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I. Notes on the Theory of Lubrication. 
By  Lord RAYLEIGH, 0 . i . ,  -~.R.S. ~ 

M ODERN views respecting mechanical lubrication are 
founded mainly on the experiments o[ B. Tower%, 

conducted upon journal bearings. He insisted upon the 
importance of a complete film o[ oil between the opposed 
solid surfaces, and he showed how in this case the main- 
tenance of the fihn may be attained by the dragging action of 
the surfaces themselves, playing the part of a pump. To 
this end it is "necessary that the layer should be thicker on 
the ingoing than on the outgoing side "$, which involves a 
slight displacement of the centre of the journal from that of 
the bearing. The theory was afterwards developed by 
O. Reynolds, whose important memoir w includes most of 
what is now known upon the subject. In a later paper 
Sommerfeld has improved considerably upon the mathe- 
matics, especially in the case where the bearing completely 
envelops the journal, and his exposition II is much to be 
recommended to those who wish to follow the details of the 
investigation. Reference may also be made to t tarrison�82 
who includes the consideration of compressible lubricants 
(air). 

e, Oommunlcated by the Author. 
# Prec. Inst. Mech. Eng. 1883,1884. 
:~ British Association Address at Montreal, 1884 ; Raylelgh's Scientific 

Papers, vol. it. p. 344. 
w Phil. Trans. vol. 177. p. 157 (1886). 
]1 Zeitschr. f. Math. t. 50. p. 97 (1904). 
�82 Camb. Trans. re1. xxii. p. 89 (1913). 
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2 Lord Rayleigh on the 

In all these investigations the question is treated as two- 
dimensional. For instance, in the case of the journal the 
width--axial dimension--of the bearing must be large in 
comparison with the arc of contact, a condition not usually 
fulfilled in practice. But Michell* has succeeded in solving 
the problem for a plane rectangular block~ moving at a 
slight inclination over another plane surface, free from this 
limitation, and he has developed a system of pivoted bearings 
with valuable practical results. 

It  is of interest to consider more generally than hitherto 
the case of two dimensions. In the present paper attention 
is given more especially to the case where one of the opposed 
surfaces is plane, but the second not necessarily so. As an 
alternative to an inclined plane surface, consideration is given 
to a broken surface consisting of two parts, each of which is 
parallel to the first plane surface but at a different distance 
from it. I t  appears that this is the form which must be 
approached if we wish the total pressure supported to be a 
maximum, when the length of the bearing and the closest 
approach are prescribed. In these questions we may anti- 
cipate that our calculations correspond pretty closely with 
what actually happens,--more than can be said of some 
branches of hydrodynamics. 

In forming the necessary equation it is best, following 
Sommerfeld, to begin with the simplest possible case. The 
layer of fluid is contained between two parallel planes at 
y = 0 and at y----h. The motion it everywhere parallel to x, 
so that the velocity-component u alone occurs, v and w being 
everywhere zero. Moreover u is a function of y only. The 
tangential traction acting across an element of area repre- 
seated by dx is i~(du/dy)dx, where /~ is the viscosity, so 
that the element of volume (dx dy) is subject to the force 
i~(d~u/dy 2) dx dy. Since there is no acceleration, this force is 
balanced by that due to the pressure, viz. -- (dp/dx) dx dy, and 
thus 

dp d~u 
d~ =l~ dy~ . . . . . . . .  (1) 

In this equation p is independent of y, since there is in this 
direction neither motion nor components of traction, and (1), 
which may also be derived directly from the general hydro- 
dynamical equations, is immediately integrable. We have 

1 dp,~ 
u =  ~-~ ~-~x v + A + B y ,  . . . . .  (2) 

where A and B are constants of integration. We now 
* Zeitschr. fi Math. t. 52. p. 123 (1905). 



Theory o f  Lubrication. 3 

suppose that when y----O, u = - - U ,  and that when y = h ,  
u=O. Thus 

~ a , ~  1 -  u .  . ( 3 )  

The whole flow of liquid, regarded as incompressible, between 
0 and h is 

~ou@= h 3 dp hU 
12/1, dx 2 ----- -Q' 

where Q is a constant, so that 

d p _  6/zU/ ~ )  
dx  h 3 - ( h - -  . . . . (4) 

I f  we suppose the passage to be absolutely blooked at a place 
where x is negatively great,  we are to make Q = 0  and (4) 
gives the rise of pressure as x decreases algebraically. But 
~or the present purpose Q is to be taken finite. Denoting 
2Q/U by H, we write (4) 

= _ G~u (;~_H). (5) 
dx  h 3 . . . .  

