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T H E 

PHYSICAL REVIEW. 

THE MEASUREMENT OF HEAT AND THE SCOPE OF 
CARNOT'S PRINCIPLE. 

BY ARTHUR C. LUNN. 

SYNOPSIS.—This paper outlines a symmetric form of exposition of the principles 
of thermodynamics made possible through recognizing on a parity from the outset 
the two kinds of conservation naturally called after Black and Carnot, each of 
which is physically valid under proper conditions, and which lead to the energy and 
entropy scales of measurement of heat; thus exhibiting both of these, together with 
the thermodynamic scale of temperature, as calorimetric concepts. In the two parts 
of the paper are given respectively an experimental and a deductive treatment. 

In part I. the experimental meaning of conservation is considered in terms 
of certain conditions of consistency; first in connection with single-temperature 
transfers of heat, where those conditions underlie the uniqueness of meaning of an 
arbitrary scale of heat for various temperatures; second in connection with passages 
of heat between bodies at different temperatures, which reveal the dual nature of 
a quantity of heat, here illustrated by some analogies. 

In part II. are investigated the deductive consequences of Carnot's hypothesis of 
the universal ratio of efficiency. With only the single-temperature conservation of 
heat assumed to be known experimentally (probably the mildest basis on which 
this principle is intelligible), it is shown that there follows practically the entire theory 
of reversible thermodynamics, in particular the existence of thermal energy and 
entropy and the equivalence of thermal energy and work. 

O l N C E the time when the basic principles of thermodynamics were 
^ given a standard form, chiefly by Clausius, Kelvin and Rankine, it 
has become customary not only to speak of "first" and "second" laws 
but to adopt a corresponding order of thought in the development of 
their more immediate consequences. It is recognized however that the 
two principles are at least to a certain extent independent, so that an 
inverse order of development is conceivable; as illustrated for instance 
by the fact that Kelvin was able, without using the principle of equiva
lence, to point out the implication in Carnot's theory of a universal or 
absolute scale of temperature.1 Moreover, while the principle of equiva-

1 Kelvin, Camb. Phil. Soc. Proc, June 5, 1848. 
I 



2 ARTHUR C. LUNN. [SECOND 
LSERIES. 

lence enters chiefly on an experimental basis, the second law is made to 
rest to a large extent on an a-priori hypothesis, in the form of Carnot's 
principle or its equivalent, to be judged by experimental test of its 
deductive consequences. An unsatisfactory result is that while the 
notion of thermal energy, already familiar from experimental calorimetry, 
becomes still more concrete through equivalence to mechanical work, 
the notion of entropy, introduced by theorem and definition, appears 
comparatively abstract and difficult of physical interpretation. 

Still, this order of ideas is undoubtedly natural in presence of the 
general understanding that Carnot's original theory, though contributing 
the invaluable concepts of the reversible cycle and the universal ratio of 
efficiency, is in contradiction with experiment through assuming the 
conservation of caloric in the cases contemplated, the substitution in 
these cases of the principle of equivalence of heat and work having opened 
the way for the development of thermodynamics in its now classical 
form. To make the first law intelligible it is of course assumed that the 
measurement of heat by itself is already on an experimental basis. This 
is taken to have been accomplished through the processes of calorimetry, 
as initiated by the pioneer work of Black, which may be said to rest on 
the hypothesis or fact, according to the point of view, of the conservation 
of caloric in certain cases of conduction and the like where it is now known 
to be an essential feature that no mechanical work is done. 

It has not escaped notice however that in some ways Carnot's " caloric " 
shows distinct resemblance to entropy rather than to thermal energy.1 

Detailed examination shows that most of the propositions of Carnot's 
essay, and of the formulas in Clapeyron's mathematical commentary and 
Kelvin's " account," 2 though so often called erroneous and even meaning
less by commentators, have a meaning and are correct if "caloric" is 
taken to mean entropy. It is certain therefore that the amount of 
inconsistency with experimental results supposed to be present in Carnot's 
theory has usually been exaggerated and its exact nature not clearly set 
forth. From the point of view to be explained in this paper the only 
error of importance appears to be that, not realizing the type of conserva
tion required by his theories to be physically distinct from that of Black, 
he borrowed numerical data obtained on the energy scale and applied 
them in cases where they should have been given on the entropy scale. 
For example, at constant volume the capacity of an ideal gas for change 
of thermal energy is constant but its capacity for change of entropy 
varies inversely as the absolute temperature. 

1 Callendar, presidential address, Phys. Soc. Proc, 23, 153-189, 1911. 
2 Clapeyron, J. de L'Ec. Pol., 14, cah. 23, 152, 1834. Kelvin, Trans. Ed. R. Soc, XVI., 

1849. 
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One may say then that the hypothesis of conservation of caloric was 
used effectively by Black and Fourier in cases where one would now say 
that thermal energy is conserved and entropy increases, while Carnot 
assumed it for the case of his reversible engine where thermal energy 
changes but entropy is constant. The parallel though incomplete is 
unmistakable. It suggests that the whole basis of thermodynamic theory 
might be recast in a more symmetric form, securing at the same time a 
more completely experimental setting, by considering from the outset on 
a parity the two measurable properties of a quantity of heat and the 
corresponding scales of measurement based on two types of conservation, 
each valid in the respective class of cases whereby the experimental 
establishment of the scale is achieved. Such a formulation is attempted 
in part I. of this paper where the term "quantity of heat" is for conveni
ence used, in a sense more generic than usual, as denoting a relatively 
primitive concept not really simple, but which rather may be said to 
bifurcate into the two distinct and more specific concepts, each of which 
corresponds in the appropriate cases to the respective types of conserva
tion identified by the names of Black and Carnot. 

