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Abstract A single-valued neutrosophic set is a special

case of neutrosophic set. It has been proposed as a gener-

alization of crisp sets, fuzzy sets, and intuitionistic fuzzy

sets in order to deal with incomplete information. In this

paper, a new approach for multi-attribute group decision-

making problems is proposed by extending the technique

for order preference by similarity to ideal solution to sin-

gle-valued neutrosophic environment. Ratings of alterna-

tive with respect to each attribute are considered as single-

valued neutrosophic set that reflect the decision makers’

opinion based on the provided information. Neutrosophic

set characterized by three independent degrees namely

truth-membership degree (T), indeterminacy-membership

degree (I), and falsity-membership degree (F) is more ca-

pable to catch up incomplete information. Single-valued

neutrosophic set-based weighted averaging operator is used

to aggregate all the individual decision maker’s opinion

into one common opinion for rating the importance of

criteria and alternatives. Finally, an illustrative example is

provided in order to demonstrate its applicability and ef-

fectiveness of the proposed approach.

Keywords Fuzzy set � Intuitionistic fuzzy set � Multi-

attribute group decision-making � Neutrosophic set �
Single-valued neutrosophic set � TOPSIS

1 Introduction

Multiple attribute decision-making (MADM) problems

with quantitative or qualitative attribute values have broad

applications in the area of operation research, management

science, urban planning, natural science, and military af-

fairs, etc. The attribute values of MADM problems cannot

be expressed always with crisp numbers because of am-

biguity and complexity of attribute. In classical MADM

methods, such as technique for order preference by simi-

larity to ideal solution (TOPSIS) developed by Hwang and

Yoon [1], PROMETHEE [2], VIKOR [3], ELECTRE [4],

the weight of each attribute and ratings of alternative are

presented by crisp numbers. However, in real world, de-

cision maker may prefer to evaluate attributes by using

linguistic variables rather than exact values because of

partial knowledge about the attribute and lack of infor-

mation processing capabilities of the problem domain. In

such situation, a preference information of alternatives

provided by the decision makers may be vague, imprecise,

or incomplete. Fuzzy set [5] introduced by Zadeh is one of

such tool that utilizes impreciseness in a mathematical

form. MADM problem with imprecise information can be

modeled quite well by using fuzzy set theory into the field

of decision-making. Chen [6] extended the TOPSIS

method for solving multi-criteria decision-making prob-

lems in fuzzy environment. However, fuzzy set can only

focus on the membership degree of vague parameters or

events. It fails to handle non-membership degree and in-

determinacy degree of imprecise parameters. In 1986,
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Atanassov [7] introduced intuitionistic fuzzy set (IFS)

characterized by membership and non-membership degrees

simultaneously.

Boran et al. [8] extended the TOPSIS method for multi-

criteria intuitionistic decision-making problem. Pramanik

and Mukhopadhyaya [9] studied teacher selection in intu-

itionistic fuzzy environment. However, in IFSs, sum of

membership degree and non-membership degree of a

vague parameter is less than unity. Therefore, a certain

amount of incomplete information or indeterminacy arises

in an intuitionistic fuzzy set. It cannot handle all types of

uncertainties successfully in different real physical prob-

lems such as problems involving indeterminate

information.

Smarandache [10] first introduced the concept of neu-

trosophic set (NS) from philosophical point of view to

handle indeterminate or inconsistent information that usu-

ally exists in real situation. A neutrosophic set is charac-

terized by a truth-membership degree, an indeterminacy-

membership degree, and a falsity-membership degree in-

dependently. An important feature of NS is that every

element of the universe has not only a certain degree of

truth (T), but also a falsity degree (F) and indeterminacy

degree (I). This set is a generalization of crisp set, fuzzy

set, interval-valued fuzzy set, intuitionistic fuzzy set, in-

terval-valued intuitionistic fuzzy set, etc. However, NS is

difficult to apply directly in real engineering and scientific

applications. In order to deal with difficulties, Wang

et al. [11] introduced a subclass of NS called single-valued

neutrosophic set (SVNS) characterized by truth-member-

ship degree, an indeterminacy-membership degree and a

falsity-membership degree. SVNS can be applied quite

well in real scientific and engineering fields to handle the

uncertainty, imprecise, incomplete, and inconsistent infor-

mation. Ye [12] studied multi-criteria decision-making

problem by using the weighted correlation coefficient of

SVNSs. Ye [13] also developed single-valued neutrosophic

cross-entropy for multi-criteria decision-making problems.

Biswas et al. [14] proposed an entropy-based gray rela-

tional analysis method for solving a multi- attribute deci-

sion-making problem under SVNSs. Biswas et al. [15] also

developed a new methodology for solving SVNS-based

MADM with unknown weight information. Zhang

et al. [16] studied multi-criteria decision-making problems

under interval neutrosophic set information. Ye [17] fur-

ther discussed multi-criteria decision-making problem by

using aggregation operators for simplified neutrosophic

sets. Chi and Liu [18] discussed an extended TOPSIS

method for interval neutrosophic set-based MADM

problems.

The objective of this paper was to extend the con-

cept of TOPSIS method for multi-attribute group de-

cision-making (MAGDM) problems into MAGDM with

SVNS information. The information provided by dif-

ferent domain experts in MAGDM problems about al-

ternative and attribute values takes the form of single-

valued neutrosophic set. In a group decision-making

process, neutrosophic weighted averaging operator

needs to be used to aggregate all the decision makers’

opinions into a single opinion for rating the selected

alternatives.

The remaining part of this paper is organized as follows:

Sect. 2 briefly introduces some preliminaries relating to

neutrosophic set and the basics of single-valued neutro-

sophic set. In Sect. 3, basics of TOPSIS method are dis-

cussed. Section 4 is devoted to develop TOPSIS method

for MADM under simplified neutrosophic environment. In

Sect. 5, an illustrative example is provided to show the

effectiveness of the proposed approach. Finally, Sect. 6

presents the concluding remarks.

2 Preliminaries of neutrosophic sets
and single-valued neutrosophic sets

In this section, some basic definitions of neutrosophic set

defined by Smarandache [10] have been provided to de-

velop the paper.

