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ARrT. LIV.—Notes on the Electromagnetic Theory of Light; by
J. WiLLARD GiBBs. No. IL—On Double Refraction in per-
Jectly transparent Media which exhibit the Phenomena of Circular
Polarization.

1. IN the April number of this Journal,* the velocity of
propagation of a system of plane waves of light, regarded as
oscillating electrical fluxes, was discussed with such a degree
of approximation as would account for the dispersion of colors
and give Fresnel’s laws of double refraction. It is the object
of this paper to supplement that discussion by carrying the ap-
proximation so much further as is necessary in order to
embrace the phenomena of circularly polarizing media.

2. If we imagine all the velocities in any progressive system
of plane waves to be reversed at a given instant without
affecting the displacements, and the system of wave-motion
thus obtained to be superposed upon the original system, we
obtain a system of stationary waves having the same wave-
length and period of oscillation as the original progressive sys-
tem. If we then reduce the magnitude of the displacements in
the uniform ratio of two to one, they will be identical, at an in-
stant of maximum displacement, with those of the original sys-
tem at the same instant.

Following the same method as in the paper cited, let us
especially consider the system of stationary waves, and divide
the whole displacement into the regular part, represented by ¢,
n, & and the srregular part, represented by &', ', {', in accord-
ance with the definitions of § 2 of that paper.

3. The regular part of the displacement is subject to the
equations of wave-motion, which may be written (in the most
general case.of plane stationary waves)
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where [ denotes the wave-length, p the period of oscillation, u
the distance of the point considered from the wave-plane pass-
ing through the origin. a,, 8, 7, the amplitudes of the displace-
ments &, 7, £ in the wave-plane passing through the origin, and
¢y By 7. their amplitudes in a wave-plane one-quarter of a

* See page 262 of this volume,
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wave-length distant and on the side toward which u increases.
If we also write L, M, N for the direction-cosines of the wave-
normal drawn in the direction in which u increases, we shall
have the following necessary relations :

L4+ M+ N*=1, (2)
u=Lax+ My + Nz, (3)
La,+Mg +Ny =0, La,+Mg,+Ny,=0. (4)

4. That the drregular part of the displacement (€7, 7,” ¢’) at
any given point is a simple harmonic function of the time,
having the same period and phase as the regular part of the
displacement (&, 7, £), may be proved by the single principle of
superposition of motions, and is therefore to be regarded as
exact in a discussion of this kind. But the further conclusion
of the preceding paper (§ 4), “that the values of &, 7/, ¢’ at
any given point in the medinm are capable of expression as
linear functions of &, 7, ¢ in a manner which shall be inde-
pendent of the time and of the orientation of the wave-planes
and the distance of a nodal plane from the point considered, so
long as the period of oscillation remains the same,” is evi-
dently only approximative, although a very close approxima-
tion. A very much closer approximation may be obtained, if
we regard &', ', ¢', at any given point of the medium and for
light of a given period, as linear functions of &, 7, Z and the
nine differential coéfficients

d& dn de d§

de? d’ dw  dy’

We shall write &, 9, & and dif. coéff. to denote these twelve
quantities.
From this it follows immediately that with the same degree

of approximation &', 7/, ¢’ may be regarded, for a given point
of the medium and light of a given period, as linear functions

of & 7, ¢ and the differential coéfficients of &, », & with respect
to the coordinates. For these twelve quantities we shall write

&, 7, & and diff. coéff.

5. Let us now proceed to equate the statical energy of the
medium at an instant of no velocity with its kinetic energy at
an instant of no displacement. Tt will be convenient to esti-
mate each of these quantities for a unit of volume.

6. The statical energy of an infinitesimal element of volume
may be represented by odv, where ¢ is a quadratic function of
the components of displacement §+£', 7+7’, {+¢". Since for
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that element of volume &', 7/, ¢’ may be regarded as linear
functions of &, 7, ¢ and diff. coéff., we may regard o as a quad-
ratic function of &, , ¢ and diff. coéff., or as a linear function
of the seventy-eight squares and products of these quantities.
But the seventy-eight coéfficients by which this function is ex-
pressed will vary with the position of the element of volume
with respect to the surrounding molecules.