Such a bifurcation during the process of refinement into scientific 
precision of a primitive and relatively vague concept is by no means a 
rare event in the history of science, though as in the theory of heat it is 
often obscured by the continuance in use, to denote one only of the 
emerging concepts, of a term previously more comprehensive and in
definite. During the formative period of dynamics search was made 
for an acceptable measure of the amount of motion in a moving body and 
the controversies led to the appearance of two important and distinct 
concepts, momentum and kinetic energy; some traces of vagueness of 
language remain in the Principia of Newton, though technically he chose 
to restrict the term "quantity of motion" to the first of these. The 
"degree of electrification" of a body might be taken to include reference 
to both charge and potential; the coldness of metal on a winter day is an 
uncertain blend of low temperature and good conductivity; the distinct 
concepts quantity of heat and temperature arose from the scrutiny of 
judgments of "ho t " and "cold." In a similar way it seems just to use 
the term "quantity of heat" in a generic sense, to comprise reference in 
combination to both of the two independent measurable properties, 
thermal energy and entropy, although since the foundation of calorimetry 
the expression has come to be restricted to one of them as a matter of 
custom. Further examples could easily be cited, but for the present 
purpose the point of view suggested is especially well illustrated by the 
following example, which will be seen to furnish a rather vivid and far-
reaching analogy to the thermodynamic relations. 
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The term "amount of gas" may be treated as somewhat indefinite, 
referring to volume or mass or both jointly according to the interpreta
tion intended, as in the specification of percentages in a gaseous mixture. 
Suppose then an extensible balloon containing air, with attached tube 
and shut-off permitting control of contents, be allowed to rise through 
water in which it is immersed. If the shut-off be closed the mass of air 
is constant while the volume increases; if the contents be allowed to 
escape at a suitable rate the volume may be kept constant while the mass 
diminishes. Here mass, volume, depth, pressure in water, atmospheric 
pressure at surface, correspond respectively to thermal energy, entropy, 
temperature on some empirical scale, temperature on thermodynamic 
scale, and temperature of conventional zero above absolute zero. 

In the typical case of Black's calorimetry the heat leaving a body A 
at a certain temperature and that entering another body B at a lower 
temperature are such that the thermal energies are the same, but the 
entropy entering B is larger than that leaving A. In the typical case 
of Carnot's theory, where the transfer of heat occurs by mediation of a 
reversible engine working in a simple Carnot cycle between the two 
temperatures, the entropies involved are equal but B receives less thermal 
energy than A gives up. Thus the justice of the term "conservation of 
caloric/' in two different senses, seems to be exactly the same in the two 
cases. 

The incompleteness of the parallel with respect to other features may 
also be instructive. In both cases there is known to be conservation of 
energy, because the variations of mechanical energy in its various forms 
compensate those of the thermal energy; while there is not yet recognized 
any physical magnitude whose variations compensate those of the known 
thermal entropy, so as to allow the formulation of a law of conservation 
of entropy in some wider sense. Still it is conceivable, as Callendar 
suggests, that there may be other and equivalent forms of entropy, and 
especially does there seem to be a chance for speculation on this point in 
connection with the thermodynamics of radiation. Perhaps also there 
may be other and independent aspects of heat, beside energy and entropy, 
whose conservation could be established in some experimentally intelli
gible sense; for instance in connection with the aggregate result of the 
molecular Doppler effects, since energy and temperature alone do not 
determine spectrum of radiation if the black body condition be not im
posed. Such novel aspects or magnitudes could probably not be sifted 
out by the study of bodies, like fluids in gross, whose state depends on 
only two independent thermodynamic coordinates. 

As underlying the interpretation of thermal measurements the notion 
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of conservation or equivalence appears in various forms. These may 
be analyzed in terms of three fundamental types, corresponding to the 
following three elementary cases of experimental comparisons: (i) com
parison of quantities of heat entering or leaving different bodies at the 
same temperature, (2) comparison of quantities of heat at different tem
peratures, (3) comparison of heat with other physical entities, especially 
completely available energy in some form. 

The treatment given in Part I. shows that on the basis of the first 
two only, including the suggested dual aspect of the second, it is possible 
to exhibit entropy as well as thermal energy as a calorimetric magnitude, 
thus reaching a more symmetric experimental setting than the familiar 
forms of the theory. The equivalence of thermal energy and work is 
then introduced as an additional experimental result, while the existence 
of an analogous non-thermal equivalent for thermal entropy appears 
merely as a question. 

