Conference paper Open Access

A ROS Framework for Audio-Based Activity Recognition

Theodoros Giannakopoulos; Georgios Siantikos


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/221421</identifier>
  <creators>
    <creator>
      <creatorName>Theodoros Giannakopoulos</creatorName>
      <affiliation>NCSR Demokritos</affiliation>
    </creator>
    <creator>
      <creatorName>Georgios Siantikos</creatorName>
      <affiliation>NCSR Demokritos</affiliation>
    </creator>
  </creators>
  <titles>
    <title>A ROS Framework for Audio-Based Activity Recognition</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2016</publicationYear>
  <subjects>
    <subject>ROS</subject>
    <subject>audio analysis</subject>
    <subject>open-source</subject>
    <subject>audio segmentation</subject>
    <subject>audio classification</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2016-07-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/221421</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1145/2910674.2935858</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/radio</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Research on robot perception mostly focuses on visual information analytics. Audio-based perception is mostly based&lt;br&gt;
on speech-related information. However, non-verbal information of the audio channel can be equally important in the perception procedure, or at least play a complementary role. This paper presents a framework for audio signal analysis that utilizes the ROS architectural principles. Details on the design and implementation issues of this workflow are described, while classification results are also presented in the context of two use-cases motivated by the task of medical monitoring. The proposed audio analysis framework is provided as an open-source library at github (https://github.com/tyiannak/AUROS).&lt;/p&gt;</description>
  </descriptions>
</resource>
76
130
views
downloads
Views 76
Downloads 130
Data volume 56.1 MB
Unique views 75
Unique downloads 124

Share

Cite as