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Abstract. Dempster’s rule of combination is commonly used in the field of infor-
mation fusion when dealing with belief functions. However, it generally requires a 
high computational cost. To reduce it, a basic belief assignment (bba) 
approxima-tion is needed. In this paper we present a new bba approximation 
approach called hierarchical proportional redistribution (HPR) allowing to 
approximate a bba at any given level of non-specificity. Two examples are given 
to show how our new HPR works.

1 Introduction

Dempster-Shafer Theory (DST), also called Theory of Evidence [10], has been
widely used in many applications, e.g., information fusion, pattern recognition and
decision making [11]. Although it is appealing in uncertainty modeling, while ap-
pearing more controversial for consistent reasoning, the high computational cost
remains problematic which is often raised against its use [11]. To resolve such a
problem, three major types of approaches have been proposed.

The first is to propose efficient procedures for performing exact computations
[1, 8]. The second is composed of Monte-Carlo techniques [9]. The third is to
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approximate a belief function to a simpler one. The papers of Voorbraak [13],
Dubois and Prade [5] are seminal works of this type. Other representative works
include k− l − x [3] and k-additive belief function [2, 6]. Denœux uses hierarchical
clustering to implement the inner and outer approximation [3].
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In this paper, we propose a new method called hierarchical proportional redistri-
bution (HPR) to approximate any general basic belief assignment (bba) at a given
level of non-specificity [4], up to the ultimate level 1 corresponding to a Bayesian
bba [10]. The level of non-specificity can be controlled by the users through the
adjustment of the maximum cardinality of remaining focal elements. For the ap-
proximated bba obtained by HPR, the maximum cardinality of the focal elements
is k. Thus HPR can be considered as a generalized k-additive belief approximation.
Some examples are given to show how our proposed HPR method works, and to
compare it with other approximations.

2 Basics of Dempster-Shafer Theory (DST)

In DST [10], the frame of discernment (FoD) is a set Θ of mutual exhaustive and
exclusive elements. m(.) : 2Θ → [0,1] is a basic belief assignment (bba), also called
mass function, if it satisfies

∑A⊆Θ m(A) = 1, m( /0) = 0. (1)

Belief function (Bel) and plausibility function (Pl) are defined as

Bel(A) = ∑B⊆A m(B) and Pl(A) = ∑A∩B �= /0 m(B). (2)

Suppose that m1,m2, ...,mn are n bba’s, then Dempster’s rule of combination is de-
fined by

m(A) =

⎧
⎪⎨

⎪⎩

0, A = /0
∑

∩Ai=A
∏

1≤i≤n
mi(Ai)

∑
∩Ai �= /0

∏
1≤i≤n

mi(Ai)
, A �= /0

(3)

This rule is used in DST to combine pieces of evidence expressed by bba’s. As re-
ferred above, Dempster’s combination has high computational cost and three types
of approaches have been proposed to reduce it. We prefer belief approximation ap-
proaches [2, 3, 6, 12] since they both reduce the computational cost of the combina-
tion and allow to deal with smaller-size focal elements, which is more intuitive for
human to catch the meaning and interpret fusion results [2].

3 Two bba Approximation Approaches

1) k− l −x approximation: This was proposed by Tessem [12]. The simplified bba
obtained by k− l−x approach satisfies: a) keep no less than k focal elements; b) keep
no more than l focal elements; c) the mass assignment to be deleted is no greater
than x. In k− l − x, the focal elements of a original bba are sorted by their masses.
Such an algorithm chooses the first p focal elements such that k ≤ p ≤ l and such
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that the sum of the masses of these first p focal elements is no less than 1− x. The
deleted masses are redistributed to the other focal elements through a normalization.

2) k-additive belief function approximation: Given m(.) : 2Θ → [0,1], one kind of
k-additive belief function [2, 6] induced by the mass m(.) is defined by

⎧
⎨

⎩

mk(B) = m(B)+ ∑
A⊃B,A⊆Θ ,|A|>k

m(A)·|B|
N (|A|,k) , ∀|B| ≤ k

mk(B) = 0, ∀|B|> k
(4)

where B ⊆Θ and

N (|A| ,k) =
k

∑
j=1

( |A|
j

)

· j =
k

∑
j=1

|A|!
( j−1)!(|A|− j)!

(5)

is the average cardinality of the subsets of A of size at most k. For k-additive belief
approximation, the maximum cardinality of available focal elements is no greater
than k. Other bba approximation methods can be found in related references.