As an alternative development a symmetrically deductive treatment 
is given in Part II. Here the only experimental comparisons assumed 
are of the type (1) above, while Carnot's hypothetical principle of the 
universal efficiency function is stated as a postulate. The existence 
of thermal energy and entropy, identifiable with the experimental con
cepts, is deduced, so that for reversible processes there follow both first 
and second laws as commonly understood. Thus, on what appears to 
be a minimum basis of experiment sufficient to make the measurement 
of heat an intelligible notion at all, Carnot's principle alone proves to 
be an adequate hypothetical basis for the entire general theory of the 
thermodynamics of reversible processes, having in particular the principle 
of equivalence of heat and work as a corollary. Distinct indications of 
the possibility of such a conclusion will be found in the apparently little 
known memoir by Reech,1 in which the development is such that it can 
be specialized further by assuming either conservation of energy or 
conservation of caloric, considered as mutually incompatible. Results 
partially similar to those now obtained will also be found in the recent 
papers by Larmor and Raveau,2 dealing with Carnot's principle apart 
from the principle of equivalence. Some reference will be made later to 
corresponding features in these papers, but the detailed comparison will 
be left to the reader. 

PART I. EXPERIMENTAL SETTING. 

Passing over the complex detail of experimental methods and the 
involved questions presented to the experimenter's judgment in the 

1 Reech, Liouv. J., ser. i, 18, 357-568, 1853. 
2 Larmor, Roy. Soc. Proc, 94, 326-339, 1918. Raveau, C. R., 167, 20-23, July 1, 1918. 
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attempt to sift from among secondary or accidental aspects the main 
elements of the phenomena to which attention is to be directed, it will 
be sufficient here merely to notice certain salient features of the results, 
that either have been obtained or with appropriate experiments would be 
obtained if thermodynamics in its familiar form is valid. As to ther
mometry, it will be supposed that means have already been secured for 
identifying particular physical temperatures, and that the various tem
peratures are known to form a simple or linear ordinal series, in connec
tion with which the terms "higher" and "lower" have their usual 
meaning. If data are to be transcribed with the aid of some numerical 
specification of temperature it will be understood that the physical order 
of rising temperature corresponds to the order of increasing values of 
the index variable tf without implying any initial physical interpretation 
for equality or comparison of intervals in different parts of the scale. 
In most cases it will be clear that t could be understood merely as some 
symbol of identification, not necessarily numerical. 

Viewing then to begin with as merely tentative the notion that heat 
can be measured at all, one may ask what there is in the experimental 
processes developed and the results reached to show that heat possesses 
properties truly measurable, and such that the results of measurement 
can be described justly in terms of the standard language of equivalence 
and conservation. In the main the answer is that in all the types of 
comparison involved in thermal measurements there appears a certain 
unanimity in satisfying what may be called conditions of transitivity, 
or conditions of consistency as they become in the phrasing suggested 
by the point of view represented in the notion of equivalence; conditions 
as to sense or algebraic sign, and as to value or measure. Between these 
two kinds also there is a certain formal analogy that needs no attention 
here. It is because these conditions are satisfied that it is possible to 
formulate the meaning of a "quantity of heat" as something having 
value and sign. This formulation, found by experience to be both just 
to the facts and convenient in describing them, is best thought of as 
occurring in connection with observation of such variations in physical 
properties, supposedly due to thermal processes, as affect features already 
known to admit of algebraic representation, like length, volume, density, 
mass of a particular phase. Both kinds of conditions of course appear 
in a variety of forms, corresponding to the various kinds of bodies involved 
and the various kinds of thermal exchange between them. 

In language made unconventional in order to avoid specific terms 
already adopted as technical, the conditions of sense may be described as 
referring to a distinction between some change called "waxing" and its 
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opposite " waning," the terms bearing various meanings for various bodies 
or kinds of change. Suppose then in each single experiment of a set a 
certain pair of bodies in thermal exchange, all other bodies being found 
unaffected in certain prescribed respects. With A and B in exchange let 
A vary in a way called waxing by definition, then what B does may be 
called waning; in exchange with C suppose B waxes, then what C does is 
naturally called waning; no more definition being needed, there is 
content of fact in saying that with A and C in exchange if A waxes C 
wanes. In case n bodies were paired off in all possible ways there 
would be one arbitrary definition, n — I definitional pairings, and 
(n — i)(n — 2)12 pairings for test of fact. There are also in connection 
with processes that can be reversed items of fact to the effect that 
reversals of sense correspond in the two bodies of a pair. In view also 
of the number of ways in which the same body may be affected by thermal 
exchange according to the conditions imposed, it is clear how broad is 
the justification in fact for speaking of heat as something entering or 
leaving a body. 

The matter of numerical value is closely similar. The magnitudes of 
corresponding changes in the bodies of a pair are found to be related 
in some way, and the observed relation for A and C can also be computed 
from the relations for A and B and for B and C by algebraic elimination. 
The character of the algebraic process depends on the choice of variables 
used in transcribing the measurements, the usual case being the multipli
cation of ratios. With any number of bodies in the set to be compared, 
a particular one may be chosen to be paired off with each of the others, 
either to decide on convenient definition of terms or by process of calibra
tion to fix on a suitable choice of variables; then all other pairings give 
tests of fact. The consistency thus revealed is the ground for speaking 
of heat as something admitting quantitative estimate. 

