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ABSTRACT5

This paper presents an investigation on the practicability and structural efficiency6

of prestressed CFRP strips with a gradient anchorage in the framework of a bridge7
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strengthening application in Poland. The non-mechanical anchorage system avoids8

the installation of metallic bolts and plates, with the exception of a temporary sup-9

port frame. Two 18.4 m long large-scale prestressed concrete girders were produced10

following the drawings of the existing bridge construction. One girder served as refer-11

ence, the second one was strengthened with two prestressed Carbon Fiber Reinforced12

Polymer (CFRP) strips. In this case, the initial negative cambering was levelled out13

by a layer of dry shotcrete. CFRP strips with a prestrain of 0.58% were applied14

for flexural upgrading. Both girders with a total length of 18.4 m were finally stat-15

ically loaded up to failure in order to assess the strengthening efficiency in flexure16

of the used retrofitting technique. It was shown that tensile failure of the CFRP17

strips was reached, indicating an optimal use of the composite reinforcement. The18

strengthened girder exhibited a ductile behavior up to strip rupture with a distinct19

steel yielding and a subsequent pronounced increase of the load carrying capacity.20

For service load considerations, an enhancement of the cracking load of about 16%21

was noticed. In terms of ultimate load, a significant improvement of about 25% com-22

pared to the reference girder was reached. Although some practical problems need23

optimization, the presented results are very promising and make this strengthening24

system an alternative for future retrofitting applications in bridge engineering.25

Keywords: Prestressed concrete bridge girder, flexural and shear strengthening,26

prestressed CFRP strips, dry shotcrete, static testing27

BACKGROUND28

The application of Carbon Fiber Reinforced Polymer (CFRP) strips in struc-29

tural strengthening is nowadays well accepted (Meier 1995),(Bakis et al. 2002).30
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Their use in the civil engineering domain has drastically increased over the last31

three decades, several available design codes and recommendations (see (fib bul-32

letin14 2001),(ACI440.2R-8 2008),(SIA166 2004),(DAfStb 2012), among others) at-33

test their popularity. Applications with initially unstressed CFRP strips as an exter-34

nally bonded (EBR) or near-surface mounted (NSM) technique in bridge engineering35

can be found (Blaschko and Zehetmaier 2008),(Petrou et al. 2008),(Bae and Belarbi36

2013),(Cerullo et al. 2013),(Kasan et al. 2014). An on-site failure test of a CFRP-37

strengthened railway concrete bridge is for instance presented by (Puurula et al.38

2014). Strengthening with prestressed CFRP laminates, however, have surprisingly39

not known a similar success, despite the undeniable advantages such as reduction40

of crack widths, reduction of deflections as well as increased cracking, yielding, and41

ultimate load (El-Hacha et al. 2001),(Wight et al. 2001),(Pellegrino and Modena42

2009),(Michels et al. 2013). Moreover, the strip prestressing usually involves a much43

more efficient use of the composite’s excellent mechanical properties, mainly the high44

tensile strength. Whereas in case of an initially unstressed strip failure generally oc-45

curs by strip debonding at strain levels below 1.0%, an initial prestrain can shift the46

maximum strains close to tensile failure (Meier and Stöcklin 2005),(Suter and Jungo47

2001),(Kotynia et al. 2011). A key factor in prestressing is the anchorage system.48

Nowadays, most available solutions (commercially available and at laboratory level)49

are so-called ’mechanical’ systems, which utilize mechanical plates and bolts at the50

strips ends to avoid debonding (Berset et al. 2002),(El-Hacha et al. 2003),(Pelle-51

grino and Modena 2009),(Xue et al. 2008). One example of the few applications of52

prestressed CFRP sheets in a bridge retrofitting project is given in (Kim et al. 2008).53
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The gradient anchorage applies a gradual prestress force release with intermediate54

accelerated adhesive curing at both strips ends until no pressure remains in the55

hydraulic system. It is based on the epoxy resin’s ability to develop strength and56

stiffness faster under high temperatures (Czaderski et al. 2012). Early research is57

documented in (Meier et al. 2001), (Kotynia et al. 2011), and (Michels et al. 2013).58

