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Brought forward, 356
Deduct Deceased—Eev. Dr Gruthrie; Prof. John

Hunter; Very Eev. Dean Eamsay; Prof.
Macquorn Ban kin e ; Arch. Smith, Esq. ;
Eev. Prof. Stevenson ; Dr J. L. Stewart; E.
W. Thomson, Esq., 8

Resigned—J. F. MLennan, Esq.; Dr Alex. Wood, 2
Cancelled—Dr Eichardson, Dr Foulerton, . . 2

12

Total number of Ordinary Fellows at Nov. 1873, . 344

The following Communications were read:—

9. The Kinetic Theory of the Dissipation of Energy. By
Sir William Thomson.

In abstract dynamics the instantaneous reversal of the motion
of every moving particle of a system causes the system to move
backwards, each particle of it along its old path, and at the same
speed as before, when again in the same position. That is to say,

. in mathematical language, any solution remains a solution when
t is changed into - 1 In physical dynamics this simple and perfect
reversibility fails, on account of forces depending on friction of
solids; imperfect fluidity of fluids; imperfect elasticity of solids;
inequalities of temperature, and consequent conduction of heat
produced by stresses in solids and fluids; imperfect magnetic
retentiveness; residual electric polarisation of dielectrics; genera-
tion of heat by electric currents induced by motion; diffusion of
fluids, solution of solids in fluids, and other chemical changes;
and absorption of radiant heat and light. Consideration of these
agencies in connection with the all-pervading law of the conserva-
tion of energy proved for them by Joule, led me twenty-three years
ago to the theory of the dissipation of energy, which I communi-
cated first to the Eoyal Society of Edinburgh in 1852, in a paper
entitled " On a Universal Tendency in Nature to the Dissipation
of Mechanical Energy."

The essence of Joule's discovery is the subjection of physical
phenomena to dynamical law. If, then, the motion of every par-
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tide of matter in the universe were precisely reversed at any
instant, the course of nature would be simply reversed for ever
after. The bursting bubble of foam at the foot of a waterfall
would reunite and descend into the water; the thermal motions
would reconcentrate their energy, and throw the mass up the fall
in drops re-forming into a close column of ascending water. Heat
which had been generated by the friction of solids and dissipated by
conduction, and radiation with absorption, would come again to the
place of contact, and throw the moving body back against the force to
which it had previously yielded. Bouldeis would recover from the
mud the materials required to rebuild them into their previous
jagged forms, and would become reunited to the mountain peak
from which they had formerly broken away. And if also the
materialistic hypothesis of life were true, living creatures would
grow backwards, with conscious knowledge of the future, but no
memory of the past, and would become again unborn. But the
real phenomena of life infinitely transcend human science, and
speculation regarding consequences of their imagined reversal is
utterly unprofitable. Far otherwise, however, is it in respect to
the reversal of the motions of matter uninfluenced by life, a very
elementary consideration of which leads to the full explanation of
the theory of dissipation of energy.

To take one of the simplest cases of the dissipation of energy,
the conduction of heat through a solid—consider a bar of metal
warmer at one end than the other, and left to itself. To avoid all
needless complication, of taking loss or gain of heat into account,
imagine the bar to be varnished with a substance impermeable to
heat. For the sake of definiteness, imagine the bar to be first
given with one-half of it at one uniform temperature, and the other
half of it at another uniform temperature. Instantly a diffusing
of heat commences, and the distribution of temperature becomes
continuously less and less unequal, tending to perfect uniformity,
but never in any finite time attaining perfectly to this ultimate
condition. This process of diffusion could be perfectly prevented
by an army of Maxwell's "intelligent demons/'* stationed at the

