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s o l u t i o n  o f  

I~  

I n t r o d u c t i o n  and s u m m a r y .  

W e  h a v e  u n i t e d  i n  t h i s  p a p e r  a s e r i e s  o f  c o n t r i b u t i o n s  t o w a r d s  t h e  

v a r i o u s  o u t s t a n d i n g  q u e s t i o n s  i n  t h e  A n a l y t i c  T h e o r y  o f  N u m b e r s .  

Some of t he  r e su l t s  of wh ich  t h i s  m e m o i r  con ta ins  t he  first full account  have  a l ready 
been  s ta ted  shor t ly  and  incomple te ly  in t h e  fol lowing notes  and  abstracts .  

G. H. HARDY: (I) 'On t he  zeros of R1F.MA~S'S Zeta  funct ion ' ,  Prec. London Math. Soc. (records 
of p roceed ings  at  meetings),  ser. 2, vol. I3, i2 March  1914, p. xxlx; (2) 'Sur les z6ros de la fonc- 
t ion  ~(s) de RIE~A~s', Comptes Rendus, 6 April  I914. 

J.  E. L1TTLZWOOD: 'Sur  la d i s t r i bu t ion  des  nombres  p remiers ' ,  Comptes Rendus, 22 J u n e  1914. 

G. H. HXRDY and J.  E. LITTLEWOOD: (I) 'New proofs  of the  p r i m e - n u m b e r  t heo rem and  
s imi la r  theorems ' ,  Quarterly Jou~al, vol. 46, I975, pp. 215--219; (2)'On t he  zeros of the  RXZ~A~N 
Zeta-funct ion '  and  (3) 'On an  asser t ion  nf TSCH~.BYSCH~F', -PrOC. London Math. Soc. (records etc.), 
ser:  2, vol. 14, I915, p. xlv. 

The  sections,  paragraphs ,  and  fo rmulae  con ta ined  in th i s  m e m o i r  are  n u m b e r e d  accord_ 
ing to the  decimal  sys tem of P~Aso, t he  aggregate  of n u m b e r s  employed  fo rming  a se lect ion 
of t he  ra t iona l  n u m b e r s  a r r anged  in o rder  of magn i tude .  T h u s  eve ry  n u m b e r  occurr ing  in t he  
first  sec t ion  begins  wi th  1; t he  first  p a r a g r a p h  is I. I and  t he  first  fo rmula  of the  f irst  para-  
g r a p h  L X]. The  second would na tu ra l ly  be  i. I2; bu t  here  four  formulae  occur w h i c h  are par- 
allel  for t he  purposes  of our  a rgumen t ,  and  so t he se  are  numbere ,  d I. I2I, I. I2z, I. 123 and  I. 124. 

In  a long and  compl ica ted  m e m o i r  such  as this ,  P~Aso's sys tem has  many  advantages .  
I t  enab les  t he  au tho r ,  in  t he  process  of rev i s ion  of h i s  work, to dele te  or inse r t  fo rmulae  w i t h o u t  
ser ious  i n t e r f e r e n c e  w i th  the  n u m b e r i n g  of t h e  r e m a i n d e r ;  and  it  enab les  t h e  reader  to d iscover  
any  fo rmula  r e f e r r ed  to wi th  the  m i n i m u m  of t rouble .  
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O u r  a n s w e r s  to  t h e s e  q u e s t i o n s  a r e  n a t u r a l l y  t e n t a t i v e  a n d  f r a g m e n t a r y .  T h e  

i m p o r t a n c e  a n d  d i f f i c u l t y  of  t h e  p r o b l e m s  dea l~  w i t h  s h o u l d  b e  a su f f i c i en t~apo-  

l o g y  fo r  t h e  i n c o m p l e t e n e s s  a n d  m i s c e l l a n e o u s  c h a r a c t e r  of  t h e  r e s u l t s .  

W e  beg in ,  in s e c t i o n  2, b y  c o n s i d e r i n g  s o m e  a p p l i c a t i o n s  to  t h e  t h e o r y  of  

p r i m e s  of  t h e  f o r m u l a  

x + i o o  

2 i F ( s ) y - ' d s = e - y ,  ( x > o , ~ R ( y ) > o )  

of CAHEN a n d  MELLIN, 1 a f o r m u l a  w h i c h  seems  n o t  u n l i k e l y  to  p l a y  a m o r e  

p r o m i n e n t  p a r t  in  t h e  T h e o r y  of  N u m b e r s  t h a n  h a s  b e e n  a s s i g n e d  to  i t  h i t h e r t o .  

U s i n g  t h i s  f o r m u l a  in c o m b i n a t i o n  w i t h  s o m e  of  t h e  ' T a u b e r i a n '  t h e o r e m s  w h i c h  

we  h a v e  p r o v e d  in a se r i e s  of  r e c e n t  p a p e r s  in t h e  Proceedings o/ the London 

Mathematical Society a n d  e l s e w he re ,  we a r e  a b l e  ( in  2. I )  to  d e d u c e  n e w  t h e o r e m s  

as  to  t h e  c o n v e r g e n c e  of  D i r i c h l e t ' s  se r i e s  of  t h e  m o s t  g e n e r a l  t y p e ,  f r o m  w h i c h  

fo l low as  c o r o l l a r i e s  such  r e s u l t s  a s  

(1. 121) ~(x) o~ ., 

(I. 122) M(x) = o(x), 

( r .  123) ~_~tl~ ) = o ,  

a l l  of  w h i c h  a r e  k n o w n  t o  b e  e q u i v a l e n t  2 t o  t h e  ' P r i m e  N u m b e r  T h e o r e m  ' s  

CaH~, Th~se, Paris, 1894 , and Annales de l'l~cole Normale Suj~rieure, ser. 3, vol. I i ,  1894 , 
PP- 75--164 (P. 99); Mm.LIN, Acta Societatis Fennicae, vol. 2o, x895 , no. 7, pP- 1--39 (P. 6), and 
Math. Annalen, vol. 68, i91o , pp. 5o5--337. 

t By this we mean that, from any one of these results, all the rest can be deduced by 
elementary reasoning which involves no appeal to the theory of functions of a complex vari- 
able. That (I. I2I), and (I. 124) are equivalent in this sense was shown by De L* VALLE~.-PovssI~ 
(Annales de la Soeidt~ Scientifiquc de ~Bruxelles, vol. 20, part  2, 1896 , pp 3(x>---361 ). The deduction 
of (i. 122) from~ i23) is of a very simple character: that of 0.  123) from (~. I22) was first made 
by A x ~  (Praee Matematyezno-Fizyczne, vol. 2I, i91o , pp. 65--95). That (I. I23) follows from (I, I2I) 
was shown by LxxDXU (Dissertation, Berlin, x899), and the converse deduction is also due to 
him (Wiener Sitzungsberiehte, v.ol. II5, 1906, pp. 589--632). 

a We append the following definitions for the benefit of readers who may not be familiar 
with the notations usual in the Analytic Theory of Numbers. 

(I) f (x)  -- O (? (x)) means that a constant K exists such that I f l  < K ? .  
(2) f ( x ) =  o(?(x))means that 

lira ~ ) - - - -  o 

when x tends to ~ ,  or to whatever l imit  may be in question. 
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(I. 124) / /(z) so log z" 

In 2.2 we obtain an explicit formula for the function 

o~ 
(I .  13) F (y) = ~ ( . , / / ( n ) - -  I)  * - n Y  ( 2  (y) > o),  

1 

from which we deduce that,  assuming the hypothesis of RXEMAI~N as to the 

zeros of ~ (s), 

(I. 141) F (y) =0 V~ 

as y - * o ,  while a positive constant K exists, such tha t  each of the inequalities 

(1.14 2 ) F ( y ) < - - K  I ,  F ( y ) > K  I 

is satisfied for an infinity of values of y tending to zero. From this follows as 

a corollary the theorem of SCHMIDT 1 which asserts the existence of a K such tha t  

each of the inequalities 

( r.  143 ) ~p (x)  - -  x < - -  K V x ,  ~p (x)  - -  x > K i/zx 

is satisfied for an infinity of values of z tending to infinity. 

i t  should be observed, however, that  our method does not enable us to 

prove the wider inequalities 

(1.15) ~p(x)-- z < - - x  ~  ~p(x)-- x > z ~  

(3) p(n)----(--i~1 if n is a product of q different primes, and is otherwise zero. 
(4) A (n) ---- log p if n = p r n ,  and is otherwise zero. 

(5) ~r(x) = ~ ( n )  
n < z  

(6) ~(x) = ~ A (,) 
n < z  

(7) H (x) is the  number  of primes less than  or equal to x. 

, Math. Annalen, vol. 57, x9oL PP- 195--204; LAZ~VAu, ttandbueh, iap. 7It e~ seq. Natural ly  
our argument  does no t  give so large a value of K as SCHMXDT'S. The actual inequali t ies proved 
by SCHMmT are not  the inequali t ies (I. 143) bu t  the substant ia l ly  equivalent  inequali t ies (1.51). 

~4eta malhematlea. 41. Imprtm~ le 9 juiu 1917. 1~ 
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which hold when the  upper  l imit  (9 of the  real par ts  of the  zeros of ~(s) is 

greater  than  I .  Nor does it seem possible, in the present  s ta te  of our know- 
2 

ledge of the propert ies  of ~(~), to give a sa t i s fac tory  proof of the explicit for- 

mula  for 

] ( y ) = ~ , ( n ) e - " v  

which corresponds to tha t  which we find for the funct ion (I. 13). 

I.  2. In 2.3 we are concerned with a s t a t emen t  made by TSCH~.BYSCH~-F 1 in 

x853, of which no proof of any  kind has ye t  been published. TSCH~.BYSOrlZF asserts 

t h a t  the  funct ion  

p + l  
F ( Y ) = e - S v - - e - S V + e - T v  + e - l t v  . . . . . . .  2 ( - - )  2 e - - p y  

tends  to inf ini ty  as y--*o. We prove t h a t  this result  is t rue  if all the complex 

zeros of the funct ion 

( I .  21 )  L(s)  = i - ' - - 3 - ' - 1  - 5 - "  . . . . . . . .  ( a >  o) 

have their  real par t  equal to I .  There seems to be li t t le doubt  tha t ,  if this 
2 

assumption is false, then  TSCHEBYSCHEF'S assert ion is also false, bu t  this we have 

no t  succeeded in proving rigorously. The difficulties which have debarred us 

f rom a proof are of the same na tu re  as those which have prevented  us from 

deducing the inequalit ies (i.  15) from our explicit  formula for the funct ion (I. 13). 

In  2.4 we prove tha t  

( I .  22 )  

T 

2 T  log T 

a s  :T --,- c,o. 

(r. 23) 

The me thod  used may  be adap ted  to show t h a t  

T 
T2_28 

, + i t ) I ' d t  

- - T  

1 TSCHEBYSCHEF, Bulletin de l'Aead2mie Impdriale des Sciences de St. Petersbourg, vol. ~I, 
18~3, p. 2o8, and Oeum'es, vol. i, p. 697; LANDXtr, Rendieonti di Palermo, vol. 24, I9o7, pp. I55--I56. 
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if fl < ~; bu t  there  is no th ing  essential ly new in this last  formula,  as i t  follows 

f rom the funct ional  equa t ion  satisfied b y  ~(8) and  the known resul t  

T 
f ~  

_~! l~(fl + i t ) ] i d t ~ z ~ ( z f l ) T ,  

where fl > I_. 1 
2 

We conclude this section by  not ic ing a remarkab le  formula,  the  form of 

which was suggested to  us b y  an observa t ion  of Mr S. RAMA~trza~r. We are  

unable  to give a sa t i s fac tory  proof  of this formula,  b u t  it seems to  us well 

wor thy  of a t t en t ion .  I t  is i n t ima te ly  connec ted  wi th  an  express ion of the  rune- 

�9 I 
t m n ~ a s  a def ini te  integral ,  which is due  to  MARC~.L RIESZ. s 

I.  3. In  section 3 we a r e  concerned  with the  series 

where a , x ,  and z are real,  and r is a complex zero of ~(s). Our  objec t  is to  

ob ta in  resul ts  for  this series similar to  those ob ta ined  by  LANDXU s for the  

s impler  series 

~ X 0 , 

and  our  main a rgumen t  is an adap ta t ion  of his. 4 The  results  of this s ec t i o n a re  

simplified in form if we assume the  t r u t h  of the I~IEMA~r~ hypothesis .  Wri t ing  

I_+ i7 for r and  confining ourselves  to  the  zeros for  which 7 ) o ,  series of the  
2 

t ype  (r. 3r) are found to be subs tan t i a l ly  equ iva len t  to  series of the  t y p e  

(i. 32) ~ 7-~e "i~~ 

where a , 0 ,  and  ~o are real  and  the first  two posi t ive.  Our pr incipal  resul t  is t h a t  

i LA~vAu, ttandbuch, p. 816. 
Acta Mathematica, vol. 4o, 1916, pp. I85--19o. 

8 Math. Annalen, vol. 7 I, 1912, pp. 548--564. 
' The idea which dominates the critical stage of the argument is also LANvxu's, but is to 

be found in another of his papers ('(~ber die Anzahl der Gitterpunkte in gewissen Bereichen', 
Gfttinger Nachrichten, 1912 , pp. 687--77i , especially p. 7o7, Hilfsatz Io). 
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(z. 33) 
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0<r<T 

this result is trivial if a > I ,  but otherwise significant. The apparent  dependence 

of the order on a is curious, and we are disposed to believe tha t  it does not 

really correspond to the truth,  and that  the order is really 0 (T 2§ for all 

values of a and all positive values of d. But this we are unable to prove. 

I. 4. Section 4 is devoted to a closer s tudy than has yet  been published 

I 
of the zeros of the Zeta-function which lie on the line a = - .  That some such 

2 
zeros exist was first shown by GRAM, ~ and the later investigations of DE LA 

VALL~Ig-PoussIN, (]RAM, 1 LINDELSF, t and ]3ACKLUND 1 have shown that  there are 

exactly 58 on the line 

({ I + iooi) - - i o o i ,  ~ ., 

and no other complex zeros between the lines t-------ioo, t =  ioo. In other 

words the function ~(t) of RXP.MANN has exactly 5 8 real zeros b e t w e e n - - x o o  

and IOO, and no complex zeros whose real part  lies between these limits. 

I t  was shown recently by HARDY l that  ~(t) has an infinity of real zeros. 

The method of proof depended on the use of (i) the CAHE~-M~.LLIN integral and 

(ii) a lemma relating to the behaviour of the series 

O3(o, ~) = i + 2 ~ q  n' 

when q tends in a certain manner to the p o i n t -  I on the circle of convergence. 

The proof given by HARDY was materially simplified by LANDAU/ who showed 

tha t  no property of the 0-function was needed for the purpose of the proof 

except the obvious one expressed by the equation 

V I O A o , ~ ) = O  I - - I q l  

I See GRAM, Acta Matl~matica, vol. 27, 19eL pp. 289--3o4; LINDELOF, Aeta Societatis Fennicee, 
vol. 31, 1913, no. 3; BACKLUND, Ov~rsifft af  Finska VetenskapSocietetens F~'handlingar, vol. 54, 
19Ix--z2, A, no. 3; and further entries under these names in LAxvxc's bibliography. 

Comptes Rendus, 6 April, I914. 
s Math. Annalen, vol. 76, 1915, pp. 212--243. 
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LANDAU also extended the proof so as to apply to the functions defined by the 

series 
 x(n) g ; '  

where Z(n) i s  a 'character to modulus k', 1 and in particular to the function 

(x. z~). He also proved tha t  there is a zero of ~(t) between T and T ~+~, for all 

positive values of d and all sufficiently large values of T. From this it follows 

tha t  the number No(T)  of zeros between I and T is of the form 52 (log log T). 2 

The original proof given by HAaDY made use of two parameters a and i0; 

and our first idea, for obtaining a more precise result, was to treat  a and io as 

functions of one another. The result indicated by our investigations was tha t  

of the existence of a zero between T and T +  T ~+~ for any positive d and all 

sufficiently large values of T. This would prove tha t  

But  this proof has never been completed, as we ale now able to prove, by an 
1 

entirely different method, that  there is a zero between T and T ~ *~ for any 

positive c~ and all sufficiently large values of T.  This shows tha t  

(r. 4*) 

Our proof of this result is now free from any reference either to the CAHE~- 

Mm~Itr integral or to the theory of elliptic functions. 