In estimating the statical energy or any considerable space
by the integral

S odv,

it will be allowable to substitute for the seventy-eight coiffi-
cients contained implicitly in o their average values through-
out the medium. That 1s, if we write s for a quadratic func-
tion of &, », £, and diff. coéff. in which the seventy-eight codffi-
cients are the space-averages of those in o, the statical energy
of any considerable space may be estimated by the integral

Ssdv.

(This will appear most distinctly if we suppose the integration
to be first effected for a thin slice of the medium bounded by
two wave-planes.) 'The seventy-eight coéfficients of this func-
tion s are determined solely by the nature of the medium and
the period of oscillation.

We may divide s into three parts, of which the first (s,) con-
tains the squares and products of £, », £, the second (s,,) con-
tains the products of &, 7, ¢ with the differential coéfficients,
and the third (s,,,) contains the squares and products of the
differential coifficients. It is evident that the average statical
energy of the whole medium per unit of volume is the space-
average of s, and that it will consist of three parts, which ave
the space-averages of s, s,, and s, , respectively. These parts
we may call S, S,, and S,,. Only the first of these was con-
sidered in the preceding paper.

Now the considerations which justify us in neglecting, for
an approximate estimate, the terms of s which contain the dif-
ferential cocfficients of &, », ¢ with respect to the codrdinates,
will apply with especial force to the terms which contain the
squares and products of these differential coéfficients. There-
fore, to carry the approximation one step beyond that of the
preceding paper, it will only be necessary to take account of
s,and s, and of S, and S,,.

7. We may set

s, =AE& + B +CZ + Eng+¥3& +G&y, ()

where, for a given medium and light of a given period, A, B,
C, E, F, G are constant.
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Since the average values of
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are respectively 4, 3, and 0, and since at the time to be
considered

14
cos® 2mr-—=1,

it will appear from inspection of equations (1) that
S,=4(Aa’+BA+Cy +EL y, + Fy,a,+ Ga, 6,)
+%‘(Aaeu+Bﬂ92+CV92+E/3Q}/2+F}/90'2+G(19ﬁ9)- (6)

This is the first part of the statical energy of the whole medium
per unit of volume.

8. The second part of the statical energy of the whole medium
per unit of volume (S,,) is the space-average of s,,, which is a
linear function of the twenty-seven products of &, », ¢ with their
differential coéfficients with respect to the coirdinates. Now
since

(&1 = =3 —_
de * dx dex dx’

~ &2 p 2
A& . d(&7) ”d)/_ s (Zl} ) ete.,

the space-average of such products will be zero, and they will
contribute nothing to the value of S,,. There will be nine of
these products, in which the same component of displacement
appears twice. The remaining eighteen products may be
divided into pairs according to the letters which they contain, as
dé dn
17— and .
N adm
A linear function of the eightecn products may also be regarded
as a linear function of the sums and differences of the products
in such pairs. But since

, deé adu_(l(r]a)

dax de— dr

2

the terms of s,, containing such sums will contribute nothing to
the value of S, We have left a linear function of the nine
differences
de _dn a&  ,dg dy d&
7l %—2%, 8%—5391, g ete.,
(the unwritten expressions being obtained by substituting in
the denominators dy and dz for dz,) which constitutes the part
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of s, that we have to consider. S, is therefore a linear
function of the space-averages of these nine quantities. But

by (3)
//@—Z(ﬂ/—L(n@—aiU),

de “dx du Tdu

and the space-average of this, at a moment of maximum
displacement, is by (1)

L
zﬂT(ﬁﬂ/?_%/je)-

By such reductions it appears that [S,, is a linear function of
the nine products of L, M, N with

LiVe—ViBey  Vi@—a Yy o ff— .
Now if we set
O=L (f1y.—p1f:) + M (y1a,—ay5) + N (e, ffy— i), (7)
we have by (4) and (2)
LO=gy.:—y.fsy MO=yp,a,—a,y,, NO=a,f,—Ba, (8)

Therefore /'S, is a linear function of the nine products of L, M,
N with L, MO, NO. That is, IS, is the product of € and a
quadratic function of Ly M and N.  'We may therefore write

& .
811:7 @:?[L (Biys— 1) + M(y1a—avy,) + N (@ fo— fr10s) ], (9)

where @ is a quadratic function of I, M and N, dependent,
however, on the nature of the medium and the period of
oscillation.

