Conference paper Open Access

A Web-Based Service for Disturbing Image Detection

Zampoglou, Markos; Papadopoulos, Symeon; Kompatsiaris, Yiannis; Jochen, Spangenberg


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/240644</identifier>
  <creators>
    <creator>
      <creatorName>Zampoglou, Markos</creatorName>
      <givenName>Markos</givenName>
      <familyName>Zampoglou</familyName>
      <affiliation>CERTH-ITI, Thessaloniki, Greece</affiliation>
    </creator>
    <creator>
      <creatorName>Papadopoulos, Symeon</creatorName>
      <givenName>Symeon</givenName>
      <familyName>Papadopoulos</familyName>
      <affiliation>CERTH-ITI, Thessaloniki, Greece</affiliation>
    </creator>
    <creator>
      <creatorName>Kompatsiaris, Yiannis</creatorName>
      <givenName>Yiannis</givenName>
      <familyName>Kompatsiaris</familyName>
      <affiliation>CERTH-ITI, Thessaloniki, Greece</affiliation>
    </creator>
    <creator>
      <creatorName>Jochen, Spangenberg</creatorName>
      <givenName>Spangenberg</givenName>
      <familyName>Jochen</familyName>
      <affiliation>Deutsche Welle, Berlin, Germany</affiliation>
    </creator>
  </creators>
  <titles>
    <title>A Web-Based Service for Disturbing Image Detection</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2016</publicationYear>
  <subjects>
    <subject>disturbing content</subject>
    <subject>violence detection</subject>
    <subject>convolutional neural networks</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2016-12-31</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/240644</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/978-3-319-51814-5_37</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ecfunded</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/invid-h2020</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;As User Generated Content takes up an increasing share of the total Internet multimedia traffic, it becomes increasingly important to protect users (be they consumers or professionals, such as journalists) from potentially traumatizing content that is accessible on the web. In this demonstration, we present a web service that can identify disturbing or graphic content in images. The service can be used by platforms for filtering or to warn users prior to exposing them to such content. We evaluate the performance of the  service and propose solutions towards extending the training dataset and thus further improving the performance of the service, while minimizing emotional distress to human annotators.&lt;/p&gt;</description>
    <description descriptionType="Other">We would like to acknowledge the support that NVIDIA provided us through the GPU Grant Program.</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/687786/">687786</awardNumber>
      <awardTitle>In Video Veritas – Verification of Social Media Video Content for the News Industry</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/FP7/610928/">610928</awardNumber>
      <awardTitle>REVEALing hidden concepts in Social Media</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
41
39
views
downloads
Views 41
Downloads 39
Data volume 15.0 MB
Unique views 40
Unique downloads 38

Share

Cite as