* The definition of a demon, according to the use of this word by
Maxwell, is an intelligent being endowed with free-will and fine enough
tactile and perceptive organisation to give him the faculty of observing and

h individual molecules of matter.
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surface, or interface as we may call it with Professor James
Thomson, separating the hot from the cold part of the bar. To
see precisely how this is to be done, consider rather a gas than a
solid, been use we have much knowledge regarding the molecular
motions of a gas, and little or no knowledge of the molecular
motions of a solid. Take a jar with the lower half occupied by
cold air or gas, and the upper half occupied with air or gas of the
same kind, but at a higher temperature, and let the mouth of the
jar be closed by an air-tight lid. If the containing vessel were
perfectly impermeable to heat, the diffusion of heat would follow the
same law in the gas as in the solid, though in the gas the diffusion
of heat takes place chiefly by the diffusion of molecules, each
taking its energy with it, and only to a small proportion of its
whole amount, by the interchange of energy between molecule and
molecule; whereas in the solid there is little or no diffusion of
substance, and the diffusion of heat takes place entirely, or almost
entirely, through the communication of energy from one molecule
to another. Fourier's exquisite mathematical analysis expresses
perfectly the statistics of the process of diffusion in each case,
whether it be "conduction of heat," as Fourier and his followers
have called it, or the diffusion of substance in fluid masses (gaseous
or liquid), which Fick showed to be subject to Fourier's for-
mulae. Now, suppose the weapon of the ideal army to be a club,
or, as it were, a molecular cricket bat; and suppose, for convenience,
the mass of each demon with his weapon to be several times
greater than that of a molecule. Every time he strikes a molecule
he is to send it away with the same energy as it had immediately
before. Each demon is to keep as nearly as possible to a certain
station, making only such excursions from it as the execution of
his orders requires. He is to experience no forces except such as
result from collisions with molecules, and mutual forces between
parts of his own mass, including his weapon. Thus his voluntary
movements cannot influence the position of his centre of gravity,
otherwise than by producing collision with molecules.

The whole interface between hot and cold is to be divided into
small areas, each allotted to a single demon. The duty of each
demon is to guard his allotment, turning molecules back, or allow-
ing tliem to pass through from either side, according to certain
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definite orders. First, let the orders be to allow no molecules to
pass from either side. The effect will be the same as if the inter-
face were stopped by a barrier impermeable to matter and to heat.
The pressure of the gas being, by hypothesis, equal in the hot and
cold parts, the resultant momentum taken by each demon from any
considerable number of molecules will be zero; and therefore he
may so time his strokes that he shall never move to any consider-
able distance from his station. Now, instead of stopping and turn-
ing all the molecules from crossing his allotted area, let each demon
permit a hundred molecules chosen arbitrarily to cross it from the
hot side; and the same number of molecules, chosen so as to have
the same entire amount of energy and the same resultant momen-
tum, to cross the other way from the v̂ old side. Let this be done
over and over again within certain small equal consecutive inter-
vals of time, with care that if the specified balance of energy and
momentum is not exactly fulfilled in respect to each successive
hundred molecules crossing each way, the error will be carried
forward, and as nearly as may be corrected, in respect to the next
hundred. Thus, a certain perfectly regular diffusion of the gas
both ways across the interface goes on, while the original different
temperatures on the two sides of the interface are maintained with-
out change.

Suppose, now, that in the original condition the temperature and
pressure of the gas are each equal throughout the vessel, and let it
be required to disequalise the temperature, but to leave the pressure
the same in any two portions A and B of the whole space. Station
the army on the interface as previously described. Let the orders
now be that each demon is to stop all molecules from crossing his
area in either direction except 100 coming from A, arbitrarily
chosen to be let pass into B, and a greater number, having among
them less energy but equal momentum, to cross from B to A. Let
this be repeated over and over again. The temperature in A will
be continually diminished and the number of molecules in it con-
tinually increased, until there are not in B enough of molecules
with small enough velocities to fulfil the condition with reference
to permission to pass from B to A. If after that no molecule be
allowed to pass the interface in either direction, the final con-
dition will be very great condensation and very low temperature in
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A; rarefaction and very high temperature in B; and equal tem-
perature in A and B. The process of disequalisation of tempera-
ture and density might be stopped at any time by changing the
orders to those previously specified (2), and so permitting a certain
degree of diffusion each way across the interface while maintaining
a certain uniform difference of temperatures with equality of pres-
sure on the two sides.

