Average Precision (mAP) score of 0.976.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/978-3-319-51811-4_21</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
77
355
views
downloads
Views 77
Downloads 355
Data volume 548.6 MB
Unique views 76
Unique downloads 307

Share

Cite as