This article was downloaded by: [New York University]
On: 07 February 2015, At: 12:57
Publisher: Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number:
1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Philosophical Magazine Series 1

Publication details, including instructions for authors and subscription information: http:// www.tandfonline.com/loi/tphm12

I. On the electricity excited by the mere contact of conducting substances of different kinds

Mr. Alexander Volta F.R.S. \& Right Hon. Sir J oseph Banks Bart. K.B. P.R.S.
Published online: 25 J an 2010.

To cite this article: Mr. Alexander Volta F.R.S. \& Right Hon. Sir Joseph Banks Bart. K.B. P.R.S. (1800) I. On the electricity excited by the mere contact of conducting substances of different kinds, Philosophical Magazine Series 1, 7:28, 289-311, DOI: 10.1080/14786440008562590

To link to this article: http:// dx.doi.org/ 10.1080/14786440008562590

PLEASE SCROLL DOWN FOR ARTICLE

Taylor \& Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor \& Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views
of or endorsed by Taylor \& Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms \& Conditions of access and use can be found at http://www.tandfonline.com/page/ terms-and-conditions

THE

PHILOSOPHICAL MAGAZINE.

$S E P T E M B E R 1800$.

Abstract

I. On the Eleatricity excited by the nere Contan of conducting Subfances of different Kinds. In a Letter from Mr. Alexander Volta, F.R.S. Profefor of Natural Pbilofoplby in the Chiverfity of Pavia, to the Rigbt Hon. Sir Joseph Banks, Bart. K.B. P.R.S.*

Como in the Milanefe, March 20, 1800.

Afor which I fhall offer no apology, I have the pleafure of communicating to you, and through you to the Royal Society, fome ftriking refults I have obtained in purfuing my experiments on electricity excited by the mere mutual contact of different kinds of metal, and even by that of other conductors, alfo different from each other, either liquid or containing fome liquid, to which they are properly indebted for their conducting power. The principal of thefe refults, which comprehends nearly all the reft, is the conffruction of an apparatus having a refemblance in ts effects (that is to fay, in the fhock it is capable of making the arms, \&c. experience) to the Leyden flaik, or, rather, to an electric battery weakly charged acting inceffantly, which fhould charge itfelf after each explofion; and, in a word, which fhould have an inexhauftible charge, a perpetual action or impulfe on the electric fluid; but which differs from it effentially both by this continual action, which is peculiar

[^0]to it, and becaufe, inftead of confifting, like the common eleetric jars and batterics, of one or more infulating plates or thin ftrata of thofe bodies which are alone thought to be eledtric, armed with conductors, or bodies called non-eleEtric, this new apparatus is formed merely of feveral of the latter bodies, chofen from among thofe which are the beft conductors, and thercfore the moft remote, as has hitherto been believed, from the electric nature. The apparatus to which I allude, and which will, no doubt, aftonifh you, is only the affemblage of a number of grood conductors of diferent kinds arranged in a certain manner. Thirty, forty, fixty, or more pieces of copper, or rather filver, applied each to a piece of tin, or zinc, which is much better, and as many fitata of water, or any other liquid which may be a better conductor, fuch as falt water, Iey, \&c. or pieces of pafteboard, 隹, \& e e. well foaked in thefe liquids; fuch frata interpofed between every pair or combination of two different metals in an alternate feries, and always in the fame order of thefe three kinds of conductors, are all that is neceffary for confticuting my new inftrument, which, as I have faid, imitates the effects of the Leyden flatk, or of electric batterics, by communicating the fane fhock as thefe do; but which, indeed, is far inferior to the activity of thefe batteries when highly charged, either in regard to the force and noife of the explofons, the fark, the diftance at which the difcharge may be effected, \&ac. as it equals only the effects of a battery very weakly charged, though of immenfe capacity: in other refpects, however, it far furpaffes the virtue and power of thefe batteries, as it has no need, like thefe, of being previoully charged by means of foreign electricity, and as it is capable of giving a fhock every time it is properly touched, however often it may be.

To this apparatus, much more fimilar at bottom, as I thall fhow, and even fuch as I have conftrueted it, in its form to the natural electric organ of the torpedo or electric eel, \&c. than to the Leyden flafk and electric batteries, I would wifh to give the name of the artificial clectric organ: and, indeed, is it not, like it, compofed entirely of conducting bodies? Is it not alfo active of itfelf without any previous charge, without the aid of any electricity excited by any of the means
bitherto known? Does it not act inceffintly, and without intermifion? And, in the laft place, is it not capable of giving every moment fhocks of greater or lefs frength, according to circumftances-flocks which are renewed by each new touch, and which, when thus repeated or continued for a certain time, produce the fame torpor in the limbs as is occafioned by the torpedo, \&c.?

I hall now give a more particular defeription of this apparatus and of others analogrous to it, as well as of the moft remarkable experiments made with them.

I provide a few dozens of fimall round plates or difks of copper, brafs, or rather filver, an inch in diameter more or lefs (picces of coin for example), and an equal number of plates of tin, or, what is better, of zinc, nearly of the fame fize and figure. I make ufe of the term nearly, becaufe great precifion is not neceftary, and the fize in general, as well as the figure of the metallic pieces, is merely arbitrary: care only mult be taken that they may be capable of being conveniently arranged one above the other, in the form of a column. I prepare alfo a pretty large number of circular pieces of pafteboard, or any other fpongy matter capable of imbibing and retaining a great deal of water or muifture, with which they muft be well impregnated in order to enfure fuccefs to the experiments. Thefe circular pieces of pafteb, ard, which I hall call moiftencd difks, I make a litte fmaller than the plates of metal, in order that, when interpofed beiween them, as I thall hereafter defcribe, they may not project beyond them.