9. It will be useful to consider more closely the geometrical
significance of the quantity 6. For this purpose it will be con-
venient to have a definite understanding with respect to the
relative position of the codrdinate axes.

We shall suppose that the axes of X, Y, and Z are related
in the same way as lines drawn to the right, forward and up-
ward, so that a rotation from X to Y appears clock-wise to one
looking in the direction of Z.

Now if from any same point, as the origin of codrdinates, we
lay off lines representing in direction and magnitude the dis-
placements in all the different wave-planes, we obtain an
ellipse, which we may call the displacement-ellipse.® Of this,
one radius vector (p,) will have the components a,. 3, r;, and

* This ellipse, which represents the simultaneous displacements in different

parts of the field, will also represent the successive displacements at any same
point in the corresponding system of progressive waves,
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another (p,) the components a, 8, y,. These will belong to
conjugate diameters, each being parallel to the tangent at the
extremity of the other. The area of the ellipse will therefore
be equal to the parallelogram of which p;, and p, are two sides,
multiplied by =. Now it is evident that 87,— 71 8,y N, — a7,
a, fy—f3, a, are numerically equal to the projections of this par-
allelogram on the planes of the coordinate axes, and are each
positive or negative according as a revolution from p; to p,
appears clock-wise or counter-clock-wise to one looking in the
direction of the proper codrdinate axis. Hence, 6 will be nu-
merically equal to the parallelogram, that is, to the area of the
displacement-ellipse divided by 7, and will be positive or nega-
tive according as a revolution from p, to p, appears clock-wise
or counter-clock-wise to one looking in the direction of the
wave-normal. Since p, and p, are determined by displacements
in planes one-quarter of a wdve-length distant from each other,
and the plane to which the latter relates lies on the side toward
which the wave-normal is drawn, it follows that € is positive
or negative according as the combination of displacements has
the character of a right-handed or a left-handed screw.

10. The kinetic energy of the medium, which is to be esti-
mated for an instant of no displacement, may be shown as in
§ 7 of the former paper (page 266 of this volume) to con-
sist of two parts, of which one relates to the regular flux

(é, 7'7, Q.'), and the other to the irregular flux (é’, 7}’, C’) The
tirst, in the notation of that paper, is represented by

1/'(€ Pot & +7 Pot 1+ Pot &) dv,
which reduces to
Z’ > 2 ,.9 .2
2—7[,/(5 + 17"+ 87) dv.

By substitution of the values given by equations (1), we obtain
for the kinetic energy due to the regular lux in a unit of vol-
ume

lﬂ
T:%(alwr/ff+;/,*+a:+/5; 0. (10)

11. The kinetic energy of the irregular part of the flux is
represented by the volume-integral

'/'7}(5' Pot &' +7}' Pot 1}'—}—2,.’ Dot 2/) dv.

Now, since &', 7/, {’ are everywhere linear functions of &, y, ¢

and dyf. coéff. (see § 4), and since the integrations implied
in the notation Pot may be confined to a sphere of which the
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radius is small in cornpa,rison with a wave-length,* and since

within such a sphere €, 77, C and diff. coéff. are sufficiently de-
termined (in a linear f01m), by the values of the same twe]ve

quantities at the center of the sphere, it follows that Pot &

Pot 7.7’, Pot C’ must be linear functions of the values of é, 7.7', (
and diff. coéff. at the point for which the potential is sought.
Hence,

$(&' Pot & + 1/ Pot 5y + & Pot &)

will be a quadratic function of &, 7,  and diff. coéff. But the
seventy-eight coéfficients by which this function is expressed
will vary with the position of the point considered with respect
to the surrounding molecules.

Yet, as in the case of the statical energy, we may substitute
the average values of these coéfficients for the coéfficients
themselves in the integral by which we obtain the energy of
any considerable space. The kinetic energy due to the irregu-
lar part of the Aux is thus reduced to a quadratic function of

£ 7.7, C and deff. coéff. which has constaut coéfficients for a
given medium and light of a given period.
The function may be divided into three parts, of which the

first contains the squares and products of , 7] é’, the second the

products of &, », ¢ with their differential coéfficients, and the
third, which may be neglected, the squares and products of the
differential coéfficients.

