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Tae fundamental lemma of the caleulus of variations states that, if

f(@) be a function which is continuous in the interval (z,, z,), and be such
Ty

that E 7(z) f(@)dz vanishes for all functions 5(z) which satisfy certain

prescribed conditions, then f(z) must have the value zero throughout the
interval (z,, z,). This lemma is required for the establishment of Euler’s
equation as the condition that the first variation of an integral

£31 d dﬁ
L F(a:, Y, d—Z’ ?ix%’ ) dx

should vanish.

In the form in which this lemma was first established by Du-Bois-
Reymond, the function 5(z) is prescribed to belong to the class of all those
functions which vanish at z, and z, and which have a continuous de-
rivative in the interval (z,, z,). The same writer further shewed that the
theorem is still valid in case the function #(z) is restricted to belong to
the class of either (1) all functions which vanish at zy #; and which have
continuous derivatives of the first p orders in the interval, or (2) all
functions which have continuous derivatives of all orders. It has further
been shewn by H. A. Schwarz that the theorem holds in case the functions
n(z) are restricted to the class of functions that are regular in the interval,
t.e., such that in the neighbourhood of any point a in the interval they
are representable by a power-series in powers of z—a. It is clear that
the more restricted the class of functions to which 5(z) is assumed to
belong, that may be found sufficient for the establishment of the theorem,
the greater is the degree of generality of that theorem. Moreover, if the
function f(z) need not be assumed to be continuous in the whole interval
(zo, z,) the generality of the theorem will be still further increased. In
the present communication it is shewn to be sufficient to assume that the
function 5 (z) is restricted to be any finite polynomial which, together with
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its first p derivatives, vanishes at the ends of the intervals, p being any fixed
integer (including zero). Moreover, it is shewn that if no assumption be
made as to f(z), except that is summable in the interval, in the sense that,
whether it be limited in the interval or not, it has a Lebesgue integral,
the theorem still holds in the sense that f(z) must be zero at every point
of the interval, with the possible exception of points belonging to an
exceptional set with the measure zero. Moreover, f(z) is zero at every
point at which it is continuous. When the theorem thus generalized is
applied for the purposes of the calculus of variations it is seen that, in
order to establish Euler’s differential equation satisfied by the extremals,
it is sufficient to take weak variations dy of the restricted type which con-
sists only of finite polynomials, which, together with a prescribed number
of their derivatives, vanish at the extremities of the interval.

A theorem* which is of use in the theory of isoperimetric problems,
and which is due to Du-Bois-Reymond, states that if f(z), g(z) are con-

tinuous in the interval (z,, z,), and such that r' f@)(x)dz vanishes for
o

all functions Y(z) which vanish at z, z,, have continuous differential
coefficients in the interval (z,, «,), and are such that rg(x)\//(z)dz
Ty

vanishes, then a constant A exists such that f(z)+2\g(z) vanishes through-
out the interval (zg, ;). This theorem is here generalized by assuming that
f(@), g(x) are any summable functions, and that () is restricted to be a
finite polynomial of the same type as in the former theorem. It is then
shewn that a constant A exists, such that f(2)4Ag(z) vanishes at all
points except those of an exceptional set with measure zero, and that it
vanishes at every point at which f(z), g (z) are continuous.

Another known theorem which has an important application in the
Calculus of Variations is that, if rl d”%) f(z)dz vanishes for all functions
kN
5 (z) which have continuous differential coefficients in the interval (z,, z,),
where f(z) is a continuous function, then f(x) must be constant in the
interval. This was also established by Du-Bois-Reymond, and has been
extended to the case in which f(z), though limited, has a finite set of dis-
continuities in the interval.

This theorem is here extended to the case in which f(z) is assumed
only to be summable in (zy, z;), and in which (z) is restricted to belong
to the class of those finite polynomials which vanish at =z, z,. It is
shewn that f(z) has a constant value at all points which do not belong to

* See Bolza's Vorlesungen #ber Variationsrechnung, p. 462.



