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1. The linear continuum has already received a complete characteriza-
tion in terms of order* and of limit.t Now, the author has shown that
over a wide range of cases the notion of limit may be denned in terms of
that of bicontinuous biunivocal transformation.! It is the purpose of this
paper to develop a categorical theory of the structure of the line in terms
of bicontinuous, biunivocal transformations, or, in other words, to give a
complete potstulational characterization of the analysis situs group of the
line.

The set of postulates will be so framed that only one will have any
direct effect on the dimensionality. All the other postulates together
determine an analysis situs property of space which is shared by a large
number of systems of a finite or infinite dimension number. A number
of necessary conditions and a sufficient condition for a system to possess
this property will be formulated.

INDEFINABLES.

2. O-ur indefinables are two in number—a set K of elements and a set
2 of one-one transformations of the whole of K into itself.

DEFINITIONS.

3. A sub-set E of K is said to have a limit-element A if A is invariant
under every transformation belonging to 2 that leaves invariant every
member of E except possibly A.

* Cf. E. V. Huntington, "A Set of Postulates for Real Algebra," Trans. Am. Math. Soc.
(1905); 0. Veblen, " Definition in Terms of Order alone in the Linear Continuum," ibid.

t R. L. Moore, "The Linear Continuum in Terms of Point and Limit," Annals of
MatJiematics (1914-15).

J N. Wiener, "Limit in Terms of Continuous Transformation," Bull. Soc. Math, de
France (1921-22).
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A set E is closed if it contains all its limit-elements.
A set E is connected if, whenever it is divided into the two non-null

sets, F and G, either F has a limit-element in G or G has a limit-element
in F.

E is the set of all elements in K but not in E.
An interior element of E is one that is not a limit-element of E.
An element A is exterior to E if it is interior to E.
An element A is a boundary-element* of E if it is at once a limit-

element of E and of E.
A segment is a closed, connected set with at least two boundary ele-

ments.
A component]- of a set E is a greatest connected sub-set of E.

The transformation B is the inverse of B. B \ S is the transformation
which consists in performing first S and then B.

POSTULATES.

4. I. K contains at least three distinct elements.

II. If B is a biunivocal transformation of the whole of K into itself
that turns all closed sets into all closed sets and only into closed sets, then
B belongs to 2.

III. If B and S belong to 2, so does B \ S.

IV. If B belongs to 2, so does B.

V. If there is a transformation from 2 changing A and leaving
every member of E invariant, while there is a transformation from 2
changing A and leaving every member of F invariant, then there is a
transformation from 2 chauging A and leaving every member of E-\-F
invariant.

VI. If A, B, C, and V belong to K, and A =£ C, B =jfc D, then there
is a transformation from 2 changing A to B and 0 to D.

VII. If E is any sub-set of K and A is an element of K not a limit-
element of E, then there is a segment of which A is an interior element
and which contains no element of R.

VIII. There is an at most denumerable sub-set K' of K such that no
member of 2 except possibly the identity transformation leaves every
member of K' invariant.

* Cf. F. Hausdorff, GrundsUge der Mengenlehre, p. 214. The notions of boundary ele-
ment and Bandpunkt are not identical,

f Ibid., p. 245.
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IX. If E and F are two connected sets, and two bouudary elements
of E are boundary elements of F, then every other element of E is an
element of F.

DEFINITIONS OF SYSTEMS.

5. A system satisfying postulates I-IX inclusive will be called a system
(Li). A system satisfying postulates I-VII inclusive will be called a
system (Sp).

A system (Tx) will be defined as in the author's previous paper in the
Bull. Soc. Math, de France, as a system satisfying Postulates II-IV. A
system (R) will be defined as by Fr6chet,* as a system satisfying the
conditions of F. Riesz.

1. Every limit-element of a set E is a limit-element of every set con-
taining E.

2. Every limit-element of the sum of two sets E arid F is a limit-
element of at least one of the two sets.

3. A set containing a single element has no limit-element.

4. If A is a limit-element of a set E and B is distinct from A, there is
always at least one set which has A for a limit-element without having B
for a limit-element.

It has been proved by the author! that in the case of a (T^, the necessary
and sufficient condition that the system should also be an (R) is that it
should satisfy the following three conditions:—

2'. This is verbally identical with V.

3'. Given any two elements, A and B, there is a transformation from
2 changing A but leaving B invariant.