Whether every type of sequence, or in what sense any particular 
sequence, of thermal comparisons would satisfy these conditions need 
not be discussed here; some of the outstanding problems relate to the 
question whether other and independent quantitative aspects of heat 
remain to be discovered. The few special types to be mentioned here 
are actually of the consistent or conservative type, and prove to be suffi
cient as basis for the theory aimed at. In each case the meaning of the 
conditions of consistency in sense or sign may be passed over as obvious 
without comment; the conditions of consistency in value or magnitude 
will be sufficiently illustrated by the forms that they take in certain 
standard cases of the three types of comparison listed above. 

Comparisons of the first type, of quantities of heat entering or leaving 
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bodies at the same temperature, lead to the conclusion that all such 
can be compared among themselves and represented consistently by 
simple ratios; or in other words that for such single-temperature com
parisons a quantity of heat can be considered a simple thing, capable 
of representation by a single number in terms of any chosen unit belonging 
to that temperature, regardless of the kind of body concerned or the kind 
of change produced in it according to collateral conditions imposed. 
This leads to the introduction of what may be called an empirical or 
arbitrary scale of heat, including a single specific unit for each tempera
ture, but not implying anything as to the possibility of comparing two 
quantities of heat when the temperatures are different. An approximate 
example of such a scale is found in the system of differential calories, 
according to which the specific heat of water is by definition unity at 
every temperature. A better example for the purpose is to be found in 
strictly isothermal processes, especially changes of state, though latent 
heats of expansion would also serve. Through a suitable variation of 
pressure the latent heat of transition between liquid and vapor of a 
single substance could furnish such a scale for a considerable range of 
temperature. 

Consider then a variety of substances such that the respective pressures 
can be adjusted so that the temperatures of transition agree. In the 
absence of such adjustment for any two particular substances A and B, 
suppose thermal exchange between them for a certain time leads to 
the transformation of the respective masses niA, mBy the transition 
being reversed in both bodies with reversal of sense of the temperature 
difference. With temperature difference approaching zero the ratio 
WA/WB of corresponding masses approaches a limiting value HAB to be 
understood as the ratio of masses transformed in the ideal limiting case of 
reversible or single-temperature conduction. 

The main experimental facts of significance here are then: that the 
ratio iiAB, depending on the temperature of transition and the nature of 
the substances, is independent of the absolute mass transformed, and 
that for the same temperature the various ratios for the various bodies of 
the set satisfy conditions of transitivity in the form JJLABVBC = MAC- This 
multiplication of ratios is of course not merely a mathematical identity, 
though conveniently given a mnemonic form as such, the meaning being 
that if mA be the same in the experiments (AB) and (AC) and mB the 
same in experiments (AB) and (BC) then as an experimental fact mc will 
be the same in (AC) and (BC). The fact that the ratio of masses is 
characteristic suggests that a quantity of heat can be numerically indexed 
as proportional to the mass transformed of some particular substance. 
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The conditions of consistency in the compounding of the ratios furnish 
one instance of the universal consistency in the comparison of various 
temporary units of heat belonging to the same temperature, though in 
general the mathematical form varies. In such facts is found the 
experimental basis for the effective accuracy of the language of conserva
tion, according to which for example one can speak of a quantity of 
heat going from A to C either directly or through B. In the sense illus
trated it will now be supposed that the meaning of a quantity h of heat 
at a temperature / has been established. Certain familiar terms, like 
the differential specific heat dh/dt, become intelligible in connection with 
any definite choice of the scales of heat and temperature. 

For the second type or multiple-temperature comparisons consider a 
set of bodies or reservoirs maintained at their respective various tempera
tures, any certain three of which, such as will be referred to, being 
labelled in descending order as th t2, h. The two distinct forms of con
servation already alluded to will then appear in connection with thermal 
exchange between these bodies of the two kinds naturally named after 
Black and Carnot. 

The first form, fundamental in classical calorimetry, occurs when the 
bodies communicate by pure irreversible conduction or radiation, or 
by the mediation of some mechanism such that the various quantities 
of heat are related in the same way. The second occurs when the bodies 
communicate by mediation of a reversible engine working in Carnot 
cycles between the two temperatures. In the first case suppose h\ 
units of "/i-heat" leave the first body and h2 units of "/2-heat" enter the 
second body; let hi/h2 — bn. Similarly in the second case, the two 
quantities of heat being hi and h2\ passing when the engine is on the 
isothermals, put hi/h2 = £12-

Now calorimetry as ordinarily understood, or the measurement of 
heat by itself in Black's sense, rests largely on the experimental facts: 
that 612 depends on the two temperatures only save for its obvious varia
tion according to the choice of the scale of heat; and that in terms of any 
one scale of heat the ratios for various pairs of bodies satisfy the condi
tion 612&23 = &i3. But according to standard thermodynamic theory it 
is indirectly understood to be a fact, and by suitable apparatus could 
doubtless be shown to be experimentally verifiable with considerable 
directness, that the ratios Cn and the like satisfy similar conditions. 
The fact that the b's are independent of the physical nature of the reser
voirs and the character of the changes produced in them is paralleled 
by the fact of a similar independence on the part of the c's of the proper
ties of the reservoirs and the nature of the mediating engine. 
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Thus in each case there is complete ground for concluding that there 
is a sense in which the heat is conserved in passing out of one reservoir 
and into the other. But it is also to be understood as found experi
mentally that &12 < £12; accordingly the two types of conservation must 
be physically distinct. 

