Software Open Access

1-pass fixed-rate linear resampler in Matlab/Octave

Harris Georgiou

DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="" xmlns="" xsi:schemaLocation="">
  <identifier identifierType="DOI">10.5281/zenodo.232221</identifier>
      <creatorName>Harris Georgiou</creatorName>
      <affiliation>University of Piraeus (UniPi), Greece</affiliation>
    <title>1-pass fixed-rate linear resampler in Matlab/Octave</title>
    <subject>signal processing</subject>
    <subject>timeseries analysis</subject>
    <subject>linear interpolation</subject>
    <subject>signal resampling</subject>
    <date dateType="Issued">2017-01-06</date>
  <resourceType resourceTypeGeneral="Software"/>
    <alternateIdentifier alternateIdentifierType="url"></alternateIdentifier>
    <rights rightsURI="">Creative Commons Attribution Share Alike 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
    <description descriptionType="Abstract">&lt;p&gt;DESCRIPTION:&lt;/p&gt;

&lt;p&gt;This is a template stand-alone code (no externals required) for a simple 1-pass fixed rate linear resampler. Specifically, the script can be used as-is or as base for a function, which take a series of pairs &amp;lt;t,x&amp;gt; and a requested fixed resampling rate and it produces a new series of &amp;lt;t',x'&amp;gt; using stepwise linear regressors.&lt;/p&gt;

&lt;p&gt;The script includes a data sorting step against &amp;lt;t&amp;gt;, which is not implemented here internally and can be removed if the input data are already expected to be sorted. In case of no sorting step here, the script is completely 1-pass, which means that all elements of the two input vectors (ref. points) are read only once for the entire resampling process. This is particularly useful when this implementation is to be applied directly to extremely large input files (e.g. columns in .csv) with only minimal memory usage for the calculations and only sequential read mode for speed.&lt;/p&gt;

&lt;p&gt;Note: This work is supported by the DART project (H2020): "Data-Driven Aircraft Trajectory Prediction Research" ( and the Data Science Lab ( at the University of Piraeus, Greece (;/p&gt;</description>
    <description descriptionType="Other">AUTHOR:       Harris Georgiou (MSc,PhD) - IS/IT Engineer (R&amp;D)
COPYRIGHT: Data Science Lab @ UniPi (c) 2017 -
LICENCE:       Creative Commons (CC-BY-SA) 4.0/I -</description>
All versions This version
Views 6060
Downloads 3131
Data volume 3.6 MB3.6 MB
Unique views 5555
Unique downloads 1919


Cite as