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ON THE DIFFRACTION OF A SOLITARY WAVE

By Horace Lams, F.R.S.

[Received February 6th, 1910.—Read February 10th, 1910.]

IN a former communication* & simplified proof was given of
Sommerfeld’s results relating to the diffraction of an infinite train of
plane waves of simple-harmonic type by the straight edge of a plane
perfectly reflecting screen. Since a plane wave of arbitrary character
can always be resolved, by Fourier’s theorem, into simple-harmonic
trains, the formule appropriate to the case of a solitary wave can
theoretically be deduced. It was in this way that the particular cases to
be hereafter considered were in the first instance worked out; but in the
paper as presented I have somewhat varied and simplified the procedure.
I find that, in the case of one or two special types which present them-
selves quite naturally for consideration, the results assume a comparatively
simple form, so that conclusions as to the whole history of the disturbance
in various parts of the field can be drawn without much difficulty. The
more interesting points are illustrated by means of figures drawn to scale.

It should be added that the diffraction of a solitary wave has also been
discussed by Sommerfeld,t but chiefly in relation to the theory of
Rontgen rays, where the boundary condition is different; the method
employed is moreover quite distinet.

1. The screen, whose thickness is neglected, is supposed to occupy
that half of the xz-plane for which « is positive. For simplicity the case
of normal incidence is alone -considered, although there is no difficulty in
extending the results in this respect, in the manner explained in the
former paper. The primary wave is accordingly taken to be of the type

¢ = Flct+y). 1)

% ¢ On Sommerfeld’s Diffraction Problem,’’ Proceedings, Vol. 4, p. 190 (1906).
+ ¢ Theoretisches iiber die Beugung der Rontgenstrahlen,'’ Zeitschrift filr Math. w. Physik,
Bd. 46, p. 11 (1901).
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In the complete solution, representing both the primary and the
diffracted waves, we have to satisfy the equation

%= (—? + gyf) @

subject to the condition either that the value of ¢, or that the value of
its normal derivative, shall vanish over both faces of the screen. We
begin with the latter form of the problem, the boundary condition being

9 _
=0 ®)

This corresponds to the case of sound waves, or of electric waves polarized
in the plane zy. In the latter case, the components of magnetic and
electric force are connected with ¢ by the relations

a=0, = B=0, Y= ¢

) . . 4)
X =copldy, Y=—cop/oz, Z=0.)
It is easily seen that the function
X ='%b, 5)

which is also a solution of (2), must vanish over the negative half of the
plane 22, whilst its normal derivative dx/0y must vanish at both faces of
the screen. If we write

€ =7rcosf, y=rsinb,
where 0 is supposed to range from 0 to 2w, these conditions are satisfied
by x = fct—»).rtcos 36, (6)

which is an obvious generalization of the assumption (7) of the former
paper.
To deduce a value of ¢, we introduce the parabolic coordinates

£=1%cos30, »=r*sinib, )
in terms of which we have
g=E—r, y=2&, r=§&+n. 8)

“The curves £ = const., 7 = const. form a system of confocal para-
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bolas. The coordinate » is everywhere positive, and the line » =0

Fia. 1.

represents the section of the screen. The coordinate £ has opposite signs
on the two sides of the axis of z, and the line £ = 0 represents the free
portion of this axis.”

In terms of these variables we have

0p _ 1 (0 0
=5 %3 o
op __1( 0 0
= e test):
Hence, from (5) and (6),
f%—ﬂ%’é: 2£f (ct—£2—n)). (10)

The integration of this equation follows exactly the same lines as in the
special case treated in the former paper (Vol. 4, p. 198). If we adjust
the complementary function so as to make d¢/dy = 0, or 0¢/dn = 0, at
the screen, where » = 0, we obtain
¢+ . (6 2

o= fet+y—2ai+ [ fot—y— IRt +EFCE—g). (1)