Having all thefe pieces ready in a grond flate, that is to fay, the metallic difks very clean and dry, and the non-metallic ones well moifened with common water, or, what is much better, falt water, and dightly wiped that the moiture may not drop off, I have nothing to do but to arrange them, a matter exceedingly fimple and cafy.

I place then horizontally, on a table or any other fand, one of the metallic pieces, for example one of filver, and over the firft I adapt one of zinc; on the fecond I place one of the moiftened difks, then another plate of filver followed immediately by another of zinc, over which I place another
of the moiftened difks. In this manner I continue coupling a plate of filver with one of zinc, and always in the fame order, that is to fay, the filver, below and the zinc above it, or vice verfa, according as I have begun, and interpofe between each of thefe couples a moiftened difk. I continue to form, of feveral of thefe ftories, a column as high as poffible without any danger of its falling.

But, if it contain about twenty of thefe fories or couples of metal, it will be capable not only of emitting figns of electricity by Cavallo's electrometer, affifted by a condenfer, beyond ten or fifteen degrees, and of charging this condenfer by mere contact fo as to make it emit a fpark, \&c. but of giving to the fingers with which its extremities (the bottom and top of the column) have been touched feveral fmall fhocks, more or lefs frequent, according as the touching has been repeated. Each of thefe hooks has a perfect refemblance to that flight fhock experienced from a Leyden flafk weakly charged, or a battery ftill more weakly charged, or a torpedo in an exceedingly languifhing fate, which imitates fill better the effects of my apparatus by the feries of repeated fhocks which it can continually communicate.

To obtain fuch night fhocks from this apparatus which I have defcribed, and which is fill too fmall for great effects, it is neceflary that the fingers, with which the two extremitics are to be touched at the fame time, fhould be dipped in water, fo that the fkin, which otherwife is not a good conductor, may be well moiftened. To fucceed with more certainty, and receive ftronger fhocks, a communication muft be made, by means of a metallic plate fufficiently large, or a large metallic wire, between the bottom of the column (that is to fay, the lower piece of metal,) and water contained in a bafon or large cup, in which one, two, or three fingers, or the whole hard is to be immerfed, while you touch the top or upper extremity (the uppermolt or one of the uppermoft plates of the column) with the clean extremity of another metallic plate held in the other hand, which mult be very moilt, and embrace a large furface of the plate held very faft. By proceeding in this manner, I can obtain a fmall pricking or flight fhock in one or two articulations of
a finger immerfed in the water of the baton, by touching, with the plate grafped in the other hand, the fourth or cven third pair of metallic pieces. Ey touching then the ifth, the fixth, and the reit in fucceffon till I come to the latt, which forms the head of the column, it is curious to obferve how the floocks gradually increafe in force. But this force is fuch, that I receive from a column formed of twenty pairs of pieces (not more) fhocks which affect the whole finger with confiderable pain if it be immerfed alone in the water of the bafon; which extend (without pain) as far as the wrift, and even to the elbow, if the whole hand, or the greater part of it, be immerfed; and are felt alfo in the wrift of the other hand.

I ftill fuppofe that all the neceffary attention has been employed in the conftruction of the column, and that each pair or couple of metallic pieces, refulting from a plate of filver applied over one of zine, is in communication with the following couple by a fufficient firatum of moifture, confifing of falt water rather than common water, or by a piece of pafteboard, fkin, or any thing of the fame kind well impregnated with this falt water. The difk mult not be too fmall, and its furface muft adhere clofely to thofe of the metallic plates between which it is placed. This exact and extenfive application of moiftened difks is very important, whereas the metallic plates of each pair may only touch each other in a few points, provided that their contact is immediate.

All this thows that, if the contact of the metals with each other in fome points only be fufficient (as they are excellent conductors) to give a free paffage to a moderately frong current of electricity, the cafe is not the fame with liquids, or bodies impregnated with moifture, which are conductors much lefs perfect ; and which, confequently, have need of more ample contact with metallic conductors, and fiill more with each other, in order that the electric fluid may eafily pafs, and that it may not be too much retarded in its courfe; efpecially when it is moved with very little force, as in the prefent cafe.

In a word, the effects of my apparatus, that is to fay, the thocks felt, are confiderably more fenfible in proportion as
the temperature of the ambient air, or that of the water or moiftened difks which enter into the compofition of the column, and that of the water even in the bafon, is warmer, as heat renders the water a better conductor. But almoft all the falts, and particularly common falt, will render it a ftill better. This is one of the reafons, if not the only one, why it is fo advantageous that the water of the bafon, and, above all, that interpofed between each pair of metallic plates, as well as the water with which the circular pieces of pafieboard are impregnated, \&c. fhould be falt water, as already obferved.