The final step was the flexural upgrading of a road bridge in Szczercowska Wieś59

(Poland, see Figure 1).The bridge was built in the 1960s and is composed of five60

simply supported simple span prestressed concrete (PC) girders and a reinforced61

concrete (RC) deck. The girders were precast and delivered to the construction site,62

the plate was cast on-site. In the framework of the strengthening project in 2014,63

the upper deck was replaced by a thicker plate. The current cross-section of the old64

bridge is given in Figure 2. Each girder was prestressed with three parabolic cables65

and two straight cables in the bottom flange (see Figure 3). The two principal aims66

of this investigation are: 1) verify the practicability of the technique in such a bridge67

strengthening case, and 2) assess the structural efficiency when two prestressed CFRP68

strips with a gradient anchorage are used for flexural upgrading of one girder. For69

this purpose, two girders have been reproduced according to the original drawings70

and subsequently tested under static loading. Whereas one served as reference,71

the second one was strengthened with two prestressed CFRP strips with gradient72

anchorage prior to testing. Additionally a shear reinforcement in compliance with73

the Polish Standard (PN-91/S-10042 1991) was applied in the form of CFRP wraps.74

This paper will present the girder production, the different strengthening steps as75

well as the final static tests and the related results.76
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GIRDER FABRICATION77

This section briefly summarizes key material characteristics and explains the78

different production and prestressing steps.79

Materials and girder production80

Due to the slender geometry of the girders, a self-compacting concrete C35/4581

with a maximum aggregate size dmax of 16 mm was chosen for casting. The upper82

slabs were casted with a regular C30/37 with a maximum aggregate size of 16 mm83

and a w/c ratio of 0.49. Compressive strength fcm, tested on 150·150·150 mm3 cubes,84

and elastic modulus Ecm, tested on 120·120·360 mm3 prisms, are given at 28 days85

and at the testing day in Table 1.86

Yield strength, ultimate tensile strength as well as strain at failure of the rein-87

forcing steel bars with a diameter Ø of 6 and 8 mm are summarized in Table 2. It is88

mentioned that for a structural assessment as realistic as possible, the passive steel89

reinforcement had no ribs.90

Prestressing tendons had a total cross-section Ap of 345 mm2. The average yield91

limit Rp,0.1 at 0.1% strain was about 1660 MPa and the average ultimate strength92

Rm was approximately 1810 MPa according to the testing certificate provided by93

the distributor. Average elastic modulus Enom was 201.3 GPa, and average strain at94

failure Ag was 3.76%.95

A photo of the formwork as well as the the girder casting is given in Figure 4.96

The steel bars in the bridge girders are smooth without any ribs. After casting, the97

second fabrication step comprises the prestressing of three parabolic and two straight98

steel tendons. Each tendon was prestressed to an initial prestressing force Ffp,0 of99
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about 363 kN. Initial negative cambers at midspan of about 33 mm were measured100

for Girder 1 and 2. Calculated compression stress on the bottom fiber was in this101

case 28 MPa, a bit below 50% of the compressive strength. For the weeks following102

the prestressing application, creep behavior was monitored. Figure 5 presents the103

evolution of the negative deflection at the girder midspan. Lastly, a part of the new104

upper concrete deck with a width of 125 cm and a thickness of 21 cm was casted.105

The complete cross-section in shown in Figure 6.106

For flexural strengthening, a commercially available two-component epoxy resin107

was used. The CFRP strips had a width bf of 100 mm and a thickness of tf of 1.2108

mm. According to the distributor, the strips have a nominal elastic modulus Ef of109