The functions f and F are so far arbitrary and independent. The re-
lation between them in the present problem is supplied by the considera-
tion that for large negative values of z the result must tend to the

form (1). Now when 0 is nearly equal to =, and 7 is very great, the upper
limits of the integrals in (11) are -4 o and — o, respectively, and the
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limiting form is accordingly
= j: f(ct+y—§’)df-—S:f(ct—y—fﬂ)d§+—}F(ct+y)+J2~F(ct-—y). (12)
This becomes ident;ica.l with (1), pr‘;)vided |
|, o-a=1F0. 19)
The complete solution of the problem of diffraction of a plane wave of

arbitrary type is thus reduced to that of the integral equation (13).
By way of verification we may put

F(y) = &', (14)
Since L e~ ®al =1 %e‘“”, » 15)
the solution is fa) = % i gity, (16)

This agrees with the known result (Vol. 4, p. 194), if regard be had to
the slightly altered definition of £, #.

This case leads at once to a general solution of (18). Writing Fourier’s
theorem in the form

F(y):%] dkj
0

]

F(a)e*¥=9daq, anm

with the convention that the real part alone is to be retained, we have

7]

f@) = % j kidkj F(a)ef b=a)+1) g, (18)
)

—w

subject to the same convention.*

2. There is one type of function expressing a more or less concentrated
disturbance which has been especially affected by mathematical physicists
from the time of Cauchy downwards, on account of the facility of

analytical treatment, viz.,
b

Fy) = (19)

* Mr. H. Bateman, to whom I submitted the question, has obtained a simpler solution

in the form P
1 F'(—2)dz
f) =< j.,, V(e+a)
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This makes ' S Fly)dy = , (20)

independently of the value of b; but the disturbance is the more con-
centrated the smaller this value. The familiar graphical representation
of this function is given, for purposes of subsequent comparison, in Fig. 2.

¢

s
Iy 0 Iy Y

Fia. 2.

We have now j F(a)e % da = 7e ¥, (21)

-

and therefore fly) = :}——j g~ Rtily+in) i gL
™ Jo

e}iw 1“ 3
_ etim
provided that in the denominator that value of the square root of b—iy
be taken which is real and positive when y = 0. It is understood, as
before, that the real part of the expression is alone to be preserved.
If we include the imaginary part, the formula (22) corresponds to

Fy = (28)

1
b4y
This may immediately be verified. Since

4 { = btuy (24)
& VOoFy—idd ~ bty—iv
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the formula (22) makes

_ e
Sfy ) df = 2 (b+1y) A/ (b+iy—iH’ (25)

Taking this between the limits 0 and @, we find

a¢ = 26
[ re-evae= gt (26)
in aceordance with (18).

If we substitute from (28) and (25) in (11), making use of (8), we obtain

1
2

= ity T b=y

NS

%e_iiﬂ _f §+ n é:— n \'

where the square root is to be interpreted as before.
In order to isolate the real part of this expression we write

ct+y=">btana, ct—y =>btanB, ct—r = btan w, (28)

where the angles a, 8, » may range from —3= through 0 to +34w. We
find

¢ = 21b { cos® a+cos? B+ §+" cos? w cos a cos(3w+a+37)

+§i/b” cos? w cos B cos(3 w-i—,B—{—;,gr)J ,  (29)

corresponding to & primary wave

b __cos’a '
Ll wprarw: R A (30)

The origin of ¢ is the instant at which the centre of the primary wave
would coincide with the plane y = O if the screen were absent. It may
also be noted that the values of £+4», £—» in the four quadrants of the
plane zy are respectively as follows :—

E+n=+V0+y, +vio+y, +V/0+y), —~/(7'+y),}
E—n=+l—y), —V0—y), —v/0—y), —~r—y),

as appears at once from (7) and (8).

(81)
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8. To interpret this solution we notice in the first place that when the
ratio ct/b is large and negative we have, in the region for which y > 0,

B=—3r, o=—in
approximately. The formula (29) therefore reduces to
_costa | "(7'+y> s )
o=t (1 (1) o] o
t.€., since r41/b = tan a— tan w, (38)

practically to the form (80), the primary wave being as yet unaffected by
the presence of the screen. In the region where y << 0 we have

a=—3T, @=—73m

nearly, whence, having regard to (81),

¢ = co;:)_ﬂ_ I 1— \/(r;by) cosﬁw}- . (34)