But all thefe means and all thefe attentions have only a limited advantage, and will never occafion your receiving very ftrong fhocks as long as the apparatus confifts but of one column, formed only of twenty pair of plates, even though they may confift of the two metals propereft for thefe experiments, viz. filver and zinc ; for if they were filver and lead, or tin, or copper and tin, the balf of the effect would not be produced, unlefs the weaker effect of each pair were fupplied by a much greater number. What really increafes the electric power of this apparatus, and to fuch a degree as to make it equal or furpals that of the torpedo or electric eel, is the number of plates arranged in fuch a manner, and with the attention before mentioned. If to the twenty pairs above defcribed twenty or thirty others be added difpofed in the fame order, the fhocks which may be communicated by a column lengthened in this manner will be much fronger, and extend to both arms as far as the fhoulder; and efpecially of that, the hand of which has been immerfed in the water: this hand, with the whole arm, will remain more or lefs benumbed, if by frequently renewing the touches thefe fhocks be made to fucceed each other rapidly, and without intermiffion. This will be the cafe if the whole hand, or the greater part of it, be immerfed in the water of the bafon; but if only one finger be imnerfed, either wholly or in part, the fhocks being almoft entircly concentrated in it alone, will become fo much the more painful, and fo acute as to be fcarcely fupportable.

It may readily be conceived that this column, formed of
forty or fifty couples of metals, which gives fhocks more than moderate to both the arms of one perfon, is capable of giving fenfible hocks alfo to feveral perfons, holding each other by the hands (fufficiently moift) fo as to form an uninterrupted chain.

I fhall now return to the mechanical conftruction of my apparatus, which is fufceptible of feveral variations, and deferibe not all thofe which I have invented or made, either on a finall or a large fcale, but only a few, which are either curious or ufeful, which exhibit fome real advantage, as being eafier or fooner confructed, and which are certain in their effects, or can be longer preferved in good order.

I thall begin by one which, uniting nearly all thefe advantages, differs moft in its figure from the columnar apparatus above deferibed, but which is attended with the inconvenience of being much more voluminous. This new apparatus, which I hall call a couronne de tafes (a chain of cups), is reprefented Plate VHI. fig. i.

I difpofe, therefore, a row of feveral bafons or cups of any matter whatever, except metal, fuch as wood, fhell, carth, or rather glafs (fmall tumblers or drinking glaffes are the moft convenient), half filled with pure water, or rather falt water or ley: they are made all to communicate by forming them into a fort of chain, by means of fo many metallic ares, one arm of which, $S a$, or only the extremity S, immerfed in one of the tumblers, is of copper or brafs, or rather of copper plated with filver; and the other, $Z a$, immerfed into the next tumbler, is of tin, or rather of zinc. I hall here obferve, that ley and other alkaline liquors are preferable when one of the metals to be immerfed is tin: falt water is preferable when it is zinc. The two metals of which each are is compofed, are foldered together in any part above that which is immerfed in the liquor, and which muft touch it with a furface fufficiently large: it is neceffary therefore that this part finould be a plate of an inch fquare, or very little lefs; the reft of the are may be as much narrower as you choofe, and even a fimple metallic wire. It may allo confift of a third metal different from the two immerfed into the umblers, fince the action on the clectric fluid which refults

Fig. 1.

from all the contacts of feveral metals that immediately fucceed each other, or the force with which this fluid is at lait impelled, is abfolutely the fame, or nearly fo, as that which it would have received by the immediate contact of the firft metal with the laft without any intermediate metals, as I have afcertained by direct experiments, of which I fhall have occafion to fpeak hereafter.

A feries of 30,40 , or 60 of thefe tumblers connected with each other in this manner, and ranged either in a fraight or curved line, or bent in every manner poffible, forms the whole of this new apparatus, which at bottom and in fubflance is the fame as the other columnar one above defcribed; as the effential part, which confifts in the immediate communication of the diferent metals which form each couple, and the mediate communication of one couple with the other, viz. by the intervention of a humid conductor, exift in the one as well as the other.

In regard to the manner of trying thefe tumblers, and the different experiments for which they may be employed, there is no need of faying a great deal after the ample explanation I have already given refpecting the columnar apparatus. It may be readily comprehended, that to obtain a hock it will be fufficient to immerfe one hand into one of the tumblers, and a finger of the other hand into another of the tumblers at a confiderable diftance from the former: that this fhock will be ftronger the further thefe glaffes are from each other; that is to fay, in proportion to the number of the intermediate glaffes, and confequently, that the firongeft fhock will be received when you touch the firft and laft end of the chain. It will be readily comprehended alfo, how and why the experiments will fucceed much better by grafping and holding faft in one hand, well moiftened, a pretty large plate of metal (in order that the communication may be more perfect, and formed in a great number of points), and touching with this plate the water in the tumbler, or rather the metallic are, while the other is immerfed in the other diftant tumbler, or touches with a plate, grafped in the like manner, the are of the latter. In a word, one may comprehend and cven forcfee the fuccefs of a great variely of
experiments which may be made with this apparatus or chain of cups much more eafily, and in a manner more evident, and which, if I may be allowed the expreffion, fpeak more to the eyes than thofe with the columnar apparatus. I fhall therefore forbear from defcribing a great number of thefe experiments, which may be eafily gueffed, and thall relate only a few which are no lefs infructive than amufng.