If no selective influence, such as that of the ideal "demon,"
guides individual molecules, the average result of their free
motions and collisions must be to equalise the distribution of
energy among them in the gross; and after a sufficiently long
time, from the supposed initial arrangement, the difference of
energy in any two equal volumes, each containing a very great
number of molecules, must bear a very small proportion to the
whole amount in either; or, more strictly speaking, the probability
of the difference of energy exceeding any stated finite pro-
portion of the whole energy in either is very small. Suppose
now the temperature to have become thus very approximately
equalised at a certain time from the beginning, and let the motion
of every particle become instantaneously reversed. Each molecule
will retrace its former path, and at the end of a second interval of
time, equal to the former, every molecule will be in the same
position, and moving with the same velocity, as at the beginning;
so that the given initial unequal distribution of temperature will
again be found, with only the difference that each particle is
moving in the direction reverse to that of its initial motion. This
difference will not prevent an instantaneous subsequent commence-
ment of equalisation, which, with entirely different paths for the
individual molecules, will go on in the average according to the
same law as that which took place immediately after the system
was first left to itself.

By merely looking on crowds of molecules, and reckoning their
energy in the gross, we could not discover that in the very special
case we have just considered the progress was towards a succession
of states, in which the distribution of energy deviates more and
more from uniformity up to a certain time. The number of mole-
cules being finite, it is clear that small finite deviations from
absolute precision in the reversal we have supposed would not
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obviate the resulting disequalisation of the distribution of energy.
But the greater the number of molecules, the shorter will be the
time during which the disequalising will continue; and it is only
when we regard the number of molecules as practically infinite
that we can regard spontaneous disequalisation as practically im-
possible. And, in point of fact, if any finite number of perfectly
elastic molecules, however great, be given in motion in the interior
of a perfectly rigid vessel, and be left for a sufficiently long time
undisturbed except by mutual impact and collisions against the
sides of the containing vessel, it must happen over and over again
that (for example) something more than T

9Q-ths of the whole energy
shall be in one-half of the vessel, and less than y^th of the whole
energy in the other half. But if the number of molecules be very
great, this will happen enormously less frequently than that some-
thing more than T

6oths shall be in one-half, and something less
than -^ths in the other. Taking as unit of time the average
interval of free motion between consecutive collisions, it is easily
seen that the probability of there being something more than any
stated percentage of excess above the half of the energy in
one-half of the vessel during the unit of time, from a stated
instant, is smaller the greater the dimensions of the vessel and
the greater the stated percentage. It is a strange but never-
theless a true conception of the old well-known law of the con-
duction of heat, to say that it is very improbable that in the course
of 1000 years one-half of the bar of iron shall of itself become
warmer by a degree than the other half; and that the probability
of this happening before 1,000,000 years pass is 1000 times as
great as that it will happen in the course of 1000 years, and that
it certainly will happen in the course of some very long time.
But let it be remembered that we have supposed the bar to be
covered with an impermeable varnish. Do away with this impos-
sible ideal, and believe the number of molecules in the universe
to be infinite; then we may say one-half of the bar will never
become warmer than the other, except by the agency of external
sources of heat or cold. This one instance suffices to explain the
philosophy of the foundation on which the theory of the dissipa-
tion of energy rests.

Take however another case, in which the probability may be
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readily calculated. Let a hermetically sealed glass jar of air con-
tain 2,000,000,000,000 molecules of oxygen, and 8,000,000,000,000
molecules of nitrogen. If examined any time in the infinitely
distant future, what is the number of chances against one that
all the molecules of oxygen and none of nitrogen shall be found
in one stated part of the vessel equal in volume to | t h of the
whole? The number expressing the answer in the Arabic notation
has about 2,173,220,000,000 of places of whole numbers. On the
other hand, the chance against their being exactly -^-ths of the
whole number of particles of nitrogen, and at the same time
exactly -^ths of the whole number of particles of oxygen in the
first specified part of the vessel, is only 4021 x 109 to 1.