We have entertained hopes of showing, by a modification o~ our argument, tha t  

No(T) = ~(TI-~). 

But our a t tempts  in this direction have so far been unsuccessful. 

I. 5- Finally, Section 5 contains a full demonstration of a result given still 

more recently, with an outline of the proof, by LITTLEWOOD2 I t  follows from 

the investigations of SCnmDT, already referred to in I. I, tha t  the inequalities 

(I. I43), or the substantially equivalent inequalities 

z See :LANDAU, Handbuch, pp. 4o1 et seq. 
For an explanation of this notation see our paper 'Some Problems of Diophantine Ap- 

proximation (II)', Acta Mathematica, vol. 37, PP- I93--z38 (P. zz5). 
Uom2tes Rendus, 2z Juno x9x 4. 
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are each satisfied by values of x which surpass all limit. I t  is shown here that  

these last inequalities may be replaced by 

(1.5 2 ) I I ( x ) - - L i x < - - K  V ~ l ~ 1 7 6 1 7 6  H ( x ) _ _ L i x > K V X l ~ 1 7 6 1 7 6  x 
log x ' log x 

From the second bf these inequalities it follows, in particular, that  the relation 

(I. 53) H(X) < L i x ,  

which has been regarded, for empirical reasons, as probably true, is cer- 

tainly false. 
The supposed inequality (I. 53) is, as has been shown by  GAuss, C~OLD- 

SCHM~DT, GnAM, PX~RAOM~N and MEISSEL, 1 supported by evidence drawn from 

the distribution of the prime numbers less than i,coo,ooo,ooo. The difference 

H ( x ) - - L i x  contains (to put  the mat ter  roughly) a term - - X - L i V x  and an 
2 

oscillating term of order not less than Vx log log logx  which is of course of 
log x 

higher order than the former term. But  the increase of log log log x is exceedingly 

slow; thus 

log log log io,ooo,ooo,ooo ~ I" 143"";  

and it is not surprising, therefore, that  the term of constant sign should exert 

a preponderating influence throughout  the limits within which calculation is 

feasible. 
The question arises as to whether the function log log log x can be replaced 

by any more rapidly increasing function, The method which we use, depending 

as it does on KRO~ECK~R'S theorems concerning Diophantine Approximation, has 

a certain analogy with that  by which BOaR proved that  ~ ( i + t i )  is not bounded 

for t > i .  ~ In that  case the conclusion is that  ~ ( I + t i )  is sometimes of order as 

great as log log t; and LITTLEWOOD s has shown that  (on the RmMA~N hypothesis) 

(I + ti) = 0 (log logt log log log0  

See the references in LANDAU'S bibliography, and LEHMER'S List of prime numbers .from 
i to so, oo6,72z (WashingtGn, ~914). 

BOHR and I,ANDAU, GOttinger Nachrichten, I91o, pp. 303--~3o. 
8 Com~tes Rendus, 29 Jan. I<)I2. 
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so tha t  the conclusion is certainly very nearly the best possible of its kind. I t  

is quite possible that  this may be true also of the inequalities (I. 52); but we 

are naturally not prepared to express any very definite opinion on the point. 

I t  may be remarked in this connexion tha t  BoHa and LANDAU 1 ]lave shown that,  

on the RI~.MA~ hypothesis, the true maximum order of 

~' (~ + ti) 
(I + ti) 

is exact~ly log log t. 

The method used in this section is capable of application to other import- 

ant  problems. I t  may be used, for example, to show that  if 

r e ( p - - l )  

~0,(x) -- ~ ( - -  i) ~ logp  
p m  <~ x 

then sequences of values of x exist for which ~i(x) tends either to co or t o - - o o ,  

and indeed as rapidly as 

Vx-log log log x; 

and that,  if H~(x) denotes the excess of primes not greater than x and of the 

form 4 n +3  over those not greater than x and of the form 4 n + I ,  then sequences 

of x exist for which H~(x) tends either to co or to --  or and indeed as rapidly aw 

Vx log log log x 
log x 

This result is of particular interest when considered in connection with those of 

2 .3 .  I t  is known that  (to put the mat ter  roughly) the distribution of primes 

4 n + 3 is in some senses denser than that  of primes 4 n + I .  Our results confirm 

and elucidate this vague statement, and show in what senses it is true and in 

what senses false. ~ 

2~ 

Some applicat ions of  the  integral  of  Cahen and Nellin. 

2. I .  

The prime number theorem and, allied theorems. 

2. II .  The investigations of this part  of the paper will be based upon cer- 

tain known results which we state in the form of lemmas. 

1 Math. Annalen, voh 74, 1913, pp. 3--30. 
Compare LAND~V, Math. Annaleu, vol. 6i, 19of, pp. f27- - i io .  
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L e m m a  e. r1i .  11 z > o,  ~ ( y ) >  o, and y - *  has its principal value, then 

u + i m  

& j  . e - Y =  F ( s ) y -  ds .  
* 

Lemma  e. l z z .  

and (ii) the integral 

This  is the  CAHEI~I-MELLIN integral .  

I1 (i) F ( a  + ti)  is a continuous lunetion ol the real variable t 

is convergent, then 

J l F ( a  + t i)  ld t  

x*i F (a  + t i )d t  ~ o 

- - o 0  

a s  x - - * o  o f  x - - . . . o o .  

This  resul t  is due to W~YL; it is a general ized form of a theorem of LAND-aU. l 

Lemma z. H3.  Let a be a positive number (or zero), and (Z,,) an increasing 

sequence such that Zn"-" ~ ,  ~ _  ~ x; and suppose that 

(i) a ,  is real and satis/ies one or other o] the inequalities 

a,, > - -  KI~-I(Z,~ - -  ) . , -1 ) ,  a,, < K Z ~ - l ( 2 n  - -  )~n-t), 

or is complex and o[ the [orm 

(ii) the series 

is convergent lot  y > o, and 

as y - - .  o. Then 

as n - - .  ~ . 

o{~- ' (~--  z,._~)}; 

/ (y)  ~ z~ane 

] (y)c~ A y  - a  

A ~  
A,, = a ,  +a2  + . . . . . . . .  + a,, c'o,~, I * ~  + a )  

See LAsDxu, Pracr ~la tematyczno-Fizycznr  vol. zl ,  p. I7o. 



The Riemann Zeta-function and the theory of the distribution of primes. 129 

Th i s  l e m m a  is e q u i v a l e n t  to  T h e o r e m s  D, E ,  a n d  F of o u r  p a p e r  'Some  

t h e o r e m s  c o n c e r n i n g  DIRIC~LET'S ser ies ' ,  r e c e n t l y  p u b l i s h e d  in  t he  Messenger o] 

Mathematics. 1 

2.12.  T h e o r e m  2. 12. Suppose that 

(i) the series ~.a,,Z~ "8 is absolutely convergent /or a >  a o > o, 

(ii) the /unction F(s)  de/ined by the series is regular/or a > c, where o < c < ao, 

and continuous /or a > c, 

(iii) F(s) = 0 (e CIt I), 

where C <-I-z ,  uni]ormly /or (~ > c. Then the series 
2 

/(y)=~ane-~.v 

is convergent /or all positive values o/ y ,  and 

as y ~ o .  

W e  h a v e  

(2, I 2 I )  e -) 'ny = J'.: 

/ (y) = o (y - ~) 

u+i~v 

if y > o ,  x > o ,  a n d  so 

(2. ~22) 

x+i~ 

t Vol. 43, I914, PP. I34--I47. If an satisfies tile second form of condition (i), the series 
f(y) is necessarily convergent (absolutely) for y > o, so that the first clause of condition (ii) is 
tnen unnecessary. 

There are more general forms of this theorem, involving functions such as 

1 a~ log { .  ~  . . . . . . .  , 

which we have not troubled to work out in detail. 
The relation f(y) c~ Ay--a in condition (ii) must be interpreted, in the special case when 

A----o, as meaning f (y )= o(y-a); and a corresponding change must be made in the con- 
clusion. 

Acts mathematica. 41. Imprim6 le 9 juin 1917. 17 
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if y :>o ,  • >a~, the term by te rm integrat ion present ing no difficulty.  

of the conditions (ii) and (iii) we may  replace (2. i22) by 

In vir tue 

(2. I22I) 

c + i ~  

I F /(y) = ~ - ~ /  ( s ) y - ' F ( s ) d s  

r  

The result  of the theorem now follows a t  once f r o m  Lemma 2. II2.  

Theorem 2. 121. l /  the conditions (i). (ii), and (iii) o/ Theorem 2. 12 

it, 
are satisfied, (iv) ~ ~ I ,  and (v) an is real, and satisfies one or other o/ the 

inequalities 

__ Kit c-1 an~> n (itn--itn--i) ,  On< KitCn - I ( i t n - i t n - 1 ) ,  

or is complex and o/ the /orm 

~.e - -1  0~,. (X.-- X._~)}; 

then 

An ----- at + a,. § . . . . . . .  + a,~ = o(it~ ). 

This theorem is obviously a direct  corollary of Theorem 2.12 and  L e m m a  

2. H 3. 
Suppose in par t icular  t h a t  ~(~=n,  an = e l ( n ) ,  and  c = I .  Then 

and all the condit ions of 

well-known formula 

which is (I. I22). 

n "  = ~ ' ( s ) '  

T h e o r e m  2. 121  are s a t i s f i e d .  

~,(~)=o(n), 

H e n c e  w e  o b t a i n  t h e  

t T he  a r g u m e n t  is so much  like t h a t  of LANDAU (Prace Matematyczno.Fizyezne, vol. 2i, 
pp. 17] et seq.) t ha t  i t  is ha rd ly  wor th  whi l e  to se t  i t  ou t  in detail .  W e  apply  CAVCH~'S 
T heo r em  to the  rec tangle  

c - - i T ,  z - - i T ,  z + i T ,  c + i T ,  

a nd  t h e n . s u p p o s e  t h a t  T ~ .  
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2.13. The theoreme of 2. i2 do not furnish a direct proof of (1 .121)or  

(I.123). In order to obtain such a proof of (i. I23) we must  frame analogues 

of Theorems 2. 12 and 2. 121 which are applicable when c ~ o. 

Theorem 2.13. Suppose that (i) the conditions (i), (ii), and (iii) o/ Theorem 

2.12, and the conditions (iv) and (v) o/ Theorem 2, 121, are saris/led, with c = o ;  

(ii) that the /unction F(s) is regular /or s = o. Then the series 2a,~ is convergent 

and has the sum F(o). 

The proof differs but  slightly from that  of Theorem 2. 121. Instead of 
(2.1221) we have  the equation 

(2.13I) p(o)+ 

where tile path of integration consists of (a) the imaginary axis from - - i ce  to 

--i t?,  (b) a semicircle described to the left on the segment of the axis from--ic~ 

to i~, and (c) the axis from id to ice. That  the rectilinear part  of the integral 
tends to zero follows substantially as before. Also 

f r(s)y-sF(s)d, = y - i o r ( i 3 )  F(id) - -  yiOF (-- iO) F ( - -  i3) 
I 

-- i , y y -  ~ { l ' ( s ) F ( s ) } d s  = 0 = o(i) .  
log I~)r ( ' Y '  

Thus / ( y ) , . F ( o )  as y ~ o ,  and so, by Lemma z. zz3, ~ a n = F ( o ) .  
The conditions of the theorem are satisfied, for example, when 

t , (n)  1 
~ n = n ,  a n - -  , c = o ,  F ( s )  

n ~(s + i)  

Hence the equation (I. 123) follows as a corollary. 

2.14. In order to obtain the equation (i. i2I) ,  and so the prime number 

theorem, we require a slightly different modification of Theorem 2. 121. 

Theorem 2.14. Suppose that the conditions o/ Theorems 2.12 and 2. 121 
are satis/ied, except that F(s) has a simple pole at the point s = c, and that the 

residue at the pole is g. Then 
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~C g ~  
An =a~ + az + . . . . . .  +an c~ - - .  

C 

The formula (2. I3t) is in this ease replaced by 

(z. I4I) ](y) --: .ql'(c)y-~ + 2 ~ J l ' ( s ) y - * F ( s ) d s ,  

where the path of integration is of a kind similar to that  used in the preceding 

proof. Practically the same argument gives tile result 

/ (y)  ~ gl"(c)y -~ ,  

and .from this, and Lemma 2. H 3, the theorem follows at  once. 

If we take 

~'(s) 
)~,, ~ n ,  a n  = A ( n ) ,  c ~ -  I ,  F ( s )  = - -  ~ ( s )  ' 

we obtain (I. I2I). 

2. I5. We add some further remarks in connection with these theorems. 

(i) Theorem 2.14 may be regarded as a generalisation of a theorem of LAN- 

DAU, ~ to which it reduces if we suppose tha t  a , , > o ,  that  F(s) is regular on the 

line a = c ,  and that  the equation F(s)=O(eCl tl) is replaced by F ( s ) =  O(It]K). 
In his more recent paper already referred to 2 LANDAU generalizes the sec- 

ond of these hypotheses in the case in which the series for F(s) is an ordinary 

DIRtC~LET'S series, showing tha t  it is enough to suppose that  

lim+oIF(a + ti) 'q l o ~  a + t i - - c  

should exist, uniformly in any  finite interval of values of t. This hypothesis is 

more general than ours, and our result is naturally capable of a corresponding 

generalization, which may be effected without difficulty by any one who compares 

LASDAU'S argument and ours. 

(ii) Theorem 2.121 breaks down when the increase of Zn is too rapid,  for 

example when L~ = e ". I t  is interesting to observe that  in this last case the 

result is still true but is an obvious corollary of familiar theorems. The series 

1 ttandbuch, p. 874. 
I. c. pp. 1-98, 130 (pp. I73 et SCq.). 
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F(s)  is now a power-series in e-~; condition (iii) is satisfied ipso /acto," 
continuity of F(s) for a > c  involves 

and the 

a .e  - h e  = o(i) ,  a .  = o(e"r s .  = o(e"O 

(iii) I t  is a natural conjecture tha t  the occurrence, in Theorems 2. 121, etc., 

of the condition C < I-z (which seems somewhat artificial), is due merely to some 
2 

limitation of t h e  method of proof employed. It  is easy to show, by modifying 

our argument a little, that  this is so. 

Theorem 2. 15. I n  Theorems 2. 121, 2.13, and 2.14, it is unnecessary to 
I 

suppose that C < - z .  2 

Choose a so that  X-za> C. Then we have instead of equations (2. Izx), etc., 
2 

x+iao 

(2. 151)  aI e--(~ny)l/a__ 2 g i I / r ( a s ) ( 2 . y ) - * d s ,  
x--iao 

(2. I5 2 ) I 2 ane--(ZnY);la 
/ (Y) - a 

x +iQa 
2 ~ i j ' I ' ( a s ) y - s F ( s ) d s  = 

x--ioo 
c+io~ 

- - 2 ~ g i / F ( a s ) y - S F ( s ) d s ,  

(2.153) / ( y ) = o ( y - C ) ;  

or, if y l la= ~ and )~/a= Itn, 

(2. I54) 

Now 

a~(,~) = a ~ ~ a . e ' " " "  = O(~- -ac ) .  

1 1 

�9 , " 7 / - ~  ( , " - - -  v - - ~ )  = ~ - 2 ~ -  ~ ( ~  - -  2 . _ ] ) ` 4 ~  
a 

where 2 ._ t  < . 4  < 2,. Thus the ratio 

a t - - 1  ,, 

2~, - I  (~,. - -  2 . - 0  
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lies between fixed positive limits. Thus (e..q.) a = =  0 (;t~,-l(i~--).,-1)} implies 
f ae--1 an ~ - 0  Uc~ (~ln--,ttn-z)}. Hence we can deduce from (2.154) tha t  

( 2 . 1 5 5 )  a ,  = o ( , , : 0  = o(Z,,) .  

