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Abstract: For any vertex x in a connected graph G of order p ≥ 2, a set Sx ⊆ V (G) is an

x-monophonic set of G if each vertex v ∈ V (G) lies on an x − y monophonic path for some

element y in Sx. The minimum cardinality of an x-monophonic set of G is the x-monophonic

number of G and is denoted by mx(G). A subset Tx of a minimum x-monophonic set Sx of

G is an x-forcing subset for Sx if Sx is the unique minimum x-monophonic set containing Tx.

An x-forcing subset for Sx of minimum cardinality is a minimum x-forcing subset of Sx. The

forcing x-monophonic number of Sx, denoted by fmx(Sx), is the cardinality of a minimum

x-forcing subset for Sx. The forcing x-monophonic number of G is fmx (G) = min{fmx (Sx)},

where the minimum is taken over all minimum x-monophonic sets Sx in G. We determine

bounds for it and find the forcing vertex monophonic number for some special classes of

graphs. It is shown that for any three positive integers a, b and c with 2 ≤ a ≤ b < c, there

exists a connected graph G such that fmx (G) = a, mx(G) = b and cmx(G) = c for some

vertex x in G, where cmx(G) is the connected x-monophonic number of G.
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§1. Introduction

By a graph G = (V, E) we mean a finite undirected connected graph without loops or multiple

edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic

terminology we refer to Harary [6]. For vertices x and y in a connected graph G, the distance

d(x, y) is the length of a shortest x − y path in G. An x − y path of length d(x, y) is called an

x − y geodesic. The neibourhood of a vertex v is the set N(v) consisting of all vertices u which

are adjacent with v. The closed neibourhood of a vertex v is the set N [v] = N(v)
⋃ {v}. A

vertex v is a simplicial vertex if the subgraph induced by its neighbors is complete.
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The closed interval I[x, y] consists of all vertices lying on some x − y geodesic of G, while

for S ⊆ V, I[S] =
⋃

x,y∈S

I[x, y]. A set S of vertices is a geodetic set if I[S] = V , and the minimum

cardinality of a geodetic set is the geodetic number g(G). The geodetic number of a graph was

introduced in [1,8] and further studied in [2,5]. A geodetic set of cardinality g(G) is called a

g− set of G. Generally, for an integer k ≥ 0, a subset S ⊆ V is called a Smarandachely geodetic

k-set if I[S
⋃

S+] = V and a Smarandachely hull k-set if Ih(S
⋃

S+) = V for a subset S+ ⊂ V

with |S+| ≤ k. Let k = 0. Then a Smarandachely geodetic 0-set and Smarandachely hull 0-set

are nothing else but the geodetic set and hull set, respectively.

The concept of vertex geodomination number was introduced in [9] and further studied in

[10]. For any vertex x in a connected graph G, a set S of vertices of G is an x-geodominating

set of G if each vertex v of G lies on an x − y geodesic in G for some element y in S. The

minimum cardinality of an x-geodominating set of G is defined as the x-geodomination number

of G and is denoted by gx(G). An x-geodominating set of cardinality gx(G) is called a gx − set.

A chord of a path P is an edge joining any two non-adjacent vertices of P . A path P

is called a monophonic path if it is a chordless path. A set S of vertices of a graph G is a

monophonic set of G if each vertex v of G lies on an x − y monophonic path in G for some

x, y ∈ S. The minimum cardinality of a monophonic set of G is the monophonic number of G

and is denoted by m(G).

The concept of vertex monophonic number was introduced in [11]. For a connected graph

G of order p ≥ 2 and a vertex x of G, a set Sx ⊆ V (G) is an x-monophonic set of G if each

vertex v of G lies on an x − y monophonic path for some element y in Sx. The minimum

cardinality of an x-monophonic set of G is defined as the x-monophonic number of G, denoted

by mx(G). An x-monophonic set of cardinality mx(G) is called a mx − set of G. The concept

of upper vertex monophonic number was introduced in [13]. An x-monophonic set Sx is called

a minimal x-monophonic set if no proper subset of Sx is an x-monophonic set. The upper

x-monophonic number, denoted by m+
x (G), is defined as the minimum cardinality of a minimal

x-monophonic set of G. The connected x-monophonic number was introduced and studied in

[12]. A connected x-monophonic set of G is an x-monophonic set Sx such that the subgraph

G[Sx] induced by Sx is connected. The minimum cardinality of a connected x-monophonic set

of G is the connected x-monophonic number of G and is denoted by cmx(G). A connected

x-monophonic set of cardinality cmx(G) is called a cmx − set of G.