When y = O ,  we get from (3) and (5) 

du U 4h- -  3 H  ~ = ~  ) V  ' �9 . . . .  (6)  

which represents the tangential traction exercised by the 
liquid upon the moving plane. 

I t  may be remarked that in the case oF a simple shearing 
motion Q = ~ h U ,  making I-I=h, and accordingly 

@/ax=O, , tu/4~=U/h.  

Our equations allow for a different value of Q and a pressure 
variable with x. 

So far we have regarded h as absolutely.constant. But it 
is evident that Reynolds' equation (5) remains approximately 
applicable to the lubrication problem in two dimensions even 
when h is variable, though always very  small, provided that 
the changes are not too sudden, x being measured circum- 
ferentially and y normally to the opposed surfaces. If the 
whole changes of direction are large, as in the journal-bearing 
with a large arc of contact, complication arises in the 
reckoning of the resultant forces operative upon the solid 
parts concerned ; but this does not interfere with the appli- 
cability of (5)when h is suitably expressed as a function 
of x. In the present paper we confine ourselves to the case 

B 2  



4 Lord Rayleigh on the 

where one surface (at .y---0) may be treated as absolutely 
plane. The second surface is supposed to be limited at x = a  
and at x=b,  where h is equal to hi and h~ respectively, and 
the pressure at both these places is taken to be zero. 

For the total pressure, or load, (P) we have 

P =  p d x = -  _ x=-dx ,  
j~ dx 

on integration by parts with regard to the evanescence of 
p at both limits. Hence by (5) 

P [ "bxdx H ~bxdx 
6 ~ u - j o  TC-e - _ 3 o  ~ .  . . . .  (7) 

Again, by direct integration of (5), 

~,bdx _ Cbdx 
= L  . . . . .  (8) 

by which H is determined. It  is the thickness of the layer 
at the place, or places, where p is a maximmn or a minimum. 
A change in the sign of U reverses also that of P. 

Again, if �9 be the value of x which gives the point of 
application of the resultant force, 

so that 

x . P ~  'x~dx ~['x2dx 
3~U .~o F H V-"  ' (9) 

By (7), (8), (9) ~ i s  determined. 

As regards the total friction (F), we have by (6) 

F = 4 ~ b d x  ~. ('bdx ~u .L t ~ - ~ n  . . . . . .  (lo) 

Comparing (7) and (10), we sea that the ratio of the tota 
friction to the total load is independent oflz and of U. And, 
since the right-hand members of (7) and (10) are dimen- 
sionless, the ratio is also independent of the linear scale. 
But if the scale of h only be altered, F /P  varies as h. 

We may now consider particular cases, of which the 
simplest and the most importan~ is when the second surface 
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also is flat, but inclined at a very small angle to the first 
surface. We take 

h = m x ,  . . . . . . . .  (11) 
and we write for convenience 

b --  a = c, h2/h 1 = b/a --- k, (12) 
so that 

m=(k-1)h, lc . . . . . . .  (13) 

We find in terms of c, k, and h 1 

H= 2k/,1 
k+l . . . . . . . . . .  

6gU--  (k_l)~hl ~_logek k + l  ) (15) 

k --l--2klog  .... (16) 
�89 (k~-- l ) logk--2(k--1)  ~ 

F h~ 2 ( k 2 - - 1 ) l o g k - - 3 ( k - - 1 )  ~ 
P = c  3 ( k + l )  l o g k - - 6 ( k - - 1 ) "  (17) 

U being positive, the sign of P is that of 
2(k--1) 

log k k + 1 

I f  k > 1, that is when h2 > hi, this quantity is positive. 
For its derivative is positiv% as is also the initial value when 
k exceeds unity but slightly. In order that a load may be 
sustained, the layer must be thicker where the liquid enters. 

