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damages whatsoever or howsoever caused arising directly or indirectly in
connection with or arising out of the use of this material.
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Influence of Obstacles on the Properties of a Medium. 481 

limited to two particles only. Given the proper temperature 
with corresponding conditions of mass~ shape, and distribu- 
tion of charge on the particles, and,. as it seems to me, almost 
any amount of molecular complexity is possible. That I have 
not taken this possibility into account does not, however, 
vitiate the results hero brought forward, as they do not pre- 
tend to greater accuracy than that of their order of magnitude. 

It  is the cumulative value of these results which will, I 
hope, be regarded its sufficient reason for the publication of 
what is at best an incomplete piece of theory. 

Univ. Coll. Bristol. 

LVL On the Influence of Obstacles arranged in Rectangular 
Order upon the Properties era Medium. By Lord RAYL~IG~, 
Sec. R.8.* 

T H E  remarkable formula~ arrived at almost simultaneously 
by L. Lorenz t and H.A.  Lorentz $, and expressing the 

relation between refractive index and density~ is well known ; 
but the demonstrations are rather difficult to follow, and the 
Hmits of application are far from obvious. Indeed, in some 
discussions the necessity for any limitation at all is ignored. 
I have thought that it might be worth while to consider the 
problem in the more definite form which it assumes when the 
obstacles are supposed to be arranged in rectangular or square 
order, and to show how the approximation may be pursued 
when the dimensions of the obstacles are no longer very small 
in comparison with the distances between them. 

Taking, first, the case of two dimensions, let us investigate 
the conductivity for heat, or electricity, of an otherwise uniform 
medium interrupted by cylindrical obstacles which are ar- 
ranged in rectangular order. The sides of the rectangle will 
be denoted by a, B, and the radius of the cylinders by a. The 
simplest cases would be obtained by supposing the material 
composing the cylinders to be either non-conducting or per- 
fectly conducting ; but it will be sufficient to suppose that it 
has a definite conductivity different from that of the remainder 
of the medium. 

By the principle of superposition the conductivity of the 
interrupted medium for a current in any direction can be de- 
duced from its conductivities in the three principal directions. 

* Communicated by the Author. 
? Wied. Ann. xi. p. 70 (1880). 
$ Wied. Ann. ix. p. 641 (1880). 
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482 Lord Rayleigh on the Influence of Obstacles 

Since conduction parallel to the axes of the cylinders pre- 
sents nothing special for our consideration, we may limit 
our attention to conduction parallel to one of the sides (a) of 
the rectangular structure. In this case lines paral|el to a, 

Fig. 1. 
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symmetrically situated between the cylinders, such as AD, 
BC, are lines of flow, and the perpendicular lines AB, CD are 
equipotential. 

I f  we take the centre of one of the cylinders P as origin of 

~ olar coordinates, the potential external to the cylinder may 
e expanded in the series 

V = A0 + (Air + B~r -~) cos ~ + (A3r 3 + Bar -3) cos 38 + . . . ,  (1) 

and at points within the cylinder in the series 

V '=  Co + Clr cos 6 + C3~ ~ cos 3t~ + . . . ,  (2) 

0 being measured from the direction of a. The sines of 0 
and its multiples are excluded by the symmetry with respect 
to 0=  0, and the cosines of the even multiples by the sym- 
metry with respect to ~=½~r. At the bounding surihce, 
where r---a, we have the conditions 

V-=V t, vdV'/dr=dV/dr, 

v denoting the conductivity of the material composing the 
cylinders in terms of that of the remainder reckoned as unity. 
The application of these conditions to the term in cos n9 
gives 

B = 1--Va2"A. (3) 
1 - -kv  . . . . . .  

In the case where the cylinders are perfectly conducting, 
v ' - '~  • If  they are non-conducting, v=0.  
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in Rectangular Order upon a 3[edium. 483 

The values of the coefficients AI~B1, A~,B~ . . .  are neces- 
sarily the same for all the cylinders, and each may be regarded 
as a similar multiple source of potential. The first term Ao, 
however, varies frmn cylinder to cylinder, as we pass up or 
down the stream. 

Let us now apply Green's theorem, 

f ( u d V  v d U ~  dn -- ~-~ ] ds= 0 . . . .  (4) 

to the contour of the region between the rectangle ABCD and 
the cylinder P. Within this region ¥ satisfies Laplace's 
equation, as also will U, if we assume 

U = x = ~ c o s #  . . . . . . .  (5 )  

Over the sides BC, AD, dU/dn, dV/dn both vanish. On CD, 
ydV/dnds represents the total current across the rectangle, 
which we may denote by C. The value of this part of the 
integral over CD, AB is thus aC. The value of the remainder 
of the integral over the same lines is --Vlfl, where V1 is the 
fall in potential corresponding to one rectangle, as between CD 
and AB. 

On the circular part of the contour, 

U = a c o s  0, dU/dn= --dU/dr= --cos t? ; 

and thus the only terms in (1) which will contribute to the 
result are those in cos 0. Thus we may write 

V----(Ala +Bia  - l )  cos t~, 

dV/dn-- -- (A1--Bla -2) cos 8; 

so that this part of the integral is 21rB1. The final result 
from the application of (4) is thus 

~C-BV~ + 2~rBl = 0  . . . . . .  (6) 

I f  B1 =0,  we fall back upon the uninterrupted medium of 
which the conductivity is unity. For the case of the actual 
medium we require a further relation between B 1 anti V t. 