The following theorems will be used in the sequel.

Theorem 1.1([11]) Let x be a vertex of a connected graph G.

(1) Every simplicial vertex of G other than the vertex x (whether x is simplicial vertex or

not) belongs to every mx − set;

(2) No cut vertex of G belongs to any mx − set.

Theorem 1.2([11]) (1) For any vertex x in a cycle Cp(p ≥ 4), mx(Cp) = 1;

(2) For the wheel Wp = K1 + Cp−1(p ≥ 5), mx(Wp) = p − 1 or 1 according as x is K1 or

x is in Cp−1.
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Theorem 1.3([11]) For n ≥ 2, mx(Qn) = 1 for every vertex x in Qn.

Throughout this paper G denotes a connected graph with at least two vertices.

§2. Vertex Forcing Subsets in Vertex Monophonic Sets of a Graph

Let x be any vertex of a connected graph G. Although G contains a minimum x-monophonic set

there are connected graphs which may contain more than one minimum x-monophonic set. For

example, the graph G given in Figure 2.1 contains more than one minimum x-monophonic set.

For each minimum x-monophonic set Sx in a connected graph G there is always some subset

T of Sx that uniquely determines Sx as the minimum x-monophonic set containing T . Such

sets are called ”vertex forcing subsets” and we discuss these sets in this section. Also, forcing

concepts have been studied for such diverse parameters in graphs as the geodetic number [3],

the domination number [4] and the graph reconstruction number [7].

Definition 2.1 Let x be any vertex of a connected graph G and let Sx be a minimum x-

monophonic set of G. A subset T of Sx is called an x-forcing subset for Sx if Sx is the unique

minimum x-monophonic set containing T . An x-forcing subset for Sx of minimum cardinality

is a minimum x-forcing subset of Sx. The forcing x-monophonic number of Sx, denoted by

fmx
(Sx), is the cardinality of a minimum x-forcing subset for Sx. The forcing x-monophonic

number of G is fmx
(G) = min {fmx

(Sx)}, where the minimum is taken over all minimum

x-monophonic sets Sx in G.

Example 2.2 For the graph G given in Figure 2.1, the minimum vertex monophonic sets,

the vertex monophonic numbers, the minimum forcing vertex monophonic sets and the forcing

vertex monophonic numbers are given in Table 2.1.

Vertex Minimum mx(G) Minimum forcing fmx
(G)

x x-monophonic sets x-monophonic sets

u {r, y}, {r, z}, {r, s} 2 {y}, {z}, {s} 1

v {u, r, y}, {u, r, z}, {u, r, s} 3 {y}, {z}, {s} 1

w {u, r} 2 ∅ 0

y {u, r} 2 ∅ 0

z {u, r} 2 ∅ 0

s {u, r} 2 ∅ 0

t {u, r, w}, {u, r, y}, {u, r, z} 3 {w}, {y}, {z} 1

r {u, w}, {u, y}, {u, z} 2 {w}, {y}, {z} 1

Table 2.1
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Theorem 2.3 For any vertex x in a connected graph G, 0 ≤ fmx
(G) ≤ mx(G).

Proof Let x be any vertex of G. It is clear from the definition of fmx
(G) that fmx

(G) ≥ 0.

Let Sx be a minimum x-monophonic set of G. Since fmx
(Sx) ≤ mx(G) and since fmx

(G) =

min {fmx
(Sx) : Sx is a minimum x-monophonic set in G}, it follows that fmx

(G) ≤ mx(G).