In the above formulae we have taken as data the length 
of the bearing c and the minimum distance hi between the 
surfaces. So far k, giving the maximum distance, is open. 
I t  may be determined by various considerations. Reynolds 
examines for what value P, as expressed in (15), is a maxi- 
mum, and he gives (in a different notation) k=2"2. For 
values of k equal to 2"0, 2"1, 2"2, 2"3 1 find for the coefficient 
of c~]hl ~ on the righ~ of (14) respectively 

�9 02618, "02665, "02670, "02663. 

In agreement with Reynolds the maximum occurs when 
k=2"2 nearly, and the maximum value is 

P=0"1602 -~hU-~ . . . . . .  (18) 

It should be observed--and it is true whatever value be 
taken for k--that P varies as the square of c/hl. 
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With the above value of k~ viz. 2"2, 
H = l ' 2 7 h l ,  . . . . . .  (19) 

fixing the place of maximum pressure. 
Again, from (16) with the same value of k, 

~--a=0"4231 c, . . . . .  (20) 

which gives the distance of the centre of pressure from the 
trailing edge. 

And, again with the same value of k, by (17) 

Flr=  7Oh,lc . . . . . .  (21) 
Since hi may be very small, it would seem that F may be 
reduced to insignificance. 

In (18) . . . .  (21) the choice of k has been such as to make 
P a maximum. An alternative would be to make F/P  a 
minimum. But it does not appear that this would make 
much practical difference. In Michell's bearings it is the 
position of the centre of pressure which determines the value 
of k by (16). I f  we use (20), k will h~ 2"2, or thereabouts, 
as above. 

When in (16) k is very large, the right-hand member tends 
to zero, as also does a/c~ so that x - -a  tends to vanish, c being 
given. As might be expected, the centre of pressure is then 
close to the trailing edge. On the other hand, when k exceeds 
unity but little, the right-hand member of (16) assumes an 
indeterminate form. When we evaluate it, we find 

For all values of k (~  1) the centre of pressure lies nearer 
the narrower end of the layer of fluid. 

The above calculations suppose that the second surface is 
plane. The question suggests itself whether any advantage 
would arise from another choice of form. The integrations 
are scarcely more complicated if we take 

h : m x  n. . . . . . .  ( 2 ~ )  

We denote, as before, the ratio of the extreme thicknesses 
(h~/hl) by k, and c still denotes b- -a .  For the total pressure 
we get from (15) 

( - 1 (k 1 ) (k -  z)  
P = (]~1/.__1)~hl 2 6-I~U ~ ( 2n -- 1) (3n--2) k -~+l/n 

k-~+2/"-  1 ) 
2 n - - 2  ~' 

from which we may fall back on (15) by making n--1. 
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For example, if n - -2 ,  so that the curve of the second sur- 
face is part  of a common parabola, P is a maximum at 

P = 0 * 1 6 3 ~ h ~  ~ . . . . . .  (24) 

when k=2"3.  The departure from (18) with k=2"2 is 
but  small. In order to estimate the curvature involved we 
may compare �89 with the middle ordinate of the 
curve, viz. 

�88188 Vh~+ V(-2"3h~) ?=l'SSh~, 
which is but little less than 

](h~ + h2) = ~hx(1 + 2"3) = 1"65 h~. 

I t  appears that curvature following the parabolic law is of 
small advantage. 

I have also examined the ease of n----~. I t  is perhaps 
simpler and comes to the same to assume 

h = e  ~ .  . . . . . . .  (25) 
The integrals required in (7), (8) are easily evaluated. 
Thus 

making 

In  like manner 

j ' x d x  k~(l  + 2 / 9 a ) - - l - - 2 1 9 b  
h.2 = 4~k.Zhi 2 , 

~ x d x  k~(1 + 3t9a)-- 1--  3/95 

Using these in (7), we get on reduction 

3 .u  Ik ~ 1 /9(~-k~)(b-~)~ 

or, s ince /gc=log k, 

3~U.  c ~ k~(k- -  1) log k ) .  
P = k ' i - ~ ] c ~ h l ' 2  [ k ~ 6  1 ~ - - 1  ~ " 

~ d x  e-2t3a--e -2~b k s -  1 

= 2/9 --  2/gk2hl ~' 

~ d x  e-SO'~--e-~b ks--1 
-IT - -  3/9 " = 3~kShl s '  