4 Hierarchical Proportional Redistribution Approximation

In this paper we propose a new bba approximation approach called hierarchical
proportional redistribution (HPR), which provides a new way to reduce step-by-
step the mass committed to uncertainties. Ultimately an approximate measure of
subjective probability can be obtained if needed, i.e. a so-called Bayesian bba in
[10]. Our proposed procedure can be stopped at any step in the process and thus it
allows to reduce the number of focal elements of a given bba in a simple manner to
diminish the size of the core [10] of a bba. Thus we can reduce the complexity (if
needed) when applying also some complex rules of combinations. By using HPR,
we can obtain approximate bba’s at any different non-specificity level that we want.
Let us first introduce two new notations for convenience and conciseness:

1. Any element of cardinality 1 ≤ k ≤ n of the power set 2Θ will be denoted X(k)
by convention. For example, if Θ = {A,B,C}, then X(2) can denote the following
partial uncertainties A∪B, A∪C or B∪C, and X(3) denotes the total uncertainty
A∪B∪C.

2. The proportional redistribution factor (ratio) of width s involving elements X and
Y of the powerset is defined by (for X �= /0 and Y �= /0)

Rs(Y,X)� m(Y )+ ε · |X |
∑ Y⊂X
|X |−|Y |=s

m(Y )+ ε · |X | (6)

where ε is a small positive number introduced here to deal with particular cases
where ∑ Y⊂X

|X |−|Y |=s
m(Y ) = 0.

By convention, we will denote R(Y,X) � R1(Y,X) when we use the proportional
redistribution factors of width s = 1, as we use in this paper for this HPR method.
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The HPR is a step-by-step (recursive) proportional redistribution of the mass m(X(k))
of a given uncertainty X(k) (partial or total) of cardinality 2 ≤ k ≤ n to all the least
specific elements of cardinality k − 1, i.e., to all possible X(k − 1), until k = 2 is
reached. The proportional redistribution is done from the masses of belief com-
mitted to X(k− 1) as done classically in DSmP transformation. The “hierarchical”
masses mh(.) are recursively (backward) computed as follows. Here mh(k) represents
the approximate bba obtained at the step n−k of HPR, i.e., it has the maximum focal
element cardinality of k.

mh(n−1)(X(n−1)) = m(X(n−1))+∑ X(n)⊃X(n−1),
X(n),X(n−1)∈2Θ

[m(X(n)) ·R(X(n−1),X(n))];

mh(n−1)(A) = m(A),∀|A|< n−1
(7)

mh(n−1)(·) is the bba obtained at the first step of HPR (n− (n−1) = 1), the maximum
focal element cardinality of mh(n−1) is n−1.

mh(n−2)(X(n−2)) = m(X(n−2))
+∑ X(n−1)⊃X(n−2)

X(n−2),X(n−1)∈2Θ
[mh(n−1)(X(n−1)) ·R(X(n−2),X(n−1))]

mh(n−2)(A) = mh(n−1)(A),∀|A|< n−2

(8)

mh(n−2)(·) is the bba obtained at the second step of HPR (n− (n−2) = 2), the maxi-
mum focal element cardinality of mh(n−2) is n−2.

This hierarchical proportional redistribution process can be applied similarly (if
one wants) to compute mh(n−3)(.), mh(n−4)(.), ..., mh(2)(·), mh(1)(·) with

mh(2)(X(2)) = m(X(2))+∑ X(3)⊃X(2)
X(3),X(2)∈2Θ

[mh(3)(X(3)) ·R(X(2),X(3))]

mh(2)(A) = mh(3)(A),∀|A|< n−2

(9)

mh(2)(·) is the bba obtained at the first step of HPR (n − 2), the maximum focal
element cardinality of mh(2) is 2.

Mathematically, for any X(1) ∈ Θ , i.e. any θi ∈Θ a Bayesian belief function can
be obtained by HPR method in deriving all possible steps of proportional redistri-
butions of partial ignorances in order to get

mh(1)(X(1)) = m(X(1))+ ∑
X(2)⊃X(1)

X(1),X(2)∈2Θ

[mh(2)(X(2)) ·R(X(1),X(2))] (10)

In fact, mh(1)(·) is a probability transformation, called here the Hierarchical DSmP
(HDSmP). Since X(n) is unique and corresponds only to the full ignorance θ1 ∪θ2 ∪
. . .∪θn, the expression of mh(X(n−1)) in Eq.(9) just simplifies as

mh(n−1)(X(n− 1)) = mh(X(n− 1))+m(X(n)) ·R(X(n−1),X(n)) (11)

For the full proportional redistribution of the masses of uncertainties to the elements
least specific involved in these uncertainties, no mass is lost during the step-by-step
hierarchical process and thus at any step of HPR, the sum of masses is kept to one.

Advances and Applications of DSmT for Information Fusion. Collected Works. Volume 4

172



5 Examples

5.1 Example 1

Let’s consider the following bba over Θ = {θ1,θ2,θ3}:

m(θ1) = 0.10, m(θ2) = 0.17, m(θ3) = 0.03, m(θ1 ∪θ2) = 0.15,

m(θ1 ∪θ3) = 0.20, m(θ2 ∪θ3) = 0.05, m(θ1 ∪θ2 ∪θ3) = 0.30.

