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A GREAT part of modern invariant theory deals with the question of
what are known as " complete systems." Hilbert, in particular, has
proved a series of theorems* of vast generality and power dealing with
the formation and structure of such systems.

The present paper treats of "perpetuant types,"t and obtains for
them a " syzygy chain " of the Hilbertian model. To the best of my
belief, no previous example of a syzygy chain in invariant theory! has
extended beyond the second link. The chain given here is of indefinite
extent.

* The most important of these are to be found in Math. Annalen, Bd. xxxvi. In what
follows, whenever Hilbert is mentioned the reference is to this paper.

t Defined further on.
J Examples for a rational integral function of n variables have been given by Hilbert

himself and by Schonflies (Gott. Nach., 1891).
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A brief sketch of the history of the subject may not be out of place.
George Boole is generally recognised as having laid the first founda-

tions. In 1841 he showed that if the variables of any given form were
subjected to any linear transformation, then the discriminant of the
transformed expression would be the same as that of the original one,
save for a factor containing only the constants of the substitution. This
is the property of invariance.

The next step was to find other functions of the coefficients having
this property. When Cayley first turned his attention to the subject, the
discovery of each single invariant or covariant* was a distinct acquisition.
All this was changed by his invention of the calculus of hyperdeterminants.
By this he could evolve, from a given form, an infinite number of con-
comitants.

To Cayley also fell the further success of showing that in the case of
the binary quantics of the four lowest orders, any of these concomitants
can (if rational and integral) be expressed as a rational integral function
of a certain finite number of them. This is what is meant by the state-
ment that the concomitants of the forms in question possess a complete
system.

As the result of his investigations on the binary quintic, Cayley con-
cluded that for it there is no such complete system.

However, Gordan, using the symbolic notation! of Aronhold and
Clebsch, was able to show that not only the binary quintic, but also the
general binary quantic of any order, possesses a complete system. It is
interesting to note that the erroneous conclusion as to the quintic was due
to the non-recognition of the existence of a syzygy of the second kind.

In the memoir to which we have already referred and in later papers, I
Hilbert greatly extended our knowledge of complete systems. His method
is founded upon the following theorem :—

Let a homogeneous function of any number of variables be formed
according to any definite laws; then, although there inay be an infinite
number of functions F satisfying the conditions laid down, nevertheless a
finite number F1F2... Fr can always be chosen so that any other F can be
written in the form

F= A1F1+AtFi+...+ArFT.

* A covariant only differs from an invariant in that it contains the variables as well as
the coefficients. We shall use the term concomitant to include these as well as other func-
tions (e.g., "mixed concomitants ") having the invariantive property.

•f Which is really equivalent to Cayley'a hyperdeterminants.
X GGtt. Nach., 1S91 and 1892.
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where the A's are homogeneous integral functions of the variables, but do
not necessarily satisfy the conditions for the F's.

By means of this very general theorem he extended Gordan's theorem
to quantics (and sets of quantics) of any order, in any number of variables,
or even in several sets of variables. But this was not all. Having proved
that a complete system can always be obtained, he next proceeded to study
its internal structure. To follow his conclusions it will be convenient to
recall a few definitions :—

The members of a complete system are called the irreducible con-
comitants. In terms of these all other concomitants can be expressed as
rational integral functions.

A syzygant (of the first kind) is a rational integral function of the
irreducible concomitants which, when these last are replaced by their ex-
pressions as rational integral functions of the coefficients of the quantics,
is identically zero.* The equation expressing this fact is called a
syzygy.

If a syzygant is obtainable from one of lower degree by multiplication
throughout with a concomitant, it is called compound. A reducible
syzygant is one which is compound or equivalent to the sum of two or
more compound ones.

Hilbert has proved that, starting from a given form, the number of
irreducible syzygants is finite, or, in other words, that syzygants have a
complete system.

From syzygants of the first kind, we pass to those of higher kinds.
If S1S2 •'• Sr be irreducible syzygants of the first kind, and P ^ . . . P r

certain concomitants or products of concomitants, it may happen that the
expression

P

the expressions P, S being regarded as functions of the concomitants
(which for the moment are treated as independent variables). If so,
P iS i+P 2 S 2 + • •. -\-PrSr is called a syzygant of the second hind. It will
be seen that it is an identically vanishing sum of compound syzygants of
the first kind. Syzygants of the second kind may, like those of the first,
be reducible or irreducible. Hilbert has shown that the number of irre-
ducible ones is finite.

* The simplest example (due to Cayley) is that for the binary cubic. See Elliott's
Algebra of Quantics, p. 110.
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We go on to syzygants of the third kind. Let S ^ S ^ ... /Sy2) be irre-
ducible syzygants of the second kind, and P iP 2 . . . P r be certain concomi-
tants (or products of them) such that P1S?)+P2S(22)+...+.Pr.SJ:2), when
the S(2)'s are replaced by their equivalent sums of compound syzygants of
the first kind, is, solely in virtue of this replacement,* identically zero;
then P1S

(i2)+P2^22)+---H--prSfr2) is called a syzygant of the third
kind.

In the same way a syzygant of the w-th kind is defined in the terms
of those of the (n— l)-th kind and concomitant products.!

Hilbert has succeeded in proving that the syzygants of each species
possess a complete system.

The object of this paper is to illustrate these conclusions. The
particular syzygies selected for consideration are those connecting
"perpetuant types."!

In a paper by Young and Wood,§ the syzygies of the first kind con-
necting perpetuant types have been considered as far as degree 9. These
authors differ fundamentally from all previous writers || on the same sub-
ject in that their methods are based upon the symbolical notation, and in
particular upon Grace's perpetuant type theorem.IT This theorem of
Grace's, when taken in conjunction with a paper of Wood's,** gives in a
neat form the symbolical expressions for the perpetuant types. Young
and Wood's paper deals with the syzygies of the first kind connecting
these, and in the present paper I deal with the syzygies of the second,
third, and finally n-th. kind.

A general met-*^ ••+ for the formation of these is developed and a some-

* I.e., the syzygants of the first kind are not to be replaced, in their turn, by their equi-
valent sums of concomitant products.

t It will be seen that the definition of the third and higher kinds is slightly different
from that of the second, which again differs from that of the first.

$ A perpetuant is an irreducible seminvariant of a set of binary quantics of infinite order,
and a perpetuant type is one linear in the coefficients of each quantic concerned. In case it
should be thought that the problem proposed for consideration is an unduly specialised one,
it may be remarked that theorems concerning perpetuants seem to be generally capable of
extension to ordinary covariants (i.e., those of forms of finite order). For instance, Young
has so extended Grace's perpetuant type theorem and also the results of the paper (referred to
below) on perpetuant syzygies of the first kind. See Proc. London Math. Soc., Ser. 2,
Vols. 1 and 3.

§ Proc. London Math. Soc, Ser. 2, Vol. 2, pp. 221-265.
|| A full list of previous writings is given in Young and Wood's paper. They all deal

exclusively with the first kind.
[̂ Proc. London Math. Soc, Vol. xxxv.

** Proc London Math. Soc, Ser. 2, Vol. 1.
+| Explained in Section VI.
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what curious theorem is arrived at, differentiating those of kind n, and of
degrees less than 2n+2, from those of the same kind and higher degrees.