We may proceed with the reduction precisely as in the case
of the statical energy, except that the differentiations with re-

. oy - 47’ .
spect to the time will introduce the constant factor —-. This

will give for the first part of the kinetic energy of the irregular
flux per unit of volume

T = a’+Bp+Cy +E By +Fy a+Gaf)
¢ 2
(Ao + BB+ Uy 4 Wy, Fya, - Gaf), (1)

and for the second part of the same

Y & @
T, = & ¢
_An'd

- Sl [‘L(/))J/ y\/i‘z)—'-l\l ()/1“,2_“'1}/2) +N(""J/j2_/)’1a2)_l? (]Q)

* See § 9 of the former paper, on page 268 of this volume.
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where A/, B’, ¢, B/, ¥/, G’ are counstant, and & a quadratic
function of 1, M, and N, for a given medium and light of a
given period.

12. Equating the statical and kinetic energies, we have

S, 48, =T+1T" +T,
that 1s, by equations (6), (9), (10), (11), and (12),
FAa + B +Cpy +Ef y +Fya +Ga )
+3(Aa,'+BE +Cp +ES,y +Fy,a, +Gu,f)
+$[T,(/j])/,z—y‘/je)+M()/La',_,—a!)/,__) +N(o f5,—fx,)

2

{ N 2 2 2 2
:%{(alﬁ_'_/jl-_{_}/l*_'_(yz +ﬁ~‘ _{—)/2)

* %‘.(A/(‘ylz + I;'/j"-l + (’/}/12 + El/jlyl + F,}/\(yl + (“"111/‘11)

+ 2]7; (A/w: +B,/j22 + CI7/22+ E//j':)/‘: + FYJ/'2(12+ G‘az/jz)
47 P’
* p-l [I‘(ﬁlj/z_ J"/j-.-) + ]\I()/‘(l',.‘—(y‘}/,_,) + N((Il/jﬁ_/jla'_')' (13)

1T we set
A 27A ]_B 228’

= _— h— c.
"= 7 R ete., (14)
1 b ond 15
an y— ;
‘ 2ap Pt (1)

the equation reduces to
(6(112+bﬁ12+(})/11+6ﬁ|)/\+-fj/!(¥l+gal/jl
+ C(ll".’.‘-, + /)/j‘22 + U}/‘_"-’ + 6/"27/‘2 +nf‘)/2(12 +ga‘!/j‘l
2p ,
+_}llj[]"(/jx}/2_}/|ﬂ2) + NI()/lula_alJ/?) + N((Vlﬁ-z_/jxu,z)]
5 . s
=@l Byl ), (16)
where a, b, ¢, ¢, f, g are constant, and ¢ a quadratic function of
L, M, N, for a given medium and light of a given period.

18. Now this equation, which expresses a relation between
the constants of the equations of wave-motion (1), will apply,
with those equations, not only to such vibrations as actually
take place, but also to such as we may imagine to take place
ander the influence of constraints determining the type of
vibration. The free or uncoustrained vibrations, with which
alone we are concerned, are characterized by this, that infin-
itesimal variations (by constraint) of the type of vibration,



468  J. W. Gibbs— Double Refraction and Oircular

that is, of the ratios of the quantities a,, 8,, 1, @y Bo 7w Will
not affect the period by any quantity of the same order of
magnitude.* These variations must however be consistent with
equations (4); which require that

Lda +Mdg, +Ndy, =0, Lda,+Mdg,+Ndy,=0. (17)

Hence, to obtain the conditions which characterize free vibra-
tion, we may differentiate equation (16) with respect to a,, 8,
Ty @, Pa 7s regarding all other letters as constant, and give to
da,, df, dy, da, df,, dr, such values as are consistent with
equations (17). Now da,, d3,, dy,, are independent of da, dB,
dy,, and for either three variations, values proportional either to
a, B, 1, Or 10 a, B, 1., are possible. If, then, we differentiate
equation (16) with respect to @, 8, r,, and substitute first aj,
By, ru and then a,, 8, 1, for dey, df,, dr,, and also differentiate
with respect to a, f, 7, with similar substitutions, we shall
obtain all the independent equations which this principle will
ield.