1911.] THE FUNDAMENTAL LEMMA OF THE CALCULUS OF VARIATIONS. 19

some seb of measure zero, and that it has this constant value at all points
of any interval contained in (z) z;) in which it is continuous. The
theorem is proved for the more general case of the integral

e di’n(x) =
L) FID flodr,

I which & polynomial of degree p—1 takes the place of the constant for
the special case p = 1.
Lastly, the case of the vanishing of the more general expression,

z ) 7]
j l QOU+Q1 + + p ii {» ' f(Z)'(l.II,

is considered, where gy, qy, ..., ¢, are functions of z satisfying certain
conditions.

It is shewn that, if y be restricted to belong to the class of those finite
polynomials which, together with their first p—1 derivatives, vanish at xz,
and z,, then, in any interval of continuity of f(z), that function must be
a solution of the differential equation: which is adjoint to the equation

7
Tyt h’+ A4 ,.( "=0

1. Let f(z) be a function which is summable (whether limited or not)
in the interval (zy, z;). Let it be assumed that for every function #(z)
which consists of a finite polynomial such that the function and its first
o differential coefficients vanish for the values z,, z,: of z, the integral

j' ' n(z) f(x)dz has the value zéro.*

It is clear that 5(z) is of the form (x—x05”+1'(.r14m)’+‘P,(m), where
P, (z) is any finite polynomiul. If we write

¢ (@) = (@~z)"* (2, — 1) f(2),

the above assumption i% equivalent to thé& one that jzl P, () pL)de
vanishes for every polynomial P, (z). o

Let £ ¢ denote any two numbers sué¢h' that z, < £ < & < z,, and

let € be an arbitrarily chosen positive number, less than both £—z, and

—§&'. Let x (z) denote that function, continuous in the interval (zq, x,),

* It can be shewn that, if f(z) is summable in the interval (z,, «,), then the product
of f(z) by any limited summable function is also summable in the same interval. The
functions 7 (z) fall into this class.

]
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which has the values
x@) =0, for zp<z < E—e

X0 =—@—{+e, for f—e<z<E
x@ =1, for £z €,
x(z)=%($’+e-—z). for &<z < E+ e

x(@) =0, for f+eLz <<z,

1 |

nF=e ¢ & T

8

In acecordance with the well known theorem of Weierstrass, a finite
polynomial P, (z) can be so determined that, if { be an arbitrarily chosen
positive number, the condition

|x($)—P,-(.’E)‘ < ;

holds for every value of z in the interval (z,, x,).
We have

£

S:l X @) ¢ (&) dz = Ll ¢ (@) {x(@)—P,(z)} dz +rl ¢(z) P, (x)duc.

To

EN '3 (¢ 1
Now S x (@) p(z)de = L o (z)dx +L_ - (z~—E+e) plz)dz

+£+£ % (€' +e—2) p(z)dz,

and the second and third integrals on the right-hand side of this equation
3 t'+e

are less in absolute value than j | p ()| dz, j | ¢(z)|dz ; and thus, in
f—e ¢

accordance with a well known property of Lebesgue integrals, they con-
verge to zero as e converges to zero.

< gL | p(@) | de.

Also

r ¢ @) {x (@) —Pp(@) } du
Zo
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By hypothesis lrl ¢(z) P, (x)dz = 0;

o

it then follows that has a value which can be made as small as

[

we please by taking e and { small enough. Therefore

"
j' plr)de = 0,
H

where £, £' are any numbers such that z,< &< € <z,. Since the
integral is a continuous function of either the upper or the lower limit, it
follows that the integral vanishes for all pairs of values of £ and £ such
that z, < €< & <. It is a known theorem * that, if the integral of
¢ () vanishes when taken through any sub-interval whatever of (z,,z,),
then ¢(x) vanishes for every value of z, with the possible exception of
those values belonging to a set with measure zero.

Since f(z) vanishes for any value of z for which ¢(z) vanishes, except
for £ = xz,, * = z,, we see that f(z) must vanish for all values of z except
at most those belonging to some set with measure zero.

The fundamental lemma of the Calculus of Variations has now been
established in the following generalized form :—

If f(z) be a function which is summadble tn the interval (zy, z,), and is
such that r f(@) P(x)dz vanishes, provided P (x) is any finite polynomial
which, together with its first p differential coefficients, vanishes at the
end-points of the interval, then f(x) must vanish for every value of x
except those belonging to some set of which the measure is zero. Also f(x)
must vanish at any point at which it s continuous. In particular, if

* This theorem was first given by Vitali ; see Rend. di Palermo, Vol. xx, p. 136.