The potential V at any point may be regarded as due to 
external sources at infinity (by which the flow is caused) and 
to multiple sources situated on the axes of the cylinders. The 
first part may be denoted by I{x. In considering the second 
it will conduce to clearness if we imagine the (infinite) region 
occupied by the cylinders to have a rectangular boundary 
parallel to at and/~. Even then the manner in which the infinite 
system of sources is to be taken into account will depend upon 
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484 Lord Rayleigh on the fl~fluence of Obstacles 

the shape of the rectangle. The simplest case, which suffices 
for our purpose, is when we suppose the rectangular boundary 
to be extended infinitely more parallel to a than parallel to B. 
It is then evident that the periodic dift~renee Vt may be 
reckoned as due entirely to Hx, and equated to Ha. For the 
difference due to the sources upon the axes will be equivalent 
to the addition of one extra column at + ~o, and the removal 
of one at - - ~ ,  and in the case supposed such a transference is 
immaterial*. Thus 

V1--Ha . . . . . . .  (7) 

simply, and it remains to connect H with B1. 
This we may do by equating two forms of the expression 

for the potential at a point x, y near P. The part of the 
potential due to Hx and to the multiple sources Q (P not 
included) is 

An+A1 r cos 8÷ Asr 3 cos 30+ . . . .  ; 

or, if we subtract Hx, we may say that the potential at x, y 
due to the multiple sources at Q is the real part of 

An+ (A1--H)(x +/~) +A~(x+~V)~+A~(.~+~y)°+ . . . .  (8) 

But if x', f are the coordinates of the same point when re- 
ferred to the cenh'e of one of the Q's, the same potential may 
be expressed by 

X{B,(x '+iy ' ) - '+Ba(x '+iy ' ) -3+ . . . .  }, (9) 

the summation being extended over all the Q's. I f  ~, y be 
the coordinates of a Q referred to P, 

ao '=x-$,  y '=y- -~  ; 
so that 

B~( x' + i~/)-'= B.( ~ + iV--$--i,j ) - ' .  

Since (8) is the expansion of (9) in rising powers of 
(x +iy), we obtain, equating term to term, 

H--A 1 = B1 ~ + 3Ba Xi + 5B6 Xs + . . .  
- - 1 . 2 . 3  Aa= 1 . 2 . 3  Bx E 4 + 3 . 4 . 5  B8 E s + . . .  

- - 1 . 2 . 8 . ~ . 5 A ~ = 1 . 2 . 3 . 4 . 5  B 1 E o + 3 . 4 . 5 . 6 . 7  B~Xs+. . .  J 
and so on, where 

X~,=X(~+i~) -~ ,  . . . . .  (11) 

the summation extending over all the Q's. 

* It would be otherwise if the infinite rectangle were supposed to be 
of another shap% e. g. t- be square. 
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in Rec tangular  Order upon a Medium.  485 

By (3) each B can be expressed in terms of the correspond- 
ing A. For brevity, we will write 

&.= Va-'~U,,, . . . . . .  (12) 

where 
V = ( i + v ) / ( 1 - v )  . . . . . .  (13) 

We are now prepared to find the approximate value of the 
conductivity. From (6) the conductivity of the rectangle is 

C 27rB1 ]. 2~rB1 "[.  

so that the specific conductivity of the actual medium for 
currents parallel to a is 

1 2rrBl 
. . . . . . .  (14) 

and the ratio of H to B l is given approximately by (10) 
and (12). 

In the first approximation we neglect •4, :~s . . . .  , so that 
As, A s . . .  Ba, B~ . . . .  vanish. In this case 

H = Ax + B,E~ = BI(Va- '  + E~), (15) 

and the conductivity is 
7j-a f~ 

1 a/~(d + a'Z,) . . . . . .  (16) 

The second approximation gives 

Ha___ ~ --- V + a ~ E~-- 3 aSZ4~, (17) 
B1 . . . .  

and the series may be continued as far as desired. 
The problem is thus reduced to the evaluation of the quan- 

tities ~ ,  X4, • • • W e  will consider first the importaut parti- 
cular case which arises wheu the cylinders are in square 
order, that is when /~----a. Sand  ~/ in (11)are  then both 
multiples of a, and we may write 

E. = S ,  . . . . . . .  (18) 
where 

S,, ---- ~ (m '  + ira) - "  ; . . . (19) 

the summation being extended to all integral values of m, m r, 
positive or negative, except the pair r e=O,  ml=O. The 
quantities S are thus purely numerical, and real. 

The next thing to be remarked is that, since m, m ~ are as 
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486 Lord Rayleigh on the Influence of Obstacles 

much positive as negative, S.  vanishes for every odd value 
of n. This holds even when a and/9  are unequal. 

Again, 

S,,, = ~ (rn t + ira) -2,, -- i -,2,, ~ ( _ ir£ + m ) - "  
= ( - - 1 ) " Z ( - - i m ' + m )  -~" = ( - - 1 ) "  S,,¢ 

Whenever n is odd, $2. = - $2., or $2. vanishes. Thus for 
square order, 

S~ = 810 = Sa  = • • • = 0 . . . . .  (20) 
This argument does not, without reservation, apply to S~. 

In that case the sum is not convergent ; and the symmetry 
between m and m', essential to the proof of evanescence, only 
holds under the restriction that the infinite region over which 
the summation takes place is symmetrical mith respect to the 
two directions ~t and/~--is ,  for example, square or circular. 
On the contrary, we have supposed, and must of course continue 
to suppose, that the region in question is infinitely elongated 
in the direction of a. 