Let three twentics of thefe tumblers be ranged, and connected with each other by metallic arcs, but in fuch a manner, that, for the firft twenty, thefe ares fhall be turned in the fame direction; for example, the arm of filver turned to the left, and the arm of zinc to the right; and for the fecond twenty in a contrary direction, that is to fay, the zinc to the left, and the filver to the right : in the laft place, for the third twenty, the filver to the left, as is the cafe in regard to the firft. When every thing is thus arranged, immerfe one finger in the water of the firt tumbler, and, with the plate grafped in the other hand, as above directed, touch the firft metallic arc (that which joins the firt tumbler to the fecond), then the other are which joins the fecond and third tumbler, and fo on, in fucceffion, till you have touched them all. If the water be very falt and luke-warm, and the fhin of the hands well moitened and foftened, you will already begin to feel a dlight hock in the finger when you have touched the fourth or fifth are (I have experienced it fometimes very diftinctly by touching the third), and by fucceffively proceeding to the fixth and the feventh, \&c. the fhocks wilt gradually increafe in force to the twentieth arc, that is to fay, to the laft of thofe turned in the fame direction; but by proceeding onwards to the $21 \mathrm{ft}, 22 \mathrm{~d}, 2.3 \mathrm{~d}$, or $1 \mathrm{ft}, 2 \mathrm{~d}, 3 \mathrm{~d}$, of the fecond twenty, in which they are all turned in a contrary direction, the fhocks will each time become weaker, fo that at the 36 th or 37 th, they will be imperceptible, and be entirely null at the 40 th , beyond which (and beginning the third twenty, oppofed to the fecond and analogous to the firf,) the fhocks will be imperceptible to the $44^{\text {th }}$ or $45^{\text {th }}$ are; but they will begin to become fenfible, and to increafe gradually, in proportion as you advance to the both, where
they will have attained the fame force as that of the 20th arc.

If the twenty arcs in the middle were all turned in the fame direction as the preceding twenty and the following twenty, that is to fay, if the whole 60 confipired to impel the electric fluid in the fame direction, it may readily be comprehended how much greater the effect will be at the end, and how much ftronger the hock; and it may be comprehended, in general, to what point it muft be weakened in all cafes where a greater or fmaller number of thefe forces act contrary to each other by an inverted pofition of metals.

If the chain be in any part interrupted, either by one of the tumblers being empty of water, or one of the metallic ares being removed or divided into two pieces, you will receive no fhock when you immerfe your finger into the water of the firft and another into that of the laft veffel; but you will have it frong or weak, according to circumfances (leaving thefe fingers immerfed), at the moment when the interrupted communication is reftored; at the moment when another perfon fhall immerfe into the two tumblers, where the are is wanting, two of his fingers (which will alfo receive a flight hock), or rather, when he fhall immerfe the fame are which has been taken away, or any other; and in the cafe of the arc feparated into two pieces, at the moment when thefe pieces are again brought into mutual contact (in which cafe the fhock will be ftronger than in any other); and, laftly, in the cafe of the empty tumbler, at the moment when water poured into it Chall rife to the two metallic arms immerfed in this cup which before were dry.

When the chain of cups is of fufficient length, and capable of giving a ftrong hock, you will experience une, though much weaker, even though you keep immerfed two fingers, or the two hands, in one bafon of water of pretty large fize, in which the firft and laft metallic arcs are made to terminate : provided that either of thefe hands this immerfed, or rather both of them, be kept refpectively in contact, or nearly in contact, with thefe arcs, you will, I fay, experience a fhock at the momen when (the chain being interrupted
interrupted in any part) the communication is reftored, and the circle completed in any of the ways before mentioned. One might be furprifed that in this circle the electric current having a free paflage through an uninterrupted mals of water, that which fills the bafon, fhould quit this good conductor to throw itfelf and purfue its courfe through the body of the perfon who holds his hands immerfed in the fame water, and thus to take a longer paffage. But the furprife will ceafe if we reflect, that living and warm animal fubfances, and above all, their humours, are, in general, better conductors than water. As the body, then, of the perfon who immerfes his hands in the water, affords an eafier paffage than this water does to the clectric current, the latter muft prefer it though a little longer. In a word, the electric fluid, when it muft traverfe imperfect conductors in a large quantity, and particularly moift conductors, has a propenfity to extend itfelf in a larger ftream, or to divide itfelf into feveral, and even to purfue a winding courfe, as it thereby finds lefs refifance than by following one fingle channel, though fhorter; in the prefent cafe it is only a part of the electric current, which, leaving the water, purfucs this new route through the body of the perfon, and traverfes it from the one arm to the other: a greater or lefs part paffes through the water in the veffel. This is the reafon why the fhock experienced is much weaker than when the electric current is not divided when the perfon alone forms the communication between one are and another, \&c.

From thefe experiments one might believe, that when the torpedo withes to communicate a fhock to the arms of a man or to animals which touch it, or which approach its body under the water (which thock is much weaker than what the fifh can give out of the water), it has nothing to do but to bring together fome of the parts of its electric organ in that place, where, by fome interval, the communication is interrupted, to remove the interruptions from betwcen the columns of which the faid organ is formed, or from between its membranes in the form of thin difks, which lie one above the other from the bottom to the fummit of each column: it has, I fay, nothing to do but to remove thefe interrup-
tions in one or more places, and to produce there the requifite contact, either by compreffing thefe columns, or by making fome moifture to flow in between the pellicles or diaphragms which have been feparated, \&cc. This is what may be, and what I really conelude to be, the tafk of the torpedo when it gives a fhock; for all the reft, the impulfe and movement communicated to the electric fluid, is only a neceffary effect of its fingular organ, formed, as is feen, of a very numerous feries of conductors, which I have every reafon to believe fuficiently different from each other to be cxciters of the electric fluid by their mutual contacts; and to fuppofe them ranged in a manner proper for impelling that fluid with a fufficient force froms top to bottom, or from the bottom to the top, and for determining a current capable of producing the fhock, \&c. as foon and as often as all the neceffary contacts and communications take place.