4'. If there is a set E not containing the element A, but such that
every transformation from 2 that leaves all the elements of E invariant
leaves A also invariant, then, given any element JB distinct from A, there
is a set F not containing A such that there is no transformation from 2
changing A but leaving each member of F invariant, while there is a
transformation from 2 changing B but leaving F invariant.

* " Sur la notion de voisinage dans les ensembles abstraits," Bulletin des Sciences MatliA-
matiques, May 1918.

t hoc. cit.
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A system (H) is one in which neighbourhoods are so defined as to
satisfy Hausdorif's " Umgebungsaxiome " :*

(A) Given any point x, there is at least one neighbourhood Ux, of
which x is a member.

(B) If Uz and Vx are two neighbourhoods of x, then there is a neigh-
bourhood Wx contained in both.

(C) If y belongs to Ux, there is a neighbourhood of y, -Uy, contained
in Ux.

(D) If x and y are two points, then neighbourhoods Ux and Yt can be
so chosen as not to overlap.

In a system (H) a set E is said to have a limit-point A if every neigh-
bourhood UA of A contains an infinity of points of EA

A vector-system, or system (Ve), is defined as in my previous paper + as
a system K of elements (represented by capitals), associated with entities
called vectors (represented by Greek letters), real numbers (represented by
lower case letters), and the operations O, 0 , and |i || by the following
laws:—

(1) If g and t] are vectors, g © rj is a vector.

(2) If (is a vector and « > O , « 0 f is a vector.

(3) If g is a vector, || g || is a non-negative real number.

(4) n O (g 0 n) = (n Qi)® (n O >/).

(5) vi O (n Og) = mn 0 £

(6) (TO O i) 0 (n Og) = (m+n) O g.

(7) || m O g || = m || g II.

(8) | | £0 .H I< II £ll + H i l l -
(9) If A and B belong to K, there is associated with them a

unique vector AB.

(10.) M J 5 | | = | |Bi l | | .

(11) Given an element A of K and a vector g, there is an element
B of K such that AB = g.

* Loc. cit., p. 213.
t Ibid., p. 210, definition of fl-Punkt.
X Loc. cit.
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(12) AC = AB&BC.

(13) || AB || = 0 when and only when A = B.

(14) If AB- CD, DC = BA.

A system (Vr), or a restricted vector system is a vector system of at
least two elements in which the sum of two vectors is independent of their
order, and in which, if A, B, and C are any three distinct elements such
that || AB || = || AG\\, then there is a finite set Blt B2, ..., Bn of ele-
ments such that

(1) Bl = B, Bn = C.

(2) For all *, H ^ t II = \\ AB I

(3) For all k, \\BkBk+l\\ <\\AB\\.

We shall say that a set E has A for a limit-element if, for all the B's
that belong to E, the lower bound of \\ AB || is zero.

RELATIONS OF SYSTEMS.

6- We shall say that a system of one of our classes belongs to another
of our classes if a translation into the language of the second class is
always possible in such a manner as to keep limit properties invariant.
We have already seen that every (Sp) or (Li) is a (Tx), and every (Li) is
clearly an (Sp); we shall prove the further relations :

(1) Every (Sp) is an (R).

(2) Every (Sp) is an (H).

(3) Every (Vr) is an (Sp).

Proof of (1)-
All that we need to prove is contained in propositions 3' and 4' of § 5.

If there are at least three elements, 3' is a consequence of VI. Now, there
are at least three elements, by I.

As to 4' it is enough to show that, given any two elements A and B,
there is a set E having A but not B as a limit-element. It follows from
VII, I, and 3', that there is at least one set Fx which has limit-elements
without having the whole of K for the class of its limit-elements.

Let Al be a limit-element of this set, and Bl an element not a limit-
element of the set. By VI, there is a transformation from S changing A1

to A and Bx to B. Let this transformation change Fr to F. Then, as a
result of III and IV, F will have A for a limit-element, but not B.
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Proof of (2).

Let a neighbourhood UA consist of all the interior elements of some
set E of which A is an interior element. By I, 3', and VII at least one
element has a neighbourhood, and by the use of VI, III, and IV, as above,
every element will have at least one neighbourhood. Indeed, it may be
shown by I, 3', and VII that there is at least one set with both interior
and exterior elements, so that this same argument may be used to show
that any two elements will have two mutually exclusive neighbourhoods,
thus proving that Hausdorff s conditions (A) and (D) are satisfied. (C) is
an obvious result of the definition of neighbourhood, for a neighbourhood
is a neighbourhood of any of its elements. As to (B), the interior ele-
ments of a set E that are also interior to a set F are interior to the
common part of E and F; this follows from condition 2 that our set be a
set (R).