7 If we differentiate with respect to a, By, 1y, and write a;, 3,
7, for day, df,, dy;, we obtain

aa19+bﬂlﬂ+c}/|2+eﬁ1y1+f)/la,]+g(¥lﬂl
+p_ZqJ[L(ﬂ|y2_}/1ﬁz) +B‘[(J/1a2_allyu)+N(alﬂu_ﬁla2)]
r .
—_— 2 2 2 . 18
g (@ B+ r)) (18)
If we differentiate with respect to a,, 8, 7, and write ay By 72
for day, dp,, dy,, we obtain

Qa'alaz_*_ 2bﬁ1ﬁ2+ 20y1y2+ 6(ﬂ1y2+ }/lﬁ'l) -hf(}/‘(l’,_,—}— (Y‘)/Q)
20
+g(a1/j':+/j1aﬂ):?(a/laz-l_ﬁlﬂw+J/|J/'z)' (19)
If we differentiate with respect to ay, By, 1y and write ay, S 72
for da,, dfS, dr, we obtain
aa+bpB ey, +efy, +fy.a,+ga.B,
+'p7(/) [L(ﬁuya_yl/j-z) +M(:’/1”2_“17/2) +N({y1ﬁu_ﬂ|az)]
ZQ 2 2 2
:?(a’z +ﬂ2 +y2 )' (2())
The equation derived by differentiating with respect to a, S,

72 and writing a;, B, y; for da,, dp,, dy,, is identical with (19).
We should also observe that equations (18) and (20) by addi-

* Compare § 11 of the former puper, page 270 of this volume,
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tion give equation (16), which therefore will not need to be
considered in addition to the last three equations.

14. The geometrical signification of our equations may now
be simplified by a suitable choice of the position of the origin
of coordinates, which is as yet wholly arbitrary.

We shall hereafter suppose that the origin is placed in a
plane of maximum or minimum displacement,® if such there
are. In the case of circular polarization, in which the displace-
ments are everywhere equal, its position is immaterial. The
lines p, and p, of which «, 8, 7, and dyy B2 12 are respectively
the components, will now be the semi-axes of the displace-
ment-ellipse, and therefore at right angles. (See § 9.) The
case of circular polarization will not constitute any exception.
Hence,

aw,+ B 3.+ y v, =0. (21)
and by § 9,

@:L(/jl}/u_yllj')) +BI(7/1(X2—(1I}/Q) + N(“’l/)"-’_/jl“"?) :j:plp‘.’a (22)

where we are to read + or — in the last member according as
the system of displacements has the character of a right-handed
or a left-handed screw.

15. Equation (19) is now reduced to the form

Qaa1a2+2[’ﬂ1/j.+20}/1}/9+e(/j Ve +)/1ﬁ)
+f(ra.+ay)+yglafo+ fia)=0, (28)

which has a very simple geometrical signification. If we con-
sider the ellipsoid

ax’ + by’ + c2° + eyz + fzx + gy, (24)

and especially its central section by a plane parallel to the
planes of the wave-system which we are considering, it will
easily appear that the equation

2am,iy + 201,y0 + 22,2, + (12, +2,Ys)
+ f(zr,+2z,) + g (Y. + i) =0

will hold of any two points @, ¥y, # aund x, ¥y, % which belong
to conjugate diameters of this central section. Therefore
equation (23) expresses that the displacements «y, 8, y; and a,
By 12 are parallel to conjugate diameters of the central section
of the ellipsoid (24) by a wave-plane. But since the displace-
ments a;, A, 1 and &, B, 1: are also at right angles to each
other, it follows that they are parallel to the axes of the cen-
tral section of the ellipsoid (24) by a wave-plane. That is:—

* The reader will perceive that an earlier limitation of the position of the ori-
gin by a supposition of this nature, involving a limitation of the values of ai, £,

T1. @2, B2, Yo, would have been embarrassing in the operations of the last para-
graph.
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The axes of the displacement-ellipse coincide in direction with

those of a central section of the ellipsoid (24) by a wave-plane.
16. If we write U,, U, for the reciprocals of the semi-axés of

the central section of the ellipsoid (24) by a wave-plane, U,

being the reciprocal of the one to which the displacement a,

B8, 11 is parallel, we have

aa12+bﬁ12+c}/1,+6ﬁ1}/1 +_f)/1“’1 '|‘,(/L1’|/51:II12 (¢Y12+ﬁ12+}/la), (25)
as is at once evident, if we substitute the coordinates of an
extremity of the axis, for the proportional quantities a,, 8y, ;.
So also

aay’ +00," + ey’ +efoy s+ [yttt ganf=U, (a+ 65+ .7). (26)