The question of convergency may be tested by replacing 
the parts of the sum relating to a great distance by the corre- 
sponding integral. This is 

~ d . ~ d y  ~ycos2uOrdrdO 
- ; 

and herein 
Sr -~"+l dr "- r - 2 " + V ( - - 2 n + 2 )  ; 

so that if n > 1 there is convergency, but if n = 1 the integral 
contains an infinite logarithm. 

We have now to investigate the value of $2 appropriate to 
our purpose ; that is, when the summation extends over the 
region bounded by x =  -t-u, g----- ±v,  where u and v are both 
infinite, but so that v/u=O. I f  we suppose that the region 
of summation is that bounded by x =  +v~ y =  +v,  the sum 

Fig. 2. 

vanishes by symmetry. We may therefore regard the sum- 
marion as extending over She region bounded externally by 
x =  ± ~ ,  y =  i v ,  and internally by x =  + v  (fig. 2). When 
v is very great, the sum may be replaced by the corresponding 
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in Rectangular Order upon a #ledium. 487 

integral. Hence 

y f  d x d v  . . . . .  (21) S~ = 2 ( x + i y )  ~, 

the limits for y being + v, and those for x being v and ~ .  
Ultimately v is to be made infinite. 

We have 

+" dy i i 2v 
, ( x + i y )  ~ -  x~r~v x - - i v  = x ~ + v  ~ ; 

and 
y f  2 v d x  

x~+v ~ = 2fan - t  ~¢ --2 tan -~ 1 =½7r. 

Accordingly 
S~ = ~r . . . . . . . . . .  (22) 

In the case of square order, equations (10) (12) give 

Ha  ~ = v '+  a~X2 3 _~ 
B I  - -  -~ aSX, 2 - -  a l 6 X s t - -  . . . . 

7ra ~ 3 a s 7 a ta 
----r~+ a ~ C a  s $ 4 ~ - ~ S ~ - ' ' ' ;  . (23) 

and by (14) 
2~'a ~ Bx (24) Conductivity = 1 - - - ~ -  • ~ . . . . . . .  

I f  p denote the proportional space occupied by the 
cylinders~ 

p=~ra2/~ ~ ; . . . . . . . .  (25) 
and 

2p 
Conductivity = 1 - 3) 04 ~ ~ P .2 7 + . . . .  (26)  

¢ + 2 -  ~ ~+ - ~ Ss 

Of the double summation indicated in (19) one part can 
be effected without difficulty. Consider the roots of 

sin ($-- imw) =. O. 
They are all included in the form 

$ = m'~'+ imp', 
where m t is any integer, positive, negative, or zero. Hence 
we see that sin (~--irmr) may he written in the form 

/ . ~ T ~ ) "  " " '  /--m~)( -- i m ~ + r r ) (  1 bn~--TrX 1 A ( 1 - -  $ 1 
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in which 

Thus 

Lord Rayleigh on the I~uence  o f  Obstacles 

A = --s in  im,r. 

+1og(1 . . . .  

I f  we change the sign of m, and add the two equations, we 
get  

whence, on expansion of the logarithms, 

sin2$ sin4$ sines 
• 4' + + . . . .  

sin2im~r + 2 sm ~m~r 3 sin6im~r 

'2 f -  1 1 1 [ =~ \ ~ +  + + 
( im~" + ~') "~ ( i m ~ - ~ ' ) ~  . . . .  

{2,~ 1 1 } 
+½~ (i ) , +  (im,~+,~? + ( im~-,O ' +  . . . .  

1 1 1 . . . .  } +  . . . .  

By expanding the sines on the left and equating the corre- 
sponding powers of ~, we find 

I 1 1 1 ~-~ 
(ira) ~ I- (ira 2(- 1) 2 + (ira-- 1) - - - - - - - ~  + (ira + 2) 2 + . . . .  sin~irmr ,(27) 

i 1 2*? *# 
(ira)" + "(ira + 1) 4 + "" " = - -  3 sin~im~r + sin'im------~' (28) 

1 1 2~r ~ ~* ,r  e 
- ~ + ~ .  (29 )  ( im~ + (ira + 1)n + . . . .  ] 5  sin~im~r sin zm~r sin *m~" 

In  the summation with respect to m required in (19)we  
are to take all positive and negative integral values. But  in 
the case of m = 0  we are to leave out the first term~ corre- 
sponding to m~=0.  When  m = 0 ,  

sin~imrr (ira) "~ = -g , 
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in Rectangldar Order upon a Medium. 

which, as is well known, is the value of 
1 1 1 1 + + + . . . .  

Hence 

489 

S~ = 2~r ~ E sin-2imqr + ~:¢a ; . . . .  (30) 

and in like manner 
7T 4 ~ 

$4 = 4-5 +2~r4 E {- - ]  sin-~imTr+sin-~imTr}, • (31) 
~ = 1  

• 271.6 . m=a¢ 
$ 6  = 2-~-~. 3b + 27r6 E { ~  sin-2imTr 

- -  sin-4im~r + sin-6im~-}.. (32) 

We have seen aIready that $6=0, and tha~ S~=Tr. The 
comparison of the latter with (30) gives 

2 sin-~irn~r . . . .  . . . . . .  (33) 
,~=t  2~r 6 

We wiIl now apply (31) to the numerical calculation of 
S 4. We find : 

m .  - -  s i n - ~ i m w ,  s i n - 4 i m  w. 