It  follows tha t  the t ru th  of Theorem 2. 121 is independent of the condition in 

question; and similar arguments apply to the later theorems. 

2:. 21. 

2 . 2 .  

The /unction ~ { l / ( n ) - -  1}e -"U. 

If 9r and x > 1 ,  we have 

(2. 211) 

x + i ~  

2 

I 
Let q = - - m - - - ,  where m 

2 

Theorem to the integral 

is a positive integer; and let us apply CAVcHY's 

f F(s)y-'~ds, 

taking the contour of integration to be the rectangle 

(q--iT, z--iT, • q+iT), 

T having such a value tha t  no zero of ~(s) lies on the contour. When we make 

T tend to infinity, we obtain the formula 

(2.212) /(y) 

q+i~ 

~as--2R,  
q--lcv 

where R denotes a residue at  a pole inside the contour of integration. 1 

1 The passage front (2.2ii)  to (2. 212) requires in reali ty a diftqcult and delicate discussion. 
I f  we suppress this part  of the proof, it is because no arguments  are required which involve 
the  s l ightest  novel ty  of idea. All the  materials  for the p r o o f a r e  to be found in LAI~D~tI'S 
.Handbueh (pp. 33]--368). But t h e  problem treated there  is considerably more difficult  than 
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If  now m ~ o o ,  q - - . ~  oo, i t  is easy  to p rove  t h a t  the  integral  in (2. 212) 

tends  to  zero. F o r  in the  first  place 

~"(s) 
~(s) - O(log Itl) 

uni formly  for a < - -  12  

we have  

On the o the r  hand,  if y = r e  iO, where z z . . . .  ~ < 0 < -zr., 
2 2 

2 +,,)=(_ i ) ( i )  
m - - - -  + t i  . . . . . . . . .  + t i  

2 2 

/ 
| m !  

q+ioo o o  I c.(1.-o) ()~ ~ - ~ 1  = o  - o .  
. l m ! J  

q - -  l oa  - -  oo  

H e n c e  

(2.213) / ( v )  = - ~ n  

where the  summat ion  now applies to all the  poles of the subjec t  of in tegrat ion.  

These  poles are  

(i) a simple pole  a t  s = i ,  wi th  r e s i d u e -  ~;  
Y 

(ii) a simple pole a t  s = o, with residue ~'(o). 
C(o)' 

(iii) simple poles 

( iv)  simple poles 

s = - -  2p  - -  r being- 

a t  the  points  s ~ Q ,  the residue a t  s = Q  b e i n g / ' ( r  

a t  the  points  s = - - ~ , - - 3 , - - 5 , ' " ' ,  t he  residue a t  

y~p+' C'(--2p--  I). 
(2p+~)! ~(-- z p - -  ~)' 

t h i s  one, i n a s m u c h  as the  in tegra l s  and  ser ies  dea l t  w i th  are  no t  absolu te ly  convergen t .  Here  
e v e r y t h i n g  is absolute ly  convergen t ,  s inco I F ( ~ +  ti)ya+tiI, where  9~(y)> o, t ends  to zero like 
an  exponen t i a l  w h e n  t - - ,  oo. 

LANDAU, Handbuch, p. 336. 
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(v) double poles at  the  points  8 = - - 2 , - - 4 , - - 6 , -  . . . . .  , the  residue a t  

s = - -  2p being 

y~P ~log ( I /  I +  . . . .  + I _ _ A + I ~ " ( - - 2 p ) ~ ,  
(2~,)~t ~ y  + ~ + 2  ~ ~ ' C - ~ J  

where A is EULER'S constant .  

Thus finally 

(2. 214) 

where 

(2.2141) 

I ~ l ' (Q)y-O+( l ) (y ) ,  /(y) = ~ -  

(t) O(y)=O~(y) +y~ log ~ q)2(Y), 

and �9 l(y) and  O~(y) are integral  funct ions of y. 

2.22. On the other  hand  we have 

1 Z e _ n y  
s - -  I 

x+i| 

2:i f V(s)Y-'~(s)ds 
q+i~ 

~--tQo 

The integral  on the r ight  hand side tends t o  zero, when m ~ oo, if l yl < 2~r. For  

and so 

Thus 

(2.22i)  

r ( s )~ ( s )  = ( 2 ~ ) ' s e c - s ~  ~(~--s )  = 0 ( 2 z ) - ~ e  - ~ " " l  , 
2 

~.~ o r J  

,, 1 o n~'tL) ~(--  n).l 

Thi s  is m e r e l y  a n o t h e r  fo rm of the  o rd inary  fo rmula  which  de f ines  B~R~OVLU'S num-  
bers. T h a t  

where  O(y) is a power-ser ies  conve rge n t  for [ y l  < 2g, is of course ev iden t .  



(2. 222 )  
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Sub t rac t ing  (2. 221) f rom (2. 214) we obta in  

F(y) = ~ (_//(n) - -  I ) e - " V  = - -  ~F(e )y -O  + ~V(y), 
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(2. 222I) W ( y ) =  ~Ft(y)+y~log(y)ZP2(y), 

and WI(Y) and  W2(Y) are  power-series conve rgen t  for [ y [ <  2~ .  

2.23. We shall now assume the  t r u th  of the  RIEMANI~ hypo thes i s ,  and 

app ly  the  formula  (2. 222) to  the s t u d y  of F(y) when y - - 0  by  posi t ive values. 

We d e n o t e  the  complex zeros of ~(s) whose imaginary  par t  is posi t ive by 

I I 
2 +i7~'2  +i7~'" .. . . .  , where  7t~<72-- < . . . .  �9 I t  is known t t h a t  

7 t = I 4 - I - ' - ,  7 2 = 2 I ' O . - - ,  ~ 3 - - 2 5 - o  . . . .  �9 

We shall require  some defini te  upper  l imit for 

N ( T  + I ) - -  N(T) 

where  N(T) is the  number  of zeros for  which T < 7 < T + 1. I t  is well-known t h a t  

N ( T + I ) - - N ( T ) = O ( I o g  T); and it  is easy to  replace  this relat ion by  a numer-  

ical inequal i ty ,  such as 

(2.23Xl) N ( T +  1 ) - - N ( T )  < 2-5 log T ;  

all t h a t  is necessary  is to  in t roduce  numer ica l  values for  the  cons tan ts  in the  

a rgumen t  given by  LAI~DAU. j In order  to  p rove  the  relat ion (2. 231I), however,  

compara t ive ly  careful numerica l  calculat ions are needed;  and a much cruder  

inequa l i ty  is suff icient  for  our  purpose.  We shall use the  inequal i ty  

(2.2312) IV(T + 1)---~(T) < 2T, 

in the  proof  of which on ly  the  roughes t  approx imat ions  arc necessary.  

GsAu, l. e. 
Handbuch, pp. 337 et seq. I t  is known that, on the RxmiAss hypothesis, 

2V(T+ I) - -  N(T)  c ~  log T 
2,~ 

(BOHR, LASDAU, LrrTL~WOOD, Bulletins de l'Aeaddmie Royale de Belgique, I9x 3, no. 12, pp. 1--35 ). 
Aeta mathematiea. 41. Impfim6 le 9 juin 1917. 18 
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We now write 

(2. 232) 

where 

Then 

G. H. Hardy and J. E. Littlewood. 

2 F ( q ) y _ O _ _  I 
- -  I/,) (ut + u,' + R), 

+ i y j  y , ,  u~' - -  ~ = zc 

IRI < 2 2 ] / c - ~ - h  7,7r, ' 
lu, I -  ,, v e r b  7+~'r' < 4e'+ " ~  2 e 

! zo I 

~ 4  e ~ ~ e 
r ~ 2 1  r < y ~ r + l  

1 ~o I 
~;qn ~-~ --~-rn 

< 8 e  ~_.~re 
21 

(2. 233) < 24oe_a.4.~< I .  
50 

2.24. 
Theorem 2.24.  Suppose that y ~ o by positive values. 

RI~:MA~r hypothesis true. Then 

F ( y ) :  ~ ( . . 4 ( n ) - - i ) e - " v : O  V y ;  

and there is a constant K such that each o/ the inequalities 

K F(y )  K 

>iV: 
is satisfied /or an inf ini ty  o/ values o/ y tending to zero. 

We can express tiffs by  writing ~ 

F rom (2. 222), (2.232) and (2. 233) we can a t  once deduce 
Further, suppose the 

V (2.24 I) F(y )  = 0 , F(y )  -- ~2L r,  F(y)  = s �9 
Y 

From the second assertion in Theorem 2.24 we can of course deduce as a 
corollary 

i In  our  paper  'Some Prob lems  of l ) i ophan t ine  Approx imat ion ' ,  Acta 3[athematica, vol. 
37, P. 22% we def ined  f--~ O(,~) as mean ing  f #  0(?). The  no ta t ion  aAopted here  is a na tu ra l  
ex tens ion .  
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Theorem 2.241. There is a constant K such that each o] the inequalities 

tp(z) - -  x < - -  K Vx,  tp(x) - -  x > K V x  

is satis/ied /or values o/ x surpassing all l imi t ;  that is to say 

r  - - x -  .o .L'VX),  r  - - x  = P . a ' N x ) .  

This is substantially the well-known result of SCHMIDT. In Section 5 we 

shall show that  it is possible to prove more. 

I t  is known that,  if the RIEMANN hypothesis is false, then more is true than 

is asserted by Theorem 2. 241. In fact, if O is the upper limit of the real parts 

of the zeros of ~(s), and ~ is any positive number, then ~ 

~ ( x )  - x = - q L ( Z  o -  o ) ,  r  - -  x = t - ) . ( x  s -  " ) .  

It seems to be highly probable that  in these circumstances we have also 

F(y )  = .QL(y -~  F (y )  ~ .QR(y-~  

but we have not been able to find a rigorous proof. 

2.25. The equations (2.24I) show that,  if the RIg~AN~ hypothesis is true, 

the function F(y)  behaves, as y ~  o, precisely as might be expected, that  is to 

say with as much regularity as is consistent with the existence of the complex 

zeroes of ~(s). The results which will be proved in Section 5 will show that  this 

is not the case with the corresponding 'sum-function' t p ( x ) -  x. I t  might 
reasonably be expected that  

q J ( x ) - -  x = O ( V x ) ,  qJ (x )  - - z  = n L ~ v ~ ) ,  ~ ( x )  - -  x = n a ( V 5 )  ; 

but the first of these equations is untrue. This being so, an interesting question 

arises as to the behaviour of the corresponding CES),RO means formed from the 

series ~ ( - / / (n ) - - i ) .  The analogy of the theory of FOUaIER'S series suggests that  

they are likely to behave with as much regularity as the function F(y);  and this 

conjecture proves to be correct. 

i SCHMIDT, Math. Annalen, vol. 57, I9o3, PP. 195--2o4; see also LANDAU, Handbuch, pp. 712 
et seq. The inequalities are stated by SOnmDT and LANDAU in terms of l[(x). 
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We shall consider not CES)~RO'S means but the 'arithmetic means' intro- 

duced by MARCEL RI~.SZ. t I t  has been shown by RIzsz ~ that  these means are in 

all substantial respects equivalent to C~-s)mo's; and they have many formal 

advantages over the latter. If 

A ( n )  = / ( y )  = 

then RiEsz's mean of order J is 

t t < e a  

AndS, if z > I ,  

(2.250 : ( to)  = -- 

u+iQo 

I t l ' (d+1) l ' ( s )~ ' (s ) t~  
2 z ,  v ( # +  t +s)  ~(s) 

If we perform on this integral transformations similar to those of z. 21, 4 we are 

led to the formula 

(2. 252) 
= to ~ F ( ~  +~)F(q)  (~) 

where S (~ ) i s  in general a p~ in -~to 

Similarly, if 

convergent Ior to > i ,  

I ~ b .  e - nv ,  I = bn, eY - -  i 

and we denote RIEsz's mean of order ~, formed from the b's, by t~ we have 

M. R~Esz, Comptes Rendus, 5 July  and 22 Nov. I9o9. 
M. R~Esz, Com2~tes Rendus, J2 June  19II. 

a This  formula is a special case of a general  formula, duo to Rlzsz and included as 
Theorem 4o in the  Tract  'The general  theory of Dir ichlet ' s  series '  (Camb~qAge Tracts in Math- 
ematics, no. t8, Igt j)  by G. H. HAamr and M. Rmsz. 

4 See 2.2I for our just if icat ion of the omission of the details  of the  proof. Here  again 
the  integrals  which occur are absolutely convergent .  

any case wi thout  importanco. 
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(2. 253 ) 

u + i ~  

I ~ P((~-x)U(s).~(s)(osd s ,o T ( I )  
L 

where T(o~)also is in general a power-s~ries in ~oI--c~ for o).~ i .  Finally~ 

subtracting (2. 253) from (2.9.32), we obtain 

n(eo 

/ I) 
where P ~o is in general a power-series in ~ convergent for ~q> i .  The series 

involving the r being absolutely convergent, it follows at once that  the left 

hand side of (2. 254 ) is (on the RI~.MAN~ hypothesis) of the form O(V(o). That 

it is of the forms ~2/.(V~), ~R(V~)  requires no special proof; for this is a cor- 

ollary of Theorem 2. 24. We have therefore 

Theorem 2. 25. All RIESZ'S means (and so all C~S),RO'S means),/armed/tom 
the series 2(.~1(n)~ I}, are, on the RI~MAN:S hypothesis, o/ the /arms 

This theorem is in par t  deeper, in part  less deep, than Theorem 2.24. The 

0 result of Theorem 2.24 is a corollary from that  of Theorem 2.25, and the $2 

result of Theorem 2.25 a corollary from that  of Theorem 2.24, the deduction in 

each case being of an ordinary 'Abelian' type, i. e. of the kind used in the proofs 

of ABEL's fundamental  theorem and its extensions. 

2. ,~. 

On an assertion o/ Tsehebysche/. 

2.3L I t  was asserted by TSCHEBYSCHEF t that  the function 

p+l  
(2 .3i i )  .F (y )~e -av__e -SY+e-TV+e-ny  . . . . . .  2 ( _ i )  2 e-pv 

p>2  

tends to infinity as y - * o .  

S e e  i .  2.  
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We shall now prove tha t  TSCHEBYSCHEF'S asser t ion is correc t  if all the complex 

zeros of the  funct ion L(8),  def ined for a > o by  the  series I - ' - - 3 - ' +  5 - "  . . . . .  , 

have  the i r  real  pa r t  equal  to  x_. 
2 

We have,  if a >  o, 

~>a 1- -  ( - -  x)(v-~)l~P - ' '  

log L (s) = ~ ( -  1)m (,~-,)12 
m p "  " ' 

p , m  

L' (s) ,,,(v- 1)Io(' 

p , m .  

Hence  

(2. 312) 
m ( p  - -  1 ) 

/ (y )=%~.~( - - I )  '~ l o g p  e - P " v  . . . .  
p~m,  

u + i ~  

I f . . . . .  , L I { s ) .  
2~:ifi. l t s )y  ~ a s ,  

X - - $ ( ~  

if x > I .  

We now t ransform this integral  

obta in  the  formula  s 

by  CA(TCHY'S Theorem as in 2.21,  and  

(2. 313) / ( y )  = ~/__fl'(.o)y-~, + q)(y) ,  

where Q is a complex  zero of L(s )  and q)(y) is a funct ion of y of much  the same 

form as the  funct ion q)(y) of (2.214). s 

2.32.  We now require  an uppe r  l imit  for  the  sum Y, IF(Q)]. We could 

i The  ev idence  for  t h e  t r u t h  of  t h i s  h y p o t h e s i s  is subs t an t iMly  the  s a m e  as t h a t  for  t he  
t r u t h  of t he  RIEMA~S h y p o t h e s i s .  L*~DAU (Math. Ann., vol. 76, 1915, pp.  212--243) h a s  p r o v e d  

! 
t h a t  t h e r e  a re  in f in i t e ly  m a n y  zeros  on the  l ine a ~ 2. 