This general method, which we may call symbolical multiplication, is
an extension of the well known method of deriving syzygies of the first
kind from the Jacobian identity.

The results obtained are as follows :—
No perpetuant syzygy of the ?i-th kind can exist for degrees < (M+2) .

For degree (w+2) one, and only one, perpetuant syzygy of the n-th
kind exists. From this, by symbolical multiplication, many other per-
petuant syzygies of the w-th kind of all degrees > («.-J-2) may be derived.

Let these, together with the syzygy from which they spring, be called
primary perpetuant syzygies of the n-th kind.

Then the principal theorem obtained is that all perpetuant syzygies of
the n-th kind of degree <(2?i-|-2) are primary. We have thus obtained
those members of the complete system that belong to the first n degrees
for which perpetuant syzygies of the rc-th kind exist at all. For the first
kind this merely gives the fact that the Jacobian identity is the only
s v z vgy of degree 8.

It is somewhat unexpected that the range of simplicity should increase
as the " kind " of the syzygy increases.

After an examination in detail of these primary syzygies, introducing
a principle of arrangement of symbolical letters analogous to that in
Grace's perpetuant type theorem, and after finding the generating func-
tion corresponding to each case, a proof is given that for degree (2/i4-2)
new syzygies that are not primary do actually exist.

Among the minor results, it may be of interest to notice that per-
petuant syzygies of the first kind, which, in the notation of Young and
Wood, reduce perpetuant products having a factor Glt are always com-
pound.* This agrees with their results aa far as they go.

A corresponding theorem as to perpetuant syzygies of the n-th. kind
is also proved.!

Beside the above, I have obtained the linearly independent set of
perpetuant syzygies of the second kind of degree 6, and some results for
perpetuant syzygies of the second kind of degree 7, and perpetuant syzygies
of the third kind of degree 8. As these are somewhat lengthy, I have
not included them in this present paper.

* See Lemma I.
t See Lemma III.
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I. General Methods of Finding Canonical Sets of Perpetuant
Syzygies of the n-th Kind.

The general procedure for finding the canonical system of perpetuant
syzygies of the w-th kind of degree S (i.e., the set of linearly independent
ones in terms of which all other perpetuant syzygies of the n-th kind and
degree S may be linearly expressed), when we know those for the per-
petuant syzygies of the (n—l)-th kind of degrees less than S, divides
itself into three parts :

(1) Deducing, as explained below, from our knowledge of perpetuant
syzygies of the (n—l)-th kind of degree <C.S, what must be the generating
function for linearly independent* perpetuant syzygies of the n-th kind of

, degree S.

(2) Actually finding perpetuant syzygies of the n-th kind. In most
cases the irreducible ones can all be found by symbolical multiplication.

(3) Finding how many of the perpetuant syzygies of the n-th kind
(both irreducible and compound) that we now have got are linearly inde-
pendent. If the generating function for these is equal to the L.G.F.
formed by (1), we know that we have obtained all the linearly independent
perpetuant syzygies of the n-th kind.

The method used for proving a set of perpetuant syzygies of the n-th
kind to be linearly independent is as follows:—

All compound perpetuant syzygies of the (n— l)-th kind of the degree
in question are arranged in accordance with a fixed sequence, t Now a
perpetuant syzygy of the n-th kind can be looked upon as a linear relation
between compound perpetuant syzygies of the {n—l)-th kind. In any
particular perpetuant syzygy of the n-th kind, take the compound per-
petuant syzygy of the (n—l)-th kind that precedes, according to our
arrangement, all the others involved in the perpetuant syzygy of the
n-th kind under consideration.

We shall say that this compound perpetuant syzygy of the (n— l)-th
kind is resolved by the perpetuant syzygy of the n-th kind.

If we have m perpetuant syzygies of the n-th kind, say A, B, C, ... oi
the same degree, and each resolves a different compound perpetuant
syzygy of the (n—l)-th kind, say a, b, c, ..., respectively, they must all be

We shall, in future, use L.G.F. to denote these five words.
For the details of which see Section II.
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linearly independent; for if, of a, b, c, ..., a stand first of all the m, b
second, c third, and so on, according to the fixed arrangement, then a
cannot occur in any of B, C, D, . . .; therefore there is certainly no linear
relation connecting A with B, C, D, . . . .

Similarly there is none connecting B with G, D, E, ..., none con-
necting C with D, E, F, ,..; and so on; therefore A, B, G, ... are all
linearly independent.

We speak of a compound perpetuant syzygy of the (n—l)-th kind for
which a perpetuant syzygy of the n-th kind can be found, to resolve it, as
resolvable. If no such perpetuant syzygy of the n-th kind can be found,
the perpetuant syzygy of the (n— l)-th kind is called irresolvable.*

To explain (1),

the L.G.F. for perpetuant syzygies of the n-th. kind.

= generating function for all compound perpetuant syzygies
of the (n—l)-th kind

—generating function for canonical perpetuant syzygies
of the (n— l)-th kind.

In consequence of our device for proving linear independence, there is
a one-to-one correspondence between a doubly compound (i.e., with at
least two perpetuant factors) perpetuant syzygy of the (n—2)-th kind that
is resolvable at all by a compound perpetuant syzygy of the (n—l)-th
kind, and the canonical compound perpetuant syzygy of the (n— l)-th
kind that resolves it. The other compound perpetuant syzygies of the
(n— l)-th kind that resolve it are not canonical. By taking all doubly
compound perpetuant syzygies of the (n—2)-th kind of degree S, we bring
in, once and once only, all compound perpetuant syzygies of the in— l)-th
kind of that degree.

Therefore, if from the generating function for all compound^ per-
petuant syzygies of the (n— l)-th kind resolving a certain form of doubly
compound perpetuant syzygies of the (n—2)-th kind of degree S, we sub-
tract the generating function for all doubly compound perpetuant syzygies
of the («—2)-th kind of that form that are resolvable by any compound

* In the notation of Young and Wood for perpetuant products, irreducible is the word
used. I was forced to use another word, as an irreducible perpetuant syzygy of the (n—l)-th
kind has another meaning (see introduction).

f It is because we are only dealing with compound perpetuant syzygies of the (n— l)-th
kind of degree 5 that we need only know the canonical set of perpetuant syzygies of the
(n— l)-th kind for degrees less than 5.
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perpetuant syzygies of the (n--l)-th kind, we get the L.G.F. for the
associated perpetuant syzygies of the n-th kind.*

Taking the sum, for all possible forms of doubly compound perpetuant
syzygies of the (n—2)-th kind of degree 8 of these L.G.F.'s, we get the
total L.G.F. for perpetuant syzygies of the n-th kind of that degree, t

We shall use GK to denote a perpetuant of degree K, Sjn) to denote an
irreducible syzygant of kind n and degree S, and [C«S«W)] to denote a
syzygant of the (n-\-l)-th kind, resolving the compound perpetuant
syzygies of the w-th kind CK^s.

IT. Arrangement of Compound Perpetuant Syzygies of the n-th Kind.

The sequence is according to the following rules :—

(i) A non-primary I syzygy always precedes a primary one.