1 

2 

3 

Sum 

"00749767 

1895 

3 

.0000562150 

2 

"00751165 -0000562152 

so that 
8~=,n -4 x -03235020 . . . . . .  (34) 

• d In the same way we may verify (33), an that (32) =0 .  
I f  we introduce this value into (26), taking for example 

the case where the cylinders are non-conductive ( v ' = l ) ,  we 
get 

1-- 2p 1 + p _ . a o 5 8 p  4 . . . . . .  (35) 

From the above example it appears that in the summation 
with respect to m there is a high degree of convergency. 
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490 Lord Rayleigh on the Influence of Obstacles 

The reason for this will appear more clearly if we consider 
the nature of the first summation (with respect to m/). In 
(19) we have to deal with the sum of (x+iy)-" ,  where y is 
for the moment regarded as constant, while x receives the 
values x-~m I. If, instead of being concentrated at equidistant 
points, the values of x wore uniformly distributed, the sum 
would become 

Now, n being greater than 1, the value of this integral is 
zero. We see, then, that the finite value of the sum depends 
entirely upon the discontinuity of its formation, and thus a 
high degree of convergency when y increases may be ex- 
pected. 

The same mode of calculation may be applied without 
difficulty to any particular case of a rectangular arrangement. 
For example, in ( l l )  

y~: = y. (m,~, + ~,,~)-~ = ~ , -~  (m, + im~/,,)-~. 

If m be given, the summation with respect to m I leads, as 
before, to 

2 ( m  ~ + i,*~k,)-~ ffi sin ~ (irnTr~/,,) ; 
and thus 

~ t ~ o o  

= % = 2 ~  ~ sin-~(im~/~) + ~ .  (36) 

The numerical calculation would now proceed as before, 
and the final approximate result for the conductivity is given 
by (16). Since (36) is not s)mmetHca] with respect to 
and jg, the conductivity of the medium is different in the two 
principal directions. 

When fl=, , ,  we know that ~-~2=?r .  And since this does 
not differ much from al~r ~, it follows that the series on the right 
of (36) contributes hut little to the total. The same will be 
true, even though fl~ be not equal to ~, provided the ratio of 
the two quantities be moderato. We may then identify a - ~  
with % or with ~3~ "~, if we are content with a very rough 
approximation. 

The question of the values of the sums denoted by ~n  is 
intimately connected with the theory of the 0-functions +, 
inasmuch as the roots of H(u), or 01(Tru/2K), are of the form 

2m K + 2mY K'. 

• Cayley's ' Elliptic Ftmetions,' p. 300. Tim notation is that of Jaeobi. 
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in Rectangular Order upon a Medium. 491 

The analytical question is accordingly that of the expansion 
of log 01(x) in ascending powers of x. Now, Jacobi*  has 
himself investigated the expansion in powers of x of 

Ol(x ) -=2 {q I/4 sin x--qg/4 sin 3 x +  q~5/~ sin 5 x - - . . .  }, (37) 

where q=e-'~x'/K . . . . . . .  (38) 

So far as the cube of x the result is 

81(x) 2~ ~ r 1 + . . . ,  (39) 

D being a constant which it is not necessary further to specify. 
K and E are the elliptic functions of k usually so denoted. 
By  what has been stated above the roofs of 01(x) are of the 
form 

7r (m + m'i K'/K) ; . . . . .  (40) 

s o  that 

l~ { m + i m ' K ' / K t - ' = ~  {3KE--(2- -k~)K2t  , . (41) 

the summation on the left being extended to all integral 
values of n~ and m', except m = 0, m '=  0. 

This is the general solution for ~ .  I f  K ' = K ~  k~={, and 

X l r n + i m ' } - ' = 2 t 2 K E - - K ' t = ~ ,  

since in general 'f, 

E K ' + E ' K - - K K ' = { ~ r .  

In proceeding further ig is convenient to use the form in 
which an exponential factor is removed from ~he series. 
This is 

r A3x 3 A ~  ATx 7 l 
=z,..,e-, ~SoaZ-,~ ~ -  V + s~ --5-V-s8 -~. + . . . .  3" 

in which . . . . . .  (42) 
A 2K 2 E _ k ,  22K (43) = ~ - - ,  B = ~ -  ~ - ,  . . . . .  

80=B, .~=~#, . , = B ( ~ ' - 2 N ) ,  .s=~/~(~'-6Z~), 
the law of formation of s being 

~,.+~ = 2,~(2m + 1) #%_~ + ~.8 d,,./a~- 8~d~,./d~,, (44) 

* ' Crelle,' Bd. 54, p. 82. 
"r Cayley's ' Elliptic Functions,' p. 49. 
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492 Lord Rayleigh on the [r~uence of Obstacles 

while 
x=k '~ - -~ ,  /3= V(kk'). (45) 

I have thought it worth while to quote these expres- 
sions, as they do not seem to be easily accessible; but I 
propose to apply them only to the case of square order, K~= K, 
k'~=k~=~. Thus 

AB=I/~r ,  a = 0 ,  f l=l /C2;  . (46) 

s0=/~, sl----0 , s~-----2f~ a, ss=0,  s4-----36fl ~, 
and 

A~x -~=x { A4x4 Asx8 } 
O ~ ( ~ ) = - ~ - ~ e  • ~ ~ . 5 !  4 . 8 !  + . . . . .  (47~ 