165 GPa, later on used for deriving the total prestressing force from the measured110

prestrain. Tensile tests on small strip specimens have been performed according to111

(DIN-EN-ISO-527-5 1997) and revealed a undirectional tensile strength ff,u of 2795112

(+/-115) MPa at an average failure strain of 1.6%. CFRP wraps with an elastic113

modulus Ef above 240 GPa and a strain at failure εf,u of 1.7 % were installed as114

shear reinforcement. These and several other characteristics can be taken from the115

referenced data sheet.116

Surface levelling117

The surface levelling procedure was chosen according to a preceded experimental118

investigation on the bond behavior of CFRP strips with various cementitious sub-119

trates (Michels et al. 2014). Prior to the shotcrete application, the bottom surface120

of the girder was roughened by high-pressure waterjetting, see Figure 7 (top). Sub-121

sequently, dry shotcrete with a maximum aggregate diameter dmax of 8 mm and a122
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guaranteed compressive strength of 60 MPa after 28 days was applied. The appli-123

cation, for which the girder was covered with a plastic plane for protection against124

the strong rebound and dust formation, is presented in Figure 7 (bottom). On the125

day of the shotcrete application, which took place more than a year after the last126

reading on Figure 5, the maximum camber level at midspan was about 60 mm.127

Flexural strengthening128

Each CFRP strip was prestressed to a strain level εfp,0 of 0.58%, which corre-129

sponds to a prestressing force Ffp,0 of about 115 kN, calculated with the previously130

indicated elastic modulus of 165 GPa. Since two strips are applied, additional 230131

kN are introduced in the girder cross-section. The gradient anchorage at the strip132

ends was realized by following the identical program as described in (Michels et al.133

2013), i.e. three consecutive force releases ∆F of 50, 35, and 35 kN over 300, 200 and134

200 mm bond lengths, respectively. In terms of prestressing technique, a prestressing135

against the structure (El-Hacha et al. 2001) was applied. Due to the slender geome-136

try and the inner prestressing steel tendons, no drilling to the girder was allowed and137

thus a temporary steel frame, responsible for the force transfer to the girder during138

the prestressing, was mounted by adhesive bonding. Despite an initial debonding139

of the first CFRP strip during the installation (which involved the necessity of re-140

peating the procedure), it was eventually possible to anchor both laminates at the141

desired prestrain level. During the releasing of the second CFRP strip, a large crack142

appeared in the anchorage zone without however inducing a debonding failure. The143

strain level in the CFRP strip remained constant. The crack was afterwards injected144

with a resin and had, as shown later in the paper, no effect on the load carrying145
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capacity of the girder. An adapted procedure was followed for the final bridge ap-146

plication. A photo of the girder bottom side with two strips is shown in Figure147

8.148

Shear strengthening149

The fabric had an initial width bf of 30 cm and was folded twice to obtain a final150

width of about 7.5 cm, the final wrap thickness tf is approximately 1 mm. They151

were subsequently bonded to the concrete by wet-lay-up procedure around the total152

cross section to include the compression zone (Figure 8). Prior to the application,153

concrete filling elements were installed to dispose of a regular cross-section geometry154

at the respective locations.155

CROSS SECTION ANALYSIS (CSA)156

Flexural resistance was evaluated by means of a cross-section analysis (CSA) (see157

Figure 9). The complex girder geometry due to the curved inner prestress cables158

and the related variable cable position dp along the horizontal girder axis implicates159

that the force equilibrium and strain compatibility have to be established on several160

locations along the girder in order to derive the curvature χ and finally by double inte-161

gration the deflection δ at midspan (Harmanci 2013). Strength values are considered162

as indicated in the ’Materials’ section. Steel reinforcements (passive and prestressed)163

were considered with bi-linear constitutive laws, including a stiffening behavior up to164

failure after reaching the yield stress (see Table 2). CFRP strips were considered as165

perfectly linear elastic up to failure. Finally, concrete was included as linear elastic in166

tension until reaching tensile strength fct, in compression a second-degree parabola167

was implemented (Hognestad 1951),(Park and Paulay 1975). For both the prestress168
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steel cables and the CFRP reinforcement, prestressing was included as a prestrain169

at the moment of the first loading. In Figure 9, the example of the strain state after170

prestressing and anchoring the CFRP strip is shown. The initial strip prestrain εfp,0171

increases due to the ongoing static loading by ∆εf , resulting in a total strip strain172