Thus 0 ≤ fmx
(G) ≤ mx(G). 2
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Remark 2.4 The bounds in Theorem 2.3 are sharp. For the graph G given in Figure 2.2,

S = {u, z, t} is the unique minimum w-monophonic set of G and the empty set φ is the unique

minimum w-forcing subset for S. Hence fmw
(G) = 0. Also, for the graph G given in Figure

2.2, S1 = {y} and S2 = {z} are the minimum u-monophonic sets of G and so mu(G) = 1. It is

clear that no minimum u-monophonic set is the unique minimum u-monophonic set containing

any of its proper subsets. It follows that fmu
(G) = 1 and hence fmu

(G) = mu(G) = 1. The

inequalities in Theorem 2.3 can be strict. For the graph G given in Figure 2.1, mu(G) = 2 and

fmu
(G) = 1. Thus 0 < fmu

(G) < mu(G).

In the following theorem we characterize graphs G for which the bounds in Theorem 2.3

are attained and also graphs for which fmx
(G) = 1.

Theorem 2.5 Let x be any vertex of a connected graph G. Then
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(1) fmx
(G) = 0 if and only if G has a unique minimum x-monophonic set;

(2) fmx
(G) = 1 if and only if G has at least two minimum x-monophonic sets, one of which

is a unique minimum x-monophonic set containing one of its elements, and

(3) fmx
(G) = mx(G) if and only if no minimum x-monophonic set of G is the unique

minimum x-monophonic set containing any of its proper subsets.

Definition 2.6 A vertex u in a connected graph G is said to be an x-monophonic vertex if u

belongs to every minimum x-monophonic set of G.

For the graph G in Figure 2.1, S1 = {u, r, y}, S2 = {u, r, z} and S3 = {u, r, s} are the

minimum v-monophonic sets and so u and r are the v-monophonic vertices of G. In particular,

every simplicial vertex of G other than x is an x-monophonic vertex of G.

Next theorem follows immediately from the definitions of an x-monophonic vertex and

forcing x-monophonic subset of G.

Theorem 2.7 Let x be any vertex of a connected graph G and let Fmx
be the set of relative

complements of the minimum x-forcing subsets in their respective minimum x-monophonic sets

in G. Then
⋂

F∈Fmx
F is the set of x-monophonic vertices of G.

Theorem 2.8 Let x be any vertex of a connected graph G and let Mx be the set of all x-

monophonic vertices of G. Then 0 ≤ fmx
(G) ≤ mx(G) − |Mx|.

Proof Let Sx be any minimum x-monophonic set of G. Then mx(G) = |Sx|, Mx ⊆ Sx and

Sx is the unique minimum x-monophonic set containing Sx−Mx and so fmx
(G) ≤ |Sx−Mx| =

mx(G) − |Mx|. 2
Theorem 2.9 Let x be any vertex of a connected graph G and let Sx be any minimum x-

monophonic set of G. Then

(1) no cut vertex of G belongs to any minimum x-forcing subset of Sx;

(2) no x-monophonic vertex of G belongs to any minimum x-forcing subset of Sx.

Proof (1) Since any minimum x-forcing subset of Sx is a subset of Sx, the result follows

from Theorem 1.1(2).

(2) Let v be an x-monophonic vertex of G. Then v belongs to every minimum x-monophonic

set of G. Let T ⊆ Sx be any minimum x-forcing subset for any minimum x-monophonic set Sx

of G. If v ∈ T , then T ′ = T − {v} is a proper subset of T such that Sx is the unique minimum

x-monophonic set containing T ′ so that T ′ is an x-forcing subset for Sx with |T ′| < |T |, which

is a contradiction to T a minimum x-forcing subset for Sx. Hence v /∈ T . 2
Corollary 2.10 Let x be any vertex of a connected graph G. If G contains k simplicial vertices,

then fmx
(G) ≤ mx(G) − k + 1.

Proof This follows from Theorem 1.1(1) and Theorem 2.9(2). 2
Remark 2.11 The bound for fmx

(G) in Corollary 2.10 is sharp. For a non-trivial tree T with
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k end-vertices, fmx
(T ) = 0 = mx(T ) − k + 1 for any end-vertex x in T .