T h e  ' t r iv ia l '  zeros  of  L(s) are  s ~ -- r ,  - -  3, - -  5 , "  " ' :  see LANDXU, Handbuch, p. 498. 
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ob ta in  such a l imit  by  an  a r g u m e n t  s imilar  to  t h a t  of 2 .23:  b u t  i t  is s impler  to  

p roceed  as follows, t 

The  func t ion  L(s) satisfies the  equa t ion  

We  wri te  

I 
L ( I  - -  s) ---- 2" ~ - * F ( s )  sin - s , r  L(s). 

2 

Then ~ ( t )  is real  when  t is real, and  an  even funct ion of t. And  if we wri te  

I 
= 2  + i7' t hen  the  zeros of ~ ( t )  are  g iven  b y  t ~ 7 .  We  are  suppos ing  t h a t  

all these  zeros a re  real.  

We  h a v e  n o w  

( t,) Z(,) =Z(o)u , - - ~ ,  

(2.321) ~(s).--_~(o)n n , + s(s - ,)], 

where  on ly  the  pos i t ive  7's occur  in the  p roduc t s .  

f--+Y~\ 2 L ( I )  
(2"322) ~ ( O ) / / t ~  "--] = ~ ( I )  V'~T 

P u t t i n g  s = I we ob t a in  

~-V~r, 
2 

and  so 

+72 I/'~ : z ~ L(s) ;  

or, if s = i + x ,  

�9 Our argument is modelled on one applied to the Zeta-function by ,lENSES, Comptes 
Rendus, 2I april 1887. 
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( 

Finally, expanding each side of (2. 323) in ascending powers Of x, and equat- 

ing the coefficients of x, we have 

I I log2__ I l o g g _ _ _ A  + 4_L,(I) ' (2. 324) ~ i 2 2 
-+~,~ 
4 

where 2t is EULER'S constant. From this it follows easily that,  if 7, is the 

least of the positive 7's, then 

i < ~  I ( " I ,  
(2. 325) I I 

--  + ;'~ + ~" 
4 

7 , > 3  . t  

2.33. Now, as in 2.23, we have 

and the ratio 

cosh ~'z "I + r ,  
4 

decreases steadily as ~, increases, for 7 > 3- Moreover, the value of the ratio for 

Y ~-3 is less than 

3 

25 e - ~ '  < _I. 
4 

I t  is in fact t rue tha t  r~ > 6: see GaOSS~A~N, Dissertation, GOttingen, 1913. 
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Hence 

F + i  7 < 47 o I 40, 
,~ _ + 7  ~- 

4 

and so 

(2.331) [2F(q)y-O]<20I V y "  

If now we write 

f(y)=/,(y) +/:(y) +/~(y), 

where ]~(y) contains the terms of /(y) for which m =  I, /2(y) those for which 
m = 2, and /3(Y) the remainder, We have 

(2. 332) Is(V) = ~ log p e-fUc, zL V ~ 2 y '  
P 

(2. 333) 
"(P-" ])/y 

/ 3 ( y ) = ~ ( - - I )  2 logp e - p m v = o  �9 
p , m > 3  

Hence, by  (2.331), (2.232), and (2.333), we have 

p - - 1  

],(y)= ~ ( - - I )  "~ logp e - p U  

P 

3 

v; < - - g  , 

for all sufficiently small values of y. We have thus proved 

Theorem 2.33. There is a constant K such that 

/~(y)= ~ ( - - I )  2 log p e - P u < - -  K i 

/or all su/ficiently small positive values o/ y. 
Avta mathemat lca.  41. Imprim6 le 10 juin 1917. 19 
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Suppose now that  

(z. 334) 

G. H. Hardy and J. E. Littlewood. 

~(y)  = ~.~a,,e-"U 

is a power-series in e-u ,  convergent for y > o,  and that  

~f (y) > K y - ,  

for o<y_<yo.  Suppose also that  o < s < a .  Then 

, f  ~ n - ' a , , e - " u  = F(s) ~(t  + y ) t ' - ~ d t  

1 
2~ yo ~o 

0 1 
~yo 

+ Y) t s - l d t  = J l  + J2, 

say. The second integral tends to a finite limit as y - + o .  If o < y <  x ~-Yo, the 

first integral is greater than 

1 1 
~ uo ~ t~ l tt 
( s-,dt uu -o /u,-,d,, g r ( . - - s )  

r(s).](t + y)o P(8) .I ( , ,u ~ ~ r ( . )  
0 0 

ys - a. 

Hence there is a constant H such that  

n - S a n e - - n Y  > H y  " - a  

for all sufficiently small values of y. In particular we have 

T h e o r e m  9.. 331. I /  o < s < t ,  there is a constant H such that 
2 

1 
p - l  log p e _ p y  < __ Hy,- ~ 

~ ( - ~ )  ~ v" 

/or all su// iciently small  values o/ y. 
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2.34. In  order  to  p rove  the  ac tua l  asser t ion made  by  TSCHEBYSCH~.F we have  

I 
-to in t roduce  a convergence  fac to r  ~ g  n in to  the  series (z. 334)- 

I t  is no t  difficult  to p ro v e  t h a t  

where 

I = j  e_,,tq,(l)dt, 
log n 

o 

so t h a t  

o o  

t f e- '~tdw 
q'(O = ~ + J ~ , u  

ane-ny  
; 2 l o g n  qJ(t)rP(t+y)dt~ 

o 

1 ~yo 

= f ~  (,),~ (, + y)a, + f r  + ~)a. = J. + J.. 
o 1 

say. As before,  J2 tends  to  a finite l imit as y - ' o .  I t  is moreove r  easy  to 

see t h a t  

zo l i t  
f" e - w t d w  [" dw c~ I_ 

~(t) c,z j ~ T ( I ~ , ) '  c ~ !  (log w)' . h I~' 
b ~ t ~|og i ]  

as t ~ o .  We can therefore  choose r~ so tha t ,  if o < y < ~ ,  

i Cf. W. H.  YounG, Prec. London Math. See., ser.  2, vol. i2, pp.  41--7 o. 
W e  s u p p o s e  t h a t  ao = o, at = o, as  ev iden t ly  we  m a y  do w i t h o u t  loss of  gene r -  

al i ty .  
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> K ~  i_ ", dt 
(t + y)~ 

+ c~K;- z dt 
= O ( r )  oJ logt(t+y)~+l 

,iv 
I I du 

O(x)+ctKY-~.o ~! l o g ~ + l o g ~ ( U + I )  ~§ 

2 

> I -aKY-~  i" du 
2 log I (u+ I) T M  

H y  - a  

log 

Applying this result to Theorem 2.33, we obtain 

Theorem 2.34. There is a constant H such that 

p - i  H 
F(y)= ~ ( - - i )  e e-pv < 

I/ylog ( r /y) 

]or all sulticiently small positive values o/ y. 
We have thus established the truth of TSCHEBYSCHEF'S assertion, under the 

assumption of the truth of the analogue of the RIEMANN hypothesis. The nat- 

ure of the proof makes it seem almost certain that  the assertion must be false 

the hypothesis is false, as the term I_ W . ~  of (2.332 ) must then be over- if 
2 ~ y  

whelmed by oscillatory terms of higher order. But,  as we explained in I. 2, we 

have been unable to find a rigorous proof. 

2. 35. We have proved that  

p - - 1  
~ ( - - I )  2 log p e - ~ U ~ - - o o  

as y - * o ;  and, when we remember the results of z. 2 5, we are naturally led to 
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enquire whether a similar result holds for the C~.SSRO means formed from the 
series 

p - - 1  

~ ( - - I )  2 l o g p .  

I f  we denote  R t ~ s z ' s  mean  of order  c~, formed f rom the series 

b y  s~(to), we have  

(2. 351) s ~ (to) 

m(p--D 
~ ( - - I )  ~ log p, 

p~m 

x+/oo 

I ( 'F(d + z)F(s)L'(s)~osds 

whoro 

F r o m  (2. 351) it  follows a t  once t h a t  

F(a  + x)r(r o 

is in genera l  1 a power-ser ies  conve rgen t  for  to > i .  

(z. 352) s0 (to) = O (VS) ,  

a result which says the more the smaller is ~. 

Le t  us consider in particular the case in which J-----I. 

(2. 353~ r162 + x) + p(I) .  

But 

2 tOi7 I 

We h a v e  then  

z_+7, 5 
4 

See the footnote to p. 14o. 
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by (2.325). 

(z. 354) 

Hence 

G. H. Hardy and J. E. Littlewood. 

4 

for all sufficiently large values of co. 

Let  us now write 

(2.355) s' (,o) = sl (,o) + 8', (~o) + sl (,o), 

where sl(~o ), s~'(~o), and s~(~o) are formed respectively from the te rms  of the 

series for which r e = I ,  m = 2 ,  and m > 3 .  Then 

(2. 3561) p~) I L V~o, s;(,o) =~ . logp  ~-,g > ~ ] ~ l o g p >  3 
f <  o) p~ 1 

if ~o is large enough. Also 

(2. 3562) lo p v)=o( log )=o(v:o 
m ~ _ 3 , p  m ~ co m ~ . 3 , p  m ~ oJ 

From (2. 354), (2. 355), (2. 3560, and (2. 3562) it follows that  

p-1 ( L P )  !V?oi3 (2. 3563) s~(~o)= ( - - I )  2 logp  I - -  < - -  
p < o  

for all sufficiently large values of ~o. 

We have thus proved 

Theorem 2.35. RJ~.sz's or Cws3mo's raean 

the serie, 

lO- -1  

~ ( - - I )  2 log p, 

o~ the /irst order, /ormed ~rein 

tends t o -  oo as co--* oo, at least as rapidly a o a  constant multiple o/ - -V~o.  

From this we can deduce without difficulty 
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The or e m 2. 351. The  corresponding means,  f o r m e d / r o m  the series 

p--1 

V5 
tend to - - o o  at least as rapidly  as a constant mul t ip le  o/ - - l o g  [o 

Theorem 2.33 is a corollary of theorem 2.35, and Theorem 2. 34 of Theo- 

rem 2.351: the deduction being in either ease of the ordinary 'Abelian' type. 

In concluding this sub-section we may repeat  that,  as has already been point- 

ed out  in I. 5, the (heorems here proved gain greatly in interest when consider- 

ed in conjunction with those which may be established by the methods of 

Section 5. 

2. 4. 

The  mean  value o / [ ~ ( ~ + i t )  l ~ 

2. 4 I. LANDAU and SCHNEE* have shown that  

(2. 4II) 

T 

--T 
+ i t i l~dt  c, o2~ (2/?) T 

I 
when fl > - ,  and it is an easy deduc t ion '  that  

2 

(2. 4III)  

T j '] ~ T ~- 2Z 
(fl + i t) ]Z d t  c~ ( a z)2'~- l ~ (2 - -  2 fl) ~ 2 ~ 

- - T  

when fl < i .  We propose now to complete these results by proving 
2 

T h e o r e m  2. 41. We have 

T 

1 See LANDAU, Handbuch, p. 816. 
Using the functional equation. 
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We shall require some preliminary lemmas. We write 

c~  

= [ e - ~ d u  
Ko(y) ol V u ~ - - I  (9~(y) > o). 

1 

Lemma 2. 411. I /  x and the real part o/ y are positive, then 

x + i ~  

]'{r (s)y-')'ds= H(y) = 2 ~ 
v .  

X - - $  oo 

2Ko(2y), 

y - "  having its principal value. 

I t  is unnecessary to give the details of the proof of this formula which depends 

(like tha t  of the 'CAH~.N-M~.LLIN' formula) merely on a straightforward application 

of CAUCHY'S Theorem. 

Lemma 2. 412. I/ y = r e  io, where 101<--3~--~< 3_~r, and r ~ o o ,  then 
2 2 

- - y  t ~ y l l  

uni/ormly in O. 

This is a known result)  

Lemma e. 413. 11/(x)  is positive and continuous, and 

/(x)=O(eO~) 
/or all positive values o/ d; and i/ 

o 

where a > o and L(x) is a /in/re product o/logarithmic /actors 

as , ~ o ; then 

(log x) al (log log x) a~ . . . . . .  

f A T a L ( T  ) 
l(t)dt ~ F ( ~ +  a) 

o 

This is the analogue for integrals of a theorem first proved by us in the 

Proe. London Math. Soc., ser. 2, vol. 13, pp. 180 et seq. This latter theorem redu- 

1 WItlTTAKER and  WATSOX, Modern  Analys is ,  ed. 2, pp. 367, 377- 
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ces, when al = a2 . . . . . . .  o, to a special case of L e m m a  2. II3.  The  proofs  for  

series and for integrals  are in all i m p o r t a n t  respects  the same. 

2. 42. If  in L e m m a  2. 4rz we suppose x > _I, write ny  for y,  mul t ip ly  by  
2 

d(n) ,  the n u m b e r  of divisors of n,  and  sum, we obta in  

(2. 421) 

x + i ~  
I j "  

2~i (l'(s)g(2s)Y-=) ' 'ds= ~.Id(n)I](nY )" 
x - - i ~  1 

We now use CAUCHY'S Theorem to replace the  in tegral  b y  one t aken  along the  

I I 
line a = - -  The re  is a pole a t  s = -  of order  2, and the residue is 

4 2 

~ y ( A  - - l o g y  --  2 log 2), 

where A is EULER'S cons tant .  Thus  

(2. 422) 

+ir 

{ r ( s ) i ( 2 , ) y - = } ' d s =  ~__~d(n)H(ny) - (A- - logy - -210g2)=S+S ' ,  
1 1 
4 

say. In  this fo rmula  we wri te  

2 7g" ~ ( 2 8 ) ,  r (S)~(2S)  2 , ( 2 , - -  x )  

~(2.s) = ~ ( I  + 2 i t )  = ,-~(2t), 

and  we obta in  

F i n a l l y  w e  w r i t e  1 

au 

- |  t4  - ] -  J 

t[ ~ 7ge ia,  

I 
where  o < a < - ~ ,  and  we have  

- -  2 

t These t ransformations are the same as those used by HAIti)y, Comptes Rendus, 6 April 1914. 
Acta mathematlca~ 41. Imprim6 le 10 juin 1917. ~0 
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(2. 423) 

where 

(2. 4241 ) 

(2. 4242 ) 

2. 43. 

G. H. Hardy and J. E. Littlewood. 

2 [ 'f  ~(2 / )  ]" , , , t - -  I .  
- -  I ~ - - ~  e- a t = e ~ ' a ( 8 + S ' ) ,  

oo 

S = ~ j d ( n ) H ( n z e ' ) ,  
1 

j .~t 1 �9 
= - -  - e - ' ~ ( A  - -  2 l o g  2 - -  l o g  ~ - -  i a ) .  

2 

I 
We now suppose t h a t  a = - ~ - - ~  and  tha t  ~ o .  

2 

i t  is obvious t ha t  

(2. 431) 

Fur ther ,  by Lemma 2. 412, we hawe 

In  the first  place 

8 ' =  0(i). 

H ( n z e i a )  ~ I --~ia--2nz(cosa+isina} 
V : j  e + ~ i I ' 

and  it is plain t h a t  the  cont r ibut ion  of the  last  te rm to 8 is of the form 0 ( i ) .  

Hence  we m a y  write 

(2. 432) 

and  

Bu t  

oo 

| d ( n )  e _ e ~ ( r  ~ 

_ [4+4tj 
,+ i~o , )  + 0 ( 1 ) .  

eosa  + i s i n a  ~ i + ,  + 0(~') ,  

e- -2nn(cosa  + i s i n a )  ~ e - - 2 n . ~  +O(n~2) 

We m a y  therefore replace the series on the right hand side of (2. 43z) by  

~ - ~ -  
I 
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~d(n)  co vlog v, 
1 

~ d(n) co - ~ n  2 Vvlog r; 
1 

Henc we have 

| d ( n )  e z,,,~e 

r io 

, V ~ (i) 
(2l) I zv [ I - - - -~  e(~-2~ 

We may replace the lower limit by o, since the par t  of the integral for 
which t < o is plainly of no importance.  Doing this, and put t ing  2 1 =  u, we obtain 

(~ ~(u, I'e(l~-e)Uducozr V ~ l o g ( ~ ) .  
(2. 434' 0 . j [4+ u~ j 

2. 44. I t  follows from (2. 434) and Lemma 2. 4z3, that. 