εf . The total concrete compressive strain corresponds to εc, the total cable stress to173

εp=εp,0+∆εp.174

EXPERIMENTAL INVESTIGATION - TEST SETUP175

The test setup is presented in Figures 10 and 11. The girders were both simply176

supported with a total span of 18 m. In the central third, 4 actuators at a distance177

of 1.2 m applied point loads (strip loads in transverse direction) under displacement178

control at a velocity of 1 mm/min for the preloading stage and subsequently 3.5179

mm/min for the final failure test. The loading configuration was chosen according180

to the Polish code for bridge design (PN-85/S-10030 1986). Several LVDTs and181

strain gauges were installed in order to measure local displacements and strains,182

locations are given in Figure 11. Concrete compressive strain on top of the girder183

was measured at five locations along the girder, each time with two strain gauges over184

the width (SG2.1 and SG2.2 to SG6.1 and 6.2, respectively). For Girder 2, tensile185

strain of both CFRP strips were recorded at the same location as the corresponding186

compressive strains on top, in this case one gauge per strip (CFRP2.1,CFRP2.2187

to CFRP6.1,CFRP6.2). During the prestressing, two additional gauges per strip188

(CFRP10.1 and 10.2 and CFRP20.1 and 20.2, respectively) were mounted in order189

to assess the prestrain εfp,0 (see Figure 11). Finally, vertical deflections were recorded190

for both girders at midspan.191
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RESULTS AND DISCUSSION192

Force-deflection193

The key results of the tests are summarized in Table 3. The force-midspan194

deflection curves (only one loading force is plotted, see Figure 11) for both girders195

are given in Figure 12, and crack pattern after test end for both Girders 1 and 2 are196

presented in Figure 13. Both girders exhibited shear cracks after a certain load level,197

but eventually failed in flexure. It can be observed in Figure 12 that prestressing the198

CFRP strips implicates an increase in the cracking load Fcr from about 95 kN for the199

reference girder to 110 kN for the strengthened structure, corresponding to a relative200

enhancement of 16%. With a continuously increasing load, the overall structural201

behavior of the strengthened Girder 2 is as expected clearly stiffer than the reference202

test. For instance, an increase in bending stiffness from about 746 kN/m for the203

reference girder to 983 kN/m for the strengthened member can be noticed. Since no204

strain gauges were used to assess the steel cable strain, the yielding load Fy cannot205

be determined exactly. Nevertheless, it becomes obvious from the loading curve that206

the strengthened girder exhibits a higher yielding load (Figure 12). The reference207

test was conducted up to a deflection δu of 260 mm and stopped because of stroke208

limitation. The increase in load towards the end was extremely small, leading to209

the conjecture that the reached force F of 193 kN corresponds approximately to the210

reference ultimate load carrying capacity. For Girder 2, an ultimate load carrying211

capacity of 240 kN, corresponding to a relative increase of 24% compared to the212

reference girder, was measured. At that stage, the ultimate tensile capacity of the213

CFRP strips was reached.214
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Strain analysis and crack distribution215