It remains to show that limit in a system (H) corresponds to limit in
a system (Sp). It is a result of our definition of neighbourhood that if E
is a set having A as a limit-element, every neighbourhood of A contains
some element of E other than A. It results from Riesz's condition 2 that
every neighbourhood of A contains a set of elements of E having i a s a
limit-element. From 2 and 3 together it follows that every such set is
infinite. Hence every (Sp)-limit is an (H)-limit. The converse relation
follows from VII.

Proof of (3).

Let 2 consist of all biunivocal, bicontinuous transformations in our
system (Vr). That this will give the same notion of limit as that defined
in a system (Sp) I have proved in my previous paper. Postulates I, II,
III, IV, and V demand no discussion. VII will be obvious if we consider
that a " sphere " with its boundary-elements will answer to our definition
of a segment, for it is closed, has at least two boundary-elements, and is
connected, for any point is connected with the centre by a radius. More-
over, the centre is an interior point. VII will then follow from our defi-
nition of limit.

There remains only condition VI. It is clear that any element A of
K can be changed to any other member B of K by a transformation from
2, for it will follow from II and the various properties of vectors that the
transformation which turns C into the element D such that CD =• AB
belongs to 2. In a similar way, it may be shown that the transformation
which consists in holding an element A fast and " multiplying " all the
vectors AB by the same numerical factor also belongs to 2. We shall
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establish our theorem, then, if we show that if AB and AC are two vec-
tors such that || AB \\ =• \\ AC ||, there is a transformation belonging to
2 holding A fixed and changing B into C, for every transformation of a
point-pair into another may be reduced, as in ordinary geometry, into a
" translation," an " expansion," and a " rotation." Our special hypothesis
for a (Vr) enables us, moreover, without essentially limiting our problem,
to suppose || BC || < || AB \\.

Let us consider the vector transformation which turns £ into

This transformation is clearly univocal; it is, moreover, biunivocal. To
prove this, let us make use of the fact that it results from our assumptions
that if £ 0 rf = 3, i] is uniquely determined by 9 and g, and may be
written 9 9 £. Now suppose that

It results that £ 9 n = " {^n!! " ° BC>
II Ab ||

or M I II b II II ' I II i | | , | / T | | •

II **• ^ II

Now, by our hypothesis, || BC || / II AC || < 1. Hence either

II f 917II = 0 , or | | f9»HI < I I ^ I I - IHI I .

If we write this latter proposition in the form

it will be seen to contradict (8) in the definition of a (Ve). Hence

H£9>yH = 0 ,

or what results from (13), £ = y.
Let us consider the point-transformation which retains A invariant

and changes every other element P into the element P' such that

It results from what has been said and the properties of vectors that this
is biunivccal; let us consider how it affects the magnitude of vectors. If
P is transformed into P' and Q into Q' by our transformation, we wish to
determine a relation between PQ and P'Q'.
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Now, as an immediate consequence of the commutative law and the
definition of our transformation,

As a consequence,

II P'Q' II < II PQ II + [ | § | I II AQ || - || AP

< 2 || PQ ||.

On the other hand, it may readily be proved that

II FQ' II >
BG

AQ\\-\\AP\\

>\\PQ\\ \l-llBG

AB

It follows from these inequalities that, to put it roughly, P'Q' is small
when and only when PQ is small, and that a set of elements approaching
indefinitely close to a given element is transformed into a set approach-
ing indefinitely close to the transform of the given element, and vice versa.
In other words, our transformation leaves limit-properties invariant in
both directions, and so belongs to 2. Moreover, our transformation
leaves A invariant and changes B into the element D such that

AD = AB © I j | ^ | | O BG } = AB 0 BC = AC,

or, in other words, into C. We thus have completed our proof of the
equivalence of point-pairs by the consideration of " rotations."

EXAMPLES OF SETS (Yr).

