
Introduction to Kernel Density Estimation
A graphical tutorial

tommyod @ GitHub

September 24, 2018

1 / 105

Introduction

2 / 105

What is a kernel density estimate?

On every data point xi, we place a kernel function K. The kernel
density estimate is

f̂ (x) =
1
N

N

∑
i=1

K(x− xi).

Data

3 / 105

What is a kernel density estimate?

On every data point xi, we place a kernel function K. The kernel
density estimate is

f̂ (x) =
1
N

N

∑
i=1

K(x− xi).

Kernel
Data

4 / 105

What is a kernel density estimate?

On every data point xi, we place a kernel function K. The kernel
density estimate is

f̂ (x) =
1
N

N

∑
i=1

K(x− xi).

Kernel
Data

5 / 105

What is a kernel density estimate?

On every data point xi, we place a kernel function K. The kernel
density estimate is

f̂ (x) =
1
N

N

∑
i=1

K(x− xi).

Kernel
Data

6 / 105

What is a kernel density estimate?

On every data point xi, we place a kernel function K. The kernel
density estimate is

f̂ (x) =
1
N

N

∑
i=1

K(x− xi).

Kernel
Data

7 / 105

What is a kernel density estimate?

On every data point xi, we place a kernel function K. The kernel
density estimate is

f̂ (x) =
1
N

N

∑
i=1

K(x− xi).

Kernel
Data

8 / 105

What is a kernel density estimate?

On every data point xi, we place a kernel function K. The kernel
density estimate is

f̂ (x) =
1
N

N

∑
i=1

K(x− xi).

Kernel
KDE
Data

9 / 105

What is a kernel density estimate?

On every data point xi, we place a kernel function K. The kernel
density estimate is

f̂ (x) =
1
N

N

∑
i=1

K(x− xi).

Kernel
KDE
Data

10 / 105

What is a kernel density estimate?

On every data point xi, we place a kernel function K. The kernel
density estimate is

f̂ (x) =
1
N

N

∑
i=1

K(x− xi).

Kernel
KDE
Data

11 / 105

What is a kernel density estimate?

On every data point xi, we place a kernel function K. The kernel
density estimate is

f̂ (x) =
1
N

N

∑
i=1

K(x− xi).

Kernel
KDE
Data

12 / 105

What is a kernel density estimate?

On every data point xi, we place a kernel function K. The kernel
density estimate is

f̂ (x) =
1
N

N

∑
i=1

K(x− xi).

Kernel
KDE
Data

13 / 105

Choice of kernel

The kernel function K is typically

• everywhere non-negative: K(x)≥ 0 for every x

• symmetric: K(x) = K(−x) for every x

• decreasing: K′(x)≤ 0 for every x > 0.

Gaussian Box Tri Triweight

14 / 105

Choice of kernel

The triangular kernel (or linear kernel) is given by

f (x) ∝ max(1−|x|,0).

Data

15 / 105

Choice of kernel

The triangular kernel (or linear kernel) is given by

f (x) ∝ max(1−|x|,0).

Kernel
Data

16 / 105

Choice of kernel

The triangular kernel (or linear kernel) is given by

f (x) ∝ max(1−|x|,0).

Kernel
Data

17 / 105

Choice of kernel

The triangular kernel (or linear kernel) is given by

f (x) ∝ max(1−|x|,0).

Kernel
Data

18 / 105

Choice of kernel

The triangular kernel (or linear kernel) is given by

f (x) ∝ max(1−|x|,0).

Kernel
Data

19 / 105

Choice of kernel

The triangular kernel (or linear kernel) is given by

f (x) ∝ max(1−|x|,0).

Kernel
Data

20 / 105

Choice of kernel

The triangular kernel (or linear kernel) is given by

f (x) ∝ max(1−|x|,0).

Kernel
KDE
Data

21 / 105

Choice of kernel

The triangular kernel (or linear kernel) is given by

f (x) ∝ max(1−|x|,0).

