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AR'J;. LIV.-Notes on the Electromagnetic Theory of Light,. by 
J. WILLARD GIBBS. No. II-On Double Refraction in per· 
fectly transparent Media wMch e,Thibit the Phenome1ta of (Jircular 
Polarizat~·on. 

1. IN the April number of this Journal,* the velocity of 
propagation of a system of plane waves of light, regarded as 
oscillating electrical fluxes, was discussed with such a degree 
of approximation as would account for the dispersion of colors 
and give Fresnel's laws of double refraction. It is the object. 
of this paper to supplement that discussion by carrying the ap
proximation so much further as is necessary in order to 
embrace the phenomena of circularly polarizing media. 

2. If we imagine all the velocities in any progressive system 
of plane waves to be reversed at a given instant without 
affecting the displacements, and the system of wave·motion 
thus obtained to be superposed upon the original system, we 
obtain a system of stationary waves having the same wave
length and period of oscillation as the original progressi ve sys
tem. If we then reduce the magnitude of the displacements in 
the uniform ratio of two to one, they will be identical, at an in
stant of maximum displacement, with those of the original sys
tem at the same instant. 

Following the same method as in the papel' cited, let us 
especially consider the system of stationary waves, and divide 
the whole displacement into the regular part, represented by q, 
1), C, and the irregular part, represented by ~'. "1)', (', in accord
ance with the definitions of § 2 of that paper. 

S. The regular part of the displacement is subject to the 
equations of wave-motion, which may be written (in the most 
general case.of plane stationary waves) 

( u. u) t1 E;= (VICOf<2iTy+t:I'2S1112iTy COS2iTp' 

'I = (/:J I cos 2iTy + (32 sin 2iTy) cos 2iT~, (1) 

(
It. u) t I ,:;= YI(,O~2iTI+r2S1112iTl COS2iTp' J 

where 1 denotes the wave-length, p the period of oscillation, u 
the distance of the point considered from the wave-plane pass
ing through the origin. aI' {d" r, the .amplitudes of the ?i~place
ments ~, 'fj, , in the wave-plane passmg through the orlgm, and 
a., {d" r. their amplitudes in a wave-plane one-quarter of a 

* flee page 262 of this volume. 
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wave-length distant and on the side toward which u increases. 
If we also write L, 11:, N for the direction-cosines of the wave
normal drawn in the direction in which u increases, we shall 
have the following necessary relations: 

V+M'+N'=l, (2) 

u=La~+My+Nz, (3) 

La,+M,8,+Ny,=O, La.+M,8,+Ny,=O. (4) 

4. That the in'egulnr part of the displacement (e, "I),' (') at 
any given point is a simple harmonic function of the time, 
having the same period and phase as the regular part of the 
displacement (~, '1, C), may be proved by the single principle of 
superposition of motions, and is therefore to be regarded as 
exact in a discussion of this kind. But the further conclusion 
of the preceding paper (§ 4), "that the values of ~', '1', (' at 
auy given point in the medium are capable of expression as 
linear functions of ~, '1, C in a manner which shall be inde
pendent of the time and of the orientation of the wave-planes 
and the distance of a nodal plrrne from the point considered, so 
long as the period of oscillation remains the same," is evi
dently only approximative. although a very close approxima
tion. A very much closet· approximation may be obtained, if 
we regard e, '1', r:', at any given poillt of the medium and for 
light of a given period, as linen,r fnnctions of ~, '1, C and the 
nine differential coefficients 

dl; dll de:, dl; 
dx' dx' dx' ely' 

etc. 

We shall write ~, "I), C (lncZ difl coell to denote these twel ve 
q u an ti ties. 

From this it follows immediately that with the same degree 

of approximation e, "I)', (' may be regarded, for a given point 
of the medil1t11 and light or: a given period, as linear functions . . . . .. 
of ~, '1, C and the differential cod'ficients of ~, "I), :: with respect 
to the coordinates. For these twelve quantities we shall write 

~, 1, ( nlld cZ~fJ. cuiijf. 
5. Let us now proceed to equate the statical energy of the 

medium at an instant of no velocity with its kinetic energy at 
an instant of no displacement. It will be convenient to esti
mate each of these quantities for a unit of volume. 

