Conference paper Open Access

A Web-Based Service for Disturbing Image Detection

Zampoglou, Markos; Papadopoulos, Symeon; Kompatsiaris, Yiannis; Jochen, Spangenberg


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">disturbing content</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">violence detection</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">convolutional neural networks</subfield>
  </datafield>
  <controlfield tag="005">20190410035749.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">We would like to acknowledge the support that NVIDIA provided us through the GPU Grant Program.</subfield>
  </datafield>
  <controlfield tag="001">240644</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">January 4-6</subfield>
    <subfield code="g">MMM 2017</subfield>
    <subfield code="a">23rd International Conference on MultiMedia Modeling</subfield>
    <subfield code="c">Reykjavik, Iceland</subfield>
    <subfield code="n">Demo session</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI, Thessaloniki, Greece</subfield>
    <subfield code="a">Papadopoulos, Symeon</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI, Thessaloniki, Greece</subfield>
    <subfield code="a">Kompatsiaris, Yiannis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Deutsche Welle, Berlin, Germany</subfield>
    <subfield code="a">Jochen, Spangenberg</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">385836</subfield>
    <subfield code="z">md5:eaabe80d2c76c6f5013f4e0185182c05</subfield>
    <subfield code="u">https://zenodo.org/record/240644/files/web-based-service.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://mmm2017.ru.is/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2016-12-31</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-invid-h2020</subfield>
    <subfield code="p">user-ecfunded</subfield>
    <subfield code="o">oai:zenodo.org:240644</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">CERTH-ITI, Thessaloniki, Greece</subfield>
    <subfield code="a">Zampoglou, Markos</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A Web-Based Service for Disturbing Image Detection</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ecfunded</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-invid-h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">687786</subfield>
    <subfield code="a">In Video Veritas – Verification of Social Media Video Content for the News Industry</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">610928</subfield>
    <subfield code="a">REVEALing hidden concepts in Social Media</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;As User Generated Content takes up an increasing share of the total Internet multimedia traffic, it becomes increasingly important to protect users (be they consumers or professionals, such as journalists) from potentially traumatizing content that is accessible on the web. In this demonstration, we present a web service that can identify disturbing or graphic content in images. The service can be used by platforms for filtering or to warn users prior to exposing them to such content. We evaluate the performance of the  service and propose solutions towards extending the training dataset and thus further improving the performance of the service, while minimizing emotional distress to human annotators.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/978-3-319-51814-5_37</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
41
37
views
downloads
Views 41
Downloads 37
Data volume 14.3 MB
Unique views 40
Unique downloads 36

Share

Cite as