APPENDIX.

Calculation of probability respecting Diffusion of Oases.

For simplicity, I suppose the sphere of action of each molecule
to be infinitely small in comparison with its average distance from
its nearest neighbour; thus, the sum of the volumes of the spheres
of action of all the molecules will be infinitely small in proportion
to the whole volume of the containing vessel. For brevity, space
external to the sphere of action of every molecule will be called
free space: and a molecule will be said to be in free space at
any time when its sphere of action is wholly in free space;
that is to say, when its sphere of action does not overlap the
sphere of action of any other molecule. Let A, B, denote any
two particular portions of the whole containing vessel, and let
a, b, be the volumes of those portions. The chance that at
any instant one individual molecule of whichever gas shall be

in A is —— , however many or few other molecules there may be

in A at the same time; because its chances of being in any speci-
fied portions of free space are proportional to their volumes; and,
according to our supposition, even if all the other molecules were
in A, the volume of free space in it would not be sensibly diminished
by their presence. The chance that of n molecules in the whole

VOL. VIII. 2 U
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space there shall be i stated individuals in A, and that the other
n-i molecules shall be at the same time in B, is

\a + b) \a + b) ' (a + 6)n-

Hence the probability of the number of molecules in A being
exactly if and in B exactly n-i, irrespectively of individuals, is a
fraction having for denominator (a + b)n

} and for numerator the term
involving a* bn"i in the expansion of this binomial; that is to say,
it is—

n(n- l ) ( n - i+1 ) / a V / b \ » - '
1.2 *

If we call this T ,̂ we have

/ a V /

rn __n - i a T

Hence T< is the greatest term if i is the smallest integer, which
makes

n-i b

this is to say, if i is the smallest integer which exceeds

a b
na + b a + b *

Hence if a and b are commensurable, the greatest term is that for
which

a

To apply these results lo the cases considered in the preceding
article, put in the first place

n = 2 x 1012,

this being the number of particles of oxygen; and let i = n.
Thus, for the probability that all the particles of oxygen shall be
in A, we find

a \8 x

a + k
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Similarly, for the probability that all the particles of nitrogen are
in the space JB, we find

/ b \ 2 x 1012

Hence the probability that all the oxygen is in A and all the
nitrogen in B is

a \ 2 x 1012 / b \ 8 x 1012/ a \2 x 1012 / b \8
\a ~Vb) * \a + b)

Now by hypothesis
a 2

a + b 10'

and therefore

_L_= A-
a + b 10'

hence the required probability is

O26 x 1012

1010

Call this =•, and let log denote common logarithm. We have

log N = 101 3-26xl01 2xlog 2 = (10-26 log 2) x 1012= 2173220
x 106. This is equivalent to the result stated in the text above.

The logarithm of so great a number, unless given to more than
thirteen significant places, cannot indicate more than the number of
places of whole numbers in answer to the proposed question, ex-
pressed according to the Arabic notation.

The calculation of T<, when i and n - i are very large numbers,
is practicable by Stirling's theorem, according to which we have
approximately

and therefore

n(n - 1) . . . . (n - i + 1)
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Hence for the case

a
a + b!

which, according to the preceding formulae, gives T; its greatest

value, we have
1

T,=-
,j2irnef

where

a + b J a + b

Thus, for example, let n = 2 x 1012;

e= %.f= -8,

we have

800000 Jir 1418000

This expresses the chance of there being 4 x 1011 molecules of
oxygen in A, and 16 x 1011 in B. Just half this fraction expresses
the probability that the molecules of nitrogen are distributed in
exactly the same proportion between A and B, because the number
of molecules of nitrogen is four times greater than of oxygen.

If n denote the molecules of one gas, and n that of the mole-
cules of another, the probability that each shall be distributed
between A and B in the exact proportion of the volume, is

2-iref Jnn

The value for the supposed case of oxygen and nitrogen is

1 1
2TTX -16 x 4 x 1012 4021 x 1091

which is the result stntrd at the conclusion of the text above.
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