(ii) Of two syzygies, both non-primary or both primary, with C? and
G\ as factors respectively, where m < nt that with C? as a factor stands
first.

(iii) Of two syzygies, whose precedence is not determined by (i) or (ii),
that which has the fewest perpetuant factors stands first.

(iv) If A - GKlGK2... apS( n ) (Kl < K2 < K3 ... < KP),

and B = C«; C,;... GK- S'{n) («ri < K'2 < 4 ... < 4),

have not their precedence determined by (i), (ii) or (iii), then A precedes
B if the first of the differences (^—K'I), (K2—K2), ..., (KP—KP) that does not
vanish is positive.

(v) If A = CKlCKi...CKpS^ )

and B = c:lc:2...aps^j <*<«<«-•<*

have not their precedence determined by (i), (ii), (iii), or (iv), and if, of the

* For an example, see Section III or Section XI.

f For the result is, as before,

generating function for all compound perpetuant syzygies of the (n-l)-th kind

— ,, ,, canonical ,, ,, ,,

| A primary perpetuant syzygy of the n-th kind is one derived by symbolical multiplica-
tion from the perpetuant syzygies of the n-th kind of lowest possible degree. See Section VI.
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symbols alt a$, ..., a& involved,

CKl (or C M . . . C v if Kl = Kq = KH= ... = KX < K,+\) c o n t a i n a,.t, a , . , , . . . , « . - , ,

a n d

C'K, (or G'K1...C' „ „ „ ) :, aY,ar',...,ar;

where i\ < ?-2... < rt and r[ < r'2 ... < r'h

then .4 precedes JB if the first of the differences

( » ' i — r ! ) » (>2 — ^ 2 ) , - . . , ( r < — r ' t ) ,

that does not vanish is negative.
If C*, and G'Kl contain exactly the same letters, consider CKn and

C'K.2, ..., a n d so on .
It will not be necessary to go into further details of this kind, when

all the above principles fail, to establish the results of the present paper.
It is sufficient to know that of two syzygies we can* always determine
which stands first.

For perpetuant products, replace &n) in the above by unity. Principle
(i) does not apply.

III. Perpetuant Syzygies of the Second Kind of Degree 4.

We consider a perpetuant syzygy of the second kind as connecting a
canonical and an uncanonical compound perpetuant syzygy of the first
kind that resolve the same perpetuant product. This product must con-
tain at least three factors, or it cannot be resolved in more than one way
by a compound perpetuant syzygy of the first kind. Its degree, therefore,
cannot be less than three.

Degree 3.—The only product of at least three factors is C\, which is
irresolvable, therefore there are no perpetuant syzygies of the second kind
of degree 3.

Degree 4.—The only products to be considered are

(i) C\C2, and (ii) C\.

* By following out, for example, part of the classification of perpetuant products given in
a paper on " Perpetuant Syzygies (of the First Kind)," by A. Young and P. W. Wood, Proc.
London Math. Soc, Ser. 2, Vol. 2, pp. 230-233. We use the classification given in
Section III, (ii), (iii) and (iv) [but not (i)], and apply it to the perpetuant factors of compound
perpetuant syzygies of the n-th kind.



1910.] PERPETUANT SYZYGIES OF THE ?I-TH KIND. 447

(i) CXG2.—This is only resolvable* if one of the two Gxs is Ax, and if
C2 be of unit weight, i.e., the generating function for resolvables is 3a;.

The number of compound perpetuant syzygies of the first kind of form
GX[CXC2] t h ^ resolve a form G"XG2 is,* however, given by 4z; therefore
the generating function for linearly independent perpetuant syzygies of
the second kind is the difference

i.e., there is only one perpetuant syzygy of the second kind of degree 4.
It is

(ax a2 a3 aA) = Ax (a2 a3 aA)—A2 (a1 ad a4) -\-AB{ax a2 aJ—A^ {ax a2 a

+A3\A1(a2a4)—A2(a1a4)+Ai(a1a2)\

= 0.

Ar is here written instead of Gx when the symbolical letter involved is aT.

IV. Perpetuant Syzygies of the Third Kind of Degree 5.

Since the lowest degree of a perpetuant syzygy of the first kind is 3,
therefore the lowest degree of a doubly compound perpetuant syzygy of
the first kind is 5; therefore the lowest possible degree of a perpetuant
syzygy of the third kind is 5.

The only doubly compound perpetuant syzygy of the first kind of this

degree is of form Gx S3 •
This is only resolvable! in more than one way if the Cxs are Ax and

Aa, when we get two resolutions.
Therefore there is only one perpetuant syzygy of the third kind of

degree 5, i.e.,

(ax a2 a3 a4 a5) = A x (a2 a3 aA a5)—A2(ax a3 a± a5) •+• A 3 {ax a2 a4 a5)

* These results are quoted from Young and Wood's paper. They can easily be obtained
independently.

t Since (aia^a^ resolves Ax {a^a,^a4).
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V. Perpetuant Syzygies of the n-th Kind of Degree (/i+2).

Consider the zero determinant of (M+2) rows and columns:—

Ax Ax Ax ax

•n + 2 An+2 An+2

Denote this by {axa2... aB+2).
Use a similar notation for the first minors of the first column. Then

expanding

{axa2... an+>) = A1(a2a3... aa+2)—A2(a1as... a,l+o) -\-As(a1a.2ai... alH.2)... .

If we expand the first minors in terms of the constituents of their first
columns and first minors, we shall have the original determinant ex-
panded in terms of its first two columns. As these are the same, the
result is identically zero.

Losing sight of the determinants, and quoting only this last identity,
it follows that, if {aryaT2... ar) be a perpetuant syzygy of the (n—2)-th
kind, and (ar iar, . . . arnarji+1) be a perpetuant syzygy of the (n—l)-th kind,
and AiA2...An+2 denote, as usual, quantics of infinite order, then
(ala2... an,+2) is a perpetuant syzygy of the n-th kind.

But we have seen that {axa%a%a^ is a perpetuant syzygy of the second
kind, and (axa2a3a^a5) is a perpetuant syzygy of the third kind. There-
fore (axa2... a/n-2) is a perpetuant syzygy of the n-th kind of degree (?i+2).

Generating Function for Perpetuant Syzygies of the n-th Kind of
Degree (?i+2).

To find the generating function for perpetuant syzygies of the ?i-th
kind of degree 8, we take all doubly compound perpetuant syzygies of the
(7i—2)-th kind of that degree. The excess of the generating function for
compound perpetuant syzygies of the {n—l)-th kind (some of them un-
canonical) that resolve these, over the generating function for resolvable
perpetuant syzygies of the (n—2)-th kind of degree 5, will be the generating
function for the perpetuant syzygies of the n-th. kind of degree <5. If
(ax ... an+i) is the only perpetuant syzygy of the (n— l)-th kind of degree
(n+1), and if there are no perpetuant syzygies of the {n — l)-th kind of
lower degrees; if, also {ax...an) is the only perpetuant syzygy of the
(n—2)-th kind of degree n, and if there are no perpetuant syzygies of the
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(n—2)-th kind of lower degrees ; then there are no doubly compound per-
petuant syzygies of the {n—2)-th kind of degree < (7&+2); therefore,
there are no perpetuant syzygies of the n-th hind of degree <.(n-\-2). This
is true for kinds 2 and 3, and therefore it is true in general.