6. The statical energy of an infinitesimal element of volume 
may be represented by adv, where a is a quadratic fUllction of 
the components of displacement ~+~', 1+1', (+('. Since for 
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that element of volume e, 1)', (' may be regarded as linear 
functions of ~, 1), ( and dijj: coeif., we may regard (7 as a quad
ratic function of ~, 1), ( and diif. coiiif., or as a linear function 
of the seventy-eight squares and products of these quantities_ 
But the seventy-eight coefficients by which this function is ex
pressed will vary with the position of the element of volume 
with respect to the surrounding molecules_ 

In estimating the statical energy or any considerable space 
by the integral 

/odv, 

it will be allowable to substit.ute for the seventy-eight coeffi
cients contained implicitly in (7 their average values through
out the medium_ That is, if we write s for a quadratic func
tion of f, 1), (, and diff. co~tf. in which the seventy-eighteoeffi
cients are the space-averages of those in (7, the statical energy 
of any considerable space may be estimated by the integral 

fsdv. 

(This will appear most distinctly if we suppose the inte,gration 
to be first effected for a thin sliee of the medium bounded by 
two wave-planes.) The sevent.y-eight coefficients of this fUflc
tion s are determined solely by the nature of the medium and 
the period of oscillation. 

We may divide s into three parts, of which the first (s,) con
tains the squares and products of f, 1), (, the second (s/I) con
tains the products of f, 7), :; with the differential coefficients, 
and the third (slI/) contains the squares and products of the 
differential col;.fficients. It is evident that the average statical 
energy of the whole medium per unit of volume is the space
average of s, and that it will consist of three parts, which are 
the space-averages of s,' s", and s,,,, respectively. These parts 
we may call S" S", and SII/' Only the first of these was con
sidered in the preceding paper. 

Now the considerations which justify us in neglecting, for 
an approximate estimate, the terms of s which contain the dif
ferential coefficients of f, 7), (with respect to the co()rdinates, 
will apply with especial force to the terms which contain the 
squares and products of these differential coefficients. '1'here
fore, to carry the approximation one step beyond that of the 
preceding paper, it will only be necessary to take account of 
s, and s" and of S, and S", 

7. We may set 

,~,=AE'+BJ1'+C~'+E1,7~+F~e + Ge,,, (5) 

where, for a given medium and light of a given period, A, B, 
C, E, F, G are constant. 
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Since the average values of 

are respectively t, t, and 0, and since at the time to be 
considered 

• t cos 27r- =1, 
P 

it will appear from inspection of equations (1) that 

S,=t(All','+ B(3,' +Cy,' +E(3,YI + FY1ll'1 + Gll'I(3I) 

+t(All'; +B(32' +Cy; + E(32Y2+ FY211'2+ Gll'2f32)' (6) 

This is the first part of the statical energy of the whole medium 
per unit of volume. 

8. The second paJ't of the statical enel'gy of the whole medium 
per unit of volume (S,,) is the space-average of 8/1' which is a 
linear function of the twent.y-seven products of~, 1), , with their 
differential coefficients with respect to the coiirdinates. Now 
since 

the space-average of such products will be zero, and they will 
contribute nothing to the value of S". There will be nine of 
these products, in which the same component of displacement 
appears twice_ The remaining eighteen pl'Oducts may be 
divided into pairs according to the letters which they contain, as 

(12, (li, 
17-d and 2, 7' 

X ('X 

A linear function of the eighteen products may also be regarded 
as a Ii neal' function of the sums and differences of the products 
in such pail·s. But since 

17 a2, + 2, d17 _ d ( 172,) 
ax dx- dx ' 

the terms of 8" containing such sums will contribute nothing to 
the value of S", We have left a linear function of the nine 
differences 

£12, _ ~a17 ~d~ _ c:~2, c:':!!.7 _ a~ 
17 d.rc L, ax' L, dx c;, ax' c;, ax 17 £lx' etc., 

(the unwritten expressions being obtained b'y substituting in 
the denominators dy and dz for dx,) which constitutes the part 



of s" that we have to consider. Sf' is therefore a linear 
function of the space-averages of these nine quantities. But 
by (3) 

1 de, _e,dl/ =L( de, _lb1) 
/ dm dm '7 du du' 

and the space-average of thi8, at a moment of I1HIXll11Um 

displac':lment, is by (1) 

27l'L( . ) -t- fi,y,- yI/J •. 

By such reductions it appears that lS" is a linen!' function of 
the nine products of L, M, N with 

fi,y.-yJJ., y,lX,-lXIY" lf l fi2-fi,lX •• 

Now if we set 

G=L (fi'Y'-Ylfi.) +M (YIlX.-lX,y.) + N (lV,fi.- fi,lX,) , (7) 

we have by (4) and (2) 

LG= fi,y,- y,fi., MG= YIlX.-lX,y., N G=lX,fi.- fi,lX.. (8) 

Therefore is" is a linear function of the nine products of L, M, 
N with Le, Me, Ne. That is, lS" is the product of e and a 
quadratic ~lInction of L, M and N. We may therefore write 

If! If! . 
SIl=l G=TrL (fi,y,-y,fi.) +M(YIlX.-lXIY.) +N (lX,fi.-fi,lX.)], (9) 

where (j) is a quadratic function of L, M and N, dependent, 
however, on the nature of the medium and the period of 
oscillation. 