T 

(2. 44x) f~" "w(u) ~Se~"Udu co V 2zcTlog T. 

But  

so tha t  

-4+u 

T 

I )1  ;du g ~ + , u  ~-~ c,o z 1 /T  log T.  

U 
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And if we wri te  

w e  b a r e  

G. H. Hardy and J. E. Littlewood. 

i s  

0 

T T :?.o,<,,>.., 
0 0 

T 

0 

T 

cx.~ 2 T log T - -  f l o g  ud 

0 

c~ T log T, 

which is equ iva l en t  to the  resu l t  of T h e o r e m  2.41.  

2 .  5 . 

The series 

u(n) " a ' n ' 2  
i _ _ e - t  ! # 

n 

and other similar series. 

2. 51. In  this  sub-sec t ion  we shall  be concerned  wi th  some formulae  which  

were suggested to  us b y  some work  of Mr S. I~AMA~UJA~. W e  h a v e  no  sat is-  

f a c t o r y  proof  of the  t r u t h  of the  formulae ,  though  this  is h ighly  p robab le ;  b u t  

t h e y  are  so curious t h a t  i t  seems wor th  while to men t ion  them.  

I f  - -  i < x < o a n d  a > o, then  

( 2 . . 5 1 1 )  I - -  e - ( a / n ) :  = - -  - -  

x + i ~  

"--fl"-I'" 2 , ~ U ~  l r(s)ds. 



The Riemann Zeta-function and the theory of the distribution of primes. 157 

Hence 

(2. 512) 

x+ioo 

But 

r ( s )  
(z - -  2,) ~(2s) ' 

and so 

�9 I | , , +  . . . .  1 _ _  \ 
(2.5~3) ~f~n),_,o,.,, -~ i'/-~Y "' ~2-s/d~. 

1 2 i z V ~ j  ~a! ~(2s) 

If now we assume that  we may transform the last integral by moving tile 

I 
path of integration parallel to itself across the line a = - ,  and introducing the 

4 
obvious correction due to the poles of the subject of integration, t we obtain 

(2.5r4) ~, ,~)r ,o, . , . -  , l l~l ' ' ' ~ - ~  .~ ~ ~ 1 ~ ) '  
) , - - i ~  

where i < ). < 3. This assumption of course includes tha t  of the convergence of 
2 2 

the series last written. 

But  

,.+,| r l  ~ sl 2 + i ~  ((:;. ) F s ds, 2~i  ~ . ( n )  
1 

if af t  = ~. Also, transforming the last integral by the substitution 

I 

2 

t In  forming the series of residues we have assumed, for s implici ty,  that  the poles are 
all simple. 
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we obtain 

~ + i c o  

2:.j,n, 
~-- ioo 

x + i ~ ,  
' , f l , -  2 s  2winj (n) r(S)dS, 

x - - ~  oo 

where - - i  < • < o; and the last expression is equal to 

l '~ e _ ( f l l n ) 2 "  
n 

Hence 

(2. 515) I [ ' j . ] g ~ 2 s  1 2  " 1 .  

Substituting in (2. 514), and multiplying by Va, we obtain 

(2. 516) e - -  (fl l n)~ ~ _ _  _ _  

1 1 

I 

2 v  
fl,, 

I t  follows from symmetry that  we must have 

I a O + I /'~O = 0 ~  

and this relation m a y  be verified without difficulty. 

2. 52. In order to obtain a satisfactory proof of (2. 516), it would be enough 

to show that  

~.+iT j 2sr(  -8) 
~(2~ ds- -o  

•  

when T ~ ~ through an appropriately chosen sequence of values. I t  would cer- 

tainly be enough, for example, to show that  there is such a sequence (T,) for which 

(2. 52I) 

( ~ > o ,  t=T~,x<a<l. ) .  
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I t  would even be enough to show t h a t  the inequa l i ty  (2. 521) holds on an appro-  

p r i a t e  sequence of curves  each s t re tching  from a = z  to  o = i t .  The  exis tence 

of such a sequence seems highly probable :  it  is highly probable,  in fact,  t h a t  the  

series on the  r ight  hand  side of (2. 516) is not  mere ly  convergen t  b u t  v e r y  

rap id ly  convergent .  B u t  we are  qui te  unable  to  p rove  this, even when we assume 

the  I~t~.MAI~I~ hypo thes i s2  

2. 53. Mr I~A~tA~CtrJAN has indica ted  to us a general isa t ion of the  formula  

(2. 516). Suppose t h a t  9(X) and q)(x) are  a pair  of ' reciprocal  funct ions '  connec ted  

b y  the relat ions 

/ I V - -  J I v-~*f(u)'  (2.531) ep(x) c o s 2 u x d x = = ,  zqJ(u) ,  t p ( x ) c o s z ~ , x d x =  
2 2 

0 o 

and  let  us wri te  

(2.532) 

00  oo  

/ x s - l ( f ( x ) d x - - I ' ( s ) Z l ( 8 ) ,  j ' x s - l t p ( x ) d x = F ( s ) Z z ( s ) .  

o o 

The  simplest  case is t ha t  in which 

2 
q,(x) = ~p(x) = e -~'', g ,  (s) = Z~_ (s) = - r ( s )  

in this case the formulae reduce  to those of 2. 51 . Then  it  can be shown tha t ,  

if ep and ~p sat isfy cer ta in  condit ions,  2 

1 
(2. 533) Z ( I  - - s )  z -~-28F(s)  si n I = - s ~  Z2(s). 

2 

We have  also (again of course subjec t  to  cer ta in  restr ict ions on ~ and  ~p) 

(2.534) 

x+i~o x + i c c  

u--ioo u--ioo 

for an appropr ia te  value of x. 3 

1 W e  can  p r o v e  t h a t  some s u c h  s e q u e n c e  of  c u r v e s  as  is r e f e r r e d  to a b o v e  e x i s t s ,  a n d  
t h a t  o u r  s e r i e s  can  be  r e n d e r e d  c o n v e r g e n t  by  some p r o c e s s  of  b r a c k e t i n g  t e r m s :  b u t  we can  
p r o v e  n o t h i n g  a b o u t  t h e  d i s t r i b u t i o n  of t h e  c u r v e s  or  t h e  s i ze  of  t h e  b r acke t s .  

A s  w e  do n o t  p r o f e s s  to be  ab le  to g i v e  r i g o r o u s  p roo f s  of  t h e  m a i n  f o r m u l a e  of  t h i s  
s u b - s e c t i o n ,  i t  s e e m s  h a r d l y  w o r t h  w h i c h  to s t a t e  s u c h  c o n d i t i o n s  in de ta i l .  

8 M~LLIN, Acta mathematica, vol.  25, I9o2, pp.  139--164, I65--184 (p. x59): see  a l so  NmLs~rL 
Handbuch der Theorie der Gamma-Funktion, pp.  221 et seq. j/ 
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We can  use the  f i rs t  fo rmula  (2. 534) to express  the  series 

~ -  (~) 

in the  form of a def ini te  integral .  Ca r ry ing  ou t  a series of t r a n s f o r m a t i o n s  ana-  

logous to  those  of e. 5I,  wi th  the  aid of (2. 533) and  the  funct ional  equa t ions  

sa t is f ied b y  the  G a m m a  and  Ze ta -Func t ions ,  we are  led f inal ly  to  the  fo rmulae  

I r ( i  - - r  --e)ao 

I ~ r ( i - - e ) Z ~ ( i - - o ) #  ~ 

where  aft = ~.  
2. 54. L e t  us ret t / rn  for  a m o m e n t  to the  fo rmula  (2. 516). We  have  

~ "(n)e-(" 'n) '  ~ | | (2.  5 4 I )  F ( . )  = ( - -  I )P"2P  ~ , l l ( n )  ~ ( - -  I)Pol 2p 
n ~ ~9! .~..~ ~2p + 1 ~d~ ' ~  . . . .  ' 1 p - I  " ~,-1 p 1 p ! g ( 2 p +  I) 

an  in tegra l  func t ion  of a.  And 

(2. 542) 

when  aft = ~.  
gence of 

V~. F ( . ) -  V~ F(t~)= - -  

I f  we assume  the  RIEMANN hypothes is ,  and  the  abso lu te  conver -  

~'(~) 

t hen  the  r ight  h a n d  side of (2. 542) is of the  fo rm 

O(i)  

when a ~ o  a n d  /~----oo. Wr i t i ng  y for  f l l  a n d  obse rv ing  t h a t  F ( a ) ~ o  as  

a - - . o  we see t h a t  
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(2. 543) P(Y) = 2 <--Y)P -- O(y--~-) 

when y ~  r 

Now it has been proved by MaRCeL RI~.SZ that  ~ 

oo 

(2. 544) f y - : - ' P ( y ) d y =  l ' ( - - s )  . 
3 
0 

I 

4 
is therefore certainly true if 

(2. 545) 

161 

This formula certainly holds if o < s < i .  If  it could be proved to hold for 

- - - <  s < o ,  the t ruth  of the RIEMANN hypothesis would follow. The hypothesis 

= 

for all positive values of 8. The result of our previous analysis is therefore to 

suggest that  the t ru th  of (2. 545) is a necessary and sufficient condition for the 

t ruth  of the I~tE~ANN hypothesis. I t  is not difficult to prove tha t  the result thus 

suggested is in fact true. For LITTLEWOOD ~ has shown that ,  if the RI~.~A~N 

hypothesis is true, the series 

X.,< 
n ~+e 

is convergent for all positive values of e, so tha t  

- -  m 
)] 

(2. 546) 

uniformly in n. Hence 

(2. 547) P (Y )=  (-- I)Pfl~P = ~! ' (n )e - (a lm~= 4- = P, + P.2, 
"An: ~ , 2  v "r I /  - -  n 

1 1 1 . v  

i See Rmsz,  Acla malhematica, vol. 40, 19~6, pp. 18i--19o. Tile actual  fo rmula  communi -  
I 

cared to us  by Rigsz (in 1912) was not  th is  one, nor  the  fo rmula  for ~ con ta ined  in h is  memoi r ,  

bu t  t he  ana logous  fo rmu la  for I All of t he se  fo rmulae  m a y  be deduced  f rom M~:LIA~'S 
~(s+ ,) 

i nve r s ion  fo rmula  a l ready  re fe r red  to in 2. $3- The  idea of ob ta in ing  a necessa ry  and  suff ic ient  
condi t ion  of t h i s  charac te r  for the  t r u th  of the  RIeM.~NN h y p o t h e s i s  is of course  Rmsz ' s  and  not  ours. 

Com~tes -~endus, 29 Jan .  I912. 

Acta mathematica. 41. Imprim6 le 10 juin 1917. 21 
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say, where ~-----[fll-q. Now 

(z. 547 I) P~= ~"(n)e-(al") '= ~M(,, ,n)de-(~'")2 -- o(,. ,-~+~) = o(fl-1+2~), 
n qa 

where 2 d = - 3 ~ - - r 2 ;  and  
2 

(z. 5472) p ,  = O(ve-a  ' ' )  = o(fl-~+2a). 

From (2. 547), (z. 547I) and (z. 547z) it  follows t h a t  

(2o 548) P(y) =O(/~ -12+2~) = O( --,:+O). 

. 

The  ser ies  ~ 7 -  ~176 

3. x. The results of this section will be s ta ted on the assumption t h a t  the 

RIEr~ANN hypothesis  is true.  The t ru th  of the hypothesis  is no t  essential to our  

argument ,  and our results remain significant  wi thou t  it. Bu t  their  interest  de- 

pends to a considerable ex ten t  on the t ru th  of the hypothesis ,  and the assump- 

tion tha t  it is t rue  enables us to s ta te  them in a simpler form than  would be 

otherwise at ta inable .  
i 

We shall then  denote  the complex zeros of ~(s) by q = ~  + i  7, where 7 is 

real. I t  has been proved by La,~D.~U 1 tha t  

(3- I I I )  ~acO = 0( log T) 
o < 7 < T  

if x is real and not  of the fo rm ~m, and 

(3. H2) ~xO = -- T iogp + O(logT) 2 7~ 
0<7<ST 

if X = pro. I f  we assume the t ru th  of the RIEMANN hypothesis,  these results 

m a y  be s ta ted  in the  form 

1 Math. Annalen, vol. 7L I912, PP. 548--564- 
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(3" I2I) ~ eirl~ = O(1og T), 
0 < Z < T  

(3.12z) ~,  eir 1og~ = __ T log p + O(log T). 
2 ~  

o < ; , < T  

In this section we shall apply an argument similar in principle to LANDAU'S, 

but of a rather more intricate character, to thc series 

~ 7--o eairlog(zO) 

where a ,0 ,  and co are real and the first two positive. The principal result is 

T h e o r e m  3. 1. I /  a, O, and co are real, and a and 0 positive, then 

i /  co <----,I + a and 
2 

/ l + a  -~ 
~-a)eai,log(', ,o) = O ( T - 2  --a~) 

O<7<T 

y--~176 --- 0(log T) 
0 < r < T  

i + a  i + a  
i /  co = 1/ co < - - - -  then the series is convergent when continued to inj ini ty .  

2 2 
These results hold uni]ormly in any  interval o < 00 < 0 <_ 0,. 

The result is trivial when a >  i .  We may therefore suppose tha t  a < x .  

3. 2. Suppose 
which w ~ o .  Let  

and 

so tha t  

that  the theorem has been proved in the special case in 

b 7 ~ ea iTlog(7 .q)  

0 < ? < r  

4" l + a \  
o(~) = o L ~ T ) .  

Then 

.v ~ ( 7 . ) - - a > ( ~ - 1 )  

o < r <_ if" l 7 n ~  



164 G. H. Hardy and J. E. Littlewood. 

where N is the largest number such that  7~v 5_T- Applying the method of partial 

summation, we obtain 

N - - 1  
Y , z - o ' b . , . -  

0 < ; . , <  T 1 

- z : L )  + z ;  ,o 

; ' n + l  
N - - 1  , /j - ~  - -  t'~ O()'n U - ~  l d u  + q~()'N) 7N 

1 
7n 

; 'N  

- -  (,j j O ( u ) u - ' ~  ~- q)(yN) YN ~ 

71 

Oj,•. 1+~ ~ , _ l d u  I l+a "~ -- u - 2 - -  + 0 ~.T ~ -  o~) 

7x 

and the general result of Theorem 3. 1 follows immediately. I t  is therefore suffic- 

ient to prove the theorem when ~o--o. 

I t  should be observed that  the O's which occur in this argument are uni- 

form in 0, when o < 0 0 < 0 < 0 t ;  that  is to say, the constants which they imply 

are independent of 0. This remark applies to the whole discussion which follows. 

3- 31. We choose numbers ~, and $ such that  

3 , 0 > o ,  a 6 + a <  I" 
(3. 31I) a > ~  2'  

and we denote by C the rectangle 

(I + d+  i, i +(5 + T i ,  - - 2 p - - I + T i ,  - - 2 p - - I  + i ) ,  

where p is a large positive integer, and T a large positive number differing from 

any 7. This being so, we consider the integral 

(3- 312) 
C 

1 - - ~ a  
where x = 0 a and log (-- i s ) ,  z �9 and s have their principal values. 

tion of CAUOHY'S Theorem gives the formula 

An applies- 



The Riemann Zeta-function and the theory of the distribution of primes. 165 

(3- 313) 

1 I + 8 + T i  - - 2 p - - l + T i  - - 2 p - - l + i  1 + 6 + i  ). j. j 2 7 ~ i  eaolog(_ iO)XOq ~a + + + 

O<7<T d 
1 + 0 + i  1+ (~+ Ti - - 2 p - - l + T i  --2p "1 + /  

= Ii  + 12 + 13 + 14, 

say. When t is fixed and  o ~ - -  00, easlog(-is) tends to zero like e a~176176 I t  fol- 

lows tha t  1 3 ~ o  when p-- .oo,  and t h a t  I :  and I~ tend to limits [2 and  i4, the 

la t ter  being independent  of T .  Thus 

(3.314) 

where 

1 ( i 4- a',~ 

2~i~eaol~ -~" = I ,  +-i~ + O(I) = I ,  3 [.. + OI.T ~ 7 ,  
O<z<T 

- - w +  T i  

- -~--~ --" X--  8 ~ a S .  (3" 315) lz feaslog( ,s) s -12a ~_'(S).~,_, 
I + O + T I  

3- 32. 
We write 

We shall now prove tha t  the term 12 in (3. 314) m a y  be omit ted.  