Kernel
KDE
Data

22 / 105

Choice of kernel

The triangular kernel (or linear kernel) is given by

f (x) ∝ max(1−|x|,0).

Kernel
KDE
Data

23 / 105

Choice of kernel

The triangular kernel (or linear kernel) is given by

f (x) ∝ max(1−|x|,0).

Kernel
KDE
Data

24 / 105

Choice of kernel

The triangular kernel (or linear kernel) is given by

f (x) ∝ max(1−|x|,0).

Kernel
KDE
Data

25 / 105

Choice of bandwidth

We use h to control for the bandwidth of f̂ (x) by writing

f̂ (x) =
1

Nh

N

∑
i=1

K
(

x− xi

h

)
.

KDE
Data

26 / 105

Choice of bandwidth

We use h to control for the bandwidth of f̂ (x) by writing

f̂ (x) =
1

Nh

N

∑
i=1

K
(

x− xi

h

)
.

KDE
Data

27 / 105

Choice of bandwidth

We use h to control for the bandwidth of f̂ (x) by writing

f̂ (x) =
1

Nh

N

∑
i=1

K
(

x− xi

h

)
.

KDE
Data

28 / 105

Choice of bandwidth

We use h to control for the bandwidth of f̂ (x) by writing

f̂ (x) =
1

Nh

N

∑
i=1

K
(

x− xi

h

)
.

KDE
Data

29 / 105

Choice of bandwidth

We use h to control for the bandwidth of f̂ (x) by writing

f̂ (x) =
1

Nh

N

∑
i=1

K
(

x− xi

h

)
.

KDE
Data

30 / 105

Choice of bandwidth

We use h to control for the bandwidth of f̂ (x) by writing

f̂ (x) =
1

Nh

N

∑
i=1

K
(

x− xi

h

)
.

KDE
Data

31 / 105

Choice of bandwidth

We use h to control for the bandwidth of f̂ (x) by writing

f̂ (x) =
1

Nh

N

∑
i=1

K
(

x− xi

h

)
.

KDE
Data

32 / 105

Choice of bandwidth

We use h to control for the bandwidth of f̂ (x) by writing

f̂ (x) =
1

Nh

N

∑
i=1

K
(

x− xi

h

)
.

KDE
Data

33 / 105

Choice of bandwidth

We use h to control for the bandwidth of f̂ (x) by writing

f̂ (x) =
1

Nh

N

∑
i=1

K
(

x− xi

h

)
.

KDE
Data

34 / 105

Choice of bandwidth

We use h to control for the bandwidth of f̂ (x) by writing

f̂ (x) =
1

Nh

N

∑
i=1

K
(

x− xi

h

)
.

KDE
Data

35 / 105

Choice of bandwidth - Silverman

Silverman’s rule of thumb computes an optimal h by assuming that
the data is normally distributed. Good starting point in many cases.

4 3 2 1 0 1 2 3 4

0.0

0.1

0.2

0.3

0.4 Standard normal

36 / 105

Choice of bandwidth - Silverman

Silverman’s rule of thumb computes an optimal h by assuming that
the data is normally distributed. Good starting point in many cases.

4 3 2 1 0 1 2 3 4

0.0

0.1

0.2

0.3

0.4 Standard normal
Data

37 / 105

Choice of bandwidth - Silverman

Silverman’s rule of thumb computes an optimal h by assuming that
the data is normally distributed. Good starting point in many cases.

4 3 2 1 0 1 2 3 4

0.0

0.1

0.2

0.3

0.4 Standard normal
KDE /w silverman
Data

38 / 105

Choice of bandwidth - ISJ

The Improved Sheather Jones (ISJ) algorithm is more robust with
respect to multimodality.

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.05

0.00

0.05

0.10

0.15

0.20

0.25
Normals

39 / 105

Choice of bandwidth - ISJ

The Improved Sheather Jones (ISJ) algorithm is more robust with
respect to multimodality.

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.05

0.00

0.05

0.10

0.15

0.20

0.25
Normals
Data

40 / 105

Choice of bandwidth - ISJ

The Improved Sheather Jones (ISJ) algorithm is more robust with
respect to multimodality.