9. It will be useful to consider more closely the geometrical 
significance of the quantity e. For this purpose it will be con
venient to have a definite understanding with respect to the 
relative position of the coordinate axes. 

We shall suppose that the axes of X, Y, and Z are related 
in the same way as lines drawn to the right" forward and up
ward, so that a rotation from X to Yappears clock-wise to one 
looking in the direction of Z. 

Now if from any same point, as the origin of coordinates, we 
layoff lines representing in direction and magnitude the dis
placements in all the different wave-planes, we obtain an 
ellipse, which we may call the displacement-ellipse.* Of this, 
one radius vector (PI) will have the components at_ Ph rt, and 

* This ellipse, which represents the simultaneous displacements in different 
parts of the field, will also represent the successive displacements at any same 
point in the corresponding system of progressive waves, 



another (p,) the components a., fi" r,. 'Phese will belong to 
conjugate diameters, each being parallel to the tangent at the 
extremity of the other. The area of the ellipse will therefore 
be equal to the parallelogram of which PI' and p, are two sides, 
multiplied by IT. Now it is evident that fil r,-rl fi" rl a,-al 1'., 
a,191 - fit a, are numerically equal to the projections of this par
allelogram on the planes of the coordinate axes, and are each 
positive or negative according as a revolution from PI to p, 
appears clock-wise or counter-clock-wise to one looking in the 
direction of the proper coordinate axis. Hence, (J will be nu
merically equal to the parallelogram, that is, to the area of the 
displacement-ellipse divided by IT, and will be positive or nega
tive according as a revolution from PI to p, appears clock-wise 
or counter-clock-wise to one looking in the direction of the 
wave-normal. Since PI and p, are determined by displacements 
in planes one-quarter of a wave-length distant from each other, 
and the plane to which the latter relates lies on the side toward 
which the wave-normal is drawn, it follows that (J is positive 
01· n<igative according as the combination of displacements has 
the character of a right-handed or a left·handed screw. 

10. The kinetic energy of the medium, which is to be esti
mated for an instant of no displacement, may be shown as in 
~ 7 of the former paper (page 266 of this volume) to con
sist of two parts, of which one relates to the regular flux 

(~, ~, (), and the other to the irregular flux (~', 1', ('). The 
first, in the notation of that paper, is represented by 

tf(i Pot i +17 Pot ;J+~ Pot~) dv, 

which reel uces to 
Z' . . . 
2n.l(";'+11'+~') elv. 

By substitution of the values givell by equatiollS (1). we obtaill 
for the kinetic energy due to the regula!" flux in a unit of vol-
ume 

nZ' 
T= p' (a,' + 13:+ r,' + a: + /:J,' + r,'). (10) 

11. 'rhe kinetic energy of the irregular part of the flux is 
represented by the volume-integral 

ft (k ['ot i' + 11' Pot 17' + ci' Pot 2') dl!. 

Now, since i', 1', " are every.where linear functions of ~, 1, , 
a/td d~ff. co~ff. (see ~ 4), and since the integrations implied 
in the notation Pot lIlay be conflned to a sphere of which the 



radius is small in comparisoll with a wave-Iength,* and since 

within such a sphere ~, ~, (' and d~fj: coiff]: are sufficiently de
termined (in a linear form), by the values of the same twelve 

quantities at the center of the sphere, it follows that Pot ~', 

Pot ~/, Pot C must be linear functions of the values of ~, ~/, ( 
and d(tl coeff. at the point for which the potential is sought. 
Hence, 

will be a quadratic function of ~, ~, ( and d~jr coeff. But the 
seventy-eight coi.;fficients by which this function is expressed 
will vary with the position of the point considered with respect 
to the surrounding molecules. 

Yet, as in the case of the statical energy, we may substitute 
the average values of these co~;fiicients for the coefficients 
themselves in the integral by which we obtain the energy of 
any considerable space. 'l'he kinetic energy due to the irregu
lar part of the flux is thus reduced to a quadratic function of 

~, 7), (and dijJ. GOelf. which has constallt coefficients for a 
given medium and light of a given period. 

The function may be divided into three parts, of which the 

first contains the squares and products of ~, ~: " the second the 

products of t, ~, i with their differential coi.~fficients, and the 
third, which may be neglected, the squares and products of the 
differential coefficients. 