--oo+ T i  - - I + T i  

- - l + T i  l + d +  Ti 

The discussion of I2,1 is simple. If  s = a + T i a n d  a < - - i ,  we have 

I e"'l~ = e~""l~ 7.~+,,T~r tan(o/T) 

I~.l=:x~ 

V-:~ 
and 

uniformly for a < - -  i . '  Hence  

~' (s) = O(log T),  
~(s) 

TCIO~ 

1 LANDAU, Handbuch, p. 336. 
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(3. 322) 

--oo 

J log T | 

( l+a~ 
__ O ( T - a )  ' = O ~ , T ~ - ] .  

Thus the integral J~,l is 

somewhat  more difficult. 

3. 33. We may write 

without importance. The discussion of [2,2 is 

~'(~) _ I j ~ ' ( ~ )  
(3.33I) ((s) ~ s -L) + 

- I ~ - r m < ,  / ~ ( 8 )  

say. Then 

(3.332) 

I [ =  Z I ( 8 ) + Z 2 ( 8 ) ,  

1 7 - - T I <  

Zfls) = O(log T) 

uniformly for - -  i < o < I + ~.~ 

We now write 

(3.333) 
- - l + T i  

f i : ,~  ~- eas l~  - ~ a  ( Z , ( s )  
,J  

I + 6 + T i  

+ Z 2 ( s ) ) d s  = I2 , :  , + I2 , : , 2 ,  

say. I t  follows from (3- 332) that  

(3.334) 

I+6 

- - I  

where 

( i )  i + u  
(3.335) p =  2 + 6  a < - ~ - - .  

Thus the integral i2,2,2 is of no importance. 

i Observing that ! < _L, where xo=O~,  and that l og (xTa)>  a log T+ logxo. 
IZ' X o 

2 LANDAU, ttandlmch, p. 339. 
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3- 34- On the other hand 

(3.341 ) 

- - l + T i  

j 'easlog{_is)~ss--la d s  
i~,~. ,  = ~ " s - - o ,  

Ir--TI < ~ l+~+Ti 

We can transform each of these integrals, by  CAUCHY'S Theorem, into an 

integral along a semicircle described on the line (--  I + T i ,  i + d + T i ) ,  taking 

the semicircle above or below the line according as 7 < T or 7 > T . t  Each inte- 

gral is of the form O(Tp) and their number is of the form O(logT).  Hence 

(3- 342) 
/" l+a '~  

]~,2,~ = O ( T p l o g T )  = O~.T ~-] .  

From (3. 321), (3. 322), (3- 333), (3. 334), (3. 335), and (3. 342 ) it follows that  

( l+a'~ i 
(3" 343) i 2 = O \ T  2 2; 

and from (3- 314) and (3. 343) that  

(3. 344) 2 ~ i ~ e ~ ~ 1 7 6  O ~ I 1  + O~,T 5 ] .  
0 < ? < T  

Thus the result of (3- 3) is to reduce the problem to tlle discussion of I t. 
3. 4. The main difficulty in the proof of the theorem lies in tile discussion 

of the integral 

1+ ~)+Ti 

(3.41) i1 = / e ~ i o g ( _ i ~ ) x ~ s - ~  ~ ' ( s ) .  

1 + 6 + i  

We observe first that,  when a is fixed, 

where A is a constant. The contribution to It of the term O({-)is of the form 

(3.42) 0 ( ~ §  = O ( T P ) - -  O ~ T  2 2,  
.J 
1 

Cf. LASDAU, Math. Annalen, vol. 7 l, I912 , p. 557. 
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1 

and is therefore without importance. For similar reasons we may replace s - ~ ,  
1 

in I , ,  by (it) - ~ .  

(3.43) 

The problem is then reduced to the s tudy of the  integral 

T 
. I I j = [ eo,t,o tx,tV, ; + + i t )a t .  

f l  ~(I + d + i t )  
1 

Replacing ~'/~ by the DIRICHLET'S series which represents it, and making an 
obvious formal transformation, we obtain 

(3.44) 

where 

(3.45) 

and 

(3.46) 

We write 

(3.47) 

V 
T 

](~) = ~lpeaitlog{tl~}dt. 

i 

j = _  + + ~ ] ( ~ ) = J ,  + J 2 + J 3 ,  

say, where J1 contains the terms (if any) for which 

(3.48I) 

J~ those for which 

(3.482) 
and JI  those for which 

(3. 483) 

n + i < x e  ~, 

xe  ~ -  i < n < x ( e T )  ~ + i ,  

n > x ( e T )  ~ + I .  

3- 5I. The discussion of J~ and J3 is simple, and depends on a lemma which 
will be useful to us later in the paper. 

Lemma 3. 51. There is a number K ,  independent o] ~,, v2, and ~, such that 

j , "ealtl~ < log(er~/~) 
lr I 
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when o < ~ < e% < e%, and 

]; I eaitl~162 < l o g ( ~ / e % )  

~7 

when ~ > er~ > evl. 
Suppose,  for  

real and imaginary  par t s  of the integral  separately.  

example ,  t h a t  ~ < ev 1. I t  is plain t h a t  we m a y  consider  the 

If  we p u t  

w=tlog(t /~) ,  

so t h a t  

dt ~ 

and  observe  t h a t  w increases s teadi ly,  say f rom w t to  w2, as t increases f rom 

v t to  ~2, we obta in  

fcosawdt =foo  o,o / r 

But  log(et/g) is posi t ive,  and increases as t increases.  Hence  

~2 t ~  

/c~176 
Z-1 W l  

where  wl < ws < w2. The  t r u t h  of the  lemma follows immedia te ly .  

3- 52. We are  now in a posi t ion to  discuss J~ and  Js .  We begin with J , ,  

which exists on ly  if xe~>_2. 
The  real p a r t  of j(~) is 

(3.52z) 

T T 

/'tpcos (at log ~) d t=  Tp./'cos (at log ~) dt, 

where I < T , < T .  Since 

a 

Ac ta  m a t h e m a t i c a .  41. lmprim6 le 11 juin 1917. 

e < eT,, 

22 
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the right hand side of (3. 521) is less in absolute value than a constant multiple of 

Tp Tp 
log teT, / ~) < log (e / g)" 

The same argument may be applied to the imaginary part of j(~), so that 
we may write 

~ T~ 
(3.523) J(~) = ~ / i @  (~7~/~il 

Also 

) xea ~' 
(3.524) ; a _  n - - - n  

(3.525) 

where v > n + i .  Hence 

log (~) = ~ l o g  (~), 

(3.526) j t  = O !TP 2 _/l(n) I 

3. 53- The discussion of J3 is similar. It will be sufficient to write down 
the formulae which correspond to the formulae (3. 522), etc. They are 

a 

(3-5~3) j(~) = o ]log ~ l  

(3.534) ~eT! x(eT)" 

(where ~<n-- i ) ,  

OITp ~ A(n) i I O(Tp)' (3.536) Js= In;~+ ~u ~ log(n/v) l=  
[" I +a '~  

= O ~ . T  2 ). 

i LAXDAU, Handbuch, p. 8c6. 
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3. 61. The discussion of J is accordingly reduced to that  of J2. In order 

to discuss J2 we observe ~ that  v log(v /~)  is stat ionary when v = ~ / e .  This point 

is the critical point in the integral ~'(~). It  falls in the range (1, T) if 

o r  

e < ~ S e T  

xea < n < _ x ( e T f  . 

This condition is certainly satisfied by every term of J2 except possibly the first 

and last, and no serious modification is required, for these two possibly excep- 

tional terms, in tho analysis which follows) 

We write 

(3. 611) 

Then 

~.le T 

tp e air log (l I ~)dt = j, (~) + j.~ (~). 

1 
('~)p + 1 t '  (~)p+ 1 (3. 6121) j ,  1~) = uPe ai2wl e d u  -~- k ,  (~),  

, 
el~ 

(3' 6122) 

where 

e T [ ~  

72(~) = ~Veai~wtedu : k2(~), 

1 

(3. 613) w = u l o g u - - u .  

In general e /~  < i < eT/~.~, and we write further 

1 1 - - t  

/ + /  , (3. 6141) k l =  : / G ,  +kJ,2, 

1- -*  e l ~  

l + e  eTl~ 

(3-6142) k 2 =  [ '+  ( = k 2 , ,  +k~ , - ,  
,) 
1 l~e 

i The  f u n d a m e n t a l  idea in the  ana lys i s  wh ich  fol lows is the  same as t ha t  of LANDAU'S 
m e m o i r  'Llber die Anzah l  de r  G i t t e r p u n k t e  in gewissen  B e r e i c h e n '  (G6ttinger Nachrichten, J912, 
pp. 687--77I). 

The  t e rms  have  to be r e t a ined  in J~ because ,~/e, t h o u g h  outs ide t he  range  of in tegra-  
t ion, may be very  nea r  to one of the  l imits.  
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where 

e = T - a ,  

being the number  defined a t  the beginning of 3. 31. If, however, e / 5 >  I or 

e T / ~ <  I ,  as m a y  happen,  each with one te rm only,  we mus t  write 

l + e  e [ ~  

1 l + e  

o r  

1 1 - - ~  

(3-6152) k2 = - -  =k2, ,  + k..,, 2. 

I - - e  e l " l ,  ~ 

These exceptional  cases need not  detain  us further,  as the t r e a t m e n t  of k s 

in the general  case covers a /or t ior i  t ha t  of k, in the special case, and  vice  versa .  

Each of the formulae (3. 614I)--(3. 6152), however,  may  in certain cases require 
to be in terpreted in the light of a fur ther  convention.  I t  m a y  happen,  for 

example,  t ha t  I - - e < e / ~ ' < i .  In  this  case, in the formula (3. 6142), we mus t  

regard kl, ~ as non-existent ,  and the subject  of in tegrat ion in as having the value 

zero for i - - ,  < u < e /~ ,  and  a similar unders tanding  may  be necessary in the 

other  formulae. If  regard is paid to these conventions,  the analysis  needed in 

every case is included in t ha t  which refers explicitly to the normal case in which 

~ _ _ I - - * < I  <x +~<eT/~. 

We may  therefore conduct  our  a rgumcnt  as if these condit ions were a lways  

satisfied. And we have 

J~tp + 1 

(3- 616) j(~) = {~) (k,. ,(~) + k,,2(~) +k2,,(~) + k2,,(~)). 

3- 62. The really impor tan t  terms on the r ight  hand  side of (3- 616) are 

k,,,  and  k2, t. We shall discuss kt , .  and  k2, , first.  
The real par t  of k,, 2 is 

1 - - e  1 - - ~  1 - - ~  

" {' uP ( a ~ w l d  (I ,>6..,, 
j mg u 

eJ~ u - - e l ~  u = Z  

where e / ~ < Z <  I - - ~ .  A similar argumen~ m a y  be applied to the imaginary  
part .  Also 
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and 

for all values of ~ and ~'. 

i 

l o g ( I - - ~ )  = 0  , 

). 

j [a~Wtdw~O(~) ' "cos 1 e l 
)J 

I t  follows t h a t  

(3. 622) 

Similarly, the real par t  of k2,2 is 

. T t ~  . r t ~  

(3. 6 2 3 ) j u ' e o s ( ~ - ) d U = J l : ; u C O S  

l + e  t t ~ l + e  

eTl~ 

d w = l .  ~ l /c~ e ] logu  

2' 

(eTiZ:p , "  

log . . . .  

where 

I +e<~,<~,'<eT/~, 
and a similar a rgumen t  m a y  be applied to the imaginary  part .  

(3-624) k2,2 = 0  = 0 / ~P+~/" 

Hence 

3. 63. We shall now consider k,,~ and  k~,,. I t  is here t h a t  we are for 

the first  t ime in touch with the real kernel of the problem. The two integrals 

are amenable  to the same t r ea tmen t ,  and we m a y  confine our a t t en t ion  to one 
of them, sa;y k2,~. 

We write 

so that o<it<t and 

U ~ I T p ,  

uP = I + 0 ( t 0 ,  

w=ulogu--u=--r  + - x . 2  + O(!P),  
2 '  

e a i ~ w  I e ~ e - -  ( a i ~ l  e) + (ai~l~2l 2e) + O(~$t~) 

e - {a i~ le )+ (a i~U2e)  (I + O(~tts)). 
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Then 

(3. 631) 

G. H. Hardy and J. E. Littlewood. 

~f 
k~, ~ = e-~'ir ~ ~j  ( z + 0 (!1) + O(~ p'~)) e '~-~'~t "Z~d,. 

0 

( ' )  
= O ~-~ -+ O(~-') + O(#~ ~) 

Combining 

we obtain 

1 

= 0 ( ~ - ~ )  + O(T -2") + OI~T-4~) .  

(3. 631) with (3. 522) and (3. 624), and substi tuting in (3. 616), 

( b (3. 632) "~ -- + 0 ( ~ '  + + + �9 ) ( . ) - -  0 ~P+ +1T-2'~) O(~p+2T -4") O(~-PT '~) O(T  p+") 

3- 64. We can now complete our discussion of JT. We have 

.,4(n) 
J ~  = - -  22 n f+~  ~ (~_), 

0 m 

~'e a - l  ~. n ~ x ( e T )  a + l  

_~t ( n ) 

n ~ O(T  a) 

the symbolism used last implying that the summation is extended to all positive 

integers n less than some fixed multiple of T a. We have now to estimate the 

five sums S 1, S:, Ss, 84, S~, obtained by substi tuting in turn for [j(~)[ the five 

terms on the right hand side of (3- 632). 
In the first place 

(3.64I) S, = 2 .l(n) O(2~,+',) 
n < O(Ta)  ~l l + O 

2p-t- 1 
_ _ .  0 2 _ / / ( n ) ? b  2a . . . . .  1--6 

n < O ( T  a) 

l + a  

n < O[T  a) 

| l + a  / 
= o ](~r.) ~.  j, 

( 1-4- a'~ 
~ O L T  ~ ) .  
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I n  t he  s econd  p lace  

(3 .642)  

s ince 2 a > _3 > _x. 
4 z 

T h i r d l y  

(3 .643)  

s ince  4 a > 3.  
2 

~4(n) S,=~ ~;~O(~p+~T-2-) 
n <O~T a) 

I n < O(T a) 

[ ~ 2 + a  1| 
= 0 ~T -2~  f.5 A(n)n-V~ - 

,~ < O(Ta) J 

= 0 ~ , T ~ ) ,  

_4(n) O(~p§ ) 
$3  - -  Z 7~l+d 

n < O(Z  ~) 

4 a  p + 2  

! . < O ( I  a) 

| n < O(T a) J 

/" 4 §  "y 

= O ~.T-y - - ' ~ )  

175 
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Four th ly ,  

{3- 644) 

since a < i - - ,  
2 

Final ly  

(3-645) 

since a~ + a < I .  
2 

G. tI. Ilardy and J. E. Littlewood. 

s __ ~, ~ ( n )  o ( ~ T , , )  
4 n < O ( T a )  n l  + ~ 

In < 0(7 a) 

7~ 1 = ol~,,:z~(~;.- 4 
In < o ( l a )  I 

o ( ~  o§ 
f l + a ' ~  

= O ~ . T  ~ ) ,  

,, < O(Ta ) n 

= 0 (Tp+~)  

= o (&* ~176176 
( 1+ q  

= O ~ , T  2 2 ,  

Combining (3. 641)--(3. 645), we see t h a t  

(3" 646) "I2 ----- O k T  2 ) .  