Thus a quantity of heat h, entering or leaving a body at temperature 
t, exhibits two distinct measurable properties, thermal energy and en
tropy, whose measures q and 5 are related to the empirical measure of 
heat by equations of the form 

q = hB(t), s = hCit), 

where the reducing factors B(t), C(t), appropriate to any particular 
scale of heat, are determined, except for an arbitrary constant factor 
in each depending on the choice of the units for q and s, by the conditions 

B(h)fB(h) = 612, C{h)IC{h) = cia, 

which are the transcription of the equality of q\ and q2 in the Black process 
and of S\ and s2 in the Carnot process. 

A change of the scale of heat can be represented by putting h = hf p(t) 
where p(t) is the ratio of the new to the old unit of 2-heat; the corre
sponding new reducing factors are then p(t)B(t) and p(t)C(t), supposing 
the units of q and 5 not altered. In particular p could be taken as the 
reciprocal of either B or C, thus reducing the arbitrary scale of heat to 
the energy or entropy scale. 

If by definition T(t) = B(t)/C(t), then in view of the inequality 
612 < c12, which gives B(h)/C(h) > B{t2)jC{t2) it follows that T(t), the 
absolute or thermodynamic scale of temperature thus shown to exist, 
is a mono tonic increasing function of the physical temperature, is inde
pendent of the choice of the scale of heat, and is determinate except for 
a constant factor depending on the units of q and s, whose values for 
the same quantity of heat are related by q/s = T{t). 

With the aid of this scale of temperature the two cases may then 
be epitomized as follows, the different equations in each set being 
equivalent but suggesting different interpretations : 

B; qi = q2; sxTi = s2T2; (s2 - si)/si = (Tx - T2)/T2; 

O2 - sj/s* = (7\ - T2)/Ti; s2 - Sl = ffi(i/r, - i/rO; 

C: Si = s2; qijTx = q2/T2; {qx — q2)/qx = (Ti - T2)/Ti; 

fei ~ &)/q2 = (Ti — T2)/T2; qx - q2 = si(Ti - T2), 

To each equation valid in one case there corresponds one valid in the 
other case obtained by interchanging q with 5 and T with i/T. For 
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example there are two instances of the Carnot simile of the waterfall: 
in C the thermal energy s(Ti — Z2) is lost when entropy 5 falls through 
the temperature difference 7\ — T2, while in B entropy q(i/T2 — i/Ti) 
is generated when thermal energy q rises through the difference of the 
reciprocals of the temperatures. In each case the statement of the 
condition of conservation in terms of the non-conserved quantity gives a 
kind of calorimetric aspect of the familiar Carnot ratio and its dual. The 
universality of these ratios, as depending on the temperatures only, is a 
consequence of the universality of the ratios b and c mentioned above, 
which is what makes it possible to abstract the notions of thermal 
energy and entropy out of the properties of particular bodies. 

Up to this point only heat entering or leaving a body has been spoken of. 
But the conservation of entropy in the Carnot process leads by a familiar 
reasoning to the conclusion that all reversible transformations connecting 
two states of the working substance must agree in the amount of entropy 
absorbed, this amount being the integral of the calorimetric expression 
for ds in terms of reversible changes of the temperature and other observ
able properties of the body. The existence of a function of state properly 
called the entropy of the body is thus recognized, in a purely calorimetric 
setting. The question is at once suggested whether a corresponding 
identification of the internal energy of the body is possible by thermal 
tests alone. 

This calls attention to a certain feature of incompleteness in the parallel 
as thus far drawn, in that the Carnot process implies the mediation of 
a working substance, while in the primitive form of the Black process only 
the two reservoirs are concerned, unless one considers the optical ether 
as mediator. It is, however, possible to imitate the net result of the 
irreversible conduction or radiation through the mediation of a gas, for 
instance, working in a cycle of the Carnot type except that such a part 
of the expansion on the upper isothermal is "free" that the net work of 
the cycle is zero. This illustrates that the primary condition for Black 
conservation during communication of the two reservoirs is of course 
not that there shall be no mediator but merely that the ultimate changes 
shall affect only those reservoirs; in contrast with the Carnot cycle, 
where some change in other bodies accompanies the non-vanishing work 
done. Accordingly, any case where it is possible to use a mediating 
body in such a way that this condition is satisfied, and such that the 
quantities of heat absorbed can be identified in terms of the changes in 
that body itself, can be thought of, not only as exhibiting conservation of 
thermal energy, but as leading also to a calorimetric identification of 
changes in what is to be called the internal energy of the body. The 
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simplest case is naturally that of a cycle passing through two states of the 
mediator, such as to connect those states in two different ways by a 
path consisting of an isothermal and an adiabatic, one path reversible, 
the other necessarily irreversible at least in part, and so adjusted that 
the net work of the cycle is zero. The experimental tests are then to be 
understood as verifying that the conditions of transitivity are satisfied, 
in fact with ratios identical with the b's above. In such a case the 
identification of the internal energy function is strictly analogous to 
that of the entropy by a Carnot cycle. That the identification of the 
two functions of state in this way can rightly be described as purely 
calorimetric is clear from the fact that, although the conditions involve 
full work in one case and no work in the other, still no quantitative com
parison of heat and work is implied. Just how far the range of such 
cases extends it is not easy to say, but it may be guessed to be not far 
from coextensive with that in which a really experimental meaning at
taches to the quantities of heat involved. 

