Sections of the thickened and dense tissue underlying the skin of the umbilicus presented, under the microscope, in patches of epithelioid type, arranged more or less within alveoli. The cells assumed very various shapes, and contained large nuclei. Sections of the lymphatic glands in the hilus of the liver showed also spaces containing 'cancer cells.'

The post-mortem examination and microscopic sections were made by Dr. Sidney Coupland, curator.

DUNEDIN HOSPITAL.

FRACTURE OF TIBIA AND PARTIAL DISLOCATION OF ASTRAGALUS; OPERATION; RECOVERY.

(Under the care of Dr. Hulme.)

ROBERT I—aged thirty-nine, miner, was admitted Sept. 22d from Taupaka Hospital. When working in a tunnel seventeen months previously, the earth caved in, causing a fracture of the patient's right fibula, and a partial displacement of the astragalus onwards. The skin was inflamed over the projecting portion of the astragalus and walking was very difficult.

On Feb. 8th the projecting portion of the astragalus with about half an inch of the body of the bone was removed by Dr. Hulme. The wound healed favourably, and the patient gradually gained strength in the joint and left the hospital on Jan. 4th, 1874, able to walk tolerably well. He now gets daily employment in a saw-mill.

TRAUMATIC ANEURISM; OPERATION; RECOVERY.

Hugh B—was admitted March 5th, 1875, with traumatic aneurism of the radial artery. Two months previously he received a wound in the right forearm two inches above the wrist. The wound healed, but shortly there appeared a small swelling, which increased to the size of a duck's egg. The patient was then under the care of a Chinese doctor, who poulticed the swelling and occasionally punctured it with a needle. Dr. Hulme opened the sac and tied both ends of the artery. The ligatures came away on the sixteenth day, and the man was discharged cured on the 29th of the month.

It may be of interest to note that an infusion of blue-gum leaves (4 oz. of fresh leaves to a pint of water) has been given by Dr. Hulme, in several cases of diarrhosa requiring astringents, with the best effect. But in cases of chronic dysentery it appears to be inferior to sulphate of copper.

The book absolutely teems with statements that would require a volume for their elucidation and illustration. Thus in one place he observes, that "on a study of the laws of human action we find that the child is born with a will which is unrestrained, and free to act in any manner." Is this so? Has heredity nothing to do with the mode of action? Many of the statements, too, are very loose. Thus Mr. Smeez states that an artificial blood-corpuscle may be made by placing a little persalt of iron in animal membrane. Now we can scarcely think that Mr. Smeez can really believe that we can thus imitate a blood-corpuscle in any one of its relations, physical, chemical, or physiological.

The book absolutely teems with statements that would require a volume for their elucidation and illustration. Thus in one place he observes, that "on a study of the laws of human action we find that the child is born with a will which is unrestrained, and free to act in any manner." Is this so? Has heredity nothing to do with the mode of action? Many of the statements, too, are very loose. Thus Mr. Smeez states that an artificial blood-corpuscle may be made by placing a little persalt of iron in animal membrane. Now we can scarcely think that Mr. Smeez can really believe that we can thus imitate a blood-corpuscle in any one of its relations, physical, chemical, or physiological.

The book absolutely teems with statements that would require a volume for their elucidation and illustration. Thus in one place he observes, that "on a study of the laws of human action we find that the child is born with a will which is unrestrained, and free to act in any manner." Is this so? Has heredity nothing to do with the mode of action? Many of the statements, too, are very loose. Thus Mr. Smeez states that an artificial blood-corpuscle may be made by placing a little persalt of iron in animal membrane. Now we can scarcely think that Mr. Smeez can really believe that we can thus imitate a blood-corpuscle in any one of its relations, physical, chemical, or physiological.

The most simple idea of a voltaic element in the nervous system would be obtained by a circle of one motor nerve and one sensor nerve, the termination of one end of the sensor nerve being in contact with aqueous matter in the muscle. The other extremities of the two nerves are inserted in the moist tissue of the grey matter of either the brain or spinal cord, the two connecting nerves being in contact with aqueous matter in the muscle. The other extremities of the two nerves consist of fluid, whilst the connexions of telegraphs are made of metal.

Throughout this chapter the identity of voltaic electricity and nerve force is calmly assumed, though it is as yet an utterly unproven hypothesis.

The wonderful disposition of