For degree (w+2), we have only to consider CiS>,t . This is resolv-
able in two ways only if the Cj's be Ax and A2; therefore, there is only
one perpetuant syzygy of the n-th kind of degree (n+2), i.e. {ax ... an+»).
This is true for kinds 2 and 3, and therefore in general.

VI. Symbolical Multiplication and Primary Perpetitant Syzygies.

A^a^—A^ax^-^A^a^ = 0,

or, as it is often written,

(oa ag) — {ax a3) + (ax a2) = 0,

is a perpetuant syzygy of the first kind.
If we multiply throughout by the symbols (axaA)", we get

{at a%)" (a.2 a3) — (a^ a^ (ax as) + (ax «4)
w (ax

 ai> = °•

which is another perpetuant syzygy of the first kind. Denote it by
Jw{_(alai)

0' (ala2aa)']. In fact, if the result of multiplying each term of a
sum of perpetuant products (expressed symbolically) by some further
symbols is to give another sum of products* of perpetuants, and the
original sum is a syzygant, so is the new one. This follows from the first
principles of the symbolical notation.

In the sum of compound perpetuant syzygies of the first kind

if we replace each perpetuant syzygy of the first kind by its equivalent
sum of perpetuant products, the result will be found to be identically
zero. The expression is therefore a perpetuant syzygy of the second
kind.

Now, if this replacement is carried oat in full, and then compared
with the prooft that {a^^a^a^ itself is a perpetuant syzygy of the second
kind, it will be seen that one piece of work may be obtained from the

* They must bo products ; otherwise we get, not a syzygy, but merely a relation between
reducible forms.

I See end of Section III,

SER. 2. VOL. 8. NO. 1064. '2 «
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other by multiplication of the symbols throughout by {a^)" and omitting
the capital A's.

On this account we denote the perpetuant syzygy of the second kind
by J(2) [(% a6r (% aaa3 a4) ].

Similarly the sum of compound perpetuant syzygies of the second kind

(t̂ Os)" (Ogatas)—i!aJ
<2)[(a1a8)"(a1 a^a4a^]-{-A3J

m[{axa^{alaia4 %)]—•••,

when expressed as a sum of compound perpetuant syzygies of the first
kind, will be found to be zero.

The work closely corresponds to that with

a2a4a5) — ... .

Thus from the existence of a perpetuant syzygy of the third kind
{axa^a^a^ we infer that <?f another, which we call

J(3) [(% aG)" (Oi a2 a3 a4 a5) ] .

This process, which we may call symbolical multiplication, evidently
applies to the n-th kind also, starting from (ala2... an+2). It is clear that
other syzygies can be formed by choosing more elaborate symbolical
factors as multipliers, such as, for example,

(fliOa+s)* (a^n+iY (a2an+b)
v.

Primary Perpetuant Syzygies.

DEF.—We shall call a perpetuant syzygy of the w-th kind primary if
it is (1) the simple one of degree (n+2), i.e. (a1a2... an+2), or (2) derived
from this by symbolical multiplication.

NOTATION.—We shall use

where Xj > A2 > A3 > ... > Xp ( > 2) and p < (n+2),

to denote such a primary perpetuant syzygy of the n-th kind as that
formed by the symbolical multiplication of (alai... a-ft+2) by the product
of p perpetuants

M.-' of degree Xlf

(a2an+il+2)
pi'1 (a2an+Kl+3)

p2-a-... (a2a7H.Al+A/-'.^-> of degree X2,

"' o f
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Each factor in this product contains one symbolical letter (and one
only) of those contained in (axa% ... am+2).

We use the notation S^HX^ ... Xp) to denote also any of the primary
perpetuant syzygies of the n-th kind derived from the above by inter-
changing the suffixes of the symbolical letters involved.

Properties of Primary Perpekiant Syzygies.

(i) <S(U)(\ ... \) is clearly irreducible, for no two of the compound
perpetuant syzygies of the (n— l)-th kind that compose it have a common
perpetuant factor.

By multiplication by a perpetuant or product of perpetuants, we can
form compound primary perpetuant syzygies of the n-th. kind.

(ii) S(n)(\ ... \p) resolves CKlS
{>l~l) (\2...\p), a compound primary

perpetuant syzygy of the (n—l)-th kind, which has only a single per-
petuant factor, of degree not less than 2 [unless S{n) be simply (ax... aft+o)].
&n~l) (Xa... Xp) resolves, in its turn, CknS

{n-2){\ ... \p).
It follows that every irreducible primary perpetuant syzygy of the

w-th kind comes from a doubly compound primary perpetuant syzygy of
the {n—2)-th kind with only two perpetuant factors. It is proved further
on* that the perpetuant syzygy of the ?i-th kind that arises from a primary
doubly compound perpetuant syzygy of the {n—2)-th kind is itself
necessarily primary. Therefore there is a complete correspondence be-
tween irreducible primary perpetuant syzygies of the n-th. kind, and
doubly compound primary perpetuant syzygies of the (n—2)-th kind with
only two perpetuant factors. This is true whatever the degree.

VII. LEMMA 1.—A perpetuant syzygy of the first kind {of degree greater
than 3) that resolves a product with a factor Ci is compound.

By our arrangement scheme, a syzygy is never to be regarded as
resolving a product with a factor Cj if there is any term without such a
factor. It follows that a syzygy resolving a C1 product must consist
entirely of Cx products. Hence we wish to prove that a syzygy consisting
entirely of Cx products must be compound.

* In Section X,

2 G 2
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This is shown by the following more general thoorem :—

Let F be a rational integral function of the („) variables xr>s,

r = l , 2, ..., S, s = l, 2, . . . , * ;

but r=f=S (xriS = —XSir).

Each term is to be of the same total degree in the #'s taken all together.
Further, let F have the property of vanishing when all such relations

hold good. We shall call such a function a null function. Then we shall
prove that, if F be such that each term involves at most (S—1) suffixes, F
can be expressed as the sum of a number of null functions, each of which
likewise involves at most (5—1) suffixes. E.g.,

F = x2> 4(aJi, 2+x2,3+Z3,4—iCi, 4)

can be written

-2, 4 , 4) ,

i.e., as the sum of two null functions, one involving only the suffixes 2, 8,
and 4 ; the other involving only 1, 2, and 4.

PROOF.—Take any term of F, say

where the suffix omitted is t.
If t=fcS, subtract

J = *Ej>, ^ «^r, s • • • v^p, * "^1, S) \Xr, & X$i $) . . . ,

/ is a null function not containing the suffix t.
If t = 8, subtract

Treating every term of .F in this manner, we finally get a new null

function F-y-y

= a rational integral function of a;i,5X2,«••• ^s-i,s from each term of
which at least one of the suffixes 1 . . .5 — 1 is absent

-f-a rational integral function of xhS-i #2,6-1 ••• ^s-s.s-i-
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Write A = xit S-\, a = xx>«,

and e ~ — x^-i, s.

Then <j> = F—2f—2f = \jr(a, b, . . . , z , e ) + x U , B , . . . , £ ) ,

where at least one of a, b, ..., z or e is absent from each term of yp-.