3]Chl(]C ~ -  1) 
H =  ~(~3_1 ) . . . . . . .  (26) 
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I f  we introduce the value of /3, the equation of the curve 
may be written 

= k x/o, . . . . . .  ( 2 8 )  

When we determine k so as to make P a maximum, we get 
k=2"3 ,  and 

/~Uc 2 ' 
P = 0 " 1 6 5  ~ . . . . .  (29) 

again with an advantage whxch is but small. 
In  all the cases so far considered the thickness h increases 

all the way along the length, and the resultant pressure is 
proportional to the square of this length (c). In view of 
some suggestions which have been made, it is of interest to 
inquire what is the effect of (say) r repetitions of the same 
curve, as, for instance, a succession of inclined lines 
A B C D E F  (fig. 1). I t  appears from (8) that H has the 

Fig. 1. 

' . . . . . .  '~ X 
O t /  

same value for the aggregate as for  each member singly, 
and from (5) that the increment of p in passing along the 
series is r times the increment due to one member. Since 
the former increment is zero, it follows that tile pressure is 
zero at the beginning and end of each member. The 
circumstances are thus precisely the same for each member, 
and the total pressure is r times that  due to the first, sup- 
posed to be isolated. But  if we imagine the curve spread 
once over the entire length by merely increasing the scale 
of x, we see that the resultant pressure would be increased 
r ~ times, instead of merely r times. Accordingly a repeti- 
tion of a curve is very unfavourable. But  at this point it is 
well to recall that we are limiting ourselves to the case of 
two dimensions. An extension in the third dimension, which 
would suffice for a particular length, might  be inadequate 
when this length is multiplied ~ times. 

T h e  forms of curve hitherto examined have been chosen 
with regard to practical or mathematical convenience, and 
it  remains open to find the form which according to (5) 
makes P a maximum, subject to the conditions of a given 
length and a given minimum thickness (hi) of the layer of 
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If we auppose that h becomes h+ ~h, where 3 is the liquid. 
symbol of the calculus of variations, (8) gives, 

~h dh 2y~dx;--3Hy~]-~ dx + ~ H ~  =0,  (30) 

and from (7) 

8P {~8h(--2h+3H)xdx ~. ~'xdx 
_~) ~ --6l=t ~ - ~ - , .  (31) 

the integrations being always over the length. Elimi- 
nating SH, we get 

3P ~ h  f ~h-Sxdx~ ~ h _ a t t ~ x d x "  
1 2 / x U - - - - ] ~ [ x -  ~ f  ~ _ ,  . (32) 

The evanescence of 8P for all possible variations Sh would 
demand that over the whole range either 

~h-~xdx 

But this is not the requirement postulated. It suffices 
that the coefficient of Sh on the right of (32) vaniah over 
that part of the range where h>hl, and that it be negative 
when h=h~, so that a positive Sh in this region involves a 
decrease in P, a negative Sh here being excluded aprlori. 
These conditions may be satisfied if we make h=hl from 
x = 0  at the edge where the layer is thin to x=cl, where Cl is 
finite, and h = ~ H  over the remainder of the range from Cl to 
c1+c2, where cl + c2=c, the whole length concerned (fig. 2). 
For the moment we regard cl and c2 as prescribed. 

Fig. 2. 

0 u 

For the first condition we have by (8) 

H = c'/hl  + 
cJh? + 6~/h~ ~' 

ao that 
c21cl=k2(2k--3), . . . . . .  (34:) 

determining k, where as before k----h2/ha. The fu]filment of (34) 
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secures that h = ~ t t  over that part of the range where h----h2. 
When  h----hi, h - -~  H is negative ; and the second condition 
requires that over the range from 0 to Cl 

Sh-~xdx  
Sh_~ d x  x 

be positive, or since cl is the greatest value of x involved, 
that  

+ .  

