Conference paper Open Access

Near-Duplicate Video Retrieval by Aggregating Intermediate CNN Layers

Kordopatis-Zilos, Giorgos; Papadopoulos, Symeon; Patras, Ioannis; Kompatsiaris, Yiannis


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Kordopatis-Zilos, Giorgos</dc:creator>
  <dc:creator>Papadopoulos, Symeon</dc:creator>
  <dc:creator>Patras, Ioannis</dc:creator>
  <dc:creator>Kompatsiaris, Yiannis</dc:creator>
  <dc:date>2016-12-31</dc:date>
  <dc:description>The problem of Near-Duplicate Video Retrieval (NDVR) has attracted increasing interest due to the huge growth of video content on the Web, which is characterized by high degree of near duplicity. This calls for efficient NDVR approaches. Motivated by the outstanding performance of Convolutional Neural Networks (CNNs) over a wide variety of computer vision problems, we leverage intermediate CNN features in a novel global video representation by means of a layer-based feature aggregation scheme. We perform extensive experiments on the widely used CC_WEB_VIDEO dataset, evaluating three popular deep architectures (AlexNet, VGGNet, GoogLeNet) and demonstrating that the proposed approach exhibits superior performance over the state-of-the-art, achieving a mean Average Precision (mAP) score of 0.976.</dc:description>
  <dc:identifier>https://zenodo.org/record/240645</dc:identifier>
  <dc:identifier>10.1007/978-3-319-51811-4_21</dc:identifier>
  <dc:identifier>oai:zenodo.org:240645</dc:identifier>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/687786/</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/ecfunded</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/invid-h2020</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>Near-duplicate</dc:subject>
  <dc:subject>Video retrieval</dc:subject>
  <dc:subject>CNNs</dc:subject>
  <dc:subject>Bag of keyframes</dc:subject>
  <dc:title>Near-Duplicate Video Retrieval by Aggregating Intermediate CNN Layers</dc:title>
  <dc:type>info:eu-repo/semantics/conferencePaper</dc:type>
  <dc:type>publication-conferencepaper</dc:type>
</oai_dc:dc>
77
354
views
downloads
Views 77
Downloads 354
Data volume 547.0 MB
Unique views 76
Unique downloads 306

Share

Cite as