That iB 3 8 i a v = o
oa 06 3^ de

Now 0 is a null function, i.e., \p-{a, 6, ..., z, e)+xW> -B> •••» Z) vanishes in
consequence of such relations as

A = a + e, B = b + e, ... .

Hence "^(a, b, ..., z, e) = — x(a+e, o + e, ..., ^+e);

therefore <f> = x(A, B, ..., Z)—x(a+e, o + e, ..., 2-fe).

But i.i...|i^ = 0;
00/ ob oz de

,, . 3 3 9 3 , , , , _ J . ^ n
theretore —̂ .-ry ... ^- -~- x(fl~re> o-f-e, ..., ^-t-e) = U.

da do d2 de
Put a+e = a', 6-f e = 6', ...,

3̂  _ y 3a' 3 _ v 3
3e ~o~e~ oa' da''

, ., 3 3a' 3 3
W h i l e — = ^ — K—j = TT-T, . . . .

oa da da oa

„ 3 3 3 / 3 . 3 . , 3
Hence 5—; 5T7---^7(x7/ + ^ 7 + ---+57,

The most general solution of this equation is

where Qx does not involve A, £22 does not involve B, and so on, while A is



454 MR. H. T. H. PIAGGIO [March 9,

a function of the differences of A, B, ..., Z. Hence

$ = XC4, B, .... Z)~

= Q^B, C, ..., Z)-Ql

4, C, ..., Z)-Q2(a+e, c+e, ...,

+ A ( i , £ . ..., Z) -A(a , 6, . . . ,*),

for A(a+e, 6+e, ... 2+e) = A (a, 6, ..., 2).

Reverting to our x notation, we see that <j> is thus proved to be ex-
pressible as the sum of (8—1) null functions, the first of which does not
contain the suffix 1, the second of which does not contain the suffix 2, and
so on; the (8—2)-th of which does not contain the suffix (^—2), while the
last A, \ w >

A ( _ i . . . x&-2,&-\) — A ( a M ... xs-2,&),

say 2{xVi S-i—xQi 5_i)A (xr, s-i—Xs, s-i

—2(xp,&—xqii)
K(Xr,i—x8iiY- ...,

is equal to

PM 6-1—X,J, S - ! ) K (xr> a _ i — a ; , , s-i)* • • • — x^ 7 x ^ s . . . ]

+ 2[xp t , t x$ t s ... — (Xp, i—x,tiS)
K (xr,s — x , , i t . . . ] ,

s a y Ns+Nt-u

where Nt is a null function not containing the suffix t. Hence

i.e.,

= the sum of a number of null functions, each quite free from
at least one suffix, which is our theorem.

Example.—Take F = Xi^ x-2) 3 ^1,2 (suffix 4 omitted from this term)

X\3 4 X-2t 4 X\t 2 ( ,, 3 ,, ,, )

+ 31,4 38,4*1,8 ( ,, 2 „ „ )

—3-2,433,43.2,3 ( » 1 » »J ) ,

F is easily seen to be a null function, or the following work shows it.

(N.B.—No confusion will arise from writing xls instead of xliS, so we
will drop these commas.)
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Subtract the null functions

/ l — ^24 X34 X23 T X24 ^34 (X24 x$d>

J = ^1

We get 0 = F-ft-ft-fz-f
= — £24 x34 (̂ 24—^34) = be (b+e)

+Xlix3i(x14—334) —rte(a+e)

—^4^24(^14—^24) —ab(a—b)

+x13xz3{xl3—x23) +AB{A—B),

where A = x13, a = xlit

B = x23, b = rr24,

€ = X34,

so </> = \ls(a, b, e ) + x ( A B)

= -x( f f l+« .H«)+xW, B),

as is easily verified. Also x(-4» #)> *«e., ^4B(^4—JB), is equal to

where A = - ^ U - J 5 ) 8 , ^ = - ^ 3 , O, =

so 0 = - ^

(the two terms in x\2 cancelling)

of form N^Nz+Nt+Ns.

So, finally, F =f1+A+f3+f'+N1+N,+N3+Ni,

i.e., a sum of null functions each with one suffix omitted.

VIII. LEMMA 2.—To prove that a perpetuant syzygy of the n-th kind
that resolves a primary compound perpetuant syzygy of the (n—l)-th kind
must itself be primary.

Since, by our scheme of arrangement, a non-primary syzygy is always
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to precede a primary one, the theorem amounts to :—A perpetuant syzygy
of the n-th kind, made up entirely of p MIo compound perpetuant
syzygies of the (n—l)-th kind, is itself primary.

By definition, a perpetuant syzygy of the n-th kind is such a linear
function of compound perpetuant syzygies of the (n—l)-th kind, that
when these are replaced by the linear functions of compound perpetuant
syzygies of the (a — 2)-th kind that they respectively represent, the result-
ing expression, regarded as a linear function of compound perpetuant
syzygies of the (n—2)-th kind, is identically zero.

In the present case, when the perpetuant syzygies of the (n—l)-th
kind are all primary, they are all symbolical (or actual) products of per-
petuant syzygies of the {n—l)-th kind of the form (ariar.,... a,-n+I).

Let the first term be* axG^GKlGK,... C^-^ifx^ ... /*„) (where no A

or fx is < 2).
This resolves a perpetuant syzygy of the (»—2)-th kind that is the

symbolical product of \aTi... afuj by G*CKlCK3... GKpGHC^... CM?.
This must be cancelled by another perpetuant syzygy of the (n—2)-th

kind, equal except in sign, and this can only arise from a perpetuant
syzygy of the (n—l)-th kind, which is the symbolical product of
C'"CKl... G^G^.-.C^ and (aKa,.2... a,ti), aK being some other of the
letters involved.

Consider any other perpetuant syzygy of the (>i—2)-th kind included
in either of these two perpetuant syzygies of the {n— l)-th kind. We see
that there will be a third perpetuant syzygy of the (n—l)-th kind, that is,
the symbolical product of C,"lCAl... CA/JCMl ... CM , and, say (aKapar3... arut).
In the preceding, the factors CAl ... C* CM1 ... C> are exactly the same in
each case, but the Cfa are not.

Proceeding in this way, we see that, unless the syzygy is the sum of
two or more others, every perpetuant syzygy of the (•«— l)-th kind in it
must have a symbolical factor CA| ... CA(CM1 ... CM).

If we divide this out (a symbolical operation, of course) we are left
with a new perpetuant syzygy of the w-th kind of the form

The next step is to show that this is primary. By our arrangement
scheme Cf(ariarn... ar ,) precedes Cfia/a/ ... <v ), where

rx <r2 ... < r,,+i and r[ <r>... < ?-»+],

* In the following, the a's, #'s, 7's and 8's are numerical constants.
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if the first of the.differences i\ —r[, i\ — r'.2, ..., rn+i—r'll+i, that does not
vanish is positive.

Arrange the terms of 2(3rCl
n{at}ar.i... a,^) in this way. Take the

symbolical letters involved to be axa2... aBH.,l+1. If the first term be
ftsC1l(aSlas.J...aSu+1), subtract j3sG

>
l
>l~l{aSi-ia,lati.2... aSn^), a perpetuant

syzygy of the n-th. kind involving ax ... am+)l+l.
The difference resolves a perpetuant syzygy of the (/i—l)-th kind that

follows C™{aSlas,... a,n+l) in the sequence.
Remove this by a fresh subtraction of a suitable perpetuant syzygy of

the n-th kind of the same general form as before.