At the moment of the test end of Girder 1, the ultimate concrete strain in com-216

pression εc at midspan was 0.23 %. With a sufficient stroke, concrete crushing217

could be most likely reached. For the strengthened Girder 2, the ultimate load car-218

rying capacity of 240 kN by tensile failure of the CFRP strips was reached at a219

concrete compressive strain level at midspan of about 0.15%. For both girders, all220

measured concrete strains plotted against the load F is shown in Figure 14. The221

previously explained stiffer structural behavior of the strengthened girder is also vis-222

ible in the strain behavior. It is important to notice that, for both the reference223

and the strengthened girders, the strain gauges used for capturing the compressive224

strains on top were mounted after the cable and CFRP strip prestressing. This im-225

plicates that the measured and presented values for εc in Figure 14 also include a226

negative concrete strain in tension on the deck side prior to the static loading, and227

are hence not exactly to be compared with the calculations. The different CFRP228

tensile strains εf evolution in function of the load F are presented in Figure 15a.229

As mentioned, failure in Girder 2 was eventually obtained by tensile failure in the230

CFRP strip, measured with a maximal CFRP strain in tension εf,u of 1.58% shortly231

before failure. A photo of the CFRP strips after test end with the carbon filaments232

is given in Figure 15b. The first flexural crack appeared in the central part in the233

region of the maximum moments, hence strain gauges on the CFRP strips at the234

locations x=7800, 8990, and 9000 mm indicate a first stiffness loss at the previously235

mentioned cracking load Fcr of 110 kN (Figure 15). Afterwards, flexural and shear236

cracks gradually move towards the supports. Strain gauges CFRP10.1 and 10.2 for237
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instance start deviating from the linear elastic region at a load slightly higher than238

150 kN. Eventually, cracks reach the area located 3 m from the supports at a force239

level higher than 210 kN (Figure 15 a)). CFRP tensile strain evolution distributed240

over half the girder length are given in Figure 16. From the initial prestrain εfp,0, it241

was possible to obtain a total strain increase in tension ∆εf of 1.0% at midspan.242

Failure mode243

The most important information to be retained from the tests is the tensile failure244

of the CFRP strips. As mentioned in the introduction, the most inconvenient aspect245

of initially unstressed and externally bonded composite reinforcement in concrete246

retrofitting is mostly the fact that the materials’ excellent mechanical performance247

in tension is rather badly exploited to due a premature strip debonding. Also for248

prestressed strips, debonding is the most common failure mode. In this case, it was249

possible to fully use the tensile capacity and hence to obtain the highest strength-250

ening level possible. The static system with a large span of 18 m implicated that251

both anchorage zones were kept apart by around 15 m, possibly having the effect252

of avoiding a premature debonding as for instance observed with short span beams253

in (Aram et al. 2008). Additionally, one strong contribution to the overall load254

carrying capacity might have been the presence of the CFRP wraps for the shear255

strengthening. Since they were installed after having applied the flexural strength-256

ening, they completely are wrapped around the strip and hence represent a barrier257

to a premature debonding. This observation is a strong argument in favor of such a258

shear reinforcement, even when not necessary from a design point of view for shear,259

since it might strongly improve the overall structural behavior in bending. A further260
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reason for the CFRP tensile failure was also the fact that anchorage zone remained261

uncracked at the bottom side.262

Structural ductility263

In Section 5, a strengthening efficiency of 24% when comparing the ultimate load264

of the strengthened girder (240 kN) to the maximal force of the reference beam (193265

kN) was presented. From a structural design point of view, it is also necessary to266

consider a few ductility aspects for Girder 2. Three ductility index calculations in267

terms of curvature, deflection at midspan, and energy dissipation are discussed and268

evaluated for the retrofitted structure.269

Since at midspan both the upper concrete strain in compression as well as the270

CFRP strain in tension are available (measurements), it is possible to determine271

the curvature at several loading steps. By applying the rule of proportion (sections272

remain plane), a curvature at steel yielding χy of 3.131·10−6 (1/mm) can be obtained273

for the lowest cable positions at midspan. At failure, the corresponding curvature274

χu is equal to 9.178·10−6 (1/mm). The curvature ductility index µχ is equivalent to275

the ratio between both curvature at failure and at yielding (Eq. 1):276

µχ =
χu
χy

(1)