We apply the HPR with ε = 0 in this example because there is no mass of belief
equal to zero. It can be verified that the result obtained with small positive ε param-
eter remains (as expected) numerically very close to what is obtained with ε = 0.

• Step 1: The first step of HPR consists in redistributing back m(θ1 ∪θ2 ∪θ3) = 0.30
committed to the full ignorance to the elements θ1 ∪ θ2, θ1 ∪ θ3 and θ2 ∪ θ3 only,
because these elements are the only elements of cardinality 2 that are included in
θ1 ∪ θ2 ∪ θ3. Applying the Eq. (8) with n = 3, one gets when X(2) = θ1 ∪ θ2, θ1 ∪ θ3
and θ1 ∪θ2 the following masses.

mh(2)(θ1 ∪θ2) = m(θ1 ∪θ2)+m(X(3)) ·R(θ1 ∪θ2,X(3)) = 0.15+(0.30 ·0.375) = 0.2625

because R(θ1 ∪θ2,X(3)) = 0.15
0.15+0.20+0.05 = 0.375.

Similarly, one gets

mh(2)(θ1 ∪θ3) = m(θ1 ∪θ3)+m(X(3)) ·R(θ1 ∪θ3,X(3)) = 0.20+(0.30 ·0.5) = 0.35

because R(θ1 ∪θ3,X(3)) = 0.20
0.15+0.20+0.05 = 0.5, and also

mh(2)(θ2 ∪θ3) = m(θ2 ∪θ3)+m(X(3)) ·R(θ2 ∪θ3,X(3)) = 0.05+(0.30 ·0.125) = 0.0875

because R(θ2 ∪θ3,X(3)) = 0.05
0.15+0.20+0.05 = 0.125.

• Step 2 Now, we go to the next step of HPR principle and one needs to redistribute
the masses of partial ignorances X(2) corresponding to θ1 ∪ θ2, θ1 ∪ θ3 and θ2 ∪ θ3
back to the singleton elements X(1) corresponding to θ1, θ2 and θ3. We use Eq. (10)
for doing this as follows:

mh(1)(θ1) = m(θ1)+mh(θ1 ∪θ2) ·R(θ1,θ1 ∪θ2) +mh(θ1 ∪θ3) ·R(θ1,θ1 ∪θ3)

≈ 0.10+(0.2625 ·0.3703)+(0.35 ·0.7692) = 0.10+0.0972+0.2692 = 0.4664

because R(θ1,θ1 ∪θ2) =
0.10

0.10+0.17 ≈ 0.3703 and R(θ1,θ1 ∪θ3) =
0.10

0.10+0.03 ≈ 0.7692
Similarly, one gets

mh(1)(θ2) = m(θ2)+mh(θ1 ∪θ2) ·R(θ2,θ1 ∪θ2)+mh(θ2 ∪θ3) ·R(θ2,θ2 ∪θ3)

≈ 0.10+(0.2625 ·0.6297)+(0.0875 ·0.85) = 0.17+0.1653+0.0744 = 0.4097

because R(θ2,θ1 ∪ θ2) =
0.17

0.10+0.17 ≈ 0.6297 and R(θ2,θ2 ∪ θ3) =
0.17

0.17+0.03 = 0.85. and
also

mh(1)(θ3) = m(θ3)+mh(θ1 ∪θ3) ·R(θ3,θ1 ∪θ3)+mh(θ2 ∪θ3) ·R(θ3,θ2 ∪θ3)

≈ 0.03+(0.35 ·0.2307)+(0.0875 ·0.15) = 0.03+0.0808+0.0131 = 0.1239
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because R(θ3,θ1 ∪θ3) =
0.03

0.10+0.03 ≈ 0.2307 and R(θ3,θ2 ∪θ3) =
0.03

0.17+0.03 = 0.15
Hence, the result of final step of HPR is:

mh(1)(θ1) = 0.4664, mh(1)(θ2) = 0.4097, mh(1)(θ3) = 0.1239.

We can easily verify that mh(1)(θ1)+mh(1)(θ2)+mh(1)(θ3) = 1.
To compare HPR with the approach of k− l −x, we set the parameters of k− l −x

to obtain bba’s with equal focal element number with HPR at each step. In Example
1, for HPR at first step, it can obtain a bba with 6 focal elements. Thus we set
k = l = 6,x = 0.4 for k− l−x to obtain a bba with 6 focal elements. Similarly, for HPR
at second step, it can obtain a bba with 3 focal elements. Thus we set k = l = 3,x = 0.4
for k− l −x. Based on HPR and k− l −x, the results are shown in Table 1.

Table 1 Experimental results of Example 1.