Theorem 2.12 (1) If T is a non-trivial tree, then fmx
(T ) = 0 for every vertex x in T ;

(2) If G is the complete graph, then fmx
(G) = 0 for every vertex x in G.

Proof This follows from Theorem 2.9. 2
Theorem 2.13 For every vertex x in the cycle Cp(p ≥ 3), fmx

(Cp) =





0 if p = 3, 4

1 if p ≥ 5
.

Proof Let Cp : u1, u2, · · · , up, u1 be a cycle of order p ≥ 3. Let x be any vertex in Cp,

say x = u1. If p = 3 or 4, then Cp has unique minimum x-monophonic set. Then by Theorem

2.5(1), fmx
(Cp) = 0. Now, assume that p ≥ 5. Let y be a non-adjacent vertex of x in Cp.

Then Sx = {y} is a minimum x-monophonic set of Cp. Hence Cp has more than one minimum

x-monophonic set and it follows from Theorem 2.5(1) that fmx
(Cp) 6= 0. Now it follows from

Theorems 1.2(1) and 2.3 that fmx
(G) = mx(G) = 1. 2

Theorem 2.14 For any vertex x in a complete bipartite graph Km,n(m, n ≥ 2), fmx
(Km,n) = 0.

Proof Let (V1, V2) be the bipartition of Km,n. If x ∈ V1, then Sx = V1 − {x} is the

unique minimum x-monophonic set of G and so by Theorem 2.5(1), fmx
(G) = 0. If x ∈ V2,

then Sx = V2 − {x} is the unique minimum x-monophonic set of G and so by Theorem 2.5(1),

fmx
(G) = 0. 2

Theorem 2.15 (1) If G is the wheel Wp = K1 + Cp−1(p = 4, 5), then fmx
(G) = 0 for any

vertex x in Wp;

(2) If G is the wheel Wp = K1 + Cp−1(p ≥ 6), then fmx
(G) = 0 or 1 according as x is K1

or x is in Cp−1.

Proof Let Cp−1 : u1, u2, · · · , up−1, u1 be a cycle of order p − 1 and let u be the vertex of

K1.

(1) If p = 4 or 5, then G has unique minimum x-monophonic set for any vertex x in G

and so by Theorem 2.5(1), fmx
(G) = 0.

(2) Let p ≥ 6. If x = u, then Sx = {u1, u2, · · · , up−1} is the unique minimum x-

monophonic set and so by Theorem 2.5(1), fmx
(G) = 0. If x ∈ V (Cp−1), say x = u1, then

Si = {ui} (3 ≤ i ≤ p−2) is a minimum x-monophonic set of G. Since p ≥ 6, there is more than

one minimum x-monophonic set of G. Hence it follows from Theorem 2.5(1) that fmx
(G) 6= 0.

Now it follows from Theorems 1.2(2) and 2.3 that fmx
(G) = mx(G) = 1. 2

Theorem 2.16 For any vertex x in the n-cube Qn (n ≥ 2), then fmx
(Qn) =





0 if n = 2

1 if n ≥ 3
.

Proof If n = 2, then Qn has unique minimum x-monophonic set for any vertex x in Qn

and so by Theorem 2.5(1), fmx
(Qn) = 0. If n ≥ 3, then it is easily seen that there is more than

one minimum x-monophonic set for any vertex x in Qn. Hence it follows from Theorem 2.5(1)
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that fmx
(Qn) 6= 0. Now it follows from Theorems 1.3 and 2.3 that fmx

(Qn) = mx(Qn) = 1. 2
The following theorem gives a realization result for the parameters fmx

(G), mx(G) and

m+
x (G).

Theorem 2.17 For any three positive integers a, b and c with 2 ≤ a ≤ b ≤ c, there exists a

connected graph G with fmx
(G) = a, mx(G) = b and m+

x (G) = c for some vertex x in G.