It may easily be proved as follows :—Let E be that set of points in the interval (2o, z)),
at each of which ¢ (z) > 0; then all the points of E can be enclosed in intervals of a set 4,
such that m (a) —on (E) is arbitrarily small; where m (E), m (A) denote the measures of E and
4 respectively. The integral of ¢ (z) through A vanishes, by hypothesis, and thus

j ¢(z)dx+.|‘ ¢ (z)dz = 0.
(E) (a-F)

The latter integral may be made arbitrarily small by choosing m (A)—m (E) small enough ;

therefore
j ¢ (@) dz = 0.
(B)

It follows that the measure of that set of pcints of E at which ¢ (x) > 0 must be zero.
Similarly it is seen that the measure of the set of points in (x,, z,) at each of which ¢ (z) < 0
must be zero. Thus the theorem is established.
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f(@) is continuous in an interval (a, B) which may be the whole or a part
of (g, &), it must vanish cverywhere in (a, B).

It is clear that, instead of P (z), we may take the functions
(.L'—JJO)""'I (£1_£)1)+1 .I}k,

where % has the values 0, 1, 2, 8, ....
It will be observed that the proof here given establishes the theorem

Z

that, if ¢(z) be any summable function such that jl ¢(x)z*dz vanishes

for all positive integral values of %, including zero, then ¢(z) vanishes in
the interval (zy, x,), except possibly at points belonging to some set of
measure zero; and that in particular ¢ (z) vanishes at any point at which
it 1s continuous. The particular case of this theorem which arises when
¢(z) is continuous throughout the interval has been proved by Landau,*
who gives references to an earlier proof by Lerch.

2. Let f(z), g(z) be functions which are summable in the interval
1
0, 1), and let us suppose that 5 S @) Q(x)dz vanishes for every finite
l 0
polynomial such that j g (z) @ (z)dz vanishes, and such also that ¢ (x) and
V]

its first p differential coeflicients all vanish for £ = 0 and z =1. The
number » may have any fixed integral value, including zero.
Let 4 and B be so chosen that

1
j g(x) ¢ (1 —z)P*! (Az"+ Bz™)dz = 0,
0 .
where n and m are positive integers. When the two integrals
1 ' 1
j 0(-5) .’.Ep+l (l —.I:)p+1.t"d$, j g (m)mp+1 (1 _z)p+1zm dx

0 v

have values which arve both different from zero, which we suppose to be
the case, the assumed condition determines uniquely the ratio 4/B.

* See the Rend. del Circ. Mat, di Palermo, Vol. xxv, p. 3438. A referee has called atten-
tion to the fact that the theorem is not valid for the case of an indefinitely great interval.
Thus Stieltjes has pointed out (see Borel's Théorie des séries divergentes, p. 68) that if

¢ (z) = e~ sin (z}),
.o .
then ¢ (x) atda = 4J e-¥siny.y¥*3dy = 2;_ r(4k+4)sin(k+1)m,
Jo 0
which vanishes when £ =0,1,2,8, ....
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We have then, from the original assumption,
1 1
A 5 flx)z"+! (l—z)f’“x”d.zr-{—lij f@) 't (1 —z)r*g™dz = 0.
0 0
From the two equations, we see that

1
g 2+ (1 — )P+l f_/ (2) -k A g () : z'de = 0,
0

where A has the value

1 1
— S w"‘“‘“(l—z)"“f(z) d“’/S £""+p+l (1 __x)p+l g(:c)dz,
0

v

and thus, if m has any fixed value, A is a determinate constant.