But let us now leave the torpedo, and its natural electric organ, and return to the artificial electric organ of ny invention, and particularly to my firft columnar apparatus, that which imitates the firft even in its form (for that compofed of tumblers is different in that refpect). I might fay fomething alfo in regard to the confruction of the faid apparatus with tumblers or a chain of glaffes; for example, that the firft and laft tumbler fhould be of fuch a fize that, when neceffary, the whole hand might be immerfed in it, \&c. ; but, to enter into all thefe details, would require too much time.

In regard to the columnar apparatus, I endeavoured to difcover the means of lengthening it a great deal by multiplying the metallic plates in fuch a manner as not to tumble down; and I difcovered, befides others, the following, which are reprefented in the annexed figures. (Plate VIII. fig. 2, 3,4.)

In Fig. 2, $m m m m$ are rods, three, four, or more in number, which rife from the bottom of the column, and confine, as in a cagc, the plates or difks, placed each above the other in fuch number, and to fuch a beight as you choofe, and which thus prevent them from falling. The rods may be of glafs, wood, or metal, only that, in the laft cafe, you muft prevent them from coming into immediate contact with the plates; which may be done either by covering cach of them
with a glafs tube, or interpofing between them and the column a few fripes of wax cloth, oiled paper, or even plain paper, and, in a word, any other body that may either be a cobibent or a bad conductor: wood or paper will be fufficiently fo for our purpofe, provided only that they are not very damp or moift.

But the beft expedient, when you wifh to form an apparatus to confift of a great number of plates, above 60,80 , or ioo for example, is, to divide the column into two or more, as feen Fig. 3 and 4, (Plate VIII.) where the pieces all have their refpective pofitions and communication as if there were only one column. Fig. 4, as well as Fig. 3, may indeed be confidered as a bent column.

In all thefe figures the different metallic plates are denoted by the letters S and Z (which are the initials of filver and zinc) ; and the moi,lened di/ks (of pafteboard, fkin, \&c. interpofed between each pair of metals), are reprefented by a black ftratum. The plates of metal may either be laid fimply upon each other and fo brought into union in an indefinite number of points, or they may be foldered together. It is altogether indifferent whichever of thefe methods be followed. cc, cc, cc, are the metallic plates which form a communication between each column, or fection of a column, and another; and $b b, b b, b b$, are the bafons of water in communication with the lower part or extremitics of thefe columns.

An apparatus thus prepared is exceedingly convenient without being bulky; and it might be rendered portable, with ftill more eafe and fafety, by means of circular cafes or tubes, in which each column might be inclofed and preferved. It is only to be regretted that it does not long continue in a good fate: the moiftened diks become dry in one or two days to fuch a degree that they muft be again moiftened; which, however, may be done without taking to pieces the whole apparatus, by immerfing the columns, comple ely formed, in water, and wiping them, when taken out fome time after, with a cloth, or in any cither manner.

The beft method of making an inftrument as durable as can be wifhed, would be, to inclofe and confine the water
interpofd between each pair of metals, and to fix thefe metallic plates in their places by enveloping the whole column with wax or pitch : but this would be fomewhat difficult in the execution, and would require a great deal of patience. I have, however, fucceeded; and have formed in this manner two cylinders confifing of twenty pair of metals, which can fill be employed though made feveral weeks, and which, I hope, will be ferviceable for months.

Thefe'cylinders are attended with this advantage, that they may be employed for experiments either in an erect, inclined, or lying pofition, according as you choofe, or even immerfed in water, provided the top of it be above the furface of the fuid: they might allo give a fhock when entirely immerfed if they contained a greater number of plates, or if feveral of thefe cylinders were joined together, and if there were any interruption that could be removed at pleafure, \&c. by which means thefe cylinders would have a pretty good refemblance to the electric eel; and, to have a better refemblance to it even externally, they might be joined together by pliable metallic wires or ferew-fprings, and then covered with a kin terminated by a head and tail properly formed, \&c.

The effects fenfible to our organs produced by an apparatus formed of 40 or 50 pair of plates (and even by a fmaller, if one of the metals be filver or copper and the other zinc,) are reduced merely to fhocks : the current of the electric fluid, impelled and excited by fuch a number and variety of different conductors, filver, zinc, and water, difpofed alternately in the manner above defcribed, excites not only contractions and fpafms in the mufcles, convulfions more or lefs violent in the limbs through which it paffes in its courfe; tut it irritates alfo the organs of tafte, fight, hearing, and feeling, properly fo called, and produces in them fenfations peculiar to each.

And firt, in regard to the fenfe of feeling: If, by means of an ample contact of the hand (well moiftened) with a plate of metal, or rather, by immerfing the hand to a confiderable depth in the water of the bafon, I eftablifh on one fide a good communication with one of the extremitics of my clectro-mitive appaiatus, (we muft give new names to infru-
ments that are new not only in their form, but in their effects or the principle on which they depend); and on the other I apply the forehead, eye-lid, tip of the nofe, allo well moiftened, or any other part of the body where the fkin is very delicate: if I apply, I fay, with a little preffure, any one of thefe delicate parts, well moiftened, to the point of a metallic wire, communicating properly with the other extremity of the faid apparatus, I experience, at the moment that the conducting circle is completed, at the place of the fkin touched, and a little beyond it, a blow and a prick, which fuddenly paffes, and is repeated as many times as the circle is interrupted and reftored; fo that, if thefe alternations be frequent, they occafion a very difagreeable quivering and pricking. But if all thefe communications continue without thefe alternations, without the leaft interruption of the circle, I feel nothing for fome moments; afterwards, however, there begins at the part applied to the end of the wire, another fenfation, which is a fharp pain (without fhock), limited precifely by the points of contact, a quivering, not only continued, but which always goes on increafing to fuch a degree, that in a little time it becomes infupportable, and does not ceafe till the circle is interrupted.