We may proceed with the reduction precisely as in the case 
of the statical energy, except that the differentiations with re-

spect to the time will introduce the constant factor 4:'. This 
p 

will give for the first part of the kinetic energy of the irregular 
flux pel' unit of volume 

277' 
'1" =-(A'a '+13'1j '+C'y '+E'1j J/ +F'y a +G'a Ij) I 1'}2 . I /'- 1 1 I~ I 1 . 1 1 . II'" I 

277'(A' , 13"P' (J' 2 Ji"fJ + Ii" +L" P\ +-. a, + fJ, + Y2 + ~lJ2Y' ]/,a2 ua.fJ.,! p 

and for the secolld part of the same 

T' = 477'rt)' (H) 
- /I p'l 

( 11) 

477" rjJ' , -
=-'-'Z-[L((J,]/,- yJ/,) + 1\1 (y,rr,-tV,y,) + N ((I',/J2 - ft,(I',)J, (12) P -

* See § !J of the forme I' papel', on page 268 of' thiH volume. 



Po7(Ll'izrtt1:on in per:j'eetly transparent M edi(~. 4fi'j 

where A', B /, C', E' , F', G' are constant, and (/)' a quadratic 
function of L, M, and N, for a given medium and light of a 
given period. 

12. B~qllatillg the statical anll kinetic energies, we have 

K,+S"='.i'+'l",+T',,, 

that i~, by eq nations (tl), (9), (10), (11), and (12), 

HAl.l','+BIJ,o'+Cy,'+E/J,y, + Fy,Q" + Gl.l',/J,) 
+HAl.l': +Bfi: +Cy: + Efi,y. + Fy 2 l.l', + (.}a,/J.) 

+ ~L L(jJy.- y,/i.) +.M(y/x,-a,rJ + N(a,/i,- p/yJ 

= 7r~' (a,' + Ii,' + y,' + IX: + /3.,' + ]I:) p -

+ ~' (.IVa,' +B'/i,' + C'y,'+ E'/i,Y, + F'y/f, + (;'a,/i,) 

2n !o! I q , 2 ! '.!, '" i' 
+-p' (Aa;+B/i, +C]I, +E/i,y,+l< ]I,u,+(.a,/J,) 

47r' p' 
+ p'l [T,(jJ ,y,-y,/J,)+M(Y,{.\',-{.\',y,)+N(u,/i,-/1,a,). (1:1) 

If we set 

and 

A '27rA' 
0=-----

'1.7r p" 
B '2nB' 

h=-----
'27r Ji"' 

if; 2 7rP' 
CP=27rp-j;;-' 

the equation reduces to 

(t0l,' + bP,' + I:r,' + e/3,y, +,/)/,u, + Un,!J, 

+ (w,' + bl3: + ey: + e/i,y, +fr,(!(, + UOl,/i, 
'2 pcp 

+-r[L(ji,y,-y,/i,) + M (y,IY,-a,y,) + N (II',/i,- 13,01,)] 

(14) 

(1 Ii) 

=i({.l"+f3'+l/'+{y'+f:1:+l!.,'), (10) 
1)2! J 1 2 - -

where a, b. c, e,f, g are constant, and 'P a quadratic function of 
L, M, N, for a given medium and light of a given period. 

13. Now this equation, which expresses a re1ation between 
the constants of the equations of wave·motion (I), wil1 app1y, 
with those equations, not only to such vibrations as actually 
take place, but also to such as we may imagine to take place 
under the influence of constraints determining the type of 
vibration. The free or unconstrained vibrations, with which 
alone we are concerned, are characterized hy this, that infin
itesimal variations (by constrnillt) of the type of vibration, 
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that is, of the ratios of the quantities a" fJ" I'll a., fJ., 1'., will 
not affect the period by any quantity of the same order of 
magnitude.* These variations must however be consistent with 
equations (4), which require that 

Lela, + Md/1, +Ndy,=O, Lda. + Md/1. + Ndy.=O. (17) 

lIence, to obtain the conditions which characterize free vibra· 
tion, we may differentiate equation (1t)) with respect to a" fJll 
1'" a., (1" 1'., regarding all other letters as constant, and give to 
da" dfJ" dr" da" dfJ., dr" such values as are consistent with 
equations (17). Now da" df9,) dr" are independent of da" dfJ" 
dr" and for either three variations, val ues proportional either to 
a" fJ" 1'" or to a., fJ., 1'" are possible. If, then) we differentiate 
equation (16) with respect to an fJ" 1'" and substitute first ai' 
fJI) 1'1) and then a" fJ" 1'" for dal) dfJI) drl) and also differentiate 
with respect to a,) fJ., 1'" with similar substitutions) we shall 
obtain a1l the independent equations which this principle will 
yield. . 