2.1 Neutrosophic set

Neutrosophic set is originated from neutrosophy, a new

branch of philosophy which reflects the origin, nature, and

scope of neutralities, as well as their interactions with

different ideational spectra [10].

Definition 1 Let X be a universal space of points

(objects), with a generic element of X denoted by x. A

neutrosophic set N � X is characterized by a truth-

membership function TN ðxÞ, an indeterminacy-member-

ship function IN ðxÞ and a falsity-membership function

FN ðxÞ. TN ðxÞ, IN ðxÞ and FN ðxÞ are real standard or

nonstandard subsets of ½�0; 1þ�, so that all three neutro-

sophic components TN ðxÞ ! ½�0; 1þ�, IN ðxÞ ! ½�0; 1þ�
and FN ðxÞ ! ½�0; 1þ�.

The set IN ðxÞ may represent not only indeterminacy, but

also vagueness, uncertainty, imprecision, error, contradic-

tion, undefined, unknown, incompleteness, redundancy,

etc. [19, 20]. In order to catch up vague information, an

indeterminacy-membership degree can be split into sub-

components, such as ‘‘contradiction,’’ ‘‘uncertainty’’, and

‘‘unknown’’. [21].

The sum of three independent membership degrees

TN ðxÞ, IN ðxÞ and FN ðxÞ are related as follows [11]

�0� TN ðxÞ þ IN ðxÞ þ FN ðxÞ� 3þ :
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Definition 2 The complement of neutrosophic set A is

denoted by Ac and is defined as Tc
AðxÞ ¼ 1þ � TAðxÞ,

Ic
AðxÞ ¼ 1þ � IAðxÞ, and Fc

AðxÞ ¼ 1þ � FAðxÞ for all x 2 X

Definition 3 A neutrosophic set A is contained in other

neutrosophic set B, i.e., A � B if and only if inf TAðxÞ�
inf TBðxÞ, sup TAðxÞ � sup TBðxÞ, inf IAðxÞ 	 inf IBðxÞ,
sup IAðxÞ	 sup IBðxÞ, inf FAðxÞ	 inf FBðxÞ, sup FAðxÞ	
sup FBðxÞ, for all x in X.

2.2 Single-valued neutrosophic set

Single-valued neutrosophic set is a special case of neu-

trosophic set. It can be used in real scientific and engi-

neering applications. In the following sections, some basic

definitions, operations, and properties regarding single-

valued neutrosophic sets [11] are provided.

Definition 4 Let X be a universal space of points (objects),

with a generic element of X denoted by x. A single-valued

neutrosophic set (SVNS) ~N � X is characterized by a truth-

membership function T ~N ðxÞ, an indeterminacy-membership

function I ~N ðxÞ, and a falsity-membership function F ~N ðxÞ
with T ~N ðxÞ, I ~N ðxÞ, F ~N ðxÞ 2 ½0; 1� for all x 2 X.

The sum of three membership functions of a SVNS ~N ,

the relation

0� T ~N ðxÞ þ I ~N ðxÞ þ F ~N ðxÞ� 3 for all x 2 X

holds good. When X is continuous, a SVNS ~N can be

written as

~N ¼
Z

x

T ~N ðxÞ; I ~N ðxÞ;F ~N ðxÞ
D E

jx; for all x 2 X:

When X is discrete, a SVNS ~N can be written as

~N ¼
X

x

T ~N ðxÞ; I ~N ðxÞ;F ~N ðxÞ
D E

jx; for all x 2 X:

SVNS can be represented with the notation ~N ¼
fðxj T ~N ðxÞ; I ~N ðxÞ;F ~N ðxÞ

D E
Þjx 2 Xg:

Thus, finite SVNS can be presented by the ordered

tetrads:
~N ¼ fðx1jhT ~N ðx1Þ; I ~N ðx1Þ;F ~N ðx1ÞiÞ; . . .; ðxnjhT ~N ðxnÞ;

I ~N ðxnÞ;F ~N ðxnÞiÞg for all xi 2 Xði ¼ 1; 2; . . .; nÞ. For con-

venience, a SVNS ~N ¼ fðxj T ~N ðxÞ; I ~N ðxÞ;F ~N ðxÞ
D E

Þjx 2

Xg is denoted by the simplified symbol ~N ¼ T ~N ðxÞ;
D

I ~N ðxÞ;F ~N ðxÞi for all x 2 X.

Definition 5 Let ~A ¼ T ~AðxÞ; I ~AðxÞ;F ~AðxÞ
� �

and ~B ¼
T ~BðxÞ; I ~BðxÞ;F ~BðxÞ
� �

be any two SVNSs, then Wang

et al. [11] defined the following set of operations as:

1. ~A � ~B if and only if T ~AðxÞ� T ~BðxÞ; I ~AðxÞ	
I ~BðxÞ; F ~AðxÞ	F ~BðxÞ for all x 2 X.

2. ~A ¼ ~B if and only if ~A � ~B and ~B � ~A for all x 2 X.

3. ~Ac ¼ fðxj F ~AðxÞ; 1� I ~AðxÞ; T ~AðxÞ
� �

Þjx 2 Xg for all x

2 X:

ð1Þ

4. ~A [ ~B ¼ maxðT ~AðxÞ; T ~BðxÞÞ;
�

minðI ~AðxÞ; I ~BðxÞÞ;minðF ~AðxÞ;F ~BðxÞÞi for all x 2 X.

5. ~A \ ~B ¼ minðT ~AðxÞ; T ~BðxÞÞ;
�

maxðI ~AðxÞ; I ~BðxÞÞ;maxðF ~AðxÞ;F ~BðxÞÞi for all x 2 X.