The respective subscripts y and u represent the characteristic values at yielding277

and ultimate state, respectively. In this case, the index takes the value of 2.93 and278

thus higher than the minimum value of 2.6 required by the (fib bulletin14 2001)279

for concrete types higher than C35/45. At failure, an additional steel strain in the280

cables ∆εp of 0.93% can be calculated. This value is for instance higher than the281
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requested 0.5% steel strain at failure for conventional reinforcement in a RC element282

strengthened with an unstressed EBR CFRP strip requested by the (ACI440.2R-8283

2008). To summarize, retrofitted Girder 2 satisfies common design requirements. It284

is noteworthy to mention that the observed additional tensile strain ∆εf of 1.0% in285

the CFRP strips at failure is far higher than the ultimately tolerated value of 0.8%286

for instance by the (SIA166 2004) given for initially unstressed strips.287

The classic deformability index µδ relates the deflection at failure to the one at288

steel yielding (Eq. 2):289

µδ =
δu
δy

(2)

For Girder 2, the deformability index takes the value 2.1 (see Table 3). Even290

though the value is smaller than the one comparing the respective curvatures, a291

clear increase between the midspan displacement at yielding and the one at ultimate292

load can be noticed.293

Numerical parameter study294

Figure 17 shows the force-deflection curves for the static loading test with the295

retrofitted girder compared to numerical simulations with the previously described296

CSA. Several prestrain levels εfp,0 ranging from 0.1, 0.2, 0.3, 0.4, 0.5, and eventu-297

ally 0.58% were calculated. The simulations for Figure 17 were all carried out until298

tensile failure of the CFRP strip, assuming for all prestrain levels the same failure299

type as observed in the experimental test with an initial prestrain of 0.58%. Addi-300

tionally, a limitation for the ultimate load carrying capacity defined by a maximum301

additional strip strain in tension ∆εfp of 0.8%, as for instance given by the (SIA166302
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2004), is indicated. It is important to notice that the 0.8% represents an additional303

strain value to the initial prestrain value εfp,0. In general, a good agreement be-304

tween the experimental and numerical curves for an identical strip prestrain level305

of 0.58% corresponding to the static loading test can be observed. The effect of a306

higher CFRP prestrain level on the cracking load is not extremely pronounced, the307

calculated values range between both experimental values for the reference and the308

retrofitted girder presented earlier in the manuscript (approximately 90 to 110 kN).309

Regarding the yielding load, however, an increase with a higher initial prestress level310

is obvious. The corresponding deflection does not significantly change. Since in the311

first case, tensile failure of the strip is assumed for all calculated scenarios, ultimate312

load is identical. A gain in structural stiffness after cracking goes together with a313

reduced ductility in terms of deflection at failure when a higher prestrain level is314

applied. In this case, the deformability index decreases with a growing CFRP pre-315

strain. These observations are in agreement with classic prestressed concrete theory316

and technique. When simulating with the above mentioned 0.8%-maximum strip317

strain as debonding criterion, ultimate load carrying capacity is reached at the same318

deflection level regardless of the initial strip prestrain. However, a higher value of319

the latter implicates a higher ultimate bearing capacity. Steel yielding is reached in320

all the simulated cases. Eventually, contrary to the CFRP tensile failure criterion, it321

is interesting to notice that the previsously discussed deformability index µδ is not322

affected when the 0.8% criterion is used.323

CONCLUSIONS324

This paper presents an application of a strengthening method together with an325
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experimental demonstration of its structural efficiency. Several conclusions can be326

drawn from the results:327

• For practical applications, dry shotcrete seems to be a feasible solution for328

levelling an initially cambered beam or girder in case an additional (C)FRP329

strip reinforcement has to be installed. The application requires qualified330

operators, but exhibits good results in terms of bond to the concrete substrate.331