If we differentiate with respect to aI, fJtl rt) and write al) fJt) 
rl for dat , dfJI) drb we obtain 

alK,' + bfi,' +cy,' +efJ,y, +/y,a, + f/lx,fJ, 

+Pi[L(/1,y,-y.(i.) +M(y,iK,-lK]Y,) + N (lKJi,- fJ/x,)] 

l' ( • I~ • .) =. iK, +f", +y, . 
P 

If we differentiate with I'espect 
for dat , dfJI) drv we obtain 

(18) 

2a(l']lK, + 2b/l,fJ, + 20y,y, + e(fJy, + r.lJ,) +/(y/x, + a,y,) 
2l' 

+ g(a,/1. + fi,a',) =--, (tY,a, + fJJJ, + y,y.). (19) 
P 

If we differentiate with respect to (12) fJ2, 1'2) and write a2, fJ2) 1'2 
for rta.l) dfJ2, dr2) we obtain 

atY: + b/1: + oy: + efJ.y, +/y,r:f, + .(jlK,/1. 

+Pi[L(/1,y,-YJi.) +M(V,ir.-IV,y,) +N (IKJi,- fi,lX,)J 

l' ( , p , ') =----. (1', +''', +y, . 
P 

(20) 

The equation derived by differentiating with respect to ~, fJ2, 
1'2, and writing aI, fJI, 1'1 for da2, dfJ2' cir2, is identical witll (19). 
We should also observe .that equations (18) and (20) by addi· 

* COllll'Hl'e § II of tl,e fornlo,' papOI', page 27n of this·volunlP. 
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tion give equation (16), which therefore will not need to be 
considered in addition to the last three equations. 

14. The geometrical signification of our equations may now 
be simplified by a suitable choice of the position of the origin 
of coordinates, which is as yet wholly al·bitl'ary. 

We shall hereafter suppose that the origin is placed in a 
plane of maximum 01' minimum displacement,* if such there 
are. In the case of circular polarization, in which the displace· 
ments are everywhere equal. its position is immaterial. The 
lines PI and P2, of which aI, /311 71 and a2, /32, 72 are respectively 
the components, will now be the semi-axes of the displace
ment-ellipse, and therefore at right angles. (See § 9.) The 
case of circular polat'ization wi11 not constitute any exception. 
Hence, 

(21 ) 
and by § 9, 

@=I,«(J.y,-yJ1.)+lH(Y.£I',-£I'.y.)+N(aJJ.-/J,t¥.)=±P,P., (22) 

w here we are to read + or - in the last member according as 
the system of displacements has the character of a right-handed 
or a left-handed screw. 

15. Equation (19) is now reduced to the form 

2 a£l', £1'. + 2b(J,(J.+ 2cy,y.+e«(J,y.+ y,!3.) 
+f(y,£l'2 + £I',Y.) + {I (£I',!32 + f:J,£I'.) = 0, (23) 

which has a very simple geometrical signification. If we con
sider the ellipsoid 

ax' + by' + CZ' + eyz+fzx+ {lxy, (24) 

and especially its central section by a plane parallel to the 
planes of the wave-system which we are considering, it will 
easily appear that the equation 

2ax,x. + 2by,y. + 2cz,z. + e(y,z2 + z,Y.) 
+ f(ZI.:r2 +X,z.) + g(XtY2+YtX.) =0 

will hold of any two points Xl, Yll ZI and X2' Y2, Z2 which belong 
to conj ugate diameters of this central sectlOn. Therefore 
equation (23) expresses that the displacements aI, /31' 71 and aJ, 

/32' 72 are parallel to conj agate diameters of the central section 
of the ellipsoid (24) by a wave-plane. But since the displace
ments al. /31' 71 and ~. /32. 72 are also at right angles to each 
other, it follows that they are parallel to the axes of the cen
tral section of the ellipsoid (24) by a wave-plane. That is:-

* The reader will perceive that an earlier limitation of the position of the ori
gin by a supposition of this nature, involving a limitation of the values of a" f3" 
}'" ao. (3., Yo, would have been embarrassing in the operations of the last para
graph. 



The axes of the displacement-ellipse coincide in direction with 
those of a central section of the ellipsoid (24) by a wave-plane. 