Liu and Wang defined the following set of operations for

SVNSs in [22] as:

Definition 6 Let ~A and ~B be two SVNSs, then

1. ~A 
 ~B ¼ hT ~AðxÞ þ T ~BðxÞ � T ~AðxÞ:T ~BðxÞ;
I ~AðxÞ:I ~BðxÞ;F ~AðxÞ:F ~BðxÞi for all x 2 X:

ð2Þ

2. ~A � ~B ¼ hT ~AðxÞ:T ~BðxÞ; I ~AðxÞ þ I ~BðxÞ
� I ~AðxÞ:I ~BðxÞ;F ~AðxÞ þ F ~BðxÞ
� F ~AðxÞ:F ~BðxÞi for all x 2 X:

ð3Þ

3. ~A [ ~B ¼ maxðT ~AðxÞ; T ~BðxÞÞ;
�

minðI ~AðxÞ; I ~BðxÞÞ;minðF ~AðxÞ;F ~BðxÞÞi for all x 2 X.

4. ~A \ ~B ¼ minðT ~AðxÞ; T ~BðxÞÞ;
�

maxðI ~AðxÞ; I ~BðxÞÞ;maxðF ~AðxÞ;F ~BðxÞÞi for all x 2 X.

2.3 Distance between two SVNSs

Majumdar and Samanta [23] studied similarity and entropy

measure by incorporating euclidean distances of neutro-

sophic sets.

Definition 7 (Euclidean distance) Let ~A ¼ fðx1jhT ~Aðx1Þ;
I ~Aðx1Þ;F ~Aðx1Þi; . . .; ðxnj T ~AðxnÞ; I ~AðxnÞ;F ~AðxnÞ

� �
g and

~B ¼ fðx1j T ~Bðx1Þ; I ~Bðx1Þ;F ~Bðx1Þ
� �

; . . .; ðxnj T ~BðxnÞ; I ~BðxnÞ;
�

F ~BðxnÞig be two SVNSs for xi 2 X ði ¼ 1; 2; . . .; nÞ: Then

the Euclidean distance between two SVNSs ~A and ~B can

be defined as follows:
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DEuclð ~A; ~BÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

T ~AðxiÞ � T ~BðxiÞ
� �2þ I ~AðxiÞ � I ~BðxiÞ

� �2

þ F ~AðxiÞ � F ~BðxiÞ
� �2

( )vuut

ð4Þ

and the normalized Euclidean distance between two

SVNSs ~A and ~B can be defined as follows:

DN
Euclð ~A; ~BÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3n

Xn

i¼1

T ~AðxiÞ � T ~BðxiÞ
� �2þ I ~AðxiÞ � I ~BðxiÞ

� �2

þ F ~AðxiÞ � F ~BðxiÞ
� �2

( )vuut

ð5Þ

Definition 8 (Deneutrosophication of SVNS) Deneutro-

sophication of SVNS ~N can be defined as a process of

mapping ~N into a single crisp output w� 2 X i.e., f : ~N !
w� for x 2 X. If ~N is discrete set then the vector of tetrads

~N ¼ fðxj T ~N ðxÞ; I ~N ðxÞ;F ~N ðxÞ
D E

Þjx 2 Xg is reduced to a

single scalar quantity w� 2 X by deneutrosophication. The

obtained scalar quantity w� 2 X best represents the aggre-

gate distribution of three membership degrees of neutro-

sophic element T ~N ðxÞ; I ~N ðxÞ;F ~N ðxÞ
D E

.

3 TOPSIS

TOPSIS method is used to determine the best alternative

from the concepts of the compromise solution. The best

compromise solution should have the shortest Euclidean

distance from the ideal solution and the farthest Euclidean

distance from the negative ideal solution. The procedures

of TOPSIS can be described as follows. Let A ¼
A1;A2; . . .Amf g be the set of alternatives, C ¼
C1;C2; . . .Cnf g be the set of criteria and D ¼ dij

� �
,

i ¼ 1; 2; . . .;m, j ¼ 1; 2; . . .; n, be the performance ratings

with the criteria weight vector W ¼ fwjjj ¼ 1; 2; . . .; ng.
TOPSIS method is presented with these following steps.

3.1 Step 1. Normalization the decision matrix

The normalized value dN
ij is calculated as follows:

• For benefit criteria (larger the better), dN
ij ¼ ðdij � d�j Þ=

ðdþj � d�j Þ, where dþj ¼ max i ðdijÞ and d�j ¼ min i ðdijÞ
or setting dþj is the aspired or desired level and d�j is the

worst level.

• For cost criteria (smaller the better), dN
ij ¼ ðd�j � dijÞ=

ðd�j � dþj Þ.

3.2 Step 2. Calculation of weighted normalized

decision matrix

In the weighted normalized decision matrix, the modified

ratings are calculated as the following way:

vij ¼ wj 
 dN
ij for i ¼ 1; 2; . . .;m and j ¼ 1; 2; . . .; n:

ð6Þ

where wj is the weight of the jth criteria such that wj	 0 for

j ¼ 1; 2; . . .; n and
Pn

j¼1 wj ¼ 1.

3.3 Step 3. Determination of the positive

and the negative ideal solutions

The positive ideal solution (PIS) and the negative ideal

solution (NIS) are derived as follows:

PIS ¼ Aþ ¼ vþ1 ; v
þ
2 ; . . .vþn ;

� �

¼ max
j

vijjj 2 J1

 !
; min

j
vijjj 2 J2

 !
jj ¼ 1; 2; . . .; n

( )

ð7Þ

and

NIS ¼ A� ¼ v�1 ; v
�
2 ; . . .v�n ;

� �

¼ min
j

vijjj 2 J1

 !
; max

j
vijjj 2 J2

 !
jj ¼ 1; 2; . . .; n

( )

ð8Þ

where J1 and J2 are the benefit and cost-type criteria,

respectively.

3.4 Step 4. Calculation of the separation measures

for each alternative from the PIS and the NIS

The separation values for the PIS can be measured by using

the n-dimensional Euclidean distance, which is given as:

Dþi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

vij � vþj

	 
2

vuut i ¼ 1; 2; . . .m: ð9Þ

Similarly, separation values for the NIS is

D�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

vij � v�j

	 
2

vuut i ¼ 1; 2; . . .m: ð10Þ
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3.5 Step 5. Calculation of the relative closeness

coefficient to the positive ideal solution

The relative closeness coefficient for the alternative Ai with

respect to Aþ is

Ci ¼
D�i

Dþi þ D�i
for i ¼ 1; 2; . . .m: ð11Þ

3.6 Step 6. Ranking the alternatives

According to relative closeness coefficient to the ideal alter-

native, larger value of Ci indicates the better alternative Ai.