Now there are only a finite number ( j of perpetuant syzygies of

the {n—l)-th kind, of the form of C'*{aSlas.,... aSn+l) in which s x > 1; there-
fore, by the repetition of the above process, we shall, sooner or later,
arrive at a stage where every term left is of the form

y r ^ ' K a , ^ . . . a,.nJ.

Let ytC[n{a1ah ... a<((+1) be the first (in the fixed sequence) of these
terms. Then, in the expanded form of the syzygy as an identically
vanishing linear function of perpetuant syzygies of the {it — 2)-th kind,
there is nothing to cancel the term ytG^+x{ah ... &<ji+1). Therefore y« = 0,
I.e., all the y's are zero. Therefore H^rGll{aria,..,... «-rjtv|) is expressible
as a sum of perpetuant syzygies of the ;i-th kind, like

i.e., is primary. Therefore the syzygy from which we started, being
derived from the last by symbolical multiplication, is also primary, i.e., a
perpetuant syzygy of the n-th kind that resolves a primary peipetuant
syzygy of the {n—\)-th kind is itself primary.

IX. LEMMA 3.—No perpetuant syzygy of the n-th kind of degree
> (rc+2) can be irreducible if it resolve a perpetuant syzygy of the
{n—l)-th kind with Gx as a factor.

Let S(/t) be an irreducible perpetuant syzygy of the ?i-th kind resolving
CllCKl ... C^S01'^ (where m=£ 0 and no K is unity).

To prove that m = 1 and /q = K2 = ... = KV = 0, and S^'1^ is of the
form {axa2... an+i), so £(M) is simply of the form {axa%... an+2), of
degree (w+2).
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Assume the theorem true for all kinds lower than n. We shall see it
is then true for n.

Let S(n-1} resolve CXl... CA?S
(n-2).

Unless S^'V be (%... an+i), in which case it resolves Cl(a1... an), no
X can be unity, by hypothesis.

Now the sum of compound perpetuant syzygies of the {n—l)-th kind
which S(m) represents must contain one, at least, of the forms

where Cw...CMr are simply the other (ra— 1) (Ys, and CKl...CKp,
CAl ... CA in some order ; for if this were not the case, every term of &n)

would be divisible by C™, and so S(n) would be compound, not irreducible.

Now by our scheme of arrangement, of two compound perpetuant
syzygies of the {n—l)-th kind, containing a power of Cx as a factor, that
whose power of Cx is the lower stands first (provided both the S^n~1)}a are
primary or both non-primary).

The number of C '̂s in C^ ... C^. is at most (m—1), since no K or X is
unity. Also, from Lemma 2, both of the S(n~1)Js in the next line are
primary, or both non-primary. Therefore

<Vi ••• CH[C»i+l ... C^C^-V] precedes CfC, . . . C . ^ - ^ .

Therefore S(n) does ?iô  resolve C?CKl... G^-'K
This contradicts a fact with which we started. Therefore the

assumption that no X is unity is false; therefore, by our hypothesis for
kind (w—1), S{n~l) is of form (% ... a,l+l) and resolves C1(S

(n-2), where
S*w~2) is of form (alf ..., an); therefore, from Lemma 2, S(7l) is primary.

Therefore as m =£ 0, S(n) is the simple perpetuant syzygy of the w-th
kind of degree (n-\-Z) and of form {a^a^... <xw+2) [for we can easily see that
no other primary irreducible perpetuant syzygy of the n-th. kind resolves
a compound with a factor C{]; and

Kl = K2 = ... = Kp = 0.

The theorem is true, by Lemma 1, for kind unity, therefore we have
proved it in general, by induction.

X. THEOREM.—All perpetuant syzygies of the n-th hind of degree
<C (2?z + 2) are primary.

The proof is by induction.
Assume the theorem to be true for all kinds less than n. We shall

deduce its truth for kind n.
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For an irreducible perpetuant syzygy of the (n—2)-th kind to be non-
primary, its degree, by hypothesis, must be at least (2n—2). Therefore
the total degree of the perpetuant factors of a doubly compound perpetuant
syzygy of the (n—2)-th kind of total degree < (2?i+2), of which the
irreducible part is non-primary, is (2n+l)—(2?&—2) = 3, at most.

Therefore the perpetuant factors are CXC2, C\, or C\.
Now, by Lemma 3, no irreducible perpetuanfc syzygy of the (n—l)-th

kind of degree >• (n-}-l) resolves a compound perpetuant syzygy of the
(n—2)-th kind with a factor Gv

Therefore CiC%S{n~2) is never resolvable in more than one way at most
{i.e., by C1[C2S

(Tl'-2)]) by a compound perpetuant syzygy of the (n— l)-th
kind, while Ci&n~2) and C\Sin~2) are never resolvable at all by a compound
perpetuant syzygy of the (n— l)-th kind, if £f(7l~2) is non-primary [and
hence of degree ^ (2n—2), i.e., ^&n, as (n—2) ^ 0]. Therefore no per-
petuant syzygies of the n-th kind arise from these doubly compound per-
petuant syzygies of the (n—2)-th kind.

Informing the generating function for perpetuant syzygies of the n-th
kind of degree <(2n-f"2), we need only consider those doubly compound
perpetuant syzygies of the (n—2)-th kind which are primary.

Therefore a perpetuant syzygy of the n-th kind of degree < (2?&+2)
connects two compound perpetuant syzygies of the {n— l)-th kind that
themselves resolve primary perpetuant syzygies of the (n—2)-th kind,
i.e., from Lemma 2, a perpetuant syzygy of the n-th kind of degree
< (2n + 2) connects two primary compound perpetuant syzygies of the
{n—l)-th kind.

We now have only to prove that such a perpetuant syzygy of the n-th
kind is necessarily primary.

The perpetuant syzygy of the n-th kind in question is formed as
follows :—

Subtract the two compound primary perpetuant syzygies of the
(n—l)-th kind [of course, as these resolve the same perpetuant syzygies
of the (n—2)-th kind, not more than one of them can be canonical], so
that their difference is free from the doubly compound perpetuant syzygies
of the (n—2)-th kind from which we started.

This difference is a perpetuant syzygy of the (n—l)-th kind that
resolves another doubly compound perpetuant syzygy of the (n—2)-th
kind.

But this last must be resolvable by a member of the canonical set [for,
if not, the difference of a canonical and an uncanonical syzygy is one
linearly independent of the canonical set, which is absurd, as by definition
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all syzygies of a given kind and degree are expressible linearly in terms
of the canonical set].

We subtract this canonical perpetuant syzygy of the (n— l)-th kind,
so that the resulting difference (if not zero) resolves yet another doubly
compound primary perpetuant syzygy of the (n— 2)-th kind.

Continue this process as far as possible.
Now since the number of perpetuant products of given degree and

weight is necessarily finite, the same is true of the perpetuant syzygy of
the first kind connecting them, and therefore of the second kind connecting
these, and so on ; therefore for perpetuant syzygies of the (n — 2)-th kind.