7. (1) The system consists of all n-partite numbers (xlt x2, ..., xl%).
If A = {xlt x.2, ..., xn) and B = (ylt y2, ..., yn), AB shall be the w-partite
number (xx—yx, y2—y%, ..., xtt—yn), and every 7i-partite number shall be
a vector. If . . , . ,

f = (tti, IL2, . . . , Ua) aud r] = (vlf V2, . . . , VJ,

II i II = V K + ^ + • • • + * $ , kQg= (kulf kilt, ..., AiO,

and

* (—n) O U"̂  is t° t»e understood as 7i 0 VU.
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The independence of addition on order is immediately obvious. The other
specifically (Vr) property results from the fact that any arc of a circle can
be traversed with a finite number of chords each less in length than e, for
any given e.

(2) The system of elements and that of vectors alike consist in all

OD-partite numbers (xl7 x2, ..., x/c, •••) such that there is a finite X such
that for all k, \ xk | < X. If

A = (x1,x2, ...,xk, ...) and B = (ylf y2, ..., yk, . . . ) ,

AB = (Xi—yv Xz—ijz, ..., xk—yk, . . . ) .

If i= (uv 11%, ..., uk, ...) and r\ = (vlt v2, ..., vk, . . . ) ,

|| i || = least upper bound \uk\,

m © g = (muv mu2, ..., vi/uk, . . . ) ,

a n d g® rj = (% + Ui, " 2 + « 2 » •••» uk+vk, •••)•

The commutative law is obvious; the other condition for a (Vr) can be
demonstrated if we show that given f and r\ such that | |£| | = ||»/|| =jfc 0,
there is a ehain of vectors, fx = £, £2, ..., £n = rj, such that for all j ,

11611 = 11̂ 11 and || 6 + i O£j | | < II I I I .

Such a chain may be constructed as follows; let £ be the vector
(zv z2, ..., zk, . . .), such that for all k, zk is the larger of the two quanti-
ties Uk and Vk if they differ, and their common value, if they agree. Then

II £ 1 1 = 11 £ 1 1 .

Let r be any integer larger than both p and q. Then the sequence of

vectors

may readily be shown to satisfy the conditions for a chain j £ } .

(3) The system of all points and the system of all vectors consist alike

SER. 2 . VOL. 20. NO. 1398.
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in all oo-partite numbers (xlt x2, ..., xk, ...) such that the series

converges. AB, in O £, and £ 0 >/ are defined as in (2). If

i = (uv Uz, ..., uk, ...),

lin=V(«!+tt5+...+ttI+...>.
To show that our system is a (Vr), let us introduce a few considera-

tions from the trigonometry of infinitely many dimensions. If

f = (M,, ti2, ..., uk, ...) and r\ — (vv v2, ..., vk, ...),

let us define < £n as

The first question to arise is under what circumstances < ^ will exist.
It may easily be shown that if 2*4 and 2«J converge, S(wn4-v,J2 and
-(Ma—w,i)2 will converge.* It results that 2J{(w.,,.-|-u,,)2—(wtt—vn)

2\ will
converge, or that ^unvn will converge. Furthermore, it is obvious that
to multiply ^ or ^ by a positive constant will not affect the magnitude or
existence of < £i. We may thus assume II ^ II = II »/1|, which gives us

Now, consider the inequality 2(?t,t—yj2 ^ 0. We may write this

2 u\—22MHWW+2 oj > 0.

Making use of the fact that 2 tt̂  = Z ^ , this becomes t

It may be proved in precisely the same manner that

n ^ 22*4-

Hence < f>? is the anticosine of a number not greater in absolute value
than 1, and consequently exists.

As in ordinary geometry,

II £ G n IIa = II $ I I 2+II r, I I 2 - 2 II £ ||. || >! || cos < £ , .

* Cf. Hausdorff, loc. cit , p. 287.
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This may be proved by writing the formula out at length, when it will
reduce to an identity. All the series involved will be absolutely conver-
gent, so there is no difficulty about changing the order of terms.

Let us suppose, as above, that '! £\\ = !!>?!;, and let us consider
coa<i\i&fi\. This will be

By our previous remarks this is an essentially positive quantity. We
shall moreover get the identity

2 \

u; 2 u*m+42 it? 2 um vtll+22tt» vn 2 ttm vm—2 ii2
n 2 w;,

— 22 ul 2 um vm—Sttj 2 vz
nl

22ul2umvlU+22uavaXitmvm

y-2— = COS f>/.