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.05

0.00

0.05

0.10

0.15

0.20

0.25
Normals
KDE /w silverman
Data

41 / 105

Choice of bandwidth - ISJ

The Improved Sheather Jones (ISJ) algorithm is more robust with
respect to multimodality.

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.05

0.00

0.05

0.10

0.15

0.20

0.25
Normals
KDE /w silverman
KDE /w ISJ
Data

42 / 105

Weighting data

It’s possible to add weights wi to data points xi by writing

f̂ (x) =
1
h

N

∑
i=1

wiK
(

x− xi

h

)
, where

N

∑
i=1

wi = 1.

Data

43 / 105

Weighting data

It’s possible to add weights wi to data points xi by writing

f̂ (x) =
1
h

N

∑
i=1

wiK
(

x− xi

h

)
, where

N

∑
i=1

wi = 1.

Kernel
Data

44 / 105

Weighting data

It’s possible to add weights wi to data points xi by writing

f̂ (x) =
1
h

N

∑
i=1

wiK
(

x− xi

h

)
, where

N

∑
i=1

wi = 1.

Kernel
Data

45 / 105

Weighting data

It’s possible to add weights wi to data points xi by writing

f̂ (x) =
1
h

N

∑
i=1

wiK
(

x− xi

h

)
, where

N

∑
i=1

wi = 1.

Kernel
Data

46 / 105

Weighting data

It’s possible to add weights wi to data points xi by writing

f̂ (x) =
1
h

N

∑
i=1

wiK
(

x− xi

h

)
, where

N

∑
i=1

wi = 1.

Kernel
Data

47 / 105

Weighting data

It’s possible to add weights wi to data points xi by writing

f̂ (x) =
1
h

N

∑
i=1

wiK
(

x− xi

h

)
, where

N

∑
i=1

wi = 1.

Kernel
Data

48 / 105

Weighting data

It’s possible to add weights wi to data points xi by writing

f̂ (x) =
1
h

N

∑
i=1

wiK
(

x− xi

h

)
, where

N

∑
i=1

wi = 1.

Kernel
KDE
Data

49 / 105

Weighting data

It’s possible to add weights wi to data points xi by writing

f̂ (x) =
1
h

N

∑
i=1

wiK
(

x− xi

h

)
, where

N

∑
i=1

wi = 1.

Kernel
KDE
Data

50 / 105

Weighting data

It’s possible to add weights wi to data points xi by writing

f̂ (x) =
1
h

N

∑
i=1

wiK
(

x− xi

h

)
, where

N

∑
i=1

wi = 1.

Kernel
KDE
Data

51 / 105

Weighting data

It’s possible to add weights wi to data points xi by writing

f̂ (x) =
1
h

N

∑
i=1

wiK
(

x− xi

h

)
, where

N

∑
i=1

wi = 1.

Kernel
KDE
Data

52 / 105

Weighting data

It’s possible to add weights wi to data points xi by writing

f̂ (x) =
1
h

N

∑
i=1

wiK
(

x− xi

h

)
, where

N

∑
i=1

wi = 1.

Kernel
KDE
Data

53 / 105

Bounded domains

A simple trick to overcome bias at boundaries is to mirror the data.
This ensures that f̂ ′(x) = 0 at the boundary.

Data

54 / 105

Bounded domains

A simple trick to overcome bias at boundaries is to mirror the data.
This ensures that f̂ ′(x) = 0 at the boundary.

KDE (original)
Data

55 / 105

Bounded domains

A simple trick to overcome bias at boundaries is to mirror the data.
This ensures that f̂ ′(x) = 0 at the boundary.

KDE (original)
Data
Mirrored data

56 / 105

Bounded domains

A simple trick to overcome bias at boundaries is to mirror the data.
This ensures that f̂ ′(x) = 0 at the boundary.

KDE (original)
KDE (mirrored)
Data
Mirrored data

57 / 105

Bounded domains

A simple trick to overcome bias at boundaries is to mirror the data.
This ensures that f̂ ′(x) = 0 at the boundary.