What proof more evident of the continuation of the electric current as long as the communication of the conductors forming the circle is continued?-and that fuch a current is only fufpended by interrupting that communication? This endlefs circulation of the electric fluid (this perpetual motion) may appear paradoxical and even inexplicable, but it is no lefs true and real; and you feel it, as I may fay, with your hands. Another evident proof may be drawn from this circumftance, that in fuch experiments you often experience, at the moment when the circle is fuddenly interrupted, a fhock, a pricking, an agitation, according to circumftances, in the fame manner as at the moment when it is completed; with this only difference, that thefe fenfations, occafioned by a kind of reflux of the electric fluid, or by the hock which arifes from the fudden fufpenfion of its current, are of lefs ftrength. But I have no need, and this is not the place to bring forward proofs of fuch an endlefs circulation of the
eleetric
electric fluid in a circle of conductors, where there are fome, which, by being of a different kind, perform, by their mutual contact, the office of exciters or movers : this propofition, which I advanced in my firft refearches and difooveries on the fubject of galvanifm, and always maintained by fupporting them with new facts and experiments, will, I hope, meet with no oppofers.

Recurring to the fenfation of pain which is felt in the experiments above defcribed, I muft add, that if this pain be very ftrong and pricking in the parts covered by the fk in , it is much more fo in thofe where the fkin has been taken offin recent wounds for example. If by chance there fhould be a fmall incifion or bit of the lkin rubbed off in the finger which I immerfe in the water that communicates with one of the extremities of the electro-motive apparatus, I experience there a pain fo acute, when, by eftablifling the proper communication with the other extremity, I complete the circle, that I muft foon defift from the experiment; that is to fay, muft withdraw my finger, or interrupt the circle in fome other manner. I will fay more; that I cannot even endure it above a few feconds when the part of the apparatus which I put in play, or the whole apparatus, contains only twenty pair of plates, or about that number.

One thing, which I muft ftill remark, is, that all thefe fenfations of pricking and pain are ftronger and fharper, every thing elfe being equal, when the part of the body which is to feel them is towards the negative electricity; that is to fay, placed in fuch a manner in the conducting circle, that the electric fluid traverfing that circle is not directed towards that fenfible part, does not advance towards it, and enter from the outfide inwards, but takes its direction from the infide outwards; in a word, that it iffues from it: in regard to which it is neceffary to know, of the two metals that enter by pairs into the confruction of the machine, which is the one that gives off to the other. But I had already determined this refpecting all the metals by other experiments, publifhed a long time ago at the end of my firfe memoirs on galvanifm. I hall therefore fay nothing further here, than that the whole is completely confirmed by
the experiments, equally and fill more demonflrative and friking, with which I am at prefent employed.

In regard to the lenfe of tafte, I had before difcovered, and publifhed in thefe firft memoirs, where I found myfelf obliged to combat the pretended animal electricity of Galvani, and to declare it an external electricity moved by the mutual contact of metals of different kinds,-I had difcovered, I fay, in confequence of this power which I afcribed to metals, that two pieces of thefe different metals, and particularly one of filver and one of zinc, applied in a proper manner, excited at the tip of the tongue very fenfible fenfations of tafte; that the tafte was decidedly acid, if, the tip of the tongue being turned towards the zinc, the electric current proceeded againft it, and entered it; and that another tafte, lefs frong but more difagreeable, acrid, and inclining to alkaline, was felt, if (the pofition of the metals being reverfed) the electric current iffued from the tip of the tongue; that thefe fenfations continued and received even an increafe for feveral feconds, if the mutual contact of the two metals was maintained, and if the conducting circle was nowhere interrupted. But when I have faid here, that exactly the fame phenomena take place when you try, infead of one pair of thefe metallic pieces, an affemblage of feveral of them ranged in the proper manner; and that the faid fenfations of tafte, whether acid or alkaline, increafe but a little with the number of thefe pairs, I have faid the whole. It only remains for me to add that, if the apparatus put in play for thefe experiments on the tongue be formed of a fufficiently large number of metallic pairs of this kind, for example, if it contain 30,40 , or more, the tongue experiences not only the fenfation of tafte already mentioned, but, befides that, a blow which it receives at the moment when the circle is completed, and which occafions in it a pricking more or lefs painful, but fleeting, followed fome moments after by a durable fenfation of tafte. This blow produces eien a convillion or agitation of a part or of the whole of the tongue, when the apparatus, formed of a fill greater number of pairs of the faid metals, is more active, and if, by means of good communicating

Vol. VII. Rr conductors,
conductors, the electric current which it excites be able to pafs every where with perfect freedom.