Since (r—1)/b = tan B—tan o, (85)

this is practically insensible. That the formula should indicate any dis-
turbance at all on the far side of the plane y = 0, at this stage, 1s due to
the fact that our assumed primary wave has no clearly defined front.
When, on the other hand, ¢¢/b is large and positive, we have, in the
region for which y > 0, a = %, and therefore cos @ = 0, nearly. The
value of cos 8 will also be small except in the neighbourhood of the plane
y = ct. Eszcluding for the present the ecritical region near the plane
x =0, we will further suppose that r—ct is large compared with b, so

that w = — 3, nearly. The formula thus reduces to
=o' [y, () costr
p=0L 112 /(5 costol, (36)

where the upper or lower sign is to be taken according as zZ0. In
virtue of (85) this is equivalent to

2
¢:cos;),3’ or O. 87

Hence in the first quadrant of the plane zy we have a regularly reflected
wave b

¢ = l)2+(0t—y)2’ (38)



1910.] THE DIFFRACTION OF A BOLITARY WAVE. 429

whilst in the second quadrant the disturbance is insensible. Again, in the
region for which y < 0, we have 8 = 4=, nearly, and the more important
part of the disturbance is given by

o ILN(C LN

where the rule of signs is as before. In virtue of (88) this reduces to

cos? a

¢=0, or 3

(40)
The disturbance is accordingly negligible in the region behind the screen,
in the fourth quadrant, whilst in the third quadrant the primary wave
proceeds undisturbed.

That the main part of the disturbance at any instant is to be sought
in the neighbourhood of the planes ¥ = + ¢t is indicated already by the
formula (27). The same equation suggests, in addition, an examination
of the circumstances in the neighbourhood of the cylindrical surface
r = ct. If we exclude the neighbourhood of the points where this touches
the planes y = + ct, we have a = 3w, 8 = 47, nearly ; and therefore

cos a = b/(r+y), cos B =b/(r—y), (41)

approximately. The formula (29) then gives

U - U DR

¢ = WL l«/(7'+?/)+«/(r—y)  costw cos (3 w+37), (42)

where the combinations of signs to be taken in the several quadrants are
+ 4+, + —, + —, — — respectively. This may be interpreted as repre-

senting a cylindrical wave diverging from the edge of the screen; but the
amplitude at a distance » from the edge, in any assigned direction, is of
the order 4/(b/r) as compared with that of the primary wave, and there-
fore usually negligible.

4. It remains to examine the conditions near the edges of the reflected
and transmitted waves. Since the circumstances are exactly similar in
these two regions it will be sufficient to take the latter case. At the
medial plane of the transmitted wave we have y = —c¢, and we will
suppose as before that the ratio c¢/b is large. We have then a = 0,
whilst 3 is nearly = $=. Also

E4n=F /04y = F/0r—ct) = F /(—btanw). (48)
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Thus (29) becomes

¢ = 21—[) {1F +/(—sin ) cosGo+im}, 44

where w ranges from 0 (at the edge of the geometrical shadow) to —3r.
Again, over the plane in question, we have 1*—c’¢* = 2% and there-
fore, if z be small compared with ct,

—tan w = z?/20bct. (45)

The following table gives a series of corresponding values of z/4/(2bc?)
and b¢, calculated from (45) and (44); and the results are exhibited
graphically in Fig. 8. It will be seen that the value of ¢ shades off
gradually, without fluctuation, in the neighbourhood of the edge of the
geometrical shadow. The transition is the more rapid the smaller the
value of b, 7.e., the smaller the breadth of the primary wave, the horizontal
scale being proportional to 4/b.

i7(2£b—-ct) by iv(%) b
o | fson ] %52 | s
81 | 100 | voo0 | {10
| g | e | s
490 | 2100 qgon | {00

1'690 1-959
510 | (7o | 175 | {3en
644 132? 2’518 '{:gg:
714 {3;?1 ® 'Ill-goo
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The figure gives an instantaneous view of the distribution of ¢ in the
medial plane of the transmitted wave, but since the epochs of maximum
amplitude are different for different points of any fixed plane y = const.,
it is desirable to supplement it by an investigation of the whole history of
the disturbance at various points, especially at such as are near the edge
of the geometrical shadow.