3. 7, We have thus  proved tha t  

1 ( I+% 
(3.71 ) ~eao lo~ ( - i o ) xo  0 O \ T ~ ) ,  

0 < 7 < T  

uniformly in any  positive in terval  of values of x. We now assume the t ru th  of 

the RmMAI~I~ hypothesis ,  and  write i + i7 for q and ?P for x. We have 
2 

1 1 
s - -~a aolog(-- i~l+aologO--~alogo 
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a n d  

a e l ~ 1 7 6  a l ~  0 (7) '  

aQ log 0 - -  aiTlog 0 ~- i a log0,  
2 

and so 

i 
a l o g ( ~ = - -  alogy--~a~'e i+O , 

2 4 

1 

eapl~176191 -2  a - -  Aeai'/l~ + O ( ~ ) } ,  

where A is a cons tan t .  I t  follows f rom (3-7 I) t h a t  

(3- 72) ~ eai:, log (701 = 0 t,T - ~ - )  ; 
O ~ 7 ~ T  

a n d  the  proof  of Theo rem  3. 1 is comple ted .  

. 

I 
T h e  zeros  o f  ~ (s) on the  l ine  a . . . . .  

2 

4. i .  I n  this  sect ion we p rove  t h a t  the  n u m b e r  No(T)o f  zeros of ~(s) 

on the  line a m - ,  be tween  the poin ts  i and  I + T i ,  is of the  form L) T ~ -~  
2 2 2 

for  all pos i t ive  values  of ~. As a m a t t e r  of fact  we p r o v e  r a t h e r  more  t han  

this,  viz. t h a t  there  is a t  least  one zero of odd o rder  be tween  T and  
1 

T + T i+~ for  all suff ic ient ly  large values  of T. 1 

4. 2. We  wri te  

! 1 

(4- 21) ~r -Se  l " ( s ) ~ ( 2 s ) - - l ( s ) = /  I + t i  = X ( / ) .  

i See s e c t i o n  I for  a s u m m a r y  of  p r e v i o u s  r e su l t s .  

Acta mathematlea. 41. Imprim6 le ll  juin 1917. 23 
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T h e n  

x ( o  - 

1 - a ' / :  

2e  2 ~ ' (2  t) 

1_+4 t' 
4 

is real when t is real. Let  ~ be any positive number. We shall prove that,  if 

T>To(~ ) ,  then X(t) changes its sign at least once in the interval ( T , T + H ) ,  
1 

where H = T i + ~" We may obviously suppose, without  loss of generality, tha t  ~ < I .  
5 

There are two stages in the proof. The first consists in showing that  

(4. 22) 

T + H  
P 

.t X ( t ) d t = O ( T  ~) 
T 

for all positive values of J; and lhe second in showing that,  if ~<~,  and T is 

large enough, then the cquation (4- 22) contradicts the assumption that  X(t)  is 

of constant  sign throughout  the range of integration. The second stage of the 

proof is the easier, and we shall discuss it f i rs t)  
Suppos e then that  (4. 22) is true, with ~<~,  and that  X( t )  is of constant 

sign throughout (T ,T + H).  Then 

T + H  

f lX(t) ldt  = O(T~), 
.§ 

T+H [' 

I 
T 

r 4+ti  + 2t i )]dt = O (T~). 

Now 

- - l ~ t  

t i  

as t--~o. Hence 

' The  general  idea used in this part of the proof is identical wi th  that  introduced by 
LANDAU in his simplification of HARDY'S proof of the exis tence of an infinity of roots (see 
LA~v.u, Math. Annalen, vol. 76, 1915, pp. 212--243). 
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T+H 

fi< )l 2 + , . t i  
, - d r =  

T t4 

O(TO), 

T§  

.;1~(: +~,,)l~=oi+'+~) , 
T 

I+2(T+ H)i 

I~(s)lds=O T i + ~  , 

1 -- +2Ti 2 

(4- z3) 

~ + 2( T + H)i 

1 g + 2 T i  

A p p l y i n g  CAucl~s  T h e o r e m  to  t h e  r e c t a n g l e  w h o s e  v e r t i c e s  a r e  i + 2 T i ,  
�9 2 

2 + 2 T i ,  2 + 2 ( T  + t t ) i .  and I- + 2 ( T  + H ) i ,  we obtain 
z 

(4- 24) 

2+2Ti  2+21T+ H)i ~ t - 2 ( T + H l i  

+6, I *  | ~+~+~=j ~-<~,~+ t~+~+ ~+~=ol~'-+~ �9 
l_+ 2T  i 2 +'2Ti 2 + 2(T+ H)i 
2 

Now 

( ')  
~ ( s ) =  0 t i§  

uniformly for I _ < a < z . ,  Hence 
2 

,1 )  ( ) 
( 4 - 2 5 )  J , = O (  T i+o  J3 0 T 14+~ �9 

and from (4- 24) and (4- 25) it follows that 

1 LA):DAV, Handbueh, p. 868. 
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(4- 26) 

B u t  

2+2(T+  H)i 2+2(T+ H)i 

g ' =  i ~m~l' I I I - n ~ d s - -  2 H i  + n = d s  
2 2+"2Ti 2 +'2 Ti 

n - - 2 - - 2 T i  
= 2 H i  + 

-f o~- n 
. •  ~q--2--2(T+ Hli 

log n 2 

- 2 H i + O ( I ) ;  

I 
which con t rad ic t s  (4- 26), since H = T ~ +~ and  d < , .  

4- 3- Tile p rob l em  is the re fore  r educed  to the  proof  of (4- 22). 

CAUCHY'S T h e o r e m  in a m a n n e r  v e r y  s imilar  to t h a t  of 4. 2, we ob ta in  

1 I 1 l 
T + H  2 + 2 5 + T i  2 + g h + ( T + H ) i  + ( T + H ) i  

(4. ~,, . (=~ , ;~ , - - , (  i" + .j" + i ),(~, ~. 
T 1 + T i  1 ~ 1 1 

4 2 +, (~+Ti 2+2-~)+(T+H)i  

Using 

Jz  + J-~ + J3 ,  

say.  Now ~ 

(' ) 
~" (2s) -- 0 t- log t 

un i fo rmly  for I < a S _  I ,  and  
A 2 

(2s) = O( logt )  

un i fo rmly  for i < a < ! + i ~. Also 
2 - -  - - 2  2 

, ( , )  
e 1" (s) = 0 t ~ - ~  

un i fo rmly  for  i < a < I + i ~ .  Hence  
4 - -  - - 2  2 

/ (s) = 0 ( logo  

LASDAU, L c. supra.  
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un i formly  for I < a < i 4 ~, and 

uniformly for • < o < i +  Id;  and so 
2 2 2 

(4. 32) !(s) = O(t~l 

I I I 
uniformly for < ~ < + d. I t  follows tha t  

4 - -  --2 z 

(4. 33) J, =O(TO), J;-- O(T'~); 

and the problem is accordingly reduced to t ha t  of proving tha t  

1 1 
~+2 b+(T+H) i  

(4. 34) I ~ i J2 ~ j / (s) ds  .-  O(T'~). 

1 1 6 2+~ +Ti 

I 
4. 4- Now, when a - -  + I-t$, we have 

2 2 

(4-41) /(8) =~17--8e--1(8--14)8i''('~)~ I 
n G" 

We have also, by a s t ra ight forward  applicat ion of STIRLU~O'S Theorem, 

' ' I (;)/ - - ~ ( s - -  i ~ ,  16eitlogltle• ) 
(4. 4z) = - ' e  ' I " ( s ) = t  A + O  

where A is a constant .  The term O( t  ) in this 

its contr ibut ion to I is of the  form 

o . ) .  

We have also 

181 

equat ion m a y  be neglected, for 

~ 1 ( ,  ) 
t ~ =T~+O T~-tH , (T<t<T+H), 
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and  the  second te rm ' s  con t r ibu t ion  is. of the  form 

o(g"-'.0:o.}, 

Thus  we are  a t  l iber ty  to replace t 2 by  T ~6 in (4. 4z), and to replace 1 in our  

a rgumen t  by  

T + H  T + H  
1 " I~ ' 

(4- 43) T ~' [. i t ,og(tl . .}~, x d t  rp.~ '~, I~_ [.it,og(tl . . . .  ')dr 

'r r 

1 o t 
Ti ~_r ~ T ~  S, 

]r~, l + d  

say. 

The  integral  q)(e~rn ~) belongs to a t y p e  considered in 3 -4  and  the  following 

sect ions;  ~ and  its behav iou r  depends  on the  posi t ion of the  po in t  v - - ~ r n  z with 

reference to the in terval  ( T , T +  H). At  mos t  one value of n can sat isfy the 

inequali t ies  

1 

T < "zn~ <_ T + T ; 

so t h a t  zen'- can fall inside (T,  T + H )  for a t  mos t  one value of n. We deno te  

this value  of n,  if it  exists,  b y  u; if t he re  be no such value,  we deno te  by  

the  largest  value  of n for which ~ n '  < T .  And we wri te  

(4" 44) 8 - - - - ~ + ~ + ~ = S , + 8 z + 8 , ,  
1 v - - 1  ~ + 2  

say. 

w h e r e  

1 
For ~ < ~ , 4 ~ <  I - -4 ,  and afortiori 4r < I - -3 .  Hence 

t J ~)<o. a - ,  +:(~ + , )  = : , - ~ ( , -  

W e  h a v e  

O(eTrn 2 ) = j ~ ,  o ( errn~ , T +  H )  - - J  l ,  o (enn ~, T), 

T 

ja ,p(~ , T ) = / ' t P  e air log(tlO dt" 

1 



Tile Riemann Zeta-function and the theory of the distribution of primes. 

Then, in the first place, we have 

(4. 45) T } ~  2 T 2 2 J = o ( I ) .  

Secondly, if n <  v - - 2 ,  we have, by Lemma 2. 432, 

:~ ()} < g ; 2 ~  

But  

T 2 ,og (~)= (,og V~--'~ 

183 

and 

H e n c e  

T>Tr(v--i) ~, l o g V ~ >  l o g ( v - - i ) .  

O(1)', 
S ' ~ O  I , n ' + ~ l o g  

1 16 
(4" 47) T~'~S = O ( T 2  - ) .  

Similarly, if n > v + 2, we have 

(4. 48) { '}  
log iT + H! 

~ ) =  (,og._,og T .  

T + H < ~ (v + i) ~, log V ~ + - H  < log (r + I), 

~ , )} S ~ = O  ]~ - n = 0 ( I ) : ,  
,'+~ nl +'~log (~T] -  

I LA~DAtr, Handbuch, p. 8o6. 
LANDAU, ~. C. 8u~ora. 
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(4. 49) = 0 

From (4. 45), (4- 47) and (4- 49) it  follows tha t  

(4. 49,) 

and our.  proof is therefore completed.  

Let ~ be any positive number. Theorem 4. 41. 

such that the segment 

G. II. iIardy and J. E. Littlewood. 

! +~'~. 
I + T i ,  I +  T + T  4 )~,  
2 2 

Then there is a number T O (e) 

where T > T O (~), contains at least one zero o/ ~ (s) o/ odd order. 

As a corollary we have 

The number N o ( T  ) o/ zeros o/ r~(s), on the line ~ i + T i ,  2J2 Theorem 4. 42. 

is o/ the /orm 

/or every positive value o/ ~. 

5o 

On the  o rde r  o f  ~O(x)--x and of  
l I  ( x ) - - L i x .  

5. i .  In this sect ion we shall prove t h a t  

(5. I i i )  ~ (x)  - - x  = ~2R (Vx log log logx) ,  ~t , (x) - -x  = ~L (1Fxlog log log x) , 

i. e. t ha t  there exists a cons tau t  K such t h a t  each of the inequali t ies 

(5. II2) t p ( x ) - - x > K 1 / ~ l o g l o g l o g x , ~ ( x ) - - x < - - K 1 / x l o g l o g l o g x ,  

is satisfied for arbi t rar i ly  large values of x; and  from these inequalities we shall 

deduce the inequali t ies (I. 52). I t  is clear t ha t  we may  base our  proof on the  

assumpt ion tha t  the RI~.MA~N hypothes is  is true.  If  it  is false, then  more is 

true than  our inequalities assert. 1 

1- LANDAU, Handbuch, pp. 712 et seq. 
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We shall found our  proof  on the formulae 

(5. x2i) 7- = g (n) + 0 ( i ) ,  

where t = g(z) is the  funct ion inverse to 

(5.  I22)  z =  I t l o g t  I + l ~  
2 ~ 2 7g 

and 

(5" 131) 
~o (x) - -  z 

+ 
7n< T 7n 

where ~l = logx ,  un i formly  for T > x  ~. Of these two formulae (5- 121) and  (5- I3I) ,  

the first  is an  immedia te  corol lary of Vo~ MAI~GOLDT'S formula  

N ( T ) = I  T l o g T  I + loge:r T +O(logT)X; 
2~ 2~ 

and  the second is an immedia te  corol lary  of known formulae  to be found in 

LANDAU'S Handbuch. ~ 
If  we make  T tend to inf ini ty  in (5- x3I), we obta in  

(5. 132) ~p (x ) - -x  ~ s i n 7 .  ~ 
- 2 _  7:: + o ( i ) ,  

1 

since the  series is k n o w n  to be convergent .  

5. 2. Let  z = g + i~, and let F (z )  be the funct ion of z defined by the  series 

~e--rnz ~ e-rn(~+ i~) 
(5. 2i) F (z) = 7- 7~ 

1 1 

convergent for g >  0. We shall consider the behaviour of this function in the 

semi-infinite s t r ip  def ined b y  the inequali t ies 0 < ~ < i,~2~> x. Our objec t  will 

be to prove 

T h e o r e m  5. 2. I /  3 F(z) is the imaginary part o/ F(z) then 

i It has been shown by Botln, LANDAU, and L1TTLEWOOD (aSur la fonction ~(s)dans le 
I 

voisinago de la droite o =  2 ~, Bulletins de l'Aeaddmie Royale de Belgique, 1913, pp. xi44--II75) 

that, on the Rl~.uXt~l~ hypothesis (which we are now assuming), the 0 in this formula and the 
corresponding O in {5- I2i) can each be replaced by o. 

See pp. 387, 351. 
Acts mathomatica. 41. lmpr lm6 le 12 ju in  1917. ~4  
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oo 
- -  ~ F ( z )  = 2 e -  rn'~ sin 7 n ~  ~ .QR(log log ~), 

- -  ~ F (z)  = -QL (log log ~), 

i n  the s e m i - i n f i n i t e  s t r i p  o < ~ < ~ , rl > i ~. 

We shall consider the first of these relations: the second can of course be 

proved in a similar manner. And we shall begin by proving the following lemma. 

L e m m a  5. 2z .  W e  have  

- - 3 F ( ~  + i ~ ) = ~  e - r " r  sin 7 - ,  c~ 8 log , 
~ra lb  

a s  ~ - - ,  o.  

Suppose that  n <.u  < n + I. Then 

2 T g  
(5. ez) g' (u) 

t5)' 
and so 

g (u) - -  g (n) = (u  - -  n )g '  (v )  (n < ~ , < . )  

Hence 

= o  n = 0 ( ~ ) .  

e-(2+iDg(u) e - (~+iDrn+o(D{  o l l O g n i [  
gIu) - -  ~ , .  ~ + Vn-/I 

~ + o ( ~ )  + o . 

I t  should be observed that  the constants implied by  these O's, and by  those 

which occur in the argument which follows, are independent of both u (or n) and ~. 