Proof For each integer i with 1 ≤ i ≤ a − 1, let Fi : u0,i, u1,i, u2,i, u3,i be a path of order

4. Let C6 : t, u, v, w, x, y, t be a cycle of order 6. Let H be a graph obtained from Fi and C6 by

joining the vertex x of C6 to the vertices u0,i and u3,i of Fi(1 ≤ i ≤ a− 1). Let G be the graph

obtained from H by adding c− a new vertices y1, y2, · · · , yc−b, v1, v2, · · · , vb−a and joining each

yi(1 ≤ i ≤ c − b) to both u and y, and joining each vj(1 ≤ j ≤ b − a) with x. The graph G is

shown in Figure 2.3.
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Let S = {v1, v2, · · · , vb−a} be the set of all simplicial vertices of G. For 1 ≤ j ≤ a − 1,

let Sj = {u1,j, u2,j}. If b = c, then let Sa = {u, v, t}. Otherwise, let Sa = {u, v}. Now, we

observe that a set Sx of vertices of G is a mx-set if Sx contains S and exactly one vertex from

each set Sj(1 ≤ j ≤ a) so that mx(G) ≥ b. Since S
′

x = S
⋃ {u, u1,1, u1,2, · · · , u1,a−1} is an

x-monophonic set of G, we have mx(G) = b.

Now, we show that fmx
(G) = a. Let Sx = S

⋃ {u, u1,1, u1,2, · · · , u1,a−1} be a mx-set of G

and let Tx be a minimum x-forcing subset of Sx. Since S is the set of all x-monophonic vertices

of G and by Theorem 2.8, fmx
(G) ≤ mx(G) − |S| = a.
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If |Tx| < a, then there exists a vertex y ∈ Sx such that y /∈ Tx. It is clear that y ∈ Sj for

some j = 1, 2, · · · , a, say y = u1,1. Let S
′

x = (Sx − {u1,1})
⋃ {u2,1}. Then S

′

x 6= Sx and S
′

x is

also a minimum x-monophonic set of G such that it contains Tx, which is a contradiction to Tx

a minimum x-forcing subset of Sx. Thus |Tx| = a and so fmx
(G) = a.

Next, we show that m+
x (G) = c. Let Ux = S

⋃ {u1,1, u1,2, · · · , u1,a−1, t, y1, y2, · · · , yc−b}.
Clearly Ux is a minimal x-monophonic set of G and so m+

x (G) ≥ c. Also, it is clear that every

minimal x-monophonic set of G contains at most c elements and hence m+
x (G) ≤ c. Therefore,

m+
x (G) = c. 2

The following theorem gives a realization for the parameters fmx
(G), mx(G) and cmx(G).

Theorem 2.18 For any three positive integers a, b and c with 2 ≤ a ≤ b < c, there exists a

connected graph G with fmx
(G) = a, mx(G) = b and cmx(G) = c for some vertex x in G.

Proof We prove this theorem by considering three cases.

Case 1. 2 ≤ a < b < c.

For each integer i with 1 ≤ i ≤ a − 1, let Fi : y1, u1,i, u2,i, y3 be a path of order 4. Let

Pc−b+2 : y1, y2, y3, · · · , yc−b+2 be a path of order c − b + 2 and let P : v1, v2, v3 be a path of

order 3. Let H1 be a graph obtained from Fi(1 ≤ i ≤ a − 1) and Pc−b+2 by identifying the

vertices y1 and y3 of all Fi(1 ≤ i ≤ a − 1) and Pc−b+2. Let H2 be the graph obtained from

H1 and P by joining the vertex v1 of P to the vertex y2 of H1 and joining the vertex v3 of P

to the vertex y3 of H1. Let G be the graph obtained from H2 by adding b − a new vertices

z1, z2, ..., zb−a and joining each zi(1 ≤ i ≤ b− a) with the vertex yc−b+2. The graph G is shown

in Figure 2.4.
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Let x = y2 and let S = {z1, z2, · · · , zb−a} be the set of all simplicial vertices of G. For

1 ≤ j ≤ a − 1, let Sj = {u1,j, u2,j} and let Sa = {v2, v3}. Now, we observe that a set Sx of
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vertices of G is a mx-set if Sx contains S and exactly one vertex from each set Sj(1 ≤ j ≤ a).