This may be conducted as follows. Fixing our attention on any one
point we may conveniently take the angle a as our independent variable,
this being connected with ¢ by the relation

¢t = —y+Dbtana. (46)
The corresponding value of w is given by
tan w = tan a— () /b, 47)
whilst 8 can be found, if necessary, from the relation
tan 8 = tan a—2y/b. (48)

It appears, however, from (28) that when ¢t and —y are both large com-
pared with b, the angle 3 is very nearly equal to 3, so that the terms in
(29) which contain cos 8 have little influence during the more important
part of the disturbance. We have then, approximately,

¢ = 21—b {co&"3 ai'\/ (#) cos? w cos a cos Bo+a+3m) ; . (49
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This function can be tabulated without very much labour. I have chosen
for computation the points for which

r+y =05, or z?=—2by. (50)

At any given distance (—y) from the plane of the screen there are two of
these, one lying just outside, and the other just inside the geometrical
shadow. The resulting curves, shewing the variation of ¢ with £, are
given in Fig. 4. The scale corresponds to that of Fig. 2, which may now
be taken to represent the history of the disturbance which would be pro-
duced at any point by the primary wave alone.

In the later stages of the disturbance, the terms neglected in (49) may
of course become comparable with those which are retained.

/

¢

-— ) . ct+y

F1a. 4.

5. The second form of the diffraction problem, where the condition (8)
which was to be satistied at both faces of the screen is replaced by

¢ =0, (51)

need not be dwelt upon at length. The general solution corresponding to
a primary wave of the type (1) is

+7 E—n
¢=r f(ct+.1/'—§2)d§—L flet—y—)a¢~+-3F et+y)—3F(ct—y), (52)
0

where the function f(y) is determined by (15).

1

e (53)

In the case of F(y) =
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we should find

1 3
AR S —
b+i(ct+y) b+ilct—y)
dotir ( E&4n  _  £—n

V{b+z ct—n} \bFilct+y)  b4i(ct— y)} » &4

the real part of which is
— l ( 2 aned f‘l"’l 3 : 1
¢ = g7 | cos’ a—cos B+ 70 costw cos a cos (Fo+a-+3m)

——%b— cos? w cos B cos Gw+B+%m) } , (65)

in the notation of (28).

The interpretation would take exactly the same course as before, the
chief difference being in the sign of the reflected wave. The main part of
the disturbance on the far side of the plane y = 0 will be given as before
by the formula (49); and the curves in Fig. 4 will still serve to represent
the course of events near the edge of the shadow.

6. The preceding results admit of a great variety of applications.
Their relation to the theory of electric waves has been indicated in § 1 ;
but even if we confine ourselves to acoustics we find that there is still a
considerable freedom of interpretation. Thus in the form of the problem
treated in §§ 1-4 the function ¢ may be taken to represent either the
velocity-potential or the condensation. In § 5, again, ¢ may be identified
with the component (v) of the velocity normal to the plane xz, the positive
half of this plane being occupied as before by a rigid screen.

If in the particular case to which Fig. 2 refers we identify ¢ with the
condensation (usually denoted by s), we have a primary wave in which s
has one sign only. If has been pointed out, however, by Stokes that a
plane wave which is merely the ultimate form of a wave diverging from a
source must necessarily contain both condensed and rarefied portions. A
wave of this character, such as may be supposed to have originated in a
local condensation, is obtained if in equation (30) we take ¢ to represent
the velocity-potential, from which s is derived by the relation

dg
s = R (56)

SER. 2. vVOL. 8. ~o0. 1063. 2

o
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The consequent distribution of s is shewn in Fig. 5.

S

Fic. 5.

If we deal with the complex form (27), we deduce

) 'Y
05 = — px) 2

oFictty) 2 {d+ilct—y)}?