Hence 
log ~ (x) .~ A4a 4 ASa;8 

-- ~ 2 . 5 !  - - 1 6 . 3 5 . 5 !  " ' "  (48) 

I f  +-Xl, +X~, . . .  are the roots of Ox(x)/x=O, we have 

A ~ A s 
~X_~ = ~1,  E~_4=_~.V, ~X-6----0' EX-8--'= 7 .~5 .4 .51  

Now by (40) the roots in question are ~r (m + ira'), and thus 

~'4A4 $8= ~r8£8 (49) S 2 = ~ r  , S~=~d ' ~ . ~ ! '  

in which 
1 ~ 1 16 . 3 ~ 1 1 ~ 3 ~ . 5 ~ 1 

A =  2 K = I +  + • -~ " • + 
' ~ ' ~  ~ 4  ~ 4~.6  ~ ~ " ' "  

= 1"18034. 

Leaving the two-dimensional problem, I will now pass on 
~o the case of a medium interrupted by spherical obstacles 
arranged in rectangular order. As before, we may suppose 
that the side of the rectangle in the direction of flow is a, the 
two others being ~ and % The radius of the sphere is a. 

The course of the investigation runs so nearly parallel to 
that already given, that it will suffice to indicate some of the 
steps with brevity. In place of (1) and (2) we have the 
expansions 

V ----- A0 + (Air + Blr -2) Yt + . . .  

+ (A.r" + B . r - " - a ) Y . + . . . ,  (50) 

V ' = C 0 + C 1 Y l r +  • • • + C ,Y , r "+  . . . ,  (51) 
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in Rectangular Order upon a Medium. 493 

Yn denoting the spherical surface harmonic of order re. And 
from the surface conditions 

V=V' ,  vdV'/dn=dV/dn, 
we find 

1--v 
B.---- 1 + v + 1/n a~+lA~" (52) 

We must now consider the limitations to be imposed upon 
Y.. In generaI, 

Y . =  '~5"O,~ (H, cos s4' + K', sin s4'), (53) 
s~0 

where 

O:--sin'0(cos'-S0 (n--s)(n--s--1)c°s2(2n--1) . . . .  '0-t-. . .), (54) 

0 being supposed to be measured from the axis of x (parallel 
to a), and 4' from the plane of xz. In the present application 
symmetry requires that s should be even, and that Y, (except 
when n----0) should be reversed when (~'--0) is written for 0. 
Hence even values of n are to be excluded altogether. 
Further, no sines of s4' are admissible. Thus we may take 

Yl=COS  0:1 . . . . . . . . . . . .  ( 5 5 )  

Ys----cosS0- ~ - cos 0+H~ sin20 cos 0 cos 24', (56) 

Y~ = co :  O -  ½o co :  0 + ~ cos 0 

+ L .  s in~) (co:O-½ cos ~) cos 2q, 

+ L 4 sin 40 cos 0 cos 44' . . . . . .  (57) 

In the case where fl---T symmetry further requires that 

H 2 = 0 ,  L ~ = 0  . . . . . .  (58) 

In applying Green's theorem (4) the only difference is that 
we must now understand by s the area of the 'surface bounding 
the region of integration. I f  C denote the total current 
flowing across the faces fl% V1 the periodic difference of 
potential, the analogue of (6) is 

aC--~,V~ + 4~-B, =0.  . (59) 

We suppose, as before, that the system of obstacles~ ex- 
tended without limit in every direction, is yet infinitely more 
extended in the direction of a than in the directions of fl and 7- 

_P]~il. Mat. S. 5. Vol. 34. :No. 211. Dec. 1892. 2 M 
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494 Lord Rayleigh on the Influence of  Obstacles 

Then, if Fix be the potential due to the sources at infinity 
other than the spheres, V:=Ha ,  and 

C ~ ( 1  4~'B:'~ 

so that the specific conductivity of the compound medium 
parallel to a zs 

1 4~rBl 
,*#~H . . . . . . .  (60) 

We will now show how the ratio BI/t~ is to be calculated 
approximately, limiting ourselves, however, for the sake of 
simplicity to the ease of cubic order, where a= /3=  7. The 
potential round P, viz. 

A0 + Alr.Ya + A~r ~ Ya + . .  •, 

may be regarded as due to Hx and to the other spheres Q 
acting as sources of potential. Thus, if we revert to rectan- 
gular coordinates and denote the coordinates of a point rela-. 
tively to P b y x ,  y, z, and relatively to one of the Q's by 
3)F ~/ Zw We have 

Ao + (AI -- H) x + A3 (x s- a,w a) +... 

--B wx" ~Bs E a/a-- ~ x'"'~ + , (61) 

i~ which 

x ' = x - ~ ,  Y'=Y--~I,  z ' = z - - ~ ,  

if ~, ~/, ~ be the coordinates of Q referred to P. The left side 
of (61) is thus the expansion of the right in ascending powers 
of x, y, z. Accordingly, A1--H is found by taking d/dx of 
the righf~hand member and then making x, .y, z vanlsh. In 
like manner 6As will be found from the third differential 
coefficient. Now, at the origin, 

d x '  d x '  . d - -  $ . _  p~'--3~ 2 
dx r '3 d~ r '3 d~ p~ p5 , 

in which 
p~ = ~ + ,/2 + ~,~. 