Hence mx(G) ≥ b. Since S
′

x = S
⋃ {v2, u1,1, u1,2, · · · , u1,a−1} is an x-monophonic set of G with

|S′

x| = b, it follows that mx(G) = b.

Now, we show that fmx
(G) = a. Let Sx = S

⋃ {v2, u1,1, u1,2, ..., u1,a−1} be a mx-set of G

and let Tx be a minimum x-forcing subset of Sx. Since S is the set of all x-monophonic vertices

of G and by Theorem 2.8, fmx
(G) ≤ mx(G) − |S| = a.

If |Tx| < a, then there exists a vertex y ∈ Sx such that y /∈ Tx. It is clear that y ∈ Sj for

some j = 1, 2, · · · , a, say y = u1,1. Let S
′

x = (Sx − {u1,1})
⋃ {u2,1}. Then S

′

x 6= Sx and S
′

x is

also a minimum x-monophonic set of G such that it contains Tx, which is a contradiction to Tx

an x-forcing subset of Sx. Thus |Tx| = a and so fmx
(G) = a.

Clearly, S
⋃ {v3, u2,1, u2,2, · · · , u2,a−1, y3, y4, · · · , yc−b+2} is the unique minimum connected

x-monophonic set of G, we have cmx(G) = c.

Case 2. 2 ≤ a = b < c and c = b + 1.

Construct the graph H2 in Case 1. Then G = H2 has the desired properties (S is the

empty set).

Case 3. 2 ≤ a = b < c and c ≥ b + 2. For each i with 1 ≤ i ≤ a − 1, let Fi : y1, ui,1, ui,2, y3

be a path of order 4. Let Pc−a+1 : y1, y2, y3, · · · , yc−a+1 be a path of order c − a + 1 and let

C5 : v1, v2, v3, v4, v5, v1 be a cycle of order 5. Let H be a graph obtained from Fi and Pc−a+1

by identifying the vertices y1 and y3 of all Fi(1 ≤ i ≤ a − 1) and Pc−a+1. Let G be the graph

obtained from H by identifying the vertex yc−a+1 of Pc−a+1 and v1 of C5. The graph G is

shown in Figure 2.5. Let x = y2.
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For 1 ≤ j ≤ a − 1, let Sj = {u1,j, u2,j} and let Sa = {v3, v4}. Now, we observe that a set

Sx of vertices of G is a mx-set if Sx contains exactly one vertex from each set Sj(1 ≤ j ≤ a)

so that mx(G) ≥ a. Since S
′

x = {v3, u1,1, u1,2, · · · , u1,a−1} is an x-monophonic set of G with

|S′

x| = a, we have mx(G) = a.
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Now, we show that fmx
(G) = a. Let Sx = {v3, u1,1, u1,2, · · · , u1,a−1} be a mx-set of G and

let Tx be a minimum x-forcing subset of Sx. Then by Theorem 2.3, fmx
(G) ≤ mx(G) = a.

If |Tx| < a, then there exists a vertex y ∈ Sx such that y /∈ Tx. It is clear that y ∈ Sj for

some j = 1, 2, · · · , a, say y = u1,1. Let S
′

x = (Sx − {u1,1})
⋃ {u1,2}. Then S

′

x 6= Sx and S
′

x is

also a minimum x-monophonic set of G such that it contains Tx, which is a contradiction to Tx

an x-forcing subset of Sx. Thus |Tx| = a and so fmx
(G) = a.

Let S = {v2, v3, u2,1, u2,2, · · · , u2,a−1, y3, y4, · · · , yc−a+1}. It is easily verified that S is a

minimum connected x-monophonic set of G and so cmx(G) = c. 2
Problem 2.19 For any three positive integers a, b and c with 2 ≤ a ≤ b = c, does there exist

a connected graph G with fmx
(G) = a, mx(G) = b and cmx(G) = c for some vertex x in G?
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