KDE (original)
KDE (mirrored)
KDE (original + mirrored)
Data
Mirrored data

58 / 105

Bounded domains

A simple trick to overcome bias at boundaries is to mirror the data.
This ensures that f̂ ′(x) = 0 at the boundary.

KDE (original)
KDE (mirrored)
KDE (original + mirrored)
KDE (final)
Data
Mirrored data

59 / 105

Extension to d dimensions

60 / 105

Kernels in 2D

An approach to d-dimensional estimates is to write

f̂ (x) =
1
hd

N

∑
i=1

wiK
(∥x− xi∥p

h

)
, where

N

∑
i=1

wi = 1.

'box', 2-norm 'tri', 2-norm

'biweight', 2-norm 'gaussian', 2-norm

61 / 105

The effect of norms

The choice of norm comes in to play when d ≥ 2, the p-norm is

∥x∥p :=
(

∑
i=1

|xi|p
)1/p

.

1 0 1

1

0

1

Norm p = 1

1 0 1

1

0

1

Norm p = 2

1 0 1

1

0

1

Norm p = 3

1 0 1

1

0

1

Norm p = inf

62 / 105

The effect of norms

The shape of kernel functions in higher dimensions depend on the
value of p in the p norm.

'box', 1-norm 'box', 2-norm

'box', inf-norm 'box', 3-norm

63 / 105

The effect of norms

The shape of kernel functions in higher dimensions depend on the
value of p in the p norm.

'tri', 1-norm 'tri', 2-norm

'tri', inf-norm 'tri', 3-norm

64 / 105

The effect of norms

The shape of kernel functions in higher dimensions depend on the
value of p in the p norm.

'gaussian', 1-norm 'gaussian', 2-norm

'gaussian', inf-norm 'gaussian', 3-norm

65 / 105

Example with data

As the number of samples grow, the choice of both kernel K and
norm p becomes unimportant. The bandwidth H is still important.

2 0 2

2

0

2

Norm p = 1

2 0 2

2

0

2

Norm p = 2

2 0 2

2

0

2

Norm p = 3

2 0 2

2

0

2

Norm p = inf
N = 1 data points

66 / 105

Example with data

As the number of samples grow, the choice of both kernel K and
norm p becomes unimportant. The bandwidth H is still important.

2 0 2

2

0

2

Norm p = 1

2 0 2

2

0

2

Norm p = 2

2 0 2

2

0

2

Norm p = 3

2 0 2

2

0

2

Norm p = inf
N = 2 data points

67 / 105

Example with data

As the number of samples grow, the choice of both kernel K and
norm p becomes unimportant. The bandwidth H is still important.

2 0 2

2

0

2

Norm p = 1

2 0 2

2

0

2

Norm p = 2

2 0 2

2

0

2

Norm p = 3

2 0 2

2

0

2

Norm p = inf
N = 3 data points

68 / 105

Example with data

As the number of samples grow, the choice of both kernel K and
norm p becomes unimportant. The bandwidth H is still important.

2 0 2

2

0

2

Norm p = 1

2 0 2

2

0

2

Norm p = 2

2 0 2

2

0

2

Norm p = 3

2 0 2

2

0

2

Norm p = inf
N = 4 data points

69 / 105

Example with data

As the number of samples grow, the choice of both kernel K and
norm p becomes unimportant. The bandwidth H is still important.

2 0 2

2

0

2

Norm p = 1

2 0 2

2

0

2

Norm p = 2

2 0 2

2

0

2

Norm p = 3

2 0 2

2

0

2

Norm p = inf
N = 5 data points

70 / 105

Example with data

As the number of samples grow, the choice of both kernel K and
norm p becomes unimportant. The bandwidth H is still important.

2 0 2

2

0

2

Norm p = 1

2 0 2

2

0

2

Norm p = 2

2 0 2

2

0

2

Norm p = 3

2 0 2

2

0

2

Norm p = inf
N = 6 data points

71 / 105

Example with data

As the number of samples grow, the choice of both kernel K and
norm p becomes unimportant. The bandwidth H is still important.