16. If we write U l , U2 f(w the reciprocals of the semi·axes of 
the central section of the ellipsoid (24) by a wave-plane, U1 

being the reciprocal of the one to which the displacement ai, 
fil' rl is parallel, we have 

alXI' +b/3I'+ cYI' +e/3IYI + fYl(X, + glX1/31 = Ut" (lfl ' + /31' + Yl'), (25) 

as is at once evident, if we substitute the coordinates of an 
extremity of the axis, fOt' the proportional quantities aI, fill rl' 
So also 

alf.·+b/3.· +cy." + e/3.y. +fY.lX2 + glf./J2= U: (If: + /3: + Yo'). (26) 

If we write V for the velocity of propagation of the system 
of progressive waves cOlTesponding to the systen~ of stationary 
waves which we have been considering, we shall have 

l 
V=-. 

P 
(27) 

By equations (22), (25), and (26), equations (18) and (20) m'e 
reduced to the form 

(28) 

where we are to read + or - according as the disturbance has 
the character of a right-handed or a left-handed screw. In a 
progressive system of waves, when the combination of displace
ments has the character of a right-handed screw, the rotations 
will be such as appear clock-wise to the observer, who looks in 
the direction opposite to that of the propagation of light. We 
shall call such a ray right-handed. 

We may here observe that in case tp=O the solution of these 
equations is very simple. We have necessarily either P2=O 
and V 2= U12, or PI =0 and V 2= U22. In this case, the light is 
linearly polarized, and the directions of oscillation and the 
velocities of propagation are given by Fresnel's law. Experi
ment has shown that this is the usual case. We wish, however, 
to investigate the case in which tp does not vanish. Since the 
term containing tp arises from the consideration of those 
quantities which it was allowable to neglect in the first 
approximation, we may assume that tp is always very small in 
comparison with V3, U t 3, or U23. 

17. Equations (28) may be written 

V 2 _U'-±P- 0. 
I - V p/ (29) 
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By multiplication we obtain 

V'(V'-UJ ') (V'-U;)=cp'. (30) 

Since cp is a very small quantity, it is evident from inspection 
of this equation that it will admit three values of y2, of which 
one will be a very little greater than the greater of the two 
quantities U I2 and U 22, another will be a very little less than 
the less of the same two quantities, and the third will be a very 
small quantity. It is evident that the values of y2 with which 
we have to do are those which differ but little from U I2 and 
U 22.* 

For the numerical computation of V, when U I, U2, and f 
are known numerically, we may divide tbe equation by V , 
and then solve it as if the second rnem ber were known. This 
will give 

(31) 

By substituting U IU 2 for y2 in the second member, we may 
obtain a close approximation to the two values of y2. Each 
of the values obtained may be improved by substitution of that 
value for y2 in the second member of the equation. 

For either value of V., we may easily find the ratio of PI to 
P2, that is, the ratio of the axes of the displacement.ellipse, 
from one of equations (29), or from the equation 

P,' V'-UI ' 

PI'- V''=-U; 

obtained by combining the two. 

(32) 

In equations (29), we are to read + or - in the second 
members, according as the ray is right-banded or left-handed. 
(See § 16.) It follows that if the value of cp is positive, the 
greater velocity will belollg to a right-handed ray, and the 
smaller to a left-handed, but if the value of cp is negative, 
the opposite is the case. Except when cp = 0, and the polari
zation is linear, tbere will be one right-handed and one left
handed ray for any given wave-normal and period. 

18. When U I = U 2, equations (29) give 

V'-U'±~ - V' 

* 'Ve should not attt'ibute any physical significance to the thi]'(l value of V'_ 
For this valne wonld imply a wave-length very small in comparison with the 
length of ordinary waves of light, alld with respect to which our fundamental 
assumption that the wave-length is vet·y great in comparisoll with the distances of 
contiguous molecules wonld he entirely false. Our analysis, therefore, furnishes 
no reason for supposing that any snch \'elocities are possible for the propagation of 
electrical disturbances. 

A~I. Joun. BCI.-THmD BEllIES, VOL. XXIII, No. 138.-Jmm. 1882. 
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where U represents the common valu~ of U i and U2• The 
polarization is therefore circular. 'rhe con verse is also evident 
from equations (29), vi~: that a.ray can be circularly polarized 
only when the du·ectIOn of Its wave· normal is such that 
U 1 = U 2• Such a direction, which is determined by a circular 
sectio~ of the ellipsoid (24) pr~cisely as an optic axis ~f a crys
tal whICh confor.ms t? Fresnel s l.aw of d.ouble refractIOn, may 
be called an optIC axIS, although Its phySICal properties are not 
the same as in the more ordinary case.* If we write Vu and 
V L, respectively, for the wave-velocities of the right-handed and 
left-handed rays, we have 

whence 

and 

V' U" rp VL"=U·_.!E!..· 
Ie = +YR' YL' 

(P 
VR-VL=V V· 

R L 

(33) 

(34 ) 