It results from this that < f (̂  © >;) is the half of < ^ in the first or
fourth quadrant.

Now, let £ and >/ be any two vectors of equal magnitude, provided only
that neither is made up entirely of O's. Form the vector £3, which shall
be a positive multiple of £ ®»; with the same magnitude as £ In a
similar manner, interpolate £2 between £ and £3, and £4 between £3 and >/,
and let us know f and rj as £ and f5, respectively. We have

COS < ^ 3 = COS < g3r, = V |£ (1 + COS < £>,) } > 0.
Hence

cos < £ & = cos < &£, = cos <&£i = c

z 2
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It follows from the law of cosines that

ii 6 - 6 + 1 i| = V(!I 6 Ii2+!l fi+i I; 2 ~ 2 I! 6 II • II 6+i II cos < 66+i)

(4) The system of all elements and the system of all vectors both con-
sist of all continuous functions of a real variable defined over a given
closed interval. The vector fg is the function f(x)—g(x). If f =/(«)
and »/ = g(x), || £ » = max |/(x) |, A O i = &/(«), and £ 9 ? =/(as)+flf(a;).
The proof that this system is a (Vr) proceeds as in (2).

It may be noted that systems (1), (3), and (4) satisfy VIII.*

CONSISTENCY OF POSTULATES I-IX.

8. The following system satisfies Postulates I-IX : K consists of all
the points on a line, and 2 consists of all bicontinuous, biunivocal trans-
formations of the whole line into itself.

DEDUCTIONS FROM POSTULATES I-IX.

9. THEOREM I.—If A and B are any two distinct members of K. there
is a unique closed set (A, B), completely characterized by the facts that it
is connected and that A and B are boundary elements of it.

Proof.

It follows from Postulates I, VI, and VII that there is at least one set
with at least two boundary elements. By VI, these can be transformed
by a transformation from 2 into A and B, and by III and IV, this trans-
formation will leave every connected set connected. By IX, this set is
uniquely determined except as to whether it contains A and B. Adjoin
to it its limit-elements, and it will clearly remain connected, while it will
contain A and B.

THEOREM II.—A and B are the only boundary-elements of {A, B).

Proof.
Let D be any element not in {A, B). Consider the component! E of

* Hausdorff, loc. cit., pp. 288, 289.
t Since we have proved that our system satisfies Hausdorff's axioms, we may take ad-

vantage of his proof of the existence of components.
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{A, B) to which D belongs. This must have a limit-element P in {A, JB),
for otherwise the segment {D, A), which exists, by Theorem I, would not
be connected. P is then a boundary-element of (A, B) which is the limit
of the connected set E in {A, B).

Now, let G be any boundary-element of (A, B) other than A and B.
If G were the limit of a connected set F in (A, B), then F would either
have A for a limit-element, or B for a limit-element, or neither A nor B.
In the first two cases it results from IX that F must coincide with (A, B),
which is impossible. In the third case, ifc follows from V that A and B
are boundary-elements of the connected set {A, B)-\-F, which hence must
coincide with (A, B), by IX. This is again impossible. It follows that
there is no such set as F.

Let Q be any boundary-element of {A, B) other than C and P. By
IX, we may write (A, B) as {Q, G) or as (Q, P). Now, by VI, there is a
transformation from 2 leaving Q invariant and changing P into C. By
III and IV, this changes (Q, P) into {Q, G), and changes every connected
set in (Q, P) having P as a limit-element into a connected set in (Q, C)
having C as a limit-element. As the existence of sets of the latter sort
has been disproved, while the existence of sets of the former sort has been
proved, it follows that either our assumption of the existence of C or our
assumption of the existence of P is inadmissible. If either assumption is
incorrect, {A, B) has only two boundary-elements, which must be A
and B.

THEOREM III.—If {A, B) and {A, C) have an element in common other
than A, either (A, B) contains {A, C) or vice versa.

Proof.

Let E consist of all elements in 04, B) but not in (A, C), and let F be
the component of E containing B. As (A, G) is connected, F has some
limit-element D in (A, C). HA is the only limit-element of F in (A, C),
A-\-F is a connected set containing the boundary-elements A and B, and
hence coincides with (A, B), which hence, contrary to assumptions, con-
tains no other term than A in common with (A, C). By Theorem II, the
only other value which D can have is G. Now, consider the set F-\-(A, G).
It is connected, and, by V, has A as a boundary element. By V, either B
is a boundary-element or B belongs to 04, G). If B belongs to (A, C),
then every element of {A, B) does likewise, for otherwise, as {A, G) has
only two boundary-elements, E can have only A and G as limit-elements
in (A, C). If B differs from C, this is clearly impossible, while if B coin-
cides with G, (A,B) = (A,C).
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The only other possibilit}' is that E contains no elements. In thi&
case, (A, C) is contained in (A, B).