2 0 2

2

0

2

Norm p = 1

2 0 2

2

0

2

Norm p = 2

2 0 2

2

0

2

Norm p = 3

2 0 2

2

0

2

Norm p = inf
N = 7 data points

72 / 105

Example with data

As the number of samples grow, the choice of both kernel K and
norm p becomes unimportant. The bandwidth H is still important.

2 0 2

2

0

2

Norm p = 1

2 0 2

2

0

2

Norm p = 2

2 0 2

2

0

2

Norm p = 3

2 0 2

2

0

2

Norm p = inf
N = 8 data points

73 / 105

Example with data

As the number of samples grow, the choice of both kernel K and
norm p becomes unimportant. The bandwidth H is still important.

2 0 2

2

0

2

Norm p = 1

2 0 2

2

0

2

Norm p = 2

2 0 2

2

0

2

Norm p = 3

2 0 2

2

0

2

Norm p = inf
N = 9 data points

74 / 105

Example with data

As the number of samples grow, the choice of both kernel K and
norm p becomes unimportant. The bandwidth H is still important.

2 0 2

2

0

2

Norm p = 1

2 0 2

2

0

2

Norm p = 2

2 0 2

2

0

2

Norm p = 3

2 0 2

2

0

2

Norm p = inf
N = 10 data points

75 / 105

Example with data

As the number of samples grow, the choice of both kernel K and
norm p becomes unimportant. The bandwidth H is still important.

2 0 2

2

0

2

Norm p = 1

2 0 2

2

0

2

Norm p = 2

2 0 2

2

0

2

Norm p = 3

2 0 2

2

0

2

Norm p = inf
N = 15 data points

76 / 105

Example with data

As the number of samples grow, the choice of both kernel K and
norm p becomes unimportant. The bandwidth H is still important.

2 0 2

2

0

2

Norm p = 1

2 0 2

2

0

2

Norm p = 2

2 0 2

2

0

2

Norm p = 3

2 0 2

2

0

2

Norm p = inf
N = 20 data points

77 / 105

Example with data

As the number of samples grow, the choice of both kernel K and
norm p becomes unimportant. The bandwidth H is still important.

2 0 2

2

0

2

Norm p = 1

2 0 2

2

0

2

Norm p = 2

2 0 2

2

0

2

Norm p = 3

2 0 2

2

0

2

Norm p = inf
N = 25 data points

78 / 105

Example with data

As the number of samples grow, the choice of both kernel K and
norm p becomes unimportant. The bandwidth H is still important.

2 0 2

2

0

2

Norm p = 1

2 0 2

2

0

2

Norm p = 2

2 0 2

2

0

2

Norm p = 3

2 0 2

2

0

2

Norm p = inf
N = 50 data points

79 / 105

Example with data

As the number of samples grow, the choice of both kernel K and
norm p becomes unimportant. The bandwidth H is still important.

2 0 2

2

0

2

Norm p = 1

2 0 2

2

0

2

Norm p = 2

2 0 2

2

0

2

Norm p = 3

2 0 2

2

0

2

Norm p = inf
N = 100 data points

80 / 105

Example with data

As the number of samples grow, the choice of both kernel K and
norm p becomes unimportant. The bandwidth H is still important.

2 0 2

2

0

2

Norm p = 1

2 0 2

2

0

2

Norm p = 2

2 0 2

2

0

2

Norm p = 3

2 0 2

2

0

2

Norm p = inf
N = 200 data points

81 / 105

Example with data

As the number of samples grow, the choice of both kernel K and
norm p becomes unimportant. The bandwidth H is still important.

2 0 2

2

0

2

Norm p = 1

2 0 2

2

0

2

Norm p = 2

2 0 2

2

0

2

Norm p = 3

2 0 2

2

0

2

Norm p = inf
N = 500 data points

82 / 105

Example with data

As the number of samples grow, the choice of both kernel K and
norm p becomes unimportant. The bandwidth H is still important.

