Conference paper Open Access

A Web-Based Service for Disturbing Image Detection

Zampoglou, Markos; Papadopoulos, Symeon; Kompatsiaris, Yiannis; Jochen, Spangenberg


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/90a3a92f-f7a0-46b1-af98-397037b1bf64/web-based-service.pdf"
      }, 
      "checksum": "md5:eaabe80d2c76c6f5013f4e0185182c05", 
      "bucket": "90a3a92f-f7a0-46b1-af98-397037b1bf64", 
      "key": "web-based-service.pdf", 
      "type": "pdf", 
      "size": 385836
    }
  ], 
  "owners": [
    27159
  ], 
  "doi": "10.1007/978-3-319-51814-5_37", 
  "stats": {
    "version_unique_downloads": 39.0, 
    "unique_views": 42.0, 
    "views": 43.0, 
    "downloads": 40.0, 
    "unique_downloads": 39.0, 
    "version_unique_views": 42.0, 
    "volume": 15433440.0, 
    "version_downloads": 40.0, 
    "version_views": 43.0, 
    "version_volume": 15433440.0
  }, 
  "links": {
    "doi": "https://doi.org/10.1007/978-3-319-51814-5_37", 
    "latest_html": "https://zenodo.org/record/240644", 
    "bucket": "https://zenodo.org/api/files/90a3a92f-f7a0-46b1-af98-397037b1bf64", 
    "badge": "https://zenodo.org/badge/doi/10.1007/978-3-319-51814-5_37.svg", 
    "html": "https://zenodo.org/record/240644", 
    "latest": "https://zenodo.org/api/records/240644"
  }, 
  "created": "2017-01-12T11:14:36.018834+00:00", 
  "updated": "2019-04-10T03:57:49.847260+00:00", 
  "conceptrecid": "727245", 
  "revision": 7, 
  "id": 240644, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.1007/978-3-319-51814-5_37", 
    "description": "<p>As User Generated Content takes up an increasing share of the total Internet multimedia traffic, it becomes increasingly important to protect users (be they consumers or professionals, such as journalists) from potentially traumatizing content that is accessible on the web. In this demonstration, we present a web service that can identify disturbing or graphic content in images. The service can be used by platforms for filtering or to warn users prior to exposing them to such content. We evaluate the performance of the\u00a0 service and propose solutions towards extending the training dataset and thus further improving the performance of the service, while minimizing emotional distress to human annotators.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "A Web-Based Service for Disturbing Image Detection", 
    "notes": "We would like to acknowledge the support that NVIDIA provided us through the GPU Grant Program.", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "727245"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "240644"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "ecfunded"
      }, 
      {
        "id": "invid-h2020"
      }
    ], 
    "grants": [
      {
        "code": "687786", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::687786"
        }, 
        "title": "In Video Veritas \u2013 Verification of Social Media Video Content for the News Industry", 
        "acronym": "InVID", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [
            "EC"
          ], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "610928", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::610928"
        }, 
        "title": "REVEALing hidden concepts in Social Media", 
        "acronym": "REVEAL", 
        "program": "FP7", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [
            "EC"
          ], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "disturbing content", 
      "violence detection", 
      "convolutional neural networks"
    ], 
    "publication_date": "2016-12-31", 
    "creators": [
      {
        "affiliation": "CERTH-ITI, Thessaloniki, Greece", 
        "name": "Zampoglou, Markos"
      }, 
      {
        "affiliation": "CERTH-ITI, Thessaloniki, Greece", 
        "name": "Papadopoulos, Symeon"
      }, 
      {
        "affiliation": "CERTH-ITI, Thessaloniki, Greece", 
        "name": "Kompatsiaris, Yiannis"
      }, 
      {
        "affiliation": "Deutsche Welle, Berlin, Germany", 
        "name": "Jochen, Spangenberg"
      }
    ], 
    "meeting": {
      "dates": "January 4-6", 
      "title": "23rd International Conference on MultiMedia Modeling", 
      "acronym": "MMM 2017", 
      "url": "http://mmm2017.ru.is/", 
      "session": "Demo session", 
      "place": "Reykjavik, Iceland"
    }, 
    "access_right": "open", 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }
  }
}
43
40
views
downloads
Views 43
Downloads 40
Data volume 15.4 MB
Unique views 42
Unique downloads 39

Share

Cite as