4 TOPSIS method for multi-attribute decision-
making with single-valued neutrosophic
information

Consider a multi-attribute decision-making problem with m

alternatives and n attributes. Let A ¼ fA1;A2; :::;Amg be a

discrete set of alternatives, and C ¼ fC1;C2; . . .;Cng be

the set of attributes. The rating provided by the decision

maker describes the performance of alternative Ai against

attribute Cj. Let us also assume that W ¼ fw1;w2. . .;wng
be the weight vector assigned for the attributes

C1;C2; . . .;Cn by the decision makers. The values associ-

ated with the alternatives for MADM problems can be

presented in the following decision matrix

D ¼ dij

� �
m
n
¼

C1 C2 . . . Cn

A1

A2

. . .

Am

d11

d21

. . .

d1m

0
BBB@

d12

d22

. . .

d2m

. . .

. . .

. . .

. . .

d1n

d2n

. . .

dmn

1
CCCA

ð12Þ

4.1 Step 1. Determination of the most important

attribute

Generally, there are many criteria or attributes in decision-

making problems, where some of them are important and

others may not be so important. So it is crucial to select the

proper criteria or attributes for decision-making situation.

The most important attributes may be chosen with the help

of expert opinions or by some other method that are

technically sound.

4.2 Step 2. Construction of the decision matrix

with SVNSs

It is assumed that the rating of each alternative with respect

to each attribute is expressed as SVNS for MADM

problem. The neutrosophic values associated with the al-

ternatives for MADM problems can be represented in the

following decision matrix:

D ~N ¼ ds
ij

D E
m
n
¼ Tij; Iij;Fij

� �
m
n

ð13Þ

¼

C1 C2 . . . Cn

A1

A2

. . .

Am

T11; I11;F11h i
T21; I21;F21h i

. . .

Tm1; Im1;Fm1h i

0
BBB@

T12; I12;F12h i
T22; I22;F22h i

. . .

Tm2; Im2;Fm2h i

. . .

. . .

. . .

. . .

T1n; I1n;F1nh i
T2n; I2n;F2nh i

. . .

Tmn; Imn;Fmnh i

1
CCCA

ð14Þ

In the matrix D ~N ¼ Tij; Iij;Fij

� �
m
n

, Tij,Iij and Fij denote

the degree of truth-membership value, indeterminacy-

membership value and falsity-membership value of alter-

native Ai with respect to attribute Cj satisfying the fol-

lowing properties under the single-valued neutrosophic

environment:

1. 0� Tij� 1; 0� Iij� 1; 0�Fij� 1.

2. 0� Tij þ Iij þ Fij� 3 for i ¼ 1; 2; . . .; n and

j ¼ 1; 2; . . .;m.

The ratings of each alternative over the attributes are best

illustrated by the neutrosophic cube [24] proposed by

Dezert in 2002. The vertices of neutrosophic cube

are ð0; 0; 0Þ; ð1; 0; 0Þ; ð1; 0; 1Þ; ð0; 0; 1Þ; ð0; 1; 0Þ; ð1; 1; 0Þ;
ð1; 1; 1Þ and ð0; 1; 1Þ. The area of ratings in neutrosophic

cube is classified in three categories, namely 1. highly

acceptable neutrosophic ratings, 2. tolerable neutrosophic

rating, and 3. unacceptable neutrosophic ratings.

Definition 9 (Highly acceptable neutrosophic ratings)

The subcube (K) of a neutrosophic cube (D) (i.e., K � D)

represents the area of highly acceptable neutrosophic rat-

ings (U)for decision-making. Vertices of K are defined

with these eight points ð0:5; 0; 0Þ; ð1; 0; 0Þ; ð1; 0; 0:5Þ;
ð0:5; 0; 0:5Þ; ð0:5; 0; 0:5Þ; ð1; 0; 0:5Þ; ð1; 0:5; 0:5Þ and ð0:5;
0:5; 0:5Þ. U includes all the ratings of alternative consid-

ered with the above average truth-membership degree,

below average indeterminacy-membership degree, and

below average falsity-membership degree for multi-at-

tribute decision-making. Therefore, U has a great contri-

bution in decision-making process and can be defined as

U ¼ Tij; Iij;Fij

� �
where 0:5\Tij\1; 0\Iij\0:5 and

0\Fij\0:5:

for i ¼ 1; 2; . . .;m and j ¼ 1; 2; . . .; n.

Definition 10 (Unacceptable neutrosophic ratings) The

area C of unacceptable neutrosophic ratings V is defined by

the ratings which are characterized by 0 % membership

degree, 100 % indeterminacy degree and 100 % falsity-

membership degree. Thus, the set of unacceptable ratings V
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can be considered as the set of all ratings whose truth-

membership value is zero.

V ¼ Tij; Iij;Fij

� �
where

Tij ¼ 0; 0\Iij� 1 and 0\Fij� 1:

for i ¼ 1; 2; . . .;m and j ¼ 1; 2; . . .; n.

Consideration of V should be avoided in decision-

making process.

Definition 11 (Tolerable neutrosophic ratings) Exclud-

ing the area of highly acceptable ratings and unacceptable

ratings from a neutrosophic cube, tolerable neutrosophic

rating area H ð¼ D \ :K \ :CÞ can be determined. The

tolerable neutrosophic rating ðZÞ considered with below

average truth-membership degree, above average indeter-

minacy degree and above average falsity-membership de-

gree are taken in decision-making process. Z can be

defined by the following expression

Z ¼ Tij; Iij;Fij

� �
where 0\Tij\0:5; 0:5\Iij\1 and 0:5\Fij\1:

for i ¼ 1; 2; . . .;m and j ¼ 1; 2; . . .; n.