2 0 2

2

0

2

Norm p = 1

2 0 2

2

0

2

Norm p = 2

2 0 2

2

0

2

Norm p = 3

2 0 2

2

0

2

Norm p = inf
N = 1000 data points

83 / 105

A fast algorithm

84 / 105

Linear binning

Go through N data points and assign weights to n equidistant grid
points. The algorithm runs in O(N2d) time in d dimensions.

Data
Grid

85 / 105

Linear binning

Go through N data points and assign weights to n equidistant grid
points. The algorithm runs in O(N2d) time in d dimensions.

Processed data
Data
Grid

86 / 105

Linear binning

Go through N data points and assign weights to n equidistant grid
points. The algorithm runs in O(N2d) time in d dimensions.

Processed data
Data
Grid

87 / 105

Linear binning

Go through N data points and assign weights to n equidistant grid
points. The algorithm runs in O(N2d) time in d dimensions.

Processed data
Data
Grid

88 / 105

Linear binning

Go through N data points and assign weights to n equidistant grid
points. The algorithm runs in O(N2d) time in d dimensions.

Processed data
Data
Grid

89 / 105

Linear binning

Go through N data points and assign weights to n equidistant grid
points. The algorithm runs in O(N2d) time in d dimensions.

Processed data
Data
Grid

90 / 105

Linear binning

Go through N data points and assign weights to n equidistant grid
points. The algorithm runs in O(N2d) time in d dimensions.

Processed data
Data
Grid

91 / 105

Linear binning

Go through N data points and assign weights to n equidistant grid
points. The algorithm runs in O(N2d) time in d dimensions.

Processed data
Data
Grid

92 / 105

Linear binning

Go through N data points and assign weights to n equidistant grid
points. The algorithm runs in O(N2d) time in d dimensions.

Processed data
Data
Grid

93 / 105

Sample the kernel

Sample the kernel function K at equidistant points. The n binned
data points and the kernel are then convolved, this runs in
O(n logn) time, for a total time of O(N2d +n logn).

94 / 105

Sample the kernel

Sample the kernel function K at equidistant points. The n binned
data points and the kernel are then convolved, this runs in
O(n logn) time, for a total time of O(N2d +n logn).

95 / 105

Linear binning in higher dimensions

The extension to d dimensions is relatively straightforward.

96 / 105

Linear binning in higher dimensions

The extension to d dimensions is relatively straightforward.

97 / 105

Linear binning in higher dimensions

The extension to d dimensions is relatively straightforward.

98 / 105

Linear binning in higher dimensions

The extension to d dimensions is relatively straightforward.

99 / 105

Linear binning in higher dimensions

The extension to d dimensions is relatively straightforward.

100 / 105

Linear binning in higher dimensions

The extension to d dimensions is relatively straightforward.

101 / 105

Linear binning in higher dimensions

The extension to d dimensions is relatively straightforward.

102 / 105

KDEpy

103 / 105

KDEpy

If you’re interested in KDE in Python, I’ve written a library.

• GitHub: https://github.com/tommyod/KDEpy

101 102 103 104 105 106 107

Number of data points N

10 3

10 2

10 1

100

Ev
al

ua
tio

n
tim

e
t

Profiling KDE implementations.Epanechnikov kernel on 210 grid points.
KDEpy.FFTKDE
scipy
statsmodels
sklearn

104 / 105

https://github.com/tommyod/KDEpy

References

References for further reading.

• Silverman, B. W. Density Estimation for Statistics and Data
Analysis. Chapman and Hall, 1986.

• Wand, M. P., and M. C. Jones. Kernel Smoothing. Chapman and
Hall, 1995.

• Jake VanderPlas. Kernel Density Estimation in Python. 2013
https://jakevdp.github.io/blog/2013/12/01/
kernel-density-estimation/

105 / 105

https://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/
https://jakevdp.github.io/blog/2013/12/01/kernel-density-estimation/

	Introduction
	Extension to d dimensions
	A fast algorithm
	KDEpy