It  will be observed that we start with a harmonic of order 
1 and that the differentiation raises the order to 2. The law 
that each differentiation raises the order by unity is general ; 
and; so far as we shall proceed, the harmonics are all zonal, 
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in Rectangular Order upon a Medium. 495 

and may be expressed in the usual way as functions I)~(~) of ~, 
where l~=$/p. Thus 

d x t 

dx r'" = --2p-" P~(/*). 

In like manner, 

d . " - ~ . ' , . ' ~ _  d ~-~p~ 8 o-  ~ e~(~), 
dx r '7 d~ / 5 

and 

d 3 x ' _ _  d 3 &:, ,,~ - ~ ? = - 2~ p-51"~(~,). 

The comparison of terms in (61) thus gives 

AI --H-- --2BI Xp -a P~-5 s Ba Ep -5 P4 + • • .~ 
A3=--4B, Ep -5P4+ .... ).. (62) 

° ° .  - -  , ,  o o o 

]n each of the quantities, such as Ep-aP~, the summation 
is to be extended to all the points whose coordinates are of 
the form 

10t, o]~ot, ~otj 
where l, m, n are any set of integers, positive or negativ% 
except 0, 0, 0. I f  we take ot = 1, and denote the corresponding 
sums by S:, S,, . . . .  , these quantities will be purely nume- 
rical, and 

~p . . . .  1p~ = - . - 1 8 , .  . . . . .  (63) 

From (52) (62) we now obtain 
2 31o Ha a 2 + r  aa 3 2 1 - V S  4 ~ +  (64) 

B 1  - -  1--v + 2 8 2 ~  5 a ~ + v  " " " ' 

which with (60) gives the desired result for the conductivity 
of the medium. 

We now proceod to the calculation of $2. We have 

3 ~ , ~ - 1  _ 2 5 ~ - ¢ - ~  -~ _ _ ~  d_ (_~ 

By the ~ symmetry of a cubical arrangement, it follows thai 

£ (~%~) = :~ ( " % 9  = :~ g % ° )  ; 
so that if S were calculated for a space bounded by a cube, 
it would necessarily vanish. But for our purpose $2 is to 
be calculated over the space bounded by $= +_~, V=+_v, 

2 M 2  
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496 Lord Rayleigh on tile Influence of Obstacles 

~---+ v, where v is finally to be made infinite; and, as we 
have just  seen, we may exclude the space bounded by 

S = _ v ,  ~=_+v, ~ = + v ;  
so that {$2 will be obtained from the space bounded by 

~=v, ~ = ~ ,  7 = + v ,  ~=+_~,. 
Now when p is sufficiently great, the summation may be 
replaced by an integration ; thus 

In this, 
v 

@ @ =  (v , + ~ + ~ . , ? ,  

~_+~ v dT/ 2v ~ 
, (v,+,~'+ ~'~) ~ = ( ~ +  ~)(2,~ + ~,)~' 

aud finally 

~ vSd~ ~o L 2dO 
, (v~+~ ~) (2v'~ + ~2) ~ = ~/(2 +tan20) 

_ ~ll~/Z 2ds ~r 
- j o  J ( 2 - s  '~)-3'  

Thus 

s ~ -  3 . . . . . . . . .  (65) 

I f  we neglect al°/a w, and write p for the ratio of volumes, 
~'iZ. 

47i-6~ 3 
p =  3 a  8 , . . . . . . . .  (66) 

we have by (60) for the conductivity 

(2+v)/(1--v)--2p . . . . .  (67)* 
(2 + v)l(1-v) + p '  

or in the particular case of non-conducting obstacles (v=0)  

1- -p  
l + ~ p  . . . . . . . . .  (68) 

In order to carry on the approximation we must calculate 
$4 &c. :Not seeing any general analytical method, such as 
was available in the former problem, I have calculated an 

* Oompare Maxwell's ' Electricity,' § 314. 
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in Rectangular Order upon a Medium. 497 

approximate value of $4 by direct summation from the 
formula 

S~ = Z 35~4-  30~2P'~ + 3p4 
8p 9 

We may limit ourselves to the consideration of positive and 
zero values of $, % ~. Every  term for which $, % ~ are 
finite is repeated in each oetant, that is 8 times. I f  one of 
the three coordinates vanish, the repetition is fourfold, and 
if two vanish, twofold. 

The following table contains the result for all points which 
lie within p~=18. This repetition in the case, for example, 
of p~= 9 represents two kinds of composition. In  the first 

j "=2~ + 2 :+  12= 9, 
and in the second 

p 2 = 3 ~ + 0 2 + 0 2 = 9 .  

The success of the approximation is favoured by the fact that 
P vanishes when integrated over the complete sphere, so 
that the sum required is only a kind of residue depending 
upon the discontinuity of tho summation. 