Thus the above process of subtraction must stop in time. But we
have shown that we cannot come to an irresolvable, and whenever a
resolvable appears we go on.

Therefore finally the difference is zero.
Each perpetuant syzygy of the (•»— l)-th kind involved must be

primary, as it resolves a primary perpetuant syzygy of the (n—2)-th
kind, and as this last is doubly compound, the perpetuant syzygy of the
(>j—l)-th kind must be compound, for an irreducible primary syzygy re-
solves only singly compounds.

Thus we have formed the perpetuant syzygy of the w-th kind in
question and shown that it connects only primary compound perpetuant
syzygies of the (n—l)-th kind.

Therefore, by Lemma 2, it is itself primary.
This completes the induction.
But the theorem is true for kind 1, for the only perpetuant syzygy of

the first kind of degree < 4 is the Jacobian identity.
Therefore it is true universally that all perpetuant syzygies of the n-th

kind of degree •< (2/i-f-2) are primary.

XL Note.—In what follows we shall use the symbol L x ^ j to

denote the number of ways of picking, from S things, a group of p sub-
groups, containing Alf X2, X3, ..., X,, things respectively. If of the p X's,
/• are equal to one integer, s to another, t to yet another, &c, and the rest
are all unequal, then clearly

8 \ L S \

We shall also, to save space, denote the expression

xN

2 V.-
(1-aO* p
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where N = 2 2A«-~1—

by the symbol î XjXg ... Xp); and make frequent use of the identity

" Well Ordered " Syzygies. Their Generating Functions.

To distinguish one particular primary perpetuant syzygy of the ?i-th
kind from others of the same general form S(7l) (X\X2 ••• ̂ p)> w e shall some-
times use a different notation. Thus

F%) [ > ! an+3)
p> (a2 an+4)p" (»i a2as... an+2)]

will be used to denote the result of symbolical multiplication of the per-
petuant syzygies of the n-th. kind (a1a2a3 ... an+2) by (a1an+3)

Pl (a2an+4)P2.
This is of form S{n)(2, 2).

If in J(-n)[(arar1)
pf>(arar2)

Pr'(arar3)
p'*... (a,a.,)9' ... {atat)\ ... {arasa,...)'].

where the letters are ara2... as in some order

r <r1<r2< ...,

S <S1<S2< ...,

t< tx<t2<...,

we call the syzygy well ordered.

Consider Sin) (\x X2... Xp) a well ordered primary perpetuant syzygy of
the w-th kind. We shall prove by induction that, given

\>*2> . . . > X P > 2 ,

the generating function for all such well ordered ones is

provided 5 < (
Assume this for kinds < n.

(I) If X1 > any other X, S^ resolves CA
1«

(ll-1)(A2 ... X,), where S(ll"1) is
also well ordered.

Conversely, CXlS
{n~i)(X2... Xp) is always resolvable by a well ordered

perpetuant syzygy of the n-th kind if S^1"^ be well ordered, and Xx > any
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other X; therefore the generating function for S(/l) is the same as that for
the compound perpetuant syzygy of the (n—l)-th kind, i.e.,

0
(II) If \ = X2 = X3 = ... = XK > XK+1, we have K X'S equal to X (say).
(\i X2... Xp) will have * terms of form

CK&*-l)[XK ... to («:—1) terms ... Xj.

Let us arrange the K CA'S according to our fixed sequence, and call the
first CAl, the second CAj, and so on.

With this convention S(ll) (XjXa... X,,) still resolves C^S{n-])(X2Xs... X,,),
a well ordered compound perpetuant syzygy of the (n— l)-th kind, and
conversely, if this last is well ordered, it is always resolvable by
S^iXiXz ••• \)> a well ordered perpetuant syzygy of the ?i-th kind.

However CA).S
(u~l)(X1X2... Xr_iXr+i... \p) is clearly not so resolvable

if r > 1.
Therefore the generating function for S(n) (Xx X2... X,,) is the same as

that for C*1S
(tt-1)(<V--Xi>), -i.e.,

x
3 . . . Aj

2 ...

Therefore in both cases the generating function for well ordered per-
petuant syzygies of the n-th kind of form S(m) (XXX2... Xp) is this
expression.

So if this formula holds good for kind (n—1), it holds for kind n.
Now the formula can, by hypothesis, only fail for kind (n—1) when

degree ^ 2M.
Therefore the formula can only fail for kind n when degree J> 2?i-j-X1(

i.e., when degree ^ (2TI-|-2) [for, if X! = 1 degree of S(n~1} must, by
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Lemma III, be (n+1), and in this case formula does not fail, so for
failure X1 ^ 2],

Finally the formula holds good for perpetuant syzygies of the first
kind of degree 3 {i.e. < 4) ; and therefore the induction shows that the
generating function for S(n)(X1X2X3... Xp), if well ordered and of
degree 8 < (2n-f-2), is always

\1

If (5^(2« + 2), in some cases the syzygies of low weight degenerate.
This is due ultimately to the fact that the perpetuant syzygy of the first
kind ^ \_(aia^)p (a^a^a^i] and Jw[(a2a3)

p {a^a^a^] are equal when /> = 1.
In consequence the generating function, when expanded in powers of .r,
has some of the coefficients at the beginning less than those given by the
above formula.

We can obtain our linearly Independent sets, as linear functions of
the members of which any other 'perpetuant syzygy of the. n-th kind can
be expressed, by taking all primary perpetuant syzygies of the n-th kind
[of degree < (2?i+2)] to be well ordered.

The proof is this :—
It is clear that any well ordered perpetuant syzygy of the n-th kind re-

solves a compound well ordered perpetuant syzygy of the (n— l)-th kind,
which in turn resolves a well ordered doubly compound perpetuant syzygy
of the (n—2)-th kind. Thus every well ordered perpetuant syzygy of the
n-th kind arises from a well ordered doubly compound perpetuant syzygy
of the (n—2)-th kind. We must prove the converse of this to justify the
statement at the head of the paragraph. To do this, we find the generating
function for perpetuant syzygies of the n-th kind arising from well ordered
doubly compound perpetuant syzygies of the (n—2)-th kind, and notice
that they are the same as those for well ordered perpetuant syzygies of
the n-th kind.

Unless S(>1~'2) (A3X4... \) is of degree n, for perpetuant syzygies of the
n-th kind to arise from CAlC

rAoS('l~2)(X3X4 ... Xp), Xx and X2 must, save in
one case, be > 2. Therefore if degree of S(n) be < (2/t+2), that of S°l-2)

is < (2w—2). The one exception is when S{n~-} is of degree n, which is
also < (2;i—2). Therefore in every case we may use the generating
function found above.

Consider then CAlCA2S
(n-2)(X3X4 ... Xp), where X3 > X4 > ... > Xp > 2

and S(n~2) is well ordered.
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The following cases must be distinguished :—

(I) \ > X3 > any other A.

(II) Ax = A2 > any other A.

(III) Aj > A2, A2 = A3 = A4 = ... = XK > XK+i.

(IV) \ = A2 = A3 = A4 = . . . = A, > AK+I .

(V) One (or both) of \ and A2 less than the greatest of the other A's.