1
The integer m may be so chosen that 5 ge)ert 1 (1 —a)*'de is not
v

zero, for if this integral were zero for every value 0, 1, 2, 3, ... of m, it
would follow from the theorem of §1 that ¢g(z) vanishes everywhere
except at points of some set of measure zero, and we may provisionally
suppose ¢ (z) to be such that this possibility is excluded. Moreover, there
must be an indefinitely great number of values of m for which the integral
does not vanish ; for, if it vanished for all values of m which exceed some
fixed value m,, we should see that ™ ¢g(z), and therefore g(x), would vanish
for all values of z except those of some set of measure zero. Further, for
any value of »n for which

1
S 21—+ () 2*dz = 0,
0

1

we should also have j (1 —2z)* f(z) z*dz = O,
0

in virtue of the original assumption. It has now been shewn that a con-

stant A exists, such that

1
j 2?1 (1—2PP* { f (1) +Ag (2) } 2"dz = O,
0

for n=20,1,28, ....

It follows from the theorem of § 1, that f(z)-+Ag (z) is zero at all points
of the interval (0, 1) with the exception of those belonging to some set
with measure zero. Also in any interval (a, 8) in which f(z), g(x) are
continuous, f(x) +N\g(z) vanishes in the interval.

In case g(z) vanishes everywhere in (0, 1) with the exception of
points of some set with measure zero, the integral

1
5 Pt (1—z)?*! g (z) " dz
0
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would vanish for every value of n ; and therefore

1
j P+ (1—z)*! f(z) 2"dz
0

would also vanish for every value of n. It would then follow that f(z)
vanishes everywhere except at points of some exceptional set of measure
zero; in this case we shall have X = 0. It is clear that the limits of the
integral can be taken to be z,, z,, instead of 0, 1.

The following theorem has now been established :—

Let f(z) be a function summable in the interval (zy, z,), and such that

J l [ (@) Q@)dx vanishes for every finite polynomial Q(x) which is such that

&

j'g(z)Q(x)dx=0,

where g(x) is another function summable in (z,, z,), and where Q(z) also
satisfies the condition that it and its first p derivatives vanish for
z = zy, ;. A determinate constant \ then exists, such that f(z)+\g (z)
vanashes for all points in the interval (zy, z,) except at most those belonging
to some exceptional set which has the measure zero. In any interval
(a, B), which may be a part or the whole of (z, z,), and in which
f(x), g (@) are continuous, f(x)+N\g (x) vanishes without exception.

8. Let us assume that f(z) is a function defined for the interval
(0, 1), summable in that interval, and such that

LdP n(z)
|, reas

vanishes for every value of »(z) which is a finite polynomial such that it
and its first p—1 differential coefficients all vanish at the end-points of
the interval. Let 5(z) = «?(1 —x)? z*, where % is a positive integer; we
have then

P

LY/ .
0= Sof(z) w[a:”"(l—x)”]dx

= [f@ [@+BE+HE=1. D —p oD+, (+ D)2
+2EZD (kb DR D). (48 20— ] da.

1
Jo

Let we= (PR p+E—1) ... <k+1)5 = f @) dz ;
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the above equation becomes then

-1
uk—puk+1+p~(%,—)uk+a— e =05

which is a linear difference equation that can be written in the form
(1—E)Yu, = 0,
where E is the usual operator, such that
Eup = wgq.
The general solution of this difference equation is
wy = Ag+ A kA 0+ .. A A, kP

where A4, 44, ..., 4,1 are constants independent of the value of k. It
follows that

J,f@atan = 1ttt
where a;, a3, ..., a, are independent of 4. Hence
S: ' [f@)— oy —ayr—azz?—...—apx?P~ V] dz = 0.
Since the function f(z) —ai—a,z—az2®—...—a,z?~! when multiplied

by any finite polynomial and integrated through (0, 1) is such that the
integral vanishes, .it follows from the theorem in §1 that this function
vanishes for all points of the interval (0, 1) except possibly those belonging
to a set of which the measure is zero. It is clear that, by a linear trans-
formation, the limits of the integral can be taken to have any values
g, z, instead of O and 1; thus we have established the following
theorem :—

If f(x) be a function which is summable in the interval (z,, z,) and s
such that j f(@) 6%,P(:::) dz vanishes provided P(a:} is any finite poly-
nomial which, together with its first p—1 differential coefficients, vanishes
at the end-points of the interval (zy, x,), then f(x) must have the same
values as some polynomial of degree p—1 for every value of x except
posstbly for those belonging to a set of measure zero. If in an interval
which is @ part of, or the whole of, the wnterval (zy, z,) the function f(z)
s continuous, then through the whole of such interval f(x) must have
the same values as the polynomial.
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In the case p = 1, the theorem states that if

x, d _
L f() T P(x)dz = 0,

for all polynomials P(z) which vanish at z, =z, then f(z) must have
a constant value at all points of the interval, with the possible exception
of those belonging to a set of measure zero. Moreover, the function has
this constant value at every point where it is continuous.