The phenomenon best observed with respect to an optic axis 
is the rotation of the plane of linearly polarized light. If we 
denote by () the amount of this rotation per unit of the distance 
traversed by the wave-plane, regarding it as positive when it 
appears clock-wise to the obscrver, who looks in the direction 
opposite to that of the propagation of the ]ight,t we have 

(}-7!.(~_2.) (35) 
- p V L V R ' 

By the preceding equation, this reduces to 
n:qJ 

()= P V R' V I_'· 
(36) 

* Our experimental knowledge of ciJ'culnl'iy or ellipt,ically polari7,ing media is 
confined to such as are optically either isotropic 01' uniaxial. The general theory 
of Stich mellia, embmcillg the case of two opt,lC axes, lllls however been discussed 
by Professor von Lang, (Theari" del' Cil'cula?'1Jo1a?'ization, Sit2,·Ber, 'Wiener AkNd., 
vol. lxxv, p. 719,) Tlto general results of the present paper, although derived 
from physical hypotheses of an entirely different llatmc, are quite similar to those 
of tlte memoir cited, 'I'ltey would become identical, tho writer believes, by the 

substitution of a constant fOI' 1101'1... in the equations of this paper. [See es-
I V 

peciully eqllations (18), (20), (28),] 
That a complete discllssion of the subject on any tlleol'Y IlIllst include the case 

of biaxial media having' tIle property of circuhu' or elliptical polarization, is evi
dent from the consideration that it mu .. t at lellst be possible to produce examples 
of such media artificially. An isotl'Opic or uniaxial crystal may be made biaxial 
by pressure. If it has the property of circlllar and elliptic polarization, that pro
perty cannot be wholly destroyed by the applical.ion of small pressures, 

t Wheu the rotation of the plane of polarization appears clock-wise to the ob· 
,server, it has the character of a lejt-handed screw, But the circularly polarized 
ray to which V R relates, the rotation of which also appears clock-wise to the (,b
,server, has the character of a ?'ight-lwnded screw. 
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vVithout any appreciable error, we may substitute U' for 
V R' V L', which will gi ve* 

(37) 

19. Since these equations involve unknown functions of the 
period, they will not serve for an exact determination of the 
relation between {} and the period. For a rough approxima
tion, however, we may assume that the manner in which the 
general displacement in any small part of the medium diR
tributes itself among the molecules and intermolecular spaces 
is independent of the period, being determined entirely by the 
values of ~, 71, (, and their differential coefficients with respect 
to the coordinates. t For a fixed direction of the wave-normal, 
rj) and rj)' will then be constant. Now equations (15) and (36) 
give 

()= iP 
2p"VR'VL' 

(38) 

To express this result in terms of the quantities directly ob
served, we may use the equations 

it 
P=ic' U-~ 

-n' 

where k denotes the velocity of light in vacuo, ;. the wave
length in vacuo of the light employed, nR, ilL the absolute indi
ces of refraction of the two rays, and n the index for the optic 
axis as derived from the ellipsoid (24) by Fresnel's law. We 
thus obtain 

iPn '17' 27t2 iP'n 'n ' ()= R L. R L 

2k'A2 it' (39) 

In the case of uniaxial crystals, the direction of the optic aXIs 
is fixed. We may therefore write 

O=nR'nL'(~+ ~), (40) 

regarding K and K' as constants. If we had used equation 
(37), we should have had the factor n' instead of nR'nL" 

* The degree of accuracy of this substitutiou may be shown as follows. By 
(33) 

whence 
V R 3+ V" 3=(V" + V L )U2, 
Va 2_ V" V L + V" 2=U2, 
V" V" =U'-(VR - V L )'. 

t Compare § 12 of the former paper, on page 270 of this volume. 
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Since this factor varies but slowly with A, it may be neglected, 
if its omission is compensated in the values of K and K'. '1'he 
formula being only approximative, such a simplitication will 
not necessarily render it less accurate. 

20. But without any snch assumption as that contained in 
the last paragraph, we may easily obtain formulffi for the ex
perimental determination of f/J and f/J' for the optic axis of an 
uniaxial crystal. Oonsiderations analogous to those of § 13 
of the former paper (page 271 of this volume), show that in 
differentiating equation (39) we may regard f/J and f/J' as con
stant, although they may actually vary with A. '1'his equation 
may be written 

Therefore, 

(FA 2 tfJ 27(' tfJ' 
n!-2k2--~ (41) 

(42) 

When f/J' has been determined by this eq nation, f/J may be 
found from the preceding. 

