Conference paper Closed Access

Efficient Spatio-temporal RDF Query Processing in Large Dynamic Knowledge Bases

A. Vlachou; C. Doulkeridis; A. Glenis; G. M. Santipantakis; G. A. Vouros


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-04-08</subfield>
  </datafield>
  <controlfield tag="005">20190410024456.0</controlfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-h2020_datacron</subfield>
  </datafield>
  <controlfield tag="001">2392417</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-h2020_datacron</subfield>
    <subfield code="o">oai:zenodo.org:2392417</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;An ever-increasing number of real-life applications produce spatio-temporal data that record the position of moving objects (persons, cars, vessels, aircrafts, etc.). In order to provide integrated views with other relevant data sources (e.g., weather, vessel databases, etc.), this data is represented in RDF and stored in knowledge bases with the following notable features: (a) the data is dynamic, since new spatio-temporal data objects are recorded every second, and (b) the size of the data is vast and can easily lead to scalability issues. As a result, this raises the need for efficient management of large-scale, dynamic, spatio-temporal RDF data. In this paper, we propose boosting the performance of spatio-temporal RDF queries by compressing the spatio-temporal information of each RDF entity into a unique integer value. We exploit this encoding in a filter-and-refine framework for processing of spatio-temporal RDF data efficiently. By means of an extensive evaluation on real-life data sets, we demonstrate the merits of our framework.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Piraeus</subfield>
    <subfield code="a">C. Doulkeridis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Piraeus</subfield>
    <subfield code="a">A. Glenis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Piraeus</subfield>
    <subfield code="a">G. M. Santipantakis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Piraeus</subfield>
    <subfield code="a">G. A. Vouros</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">closed</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Piraeus</subfield>
    <subfield code="a">A. Vlachou</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Spatio-temporal RDF, query processing, encoding</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.2392417</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Efficient Spatio-temporal RDF Query Processing in Large Dynamic Knowledge Bases</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.2392416</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">687591</subfield>
    <subfield code="a">Big Data Analytics for Time Critical Mobility Forecasting</subfield>
  </datafield>
</record>
44
3
views
downloads
All versions This version
Views 4444
Downloads 33
Data volume 2.6 MB2.6 MB
Unique views 3535
Unique downloads 33

Share

Cite as