THEOREM IV.—If G is interior to (A, B), (A, B) = (A, Q+(C, B), and
(A, C) shares with (C, B) no other element than C.

Proof.
By Theorem III, {A, B) contains (A, G) and {G, B). If B belonged to

{A, C), by Theorem III, {A, G) would contain, and hence coincide with
(A, B). This contradicts our assumption. Hence, by Postulate V, B is
a boundary-element of (A, G)-\-{G, B). The same argument applies to A.
Moreover, beiug the sum of two overlapping, closed, connected sets, by V,
(A, C) + (C, B) is closed and connected. Hence, by Theorem II,

If (A, G) and (G, B) had in common any other element than C, then,
by Theorem III, either (A, G) would contain (C, B), or vice versa. In
this case, either {A, G) or (C, B) would coutain {A, B). Hence, by

. Theorem II, C would coincide with either A or B, and would not be an
interior element of (A, B).

Definition.—If G is interior to (A, B)} we shall write AGB. Tt is
obvious that if ABC, A, B, and C are all different, and it is also obvious
that ABC and CBA are equivalent. Furthermore, by Theorem HI, ABC
and ACB are incompatible.

THBOREM V.—If ABC and ACD, then BCD.

Proof.—By Theorem IV, ABB. Hence, by Theorem IV, either ACB
or BCD. ACB, however is incompatible with ABC, by Theorem III.

THEOREM VI.—ABC, ABD, and GBD are incompatible.

Proof—By Theorem IV, either ACB, B = C, or BCD. As Theorem
III excludes the first two suppositions, which are incompatible with ABC,
there remains only the last possibility, which, by III, is incompatible with
BCD.

THEOREM VI.—Either ABC, BAG, or AGB, if A, B and C are distinct.

Proof.—Suppose the first two alternatives are not fulfilled. Then, by
Theorem III, {A, C) and (B, G) have only G in common, (.4, ®+{B, ®
is connected, and by Postulate V, has A aud B as boundary-elements.
Hence (A, G) + (C, B) = (A,B), or, in other words, ACB.



1920.] THIS GROUP OF THIS LINEAR CONTINUUM. 843

THEOREM VII.—If ABC and BCD, then AGD.

Proof.—By Theorem VI, we have DAC, ADC, or AGD. If DAG and
ABC, then by Theorem IV, DBC, which, by Theorem III, contradicts
BCD. If ADC, then, by Theorem IV, ABD or DBC. DBC, by
Theorem III, contradicts BCD. If ABD and BCD, then, by Theorem
IV, A CD.

Definition.—AB\ CD shall mean any one of the following seta of re-
lations :

(1) ACD, ABD.

(2)

(3)

(4)

(5)

(6)

(7)

(8)

ACD

ACD

A =

A =

A =

CAD

A =

, B = D.

, ADB.

C, ABD.

C, B = D, ,

C, ADB.

, CAB.

D, CAB.

B.

(9) CD A, CAB.

THEOREM VI1L—If AB\GD and BP \ CD, then AP \ CD.

Proof.—This involves merely the tabulation of the 81 possible cases
and the application of Theorems III-VII in the instances in which they
are appropriate.

THEOREM IX.—If AB\CD, A =£ B and C =fr D.

Proof—This follows from the fact that if ABC, A =£B =f= C, and the
definition of A B \ CD.

THEOREM X.—If A j= B, C =£ D, then either AB\CD or BA\CD.

Proof.—This follows from Theorems VI, IV, V, and VII, as may be
3hown by tabulating the relations between A, B, C, and D, which are
possible on the basis of Theorem VI.

THEOREM XI If AB\CD and APB, then A P. CD and PB\CD.

Proof.—As above, by tabulating the possible cases, and making use of
Theorems IV-VII.

THEOREM XII.—// AP\ CD and PB\CD, then APB.
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Proof.—As above, by tabulation.

