Conference paper Open Access

A Web-Based Service for Disturbing Image Detection

Zampoglou, Markos; Papadopoulos, Symeon; Kompatsiaris, Yiannis; Jochen, Spangenberg


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Zampoglou, Markos</dc:creator>
  <dc:creator>Papadopoulos, Symeon</dc:creator>
  <dc:creator>Kompatsiaris, Yiannis</dc:creator>
  <dc:creator>Jochen, Spangenberg</dc:creator>
  <dc:date>2016-12-31</dc:date>
  <dc:description>As User Generated Content takes up an increasing share of the total Internet multimedia traffic, it becomes increasingly important to protect users (be they consumers or professionals, such as journalists) from potentially traumatizing content that is accessible on the web. In this demonstration, we present a web service that can identify disturbing or graphic content in images. The service can be used by platforms for filtering or to warn users prior to exposing them to such content. We evaluate the performance of the  service and propose solutions towards extending the training dataset and thus further improving the performance of the service, while minimizing emotional distress to human annotators.</dc:description>
  <dc:description>We would like to acknowledge the support that NVIDIA provided us through the GPU Grant Program.</dc:description>
  <dc:identifier>https://zenodo.org/record/240644</dc:identifier>
  <dc:identifier>10.1007/978-3-319-51814-5_37</dc:identifier>
  <dc:identifier>oai:zenodo.org:240644</dc:identifier>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/687786/</dc:relation>
  <dc:relation>info:eu-repo/grantAgreement/EC/FP7/610928/</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/ecfunded</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/invid-h2020</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>disturbing content</dc:subject>
  <dc:subject>violence detection</dc:subject>
  <dc:subject>convolutional neural networks</dc:subject>
  <dc:title>A Web-Based Service for Disturbing Image Detection</dc:title>
  <dc:type>info:eu-repo/semantics/conferencePaper</dc:type>
  <dc:type>publication-conferencepaper</dc:type>
</oai_dc:dc>
88
104
views
downloads
Views 88
Downloads 104
Data volume 40.1 MB
Unique views 86
Unique downloads 102

Share

Cite as