Definition 12 Fuzzification of SVNS ~N ¼ fðxj T ~N ðxÞ;
D

I ~N ðxÞ;F ~N ðxÞiÞjx 2 Xg can be defined as a process of

mapping ~N into fuzzy set ~F ¼ fxjl ~FðxÞjx 2 Xg i.e., f :
~N ! ~F for x 2 X. The representative fuzzy membership

degree l ~FðxÞ 2 ½0; 1�1 of the vector tetrads

fðxjhT ~N ðxÞ; I ~N ðxÞ;F ~N ðxÞiÞjx 2 Xg is defined from the

concept of neutrosophic cube. It can be obtained by de-

termining the root mean square of 1� T ~N ðxÞ, I ~N ðxÞ and

F ~N ðxÞ for all x 2 X. Therefore, the equivalent fuzzy

membership degree is as:

l ~FðxÞ

¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1� T ~N ðxÞÞ

2 þ I ~N ðxÞ
2 þ F ~N ðxÞ

2g=3

q
; for 8x 2 U [ Z

0; for 8x 2 V

(

ð15Þ

4.3 Step 3. Determination of the weights of decision

makers

Let us assume that the group of p decision makers having

their own decision weights. Thus, the importance of the

decision makers in a committee may not be equal to each

other. Let us assume that the importance of each decision

maker is considered with linguistic variables and expressed

it by neutrosophic numbers.

Let Ek ¼ Tk; Ik;Fkh i be a neutrosophic number defined

for the rating of kth decision maker. Then, according to

Eq. (15) the weight of the kth decision maker can be

written as:

wk ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1� TkðxÞÞ2 þ ðIkðxÞÞ2 þ ðFkðxÞÞ2g=3

q
Pp

k¼1 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1� TkðxÞÞ2 þ ðIkðxÞÞ2 þ ðFkðxÞÞ2g=3

q� �

ð16Þ

and
Pp

k¼1 wk ¼ 1

4.4 Step 4. Construction of the aggregated single-

valued neutrosophic decision matrix based

on decision makers’ assessments

Let DðkÞ ¼ ðdðkÞij Þm
n be the single-valued neutrosophic de-

cision matrix of the k � th decision maker and W ¼
w1;w2. . .;wp

� �T
be the weight vector of decision maker such

that each wk 2 ½0; 1�. In the group decision-making process,

all the individual assessments need to be fused into a group

opinion to make an aggregated neutrosophic decision matrix.

This aggregated matrix can be obtained by using single-

valued neutrosophic weighted averaging (SVNWA) aggre-

gation operator proposed by Ye [17] for SVNSs as follows:

D ¼ ðdijÞm
n where,

dij ¼ SVNSWAW d
ð1Þ
ij ; d

ð2Þ
ij ; . . .; d

ðpÞ
ij

	 


¼ w1d
ð1Þ
ij 
 w2d

ð2Þ
ij 
 � � � 
 wðpÞd

ðpÞ
ij

¼ 1�
Yp

k¼1

1� T
ðpÞ
ij

	 
wk

;
Yp

k¼1

I
ðpÞ
ij

	 
wk

;
Yp

k¼1

F
ðpÞ
ij

	 
wk

* +

ð17Þ

Therefore, the aggregated neutrosophic decision matrix is

defined as follows:

D ¼ dij

� �
m
n
¼ Tij; Iij;Fij

� �
m
n

ð18Þ

¼

C1 C2 . . . Cn

A1

A2

. . .

Am

T11; I11;F11h i
T21; I21;F21h i

. . .

Tm1; Im1;Fm1h i

0
BBB@

T12; I12;F12h i
T22; I22;F22h i

. . .

Tm2; Im2;Fm2h i

. . .

. . .

. . .

. . .

T1n; I1n;F1nh i
T2n; I2n;F2nh i

. . .

Tmn; Imn;Fmnh i

1
CCCA

ð19Þ

where, dij ¼ Tij; Iij;Fij

� �
is the aggregated element of

neutrosophic decision matrix D for i ¼ 1; 2; . . .m and

j ¼ 1; 2; . . .n.

4.5 Step 5. Determination of the attribute weights

In the decision-making process, decision makers may feel

that all attributes are not equally important. Thus, every
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decision maker may have their very own opinion regarding

attribute weights. To obtain the grouped opinion of the

chosen attribute, all the decision makers’ opinions for the

importance of each attribute need to be aggregated. Let w
j
k ¼

ðwð1Þj ;w
ð2Þ
j . . .;w

ðpÞ
j Þ be the neutrosophic number(NN) as-

signed to the attribute Cj by the kth decision maker. Then the

combined weight W ¼ fw1;w2. . .;wng of the attribute can

be determined by using SVNWA aggregation operator [17].

wj ¼ SVNWAW w
ð1Þ
j ;w

ð2Þ
j ; . . .;w

ðpÞ
j

	 


¼w1w
ð1Þ
j 
 w2w

ð2Þ
j 
 � � � 
 wðpÞw

ðpÞ
j

¼ 1�
Yp

k¼1

1� T
ðpÞ
j

	 
wk

;
Yp

k¼1

I
ðpÞ
j

	 
wk

;
Yp

k¼1

F
ðpÞ
j

	 
wk

* +

ð20Þ
W ¼ w1;w2; . . .;wnf g ð21Þ

where, wj ¼ Tj; Ij;Fj

� �
for j ¼ 1; 2; . . .n.

4.6 Step 6. Aggregation of the weighted

neutrosophic decision matrix

In this section, the obtained weights of attribute and ag-

gregated neutrosophic decision matrix need to be further

fused to make the aggregated weighted neutrosophic de-

cision matrix.

The aggregated weighted neutrosophic decision matrix

can be obtained by using the multiplication formula (3) of

two neutrosophic sets as:

D�W ¼ Dw ¼ d
wj

ij

D E
m
n
¼ T

wj

ij ; I
wj

ij ;F
wj

ij

D E
m
n

ð22Þ

¼

C1 C2 . . . Cn

A1

A2

. . .

Am

Tw1

11 ; I
w1

11 ;F
w1

11

� �
Tw1

21 ; I
w1

21 ;F
w1

21

� �
. . .