THEOREM XIII.—If M and N are two classes of elements exhausting K,
•and such that there are two fixed elements C and D such that if A belongs
to M and B belongs to N, AB\CD, then there is an element P such that
if Q belongs to M and B belongs to N and Q =£ P =£ B, QPB.

Proof.

Suppose that X and Y belong to M, and that XZY Either XY\ CD
or YX\CD, by Theorem X. Similarly, either XZ\CD or ZX\GD, and
either YZ\CD or ZY\ CD. Making use of Theorems XII and VI, it
turns out that the only admissible combinations of hypotheses are
XZ\CD, ZY\CD, XY\CD and YZ\CD, ZX\GD, YX\GD. Since we
have XB\CD and YB\CD for all B in N, we have, by Theorem VIII,
ZB | CD in both cases. It follows then from Theorems VIII and IX that
Z does not belong to N, so that it must belong to M. In other words, if
M contains X and Y, it contains every element in (X, Y), so that M is
connected. Likewise, N is connected.

It follows from Postulate IX and Theorem I that there is just one
element P which is a limit-element of M belonging to N or a limit-element
of N belonging to M. Let Q belong to M and B to N. As (Q, B) is con-
nected, it must contain P.

THEOREM XIV.—There is a denumerable set K' of elements such that
if A and B are any two elements, there is an element C from K' such
that AGB.

Proof

Let K' be the set to which reference is made in Postulate VIII. Then
eyery element is a limit-element of K'. It follows from the fact that a
single element has no limit-element and Postulate V that a segment has
interior elements. Hence every segment contains at least one element
of K'.

THEOREM XV.—There is no element A such that for all B =f= A,
AB | CD, and there is no element A such that for all B ^= A, BA \ CD.

Proof—This follows directly from Postulate VI.

THEOREM XVI.—K can be put into (1, l)-correspondence with the set of
all real numbers, in such a way that two elements C and D can be selected
such that AB \ CD when and only when the correspondent of A is larger
than the correspondent of B.
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Proof.—By Theorems VIII, IX, and X, order as defined by AB \ CD is
serial. By Theorems XI, XII, and XIII, it is what Russell calls " Dede-
kindian." . By XI, XII, and XIV, it contains a denumerable " median
class." Hence, by a well known theorem,* it is ordinally similar to the
series of reals.

THEOREM XVII.—In the correspondence of Theorem XVI, 2 goes over
into the set of all bicontinuous biunivocal transformations of the series of
reals.

Proof.—In the transformation of Theorem XVI, a segment goes over
into a segment (Theorems XI, XII). Now, by Postulate VII, and
Theorem I, the limit of a set E consists of all those elements A such
that every segment {G, D) of which A is an element other than C and D
contains a member of E. Hence limit goes over into limit, and in virtue
of Postulates II, III, and IV, a transformation from 2, which is precisely
a transformation keeping limit-properties invariant, goes over into a
bicontinuous, biunivocal transformation of the number-line, and every
bicontinuous, biunivocal transformation of the number-line may be thus
obtained.

Theorem XVII is equivalent to the statement that our set of postulates
is a categorical set of postulates for the analysis-situs group of the line.

CONSIDERATIONS OF INDEPENDENCE.

10. Up to the present, the author has been unable to solve the ques-
tion of the independence of Postulates IV, V, VII, and VIII. Each of
the other postulates is independent of all the rest. The examples given
below satisfy all the postulates except the one whose number they are
given.

I. K consists of one element; 2 contains only the identity trans-
formation.

11. K consists of all points on a line; 2 consists of all biunivocal,
bicontinuous transformations that preserve direction.

III. K consists of all points on a line ; 2 consists of all biunivocal,
bicontinuous transformations, together with the transformations that
displace all points with rational coordinates a rational distance in one
direction, and all points with irrational coordinates a rational distance in
the other.

* Whitehead and Russell, Principia Mathematica, Vol. 3, •& 275.
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VI. K consists of all points on two mutually exclusive lines ; 2 con-
sists of all biunivocal, bicontinuous transformations of K.

IX. K consists of all points on a circle; 2 consists of all biunivocal,.
bicontinuous transformations of K.

It may be said that the independence of VIII would be proved if we
could produce a closed homogeneous* series with a number of terms
greater than 2N°. Homogeneous series with more than 2N» terms are
known, but they are not closed.

* Hausdorff, loc. cit., p. 173.
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