The integrals can be written down at once, and the con- 
dition becomes 

k 8 r v,22/el ~, . . . . . .  (36) 

whence on substitution of the value of c~/cl from (34), 

k ( 2 k - - 3 ) ~ > l  . . . . . .  (37) 

I f  k be such as to satisfy (37) and c~/cx be then chosen in 
accordance with (34) and regarded as fixed, every admissible 
variation of h diminishes 1 ). But  the ratio e2/cl is still at 
disposal within certain limits, while Cl + c~ (=c) t i s  prescribed. 

c(2k 3 "  .~1~ 
~ =  1+ 2 ~ - ~ / ~ ; '  " (38) 

2ClC~ + c~"l~ c ~ 2 k - -  3 c 2 P _ 1 c1~(3_.2k) + _ _ _ v ~[k~ ' 
t,U hi ~ k~ 3 h~ ~l+2k3-3k~ h ~ J  

(39) 
The maximum of f (k)  is 0"20626, and i t  occurs when 

k----1"87. The following shows also the neighbouringvalues:  

k. 1(k). k(2k-3)~. 
1'86 0"20624 0"964 
1"87 0"20626 1"024 
1"88 0"20617 1"086 

I t  will seen that while k---1"86 is inadmissible as not 
satisfying (37), k--~1"87 is admissible and makes 

p = . 2 0 6 2 6 ~ h ~  , . . . . .  (4:0) 

no great increase on (18). I t  may be repeated that  k is 

In  terms of k and c by  (34) 

c 

c1= 1 +  2k3__3k~, 

and by (7) 
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the ratio of the two thicknesses of the layer ( l~ /h l )  ~ and that 
by (34) 

C~/Cl= 2"588 . . . . . . .  (41)  

This defines the form of the upper surface which gives the 
maximum total pressure when the minimum thickness and 
the total length are given, and it is the solution of the problem 
as proposed. But it must not be overlooked that it violates 
the supposition upon which the original equation (5)was  
founded. The solution of an accurate equation would pro- 
bably involve some rounding off of the sharp corners, not 
greatly affecting the numerical results. 

The distance ~ of the centre of pressure from the narrow 
end is given by 

~--0.4262c . . . . . . .  (42) 

differing very little from the value found in (20). From 
(10) with use of (38) we get 

/~U h~(1 + 2k 3 -  3k 0 (2k + 1)hi' 
and 

If  k=1"87, 

F _ 4hl ( ]C--  1)  2 
P c ( 2 k - 3 )  . . . . . .  (44) 

F/P=4"091h , /c ,  . . . . .  (45) 

a little less than was found in (21). The maximum total 
pressure and the corresponding ratio F/P are both rather 
more advantageous in the arrangement now under discussion 
than for the simply inclined line. But the choice would 
doubtless depend upon other considerations. 

The particular case treated above is that which makes P a 
maximmn. We might inquire as to the form of the curve 
for which F /P  is a minimum, for a given length and closest 
approach to the axis of x. In the expression corresponding 
with (32), instead of a product of two linear factors, the 
coefficient of ~h will involve a quadratic factor of the form 

B x h + C h 2 + D x + E h + F ,  . . . . (46) 

so that the curve is again hyperbolic in the general sense. 
But its precise determination would be troublesome and 
probably only to be effected by trial and error. I t  is unlikely 
that any great reduction in the value of F/P would ensue. 
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Fig.  3 is a sketch of a suggested arrangement for a foot- 
stsp. The white parts are portions of an original plane 

Fig. 3. 

surface. The~4 black radii represent grooves fbr the easy 
~)assage of lubricant. The shaded parts are slight depressions 
of uniform depth, such as might be obtained by etching with 
acid. I t  is understood that the opposed surihce is plane 
throughout. 

P.S. Dec. 13. - - In  a smaU model the opposed pieces were 
two pennies ground with carborundum to a f i t  One of 
them-- the  stationary one--was, afterwards grooved by the 
file and etched with dilute nitric acid according to fig. 3, 
sealing-wax, applied to the hot metal, being used as a 
" res is t . "  They were mounted in a small cell of' tin plate, 
the upper one carrying" an inertia bar. With  oil as a lubricant 
the contrast between the two directions of rotation was very 
marked. 

Opportunity has not yet been found for t rying polished 
glass plates, such as are used in optical observations on 
" in ter ference ."  In this case the etching would t~e by hydro- 
fluoric acid *, and air should suffice as a lubricant. 

* Compare ~ Nature,' vol. lxiv. p. 385 (1901) ; Scientific Papers, vol. iv. 
p. 546. 