I A S < + -7
{o+a(ct—n 1}t Lo+i(ct+y) ' b4i(ct—y))

_ Fem¥r £+ E—n )
ToFii—nt { it oFici—p ~ ©7

Introducing the notations of (28), and rejecting the imaginary part, we
obtain

cs = — 2%2 {2sinacos3a+2 gin B cos® B

gjg cos? w cos « sin (3w +a+37)+ gw cos? w cos B sin(Fw+B+3m)

+ g_ﬁ cos! w cos® a sin(3w+2a+37)+ ng costw cos Bsin(w+28+3ir

(58)
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2b(ct+y) _ _ 2sinacos’a (59)
{0+ (et +y?}? b? ’

corresponding to ¢s = —

in the primary wave.

It seems unnecessary to go through the interpretation in detail. The
extreme values of s in the primary wave correspond to a = + 3w, and it
is possible without much trouble to obtain an instantaneous picture of the
distribution of s in the planes

y=—ctt -5—3 b,
but the circumstance that the various particles are caught, so to speak, in
different phases of their evolutions ‘detracts, even more than in the case
of Fig. 4, from the significance of the results. The main interest consists
in tracing the history of the disturbance near the edge of the geometrical
shadow, at a great distance from the screen. We have then, with suffi-
cient accuracy,

cs = — le_“‘ {2sina cos®a F %\/(7—2—'—1{) cos? w cos a sin (Jw+a+zm)

F \/l (l‘%‘.ﬂ) cos? w cos® a sin (%w+a+%7r)} . (60)

ct+y

F1G. 6.

I have computed from this formula the variation of s with ¢ at the
2rF 2
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points, just outside and just.inside the geometrical shadow, for which
r+y = b. The results are shewn in Fig. 6, which corresponds in scale
with Fig. 5. The terms neglected in (60) would of course be comparable
with those retained, in the later stages of the disturbance.

7. One curious point remains to be noticed. In the case of the
formula (27) the time-integral ..
j pdt (61)

has the same value, viz. /¢, in all parts of the field. This easily follows
by the method of contour integration, for the integral of each term in the
second line of the formula referred to, taken along the real axis of ¢ and
an infinite semicircle on the negative side of this axis, must vanish, since
the singular points ¢ = (r+14d)/c, t = (£ y+1b)/c lie outside the region
thus bounded. The fact that the integral (61) has the same value at
points well within the shadow as in the primary wave shews that the
smaller amplitude at such points must be compensated by a longer dura-
tion. This is already indicated to some extent by the form of the second
curve in Fig. 4.

It appears in the same way that in the case of (54) the integral (61)
everywhere vanishes. It has already been remarked that in the form of
the problem to which (54) relates ¢ may be taken to represent the y-
component of the velocity in a wave incident on a rigid semi-infinite
screen. It follows that on this view the total displacement

5 vdt

of a particle in the direction normal to the screen is zero at all points,
whereas, if the primary wave (30) had not been interrupted, the displace-
ment would have had the uniform value 7/c, on the scale of our formule.
The conclusion may be unexpected, especially as regards particles which
would at first sight appear to be far removed from the influence of the
screen, but the obvious explanation is that a considerable positive dis-
placement is followed sooner or later by a negative one of much smaller
extent, but correspondingly greater duration. The first curve in Fig. 4,
which is valid also as an approximation for a certain range of ¢ in the
present form of the question, indicates how this may come about. To
follow out the matter completely, it would be necessary to take account of
the terms in (55) which we have neglected, but which ultimately become
comparable with those retained.

It will be surmised that the uniformity of the value of the integral (61)
throughout the medium is a result not confined vo the particular types of
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wave here considered, or even to the case of plane waves. A more general
proof may be sought in the following manner. If we integrate both sides
of the equation Y

2 (T4 _? ¢>
p=e (i o ©)
with respect to ¢ between the limits — o and + o, and write

\l,- ES j qut, (68)
we find v =0, (64)

on the hypothesis that 0¢/ot vanishes at both limits. The theorem

m {(%‘aé)ﬁ+ (%\yk)ﬂJf (%92} dodyds = — ﬁsb Nas, 6o

applied to an infinite region with fixed internal boundaries, then shews
that v is constant, provided we can assert that the part of the surface
integral which relates to an infinite enclosing boundary vanishes. Its
precise value may then be found by a consideration of the circumstances
at some particular point. Thus in our present case of a plane screen,
where v =0, the value must be zero if ¢ denotes the velocity-
component v.