If we write V for the velocity of propagation of the system
of progressive waves corresponding to the system of stationary
waves which we have been considering, we shall have
_!
=2

By equations (22), (25), and (26), equations (18) and (20) are
reduced to the form

\4 (27)

U,’pﬁ:}:%)p, p=Vp* USp’+ ‘—(i;p. P.=V?py’, (28)

where we are to read + or — according as the disturbance has
the character of a right-handed or a left-handed screw. In a
progressive system of waves, when the combination of displace-
ments has the character of a right-handed screw, the rotations
will be such as appear clock-wise to the observer, who looks in
the direction opposite to that of the propagation of light. We
shall call such a ray right-handed.

We may here observe that in case ¢=0 the solution of these
equations is very simple. We have necessarily either p,=0
and V?=TUg or py=0 and V?*=Uy In this case, the light is
linearly polarized, and the directions of oscillation and the
velocities of propagation are given by Fresnel's law. Hxperi-
ment has shown that this is the usual case. We wish, however,
to investigate the case in which ¢ does not vanish. Since the
term containing ¢ arises from the consideration of those
quantities which it was allowable to neglect in the first
approximation, we may assume that ¢ is always very small in
comparison with V3 UJ or Ul

17. Equations (28) may be written

VUmsE B vumslh
1
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By multiplication we obtain
V? (Vz_Ulﬁ) (VQ—UQ’) :(pu. (30)

Since ¢ is a very small quantity, it is evident from inspection
of this equation that it will admit three values of V% of which
one will be a very little greater than the greater of the two
quantities U;? and Uy, another will be a very little less than
the less of the same two quantities, and the third will be a very
small quantity. It is evident that the values of V? with which
we have to do are those which differ but little from U,? and
U22-*

For the numerical computation of V, when U,, U, and ¢
are known numerically, we may divide the equation by V%
and then solve it as if the second member were known. This

will give
, U +0;} ‘/M__Ua)
VsV et (31)
By substituting U,U, for V?in the second member, we may
obtain a close approximation to the two values of V% Each
of the values obtained may be improved by substitution of that
value for V? in the second member of the equation.
For either value of V*, we may easily find the ratio of p, to
0 that is, the ratio of the axes of the displacement-ellipse,
from one of equations (29), or from the equation

p’_ V'-TU
Pt Vi=Uy (32)
obtained by combining the two.
In equations (29), we are to read + or — in the second

members, according as the ray is right-handed or left-handed.
(See § 16.) It follows that if the value of ¢ is positive, the
greater velocity will belong to a right-handed ray, and the
smaller to a left-handed, but if the value of ¢ is negative,
the opposite is the case. Hxcept when ¢ =0, and the polari-
zation is linear, there will be one right-handed and one left-
handed ray for any given wave-normal and period.
18. When U, = U,, equations (29) give

@
V7

* We should not attribute any physical significance to the third value of V2.
For this value would imply a wave-length very small in comparison with the
length of ordinary waves of light, aud with respect to which our fundamental
assumption that the wave-length is very great in comparison with the distances of
contiguous molecules would be entirely false. Our analysis, therefore, furnishes
no reason for supposing that any such velocities are possible for the propagation of
electrical disturbances.

AM. JoURr. Sc1.—THIRD SERIES, VoL. XXIII, No. 138.— JUNE. 1882.
32 4

pi=p, V=U'x
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where U represents the common valug of U; and U, The
polarization is therefore circular. The converse is also evident
from equations (29), viz: that a ray can be circularly polarized
only when the direction of its wave-normal is such that
U,=TU, Such a direction, which is determined by a circular
section of the ellipsoid (24) precisely as an optic axis of a crys-
tal which conforms to Fresnel’s law of double refraction, may
be called an optic axis, although its physical properties are not
the same as in the more ordinary case.* If we write Vg and
V., respectively, for the wave-velocitics of the right-handed and
left-handed rays, we have

sy, P s P
Vy'=U +yo V.i=U v (33)
whence
2 o (1 1\ _ VitV
V'V, —¢<VR+‘TL>_¢ A v
and

__?
VR—VL_ '\’TRVL' (34)

The phenomenon best observed with respect to an optic axis
is the rotation of the plane of linearly polarized light. If we
denote by 6 the amount of this rotation per unit of the distance
traversed by the wave-plane, regarding it as positive when it
appears clock-wise to the observ_er, who loqks in the direction
opposite to that of the propagation of the light,} we have