Even though certain preparation works (for instance a lateral formwork prior332

to the shotcrete application) are necessary, the overall application time is fast.333

• The feasibility of the application of the prestressed CFRP strips with gradient334

anchorage was proven in the present case. However, additional investigation335

about the applicability on narrow girder geometries and such dense reinforce-336

ment configuration in the bottom flange is necessary.337

• For the present case, flexural strengthening by means of prestressed CFRP338

strips resulted in a clear enhancement of the cracking, yielding, and ultimate339

load compared to the unstrengthened girder of 16, 19, and 24%, respectively.340

Additionally, ductility of the structure up to failure was guaranteed.341

• The ultimate load of the retrofitted structure was eventually reached by tensile342

failure of the CFRP strip. The fact of having avoided a CFRP strip debond-343

ing indicates a sufficient bond of the total CFRP/epoxy/shotcrete/concrete344

system good material exploitation of the strips in this case.345

• The listed positive aspects of this strengthening and subsequent static testing346

activities lead to the conclusion that the suggested retrofitting technique by347

prestressed composite laminates might be a useful and efficient method to348
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strengthen deficient structural concrete elements in future.349

• The key factor is firstly the strengthening efficiency in terms of load carrying350

capacity. Afterwards, it has to be demonstrated that the retrofitted structure351

exhibits sufficient ductility, such as for instance required by the (fib bulletin14352

2001). The presented verification regarding the curvature ratio of the cross-353

section at ultimate and steel yielding stage seems to be an adequate method,354

since it guarantees a distinct steel yielding prior to reaching the ultimate load355

carrying capacity. This verification is recommended by the authors.356
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TABLE 1: Concrete compressive strength on cube fcm and elastic modulus Ecm at
28 days and at testing day, n.a.=not available

Time fcm Ecm fcm Ecm
[MPa] [GPa] [MPa] [GPa]

Girder 1 Plate 1
28 days 61.4 34.9 47.5 33.3
test day 64.6 34.7 50.0 32.1

Girder 2 Plate 2
28 days 62.1 33.5 51.1 34.0
test day 66.9 n.a. 53.5 n.a.

24 Julien Michels et al., Nov. 2014



TABLE 2: Yield strength, tensile strength and strain at failure of the passive steel
bar reinforcement without ribs

Ø Ri Rm εs,u
[mm] [MPa] [MPa] [%]

6 387 485 15.3
8 462 545 10.6
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TABLE 3: Key results of the static girder tests

Parameter Girder 1 Girder 2

δcr [mm] 22 23
Fcr [kN] 95 110
δy [mm] 100 100
Fy [kN] 160 190
δu [mm] 260 208
Fu [kN] 193 240
εc,max [%] 0.23 0.15
εf,max [%] - 1.58

Failure mode Towards concrete crushing CFRP tensile failure
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Prestressed concrete girders
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Abutment

Prestressing cables position

FIG. 1: Bottom view of the road bridge in Poland before retrofitting (image by Julien
Michels)
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FIG. 2: Bridge cross section before retrofitting (dimensions in [cm])
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FIG. 3: Extract of flexural (passive and prestressed) and shear reinforcement over a
part of the girder length (without the upper slab)
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FIG. 4: Casting and prestressing of the prestressed concrete girder(s) (images by
Julien Michels)
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FIG. 5: Vertical displacement at midspan due to prestressing and concrete creep
over time
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FIG. 6: Cross-section of the casted girder (dimensions in [cm])
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application
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FIG. 7: Roughened bottom surface after waterjetting at high pressure and dry
shotcrete application (images by Julien Michels)
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FIG. 8: Flexural and shear reinforcement for the large scale girder (images by Julien
Michels)
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FIG. 10: Test setup for the large-scale static tests
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FIG. 11: Measurements configuration (dimensions in [cm])
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Girder 2
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FIG. 13: Final crack pattern after test end (support to midspan)
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