21. If we wish to represent If geometrically, like U 1 and U 2• 

we ma,Y construct the surfaces 

AX' + ny' + C~2 + EyZ+ FZX + Gxy=±l, (43) 

the coefficients A, B, etc., being the same by which If is ex
pressed in terms of L2, M2, etc. The numerical value of If, for 
any direction of tIle wave· normal, will thns be represented by 
the square of the reciprocal of the radius vector of the surface 
drawn in the same direction. The positive or negative charac
ter of If must be separately indicated. There are here two 
cases to be distinguished. If the sign of If is the same in all 
directions, the surfnce will be an ellipse, and we have only to 
know whether all tbe values of If are to be taken positively or 
all negatively. But if If is positive for some directions and 
negati ve for otbers, the surface will consist of two conj ugate 
hyperboloids, to olle of wbicb the positive, and to the other the 
negative values belong. 

22. '1'he manner in which the ellipsoid (24) may be par
tially determined by the relatio~s. of syr~metry 'Y hich the 
medium may possess, has been suihClently dIscussed 111 the for-
mer paper. . . 

With respect to the quantIty If, and the surfaces whlCh 
determine it, the following principle is of fundamental import
ance. If one body is identical ill its intel'llal structUl'e with 
the image by reflection of another, the values of If in corres-
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ponding lines in the two bodies will be numerically equal but 
have opposite signs:* 

It follows that if a body is identical in internal structure 
with its own image by reflection, the value of r' (if not zero for 
all directions) must be positive for some directions and ne~a
tive for others. Moreover, the above described surface by 
which r' is represented must consist of two conjugate hyperbo
loids, of which one is identical in form with the image by 
reflection of the other. This requires that the hyperboloids 
shall be right cylinders with conjugate rectangular hyperbo
las for bases. A crystal characterized by such properties 
will belong to the tetragonal system. Since r'=0 for the 
optic axis, it would be difficult to distinguish a case of this 
kind from an ordinary uniaxial crystal, unless the ellipsoid (24) 
should approach very closely to a sphere.t 

It is only in the very limited case described in the last para
graph that a medium which is identical in its internal struct
ure with its image by reflection can have the property of cir
culi1f or elliptic polarization. To media which are unlike their 
images by reflection, and have the property of cil'cular polariza
tion, we mrty apply the following general principles. 

If the medium bas any axis of syrnmetry, the ellipsoid or 
hyperboloids which represent the values of r' will have an axis 
in the same direction. If the medillm after a revolution of 
less than 1800 about any axis is equivalent to the medium in 
its first position, the ellipsoid or hyperboloids will have an 
axis of revolution in that direction. 

23. rfhe laws of the propagation of light in plane waves, 
which have thus been derived from the single hypothesis that 
the disturbance by which light is tmnsmitted consists of solen
oidal electrical fluxes, and which apply to light of different 
colors and to the most geneml case of' perfectly transparent 
and sensibly homogeneous media not subject to magnetic 
actioll,:!: are essentially those which are generally received as 

* The necessity of the opposite signs will perhaps appear most readily from 
the consideration that the direction of rotation of the plane of polarization must 
be opposite in the t\\'o bodies. 

t There is no difficulty in conceiving' of the constitution of a body which would 
have the properties described above. Thus, we may imagine a body with mole
cules of a spiral form, of which one-half are right. handed and one-half left
handed, and we may suppose that the motion of electricity is opposed by a less 
resistance within them than without. If the axes of the right-handed molecules 
are parallel to the axis of X, and those of the left-handed molecules to the axis of 
Y. their effects would connter'balance one another when the wave-normal is par
allel to the axis of Z. But when the wave-normal (of a beam of linearly polar
ized light). is parallel to the axis of X, the left-handed molecules would produce a 
left-handed (negative) rotation of the plane of polarization, the right-handed mole
cules having no effect; and when the wave-normal is parallel to the axis of Y, the 
reverse would be the case. 

t The rotation of the plane of polarization which is produced by magnetic 
action has been discllssed by Maxwell (Treatise on Electricity and Magnetism, vol. 
ii, Ohap. XXI), and by Rowland (Amer. Journ. Math., vol. iii, p. 107). 
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embodying the results of experiment. In no particular, so far
as the writer is aware, do they conflict with the results of ex
periment, or require the aiel of auxiliary and forced b.ypothese~ 
to bring them into harmony therewith. 

In this respect, the electromagnetic theory of light stands in 
marked contrast with that theory in which tbe properties of an 
elastic solid are attributed to the ether,-a contrast which was 
verv distinct in Maxwell's derivation of Fresnel's laws from 
electrical principles, but becomes more striking as we follow 
the subject farther into its details, and take account of tbe 
want of absolute homogeneity in the medium, so as to embrace 
the phenomena vf the dispersion of colors alld circular and 
ell i ptical polarization. 