T/ 1 1
O=——{— —— 5
]’(VL VR)’ (33)
By the preceding equation, this reduces to

TP

0:—————. 3
pViV? (36)
* Qur experimental knowledge of circularly or elliptically polarizing media is
confined to such as are optically either isotropic or uniaxial. The general theory
of such media, embracing the case of two optic axes, has however been discussed
by Professor von Lang. (Theorie der Circularpolarization, Sitz.-Ber. Wiener Akad.,
vol. Ixxv, p. 719.) The general results of the present paper, although derived
from physical hypotheses of an entirely different nature. are quite similar to those
of the memoir cited. They would become identical, the writer believes, by the

substitution of a constant for pT(Poriv in the equations of this paper. [See es-
pecially equations (18), (20), (28).] )

That a complete discussion of the subject on any theory must include the case
of biaxial media having the property of circular or elliptical polarization, is evi-
dent from the consideration that it must at least be possible to produce examples
of such media artificially. An isotropic or uniaxial crystal may be made biaxial
by pressure. If it has the property of circular and elliptic polarization, that pro-
perty cannot be wholly destroyed by the application of small pressures.

+ When the rotation of the plane of polarization appears clock-wise to the ob-
server, it has the character of a left-handed screw. DBut the circularly polarized
ray to which Vg relates, the rotation of which also appears clock-wise to the ob-
server, has the character of a 7ight-handed screw.
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‘Without any appreciable error, we may substitute U* for
V'V, which will give®

0=——_. (37)

19. Since these equations involve unknown functions of the
period, they will not serve for an exact determination of the
relation between # and the period. For a rough approxima-
tion, however, we may assume that the manner in which the
general displacement in any small part of the medium dis-
tributes itself among the molecules and intermolecular spaces
is independent of the period, being determined entirely by the
values of &, %, ¢, and their differential coéfficients with respect
to the coordinates.} For a fixed direction of the wave-normal,
@ and @ will then be constant. Now equations (15) and (36)
give
_ ] 2@
- Q_pl VRQ VLE p-l 'V'R2 VL2

To express this result in terms of the quantities directly ob-
served, we may use the equations
A k k k
.p:];_’ VR:—’ VL:_v U=

Ny 7, T

0

(38)

where k& denotes the velocity of light ¢n wvacuo, 1 the wave-
length in vacuo of the light employed, ng, ny, the absolute indi-
ces of refraction of the two rays, and » the index for the optic
axis as derived from the ellipsoid (24) by Fresnel’s law. We
thus obtain

_ Ong’n) 27 DP'ng’ng’
2k A At
In the case of uniaxial crystals, the direction of the optic axis
is fixed. We may therefore write

(39)

0=ng’n’ I—X+lE R (40)
A

regarding K and K’ as constants. If we had used equation
(87), we should have had the factor »n' instead of ng'n;’.

* The degree of accuracy of this substitution may be shown as follows. By
(33)
Ve (Ve?—U%=V, (U2-V.?),

Ved+ V. 2=V +V,)U?
Vo=V, V., +V, =02,
VoV, =0— (Ve =V, )%
+ Compare § 12 of the former paper, on page 270 of this volume,

whence
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Since this factor varies but slowly with A it may be neglected,
if its omission is compensated in the values of K and K. The
formula being only approximative, such a simplitication will
not necessarily render it less accurate.

20. But without any such assumption as that contained in
the last paragraph, we may easily obtain formule for the ex-
perimental determination of @ and ¢’ for the optic axis of an
uniaxial crystal. Considerations analogous to those of § 13
of the former paper (page 271 of this volume), show that in
differentiating equation (39) we may regard @ and @’ as con-
stant, although they may actually vary with A This equation
may be written

0 @ 2z

TR T (41)

()
n
d <%2>

When @ has been determined by this equation, @ may be-
found from the preceding.

