Software Open Access
David Ardia; Lennart F. Hoogerheide
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/48df658d-6250-443c-8a68-5361b734059d/ArdiaD/bayesGARCH-v2.0.4.zip" }, "checksum": "md5:588d4bc68d24656df418996c61fa5754", "bucket": "48df658d-6250-443c-8a68-5361b734059d", "key": "ArdiaD/bayesGARCH-v2.0.4.zip", "type": "zip", "size": 359262 } ], "owners": [ 26989 ], "doi": "10.5281/zenodo.231327", "stats": { "version_unique_downloads": 20.0, "unique_views": 184.0, "views": 192.0, "version_views": 190.0, "unique_downloads": 20.0, "version_unique_views": 182.0, "volume": 7903764.0, "version_downloads": 22.0, "downloads": 22.0, "version_volume": 7903764.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.231327", "latest_html": "https://zenodo.org/record/231327", "bucket": "https://zenodo.org/api/files/48df658d-6250-443c-8a68-5361b734059d", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.231327.svg", "html": "https://zenodo.org/record/231327", "latest": "https://zenodo.org/api/records/231327" }, "created": "2017-01-05T20:59:09.021092+00:00", "updated": "2020-01-25T07:27:39.788578+00:00", "conceptrecid": "598276", "revision": 8, "id": 231327, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.231327", "description": "<p>The package bayesGARCH implements in R (R Core Team, 2016) the Bayesian estimation procedure described in Ardia (2008, chapter 5) for the GARCH(1,1) model with Student-t innovations. The approach consists of a Metropolis-Hastings (MH) algorithm where the proposal distributions are constructed from auxiliary ARMA processes on the squared observations. This methodology avoids the time-consuming and difficult task, especially for non-experts, of choosing and tuning a sampling algorithm. We refer the user to Ardia (2008) and Ardia and Hoogerheide (2010) for illustrations. The latest version of the package is available at https://github.com/ArdiaD/bayesGARCH.</p>", "license": { "id": "other-open" }, "title": "bayesGARCH: Bayesian Estimation of the GARCH(1,1) Model with Student-t Innovations in R", "journal": { "volume": "2", "issue": "2", "pages": "41-47", "title": "The R Journal" }, "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "598276" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "231327" } } ] }, "version": "v2.0.4", "references": [ "David Ardia. Financial Risk Management with Bayesian Estimation of GARCH Models: Theory and Applications, volume 612 of Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin, Germany, 2008. doi: 10.1007/978-3-540-78657-3", "David Ardia and Lennart F. Hoogerheide. Bayesian estimation of the GARCH(1,1) model with Student-t innovations. The R Journal, 2(2):41-47, 2010. URL http://journal.r-project.org/" ], "keywords": [ "GARCH", "Bayesian", "MCMC", "R software" ], "publication_date": "2017-01-05", "creators": [ { "affiliation": "University of Neuch\u00e2tel", "name": "David Ardia" }, { "affiliation": "Vrije Universiteit Amsterdam", "name": "Lennart F. Hoogerheide" } ], "access_right": "open", "resource_type": { "type": "software", "title": "Software" }, "related_identifiers": [ { "scheme": "url", "identifier": "https://github.com/ArdiaD/bayesGARCH/tree/v2.0.4", "relation": "isSupplementTo" } ] } }
All versions | This version | |
---|---|---|
Views | 190 | 192 |
Downloads | 22 | 22 |
Data volume | 7.9 MB | 7.9 MB |
Unique views | 182 | 184 |
Unique downloads | 20 | 20 |