Let  u0 be a fixed positive number, and let g o = g ( U o ) .  Then 

' To wri te  
( i )  - -  ~ F ( z )  = QR (log log -tj), 

for a f ixed va lue  of $, would be to asse r t  t he  ex i s t ence  of a posi t ive K such t ha t  

(2) - -  ~ F(z) > K log 10g 

for t h i s  va lue  of $ and  a rb i t r a r i l y  large values  of ~. To asser t  (i) in the strip 0 < $ <__ ~,)]~ i 
is to asse r t  the  ex i s tence  of a pos i t ive  K such  t ha t  (2) holds  fo~ a rb i t ra r i ly  large values of 
(corresponding in genera l  to d i f fe rent  values  of $). 
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(5- 23) 
u o  u o  

But, by (5. 22), 

Hence 

and 

(5. 24) 

Thus 

(5. 25) 

e - ( 2 + i ~ ) g  d g  e ~-g dg 
g g'(u--) + 0 + O(z).  

go 

I log q - - log  2~r 
g' (u) z 

e-Ca dg 
, g g'(u) 

, 

go 

(xJ 

= o J log o 
go 

o~ 

I {'e -(,~+ 

go 

i r  
(log g- - log  2zr)dg + 0(1).  

.qF(~ + "~" -- I ] e - t g  sin ~'gloggdg 

go 

log 2 ~'~ j'e-~-u sin ~'gdg . . . .  -z z - - d  . . . .  -e + O i l )  

go 

say. But 

(5. 26) 

- J ,  + J.~ + O ( i ) ,  

ao 

= i ( e - t g  sin ~.q log gdg  + 0 ( I )  
Jt 2 Z e d  g 

0 

oo 

= I t ' e - ~ s _ i n W ( l o g w _ _ l o g ~ ) d w + O ( 1 )  
2 ~T, . j  w 

0 

and 

(5-27) 

--~log + 0( i ) ;  

J2 

oo 

logz ~ j  e-WsinWdw = O(t).  
2~r w 

2go 
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F r o m  (5. 25), (5- 26), and  (5. 27) it  follows t h a t  

(5. 28) 

a S  ~ 0 .  

5 . 3 -  Lemma 5. 3. 

i(i) 
- - , ~ F ( ~  + i_~) c,z 8 log 

There is a constant a such that 

(5. 3~) . . . .  < log 

","n~> a 

/or all su//iciently small values o/ ~. 

The  n u m b e r  of 7's which lie be tween  r and  v + I is of the  fo rm O( logv ) .  

Hence  

e -  ;"" ~ - "  ~ log ,r 

z., 7,~ v 

--.~u! 
= 0 e - o g U d u  

d u 
a 

1 0 j e - " l o g w  I f e - W d w  ; 
= w + log ~ . /  w 

�9 a 

and  (5. 3I) follows immedia te ly .  

5. 4. We shall  now m a k e  use of a wel l -known t h e o r e m  of DIRICHLET, the  

f u n d a m e n t a l  impor t ance  of which in the  t h e o r y  of DXRICHLET'S series was f irst  

reeognised by  BOHm I L e t  us  deno te  b y  x ~ the  n u m b e r  which differs f r o m  x b y  

an  in teger  and  sat isf ies  the  inequal i t ies  - -  ~ < x <  -.I Then  DIaICHLET'S t heo rem 
2 - - 2  

asser ts  t ha t ,  g iven a n y  pos i t ive  n u m b e r s  v0 (large), ~ (small),  and  N (integral) ,  

the re  exis ts  a v such t h a t  

(5" 4I)  v o < v < r 0  + I 

and  

(5" 42) 17nv l<~  

N 

See Boar and Lx~cDxu, G6ttinger Nachrichten, x91o, pp. 303--330, and a number of later 
papers by Boas. 

2 The notation is that of our first paper, 'Some problems of Diophantine Approximation', 
Acta Mathematica, vol. 37, PP. 15~--193- 



for 

Then 

Let  

But,  by (5. 42), 

where 

and so 

Hence 

(5. 43) 

if ~ is small enough. 

(5. 44) 

holds for every 

=atisfying 

(5-45) 

. 

formula 

is false. 
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. . . .  �9 . e  , n ,  ~ ~ . . . . . . . .  e 

1 ~ , `  1 l n 

N s i n T , ` ~ _ s i n T , ,  ~ +2  e--'n!. 

7,, N+I 7,, 

sinTn~ = sin(7,`r + 7 n r ) -  sin (7,`~ + co,,), 

[sin 7,` ~]-- sin 7 ~ [  < 2 ; ~ .  

[ - - ~ F ( g + i , , . ) + ~ F ( ~ + i g ) [ 5 2 ; - r ~  7,~ I61~ 

:,og(;) =~61og ~, + O ( i ) <  

It  follows that  the inequality 

I1 1:)I 1;) --3F(~+i~)> --~2 log =~log 

sufficiently small value of ~ and 

5 We are now in a position to prove Theorem 5. 9.. 

~ 3 F ( ~  + i ~ ) =  ~2a(Iog logr,) 

Then, given any positive number e, we have 

a corresponding value of ~2 

Suppose that  the 
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(5. 5~) 

provided only 

Let  us take ~0 

have therefore 

(5- 5z) 

But  

as ~ o .  Thus 

G. H. Hardy and J. E. Littlewood. 

- -3F(_~  + i 0 < ~lpg legal, 

r, > ~, -- ~, (,). 

v~: then  (5- 51) holds for all values of ~ which sai isfy (5.45)- We 

/ ( l'/ - - ~ F ( ~ + i r ~ ) < ~ l o g l o g  ~ + v ,  ~ +  I . 

I ~ c,o log I log log _~ + ,~ + I 

(5- 52) contradic ts  (5- 44). Therefore (5. 51 ) mus t  be false, and  

the theorem is proved. 

5- 6. Our next  object  is to prove 
I / w e  denote by 3 F ( i ~ )  the limit of 3 F ( ~  + i71) as ~ o ,  T h e o r e m  5. 6. 

so that 

then 

- -  3 F (i~) ~ ~ sin 7n~, 

- - 3  F( i~)=.Qa(log logr),  - - 3 F ( i v , ) = - Q L ( l o g  logr 

If  F(z) were regular for ~ > o ,  or regular for ~ > o  and  cont inuous  for ~ > o ,  

we could deduce Theorem 5. 6 from Theorem 5. 2 by means  of a well-known 

theorem of LINDEL6F. Our a rgument  would in fact  be much the  same as t ha t  

used by BOHR and LANDAU ~ in deducing 

~(t + it) = .o.. (log h,gt) 

from 

~(s) = ~2(log logt) ( a >  I) .  

In  the present  case, however,  ~'(z) is no t  cont inuous  for ~ > o .  We proceed 

therefore to frame a modif icat ion of LINDEL6•'S theorem adapted  for our  purpose.  

Lemma 5. 6r. Suppose that 
(i) f(z) ks regular in the open semi-infinite strip 

o < ~ < L ~ > ~ o > o ;  

(ii) 1(~ + i~) tends to a limit f ( i~) as ~ o ,  [or every such value of 7; 
and that positive constants A,, A2, and p exist such that 

1 G~ttinger l~rachriehten, 19IO, p. 316. 
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(iii) ffiven any number y greater than ~,,, we can [ind a Tositive number 

= ~ (y) such that 

I I(~+(i,)i~)l<A' 

/or 

(iv) 

on the boundary o/ the strip; 

(v) 

in the i~terior. 

o<~_< 0 ,~o<~< y ; '  

I/(z)l<A2 

l/(z)l = OiezP~ 

Then there is a constant A such that 

II(z)l<_A 

in the interior and on the boundary o/ the strip. 

There is plainly no real loss of generality in suppos!ng that  v~0 is greater 
than any number fixed beforehand. Let us then choose a number q greater 
than p, and suppose that  

qarc  | a n  ( ~ )  < I - 5 ' 1 7 .  

2 

If z = R e i ~ ,  then 
' 

~r arc tan r < 0 <  I 
2 - -  - - 2  

for all points of the strip, so that  

and 

If now 

where t is positive, then 

(5 6~) 

cosq (O--~ ~ ) > o  

~ ( - -  iz )q> e. 

(z) = / (z) e - ~ - i z ) q ,  

Im(z) l < A~ 
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at all points of the boundary. Also q ) ( z ) ~ o  as .2~r162 uniformly for o < ~ <  r. 

We can therefore choose a value of y, as large as we please, and such that  

IO(~ +iy)l<A~ (o<~<i). 

The inequality (5- 6i) is then satisfied at  all points of the boundary of the 

rectangle R whose corners are (o,~;0), (I,~0), (r,y) and to, y). 

Now let ~ be the number ~(y) of condition (iii), and let R' be tile left-hand, 

and R" the right-hand, of the two rectangles into wl ich R is divided by the 

line ~ - -3 .  I t  follows from condition (iii) tha t  

(5- 62) O(z) < As A ,  

at all points in or on tile boundary of R'. I t  is moreover evident that  A, > i. 

Hence (5. 62) holds also on the boundary of R", and therefore, since q)(z) is 

regular in and on the boundary of R", inside R" also. Thus (5- 62) holds inside 

and on the boundary of the whole rectangle R. Making ~ tend to zero, as in 

the proof of LINDEL~F'S theorem, we see tha t  

II(z)lqA =A,A2 

inside and on the boundary of R. Thus the lemma is proved, with A = A ,  Av 

5- 7. We can now prove Theorem 5. 6. Let us suppose tha t  the first 

proposition asserted in the theorem is false. Then, given any positive number ~, 

there is an *2o such that  

(5. 7~) 

for 

Let 

(5. 7 2 ) 

- -  3 F (i~j) < 6 log log 

.2 >_*2~ 

/ (z) = e iF l z ) ( l ogz ) - -K  

where K >  ~. We shall show that  ] (z) satisfies all the conditions of Lemma 5. 6z 

in the strip o <  ~<~ , . 2>2 .  That  conditions (i) and (it) are satisfied is evident, 

and (iv) is satisfied in virtue of (5. 7x). I t  remains to verify (iii) and (v). 

I t  follows from (5. I3I) tha t  

~sinT-*2 
7'. - -  O ( i ) ,  

7 t t >  T 

uniformly for T >  x~= e-%. If then we choose N so that  7~v+1> e ~ ,  we have 
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(5. 73) ~ si_n 7,,~ = 0 (r) 

uniformly for v > N , z ~ < y .  It follows by partial summation that  

(5. 74) ~f.~ e-:'n:sinT"~; O(x), 
N+ 1 7n 

uniformly for ~_> o, 2 < ~ < y. Thus 

I - - 3 F ( ~ + i , i ) +  3 F ( i v ) l =  ( t - -e - rn~)smz" ' ;  
7n 

+1 7, z. I + IN+I 7n ] 

= N ~  + 0 ( i ) ,  

I /(iV) log(~ +i~)  

< KteN2 +K2, 

where K 1 and K2 are constants; so that  condition (iii) is satisfied if we take 

3 = Z  
N" 

We have finally to verify that  [(z) satisfies condition (v). It  is known that  

~p (z) - -  z 
V x  - O (log x) ' ,  

and it follows from (5. I3I) that  

~ 

(s. 75) ~ s ,nT .~  = 0(,~), 
7 z,, 

uniformly for y~,>x2~eS'l. But, if 7~,<eS'~, we have 

" " l o g  k  =02 -w-=O(e/ 
g n  -- Yn < e2rl $ k < e 2q  

Thus (5. 75) holds uniformly for all values of r;  and so, by partial summation 
we obtain 

Acla  mathematlca. 41. Imprim6 le 28 juin 1917. -95 
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- -  3 F (2 + i r~) = s e -:'a-%in 7n~ = O(r/), 
1 ~n 

(5. 7 6) / (z) = e o(r  (I)  = 0 (e r 

Thus condition (v) is satisfied with p = 3. 
The function /(z) therefore satisfies all the condit ions of Lemma 5- 6z, and  so 

for o < ~ < i , ~ > 2 .  Hence 

and so 

(5. 77) 

I (z) = O (i)  

e i F (z) = 0 1 (log z)K I 

- -  ~3 F (z)  < 2 K l o g  l o g  r, 

for all sufficiently large values of r. B u t  K ,  being restr icted only to be greater  

than  ~, is arbi t rar i ly  small; and so (5. 77) is in contradic t ion with Theorem 5 . 2  

I t  follows tha t  {5. 7 I) is false, and  therefore Theorem 5. 6 is true.  

5. 8. From (5. I32) and Theorem 5. 6 we can a t  once deduce the theorem 

which it is our main object to prove, viz., 

Theorem 5. 8. We have 

~p (x) - -  x = -QR (Vx log log log x), ~0 (x) - -  x = .ql (lYx log log log x). 

All tha t  remains is to deduce from these relations the corresponding rela- 

tions which involve I I ( x ) .  This deduct ion  presents  one point  of interest .  I t  

might  be ant ic ipated t h a t  no th ing  more t han  a par t ia l  summat ion  would be 

needed; and  if the one-sided relat ions involving ~R and ~L are replaced, in premiss 

and  conclusion, by  a single relat ion involving .q, this  is ac tua l ly  so. B u t  the 

a rgument  now required is a little more subtle and  involves an appeal to the 

results established in 2. 25 concerning the CES).RO means of (p (x) - -x .  

We have to show t h a t  

T.  ,~ I V x l o g l o u l o g x l  
(5. 8I) l I ( x ) - - L i x = . o - R ( V X l ~ 1 7 6 1 7 6  l ~ x  /" 

log x l 

I t  is plainly enough to establish similar relations for the funct ion 

(5. 82) 
(3) 

F ( x ) = n ( x )  + ~ n ( V + ) + ~ n  Vx  + . . . .  
2 3 
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I t  is of course this function,  and  not  H ( x ) ,  which can be connected with (p(x) 

by  a par t ia l  summation.  We have in fact  

/ ( x )  = s ~ ( n ) - -  ~p(~-- i) 
2 log n 

2 2 

](x) = L i x  + 0 ( i )  + s 1 6 2  
2 l o g  n 

~ - L i x + O ( , ) + ~ { r  * l iogn  l o g ( n + , )  
2 

+ 

(P (x) --  [x] 
+ log {[x] + i}' 

(5. 83) / ( x ) - -L ix - -  ~ (x ) - - x=  s  
logx  ,. n(logn) ~ 

x 
+ 0~1 ~(n)-nl 

2 n"( l~ + O(x) 

= ~ P ( n )  z n 
~ n ( l o g n )  ~ + O(r). 

Let  

Z (x) -- s  ~ ( n ) - -  n}. 
2 

Then 

(3) 
Z (n) = 0 n ] , 

by  Theorem 2. 25. Hence 

(5. 84) 
s s 
2 n (]~ 2 2 n (l~ n)'~ 
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[ i  I ] 
= 2 7 " ( n )  n ( logn f"  ( n +  x) ( log(n+ I )} '  

2 

+ 
([x] + I) (log ([x] + I)} ~ 

= O  e Vn(]-~ ~ + O ( l o ~  
i V~  

=o/ 
/(logx)'/ 

From (5. 83) and (5. 84) it follows tha t  

L i x  q ' ( x ) - - X = o  I V'x ~; 
(5. 85) / ( x ) - -  - -  logx | ( 1 o ~ 1  

and from (5. 85) and  Theorem 5. 8 we deduce  

Th eo rem 5. 81. We have 

1I (x) --  L i x =  ~2R ~/]/x l~ log l ~  - - l o g  x ! L i x  = D--L (I/x log log l O g l ~  x xtl" 

We refer in the  in t roduct ion (i. 5) to the  o ther  impor t an t  appl icat ions  which 

may  be made of the me thod  of this section. 

A d d i t i o n a l  Note .  

While we have been engaged on the final correction of the proofs of this memoir, which 
was presented to the Acta Mathematica in the summer of I9x5, two very interesting notes 
by M. DE LA VALLEE-PoussIN entitled 'Sar les z6ros de ~'(s) de Rm~A~N' have appeared in 
the Comptes Rendus (23 Oct. and 3o Oct. I916). M. DE LA VALLEV,-PousSIN obtains, by 
methods quite unlike those which we use here, a considerable part of the results of section 
4 (I8 Nov. i916). 

E r r a t u m  

G. H. HARDY and J. E. LITTLEWOOD, 'Some problems of Diophantine Approximation', II, Acta 
Mathematica, vol, 37, P. 23 I, line x: 

for o read o ~ - -~  . 
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