The result is 
$4=3"11 . . . . . . . .  (69) 

0 , 0 ,  1 

O, 1; 1 
1, 1, 1 
O, O, 2 
O, 1, 2 
1,1,2 
O, 2, 2 
1, 2, 2 

, _ _  

+ 35000 
2 I -- "3094 
3 -- "1996 
4 + "1094 
5 + "0501 
6 -- -0397 
8 -- "0097 
9 - "0277 

O, O, 3 

O, 1, 3 
1, 1, 3 
2, 2, 2 
O, 2, 3 
1,2,3 
0 ,0 ,4  
2, 2, 3 
O, 1, 4 

p 2  

9 
10 
11 
12 
13 
14 
16 
17 
17 

+ "0144 
+ "0243 
+ "0075 
- 0062 
- -  -0015 

- "0095 
+ .0034 
-- "0061 
+ "0085 

The results of our investigation have been expressed ibr 
the sake of simplicity in electrical language as the con- 
ductivity of a compound medimn, but they may now be 
applied to certain problems of vibration. '~he simplest of 
these is the problem of wave-motion in a gaseous medium 
obstructed by rigid and fixed cylinders or spheres. I t  is 
assumed that the wave-length is very great in comparison 
with the period (a,/3, 7) of the structure. Under theso eL- 
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498 Lord Rayleigh on the Influence of Obstacles 

cumstances the flow of gas round the obstacles follows the 
same law as that of electricity, and the kinetic energy of the 
motion is at once given by the expressions already obtained. 
In fact the kinetic energy corresponding to a given total flow 
is increased by the obstacles in the same proportion as the 
electrical resistances of the original problem, so that the 
influence of the obstacles is taken into account if we suppose 
that the density of the gas is increased in the above ratio 
of resistances. In the case of cylinders in square order 
(35), the ratio is approximately (1 +p) / (1 - -p ) ,  and in the 
case of spheres in cubic order by (68) i t  is approximately 
( i  + 

But this is not the only effect of the obstacles which we 
must take into account in considering the velocity of pro- 
pagation. The potential energy also undergoes a change. 
The space available for compression or rarefaction is now 

- ( l - -p )  only instead of 1 ; and in this proportion is increased 
the potential energy corresponding to a given accumulation 
of gas*. For cylindrical obstruction the square of the velocity 
of propagation is thus altered in the ratio 

1 - - P _ ( l _ p ) =  i . 
1 + p  1 d-p' 

so that if/~ denote the refractive index, referred to that of 
the unobstructed medium as unity, we find 

I~ = 1 + y ,  

or ( / ~ 2  1)/ip= constant ' . . . . . .  (70) 

which shows that a medium thus constituted would follow 
:Newton's law as to the relation between refraction and 
density of obstructing matter. The same law (70) obtains 
also in the case of spherical obstacles; but reckoned abso- 
lutely the effcct of spheres is only that of cylinders of halved 
density. I t  must be remembered, however, that wlfile the 
velocity in the last case is the same in all directions, in the 
case of cylinders it is otherwise. For waves propagated 
parallel to the cylinders the velocity is uninfluenced by their 
presence. The medium containing the cylinders has there- 
~bre some of the properties which we are accustomed to 
associate with double refraction, although here the refraction 
is necessarily single. To this point we shall presently return, 
but in the meantime it may be well to apply the formulm to 
the more general case where the obstacles have the pro- 
perties of fluid, with finite density and compressibility. 

* ' Theory of Sound,' § 303. 
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in Rectangular Order upon a Medium. 499 

To deduce the formula for the kinetic energy we have only 
to bear in mind that density corresponds to electrical resist- 
ance. Hence, by (26), if o- denote the density of the cylin- 
drical obstacle, that of the remainder of the medium being 
unity, the kinetic energy is altered by the obstacles in the 
approximate ratio 

(~-+ 1)/(o---1) + p  . . . . . .  (7a) 
(¢ + 1 ) - p  

The effect of this is the same as if the density of the whole 
medium were increased in the like ratio. 

Tile change in the potential energy depends upon the 
" compressibility" of the obstacles. I f  th~ material com- 
posing them resists compression m times as much as the re- 
mainder of the medium, the volmne p counts only as p/m, 
and the whole space available may be reckoned as 1--p  +p/m 
instead of 1. In this proportion is the potential energy of a 
given accumulation reduced. Accordingly, if/~ be the refrac- 
t ire index as altered by the obstacles, 

/~= = (71) x ( 1 - - p + p / m ) .  (72) 

The compressibilities of all actual gases are nearly the same. 
so that. if we suppose ourselves to be thus limited, we may 
set r e = l ,  and 

V, "~ (~'+ 1) / (~- -D +P  (73) 
= (o '+ l ) / (¢r - -1 ) - -p ;  . . . .  

or, as it may also be written, 

t,~--1 1 
- -  constant . . . . . .  (74) 

In the case of spherical obstacles of density o- we obtain in 
like manner (m = 1), 

t d =  ('2¢ + 1)/(¢-- 1) + p  (75) 

o r  

t~'--..____l 1 = constant. . (76) 
/-*~ + ½ p 

In the general case, where m is arbitrary~ the equation ex- 
pressing p in terms of td is a quadratic, and there are no 
simple formul~ analogous to (74) and (76). 

I t  must not be fbrgotten that the application of these 
formulm is limited to moderately small values of T. I f  it be 
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500 Lord Rayleigh on the Influence of Obstacles 

desired to push the application as far as possible, we must 
employ closer approximations to (26) &c. It may be re- 
marked that however far we may go in this direction, the 
final formula will always give/~ explicitly as a function ofp .  
For example, in the case of rigid cylindrical obstacles, we 
have from (35) 

t~2= ( l - -p)  l+p-- '3058p~+'" (77) 
1--p-- '3058p 4+ 

It will be evident that results such as these afford no 
foundation for a theory by which the refractive properties of 
a mixture are to be deduced by addition from the corre- 
sponding properties of the components. Such theories re- 
.quire formulm in which p occurs in the first power only, as 
m (76). 