A more fundamental lack in the parallel appears when the further 
experimental facts are included which complete the classical first law, 
here more naturally called the last law. These show that in the case 
of the Carnot cycle the gi — q% is proportional to the work done, the 
factor of proportionality depending only on the units, or in other words 
that the conditions of transitivity are satisfied when mechanical energy 
is included with thermal energy; and more generally that work done is 
equivalent in any case to decrease in internal energy. The Carnot ratio 
then assumes the form of the ratio of efficiency; and, conversely, as 
Callendar has pointed out, the principle of efficiency combined with 
Carnot conservation leads to the principle of equivalence for reversible 
processes. 

There is on the other hand, however, no physical quantity yet identified 
whose variations compensate those of the recognized thermal entropy. 
The discovery of such would be expected to make it possible to state 
certain conditions on irreversible processes in terms of an extended kind 
of Carnot conservation, instead of in terms of inequalities. It might 
also help to give physical meaning to the measure of probability, in 
terms of which entropy is expressed in statistical theories; perhaps utiliz
ing some large scale coefficient related to the action constant of recent 
physical theory much as the gas constant is related to the agitation 
constant in the molecular theory. Many things suggest that if such a 
quantity exists, its setting may involve the relation of matter and radia
tion. 

A certain "instinct for conservation" has sometimes been looked upon 
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as part of the natural equipment of the physical investigator, and the 
order of thought here sketched shows how fully successful in this subject 
is its guidance of the interpretation of experiment. With the exception 
of the single problematic instance mentioned—whose place so far as 
present knowledge goes is held by the inequalities that take such a 
unique place in physical theory—the basic features of thermodynamic 
phenomena are found in the four distinct types of transitivity listed, each 
admitting statement in terms of the language of conservation, which 
lead to the abstraction of the four corresponding fundamental notions: 
heat, thermal energy, entropy, thermo-mechanical energy. The corre
sponding arrangement suggested for the theory includes then five laws, 
four equations and one inequality. The experimental basis used is a 
blend of reversible and irreversible processes, and in particular the various 
experiments of Joule on equivalence deal mainly with irreversible pro
cesses of rather extreme type. 

Since, however, mathematical developments in thermodynamics are 
so largely concerned with reversible processes it is natural to ask whether 
some basis could not be found for a theory of such processes by them
selves, adequate for the complete theory so far as they are concerned. 
It will be shown in part II. that conservation of the first type only and 
Carnot's principle of efficiency, as formulated in terms of the empirical 
scale of heat, are together sufficient for such a basis. 

PART II. T H E SCOPE OF CARNOT'S PRINCIPLE. 

The actual course of development of thermodynamics has tended to 
obscure the real reach of both of Carnot's fundamental ideas. First, 
his conservation of caloric was rejected as erroneous instead of being 
recognized as distinct from that of Black and Joule; the irony of this 
appears when one notices that, for the processes he defines, a conserva
tion essentially equivalent to his occurs as a theorem in the classical 
theory. Second, his principle of efficiency did not have its consequences 
developed independently, but rather it was merely superposed on the 
principle of equivalence, adding thus to the theory only the extra content 
it had to offer. From the very nature of his principle, however, in that 
it refers to a ratio of heat and work as related to two distinct tempera
tures, it would seem inevitable that it should lead to some kind of 
quantitative comparison of heat at different temperatures as well as of 
heat with work, independently of his postulate of conservation. In 
order to reveal the full scope of the principle therefore, and especially 
its independence of the ordinary principle of equivalence, it is natural 
to develop its consequences with only so much additional assumption 
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as is required to yield the general notion of a quantity of heat, abstracted 
from the properties of particular bodies. 

Accordingly, for the alternative theory now to be presented, relating 
to reversible processes only, the basis of assumption is the Carnot postu
late of efficiency, that for reversible cycles of his type the ratio of work 
done to heat absorbed on the upper isothermal is a universal function 
of the two temperatures; where quantities of heat are to be understood 
as known to be measurable in the sense of an empirical scale of heat as 
above described. Thus of the various types of conservation mentioned 
in part I. only the first or single-temperature type is now assumed, this 
being apparently the mildest basis on which Carnot's principle has 
intelligible meaning as one of possible common application to all kinds 
of bodies. As thus understood it will be shown to yield the entire 
thermodynamics of reversible processes. The existence of thermal energy 
and of entropy proves to be deducible without reference to the experi
mental basis of irreversible phenomena on which the theory of energy 
ordinarily rests. The conservation during reversible conduction, which 
is assumed, is the type where conservation of energy and of entropy are 
not distinct, so that only the generic notion "quantity of /-heat" is 
needed. 