I muft often recur to, and infit on, this laft condition, becaufe it is effential in all experiments when you wifh to obtain fenfible effects on the hody, or commotions in the limbs, or fenfations in the organs of the fenfes. It is neceffary, therefore, that the non-metallic conduitors which enter into the circle fhould be as good conductors as poffible, well moittened (if they are not themfelves liquid) with water, or with any other liquid that may be a better conductor than pure water; and it is neceffary, befides, that the well moiftened furfaces, by which they communicate with the metallic conductor, fhould be fufficiently large. The communication ought to be confined or reduced to a fmall number of points of contact only in that place where you wifh to concentrate the electric action on one of the moft fenfible parts of the body, on any of the fenfitive nerves, \&c. as I have already remarked in fpeaking of the experiments on fecling, viz. thofe by which acute pains are excited in different parts. The beft method which I have found for producing on the tongue all the fenfations above deferibed, is, to apply the tip of it to the pointed extremity (which, however, muft not be too much fo) of a metallic rod, which I make to communicate properly, as in the other experiments, with one of the extremities of ny apparatus, and to eftablifh a good communication between the hand, or, what is better, both the hands rogether, and the other extremity. This application of the tip of the tongue to the end of the metallic rod, may either exift already, when you are going to make the other communication to complete the circle (when you are going to immerfe your hand into the water of the bafon), or be made after the eftablithment of this communication, while the hand is immerfed; and in the latter cafe I think I feel the pricking and fhock in the tongue, a very flort tinze before actual contact. Yes; it always appears to me, particularly if I advance the tip of my tongue gradually, that, when it has arrived within a very fmall diftance of the meal, the electric fluid (I would almon fay fark), overcoming this interval, dats forwards to frike it.

In regard to the fenfe of fight, which I alfo found might be affected by the weak current of the electric fluid, arifing from the mutual contact of two different metals in general, and in particular, of a piece of filver and one of zinc, it was natural to expect that the fenfation of light, excited by my new apparatus, would be fronger in proportion as it contained a greater number of pieces of thefe metals; each pair of which, arranged in the proper manner, adds a degree of force to the faid electric current, as all the other experiments fhow, and particularly thofe with the clectrometer affifted by the condenfer, which I have only mentioned, and which I fhall deferibe on another occafion. But I was furprifed to find that, with 10, 20, 30 pairs, and more, the fafli produced neither appeared longer and more extended, nor much brighter than with one pair. It is true, however, that this fenfation of weak and traufient light, is excited by fuch an apparatus much eafier and in different ways. . To fueceed, indeed, with one pair, the following are almoft the only methods; viz, that one of the metailic pieces fhould be applied to the ball of the eye, or the eye-lid well moiftened, and that it Chould be made to touch the other metal appled to the other eye, or held in the mouth, which produces a a flafh much more beautiful; or, that this fecond metallic piece flould be held in the moiftened band and then bronght into contact with the former; or, in the laft place, that the fe two plates hould be applied to certain parts of the infide of the mouth, making them enmmunieate with each other. But with an apparatus of 20 or 30 pairs, $\& \mathrm{c}$. the fame flath will be produced by applying the ead of a metallic plate or rod, placed in communication with one of the extremities of the apparatus, to the eye, while with one hand you form a proper commenication with the other extremity; hy biating, \mathfrak{l} fay, this plate into contact not only with the eye or any pat of the mouth, but even the forchead, the nofe, the chaceks, lips, chin, and even the throat; in a word, every part and point of the vifage, which mult only be well moitened before they are applied to the metallic plate. The form as weil as the force of this tranfiemt light which is perceived raries a little, if the places of the face to which the action of the
electric current is applied, be varied: if it be on the forehead, for example, this light is moderately bright, and appears like a luminous circle, under which figure it prefents itfelf alfo in feveral other experiments.

But the moft curious of all thefe experiments is, to hold the metallic plate between the lips, and in contact with the tip of the tongue; fince, when you afterwards complete the circle in the proper manner, you excite at once, if the apparatus be fufficiently large and in good order, and the electric current fufficiently frong and in good order, a fenfation of light in the cyes, a convulfion in the lips, and even in the tongue, and a painful prick at the tip of it, followed by a fenfation of tafte.

I have now only to fay a few words on hearing. This foufe, which I had in vain tricd to excite with only two metallic plates, though the moft active of all the exciters of elcetricity, viz. one of filver or gold, and the other of zinc, I was at length able to affect it with my new apparatus, comıpofed of 30 or 40 pairs of thefe metals. I introduced, a confiderable way into both ears, two probes or metallic rods with their ends rounded, and I made them to communicate immediately with both extremities of the apparatus. At the moment when the circle was thus completed I received a thock in the head, and fome moments after (the communication continuing withont any interruption) I began to hear a found, or rather noife, in the ears, which 1 cannot well define: it was a kind of crackling with fhocks, as if fome pafte or tenacious matter had been boiling. This noife continued inceffantly, and without increafing, all the time that the circle was complete, \&c. The difagreeable fenfation, and which I apprehended might be dangerous, of the fhock in the brain, prevented me from repeating this experiment.

There fill remains the fenfe of fmelling, which I have hitherto tried in vain with my apparatus. The electric fluid, which, when made to flow in a current in a complete circle of conductors, produces in the limbs and parts of the living body effects correfpoudent to their excitability, which ftimulating in particular the organs or nerves of touch, tafte, fight, and hearing, excite in them fome fenfations peculiar to each of
thefe fenfes, as I have found, produces in the interior of the nofe only a pricking more or lefs painful, and commotions more or lefs extenfive, according as the faid current is weaker or ftronger. And whence comes it, then, that it does not excite any fenfation of foncll, though, as appears, it ftimulates the nerves of that fenfe? It cannot be faid that the electric fluid of itfeff is not proper for producing odorous fenfations, fince, when it diffufes itfelf through the air in the form of aigrettes, \&c. in the common experiments made with electric machines, it conveys to the nofe a very fenfible finell refembling that of phofphorus. Taking imilitude into confideration, and reafoning from its analogy with other odoriferous natters, I will fay, that it muit completely diffufe itfelf throughout the air to excite fmell; that it has need, like other effluvia, of the vehicle of the air to affect that fenfe in fuch a manner as to excite the fenfations of fmell. But in the experiments of which I fpeak, that is to fay, of an electric current in a circle of conductors, all contiguous, and without the leaf interruption, this abfolutely cannot take place.