(I) \ > A2 > any other A.
C\lC\2S

(-"~'2H\3...\j)) is always resolvable in two ways, i.e., by
C^S°'-1){\ci\3...Xf) and by G^S{n-l)Qii\3...\p). Therefore the generating
function for perpetuant syzygies of the n-th kind is the same as that for

\ a*"1-1 /tS-AA s*'-1-1 (S-\
J ( T = ^ V A2 j ( T ^ ) ^ " 1 I A 3 . . . A,

which is exactly that for well ordered perpetuant syzygies of the n-th
kind of form S(n)(\\2\ ... X,,).

(II) Ax = A2 > any other A.
Again, C^S(ll~2)(A3... \p) is always resolvable in two ways. Therefore

the generating function for perpetuant syzygies of the n-th kind is

1 ffl(
1

a s X l =

This is also the generating function for well ordered perpetuant syzygies
of the n-th kind.

(Ill) Xx > A2, A2 = A3 = A4 = ... = XK > XK+\.

CAlCA2S(u-2)(A3...Ap) is always resolvable by CKa&»-lH\1\...\J, but

by CXlS
(n~1)(A2A3... A,,) only if CK2 happens to precede CK3, C^ ..., CAp, in

our fixed sequence.
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Therefore the generating function for perpetuant syzygies of the ?/-th
kind equals the generating function for these extra resolutions

- [xj (TZ^^-i U2A3 - xjF{X*X*'" ^

= \\ \ \ \) -FT(X1X2X3 ... X,,) (as \ > any other X)
\A1A2A3 . . . ApJ

= generating function for the well ordered ones.

(IV) Xj = X2 = X3 = X4 = ... = \K > X,,+l.
S(B)(XiAa...Ap) has JCterms of ioYmCKS^~l)[\\..Ao (K-l) terms ... Xp].
Arrange these in accordance with our sequence, and call the first

CKl&
n~l), the second CK%&n-*\ and so on.

With this convention, i and j being both < K,

CKCi.S{n-2) [X ... to Oc-2) terms ... Xj

is, in general, irresolvable.
If i = 1, it is resolvable by C^S^^{W ... \j-i\j+i... X;)), but in no

other way, unless j = 2, when it is resolvable also by CAlS
(n~1)(X2X3 ... X,,).

The generating function for perpetuant syzygies of the n-th. kind is
that for these extra resolutions

S

i x j (T=5M=i U2x3... x
S\ 1 (S-\)\

the same as for well ordered ones.

(V) If one or both of \ and X.2 be less than the greatest of the remain-
ing X's, it is clear that CAlCA:;S

(ll~2)(X3... X̂ ,) can never be resolvable in
more than one way.

Therefore there are no perpetuant syzygies of the ?i-th kind arising here.
There are also no well ordered perpetuant syzygies of the ?i-th kind of

SKB. 2. VOL. 8. NO. 1065. 2 H
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the form S ^ X ^ X g ••• \)> where \ or X2 is l
e s s fo&n a following X, by

the convention with which we started.

To sum up, the canonical set of perpetuant syzygies of the n-th hind of
any degree < (2w+2) may he taken to be composed solely of well ordered
primary ones {irreducible and compound).

Of course not all the compounds of degree 8 of well ordered primary
perpetuant syzygies of the n-th kind of degrees < S belong to the canonical
set. Those that do may be distinguished thus :—

Let CA(>1CA(.<2 ... Gk> be the perpetuants that are symbolical factors of
a well ordered primary perpetuant syzygy of the n-th. kind S^n)(\i+i... \).

Then CKl... CK.S{n)(\i+i... Xp), of degree S [ < (2*1+2)], belongs to the
canonical set for kind n and degree S if, in the fixed sequence, no one of
CAX ••• C*. precede the first of C\+1.. . CK .

XII. Formation of Non-Primary Perpetuant Syzygies of the n-th Kind
. of Degree (2?i+2).

Let large letters S1S2...5r
n denote perpetuant syzygies of the first

kind, and small letters s1s2...sn the corresponding sums of perpetuant
products.

The S's are such that no one has more than one symbolical letter in
common with all the others put together.

Denote by Si&2 the result of symbolical multiplication of S2 by sv

This will be a sum of compound perpetuant syzygies of the first kind, as
Sj and S2 have only one symbol in common.

Then it is clear that (SJSJJ—s2SJ is a perpetuant syzygy of the second
kind.

This may be written

Similarly s1 (s2 S3—s3 S%)+s3 (s8 Sx—sx S3)+s3 (sx S2—s2 SJ

is a perpetuant syzygy of the third kind, since it is a linear function of
compound perpetuant syzygies of the second kind that vanishes when
expressed as a linear function of compound perpetuant syzygies of the
first kind. This may be written

«i Si
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In general, if we denote the vanishing determinant

467

si si

by

then expanding it in terms of the constituents of the first column and
their first minors, we get

S ( — 1)P + 1 ^ [(SiSa . . . Sp-lSp+l ...Sn-lSn)~\,

which must vanish identically if we replace the first minors by their
expansions in terms of the constituents of their first columns and the
corresponding first minors, since the original determinant will be now
expanded in terms of the constituents of its first two columns, which are
identical.

Assume that {_(s1s2 ••• Sp-ih+i ••• Sq-iSq+i ••• Su-iSJ] is a perpetuant
syzygy of the (n—2)-th kind, and [(srs2 ... sv-iSp+\... s^-iSm)] is a per-
petuant syzygy of the {n— l)-th kind.

Then, since all the s's are sums of perpetuant products, and no s has
more than one letter common with all the others put together, it follows
that Sj,s,z[(s1s2... sp-iSp+\ ... su-isq+i... sn-iS»)] is a sum of doubly com-
pound perpetuant syzygies of the {n— l)-th kind, and

Sp \_\S1S2 . . . Sp-\ Sp+i ... S.,j,_i On) J

is a sum of compound perpetuant syzygies of the (n— l)-th kind.
The vanishing of the sum of expansions of each term of the expansion

of [(s1... sn_iSn)] shows that this last is a perpetuant syzygy of the n-th.
kind.

Therefore the device gives a perpetuant syzygy of the n-th kind for
kind n, if it does so for kinds (n—1) and (n—2).

But we have seen that it does so for kinds 2 and 8 ; therefore it does
so in general.

We can take Si to be the Stroh syzygy (^a^a^a^w, and Sr(r > 1) the
Jacobian identity (a4a2r+i&2r+2)-

In this case, since a perpetuant syzygy of the n-th. kind that contains
a non-primary compound perpetuant syzygy of the (n—l)-th kind is itself
non-primary, [0?iS2 ... Sn)~\ is non-primary if [ ( s ^ ••• Sn-i)] is.

2 H 2
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But [(siSy] is clearly non-primary, as it contains a compound Stroh

ygy
Therefore [(SjSa... SJ] is a non-primary perpetuant syzygy of the

n-th kind, of degree (2?i+2).
Thus non-primary perpetuant syzygies of the n-th kind do exist for

degree (2TI-|-2), although not for lower degrees.

In conclusion, I wish to express my best thanks to Dr. A. Young for
his kindness in suggesting the subject of syzygies to me, and also to him
and to Mr. J. H. Grace for much helpful interest and encouragement in
the course of the work.