The case to be for convenience considered first is that of a fluid as 
working substance, its thermodynamic properties under the limited 
calorimetry defined being embodied in differential expressions 

(i) dh = kdt + Idv, dw = pdv, 

for heat absorbed and work done during a differential change under 
equilibrium pressure, where the coefficients kt /, p are for each particular 
body certain definite functions of v and /. Now merely as a mathematical 
proposition there exists for any system of this kind, with only two 
independent variables, an integrating divisor co such that dh/u is an 
exact differential ds; the w is of course not uniquely determined, but any 
particular choice gives a function s determinate except for an additive 
constant. The s chosen is to serve simply as parameter of the adiabatic 
lines, whose differential equation is dh = o, and later naturally appears 
as some function of the entropy, the canonical choice of s being the 
entropy itself. 

The reasoning can be carried out in terms of the original variables 
(v, /), but for brevity it is convenient to transform to (s, t) as new inde
pendent variables. These are independent except when the latent heat 
of expansion / vanishes, in which case a true Carnot cycle is not possible 
since then an adiabatic is also an isothermal; this is a physically unreal 



VOL^XIV.J MEASUREMENT OF HEAT. 15 

case which need not be pursued. It is also essentially general for the 
main purpose to suppose that the Jacobian d(v, t)/d(s, t) is positive, so 
that the sense of equivalent cycles is the same in the (v, t) and (s, t) 
planes when the coordinates are taken in this order. Whatever the 
choice of the s, this transformation offers the convenience that a Carnot 
cycle is represented by a rectangle in the (s, t) plane. In terms of these 
new variables the heat and work take the forms 

(2) dh = uds, dw — ads + bdt, 

where co, a, b are to be considered as functions of s and /; the explicit 
formulas connecting them with &, I, p are not needed. It will be clear 
also that the proof really applies to the general case of a two-variable 
system, since the same forms would result if the original expression for 
dw had a term in dt, and if the v and p were interpreted as any coordinate 
and corresponding generalized force. 

If t\ and h be the higher and lower temperatures in the cycle Carnot's 
principle then imposes the condition 

(3) w/hi = H(tu h), 

where H is the same function for all bodies when the same scales of heat 
and temperature are used for all. A change of the scale of heat, repre
sented by putting h = ti p(t) and thus giving kf = k/p, V = l/p, is allowed 
for by putting 

H'{tu h) = p(ti)H(tu h). 

This is still universal in the sense intended, so that if the principle is 
valid for one scale of heat it is valid for all. 

The case in hand, for the cycle represented by the rectangle 
(s = s2 • • * Siy t = h - • • h) has 

<a(s, t\)dsy w = I I <p(s, t)dsdt, 

in which 
da db d(v, p) 

(5 ) ^ ' / ) = ^ - ^ = ~d(7J)> 

where the area-integral for w is obtained by a known lemma from the 
initial perimeter integral. The fundamental condition is then that the 
relation 

<p(s, t)dsdt = H(tu t2) I w(s, h)ds 

must be an identity in (51, s2l h, t2). 
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Consideration of a range infinitesimal in / suggests the introduction 
of the function 

(7) *»-[-^L 
which is the familiar Carnot function adapted to an arbitrary scale of 
heat as well as of temperature. For a cycle infinitesimal in 5 only 

(8) f <p(s,t)dt = <a(s,ti)H(tuh), 

whence 

(9) <p(s, h) = - «(s, h) ~—^—~ , 

the limiting form of which for range infinitesimal in t also is 

(10) <p(s, fa) = u(s, fa)$(fa), 

so that division shows the ratio <p(s, fa)/<p(s, fa) to be a function of fa, fa 
only, say for abbreviation f(fa, fa), identically in s, fa, fa. Because of the 
symmetry of notation it is no longer necessary to keep the condition 
fa > fa. If then fa be any particular value of t this result is equivalent to 

<p(s, t) = <p(s, fa)f(t, fa), 

so that <p is built of two factors, each a function of one of the variables 
only, which for later convenience may be written as derivatives: 

(11) <p(s,t) = *W(0 , 

where the factors can be understood as positive so that a and r are 
monotonic increasing functions. Then (10) gives 

(12) «(*,/) = a'(s)d(t), 

where by definition 

(13) e(t) = At)W). 

The differential forms in (2) and the relation (5) become 

(14) dh = af(s)6(t)ds, dw = ads + bdt, 

da db . . . . . . 

the last being equivalent to 

5 t >s db 

which indicates the existence of a function u such that 

(i5) O - S ( , ) T V ) - - , b - - - , 
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which make 
r{t) 

(16) dw = ar{$)r{t)ds — du = zrj-tdh — du. 