I f  the obstacles are themselves elongated, or, even though 
their form be spherical, if they are disposed in a rectangular 
order which is not cubic, the velocity of wave-propagation 
becomes a function of the direction of the wave-normal. As 
in Optics, we may regard the character of the refraction as 
determined by the form of the wave-surface. 

The'~e61oti:opy of the structm'e will not introduce any cor- 
responding property into the potential energy, which depends 
anlyupon the volumes and compressibilities concerned. The 
present question, therefore, reduces itself to the consideration 
of the kinetic energy as influenced by the direction of wave- 
propagation. And this, as We have seen, is a matter of the 
electrical resistance of certain compound conductors, on the 
supposition, which we continue to make, that the wave- 
length is very large in comparison with the periods of the 
structure. The theory of electrical conduction in general 
has bee a treated by ~axwell (;Electricity,' § 297). A 
parallel treatment of the present question shows that in all 
cases it is possible to assign a system of principal axes, 
having the property that if the wave-normal coincide with 
any one of them the direction of flow will also lie in the 
same direction, whereas in general there would be a diver- 
gence. To each principal axis corresponds an efficient "den-  
sity," and the equations of motion, applicable to the medium 
in the gross,~ take the form 

d~: d~ d~,/ _ d$ d ~  d6 %~-/~=ml~, %~p-=mx~, ~3/~=m1~, 
where $, ~, ~ are the displacements parallel to the axes, m t is 
the compressibility, and 
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in Rectangular Order upon a J ledium.  501 

I f  X, t~, v are the direction-cosines of the displacement, 
l, m, n of the wave-normal, we may rake 

=x0, v=t,0,  
where 

~ ei(lz+my+'z-Vt). 

Thus 
d3/dx  = - lO(lX + m t ~ + n v ) ,  &c., 

and the equations become 

o ' ~ V  2 = roll(IX + ml~ + nv),  

(r~tLV 2 ~ mlm(  l~ -t- mtt -b nv)~ 

~rzvV "~ -~ mln( lk  + rnp + nv),  

from which, on elimination of X : t~ : v, we get, 

( ~ m ~ n ~ m,. + (7s) 

if a, b, c denote the velocities in the principal directions 
X~ .y, z. 

The wave-surface after unit time is accordingly the ellip- 
soid whose axes are a, b, c. 

As an example, if the medimn, otherwise uniform, be ob- 
structed by rigid cylinders occupying a moderate fraction (p) 
of the whole space, the velocity in the direction z, parallel to 
the cylinders~ is unaltered; so t]aat 

.c : = 1 ,  a ~ - b  ~ - - 1 / ( 1 + p ) .  

In the application of our results to the electric theory of 
light we contemplate a medium interrupted by spherical, or 
cylindrical, obstacles, whose inductive capacity is different 
from that of the undisturbed medium. On the other hand, 
the magnetic constant is supposed to retain its value un- 
broken. This being so, the kinetic energy of the electric 
currents for the same total flux is the s.~me as if there were 
no obstacles, at least if" we regard the wave-length as in- 
finitely great*. And the po~ntial energy of electric dis- 
placement is subject to the same mathematical laws as the 
resistance of our compound electrical conductor, specific 
inductive capacity in the one question corresponding to 
electrical conductivity in the other. 

Accordingly, if v denote the inductive capacity of the mate- 
rial composing the spherical obstacles, that of the undisturbed 
medium being unity, then the approximate value of /~2 is 

* See Prof. Willard Gibbs's " Comparison of the Elastic and Electric 
Theories of Light." Am. Journ. Sci. xxxv. (1888). 
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502 Influence of Obstacles on the Properties of a Medium. 

given at once by (67). The equation may also be written in 
the form given by Lorentz, 

;12--I _I _ v--i =constant; (79) 
/~2+2 p -- v+2 

and, indeed, it appears to have been by the above argument 
that (79) was originally discovered. 

The above formula applies in strictness only when the 
spheres are arranged in cubic order ' ,  and~ fimher, when p 
is moderate. The next approximation is 

3p  . (80) 
/ , " =  1+ v + 2  , ,  1 " 

v-- 1 p- -  1"65 ~ p l ° / a  

]f the obstacles be cylindrical, and arranged in square 
order, the compound medimn is doubly refi'acting, as in the 
usual clectdc, ~heory o f  light, in which the medium is sup- 
posed to ha~ e an inducti~ e capacity variable with the direction 
of displacement., independently 'of any discontinuity in its 
structure. The double refl'action is of" course of the uniaxal 
kind, and the wave-surthce is the sphere and ellipsoid of 
Huygens. 

For displacements parallel to the cylinders the resultant 
inductive capacity (analogous to conductivity in the conduc- 
tion problem) is clearly 1 - -p+vp ;  so that the value of ~ 
tbr the principal extraordinary index is 

~ = 1+ (v--1)p, . . . . .  (81) 
giving l~ewton's law for the relation between index and 
density. 

For the ordinary index we have 
/12= (26), 

in which V--(1 +v) / (1-v) ,  while $4, S s . . .  have the values 
given by (49). If we omit T" &c. we get 

~2 v ' - p  . . . . . .  (82) 
- -  d + p '  

o r  

~2--1 1 1 v--1 
~'~+ 1 p -- v -~ = v--+-l" (83) 

The general conclusion as regards the optical application 
is that~ even if we may neglect dispersion, we must not ex- 
pect such formulm as (79) to be more than approximately 
correct in the case of dense fluid and solid bodies. 

* An irregular isotropie arrangement would, doubttes% give lhe same 
result, 
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