21. If we wish to represent ¢ geometrically, like U, and U,,
we may construct the surfaces

Therefore,

=—27°d. (42)

Az’ + By’ 4 02" + Byz + Fer + ey =41, (43)

the coéfficients A, B, etc., being the same by which ¢ is ex-
pressed in terms of L2 M?* ete. The numerical value of ¢, for
any direction of the wave-normal, will thus be represented by
the square of the reciprocal of the radius vector of the surface
drawn in the same direction. The positive or negative charac-
ter of ¢ must be separately indicated. There are here two
cases to be distinguished. If the sign of ¢ is the same in all
directions, the surface will be an ellipse, and we have only to
know whether all the values of ¢ are to be taken positively or
all negatively. But if ¢ is positive for some directions and
negative for others, the surface will consist of two conjugate
hyperboloids, to one of which the positive, and to the other the
negative values belong.

99. The manner in which the ellipsoid (24) may be par-
tially determined by the relations of symmetry which the
medium may possess, has been sufficiently discussed in the for-
mer paper. .

With respect to the quantity ¢, and the surfaces which
determine it, the following principle is of fundamental import-
ance. If one body is identical in its internal structure with
the image by reflection of another, the values of ¢ in corres-
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ponding lines in the two bodies will be numerically equal but
have opposite signs.*

It follows that if a body is identical in internal structure
with its own image by reflection, the value of ¢ (if not zero for
all directions) must be positive for some directions and nega-
tive for others. Moreover, the above described surface by
which ¢ is represented must consist of two conjugate hyperbo-
loids, of which one is identical in form with the image by
reflection of the other. This requires that the hyperboloids
shall be right cylinders with conjugate rectangular hyperbo-
las for bases. A crystal characterized by such properties
will belong to the tetragonal system. Since ¢=0 for the
optic axis, it would be difficult to distinguish a case of this
kind from an ordinary uniaxial crystal, unless the ellipsoid (24)
should approach very closely to a sphere.t

It is only in the very limited case described in the last para-
graph that a medium which is identical in its internal struct-
ure with its image by reflection can have the property of cir-
cular or elliptic polarization. To media which are unlike their
images by reflection, and have the property of circular polariza-
tion, we may apply the following general principles.

If the medium has any axis of symmetry, the ellipsoid or
hyperboloids which represent the values of ¢ will have an axis
in the same direction. If the medium after a revolution of
less than 180° about any axis is equivalent to the medium in
its first position, the ellipsoid or hyperboloids will have an
axis of revolution in that direction.

28. The laws of the propagation of light in plane waves,
which have thus been derived from the single hypothesis that
the disturbance by which light is transmitted consists of solen-
oidal electrical fluxes, and which apply to light of different
colors and to the most general case ol perfectly transparent
and sensibly homogeneous media not subject to magnetic
action,} are essentially those which are generally received as

* The necessity of the opposite signs will perhaps appear most readily from

the consideration that the direction of rotation of the piane of polarization must
be opposite in the two bodies.

t There is no difficulty in conceiving of the constitution of a body which would
have the propertics described above. Thus, we may imagine a body with mole-
cules of a spiral form, of which one-half are right-handed and one-half left-
handed, and we may suppose that the motion of electricity is opposed by a less
resistance within them than without. If the axes of the right-handed molecules
are parallel to the axis of X, and those of the left-handed molecules to the axis of
Y. their effects would counterbalance one another when the wave-normal is par-
allel to the axis of Z. But when the wave-normal (of a beam of linearly polar-
ized light). is parallel to the axis of X, the left-handed molecules would produce a
left-handed (negative) rotation of the plane of polarization, the right-handed mole-
cules having no effect; and when the wave-normal is parallel to the axisof Y, the
reverse would be the case.

1 The rotation of the plane of polarization which is produced by magnetic
action has been discussed by Maxwell ( Treatise on Electricity and Magnetism, vol.
ii, Chap. XXT), and by Rowland (Amer. Journ. Math., vol. iii, p. 107).
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embodying the results of experiment. In no particular, so far-
as the writer is aware, do they conflict with the results of ex-
periment, or require the aid of auxiliary and forced hypotheses
to bring them into harmony therewith,

In this respect, the electromagnetic theory of light stands in
marked contrast with that theory in which the properties of an
elastic solid are attributed to the ether,—a contrast which was
very distinct in Maxwell’s derivation of Fresnel’s laws from
electrical principles, but becomes more striking as we follow
the subject farther into its details, and take account of the
want of absolute homogeneity in the medium, so as to embrace
the phenomena of the dispersion of colors and circular and
elliptical polarization.