Tw1

m1; I
w1

m1;F
w1

m1

� �

0
BBB@

Tw2

12 ; I
w2

12 ;F
w2

12

� �
Tw2

22 ; I
w2

22 ;F
w2

22

� �
. . .

Tw2

m2; I
w2

m2;F
w2

m2

� �

. . .

. . .

. . .

. . .

Twn

1n ; I
wn

1n ;F
wn

1n

� �
Twn

2n ; I
wn

2n ;F
wn

2n

� �
. . .

Twn
mn; I

wn
mn;F

wn
mn

� �

1
CCCA

ð23Þ

Here, d
wj

ij ¼ T
wj

ij ; I
wj

ij ;F
wj

ij

D E
is an element of the aggregated

weighted neutrosophic decision matrix Dw for i ¼
1; 2; . . .;m and j ¼ 1; 2; . . .; n.

4.7 Step 7. Determination of the relative positive

ideal solution (RPIS) and the relative negative

ideal solution (RNIS) for SVNSs

Let D ~N ¼ dw
ij

D E
m
n
¼ Tij; Iij;Fij

� �
m
n

be a SVNS-based

decision matrix, where, Tij, Iij and Fij are the membership

degree, indeterminacy degree and non-membership degree

of evaluation for the attribute Cj with respect to the alter-

native Ai.

In practical, two types of attributes namely, benefit-type

attribute and cost-type attribute exist in multi-attribute

decision-making problem.

Definition 13 Let J1 and J2 be the benefit-type attribute

and cost-type attribute, respectively. Qþ~N is the relative

neutrosophic positive ideal solution (RNPIS) and Q�~N is the

relative neutrosophic negative ideal solution (RNNIS).

Then Qþ~N can be defined as follows:

Qþ~N ¼ dw
1
þ; dw

2
þ; . . .; dw

n
þ
 �

ð24Þ

where, dw
j
þ ¼ Tw

j
þ; Iw

j
þ;Fw

j
þ

D E
for j ¼ 1; 2; . . .; n.

Tw
j
þ ¼ max

i
fTwj

ij gjj 2 J1

 !
; min

i
fTwj

ij gjj 2 J2

 !( )

ð25Þ

Iw
j
þ ¼ min

i
fIwj

ij gjj 2 J1

 !
; max

i
fIwj

ij gjj 2 J2

 !( )
ð26Þ

Fw
j
þ ¼ min

i
fFwj

ij gjj 2 J1

 !
; max

i
fFwj

ij gjj 2 J2

 !( )

ð27Þ

and Q�~N can be defined by

Q�~N ¼ dw
1
�; dw

2
�; . . .; dw

n
�
 �

ð28Þ

where, dw
j
� ¼ Tw

j
�; Iw

j
�;Fw

j
�

D E
for j ¼ 1; 2; . . .; n.

Tw
j
� ¼ min

i
fTwj

ij gjj 2 J1

 !
; max

i
fTwj

ij gjj 2 J2

 !( )

ð29Þ

Iw
j
� ¼ max

i
fIwj

ij gjj 2 J1

 !
; min

i
fIwj

ij gjj 2 J2

 !( )

ð30Þ

Fw
j
� ¼ max

i
fFwj

ij gjj 2 J1

 !
; min

i
fFwj

ij gjj 2 J2

 !( )

ð31Þ

4.8 Step 8. Determination of the distance measure

of each alternative from the RNPIS

and the RNNIS for SVNSs

Similar to Eq. (5), the normalized Euclidean distance

measure of each alternative T
wj

ij ; I
wj

ij ;F
wj

ij

D E
from the RNPIS

Tw
j
þ; Iw

j
þ;Fw

j
þ

D E
for i ¼ 1; 2; . . .;m and j ¼ 1; 2; . . .; n can

be written as follows:
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Diþ
Eu d

wj

ij ; d
w
j
þ

	 


¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3n

Xn

j¼1

T
wj

ij ðxjÞ � Tw
j
þðxjÞ

	 
2

þ I
wj

ij ðxjÞ � Iw
j
þðxjÞ

	 
2

þ F
wj

ij ðxjÞ � Fw
j
þðxjÞ

	 
2

8><
>:

9>=
>;

vuuuut

ð32Þ

similarly, the normalized Euclidean distance measure of

each alternative T
wj

ij ; I
wj

ij ;F
wj

ij

D E
from the RNNIS

Tw
j
�; Iw

j
�;Fw

j
�

D E
can be written as:

Di�
Eu d

wj

ij ; d
w
j
�

	 


¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3n

Xn

j¼1

T
wj

ij ðxjÞ � Tw
j
�ðxjÞ

	 
2

þ I
wj

ij ðxjÞ � Iw
j
�ðxjÞ

	 
2

þ F
wj

ij ðxjÞ � Fw
j
�ðxjÞ

	 
2

8><
>:

9>=
>;

vuuuut

ð33Þ

4.9 Step 9. Determination of the relative closeness

coefficient to the neutrosophic ideal solution

for SVNSs

The relative closeness coefficient of each alternative Ai

with respect to the neutrosophic positive ideal solution Qþ~N
is defined as follows:

C�i ¼
Di�

Eu d
wj

ij ; d
w
j
�

	 


Diþ
Eu d

wj

ij ; d
w
j
�

	 

þ Di�

Eu d
wj

ij ; d
w
j
�

	 
 ð34Þ

where, 0�C�i � 1.

4.10 Step 10. Ranking the alternatives

According to the relative closeness coefficient values larger

the values of C�i reflects the better alternative Ai for

i ¼ 1; 2; . . .;m.