All the facts which I have related in this long paper in regard to the action which the electric fluid excited, and when moved by my apparatus, exercifes on the different parts of our body which the current attacks and paffes through ;an action which is not momentaneous, but which lafts, and is maintained during the whole time that this current can follow the chain not interrupted in its communications; in a word, an action the effects of which vary according to the different degrees of excitability in the parts, as has been feen; -all thefe facts, fufficiently numerous, and others which may be ftill difcovered by multiplying and varying the experiments of this kind, will open a very wide field for reflection, and of views, not only curious, but particularly interefting to medicinc. There will be a great deal to occupy the anatomift, the phyfologift, and the practitioner.

It is well known, by the anatomy which has been made of it, that the electric organ of the torpedo or clectric cel, confifts of feveral membranaceous columns, filled from one end to the other with a great number of plates or pellicles,

310 On EleEIricity excited by tbe ContaEZ of Conductors.

in the form of very thin diks, placed one upon the other, or fupported at very fmall diftances by intervals, into which, as appears, fome liquor flows. But we caunot fuppofe that any of thefe laminæ are of an infulating nature, like glafs, refin, filk, \&cc. and filll lefs that they can either become electric by friction, or be difpofed and charged in the fame manner as the fmall Franklinian plates or fmall clectrophores; nor even that they are fufficiently bad conductors to perform the office of a good and durable condenfer, as Mr. Nicholfon has fuppofed. The hypothefis of this learned and laborious philofopher, by which he makes of each pair of thefe pellicles, which he compares to leaves of tale, as many fmall electrophores or condenfers, is indeel very ingenions, and is, perhaps, the beft theory that bas been devifed to explain the phenomena of the torpedo, adhering to the hitherto known principles and laws of electricity. For, befides that the mechanifm, by which, every time that the fifh intended to give a hock, the refpective feparation of the phates of the whole or a great number of thefe electrophores or condenfers ought to be effected all at once, and ought to eflablifh on the one hand a communication between themfelves of all the plates electrified pofitively, and on the other a communication between all thofe electrified negatively, as Mr. Nicholfon fup-pofes-befides, that this very complex mechanifm appears too dificult, and little agreeable to nature;-and befides, that the fuppofition of an electric charge originally impreffed, and fo durable in thefe pellicles perforaing the office of eleatraphores, is altogether gratuitous,- fuch a hypothefis falls entirely, fince thefe pellicles of the organ of the torpedo are not, and canuot be, in any manner infulating or fufceptible of a real electric charge, and much lefs capable of retaining it. Every animal fubtance, as long as it is frefh, furrounded with juices, and more or lefs fucculent of ifelf, is a very good conductor, I fay more, inftead of being as cohitcont as refins or talc, to leaves of which Mr . Nicholfon has compared the pellicles in quettion, there is not, as I have affured myfelf, any living or freth animal fubftance which is not a better deferent than water, except only greafe and fome oily humours. But neither thefe humours nor greafe, efpe8
cially femi-fluid or entirely fluid, as it is found in living animals, can receive an electric charge in the manner of infulating plates, and retain it: befides, we do not find that the pellicles and humours of the organ of the torpedo are greafy or oily. This organ therefore, compofed eutirely of conducting fubfances, cannot be compared either to the electrophore or condenfer, or to the Leyden flafk, or any machine excitable by friction or by any other means capable of electrifying infulating bodies, which before my difcoveries were always believed to be the only ones originally electric.

To what electricity then, or to what inftrument ought the organ of the torpedo or electric ecl, \&c. to be compared? To that which I have confructed according to the new principle of electricity, difcovered by me fome years ago, and which my fucceffive experiments, particularly thofe with which I am at prefent engaged, have fo well confirmed, viz. that conductors are alfo, in certain cafes, exciters of electricity in the cafe of the mutual contact of thofe of different kinds, \&c. in that apparatus which I have named the artificial eleatric organ, and which being at bottom the fame as the natural organ of the torpedo, refembles it alfo in its form, as I have advanced.
II. Invefigation of the Powers of the Prifmatic Colours to Heat and Illuminate Objects; with Remarks that prove the different Refrangibility of Radiant Heat: to wubich is added, an Inquiry into the Metbod of viewing tbe Sun advantageoully, with Telefcopes of large Apertures and bigb Magnifying Powers. By Whlilam Herschel, Ll.D. F.R.S.**

IT is fometimes of great ufe in natural philofophy to doubt of things that are commonly taken for granted; efpecially as the means of refolving any doubt, when once it is entertained, are often within our reach. We may therefore fay that any experiment which leads us to inveftigate the truth

[^1]
[^0]: * Tranlated from the author's paper publimed in French in the Philofophical Tranfactions for 1800, part 2.

 Voz. VII.
 P_{p}

[^1]: * From TranfaCions of ibe Royal Society of London for 1600.