This suggests the introduction of a particular scale of measurement of 
heat by the definition 

rit) 
(17) dq=:e(t)dh' 
so that 

(18) du = dq — Jw, da — dh/8 = dg/r, 

where da, du are exact differentials, while dq in general would not be. 
In terms of the original differential forms (1) the result is then that there 
exist functions B and r of t only such that dh/6 and rdhjd — dw are exact 
differentials. The dq and da are the measures of heat on two special 
scales whose existence is implied in the Carnot principle.1 

As to uniqueness, the mode of introduction of r and 6 shows that any 
two determinations for the same body or for different bodies are related by 

r* = ar + 0, 0* = ad, 
so that for the same dh: 

dq* = dq + 0dh/ad. 

But since only the product a'r is determined it is essentially general 
to hold a as unity, then the freedom left in the definition of dq can be 
used to arrange that equality in dh shall bring about equality in dq, 
by having fi = o; thus r and 0 may be understood as the same for all 
bodies. 

In terms of the general and the two special scales of heat the efficiency 
ratio and the conditions of vanishing of the cyclic integrals of da and du 
are 

W T\ ~ T2 W T\ — 72 W 

__ ^ __ ^ __ = T i __ T2. 
hi 0i qx n ai 
h i h% qx q% 

_j_ = 0> —+ —= 0> ^ + 0-2 = 0; 
01 #2 Ti T2 

h\ hi a\ , (T2 
w = r r + r r r = ft + ff* = *i / rx J ^ / r 2

 a i ' ^ l/ri^l/r2' 
1 This proof should be compared with the deduction given by Larmor, loc. cit., especially 

p. 332. He begins with the more primitive form of the Carnot postulate, that in order to 
have work done heat must fall in temperature, and considers also irreversible processes. The 
factorization which introduces one of his temperature functions results from a functional 
equation transcribing the coupling of two Carnot cycles. His g(6) and \f/(0) correspond to 
the B(t) and r(t) above; Raveau similarly deduces the existence of two distinct scales or 
functions of temperature. As to the use of the term "universal," however, the distinction 
should be noted, that the B in the present paper, although the same for all bodies, depends 
on the scale of heat, while r is independent of that scale. It is naturally the latter only 
that is to be considered truly universal as a scale of temperature. 
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inspection of which shows for one thing that 6 depends on the scale of 
heat while r does not. Thus T/6, I /0 , and r correspond to B(t), C(t), 
and T(t) of Part I., while q and a are thermal energy and entropy. 

The parity of setting of the two special scales of heat is noticeable 
here as in Part I. It is hard to see how either can be said flatly to give 
the true measure of heat, though Callendar's view as to the preeminent 
claim of the entropy scale seems fully as reasonable as the common 
exclusive use of the energy scale. The latter has of course the obvious 
advantage for measurement and computation that it gives a constant 
ratio of work to thermal equivalent and approximate constancy of ordi
nary specific heats, but for theoretical purposes at least the entropy 
scale offers some advantages. For example, if for k/d and 1/6 be put 
K and A, these being then temperature-capacity for entropy and latent 
entropy of expansion, the differential forms with temperature on the 
r-scale are 

da = ndr + \dv, dw = pdv, 

and the conditions are that da and rda — dw be exact differentials. 
These conditions are equivalent to the adapted Clapeyron and Clausius 
equations 

dp BK d2p 

which are so simply interpretable on the graph of the isochoric (p, r) 
curve. 

To extend the theory to a system with more than two coordinates it 
is convenient to use the r-scale of temperature and the c-scale of heat, as 
determined for two-variable systems. A system with n coordinates of 
configuration, say V\ • • • vn, will then be characterized by the differential 
forms 

da = adr + 2\idvit dw = Xpidvi. 

The Carnot principle may then be understood to be applicable to every 
two-variable process which such a system can undergo, through the 
presence of possible or conceivable constraints. This is equivalent to the 
condition that if for vx • • • vn be put any arbitrary functions of r and 
a single other parameter v, then da and rda — dw must be exact differ
entials in these two variables. The conditions for this prove to be 
equivalent to those under which the same expressions are exact differ
entials in the n + i variables, regarded as independent. To show this 
it is enough to consider only the following types of cycle: (a) where only 
one of the variables V{ varies, (b) where only two are affected, these under
going variations proportionate but in arbitrary ratio. With such cycles, 
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starting at an arbitrary state of the system, the Carnot principle yields, 
from (a) the Clapeyron and Clausius equations for each of the variables 
separately, and from (b) the additional conditions 

dpi dpf d\i d\j 

dVj dvi ' dVj dVi' 

which indicate the conservation in an isothermal cycle of work and of 
heat separately. The scales 6 and r and the equations in (17) and (18) 
thus apply to these more general systems. 

If for such a system the heat scale be still left arbitrary, the result is 
that dh/d and rdhjB — dw are exact differentials of functions of state cr 
and uf so that dh = dda, dw = rda — du. Now while a system with 
two variables only can have but two independent functions of state, 
one with more types of variation can have a corresponding number. 
But not more than two independent functions can have differentials 
linearly expressible in terms of the same two fundamental differential 
forms; in fact, in the case here, any function of state whose differential 
is a linear combination of dh and dw must be a function of <r and u. 
In this sense the theory of energy and entropy, and therefore the Carnot 
principle, yields the entire theory that can be based solely on dh and dw~ 
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