Focal elements
mh(k)(·) - approximate bba m(·) obtained by k− l −x
k = 3 k = 2 k = 1 k = l = 6 k = l = 3

θ1 0.1000 0.1000 0.4664 0.1031 0.0000
θ2 0.1700 0.1700 0.4097 0.1753 0.2573
θ3 0.0300 0.0300 0.1239 0.0000 0.0000
θ1∪θ2 0.1500 0.2625 0.0000 0.1546 0.0000
θ1∪θ3 0.2000 0.3500 0.0000 0.2062 0.2985
θ2∪θ3 0.0500 0.0875 0.0000 0.0515 0.0000
θ1∪θ2 ∪θ3 0.3000 0.0000 0.0000 0.3093 0.4478

5.2 Example 2

Let’s consider Θ = {θ1,θ2,θ3}, and the bba m(θ3) = 0.7 and m(θ1 ∪ θ2 ∪ θ3) = 0.30.
Here, the masses of all the focal elements with cardinality size 2 equal to zero.
For HPR, when ε > 0, m(θ1 ∪ θ2 ∪ θ3) will be divided equally and redistributed to
{θ1 ∪ θ2}, {θ1 ∪ θ3} and {θ2 ∪ θ3}. Because the ratios are (taking for example ε =
0.001)

R(θ1 ∪θ2,X(3)) = R(θ1 ∪θ3,X(3)) = R(θ2 ∪θ3,X(3)) =
0.00+0.001 ·3

(0.00+0.001 ·3) ·3 = 0.3333

In this case, HPR cannot work directly when ε = 0. This shows the necessity for
the use of ε > 0. The bba’s obtained from HPRε=0.001 and k − l − x are listed in
Table 2.

From the results of Examples 1 & 2, we can see that based on k− l − x, the users
can control the number of focal elements but cannot control the maximum cardinal-
ity of focal elements. Although based on k− l −x, the number of focal elements can
be reduced, the focal elements with big cardinality might also be kept. This is not
good for further reducing computational cost. But with the proposed HPR method,
users can easily control both the non-specificity of approximated bba’s and the focal
element’s size.
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Table 2 Experimental results of Example 2 (ε = 0.001)

Focal elements
mh(k)(·) - approximate bba m(·) obtained by k− l −x
k = 3 k = 2 k = 1 k = l = 6 k = l = 3

θ1 0.0000 0.0000 0.0503 0.0000 0.0000
θ2 0.0000 0.0000 0.0503 0.0000 0.0000
θ3 0.7000 0.7000 0.8994 0.7000 0.7000
θ1∪θ2 0.0000 0.1000 0.0000 0.0000 0.0000
θ1∪θ3 0.0000 0.1000 0.0000 0.0000 0.0000
θ2∪θ3 0.0000 0.1000 0.0000 0.0000 0.0000
θ1∪θ2 ∪θ3 0.3000 0.0000 0.0000 0.3000 0.3000

5.3 Example 3

In this work, an approximation method 1 (giving m1(.)) is considered better than a
method 2 (giving m2(.)) if both conditions are fulfilled: 1) if the distance between
m1(.) and original bba m(.) is smaller than the distance between m2(.) and origi-
nal bba m(.), i.e. d(m1,m)< d(m2,m); 2) if the approximate non-specificity value
U(m1) is closer (and lower) to the true non-specificity value U(m) than U(m2). We
have used Jousselme’s distance [7] which has been proved recently to be a strict
distance metric because it is commonly used in applications. The Non-specificity
[4] is given by U(m) = ∑A⊆Θ m(A) log2 |A|. In this example, we make a compari-
son between HPR (method 1) and k-additive approach (method 2). We have taken
Θ = {θ1,θ2,θ3,θ4,θ5} and generated randomly 30 bba’s using the algorithm given in
[7]. We compute and plot d(m1,m), d(m2,m), U(m), U(m1) and U(m2) for several
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Fig. 1 Results for the Example 3. Comparison of k-additive belief function approximation
with HPR approximation method. (FS means Focal element Size)

levels of approximation. The results are shown in Fig. 1 and indicate clearly the
superiority of HPR over the k-additive approach.
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6 Conclusions

In this paper, a novel bba approximation called HPR has been proposed as an
interesting alternative approach to two classical ones. With this HPR, the non-
specificity degree can be easily controlled by the users. Our example show its be-
havior and advantage in comparisons with other well-known bba approximation
approaches. HPR has a low computational cost compared with k-additive approach,
which will be discussed in a more detailed paper in future. In further works, we will
also compare our proposed HPR with more bba approximation approaches avail-
able in the literature. In this paper, we have used only the distance of evidence
and the non-specificity criteria, which in fact are not enough, or comprehensive
to evaluate efficiently bba approximations. So in future, we will try to propose
more efficient evaluation criteria to evaluate and design better bba approximations
(if possible).
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