5 Numerical example

Let us suppose that a group of four decision makers

(DM1,DM2, DM3, DM4) intend to select the most suitable

tablet from the four initially chosen tablet A1;A2;A2;A4ð Þ
by considering six attributes namely: Features C1, Hard-

ware C2, Display C3, Communication C4, Affordable Price

C5, Customer care C6. Based on the proposed approach

discussed in Sect. 4, the considered problem is solved by

the following steps:

5.1 Step 1. Determination of the weights of decision

makers

The importance of four decision makers in a selection

committee may not be equal to each other according their

status. Their decision powers are considered as linguistic

terms expressed in Table 1. The importance of each deci-

sion maker expressed by linguistic term with its corre-

sponding SVNN is shown in Table 2. The weight of

decision maker is determined with the help of Eq. (16) as

follows:

w1 ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:01þ 0:01þ 0:01Þ=3

p
4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:03=3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1025=3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:6125=3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1025=3

p	 


¼ 0:292

Similarly, other three weights of decision w2 ¼ 0:265,

w3 ¼ 0:178 and w4 ¼ 0:265 can be obtained. Thus, the

weight vector of the four decision maker is:

W ¼ ð0:292; 0:265; 0:178; 0:265Þ ð35Þ

5.2 Step-2. Construction of the aggregated

neutrosophic decision matrix based

on the assessments of decision makers

The linguistic term along with SVNNs is defined in Table 3

to rate each alternative with respect to each attribute. The

assessment values of each alternative Ai ði ¼ 1; 2; 3; 4Þ with

respect to each attribute Cj ðj ¼ 1; 2; 3; 4; 5; 6Þ provided by

four decision makers are listed in Table 4. Then the ag-

gregated neutrosophic decision matrix can be obtained by

fusing all the decision makers’ opinion with the help of

aggregation operator [17] as in Table 5.

By using Eq. (17), the aggregated value of the four

decision makers’ assessment values is arbitrarily chosen as

an illustration for the alternative A1 with respect to the

attribute C1 and shown in Eqs. (36), (37), and (38).

T11 ¼1� ð1� 0:90Þ0:292 
 ð1� 0:90Þ0:265 
 ð1� 0:80Þ0:178


 ð1� 0:80Þ0:265 ¼ 1� 0:1359 ¼ 0:8641:

ð36Þ

Table 1 Linguistic terms for rating of attributes and decision makers

Linguistic terms SVNNs

Very good/very important (VG/VI) 0:90; 0:10; 0:10h i
Good/important (G/I) 0:80; 0:20; 0:15h i
Fair/medium (F/M) 0:50; 0:40; 0:45h i
Bad/unimportant (B/UI) 0:35; 0:60; 0:70h i
Very bad/very unimportant (VB/VUI) 0:10; 0:80; 0:90h i
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I11 ¼ð0:10Þ0:292 
 ð0:10Þ0:265 
 ð0:20Þ0:178 
 ð0:20Þ0:265 ¼ 0:1359:

ð37Þ

F11 ¼ ð0:05Þ0:292 
 ð0:05Þ0:265 
 ð0:15Þ0:178 
 ð0:15Þ0:265

¼ 0:0813: ð38Þ

5.3 Step-3. Determine the weights of attribute

The linguistic terms shown in Table 1 are used to evaluate

each attribute. The importance of each attribute for every

decision maker is rated with linguistic terms shown in

Table 4. Four decision makers’ opinions need to be ag-

gregated to determine the combined weight of each at-

tribute. The fused attribute weight vector is determined by

using Eq. (20) as follows:

W ¼

0:755; 0:222; 0:217h i; 0:887; 0:113; 0:107h i;

0:765; 0:226; 0:182h i; 0:692; 0:277; 0:251h i;

0:788; 0:200; 0:180h i; 0:700; 0:272; 0:244h i

2
6664

3
7775

ð40Þ

5.4 Step-4. Construction of the aggregated weighted

neutrosophic decision matrix

After obtaining the combined weights of attribute and

the ratings of alternative, the aggregated weighted neu-

trosophic decision matrix shown in Table 6 can be

formed. For example, the element of aggregated

weighted decision matrix for the alternative A1 with re-

spect to attribute C1 is determined by the following

Eq. (41).

Table 2 Importance of decision

makers expressed with SVNNs
DM-1 DM-2 DM-3 DM-4

LT VI I M I

eW 0:90; 0:10; 0:10h i 0:80; 0:20; 0:15h i 0:50; 0:40; 0:45h i 0:80; 0:20; 0:15h i

Table 3 Linguistic terms for rating the candidates with SVNNs

Linguistic terms SVNNs

Extremely good/high (EG/EH) 1:00; 0:00; 0:00h i
Very good/high (VG/VH) 0:90; 0:10; 0:05h i
Good/high (G/H) 0:80; 0:20; 0:15h i
Medium good/high (MG/MH) 0:65; 0:35; 0:30h i
Medium/fair (M/F) 0:50; 0:50; 0:45h i
Medium bad/medium law (MB/ML) 0:35; 0:65; 0:60h i
Bad/law (B/L) 0:20; 0:75; 0:80h i
Very bad/low (VB/VL) 0:10; 0:85; 0:90h i
Very very bad/low (VVB/VVL) 0:05; 0:90; 0:95h i

Table 4 Assessments of

alternatives and attribute

weights given by four decision

makers

Alternatives ðAiÞ Decision makers C1 C2 C3 C4 C5 C6

A1 DM-1 VG G G G G VG

DM-2 VG VG G G G VG

DM-3 G VG G G VG G

DM-4 G G G G G G

A2 DM-1 M G M G G M

DM-2 G MG G G MG G

DM-3 G M G G M M

DM-4 M G M G M M

A3 DM-1 VG VG G G VG VG

DM-2 G VG VG G G VG

DM-3 VG G G MG G MG

DM-4 VG VG G G MG G

A4 DM-1 M VG G G VG M

DM-2 M M G G M G

DM-3 G G G G M VG

DM-4 G M M G G VG

Weights DM-1 VI VI I M I I

DM-2 I VI I I M M

DM-3 M I M M I M

DM-4 M VI M I VI I
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hTw
11; I

w
11;F

w
11i ¼

0:864
 0:755; 0:136þ 0:222� 0:136
 0:222; 0:081

þ0:217� 0:081
 0:217

* +

¼h0:65232; 0:3278; 0:2804i

ð41Þ

5.5 Step-5. Determination of the neutrosophic

relative positive ideal solution

and the neutrosophic relative negative ideal

solution

The NRPIS can be calculated from the aggregated

weighted decision matrix on the basis of attribute types,

i.e., benefit type or cost type by using Eq. (24) as

Qþ~N ¼
0:664; 0:315; 0:269h i; 0:787; 0:213; 0:267h i;
0:638; 0:354; 0:274h i; 0:539; 0:437; 0:378h i;
0:649; 0:342; 0:269h i; 0:605; 0:371; 0:305h i