4. Let go, ¢1, 92, --- qp be functions of z which are continuous and of
limited total fluctuation in the interval (0, 1). Moreover, let it be assumed
that ¢, has a continuous differential coefficient of order p, g,-1, & con-
tinuous differential coefficient of order p—1, and so on. Let it be
assumed that a summable function f(z) is such that

Yo dy d*y dvy) ..
L Doyt ag T2t g fla)de

vanishes for every value of y that is represented by & finite polynomial
which, together with its first p—1 derivatives, vanishes at the end-points
0, 1 of the interval. The method of integration by parts being applicable
to Lebesgue integrals, we find, by successive employment of the process,
that

1 z z
L q,,_,f(:c)g pJTd:v-—( 1)rj ]Z’{)j dedz... Lgp_.,f(x)d:c}dz

Hence, when y is any polynomial having the above property, we see that
[ L[ st e g ] 25

vanishes. Irom the theorem established in § 8, we see that

25 /@ —L o1 /(@) da:+£ dz L Gpsf@dz—...

must, at every point z of the interval (0, 1), with the possible exception of
the points of a set of measure zero, have the value of some polynomial
agtaye+ ... +apzt?, of degree p—1.

£

Remembering that an integral J Udz has a differential coefficient
0

with respect to its upper limit z, equal to U, at any point at which U is
continuous, we see that at any interior point of an interval (a, 8) con-
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tained in (0, 1), such that f(z) is continuousin (a, 8), f(x) has a continuous
differential coefficient ; since throughout this interval we have

g flx) = a0+a1w+...+al,w”“+j‘:q,,_1f(z)dx—5:cl.z: S:q,,_gf(z)du:+... .

Thus, throughout this interval,

d
dz {gnf (@)}

= a1+2a21:+...+(p—l)apx”‘?+q,,_1f(.z:)—sz gp—2fl@ydz+... 3

it now follows that ¢, f(z) has a continuous second differential coefficient
through the interior of (¢, 8), and thus that this holds also for f(x).
Proceeding in this way we see that, in the interior of the interval (a, B8).
the first p differential coefficients of f(x) all exist and are continuous, and
also that f(x) there satisfies the condition

& @ @ .
7 WS @} = i i f @)+ 75 g2 f@) = =0,

'This is the differential equation known as the one adjoint® to the
differential equation

d I ar
%Y+ zlf +q. # +...+q,,—d;’{; =

In case f(x) is continuous in the whole interval (0, 1) it must be a function
which everywhere satisties this adjoint equation.

The following theorem has now been established :—

Let qq, q1,-.- gp be functions of x which are continuous and of limited
total fluctuation in the interval (&g, x,), and let g, be such that it has a
continuous differential coefficient of order r throughout the interval. Let
f(z) be a function summable in the interval (zy, z,) and such that

= dy , d% a*y )\
[HortoZ+aTh+ +aTl) foe
vanishes for every value of y that consists of a finite polynomial which,
together with tts first p—1 differential coefficients, vanishes at z, and x,.
Then, if f(x) be continuous in the interval (xy, x,), it must be a solution of

* See Forsyth’s Theory of Differential FEquations, Part III.



28 THE FUNDAMENTAL LEMMA OF THE CALCULUS OF VARIATIONS.
the equation which is adjoint to the equation
dy dry _
Qy+hz ot s =

Moreover, if f(x) is continuous only in some interval contained in (g, ),
its value must satisfy the adjoint equation at all points in the interior of
the interval of continuaty.

It will be observed that, as in the former cases, no assumption has
been made a prior: as to the existence of differential coefficients of f(z),
which has been assumed only to be summable, whether limited or not, in
the sense that it is assumed to be such as to possess a Lebesgue integral.