2
64

3
75

ð43Þ

where, dw
1
þ ¼ Tw

1
þ; Iw

1
þ;Fw

1
þ� �

is calculated as

Tw
1
þ ¼ max 0:652; 0:504; 0:664; 0:504f g ¼ 0:664

Iw
1
þ ¼ min 0:328; 0:481; 0:315; 0:481f g ¼ 0:315

Fw
1
þ ¼ min 0:280; 0:434; 0:269; 0:434f g ¼ 0:269

and others. Similarly, the NRNIS can be calculated from

aggregated weighted decision matrix on the basis of at-

tribute types, i.e., benefit type or cost type by using

Eq. (28) as

Q�~N ¼
0:504; 0:481; 0:434h i; 0:645; 0:355; 0:388h i;
0:510; 0:484; 0:409h i; 0:487; 0:491; 0:432h i;
0:514; 0:478; 0:420h i; 0:426; 0:557; 0:498h i

2
64

3
75

ð44Þ

where, dw
1
� ¼ Tw

1
�; Iw

1
�;Fw

1
�� �

is calculated as

Tw
1
� ¼ min 0:652; 0:504; 0:664; 0:504f g ¼ 0:504

Iw
1
� ¼ max 0:328; 0:481; 0:315; 0:481f g ¼ 0:481

Fw
1
� ¼ max 0:280; 0:434; 0:269; 0:434f g ¼ 0:434

and other components are similarly calculated.

5.6 Step-6. Determination of the distance measure

of each alternative from the RNPIS

and the RNNIS and relative closeness coefficient

Normalized Euclidean distance measures defined in

Eqs. (32) and (33) are used to determine the distances of

Table 6 Aggregated weighted

neutrosophic decision matrix
C1 C2 C3

A1

A2

A3

A4

0:652; 0:328; 0:280h i
0:504; 0:481; 0:434h i
0:664; 0:315; 0:269h i
0:504; 0:481; 0:434h i

0
BB@

0:757; 0:243; 0:289h i
0:645; 0:355; 0:388h i
0:787; 0:213; 0:267h i
0:652; 0:348; 0:370h i

0:612; 0:381; 0:305h i
0:510; 0:484; 0:409h i
0:638; 0:354; 0:274h i
0:588; 0:406; 0:329h i

1
CCA

C4 C5 C6

A1

A2

A3

A4

0:487; 0:491; 0:432h i
0:515; 0:402; 0:404h i
0:539; 0:437; 0:378h i
0:503; 0:474; 0:417h i

0
BB@

0:649; 0:342; 0:281h i
0:514; 0:478; 0:420h i
0:639; 0:351; 0:269h i
0:623; 0:367; 0:301h i

0:605; 0:371; 0:305h i
0:426; 0:557; 0:498h i
0:595; 0:381; 0:314h i
0:566; 0:412; 0:340h i

1
CCA

(42)

Table 5 Aggregated

neutrosophic decision matrix
C1 C2 C3

A1

A2

A3

A4

0:864; 0:136; 0:081h i
0:667; 0:333; 0:277h i
0:880; 0:120; 0:067h i
0:667; 0:333; 0:277h i

0
BB@

0:853; 0:147; 0:092h i
0:727; 0:273; 0:219h i
0:887; 0:113; 0:064h i
0:735; 0:265; 0:195h i

0:800; 0:200; 0:150h i
0:667; 0:333; 0:277h i
0:834; 0:166; 0:112h i
0:768; 0:232; 0:180h i

1
CCA

C4 C5 C6

A1

A2

A3

A4

0:704; 0:296; 0:241h i
0:744; 0:256; 0:204h i
0:779; 0:221; 0:170h i
0:727; 0:273; 0:221h i

0
BB@

0:823; 0:177; 0:123h i
0:652; 0:348; 0:293h i
0:811; 0:189; 0:109h i
0:791; 0:209; 0:148h i

0:864; 0:136; 0:081h i
0:608; 0:392; 0:336h i
0:850; 0:150; 0:092h i
0:808; 0:192; 0:127h i

1
CCA

(39)

Table 7 Distance measure and relative closeness coefficient of each

alternative

Alternatives ðAiÞ Diþ
Eucl Di�

Eucl
C�i

A1 0.0283 0.1281 0.8190

A2 0.3472 0.0490 0.1158

A3 0.0224 0.1382 0.8605

A4 0.0900 0.0831 0.4801

The largest relative closeness value expressed in bold indicates that

A3 is the mostdesirable alternative
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each alternative from the RNPIS and the RNNIS. With

these distances, relative closeness coefficient is calculated

by using Eq. (34). These results are listed in Table 7.

5.7 Step-7. Ranking the alternatives

According to the values of relative closeness coefficient of

each alternative shown in Table 7, the ranking order of four

alternatives is

A3 � A1 � A4 � A2:

Thus, A3 is the best alternative tablet.

6 Conclusions

This paper is devoted to present a new TOPSIS-based

approach for MAGDM under simplified neutrosophic en-

vironment. In the evaluation process, the ratings of each

alternative with respect to each attribute are given as lin-

guistic variables characterized by single-valued neutro-

sophic numbers. Neutrosophic aggregation operator is used

to aggregate all the opinions of decision makers. Neutro-

sophic positive ideal and neutrosophic negative ideal so-

lution are defined from aggregated weighted decision

matrix. Euclidean distance measure is used to determine

the distances of each alternative from positive as well as

negative ideal solutions for relative closeness coefficient of

each alternative. However, the author hopes that the con-

cept presented in this paper may open up new avenue of

research in competitive neutrosophic decision-making

arena. TOPSIS method with neutrosophic set information

has enormous chance of success for multi-attribute deci-

sion-making problems. In future, the proposed approach

can be used for dealing with decision-making problems

such as personal selection in academia, project evaluation,

supplier selection, manufacturing systems, and many other

areas of management systems.
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